
Hardware Accelerated Control-Flow Reconstruction
in JIT Environments

Konstantinos Kleftogiorgos

Thesis submitted in partial fulfillment of the requirements for the

Master of Science degree in Computer Science

University of Crete
School of Sciences and Engineering

Computer Science Department
University Campus, Voutes, Heraklion, GR-70013, Greece

Thesis Advisors:
Prof. Evangelos Markatos,

Dr. Sotiris Ioannidis

UNIVERSITY OF CRETE

COMPUTER SCIENCE DEPARTMENT

JIT Tracing using Intel Processor Trace

Thesis submitted by
Konstantinos Kleftogiorgos

in partial fulfillment of the requirements for the
Master of Science degree in Computer Science

THESIS APPROVAL

Author:
Konstantinos Kleftogiorgos

Committee approvals:
Evangelos Markatos
Professor, Thesis Supervisor

Sotiris Ioannidis
Research Director, Committee Member

Maria Papadopouli
Professor, Committee Member

Departmental approval:
Antonis Argyros
Professor, Director of Graduate Studies

Heraklion, July 6th 2018

Abstract

Control-Flow reconstruction is a critical part of many security, profiling and analysis
mechanisms. A challenging limitation in previous works is that they do not support trac-
ing in JIT environments. Already existing mechanisms of obtaining the Control-Flow of
a process, include the use of instrumentation, either dynamic or static. However, these
approaches suffer from certain drawbacks. Obtaining the Control-Flow through dynamic
instrumentation during the execution of a process, imposes severe slowdowns, while static
instrumentation can lead to inaccurate results.

We leverage Intel Processor Trace, a new hardware feature of modern Intel CPUs, in
order to acquire the Control-Flow of a process correctly, while at the same time mini-
mizing the impact on the performance. Previous works have shown the effectiveness of
utilizing Intel PT in order to reconstruct the Control-Flow of a process. However, none of
them, to the best of our knowledge, has attempted to perform Control-Flow reconstruction
on a process executing inside a JIT environment.

To showcase our mechanism in JIT environments, we trace the execution of a process
in Intel Pin dynamic instrumentation framework. To achieve this we implemented a cus-
tom Intel PT driver and a new decoder which enables us to reconstruct the Control-Flow
at runtime and not after the completion of the process. This approach imposes signif-
icantly less overhead, compared to dynamic binary instrumentation, while being more
accurate than the static one. Finally, we evaluate the correctness of our mechanism and
measure its performance by running SPEC2006 benchmark suit. Our results indicate that
the overhead imposed by our mechanism, is marginally lower than previously developed
mechanisms, while the Control-Flow is accurately reconstructed.

Περίληψη

Η ανακατασκευή της Ροής-Εκτέλεσης είναι ένα σημαντικό κομμάτι πολλών μη-

χανισμών ασφάλειας, δημιουργίας προφίλ και ανάλυσης. ΄Ενας αξιοσημείωτος περιο-

ρισμός σε προηγούμενες δουλειές, είναι ότι δεν υποστηρίζουν την παρακολούθηση

προγράμματος σε περιβάλλοντα JIT. ΄Ηδη υπάρχοντες μηχανισμοί, για την απόκτη-
ση της Ροής-Εκτέλεσης μιας διαδικασίας, περιλαμβάνουν τη χρήση παραμετροποίησης

του πηγαίου κώδικα, είτε δυναμικά είτε στατικά. Ωστόσο, αυτές οι προσεγγίσεις υ-

ποφέρουν από ορισμένα μειονεκτήματα. Η λήψη της ροής ελέγχου μέσω δυναμικής

παραμετροποίησης κατά την εκτέλεση μιας διαδικασίας, προκαλεί σοβαρή επιβράδυνση,

ενώ η στατική μπορεί να οδηγήσει σε ανακριβή αποτελέσματα.

Χρησιμοποιούμε την τεχνολογία Intel Processor Trace, μια νέα δυνατότητα υλοποι-
ημένη στο υλικό των σύγχρονων επεξεργαστών της Intel, προκειμένου να αποκτηθεί η
Ροή-Ελέγχου μιας διαδικασίας σωστά, ελαχιστοποιώντας τις επιπτώσεις στην απόδο-

ση. Προηγούμενες δουλειές έχουν δείξει την αποτελεσματικότητα της αξιοποίησης

του Intel PT για την ανασυγκρότηση της Ροής-Εκτέλεσης μιας διαδικασίας. Ωστόσο,
κανένας από αυτούς, εξ όσων γνωρίζουμε, δεν έχει προσπαθήσει να εκτελέσει ανασυ-

γκρότηση της Ροής-Εκτέλεσης σε μια διαδικασία που εκτελείται μέσα σε περιβάλλοντα

JIT.
Για να δείξουμε τη λειτουργία του μηχανισμού μας, βρίσκουμε τη Ροή-Εκτέλεσης

ενός προγράμματος που εκτελείται μέσα στον παραμετροποιητή κώδικα Intel Pin. Γιά-
υτό το λόγο, υλοποιήσαμε έναν οδηγό υλικού για το Intel PT καθώς και ένα νέο
αποκωδικοποιητή, ο οποίος μας επιτρέπει να ανασυγκροτήσαμε της Ροή-Εκτέλεσης

κατά τη διάρκεια της εκτέλεσης και όχι μετά το τέλος του προγράμματος. Αυτή η

προσέγγιση επιβάλλει σημαντικά λιγότερες καθυστερήσεις, σε σύγκριση με τη δυνα-

μική παραμετροποίηση κώδικα, και είναι περισσότερο ακριβής από τη στατική. Τέλος,

χρησιμοποιήσαμε τη σουίτα μέτρησης επιδόσεων SPEC CPU2006, προκειμένου να α-
ξιολογήσουμε την αποτελεσματικότητά του πρωτοτύπου μας και να μετρήσουμε τις

επιδόσεις του. Τα αποτελέσματα μας αποδεικνύουν ότι η επιβράδυνση του μηχανισμο-

ύ μας είναι τάξης μεγέθους χαμηλότερη από τους προηγούμενους μηχανισμούς, καθώς

παράλληλα επιτυγχάνει την ανακατασκευή της Ροής-Εκτέλεσης του προγράμματος.

Acknowledgments I would like to thank my Advisor Dr. Sotiris Ioannidis for his guid-
ance and support during my studies and this work. I would also like to thank my Supervi-
sor, Professor Evangelos Markatos, for his overall assistance and interesting discussions
all these years. Many thanks to my Advisor during my internship at Stevens Institute
of Technology, Dr George Portokalidis, and George Christou for his overall help on this
project.

I need to also express my appreciativeness to Dimitris Deyannis, Hlias Papadopou-
los, Eva Papadogiannaki, George Tsirantonakis, Rafail Tsirmpas, Christos Papachris-
tos, Michalis Diamantaris, Panagiotis Ilia, Nick Christoulakis, Michalis Pachilakis, Dim-
itris Karnikis, Andreas Dedousis, Giannis Giakoumakis, Kostas Plelis, Manos Athanatos,
Vaggelis Dimitriadis, Eirini Degleri, Giorgos Anagnopoulos, my colleagues and most
important, friends in the Distributed Computing Systems (DCS) Lab. In like manner, I
would like to thank my friends: Aggelos, Anna, Annastasios, Dimitra, Eirini, Giannis,
Joanna, Kostas, Nikos, Palios, Pantelis, Panos, Rafail, Stauros. In addition, I would like
to specially thank Monster Inc. and Myprotein.

Finally, I would like to sincerely thank my family, my father David, my mother Sofia
and my sister Alexandra, for helping me all these years and supporting my choices. This
work would have never been possible without them.

This work has been performed at the Distributed Computing Systems laboratory,
Institute of Computer Science, Foundation of Research and Technology – Hellas
(FORTH) in collaboration with the Department of Computer Science, Stevens Insti-
tute of Technology. In addition, this work has been supported in part by the European
Commission via the H2020 ICT-32-2014 Project SHARCS under Grant 644571 and the
H2020 DS-03-2015 Project CIPSEC under Grant 700378.

Contents

1 Introduction 1
1.1 Control-Flow Integrity . 2
1.2 Dynamic data Flow Tracking . 3
1.3 Control-Flow Graph Generation . 3
1.4 Contributions . 3

2 Background 5
2.1 Control-Flow . 5

2.1.1 Branch Instructions . 5
2.1.2 Basic Blocks . 6

2.2 Intel Processor Trace . 6
2.2.1 Execution Information Packets 7
2.2.2 Flow Information Packets . 7
2.2.3 Intel PT Software Decoder . 8
2.2.4 Trace Filtering . 9
2.2.5 Table of Physical Addresses (ToPA) 9

2.3 Intel Pin . 11
2.3.1 Just-in-Time Compiler . 11
2.3.2 Instrumentation . 12

2.4 Intel XED . 13
2.5 POSIX Shared Memory . 13
2.6 Loadable Kernel Module . 13

2.6.1 Kernel Module Parameters . 13
2.6.2 Input/ Output Control . 14
2.6.3 Blocking I/O . 14

3 Design 15
3.1 Architecture . 15

3.1.1 Overview . 15
3.1.2 Driver . 16
3.1.3 Ring Buffer . 17
3.1.4 Pin Tool . 18
3.1.5 Decoder . 19

I

4 Prototype Implementation 21
4.1 Intel Processor Trace Configuration . 21

4.1.1 Filtering . 22
4.1.2 Return Compression . 23
4.1.3 Processor Affinity . 23
4.1.4 Trace Enabling . 23

4.2 Ring Buffer . 23
4.2.1 ToPA Configuration . 24
4.2.2 PMI Signal Handler . 24
4.2.3 Ring Buffer Overwrites . 25

4.3 Pin Tool . 25
4.3.1 JIT Generated Code . 26
4.3.2 Code Cache Trace Discovery . 26
4.3.3 Control-Flow Table . 27
4.3.4 Link Table . 33
4.3.5 Usability . 34

4.4 Decoder . 34
4.4.1 Intel PT Data Reading . 35
4.4.2 Intel PT Data Decoding . 36
4.4.3 IP Compression . 36
4.4.4 Code Cache Entry TIP . 37
4.4.5 Linking Updates . 37
4.4.6 Control-Flow Reconstruction . 38

5 Evaluation 41
5.1 Correctness . 41
5.2 Performance . 42

6 Related Work 45
6.1 kAFL . 45
6.2 PT-CFI . 45
6.3 GRIFFIN . 46
6.4 POMP . 46
6.5 FlowGuard . 46
6.6 ProRace . 46
6.7 Gist . 47
6.8 INSPECTOR . 47

7 Future Work 49

8 Conclusion 51

II

List of Figures

2.1 ToPA Entry Overview. 10

3.1 Design of the system. 16

4.1 ToPA Configuration. 24
4.2 Control-Flow Table Entry Overview. 28
4.3 A Code Cache Trace inserted on the Control-Flow Table. Each Basic Block of

the Code Cache Trace is shown on the left side, while on the right the entries
created in the Control-Flow Table appear. 35

4.4 Flow-Chart of the Reconstruction Algorithm. 38

5.1 The execution time of our approach compared to this of the instrumentation tech-
nique. 42

5.2 The number of Basic Blocks for each benchmark. 43

III

IV

List of Tables

4.1 Pin generated code. On the left hand the original Trace is shown, while on the
right hand the generated code for this original Trace appears. 26

V

VI

Chapter 1

Introduction

Various security defense mechanisms depend on correctly obtaining the Control-Flow of a
process that they aim to protect. Acquiring the Control-Flow, while a process is executing
through the existing techniques, imposes significant performance overhead. Moreover,
less thorough approaches are inaccurate or not flexible. This is mainly because of the fact
that, in order to acquire the exact Control-Flow that a process followed during its exe-
cution, instrumentation of the binary is required, either offline or at runtime. Incorrectly
reconstructing the Control-Flow of a process, can lead to the false employment of several
security, analysis and profiling mechanisms. For this reason, obtaining the Control-Flow
of a process, in an accurate and stable way, regardless of the environment where it is ex-
ecuting, is quite critical and vital for several existing mechanisms. The obtained Control-
Flow of a process can be utilized by several fields ranging from security [1, 2] and binary
analysis [3, 4, 5], to profiling of applications [6, 7, 8, 9].

Until today, the existing techniques of obtaining the Control-Flow of an application
suffer from several drawbacks, that include performance overheads and inaccuracies. We
have developed a reliable and accurate hardware accelerated Control-Flow reconstruction
system, that can trace the execution of a process with marginally less overhead than the
existing mechanisms and independently of the environment where this process is execut-
ing. Our approach leverages Intel Processor Trace (PT) [], a new hardware feature that
ships with the newest Intel CPUs. Intel PT was designed to aid in debugging and fail-
ure diagnosis by recording the minimal information necessary to reconstruct complete
Control-Flow traces. We utilize Intel PT to reconstruct the Control-Flow of any process,
regardless of the environment where it is executing, even if that environment contains
JIT code. This is accomplished by isolating the execution flow of the original code from
inside the JITed one.

The following sections present some of the appliances of the Control-Flow of a pro-
cess.

1

2 CHAPTER 1. INTRODUCTION

1.1 Control-Flow Integrity

Control-Flow Integrity [10] (CFI) is a runtime security scheme that aims at guaranteeing
that a given program will adhere to its intended Control-Flow Graph (CFG). CFI focuses
on reinforcing indirect branches, like calls and returns, so that they become immune to
tampering from memory corruption vulnerabilities like buffer overflows. CFI defenses are
considered to be the most effective defenses against code-reuse attacks [11]. This kind of
attacks aim to exploit compromised programs by subverting their Control-Flow, from the
expected one.

Forward-Edge Control-Flow Integrity refers to the reinforcement of forward-edge
branches, i.e. Indirect Call Instructions. Indirect calls utilise function pointers stored
in memory to find their target. Unfortunately, these pointers are not safely stored in mem-
ory and are susceptible to corruption by tampering. Forward-Edge CFI validates that the
indirect call reached a target that belongs to a group of authorised branch targets. This
limits the call to extremely few indirect branch targets, hopefully none that the attacker
could exploit.

Backward-Edge Control-Flow Integrity refers to the reinforcement of backward-edge
branches, i.e. Return Instructions. Returns, like indirect calls, utilize a pointer stored in
the stack as a branch target. This pointer is extremely vulnerable to tampering since it
resides in the stack. Backward-Edge CFI keeps track of the return addresses and verifies
that each return instruction did indeed reach its target.

However, attacks are still possible even after confining program execution to a CFG,
through the use of CFI. Throughout the years, researchers have focused on software-only
implementations of CFI. Implementing CFI on software requires being able to trace the
indirect calls of the process during the execution. Several approach trying to achieve this
exist, and can be divided into three categories:

Compile-Time Instrumentation
The main advantage of compile-time instrumentation [12, 13, 14] is that it has better
performance than other approaches, since the instrumentation is performed offline.
However, this approach suffers from several limitations. Such techniques can only
instrument programs supported by the compiler and they require the source code
of the application to be provided. In addition, the produced CFI, through compile-
time instrumentation, is fixed for each application, forbidding the systems from
customizing it at runtime.

