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Abstract

In the first part, we discuss the static and spherically symmetric solutions with zero

shift vector, of the low energy Horava-Lifshitz gravity. We begin with a brief introduction

to Horava-Lifshitz gravity, originally introduced in 2007 by Petr Horava. We continue

with the construction of the most general power-counting renormalizable theory with

anisotropic scaling. Then, we compute the large distance asymtpotics of the metric-

fields, where for simplicity, we concentrate on the low energy effective action of the

theory. Finally, we compare the results with those of General Relativity. In the second

part, our three-dimensional space is treated as a hyper-surface in a ten-dimensional static

and spherically symmetric background space. Due to its motion, we observe an effective

cosmological evolution, that we compute. Using Freedman’s equations, we define the

effective matter density, that would produce the observed cosmological evolution in the

context of General Relativity. Then, we apply the results in the case of the AdS5 × S5

black hole background space. We calculate the asymptotics of the effective matter

density and we show that for large distances, from the center of the AdS black hole, it

takes a constant value. Therefore, we conclude that the motion of our three-dimensional

space in the ten-dimensional background, could be the origin of dark energy. Lastly we

generalize the results for a wide case of background metrics.
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1 PART I: Horava-Lifshitz Gravity

1.1 Introduction to Horava-Lifshitz gravity

In the last century there have been many attempts to quantize gravity. Nevertheless, it is still
an open problem, due to difficulties in constructing a consistent renormalizable theory. Many
proposed theories for a quantum theory of gravity have appeared, but none of these has been
widely accepted by the scientific community. The most prominent approaches to the subject,
are string theory [3], asymptotic safety [4], and loop quantum gravity [5].

In 2007, Petr Horava proposed a power counting renormalizable theory, as a candidate for
a theory of quantum gravity [6], motivated by the improved scaling properties of anisotropic
scaling theories. The main idea was to improve the UV behaviour of the theory, by adding
higher derivative terms. The idea of adding such terms was not new. Since the late 70’s many
attempts have in this direction taken place [1, 2]. However, by just adding space and time
derivatives, keeping general covariance, one can show that the theory contains ghosts, which
implies that unitarity is violated. Thus, the idea was to add only higher space-derivatives,
abandoning ”full” general covariance. By ”full”, we mean that the theory is still invari-
ant under a subgroup of general coordinate transformations, that is called diffeomorphism.
Schematically, the graviton propagator that has four-momentum kµ = (ω,~k) will be

1

k2
, (1)
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where k =
√
ω2 − ~k2. For example, by adding higher-derivative terms, we can achieve the

improved UV behaviour

1

k2 − ak4
, (2)

where a is just a constant. Nevertheless, as we mentioned above such a theory contains
ghosts. We can see this, by observing that

1

k2 − ak4
=

1

k2
− 1

k2 − 1/a
. (3)

We see that the propagator has two poles where the first is identified with a massless
particle, and the second with a massive ghost. This means that the low energy effective
Lagrangian will contain the following term

L =

∫
d4x

(
−(∂c)2 − 1

a
c2

)
, (4)

which describes a ghost field. Moreover, such a field with a minus sign in the kinetic term
leads to negative norm states in the theory. This, implies the violation of unitarity.1Therefore,
through adding just spatial derivatives we avoid this problem, but the price we have to pay
is to abandon full general covariance.

In addition, the space and time coordinates must have different scaling dimensions, that
is, we must have anisotropic scaling. The reason for this is that by sending the cut off to
infinity, we want the higher spatial-derivative terms to be relevant. We know from Renormal-
ization Group flow that when the cut-off is sent to infinity, the terms that survive are those
whose dimensions are less or equal to the inverse dimensions of the volume element −[dtd3x].
Therefore, in order for higher derivative terms to be relevant, we need to have anisotropic
scaling. In this type of theories, the dimensions of the volume element will be increased, and
we will be able to add higher derivative terms. Therefore, the theory will be constructed so
as to be compatible with the anisotropic scaling

~x→ b~x, t→ bzt, (5)

where z is the critical exponent that measures the degree of anisotropy. Observe that in
such a theory the time-coordinate plays a special role.

Although a theory of this type will not have full general covariance, as mentioned above,
we will restrict the theory to be invariant under the following sub-group of general coordinate
transformations

~x→ ~x′(~x, t), t→ t′(t). (6)

1In fact, although the appearance of ghosts implies that the theory will have negative norm states, it is
not necessary that unitarity is violated. For instance, in Yang-Mills theories these are negative norm states
but we can show that they cannot appear in ”in” and ”out” states, and consequently unitarity is preserved.
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Now we are ready to construct the Lagrangian of the theory. We will use the language of
the ADM formalism for this purpose, that is, we will parametrize the metric as

ds2 = (−N2 +NiN
i)dt2 + 2Nidx

idt+ γijdx
idxj, (7)

where N and Ni are the lapse function and the shift vector respectively.
The kinetic term can be written covariantly in terms of the second fundamental form

Kij =
1

2N
(γ̇ij −∇iNj −∇jNi). (8)

Using the second fundamental form, we can construct two scalars, concluding that the
kinetic term will be the following

SK = κ

∫
dtd3x

√
γN(KijK

ij − λK2), (9)

where λ and κ are just coupling constants. Note that λ = 1 corresponds to the case of General
Relativity. Also, in the above equation we used the fact that

√
−g =

√
γN . One can see this

by writing the metric as

gµν =

(
−N2 +NiN

i N i

Ni γij

)
=

(
1 N i

0 1

)(
−N2 0
Ni γij

)
. (10)

From (9) we see that the dimension of κ is

[κ] =
z − 3

2
. (11)

In order for the kinetic term to be relevant, z must be equal to 3. Therefore, we see that
this requirement fixes the degree of anisotropy. This implies that the volume element has
dimensions minus six, and according to the renormalization group flow, the potential term
can contain all possible terms that have dimensions less than or equal to six. Having that in
mind, we can write the most general power counting renormalizable action that is invariant
under (6).

S = SK + S2 + S3 + Srel + S3 + Sα, (12)

SK = κ

∫
dtd3x

√
γN(KijK

ij − λK2), (13)

Srel =

∫
dtd3x

√
γN

(
ζ1ε

ijkRil∇jR
l
k + ζ2RijR

ij + ζ3R
2 + ξR + σ

)
, (14)

S3 =

∫
dtd3x

√
γN

(
β1CijC

ij + β2R∇i∇jR + ζ3R
2 + β4R

3 + β4RRijR
ij + β5RijR

ikRj
k

)
,

(15)
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Sα =

∫
dtd3x

√
γN

(
α1(aia

i) + α2(aia
i)2 + α3R

ijaiaj + α4R∇ia
i + α5∇iaj∇iaj + α6∇iai(a

jaj) + . . .
)
,

(16)
where Cij is the Cotton tensor defined as

Cij = εijk∇k

(
Rj

l −
1

4
Rδj l

)
, (17)

ai defined by

ai ≡
∂iN

N
. (18)

and εijk = εijk√
γ

is the standard covariant antisymmetric tensor. In the above expression,

the ellipsis refers to dimension six terms involving ai as well as curvatures. Note that although
we can add terms containing ai, we cannot add terms that are express as powers of the lapse
function. For instance, we cannot add a term proportional to N2 because it is not covariant
under the transformation (6). N,Ni and γij transform under an infinitesimal diffeomorphism
transformation t′ = t+ k(t), ~x′i = xi + εi(t, ~x) as

δγij = ∂iε
kγjk + ∂jε

kγik + εk∂kγij + kγ̇ij (19)

δNi = ∂iε
jNj + ∂jε

jNi + ε̇jγij + k̇Ni + kṄi, δN = εj∂jN + k̇N + kṄ. (20)

1.2 The low-energy action

In this section, we will study a class of solutions of Horava-Lifshitz gravity, following the
analysis in [8]. Unfortunately, even if we restrict on static and spherically symmetric solutions
in the vacuum, the problem will be extremely difficult for us to solve. For this reason, we will
concentrate on the low-energy effective theory. The terms that dominate at low energies are

