
Conversion and Emulation-aware Dependency
Reasoning for the Needs of Digital Preservation

Ioannis Kargakis

Thesis submitted in partial fulfillment of the requirements for the

Masters’ of Science degree in Computer Science

University of Crete
School of Sciences and Engineering

Computer Science Department
Voutes University Campus, Heraklion, GR-70013, Greece

Thesis Advisor: Assistant Prof. Yannis Tzitzikas

This work was partially supported by the Foundation for Research and Technology - Hellas
(FORTH), Institute of Computer Science (ICS).

University of Crete
Computer Science Department

Conversion and Emulation-aware Dependency Reasoning
for the Needs of Digital Preservation

Thesis submitted by
Ioannis Kargakis

in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science

THESIS APPROVAL

Author:
Ioannis Kargakis

Committee approvals:
Yannis Tzitzikas
Assistant Professor, Thesis Supervisor

Dimitris Plexousakis
Professor, Committee Member

Anastasia Analyti
Principal Researcher, Committee Member

Departmental approval:
Angelos Bilas
Professor, Director of Graduate Studies

Heraklion, December 2013

Conversion and Emulation-aware Dependency

Reasoning for the Needs of Digital Preservation

Abstract

Modern society and economy is increasingly dependent on a deluge of only

digitally available information. Its preservation within an unstable and rapidly

evolving technological (and social) environment is a challenging problem of promi-

nent importance. Digital material has to be preserved not only against loss or

corruption, but also against hardware/software technology changes, plus changes

in the knowledge of the community.

In this thesis we propose a modeling and reasoning approach for modeling the

dependencies of the digital material to be preserved. It is based on an object-

oriented model, enriched with rules, while a distinctive feature of the approach is

that it allows modeling converters and emulators (indispensable in most preserva-

tion strategies) and considers their capabilities in the offered reasoning services. We

show that the proposed modeling achieves the desired reasoning, thus enables offer-

ing more advanced digital preservation services which can reduce the human effort

required for checking the performability of tasks over digital objects, for predicting

the consequences of probable losses or obsolesces, and can assist preservation plan-

ning. The thesis provides examples demonstrating how real world converters and

emulators can be modeled, and describes how the approach can be implemented

in various technologies, as well as how it can be applied and exploited in general.

In the sequel the thesis details the demonstrator called “Epimenides”, which is

based on Semantic Web technologies, and realizes the proposed approach and thus

proves its feasibility. Its knowledge base already contains the MIME types and

their associated tasks. Finally various promising evaluation results are reported.

Sullogistik Exart sewn me Upost rixh

Metatropèwn kai Exomoiwt¸n gia tic an�gkec thc

Yhfiak c Diat rhshc

PerÐlhyh

H sÔgqronh koinwnÐa kai oikonomÐa ìlo kai perissìtero exart�tai apì plhrofo-

rÐec pou eÐnai diajèsimec mìno se yhfiak morf . H diat rhs thc (preservation) se

èna taqèwc exelissìmeno teqnologikì kai koinwnikì perib�llon apoteleÐ prìklhsh

meÐzonoc shmasÐac. To yhfiakì ulikì prèpei na prostateujeÐ ìqi mìno apì ap¸leia

 fjor� (corruption), all� kai apì tic allagèc sto ulikì, to logismikì, th gn¸sh

thc koinwnÐac, ¸ste na parameÐnei katalhptì kai leitourgikì.

Se aut n th diatrib proteÐnoume mia prosèggish montelopoÐhshc kai sullo-

gismoÔ h opoÐa epitrèpei th montelopoÐhsh twn exart sewn tou yhfiakoÔ ulikoÔ

pou jèloume na diathr soume. BasÐzetai se èna antikeimenostrefèc ennoiologikì

montèlo, emploutismèno me kanìnec, en¸ èna idiaÐtero qarakthristikì thc prosèggi-

shc eÐnai ìti epitrèpei th montelopoÐhsh metatropèwn (converters) kai exomoiwt¸n

(emulators) (oi opoÐoi eÐnai aparaÐthtoi stic perissìterec strathgikèc diat rhshc),

kai m�lista axiopoieÐ tic dunatìthtèc touc stic prosferìmenec sumperasmatikèc dia-

dikasÐec. DeÐqnoume ìti o proteinìmenoc trìpoc montelopoÐhshc epitugq�nei thn

apaitoÔmenh autìmath sullogistik kai kajist� efikt thn paroq prohgmènwn u-

phresi¸n yhfiak c diat rhshc oi opoÐec mporoÔn na mei¸soun shmantik� thn an-

jr¸pinh prosp�jeia pou apaiteÐtai gia ton èlegqo thc epiteuximìthtac ergasi¸n epÐ

tou yhfiakoÔ ulikoÔ, thn prìbleyh sunepei¸n apì ap¸leia par¸qhsh, k.a., kai na

bohj soun th diadikasÐa tou programmatismoÔ diat rhshc (preservation planning).

H diatrib parèqei paradeÐgmata pou epideiknÔoun pwc pragmatikoÐ metatropeÐc kai

exomoiwtèc mporoÔn na montelopoihjoÔn, perigr�fei trìpouc ulopoÐhshc thc pro-

sèggishc se diaforetikèc teqnologÐec, kai genikìtera proteÐnei trìpouc efarmog c

kai axiopoÐhshc aut c thc prosèggishc. Sth sunèqeia perigr�fetai to sÔsthma e-

pÐdeixhc {EpimenÐdhc}, to opoÐo basÐzetai se teqnologÐec tou ShmasiologikoÔ IstoÔ,

pou pragmat¸nei thn prosèggish montelopoÐhshc kai sullogismoÔ, kai ek toÔtou

thn epalhjeÔei. H b�sh gn¸sewn tou dh perilamb�nei touc tÔpouc MIME kai

twn sunaf¸n ergasi¸n. Tèloc parousi�zontai di�fora polÔ jetik� apotelèsmata

axiolìghshc.

EuqaristÐec

Sto shmeÐo autì ja jela na euqarist sw ton epìpth kajhght mou k. Gi�nnh

TzÐtzika gia thn orj kajod ghsh kai ousiastik sumbol tou sthn olokl rwsh

thc paroÔsac diatrib c. Epiplèon, na ekfr�sw tic euqaristÐec mou ston k. Dhm trh

Plexous�kh kai sthn k. AnastasÐa Analut gia thn projumÐa touc na summetèqoun

sthn trimel epitrop .

Akìma na euqarist sw to InstitoÔto Plhroforik c tou IdrÔmatoc TeqnologÐac

kai 'Ereunac gia thn polÔtimh upost rixh se ulikoteqnik upodom kai teqnognwsÐa,

kaj¸c kai gia thn upotrofÐa pou mou prosèfere kaj' ìlh th di�rkeia thc metaptu-

qiak c mou ergasÐac.

Pollèc euqaristÐec se ìlouc touc fÐlouc mou gia thn st rixh, thn emyÔqwsh

touc, kaj¸c kai gia ìlec tic ìmorfec stigmèc pou moirast kame.

To megalÔtero euqarist¸ ìmwc axÐzoun oi goneÐc mou Ant¸nhc kai KaterÐna, kai

o aderfìc mou Gi¸rgoc gia thn upost rixh, thn sumpar�stash kai thn empistosÔnh

pou mou èdeixan ìla aut� ta qrìnia twn spoud¸n mou, all� kai gia thn ag�ph touc

se k�je b ma thc zw c mou. Sac euqarist¸ polÔ gia ìla.

stouc goneÐc mou

Contents

1 Introduction 3

2 Related Work, Background & Requirements 7

2.1 What is Digital Preservation? . 7

2.2 Related Work: Dependency Management for Digital Preservation . 10

2.3 Background: Migration and Emulation 12

2.3.1 The KEEP Project . 13

2.4 Background: Datalog . 14

2.4.1 Example (of Datalog-like modeling) 15

2.5 Requirements on Reasoning Services 16

3 Modeling Tasks and their Dependencies 19

3.1 Overview of the Modeling Approach 19

3.2 General Methodology . 20

3.3 Modeling Digital Objects, Type Hierarchies, and Profiles 21

3.4 Modeling Task-Dependencies and Task Hierarchies 22

3.5 Modeling Converters . 23

3.6 Modeling Emulators . 24

3.6.1 Modeling Important Parameters 26

3.6.2 Handling Exceptions or Special Cases 27

3.7 Modeling Real Converters and Emulators 27

3.8 Synopsis of the Modeling Approach 29

4 Reasoning Services 31

4.1 Task-Performability . 31

4.2 Consequences of a Hypothetical Loss 32

I

4.3 Computation of Gaps (Missing Modules) 32

5 Implementation 35

5.1 Possible Implementation Technologies 35

5.2 On RDF/S-based Implementations 36

5.2.1 Modules . 37

5.2.2 Profiles . 38

5.2.3 Dependencies . 38

5.2.4 Converters . 39

5.2.5 Emulators . 39

5.2.6 Services . 40

5.3 Evolution, Representation of Profiles and Limitations 40

5.3.1 Inference and Evolution . 40

5.3.2 Representation of Profiles 41

5.3.3 Limitations of RDF/S . 42

5.4 Proof-of-Concept Dataset and Repository 43

6 Epimenides: A Proof-of-Concept System 45

6.1 Use Cases . 45

6.2 Deployment of Epimenides . 46

6.3 User Interface . 47

6.4 The Knowledge Base of Epimenides 48

6.4.1 The Current Knowledge Base 53

6.5 Aiding the Ingestion of Tasks . 54

6.6 Aiding the Ingestion of Converters and Emulators 54

6.7 Screen Dumps of Epimenides . 55

6.8 Evaluating its Usability . 60

6.9 Query and Reasoning Efficiency . 61

7 Applicability 65

7.1 On Applicability . 65

7.2 Ways to Offer the Dependency Management Approach 66

7.3 Application by Extending an Existing Repository (Fedora) 67

7.4 Related Datasets and Tools . 68

7.4.1 PreScan . 68

II

7.4.2 The PRONOM Registry and its Contents 69

7.4.3 Catalogues of Existing Converters and Emulators 71

7.5 Case Study: DANS . 71

7.5.1 Scenario 1: Checking File Format Compatibility (compli-

ance or migratability) with Acceptable/Preferred File For-

mats during Ingestion . 72

7.5.2 Scenario 2: Updating the List of Preferred/Acceptable For-

mats and Detecting the Consequences of Obsolete Formats 73

7.5.3 Scenario 3: Assistance in Planning and Performing Migration

to Acceptable/Preferred File Formats 74

7.5.4 Scenario 4: Checking the Preservation of the Software . . . 75

7.5.5 Scenario 5: Bit Preservation (ability to test corruption) . . 75

7.5.6 Consolidation of the Scenarios 76

7.6 Layering Tasks . 76

8 Concluding Remarks 79

Bibliography 80

Appendix A 87

A.1 Epimenides: RDF Schema . 87

III

IV

List of Figures

1.1 Running example. (a)The situation (b)The profile (c)A series of

conversion/emulation to achieve our objective 4

2.1 A Curation Lifecycle Model . 9

2.2 Preservation system . 11

3.1 Informal concept map . 19

4.1 The proof tree of the running example 32

5.1 Exploration System . 44

6.1 Use Case Diagram of Epimenides 46

6.2 The deployment diagram of Epimenides 47

6.3 Main functionality of Epimenides 47

6.4 Checking the performability over a digital object 48

6.5 Architecture of the KB . 49

6.6 The contents of an RDF/S KB that follows the architecture of Figure

6.5 . 50

6.7 Operational KB . 51

6.8 Gradual Expansion . 52

6.9 The Gradual Expansion in Epimenides 53

6.10 Load your personal profile or use a demo profile 56

6.11 Upload digital objects to check the performability of them 56

6.12 System finds the tasks that usually make sense to apply to the up-

loaded digital objects . 57

6.13 Results of analysis . 57

V

6.14 Exploring the Dependencies of a Task 58

6.15 Identify the modules that will be affected on a task after removing

a module . 58

6.16 Define a new Task . 59

6.17 Define a new Emulator Type . 59

6.18 Explore the contents of the underling RDF/S triple store 60

6.19 Analysis of the responses to the questionnaire 62

7.1 Our approach in a software example 66

7.2 The system PreScan . 68

VI

List of Tables

2.1 Modeling the running examples with Facts and Rules 16

3.1 Facts of running examples . 21

5.1 Implementation Approaches . 36

6.1 Some indicative measurements of time 63

7.1 The RDF properties of PRONOM 70

7.2 Application of the Methodology for the case of DANS 77

1

2

Chapter 1

Introduction

Today the majority of the information exists in digital form (such as pdf or doc

files, emails, blogs, videos, social networking websites etc.) while a few decades

ago the information existed only in physical form (written in stone, paper, pa-

pyrus, wood etc.). The preservation of the information has been always a major

issue. The information that was stored in physical materials should be protected

from natural disasters (fire, flood, earthquakes), while today a set of activities (mi-

gration, emulation, metadata attachment etc.) is required to preserve the digital

information. These activities refer to the term of the “Digital Preservation”.

Digital material has to be preserved not only against loss or corruption, but

also against hardware/software technology changes, plus changes in the knowledge

of the community. Consequently there is a need for services that help archivists in

checking whether the archived digital artifacts remain intelligible and functional,

and in identifying the consequences of probable losses (obsolescence risks).

Past works [1], [2] and [3] have shown how the above mentioned services can

be approached from a dependency management perspective. However, the afore-

mentioned works did not capture converters and emulators. Since conversion (or

migration) and emulation are quite important preservation strategies, a dependency

management approach should allow modeling explicitly converters and emulators

(and analyze them from a dependency point of view, since they have to be preserved

too), and exploit them during the offered preservation services.

This is important since a sequence of conversions and emulations can be enough

for vanishing an intelligibility gap, or for allowing performing a task. Note that

3

4 CHAPTER 1. INTRODUCTION

Smart Phone Code in Pascal

Programming Language

Converter

from Pascal

to C++

C++ Compiler

for WinOS

Emulator of WinOS

Executables over

Android OS

Smart Phone Code in Pascal

Programming Language

a.

b.

c.

step 1: conversion

step 3: emulation

st
e

p
 2

:
co

m
p

il
a

ti
o

n

game.pas game.cc

game.exe

game.pas

Figure 1.1: Running example. (a)The situation (b)The profile (c)A series of con-
version/emulation to achieve our objective

there is a plethora of emulation and migration approaches and tools that con-

cern various layers of a computer system (from hardware to software), or various

source/target formats (e.g. see [4] for an overview). This means that it is beneficial

to use advanced knowledge management techniques for aiding the exploitation of

all possibilities that the existing and emerging emulators/converters enable, and

assist preservation planning (e.g. [5]). This is crucial since the scale and complex-

ity of information assets and systems evolve towards overwhelming the capability

of human archivists and curators (either system administrators, programmers and

designers).

Below we attempt to pass the main message through an example. Consider

a user, say James, who would like to run on his mobile phone, software source

code written before many years, e.g. software code written in Pascal programming

language, stored in a file named game.pas. For example consider the situation

illustrated in Figure 1.1a.

The rising questions are:

• What can James do? (to achieve his objective)

5

• What should we (as community) do?

– Do we have to develop a Pascal compiler for Android OS?

– Do we have to standardize programming languages?

– Do we have to standardize operating systems, virtual machines, and so

on?

The direction and answer (according to this thesis), is that it is worth investi-

gating whether it is already possible to run that code on android by “combining”

existing software, i.e. by applying a series of transformations and emulations.

To continue this example, suppose that we have in our disposal only the fol-

lowing (as shown in Figure 1.1b):

• a converter from Pascal source code to C++ source code (say p2c++),

• a C++ compiler (gcc) for Windows OS,

• an emulator of Windows OS executable over Android OS (say W4A).

• a smart phone running Android OS

• a Pascal File (game.pas)

Someone could then think that it seems that we could run game.pas on his

mobile phone in three steps : (step 1) by first converting the Pascal code to C++

code, (step 2) then compiling the C++ code to produce executable code, and finally

(step 3) by running over the emulator the executable yielded by the compilation.

Indeed, the series of transformation/emulations shown in Figure 1.1c could achieve

our objective.

One might argue that this is very complex for humans. Indeed this is true. We

believe that such reasoning should be done by computers, not humans. The work

that we present in the current thesis shows how we can model our information in

a way that enables this kind of automated reasoning.

The above scenario concerns software. We should however clarify that the

proposed approach is not confined to software. Various services that concern doc-

uments and datasets can also be captured.

In a nutshell, the main contributions of this thesis are: (a) we extend past

dependency management approaches for digital preservation with converters and

emulators, (b) we demonstrate how this modeling apart from capturing the preserv-

ability of converters and emulators, enables the desired reasoning regarding task

6 CHAPTER 1. INTRODUCTION

performability, risk detection etc, (c) we show that with this approach we can model

real converters and emulators, (d) we discuss implementation approaches and de-

tail a particular one which we implemented using recently emerged Semantic Web

tools, and (e) we present the prototype system Epimenides that realizes this ap-

proach. Furthermore we discuss how the proposed functionality can be applied or

injected to existing systems.

The rest of this thesis is organized as follows: Chapter 2 discusses the mo-

tivation, the context, past related works, the required background, and the key

requirements. Chapter 3 introduces the rule-based modeling, and provides exam-

ples demonstrating how real converters and emulators can be modeled. Chapter 4

discusses how the corresponding inference services can be realized using the pro-

posed modeling, and Chapter 5 shows how the approach can be implemented using

Semantic Web tools. Chapter 6 describes the proof-of-concept system Epimenides,

details its implementation which is founded on Semantic Web technologies, and re-

ports various results. Chapter 7 discusses methods to apply the dependency man-

agement approach, methodolical issues, as well as a case study. Finally Chapter 8

summarizes, discusses related issues and identifies issues for further research.

