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Chapter 1

Introduction

Spontaneous emission is a fundamental process in atomic physics, resulting
from the interaction between radiation and matter. In its simplest form the
problem consists of an initially excited one-electron, two-level atom (TLA),
which through the coupling to the vacuum electromagnetic �eld decays into
its ground state emitting a photon. In the spirit of open (dissipative) quan-
tum systems, the vacuum electromagnetic �eld acts as a reservoir or bath
(in�nitely many quantal degrees of freedom) into which the small atomic
system (few quantal degrees of freedom) deposits its excitation in the form
of radiation. The atom�reservoir coupling leads to 
uctuating forces re-

ecting the modal structure of the vacuum electromagnetic �eld. Thus, the
photonic density of states (DOS) does not only characterize the photonic
reservoir but it determines the atomic dynamics as well.

For example, as is well known, a photonic DOS which varies smoothly
over the spectral range of the atomic transition (
at continuum), results in a
vacuum shift (Lamb shift) of the atomic levels as well as an irreversible spon-
taneous decay which renders all excited states unstable. Both spontaneous
decay and vacuum shift appear in all texts of quantum electrodynamics
(QED). As a result, for many decades they were considered to be inherent
and unavoidable phenomena associated with matter. This view, however,
overlooks the fact that spontaneous emission is a property of the combined
system \atom + �eld" rather than of the isolated atom, and as such can be
strongly modi�ed by changing the atom��eld coupling or by modifying the
structure of the continuum.

Abrupt changes in the modal density in the vicinity of the atomic tran-
sition (structured reservoir), can a�ect signi�cantly not only the magnitude
but the nature of spontaneous decay as well. For instance, consider an atom
excited to some Rydberg state, placed in a high-Q, high �nesse cavity. In
this case, spatial boundary conditions imposed on the radiation �eld deter-
mine the coupling constant between the atom and the �eld as well as the
photonic DOS which exhibits sharp peaks, each corresponding to a reso-
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2 Introduction

nant cavity-mode. If the transition frequency to a lower atomic state (with
which a nonzero electric dipole matrix element exists) lies between any of
these peaks, spontaneous decay is strongly suppressed. On the contrary, if
the transition frequency matches one of the cavity resonances, spontaneous
decay is strongly enhanced due to the large DOS available to the emitted
photon. Furthermore, spontaneous emission displays features of reversibil-
ity which appear as periodic exchange of energy between atom and cavity,
known as vacuum Rabi oscillations, an unusual generalization of the more
traditional Rabi oscillations, induced by an externally imposed �eld.

Quite recently it has been realized that strong modi�cation in the pho-
tonic DOS can be achieved by means of photonic crystals (PCs). These
are arti�cial dielectric structures exhibiting periodic spatial modulation of
the dielectric constant. Under favorable circumstances, the spectrum of the
electromagnetic �eld they support, may exhibit allowed bands and forbidden
gaps, in analogy to the electronic band-structure in semiconductors. Inside
a photonic band-gap (PBG), photonic modes and zero-point 
uctuations are
absent.

The material in this thesis deals with the interaction of small atomic sys-
tems with structured radiation reservoirs, which is of central importance in
a number of areas including cavity QED (CQED), nanostructures, semicon-
ductors, atom lasers and molecular physics. We will focus on the dynamics
of few-level atoms or collections thereof, embedded in PCs. The �rst moti-
vation for these studies was the fact that the unconventional photonic DOS
associated with such materials, has been shown to be accompanied by a
variety of novel phenomena such as: inhibition of spontaneous decay of an
atom with transition frequency within the gap, strong localization of the
emitted radiation at the site of the atom, vacuum Rabi splitting, formation
of \photon + atom" bound state.

A fundamental diÆculty in the theoretical description of such phenom-
ena stems from the invalidation of the Born and Markov approximations,
essential in obtaining a master equation, which is the standard tool in quan-
tum optics problems involving 
at photonic continua. As long as only one
photon is exchanged between the small system and the reservoir, the problem
can be handled through the direct solution of the respective time-dependent
Schr�odinger equation. The direct extension of this approach, however, to
situations involving more than one photon in the reservoir does not seem
tractable. The development of a technique capable of circumventing this
mathematical diÆculty, was the second motivation for the work presented
in this thesis.

Closing this introductory section, we outline the remainder of this the-
sis. The following chapter (Chap. 2) is dedicated to a brief presentation
of PCs, its fabrication and possible applications. In Chap. 3, after a brief
introduction to elementary QED, we discuss various quantum optical phe-
nomena in the context of open space and cavities. In Chap. 4 we focus on
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quantum optics in PCs and in particular on various DOS models which have
been adopted in the literature for the description of the modi�ed radiation
reservoir associated with PCs. We additionally review the major ideas in
the state of the art right up to the work presented in this thesis. Finally, we
set a Research Question to be answered in the following chapters.

In Chap. 5, we present the discretization approach, the validity and the
limitations of which are discussed in the context of photonic continua of var-
ious DOS. Given the discretization, in the chapters that follow 5 we address
problems involving multiple excitations in structured radiation reservoirs,
and as such are not amenable to other techniques.

In Chap. 6, we study spontaneous emission in an atomic ladder sys-
tem, with both transitions near-resonantly coupled to the edge of a PBG
continuum. Studying the atomic dynamics in terms of the relative atomic
detunings from the band-edge frequency, we �nd that the interaction of the
atom with the strongly localized photons is accompanied by a variety of
novel phenomena. Speci�cally, we predict the formation of a \two-photon +
atom" bound state and a competition between a \direct" two-photon process
and a stepwise one.

In Chap. 7, we consider a TLA coupled to the edge of a PBG and
a defect-mode. The defect-mode acts as a photon source that can pump
the atom. Propagating the wavefunction of the system, we obtain results
pertaining to the problem of two and three photons in the reservoir, for
various states of the defect-�eld. For a wide range of parameters we �nd
that part of the total initial excitation remains trapped to the atom and the
defect-mode in the long-time limit.

In Chap. 8, we investigate the dynamics of a small collection of two
closely-spaced TLA, near-resonantly coupled to the edge of a PBG. Both
atoms are considered to be initially excited, and the role of the dipole-dipole
interaction in the enhancement of the collective decay is investigated.
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Part I

Basics on Photonic crystals

and Quantum Optics
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Chapter 2

Photonic Crystals

In 1987, John and independently Yablonovitch, suggested that structures
with periodic variation in dielectric constant could in
uence the properties
of photons, in much the same way semiconductors a�ect the properties of
electrons [51, 52, 125]. In semiconductors, it is the Bragg-like di�raction of
the electrons from the atoms of the lattice which results to gaps in allowed
energies, for which the electron's propagation is forbidden. In contrast to
semiconductors, PCs do not exist naturally and need to be fabricated. One
has to create somehow a periodic lattice, consisting now of dielectric matter
(rods, spheres, slabs, etc) instead of atoms, with periodicity on the scale of
the wavelength of light. Under appropriate conditions, a complete PBG in
frequency may then open up, for which electromagnetic-wave propagation,
irrespective of direction and polarization, is forbidden. Strictly speaking,
linear-wave propagation is absent in a gap, while nonlinear propagation ef-
fects do exist in the form of solitary waves. In analogy to valence and
conduction bands in semiconductors, the allowed bands above and below a
PBG, are also referred to as \air band" and \dielectric band", respectively.
In this chapter we present an outline of the theory underlying these interest-
ing objects (Sec. 2.1). Furthermore, in Sec. 2.2 we present the state of the
art in their fabrication while future applications are discussed in Sec. 2.3.

2.1 Ab-initio Calculations

From a theoretical point of view, Maxwell's equations can give a complete
description of the �eld in a PC [49]. In the absence of any external currents
and sources, we have:

r �B = 0; (2.1)

r �D = 0; (2.2)

r�E = �1
c

@B

@t
; (2.3)

7



8 Photonic Crystals

r�H =
1

c

@D

@t
; (2.4)

where c is the speed of light, E and H are the electric and magnetic �elds,
while D and B are the displacement and the magnetic induction �elds,
respectively.

In general, D is related to E via a rather complicated power series. For
materials and �elds under consideration, it is a very good approximation
to keep only the linear term, i.e., D(r; !) = �(r; !)E(r; !). Furthermore,
considering macroscopic, isotropic and low-loss materials, �(r; !) is purely
real and practically constant over the frequency-range of interest. We thus
obtain D(r) = �(r)E(r) where �(r) is the macroscopic dielectric constant. A
similar expression relatesH to B, but for the dielectric materials of interest,
magnetic permeability is close to unity and thus, H(r) = B(r).

With all these assumptions Maxwell's equations become:

r �H(r; t) = 0; (2.5)

r � �(r)E(r; t) = 0; (2.6)

r�E(r; t) = �1
c

@H(r; t)

@t
; (2.7)

r�H =
�(r)

c

@E(r; t)

@t
: (2.8)

It is worth noting here that Maxwell's equations are exact and thus provide,
the band-structure of a PC from �rst principles (ab-initio). This may be the
most exciting aspect of the �eld and results to excellent agreement between
theory and experiment. Another aspect of Maxwell's equations is that there
is no fundamental length. This ensures that a PC designed at one length
will exhibit the same electromagnetic properties at any other length scale.

The �elds entering Maxwell's equations have time and spatial depen-
dence. Taking full advantage of the linearity of the equations, we may
separate the two dependences by expanding the �elds into a set of harmonic
modes. Since we are looking for eigenmodes of the system, we may write a
harmonic mode as a certain �eld spatial pattern times a complex exponen-
tial, i.e.,  

H

E

!
(r; t) =

 
H

E

!
(r)ei!t: (2.9)

Substituting Eq. (2.9) into (2.7)-(2.8) we may obtain a master equation
which governs the magnetic �eld pattern:

�H(r) =

�
!

c

�2
H(r); (2.10)

under the transversality conditionr�H(r) = 0. The operator� is Hermitian
and is given by

� � r�
�

1

�(r)
r�

�
: (2.11)



2.1 Ab-initio Calculations 9

Fig. 2.1: A typical band-structure coming out from theoretical calculations. It
corresponds to the inverse opal depicted in Fig. 2.5. The shaded region corresponds
to the photonic band-gap [10].

A similar master equation can be obtained for the electric �eld, but in that
case, the corresponding operator is non-Hermitian complicating thus the
solution of the problem.

In a typical PC, the dielectric constant is periodically modulated with
lattice vector R, i.e., �(r) = �(r + R). Using the Bloch-Floquet theorem,
we may expand both �eld pattern and dielectric constant in plane waves
whose wavevectors are reciprocal lattice vectors. For instance, the Fourier
expansion for the �eld will be of the form:

Hk

!(r) =
X
G;�

hG;�e�e
i(k+G)r; (2.12)

where e� is the polarization vector andG are reciprocal lattice vectors. Each
mode is thus identi�ed by the wavevector k while the transversality condition
requires that e� � (k + G) = 0. Substituting the expansion for both �eld
and dielectric constant into (2.10), the problem is reduced to the solution
of a system of linear equations on hG;�. Given that � is Hermitian, the
eigenvalue problem can be solved in di�erent ways and its solution provides
the allowed mode-frequencies for a given crystal, whose wavevectors are
associated with each one of these modes. In other words, we obtain the
band-structure, !(k) (Fig. 2.1).

In analogy to quantum mechanics, the Hermiticity of � ensures that its
eigenvalues are real, while its eigenvectors (modes) can be obtained by means
of a variational principle and they are orthogonal to each other. Using the
\electromagnetic analogue" of the variational theorem, one can show that a
mode tends to concentrate its displacement �eld in regions of high dielectric
constant, lowering thus its frequency, while remaining orthogonal to modes
below it in frequency [49].
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2.2 State of the Art in Fabrication of Photonic

Crystals

2.2.1 Two-dimensional Photonic Crystals

The traditional multilayer �lm is the simplest possible PC in which one can
always observe a complete gap in one direction, between every set of bands
[9, 26, 27, 32, 49, 102, 103, 104, 105, 115, 116]. It consists of periodically
arranged dielectric layers, with alternating high and low dielectric constants.
The medium is periodic in one direction and homogeneous in the other two.
The simplest departure from the multilayer �lm is the two-dimensional (2D)
photonic structure, consisting of a square lattice of dielectric rods or veins
[Fig. 2.2(a) and (b)]. An alternative 2D con�guration is the triangular
lattice of air cylinders in dielectric medium [Fig. 2.2(c)] or even the so-called
honeycomb lattice of dielectric rods. Such 2D systems, are homogeneous in
only one direction (periodic in the other two) and they are convenient from
both theoretical and experimental point of view [49, 50, 70, 71, 73, 76].

The structure of dielectric columns [Fig. 2.2(a)] has been shown to sup-
port gaps only for TM modes but not for TE modes, whereas for the struc-
ture of dielectric veins [Fig. 2.2(b)] it is the other way around. This behavior
can be explained if we examine the �eld patterns for the two structures. Re-
call that the �elds for either the dielectric- or air-band TE and TM modes
tend to be concentrated in the high� " (dielectric) regions. The degree of
this concentration is given by the �ll factor

f =
hE(r)D(r)ihigh�"
hE(r)D(r)ilow�" ; (2.13)

which measures the electrical energy distributed inside the high� " regions,
with respect to that in low�" regions, while we have introduced the notation

hABi �
Z
V
A�Bd3r: (2.14)

In the structure of the dielectric columns [Fig. 2.2(a)], the �ll factor of
the dielectric-band TM mode is much larger than that of the corresponding
air-band mode, while there is not so large contrast between the �ll factors
for the two TE modes. This big di�erence between the �ll factors of the two
TM modes, is responsible for the large TM PBG. On the other hand, in the
structure of dielectric veins [Fig. 2.2(b)], there is a big di�erence between
the �ll factors of the two consecutive TE modes but not for the TM modes
and thus only TE gaps may appear. Summarizing we can say that: TM
band-gaps are preferable in lattices consisting of isolated high � " regions
while TE band-gaps are preferable in connected lattices.

In a triangular lattice [Fig. 2.2(c)] both isolated spots and connected
high � " regions co-exist. As a result, such a structure exhibits band-gaps
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(c)

(b)(a)

Fig. 2.2: Two-dimensional photonic structures.

for both polarizations, and by adjusting the dimensions of the lattice, one
may arrange band-gaps to overlap, obtaining thus a complete PBG in two
dimensions. Two-dimensional PCs fabricated by electrochemical etching
technique, have reached gaps around � = 5�m and the technique seems to
be capable of providing PCs at even smaller wavelengths.