S =

∫
dtd3x

√
γN

[
α
(
KijK

ij − λK2
)

+ ξR + α1(aiai) + σ
]
. (21)

Setting λ = 1 in this effective action, we see that it reduces to the Hilbert action of General
Relativity in the presence of a cosmological constant plus the term containing ai. We note
that this action, apart from the cosmological constant term, has isotropic scaling symmetry
t′ → bt, ~x→ b~x. Furthermore, we will concentrate on solutions of the form

ds2 = −N2(r)dt2 +
dr2

f(r)
+ r2dΩ2, (22)

that is static and spherically symmetric solutions with zero shift vector. In this situation,
the first two terms containing Kij are equal to zero. Varying the action (21) with respect to
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the gravitational field, we will obtain the equations of motion. The equation obtained after
having varied N is

− α
(
KijK

ij − λK2
)

+ ξR− α1(aiai) + σ − 2α1∇ia
i = 0. (23)

The equation after having varied Ni is

∇jK
ij − λ∇iK = 0. (24)

Finally, the equation of motion after having varied gij is

ξ
(
γij∇i∇iN −∇i∇jN +NRij

)
− N

2
(ξR + σ)γij + 2αN

(
KikK

k
j − λKKij

)
− αN

2

(
KklK

kl − λK2
)
γij +

α
√
γ
γikγjl

∂

∂t
[
√
γ
(
Kkl − λKγkl

)
] + α∇k[(KikK − λKKik)Nj]

+ α∇k[(KjkK − λKKjk)Ni]− α∇k[(KijK − λKKij)Nk] = 0. (25)

Inserting the ansatz (22), equation(23) becomes

4ξ(f − 1)− 2σr2f + 8ξf
rN ′

N
+ 2(w + 2ξ)f

r2N ′2

N2
= 0, (26)

and then, combining the equations obtained by substituting the ansatz (22) in equa-
tion(25), we have

4w3ξ2f 2−4w2ξf [2ξ(w+ξ)+(2w+3ξ)σr2−wrξf ′]+(w+2ξ)(2wξ+2(w+ξ)σr2−wrξf ′)2 = 0,
(27)

where w = a1 − 2ξ 2. Even in this case, we cannot find exact solutions. However, we
will study the asymptotic behaviour of the solution. In addition, we can simplify these two
equations by defining the following function

f(r) = 1 +
b

a
+

c

ab
r2 + g(r), (28)

where we also define

a =
2w

w + 2ξ
, b =

4ξ

w + 2ξ
, c =

4σ

w + 2ξ
, a+ b = 2. (29)

Under the above substitution, equation (27) takes the form

r2g′2 + 2a(rg′ + g)g + (2b+ cr2)g = 0. (30)

2The equations of motion in the presence of matter are extracted in [9]
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Furthermore, having solved these equations we can compute the lapse function by writing
equation (26) as

N ′

N
= − b

2r

[
1−

√
1− 2

b

(
1− 1

f
− c

2b
r2

)]
, (31)

and then integrate it to obtain

N2 =C exp{−
∫
dr
b

r

[
1−

√
1− 2

b

(
1− 1

f
− c

2b
r2

)]
}

= Cr−b exp{
∫
dr
b

r

√
1− 2

b

(
1− 1

f
− c

2b
r2

)
}. (32)

Since we cannot solve equation (30) analytically, we will use perturbation theory to find
the large distance asymptotics of g(r). Firstly we will redefine the variables in (30) as

r =

√
2b

c
ρ, g = 2bh. (33)

Then, we arrive at the following equation

ρ2h′2 + 2a(ρh′ + h)h+ (1 + ρ2)h = 0, (34)

where prime now stands for a derivative with respect to ρ. In order to find the large
distance asymptotics, we will expand h(ρ) in powers of ρ � 1 as h(ρ) = h0(ρ) + h1(ρ) + . . .
where h0(ρ)� h1(ρ). According to our method, we will first obtain the differential equations
for h0(ρ) and h1(ρ), and then find their asymptotics. Finally, we will use them to calculate
the first two terms of the expansion of g(r) and after f(r) and N2(r).

Large distance expansion

For large distances, r >>
√

2b
c

or equivalent ρ� 1, the leading terms of (34) are

ρ2h′20 + 2a(rh′0 + h0)h0 + ρ2h0 = 0, (35)

and the subleading terms

(ρh′0 + ah0)ρh′1 + a(ρh′0 + 2h0 +
1

2a
ρ2)h1 +

1

2
h0 = 0. (36)

Equation (35) can be solved exactly for ρ(h0) and then we proceed as follows. First, we
perform the following transformation
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h0 = − ρ2Y 2

1 + abY 2
, (37)

and (35) becomes

2ρY ′ + (1 + abY 2)(1− (a+ 2)Y ) = 0. (38)

Integrating this equation we get

ρ

ρ0

=
|1 +

√
|α|bY |α+

|1−
√
|α|bY |α−

|(|a| − 2)Y + 1|
|a|−2

2−3|α| , (39)

where

a± =

√
|a|b± (|a| − 2)

6|a| − 4
. (40)

We see that when ρ → ∞ the right-hand side of (39) must also go to infinity. As was
shown in [7], linear stable perturbations correspond to a < 0. In that paper, the authors
considered perturbations around the flat metric and showed that are stable only in this case.
Consequently, we conclude that always a+ > 0. Therefore, we expect two types of behaviour.

1. The denominator in (39) will go to zero for large ρ. This occurs for |a| > 2
3

(a− > 0)
and

Y → 1√
|a|b

(41)

2. and the factor raised to the |a|−2
2−3|α| power will go to infinity for large ρ. This occurs for

|a| > 2 or |a| < 2
3

and

Y → 1

2− |a|
(42)

In both cases, for large ρ ,Y (ρ) goes to a constant value. Thus, the subleading terms will
be of the form Aρ−β where A is a function of a and β > 0. Submitting this in (39), we find
that

1. in first the case where |a| > 2
3

β =
1

a−
, A =

1√
|a|b

(
2a+|1− a+ 2√

|a|b
|−

a+2
3a+2ρ0

) 1
a−

, (43)

and therefore

Y (ρ) =
1√
|a|b

+ Aρ
− 1
a− , (44)
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2. and in the other case where |a| > 2 or |a| < 2
3

β =
3|a| − 2

|a| − 2
, B = ± ρ

3|a|−2
|a|−2

0

|2− |a||2
(1 + |a|)a′−
(3 + |a|)a′+

, a′± =

√
|a|b± (|a| − 2)

|a| − 2
, (45)

and therefore

Y (ρ) ≈ 1

2− |a|
+ Aρ−

3|a|−2
|a|−2 . (46)

Using these results we can find the leading terms for h0.

1. When |a| > 2
3
, using (37) we find that the expansion of h0, for large ρ is

h0(ρ) ≈ 1

2
√

(|a|b)3/2A
ρ

2+ 1
a− − ρ2. (47)

Note that 2 + 1
a−

is always bigger that 2, since |a| > 2
3

implies a− > 0.

2. and in the case |a| > 2 or |a| < 2
3

the first two terms of g0 are

h0(ρ) ≈ − 1

6a+ 4
ρ2 − 2(a+ 2)

6a+ 4
Bρ

2−a
2+a (48)

where B is given by (45). Note that 2−a
2+a

= 2− 2−3|a|
2−|a| < 2, and therefore the second term

is always smaller than the first one.