Static Binary Instrumentation
Static binary instrumentation [10, 15] offers the ability to instrument programs writ-
ten in a variety of languages and legacy binaries. However, the enforced CFGs are
not as accurate as compile-time, while at the same time some compile-time op-
timizations cannot be applied. In addition, the produced instrumentation is fixed
through the execution of the process.

Runtime Instrumentation
Runtime instrumentation [16, 17] offers the flexibility of instrumenting the process

1.2. DYNAMIC DATA FLOW TRACKING 3

during its runtime. This approach is more accurate than the fixed one, but it suffers
from far greater overheads.

1.2 Dynamic data Flow Tracking

A notable technique proposed in the literature, in order to counter buffer-overflow related
exploits, is Dynamic data Flow Tracking (DFT). The key concept of this mechanism, is
to taint memory regions where untrusted data are residing, and track their propagation
in the address space. Also, any new data resulting from computation with tainted data,
becomes tainted as well. Exploits are detected with a predefined policy, depending on the
implementation of DFT. In general, when tainted data are used in a suspicious, manner a
security exception is raised. A common security exception trigger is when tainted data are
used as an indirect jump operand. For example, in the case where an attacker overwrites
a return address, by exploiting a buffer overflow, input data will be tainted and the DFT
policy will detect the violation since the return address will also be tainted. In the majority
of DFT implementations, the protected application is oblivious of the mechanism. Thus
there is no need for source code modifications.

Dynamic data flow tracking is being used extensively in security research for pro-
tecting software [1, 2], analyzing malware [18, 19], discovering bugs [9, 20], reverse
engineering [21], information flow control [22, 23], etc. However, dynamically applying
DFT tends to significantly slow down the target application, especially when a virtual-
ization framework [24, 25] is used to apply it on binary-only software. Overheads can
range from a significant percentage over native execution to several orders of magnitude,
depending on the framework used and particular traits of the implementation

1.3 Control-Flow Graph Generation

A Control-Flow graph (CFG) is a representation, using graph notation, of all paths that
might be traversed through a program during its execution. A lot of works have focuses
on generating an accurate CFG [26, 5, 27, 28]. However, most of them follow an offline
approach that is based on static analysis of the binary. Profiling a binary dynamically, by
monitoring the control-flow during the process’s execution offers greater accuracy. An
accurate Control-Flow Graph can enhance those techniques.

1.4 Contributions

All the previously mentioned reasons indicate that a correctly obtained Control-Flow of a
process, can be quite useful to several research fields. Our work is based on this assump-
tion and contributes the following.

• We utilize Intel PT, to trace the execution of a process and reconstruct its Control-
Flow during runtime. This is performed accurately and faster than the previous
methods that require the binary to be instrumented.

4 CHAPTER 1. INTRODUCTION

• We introduce a novel technique for tracing the execution of a process that is exe-
cuted inside a JIT environment. Our Control-Flow reconstruction algorithm is able
to isolate the execution of the JITed process and correctly reconstruct its Control-
Flow.

• We implemented a prototype that is able to successfully reconstruct the Control-
Flow of JITed applications at runtime. We showcase our mechanism by tracing the
execution of a binary on Intel PIN binary instrumentation framework. We tested the
correctness of our prototype by comparing it to the Control-Flow acquired using
dynamic instrumentation.

Chapter 2

Background

In this chapter we provide a brief overview of the background concepts and technologies
of this work. This background is essential in order to comprehend further chapters of this
thesis. Chapter 2.1 describes the basic idea of Control-Flow and the concepts that consti-
tute it. Chapter 2.2 introduces briefly the Intel IA-32 virtualization extension to provide
virtualization by the hardware itself. In chapter, 2.3 the Intel Pin instrumentation frame-
work overview is presented, together with some of its main APIs. Finally, the remaining
chapters present other tools or features used throughout our implementations, such as Intel
XED, POSIX Shared Memory and Loadable Kernel Modules.

2.1 Control-Flow

During a process’s execution, the Control-Flow is the order in which individual statements
and function calls of the process are executed. Within an executing process, a Control-
Flow statement is a statement the execution of which, results in the decision made as
which of the two paths to follow. Specifically, a branch is either taken or not taken. On
the other hand, during a call or jump instruction the path is set as the target address.
Since our system focuses on reconstructing the Control-Flow of a program executed inside
a Just-in-Time environment, it seems appropriate to describe some of the main definitions
that constitute it.

2.1.1 Branch Instructions

A branch is an instruction in a computer program that can cause a control-flow transition.
The processor will start executing an instruction sequence not adjucent to the previous
program counter. Thus, deviate from its default behavior of executing instructions in
order. This behavior can be caused by the following:

Conditional Branches:
Conditional Branches consist of instructions that direct the execution of the program
to another part of the program, only if a certain condition is true. If this specific

5

6 CHAPTER 2. BACKGROUND

conditions is met, the control transfers to a new address and the execution goes on
from this point onward.

Direct Calls:
Direct Branches refer to those instructions that cause the execution of the program
to transfer to a specific address. This address is constant for a particular binary and
the execution flow of this program will always follow this direction.

Indirect Branches:
Indirect Branches consist of jump or call instructions that, rather than directly spec-
ifying the address of the next instruction to be executed, they specify the location
where the address resides i.e. the target address is calculated at runtime. The target
address can either be stored in a register or a memory location.

2.1.2 Basic Blocks

A Basic Block is an instruction sequence with no branches targeting to it, except to the
entry, and no branches targeting out, except at the exit. This means that, no code within
this block is the destination of a jump or branch instruction anywhere in the program
and only the last instruction can cause the program to begin executing code in a different
Basic Block. Under these circumstances, whenever the first instruction in a Basic Block
is executed, the rest of the instructions are necessarily executed exactly once and in or-
der. Throughout this work, by Control-Flow reconstruction we refer to the extraction of
the Basic Blocks sequence that the traced program followed during its execution. The
complete procedure of acquiring these Basic Blocks will be described in detail in section
4.

2.2 Intel Processor Trace

Intel Processor Trace (PT) is a new hardware feature present on recent Intel Architectures.
It was first supported in Intel Core M and 5th generation Intel Core processors that are
based on the Intel micro-architecture code named Broadwell. Intel PT provides execution
and branch tracing information of a process directly by the processor with negligible over-
head. Unlike other branch tracing technologies such as Intel Last Branch Record (LBR),
the size of the output Buffer is no longer strictly limited by hardware. The only limitation
is the size of the output Buffer, that could be filled up after tracing a long process. How-
ever, as long as the output Buffer is consumed in an adequate manner, Intel PT can offer
long-term tracing of a process while avoiding loss of trace data due to buffer overflows.
In general, whenever a program is configured to use Intel PT, trace packets, encoding
Control-Flow information, are generated throughout its entire execution. Intel PT packets
are separated into two different types: general execution information and Control-Flow
information packets. A software decoder is able to reconstruct the entire Control-Flow of
the traced program, by combining the recorded packets with the executed binary.

2.2. INTEL PROCESSOR TRACE 7

2.2.1 Execution Information Packets

Intel PT produces a set of miscellaneous packets describing various events and states of
the CPU during trace sessions. This includes the following packet types:

Packet Stream Boundary (PSB):
PSB packets indicate the boundary of an Intel PT trace sample and configure an
Intel PT software decoder in order to discover the beginning of the actual trace
data. PSBs are included automatically by the CPU in the Intel PT data stream and
no option is provided to deactivate the generation of PSBs.

Time-Stamp Counter (TSC):
TSC timestamp packets are produced in order to provide timing information. More
specifically, they store the value of the software accessible time-stamp counter of
the associated CPU at the moment during record. The generation of this packet type
can be deactivated by modifying the IA32_RTIT_CTL.TSCEn MSR field. This
packet type was not essential for this work.

Core Bus Ratio (CBR):
CBR packet contains the value of the bus clock ratio. This packet type is not re-
quired in order for the Control-Flow to be safely reconstructed and thus it was not
used during this work. Unfortunately, this packet type is not configurable and its
generation cannot be deactivated. However, each occurrence of this packet in the
trace data can be safely ignored.

Overflow (OVF):
As already mentioned, it is possible that the configured output buffer might be over-
run during runtime. In such case, an OVF packet is generated by the CPU to indicate
to the Intel PT software decoder loss of packets. OVF can occur for any generated
packet, thus it can potentially indicate loss of useful packets i.e. flow information
packets.

Paging Information Packet (PIP):
PIPs indicate the modification of the CR3 register during runtime. As a result, the
Intel PT software decoder is able to comprehend and handle a paging transition.

2.2.2 Flow Information Packets

Intel PT also produces different types of Control-Flow related packets during runtime. A
software decoder is able to reconstruct the Control-Flow of a program by decoding those
packets and by using them as directions in the actual process binary text segment.

Taken-Not-Taken (TNT):
If the processor executes any type of conditional jump, the former decision whether
this jump was taken or not will produce a TNT packet containing the decision of the
conditional branch. Those packets are essential for the reconstruction of the exact

8 CHAPTER 2. BACKGROUND

Control-Flow of the traced program. A single TNT packet tracks the direction of
up to 6 conditional branches.

Target IP (TIP):
If the processor executes a jump or transfer instruction, which depends on a value in
memory or register, the decoder will not be able to recover the Control-Flow. TIPs
are the packets that are created when the process’s execution reaches an indirect call,
a return, an exception or an interrupt. Those TIP packets store the corresponding
target IP that was executed by the processor after the transfer occurred. These
packets contain the target IP, although that address value may be compressed by
eliminating upper bytes that match the last IP. By default, return instructions do not
cause the hardware to produce TIP packets, and thus the decoder is responsible to
track the state of the current call stack. However, if a special CPU feature called
RET compression is deactivated, the CPU will include TIP packets even if a return
instructions is being executed. In order to minimize complexity, we disabled RET
compression in this work. Moreover, it is essential to disable RET compression in
order for our tool to be used as a Control-Flow Integrity monitor.

Flow Update Packets (FUP)
FUPs are basically hint packets and indicate asynchronous events such as any type
of interrupts or traps. They are usually followed by a TIP packet containing the
address of the following instruction.

Packet Generation Enable Packets (PGE)
PGEs provide the IP at which the tracing of the program begun.

Packet Generation Disable Packets (PGD)
PGDs indicate the last traced packet before tracing was eventually disabled.

MODE:
If a processor mode switch occurs (e.g. from Protected Mode to Long Mode), the
processor also notifies such an event in the form of a MODE packet.

2.2.3 Intel PT Software Decoder

In order to reconstruct the Control-Flow using the output data produced by Intel PT, the
flow information data must first be decoded. For this reason we employ Intel Processor
Trace Decoder Library (libipt) [29], offered by Intel. libipt is a reference implementation
for decoding Intel PT data and it can be used as a standalone library or it can be partially
or fully integrated into a tool.

Intel PT, in order to reduce the amount of data produced by the processor, does not
provide the actual executed instruction pointer but generates as little information as possi-
ble. For this reason the Intel PT software decoder does not only require the Control-Flow
information data to reconstruct the Control-Flow, but also needs the program that was
executed during tracing. Our work focuses on programs executed inside a JIT environ-
ment. In general, Just-in-Time compilers tend to modify the actual program code during

2.2. INTEL PROCESSOR TRACE 9

runtime, making the reconstruction of the flow more complicated. In order to bypass this
limitation, our decoder needs the actual executed JIT code, alongside with the original
code of the executable file.

2.2.4 Trace Filtering

To limit the amount of generated trace data, Intel PT provides multiple options for runtime
filtering:

CPL-Filtering:
Current Privilege Level Filtering offers the option to choose the privilege level that
will be traced by Intel PT. Intel PT provides the ability to configure a logical pro-
cessor to generate trace packets only when CPL = 0, when CPL > 0, or regardless
of CPL. Out tool utilizes this filtering option to limit tracing explicitly to user mode
execution, since Kernel space code is not required for reconstructing the Control-
Flow.

CR3-Filtering:
The Intel PT hardware also provides CR3 filtering. CR3 filtering is based on address
spaces. This means that the execution trace is only recorded if the CR3 register
value matches the CR3 filter value. Since CR3 values can be considered as process
identifiers, you use this feature to only record code executed in the context of a
certain process. For the purpose of our tool, we use CR3 filtering in order to trace
the execution of the JIT code.

IP-Filtering:
When tracing the target software execution, the Intel PT hardware records every
event. To focus on information of your interest, you can use IP filtering. Using
this feature, you can specify address ranges where the software execution is traced.
Depending on the processor, it might be possible to configure multiple instruction
pointer filter ranges. In general, those filter ranges only affect virtual addresses if
paging is enabled. Our system utilizes this filtering option, in order to trace the
execution of the Code Cache, where the generated code resides. The collected trace
information are adequate for the Control-Flow reconstruction to be performed.

2.2.5 Table of Physical Addresses (ToPA)

Intel PT output should be viewed independently from trace content and filtering mecha-
nisms. The options available for trace output can vary across processor generations and
platforms. Trace output is written out using one of the following output schemes, as
configured by the ToPA and FabricEn bitfields of IA32_RTIT_CTL.

• A single, contiguous region of physical address space.

• A collection of variable-sized regions of physical memory. These regions are linked
together by tables of pointers to those regions, referred to as Table of Physical

10 CHAPTER 2. BACKGROUND

Addresses (ToPA). The trace output bypasses the caches and the TLBs, but are not
serializing. This is intended to minimize the performance impact of the output.

• A platform-specific trace transport subsystem.

This work utilizes only the ToPA mechanism. In general, The Table of Physical Ad-
dresses is a mechanism that allows multiple distributed memory chunks to be concate-
nated together to a unified contiguous output region. The ToPA mechanism uses a linked
list of tables. Each entry in the table contains some attribute bits, a pointer to an output
region, and the size of the region. The last entry in the table may hold a pointer to the
next table. This pointer can either point to the top of the current table, in order to create
a circular array, or to the base of another table. The table size is not fixed, since the link
to the next table can exist at any entry. The processor treats the various output regions
referenced by the ToPA tables as a unified Buffer. The ToPA mechanism is controlled by
three values maintained by the processor:

proc_trace_table_base
This is the physical address of the base of the current ToPA table. When tracing
is enabled, the processor loads this value from the IA32_RTIT_OUTPUT_BASE
MSR.

proc_trace_table_offset
This indicates the entry of the table that is currently in use, meaning that it contains
the address of the current output region. When tracing is enabled, the processor
loads this value from bits 31:7 of the IA32_RTIT_OUTPUT_MASK_PTRS.

proc_trace_output_offset
This is a pointer into the current output region and indicates the location of the next
write. When tracing is enabled, the processor loads this value from bits 63:32 of
the IA32_RTIT_OUTPUT_MASK_PTRS.

Output Region Base Physical Address

63 MAXPHYADDR-1 12 11 10 9 6 5 4 3 2 1 0

9:6 Size
4: STOP
2: INT
0: END

Reserved

Figure 2.1: ToPA Entry Overview.