2.2.2 Three-dimensional Photonic Crystals

Ho, Chan and Soukoulis [45] were the �rst theorists to correctly predict
that a particular three-dimensional (3D) crystal would exhibit a complete
gap. Their structure was a diamond lattice consisting of either dielectric
spheres in air or air spheres embedded in a dielectric medium. Following
their predictions, Yablonovitch [126, 127, 128] demonstrated the �rst 3D PC
exhibiting a complete PBG. Starting with a dielectric slab and mechanically
drilling cylindrical holes in it, Yablonovitch created a diamond-like con�gu-
ration. The resulting structure, known as Yablonovite, indeed supported a
complete gap in the microwave regime.

Since then, the e�orts have been focused on realizing large-scale 3D PCs
exhibiting complete gaps for shorter wavelengths in the optical or near-
infrared regimes [22, 50]. To construct such photonic structures, many chal-
lenges exist. First of all, the lattice constant, must be comparable to the
wavelength of the light of interest. For instance, for a PC operating at
1:5�m, which is the wavelength currently used in telecommunications, the
lattice constant must be of the order of �m! Furthermore, both constituent
materials of the crystal must be topologically interconnected, while addi-
tionally, a large contrast in their dielectric constants is desired. Finally, the
fraction of the volume occupied by the high-dielectric material must be as
low as possible. There are two approaches currently used to create PCs
in micrometer length scale [65]. The �rst one, is the microengineering and
involves various microlithography schemes, such as electron beam lithogra-
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phy and X-ray lithography. For instance, Yablonovitch has continued his
technique of drilling holes into a dielectric slab but, for optical wavelengths
the \drill" is a beam of ions and the appropriate material is GaAs. In
1996, Yablonovitch and co-workers reported a band-gap in near-infrared
(1:1 � 1:5�m) [20]. The main drawback of their method, however, is that
only crystals up to a few unit cells can be produced.

A layer-stacking design was proposed by Iowa group in 1994 [46] and
since then has been extensively studied both theoretically and experimen-
tally. Based on this design, Lin and Fleming have developed a multistep
process involving photopatterning, etching and plasma enhanced deposition
by means of which they created a seven-layer structure [Fig. 2.3(a)] which
exhibits a gap around 1:5�m [31, 72]. The attenuation they measured was
about 99% (1% transmition) while they believe that a ten-layer structure
might give 0:1% transmition. Noda and Yamamoto followed an alterna-
tive multistep process involving electron beam lithography and reactive ion
etching to stack semiconductor rods with micrometer dimensions [90]. They
have reported an attenuation of 99:9% between 6 and 9�m, for an eight-layer
structure which is grown within ten days in the laboratory. Both Lin's and
Noda's fabrication methods are believed to be very promising for any future
mass production of PCs since they combine low cost with high reliability.
A new layered structure has been recently proposed by Joannopoulos and
co-workers (Fig. 2.3) for achieving full 3D band-gaps. Its main advantage
over the previous layer-stacking design is that it allows the building of a 2D
crystal in three dimensions.

The second approach tomicrofabrication of PCs, involves 3D self-assembling
systems such as colloidal crystals [77, 120] and arti�cial opals [11]. The lat-
ter are structures of SiO2 or TiO2 spheres (opal) arranged in a close-packed
face-centered cubic lattice (Fig. 2.4). Intersphere voids form a network
which can be impregnated with materials of low or high refractive index.
Although both colloids and opals have excellent long-range periodicity re-
quired for photonic band-structures, it has been diÆcult to achieve high
index contrast and the correct network topology in order to support com-
plete gaps. Closely related structures are the so-called inverse opals(crystals)
which have been shown to exhibit sizable PBGs [15]. They consist of air
(low dielectric) spheres, embedded in a connected high dielectric network
(Fig. 2.4) and the recipe for their fabrication is the following.

An opal structure is used as a template and its void regions are in�l-
trated with a material of high dielectric constant, such as Ge, Si or GaP .
Subsequently, the original template is removed by chemical or heat treat-
ment, leaving behind a connected network (macroporous sample or Swiss
cheese structure) with high dielectric contrast, which is essential in obtain-
ing larger gaps. Furthermore, the void regions in macroporous crystals allow
the injection of atoms or dye molecules making thus quantum optical exper-
iments feasible. Experimental realization of such a type of \inverted" opal
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Fig. 2.3: On the left, a scanning electron microscopy image of a seven-layer
three-dimensional photonic crystal. A vacancy defect has been created in the fourth
layer and acts as a defect-cavity; L = 2�m [72]. On the right, a layered structure
proposed by Joannopoulos and co-workers for achieving a full three-dimensional
band-gap.

Fig. 2.4: On the left, electron microphotograph of an opal sample [11]. On
the right, view of an inverse opal backbone resulting from incomplete in�ltration
of silicon in air voids of an arti�cial opal. The inner surface of each sphere (only
one is shown) is \covered" by a nematic liquid crystal and thus a tunable PBG is
obtained [15, 16].
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Fig. 2.5: A crystal of air spheres in (a) silicon (on the left) and (b) T iO2 (on the
right).

structures (Fig. 2.5) has been reported in the literature [10, 123]. Busch
and John have gone one step further, coating the internal surfaces of the
macroporous structure with a nematic liquid crystal [16]. As they calcu-
lated, the resulting structure (Fig. 2.4) exhibits a completely tunable PBG.
Speci�cally, the 3D PBG can be opened or closed by applying an external
electric �eld which a�ects the orientation of the nematic molecules.

2.3 Applications

Once we have a PC, it is possible to create point-defects by destroying locally
the periodicity of the lattice of the crystal. Such imperfections may involve
changes to the dielectric constant (or equivelantly refractive index) of one of
the \dielectric atoms", modi�cation of its size or even its removal from the
lattice of the crystal. The point-defect can then \pull" a mode (or group
of modes) inside the otherwise forbidden gap. The resulting photonic state
known as defect-mode is strongly localized and decays exponentially in the
bulk [76], while its frequency and symmetry can be controlled [49, 50, 119].
In analogy to atomic physics, depending on their symmetry, defect-modes
can be labeled as s; p; d; etc. For instance, in Fig. 2.6 we show a p-like pho-
tonic state (it has two nodes) in a 2D PC. The crystal surrounding a defect
acts as highly re
ecting mirror. The quality factor Q of such a defect-cavity
is a measure of the losses, while its size is of the order of the cubic wavelength
of light �3. Clearly, if losses can be controlled, a high-Q microcavity can be
obtained, operating at optical or even near-infrared wavelengths, where the
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Fig. 2.6: Magnetic �eld pattern in the vicinity of a defect-mode in a (a) two-
dimensional photonic crystal (on the left) and (b) three-dimensional photonic crys-
tal (on the right). Dark and light regions, correspond to �eld maxima.

ordinary cavities used in quantum optical experiments are getting lossy. To
this end, we need 3D PCs exhibiting large complete band-gaps (along all
directions in 4� steradiants), isolating thus the defect-mode from the con-
tinuum into which it can dissipate its energy. In Fig. 2.6, we present the
distribution of the magnetic �eld around a defect in a 3D PC. The necessary
criteria for achieving large gaps are well-known and have been discussed in
the previous section. We additionally need large scale crystals for the elim-
ination of losses through the surrounding walls. It has been shown both
theoretically and experimentally that the Q factor of the defect-cavity in-
creases exponentially with the size of the crystal, without presenting any
saturation [72, 119]. For the time being, the highest value of Q (� 104)
has been reported by Lin and co-workers in a 2D defect-cavity [73] while,
the �rst 3D defect-cavity has been realized in a seven-layer structure [Fig.
2.3(b)] [72].

PBG microcavities can be used to control spontaneous emission, which
is the heart of all light-emitting devices in optoelectronics. In light-emitting
diodes (LEDs) for example, spontaneous emission takes place during the
radiative recombination of holes and electrons in a p � n junction. Sur-
rounding a LED by an optical cavity supporting a single mode, we may
obtain single-mode light-emitting diode (SMLED) which, in analogy to an
above threshold semiconductor laser, exhibits coherence properties while
simultaneously is thresholdless and much more reliable. Schener and co-
workers have demonstrated the �rst \PBG defect-mode laser" operating at
wavelengths � 1:5�m [66, 92]. The laser microcavity was formed by a point
defect in a 2D photonic crystal fabricated in InGaAsP . A point defect can
be �nally used as a narrow-band polarization-selector [72].
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Fig. 2.7: On the left, electric �eld pattern in the vicinity of a bend in a two-
dimensional photonic crystal [78]. Dark and light regions, correspond to maxima
of the freely propagating �eld. On the right, scanning electron microscope view of
a fabricated triple-line defect in a triangular two-dimensional photonic crystal [71].

Instead of a point-defect one can also introduce line-defects in an oth-
erwise perfect photonic structure. The defect may then support a mode
within the band-gap and as such is forbidden from propagating in the bulk
crystal. Such defects can be used as \lossless" waveguides. In conventional
dielectric waveguides (�ber-optic cables) currently used in telecommunica-
tions, the total internal re
ection is responsible for the con�nement of light.
If, however, a �ber curves tightly, a signi�cant portion of light will be lost,
since the angle of incidence is then too large for total internal re
ection to
occur. In PBG waveguides, on the other hand, the situation is substantially
di�erent. As long as the frequency of the defect-guiding-mode lies within
the gap, it is impossible for the light to escape, i.e., to propagate in the bulk
crystal, even around tight corners (Fig. 2.7). A highly eÆcient waveguiding
through a triple-line-defect embedded in a 2D triangular photonic structure,
has been demonstrated (Fig. 2.7) by Lin and co-workers [71]. Although the
structure does not exhibit a large band-gap, the authors have reported a
near-perfect waveguiding at 1:5�m.

Combining both line- and point-defects, the creation of channel-drop
�lters is possible. Such �lters usually consist of two parallel waveguides
(line-defects) and an \optical resonator system" which involves one or more
point-defects. Calculations have shown that by means of PBG channel-drop
�lters, it is possible to transfer 100% of a selected frequency channel from
one of the waveguides into the other in the forward or backward propagation
direction [29, 30].
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2.4 Summary

Light has several advantages over electrons. It is not only that it travels
much faster than electrons, but it can carry much larger amount of infor-
mation per second while heating problems are practically absent, since pho-
tons do not interact so strongly as electrons. It would thus be desirable to
construct all-optical circuits which can replace their conventional electronic
counterparts and open the door towards high-speed data transfer and com-
puting. Such optical devices, however, require structures that can trap, bend
and split light beams eÆciently. Many scientists believe that the answer lies
in PCs and they have already begun imagining photonic metropolises in
micrometer length scales. In this thesis we deal with another �eld of appli-
cations involving small quantum systems (atoms, molecules, ...) embedded
in PCs.
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Chapter 3

Radiative Processes

The investigation of atomic radiative processes requires the description of
the atom, the radiation �eld and the interaction between the bound atomic
electrons and the �eld. It is the purpose of this chapter to review standard
tools used in quantum optics for the investigation of the atomic dynamics
as long as the atom is weakly coupled to a 
at radiation reservoir, into
which it can dissipate its energy. Furthermore, we give a brief overview of
basic quantum optical phenomena associated with QED in open space and
cavities which are discussed later on, in the context of PBG materials.

3.1 Interaction of Radiation with Atoms

For the sake of simplicity, let us consider a single-electron atom interacting
with the radiation �eld. The source-free radiation �eld (R) , can be described
by the vector potentialA(r; t) with the constraintr�A = 0. The interaction
between the electron and the �eld is then described by the following non-
relativistic Hamiltonian

H =
1

2m
(p� eA)2 + e�(r) +HR; (3.1)

where the electron's spin has been neglected, �(r) is the Coulomb potential
which keeps the electron bound to the atom, while m, e and p are the mass,
the charge and the momentum of the electron, respectively. Expanding the
�rst term in Eq. (3.1) and using the Coulomb gauge condition1, we obtain

H =
p2

2m
+ e�(r) +HR � e

m
A � p+ e2

2m
A2: (3.2)

The �rst two terms constitute the Hamiltonian of the isolated atom, namely,

HA =
p2

2m
+ e�(r); (3.3)

1Since r �A = 0 and p � r, we have p �A = A � p.
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while HR is the Hamiltonian for the source-free radiation �eld in the absence
of the atom. Finally, the last two terms in Eq. (3.2) represent the interaction
between atom and �eld, i.e.,

V = � e

m
A � p+ e2

2m
A2: (3.4)

In the following sections, we discuss these three parts of the Hamiltonian
separately.

3.1.1 Quantization of the Electromagnetic Field

In many QED problems, it is rather convenient to envisage the electro-
magnetic �eld as con�ned in a volume similar to a cavity. This allows us
to deal with a discrete set of variables rather than the whole continuum
[75, 100, 108]. Speci�cally, the �eld is represented by a set of in�nitely
many but discrete modes indexed by �, whose dynamics are described in
terms of the corresponding creation and annihilation operators ay� and a�
respectively, obeying the commutation relations

[a�; a
y
�0] = Æ��0 ; [a�; a�0] = 0 = [ay�; a

y
�0]: (3.5)

The Hamiltonian of the radiation reservoir is that of a set of in�nitely
many independent harmonic oscillators and denoting by !� the frequency
of the � mode, we have in Scr�odinger picture

HR =
X
�

�h!�

�
ay�a� +

1

2

�
; (3.6)

while the vector potential is given by

A(r) =
X
�

s
�h

2�0!�

�
a�u�(r) + a

y
�u

�
�(r)

�
; (3.7)

where �0 is the electric permitivity of the vacuum. For each mode �, the
corresponding mode-function u�(r), satis�es the wave-equation under the
transversality condition,

r2u�(r) +
!2�
c2
u�(r) = 0; r � u�(r) = 0; (3.8)

where c is the speed of light. Additionally, the mode-functions form a
complete and orthonormal set and depend on the boundary conditions ap-
plied to the electromagnetic �eld. In the following sections we discuss var-
ious types of mode-functions. For the time being, what should be kept
in mind is that the mode-index �, is usually an abbreviation for a set
of four numbers, namely, the three cartesian components of the propaga-
tion vector jk�j � !�c

�1 and the corresponding polarization index �, i.e,
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� � fkx; ky; kz; �g. Thus, any sum over � must be understood as a short-
hand notation for X

�

�
X
k

2X
�=1

: (3.9)

�Fock or Number States: Since each mode � of the radiation �eld
is independent, the Hamiltonian (3.6) can be written as a sum over sub-
Hamiltonians for each mode, i.e., HR =

P
� h�, where

h� = �h!�

�
N� +

1

2

�
; (3.10)

while we have introduced the number operator N� � a�a
y
�. The N� is Her-

mitian and has a discrete set of eigenstates fjn�ig (Fock or Number States)
[74], while its eigenvalues are n� = 0; 1; 2,.. . ,1. Accordingly, jn�i are also
eigenstates of the Hamiltonian (3.10), with eigenvalues E� = �h!�

�
n� +

1
2

�
.