In the first case where |a| > 2
3
, h(ρ) goes like ρ

2+ 1
a− . Thus, both g(r) and f(r) will behave

as r
2+ 1

a− . These situations cannot give the same asymptotic expansion as in GR, where
f(r) ∼ r2. On the other hand, in the second case where |a| > 2 or |a| < 2

3
, f(r) is going

to have the same asymptotic behaviour as in GR. So, for this case, having already found
the leading term of h0, the next task is to find the first order correction of h(ρ), namely the
function h1(ρ). Substituting (48) in (36) we obtain

− 2 + a

6a+ 4
ρh′1 +

2− a
6a+ 4

h1 =
1

2

1

6a+ 4.
(49)

The solution of this equation is

h1(ρ) ≈ 1

4− 2a
+ Cρ

2−a
2+a . (50)

In this regime, h1 grows slower than h0, so perturbation theory works fine.
We can also check the validity of perturbation theory by comparing the quadratic terms

in h1 that appear in (30), and ensure that they will grow slower than the linear terms. These
terms are
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r2h′21 + 2a(rh′1 + h1)h1 + h1 (51)

and indeed are negligible compared with those in (49). Therefore, the expansion of h(ρ)
is

h(ρ) ≈ − 1

6a+ 4
ρ2 +

1

4− 2a
+

(
C − 2(a+ 2)

6a+ 4
B

)
ρ

2−a
2+a . (52)

and using (33), the expansion for g(r) is

g(r) ≈ 2bh

(√
c

2b
r

)
= − 1

6a+ 4
cr2 + 1− 2(a+ 2)

6a+ 4
Bcr

2−a
2+a . (53)

Lastly, the solution to the blackness function f(r) is

f(r) = 2− 2ξ

2ξ − a1

+
(ξ − a1)2

ξ(3ξ − 2a1)(2ξ − a1)
σr2 + . . . (54)

in terms of the original couplings. Therefore, in the regime where |a| > 2 or |a| < 2
3
,

taking the limit a1 = 0 (a → −∞) that corresponds to General Relativity, we get the usual
behaviour

f(r) = 1 +
σ

6ξ
r2. (55)

On the other hand, from (32) the leading term in the expansion of the lapse function is

N(r) = Cr−be
√
cr+.... (56)

Consequently, the lapse function does not have the same asymptotics as in GR N2 ∼ f(r),
in the limit a1 → 0, since both c and b go to infinity. Therefore, following the above simple
analysis, we conclude that the theory does not lead to solutions with the same asymptotic
behaviour as in GR with a cosmological constant. The expansion of the function f(r) differs
from the GR result in the subleading terms, and the power depends on the parameter a. On
the other hand, the leading term in the expansion for N has an exponential behaviour and
therefore, it exposes completely different behaviour from General Relativity.

Finally, it is important to examine the case without a cosmological constant. Setting
c = 0, equations (30) and (32) become

r2g′2 + 2a(rg′ + g)g + 2bg = 0, (57)

and

N2 = Cr−b exp{
∫
dr
b

r

√
1− 2

b

(
1− 1

f

)
}. (58)
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Using the same method as before, we find the following large distance expansion for g(r)

g(r) =
b

|a|
− 2b

|a|+
√
|a|b

(√
b−

√
|a|√

b+
√
|a|

) 1

|a|+
√
|a|b r0

r
+O(r−2). (59)

Using this result we can find the asymptotic behaviour of the metric components. Using
equation (28) with c = 0, we obtain

f(r) = 1− 2b

|a|+
√
|a|b

(√
b−

√
|a|√

b+
√
|a|

) 1

|a|+
√
|a|b r0

r
+O(r−2). (60)

and using (58) we obtain

N2(r) = 1− 2b

|a|+
√
|a|b

(√
b−

√
|a|√

b+
√
|a|

) 1

|a|+
√
|a|b r0

r
+O(r−2). (61)

Therefore, we see that in the absence of a cosmological constant, the metric fields have
the same behaviour as in General Relativity plus corrections of lower order.

2 PART II: Mirage Cosmology

2.1 Brane Geodesics

In this section, we will consider the motion of a D3-brane in a higher-dimensional curved
space. Observers restricted on the D-brane see that the geometry of the brane changes
as the brane moves along geodesics. This change is due to the motion of the brane, in
contrast to the cosmological evolution predicted by General Relativity, that is due to the
energy density within the brane. Thus, observers see an effective cosmological evolution in
their universe. It is obvious that such an effective cosmological evolution can take place
only in a curved background space, otherwise the brane moves from area to area with the
same geometry, so they cannot feel any geometrical change. In the general case, the higher-
dimensional geometry may be an arbitrary curved space and also depend on the motion of
the D-brane itself. However, for the sake of simplicity, we will study the motion of a D3-brane
in a 10-dimensional spherically symmetric space, neglecting the back-reaction of the D-brane.
Therefore, the problem is reduced to finding the geodesics equation for a D3-brane and then
examine the cosmological evolution that the observers see.

The 10-dimensional brane may be parametrized as

ds10 = g00(r)dt2 + g(r)( ~dx)2 + grr(r)dr
2 + gsdΩ5, (62)
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where g00(r) < 0 and dΩ5 = hijϕ
jϕj is the part of the 5-sphere. To leading order, the

motion of the brane is governed by the Nambu-Goto action[10].

S = T3

∫
d4ξ
√
−det(Gαβ)ε−φ − T3

∫
d4ξC(r), (63)

where Gαβ is the induced metric defined as,

Gαβ = Gµν
∂xµ

∂ξα
∂xν

∂ξβ
, (64)

ϕ(r) is the dilaton field, C(r) is the RR field and Gµν is the above ten-dimensional metric.
As we know, this action is invariant under reparametrization. In order to fix it, we choose the
static gauge Xα = ξα for α = 0, 1, 2, 3. Moreover, we will concentrate on motion only along
the time direction, that is every point on the brane will have the same r coordinate at each
moment. In other words, the brane does not wimple. In this regime, the induced metric is
written as

Gαβ =

(
g00 + grrṙ

2 + gshijϕ̇
jϕ̇i 0

0 g13x3

)
(65)

In the static gauge, the action (63) in term of the metric components is written as

S = T3V3

∫
dξ0
(
e−φ
√
−g3g00 − g3grrṙ2 − g3gshijϕ̇jϕ̇i − C(r)

)
= T3V3

∫
dξ0
(√

A−Bṙ2 −Dhijϕ̇jϕ̇i − C(r)
)
, (66)

where since the integrand has only ξ0-dependence, we performed the integration over the
remaining coordinates, that gives the volume of the world sheet V3. Also we defined

A = g3|g00|e−2φ, B = g3grre
−2φ, D = g3gse

−2φ. (67)

In this regime, the problem is effectively one-dimensional with the following Lagrangian

L(r, ṙ, ϕi, ϕ̇j) =
√
A−Bṙ2 −Dhijϕ̇jϕ̇i − C(r). (68)

Rather than finding the equation of motion using the Lagrange equations, one can more
easily calculate the integrals of motion, and then find the trajectory of the brane. Since
the Lagrangian has no explicit dependence on the time coordinate, the Hamiltonian will be
conserved. Also, as it is shown in the Appendix A the total angular momentum is conserved.
Therefore, having two constant quantities we are able to determine the motion of the brane.
Firstly, the momenta are given by
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pr = − Bṙ√
A−Bṙ2 −Dhijϕ̇jϕ̇i

(69)

pi = − Dhijϕ̇
j√

A−Bṙ2 −Dhijϕ̇jϕ̇i
. (70)

Proceeding now in computing the Hamiltonian we find

H = C − A√
A−Bṙ2 −Dhijϕ̇jϕ̇i

. (71)

and for total angular momentum

`2 = hijpipj =
D2hijϕ̇

jϕ̇i

A−Bṙ2 −Dhijϕ̇jϕ̇i
. (72)

In addition, solving the last equation for hijϕ̇
jϕ̇i, we have that

hijϕ̇
jϕ̇i =

`2 (A−Bṙ2)

D(D + `2)
. (73)

Combining equations (71) and (73), we arrive at the following equations

ṙ2 =
A

B

(
1− A

(H + C)2

D + `2

D

)
, hijϕ̇

jϕ̇i =
`2A2)

D2(C +H)2
. (74)

In a generic space of the form (62), one can solve (74) and determine the motion of the
brane in the r-direction. In order to compute the effective cosmological evolution we proceed
as follows. The induced four-dimensional metric on the D3-brane universe is

ds2 =
(
g00 + grrṙ

2 + gshijϕ̇
jϕ̇i
)
dt2 + g(r)( ~dx

2
). (75)