The format of ToPA table entries is shown in Figure 2.1 Each ToPA entry is specif-
ically encoded and contains a physical address, a size specifier for the referred memory

2.3. INTEL PIN 11

chunk in physical memory and multiple type bits. These type bits designate a specific
behavior on access of the ToPA Entry. The individual type bits consist of the following:

STOP Entry:
If the linked output region is filled, tracing will be disabled by hardware. The last
ToPA entry must configure this option.

INT Entry:
If the associated ToPA output region is filled, a notifying performance-monitoring
interrupt (PMI) will be raised and the trace generation will be continued in the next
ToPA output region.

END Entry:
This entry is necessary for the ToPA structure to indicate the last entry within this
table. Therefore, this ToPA entry points to the next ToPA table instead of a ToPA
output region. By configuring this entry to point to the first entry of the ToPA table,
a Ring Buffer is created. Our work employs this setup, as described in the following
sections.

2.3 Intel Pin

Pin [30] is a dynamic binary instrumentation framework for the IA-32, x86-64 and MIC
instruction set architectures that enables the creation of dynamic program analysis tools.
The tools created using Pin, called Pintools, can be used to perform program analysis on
user space applications on Linux, Windows and OS X*. Pin offers run time instrumenta-
tion on already compiled binary files, thus, it requires no recompilation of the source code
while supporting instrumentation of programs that dynamically generate code. In gen-
eral, a Pintool registers instrumentation callback routines with Pin that are called when-
ever code instrumentation needs to be generated. These callback routines represents the
instrumentation component. For our needs, we have utilized Pin and its API, in order to
dynamically instrument our application and collect the required information for the next
steps of our implementation. Our tool’s main objective is to track a program’s execu-
tion and by collecting certain information about Control-Flow decisions, to reconstruct its
Control-Flow. Intel PT is able to collect information about indirect jumps, calls and con-
ditional branches, however certain information need to be collected by instrumentation of
the binary at run time.

In general, Pin consists of a virtual machine (VM), a Code Cache, and an Instru-
mentation API invoked by Pintools. After Pin attains control of the application, the VM
organizes its components in order to execute it.

2.3.1 Just-in-Time Compiler

The best way to think about Pin is as a native to native "Just in Time" (JIT) compiler. The
input to this compiler is the bytecode of a regular executable. Pin intercepts the execu-
tion of the first instruction of the executable and generates new code for the instruction

12 CHAPTER 2. BACKGROUND

sequence starting at this instruction. This generated code is then placed inside a specified
memory region called the Code Cache. In order for the generated code to be executed
the control transfers to the Code Cache. The generated code sequence, called Trace, is
almost identical to the original one. Traces usually begin at the target of a taken branch
and end with an unconditional branch, including calls and returns. Pin guarantees that a
trace is only entered at the top, even though it may contain multiple exits. At the same
time it ensures that it regains control when a branch exits the Trace. After regaining con-
trol, Pin generates more code for the branch target and continues execution. Pin makes
this efficient by keeping all of the generated code inside the Code Cache so it can be
reused and directly branching from one sequence to another. In JIT mode, the only code
ever executed is the generated code. The original code is only used for reference. When
generating code, Pin gives the user an opportunity to inject their own code through the
instrumentation API.

For optimization reasons, while the instrumented Traces are executed, links between
them are created, based on the Basic Blocks they contain. This optimization is performed
by Pin, in order to reduce execution transitions to the Code Cache. By linking Traces
together, a single access to the Code Cache will result in executing not only the Trace
residing at the address that the Code Cache was entered, but all the linked Traces as well.
All the above indicate that, the only way in order to track the execution of the original
program using Intel PT, is by collecting information about the execution of the entire
Code Cache.

2.3.2 Instrumentation

Pin allows a tool to insert arbitrary code written in C or C++ in specific places in the
executable. The code is added dynamically while the executable is running. Pin provides
a rich API that abstracts away the underlying instruction set . The Pintool is able to
utilize this API in order to register instrumentation callback routines with Pin that are
called whenever new code needs to be generated. This instrumentation callback routines
represent the instrumentation component. It inspects the code to be generated, investigates
its static properties, and decides if and where to inject calls to analysis or instrumentation
functions. The Pintool can also register notification callback routines for events such
as thread creation, forking, linking between Traces or Code Cache execution accesses.
These callbacks are used in our tool in order to gather data, initialize/update certain data
structures and inspect when the execution transfers to the Code Cache.

As previously mentioned, Pin’s instrumentation is "Just in Time". Instrumentation
occurs immediately before a code sequence is executed for the first time. We call this
mode of operation, Trace Instrumentation. Trace instrumentation utilizes the Pin Trace
API. Trace instrumentation lets the Pintool inspect and instrument an executable one trace
at a time. Pin breaks the trace into basic blocks, BBLs. A BBL is a single entrance, single
exit sequence of instructions. Using the Pin BBL API it is possible to insert an analysis
call or a callback routine for each BBL or any instruction inside a specific BBL.

Throughout this work, Pin is used as the JIT environment of our preference in extract-
ing and reconstructing the Control-Flow of the original program. We employ Trace, BBL

2.4. INTEL XED 13

and Instruction API in order to collect useful information that will assist us during the
reconstruction of the Control-Flow.

2.4 Intel XED

As previously mentioned, in order for the program executed inside the JIT to be recon-
structed the exact executed instructions of the Code Cache are required. We achieve this
by obtaining every instruction using X86 Encoder Decoder (XED) [31]. XED is a soft-
ware library for encoding and decoding X86, IA32 and Intel64, instructions. The decoder
takes sequences of up to 15 bytes along with machine mode information and produces
a data structure describing the opcode, operands, and flags. Disassembly is essentially a
printing pass on the data structure. We utilize XED in order to disassemble every instruc-
tion of a Trace after being placed inside the Code Cache.

2.5 POSIX Shared Memory

POSIX Shared Memory is an inter-process communication (IPC) mechanism defined in
POSIX specification. After setting up the shared memory, two or more processes may
read from and write to the shared memory region. Compared to other IPC mechanisms
(e.g. pipe, socket, etc), POSIX shared memory does not impose copy overheads, thus
it can be quite useful in some cases. We utilize POSIX Shared Memory throughout our
work in order to transfer JIT code information, required for the reconstruction, between
Pin and the Intel PT Decoder.

2.6 Loadable Kernel Module

A loadable kernel module (LKM) is a mechanism for adding code to, or removing code
from, the Linux kernel at run time. They are ideal for device drivers, enabling the kernel
to communicate with the hardware without it having to know how the hardware works.
The alternative to LKMs would be to build the code for each and every driver into the
Linux kernel, which is not efficient as it would make the Linux kernel huge by having it
support every hardware by default. Kernel modules are essentially pieces of code that can
be loaded and unloaded into the kernel, upon demand, and extend the functionality of the
kernel without the need to reboot the system.

In our work, we extended Simple-PT [32], a simple kernel driver for Intel PT offered
by Intel, based on our needs. Simple-PT enables the collection of Intel PT traces for
debugging reasons, and thus quite a few changes were required. All the modifications
will be discussed in section 3.

2.6.1 Kernel Module Parameters

Module parameters give the ability to the user to pass a value of some kind to the Kernel
Module upon loading, and also examine its value while the module is loaded and running.

14 CHAPTER 2. BACKGROUND

In addition these parameters can be modified on the fly if required. The module_param()
macro is used in order to pass a value to a Module parameter, while module_param_cb()
allows run-time changes to be applied. This functionality is used by our Driver in order to
allow a user, by configuring some Module parameters, to control the Intel PT hardware.

2.6.2 Input/ Output Control

Input/ Output Control, or IOCTL, is a system call for device-specific input/ output, that
solves the problem of communicating from user space with the Device Driver. This mech-
anism provides the user with a generic call which can be used to control any device. By
using IOCTL the user is able to write to the device as well as read data from it. Our Driver
utilizes the IOCTL mechanism to expose certain functionality to the User space, that will
be used throughout our system’s implementation.

2.6.3 Blocking I/O

Whenever a process has to wait for an I/O event its execution is suspended. Suspended
processes free the processor for other uses. There are several ways of handling sleep-
ing and waking up processes in Linux, each suited to different needs. Most of those
are based on the wait queue data structure. The wait queue stores all processes that
are suspended till a specific event occurs. Wait queues are declared and initialized us-
ing the DECLARE_WAIT_QUEUE_HEAD macro. Once the wait queue is declared and
initialized, a process may use it to go to sleep. We implemented sleeping by calling
wait_event_interruptible() to the wait queue. This macro is the preferred way to sleep on
an event. It combines waiting for an event and testing for its arrival in a way that avoids
race conditions. It will sleep until the condition, which may be any boolean C expression,
evaluates true. The macro expands to a while loop, and the condition is reevaluated. The
wake_up_interruptible() macro wakes the process if the corresponding condition is met.

Chapter 3

Design

Tracing the execution of a process inside a JIT environment is not straightforward. One
of the most important problems is that the JIT engine, in order to instrument the binary,
requires to change the Basic Blocks of the original binary and create its own sequence
of code. This new sequence of code is then placed inside a Code Cache, as Traces of
code, and is executed by transferring the Control of the execution there. The goal of
this work is to differentiate and extract the Basic Blocks of the original program from
those produced by the Pintool and be able to reconstruct the complete Control-Flow of
the instrumented binary. In order to achieve this, we have build our system by utilizing
the Intel Processor Trace hardware feature, that comes with the newest Intel Processors.
This section offers an overview of the complete Control-Flow reconstruction system and
its individual components.

3.1 Architecture

3.1.1 Overview

Figure 3.1 presents the Overview of our Architecture. The main idea of our work is to
create a system that is able to trace the execution of a program inside a JIT environment
and reconstruct its Control-Flow. Our system uses a Pintool in order to spawn the main
process. Pintool is the JIT environment that we are using throughout our implementation.
In order for Intel PT to be able to collect trace data for Pintool, some actions need to be
performed. Our Driver takes this responsibility by setting all the required registers, in
order for the Pintool to be traced, as well as starting Intel PT. Intel PT is now able to begin
tracing of the Pintool. All the produced data are written in the Ring Buffer, that consists of
several sub-buffers. The Decoder is blocked by the Driver and is waiting for a sub-buffer
to become available. At the time a sub-buffer is filled with data, the Driver unblocks the
Decoder, which starts reading the produced data. The Decoder is decoding sequentially
all the sub-buffers that have been filled with data by Intel PT, at the same time that the
hardware is writing data on subsequent sub-buffers. As soon as a Control-Flow packet
is decoded, it is used in order to trace the execution of the original program. In order to

15

16 CHAPTER 3. DESIGN

Decoder

Driver

Pin Tool

Buffer

Intel Processor Trace

Shared Memory

K
E

R
N

E
L

S
PA

C
E

U
S

E
R

 S
PA

C
E

H
A

R
D

W
A

R
E

Binary

CF

Figure 3.1: Design of the system.

do so, the Decoder requires the disassembly of the code that was executed by the Pintool
inside the Code Cache. Our Pintool achieves this by disassembling all the Code Cache
instructions and storing them inside a POSIX Shared Memory. By using the disassembly
together with the Intel PT packets our decoder extracts the Basic Blocks executed by the
original program and reconstruct the complete Control-Flow of the program.

3.1.2 Driver

The Intel PT Kernel Module is probably the most important part of our reconstruction tool,
since it is responsible for controlling the Intel PT hardware feature, as well as coordinating
and communicating with all the other components of the system. Our Kernel Module has
been built by extending the Intel Simple-PT driver and customizing it in order to satisfy

3.1. ARCHITECTURE 17

our needs. All the modifications will be described extensively on section 4.
Our Intel PT Driver is a critical part of the overall system, as it exposes Intel PT

functionality to user space. This allows a user to set up and enable the tracing of a specific
process, by accessing several Kernel Module parameters exposed by the Driver. A user is
capable of specifying the application that desires to be traced by setting its CR3 value on
the appropriate parameter. The Kernel Driver receives this update on the CR3 parameter
and updates the CR3 register. Intel PT uses this CR3 register in order to decide on the
process, for which it should collect Control-Flow information data. In addition, a CPL
Module parameter is offered by the Driver. By setting this parameter the user is able to
decide whether, Control-Flow information for the user or kernel space execution of an
application will be collected. Our tool utilizes the offered functionality, in order to trace
the user space execution of a Pintool. This Pintool will be the JIT environment used in
order to prove that our system is able to extract the execution flow of the original program.
Furthermore, the Driver can be used in order to set the IP filtering option of Intel PT. In our
case, we only care about Intel PT data produced by the execution of the Code Cache, since
this is where the generated JIT code resides. We have used this idea in order to reduce
the amount of the produced Intel PT packets, by having PT trace only code executed
inside the Code Cache address ranges. The user is also able to start or stop the Intel PT
hardware feature whenever needed by setting a specific Module parameter. Whenever this
parameter is set, the Driver is notified and the Intel PT hardware is controlled accordingly.

Furthermore, our Driver exposes further functionality, that has been used throughout
this project. By accessing the Kernel Module a process is capable of accessing the buffer
where the Intel PT data are written, wait for a sub-buffer to become available of reading
and even slowdown the traced process in order to avoid overwrites. Other capabilities of
the Driver will be described on the following subsections of the Design overview, depend-
ing on the component of our system that utilized them.

3.1.3 Ring Buffer

As previously mentioned, the Intel PT uses the ToPA mechanism in order to store the
trace output. Our ToPA setup consists of 20 sub-buffers that are connected together, in
order to create a ring buffer. This is achieved by having the last ToPA entry point to the
first one, using the END bit of the ToPA entry. Our Kernel Modules configures this buffer
that resides inside the Kernel space. The default Simple-PT Driver was build for offline
decoding of the Intel PT packets. This means that when a process is being traced, all the
PT packets will be recorded on the ring buffer. When the execution of the program is
completed, the decoder will copy the whole ring buffer to the user space in order to be
decoded. This implementation, however, faces a couple of limitations that are vital for our
system and need to be resolved. First of all, the tracing of a program is limited by the size
of the ring buffer. When the ring buffer gets full, all the new data will overwrite the old,
meaning that only the latest trace output will be preserved. Secondly, copying the entire
ring buffer to the user space, in order to be decoded, is costly when it needs to be done in
parallel to the execution of the program. In order to address, this problems and be able to
decode the PT packets in real time, we had to adjust the way the buffer is accessed by our

18 CHAPTER 3. DESIGN

Kernel Driver.
The most promising solution in order to refrain from copying the data to the user

space, but at the same time avoid overwrites, is to decode the PT data directly from inside
the Kernel ring buffer. In order for this to be achieved, a set of steps are required. First, a
way in order to know when a sub-buffer is filled with data is required. As such, the decoder
can be notified and the decoding of that particular sub-buffer can take place is parallel
to the programs execution. In addition, our mechanism must ensure that overwrites are
avoided, when the Intel PT packets are produced faster than decoded. For this reason, we
have utilized the INT bit of the ToPA Entry. As previously mentioned, if the INT bit is set
for a specific ToPA output region, a notifying PMI interrupt will be raised, at the time this
memory region is filled. By capturing this signal we are able to know when a sub-buffer is
ready and notify the Decoder to start reading and decoding it. In addition, by monitoring
the distance between the sub-buffer that PT writes and the one the Decoder is accessing,
we are able to slowdown the main process in cases that an overwrite is imminent.