The e�ect of a� and a
y
� on the number states is:

a�jn�i = p
n�jn� � 1i; ay�jn�i =

p
n� + 1jn� + 1i; (3.11)

and thus N�jn�i = n�jn�i, i.e., N� counts the number of photons in mode
�. The vacuum state of mode � is de�ned by, a�j0�i = 0 and its energy is
1
2�h!�, while the higher excited states can be obtained by

jn�i =
�
ay�

�n�
p
n�!

j0�i: (3.12)

The number states are orthogonal and complete, i.e.,

hn�jm�i = Ænm;
1X

n�=0

jn�ihn�j = 1; (3.13)

and as such, they form a complete set of basis vectors for a Hilbert space.
The state-vectors of the entire �eld are de�ned in the tensor product

space of the Hilbert spaces for all the modes; that is, a state-vector of the
radiation �eld may be written in the form:

jfn�gi � jn1ijn2i : : : jn1i � jn1; n2; : : : ; n1i; (3.14)

and

HRjn1; n2; : : :n1i =
X
�

�h!�

�
n� +

1

2

�
jn1; n2; : : :n1i: (3.15)

The lowest eigenenergy, is 1
2

P
� �h!� and corresponds to the ground (vac-

uum) state of the �eld which is given by the normalized vector jf0�gi �
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j0; 0; : : : ; 0i. It is known as zero-point energy and can be omitted in our
calculations, since it does not a�ect the atomic dynamics. Each state-vector
can be constructed from the vacuum state in the following way

jn1; n2; : : :n1i =
�
ay1

�n1 �
ay2

�n2
: : :

p
n1!n2! : : :

j0; 0; : : : ; 0i: (3.16)

Note additionally that the state-vectors (3.14) are orthogonal and complete
too, i.e.,

hn1; n2; : : : ; n1jm1; m2; : : : ; m1i = Æn1m1
Æn2m2

: : : ;X
n1;n2;:::;n1

jn1; n2; : : : ; n1ihn1; n2; : : : ; n1j = 1; (3.17)

while, application of the creation and annihilation operators to them yields

a�jn1; n2; : : : ; n�; : : : ; n1i =
p
n�jn1; n2; : : : ; n� � 1; : : : ; n1i;

a
y
�jn1; n2; : : : ; n�; : : : ; n1i =

p
n� + 1jn1; n2; : : : ; n� + 1; : : : ; n1i;

N�jn1; n2; : : : ; n�; : : : ; n1i = n�jn1; n2; : : : ; n�; : : : ; n1i: (3.18)

�Coherent States: A more appropriate basis for many optical �elds is
that of coherent states [74, 75, 121]. Consider again a single mode of the
radiation �eld denoted by �. A coherent state j��i is de�ned as eigenstate
of the non-Hermitian annihilation operator a�, i.e., a�j��i = ��j��i, where
�� is the corresponding complex eigenvalue. We may expand the coherent
state in terms of the Fock states jn�i as follows,

j��i = e�j��j
2=2

1X
n�=0

(��)
n�p

n�!
jn�i: (3.19)

The number of photons in the mode � is then uncertain, but the statistical
properties of the �eld are well de�ned with mean number of photons �n� �
j��j2 and a Poissonian photon number distribution

Pc(n�) � jhn�j��ij2 = �nn��
n�!

e��n� ; (3.20)

while the uncertainty is �n� =
p
�n�. The set fj��ig is continuous, normal-

ized but not orthogonal. Coherent states are minimum uncertainty states,
while the variation of the electric �eld in the limit of high excitation, ap-
proaches that of classical wave of stable amplitude and �xed phase. The �eld
generated by a single-mode laser operating well above threshold is, to a good
approximation, a coherent state. In analogy to Eq. (3.14), a state-vector of
the radiation �eld can be written in terms of coherent states as

jf��gi � j�1ij�2i : : : j�1i � j�1; �2; : : : ; �1i: (3.21)
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�Thermal Field: Coherent states are pure states since they can be ex-
pressed as a linear superposition of Fock states [see Eq. (3.19)]. There are
states, however, which are not expressible in this way. Such a case, is a
thermally-excited mode [74, 75, 121] where the photon number distribution
is given by

Pt(n�) = 1

1 + �n�

�
�n�

1 + �n�

�n�
; (3.22)

while the mean number of photons is temperature-dependent as is deter-
mined by

�n� =
1

exp [�h!�=KBT ]� 1
; (3.23)

with uncertainty �n� =
q
�n2� + �n�, while T is the temperature and KB is

the Boltzman constant.

3.1.2 Atomic Hamiltonian

Let's consider the atomic levels jai, jbi, jci, . . . , and the atomic Hamiltonian
HA, which is given by Eq. (3.3). Each of the atomic states satis�es the
following eigenvalue problem

HAjji = �h!j jji; j 2 fa; b; c; : : :g; (3.24)

where �h!j is the eigenenergy corresponding to the eigenstate jji. Let us
further assume that the atomic states are orthonormal and complete, i.e,

hijji = Æij ;
X
j

jjihjj= 1; (3.25)

where
P

j is a sum over all eigenstates of HA. For a couple of atomic levels,
we may de�ne the so-called atomic dyadic operator, �ij � jiihjj [74, 121].
The orthonormality of the atomic eigenstates implies that

�ij jli = jiiÆjl: (3.26)

In other words, operation of �ij on the atom prepared in state jji, removes it
from that state and puts it in state jii. That's why these operators are also
referred to raising and lowering atomic operators or even electronic creation
and annihilation operators.

Both, atomic Hamiltonian and electronic momentum can be expressed
in terms of �ij . Using Eqs. (3.24) and (3.25), we have

HA =
X
i

jiihijHA

X
j

jjihjj=
X
ij

�h!j jiiÆijhjj =
X
j

�h!j�jj ; (3.27)

and
p =

X
i

jiihijp
X
j

jjihjj=
X
ij

pij�ij ; (3.28)
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where pij = hijpjji. The atomic dyadic operators obey the following com-
mutation relation:

[�jm; �ln] = Æml�jn � Æjn�ml: (3.29)

3.1.3 Interaction Hamiltonian

The term e2(2m)�1A2 in Eq. (3.4) does not enter in the processes of concern
here and can be omitted. The interaction term of the Hamiltonian can thus
be expressed as

V = �h
X
j;n;�

�jn
�
g
(j;n)
� a� + g

(j;n)�
� ay�

�
; (3.30)

where the indexes j; n and � refer to atomic states and radiation modes
respectively, while

g
(j;n)
� = � e

m

s
1

2�h�0!�
hjju�(r)pjni; (3.31)

or, in coordinate representation,

g
(j;n)
� = � e

m

s
1

2�h�0!�

Z
��j (r) [u�(r)p]�n(r)d

3r; (3.32)

with �l(r) � hrjli.
Electric-Dipole Approximation: If we are interested in photons of

wavelength much larger than the atomic size, the mode-function u�(r) is
slowly varying compared to the electronic wavefunctions and we can thus
take it outside the integral (3.32) and replace it by its value at the atomic
position 2. Furthermore, it can be shown that

� e

m

Z
��jp�nd

3r = �i!jn
Z
��jd�nd

3r � �i!jndjn; (3.33)

where d = er is the dipole moment and !jn = !j � !n. We thus have,

g
(j;n)
� = �i

s
1

2�h�0!�
!jnu�(RA) � djn; (3.34)

where RA is the atomic position.
Alternatively, as the interaction Hamiltonian, one may adopt that of an

electric dipole interacting with the electric �eld,

V = �eE(r) � r; (3.35)

2Since the atomic diameter r � 1�A, this approximation is valid at optical wavelengths,

where �photon = 103�A, or even in microwave regime.
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while in the electric-dipole approximation, the electric �eld is evaluated at
the atomic position. Let us compare the electric �eld interaction with that
of an electron subject to the vector potential A(RA):

i�h
@

@t
 (r; t) =

�
1

2m
(p� eA(RA))

2 + �(r)

�
 (r; t); (3.36)

where  (r; t) is the electronic wavefunction. If we set

 (r; t) = exp

�
ie

�h
A(RA) � r

�
�(r); (3.37)

where �(r; t) is a new wavefunction, Eq. (3.36) yields

i�h
@

@t
�(r; t) =

�
H0 � eE(RA) � r

�
�(r; t); (3.38)

where H0 = HA + HR is the unperturbed Hamiltonian. Instead of the
velocity gauge (�em�1A � p) one can thus work in length gauge (�eE � r)
where any expectation values are calculated through �(r; t). The di�erence
is that in this case, the coupling constant reads

g
(j;n)
� = �i

r
!�
2�h�0

u�(RA) � djn: (3.39)

3.2 Density Operator

Consider a quantum system and let fjsig be a basis set. An arbitrary
wavefunction of the system then can be written in the form

j (t)i=
X
s

Cs(t)jsi: (3.40)

This is a pure state since it is a superposition of eigenstates. In many cases,
however, the system is in a statistical mixture of pure states. Such a mixed
state can be written as

j	(t)i =
X
j

aj j ji (3.41)

where
P

j is a sum over all pure states entering the statistical mixture with
probabilities jaj j2 and Pj jaj j2 = 1.

In quantum mechanics, physical quantities are associated with linear
operators. Let O be such an operator, whose expectation value is given by

hOi = h	(t)jOj	(t)i: (3.42)

Using the completeness of the eigenstates jsi, the expectation value of the
operator can be written as,

hOi =
X
s

hsj�Ojsi � Tr(�O); (3.43)
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where we have introduced the total density operator [21, 75]

� �
X
j

jaj j2j jih jj: (3.44)

The density operator contains all the information about the system as well
as its time evolution.

Using Eq. (3.40), Eq. (3.44) yields

� =
X
s;s0

�ss0 jsihs0j; (3.45)

where the matrix representation of the density operator is de�ned by,

�ss0 =
X
j

jaj j2C(j)
s C

(j)�
s0 : (3.46)

The diagonal matrix element �ss gives the population in state jsi while the
o�-diagonal �ss0 is the so-called ss

0-coherence. In a pure state we always have
non-vanishing diagonal elements, whereas in incoherent statistical mixtures
no coherence exists. We �nally note that the density matrix is Hermitian
(�ss0 = �s0s) and has unit trace, Tr(�) �Ps �ss = 1.

The evolution of the system is governed by Schr�odinger equation:

i�h
@

@t
j j(t)i = Hj j(t)i; (3.47)

from which we may obtain the following equation of motion for the density
operator

i�h
@�

@t
= [H; �] ; (3.48)

where H is the total Hamiltonian of the system.

3.3 The Quantum Optical Master Equation

In this section we focus on the interaction of a \small" atomic system (few
quantal degrees of freedom), with a \large" radiation reservoir (many quan-
tal degrees of freedom) [1, 19, 21, 33]. Let t = 0 be the time at which the
atomic system (A) and the radiation �eld (R) are brought into interaction,
and let HA and HR be the corresponding unperturbed Hamiltonians given
by Eqs. (3.27) and (3.6), respectively. The states of the combined system
satisfy the following eigenvalue problem

H0jsi � (HA +HR) jsi = �h!sjsi; (3.49)

and they are of the form jsi � jjijfn�gi � jj; fn�gi, where by jji and jfn�gi
we denote the eigenstates of HA and HR, respectively. The corresponding
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eigenvalues are �h!s = �h!j+
P

� �h!�n�. These states are orthogonal and the
set is complete, as is determined by Eqs. (3.17) and (3.25) and thus they
form a basis.

In analogy to the previews section, we may de�ne the density operator of
the combined system wtot, which satis�es the following equation of motion
in the interaction picture

_wtot(t) = � i

�h
[V(t); wtot(t)] ; (3.50)

where V is the interaction between the reservoir and the atomic system.
We are usually interested in the dynamics of the latter which are given
by the reduced density operator �A(t) = TrR(wtot), where TrR denotes a
trace over all reservoir variables. Let's assume that the atomic system and
the reservoir are initially uncorrelated, so that the total density operator
factorizes as wtot(0) = �A(0)
 �R, where �R is a stationary reduced density
operator for the reservoir.

Integration of Eq. (3.50) from 0 to t yields,

wtot(t) = wtot(0)� i

�h

Z t

0
dt0
�V(t0); wtot(t

0)
�
: (3.51)

Iteration of this solution, tracing over all reservoir variables and subsequent
di�erentiation with respect to t yield the following integro-di�erential equa-
tion for the reduced density operator

@�A
@t

= Q(�A; t); (3.52)

where Q(�A; t) �Pm Um and for instance

U1 = � i

�h
TrRf[V(t); wtot(0)]g; (3.53)

U2 =

�
� i

�h

�2
TrRf

Z t

0
dt0
�V(t); �V(t0); wtot(t

0)
�	
: (3.54)

Without loss of generality we assume that the interaction has no diagonal
elements and the reservoir is in thermal equilibrium, i.e., TrR(V(t)wtot(0)) =
0, which implies that U1(t) = 0. At this point we proceed by making two
approximations which will result to a closed integro-di�erential equation for
the reduced density operator.
�Born Approximation: Considering weak interaction between the atomic
system and reservoir, we may apply lowest non-vanishing order perturbation
theory, dropping terms of order higher than two, on the right-hand side of
Eq. (3.52). We may additionally consider that the statistical properties of
the large reservoir remain practically una�ected by this weak coupling and
thus wtot(t

0) � �R 
 �A(t
0).
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� Markov Approximation: If the correlation time of the reservoir �R is
smaller than the time scale over which �A(t) varies, we may set �A(t

0) �
�A(t). This means that the evolution of the atomic system is determined
by the present and not its past since, any photon emitted into the radiation
reservoir will never return back to the atom and thus the atomic system
does not develop any memory. We may additionally extend the upper limit
of the integration to in�nity, as long as t� �R.

Under all these approximations, the �nal form of the quantum optical
master equation for the reduced density operator in Schr�odinger picture is:

@�A
@t

= � i
�h
[HA; �A]� 1

�h2

Z 1

0
dt0TrRf

�V(t); �V(t0); �R
 �A(t)
��g; (3.55)

which is valid to second order in the coupling constant and for times such
that �R � t � 
�1a , where 
�1a is the decay rate of the atomic system.
In other words the spectral bandwidth of the reservoir must be much larger
than the atomic linewidth. This is the de�nition of a 
at radiation reservoir.