Furthermore, using the second equation in set (74) and the definitions (67), it becomes

ds2 = −g
2
00g

3e−2φ

(C +H)2
dt2 + g(r)( ~dx

2
). (76)

We can define the cosmic time as

dη =
√
bdt, (77)

and (75) takes a FLRW form

ds2 = −dη2 + a2(η)( ~dx
2
) , a2(η) = g(r(η)) (78)
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The cosmic time is the same as the proper time in the brane universe. Equation (78) is
the standard form of a flat expanding universe, where its evolution is governed by the usual
Friedman equations. The first of them (in flat space) is written as(

∂ηa

a

)2

=
8π

3
ρeff . (79)

By analogy, we can define the effective matter density from the brane’s point of view as

8π

3
ρeff =

(
∂ηa

a

)2

= H2, (80)

where H is the usual Hubble function. This effective matter density would be responsible
for the observed cosmological evolution, in the context of General Relativity. In terms of the
metric components, the effective matter density is

8π

3
ρeff =

(C +H)2gSe
2φ − |g00|(gSg3 + `2e2φ)

4|g00grrgSg3

(
g′

g

)2

. (81)

2.2 The Addition of the Ricci scalar

The modification here is the addition of the four-dimensional Ricci scalar of the D3-brane.
Then, the motion of the brane will be governed by the action

S = T3

∫
d4ξ
√
−det(Gαβ)

(
e−φ − 2

3
ΛR̂

)
− T3

∫
d4ξC(r), (82)

where R̂ is the Ricci scalar of the four-dimensional world sheet and Λ is just a coupling
constant. The 2/3 factor is introduced just for future convenience. From now on, we will
refer to the part in the action without the term −2

3
ΛR̂ as the ”Naumbu-Goto part” while the

rest will be mentioned the ”Einstein part”.
In order to fix the reparametrization invariance we choose again the static gauge Xα = ξα

for α = 0, 1, 2, 3. Once more, we will concentrate on motion without wimpling.
For simplicity, let us write the induced metric (65) as

Gαβ =

(
−b 0
0 a13x3

)
(83)

Then, the Ricci scalar is

R̂ =
6äb− 3ȧḃ

2b2a
=

1√
ba

3
2

(
3
d

dt
(

√
a

b
ȧ)− 3

2

ȧ2

√
ab

)
, (84)

and the action takes the form

S = T3

∫
d4ξ

(
e−φ
√
ba

3
2 − 2Λ

d

dt
(

√
a

b
ȧ) + Λ

ȧ2

√
ab

)
− T3

∫
d4ξC. (85)
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We can neglect the second term because it is a total derivative, and the action becomes

S = T3V3

∫
dξ0

(
e−φ
√
ba

3
2 + Λ

ȧ2

√
ab

)
= T3V3

∫
dξ0

(
e−φ
√
ba3 + Λ

aȧ2

√
a3b
− C

)
, (86)

Again we can perform the integration over the ξi coordinates, that gives the volume of
the world sheet V3. Then, using the definitions for a and b, in terms of the ten-dimensional
metric, the action is written as

S = T3V3

∫
dξ0

(
e−φ
√
−g3g00 − g3grrṙ2 − g3gshijϕ̇jϕ̇i + Λ

gg′2ṙ2√
−g3g00 − g3grrṙ2 − g3gshijϕ̇jϕ̇i

− C(r)

)

= T3V3

∫
dξ0

(√
A−Bṙ2 −Dhijϕ̇jϕ̇i +

Eṙ2√
A−Bṙ2 −Dhijϕ̇jϕ̇i

− C(r)

)
(87)

where

A = g3|g00|e−2φ, B = g3grre
−2φ, D = g3gse

−2φ, E = Λg′2ge−φ. (88)

The problem effectively is also one-dimensional with the following Lagrangian

L(r, ṙ, ϕi, ϕ̇j) =
√
A−Bṙ2 −Dhijϕ̇jϕ̇i +

Eṙ2√
A−Bṙ2 −Dhijϕ̇jϕ̇i

− C(r). (89)

Proceeding further, the momenta are

pr = − Bṙ√
A−Bṙ2 −Dhijϕ̇jϕ̇i

+
2Eṙ√

A−Bṙ2 −Dhijϕ̇jϕ̇i
+

BEṙ3

(A−Bṙ2 −Dhijϕ̇jϕ̇i)
3
2

=
1√

A−Bṙ2 −Dhijϕ̇jϕ̇i

(
2Eṙ −Bṙ +

BEṙ3

A−Bṙ2 −Dhijϕ̇jϕ̇i

)
, (90)

pi = − Dhijϕ̇
j√

A−Bṙ2 −Dhijϕ̇jϕ̇i
+

Eṙ2Dhijϕ̇
j

(A−Bṙ2 −Dhijϕ̇jϕ̇i)
3
2

=
Dhijϕ̇

j√
A−Bṙ2 −Dhijϕ̇jϕ̇i

(
Eṙ2

A−Bṙ2 −Dhijϕ̇jϕ̇i
− 1

)
. (91)

We can now compute the Hamiltonian as usual
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H = prṙ + piϕ̇
i − L =

=
1√

A−Bṙ2 −Dhijϕ̇jϕ̇i

(
2Eṙ2 −Bṙ2 +

BEṙ4

A−Bṙ2 −Dhijϕ̇jϕ̇i
+

Eṙ2Dhijϕ̇
jϕ̇i

A−Bṙ2 −Dhijϕ̇jϕ̇i

−Dhijϕ̇jϕ̇i − (A−Bṙ2 −Dhijϕ̇jϕ̇i)− Eṙ2

)
+ C(r)

=
A√

A−Bṙ2 −Dhijϕ̇jϕ̇i

(
Eṙ2

A−Bṙ2 −Dhijϕ̇jϕ̇i
− 1

)
+ C(r),

(92)

and the total angular momentum as

`2 = hijpipj =
D2hijϕ̇

jϕ̇i

A−Bṙ2 −Dhijϕ̇jϕ̇i

(
Eṙ2

A−Bṙ2 −Dhijϕ̇jϕ̇i
− 1

)2

. (93)

Additionally, we can simplify the problem by defining the following parameters

x =
Dhijϕ̇

jϕ̇i

A−Bṙ2
, ε =

`2

D
, ζ = − Eṙ2

A−Bṙ2
= −Λ

g′2ge−φṙ2

A−Bṙ2
. (94)

Then, the equations for the Hamiltonian and the total angular momentum take the fol-
lowing form

H = C(r)− A√
A−Bṙ2

1√
1− x

(
ζ

1− x
+ 1

)
, (95)

ε =
x

1− x

(
1 +

ζ

1− x

)2

, (96)

respectively. While y = 1− x satisfies

y3(H + C)2 =
A2

A−Bṙ2
(ζ + y)2, (97)

y3ε = (1− y)(ζ + y)2. (98)

These equations can be solved for y. Dividing the second with the first, what we obtain is

y = 1− εA2

(H + C)2(A−Bṙ2)
. (99)

After that, inserting this expression in (98), we reach to a differential equation for ṙ(
A− εA2

(H + C)2
−Bṙ2

)3

=
A2

(H + C)2

(
A− εA2

(H + C)2
− (B + E)ṙ2

)2

. (100)
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Also, in order to bring this equation in a more concrete form, we define the following
quantities

z(r) =
A

B
− εA2

B(H− C)2
=
|g00|
grr
− `2g2

00

gsgrr(H + C)2
, (101)

h(r) =
A2

B(H + C)2
=

g3g2
00e
−2φ

grr(H + C)2
, (102)

e(r) = 1 +
E

B
= 1 + Λ

g′2eφ

g2grr
, (103)

while equation (100) takes the form(
z(r)− ṙ2

)3
= h(r)

(
z(r)− e(r)ṙ2

)2
. (104)

This equation can have up to three possible solutions for ṙ2, as a function of the metric
components, depending on the sign of its discriminant. The general solution is discussed in
the Appendix B. In a generic space of the form (62), one can solve (104) and determine the
motion of the brane in the r-direction. We could have also obtained the other equations that
specify the motion in the other directions, but it is not necessary since our aim is to find the
effective cosmological evolution observed by the ”habitants” of the brane.