Chapter 2

Related Work, Background &

Requirements

2.1 What is Digital Preservation?

The term “Digital Preservation” refers to the series of managed activities required to

ensure continued access to digital information for as long as necessary [6]. Generally

we can distinguish the digital preservation in 3 terms:

• Long-term preservation. Continued access to digital materials, or at least

to the information contained in them, indefinitely.

• Medium-term preservation. Continued access to digital materials beyond

changes in technology for a defined period of time but not indefinitely.

• Short-term preservation. Access to digital materials either for a defined

period of time while use is predicted but which does not extend beyond the

foreseeable future and/or until it becomes inaccessible because of changes in

technology

The digital information needs the continuous management to prevent problems

that can arise from the technological change due to the passage of time and this

is where the Digital Preservation Systems can contribute. Physical storage media,

data formats, hardware, and software all become obsolete over time, posing sig-

nificant threats to the survival of the content of a digital object. Because of this

7

8 CHAPTER 2. RELATED WORK, BACKGROUND & REQUIREMENTS

digital obsolescence, where a digital resource is no longer functional, the digital

preservation process of a resource should start as early in the lifecycle (even in the

creation) of this digital resource as possible.

Digital preservation today is a major procedure as more and more individuals

and organizations create new digital information, or even they digitize the non-

digital materials that hold. For example private users wants to keep accessible

their photo, audio, or video collections while insurance and aviation companies,

the pharmaceutical and car industry, and other key players want to preserve their

data holdings, simulation models, or studies over time [7].

Amongst the many strategies developed to preserve digital objects and keep

them accessible in the long run, according to Wikipedia1 the following are the

most prominent :

• Refreshing, is the transfer of data between two types of the same storage

medium so there are no bitrot changes or alteration of data. For example,

transferring census data from an old preservation CD to a new one.

• Migration is the transferring of data to newer system environments (more

about migration in Section 2.3).

• Emulation is the replicating of functionality of an obsolete system (more

about migration in Section 2.3).

• Replication is the creation of duplicate copies of data on one or more sys-

tems.

• Encapsulation. This method maintains that preserved objects should be

self-describing, virtually “linking content with all of the information required

for it to be deciphered and understood”.

• Metadata attachment. Metadata is data on a digital file that includes

information on creation, access rights, restrictions, preservation history, and

rights management. Metadata attached to digital files may be affected by

file format obsolescence.

To standardize digital preservation practice and provide a set of recommenda-

tions for preservation program implementation, the Reference Model for an Open
1http://en.wikipedia.org/wiki/Digital_preservation#Strategies

2.1. WHAT IS DIGITAL PRESERVATION? 9

Archival Information System (OAIS) was developed. OAIS is an ISO reference

(ISO 14721:2003) defined by a recommendation of the Consultative Committee for

Space Data Systems. Is concerned with all technical aspects of a digital object’s

life cycle: ingest, archival storage, data management, administration, access and

preservation planning. The model also addresses metadata issues and recommends

that five types of metadata be attached to a digital object: reference (identification)

information, provenance (including preservation history), context, fixity (authen-

ticity indicators), and representation (formatting, file structure, and what “imparts

meaning to an object’s bitstream”).

The Digital Curation Centre2 (DCC) introduces a graphical model3 that pro-

vides a high level overview of the stages required for successful curation and preser-

vation of data from initial conceptualisation through the iterative curation cycle.

Figure 2.1: A Curation Lifecycle Model

2http://www.dcc.ac.uk/
3http://www.dcc.ac.uk/sites/default/files/documents/publications/DCCLifecycle.pdf

10 CHAPTER 2. RELATED WORK, BACKGROUND & REQUIREMENTS

Figure 2.1 shows this model. The key elements that the Curation Lifecycle con-

tains are : (a) the Data (Digital Objects, Databases), (b) the Full Lifecycle Actions

(Description and Representation Information, Preservation Planning, Community

Watch and Participation, Curate and Preserve), (c) the Sequential Actions (Con-

ceptualise, Create or Receive, Appraise and Select, Ingest, Preservation Action,

Store, Access, Use and Reuse, Transform) and (d) the Occasional Actions (Dis-

pose, Reappraise, Migrate). The model can be used to plan activities within a

specific research project, organisation, or consortium to ensure all necessary stages

are undertaken, each in the correct sequence. It is important to note that the

description, preservation planning, community watch, and curate and preserve el-

ements of the model should be considered at all stages of activity.

The rising question in a digital preservation system is: what should we preserve

and how? Certainly, we have to preserve the file bitstreams of digital objects.

However we should also try to preserve their intelligibility and functionality, in

such a way that allows the performing of tasks (e.g run, render, compile etc.) over

a digital object, and this is the main aspect that we elaborate in this thesis.

2.2 Related Work: Dependency Management for Digi-

tal Preservation

As sketched in Figure 2.2, a preservation system consists of the stored digital

material (to be preserved), plus a number of services for managing the curating

this material. Many of these services rely on metadata and in some cases on other

external resources and services. Some basic preservation services can be reduced to

dependency management services, and a semantic registry can be used for offering

a plethora of curation services.

Intelligibility checking is a very fundamental service for digital preservation. [1]

showed how this service can be reduced to dependency management services, and

how a semantic registry (compatible with OAIS) can be used for offering a plethora

of curation services. Subsequently, [2] extended that model with disjunctive depen-

dencies. The key notions of these works is the notion of module, dependency and

profile. In a nutshell, a module can be a software/hardware component or even a

knowledge base expressed either formally or informally, explicitly or tacitly, that

2.2. RELATED WORK: DEPENDENCY MANAGEMENT FOR DIGITAL PRESERVATION11

...

Metadata

Repository

Service1 Service2 ServiceN

Preservation System

external
resources

and
services

Some basic preservation

services can be reduced to

dependency management

services

Figure 2.2: Preservation system

we want to preserve. A module may require the availability of other modules in

order to function, be understood or managed.

A profile is the set of modules that are assumed to be known (available or

intelligible) by a user (or community of users), and this notion allows controlling

the number of dependencies that have to be recorded formally (or packaged in the

context of an encapsulation preservation strategy). Subsequently, and since there is

not any objective method to specify exactly which are the dependencies of a par-

ticular digital object, [8] extended the model with task-based dependencies where

the notion of task is used for determining the dependencies of an object. As tasks

we define actions that can be applied on a digital object (e.g. edit, render or run a

digital object). In [8] actually introduced an extensible object-oriented modeling of

dependency graphs expressed in Semantic Web (SW) languages (RDF/S). Based

on that model, a number of services were defined for checking whether a module is

intelligible by a community (or for computing the corresponding intelligibility gap),

or for checking the performability of a task. These dependency management ser-

vices were realized over the available SW query languages. For instance, GapMgr4

4 http://athena.ics.forth.gr:9090/Applications/GapManager/

12 CHAPTER 2. RELATED WORK, BACKGROUND & REQUIREMENTS

and PreScan5 [9] are two systems that have been developed based on this model,

and have been applied successfully in the context of the EU project CASPAR6.

Subsequently, [3] introduced a rule-based model which also supports task-based de-

pendencies, and (a) simplifies the disjunctive dependencies of [2], and (b) is more

expressive and flexible than [8] as it allows expressing the various properties of

dependencies (e.g. transitivity, symmetry) straightforwardly. That work actually

reduced the problem of dependency management to Datalog-based modeling and

query answering.

However, none of the aforementioned works were able to model and manage

converters and emulators.

2.3 Background: Migration and Emulation

Migration is the process of converting a digital object that runs on one platform so

that it will run on another (non-obsolete) platform [10]. Its purpose is to preserve

the integrity of digital objects and to retain the ability for clients to retrieve, display,

and otherwise use them in the face of a constantly changing technology [11].

Emulation is generally described as imitating a certain computer platform or

program on another platform or program (for a discussion see [12, 10]). It requires

the creation of emulators, where an emulator is hardware or software or both that

duplicates (or emulates) the functions of a first computer system (the guest) in a

different second computer system (the host), so that the emulated behavior closely

resembles the behavior of the real system. Popular examples of emulators include

QEMU [13], Dioscuri [14], etc. There is currently a rising interest on emulators for

the needs of digital preservation [15]. Just indicatively, [16] overviews the emulation

strategies for digital preservation and discusses related issues, and several recent

projects have focused on the development of emulators for the needs of digital

preservation (e.g. see [14] and [17], while [14] compares applications running on

Dioscuri with the same applications executed directly on the host machine).

Another related concept is that of the Universal Virtual Computer (UVC) that

was introduced in [18] (more recent in work [19]). It is a special form of Emulation

where a hardware and software independent platform is implemented, where files

5 http://www.ics.forth.gr/isl/PreScan
6 http://www.casparpreserves.eu/

2.3. BACKGROUND: MIGRATION AND EMULATION 13

are migrated to UVC internal representation format and where the whole platform

can be easily emulated on newer computer systems. It is like an intermediate

language for supporting emulation.

In brief, and from a dependency perspective, we could say that the migration

process changes the dependencies (e.g. the original digital object depends on an

old format, while the migrated digital object now depends on a newer format).

Regarding emulation we could say that the emulation process does not change the

“native” dependencies of digital objects. An emulator essentially makes available

the behavior of an old module (actually by emulating its behavior). It follows that

the availability of an emulator can “satisfy” the dependencies of some digital objects

(as described in the running example of game.exe in Chapter 1), but we should

note that the emulator itself (W4A in the running example) has its own dependencies

that have to be preserved to ensure its performability (this will be made evident

in Section 3.6). The same also holds for converters.

2.3.1 The KEEP Project

We could also mention here the KEEP7 (Keeping Emulation Environments Portable)

project that aims at developing emulation services to enable accurate rendering

of both static and dynamic digital objects. The overall aim of the project is to

facilitate universal access to cultural heritage resources. KEEP has created an Em-

ulation Framework8 [20] (EF) which provides additional services which will help

to build a more solid ground for the emulation preservation strategy. KEEP is de-

pending on existing and future emulators, and has not created an emulator itself.

The EF offers a convenient way to render digital files and programs in their na-

tive computer environment. It offers users the potential to view these files in their

intended look and feel, independent from current state of the art computer sys-

tems. The Emulation Framework automatically selects and runs the best available

emulator and configures the software dependencies required to render the object

(operating system, applications, etc.).

The EF contains the Emulator and the Software Archive. The Emulator

Archive database holds the binaries and metadata for the available emulators.

The Software Archive has been created to manage the software required by the
7http://www.keep-project.eu/ezpub2/index.php?/eng
8http://emuframework.sourceforge.net/

14 CHAPTER 2. RELATED WORK, BACKGROUND & REQUIREMENTS

emulators. The Software Archive defines a Pathway in an XSD schema. Pathway

is called the environment that can render digital objects, consisting of the digi-

tal object file format, and hardware platform and possibly an application and/or

operating system.

Each EF-compliant emulator is transferred from the Emulator Archive to a

receiver in an Emulator Package XSD Schema. This schema describes the em-

ulator software and includes some descriptive fields (such as name, version, and

description) and technical elements such as a list of hardware that the emulator

can emulate, a list of software image format (such as FAT12, FAT32, D64, etc.)

that the emulator can read. Also contains information about the executable itself.

The downloaded package contains the emulators (in the Emulator Archive) :

• Dioscuri - x86 Java-based emulator capable of running MS DOS and Linux;

• QEMU - x86 capable of running MS Windows and Linux;

• VICE - Commodore 64 emulator;

• UAE - Amiga emulator;

• Java CPC - Amstrad emulator;

• BeebEm - BBC Micro emulator;

• Thomson T07 - Thomson T07 emulator;

One can also add an emulator via the GUI of the EF, but he has to define all the

parameters manually.

2.4 Background: Datalog

We will base our modeling and reasoning approach in Datalog [21] which is a

query and rule language for deductive databases (syntactically subset of Prolog).

In brief, a Datalog program consists of facts, e.g. JavaFile(myfile.java), and

rules. An example of a rule having a head with a predicate of two variables

and a body with two monadic predicates is: Compilable(X,Y) :- JavaFile(X),

JavaCompiler(Y), which is read as follows: if we have a javafile f1, and a java

compiler f2, then we can infer that f1 is compilable by f2. In Datalog, the set of

predicates is partitioned into two disjoint sets, EPred and IPred. The elements

of EPred denote extensionally defined predicates, i.e. predicates whose extensions

are given by the facts of the Datalog programs (i.e. tuples of database tables),

2.4. BACKGROUND: DATALOG 15

while the elements of IPred denote intensionally defined predicates, where the ex-

tension is defined by means of the rules of the Datalog program.

In our context, the proposed implementation will be described in Chapter 5.

2.4.1 Example (of Datalog-like modeling)

James has a laptop where he has installed the NotePad text editor, the javac

1.6 compiler for compiling Java programs and JRE1.5 for running Java programs

(bytecodes). He is learning to program in Java and C++ and to this end, and

through NotePad he has created two files, HelloWorld.java and HelloWorld.cc,

the first being the source code of a program in java, the second of one in C++.

Consider another user, say Helen, who has installed in her laptop the Vi editor and

JRE1.5.

Suppose that we want to preserve these files, i.e. to ensure that in future

James and Helen will be able to edit, compile and run these files. In general, to

edit a file we need an editor, to compile a program we need a compiler, and to

run the bytecodes of a Java program we need a Java Virtual Machine. To ensure

preservation we should be able to express the above.

To this end we could use facts and rules. For example, we could state: A file is

editable if it is TextFile and a TextEditor is available. Since James has two text files

(HelloWorld.java, HelloWorld.cc) and a text editor (NotePad), we can conclude

that these files are editable by him. By a rule of the form: If a file is Editable then

it is Readable too, we can also infer that these two files are also readable. We can

define more rules in a similar manner to express more task-based dependencies,

such as compilability, runability etc. For our running example we could use the

facts and rules which are describing in table 2.1.

The last two columns indicate which facts are valid for James and which for He-

len. From these we can infer that James is able to compile the file HelloWorld.java

and that if James sends his TextFiles to Helen then she can only edit them but not

compile them since she has no facts about Compilers.

Let us now extend our example with converters and emulators. Suppose James

has also an old source file in Pascal PL, say game.pas, and he has found a converter

from Pascal to C++, say p2c++. Further suppose that he has just bought a smart

phone running Android OS and he has found an emulator of WinOS over Android

16 CHAPTER 2. RELATED WORK, BACKGROUND & REQUIREMENTS

Facts and Rules James Hellen
Facts

NotePad is a TextEditor X
VI is a TextEditor X
HelloWorld.java is a JavaFile X
HelloWorld.cc is a C++File X
javac1.6 is a JavaCompiler X
JRE1.5 is a JVM X X
gcc is a C++Compiler X

Rules
A file is Editable if it is a TextFile and a TextE-
ditor is available
A file is JavaCombilable if it is a JavaFile and
a JavaCompiler is available
A file is C++Combilable if it is a C++File and
a C++Compiler is available
A file is Compilable if it is JavaCompilable or
C++Compilable
A file is a TextFile if it is JavaFile or C++File
If a file is Editable then it is Readable

Table 2.1: Modeling the running examples with Facts and Rules

OS. It should follow that James can run game.pas on his mobile phone (by first

converting it in C++, then compiling the outcome, and finally by running over the

emulator the executable yielded by the compilation).

2.5 Requirements on Reasoning Services

Regarding curation services, we have identified the following key requirements :

Task-Performability Checking. To perform a task we have to perform other

subtasks and to fulfil associated requirements for carrying out these tasks. There-

fore, we need to be able to decide whether a task can be performed by examining

all the necessary subtasks. For example, we might want to ensure that a file is

runnable, editable or compilable. This should also exploit the possibilities offered

by the availability of converters. For example, the availability of a converter from

Pascal to C++, a compiler of C++ over Windows OS and an emulator of Win-

dows OS over Android OS should allow inferring that the particular Pascal file is

runnable over Android OS.

Consequences of a Hypothetical Loss. The loss or removal of a software

module could also affect the performability of other tasks that depend on it and

thus break a chain of task-based dependencies. Therefore, we need to be able to

2.5. REQUIREMENTS ON REASONING SERVICES 17

identify which tasks are affected by such removals.

Identification of missing resources to perform a task. When a task

cannot be carried out it is desirable to be able to compute the resources that are

missing. For example, if Helen wants to compile the file HelloWorld.cc, her system

cannot perform this task since there is not any C++Compiler. Helen should be

informed that she should install a compiler for C++ to perform this task.

Support of Task Hierarchies. It is desirable to be able to define task-

type hierarchies for gaining flexibility, supporting various levels of granularity, and

reducing the number of rules that have to be defined.

Properties of Dependencies. Some dependencies are transitive, some are

not. Therefore we should be able to define the properties of each kind of depen-

dency.

Here we should clarify that we do not focus on modeling, logging or reasoning over

composite tasks in general (as for example it is done in [22]). We focus on the

requirements for ensuring the performability of simple (even atomic) tasks, since

this is more aligned with the objectives of long term digital preservation. Neither

we focus on modeling or logging the particular workflows or derivation chains of

the digital artifacts, e.g. using provenance models like OPM or CRM Dig [23].

We focus only on the dependencies for carrying out the desired tasks. Obviously

this view is less space consuming, e.g. in our running example we do not have to

record the particular compiler that was used for the derivation of an executable

(and its compilation time, or who achieved the compilation), we just care to know

what compiler one needs to have for future use. However, if a detailed model of

the process is available, then the dependency model can be considered as a more

simple view of that model.