3.4 A TLA Coupled to a Radiation Reservoir

Let's apply now the formalism we have developed above, in the case of a
TLA coupled to a radiation reservoir [2]. Let jei and jgi be the �rst excited
and ground states of our model TLA, with respective energies �h!e and �h!g.
The atomic dyadic operators are then given by �eg = jeihgj � �+ and �ge =
jgihej � ��, while the inversion operator is de�ned as �z = jeihej � jgihgj
and the population operators are �ee = jeihej and �gg = jgihgj. Let us also
adopt the notation �h!o = �h!e � �h!g for the energy di�erence between the
two atomic levels and unless otherwise speci�ed, we shall take �h = 1 in our
equations.

3.4.1 Open Space

The standard situation in QED is that of open space [100, 110]. In this case,
we may use plane-wave mode-functions, which for a cubical volume of side
L are of the form

u�(r) =
1p
V
e
(�)
� eik��r; (3.56)

where V = L3 while e
(�)
� is the polarization vector such that e

(�)
� �e(�0)� = Æ��0

and e(�)� � k� = 0.
The total unperturbed Hamiltonian is

H0 = !o�z +
X
�

!�a
y
�a�; (3.57)

while, following the notation of the previous section, the states of the com-
bined system are of the form jsi � jj; fn�gi, where j 2 fe; gg, and are
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eigenstates ofH0 with eigenvalues !s = !j+
P

� !�n�. For the study of spon-
taneous emission, we consider the atom initially excited and the �eld in its
vacuum state (in thermal equilibrium at T = 0), i.e., j (0)i= je; f0�ig � jIi
with corresponding energy !I = !o. The interaction between the TLA and
the in�nitely many oscillators of the radiation �eld in the electric-dipole
approximation can now be expressed as

V =
X
�

g�(�eg + �ge)(a
y
� + a�)

=
X
�

g�(�ega
y
� + �gea

y
� + �ega� + �gea�); (3.58)

where the coupling constant is given by Eq. (3.34) with j = e, n = g, while

we have set g
(e;g)
� ! g�, and the phase of u�(RA) has been chosen such that

g� is real.

Rotating-Wave Approximation (RWA): The terms �ega
y
� and �gea�

in Eq. (3.58) correspond to highly non-energy-conserving processes, namely,
the excitation of the atom accompanied by the emission of a photon and
de-excitation of the atom accompanied by the absorption of a photon, re-
spectively. We may neglect these terms in favor of the other two energy-
conserving terms, obtaining thus

V =
X
�

g�(�ega� + �gea
y
�): (3.59)

Note that the interaction is linear in the �eld operators ay� and a� and
thus, the only states that give a non-vanishing matrix element of V with the
initial state jIi are of the form jF i � jg; 1�i, i.e., the atom in the ground state
and one photon present in an arbitrary mode � of the reservoir. Accordingly,
the wavefunction of the system at an arbitrary time t can be written in the
form

j (t)i = a0(t)je; f0�gi+
X
�

b�(t)jg; 1�i: (3.60)

In order to obtain a master equation for the problem at hand, we substi-
tute both the unperturbed and the interaction part of the Hamiltonian (Eqs.
3.57 and 3.59), into (3.55). For the evaluation of the integrand in Eq. (3.55),
we may let V ! 1 (or equivalently L ! 1) taking thus the open-space
limit. In other words, the variables kx=L, ky=L, kz=L, become continuous
and thus, the sum over � can be turned into an integral in k�space or, by
means of the DOS �(!), in !�space:

1

V

X
�

�! 1

(2�)3

X
�

Z
d


Z
k2dk �! 1

(2�)3

X
�

Z
d


Z
�(!)d!: (3.61)
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For an arbitrary reservoir, we introduce the spectral response D(!), given
by the following angular integral

D(!) = V

(2�)3

X
�

Z
d
�(!)jg(!)j2; (3.62)

with the sum running over all polarizations. For the continuum under con-
sideration, the DOS is of the well known form �o(!) = !2=c3. Substituting
�o(!) into Eq. (3.62) and performing the angular integration we have

Do(!) =
!2o jdegj2!
6�2�0c3

: (3.63)

This is a smoothly varying function around ! � !o while for optical wave-
lengths, !o � 1015sec�1. Hence, we are dealing with a 
at (broad-band)
continuum and Born and Markov approximations are valid.

Skipping over many steps of calculations which can be found in most
books on quantum optics [1, 19, 21, 79, 121], we present the master equation
for the reduced density operator of the atom

@�A
@t

= �i(!o+Sa) [�z ; �A]+ 
a
2

�
2���A�

+ � �+���A � �A�+��
�
; (3.64)

where 
a is the atomic decay rate given by


a = 2�Do(! = !o): (3.65)

The quantity Sa represents one contribution to the vacuum shift (Lamb
shift) of the state jei, due to the coupling to the reservoir [100]. To obtain the
complete expression for the vacuum shift we must include in our calculation
the non-energy-conserving terms we dropped in RWA as well as all atomic
states jfi for which def 6= 0. In our theoretical description we have adopted
a rather simpli�ed model, namely, TLA and RWA and as a result we have
obtained the correct atomic linewidth (as long as jei is the �rst excited state)
but only part of the shift due to the reservoir.

The probability for the atom remaining excited at time t is given by
the matrix element hej�Ajei � �ee and satis�es the following di�erential
equation:

d�ee
dt

= �
a�ee; (3.66)

with solution �ee = e�
at. The spectrum of the emitted light is associated
with the Fourier transform of the two-time correlation function h�+(t)��(t0)i
and has the well known Lorentzian form with width at half maximum equal
to 
a.
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3.4.2 Cavity QED: Jaynes Cummings Model

There are many cases in quantum optics, where the dimensions of the envi-
ronment into which the atom is embedded, are much larger than the wave-
length of the atomic transition. One may thus work with the quantized
electromagnetic �eld and let V ! 1 after the calculations are complete,
obtaining thus a continuous mode-structure with DOS that of open space.
A closed cavity is the simplest departure from this limit and a standard
by now situation in quantum optics. The volume is �nite and the bound-
ary conditions imposed to electromagnetic �eld lead to a discrete set of
modes, whose spacing is inversely proportional to the length of the cav-
ity. Furthermore, unlike open space, in the context of quantization one
needs stationary-wave mode-functions and not plane-wave. For instance,
the mode-function corresponding to TEM00 mode in a cylindrical cavity, is
of the form u00(r) / sin(kzz)e

�(x2+y2)=w2

0 , where w0 is a constant, and z is
the axis of the cylinder. A harmonic oscillator can be associated with each
one of the cavity-modes and thus the problem of spontaneous emission in
a cavity can be approached by means of the formalism we have outlined in
previous sections.

Consider a TLA placed in a perfect closed cavity whose geometric charac-
teristics are such that only one cavity-mode interacts with the atom (single-
mode cavity). The Hamiltonian describing the dynamics of the system in
RWA is then of the form,

H = !o�z + !ca
ya+ g(RA)(�ega+ �gea

y); (3.67)

where !c and a(ay) are the frequency and the annihilation(creation) op-
erator corresponding to the cavity-mode. The coupling constant g(RA) is
given by Eq. (3.34). Considering the atom at rest, we may take the coupling
approximately constant, i.e., g(RA) = g. Even for atoms 
ying through a
cavity there are situations where the mode-function is approximately con-
stant along the atomic trajectory and thus this assumption is still valid.
The Hamiltonian (3.67) describes the simplest form of atom��eld interac-
tion, and is known as Jaynes-Cummings model [79, 110, 111].

Let's consider now a somewhat more general initial condition for the
system, namely, the atom initially excited and the cavity-mode prepared in
a pure Fock state jni, i.e., jIi = je;ni. Accordingly, the �nal states that give
non-zero matrix element of the interaction part of the Hamiltonian (3.67)
are of the form jF i = jg;n+ 1i.
Dressed Photon�Atom States: The �eld�atom interaction V , mixes
these two basis states. The resulting states are eigenstates of the total
HamiltonianH and are the dressed-states of the combined �eld+atom system
[110]. If the atomic transition is near-resonant with the cavity-mode, je;ni
and jg;n+ 1i are nearly degenerate. Diagonalizing the Hamiltonian H in
the basis formed by jIi and jF i we obtain a new set of eigenstates j�i with
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corresponding eigenvalues !�. In some sense, the coupling of the atom to
the cavity-mode splits the otherwise common resonance of the cavity and
the atom, into two peaks. This splitting is referred to as Rabi splitting.
In the case of resonance (!o = !c) the dressed states are j�i = (je;ni �
jg;n + 1i)=p2 with corresponding eigenenergies !� = �
n, respectively,
with 
n = g

p
n + 1 being the Rabi frequency. The probability PII of �nding

the system in its initial state after time t is

PII = cos2(
nt); (3.68)

which re
ects a periodic exchange of energy (Rabi oscillations) between the
atom and the cavity-mode. Vacuum Rabi oscillations appear even for an
initially empty cavity (n = 0), which is in contrast to the irreversible atomic
decay in open space. From another point of view, the combined system
(atom + cavity-mode) oscillates between the two stable dressed states.

As long as no loss mechanism has been taken into account in our the-
oretical model, Rabi oscillations will persist for ever. In any experimental
test, however, there are mainly two mechanisms of dissipation that a�ect
the \atom + mode" dynamics and lead to damped Rabi oscillations. The
�rst is spontaneous atomic decay at rate 
a into continuum modes other
than those supported by the cavity, and the second involves losses through
the imperfect walls and mirrors of the cavity at a rate 
c. Both spontaneous
emission and cavity-dissipation can be incorporated in our treatment as a
coupling of the atom and the cavity-mode itself to a large radiation reservoir
(the external world), into which they dissipate their energy. We thus obtain
the following master equation for the reduced density matrix of the small
combined system:

@�

@t
= �i

h
H0; �

i
+

a
2

�
2����+ � �+���� ��+��

�
+

c
2

�
2a�ay� aya�� �aya

�
: (3.69)

where H0 = !o�z + !ca
ya. This master equation, supplemented with the

idea of pumping via the transit of the excited atom through the cavity, forms
the basis of the theory of the micromaser as well as a model for the laser
[101, 107].

Considering a closed cavity (
a ! 0) and weak atom�mode coupling
(
c >> g), we have exponential decay of the initially excited atom as in
open space. In this case, the damping of the energy in the cavity is so fast,
compared to the rate with which it is deposited by the atom, that it is as
if the atom were radiating directly into open space. On the contrary, in
the strong-coupling regime (
c << g) the losses to the outside environment
are comparatively slow. The emitted photon survives suÆciently long to
be reabsorbed causing thus vacuum Rabi oscillations and the spontaneous
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de-excitation of the atom ceases being irreversible. The strong-coupling
regime is characterized not only by g and 
c, but also by the open-space
atomic linewidth 
a and the transit time � of light through the cavity. It
has been found that spontaneous emission can be a�ected by the size of the
cavity [38]. This stems from the fact that an initially excited atom \learns"
about its surrounding world by simply emittingwave-packets during the time
interval determined by its linewidth. For short times, spontaneous decay
takes place, as if the atom was in open space. The initially emitted wave-
packet returns back to the atom after having propagated along the cavity
and been re
ected by the walls of the cavity. It carries the \information"
about the environment, i.e., the presence of mirrors. For suÆciently long
cavities (� >> 
�1a ), the atom has completely decayed by the time the
initially emitted wave-packet returns back to it and thus any memory is
lost (Markovian problem). On the contrary, if � << 
�1a the atom has not
decayed, and thus a constructive interference between the re
ected wave-
packet and the one that is instantly emitted by the atom takes place. Clearly,
the \atom + cavity" dynamics in the latter case are non-Markovian. It is
possible, however, to overcome this diÆculty by choosing atom + cavity be
the small system which is coupled to a 
at reservoir, whose dynamics are
purely Markovian.

Alternatively, one may focus on the atom, while treating both cavity
and external �elds as a reservoir. This choice yields a Lorentzian spectral
response for the reservoir [98, 107],

Dc(!) =

a
2�


c
(! � !c)2 + (
c=2)2

: (3.70)

In general, a cavity involves more than one modes. Nevertheless, if they
are separated in frequency by much more than their widths (in other words
assuming high-quality (Q) and high-�nesse cavity), we can meaningfully ex-
amine the behaviour of the atom when is on(o�) resonance with one cavity-
mode, as we have done up to now. In general, the Fourier transform of the
spectral response gives the memory-kernel of the reservoir we are dealing
with. For the continuum under consideration we have

Gc(t� t0) / e�
cjt�t
0j; (3.71)

which indicates the non-Markovian nature of the interaction between the
atom and the cavity. Note that for open space Go(t � t0) / Æ(t � t0) which
re
ects the instant loss of memory, whenever a photon is emitted.

Although up to now we have concentrated on the case of exact resonance,
the situation di�ers quantitatively, but not qualitatively, for !o 6= !c. If the
atom is detuned from the cavity-mode, it is protected somewhat against
decay, due to the low DOS available to the emitted photon. The essential
point, however, is that in the long-time limit, no matter how far the atom
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Fig. 3.3: Three-level atomic systems.

is obtained till the atom becomes saturated with equal probability of being
found in the upper and lower levels, respectively (Fig. 3.2). We �nally note
that the spectrum of the 
uorescent light into the vacuum modes of the
electromagnetic �eld is known asMollow triplet since it exhibits three peaks
at frequencies !L and !L � 
 respectively. Its mathematical treatment is
highly non-trivial with a number of subtleties.

3.6 Three-level Atoms

For a number of reasons, three-level atomic models of the ladder (�), lambda
(�) or V con�guration (see Fig. 3.3) are of interest in quantum optics
[107, 110]. All three of these three-level arrangements involve two in general
di�erent transition frequencies. In this section we present a brief overview
of radiative processes associated with each one of these three-level con�gu-
rations.