In terms of the 10-dimensional metric the Humble function is

H2 =

(
∂ηa

a

)2

=
1

4b

ṙ2g′2

g2
. (105)

In addition, we can express b as a function of r and ṙ only, as

b = |g00| − grrṙ2 − gshijϕiϕj

=
e2φ

g3

(
A−Bṙ2 −Dhijϕiϕj

)
=
e2φ

g3
(A−Bṙ2)(1− x)

=
e2φ

g3
(A−Bṙ2)y

=
e2φ

g3
(A−Bṙ2)

(
1− εA2

(H + C)2(A−Bṙ2)

)
=
e2φ

g3

(
A−Bṙ2 − εA2

(H + C)2

)
= |g00| − grrṙ2 − `2|g00|2

gs(H + C)2
, (106)
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and inserting it in the previous expression for H we find

H2 =
1

4

gs(H + C)2ṙ2

gs(H + C)2(|g00| − grrṙ2)− l2g2
00

(
g′

g

)2

, (107)

where the dot stands for the derivative with respect to the cosmic time, while the prime
stands for the derivative with respect to r. In addition, we can write the Hubble function in
terms of the auxiliary functions z(r), h(r), e(r)

H2 =
e−φ

4Λ

ṙ2

z(r)− ṙ2
(e(r)− 1). (108)

We see that, once we have obtained the function ṙ from the solutions of (104), we can use
it in (107) and compute the Hubble function. Finally, we can obtain the effective cosmological
matter density using (80). In addition, we can find the scale factor, as a function of cosmic
time, by solving the next differential equation(

∂ηa

a

)2

= H2(a). (109)

Now, having built our machinery for determining the effective density, first by solving (104)
and then using (107), we are going to examine the case of AdS5 × S5 black hole background.

2.3 AdS black hole

In this section we will apply the above procedure in the case of the AdS5 black hole background
metric, i.e

ds2 =
r2

L2

(
−dt2 + ( ~dx)2

)
+
L2

r2
dr2 + L2dΩ2

5, (110)

where the RR field is C = r4

L4 . In the first case (without the Einstein term), we can use
(81) and calculate easily the effective matter density

8π

3
ρeff =

1

L2

(
2H
a4
− `2

L2

1

a6
+
H2

a8

)
. (111)

Far away from the black hole ρeff ∼ a−4. In this regime, the motion of the brane produces
an effective matter density like the one due to the radiation on the brane. On the other hand,
at sort distances from the black hole, the term ∼ a−8 dominates corresponding to dilute
matter with p = wρ and w = 5/3.

In the second case, where the Einstein term is present, more work is needed. An analytic
solution to the problem still exists, however it is not very elegant and gives no physical intuition
about the implications of the model. Firstly, we will show that equation (104) has positive
solutions for ṙ2 for each value of γ = 4Λ

L2 . Then, ensuring that a solution that covers the whole
space exists, i.e. without any discontinuities, we will study the asymptotic behaviour of the
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effective density. Afterwards, we will compare them with those of the model in the presence
of either only the Einstein term or just the Naumbu-Goto term.

First of all, equation (104) in this background (setting for simplicity ` = 0) becomes(( r
L

)4

− ṙ2

)3

=
( r
L

)12 1(
H +

(
r
L

)4
)2

(( r
L

)4

− (1 +
4Λ

L2
)ṙ2

)3

. (112)

Then, rescaling r ans t as r → (H1/4L)r and t→ (H−1/4L)t we get

(
r4 − ṙ2

)3
=

r12

(1 + r4)2

(
r4 − (1 + γ)ṙ2

)2
, (113)

where γ = 4Λ
L2 . Setting ṙ2 = 0 in this equation, we see that ṙ2 vanishes only at r = 0.

Thus, for every r the solutions have the same sign. Then, by examining its sign for a specific
value of r we can fix its sign everywhere. The simplest choice is r = 1. In this case, the above
equation becomes (

1− ṙ2
1

)3
=

1

4

(
1− (1 + γ)ṙ2

1

)2
, (114)

where ṙ1 is the solution of ṙ for this value of r. The solution is plotted in the following
graph
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From this plot we see that for each value of γ, ṙ2 has a positive solution at r = 1. Since
equation (113) is a third order polynomial, there is always a real solution. Therefore, there is
always a positive solution for each r and γ. Next, we can easily find the asymptotics of (113),
observing that the right hand side of the equation is always positive. For r → 0, ṙ2 has to
start as rn, where n ≥ 4. Substituting the following expansion

ṙ2 = Ar4 +
∑
i=1

air
ni , (115)

with ni+1 > ni > 4 into (113), for γ 6= 0 we obtain

ṙ2 = r4 − γ
2
3 r

20
3 +

2

3
γ

1
3 (1 + γ)r

28
3 +

2

3
γ

2
3 r

32
3 − 1

3
(1 + γ)2r12 +O(r

40
3 ), r → 0. (116)

While for γ = 0 there is an exact solution of (113)

ṙ2 = r4 − r12

(1 + r4)2
= r4 − r12 + 2r16 +O(r20), r → 0. (117)

The solution with γ equal to zero corresponds to the case with only the Namdu-Goto
term. Following the same procedure, in the other asymptotic region, i.e. for r →∞, we find
three possible cases (where now we demand ni < 4)

For γ ≤ 0

ṙ2 ' 2

1− 2γ
−
[

4(4 + γ2)

(1− 2γ)3
+

8(1 + γ)

(1− 2γ)2
+

3

(1− 2γ)

]
1

r4
, r →∞, (118)

for 0 < γ < 1
2

ṙ2 '


2

1−2γ
−
[

4(4+γ2)
(1−2γ)3 + 8(1+γ)

(1−2γ)2 + 3
(1−2γ)

]
1
r4 , r →∞

or

Ar4 + 2(1−A)(1−A(1+γ))
1−2γ−A(1+γ)

1
r4 , r →∞

(119)

and for γ ≥ 1
2

ṙ2 ' Ar4 +
2(1− A) (1− A(1 + γ))

1− 2γ − A(1 + γ)

1

r4
, r →∞, (120)

where A is the solution of

(1− A)3 = (1− A(1 + γ))2. (121)

This equation imposes some restrictions on A. First of all, A must be positive in order for
ṙ2 to be positive too. Moreover, writing this equation as a quadratic polynomial for γ and
requiring the discriminant to be positive, we get that A is less than one. Consequently, we
have that
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0 < A ≤ 1. (122)

Finally, the non-zero solutions for A are

A =
1

2

(
2− 2γ − γ2 − γ

3
2

√
4 + γ

)
, A =

1

2

(
2− 2γ − γ2 + γ

3
2

√
4 + γ

)
. (123)

In addition, for 0 < A ≤ 1 we conclude that γ ≥ 0. Note that γ = 0 corresponds to A = 1.
Knowing the possible behaviours of ṙ2 in the asymptotic regions, we can compare them

with those as if we had only one of the two terms in the action. We already know the asymp-
totics when we have only the Nambu-Goto term, by setting γ = 0 in the above expressions.
That is

ṙ2 '

{
r4 − r12 + 2r16, r → 0

2− 3
r4 , r →∞

(124)

In order to find ṙ2 when only the Einstein term is present, we write equation (100) in this
background

(
|g00|
grr
− ṙ2

)3

=
g3g2

00e
−2φ

grr(H + C)2

(
|g00|
grr
−
(

1 + Λ
g′2eφ

g2grr

)
ṙ2

)2

=
g3g2

00

grr(H + C)2

(
e−ϕ

(
|g00|
grr
− ṙ2

)
− Λ

g′2

g2grr
ṙ2

)2

, (125)

(126)

and then taking the limit e−ϕ → 0, C
H
→ 0. Then, rescaling r and t to r → (H1/4L)r and

t→ (H−1/4L)t we arrive to the desired equation(
r4 − ṙ2

)3
= γ2r12ṙ4. (127)

Following again by the same method, we find that

ṙ2 '

{
r4 − γ 2

3 r
20
3 + 2

3
γ

4
3 r

28
3 , r → 0

1
|γ| −

3
2γ2

1
r4 , r →∞.