3.1.4 Pin Tool

As previously mentioned, Pintool is the JIT environment showcased throughout our work.
In order for our system to be able to reconstruct the Control-Flow of the program, apart
from the Intel PT data, some additional information about the execution of the application
need to be collected. We achieve this by utilizing Pintool and sharing all the required data
with the Decoder.

As aforementioned, Pin intercepts the execution of the executable and generates new
code that is then placed inside the Code Cache. In order for our reconstruction technique
to be performed, the Intel PT data need to be used in order to follow the code executed
by Pintool. This means that, the exact code generated is required by the Decoder. Our
system’s approach, is to acquire the complete Code Cache disassembly through Pintool
and share it with the Decoder. In order for faster decoding to be performed, we decided
to create a Control-Flow table. This table contains all the transitions from one address
of the program to another, and correspond to conditional branches and direct or indirect
jump/ calls of the code. At the same time, information about whether each instruction
is generated by Pintool or whether it belongs to the original program is stored inside this
table. The Decoder can use the table in combination to the Intel PT Control-Flow decision
packets in order to follow the complete execution of the Code Cache Code. This Control-
Flow Table is stored in a Shared Memory region that can be accessed by the Decoder at
any time.

Since we only care about the code executed inside the Code Cache, we have utilized
the IP filtering functionality in order to configure Intel PT to collect tracing information
only for the code that resides there. However, the Code Cache is not accessed only once
and the generated code is not executed uninterrupted. Pintool’s execution moves back and
forth from inside the Code Cache and Pin’s code. This means that, the Code Cache is
being accessed at different regions each time the execution returns to it. Unfortunately,
PT doesn’t collect any information about the location inside the Code Cache where the
control transfered, due to this access being performed by a direct jump. For this reason, in-

3.1. ARCHITECTURE 19

formation about where in the Code Cache the collected packets correspond to is required.
We utilize Pin’s API in order to register a callback routine that records the address where
the Code Cache was accessed each time. We store the Code Cache accesses in a queue
residing in the Shared Memory and being accessed by the Decoder, in order to enable the
reconstruction.

Finally, after generating code for a Trace, Pin attempts to link this generated code
with other segment of generated code inside the Code Cache. This is mainly performed in
order to reduce the Code Cache accesses, meaning that when multiple Code Cache Traces
are linked between each other, a single Code Cache will result in multiple Traces being
executed. In order for the Control-Flow reconstruction to be correct, those transitions
between the Code Cache Traces need to be applied on the Control-Flow Table. However,
since those links where not created by Pin at the time a Trace was placed inside the
Code Cache, having Pintool placing those transition inside the Control-Flow table will
result in tracing the wrong code. These links need to be applied by the reconstruction
tool at the exact same time that they were created when the Code Cache code was being
executed. For this reason, we have created a Link table that contains information about
the new transitions and when they should be applied to the Control-Flow table. This table
is placed in the Shared Memory region as well and will be further described in section 4.

3.1.5 Decoder

The Decoder is the main component responsible for reconstructing the Control-Flow of
the original program. It is responsible for reading the recorded Intel PT data from Kernel
space, decode them and use them in order to reproduce the Control-Flow that the original
program followed during its execution.

As the name of this component suggests, its main task is to decode the data collected
by Intel PT. In order to achieve this the Decoder needs to have access to the Kernel Ring
Buffer that was previously described. The Driver offers the option to use memory map-
ping in order to map the Kernel Ring Buffer in the address space of the Decoder. We
use memory mapping in order to eliminate the overhead of copying the Intel PT data
from Kernel space to User space. As previously illustrated, the Buffer consists of several
smaller sub-buffers connected as a list. The Decoder is implemented is such a way that
it decodes one sub-buffer at a time. In addition, the Decoder is allowed to read data for
decoding, only if Intel PT has already finished recording on that sub-buffer. This approach
was mainly followed in order to avoid writing and reading the same sub-buffer simulta-
neously. We accomplish this, by having the Decoder block through a Blocking I/O, until
the next sub-buffer is filled with data for decoding. After a sub-buffer is filled with data,
the Decoder is unblocked, enabling it to read the Intel PT data and start decoding.

The decoding is performed using the Intel Processor Trace Decoder Library (libipt)
distributed by Intel. In general, for the decoding part, we use as a basis the implementa-
tion of a simple Decoder, that comes together with the Simple-PT Kernel Module. This
Decoder decodes the data and reports every packet that was collected during the tracing
of the program. Our system only utilizes a subset of those Intel PT packets. This means
that, certain packets can be excluded at the moment they are discovered. We modify the

20 CHAPTER 3. DESIGN

decoding process and only focus on TNT, TIP and FUP packets, since those are sufficient
for reconstructing the execution flow of the traced application.

Reconstructing the Control-Flow, requires our algorithm to follow the code that was
executed in association with the Intel PT recorded packets. For this reason, and as pre-
viously discussed, our Pintool creates a Control-Flow table that includes all the Control-
Flow transitions, and information about whether each one of them belongs to the original
program or to the generated Pin code. The Decoder is able to access this table by attach-
ing to the Shared Memory segment, where the Pintool has stored it. Using this transition
table in combination with the decoded Intel PT packets, our algorithm is able to actually
trail the Control-Flow table transitions correctly and thus extract the Basic Blocks of the
original program.

One limitation we had to overcome is the fact that, during the JIT execution, changes
on the generated code take place. One of the most common code changes is the linking of
different Code Cache Traces to each other. This means that after these links are performed,
our Control-Flow table would be rendered obsolete. Our system, in order to stay up-to-
date, and follow the correct execution Flow needs, to perform those transition updates
on the Control-Flow table. However, those transitions need to be updated at the correct
time during the Control-Flow reconstruction. For this reason, our Pintool has created a
Link table containing information about the newly created links between traces, as well
as when those transitions should be added on the Control-Flow table. Since the Decoder
is the component of our system that is using the Control-Flow table in order to follow
the execution of the program, we decided to perform the transition updates here. More
specifically, we noticed that the links occur at the moment a new Code Cache Trace is
being accessed. Our Decoder is looking for those newly added Traces and by using the
Link table is able to update the Control-Flow table with all the new transitions correctly.

Our Decoder is able, by combining all the information collected by our other compo-
nents, to successfully extract all the Basic Blocks of the original program, leading to the
reconstruction of the Control-Flow of the original program. The Decoder, as well as all
the other components of the system, will be described in depth in the following section.

Chapter 4

Prototype Implementation

Our system is a prototype for hardware-accelerated Control-Flow reconstruction of appli-
cations, executing inside Just-in-Time environments. This chapter describes the imple-
mentation of the system and is structured as follows:

In chapter 4.1 the set up and enabling of Intel PT is described. Chapter 4.2 covers the
details of the Ring Buffer used for the output of the trace data. Chapter 4.3 focuses on
the Pintool used in order to setup a JIT environment. This Pintool is also used in order to
collect some data of interest that will assist on the Control-Flow reconstruction. Finally,
chapter 4.4 describes the developed Intel PT Decoder and the Control-Flow reconstruction
algorithm of our system.

By combining all components, we developed a hardware-accelerated Control-Flow re-
construction system of applications executing inside a JIT. Our system leverages the novel
hardware feature Intel PT and offers real time reconstruction of the original program, by
extracting it from the JIT environment’s execution.

4.1 Intel Processor Trace Configuration

Intel Processor Trace is the hardware feature that our system utilizes in order to recon-
struct the Control-Flow of the original application, executed inside a JIT environment.
Properly setting up the Intel PT hardware to trace only the code of interest can lead to
huge performance benefits. By default Intel PT, traces the execution of the whole CPU,
meaning that an enormous amount of data is being recorded. Decoding all those packets
could result in major system overheads and slowdowns. In order for our system to work
properly, only trace information for the execution of Pin’s Code Cache is required. Dur-
ing a Pintool’s execution, all the generated code is placed inside the Code Cache, which
resides on a fixed memory region. Configuring Intel PT to only trace code that is located
on that memory region, can greatly reduce the amount of generated data and subsequently
decrease the time required for them to be decoded.

In order for the setup to be applied, we have developed an application that configures
the Intel PT hardware, depending on our needs, and begin the tracing procedure. After
everything is setup and Intel PT is enabled, our Pintool is spawned using Pin. Pin is

21

22 CHAPTER 4. PROTOTYPE IMPLEMENTATION

executed using the fork() system call.

4.1.1 Filtering

The Intel PT filtering setup is configured as following:

CPL-Filtering
As described in section 2, Intel PT can be configured to only trace the execution
of a process in the User space. Since our system focuses on reconstructing the
Control-Flow of the original program, only branch decisions of the User space code
is required. The Simple-PT Driver offers two Module parameters, that allow the
user to specify if Intel PT will trace the Kernel or User space execution. By setting
the Kernel parameter to 0 the Driver is instructed to set CPL to greater than 0, thus
enabling User space tracing.

CR3-Filtering
CR3 filtering is used by Intel PT to trace only a specific process, instead of the
entire system. In order for Intel PT to trace only a single CR3 value, software has
to write the CR3 to the IA32_RTIT_CR3_MATCH MSR. For this reason, we have
created a Module IOCTL that can be used to pass a process’s PID to the Driver.
When this IOCTL is called, our Driver discovers the CR3 value of the process
using this PID and updates IA32_RTIT_CR3_MATCH MSR. The Driver is able
by retrieving the task_struct of a process, using its PID, to collect its CR3 value.
The IA32_RTIT_CR3_MATCH MSR is then set with the acquired CR3 value and
Intel-PT is able to trace the Pintool correctly.

As described above, we have developed an application responsible for setting up
Filtering and enabling PT. Our initial idea was to configure the CR3 value before
the Pin was executed. However, we noticed that Pin’s PID value differs from the
Pintool’s one. This means that if we configure Intel PT to trace the process using
the PID of Pin, our tool won’t be traced, since the Driver will set up the wrong CR3
value. Since it is essential to follow the execution of Pintool’s Code Cache, we need
to acquire the correct PID, in order for Intel PT to discover the correct CR3 value.
To achieve this, we call the IOCTL responsible for setting up the CR3 value, from
within the main function of our tool.

IP-Filtering
As seen in section 2, IP filtering sets Intel PT to only trace certain regions of the
codes execution. To enable IP-Filter ranges, software has to modify two MSRs.
These MSRs are IA32_RTIT_ADDRn_A and IA32_RTIT_ADDRn_B MSR, where
n represents the identifier of the given IP filter. In general, Intel PT allows two IP-
Filter ranges to be set. We have utilized this functionality, in order to focus the
tracing only to the Code Cache execution, instead of the whole system. Our system
is interested in reconstructing the Control-Flow of a program executed in a JIT envi-
ronment. This means that the Code Cache needs to be traced, since this is where the
generated JIT code is placed. The Simple-PT Driver offers two Module parameters,

4.2. RING BUFFER 23

allowing the user to specify the ranges that Intel PT will collect Control-Flow pack-
ets. Using these parameters, the Driver is able to configure the MSRs previously
described. We set up the Code Cache address ranges from within our application
responsible for all Intel PT initializations.

4.1.2 Return Compression

When Return Compression is enabled, TIP packets for near return (RET) instructions will
be compressed by Intel PT. If the RET target matches the next IP of the corresponding
CALL, then the TIP packet is obsolete, since the decoder can deduce the target IP by
maintaining a CALL/RET stack of its own. In order to minimize complexity we disable
Return Compression, by accessing the corresponding Module parameter offered by the
Driver. The Driver then sets the proper MSR bit in order for the Return Compression to
be disabled.

4.1.3 Processor Affinity

Processor affinity, or CPU pinning, enables the binding and unbinding of a process or a
POSIX thread to a certain CPU. That process or thread will execute only on the designated
CPU or CPUs rather than any CPU. Our process responsible for setting up Intel PT and
spawning the Pintool, utilizes this option by calling sched_setaffinity, in order to
attach Pintool on a specific core using its PID. Since our Pintool is executed via fork()
system call, it inherits its parent’s CPU affinity mask. This way the Decoder can focus on
decoding trace data, only produced by a certain CPU core. Pining the Pintool or a specific
core makes the decoding process less complicated, since all the data will be written on the
same Kernel Ring Buffer. In addition, the Pintool will execute on only one of the CPU
cores, allowing the remaining to be utilized by other processes.

4.1.4 Trace Enabling

Finally, after all the initializations are performed, the Intel PT hardware is enabled for
tracing. This is done through another Module parameter. When the value of this parameter
is set to 1, the Driver is notified and the TraceEn bit of IA32_RTIT_CTL MSR is set to
enable PT tracing.

4.2 Ring Buffer

The Kernel Ring Buffer, where Intel PT records the trace data, is an essential part of our
whole system. We utilize the Table of Physical Addresses, described on Chapter 2.2, in
order to facilitate the implementation of long-term Intel PT tracing. The ToPA mechanism
provides a hardware-assisted mechanism to notify software if a configured ToPA entry has
been filled, by using the ToPA Entry Field INT. In addition, it offers the option to create
a ring buffer by having the last entry point to the first one, through the ToPA Entry Field
END. By utilizing all these capabilities, it is possible to implement a reliable long-term

24 CHAPTER 4. PROTOTYPE IMPLEMENTATION

tracing mechanism. We leverage the above techniques, in order to create the following
ToPA configuration during usage.

4.2.1 ToPA Configuration

ToPA Entry 1 (INT)

...

ToPA Entry 19 (INT)

ToPA Entry 20 (END)

ToPA Entry 0 (INT)

4MB Page

4MB Page

4MB Page

0x0

0xffffffffff

Physical Memory

Figure 4.1: ToPA Configuration.

Our system requires to be able to decode data in parallel to recording. For this reason
we have utilized the ToPA mechanism to create a Ring Buffer, consisting of several sub-
buffers. This way, the Decoder can read the data residing on already filled sub-buffers,
while the Intel PT hardware is writing its trace data on the remaining free ones. Our
configuration consists of 20 sub-buffers connected to each other through the ToPA mech-
anism. Each sub-buffer has been allocated a Physical Page of size 4MB. As shown in
Figure 4.1, the first 20 ToPA Entries are pointing to 20 different Physical Pages and have
the INT ToPA Field set. ToPA offers the option to create a circular buffer by having the
last ToPA Entry point to the first one. The last ToPA Entry is configured by setting the
END ToPA Field. As we can see, our last ToPA Entry is pointing to the ToPA Entry 0,
thus creating a Ring Buffer.

4.2.2 PMI Signal Handler

As previously, mentioned we utilize the INT Field of the ToPA Table Entry, in order to be
informed whenever a sub-buffer is filled with data. By setting the INT Field on each one

4.3. PIN TOOL 25

of the ToPA Entries, an LVT PMI is automatically activated during the initialization and
configured as a Non-Maskable Interrupt (NMI). The NMI is a hardware interrupt, of the
highest-priority, capable of interrupting all software and non-vital hardware devices. This
interrupt cannot be ignored through the use of interrupt masking techniques.