18 CHAPTER 2. RELATED WORK, BACKGROUND & REQUIREMENTS

Chapter 3

Modeling Tasks and their

Dependencies

3.1 Overview of the Modeling Approach

To assist understanding, Figure 3.1 depicts the basic notions in the form of a rather

informal concept map.

Interoperability

Objective

Task execution

or enaction

requires
Module

requires

Execution or

enaction of

Atomic Task

Execution or

enaction of

Composite Task

consistsOf

Module Type
has

Execution or

enaction of

Conversion

Execution or

enaction of

Emulation

sourceType

destinationType

over

Execution or

enaction of

Transfrormation

Task

special

kind Of

hasSuperType

Figure 3.1: Informal concept map

19

20 CHAPTER 3. MODELING TASKS AND THEIR DEPENDENCIES

In brief, to achieve performing a task over a module, we need one or more other

modules. Each module has a module type, and module types can be hierarchically

organized. Now conversion and emulation are special kinds of tasks each having

“source” and “destination” module types (broadly speaking).

In section 3.3 we will show how we can model the above using facts (e.g.

database tuples) and (Datalog) rules.

3.2 General Methodology

Below we describe six steps of a general methodology for modeling, capturing and

managing dependencies for the needs of digital preservation :

1. Identify desired tasks and objectives. This step strongly depends on the na-

ture of the digital objects and the tasks that we want to perform on them.

For instance if we suppose our domain is software, we can identify the follow-

ing tasks: Edit, Compile and Run, while if it is a document we can identify

the tasks: Render, Read and Edit.

2. Model the identified tasks and their dependency types. If tasks can be hier-

archically organized, then this should be done.

3. Specialize the Rule-based modeling according to the results of the previous

step (this will be described in detail in Section 3.4).

4. Capture the dependencies of the digital objects of the archive. This can be

done manually, automatically or semi-automatically. Tools like PreScan([9])

can aid this task. In addition this can done in various levels of granularity:

object-level (e.g. for a particular object), type-level (e.g. for all files of type

html) and collection-level (e.g. for a collection of images).

5. Customize, use and exploit the dependency services according to the needs.

For instance, task-performability services can be articulated with monitoring

and notification services.

6. Evaluate the services in real tasks and curate accordingly the repository (re-

turn to Step 1). For instance, suppose that the model fails for one particular

module, e.g. the consumer of a package is unable to understand the delivered

3.3. MODELING DIGITAL OBJECTS, TYPE HIERARCHIES, AND PROFILES21

module. Such situations indicate that the recorded dependencies are not com-

plete. For example, suppose a user who cannot run a software component,

although the computed gap is empty. This can happen if the component has

an additional dependency which has not been recorded. A corrective action

would be to add this dependency. Analogously, if a user cannot understand a

particular research paper this is probably because the paper uses concepts or

symbols the user cannot understand. These concepts and symbols are actu-

ally dependencies which should be recorded. Synopsizing, empirical testing

is a useful guide for defining and enriching the dependency graph.

In the following Sections we describe how we can apply this methodology.

Specifically in Section 3.4 we focus on how steps 2 and 3 can capture convert-

ers and emulators.

3.3 Modeling Digital Objects, Type Hierarchies, and

Profiles

Digital objects, e.g. digital files and their types are represented as facts using

predicates that denote their types, e.g. for the three files of our running example,

that described in Section 2.4.1, we can have the facts shown in the left column of

the following table. Software components are described analogously (e.g. see right

column).

Facts
for digital files for software components
JavaFile(HelloWorld.java). TextEditor(vi).

C++File(HelloWorld.cc). JVM(jre1.5win)

PascalFile(game.pas). JVM(jre1.6linux)

Table 3.1: Facts of running examples

Each file can be associated with more than one type. In general we could cap-

ture several features of the files (apart from types) using predicates (not necessarily

unary), e.g. LastModifDate(HelloWorld.java, 2013-11-26).

The types of the digital files can be organized hierarchically, and such tax-

onomies can be represented with rules, e.g. to define that every JavaFile is also a

22 CHAPTER 3. MODELING TASKS AND THEIR DEPENDENCIES

UTF8File we must add the rule UTF8File(X) :- JavaFile(X).

A profile is a set of facts, describing the modules available (or assumed to be

known) to a user (or community). For example, the profiles of James and Helen

are the ticked facts in the corresponding columns of Table 3.1.

3.4 Modeling Task-Dependencies and Task Hierarchies

To implement the steps 2 and 3 of the methodology of Section 3.2, we will also use

(IPred) predicates. Specifically, for each real world task we define two intensional

predicates: one (which is usually unary) to denote the (performability of the) task,

and another one (with arity greater than one) for denoting the dependencies of

the task. For instance, Compile(HelloWorld.java) will denote the compilabil-

ity of HelloWorld.java. Since its compilability depends on the availability of a

compiler (specifically a compiler for the Java language), we can express this de-

pendency using a rule of the form: Compile(X) :- Compilable(X,Y) where the

binary predicate Compilable(X, Y) is used for expressing the appropriateness of

a Y for compiling a X. For example, Compilable(HelloWorld.java, javac 1.6)

expresses that HelloWorld.java is compilable by javac 1.6. It is beneficial to

express such relationships at the class/type level (not at the level of individuals),

specifically over the types (and other properties) of the digital objects and software

components, i.e. with rules of the form:

Compilable(X,Y) :- JavaFile(X), JavaCompiler(Y).

Compilable(X,Y) :- C++File(X), C++Compiler(Y).

Runable(X,Y) :- JavaClassFile(X), JVM(Y).

Editable(X,Y) :- JavaFile(X), TextEditor(Y).

Relations of higher arity can be employed based on the requirements, e.g.:

Run(X) :- Runnable(X,Y,Z).

Runnable(X,Y,Z) :- JavaFile(X), Compilable(X,Y), JVM(Z).

We can express hierarchies of tasks as we did for file type hierarchies, for en-

abling deductions of the form: “if we can do task A then certainly we can do task

B”, e.g. “if we can edit something then certainly we can read it too” expressed as:

Read(X) :- Edit(X). Editability here presupposes knowledge of the right symbols

set, the one for the intended information object as defined in [24].

3.5. MODELING CONVERTERS 23

We can also express general properties of task dependencies, like transitivity.

For example, from Runnable(a.class, JVM) and Runnable(JVM, Windows) we

might want to infer that Runnable(a.class, Windows). Such inferences can be

specified by a rule of the form:

Runable(X,Y) :- Runnable(X,Z), Runnable(Z,Y).

As another example :

IntelligibleBy(X,Y) :- IntelligibleBy(X,Z), IntelligibleBy(Z,Y).

This means that if X is intelligible by Z and Z is intelligible by Y, then X is intelligible

by Y. This captures the assumptions of the dependency model described in [1] (i.e.

the transitivity of dependencies).

3.5 Modeling Converters

Conversions are special kinds of tasks and are modeled differently. In brief to

model a converter and a corresponding conversion we have to introduce one unary

predicate for modeling the converter (as we did for the types of digital files) and

one rule for each conversion that is possible with that converter (specifically one

for each supported type-to-type conversion).

In our running example, consider the file game.pas (which contains source code

in Pascal PL), and the converter p2c++ from Pascal to C++. Recall that James

has a compiler for C++. It follows that James can compile game.pas since he can

first convert it in C++ (using the converter), then compile it and finally run it.

To capture the above scenario it is enough to introduce a predicate for modeling

the converters from Pascal to C++, say ConverterPascal2C++, and adding the

following rule:

C++File(X) :- PascalFile(X), ConverterPascal2C++(Y).

The meaning of this rule is the following: if we have a PascalFile x and a

ConverterPascal2C y then we can view x as if it were a C++File.

Since The profile of James will contain the facts PascalFile(game.pas) and

ConverterPascal2C++(p2c++), we will infer C++File(game.pas), and subsequently

that this file is compilable and runnable.

24 CHAPTER 3. MODELING TASKS AND THEIR DEPENDENCIES

Finally we should not forget that a converter is itself a module with its own de-

pendencies, and for performing the intended task the converter has to be runnable.

Therefore, we have to update the rule as follows:

C++File(X) :- PascalFile(X), ConverterPascal2C++(Y), Run(Y)

3.6 Modeling Emulators

Emulation is again a special kind of task and is modeled differently. Essentially we

want to express the following:

If we have :

(i) a module X which is runnable over Y , and

(ii) an emulator E of Y over Z (hosting system=Z, target system=Y

then X is runnable over Z. For example, consider the case where:

• X=a.exe (a file which is executable in Windows operating system),

• Y=WinOS (the Windows operating system),

• Z=AndroidOS (the Android operating system), and

• E=W4A (i.e. an emulator of WinOS over AndoidOS).

In brief, for each available emulator (between a pair of systems) we can intro-

duce a unary predicate for modeling the emulator (as we did for the types of digital

files, as well as for the converters), and writing one rule for the emulation.

For example, suppose we have a file named a.exe which is executable over

WinOS. For this case we would have written:

Run(X) :- Runnable(X,Y).

Runnable(X,Y) :- WinExecutable(X), WinOS(Y).

and the profile of a user that has this file and runs WinOS would contain the facts

WinExecutable(a.exe) and WinOS(mycomputer), and by putting them together

3.6. MODELING EMULATORS 25

it follows that Run(a.exe) holds. Now consider a different user who has the file

a.exe but runs AndroidOS. However suppose that he has the emulator W4A (i.e. an

emulator of WinOS over AndoidOS). The profile of that user would contain:

WinExecutable(a.exe)

AndroidOS(mycomputer) // instead of WinOS(mycomputer)

EmulatorWinAndroid(W4A)

To achieve our goal (i.e. to infer that a.exe is runnable), we have to add

one rule for the emulation. We can follow two approaches. The first is to write

a rule that concerns the runnable predicate, while the second is to write a rule

for classifying the system that is equipped with the emulator to the type of the

emulated system:

A. Additional rule for Runnable

This relies on adding the following rule:

Runnable(X,Y,Z):- WinExecutable(X), EmulatorWinAndroid(Y),

AndroidOS(Z).

Note that since the profile of the user contains the fact EmulatorWinAndroid(W4A)

the body of the rule is satisfied (for X=a.exe, Y=W4A, Z=myComputer), i.e. the rule

will yield the desired inferred tuple Runnable(a.exe,W4A,mycomputer).

Note that here we added a rule for the runnable which has 3 variables signifying

the ternary relationship between executable, emulator and hosting environment.

B. Additional type rule (w.r.t. the emulated Behavior)

An alternative modeling approach is to consider that if a system is equipped with

one emulator then it can also operate as the emulated system. In our example this

can be expressed by the following rule:

WinOS(X):- AndroidOS(X), EmulatorWinAndroid(Y).

It follows that if the profile of the user has an emulator of type EmulatorWinAndroid

(here W4A) and mycomputer is of type AndroidOS, then that rule will infer that

WinOS(mycomputer), implying that the file a.exe will be inferred to be runnable

due to the basic rule of runnable which is independent of emulators i.e. due to the

rule:
Runnable(X,Y) :- WinExecutable(X), WinOS(Y)

26 CHAPTER 3. MODELING TASKS AND THEIR DEPENDENCIES

Both (A and B) approaches require the introduction of a new unary predicate

about the corresponding pair of systems, here EmulatorWinAndroid. Approach (A)

requires introducing a rule for making the predicate runnable “emulator-aware”,

while approach (B) requires a rule for classifying the system to the type of the emu-

lated system. Since emulators are modules that can have their own dependencies,

they should be runnable in the hosting system. To require their runnability during

an emulation we have to update the above rules as follows (notice the last atom in

the bodies of the rules):

A’: Runnable(X,Y,Z):- |B’: WinOS(X):-

WinExecutable(X), | AndroidOS(X),

EmulatorWinAndroid(Y),| EmulatorWinAndroid(Y),

AndroidOS(Z), | Runnable(Y,X)

Runnable(Y,Z) |

3.6.1 Modeling Important Parameters

Sometimes it is important to model the required (important) parameters for the

performability of a task. For example, an emulator may need a particular param-

eter for emulating a particular system. In this case it is beneficial to model this

explicitly. Methodologically, it is not suggested to model all parameters, e.g. those

of minor importance, but only the crucial ones, those for enabling the required

reasoning. For example consider the following rule :

WinOS(X):- AndroidOS(X), EmulatorWinAndroid(Y),

Runnable(Y,X)

and suppose that this emulator needs one particular parameter for emulating win-

dows, say a file winImg.dat. One way to capture this, is to extend the above rule

as:

WinOS(X):- AndroidOS(X), EmulatorWinAndroid(Y),

Runnable(Y,X), Module(winImg.dat)

where Module is the top class of the module type hierarchy. This rule will fire only

if the winImg.dat is recorded in the system.

3.7. MODELING REAL CONVERTERS AND EMULATORS 27

3.6.2 Handling Exceptions or Special Cases

Suppose that we know that a given Windows application, can run on Andoid using a

Windows emulator, but this is not true for every Windows applications. For exam-

ple may we know that the emulator W4A cannot run the application calendar.exe.

To tackle this situation we can add the fact Exception(calendar.exe,W4A), which

has a negative interpretation and is read as follows : the emulator W4A cannot em-

ulate the application calendar.exe. Now we can extend the approach A as follows:

A’’:Runnable(X,Y,Z):-

WinExecutable(X),

EmulatorWinAndroid(Y),

AndroidOS(Z),

NOT Exception(X,Y),

Runnable(Y,Z)

The difference between the old rule is that we have added a negated Exception(X,Y),

meaning that the application X is runnable if the atom Exception(X,Y) is false.

Note that the approach B cannot be extended analogously as previous for the

approach A, because approach B by default states (as we have seen in Section 3.6)

that we can emulate the entire system.

3.7 Modeling Real Converters and Emulators

To evaluate the adequacy of the proposed modeling approach, in this Section we

show that some well known converters and emulators can be modeled using our

approach.

Texi2HTML converter: Texi2HTML1 is a Perl script, which converts Tex-

info source files to HTML output. Texinfo is the official documentation format of

the GNU project.

To model this scenario we must introduce classes for the various module types,

i.e. for texi files, for perl scripts, for perl interpreters, and for the particular con-

verter (from texi to HTML). For instance, consider a user who has a myfile.texi

file, the strawberry-perl.exe perl interpreter, and the Texi2htmlScript.pl con-

verter (from texi to HTML). The profile of this user will contain the facts:
1http://www.nongnu.org/texi2html/

28 CHAPTER 3. MODELING TASKS AND THEIR DEPENDENCIES

PerlScript(Texi2htmlScript.pl)

PerlInterpreter(strawberry-perl.exe)

TexinfoFile(myfile.texi)

Texi2HTMLConverter(Texi2htmlScript.pl)

Note that Texi2htmlScript.pl (as any perl script) requires the availability of a

Perl interpreter to run, therefore we should add the rule:

Runnable(X,Y) :- PerlScript(X), PerlInterpreter(Y)

As stated in Chapter 3 we also have to declare a rule for the conversion, in our

case the rule:

HTML(X) :- TexinfoFile(X), Texi2HTMLConverter(Y), Run(Y)

Dioscuri emulator: Dioscuri2 is a component-based x86 computer hardware

emulator written in Java. Each hardware component is emulated by a software

surrogate called a module. By combining several modules the user can configure

any computer system, as long as these modules are compatible.

For example consider a user having dioscuri emulator version 0.7.0 (which requires

a JVM to run) and suppose he wants to run Chess.exe, a 16-bit DOS Application

on his computer with the WindowsXp Operating System (jre1.5win installed).

Declaring again the appropriate classes, the profile of this user will contain the

facts :

DOSExecutable(Chess.exe)

WindowsXPOS(mycomputer)

DioscuriEmulator(dioscuri-0.7.0.jar)

JavaByteCode(dioscuri-0.7.0.jar)

The execution of a Java ByteCode requires a JVM so:

Runnable(X,Y) :- JavaByteCode(X), JVM(Y)

From the above now we can write the rule for the emulation:

DOSOS(X) :- WindowsXPOS(X), DioscuriEmulator(Y), Runnable(Y,X)

2http://dioscuri.sourceforge.net/

3.8. SYNOPSIS OF THE MODELING APPROACH 29

QEMU emulator: QEMU3 is a generic open source machine emulator and

virtualizer that can run an unmodified target operating system. To emulate another

machine one needs to have the process emulator (QEMU) and an ISO image of the

machine he wants to emulate. For instance, consider a user having the QEMU1.1

emulator, and an ISO file of the Windows Xp, say WinXP.iso, who wants to emulate

the WindowsXP OS on his Linux machine. His profile will contain the facts:

LinuxOS(mycomputer)

QEMUEmulator(QEMU1.1)

ISOFile(WinXP.iso)

Now we can write the rule :

WindowsXPOS(X) :- LinuxOS(X), QEMUEmulator(Y), Module(WinXP.iso)

As we have stated at Chapter 3, the emulator must be runnable in the hosting

system (here mycomputer), therefore we have to add a Runnable rule, to extend

the above rule and reach the following:

Runnable(X,Y) :- QEMUEmulator(X), LinuxOS(Y)

WindowsXPOS(X) :- LinuxOS(X), QEMUEmulator(Y)

Module(WinXP.iso), Runnable(Y,X)

Notice that the user in his profile has the fact ISOFile(WinXP.iso), but the above

rule uses the atom Module(WinXP.iso). The rule will fire because Module is the top

class of the module type hierarchy (i.e. if something belongs to the class ISOFile

then it also belongs to the class Module).