(128)

Note that this equation matches with (118) for γ → −∞. Using these results, we are able
to find the effective density in each case for large and small r. The first step is to write the
Hubble function in this background. From equations (107) we have that

H2 =
1

L2

ṙ2

r4 − ṙ2
. (129)

We can now present the asymtpotics of the effective density as a function of the scale
factor. Firstly, we will rescale back the r coordinate (r → H− 1

4L−1r) and then we will use the
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relation between the scale factor and r (a2 = g(r) =
(
r
L

)2
). In the following table we present

the results for the three cases of γ mentioned above.

where

B(γ) =
2

1− γ
−
[

4(4 + γ2)

(1− 2γ)3
+

8(1 + γ)

(1− 2γ)2
+

3

(1− 2γ)

]
(130)

B′(γ) =
2 (1− A(γ)(1 + γ)) (2 + A(γ))

(1 + A(γ)) (1− 2γ − A(γ)(1 + γ))
(131)

A(γ) =
1

2

(
2− 2γ − γ2 ± γ

3
2

√
4 + γ

)
(132)

Therefore, we conclude that the Einstein term dominates for small r. In this regime,
ρeff ∼ a−8/3 that corresponds to matter with w = 1/9. On the other hand, for large r, we
have two possible asymptotic behaviours. The first one

8πL2

3
ρeff =

2

1− 2γ

H
a4

+B(γ)
H2

a8
, (133)

for γ →∞ gives the Einstein contributions, whereas for small γ we get the Nambu-Goto
contribution. The other possible asymptotic behaviour

8πL2

3
ρeff =

A(γ)

1− A(γ)
+B′(γ)

H2

a8
, (134)

takes a constant value for large r. At this point a crucial observation must be made. We
see that by adding the Einstein term to the model studied in [10], the effective density takes

Nambu-Goto Einstein Both terms

r → 0 0 < γ < 1
2

H2

a8 + 2H
a4

H
2
3

γ2/3a8/3 − 1
3

H
2
3

γ2/3a8/3 − 1
3

γ ≤ 0 2H
a4 − H

2

a8
1
|γ|
H
a4 − 2H2

3γ2a8
2

1−2γ
H
a4 +B(γ)H

2

a8

r →∞ 0 < γ < 1
2

2H
a4 − H

2

a8
1
|γ|
H
a4 − 2H2

3γ2a8
2

1−2γ
H
a4 +B(γ)H

2

a8 or A(γ)
1−A(γ)

+B′(γ)H
2

a8

γ ≥ 1
2

2H
a4 − H

2

a8
1
|γ|
H
a4 − 2H2

3γ2a8

A(γ)
1−A(γ)

+B′(γ)H
2

a8

Table 1: The asyptotics of the effective density 8πL2

3
ρeff , in the asymptotic regions
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a constant positive value for large r and γ > 0. This behaviour fits the solution predicted
by General Relativity in the regime of vacuum dominance (w = −1). Also note, that a
similar solution is not present even in the situation with only the Einstein term. In this sense,
the Nambu-Goto term can be interpreted as the origin of dark energy. Next, we plot three
examples for the three domains of γ.

Observe that in the first diagram (γ = 1
3
) there are three possible asymptotic behaviours.

The two of them come from the solution (133) that goes to zero, and the other two from
(134), one for every A±(γ).

In the above analysis we studied the motion of a D3-brane along geodesics that initially
have zero angular momentum and non zero energy. Also, we can study the case with vanishing
initial energy or with non-zero angular momentum. Writing equation (104) in the AdS5

background, without setting ` = 0 we get

( rL)
4
− `2

L2 ( rL)
6 1(
H−( rL)

4
)2−ṙ2


3

=( rL)
12 1(
H+( rL)

4
)2

( rL)
4
− `2

L2 ( rL)
6 1(
H−( rL)

4
)2−(1+γ)ṙ2


3

. (135)

We see that in both in the two asymptotic regions the new term disappears. Consequently,
we conclude that the presence of non-zero angular momentum does not affect the asymptotic
behaviour of the solution. Finally, in the following discussion we present the cases with zero
energy.
• In the case with ` = 0 = H, equation (113) becomes(

r4 − ṙ2
)3

= r4
(
r4 − (1 + γ)ṙ2

)2
, (136)

having the following exact solution

ṙ = Ar4, (137)

with A = 0, 1
2

(
2− 2γ − γ2 ± γ 3

2
√

4 + γ
)

. As before, this behaviour gives the following

result for the effective density

8π

3
ρeff =

A

1− A
. (138)

This result is not interesting, since it gives constant effective density everywhere.
• In the case with ` 6= 0,H = 0, equation (135) becomes

(( r
L

)4

− `2

L2

(
L

r

)2

− ṙ2

)3

=
( r
L

)4
(( r

L

)4

− `2

L2

(
L

r

)2

− (1 + γ)ṙ2

)3

. (139)

This equation does not have a positive asymptotic at r → 0. Therefore, it does not give a
solution that is valid for every r. So this case is of no in particular importance. To summarize,
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(a)

(b)

(c)

Figure 1: Effective density as a function of the scale factor for (a) γ = 1
3

, (b) γ = −1 and (c) γ = 2. The blue line in the

solution with only the Einstein term, the orange one is with only the Nambu-Goto term, and the red one with both terms.
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we computed the asymptotic behaviour of the effective matter density in the case with ` = 0
and H 6= 0. The results are exhibited in Table (1). We saw that the Hamiltonian affects only
the scale of r, and that the behaviour of ρeff is controlled just by γ. Moreover, we concluded
that the presence of a non-zero angular momentum would not affect the asymptotics of ρeff .
Finally, in the case with zero Hamiltonian we proved that for r → 0 we cannot obtain a
positive solution for ṙ2 and therefore we do not have a solution for every r.

2.4 Generalization to a class of background metrics

In this section, we will generalize the results for the effective density for a wide class of
background metrics. More specifically, we will study the case where the ten-dimensional
metric is such, that in the asymptotic regions the auxiliary functions (101,102,103) have
a power law behaviour and are positive. In addition, we will concentrate on motion with
zero angular momentum. With these restrictions, we can find the asymtpotics for ṙ and
consequently the asymtpotics of ρeff . In other words, we will compute the effective density
in the case where r → 0

z(r) = Azr
nz + . . . , Az > 0

h(r) = Ahr
nh + A′hr

n′h + . . . , Ah > 0, n′h > nh

e(r) = 1 + Aer
ne + . . . (140)

and the brane is moving with zero angular momentum. Respectively, for r → ∞ we will
consider that

z(r) = Dzr
kz + . . . , D′z > 0

h(r) = Dhr
kh +D′hr

k′h . . . , Dh > 0, k′h < kh

e(r) = 1 +Der
ke + . . . (141)

In the first asymptotic region (r → 0) the equation (100) becomes

(
Azr

nz − ṙ2 + . . .
)3

= (Ahr
nh + A′hr

n′h + . . .)
(
Azr

nz − (1 + Aer
ne)ṙ2 + . . .

)2
(142)

As in the case of the AdS space, ṙ2 necessarily must have an expansion of the following
form (since the right hand side of the equation is always positive)

ṙ2 = Brnz +
∑
i

Bir
mi , mi > nz, B ≤ Az. (143)

In the following analysis, we will compute only the leading term of the effective density.
The computation of the subleading terms is straightforward. Inserting this expansion in (142)
we get
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{(Az−B)rnz−B1r
m1 + . . .}3 = (Ahr

nh+A′hr
n′h+ . . .){(Az−B)rnz−B1r

m1−AeBrnz+ne+ . . .}2

(144)
We distinguish the following situations

• B 6= Az, B 6= 0:

– ne > 0: In this situation, equating the leading terms of the two sides in (144) gives

(Az −B)3r3nz = Ahr
nh(Az −B)2r2nz

that can be satisfied iff nz = nh and B = Az − Ah.
– ne = 0: In this case we get

(Az −B)3r3nz = Ahr
nh+2nz{Az − (1 + Ae)B}2

that can be satisfied iff nz = nh and B given by (Az−B)3 = Ah{Az− (1 +Ae)B}2

.