In order to be able to know when a sub-buffer is full of trace data, we have imple-
mented a PMI NMI Signal handler. We distinguish this PMI from others by checking bit
55 (Trace_ToPA_PMI) of the IA32_PERF_GLOBAL_STATUS MSR. In addition, in or-
der to make sure that the hardware is writing on the next buffer, than the one we received
the signal for, we check bits 31:7 of the IA32_RTIT_OUTPUT_MASK_PTRS, which in-
dicate the entry of the table that is currently in use. This way, each time a PMI Signal
is received, we can be sure that a specific sub-buffer is full and we are able to perform
certain actions.

4.2.3 Ring Buffer Overwrites

One problem that may arise while using a Ring Buffer, may be the case where the writer
is quite fast and may catch up with the reader. If this happens, trace data that haven’t been
decoded yet will be overwritten with new, leading to Intel PT packet loss. Consequently,
we need to implement a way that handles this case. We have utilized the PMI Signal
handler in order to create a mechanism for avoiding overwrites. More specifically, each
time a PMI signal is received, we check the distance between the writer and the reader.
We know the position of the writer by using the IA32_RTIT_OUTPUT_MASK_PTRS,
mentioned before. In addition, the Kernel Driver holds the offset of the sub-buffer that
the Decoder is currently reading. By monitoring the distance, between the writer and
the reader inside the PMI Signal handler, we are able to pause the Pintool that Intel PT
is tracing, when an overwrite is approaching. This way, no trace data are recorder on
the Ring Buffer, thus avoiding any overwrite of Intel PT data. We pause the Pintool by
sending a SIGSTOP signal using killpid(). Each time a PMI signal is received, the Signal
handler is checking whether the reader has obtain a sufficient distance from the writer. If
so, the Pintool is unpause by sending a SIGCONT signal.

4.3 Pin Tool

This work focuses on extracting the execution of an application from inside a JIT envi-
ronment and at the same time reconstructing its Control-Flow. As previously described,
the JIT environment we have used throughout our work is Pin. When an application is
executed by a Pintool, Pin generates a new sequence of code depending on the Basic
Blocks of the original application being instrumented. Our system is attempting to iso-
late the original code from the one generated by Pin, in order to extract the original Basic
Blocks. In order to do so, our system is using branch decision information collected by the
hardware to follow the execution of the generated code placed inside a specified memory
region, the Code Cache. However, certain information are not collected by the hardware,
meaning that they need to be acquired in a different way. We collect the required infor-

26 CHAPTER 4. PROTOTYPE IMPLEMENTATION

mation from inside the Pintool, by utilizing the Pin API. This way our system is able, by
combining the Control-Flow decisions collected by Intel PT and the complementary infor-
mation by Pintool itself, to reconstruct the actual Control-Flow of the original application
that is executing inside the JIT environment.

4.3.1 JIT Generated Code

Table 4.1 displays how a Trace of the original program is transformed to a Code Cache
Trace.

Original Trace
Address Instruction
82aacb5 test ...
82aacbb jz 82aacc4
82aacbd or ...
82aacc4 mov ...
82aacca test ...
82aacbd or
82aaccd jz 82aacd9
82aaccf or ...
82aacd9 and ...
82aacde cmp ...
82aace3 jz 82aacfd

Code Cache Trace
CC Address ORIG Address Instruction

f5a371e8 82aacb5 test ...
f5a371ee ffffffff data16 nop
f5a371f0 ffffffff jz f5a76dc0
f5a371f6 82aacbd or ...
f5a371fd 82aacc4 mov ...
f5a37203 82aacca test ...
f5a37206 ffffffff data16 nop
f5a37208 ffffffff jz f5a76ddc
f5a3720e 82aaccf or ...
f5a37218 82aacd9 and ...
f5a3721d 82aacde cmp ...
f5a37222 82aace3 jz f5a76df8
f5a37228 ffffffff jmp f5a76e14

Table 4.1: Pin generated code. On the left hand the original Trace is shown, while on the right
hand the generated code for this original Trace appears.

4.3.2 Code Cache Trace Discovery

An important step in reconstructing the Control-Flow of the original program is to follow
the execution of the Code Cache. This means that, we need to be able to know exactly
where on the Code Cache code, the collected packets correspond to. As previously de-
scribed, the Intel PT hardware has been set to only trace the execution of the Code Cache,
using the IP-Filtering mechanism. In general, Pin uses a direct jump in order to enter the
Code Cache. This means that, no TIP packet containing the address of the Code Cache
Trace, that will be executed, is recorded by Intel PT. By observing Pintool’s execution
flow we found out that, before entering the Code Cache, the target of the direct jump is
modified in order to point to the right Code Cache Trace. This direct jump lies at the
same address and is reached by an indirect jump. Subsequently, a TIP with the exact
same address is received each time the execution of the Pintool moves to the Code Cache.
This TIP is quite helpful and will be referred to as Code Cache Entry TIP. This way, the

4.3. PIN TOOL 27

decoder is able to know that the execution of a new Code Cache Trace is taking placing
and perform the reconstruction of this original Trace.

However, by using this technique we are unable to know which Code Cache Trace
was executed each time. In order to overcome this limitation, we have created a queue
containing the Code Cache Trace addresses in the exact order the control of the Pintool
has accessed them. This queue is stored in a Shared Memory segment. Our reconstruction
algorithm is therefore able, every time a Code Cache Entry TIP appears, to know which
Code Cache Trace the subsequent collected Intel PT packets refer to.

Pintool utilizes the callback routine CODECACHE_AddCodeCacheEnteredFunction,
which adds a function that gets called whenever control enters the Code Cache. Using this
function, we have the opportunity to insert the Code Cache Trace address in the queue.
The Decoder is able to know which Code Cache Trace is traced, every time a Code Cache
Entry TIP appears, by getting the first element of the queue. Using this queue together
with collected Intel PT packets, as well as all the structures described in this section, the
Decoder is able to reconstruct the Control-Flow of the original application.

4.3.3 Control-Flow Table

The main idea behind our system is to reconstruct the Control-Flow of the original ap-
plication executed inside the JIT environment. In order to do so, our reconstruction al-
gorithm, that will be described later, requires to follow the exact execution of the Code
Cache code together with the collected Intel PT packets. Our initial idea was to store the
complete Code Cache code in a Shared Memory, so that it could be accessed and used
by our reconstruction tool. Our tool would then be able, by accessing the disassembly of
a particular Code Cache Trace, to follow the code instruction by instruction. Each time
a conditional branch or an indirect jump/ call would be found, the next Intel PT packet
would be used, in order to discover the next address that Pintool accessed. In addition,
each disassembled instruction would be marked as original or generated by Pin. This way
our algorithm would be able to differentiate the original Basic Blocks from those of the
generated JIT code, and isolate them.

However, this approach suffers from certain drawbacks. First of all, it requires the
whole disassembly of the Code Cache code to be written in memory. Depending on the
size of the main application, this may demand a lot of memory to be used. In addition,
this approach may be quite slow, since the reconstruction algorithm would need to parse
every instruction of the Code Cache, although it only requires a subset of those. More
specifically, instead of parsing every instruction, the reconstruction algorithm only needs
to know the entry of a Basic Block and the transition to the next one. For this reason, we
decided that the best approach is to create a Control-Flow Table, containing the transitions
from one Basic Block to the next one. In addition, we have used this table in order to store
information about the original Basic Blocks that reside inside the Code Cache. This way
the Decoder will be able to correlate each transition to the original Basic Blocks, and
be able to extract them faster. For this reason, our Control-Flow Table contains all the
discovered transitions of the Code Cache code, as well as information about whether an
instruction belongs to the original program or is Pin generated.

28 CHAPTER 4. PROTOTYPE IMPLEMENTATION

CODE CACHE ADDRESS ORIGINAL BBL ADDRESS BRANCH CONDITIONAL TARGET ADDRESS

Figure 4.2: Control-Flow Table Entry Overview.

The format of the Control-Flow Table entries is shown in Figure 4.2. Each Code
Cache Entry encodes a transition from one Code Cache Basic Block to another or the
address of an original Basic Block. Field 1,2 and 3 are unsigned integers containing hex-
adecimal values that correspond to addresses. The remaining fields are integers indicating
the type of the entry. The individual fields are the following:

CODE CACHE ADDRESS
Each entry of the Control-Flow table is created depending on an instruction of the
Code Cache. This field indicates the address inside the Code Cache, where the
corresponding instruction resides.

ORIGINAL BBL ADDRESS
This field contains information about whether an original Basic Block was discov-
ered. More specifically, whenever the first instruction of an original Basic Block is
found inside the Code Cache, its original address is written on this field. In case
this instruction is also a branch instruction, the remaining fields are used in order to
store the transition information. If the instruction is not a branch instruction, only
the CODE CACHE ADDRESS field is set and the remaining fields are not set.

BRANCH
The BRANCH field indicates whether this entry is a transition or not. If BRANCH
is set to 1, this entry field corresponds to a branch instruction that was found inside
the Code Cache. If this field is set to 0, the entry is not a transition and can only
contain the address of an original Basic Block.

CONDITIONAL
The CONDITIONAL field can only be set to 1 if the BRANCH is set as well. It is
used in order to identify a transition as conditional or not. If CONDITIONAL is set
to 1, this specific entry corresponds to a conditional branch instruction and should
be handled accordingly. If set to 0 while BRANCH is set to 1, the entry corresponds
to a direct or indirect branch instruction of the Code Cache. The Decoder can use
this field in order to be able to know how this transition needs to be handled, at the
time the reconstruction takes place.

TARGET ADDRESS
In case that an entry refers to a Control-Flow transition, this field contains the target
address of the branch instruction. This field is not set, if the corresponding instruc-
tion of the Code Cache is an indirect branch, as the address is unknown at the time
the Control-Flow Table was created.

4.3. PIN TOOL 29

4.3.3.1 Code Cache Disassembling

The first step of filling the Control-Flow Table, requires discovering all the branch instruc-
tions that reside inside the Code Cache. In order to do so, we need to be able to check each
instruction of the generated code, and use the ones we need to create the table. For this
purpose, we have used the callback routine CODECACHE_AddTraceInsertedFunction,
which adds a function that gets called whenever a new Trace is placed inside the Code
Cache. In addition, this callback routine supplies us with the complete Trace, for which
the callback was invoked. Subsequently, this is the proper place to acquire the disassembly
of a Code Cache Trace. We achieve this by using XED, X86 Encoder Decoder, provided
by Intel. XED comes with an API enabling us to perform disassembly on any given x86
instruction. By iterating through every instruction of the Trace, we are able to obtain the
complete disassembly of the generated code that is getting placed inside the Code Cache.

During the Control-Flow Table’s creation, we identified some some cases where the
Code Cache was not accessed at the beginning of a Code Cache Trace. Instead, the con-
trol of the program moved at some Code Cache regions where Pin generated code resided.
These regions, mainly consist of small code sequences that end with a jump to a proper
Code Cache Trace. Due to the reason that, these code sequences do not belong to a Trace,
that was placed inside the Code Cache at some point, the above described disassembly
procedure was never performed for them. This means that, we do not own their disas-
sembled code, rendering us unable to follow the execution of the Code Cache every time
it moves there. The approach we have followed in order to overcome this problem, is to
acquire the disassembly for these code sequences at a different point than this of the Code
Cache Traces. We have used CODECACHE_AddCodeCacheEnteredFunction callback
routine, which gets called whenever the control is entering the Code Cache. However,
this callback routine does not return the complete Code Cache Trace, contained at the
address where the Code Cache was accessed. Instead, it only supplies us with the ad-
dress where the Code Cache was entered. In order to obtain the disassembly for this code
sequence, we begin by disassembling the instruction at the given Code Cache entered
address. XED API, provides us with a function that returns the length of an already dis-
assembled instruction. Having the length of the disassembled instruction at the address
where the Code Cache was entered, we are able to iterate the address offset to the next ad-
dress of the code sequence. Performing this procedure for every instruction until we find
a padding instruction, we are able to obtain the whole disassembled code for these Code
Cache code sequences. In our case, the padding instruction that ends the disassembling
procedure is an add byte ptr [rax], al instruction. Due to the reason that, these Code Cache
code sequences do not contain a Trace, we do not need to know whether each instruction
is an instruction of the original program or is Pin generated.

4.3.3.2 Control-Flow Transitions

After the disassembly of the code executed inside the Code Cache is collected, the Control-
Flow Table creation can be performed. As described, this table acts as a transition table,
allowing the Control-Flow reconstruction algorithm to be able to follow the execution

30 CHAPTER 4. PROTOTYPE IMPLEMENTATION

without parsing the disassembled code instruction by instruction. Storing all the transi-
tions of the executed code inside the table, involves discovering the branch instructions
and identifying their type. As previously described, we have utilized XED in order to
disassemble the Code Cache Code instruction by instruction. At the moment a new in-
struction is disassembled, our Pintool checks whether it is the case of a branch instruction.
If a branch instruction is found, it is added on the next free cell of the Control-Flow Table.
Depending, on the type of the branch instruction discovered, the appropriate fields are set
on the new Control-Flow Table entry. The types of branch instructions and their setup on
the table is the following:

Direct Calls/ Jumps
Direct calls and jumps are inserted on the table as a entry with the BRANCH field
set to 1 and CONDITIONAL set to 0. The TARGET field points to the destination
of the call/ jump instruction.

Indirect Calls/ Jumps
Indirect calls and jumps are inserted on the table as a entry with the BRANCH field
set to 1 and CONDITIONAL set to 0. The only difference with an entry created
due to a direct call/ jump instruction is that, the TARGET field is not set.

Conditional Branches
Conditional branches are inserted on the table as a entry with the BRANCH field
set to 1 and CONDITIONAL set to 1. The TARGET field points to the destination
of the branch instruction.

The address of each branch instruction, that is found inside the Code Cache, is col-
lected using TRACE_CodeCacheAddress of the Pin Code Cache API, and is stored on
the CODE CACHE ADDRESS field of each entry.

4.3.3.3 Original Basic Blocks

An important step of reconstructing the Control-Flow of the application, is this of the De-
coder being able to know when an original Basic Block is found in the generated code. As
described, we have included a field in the Control-Flow Table, that allows us to store the
original Basic Blocks. Therefore, when parsing the disassembly instruction by instruc-
tion, instead of only caring about the branch instructions, we also focus on discovering
the Basic Blocks of the original application.