3.8 Synopsis of the Modeling Approach

To synopsize, methodologically for each real world task we define two intensional

predicates: one (which is usually unary) to denote the performability of the task,

and another one (which is usually binary) for denoting the dependencies of task

(e.g. Read and Readable, Run and Runnable). To model a converter and a cor-

responding conversion we have to introduce one unary predicate for modeling the

converter (as we did for the types of digital files) and one rule for each conversion
3http://wiki.qemu.org/Main_Page

30 CHAPTER 3. MODELING TASKS AND THEIR DEPENDENCIES

that is possible with that converter (specifically one for each supported type-to-

type conversion). To model an emulator (between a pair of systems) we introduce

a unary predicate for modeling the emulator and writing one rule for the emula-

tion. Regarding the latter we can either write a rule that concerns the runnable

predicate (approach A), or write a rule for classifying the system that is equipped

with the emulator to the type of the emulated system (approach B). Also, and since

converters and emulators are themselves modules, they have their own dependen-

cies, and thus their performability and dependencies (actually their runnability)

should be modeled too (as in ordinary tasks). Finally, since we should be able to

capture special cases (like parameters and exceptions), we have seen how we can

model also such cases.

Chapter 4

Reasoning Services

In general, Datalog query answering and methods of logical inference can be ex-

ploited for enabling the required inference services (performability, consequences of

a hypothetical loss, etc). Here we describe how the reasoning services described in

Chapter 2 can be realized using the proposed modeling approach and framework.

4.1 Task-Performability

This service aims at answering if a task can be performed by a user/system. It relies

on query answering over the Profiles of the user. E.g. to check if HelloWorld.cc

is compilable we have to check if HelloWorld.cc is in the answer of the query

Compile(X).

As we described earlier, converters and emulators will be taken into account,

meaning that a positive answer may be based on a complex sequence of conversions

and emulations. This is the essential benefit from the proposed modeling.

For example let us check the performability of the running example, described in

section 2.4.1, for the user James. The goal is to check if James can run the game.pas

file on his mobile phone. Indeed the fact Runnable(game.pas,smartPhone) can

be derived as shown in the proof tree of Figure 4.1.

In that figure the facts are represented by a rectangle, while the greyed rectangle

show the applicable rules. The used facts in this example are:
PascalFile(game.pas),

ConverterPascal2C++(p2c++),

WinOS(mycomputer),

31

32 CHAPTER 4. REASONING SERVICES

WinExecutable(game.pas)

C++File(game.pas)

C++File(X) :- PascalFile(X), ConverterPascal2C++(Y), Run(Y)
Run(X) :- Runnable(X,Y)

WinOS(SmartPhone)

WinOS(X) :- AndroidOS(X),EmulatorW4A(Y),Runnable(Y,X)Run(p2c++)

Runnable(game.pas, smartPhone)

PascalFile(game.pas)

AndroidOS(smartPhone)
ConverterPascal2C++(p2c++)

C++Compiler(gcc)

EmulatorW4A(W4A)WinOS(mycomputer)

Runnable(W4A,

smartPhone)
Runnable(p2c++,mycomputer)

Figure 4.1: The proof tree of the running example

AndroidOS(smartPhone),

C++Compiler(gcc),

EmulatorW4A(W4A)

Furthermore, classical automated planning, e.g. the STRIPS planning method

[25], could be applied for returning one of the possible ways to achieve (perform)

a task. This is useful in case there are several ways to achieve the task.

4.2 Consequences of a Hypothetical Loss

Suppose that we want to identify the consequences on editability after removing a

module, say NotePad. To do so: (a) we compute the answer of the query Edit(X),

let A be the returned set of elements, (b) we delete NotePad from the database and

we do the same, let B be the returned set of elements1, and (c) we compute and

return the elements in A \B (they are the ones that will be affected).

4.3 Computation of Gaps (Missing Modules)

The gap is actually the set of facts that are missing and are needed to perform a

task. There can be more than one way to fill a gap due to the disjunctive nature
1 In an implementation over Prolog, we could use the retract feature to delete a fact from the

database.

4.3. COMPUTATION OF GAPS (MISSING MODULES) 33

of dependencies since the same predicate can be the head of more than one rules

(e.g. the predicate TextEditor in the example of Section 3.6). One method to fill

the gaps is to construct and visualize an AND-OR graph that contains information

about only the related facts and rules. Such an approach is described in [26]. An

alternative (or complementary) approach is to allow the user to gradually explore

the possibilities and navigate through the possible paths. The implemented system

that is described in Chapter 6 follows this approach.

34 CHAPTER 4. REASONING SERVICES

Chapter 5

Implementation

5.1 Possible Implementation Technologies

There are several possible implementation approaches. Below we describe them in

brief:

Prolog is a declarative logic programming language, where a program is a set of

Horn clauses describing the data and the relations between them. The proposed ap-

proach can be straightforwardly expressed in Prolog. There are several approaches

that extends the Prolog and can be used for the implementation. For instance

XSB1 extends Prolog with tabled resolution and HiLog (a standard extension of

Prolog permitting limited higher-order logic programming). Tabled resolution is

useful for recursive query computation, allowing programs to terminate correctly

in many cases where Prolog does not.

A Semantic Web approach can be used. The SWRL (Semantic Web Rule Lan-

guage) [27] is a combination of OWL DL and OWL Lite [28] with the Unary/Binary

Datalog RuleML2. SWRL provides the ability to write Horn-like rules expressed

in terms of OWL concepts to infer new knowledge from existing OWL KB. For

instance, each type predicate can be expressed as a class. Each profile can be

expressed as an OWL class whose instances are the modules available to that pro-

file (we exploit the multiple classification of SW languages). Module type hierar-

chies can be expressed through subclassOf relationships between the corresponding

classes. All rules regarding performability and the hierarchical organization of
1http://xsb.sourceforge.net/
2http://ruleml.org

35

36 CHAPTER 5. IMPLEMENTATION

tasks can be expressed as SWRL rules. A limitation of the SWRL approach is that

ternary or higher rules cannot be captured by the rules. An alternative Semantic

Web approach, on which we focus on this thesis, is to use triple-stores and exploit

its query-based inference capabilities (more in Chapter 6).

In a DBMS-approach all facts can be stored in a relational database, while

Recursive SQL can be used for expressing the rules. Specifically, each type pred-

icate can be expressed as a relational table with tuples the modules of that type.

Each profile can be expressed as an additional relational table, whose tuples will

be the modules known by that profile. All rules regarding task performability, hi-

erarchical organosis of tasks, and the module type hierarchies, can be expressed as

datalog queries. Note that there are many commercial SQL servers that support

the SQL:1999 syntax regarding recursive SQL (e.g. Microsoft SQL Server 2005,

Oracle 9i, IBM DB2).

Just indicatively, Table 5.1 synopsizes the various implementation approaches.

What DB-approach Semantic Web-
approach

ModuleType predicates relational table class
Facts regarding Module
(and their types)

tuples class instances

DC Profile relational table class
DC Profiles Contents tuples class instances
Task predicates IDB predicates predicates appearing in

rules
Task Type Hierarchy datalog rules, or isa if an

ORDBMS is used
subclassOf

Performability datalog queries (recur-
sive SQL)

rules

Table 5.1: Implementation Approaches

5.2 On RDF/S-based Implementations

Here we describe one Semantic Web-based implementation using RDF/S and Open-

Link Virtuoso which is a general purpose RDF triple store with extensive SPARQL

and RDF support [29]. Its internal storage method is relational, i.e. RDF triples

are stored in tables in the form of quads (g, s, p, o) where g represents the graph,

5.2. ON RDF/S-BASED IMPLEMENTATIONS 37

s the subject, p the predicate and o the object. We decided to use this system

because of its inference capabilities, namely backward chaining reasoning, mean-

ing that it does not materialize all inferred facts, but computes them at query

level. Its reasoner covers the related entailment rules of rdfs:subClassOf and

rdfs:subPropertyOf, while user defined custom inference rules can be expressed

using rule sets. Practically this means that transitive relations (i.e. subClassof,

subPropertyOf, etc.) are not physically stored in the knowledge base, but they

are added to the result set at query answering. Transitivity is also supported in

two different ways. Given a RDF schema and a rule associated with that schema,

the predicates rdfs:subClassOf and rdfs:subPropertyOf are recognized and the

inferred triples are derived when needed. In case of another predicate, the option

for transitivity has to be declared in the query.

For our case, we have to “translate” our facts and rules to quads of the form

(g, s, p, o) which are actually RDF triples contained in a graph g. The support

of different graphs is very useful for the cases of profiles; we can use a different

graph for each profile. We will start by showing how facts can be “translated” to

RDF quads and later we will show how inference rules can be expressed using ASK

and CONSTRUCT or INSERT SPARQL queries. For better readability of the

SPARQL statements below we omit namespace declarations.

5.2.1 Modules

Module types are modeled using RDF classes while the actual modules are instances

of these classes. Module type hierarchies can be defined using the rdfs:subclassof

relationship. For example the fact JavaFile(HelloWorld.java) and the rule

for defining the module type hierarchy TextFile(X) :- JavaFile(X) will be ex-

pressed using the following quads:

g, <JavaFile>, rdf:type, rdfs:Class

g, <TextFile>, rdf:type, rdfs:Class

g, <JavaFile>, rdfs:subclassof, <TextFile>

g, <HelloWorld.java>, rdf:type, <JavaFile>

38 CHAPTER 5. IMPLEMENTATION

5.2.2 Profiles

We exploit the availability of graphs to model different profiles, e.g. we can model

the profiles of James and Helen (including only some indicative modules), as follows:

<jGrph>, <NotePad>, rdf:type, <TextEditor>

<jGrph>, <HelloWorld.java>, rdf:type, <JavaFile>

<jGrph>, <javac_1_6>, rdf:type, <JavaCompiler>

<hGrph>, <VI>, rdf:type, <TextEditor>

<hGrph>, <jre_1_5>, rdf:type, <JavaVirtualMachine>

5.2.3 Dependencies

The rules regarding the performability of tasks and their dependencies are trans-

formed to appropriate SPARQL CONSTRUCT statements which produce the re-

quired inferred triples. For example, the rule about the compilability of Java files

(Compilable(X,Y) :- JavaFile(X),JavaCompiler(Y)) is expressed as:

CONSTRUCT{?x <compilable> ?y}

WHERE{?x rdf:type <JavaFile>.

?y rdf:type <JavaCompiler>}

To capture the compilability of other kinds of source files (i.e. C++, pascal etc.)

we extend the previous statement using the UNION keyword (this is in accor-

dance with the Datalog-based rules; multiple rules with the same head have union

semantics). For example the case of Java and C++ is captured by:

CONSTRUCT{?x <compilable> ?y}

WHERE{

{?x rdf:type <JavaFile>.

?y rdf:type <JavaCompiler>}

UNION

{?x rdf:type <C++File>.

?y rdf:type <C++Compiler>}

}

Finally the unary predicate for the performability of task, here Compile, is ex-

pressed as:

5.2. ON RDF/S-BASED IMPLEMENTATIONS 39

CONSTRUCT{?x rdf:type <Compile>}

WHERE{ {?x <compilable> ?y} }

5.2.4 Converters

The rules regarding conversion are modeled analogously, e.g. for the case of a

converter from Pascal to C++ we produce:

CONSTRUCT{?x rdf:type <C++File>}

WHERE{?x rdf:type <PascalFile>.

?y rdf:type <ConverterPascal2C++>.

?y rdf:type <Run>}

Note the last condition refers in an inferred type triple (Runnable). If there are

more than one converters that change modules to a specific module type then

the construct statement is extended using several WHERE clauses separated by

UNIONs, as shown previously.

5.2.5 Emulators

Consider the scenario described in Chapter 3, i.e. a user wanting to run a.exe

upon his Android operating system. The approach B (which does not require

expressing any predicate with three variables), can be expressed by:

CONSTRUCT{?x rdf:type <WindowsOS>}

WHERE{?x rdf:type <AndroidOS>.

?y rdf:type <EmulatorWin4Android>.

?y <runnable> ?x}

If the emulator needs a particular parameter, as for example the module winImg.dat

which we have described in Chapter 3 we have to add an extra triple on the previous

query for this module, so we model the emulator as :

CONSTRUCT{?x rdf:type <WindowsOS>}

WHERE{?x rdf:type <AndroidOS>.

?y rdf:type <EmulatorWin4Android>.

?y <runnable> ?x.

<winImg.dat> rdf:type <Module>}

40 CHAPTER 5. IMPLEMENTATION

5.2.6 Services

To realize the reasoning services (e.g. task performability, consequences of a hy-

pothetical loss, etc), we rely on SPARQL queries. For example to answer if the

file HelloWorld.java can be compiled we can send the INSERT query about the

compilability of the files (as shown previously) and then perform the following ASK

query on the entailed triples:

ASK{<HelloWorld.java> <compilable> ?y}

If this query returns true then there is at least one appropriate module for compiling

the file.

The “Consequences of a Hypothetical Loss service” requires SELECT and DELETE

SPARQL queries (as discussed in Chapter 4). For example to find those modules

whose editability will be affected if we remove the module Notepad, we have to

perform :

SELECT ?x

WHERE {?x rdf:type <Edit>}

DELETE <Notepad> rdf:type <TextEditor>

From the select query we get a set A containing all modules which are editable.

Then we remove the triple about Notepad and perform again the select query,

getting a new set B. The set difference A \B will reveal the modules that will be

affected. If empty this means that there will be no risk in deleting the Notepad.

5.3 Evolution, Representation of Profiles and Limita-

tions

5.3.1 Inference and Evolution

The explicit triples can be stored in one graphspace, say Ge, and an additional

one, say Gc, can store the explicit plus the inferred triples as produced by the

INSERT statements. All queries (and reasoning services) should be based on Gc.

The advantage of this approach is that query answering is fast. The downside is

that this policy increases the triples that are stored (in Gc) and makes updating

5.3. EVOLUTION, REPRESENTATION OF PROFILES AND LIMITATIONS41

more cumbersome. For instance, if we use Ge for updates, then after such an

update we have to reconstruct from scratch Gc.

It follows from the above that using two different graphs (Gc and Ge), it is not

so efficient if the dataset is big. An alternative approach would be to use views of

the semantic store. In general, a view is a virtual part of the base store. Using a

view we do not have to create the Gc for the inferred triples, instead we create a

view over Ge that contains all rules. There are some works (e.g. [30], [31], [32])

that propose view mechanisms for Semantic Web data, but most of them are in a

preliminary phase. The work presented in [31], which describes a view language

based on RQL [33] query language (a query language that takes semantics of RDFS

ontologies into account), could satisfy our requirements. They make a distinction

between views on properties and views on classes. Views on properties or on classes

can be defined using arbitrary queries. Using this approach we can use queries to

create new properties and classes views, instead of issuing CONSTRUCT queries

in a new graph space. There is an implementation of this work, that implements

RDFS Semantics, involving the computation of transitive closure of the class and

property hierarchies. However, the current standard is SPARQL (not RQL), and

the aforementioned implementation is no longer available.

Another work that could be used in our approach is [34]. They propose an

algorithm (SQR) for rewriting a query of a virtual view to a equivalent query over

the underlying data (in case of an RDF database) avoiding the cost entailed by view

materialization. The algorithm takes as input the views (written in SPARQL) and

a query Q on views, and returns a rewriting Q’ as a union of conjunctive queries.

The Q’ now is over the vocabulary of the underlying data. Finally they perform

some optimizations on the algorithm to reduce the cost.

Since there is not a mature and expressive view language for SPARQL, in our

prototype (described in Chapter 6) we adopt the two-graphs approach that we

described in the beginning.

5.3.2 Representation of Profiles

An issue is how the profiles should be stored. As we have defined in section 2.2 a

user can have a profile which is actually the set of modules that are assumed to be

known. A system should be able to manage more than one profile, and the contents

42 CHAPTER 5. IMPLEMENTATION

of a profile determine the rules that can be fired. In an RDF implementation a

way to represent different profiles is to use separate graph spaces for each one and

this is the solution that we use for our implementation.

The advantage is that is a fast and a “clear” solution, but we have to use extra

space for the graphs. In addition, in a policy where the inferred (by the rules)

triples are stored, the graph space of each profile should keep also the corresponding

inferred triples.

5.3.3 Limitations of RDF/S

One limitation of the RDF/S representation framework is that ternary or higher

order relationships cannot be captured by triples. In this case the conceptual mod-

eling has to break such relationships to a set of binary. For example, a relationship

(a, b, c, d) can be represented by (a, x), (x, b), (x, c), (x, d) where x is an auxiliary

node. RDF blank nodes can be used for this purpose, i.e. for representing x without

having to assign a name (identity) to that node. To be more specific, consider

the ternary relation that is produced by the following rule (that was described in

Section 3.6):

Runnable(X,Y,Z):- WinExecutable(X),

EmulatorWinAndroid(Y),

AndroidOS(Z)

Also assume the following assignment X=a.exe, Y=W4A, Z=mycomputer. To express

on RDF (with the aid of blank nodes), the outcome of the above rule, we should

construct the following triples:

{<a.exe> <runnable> _:bn}.

{_:bn <runnable> <W4A>}.

{_:bn <runnable> <mycomputer>}.

To achieve this we can use a variation of the queries that we have seen on

Chapter 5. Specifically to construct the triples of the above example we can use

the following query :

CONSTRUCT{?x <runnable> _:bn.

_:bn <runnable> ?y.

_:bn <runnable> ?z}

5.4. PROOF-OF-CONCEPT DATASET AND REPOSITORY 43

WHERE{

?x rdf:type <WinExecutable>.

?y rdf:type <EmulatorW4A>.