– ne < 0: And in this case

(Az −B)3r3nz = Ahr
nh(Aer

neBrnz)2

that can be satisfied iff nz = nh + 2ne and B given by (Az −B)3 = AhA
2
eB

2.

• B = Az: In this case equation (142) takes the following form

(−B1r
m1 + . . .)3 = (Ahr

nh + . . .) {B1r
m1 + AeAzr

ne+nz + . . .}2 (145)

– ne < m1 − nz (> 0): In this case the second tern in the curly brackets in the
right-hand side dominates and gives B1 = − 3

√
AhA2

eA
2
z and m1 = nh+2ne+2nz

3
that

implies the condition nz < nh − ne. This result is consistent with the restriction
m1 > nz only when nz < nh + 2ne. Note that the last inequality is automatically
satisfied if ne > 0 and nz < nh − ne hold.

– ne = m1 − nz: In this case B1 is given by −B3
1 = Ah(B1 + AeAz)

2 and m1 = nh.
This implies the condition nz = nh − ne. Also, consistency with the restriction
m1 > nz gives nh > nz.

– ne > m1 − nz: Finally in this case, we get B1 = −Ah and m1 = nh that implies
nz > nh − ne. Again, consistency with the restriction m1 > nz gives nh > nz.

• B = 0 : In this case (142) becomes

(Azr
nz −B1r

m1 + . . .)3 = (Ahr
nh+A′hr

n′h+. . .){Azrnz−(1+Aer
ne)B1r

m1 +. . .}2 (146)
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– ne > 0: The leading terms of both sides give nz = nh and Az = Ah, while the first

subleading term gives m1 = n′h and B1 = − A′hAz
2Ah−3Az

= A′h.

– ne = 0: The leading terms of both sides give nz = nh and Az = Ah, while the

subleading terms give m1 = n′h and B1 = − A′hAz
2Ah(1+Ae)−3Az

=
A′h

1−2Ae
.

– ne < 0: The leading terms of both terms give nz = nh and Az = Ah, while

the subleading terms give m1 = n′h and B1 = −A′h
3

. The restriction m1 > nz is
automatically satisfied here.

In the following tables, we summarize the asympotics of ṙ2. Note that in the case where
ne = 0, for nz = nh, it seems that we have four solutions. Nevertheless, the second solution
is valid only when Az = Ah. In this case the equation

(Az −B)3 = Ah{Az − (1 + Ae)B}2 (147)

has a zero solution. Thus, we still have three asymptotics for ṙ2, as it should be, since (142)
is a cubic equation. Moreover, we can use these results to compute the asymptotics of the
effective density. We will compute it for φ = 0. In this case, from (108), the effective density
for r → 0 is written as

8π

3
ρeff =

1

4Λ

ṙ2

Azrnz − ṙ2
Aer

ne . (148)

and its asympotics are summarized in Tables (4) and (5).
Finally we can write the effective density as a function of the scale factor, inverting the re-

lation g(r) = a2. For the sake of simplicity, we do not present the results. Given a background
metric, one can find the expansion of the auxiliary functions in the asymptotic regions, then
check to which situation this metric fits. Finally, inverting g(r) = a2 one can express the
effective density in terms of a. From this analysis, we conclude that we can have all kinds of
asymptotic behaviour for ρeff , depending on the details of the background metric.

26



nz > nh -

nz = nh ṙ2'(Az−Ah)rnz or ṙ2'A′hr
n′h , Az=Ah

ne > 0 nh > nz > nh − ne ṙ2'Azrnz−Ahrnh

nz = nh − ne ṙ2'Azrnz+B1r
nh , −B3

1=Ah(B1+AeAz)2

nz < nh − ne ṙ2'Azrnz− 3
√
AhA2

eA
2
z r

nh+2ne+2nz
3

nz > nh -

ne = 0 nz = nh ṙ2'Brnz , (Az−B)3=Ah{Az−(1+Ae)B}2 or ṙ2' A′h
1−2Ae

rn
′
h , Az=Ah

nz < nh ṙ2'Azrnz− 3
√
AhA2

eA
2
z r

nh+2nz
3

nz > nh -

nz = nh ṙ2'Azrnz−
A′h
3
rnh , Az=Ah

ne < 0 nh > nz > nh + 2ne -

nz = nh + 2ne ṙ2'Brnz , (Az−B)3=Ah(AeB)2

nz < nh + 2ne ṙ2'Azrnz− 3
√
AhA2

eA
2
z r

nh+2ne+2nz
3

Table 2: The asymptotics of ṙ2 for r → 0

kz < kh -

kz = kh ṙ2'(Dz−Dh)rkz or ṙ2'D′hr
k′h , Dz=Dh

ke < 0 kh < kz < kh − ke ṙ2'Dzrkz−Dhrkh

kz = kh − ke ṙ2'Dzrkz+B1r
kh , −B3

1=Dh(B1+DeDz)2

kz > kh − ke ṙ2'Dzrkz− 3
√
DhD2

eD
2
z r

kh+2ke+2kz
3

kz < kh -

ke = 0 kz = kh ṙ2'Brkz , (Dz−B)3=Dh{Dz−(1+De)B}2 or ṙ2' D′h
1−2De

rk
′
h , Dz=Dh

kz > kh ṙ2'Dzrkz− 3
√
DhD2

eD
2
z r

kh+2kz
3

kz < kh -

kz = kh ṙ2'Dzrkz−
D′h
3
rkh , Dz=Dh

ke > 0 kh < kz < kh + 2ke -

kz = kh + 2ke ṙ2'Brkz , (Dz−B)3=Dh(DeB)2

kz > kh + 2ke ṙ2'Dzrkz− 3
√
DhD2

eD
2
z r

kh+2ke+2kz
3

Table 3: The asymptotics of ṙ2 for r →∞
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nz > nh -

nz = nh 1
4Λ

(Az−Ah)Ae
Ah

rne or 1
4Λ

A′hAe
Az

rn
′
h+ne−nh , Az=Ah

ne > 0 nh > nz > nh − ne 1
4Λ

AzAe
Ah

rnz+ne−nh

nz = nh − ne − 1
4Λ

AzAe
B1

rnz+ne−nh , −B3
1=Ah(B1+AeAz)2

nz < nh − ne 1
4Λ

AzAe
3
√

AhA
2
eA

2
z

r
nz+ne−nh

3

nz > nh -

ne = 0 nz = nh 1
4Λ

BAe
Az−B

, (Az−B)3=Ah{Az−(1+Ae)B}2 or 1
4Λ

A′h
Az(1−2Ae)

rnh−n
′
h , Az=Ah

nz < nh 1
4Λ

AzAe
3
√

AhA
2
eA

2
z

r
nz−nh

3

nz > nh -

nz = nh 1
4Λ

3AzAe
A′
h

rnz+ne−nh

ne < 0 nh > nz > nh + 2ne -

nz = nh + 2ne 1
4Λ

BAe
Az−B

rne , (Az−B)3=Ah(AeB)2

nz < nh + 2ne 1
4Λ

AzAe
3
√

AhA
2
eA

2
z

r
nz+ne−nh

3

Table 4: The asymptotics of ρeff for r → 0

kz < kh -

kz = kh 1
4Λ

(Dz−Dh)De
Dh

rke or 1
4Λ

D′hDe
Dz

rk
′
h+ke−kh , Dz=Dh

ke < 0 kh < kz < kh − ke 1
4Λ

DzDe
Dh

rkz+ne−kh

kz = kh − ke − 1
4Λ

DzDe
B1

rkz+ke−kh , −B3
1=Dh(B1+DeDz)2

kz > kh − ke 1
4Λ

DzDe
3
√

DhD
2
eD

2
z

r
kz+ke−kh

3

kz < kh -

ke = 0 kz = kh 1
4Λ

BDe
Dz−B

rke , (Dz−B)3=Dh{Dz−(1+De)B}2 or 1
4Λ

D′h
Dz(1−2De)

rk
′
h−kh , Dz=Dh

kz > kh 1
4Λ

DzDe
3
√

DhD
2
eD

2
z

r
kz−kh

3

kz < kh -

kz = kh 1
4Λ

3DzDe
D′
h

rkz+ke−kh

ke > 0 kh < kz < kh + 2ke -

kz = kh + 2ke 1
4Λ

BDe
Dz−B

rke , (Dz−B)3=Dh(DeB)2

kz > kh + 2ke 1
4Λ

DzDe
3
√

DhD
2
eD

2
z

r
kz+ke−kh

3

Table 5: The asymptotics of ρeff for r →∞
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3 Conclusions