For this reason, we have used TRACE_Address, offered by Pin’s Trace API. The
TRACE_Address function returns the original address of an instruction residing inside the
Code Cache. In case this instruction is Pin generated, and doesn’t belong to the original
application, this function returns 0xFFFFFFFF. Using this information, our Pintool is
able to differentiate an instruction between original or Pin generated. In order to find
out the Basic Block addresses of the original program, we need to be able to get the first
original address of the Basic Block. In general, Pintools generated code follows a certain
format. An original Basic Block is transformed in such a way that, its exit instruction is
replaced by a branch instruction generated by Pin. This means that, each Basic Block of

4.3. PIN TOOL 31

the Code Cache Trace may contain only a single original Basic Block. We have used this
knowledge to extract the original Basic Block included inside a Code Cache Trace Basic
Block. Starting from the first instruction of a Code Cache Basic Block we iterate until we
find the first instruction that TRACE_Address returns an original address for. We consider
this to be the first instruction of an original Basic Block and thus the original Basic Block
address.

In order to make sure that the acquired address is correct, we need to be able to com-
pare it to the actual original Basic Block. For this reason, we have configured our Pintool
in such a way that it collects all the Basic Blocks for each original Trace beforehand. This
is performed using the callback routine TRACE_AddInstrumentFunction, which adds a
function that returns each TRACE of the original application, before being used by Pin
in order to generate the Code Cache Trace. Our Pintool stores every Basic Block for
each Trace inside an internal structure. This way every time a new original Basic Block
is discovered, using the previously described technique, our Pintool is able to know if
the acquired address is correct or not, by checking the Basic Blocks included in the cor-
responding original Trace. If the discovered original Basic Block is contained inside the
original Trace, we insert it on the Control-Flow Table on the next free cell. The BRANCH,
CONDITIONAL and TARGET fields of this Control-Flow Table entry are set to 0.

4.3.3.4 Special Cases

Identifying the original Basic Blocks inside a Code Cache Trace, as described, is simply
performed by following the Code Cache code, instruction by instruction, and storing the
original Basic Blocks and the branch instructions. However, there were certain cases
where the original Basic Blocks were modified in such a way, that following the described
method of discovering them could not work. These cases, and the approach we followed
in order to correctly insert them on the table, are the following:

Wrong Basic Blocks
Whenever a REP instruction appears on the original code, Pin is generating code
in order to handle it. However, the generated code makes our tool report some
wrong Basic Blocks, since the newly created Code Cache Blocks don’t comply
with how our algorithm is inserting the original Basic Blocks to the Control-Flow
Table. When a REP instruction exists inside an original Basic Block, this Basic
Block is split in two Code Cache Basic Blocks by Pin. The first Block contains
all the instructions until the REP and is followed by Pin generated code. The last
instruction of this Code Cache Basic Block is a Pin generated branch instruction.
The second Basic Block starts with the instruction the REP was being applied to
and then more JIT generated code follows. Again this Basic Block is ended with a
generated branch instruction. In addition, a new Trace is inserted in the Code Cache.
This Trace contains only one original instruction, with that being the instruction to
which the previous REP was applied. We handle this case by not creating an entry
for the wrong Basic Block that appears when the original Basic Block is split into
two. We only create an entry for the instruction that was issued with REP, when

32 CHAPTER 4. PROTOTYPE IMPLEMENTATION

this appears on a new Trace by itself. We observed, that Pintool’s execution inside
the Code Cache moves to this newly created Trace when the REP instruction needs
to be executed. This way we capture the correct original Basic Block.

Missing Original Address
When Pin generates a Code Cache Basic Block based on an original Basic Block,
it replaces the last instruction with its own branch instruction. However, there are
some Basic Blocks that only contain a single instruction. This happens when the
first instruction of the original Basic Block is a branch instruction or a REP. When
these single instruction Basic Blocks are used to generate a Code Cache Basic
Block, this instruction is replaced with a Pin generated branch. Thus, when cre-
ating the Control-Flow Table our Pintool is not able to acquire the original address
for this Basic Block. We fix the missing original address, by patching the missing
address on the Control-Flow Table. This is performed by using the original Trace.
Every time a single instruction Basic Block appears on the original Trace, we keep
its address and patch it when the new Pin generated branch instruction is inserted
on the table. This way the missing original Basic Block is placed correctly inside
the Control-Flow Table and can be used by the Decoder in order to discover it.

4.3.3.5 Traversing the Control-Flow Table

Since creating and populating the Control-Flow Table has been performed, a way to ac-
cess the information that it contains needs to be implemented. The Decoder requires the
information of the Control-Flow Table in order to follow the execution of Pintool inside
the Code Cache and at the same time extract the original Basic Blocks. The Decoder,
starting from a Code Cache address, needs to traverse certain table entries, based on the
Intel PT data. Therefore, the main functionality required, is a way to access the entry of a
specific Code Cache address.

For this reason, we have created a Hash table containing the position of each Code
Cache Trace inside the Control-Flow Table. Each time a new Code Cache Trace is parsed
by the Pintool, and entries for it are created on the Control-Flow Table, the position of its
first entry is placed inside the Hash table. This value is placed inside a cell of the Hash
table, using as a key on the Hash function the hexadecimal address of the specific Code
Cache Trace. The used Hash function is a modulo operation with a big prime number.
Therefore, each time the Decoder needs to access the entry of a specific Code Cache
Trace, it just needs to use the Address of this Code Cache Trace as a key and access the
Hash Table. The returned value is the position of the first entry of that Code Cache Entry,
inside the Control-Flow Table.

In the case where the Decoder wants to access an address that it’s not the beginning of
Code Cache Trace, the Code Cache where this address is inside needs to be discovered.
In order to achieve this, our Control-Flow Table search function uses the address as a key
to the Hash function and accesses the corresponding cell of the Hash table. If this Hash
table entry is empty, it means that either this address doesn’t exist or is inside a Code
Cache Trace, that we need to find. We achieve this by performing a search on the Hash

4.3. PIN TOOL 33

table. Starting from the returned Hash table cell, we traverse the table backwards until we
find an entry. The first occupied cell may be the position of the Code Cache Trace in the
Control-Flow Table, containing our address. We then perform a search for this specific
address inside this Code Cache Trace. Starting from the first entry of this Code Cache
Trace, we traverse every entry of the Control-Flow Table until the address we want, or
an address bigger that the one we are looking for, is found. If the entries for this Code
Cache Trace are over and the address or a greater one is not found, we can assume that
the requested address doesn’t exist inside the table. If the address we are looking for is
discovered as an entry, it means that it is the start of a Basic Block, a branch instruction
or both. In case a greater hexadecimal address is found, it means that the address we are
looking for was not the start of a Basic Block or a branch, so it is not important to our
reconstruction algorithm. Using the entry of the first greater address, gives us the first
important instruction after the one we are looking for. Following the execution of the
Pintool starting from this point gives the correct followed flow.

Using the above described functionality, our Decoder is able to access the entries of
a specific Code Cache Trace inside the Control-Flow Table. In addition, if a Code Cache
Trace is not accessed at the beginning but on a different address, the Decoder is able to
start examining the entries of the Code Cache Trace after the correct Code Cache address.
Combining this functionality to the Intel PT packets, allows our reconstruction algorithm
to easily follow the execution of Pintool inside the Code Cache and extract the Basic
Blocks of the original program.

4.3.4 Link Table

As previously mentioned, in order to reduce the number of accesses to the Code Cache,
Pin is performing linking operations between different Code Cache Traces. In particular,
when a new Trace is getting placed inside the Code Cache, links are created to and from
other Code Cache Traces. These links are mainly created based on the relationships of the
original Basic Blocks these Traces consist of. For example, two Traces linked one after
another may contain Basic Blocks that are consecutive in the execution of the program.
The links are created by adding a conditional or direct jump at the end of a Trace, pointing
to the start address of the next Trace to be executed. Therefore, following the execution
of the Code Cache, in order to reconstruct the control flow of the original program, also
involves the efficient tracing of the linked Code Caches. Code Cache API provides the
callback routine CODECACHE_AddTraceLinkedFunction, which adds a function
that gets called whenever a trace is getting linked. By using this callback, we are able to
discover the Code Cache address at which a link was placed, as well as the address of the
Trace it was linked to.

However, directly updating the Control-Flow Table with the links at the time they
appear, would possibly cause our reconstruction tool to follow a wrong path of Traces.
This is mainly happening due to the reason that, links between Traces are created after a
new Trace is placed inside the Code Cache. Until that point, all the other Traces that are
going to be connected to this Trace, do not contain a jump to the Code Cache address of
the new Trace. Our main problem lies to the fact that, the reconstruction of each Trace

34 CHAPTER 4. PROTOTYPE IMPLEMENTATION

takes places at the time the appropriate Intel PT packets are collected. During this time,
Pin may have placed new Traces inside the Code Cache, resulting in newly created links
between them. Following the execution of a Trace using the collected Intel PT packets
together with the links that may have been backpatched to the Control-Flow Table, would
result in wrongly visiting Traces that Pin did not traverse. Thus, the collected Intel PT
packets would not correlate to the disassembly of the Code Cache, leading in a wrong
control flow reconstruction. This indicates that, the update of a transition link to the
Control-Flow Table, should take place at some later point. We decided that the links to
and from a specific Code Cache Trace should be inserted on the Control-Flow Table, at the
time this particular Code Cache is being traversed for the first time by the reconstruction
tool. This would ensure that, up to that point a Code Cache Trace would not be visited
due to links, as it supposedly would not exist. On the other hand, from that point onwards,
any link to this Trace would result in correctly following its execution. In order to achieve
this, we have correlated every discovered link by Pintool, to the next Code Cache Trace
that the execution of Pin is visiting. We have stored these links to a Shared Memory Hash
table, using the corresponding Code Cache Trace address as a key. This way, we are
able to perform the update of the links, at the time that the reconstruction tool begins the
reconstruction of a particular Code Cache Trace for the first time. Therefore we ensure
that, links to already visited Traces will exist, while links to not yet discovered Traces will
not appear, leading to correctly replicating Pin’s execution flow inside the Code Cache.

4.3.5 Usability

Figure 4.3 presents the entries that were inserted in the Control-Flow Table for a specific
Code Cache Trace. We can observe that the last instruction of each Basic Block has been
stored inside the table. In addition, the address of the original Basic Block included on
a Code Cache Basic Block has also been written on the table. In the case where a Code
Cache Basic doesn’t contain original code, only its exit instruction has been stored. This
way, we can easily know the original Basic Block of a Code Cache Basic Block, as well
as the transition to the next Block that Pintool executed.

The Control-Flow Table is being accessed and updated by our Pintool throughout its
execution. Information about every new Trace, that is being placed inside the Code Cache
are stored in this Control-Flow Table. In addition, all the links that are performed by Pin
between Traces, are inserted on the table by updating the proper entries. Our Decoder
utilizes this table and its functionality, together with all the collected Intel PT packets,
in order to follow the execution of Pintool inside the Code Cache and collect the Basic
Blocks of the original application.

4.4 Decoder

The Decoder is the main component responsible for reconstructing the Control-Flow of
the original program. It is responsible for reading the recorded Intel PT data from Kernel
space and decoding them. Using these decoded Intel PT packets together with the Control-

4.4. DECODER 35

CC_ADDR ORIG_ADDR INS

f5a371e8 82aacb5 test ...

f5a371ee ffffffff data16 nop

f5a371f0 ffffffff jz f5a76dc0

CC_ADDR ORIG_ADDR BRANCH COND TARGET

f5a371e8 82aacb5 0 0 ffffffff

f5a371f0 ffffffff 1 1 f5a76dc0

CODE CACHE BASIC BLOCK CONTROL-FLOW TABLE ENTRY

CC_ADDR ORIG_ADDR INS

f5a371f6 82aacbd or ...

f5a371fd 82aacc4 mov ...

f5a37203 82aacca test ...

f5a37206 ffffffff data16 nop

f5a37208 ffffffff jz f5a76ddc

CC_ADDR ORIG_ADDR BRANCH COND TARGET

f5a371f6 82aacbd 0 0 ffffffff

f5a37208 ffffffff 1 1 f5a76ddc

CC_ADDR ORIG_ADDR INS

f5a3720e 82aaccf or ...

f5a37218 82aacd9 and ...

f5a3721d 82aacde cmp ...

f5a37222 82aace3 jz f5a76df8

CC_ADDR ORIG_ADDR BRANCH COND TARGET

f5a3720e 82aaccf 0 0 ffffffff

f5a37222 ffffffff 1 1 f5a76df8

CC_ADDR ORIG_ADDR INS

f5a37228 ffffffff jmp f5a76e14

CC_ADDR ORIG_ADDR BRANCH COND TARGET

f5a37228 ffffffff 1 0 f5a76e14

Figure 4.3: A Code Cache Trace inserted on the Control-Flow Table. Each Basic Block of the
Code Cache Trace is shown on the left side, while on the right the entries created in the Control-
Flow Table appear.

Flow Table, previously described, the Decoder succeeds in following the execution of
the original application inside the JIT environment and reconstructing its Control-Flow.
The following subsections describe its implementation and our complete reconstruction
algorithm.

4.4.1 Intel PT Data Reading

In order for the whole reconstruction to be performed, the Decoder needs to get access to
the trace data, recorded by the Intel PT hardware component. As previously described,
Intel PT utilizes the ToPA output mechanism in order to write the trace data directly to
physical memory. The whole ToPA mechanism and the memory that is utilized by it, are
being configured by our Kernel Driver during its initialization. Therefore, all the Intel

36 CHAPTER 4. PROTOTYPE IMPLEMENTATION

PT data are written in a kernel Buffer that needs to be accessed by our software Decoder.
Mapping addresses which are in the Kernel virtual mapping into User space is straight
forward. We have implemented a map method for the Driver using remap_pfn_range(),
to map the physical address of the Kernel Buffer to a User space address. This function
can be called from our Decoder using the mmap() system call to the Driver. This way the
Kernel Buffer, where the Intel PT are written, is directly mapped to the address space of
our User space Decoder. This enables our tool to directly read the data from inside the
Kernel Ring Buffer, without any copies from Kernel to User space to be required.

As previously described, our Kernel Ring Buffer consists of 20 different sub-buffer.
The main idea is to allow the Intel PT hardware to write the trace data on the buffer,
while the Decoder is reading data from the already filled sub-buffers. For this reason, the
Decoder needs to wait for a sub-buffer to become available before it starts reading. This is
implemented by developing a blocking read function on the Kernel Driver. Each time our
implementation of read() is called, the process calling it is blocked by using a Blocking
I/O operation, through a call to wait_event_interruptible(). At the moment the next sub-
buffer becomes available, a signal is received by our PMI signal handler and the Decoder
is unblocked for reading. This way the Decoder is reading only the sub-buffers that the
Intel PT hardware has filled with trace data. In addition, a sub-buffer is never accessed by
the reader and the writer at the same time, thus avoiding coherency and synchronization
problems.

4.4.2 Intel PT Data Decoding

Our Intel PT data Decoder is based on the test Decoder that comes together with Simple-
PT. Simple-PT’s Decoder utilizes libipt, which is a general-purpose Intel PT decoding
engine. Our system only requires information about the executed control flow, whereas
Intel PT also provides execution information such as TSC, MNT and CBR. For our use, it
is sufficient to focus on flow-information packets only. Since we only consider TNT and
TIP packets, it seems as a good idea to exclude all the remaining Intel PT packets from
the decoding process. However, the decoding process itself is required to determine the
offset to the following packet, since Intel PT packets do not have a uniform packet size.
Therefore, we can’t avoid decoding all the packets but we can only focus on TNT and TIP
packets, while all the other packets are not further analyzed. The buffer containing the
Intel PT trace data is decoded into a sequence of Intel PT packets. Only a small subset of
Intel PT packets are considered and handled.