?z rdf:type <AndroidOS>

}

5.4 Proof-of-Concept Dataset and Repository

The objective of this dataset is to allow checking the correctness of our RDF/S

implementation method, and for this reason it contains all examples that are de-

scribed in this thesis.

For instance, we have created and loaded a N-triple file that contains the triples

that define the schema (classes and properties) and the facts for the described exam-

ple in Section 2.4.1. All explicit triples are entered in one graph space, say j_graph

(James’ graph). We adopt an additional graph space, say j_graph_compl (“compl”

from completed) that stores all explicit plus all inferred triples. The inferred triples

are produced by the INSERT statements that correspond to the rules. All queries

(and reasoning services) are based on j_graph_compl.

Moreover, all facts and rules of the examples of our approach (including the

examples of real converters and emulators which are described in Section 3.7) have

been stored in a prototype repository, accessible through a SPARQL endpoint

http://62.217.127.222:8890/sparql. Specifically the graph j_graph_compl

contains all the produced triples from the aforementioned examples. Any user or

service can connect for executing the desired SPARQL queries. We used it for

validating that the implementation behaves as specified by the theory.

In addition, we have set up a system for exploring the contents of the KB. We

have use the OpenRDF Sesame3 system. The system is publicly accessible4 . Using

the left tab, on the explore area, the user can see the contents of the KB and also

can formulate SPARQL queries. Figure 5.1 shows an indicative screenshot of the

system.

3http://www.openrdf.org/index.jsp
4http://139.91.183.63:8080/openrdf-workbench/repositories/VirtuosoRep/contexts

44 CHAPTER 5. IMPLEMENTATION

Figure 5.1: Exploration System

Chapter 6

Epimenides: A Proof-of-Concept

System

For proving the technical feasibility, as well as for demonstration and dissemination

purposes, we have build a web accessible system, called Epimenides1.

6.1 Use Cases

The Use Case diagram that provides an overview of the supported functionality

is given in Figure 6.1. The application can be used by several users, and each

can build and maintain his/her own profile. To be flexible, a gradual method for

the definition of profiles is supported. The Knowledge Base (KB) of this system

currently contains 2,225 RDF triples and it is described in Section 6.4, while the

main scenario is described next.

After login, the user can upload a digital object (file or zipped files) and select

the task whose performability he wants to check. The system then checks the

dependencies and computes the corresponding gap. The curator can define new

tasks to the system. To identify the dependencies of the uploaded objects, the

system exploits the extension of the object (like .pdf, .doc, .docx), and its KB

already stores the dependencies of some widely used file types. The identified

dependencies are then shown to the user. The user can then add those that (s)he

already has, and this is actually the method for defining his profile gradually. In

1http://www.ics.forth.gr/isl/epimenides/

45

46 CHAPTER 6. EPIMENIDES: A PROOF-OF-CONCEPT SYSTEM

 uc DemoApp Use Cases

End User

Upload Digital
Object

Select Task

Mark Ressolved
DependenciesView/Edit/Explort

Profle

Define Profile

Analyze Uploaded
Digital Objects

Define Task and
Dep. Rules

Define
Converter/EmulatorCurator

«extend»

«include»

«include»

«include»

Figure 6.1: Use Case Diagram of Epimenides

this way he does not have to define his profile in one shot. The system stores the

profiles of each user (those modules marked as “I have them”) to the RDF storage.

The profiles are stored according to the method we have described in Section 5.3.2,

using different graph spaces for each user/profile.

6.2 Deployment of Epimenides

The architecture of Epimenides is based on the MVC (Model View Controller)

pattern, meaning that all business logic is implemented in Java Servlets and all

communication and data transfer issues are dealt with the use of Java Beans.

The presentation of data is specified using JSP pages in order to separate the

presentation design from the application logic, making easier the extension and

modification of the system.

Epimenides is using the Appache Tomcat2 7.0.3 web server while as a triple

store uses the OpenLink Virtuoso3 06.01.3127 version. The Virtuoso Jena RDF

2http://tomcat.apache.org/
3http://virtuoso.openlinksw.com/

6.3. USER INTERFACE 47

Data Provider4 is used for the communication with the triplestore. Figure 6.2

shows the deployment diagram of Epimenides.

Figure 6.2: The deployment diagram of Epimenides

6.3 User Interface

The user interface contains a menu divided in three sections as shown in Figure

6.3. The first contains the main option of the application: “Upload Digital Object”.

The “Manage Profile” section contains options available to any user (simple users).

The user can add/delete modules to his profile.

Figure 6.3: Main functionality of Epimenides

4http://www.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtJenaProvider

48 CHAPTER 6. EPIMENIDES: A PROOF-OF-CONCEPT SYSTEM

Figure 6.4: Checking the performability over a digital object

The “Manage System” section contains options for a curator user. Such a user

has also the ability to define Tasks, Emulators and Converters. To properly add a

Task, an Emulator or a Converter one has to provide extra information from which

the application will produce the required rules (as we will describe in sections

6.5 and 6.6). A simple user can add to his profile an emulator X, only if it has

been properly defined from a curator user (and consequently the application has

produced the required rules).

Figure 6.4 summarizes the interaction between a user and the Epimenides

for checking the performability of a task over a digital object. More analytical

screenshots of the application are provided in Section 6.7.

6.4 The Knowledge Base of Epimenides

Figure 6.5 shows the architecture of the system’s KB. As we have mentioned before,

the profile of a user contains triples with the modules that holds on his system,

while the application contains information about the dependencies that are needed

to execute a task. For the representation of the modules the KB contains all the

6.4. THE KNOWLEDGE BASE OF EPIMENIDES 49

Helen's Profile

Basic Module types

(e.g. Mime)

Expressed as a

subclassOf Hierarchy

James' Profile

Schema for

Modeling Tasks

Schema

Level

(schema triples)

Modeling of

some Basic

Tasks

Instance

Level

(instance triples)
instantiate

about

instantiate

AppliedIn

RDF/S KB

Modules

of James

Modeling of

other Tasks

about

Other/software

Modules(e.g.

WinOS, pdfViewer)

Unary Predicate

Classes (e.g. Run)

For Basic Tasks

(e.g.

Runnability)

For other tasks

(e.g.

emulators/

converters)

Dependency Rules
Strings of SPARQL queries

about

Figure 6.5: Architecture of the KB

MIME media types5 expressed as a subClassOf hierarchy (this hierarchy is shown

in the left of Figure 6.6). The dependency rules are also stored in the KB as strings

of SPARQL queries. Finally the KB also contains information about tasks.

To explain the structure of the KB we shall use an example that is illustrated

in Figure 6.6. Suppose a user that his profile contains only the module WinOS

and he uses the application for first time. The user uploads a file, say f , and the

system by its filetype extension (suppose .exe), or by analyzing the contents (e.g.

by using tools like Jhove6 or JMimeMagic library7), can realize that the uploaded

file is an executable file, and that belongs to the "application/octet-stream"

MIME type and consequently to the octet-stream class of the KB (as shown

in Figure 6.6). To achieve this for the first case (using the file extension) any

MIME type class in the KB has the property hasExtension. In this way the KB

contains the triple (<octet-stream>, <hasExtension>, ".exe"). This means

that the system from the extension understands the class that models the file type

by running the SPARQL query :

SELECT ?className

WHERE{?className <hasExtension> ".exe"}

5Multipurpose Internet Mail Extensions (MIME) is an Internet standard that extends the
format of email.

6http://jhove.sourceforge.net/
7http://jmimemagic.sourceforge.net/index.html

50 CHAPTER 6. EPIMENIDES: A PROOF-OF-CONCEPT SYSTEM

image

Module

MIMEType

video

text

application

audio

rdfs:subClassOf

msword octet-stream

Task

rdfs:subClassOf
rdfs:subClassOf

rdfs:subClassOf

runnability

rdf:type

appliedIn

Runnability

Run

Runnable

hasName

hasPerformabilityName

hasDepName

.doc .dot .word

hasExtension

.bin
.exe

hasExtension

WinOS

rdfs:subClassOf

f.exe

rdf:type
CONSTRUCT {?x <runnable> y} WHERE{ ?x, rdf:type,mime:octet-stream ?y, rdf:type, ud:WinOS }

hasRules

appliedIn

Rules

hasRules

impliesPerformabilityOf

rdfs:Literal

rdf:type

hasPerformabilityName

hasDepName

hasName

RunRules

asSPARQLRule

asSPARQLRule

hasExtension

windows7

rdf:type

MIMETypes Hierarchy

User Data

Task Instance

Figure 6.6: The contents of an RDF/S KB that follows the architecture of Figure
6.5

In the second case (e.g. using Jhove) the system recognizes directly this class.

By knowing the class that models the type of f , the system can find the tasks

that usually make sense to apply to the uploaded file by the property appliedIn

of the KB, which has domain a task and range a MIME type. The system shows

a list of all these tasks, returned by the following query :

SELECT ?taskName

WHERE{?className <hasExtension> ".exe".

?task <appliedIn> ?className.

?task <hasName> ?taskName}

The user can select one of the retrieved tasks and the next step for the system is to

check if this task can be performed. This can be done by the task-performability

service (as we have described in Chapter 4). To implement this service we have

added in the class Task of the KB, the following predicates (also shown in Figure

6.6):

• hasName (literal) - the name of the task e.g. Runnability

• hasPerformabilityName (literal) - the unary predicate that denotes the per-

6.4. THE KNOWLEDGE BASE OF EPIMENIDES 51

Module

runnability

Runnability

Run

Runnable

hasName

hasPerformabilityName

hasDepName
WinOS

windows7

f.exe

rdf:type

hasRules

RunRules

asSPARQLRule

Runnable

Run

Runnable

rdf:type

User Data

Task Instance

rdf:type

rdfs:subClassOf

CONSTRUCT {?x <runnable> y} WHERE{ ?x, rdf:type,mime:octet-stream ?y, rdf:type, ud:WinOS }
Figure 6.7: Operational KB

formability of the task e.g. Run

• hasDepName (literal) - the binary predicate that denotes the dependencies of

task e.g. runnable

• hasRules (Rules) - the rules that determine when the task can be performed.

To perform the performability checking service, the system produces the Op-

erational KB in which new classes and new properties are created and populated.

The name of new classes and properties are determined by the properties of KB

hasPerformabilityName and hasDepName respectively. The Operational KB, for

short OKB, is a superset of KB. Specifically it contains the results of the applica-

tion of all rules that KB contains. For the creation of the OKB we retrieve all the

rules and we check if they can be applied (using the contents of the KB). Whenever

a rule is applied the OKB is updated (the corresponding classes and properties are

created), and we start to check again for rules that can be applied in the new OKB.

Essentially we apply a fixpoint method of the Datalog language. In this way, query

answering can indeed support the desired services for task performability, taking

also into account the emulators and the converters.

In our case suppose that the user has selected the task with name “Runnability”.

All the rules of the KB are applied and the OKB is created. In Figure 6.7 you

can see the OKB for our example, its right side shows how the User Data are

changed when the OKB is produced (with bold are represented the new produced

resources).

The class Run and the property Runnable have already been created in the

52 CHAPTER 6. EPIMENIDES: A PROOF-OF-CONCEPT SYSTEM

Runnable(f.exe,

 mycomputer)
octet-stream(f.exe)

WinOS(mypc)

AndroidOS(mypc)

InitRule1

InitRule2

EmulW4A(Y)

Runnable(mypc, Y)

JavaClassFile(f.exe)

JVM(mypc)

LinuxOS(mypc)

QEMUEmul(mypc)

Module(WinOS.iso)

Figure 6.8: Gradual Expansion

OKB. Now the system using the property hasPerformabilityName, issues the

query Run(f) in the profile of the user (in OKB). Obviously, the answer of the

query in our example is true, as you can see in Figure 6.7, therefore the system

informs the user that this task can be finally performed. In case the selected

task could not be performed, the system should inform the user for the missing

dependencies.

To determine the dependencies that are missing and are required for performing

the selected task (the Computation of Gaps service as described in Chapter 4), the

system uses the Dependency Rules that are stored in the KB. Specifically at first it

retrieves from the property asSPARQLRule of each one rule of the selected task, the

direct dependencies, which actually form a set of atoms. These atoms are shown to

the user and he can ask the system to show how an atom can be satisfied. In this

case the system explores the KB for rules (including rules for emulators/converters)

that has as head the selected atom. The above procedure is repeated for the new

rules. In this way a gradual expansion is created as the user gradually explores the

possible paths.

Figure 6.8 shows an example of the above procedure. This example corresponds

to the case where the user cannot perform the Runnability task for the uploaded

file f.exe. The system retrieves and shows to the user the direct dependencies as

specified by two rules denoted by InitRule1 and IntitRule2. This means that

to turn f.exe runnable either InitRule1 OR InitRule2 should be satisfied. The

body atoms of each rule are shown, e.g. InitRule1 requires a WinOS AND an

octet-stream file. Subsequently the user can request from the system to show

how each of these atoms, say WinOS(mycomputer) of InitRule1, can be satisfied

and/or added to his profile. Analogously, the system retrieves and shows the rules

6.4. THE KNOWLEDGE BASE OF EPIMENIDES 53

The user cannot

perform the

Runnability task for the

uploaded file f.exe

The direct

dependencies

User requests from the

system to show how

the atom WinOS

can be added in his

profile

Epimenides

retrieves and shows

the rules that has as

head the atom:

WinOS(X)

Figure 6.9: The Gradual Expansion in Epimenides

that have as head the atom WinOS(X).

This process is supported also by Epimenides, and Figure 6.9 shows a series

of screenshots that illustrate it. We should also mention that during the above

process the system informs the user about those atoms which are already satisfied

by his profile. This assists the user to decide which paths are useful to to explore.

In Figure 6.8 these atoms are enclosed in rectangle, while Epimenides colors them

green (see Figure 6.9).

6.4.1 The Current Knowledge Base

Currently the Knowledge Base that we have created for a demo user contains 657

Module Types, including 647 MIME Type Modules. It also contains information

about three tasks (readability, runnability, rendering). Furthermore, for each of

the 647 Mime Types the knowledge base contains extra information (e.g. the

extension of a mime type). As regards the dependencies of the tasks, 53 rules have

been specified. In total, the knowledge base contains 2,304 RDF triples. Note, as

we have already mentioned, that a user can enrich the knowledge base by adding

54 CHAPTER 6. EPIMENIDES: A PROOF-OF-CONCEPT SYSTEM

his/her own Module Types, Tasks and Rules using the prototype system. The RDF

Schema of the KB is given in the Appendix A.1.

We should clarify that the KB composed from two different graph spaces: the

user profile graph space that contains information for the modules that a user

holds, and the system’s graph space that contains information about the rules, the

tasks and the modules.

Also the current version of the system inserts to the RDF storage the inferred

triples, as we have described in section 5.3.1, and does not use a view language.

6.5 Aiding the Ingestion of Tasks

Above we have described the use cases for end users. The job of the curator could

also be assisted by providing a simple method for adding tasks and modeling the

corresponding dependencies. This is related to the use case named “Define Task

and Dep. Rules” in Figure 6.1. The curator can enrich the system to support extra

tasks and rules. He should provide some input and the application produces the

required rules. Specifically the curator should provide :

• The unary predicate that denotes the performability of the task (e.g. Edit),

• the MIME type/s that can be applied in this task (e.g. text/plain),

• the module/s that is/are required for the selected MIME Type (e.g. Text

Editor),

• and optionally the task which the performability can be implemented by the

new task (e.g. Readability).

6.6 Aiding the Ingestion of Converters and Emulators

Again, and for aiding the job of the curator in defining new emulators here we

describe an automatic method where the user through a user interface provides

some input, and the tool outputs the required facts and rules. This is related to

the use case named “Define Converter/Emulator” in Figure 6.1. The method is

based in Chapter 3 and on the examples for the real dataset in Section 3.7.

In brief, to represent an emulator the user has to provide:

• What this emulator emulates (e.g. the WindowsXp Operating System), let

denote this input by A.

6.7. SCREEN DUMPS OF EPIMENIDES 55

• In what System the emulator runs (e.g. Linux Operating System), let denote

this input by B.

• The URI (or just filepath) and the name of the emulator that we want to

register, let denote this by Epath and E respectively.

• Files or other modules that the emulator uses (e.g. ISOFile). Let denote

such input by P1, . . . , Pk.

Let Apred denote the predicate corresponding to A, e.g. the URI of the RDF

class WindowsXP (in the context of an interactive system the user could search

and select this from the list of registered modules).

Let Bpred denote the predicate corresponding to B, e.g. the URI of the RDF

class LinuxOS. (again in the context of an interactive system the user could search

and select this from the list of registered modules).

Regarding P1, . . . , Pk, and assuming that each one of these is specified by a

URI, they will be used for extending the emulator rules (as described earlier).

Now we describe exactly what facts and rules should be produced by the above

input. At first the system creates a new RDF class E and also creates the fact

E(Epath). Then it creates the following rule:

A_pred(X):- B_pred(X), E_pred(Y), Runnable(Y,X),

Module(P_1), ..., Module(P_k).

For the runnability of the emulator, we define that the emulator is runnable on the

System that the emulator runs, so the system creates the rule :

Runnable(X,Y) :- E_pred(X), B_pred(Y)

6.7 Screen Dumps of Epimenides

Figure 6.10 shows the first screen of the system, where you can make a login to

load your personal profile or you can load some demo profiles.

Figure 6.11 shows the first screen that allows the user to upload a file (atomic or

a zipped collection of files). After uploading a file the system analyzes the contents

of the zip file and for each of the included files it suggests a task. This is shown in

Figure 6.12.