3.6.1 Cascade Decay

In a three-level atom of � con�guration [Fig. 3.3(a)], the upper and lower
levels have the same parity and thus, considering the atom initially in upper
state, a cascade is the only way of de-excitation. If both atomic transi-
tions are coupled to open space, an exponential decay takes place and two
photons are emitted as the atom cascades down to the ground state. The
spontaneous-emission spectrum for the upper transition is, to a very good
approximation, a Lorentzian of width equal to the sum of the linewidths of
the upper and intermediate states. On the other hand, the spectrum for the
lower transition is a Lorentzian too, but its width is equal to the linewidth of
the intermediate state. Measurements involving angular correlation between
the two spontaneously emitted photons, are of particular interest in tests of
the validity of Bell's inequality in connection with the possible existence of
hidden variables. In spectroscopic studies through double optical resonance,
one or both transitions of the ladder system are driven by external �elds.
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3.6.2 Branching Decay

In a �-system, the two lower levels have the same parity. Considering the
atom initially prepared in the upper level [see Fig.3.3(b)], we have two decay
channels, namely, j1i ! j2i and j1i ! j3i. If both transitions are coupled
to open space the total decay rate out of the upper state is 
1 = 
12 +

13, where 
12 and 
13 are the decay rates for j1i ! j2i and j1i ! j3i
transitions respectively. The spectrum of the emitted photon exhibits two
Lorentzian peaks centered at the frequencies of the two possible transitions
and with equal widths. When both transitions are driven by external �elds,
the system may exhibit coherent population trapping (even when the upper
state decays), while the adiabatic population transfer from one to the other
of the lower states, through a Raman transition, without loss from the upper
state is also feasible. The coherent population trapping and the formation
of the so-called dark state plays a decisive role in laser cooling of atomic
motion, where the three levels correspond to quantized states of the center
of mass motion.

3.6.3 Quantum Interference in Spontaneous Decay

Consider a V -system [Fig. 3.3(c)] initially prepared in a superposition of
the upper levels, and both transitions being coupled to open space. It has
been found that if the separation of the two upper levels is small compared
to their decay rates the evolution of the system is oscillatory and not expo-
nential. This is due to quantum interference between the two possible decay
paths. Additionally, the spontaneous-emission spectrum may exhibit spec-
tral narrowing and dark lines. The V -system, with one of the transitions
driven by an external �eld, is essential in studies of quantum jumps.

3.7 Decay of Interacting Atoms

So far, we have considered the interaction of an isolated few-level atom with
the radiation �eld. In this section, we brie
y discuss the dynamics of a
collection of atoms con�ned in a volume small compared to the wavelength
corresponding to the atomic transition frequency. All atoms, identical or
not, are simultaneously coupled to the same radiation reservoir. The evolu-
tion of such an atomic system and the spectrum of the emitted photons can
be signi�cantly di�erent from that of a single atom.

Consider an ensemble ofN TLAs identi�ed by the subscripts 1; 2; : : : ; N ,
and let jel(gl)i, !l be the atomic levels and atomic transition frequency for
atom l, with l 2 f1; 2; : : : ; Ng. The unperturbed Hamiltonian of the system
is then the sum of the unperturbed Hamiltonians for the atoms and the
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radiation �eld, i.e.,

H0 =
NX
l=1

!l�
l
z +

X
�

!�a
y
�a�; (3.75)

while the position of the center of mass of the atoms must also be included
in the coupling to the radiation, which now reads

V =
NX
l=1

X
�

h
g
(l)
� a��

+
l + g

(l)�
� ay��

�
l

i
; (3.76)

with

g
(l)
� = �i

s
1

2�0!�
!lu�(Rl) � d(l)eg ; (3.77)

where d
(l)
eg denotes the electric dipole matrix element for atom l, while the

corresponding atomic dyadic operators are jelihglj � �+l and jglihelj � ��l .

3.7.1 Dipole-Dipole Interaction

Let's consider the mutual interaction between two TLAs [80]. One of them
is assumed to be initially in the upper state and the other in the lower. If
we label the atoms by 1 and 2, the relevant states of the problem are:

jai = je1; g2; 0i; (3.78)

jbi = jg1; e2; 0i; (3.79)

jci = jg1; g2; 1�i; (3.80)

and H0jji = !j jji with j 2 fa; b; cg. Thus an arbitrary wavefunction j (t)i
can be expressed as a superposition of these states, while its evolution is
given by:

j (t)i= e�iHtj (0)i= e�i(H
0+V)tj (0)i � U(t)j (0)i; (3.81)

where j (0)i is the initial state of the combined system, while U(t) is the
time-evolution operator. Introducing the Laplace transform

R1
0 dtU(t)e�st,

changing the variable s to �iz and denoting by G(z) the Laplace transform
in the complex z-plane (known as Resolvent operator [21, 42]), we have

G(z) =
1

z �H ; (3.82)

with H de�ned in Eqs. (3.75) and (3.76). Working in the basis formed by
the states (3.78)-(3.80), we obtain the following equations for the matrix
elements of G(z):

(z � !a)Gaa = 1 +
X
c

VacGca; (3.83)

(z � !b)Gba =
X
c

VbcGca; (3.84)

(z � !c)Gca = VcaGaa + VcbGba: (3.85)
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Eliminating the continuum amplitude Gca we obtain

(z � !a)Gaa = 1 +
X
c

jVacj2
z � !cGaa +

X
c

VacVcb
z � !cGba; (3.86)

(z � !b)Gba =
X
c

jVbcj2
z � !cGba +

X
c

VbcVca
z � !cGaa: (3.87)

We have two kinds of couplings which need to be calculated, namely,

Vjc(z) =
X
c

jVjcj2
z � !c

; (3.88)

and

M12(z) =
X
c

VacVcb
z � !c =M�

21(z): (3.89)

The Vjc refers to the direct coupling of each individual atom to the contin-
uum, whereas M12 describes the interatomic coupling through the contin-
uum. The physical picture is that the photon emitted by the excited atom
is absorbed by the unexcited one; hence the term dipole-dipole interaction
(DDI) or photon hopping.

Assuming two identical atoms, interacting with a broadband (
at) reser-
voir, such as open space, Born and Markov approximations hold and thus
Vjc(z) � Sa � i
a. The shift Sa can be assumed absorbed in the energy
of the upper state and with the lower state energy set equal to zero, the
relevant matrix elements of the resolvent obey the following equations in
matrix form:"

z � ~!o + i
a �M12

�M12 z � ~!o + i
a

# "
Gaa

Gba

#
=

"
1
0

#
; (3.90)

where ~!o is the atomic transition frequency shifted by Sa. The quantity

a represents the spontaneous-decay width of each atom. The dipole-dipole
matrix element M12 is in general complex and diverges as the interatomic
distance approaches to zero. This is to be expected since in that limit a
molecule is formed. For open space, M12 is turns out to be a z-independent
quantity:

M12 � V12 + i�12 =
3

2

a

�
cos(r12)

r12
� sin(r12)

r212
� sin(r12)

r312

�

� 3i

2

a

�
sin(r12)

r12
+
cos(r12)

r212
� sin(r12)

r312

�
: (3.91)

This expression has been obtained, as an example, for the two atomic dipoles
parallel to each other but perpendicular to r12, where r12 is the normalized
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interatomic distance with respect to the wavevector ko corresponding to the
atomic transition frequency, i.e., r12 � ko � jR1 �R2j.

In general, the time-evolution operator U(t) is obtained fromG(z) through
the inversion integral Z

C
G(z)e�iztdz; (3.92)

integrated on the appropriate contour C which, upon examination of the
poles of G(z) on the z-plane, leads to the somewhat more convenient form

U(t > 0) = lim
�!0

Z +1

�1
dxe�xtG(x+ i�); (3.93)

which is valid as indicated only for t > 0 and x is a real variable. The
eigenvalues and the corresponding eigenvectors of the matrix in Eq. (3.90)
are

z� = ~!o � i
a �M12; (3.94)

and

j �i = 1p
2
[je1; g2i � jg1; e2i] ; (3.95)

respectively, where by (+) and (�) we denote the symmetric and antisym-
metric product states, respectively, which correspond to entanglement of
the two atoms. In open space, the symmetric state is unstable, leading to
superradiance (see also the following section). Substitution of the eigen-
values into the inversion integral, yields a damped sinusoidal behaviour in
time. How strongly damped it is, depends on the atomic separation and
strength of interaction in relation to the decay rate 
a. In the long-time
limit, however, the excited-state population in either atom will decay. The
atoms may exchange excitation for a while, but they will eventually end up
in the ground state.

The situation is basically similar if the atoms are inside a cavity on (or
near) resonance with a mode [43]. The equations for the matrix elements
of the resolvent are in this case a bit more complicated [4, 6]. As in the
case of open space, however, in the long-time limit all excitation is lost. The
evolution in time is more involved because not only can the photon hop
from one atom to the other, but as we have seen in Sec. 3.4.2, it can be
reabsorbed by the same atom. But the end result is the same; the atoms in
the ground state and the cavity empty.

3.7.2 Superradiance

When the collection of N identical TLAs is initially fully excited, a coop-
erative e�ect, known as superradiance occurs. The phenomenon was �rst
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discussed by Dicke [24] in open space who showed that in a superradiant
system, spontaneous emission takes place over a time scale inversely pro-
portional to the number of radiated atoms, while the emission intensity is
proportional to N2. The superradiant behaviour is due to the induction of
correlations between the dipole moments of the initially uncorrelated atoms,
that interact via a common electromagnetic �eld [2, 3, 44]. The emitted ra-
diation, on the other hand, is characterized by a well de�ned directionality,
depending on the geometry of the sample.

Let us introduce at this point the Dicke notation, which is widely used
in the literature on superradiance. At t=0, all atoms are excited and un-
correlated and thus j (0)i= je1; e2; : : : ; eNi. For small times close to t = 0,
superradiance is purely quantum mechanical, since the atoms interact with
the vacuum �eld until dipole-dipole correlations arise. After this initial
stage, however, the phenomenon becomes classical with a macroscopic col-
lection of dipoles emitting radiation in a way analogous to that of classical
antennas. Since the atoms are con�ned in a volume with dimensions smaller
than the emission-wavelength, we can assume that the total dipole moment
of the system is the sum over the dipole moments of individual atoms. Intro-
ducing the macroscopic atomic operators J+ =

P
l jelihglj, J� =

P
l jglihelj,

Jz =
P

l(jelihelj � jglihglj) the Hamiltonian of the complete system in RWA
can be written as

H = !oJz +
X
�

!�a
y
�a� +

X
�

g�(a
y
�J

� + a�J
+); (3.96)

where !o is the atomic transition frequency for each individual atom, while
we have dropped the index l, since the atoms are identical. The macroscopic
operators obey the well known commutation relations:

[Jz; J
�] = �J�; [J+; J�] = 2Jz ; (3.97)

while we can de�ne a complete set of orthogonal Dicke states jj;mi where
j = N

2 and m�[�j; j] which are eigenstates of Jz and J2, with eigenvalues m
and j(j + 1), respectively. The state jj;mi is the fully symmetrical atomic
state where j +m atoms are excited and j �m are in the ground state and
thus the corresponding energy is m!o. For instance, for a system of two
TLAs the relevant states are: j1; 1i � je1; e2i, j1; 0i � (je1; g2i+ jg1; e2i)=

p
2

and j1;�1i � jg1; g2i, with corresponding energies: !o ; 0 ;�!o, respectively.
In the language of the Dicke states, the system is initially (t = 0) prepared
in state j (0)i = jj; ji and cascades down a ladder of N + 1 equidistant
levels.

There are mainly two ways of studying superradiance problems and both
have been employed in the literature. The �rst is the derivation of a Marko-
vian master equation for the reduced density operator of the atomic system.
Alternatively, one may work with the Heisenberg equations of motion for
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the atomic and �eld operators. In the Heisenberg picture, the equation of
motion for an operator O reads _O � �i[O;H]. Following this de�nition and
using Eq. (3.96), one obtains the equations of motion for the �eld operators,
the atomic inversion Jz and the atomic polarization J�:

da�
dt

= �i!�a� � ig�J
�; (3.98)

dJz
dt

= i
X
�

g�a
+
� J

� +H:c; (3.99)

dJ�

dt
= �i!oJ� + 2i

X
�

g�a�Jz ; (3.100)

and after eliminating the �eld operators by formal integration, we have

dhJzi
dt

= �
�Z t

0
dt0G(t� t0)hJ+(t)J�(t0)i � ih�(t)J+(t)i

�
+H:c; (3.101)

dhJ�i
dt

= 2
Z t

0
dt0G(t� t0)hJz(t)J�(t0)i+ 2ih�(t)Jz(t)i; (3.102)

where we have transformed to an interaction picture rotating at the atomic
transition frequency !o, i.e., Æ� = !� � !o. We have in addition introduced
the quantum-noise operator

�(t) =
X
�

g�a�(0)e
�iÆ�t; (3.103)

while G(t � t0) � h�(t)�(t0)i is the memory-kernel (correlation) function of
the reservoir.

As we can see, the equations of motion (3.101) and (3.102), do not
constitute a closed set of di�erential equations. On the contrary, they lead
to other expectation values of higher order correlations, i.e., hJ+J�i and
hJzJ�i. The resulting hierarchy of equations can not be solved, unless it is
somehow truncated. This truncation involves a decorrelation scheme and is
an approximation to the exact solution. There is no unique decorrelation
approach, but the simplest is the direct decorrelation of the products, i.e.,
hJzJ�i = hJzihJ�i. Following this approach, (3.101) and (3.102) read

dhJzi
dt

= �2<
�
hJ+(t)i

Z t

0
dt0G(t� t0)hJ�(t0)i

�
; (3.104)

dhJ�i
dt

= 2hJz(t)i
Z t

0
dt0G(t� t0)hJ�(t0)i; (3.105)

where the average over the quantum noise has been set to zero (h�(t)i = 0)
and <f�g denotes the real part of the expression in curly braces. From now
on, we refer to these equations as mean-�eld (MF) equations.
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It is well-known that in open space the memory-kernel is a delta function
which leads to an exponential behavior of the system, while in the long-time
limit, all atoms are in the ground state, and thus there is no inversion or
polarization. On the contrary, if the superradiant system is placed in a
cavity, we have an oscillatory evolution for both inversion and polarization
re
ecting the exchange of energy between the atomic system and the cavity-
mode(s). Both cavity-�eld and atomic system, however, will eventually end
up in their ground states.

As long as the coupling of each atom to the radiation �eld is invariant
under any atomic permutation, the evolution of the collection is restricted to
the Hilbert subspace involving only the symmetric atomic states of the sys-
tem. In general, the DDI, is not symmetric under all atomic permutations.
As a consequence, it tends to destroy the correlation between various couples
of dipoles (Van-der-Waals dephasing or symmetry-breaking e�ect), weaken-
ing thus the cooperative character of superradiance. There are atomic ar-
rangements, however, in which the interatomic coupling is invariant under
any atomic permutation and thus its net e�ect is to shift the symmetric
states which become non-equidistant. This gives rise to the emission of pho-
tons with di�erent energies and the time-dependent shift of the superradiant
emission, the so-called frequency chirping e�ect.