4.4.3 IP Compression

The IP payload in a TIP.FUP, TIP.PGE, or TIP.PGD packet can vary in size, based on
the use of IP compression. IP compression is an optional compression technique the
processor may choose to employ to reduce bandwidth. With IP compression, the IP to be
represented in the payload is compared with the last IP sent out via a TIP packet. If that
previous IP had the same upper (most significant) address bytes, those matching bytes
may be suppressed in the current packet. The processor maintains an internal state of the

4.4. DECODER 37

“Last IP” that was encoded in trace packets. Our Decoder employs the same technique
in order to fill out the compressed bytes. We keep a "Last IP" field that holds the address
of the last TIP that was received. This stored address is not compressed, as each time a
new TIP appears, we complete the missing bytes using the previous value of the "Last
IP". This leaves the Decoder with only uncompressed addresses.

4.4.4 Code Cache Entry TIP

As previously described, each time the execution of Pintool enters the Code Cache we
received a TIP containing a specific address. This Code Cache Entry TIP allows the
Decoder to know that all the subsequent Intel PT packets refer to the execution of Pintool
inside a Code Cache Trace. We discover the address of this Code Cache Entry TIP, by
ignoring all the Intel PT packets until we receive a TIP refering to the execution of the
Code Cache. The first TIP that is inside the Code Cache address ranges, is the Code
Cache Entry TIP. This address is stored and used by the Decoder in order to discover the
TIP packets that refer to a Code Cache Trace being accessed by the execution of Pintool.

However, since no TIP packet for a specific Code Cache Trace address is collected,
the Decoder is not able to know the exact Code Cache Trace the Intel PT packets refer to.
In Section 4.3, we present the complete procedure that Pintool follows in order to create
a queue, of the exact order, that the Code Cache Traces were accessed. Our Decoder
utilizes this Trace queue, in order to be able to discover the Code Cache Trace, that the
Intel PT packets refer to. More specifically, each time a Code Cache Entry TIP appears,
the Decoder gets the first element of the queue. Since all the Code Cache Trace addresses
are inserted on this queue by Pintool, and a TIP packet is received each time a Code Cache
Trace is accessed, it is safe to assume that the first element of the queue will be the address
of the Code Cache Trace that a Code Cache Entry TIP refers to. Our Decoder uses the
discovered Code Cache Trace address, in order to access the Control-Flow Table at the
correct position and start the reconstruction of the Code Cache’s Control-Flow.

4.4.5 Linking Updates

As we have seen previously, Pin is performing linking operations between different Code
Cache Traces, in order to reduce the Code Cache accesses. For this reason, our Pintool
creates a Link Table that contains information about the new transitions, and exactly when
they should be applied to the Control Flow Table. Pintool correlates every discovered link
to the next Code Cache Trace, that the execution of Pin has visited, and stores them inside
a Shared Memory Hash table. This Link Table has been created, in order to allow the
Decoder to be able to know when the links should be applied, during the reconstruction
algorithm. Therefore, each time the Decoder starts the Control-Flow reconstruction of a
specific Code-Cache, all the links that correspond to it need to be performed. For this
reason, when a Code Cache Entry TIP appears, and after the Code Cache address is dis-
covered, our Decoder accesses the Hash Table using the address of the Trace. All the new
transitions, due to linking, for that specific Code Cache Trace exist at the accessed Hash
table cell. Using those transitions, the Decoder is able to modify the proper entries of the

38 CHAPTER 4. PROTOTYPE IMPLEMENTATION

Control Flow Table, and thus insert the new links. This way, the Control Flow Table is
updated every time a new link between two Caches appears, and the Control-Flow can be
correctly reconstructed by our algorithm.

4.4.6 Control-Flow Reconstruction

Our work focuses on reconstructing the Control-Flow of an application executed inside
a JIT environment. Therefore, the reconstruction algorithm is one of the most important
components of our system. The reconstruction algorithm utilizes the collected Intel PT
packets and the Control-Flow Table, in order to extract all the Basic Blocks of the original
execute application.

Code Cache TIP?

Start

End

Conditional
Branch?

Original BBL?

Direct Branch?

Pop CC Trace queue

Go to CFT address

Indirect Branch?

Get next TNT?

Get next TIP

Report BBL

Get next CFT Entry

Taken?

Yes

No

Yes

No
Yes

No

Yes

Yes

No

No
Yes

No

Figure 4.4: Flow-Chart of the Reconstruction Algorithm.

Figure 4.4 depicts the Flow-Chart of our reconstruction algorithm. Our algorithm is
based on reconstructing the Control-Flow of each Code Cache Trace, that Pintool accessed

4.4. DECODER 39

during it’s execution. Each time a Code Cache Entry TIP is decoded the reconstruction
begins, since this packet indicates that all the subsequent decoded packets will refer to the
execution of a Code Cache Trace. We discover the address of the specific Code Cache
Trace by getting the first address of the previously described Trace queue. The algorithm
then accesses the Control-Flow Table at the position where the Entries of that specific
Code Cache Trace are placed and begins to follow the same execution that Pintool itself
did. This is done by using each Entry of the table in order to figure out the next Entry
that should be accessed. If one the accessed Entries contains an Original Basic Block
Address, it means that it is a Basic Block of the original application and it is reported
to the system. If an Entry is just an Original Basic Block Address and doesn’t contain a
transition, the algorithm continues to the next Entry of the table. Each time a transition is
met, it is analyzed in order to find out whether Intel PT information are required to resolve
it’s Target or not. The direct branches are simply followed by using their Target address
in order to move inside the Control-Flow Table. In case where an indirect or conditional
branch is met, Intel PT packets are required to resolve the transition. If an indirect branch
is found, the algorithm uses the next TIP packet in order to find out the destination of this
transition. This address, acquired from the decoded TIP packet, is used to move at this
specific location inside the Control-Flow Table. If a conditional branch is found, the next
TNT packet is used, to discover whether this branch is taken or not. If the next decoded
TNT packet contains the Taken bit, the Target of the conditional branch entry is used to
move inside the Control-Flow Table and continue the reconstruction from there. If the bit
of the next TNT packet is Not Taken, the execution trailing continues to the next Entry of
the Control Flow Table, since this is the case of a fall-through instruction.

Following this procedure for every Code Cache Trace, results in correctly follow-
ing the execution of Pintool inside the Code Cache and extracting the Basic Block of
the original application. Subsequently, this leaves us with the complete reconstructed
Control-Flow of the application, that is executing inside the JIT environment.

40 CHAPTER 4. PROTOTYPE IMPLEMENTATION

Chapter 5

Evaluation

In this chapter we discuss the evaluation of our system. We have tested our implemen-
tation on a Intel Xeon E3-1225 CPU with 8GB of DDR4 RAM. The SPEC CPU2006
benchmark suite has been used in order to evaluate the correctness and performance of
the system.

5.1 Correctness

Our system focuses on discovering the execution of an original program executed inside
a JIT environment and reconstructing its Control-Flow. In order to test that the complete
system is able to correctly reconstruct the execution flow of a JITed application, the actual
Control-Flow of the program is required. As Control-Flow, we refer to the Basic Blocks
that the program visited through its execution. By comparing the actual Basic Blocks to
the ones collected by our system, we can ensure that our implementation can correctly
perform the reconstruction of the application.

We have utilized Pin and its API to collect the complete Control-Flow of the appli-
cation. More specifically, we have used the Instrumentation API of Pin to extract all the
Basic Blocks of the original application. This is performed by adding an instrumentation
call at the first address of each original Basic Block, using INS_InsertCall. This way we
are able to log the address of the first instruction for each Basic Block of the original ap-
plication. We consider this as the ground-truth to our systems evaluation. Comparing the
Basic Blocks collected through implementation to the ones acquired by our reconstruction
tool, we are able to ensure the correctness of our system.

In order to ensure that the correctness evaluation is performed accurately, we have
used our systems Pintool to collect the Basic Block through instrumentation. Having the
instrumentation code inside the same Pintool, means that our evaluation is not affected
by ASLR, since both the Control-Flows are collected at the same execution of the appli-
cation. By simply comparing the collected Basic Blocks, we are able to ensure that the
reconstruction was performed correctly.

The SPECint benchmarks, that come with SPEC CPU2006 benchmark suite, have
been used during our evaluation. By default, the SPECint benchmark comes with runspec,

41

42 CHAPTER 5. EVALUATION

a tool that is responsible for building, running and reporting the benchmarks. Since we
only care about reconstructing the Control-Flow of the benchmarks, the runspec script
is not required. We have manually compiled the benchmarks using gcc and executed
them through Pintool. We compared the collected Control-Flows using a python script.
The results indicate that the collected Control-Flow by our system is identical to the one
acquired by instrumenting each Basic Block of the original application. This means that,
our system is able, by utilizing Intel PT, to correctly trace and reconstruct the Control-
Flow of an application executing inside a JIT environment.

5.2 Performance

0

500

1000

1500

2000

bzip2 gcc hmmer libquantum mcf sjeng perlbench

Our System Instrumentation

Ex
ec

ut
io

n
Ti

m
e

in
 s

ec
on

ds

Figure 5.1: The execution time of our approach compared to this of the instrumentation technique.

In order to evaluate the performance of our mechanism, we used a subset of SPEC2006
benchmark suite, and we compared its execution times to a Pintool that obtains the Control-
Flow using instrumentation per Basic Block. Figure 5.1 displays the execution runtime of
our System compared to the instrumentation one. We can easily notice that our system is
able to reconstruct the Control-Flow of the application marginally faster than the approach
offered by Intel. Another interesting finding, that is indicated on Figure 5.2, is that the
reported overheads are based on the number of the Basic Blocks of each benchmark.

5.2. PERFORMANCE 43

0

750000000

1500000000

2250000000

3000000000

bzip2 gcc hmmer libquantum mcf sjeng perlbench

Our System

Nu
m

be
r o

f B
as

ic
 B

lo
ck

s

Figure 5.2: The number of Basic Blocks for each benchmark.

44 CHAPTER 5. EVALUATION

Chapter 6

Related Work

Intel Processor Trace is a new hardware feature recently introduced by Intel, mainly for
debugging purposes. Even though the offered functionality can be quite useful to systems
requiring to extract the Control-Flow of an application, it hasn’t been fully utilized yet.
There are certain works that have used Intel PT in order to trace the execution of an
application, to either the user or the kernel space. However, none of them is focusing on
tracing a program that is executing inside a Just-in-Time environment. In this section, we
present other works that have utilized this hardware feature in order to trace the execution
of an application and reconstruct its Control-Flow.

6.1 kAFL

KAFL [33] is a kernel fuzzer that utilizes the Intel Processor Trace. They introduced a new
technique that allows applying feedback fuzzing to arbitrary (even closed source) x86-64
based kernels, without any custom ring 0 target code or even OS-specific code at all. Intel
PT provides Control-Flow information on running code. They use this information to
construct a feedback mechanism similar to AFL’s instrumentation. Their system is able,
by utilizing the Intel PT data and the disassemble of the binary, to extract the Basic Blocks
that the execution has followed. However, their approach is only limited on tracing the
Kernel side of the application.

6.2 PT-CFI

PT-CFI [34] is a backward-edge CFI model based on Intel PT. More specifically, they have
implemented a new practical CFI model for native COTS binaries based on the traces from
Intel PT. However, their approach doesn’t include reconstructing the complete Control-
Flow of the application and comparing it to the CFG, since as they claim this would be
quite costly. Instead, the collected traces are used in order to build a TIP sequence graph,
and compare this graph with the legitimate TIP graph.

45

46 CHAPTER 6. RELATED WORK

6.3 GRIFFIN

GRIFFIN [35] is a hardware-assisted, operating system CFI enforcement mechanism, that
uses Intel PT to protect user-space processes from Control-Flow hijacking attacks. It is
capable of enforcing stateful CFI policies on both forward and backward edges and is de-
signed to leverage Intel PT traces efficiently. When enforcing coarse-grained CFI policies,
it uses TIP packets in the trace directly. GRIFFIN reconstructs the complete Control-Flow
from Intel PT traces in parallel to enforce fine-grained CFI policies. Even though their ap-
proach includes reconstructing the complete Control-Flow of an application or JIT code,
it doesn’t cover the discovery of the Basic Blocks of the actual program that is executing
inside the JIT environment.

6.4 POMP

POMP [36] is an automated tool to facilitate the analysis of post-crash artifacts. More
specifically, POMP introduces a new reverse execution mechanism to construct the data
flow that a program followed prior to its crash. It utilizes Intel PT in order to perform a
backward tracing of the execution, starting from the point where the crash occurred. It
then performs taint analysis and highlights those program statements that actually con-
tribute to the crash. POMP is able to reconstruct the Control-Flow of an application in a
backward manner, until it reaches the point where the crash originated from. However, it
doesn’t offer long-time tracing of the application, as it only holds the latest Intel PT data.

6.5 FlowGuard

FlowGuard [37] uses Intel PT to efficiently collect runtime Control-Flow traces, which
are compared with a statically derived Control-Flow graph to detect abnormalities. Flow-
Guard constructs a Control-Flow graph offline, using static binary analysis. This flow
graph is in a form that can be directly compared with Intel PT traces. FlowGuard adopts a
hybrid flow checking mechanism that separates the fast and slow paths. Most of the run-
time flow traces can be checked in a fast path by directly searching on the reconstructed
CFG, while only some rare abnormal flow traces are passed to the slow path for precise
CFI checking and enforcement. The complete Control-Flow is reconstructed when the
slow path is used. Their approach is adaptive to the occasion, as it can switch between
comparing the Intel PT trace data directly to the Control-Flow graph or reconstruct the
complete Control-Flow of an application.

6.6 ProRace

ProRace [38] proposes a new methodology to reconstruct unsampled memory addresses
using the Control-Flow trace collected at runtime. In order to recover more memory
accesses around each sample, ProRace collects the Intel PT traces at runtime. The Intel

6.7. GIST 47

PT data are then used as a guide, in order to decide which path to take during the offline
replay. This enables ProRace to reproduce many other unsampled memory operations
preceding and following each sample along the observed program path. ProRace is able to
reconstruct the complete Control-Flow of an application, but their approach only requires
this to be performed offline and not during the execution of the program.

6.7 Gist

Gist [39] is a failure sketching tool, that provides developers with an explanation of the
root cause of a failure that occurred in production. Gist performs data and Control-Flow
tracking in a cooperative setup by targeting either multiple executions of the same program
in a data center or users who execute the same program. It uses hardware watchpoints
to track the values of data items, and Intel PT to trace the Control-Flow. Gist combines
static program analysis and the tracing data to produce the failure sketches. By using static
analysis, Gist determines the locations where Control-Flow tracking should be performed,
meaning that only the Control-Flow of certain areas of interest is reconstructed. Since
the failure sketching is performed offline, Gist doesn’t perform real-time Control-Flow
reconstruction of the application.