In the first part of this paper, we studied the static and spherically symmetric solutions of
the low-energy Horava-Lifshitz gravity. We shortly discussed the motivation of the theory,
that is the construction of a power counting renormalizable theory of quantum gravity with
anisotropic scaling. At high energies, the dispersion relation of gravitons is modified to ω ∼ ~k6.
This modification improves the UV behaviour of the theory, rendering the theory to be power
counting renormalizable. On the other hand, at low energies (tuning the parameters) the
action is reduced to that of General Relativity with a cosmological constant plus a new term
which contains derivatives of the lapse function.

Then, we focused on the low energy effective action, and we studied its static and spheri-
cally symmetric solutions with zero shift vector. We showed that in the absence of the cosmo-
logical constant term, the solution has the same asymptotic behaviour with the Schwarzschild
solution at large distances plus corrections of lower order. However, in the presence of a cos-
mological constant term, the solutions do not have the same asymptotic behaviour like the de
Sitter-Schwarzschild solution. Instead, the lapse function acquires an exponential behaviour.

In the second part, we studied a scenario of mirage cosmology. In this model, our three-
dimensional universe is treated as a three-dimensional hypersurface (a brane), moving in a
higher dimensional background space. We showed that the residents of the brane observe
an effective cosmological evolution even when the background space is static. Initially, we
studied this cosmological evolution while the motion of the brane was governed by the Nambu-
Goto action, originally done in [10]. Applying the results in the case of the AdS5 black
hole background, we found that far away from the black hole ρeff ∼ a−4, and the effective
cosmological expansion is indistinguishable from that one produced by radiation on the brane.
On the other hand, near the center of the black hole ρeff ∼ a−8, and the effective matter
density corresponds to dilute matter with w = 5/3.

Also, we studied the addition of the Ricci scalar of the brane in the action, and we
recomputed the effective matter density. In the case of AdS5 background, we found that
ρeff ∼ a−8/3. This behaviour in the context of General Relativity, corresponds to exotic
matter, with w = 1/9. Nevertheless, far away from the center of the black hole, the effective
matter density reaches a constant value. This result is very interesting because ρeff = const
resembles the case of vacuum dominance in General Relativity. As we know, the experimental
observations have proved that in this period our universe is in this phase. However, there is
not known matter, having equation of state with w = −1, that is the notorious problem of
dark energy. Therefore, we conclude that a possible explanation of this problem can be given
by this model. In other words, we can explain that the matter density takes a constant value
effectively, due to the motion of our three-dimensional universe in a higher AdS5 black hole
background.

Finally, in the last section we generalized the results for the effective matter density in the
case of a general class of background metrics. We proved that ρeff can have all possible power
law behaviours, and can also reach a constant value either for small or large r, depending on
the details of the background metric.
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APPENDIX

A Conservation of hijpipj

Consider a Lagrangian of the form

L = L(r, ṙ, x), x = hijϕ̇
iϕ̇j (149)

Then, the quantity hijpipj is conserved, where pi is the canonical momentum with respect to
ϕi given by

pi =
∂L

∂ϕ̇i
=
∂L

∂x
2hijϕ̇j. (150)

Taking the time derivative of this quantity we have

d

dt
(hijpipj) =

∂hij

Dϕk
ϕ̇kpipj + 2hijpiṗj (151)

=
∂hij

∂ϕk
ϕ̇kpipj + 2hijpi

∂L

∂ϕj
. (152)
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Additionally, the first term is equal to

∂hij

∂ϕk
ϕ̇kpipj =

∂hij

∂ϕk
ϕ̇k
(

2
∂L

∂x

)2

hiλϕ̇
λhjαϕ̇

α (153)

= −
(

2
∂L

∂x

)2
∂hmn
∂ϕk

hmihnjhiλhjαϕ̇
kϕ̇λϕ̇α (154)

= −
(

2
∂L

∂x

)2
∂hmn
∂ϕk

δmλ δ
n
αϕ̇

kϕ̇λϕ̇α (155)

= −
(

2
∂L

∂x

)2
∂hmn
∂ϕk

ϕ̇kϕ̇mϕ̇n, (156)

and the second term

2hijpi
∂L

∂ϕj
= 2hijpi

∂L

∂x

∂x

∂ϕj
(157)

= 2hij2
∂L

∂x
hikϕ̇

k ∂L

∂x

∂hmn
∂ϕj

ϕ̇mϕ̇n (158)

=

(
2
∂L

∂x

)2

hijhikϕ̇
kϕ̇mϕ̇n

∂hmn
∂ϕj

(159)

=

(
2
∂L

∂x

)2

ϕ̇jϕ̇mϕ̇n
∂hmn
∂ϕj

. (160)

So the two terms cancel and the total angular momentum is conserved.

B The real solutions of the cubic equation

Consider that we have an equation of the form(
z(r)− ṙ2

)3
= h(r)

(
z(r)− e(r)ṙ2

)2
. (161)

Using Cardano’s method for solving cubic equations, what we get is

ṙ2 =
1

6

(
−2e2h+ 6z − 22/3(u+ v)

)
, (162)

where
u3 = ξ+, (163)

v3 = ξ−, (164)

satisfying the constraint uv ∈ R. Also, ξ± is given by

ξ± = h
(
2e6h2 − 18(e− 1)e3hz + 27(e− 1)2z2

)
± 3
√

3
√

(1− e)3h2z3 (4e3h− 27(e− 1)z).
(165)
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We have to analyze two distinct situations. The first is when the discriminant is non-negative

∆ = (1− e)3h2z3
(
4e3h− 27(e− 1)z

)
≥ 0. (166)

In this case, there is a single real solution (there are also two complex conjugates coming
from the cubic roots in (163) and (164) ) that are written as

ṙ2 =
1

6

(
−2e2h+ 6z − 22/3(ξ

1/3
+ + ξ

1/3
− )
)

=
1

6

(
−2e2h+ 6z − 22/3ξ

1/3
+ − 22/3 (ξ−ξ+)1/3

ξ
1/3
+

)

=
1

6

(
−2e2h+ 6z − 22/3ξ

1/3
+ − 24/3eh(e3h+ 6z − 6ez)

ξ
1/3
+

)
. (167)

In the opposite case, i.e. when the discriminant is negative, the ξ± are complex numbers
and according to De Moivre’s theorem

u = |ξ+|
1
3 ei

θ+2nπ
3 , (168)

v = |ξ+|
1
3 ei

−θ+2mπ
3 , (169)

where n,m = 0, 1, 2. In this way, satisfying the constraint uv ∈ R

u+ v = 2|ξ+|
1
3 cos

(
−θ + 2mπ

3

)
, (170)

and the solution for ṙ2 is

ṙ2 =
1

6

(
−2e2h+ 6z − 22/32|ξ+|

1
3 cos

(
θ + 2mπ

3

))
, (171)

where for each value of m we have one real solution. These are the general solutions of
(104) in the two cases. When the discriminant (166) is non-negative the solution is (167),
while when the discriminant is negative the solutions are given by (171).
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