Figure 6.13 shows the results of this analysis. We can see that the first file is

in red because the selected task, i.e. Rendenring, cannot be performed over that

56 CHAPTER 6. EPIMENIDES: A PROOF-OF-CONCEPT SYSTEM

file digital object). In contrast, the selected tasks for the other two files can be

performed, and for this reason they are marked with green.

Figure 6.10: Load your personal profile or use a demo profile

Figure 6.11: Upload digital objects to check the performability of them

6.7. SCREEN DUMPS OF EPIMENIDES 57

Figure 6.12: System finds the tasks that usually make sense to apply to the up-
loaded digital objects

Figure 6.13: Results of analysis

58 CHAPTER 6. EPIMENIDES: A PROOF-OF-CONCEPT SYSTEM

The user can explore the dependencies for each one of the digital objects. For

example Figure 6.14 shows what happens if the user clicks to explore the depen-

dencies of the "Rendering" task. We can see all the rules of the selected task that

are available in the system. The atoms of each rule are green or red. Green atoms

are available in the profile of the user, while the red are not. Moreover the user

can click on an atom to explore the dependencies of this atom, so he can see the

rules or the facts of this atom.

Figure 6.14: Exploring the Dependencies of a Task

Figure 6.15: Identify the modules that will be affected on a task after removing a
module

6.7. SCREEN DUMPS OF EPIMENIDES 59

The Consequences of a Hypothetical Loss Service as described in Section 4.2 is

supported also by Epimenides. Figure 6.15 shows a screenshot of this service.

Figure 6.16: Define a new Task

Figure 6.17: Define a new Emulator Type

60 CHAPTER 6. EPIMENIDES: A PROOF-OF-CONCEPT SYSTEM

Figure 6.16 shows the form that a user has to fill in order to define a new task in

the system, while Figure 6.17 shows the form for the definition of a new emulator

type.

Moreover the user has the ability to explore the contents of its Knowledge Base.

This is shown in Figure 6.18.

Figure 6.18: Explore the contents of the underling RDF/S triple store

6.8 Evaluating its Usability

We decided to evaluate the usability of the system for investigating if a user can

understand the main concepts of the approach by using the system, and how the

system per se is usable. For this reason we created a short tutorial for the system8,

we defined some scenarios9 that we asked users to carry out using the system, and

we prepared a small questionnaire that the users had to answer after using the

system.

8
http://users.ics.forth.gr/~kargakis/data/demoUsersGuide.pdf

9
http://users.ics.forth.gr/~kargakis/data/UserExperience.pdf

6.9. QUERY AND REASONING EFFICIENCY 61

Ten users answered this questionnaire with ages ranging from 20 to 30. All of

the participants had a computer science background (some of them had a MSc in

Computer Science). We can distinguish these users in two groups: the advanced

group consisting of 3 users (from APARSEN NoE10) and the regular ones consisting

of 7 users (from Computer Science Department, University of Crete). The advanced

users were aware of the dependency management approach, while the regular ones

were not. For this reason, and before starting the evaluation, we gave to each

regular user a brief tutorial on using the system through examples.

Below we summarize the results the answers of the questionnaire (detailed

results are given in Figure 6.19). The results showed that 90% of the participants

completed the scenario A, while scenario B was completed from all users (100%).

The time to complete both scenarios A and B was less than 6 minutes. From

the above we can conclude that Epimenides is understandable and easy to use.

In questions 5 and 6, all users (100%) answered that the system assisted them

in checking the performability of a task and that they better understood why a

task can be performed in an existing and unknown profile. This demonstrates the

value of the system. Finally, 70% declared that this application is useful for an

organization with a big dataset of digital objects. It is also worth noting that no

user had ever used any relevant system. At last, a big percentage (90%) of the

participants rated with 3 (high) the potential of this approach.

6.9 Query and Reasoning Efficiency

In general performance depends on the capabilities of the adopted triplestore

used (for a comparative analysis see [35]). Currently Epimenides uses the Open-

Link Virtuoso RDF triple store. Virtuoso supports backward chaining reason-

ing, meaning that it does not materialize all inferred facts, but computes them at

query level. Its reasoner covers the related entailment rules of rdfs:subClassOf

and rdfs:subPropertyOf. Practically this means that transitive relations (i.e.

subClassof, subPropertyOf, etc.) are not physically stored in the knowledge

base, but they are added to the result set at query answering.

Below we report a few indicative times that concern the current knowledge base

10http://www.alliancepermanentaccess.org/

62 CHAPTER 6. EPIMENIDES: A PROOF-OF-CONCEPT SYSTEM

56% 44% 0% 0% 2. The time to complete Scenario A

was : 1 - 3 min [5]4 - 6 min [4]7 - 9 min [0]> 10 min [0]

90% 10%
1. Did you successfully complete the

Scenario A? Yes [9]No [1]

100%
0% 3. Did you successfully complete the

Scenario B?

Yes [10]No [0]

40% 60%
0% 0% 4. The time to complete Scenario B

was : 1 - 3 min [4]4 - 6 min [6]7 - 9 min [0]> 10 min [0]

100%
0% 5. Have you a better understanding of

why a task can be performed in

existing and unknown profile

Yes [10]No [0]

100%
0% 6. Did the system assist you in checking

the performability of a task?

Yes [10]No [0]
0% 30% 70%

0% 7. How much useful could be this

application for an organization with a

big dataset of digital objects? 1(low) [0]2(medium) [3]3(high) [7]4(don’t know) [0]

0%
100%

9. Have you used any relevant system

(performability checking system)?

YES [0]NO [10]

0% 10%
90%

8. Please rate the potential of this

approach from 1 (low) to 3 (high) 1(low) [0]2(medium) [1]3(high) [9]

Figure 6.19: Analysis of the responses to the questionnaire

6.9. QUERY AND REASONING EFFICIENCY 63

of Related
Modules in KB

of Fired
Rules

Size (in triples)
of the Produced
OKB

Time for Pro-
ducing the
OKB

Overall Time
for the “Con-
sequences of a
Hypothetical
Loss” Service

3 2 2,227 3.32 sec 6.14 sec
5 6 2,245 7.67 sec 13.21 sec
12 14 2,261 8.90 sec 14.49 sec
18 24 2,299 11.40 sec 19.81 sec

Table 6.1: Some indicative measurements of time

of Epimenides which contains 2,304 RDF triples and 53 rules, although efficiency

and optimization is not the focus on this thesis11.

Creation Time for the KB. The time to create from scratch the entire KB by

loading N-Triple files requires about 4 seconds. The time to add or delete a module

is negligible.

Creation Time for the OKB. As we have already mentioned in Section 6.4, the

OKB is produced by “firing” the rules which in turn produce new triples. The time

for the creation of the OKB depends on the number of the fired rules. Table 6.1

shows the time required for creation the OKB from KB, based on the number of

the fired rules.

Task Performability Checking. The service for task performability checking

relies on the OKB and it is reduced to plain query answering. Therefore it is very

fast, in average it takes around 37 milliseconds.

Consequences of a Hypothetical Loss. We have also made some experiments

regarding the time required for the “Consequences of a Hypothetical Loss” service.

This is a composite task that includes all the previous steps, therefore it is appro-

priate for experimentation or for benchmarking one particular implementation.

For the 3 tasks {t1, . . . , t3} that our KB contains and y (where y = 3, y = 5,

11 The experiments were carried out using the Virtuoso 06.01.3127 version, running in a Dual-
Core linux machine with 3GB RAM.

64 CHAPTER 6. EPIMENIDES: A PROOF-OF-CONCEPT SYSTEM

y = 12 and y = 18) in number (related) modules {m1, . . . ,my}, we measured the

time required for identifying the consequences on the peformability of task ti after

removing the module mj . Specifically we measured this time for 4 different occa-

sions. Recall that this is achieved by (a) computing the answer of the query ti(X)

(let A be the returned set of elements), (b) deleting mj from the database, recon-

structing the OKB and answering again the query ti(X) (let B be the returned set

of elements), and (c) computing and returning the elements in A \B (they are the

ones that will be affected).

The above procedure requires the construction of the OKB twice (one before

the computation of A and one before the computation of B). Table 6.1 reports

execution times. We can see that the times range from 6 to 20 seconds.

Conclusions. In general we do not expect any difficulty in achieving efficiency

(mainly because task performability reduces to plain query answering over the

OKB which has already materialized the required information).

Moreover if the adopted triplestore supports custom backwards reasoning, then we

will not have to produce OKB, which is the most expensive task.

Chapter 7

Applicability

7.1 On Applicability

We have already seen (in Chapter 1) an example of how our approach can be applied

in software. In brief a user that holds the modules that are shown in Figure 7.1a,

could run game.pas on his mobile phone by first converting the Pascal code to

C++, then compiling the C++ code, and finally by running over the emulator the

executable yielded by the compilation (these series of transformation/emulations

are shown in Figure 7.1b). We should however clarify that the proposed approach

is not confined to software. Various services that concern documents and datasets

can also be captured. Below we describe some examples in more detail.

Consider that the same user (of the previous example) received the document

secret.doc. Also consider that recently has bought the MicrosoftOfficeWord.exe

for Windows OS and a converter from doc to pdf (doc2pdf) and he is wondering if

he can render this file. Defining the rendering task with a proper way, the reasoning

approach can infer that this is possible through various ways :

• by running the MicrosoftOfficeWord.exe on his laptop,

• by running the SuiteOffice of his smart phone,

• by running over the W4A the MicrosoftOfficeWord.exe on his mobile phone,

• converting the secret.doc to a pdf file, and then run the pdf Viewer (SuiteOffice)

in his smart phone.

Note that we suppose that Android OS has as preinstalled : a Word Office software

(SuiteOffice) and a pdf viewer software (SuiteOffice).

65

66 CHAPTER 7. APPLICABILITY

Converter

from Pascal

to C++

C++ Compiler

for WinOS

Emulator of WinOS

Executables over

Android OS

Smart Phone Code in Pascal

Programming Language

a.

b.

step 1: conversion

step 3: emulation

st
e

p
 2

:
co

m
p

il
a

ti
o

n

game.pas game.cc

game.exe

game.pas

Figure 7.1: Our approach in a software example

For the case of datasets, consider that we want to preserve datasets containing

experimental results and would like to preserve their provenance. Suppose that

for us provenance means ability to answer questions of the form: who derived

the dataset, when this dataset was derived, how it was derived? We can model

provenance as a task (that has dependencies) and we can use the dependency

reasoning approach for in a way that enables checking for which datasets we have

provenance and for which we have not. We could also exploit the reasoning services

in order to discover provenance information that was not evident (e.g. result of

tools that extract embedded metadata).

7.2 Ways to Offer the Dependency Management Ap-

proach

There are more than one ways to apply the approach presented in this thesis. Below

we discuss two main approaches.

• As a System. Here the idea is to have one dedicated system, adapted to

the needs, practices and other operational system of the organization/archive.

Systems like Epimenides fall into this case. Alternatively, one could “inject”

7.3. APPLICATION BY EXTENDING AN EXISTING REPOSITORY (FEDORA)67

the dependency management approach to existing repository management

systems. For instance, the dependency management approach could be im-

plemented by extending the Fedora repository. This could be quite straight-

forward since the Fedora stores metadata using RDF/S and the set of re-

lations that can be used for connecting objects is not limited (more about

Fedora in the next Section)

• As a Service. The proposed approaches could be offered as a service by

third party providers, e.g. by a provider of cloud services who apart from

offering storage services, it offers various virtualization services and uses the

methodology and techniques described in this document for realizing them.

Clearly other tools and datasets can also contribute to an operational applica-

tion of the approach. Section 7.4 describes such tools and datasets.

7.3 Application by Extending an Existing Repository

(Fedora)

Fedora1 is a widely used repository management system for digital objects that

provides tools and interfaces for the creation, ingest, management, and dissemina-

tion of content. The key abstraction, is the Fedora Digital Object (FDO). A FDO

has an identifier (PID), Dublin Core metadata , and Datastreams (the actual con-

tent). A Datastream can be of any MIME-type and it can be managed locally (in

the Fedora repository), or by external data sources (in that case it referenced by its

URL). FDOs can be connected through relationships forming a network of digital

objects, and these relationships are stored as metadata in digital objects within

special Datastreams. The Fedora repository service automatically indexes all the

relationships creating a graph of all the objects in the repository and their rela-

tionships to each other. The user can then make queries (e.g. SPARQL queries) to

this graph and take results of the repository content. Fedora has also the ability to

associate the data in a FDO with Web services to produce dynamic disseminations

where a dissemination is a view of an object produced by a service operation (i.e.

a method invocation) that takes as input one or more datastreams of the object.

1http://fedora-commons.org/

68 CHAPTER 7. APPLICABILITY

Our approach could be implemented by extending the Fedora repository. This

could be quite straightforward since the Fedora stores metadata using RDF/S and

the set of relations that can be used for connecting objects is not limited. One way

could be to extend the Fedora with a service that takes as input the MIME-type of

the contents (datastreams) from the FDOs. This service using those MIME-type

and having a basic mapping between the MIME-types and the tasks (e.g the MIME-

type application/msword must checked for the task render) can automatically

define the required dependencies. The KB that stores these could be the same with

that of Fedora, or an external one. Of course the administrator of the repository

could define various other tasks and dependencies using the approach that we have

described.

7.4 Related Datasets and Tools

7.4.1 PreScan

PreScan [9] is a tool developed in the context of the EU project CASPAR2. It can

aid the ingestion of metadata. Figure 7.2 sketched the process that it carries out.

Figure 7.2: The system PreScan

2http://www.casparpreserves.eu/

7.4. RELATED DATASETS AND TOOLS 69

In brief, this tool can scan the file system, extract the embedded metadata

from the files, and transform them to RDF using the desired RDF schema. In the

sequel, the resulting metadata could feed the Knowledge Base of Epimenides.

7.4.2 The PRONOM Registry and its Contents

PRONOM3 is an on-line information system about data file formats and their sup-

porting software products. Originally developed to support the accession and long-

term preservation of electronic records held by the National Archives. PRONOM

holds information about software products, and the file formats which each product

can read and write.

Linked Data PRONOM Lab4 plans to make the registry data available in a

Linked Open Data format. They created an RDF triplestore and a SPARQL

Endpoint5 is available. Also a draft vocabulary specification and accompanying

documentation in RDF are available6. Table 7.1 shows the used RDF properties.

In comparison to our approach PRONOM is less powerful. PRONOM does not

model the notion of task. Moreover, the notion of converter and emulator is not

covered.

However, we could exploit some information from the PRONOM registry in

order to enrich the Knowledge Base of our prototype. Specifically, as we have seen

in table 7.1, there are some common properties (i.e. extension and mime Type).

For example from the extension of a file we can retrieve extra information from

PRONOM registry by running the following SPARQL query:

select ?puid ?mime ?description ?developer where {

?s <http://reference.data.gov.uk/technical-registry/extension> "doc".

?s <http://reference.data.gov.uk/technical-registry/PUID> ?puid .

?s <http://reference.data.gov.uk/technical-registry/MIMETYPE> ?mime.

?s <http://purl.org/dc/elements/1.1/description> ?description.

?s <http://reference.data.gov.uk/technical-registry/developedBy> ?developer

}

The Persistent Unique Identifier (PUID) shown in the previous query is an extensi-

ble scheme for providing persistent, unique and unambiguous identifiers for records
3http://www.nationalarchives.gov.uk/PRONOM/Default.aspx
4http://labs.nationalarchives.gov.uk/wordpress/index.php/2011/01/linked-data-and-pronom
5http://test.linkeddatapronom.nationalarchives.gov.uk/sparql/endpoint.php
6http://test.linkeddatapronom.nationalarchives.gov.uk/vocabulary/pronom-vocabulary.htm

70 CHAPTER 7. APPLICABILITY

Properties
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/2000/01/rdf-schema#label
http://reference.data.gov.uk/technical-registry/version
http://www.w3.org/2004/02/skos/core#altLabel
http://reference.data.gov.uk/technical-registry/formatType
http://purl.org/dc/elements/1.1/description
http://reference.data.gov.uk/technical-registry/byteOrder
http://reference.data.gov.uk/technical-registry/releaseDate
http://reference.data.gov.uk/technical-registry/withdrawnDate
http://reference.data.gov.uk/technical-registry/MIMETYPE
http://reference.data.gov.uk/technical-registry/PUID
http://reference.data.gov.uk/technical-registry/extension
http://reference.data.gov.uk/technical-registry/internalSignature
http://reference.data.gov.uk/technical-registry/byteSequence
http://reference.data.gov.uk/technical-registry/byteSequencePosition
http://reference.data.gov.uk/technical-registry/byteSequenceOffset
http://reference.data.gov.uk/technical-registry/byteString
http://reference.data.gov.uk/technical-registry/UTI
http://reference.data.gov.uk/technical-registry/developedBy
http://reference.data.gov.uk/technical-registry/maxByteSequenceOffset
http://reference.data.gov.uk/technical-registry/supportedBy
http://reference.data.gov.uk/technical-registry/XPUID
http://www.w3.org/2004/02/skos/core#note
http://reference.data.gov.uk/technical-registry/lossiness
http://reference.data.gov.uk/technical-registry/WAVE_Format_GUID
http://reference.data.gov.uk/technical-registry/compressionDocumentation
http://reference.data.gov.uk/technical-registry/mediaFormat

Table 7.1: The RDF properties of PRONOM

7.5. CASE STUDY: DANS 71

in the PRONOM registry. A unique PUID is assigned to each registry entry of the

PRONOM.

However, the PRONOM registry contains only 101 mime types, while the

Knowledge Base of Epimenides already contains 647 different mime types, there-

fore the value of PRONOM is limited.