3.8 Stochastic Quantum Trajectories

Consider a quantum system with N (states) degrees of freedom. The master
equation treatment then, requires the solution of N � N di�erential equa-
tions. There are quantum-optical systems involving a large number of states
and as such, they are intractable using the density-operator approach. One
can, however, obtain the result that would correspond to the solution of the
master equation by simulating the stochastic evolution of a wavefunction
for the system in Hilbert space of dimension N [33, 35, 94]. As a result,
the evolution of the system can be obtained through the solution of no more
than N di�erential equations. In this section we present two ways to unravel
a Markovian master equation of the Lindbland form:

@�

@t
= �i [Hs; �] +

1

2

X
m

�
2Lm�L

y
m � LymLm� � �LymLm

�
; (3.106)

into stochastic quantum trajectories. The Lindbland operators Lym (Lm) rep-
resent the interaction of the system with the environment, while Hs is the
Hamiltonian of the system.
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3.8.1 Quantum Monte-Carlo (QMC) Method

In the context of QMC approach [23, 28, 34, 81] the time evolution of the
open system is governed by a non-Hermitian Hamiltonian,

Hu = Hs � i

2

X
m

LymLm; (3.107)

and thus, if j (t)i is the state-vector of the system at t, at time t + dt we
have

j (t+ dt)i = e�iHu tj (t)i: (3.108)

The coherent evolution of the system at each time-step dt may be inter-
rupted by an instantaneous quantum jump which is related to a gedanken
measurement of the number of photons in the radiation reservoir. After
each measurement, the wavefunction of the system is projected on its zero-
or one-photon component and the photon in the latter case is annihilated
by the detector. Note that, since Hu is non-Hermitian, the norm is not
preserved and thus j (t+ dt)i has to be renormalized at each time-step.

3.8.2 Quantum State-Di�usion (QSD) Method

The unraveling we have just presented is de�nitely not unique. Another
kind of quantum trajectory is the so-called QSD method [39, 40, 41]. Gisin
and Percival have provided a natural symmetry condition which leads to the
derivation of a unique di�usion-equation for master equations of the form
(3.106), namely,

j (t+ dt)i = �i(Hs � iLymLm)j (t)idt
+

X
m

(2hLymiLm � hLymihLmi)j (t)idt

+
X
m

(Lm � hLmi)j (t)id�m: (3.109)

The �rst sum represents the \drift" of the state-vector while the second one
the random 
uctuations resulting from the coupling of the system to its
environment. The d�m represent complex normalized Wiener processes. In
appendix A, we illustrate the application of both QMC and QSD methods
in the problem of resonance 
uorescence.



Chapter 4

Quantum Optical Phenomena in

Photonic Crystals

In this chapter we extent the problems we have discussed in the previous
chapter to environments provided by PBG structures [64]. To this end, we
need a suitable DOS, incorporating the essential physical features associated
with such materials.

4.1 Models of DOS for PBGs

4.1.1 Isotropic Model

In 1990, John and Wang proposed an isotropic model assuming that a propa-
gating photon in a PC, experiences the same periodic potential, irrespective
of its polarization or direction of propagation [59, 60]. The propagation of
an electromagnetic wave in such an ideal structure, can thus be described
by a scalar wave-equation in one dimension:

�r2 (x) + �(x) (x) =
!2

c2
 (x); (4.1)

where ! is the frequency of the wave and �(x) is a periodic \potential"
associated with the modulation of the dielectric constant.

In appendix B, we present a full description of this hypothetical model
and we derive the corresponding dispersion relation which, for a particular
choice of parameters, reads:

!k =
c

4na
arccos

"
4ncos(2ka(1 + n)) + (1� n)2

(1 + n)2

#
; (4.2)

and relates the frequency to the propagation vector k, where a is the size
of the dielectric scatterers (with refractive index n) periodically arranged.
This dispersion relation leads to gaps at k = m�

2(n+1)a for odd integer values

45
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of m. The lowest gap is centered at the frequency !gap = �c(4na)�1 and
for n = 1:082, its width is �! = 0:05!gap. Hence, no radiation of frequency

! 2
h
!gap � 1

2�!; !gap+
1
2�!

i
can propagate inside the crystal.

We shall be interested in the behaviour of small atomic systems with
transition frequencies around the edge. Assuming thus, a large gap com-
pared to the atomic linewidth, we may restrict ourselves to frequencies close
to the upper band-edge frequency !e = !gap +

1
2�!, and Eq. (4.2) yields

!k = !e +A(k � ke)
2; (4.3)

where A is a material speci�c constant and ke is the wave-vector corre-
sponding to the band-edge frequency. In the context of quantization of the
electromagnetic �eld in such periodic structures one may consider plane-
wave mode-functions. For the dispersion relation (4.3), the corresponding
DOS reads

�I(!) =
k2e
2
p
A

�(! � !e)p
! � !e (4.4)

where �(! � !e) is the usual step function, indicating that there is a gap
below !e. In a �nite one-dimensional PC, however, the singular behavior is
always smoothed [9, 32]. This e�ect can be incorporated in our model, by
introducing a smoothing parameter � and rewriting Eq. (4.4) in the form
[62, 68]

�S(!) =
k2e
2
p
A

p
! � !e

! � !e + �
�(! � !e): (4.5)

Neglecting the vectorial nature of electromagnetic waves we have thus
obtained a simple isotropic model. Band-structure studies have shown that
the vectorial nature of electromagnetic waves has to be taken into account in
order to achieve good agreement with experiments. Quantum optical phe-
nomena, however, are expected to be dependent on the local DOS (LDOS),
i.e., the DOS in the neighborhood of the atomic system, rather than total
DOS. Furthermore, according to band-structure calculations, even if a PC
does not possess a complete PBG, its LDOS may exhibit pseudogaps as well
as Van-Hove singularities, where the isotropic DOS is a good local approxi-
mation [15, 112]. Nevertheless, what should be always kept in mind is that
the isotropic dispersion relation [Eq. (4.3)], is valid for atomic transition
frequencies close to the upper band-edge and for relatively large gaps. As
a consequence, it may lead to unrealistic predictions if carried beyond its
range of reasonable validity. Closing, this section it is worth noting that
even for an ideal waveguide, close to its fundamental frequency, the DOS
has been shown to exhibit a highly peaked behavior analogous to that in
Eq. (4.4) [61].



4.1 Models of DOS for PBGs 47

4.1.2 Anisotropic Model

Besides the isotropic model, John and Wang have proposed an anisotropic
one which is still valid for frequencies close to the upper band-edge but the
vectorial nature of electromagnetic waves is preserved [60]. The correspond-
ing dispersion relation reads

!k = !e +A(k� ke)
2; (4.6)

while the DOS di�ers from Eq. (4.4), with the square-root factor appearing
in the numerator rather than the denominator, i.e.,

�A(!) �
p
! � !e�(! � !e): (4.7)

Although the anisotropic model, is closer to a real 3D PC, it is mainly
the isotropic one that has been used in quantum-optics problems. Much of
our discussion in the following sections, will thus be in the context of the
isotropic model but di�erences between the two models will be discussed
wherever necessary.

4.1.3 Gap with a Lorentzian Pro�le of the DOS

As long as both isotropic and anisotropic models are valid for frequencies
around the band-edge, they do not exhibit the correct behavior for relatively
large frequencies. Speci�cally, one would expect the DOS for both models
to approach the open-space value for ! � !e. It is obvious, however, that
in this limit, on the one hand the isotropic model goes to zero and on the
other, the anisotropic model diverges.

The essential point therefore is that, an appropriate model of DOS for
the description of a PBG continuum must exhibit a dip over a range of
frequencies and also tend to the open-space DOS as the frequency becomes
much larger or smaller than the mid-gap frequency. In our work, we have
also adopted as a model of such a DOS an inverted Lorentzian of higher
order given by the expression

�L(!) = �o(!)

�
1� �p

(! � !c)p + �p

�
; (4.8)

where �o(!) is the open-space DOS (see Sec. 3.4.1) which is a smooth
function of ! and thus we may set �o(!) = �o(!o) � �o where !o is the
atomic transition frequency.

First of all, note that the DOS (4.8) approaches the open-space value �o
for j! � !cj >> �. Second, it does not exhibit a divergence at the edge.
In fact, the \edge" is not in�nitely steep, but does rise more steeply, as we
increase the order of the Lorentzian. It could be thus argued that this DOS
does not exhibit a clear edge and possesses a zero only at one point. It should
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be kept in mind, however, that in a realistic PBG material, the gap does
not necessarily mean a true zero but a range of frequencies over which the
DOS is several orders of magnitude smaller than that of open space. Taking
p suÆciently large in Eq. (4.8), one can obtain a range of frequencies over
which �L(!)=�o is smaller than a desired value. For p = 6, for example,
�L(!)=�o � 10�6 for ! 2 [!c � 0:1�; !c + 0:1�]. One can further combine
the inverted Lorentzian with step functions in order to simulate a true zero
over a range of !, if so desired. The shape of the DOS given by Eq. (4.8),
can be viewed as a compromise between the isotropic and the anisotropic
models and has been used in the literature for p = 2 [8, 36, 37, 68, 85].

4.2 Spontaneous Emission at the Edge of a PBG

We return once more to the excited TLA assuming now that it can some-
how be placed in a material exhibiting gaps in the spectrum of the electro-
magnetic �eld it supports [6, 53, 62, 130]. Following the notation we have
developed in Sec. 3.4, the Hamiltonian of the system in RWA is given by
Eqs. (3.57) and (3.59). Adopting the isotropic model for the description of
the PBG continuum, the corresponding spectral response is

DI(!) =
C

�

�(! � !e)p
! � !e ; (4.9)

where C represents the strength of the coupling of the atomic transition to
the reservoir and is given by

C =
jdegj2k2e!e
12��0

p
A
: (4.10)

For the anisotropic model, one would have a spectral response of the form
DA(!) � �(!�!e)

p
! � !e, with the corresponding coupling constant being

di�erent from that in Eq. (4.10).
Clearly, for atomic transitions around the edge (!o � !e), in both cases

we have an unconventional spectral response and thus the Born and Markov
approximations are not valid. The corresponding memory kernels re
ect
long-range correlations between the atomic system and the reservoir and
are of the form

GI(t� t0) � 1p
t� t0

; GA(t� t0) � 1

(t� t0)3=2 ; (4.11)

with t > t0 [118]. Nevertheless, as long as the problem under consider-
ation involves a single excitation in the structured reservoir (emission of
one photon), the atomic dynamics can be obtained in terms of the Laplace
transforms (see Sec. 3.7) of the time-dependent coeÆcients of the total
wavefunction expanded in terms of the relevant states [see Eq. (3.60)].
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Focusing on the isotropic model for the time being, the matrix element
of the resolvent operator G(z) associated with the upper atomic state reads

Gee(z) =
z(z + Æe)� iC

p
z + Æe

z2(z + Æe) + C2
; (4.12)

where we have changed the Laplace variable z to z + !o and we have in-
troduced the detuning Æe = !o � !e of the atomic transition frequency !o
from the band-edge [6]. The expression for Gee(z) has now three poles. If
they are complex or real, will be determined by the value of the detuning Æe.
For instance, for exact resonance (Æe = 0) of the atomic transition with the
edge, the three roots are z1 = �C2=3; z2 = ei�=3C2=3; z3 = e�i�=3C2=3. Since
the atomic dynamics in the time domain are obtained by substitution of the
poles into the inversion integral (3.93), in the long-time limit only real roots
contribute. Thus, for Æe = 0, the atomic population in the excited state, in
this limit is,

jUee(t)j2t!1 =

����� z21 � iC
p
z1

(z1 � z2)(z1 � z3)

�����
2

=
4

9
; (4.13)

which indicates that a substantial fraction of the initial excitation (about
45%) remains trapped at the atom even at t!1. This is in contrast with
open space as well as cavities where at t ! 1 the atom has completely
decayed.

In Fig. 4.1, we show the atomic population as a function of time, for
various detunings from the band-edge frequency, i.e, from atomic transitions
well inside the gap (Æe < 0) to outside the gap (Æe > 0). As was expected,
for atomic transitions well inside the gap (Æe = �10C2=3), the atom remains
in the excited state forever. The periodically modulated dielectric host pre-
vents the atom from getting rid of its energy and thus a signi�cant part of
the emitted radiation, remains localized at the site of the atom. In contrast
to cavities, such localized photonic states may extent over many wavelengths
(localization length) around the atom [60]. The strong interaction between
the atom and its own localized radiation is re
ected in the oscillations in the
atomic population for Æe < 0 and the formation of a \photon + atom" bound
state in the long-time limit, which is associated with a non-zero steady-state
atomic population. This bound state consists of an excited-state compo-
nent, a ground-state component as well as electromagnetic �eld which can
not propagate in the dielectric structure, while its formation has been pre-
dicted in the early '70s by Bykov [17]. For atomic transitions suÆciently
outside the gap (Æe = 10C2=3), the Born and Markov approximations are
valid, leading thus to an exponential decay of the initially excited atom. The
corresponding decay rate, however, depends on the atomic detuning from
the band-edge (� C=

p
Æe), since the isotropic DOS does not a pproach its

open-space value for Æe � 0.
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In the language of dressed states, the coupling of the atom to the strongly
modi�ed radiation reservoir causes a strong vacuum Rabi splitting which is
re
ected by the vacuum Rabi oscillations in the atomic populations. One of
the two components of the doublet created by the splitting is pushed inside
the gap, where it is protected against dissipation, while the other is pushed
outside where it decays. Depending on the magnitude and the sign of Æe, the
relative magnitude of the two components changes, which determines what
fraction of the initial excitation remains trapped at the atom, in the long-
time limit. Recall that in the case of an atom in a cavity, both components
of the doublet decay since the DOS, although not 
at, does not exhibit any
gap.

For the isotropic model, the atom exhibits non-zero steady state popu-
lation, even for positive detunings (Æe = C2=3). It has been shown, however,
that this is an artifact of the divergent isotropic DOS. For the anisotropic
model, as well as the Lorentzian pro�le of DOS, the component of the dou-
blet outside the gap, decays much faster and thus, even for small positive
detunings (see Chap. 5), the \photon + atom" bound state will decay, while
the oscillations in the atomic excitation are not so pronounced.