6.8 INSPECTOR

INSPECTOR [40] is a data provenance library for multi-threaded programs. Their ap-
proach targets existing executables and relies on OS-specific mechanisms and Intel PT
to efficiently build the Concurrent Provenance Graph (CPG). The CPG records control,
data, and schedule dependencies for the shared-memory multi-threaded program execu-
tion. INSPECTOR uses the Intel PT data to create the CPG, but it doesn’t reconstruct the
complete Control-Flow of the application.

48 CHAPTER 6. RELATED WORK

Chapter 7

Future Work

At this moment our system does not support multi-threaded processes, since reconstruct-
ing the Control-Flow requires the use of additional packets. Multi-threaded applications
produce Intel PT packets that allow the Decoder to identify each thread and trace its exe-
cution separately to the others. Our plan is to utilize these Intel PT packets and additional
Kernel Ring buffers, in order to fully support the tracing and Control-Flow reconstruction
of multi-threaded processes.

Our tool suffers from certain slowdowns in cases where the Intel PT data are pro-
duced faster that consumed. Several optimizations can be performed in order to avoid
slowdowns. These include introducing larger and more sub-buffers or even a separate
Ring buffer that can hold data that would otherwise be overwritten by the hardware. In
addition, copying the data from Kernel to User space can be considered as an option in
some cases, so that the Decoder can analyze the data without the danger of them being
overwritten. This would allow the main process to continue with its execution, instead
of being blocked, even if the Intel PT packets have not yet been used to reconstruct the
Control-Flow.

Furthermore, another aspect that we would like to explore is whether our tool can be
adopted to other JIT environments. Our system is able to trace the execution of a process
that is being executed by Pin. By creating a mapping of the code being generated between
different JIT environments, we can enable our system to expand its support to other JIT
engines.

Finally, the next step of this project is to utilize the reconstructed Control-Flow of the
application in order to execute the DFT algorithm. Our main idea is to use the discovered
Basic Blocks of the process during runtime in order to execute DFT in parallel. This will
enable us to decouple analysis from execution and utilize spare CPU cores in order to
avoid slowdown to the main process.

49

50 CHAPTER 7. FUTURE WORK

Chapter 8

Conclusion

Control-Flow reconstruction has been utilized by many security, profiling and analysis
mechanisms throughout the years. Existing mechanisms of obtaining the Control-Flow
of a process, based on instrumentation, suffer from severe slowdowns and inaccuracies.
Recent works have shown that it is possible to obtain the Control-Flow of a process in a re-
liable and fast manner, by utilizing the hardware in order to trace the execution. However,
none of these approaches, to the best of our knowledge, focuses on tracing the execution
of an application that is executed inside a JIT environment. Until now, the Control-Flow
of a JITed application could only be acquired by instrumenting the Basic Blocks of the
original application. This technique imposes huge slowdowns and cannot be utilized for
enforcing run-time protection mechanisms, such as CFI and DFT.

In this work we aim to provide an efficient and accurate way of tracing an applica-
tion that is executing inside a JIT environment, while imposing significantly less overhead
than the instrumentation approaches. We leverage Intel Processor Trace, a new hardware
feature of modern Intel CPUs, to acquire the Control-Flow of a JITed process correctly,
while at the same time minimizing the impact on the performance. In order to showcase
our mechanism, we trace the execution of a process inside Intel Pin dynamic instrumen-
tation framework. In addition, we utilize certain API options of Pin itself to acquire infor-
mation about the JITed code and create a table containing Control-Flow transitions inside
the Code Cache. Our approach does not include any instrumentation calls, thus avoiding
additional overhead at the Pin side. By utilizing the recorded traces by Intel PT and the
Control-Flow table created by Pin itself, our system is able to isolate the execution of the
original code from the JIT code and reconstruct its complete Control-Flow. Our prototype
is based on a custom Intel PT Driver, Intel Pin and an Intel PT Decoder. We evaluate
the whole system by running the SPEC2006 benchmark suit. Our evaluation proves that
our system is able to correctly isolate the original code of a process from inside the JIT
code and accurately reconstruct its Control-Flow during runtime. The imposed overhead
is marginally lower than instrumentation approaches, while at the same retaining the same
accuracy levels.

51

52 CHAPTER 8. CONCLUSION

Bibliography

[1] J. Newsome and D. Song, “Dynamic taint analysis for automatic detection, analysis,
and signature generation of exploits on commodity software,” 2005.

[2] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L. Zhang, and P. Barham,
“Vigilante: End-to-end containment of internet worms,” in ACM SIGOPS Operating
Systems Review, vol. 39, no. 5. ACM, 2005, pp. 133–147.

[3] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z. Liang, J. New-
some, P. Poosankam, and P. Saxena, “Bitblaze: A new approach to computer security
via binary analysis,” in International Conference on Information Systems Security.
Springer, 2008, pp. 1–25.

[4] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “Bap: A binary analysis
platform,” in International Conference on Computer Aided Verification. Springer,
2011, pp. 463–469.

[5] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti, “Control-flow integrity prin-
ciples, implementations, and applications,” ACM Transactions on Information and
System Security (TISSEC), vol. 13, no. 1, p. 4, 2009.

[6] G. Ammons, T. Ball, and J. R. Larus, “Exploiting hardware performance counters
with flow and context sensitive profiling,” ACM Sigplan Notices, vol. 32, no. 5, pp.
85–96, 1997.

[7] T. Ball and J. R. Larus, “Efficient path profiling,” in Proceedings of the 29th an-
nual ACM/IEEE international symposium on Microarchitecture. IEEE Computer
Society, 1996, pp. 46–57.

[8] T. M. Chilimbi, B. Liblit, K. Mehra, A. V. Nori, and K. Vaswani, “Holmes: Effective
statistical debugging via efficient path profiling,” in Proceedings of the 31st Inter-
national Conference on Software Engineering. IEEE Computer Society, 2009, pp.
34–44.

[9] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight dynamic
binary instrumentation,” in ACM Sigplan notices, vol. 42, no. 6. ACM, 2007, pp.
89–100.

53

54 BIBLIOGRAPHY

[10] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow integrity,” Pro-
ceedings of the 12th ACM conference on Computer and Communications Security
(CCS), 2005.

[11] r. roemer, e. buchanan, h. shacham, and s. savage, “Return-Oriented Programming:
systems, languages, and applications,” Proceeding of ACM Transactions on Infor-
mation and System Security (tissec), 2012.

[12] J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram, “Defeating return-oriented
rootkits with "Return-Less" kernels,” Proceedings of the 5th European conference
on Computer systems (EuroSys), 2010.

[13] R. Hund, T. Holz, and F. C. Freiling, “Return-oriented rootkits: Bypassing kernel
code integrity protection mechanisms,” in USENIX Security Symposium, 2009, pp.
383–398.

[14] Z. Wang and X. Jiang, “Hypersafe: A lightweight approach to provide lifetime hy-
pervisor control-flow integrity,” in Security and Privacy (SP), 2010 IEEE Sympo-
sium on. IEEE, 2010, pp. 380–395.

[15] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song, and
W. Zou, “Practical control flow integrity and randomization for binary executables,”
in Security and Privacy (SP), 2013 IEEE Symposium on. IEEE, 2013, pp. 559–573.

[16] M. Payer, A. Barresi, and T. R. Gross, “Fine-grained control-flow integrity through
binary hardening,” in International Conference on Detection of Intrusions and Mal-
ware, and Vulnerability Assessment. Springer, 2015, pp. 144–164.

[17] L. Davi, A.-R. Sadeghi, and M. Winandy, “Ropdefender: A detection tool to defend
against return-oriented programming attacks,” in Proceedings of the 6th ACM Sym-
posium on Information, Computer and Communications Security. ACM, 2011, pp.
40–51.

[18] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama: capturing system-
wide information flow for malware detection and analysis,” in Proceedings of the
14th ACM conference on Computer and communications security. ACM, 2007,
pp. 116–127.

[19] K. H. Lee, X. Zhang, and D. Xu, “High accuracy attack provenance via binary-based
execution partition.” in NDSS, 2013.

[20] V. Chipounov, V. Kuznetsov, and G. Candea, “S2e: A platform for in-vivo multi-path
analysis of software systems,” ACM SIGPLAN Notices, vol. 46, no. 3, pp. 265–278,
2011.

[21] A. Slowinska, T. Stancescu, and H. Bos, “Howard: A dynamic excavator for reverse
engineering data structures.” in NDSS, 2011.

BIBLIOGRAPHY 55

[22] D. Y. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall, “Tainteraser: Protecting
sensitive data leaks using application-level taint tracking,” ACM SIGOPS Operating
Systems Review, vol. 45, no. 1, pp. 142–154, 2011.

[23] K. Jee, V. P. Kemerlis, A. D. Keromytis, and G. Portokalidis, “Shadowreplica: ef-
ficient parallelization of dynamic data flow tracking,” in Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security. ACM, 2013,
pp. 235–246.

[24] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood, “Pin: building customized program analysis tools with
dynamic instrumentation,” in Acm sigplan notices, vol. 40, no. 6. ACM, 2005, pp.
190–200.

[25] D. Bruening, Q. Zhao, and S. Amarasinghe, “Transparent dynamic instrumentation,”
ACM SIGPLAN Notices, vol. 47, no. 7, pp. 133–144, 2012.

[26] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow integrity,” in Pro-
ceedings of the 12th ACM conference on Computer and communications security.
ACM, 2005, pp. 340–353.

[27] N. Oh, P. P. Shirvani, and E. J. McCluskey, “Control-flow checking by software
signatures,” IEEE transactions on Reliability, vol. 51, no. 1, pp. 111–122, 2002.

[28] D. Bruschi, L. Martignoni, and M. Monga, “Detecting self-mutating malware using
control-flow graph matching,” in International Conference on Detection of Intru-
sions and Malware, and Vulnerability Assessment. Springer, 2006, pp. 129–143.

[29] Intel, “libipt - Intel Processor Trace Decoder Library.” https://github.com/01org/
processor-trace.

[30] ——, “Pin 3.2 User Guide.” http://people.cs.uchicago.edu/~xiliang.

[31] ——, “XED User Guide.” https://software.intel.com/sites/landingpage/pintool/
docs/65163/Xed/html.

[32] A. Kleen, “simple-pt - Simple Intel CPU processor tracing on Linux.” https://github.
com/andikleen/simple-pt.

[33] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz, “kAFL:
Hardware-Assisted Feedback Fuzzing for OS Kernels.” Proceedings of the 26th Se-
curity Symposium (USENIX Security), 2017.

[34] Y. Gu, Q. Zhao, Y. Zhang, and Z. Lin, “PT-CFI: Transparent Backward-Edge Con-
trol Flow Violation Detection Using Intel Processor Trace.” Proceedings of the 7th
ACM International Conference on Data and Application Security and Privacy (CO-
DASPY), 2017.

https://github.com/01org/processor-trace
https://github.com/01org/processor-trace
http://people.cs.uchicago.edu/~xiliang
https://software.intel.com/ sites/landingpage/pintool/docs/65163/Xed/html
https://software.intel.com/ sites/landingpage/pintool/docs/65163/Xed/html
https://github.com/andikleen/simple-pt
https://github.com/andikleen/simple-pt

56 BIBLIOGRAPHY

[35] X. Ge, W. Cui, and T. Jaeger, “GRIFFIN: Guarding Control Flows Using Intel Pro-
cessor Trace.” Proceedings of the 22nd ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS),
2017.

[36] J. Xu, D. Mu, X. Xing, P. Liu, P. Chen, and B. Mao, “(POMP: Postmortem Program
Analysis with Hardware-Enhanced Post-Crash Artifacts,” Proceedings of the 26th
Security Symposium (USENIX Security), 2017.

[37] Y. Liu, P. Shi, X. Wang, H. Chen, B. Zang, and H. Guan, “Transparent and Efficient
CFI Enforcement with Intel Processor Trace.” Proceedings of the IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA), 2017.

[38] T. Zhang, C. Jung, and D. Lee, “ProRace: Practical Data Race Detection for Produc-
tion Use.” Proceedings of the 22nd ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), 2017.

[39] B. Kasikci, B. Schubert, C. Pereira, G. Pokam, and G. Candea, “Failure sketching:
A technique for automated root cause diagnosis of in-production failures.” Proceed-
ings of the 25th Symposium on Operating Systems Principles (SOSP), 2015.

[40] J. Thalheim, P. Bhatotia, and C. Fetzer, “INSPECTOR: Data Provenance using Intel
Processor Trace (PT),” Proceedings of the 36th International Conference on Dis-
tributed Computing Systems (ICDCS), 2016.

	1 Introduction
	1.1 Control-Flow Integrity
	1.2 Dynamic data Flow Tracking
	1.3 Control-Flow Graph Generation
	1.4 Contributions

	2 Background
	2.1 Control-Flow
	2.1.1 Branch Instructions
	2.1.2 Basic Blocks

	2.2 Intel Processor Trace
	2.2.1 Execution Information Packets
	2.2.2 Flow Information Packets
	2.2.3 Intel PT Software Decoder
	2.2.4 Trace Filtering
	2.2.5 Table of Physical Addresses (ToPA)

	2.3 Intel Pin
	2.3.1 Just-in-Time Compiler
	2.3.2 Instrumentation

	2.4 Intel XED
	2.5 POSIX Shared Memory
	2.6 Loadable Kernel Module
	2.6.1 Kernel Module Parameters
	2.6.2 Input/ Output Control
	2.6.3 Blocking I/O

	3 Design
	3.1 Architecture
	3.1.1 Overview
	3.1.2 Driver
	3.1.3 Ring Buffer
	3.1.4 Pin Tool
	3.1.5 Decoder

	4 Prototype Implementation
	4.1 Intel Processor Trace Configuration
	4.1.1 Filtering
	4.1.2 Return Compression
	4.1.3 Processor Affinity
	4.1.4 Trace Enabling

	4.2 Ring Buffer
	4.2.1 ToPA Configuration
	4.2.2 PMI Signal Handler
	4.2.3 Ring Buffer Overwrites

	4.3 Pin Tool
	4.3.1 JIT Generated Code
	4.3.2 Code Cache Trace Discovery
	4.3.3 Control-Flow Table
	4.3.4 Link Table
	4.3.5 Usability

	4.4 Decoder
	4.4.1 Intel PT Data Reading
	4.4.2 Intel PT Data Decoding
	4.4.3 IP Compression
	4.4.4 Code Cache Entry TIP
	4.4.5 Linking Updates
	4.4.6 Control-Flow Reconstruction

	5 Evaluation
	5.1 Correctness
	5.2 Performance

	6 Related Work
	6.1 kAFL
	6.2 PT-CFI
	6.3 GRIFFIN
	6.4 POMP
	6.5 FlowGuard
	6.6 ProRace
	6.7 Gist
	6.8 INSPECTOR

	7 Future Work
	8 Conclusion