Moreover, there is a RDF repository (P2-Registry [36]) that links the PRONOM

registry data with the DBpedia data. The P2-Registry is available at: http://p2-

registry.ecs.soton.ac.uk/ . This registry provides open access to all the data con-

tained within, as well as services including a SPARQL endpoint7 and RESTful

HTTP services. Data is currently available in XML and RDF formats, an HTML

interface is not currently proposed other than to offer an explanation of the services

available.

7.4.3 Catalogues of Existing Converters and Emulators

We tried to find if there is a place where the capabilities of existing transformers

and emulators are described. Ideally we would like to find a format that allows

representing and exchanging such information. If such format existed, that would

allow us design a method that takes as input such a description and produces the

required facts and rules of our approach.

Unfortunately, we have not managed to find such a registry. There is one page

at wikipedia8 that lists software and hardware that emulate computing platforms.

Their description is textual (in HTML tables). It contains 339 emulators, where

for each one the page provides its: Name, Actual Version, System (e.g. x86 PC,

x86-64 PC), Platform (e.g. Windows), Licence and a link to the official site of the

emulator.

7.5 Case Study: DANS

In the context of APARSEN NoE we have also conducted a case study for the case

of DANS (Data Archiving and Networked Services, NL)9. DANS aims at promoting

sustained access to digital research data. For this purpose, it encourages researchers

7http://p2-registry.ecs.soton.ac.uk/SPARQL/
8http://en.wikipedia.org/wiki/List_of_computer_system_emulators
9http://www.dans.knaw.nl/en

72 CHAPTER 7. APPLICABILITY

to archive and reuse data in a sustained manner, e.g. through the online archiving

system EASY (http://easy.dans.knaw.nl). DANS also provides access, via NARCIS

(http://www.narcis.nl), to scientific datasets, e-publications and other research

information in the Netherlands. Apart from these, the institute provides training

and advice, and performs research into sustained access to digital information.

In collaboration with DANS, we have defined a number of scenarios that in-

dicate where and how the dependency management approach could be used. The

analysis yielded five main scenarios.

In brief the desired (for DANS) tasks are related with the acceptable/preferred

formats, and with the runability of DANS software (including computability of

checksums).

7.5.1 Scenario 1: Checking File Format Compatibility (compli-
ance or migratability) with Acceptable/Preferred File For-
mats during Ingestion

Description: For a number of data types (tables, text, images, etc.), specific file

formats are considered as durable at least into the near future. DANS maintains

a list of acceptable and preferred formats. These lists are the basis for file format

migration activities. The list that DANS currently uses is available10.

Applicability: If the converters (or emulators) that are in use by DANS for

carrying out the migration activities, are registered in a system like Epimenides,

then the system can be exploited not only for checking whether a newly ingested file

is in an acceptable/preferred format, but also for checking whether it is migratable

to one preferred or acceptable format using the migration/emulation software that

DANS uses and has registered.

Implementation: To realize this scenario, one has to define a profile (say profile_DANS)

that consists of:

a. The list containing the software that DANS uses for managing a file having

an acceptable/preferred file format (e.g. AcrobatReader for rending PDF

10 Taken from http://www.dans.knaw.nl/sites/default/files/file/EASY/DANS
%20preferred%20formats%20UK%20DEF.pdf

7.5. CASE STUDY: DANS 73

files, VLC for playing mpg/mpeg/mp4/avi/mov files). At least one software

per format is required.

b. For each file type in the list of acceptable/preferred list, a task has to be

associated (the one usually applicable on such file types) and the dependencies

for that task have to be delivered in a way so that that they are satisfied

by the list of software described in [a] (e.g. Render(X) :- pdfFile(X),

pdfViewer(Y)).

c. The list of tools that DANS uses for migration/conversion purposes (e.g.

docxToPdfConverter(doc2pdf)).

Use Case: After having done the steps that were just described, the end user

(or archivist) could just use the system. Whenever he uploads a file, the system

prompts the applicable task and directly informs the user if it is in an acceptable

format or migratable to an acceptable format using the software that DANS has.

Without such facility it is difficult for a curator to determine that (a) an archived

dataset is formatted in a durable format and (b) to have an overview of the ap-

plicable file format migration procedures that can be carried out to convert a file

into a preferred file format (given the fact that the list of preferred file formats will

change over time as file formats might become obsolete).

7.5.2 Scenario 2: Updating the List of Preferred/Acceptable For-
mats and Detecting the Consequences of Obsolete Formats

Description: As the usability and durability of file formats tend to change over

time, for DANS it is important to periodically monitor and assess the applicability

of the list of preferred formats and if it is necessary to replace a file format that

became obsolete with a new one. Also new preferred formats can be introduced

in the list. Specifically, say every year, the specifications on the list of preferred

file formats have to be assessed based on a number of criteria (e.g. discussions in

literature, consensus of organizations that provide guidelines in this field, etc.)

Applicability:

a. To add a new format in the list of acceptable/preferred file formats, the

archivist can just register it to the knowledge base of Epimenides. The check

74 CHAPTER 7. APPLICABILITY

performed at ingestion time will then function as expected (i.e. in accordance

with the revised list of acceptable formats).

b. Before deleting a file format (or managing software) from the list of accept-

able/preferred file formats (or available software respectively), the archivist

can check the impact of that deletion, i.e. the impact that this deletion

will have on the performability of tasks over the archived files. Recall the

discussion on Section 5.2 about the “Consequences of a Hypothetical Loss”.

c. To delete a file format (or managing software) from the list of acceptable/pre-

ferred file formats (or available software respectively), the archivist can just

delete the corresponding entries from the system. After doing so, the check-

ing at ingestion time will function as expected, i.e. in accordance with the

revised list of acceptable formats.

Without such services it is difficult to identify all the consequences of file format’s

obsolescence. It is also difficult to identify what will happen if managing software
11 is lost or will become obsolete.

7.5.3 Scenario 3: Assistance in Planning and Performing Migra-
tion to Acceptable/Preferred File Formats

Description: Research datasets are formatted in a number of formats as submit-

ted to the data archive by the depositors. The data archive stores and manages

these datasets in the format as submitted by executing so-called “bit-preservation”

(more about bit preservation in a next scenario). The data archive archives all

formats but only commits itself to the long-term usability of file format that are

formatted according to so-called preferred formats, described in the previous sce-

narios.

In two situations a file format migration is required: (1) as part of the ingest

procedure files not formatted according to the preferred file format are migrated

to a suitable preferred file format. (2) in case in the future a preferred file format

becomes obsolete the files have to be migrated to this new format.

The migration process requires tools. Quality features of these tools are: speed,

accuracy, level of completeness, and usability of the tool.

11Software that is able to convert to/from a preferred file format

7.5. CASE STUDY: DANS 75

Applicability & Implementation: The dependency management approach can

show to the archivist whether a file format migration is possible using the software

that DANS has (recall Scenario 1). Also since a migration can be performed with

different tools (or execution plans in general), the proposed system can assist the

archivist by showing to him/her, the possible actions/tools and this can be achieved

by exploring the dependencies that the system offers (recall the screens of the

system that offer exploration services).

Without such services it is difficult for a human to identify all possible migration

plans.

7.5.4 Scenario 4: Checking the Preservation of the Software

Description: Despite the fact that research data archives are aimed at the durable

access of datasets, there are cases where specific software is required to be able to

use the datasets. For such cases, activities have to be undertaken to guarantee

that this software is usable over time. Software preservation involves much more

dependencies, than research data preservation (e.g. changing operating systems,

proprietary source code, etc.). Research data archives currently have no general

accepted software preservation strategy.

Applicability & Implementation: The examples of the current thesis have

demonstrated this with various examples (recall the task of runability and compi-

lability).

7.5.5 Scenario 5: Bit Preservation (ability to test corruption)

Description: The bit preservation scenario involves activities to guarantee that

digital objects do not become corrupted. This means not one bit is changed over

time. Thus the integrity of the data objects is guaranteed. This can be achieved

by creating checksums on the occasion where the digital objects are ingested in the

data archive and periodically check whether the checksum is still valid. Depen-

dencies in the scenario are the strength of the checksum procedures and the time

interval the checksum is checked as part of the bit preservation activities.

Applicability & Implementation: If checksums are supposed to be used for

76 CHAPTER 7. APPLICABILITY

ensuring that the data have not been corrupted, then an archive can model as

task the computation of checksums for being sure that in the future the archiving

organization will be able to recompute them and compare them with the stored

ones. Note that there are several tools for computing checksums12. We can say

that this is a special case of scenario 4.

Without our approach it is difficult and time consuming to plan software migration.

7.5.6 Consolidation of the Scenarios

Here we consolidate the key points of the above scenarios and Table 7.5 describes

them using as gnomon the steps of the methodology introduced in Section 3.2

7.6 Layering Tasks

We should stress that the modeling approach presented in this thesis allows mod-

eling and organizing tasks hierarchically. This is quite natural, and we have seen

that the community and the literature many times attempts to provide a kind of

layering. Below we describe, quite generally, some tasks. In some cases, the more

we go down to the list, the more complex the tasks become, i.e. some of these tasks

rely on the ability of performing other tasks.

Ability to:

• Retrieve the bits: Ability to get a particular set of stored bits.

• Access: Ability to retrieve the bits starting from an identifier (e.g. a persis-

tent identifier)

• Render: Given a set of bits, ability to render them using the right symbol

set (e.g. as defined in [24]) for creating the intended sensory impression.

• Run: Ability to run a program in a particular computer platform.

• Search: Ability to find a digital object. Search ability can be refined based

on the type of the object (doc, structured, composite) and its searchable part

(contents, structure, metadata).

• Link: Ability to place a digital object in context and exploit it. This may

require combining data across difference sources.

12http://en.wikipedia.org/wiki/Checksum#Checksum_tools.

7.6. LAYERING TASKS 77

General Step Specialization for the case of DANS
1. Identify the
desired tasks and
objectives

The desired tasks are:

a. those related to the list of the acceptable/preferred formats,
e.g. render (for pdf, txt, pictures), play (for video, aurio),
getTheRelationalModel (for spreadsheets, databases), etc.

b. those related to the runability of DANS software (including
computability of checksums).

2. Model them
and their depen-
dencies (check hi-
erarchy)

a. Using the list of software described in Scenario 1[a] (Section
7.5.1). Moreover the dependencies of the runability of the
tools that DANS uses for migration have to be modeled.

b. Model the software dependencies that are required for run-
ning the software that DANS uses.

In general the modeling required is quite simple, analogous to the
examples given in the thesis.

4. Identify Ways
to capture depen-
dencies (manual,
auto, . . .)

The file types are detected automatically (when one uses the up-
load feature of Epimenides). For applying this approach in a big
collections of files, various tools could be used for automating this
process (more in Section 7.2). Surely, in an operational setting the
proposed functionality could extend or complement the functional-
ity of the ingestion procedures of the systems that DANS currently
uses.

5. Customize
use and exploit
the dependency
services

For demonstration purposes this can be done using the
Epimenides, i.e. no need for customization or integration with
the other systems of DANS. However, in an operational setting
the processes and systems of DANS should be considered. Appli-
cability is discussed in more detail in 7.2.

6. Evaluate This can be done using the Epimenides.

Table 7.2: Application of the Methodology for the case of DANS

78 CHAPTER 7. APPLICABILITY

• Assert Quality: Ability to answer questions of the form: What is its value of

this digital object, is it authentic?

• Get Provenance: Ability to answer the corresponding questions (who, when,

how).

• Assert Authenticity: (based on provenance, etc)

• Reproduce: Ability to reproduce a scientific result. This is crucial for e-

Science.

• Update: Ability to update and evolve a digital object.

• Upgrade/Convert/Transform: Ability to upgrade a digital object (e.g. to a

new format), or convert its form.

Chapter 8

Concluding Remarks

As the scale and complexity of information assets and systems evolves towards

overwhelming the capability of human archivists and curators (either system ad-

ministrators, programmers and designers), it is important to offer services that can

check whether it is feasible to perform a task over a digital object. For example, a

series of conversions and emulations could make feasible the execution of software

written in 1986 software on a 2013 platform. The process of checking whether this

is feasible or not could be too complex for a human and this is where advanced

reasoning services could contribute, because such services could greatly reduce the

human effort required for periodically checking (monitoring) whether a task on a

digital object is performable.

Towards this vision, in this thesis we have advanced past rule-based approaches

for dependency management for capturing converters and emulators, and we have

demonstrated that the proposed modeling enables the desired automatic reasoning

regarding task performability.

We proposed a methodology, we described the services which are more useful for

the needs of digital preservation, and we showed how we can offer such services in

an RDF/S implementation. For the latter, we distinguished various policies about

how to tackle evolution and inference, and some limitations of RDF/S. Also we

showed that our modeling approach can model real converters and emulators. In

the sequel, we described a dataset and a prototype system, called Epimenides,

that we have build based on the proposed approach which proves the technical

feasibility, while the evaluation of its usability showed the underlying concepts can

79

80 CHAPTER 8. CONCLUDING REMARKS

be easily understood by users. Although the knowledge base of the prototype

system currently represents only some indicative tasks, it can demonstrate the

benefits of the proposed approach. Finally we described how the proposed approach

can be applied in other existing systems and tools.

We could say that the long term vision in the digital preservation is the virtual-

ization of the basic preservation tasks. Just like the virtualization of storage that is

currently offered by the cloud have made the life easier for the organizations that

have to keep stored content, the virtualization of rendering and software execution

would be an important contribution to digital preservation, and significant relief

for the responsible organizations. To realize this virtualization, and preserve the

performability of these tasks as operating systems, protocols, format change, the

provider of such services needs a repository and services like those that we have

described in this thesis.

From the technical side, an objective for future research is to develop quality-

aware reasoning for enabling quality-aware preservation planning. For example

consider that we can render an image through a conversion, but the result is in a

lower resolution than native. Other issues for future research include gap visual-

ization methods and update requirements.

Finally it will be worth to investigate the usage of other logical languages. For

example the event calculus language [52] can be exploited in order to model and

extend our approach.

Bibliography

[1] Y. Tzitzikas, “Dependency management for the preservation of digital infor-
mation,” in Procs of the 18th Intern. Conf. on Database and Expert Systems
Applications, DEXA’2007, Regensburg, Germany, September 2007.

[2] Y. Tzitzikas and G. Flouris, “Mind the (intelligibily) gap,” in Procs of the
11th European Conference on Research and Advanced Technology for Digital
Libraries, ECDL’07. Budapest, Hungary: Springer-Verlag, September 2007.

[3] Y. Tzitzikas, Y. Marketakis, and G. Antoniou, “Task-based Dependency Man-
agement for the Preservation of Digital Objects using Rules,” in Procs of 6th
Hellenic Conf. on Artificial Intelligence, SETN-2010, Athens, Greece, 2010.

[4] G. E. David, Advanced Digital Preservation. Springer, 2010.

[5] C. Becker and A. Rauber, “Decision criteria in digital preservation: What to
measure and how,” JASIST, vol. 62, no. 6, pp. 1009–1028, 2011.

[6] M. Waller and R. Sharpe, Mind the Gap: Assessing Digital Preservation Needs
in the UK. The Digital Preservation Coalition, 2006.

[7] S. Strodl, C. Becker, R. Neumayer, and A. Rauber, “How to choose a digital
preservation strategy: Evaluating a preservation planning procedure,” in Pro-
ceedings of the 7th ACM IEEE Joint Conference on Digital Libriries (JCDL
2007), 2007, pp. 29–38.

[8] Y. Marketakis and Y. Tzitzikas, “Dependency Management for Digital Preser-
vation using Semantic Web technologies,” International Journal on Digital
Libraries, vol. 10, no. 4, 2009.

[9] Y. Marketakis, M. Tzanakis, and Y. Tzitzikas, “PreScan: Towards Automating
the Preservation of Digital Objects,” in Procs of the International Conference
on Management of Emergent Digital Ecosystems MEDES’2009, Lyon, France,
October, 2009.

[10] S. Granger, “Digital preservation & emulation: from theory to practice,”
ICHIM (2), pp. 289–296, 2001.

81

82 BIBLIOGRAPHY

[11] D. Waters and J. Garrett, “Preserving Digital Information Report of the Task
Force on Archiving of Digital Information,” in Commissioned by the Com-
mission on Preservation and Access and the Research Libraries Group, Inc.,
Washington DC: Commission on Preservation and Access., 1996.

[12] S. Granger, “Emulation as a digital preservation strategy,” 2000, corporation
for National Research Initiatives.

[13] F. Bellard, “QEMU, a fast and portable dynamic translator,” in Procs of the
USENIX Annual Technical Conference, FREENIX Track, 2005, pp. 41–46.

[14] J. Van der Hoeven, B. Lohman, and R. Verdegem, “Emulation for digital
preservation in practice: The results,” International Journal of Digital Cura-
tion, vol. 2, no. 2, 2008.

[15] B. Lohman, B. Kiers, D. Michel, and v. d. J. Hoeven, “Emulation as a Busi-
ness Solution: the Emulation Framework,” in Procs of the 8th International
Conference on Preservation of Digital Objects (iPres’2011), 2011.

[16] D. von Suchodoletz, K. Rechert, J. van der Hoeven, and J. Schroder, “Seven
steps for reliable emulation strategies–solved problems and open issues,” in
7th Intern. Conf. on Preservation of Digital Objects (iPRES2010), 2010, pp.
19–24.

[17] K. Rechert, D. von Suchodoletz, and R. Welte, “Emulation based services in
digital preservation,” in Procs of the 10th annual joint conference on Digital
libraries. ACM, 2010, pp. 365–368.