In contrast to the decay rate, the Lamb shift of the excited atomic state
is not expected to be a�ected by the unconventional radiation reservoirs
provided by PCs, since it is associated with virtual photons of frequencies
lying in the allowed part of continuum [69]. Calculations in the context of
both the isotropic and anisotropic models, however, are expected to predict
strong modi�cation of the Lamb shift (compared to its open-space value),
since none of these models is valid for frequencies suÆciently away from the
band-edge [60, 135].

4.3 Three-level Atoms at the Edge of a PBG

If the TLA with a transition frequency around the edge of a PBG exhibits
unusual behaviour, it is to be expected with certainty that three-level models
will also share this behaviour [124]. The variety of the questions that can
now be asked increases, as there are di�erent combinations to be made with
the position of each transition frequency with respect to the edge.

4.3.1 Spontaneous Decay

Consider the ladder system �rst, with the atomic levels being denoted by j1i,
j2i and j3i as in Fig. 3.3(a) and let one of the atomic transitions be coupled
to a PBG continuum, while the other is suÆciently far from the edge [5].
For the latter transition we can use the DOS for open space and proceed
with the Born and Markov approximations. Considering �rst the case of
the lower transition coupled to the edge, we have the upper state j1i which
decays spontaneously but ends up in an intermediate state that exhibits
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Fig. 4.1: Spontaneous decay at the edge of an isotropic PBG continuum. The
population in the upper state of a two-level atom is plotted as function of the dimen-
sionless time C2=3t and for various detunings (Æe) from the band-edge frequency.

unusual behaviour in time since it is coupled to the PBG reservoir. The
photon emitted in the upper transition can be observed since its frequency
lies far outside the gap and its spectrum, for various values of the detuning
(Æ23 = !23�!e) of the lower transition frequency from the edge, is presented
in Fig. 4.2.

For Æ23 positive and relatively large, the spectrum is Lorentzian as in
open space. It is also, for all practical purposes Lorentzian, but narrower
than the open-space line, for Æ23 well inside the gap (Æ23 = �10). In analogy
with the atom in a cavity, the spectrum exhibits a doublet structure for Æ23
around the edge. The magnitude of the splitting is a measure of the strength
of the coupling of the lower atomic transition to the structured reservoir.

We may also analyze the case in which the upper transition is coupled
to the PBG and the lower one lies outside the gap. The expected behaviour
should be identical to that of a �-system [Fig. 3.3(b)] initially in the upper
state (j1i), having one of its transitions inside the gap and the other outside
[53]. In both cases we have the formation of a \photon + atom" bound
state which, however, becomes metastable due to the fact that the other
atomic transition is coupled to open space. The e�ect of metastability on
the population of the upper state of a ladder system, is presented in Fig.
4.3. For a non-zero value of the decay rate into open space, the vacuum
Rabi oscillations are damped and the atom ends up in the lower state of
the transition outside the gap. Furthermore, as depicted in Fig. 4.4, the
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Fig. 4.2: Spectrum for the photon emitted in the upper transition of a ladder
system for various detunings of the lower transition from the band-edge frequency
Æ23 = !23 � !e: Æ23 = �10C2=3 (solid line), Æ23 = �1C2=3 (dashed line), Æ23 =
1C2=3 (dot-dashed line), Æ23 = 10C2=3 (dotted line). The linewidth of state j1i is

1 = C2=3.

spectrum of the photon emitted in the upper transition, is strongly non-
Lorentzian.

Atomic systems of V con�guration [Fig. 3.3(c)] have been analyzed by
Zhu and co-workers [131, 134] in the context of PBG continua. They have
focused on the behaviour of the de-excitation of an initial coherent superpo-
sition of the upper two atomic states, when at least one of the transitions is
strongly coupled to the edge of a PBG. As in open space, their calculations
predict quantum beats with enhanced amplitude due to the coherent driving
of the system by the vacuum Rabi oscillations.

4.3.2 Externally Driven Three-level Atoms

Let us focus now our discussion on the �-system with one of the transi-
tions, let's say j1i ! j2i, coupled to a PBG continuum. The other atomic
transition is assumed to be coupled to open space and thus can be driven
resonantly or near-resonantly, by an external laser �eld. As has been shown
by Bay and co-workers [7], this problem can be solved by combining the
resolvent with a QMC approach, circumventing thus the lack of a master
equation. Speci�cally, the decay of the upper state into open space can be
handled through an e�ective Hamiltonian (analogous to that in Sec. 3.8),
which can be afterwards combined with the resolvent. Quang and co-workers
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Fig. 4.3: The population in the upper state of a ladder system with the upper
transition coupled near-resonantly to the edge of the gap, versus dimensionless time
C2=3t for Æ12 = !12 � !e = �1C2=3 and various decay rates of the excited state
j2i: 
2 = 0 (solid line), 
2 = 0:1C2=3 (dotted line), 
2 = 0:3C2=3 (dashed line),

2 = 0:5C2=3, (dot-dashed line).
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Fig. 4.4: Spectrum for the photon emitted in the upper transition of a ladder
system for various detunings of its frequency from the band-edge, Æ12 = !12 � !e:
Æ12 = 5C2=3 (solid line), Æ12 = 1C2=3 (dashed line), Æ12 = 0 (dot-dashed line). The
linewidth of state j2i is 
2 = C2=3.
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have analyzed the case of a �-system where the driven transition lies well
inside the gap [96]. For this purpose, a defect must exist in the material,
associated with a mode, whose frequency falls in the gap and coincides with
the atomic transition. This assumption allowed them to neglect spontaneous
emission in the PBG continuum, avoiding thus an open problem, namelymul-
tiple 
uorescence by an externally driven TLA, at the edge of the gap (see
Sec. 4.5).

4.4 Atom�Atom Interaction

For atomic transitions well inside the gap, spontaneous emission is absent,
and thus DDI is expected to be the dominant process in a collection of
closely-spaced atoms [60, 63]. This is due to the fact that the phenomenon
involves virtual photons with frequencies lying far outside the gap. On the
contrary, for atomic transition frequencies close to the edge of a PBG, an
interplay between the DDI and atom�continuum coupling is expected [6].

Let us consider for example, two identical closely-spaced atoms, one of
which is initially excited and the other in its ground state. Following the
notation of Sec. 3.7.1 and adopting the isotropic model of the DOS, it turns
out that the matrix elements of the resolvent operator obey the following
equations in matrix form [6]:"

z � V1c(z) �M12(z)
�M12(z) z � V2c(z)

# "
Gaa

Gba

#
=

"
1
0

#
; (4.14)

with the relative couplings being obtained by Eqs. (3.88) and (3.89)

Vjc(z) = � iCp
z � !e ; M12(z) = V12 � iCMp

z � !e ; (4.15)

where j = 1; 2. For the two atomic dipoles parallel to each other and
perpendicular to the interatomic distance we have:

V12 =
3

2
C2=3

�
cos(r12)

r12
� sin(r12)

r212
� sin(r12)

r312

�
;

CM =
3

2
C

�
sin(r12)

r12
+
cos(r12)

r212
� sin(r12)

r312

�
; (4.16)

where r12 is now the normalized interatomic separation with respect to the
wave-vector corresponding to the band-edge frequency. Note that, in the
derivation of the above expressions for the couplings, no approximation has
been introduced at any stage, while the shift term has been omitted, assum-
ing that it will be incorporated in the energy of the upper states. Clearly,
for atomic transitions outside the gap, i.e., z > !e the term involving CM

gives an imaginary part to M12(z) while for z < !e, M12(z) is real. Thus,
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Fig. 4.5: The population in the upper state of the initially excited atom (solid
line) and the total excitation in both atoms (dot-dashed line) are plotted as func-
tions of time for Æe = �3C2=3, CM = 0:8C and for various values of V12: (a)
V12 = 1C2=3, (b) V12 = 3C2=3, (c) V12 = 7C2=3.

as expected, for frequencies inside the gap the atom�atom interaction is
dominated by the exchange of virtual photons, whereas for frequencies out-
side the gap, M12(z) contains a dissipative part, which is di�erent from
the dissipative term involved in the coupling of each atom directly to the
reservoir.

As we have discussed in Sec. 3.7.1, the eigenstates of the matrix in Eq.
(4.14) are the so-called symmetric and antisymmetric product states, with
the former one being unstable in open space, leading to superradiance. In
the PBG reservoir, however, it can be shown that we may have population
trapping even in the symmetric state (see Chap. 8). The real part V12
of M12(z), becomes dominant for small interatomic separations. Typical
results, illustrating the behaviour in this regime, are shown in Figs. 4.5 and
4.6.

For atomic detunings suÆciently far inside the gap and relatively small
V12, there is almost complete population trapping [Fig. 4.5(a)], whereas for
detunings outside the gap [Fig. 4.6(a)], the system decays completely. The
population trapping in both cases can be altered by increasing the magnitude
of V12. This is due to the fact that the interatomic coupling V12 causes a
splitting which, pushes one part of the atomic levels towards the gap and
the other into the allowed part of the continuum. Thus, as V12 becomes
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comparable to the atomic detuning from the edge, the partial population
trapping is increased (decreased) for positive (negative) detunings. What is
worth keeping in mind is that, in contrast to the situation in open space,
DDI may have a stabilizing e�ect, even when the atomic frequency is outside
the gap.

The photon hopping in a collection of N identical TLAs with transition
frequency far inside the gap, has been studied by John and Quang [54]. In
their studies, spontaneous emission was neglected and thus the only inter-
action term in their Hamiltonian was that of the DDI between neighbouring
atoms. For an ordered system and for large values of N , the excited atom
does not transfer any excitation to the others. On the contrary, in a disor-
dered system only a fraction of the initial excitation (proportional to N�1)
can be transfered from the initially excited atom to each unexcited one,
with a rate of transfer proportional to

p
N . The same authors have also

studied the case of initially unexcited atoms which are near-resonantly cou-
pled to a defect-mode with single excitation. They showed that transfer of
energy from the defect-mode to the atoms occurs only for a disordered sys-
tem. Furthermore, considering the defect-mode driven by an external laser,
they analyzed phenomena such as, optical bistability, phase transitions and
collective atomic steady states [54, 55, 57, 58].
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Fig. 4.6: The population in the upper state of the initally excited atom (solid line)
and the total excitation in both atoms (dot-dashed line) are plotted as functions of
time for Æe = 3C2=3, CM = 0:8C and for various values of V12: (a) V12 = 1C2=3,
(b) V12 = 3C2=3, (c) V12 = 5C2=3.
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4.5 Research Question

The problems we have discussed so-far involve single excitation in the PBG
continuum and as such can be handled through the direct solution of the
respective time-dependent Schr�odinger equation. The direct extension of
this approach to situations involving more than one photon in the reservoir
demands multiple integrations over photonic continua and thus does not
seem tractable. On the other hand, the unconventional DOS associated with
PBG structures invalidates Born and Markov approximations, essential in
obtaining a master equation.

The QMC approach, as has been developed in its Markovian formulation,
can not describe the localization of photons at the site of the atoms. Recall
that, whenever a jump occurs it is related to a gedanken measurement of the
number of photons in the radiation reservoir and after each measurement
any detected photon is annihilated. In PBG materials, however, a signi�cant
part of the emitted radiation, remains localized at the site of the atom(s),
leading thus to subsequent atomic re-excitation and population in higher
sectors of the Hilbert space of the system (2-photon, 3-photon, etc.). Only
photons with energy outside the gap can be subject of such a gedanken
measurement.

Despite the lack of theoretical tools capable of providing solution to prob-
lems involving multiple excitations at the edge of a PBG continuum, many
authors have addressed such problems. Speci�cally, resonance 
uorescence
has been mainly discussed in the context of a master equation applying only
the Born approximation [4, 62, 67, 82, 109]. On the other hand, working in a
dressed-states picture, John and Quang have addressed the same problem by
means of a purely Markovian master equation [58]. The argument for such
a Markovian description is the assumption that the DOS, while singular at
one frequency, varies smoothly around the dressed-state resonant frequen-
cies. The discontinuity in the DOS can thus be incorporated as strongly
di�erent decay rates of the two sidebands in the Mollow triplet.

The problem of superradiance in the context of PCs, has been addressed
by John and co-workers [56, 118], using mean-�eld Heisenberg equations of
motion for the atomic operators [see Eqs. (3.104) and (3.105)]. In open
space and cavities it is well-known that, in the long-time limit, all atoms
are in the ground state and thus the ensemble does not exhibit any inver-
sion or polarization. On the contrary, at the edge of the gap the ensemble
has been shown to exhibit the main features of the single atom behaviour.
Speci�cally, the localization of the emitted radiation at the site of the atoms
leads to an oscillatory behavior in both inversion and polarization, while
in the long-time limit the system exhibits fractional steady-state inversion
and macroscopic polarization. Additionally, for the ensemble, the radia-
tive lifetime is shortened by N2=3 in the isotropic model and by N2 in the
anisotropic, where N is the number of atoms. Recall that for open space the
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decay rate is proportional to N and the radiated intensity, is proportional
to N2. This means that the superradiance phenomenon at the edge of the
gap for the anisotropic model is much faster and more intense than in open
space, while the opposite is true for the isotropic model.

All of the above approaches are approximations (reasonably good ones)
to the real problem; namely the description of non-Markovian and
non-Born dynamics of an atomic system interacting with a struc-
tured radiation reservoir. First of all, recall that both Born and Markov
approximations are valid to second order in the coupling constant between
atom and reservoir and consequently not applying one of them in the deriva-
tion of a master equation, is not expected to improve things signi�cantly. On
the other hand, the semiclassical approach followed by John and co-workers,
is valid for the description of the superradiance in large atomic collections,
after the early stage, where dipole correlations have already been established
and thus the evolution of the ensemble is purely classical. This stems from
the fact that the mean-�eld equations fail to recapture the in
uence of the
vacuum (noise) at the early stage of the phenomenon, where the evolution
is purely quantum mechanical. This aspect of the semiclassical equations is
of course well known in laser theory [107, 121].