[18] R. A. Lorie, “Long term preservation of digital information,” in Proceedings
of the 1st ACM/IEEE-CS joint conference on Digital libraries, ser. JCDL ’01.
New York, NY, USA: ACM, 2001, pp. 346–352. [Online]. Available: http://
doi.acm.org/10.1145/379437.379726

[19] J. R. Van Der Hoeven, R. J. Van Diessen, and K. Van Der Meer,
“Development of a universal virtual computer (uvc) for long-term preservation
of digital objects,” J. Inf. Sci., vol. 31, no. 3, pp. 196–208, Jun. 2005.
[Online]. Available: http://dx.doi.org/10.1177/0165551505052347

[20] W. Bergmeyer, “The KEEP Emulation Framework,” in Proceedings of the 1st
International Workshop on Semantic Digital Archives (SDA 2011), 2011.

[21] S. Ceri, G. Gottlob, and L. Tanca, “What You Always Wanted to Know About
Datalog (And Never Dared to Ask),” IEEE Transactions on Knowledge and
Data Engineering, vol. I, no. 1, 1989.

[22] D. Elenius, D. Martin, R. Ford, and G. Denker, “Reasoning about Resources
and Hierarchical Tasks Using OWL and SWRL,” in Procs of the 8th Interna-
tional Semantic Web Conference (ISWC’2009), 2009.

BIBLIOGRAPHY 83

[23] M. Theodoridou, Y. Tzitzikas, M. Doerr, Y. Marketakis, and V. Melessanakis,
“Modeling and Querying Provenance by Extending CIDOC CRM,” J. Dis-
tributed and Parallel Databases (Special Issue: Provenance in Scientific
Databases), 2010.

[24] M. Doerr and Y. Tzitzikas, “Information Carriers and Identification of Infor-
mation Objects: An Ontological Approach),” 2012, coRR, Digital Libraries,
arXiv: 1201.0385v1 [cs.DL].

[25] R. Fikes and N. Nilsson, “Strips: A new approach to the application of theorem
proving to problem solving,” Artificial intelligence, vol. 2, no. 3-4, pp. 189–208,
1972.

[26] Y. Tzitzikas, Y. Marketakis, and Y. Kargakis, “Conversion and Emulation-
aware Dependency Reasoning for Curation Services ,” in Proceedings of the 9th
Annual International Conference on Digital Preservation (iPres2012), 2012.

[27] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean,
“Swrl: A semantic web rule language combining owl and ruleml,” May 2004,
(http://www.w3.org/Submission/SWRL/).

[28] D. L. McGuinness and F. van Harmelen, “Owl web ontology language
overview,” 2004, (http://www.w3.org/TR/owl-features/).

[29] O. Erling and I. Mikhailov, “RDF Support in the Virtuoso DBMS,” in Procs
of 1st Conference on Social Semantic Web, 2007.

[30] G. Manjunath, C. Sayers, D. Reynolds, V. KS, S. K. Mohalik, B. R, J. L.
Recker, and M. Mesarina, “Semantic Views for Controlled Access to the Se-
mantic Web,” in Workshop on Semantic Web for Collaborative Knowledge Ac-
quisition (SWeCKA07), 2008.

[31] R. Volz, D. Oberle, and R. Studer, “Implementing views for light-weight web
ontologies,” in SAC2003, 2003.

[32] A. Magkanaraki, V. Tannen, V. Christophides, and D. Plexousakis, “Viewing
the semantic web through rvl lenses,” in ISWC03, 2003.

[33] G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and
M. Scholl, “Rql: A declarative query language for rdf.” ACM Press, pp.
592–603.

[34] W. Le, S. Duan, A. Kementsietsidis, F. Li, and M. Wang, “Rewriting queries
on sparql views,” in Proceedings of the 20th international conference on World
wide web, ser. WWW ’11. New York, NY, USA: ACM, 2011, pp. 655–664.
[Online]. Available: http://doi.acm.org/10.1145/1963405.1963497

[35] B. Haslhofer, E. Momeni Roochi, B. Schandl, and S. Zander, “Europeana RDF
store report,” 2011.

84 BIBLIOGRAPHY

[36] D. Tarrant, S. Hitchcock, and L. Carr, “Where the Semantic Web and Web
2.0 meet format risk management: P2 registry,” in In Procs of the 6th Intern.
Conf. on Preservation of Digital Objects (iPres 2009), 2009.

[37] A. Shaon, D. Giaretta, S. Crompton, E. Conway, B. Matthews, F. Marelli,
U. D. Giammatteo, Y. Marketakis, Y. Tzitzikas, R. Guarino, H. Brocks, and
F. Engel, “Towards a Long-term Preservation Infrastructure for Earth Science
Data,” in Procs of the 9th Intern. Conf. on Digital Preservation (iPres’2012),
2012.

[38] O. Erling and I. Mikhailov, “SPARQL and Scalable Inference on
Demand,” 2009, http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/
Main/VOSScalableInference.

[39] A. Jackson, “Using automated dependency analysis to generate representation
information,” in Procs of the 8th International Conference on Preservation of
Digital Objects (iPres’2011), 2011.

[40] O. Hartig, “Querying trust in rdf data with tsparql,” in Procs of the 6th Eu-
ropean Semantic Web Conference, (ESWC’2009), Heraklion, Crete, Greece.

[41] G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis, Graph Drawing: Al-
gorithms for the Visualization of Graphs. Prentice Hall, 1999.

[42] P. Bertolazzi, R. F. Cohen, G. D. Battista, R. Tamassia, and I. G. Tollis, “How
to draw a series-parallel digraph,” International Journal of Computational
Geometry & Applications, vol. 4, no. 4, pp. 385–402, 1994.

[43] C. Meghini, Y. Tzitzikas, and N. Spyratos, “Abduction for accessing informa-
tion sources,” Fundam. Inform., vol. 83, no. 4, pp. 355–387, 2008.

[44] G. M. Sacco and Y. T. (Editors), Dynamic Taxonomies and Faceted Search:
Theory, Practice and Experience. Springer, 2009, iSBN = 978-3-642-02358-3.

[45] M. Belguidoum and F. Dagnat, “Dependency Management in Software Com-
ponent Deployment,” Electronic Notes in Theoretical Computer Science, vol.
182, pp. 17–32, 2007.

[46] H. Christiansen and V. Dahl, “Assumptions and abduction in Prolog,” in
3rd International Workshop on Multiparadigm Constraint Programming Lan-
guages, MultiCPL, vol. 4. Citeseer, 2004.

[47] L. Console, D. Dupre, and P. Torasso, “On the relationship between abduction
and deduction,” Journal of Logic and Computation, vol. 1, no. 5, p. 661, 1991.

[48] T. Eiter and G. Gottlob, “The complexity of logic-based abduction,” Journal
of the ACM (JACM), vol. 42, no. 1, pp. 3–42, 1995.

BIBLIOGRAPHY 85

[49] X. Franch and N. Maiden, “Modeling Component Dependencies to Inform their
Selection,” 2nd International Conference on COTS-Based Software Systems,
Springer, 2003.

[50] A. Kakas, R. Kowalski, and F. Toni, “The Role of Abduction in Logic Pro-
gramming,” Handbook of Logic in Artificial Intelligence and Logic Program-
ming: Logic programming, p. 235, 1998.

[51] S. Ross, “Digital preservation, archival science and methodological foundations
for digital libraries,” New Rev. Inf. Netw., vol. 17, no. 1, pp. 43–68, May
2012. [Online]. Available: http://dx.doi.org/10.1080/13614576.2012.679446

[52] R. Kowalski and M. Sergot, “A logic-based calculus of events,” New Gen.
Comput., vol. 4, no. 1, pp. 67–95, Jan. 1986. [Online]. Available: http://dx.
doi.org/10.1007/BF03037383

86 BIBLIOGRAPHY

Appendix A

A.1 Epimenides: RDF Schema

<?xml version=" 1 .0 "?>

<rdf:RDF
xmlns:rdf=" ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#"
xmlns:rdfs=" ht tp : //www.w3 . org /2000/01/ rdf−schema#"
xml:base=" ht tp : //www. i c s . f o r t h . gr / i s l / epimenides ">

<!−−Core Vocabulary−−>
<rd f s : C l a s s rd f : ID="Module">

<r d f s : l a b e l xml:lang="en">Module Type</ r d f s : l a b e l>
<rdfs:comment>

The modules that a user ho lds .
</ rdfs:comment>

</ r d f s : C l a s s>

<rd f s : C l a s s rd f : ID="WinOS">
<rd f s : subC la s sO f r d f : r e s o u r c e="#Module"/>
<rdfs:comment>A so f tware module .</ rdfs:comment>

</ r d f s : C l a s s>

<rd f s : C l a s s rd f : ID="Task">
<rdfs:comment>The de f ined ta sk s .</ rdfs:comment>

</ r d f s : C l a s s>

<rd f s : C l a s s rd f : ID="Rules ">
<rdfs:comment>A ru l e determines when a task can
be performed</ rdfs:comment>

</ r d f s : C l a s s>

<rd f :P rope r ty rd f : ID="hasPerformabil ityName">

87

88 APPENDIX A.

<rdfs:comment>The unary p r ed i c a t e that denotes
the p e r f o rmab i l i t y o f the task e . g . Run
</ rdfs:comment>
<rd f s : r a n g e r d f : r e s o u r c e=

" ht tp : //www.w3 . org /2000/01/ rdf−schema#L i t e r a l "/>
<rdfs :domain r d f : r e s o u r c e="#Task"/>

</ rd f :P rope r ty>
<rd f :P rope r ty rd f : ID="hasDepName">

<rdfs:comment>The binary p r ed i c a t e
that denotes the dependenc ies o f
task e . g . runnable

</ rdfs:comment>
<rd f s : r a n g e r d f : r e s o u r c e=

" ht tp : //www.w3 . org /2000/01/ rdf−schema#L i t e r a l "/>
<rdfs :domain r d f : r e s o u r c e="#Task"/>

</ rd f :P rope r ty>
<rd f :P rope r ty rd f : ID="hasName">

<rdfs:comment>
The name o f the task e . g . Runnabi l i ty

</ rdfs:comment>
<rd f s : r a n g e r d f : r e s o u r c e=

" ht tp : //www.w3 . org /2000/01/ rdf−schema#L i t e r a l "/>
<rdfs :domain r d f : r e s o u r c e="#Task"/>

</ rd f :P rope r ty>
<rd f :P rope r ty rd f : ID="hasRules ">

<rdfs:comment>
The dependenc ies o f a Task

</ rdfs:comment>
<rd f s : r a n g e r d f : r e s o u r c e="#Rules "/>
<rdfs :domain r d f : r e s o u r c e="#Task"/>

</ rd f :P rope r ty>
<rd f :P rope r ty rd f : ID=" imp l i e sPe r f o rmab i l i t yO f ">

<rdfs:comment>
I s used to expre s s Task−type h i e r a r c h i e s .
e . g . i f I can ed i t a f i l e then I can a l s o
read i t

</ rdfs:comment>
<rd f s : r a n g e r d f : r e s o u r c e="#Task"/>
<rdfs :domain r d f : r e s o u r c e="#Task"/>

</ rd f :P rope r ty>
<rd f :P rope r ty rd f : ID=" app l i ed In ">

<rdfs:comment>The ta sk s that u sua l l y make
sense to apply to a Module Type</ rdfs:comment>
<rd f s : r a n g e r d f : r e s o u r c e="#Module"/>

A.1. EPIMENIDES: RDF SCHEMA 89

<rdfs :domain r d f : r e s o u r c e="#Task"/>
</ rd f :P rope r ty>

<rd f :P rope r ty rd f : ID="asSPARQLRule">
<rdfs:comment>

Rules expres sed as SPARQL que r i e s
</ rdfs:comment>
<rd f s : r a n g e r d f : r e s o u r c e=

" ht tp : //www.w3 . org /2000/01/ rdf−schema#L i t e r a l "/>
<rdfs :domain r d f : r e s o u r c e="#Rules "/>

</ rd f :P rope r ty>
<!−−End o f Core Vocabulary−−>

<!−−Mime Types Vocabulary−−>
<rd f s : C l a s s rd f : ID="MIMEType">

<rd f s : subC la s sO f r d f : r e s o u r c e="#Module"/>
<rdfs:comment>

Basic Module types (Mime) are expres sed
as a subc la s sOf h i e ra r chy

</ rdfs:comment>
</ r d f s : C l a s s>
<rd f s : C l a s s rd f : ID="video ">

<rd f s : subC la s sO f r d f : r e s o u r c e="#MIMEType"/>
</ r d f s : C l a s s>
<rd f s : C l a s s rd f : ID="drawing">

<rd f s : subC la s sO f r d f : r e s o u r c e="#MIMEType"/>
</ r d f s : C l a s s>
<rd f s : C l a s s rd f : ID="music">

<rd f s : subC la s sO f r d f : r e s o u r c e="#MIMEType"/>
</ r d f s : C l a s s>
<rd f s : C l a s s rd f : ID=" app l i c a t i o n ">

<rd f s : subC la s sO f r d f : r e s o u r c e="#MIMEType"/>
</ r d f s : C l a s s>
<rd f s : C l a s s rd f : ID="model">

<rd f s : subC la s sO f r d f : r e s o u r c e="#MIMEType"/>
</ r d f s : C l a s s>
<rd f s : C l a s s rd f : ID=" chemica l ">

<rd f s : subC la s sO f r d f : r e s o u r c e="#MIMEType"/>
</ r d f s : C l a s s>
<rd f s : C l a s s rd f : ID=" xg l ">

<rd f s : subC la s sO f r d f : r e s o u r c e="#MIMEType"/>
</ r d f s : C l a s s>
<rd f s : C l a s s rd f : ID="www">

<rd f s : subC la s sO f r d f : r e s o u r c e="#MIMEType"/>

90 APPENDIX A.

</ r d f s : C l a s s>
<rd f s : C l a s s rd f : ID="x−con f e r ence ">

<rd f s : subC la s sO f r d f : r e s o u r c e="#MIMEType"/>
</ r d f s : C l a s s>
<rd f s : C l a s s rd f : ID=" mult ipar t ">

<rd f s : subC la s sO f r d f : r e s o u r c e="#MIMEType"/>
</ r d f s : C l a s s>
<rd f s : C l a s s rd f : ID=" i−world">

<rd f s : subC la s sO f r d f : r e s o u r c e="#MIMEType"/>
</ r d f s : C l a s s>
<rd f s : C l a s s rd f : ID="message">

<rd f s : subC la s sO f r d f : r e s o u r c e="#MIMEType"/>
</ r d f s : C l a s s>
<rd f s : C l a s s rd f : ID="audio ">

<rd f s : subC la s sO f r d f : r e s o u r c e="#MIMEType"/>
</ r d f s : C l a s s>
<rd f s : C l a s s rd f : ID="x−music">

<rd f s : subC la s sO f r d f : r e s o u r c e="#MIMEType"/>
</ r d f s : C l a s s>
<rd f s : C l a s s rd f : ID="paleovu ">

<rd f s : subC la s sO f r d f : r e s o u r c e="#MIMEType"/>
</ r d f s : C l a s s>
<rd f s : C l a s s rd f : ID="image">

<rd f s : subC la s sO f r d f : r e s o u r c e="#MIMEType"/>
</ r d f s : C l a s s>
<rd f s : C l a s s rd f : ID="x−world">

<rd f s : subC la s sO f r d f : r e s o u r c e="#MIMEType"/>
</ r d f s : C l a s s>
<rd f s : C l a s s rd f : ID=" text ">

<rd f s : subC la s sO f r d f : r e s o u r c e="#MIMEType"/>
</ r d f s : C l a s s>
<rd f s : C l a s s rd f : ID="windows">

<rd f s : subC la s sO f r d f : r e s o u r c e="#MIMEType"/>
</ r d f s : C l a s s>
<!−−end o f Mime Types−−>

<rd f :P rope r ty rd f : ID="hasExtens ion ">
<rdfs:comment>Common extens i on o f

each mime type</ rdfs:comment>
<rd f s : r a n g e r d f : r e s o u r c e=

" ht tp : //www.w3 . org /2000/01/ rdf−schema#L i t e r a l "/>
<rdfs :domain r d f : r e s o u r c e="#windows"/>
<rdfs :domain r d f : r e s o u r c e="#text "/>

A.1. EPIMENIDES: RDF SCHEMA 91

<rdfs :domain r d f : r e s o u r c e="#x−world"/>
<rdfs :domain r d f : r e s o u r c e="#image"/>
<rdfs :domain r d f : r e s o u r c e="#paleovu "/>
<rdfs :domain r d f : r e s o u r c e="#x−music"/>
<rdfs :domain r d f : r e s o u r c e="#audio "/>
<rdfs :domain r d f : r e s o u r c e="#message"/>
<rdfs :domain r d f : r e s o u r c e="#mult ipar t "/>
<rdfs :domain r d f : r e s o u r c e="#x−con f e r ence "/>
<rdfs :domain r d f : r e s o u r c e="#www"/>
<rdfs :domain r d f : r e s o u r c e="#xgl "/>
<rdfs :domain r d f : r e s o u r c e="#chemica l "/>
<rdfs :domain r d f : r e s o u r c e="#app l i c a t i on "/>
<rdfs :domain r d f : r e s o u r c e="#model"/>
<rdfs :domain r d f : r e s o u r c e="#music"/>
<rdfs :domain r d f : r e s o u r c e="#drawing"/>
<rdfs :domain r d f : r e s o u r c e="#video "/>

</ rd f :P rope r ty>

</rdf:RDF>