The question has been attracting increasing interest as non-Markovian
(non-Born) problems keep emerging in di�erent contexts of physics, from
PBG materials to semiconductors [18, 122] and from molecules [95] to atom
lasers [83, 84]. As a result, many authors have focused their e�orts on
the development of new techniques applicable to strongly interacting dis-
sipative systems. Imamoglu and Garraway have proposed an extension of
the well known QMC approach to the strong-coupling regime [36, 47, 113].
The memory e�ects associated with non-Markovian dynamics can be de-
scribed by expanding the initial system using a large number of �ctitious
harmonic-oscillator modes (pseudomodes). Each pseudomode interacts with
the original system as well as a 
at reservoir. The dynamics of the enlarged
system \atom + pseudomodes", are then purely Markovian and as such
can be described by the standard techniques. Alternatively, Diosi and co-
workers have derived an exact QSD equation, which may describe the time
evolution of an open quantum system beyond Born and Markov approxima-
tions [25, 114, 133]. Other authors have proposed extensions of the QMC
method based on the continuous measurement interpretation of the stochas-
tic unraveling [48] or the time-convolutionless projection operator technique
[13].

Although at �rst sight all of these approaches seem applicable to reser-
voirs of any DOS, up to now mathematical and computational diÆculties
have limited their application to relatively tractable problems involving
weakly non-Markovian systems (intermediate-coupling regime) and stan-
dard Lorentzian spectral responses. In the following chapters, we develop
an approach that can at least partially overcome this stumbling block. Hav-
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ing introduced such an approach, we then proceed to the investigation of
problems involving multiple excitations in structured radiation reservoirs,
associated with PCs.
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Chapter 5

Discretization of Photonic

Continua

The basic idea of discretization relies on the replacement of the continuum,
near the atomic transition frequency, by a �nite (but large) number of dis-
crete modes. The couplings and frequencies corresponding to each of these
discrete modes, are chosen so as to model the e�ect of the structured contin-
uum to the desired accuracy. The judicious choice of this parameterization
is of critical importance to the success of this idea. In the following sections,
we formulate the discretization and we discuss its application and validity
in the context of reservoirs of various DOS.

5.1 Formalism

Consider an atomic system with transitions l = 1; 2; : : : and let at least one
of them, be coupled to a structured reservoir for which Born and Markov ap-
proximations are not valid. In the spirit of discretization, the near-resonant
part of the continuum is replaced by a number of discrete modes. To this
end, we choose an upper (!up) and a lower (!low) limit for the discretization
such that !low < !l < !up, where !l is the frequency corresponding to the
atomic transition l.

Starting from the de�nition of the DOS for the reservoir, that is number
of photonic states (�N) per unit frequency interval (�!), we have

�N = �(!)�!: (5.1)

For �N = 1 and introducing a discrete index, we �nd �!j = 1=�(!j) and
thus

!j+1 = !j + �!j = !j + 1=�(!j): (5.2)

This recurrence relation determines the frequencies of the discrete modes
while an alternative form can be obtained if we choose �(!j) as �(!j) =

63
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2(!j+1 � !j�1)�1:

!j+1 = !j�1 +�!j = !j�1 + 2=�(!j): (5.3)

Introducing N discrete modes in our implementation, the following relation
must be satis�ed Z !up

!low

d!�(!) = N; (5.4)

which determines any constants in our model and furthermore the spacing
between the discrete modes.

The coupling G(l)j of the atomic transition l to the j discrete mode, can
be chosen frequency-independent as determined by

NX
j=1

�
G(l)j

�2 � Z !up

!low

d!D(l)(!); (5.5)

where the integral on the right hand side is over the spectral response D(l)(!)
of the continuum for transition l.

The discretization we have just presented is not unique. One may for
example consider an alternative discretization scheme involving a number
(N) of equally spaced modes, distributed between !low and !up. In this
case, the mode-spacing is uniform and thus the frequency for the mode j
reads

!j = !low + jÆ!; Æ! =
j!up � !low j

N
: (5.6)

The corresponding coupling of the atomic transition l, is now frequency-
dependent and is determined by the spectral response of the continuum as
follows, �

G(l)j
�2

= D(l)(!j)Æ!: (5.7)

By way of comparison illustrating the philosophy of the discretization
technique, note that in the latter scheme, all information about the structure
of the reservoir is included in the coupling of the atom to each of the discrete
modes [Eq. (5.7)], whereas the mode spacing is uniform [Eq. (5.6)]. On
the contrary, in the former scheme it is the distribution of the modes that
carries this information [Eqs. (5.2) and (5.3)], while the coupling constant
is frequency-independent [Eq. (5.5)]. Both discretization schemes should in
general work with any form of DOS. There are situations, however, where
the one or the other scheme might be preferable.

5.2 Application and Validity

Having discretized the strongly-varying near-resonant part of the continuum,
the system \atom + discrete modes" can be handled through di�erential
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equations governing the evolution of the amplitudes entering the Schr�odinger
equation. In order to demonstrate the discretization approach and test its
validity, consider the problem pertaining to the decay of an initially excited
TLA coupled to a structured radiation reservoir. Replacing the DOS for
frequencies around the atomic transition frequency !o, by N discrete modes,
the Hamiltonian of the system within the RWA reads

H =
NX
j=1

�ja
y
jaj +

X
�

��a
y
�a�

+
NX
j=1

Gj(aj�+ + ayj�
�) +

X
�

g�(a��
+ + ay��

�); (5.8)

where �j;� = !j;� � !o, while we have dropped the index l, since we have
only one atomic transition. The atomic raising and lowering operators are
denoted by �+ = jeihgj and �� = jgihej, respectively. The corresponding
wavefunction can be written as

j (t)i = a0je; f0�gi+
NX
j=1

bjjg; 1ji+
X
�

b�jg; 1�i: (5.9)

The label j in the Hamiltonian and the wavefunction refers to the discrete
modes (!low < !j < !up), while the label � refers to the modes with fre-
quency !� > !up and !� < !low.

The time-evolution of the amplitudes is governed by the Schr�odinger
equation from which we obtain

_a0 =
1

i

NX
j=1

Gjbj + 1

i

X
�

g�b�; (5.10)

_bj =
1

i
�jbj +

1

i
Gja0; (5.11)

_b� =
1

i
��b� +

1

i
g�a0: (5.12)

Formal integration of Eq. (5.12) gives

b�(t)� b�(t0)e
��(t�t0)=i =

g�
i

Z t

t0

dt0a0(t
0)e��(t�t0)=i: (5.13)

The modes � are far o�-resonant (�� � g�) and as such can be treated per-
turbatively, i.e., they can be eliminated adiabatically. Furthermore, a0(t

0)
remains almost constant for short times and thus can be replaced by a0(t) in
Eq. (5.13). The remaining integral over the exponential is easily performed
with the result

b�(t) ' � g�
��

a0(t): (5.14)
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Substituting Eq. (5.14) into Eq. (5.10) we have

_a0 =
1

i

NX
j=1

Gjbj �
X
�

g2�
i��

a0; (5.15)

_bj =
1

i
�jbj +

1

i
Gja0: (5.16)

The e�ect of the o�-resonant part of the modes is thus to add a vacuum
shift term to the equation of motion for the upper state amplitude. This
approximation leads to a signi�cantly reduced number of di�erential equa-
tions and the remaining amplitudes are distributed over a much narrower
frequency interval.

Converting the mode sum over � into an integral for ! > !up and
! < !low and using the spectral response of the photonic continuum un-
der consideration, we obtain

_a0 = �S
i
a0 +

1

i

NX
j=1

Gjbj ; (5.17)

_bj =
1

i
�jbj +

1

i
Gja0; (5.18)

where the shift term is given by

S =

Z !low

�1
d!

D(!)
! � !o

+

Z 1

!up
d!

D(!)
! � !o

: (5.19)

In the context of discretization, we may thus de�ne the following e�ective
Hamiltonian for the system, which reproduces Eqs. (5.17) and (5.18), in the
basis formed by je; f0jgi and jg; 1ji:

H = �S�+�� +
NX
j=1

�ja
y
jaj +

NX
j=1

Gj(aj�+ + ayj�
�): (5.20)

In order to proceed further, we need to consider a particular form of spec-
tral response. Let us for example start with a standard cavity reservoir,
where the corresponding spectral response is Lorentzian as determined by
Eq. (3.70). Taking full advantage of the symmetry of Dc(!) one may choose
!up and !low symmetrically placed around !c, which yields a vanishing shift
term. Any of the two discretization schemes can be followed. In Fig. 5.1,
for instance, we compare the exact known solution (solid line) with that
obtained by a uniform discretization. Clearly, the discretization converges
relatively fast and a good agreement with the exact solution can be obtained
by using a small number of modes. This is de�nitely not the case for all
radiation reservoirs. In the following sections, we discuss the discretization
technique in the context of PBG continua which have been shown to be
associated with more complicated DOS.
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Fig. 5.1: The population in the upper state of a two-level atom coupled to a cavity
reservoir, is plotted as function of the dimensionless time 
ct. The solid line is the
solutions obtained using pseudomodes for !o = !c and 
a = 4
c. The corresponding
discretization solutions are: (a) dotted line: N = 20 and !up = �!low = 2
c; (b)
dot-dashed line: N = 20 and !up = �!low = 3:5
c; (c) dashed line: N = 30 and
!up = �!low = 4
c.

5.2.1 Isotropic Model

Let us adopt the singular isotropic DOS, [Eq. (4.4)] and the correspond-
ing spectral response (4.9). Applying the �rst discretization scheme we
presented in the previous section, we replace the density of modes in the
vicinity of the edge-frequency, by a collection of discrete harmonic oscilla-
tors. Apparently, for the DOS under consideration, !low = !e, since for
! < !e DOS is zero, as dictated by the Heaviside function on the right hand
side of Eq. (4.4).

The frequencies of the modes can be obtained by Eq. (5.3), which now
can be simpli�ed to

!j = !e + j2Æ!; (5.21)

where Æ! is determined by the upper-limit condition,

!up = !e +N2Æ!: (5.22)

The atomic coupling to each of the discrete modes is given by

NX
j=1

G2j �
C

�

Z !up

!e
d!

1p
! � !e ; (5.23)
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Fig. 5.2: The discrete modes in relation to the simulated number of states.

with C being the e�ective coupling of the atom to the PBG structure [see
Eq. (4.10)], and since Gj is the same for all discrete modes, we have

Gj � G �
s

2C

N�

p
!up � !e: (5.24)

Using Eq. (5.22), the coupling constant may be further simpli�ed to

G �
s
2C

�

p
Æ!: (5.25)

In Fig. 5.2, we show the discrete modes, in relation to the simulated
number of states (� p

! � !e). As one would expect, for the DOS given
by Eq. (4.4) the distribution of the discrete modes becomes more dense for
frequencies close to the edge, as determined by Eq. (5.21). The equations
of motion for the amplitudes corresponding to the excited atomic state and
the discrete modes are given by Eqs. (5.17) and (5.18), and after evaluating
the shift through Eq. (5.19), we obtain

_a0 =
1

i

 
Æe � G2N

!up � !e

!
a0 +

1

i

NX
j=1

Gjbj ; (5.26)

_bj =
1

i
Æjbj +

1

i
Gja0; (5.27)

where for later convenience we have transformed to an interaction picture
rotating at !e with Æe = !o�!e and Æj = !j�!e while Gj = G as is given by
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Fig. 5.3: The population in the upper state of a two-level atom is plotted as
function of the dimensionless time C2=3t. The solid line is the exact solution for
Æe = 0. The corresponding discretization solutions are: (a) dotted line: N = 50
and !up = 10C2=3; (b) dashed line: N = 150 and !up = 10C2=3; (c) dot-dashed
line: N = 500 and !up = 111C2=3. The insert shows a close-up of the long-time
behavior.

Eq. (5.25). Note that, due to the far o�-resonant modes, the upper atomic
level, is shifted towards the gap where it is protected against dissipation.

In Fig. 5.3, we present the results obtained by propagation of Eqs.
(5.26) and (5.27) for various discretization parameters. For comparison,
we also plot the exact known solution (see Sec. 4.2). The calculation in-
volving not suÆciently dense discretization (dotted line), exhibits revivals
for longer times. These revivals are arti�cial without any physical meaning
and stem from the discretization of the continuum. As the discretization
becomes more dense, the revivals appear at later and later times (dashed
and dot-dashed line). We may thus argue that, the number of modes in
our calculation determines the time-scale on which the propagation is free
of revivals, while j!up � !lowj determines the proximity of the envelope to
the correct result. This implies considerable 
exibility in the method; in
the sense that the size of the calculation can be tailored to the time scale,
over which the behavior of the system is sought and the desired accuracy.
For instance, as one would expect, for atomic detunings far inside the gap,
the discretization calculation converges much faster, since in this case only
for modes with frequencies close to the edge the atom��eld interaction is
strong. Thus, a narrower part of the continuum near !e needs to be dis-
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cretized. Furthermore, it is worth noting that !up and !low determine the
allowed atomic transition frequencies. For example, for the case under con-
sideration, a calculation for Æe > !up � !e would be meaningless leading to
unphysical results, since the corresponding part of the continuum has been
eliminated.

5.2.2 PBG with Lorentzian Pro�le of DOS

One of the strengths of the discretization technique is that it can be im-
plemented with essentially any DOS. In fact, the expression of the DOS we
adopt as a model for the description of a continuum, is of great importance
to the choice of the manner of discretization, which should be adapted to
the demands of the particular form. For the models we discussed in the pre-
vious sections, both discretization schemes are valid. There are situations,
however, where mathematical diÆculties prevent us from following the one
or the other scheme. To become more speci�c, let us consider a PBG with
a Lorentzian pro�le of DOS and with spectral response given by

DL(!) =

a
2�

�
1� �p

(! � !c)p + �p

�
; (5.28)

where 
a is the open-space decay rate of the excited atomic state [Eq. (3.65)].
Before proceeding to the discretization of this particular form of contin-

uum, it should be noted that the analyticity of Lorentzian pro�les [see Eq.
(3.70)] and the lack of any branch cuts, make them amenable to the approach
of the pseudomodes. These pseudomodes are intimately connected to the
poles of the DOS in the lower half plane and as we have discussed in Sec. 4.5
their decay may lead to a Markovian master equation. Such master equa-
tions have been derived only for DOS involving up to two pseudomodes, in
the context of the decay of a TLA [37]. For higher order Lorentzians or other
non-normalizable DOS [see Eq. (5.28)], however, such a derivation seems to
be cumbersome if not impossible. In this case, a pathological Schr�odinger
equation may describe correctly only the dynamics of the upper state of the
atomic system. As a result, if the atomic system involves more than two
states, the method fails to describe the atomic dynamics correctly.

The existence of the Heaviside step function on the right-hand side of
Eqs. (4.4) and (4.5), ensures a full gap for frequencies ! < !e and a clear
edge at ! = !e. As a consequence, only part of the continuum (! > !e)
needs to be discretized. On the contrary, for the Lorentzian pro�le (5.28)
the situation is substantially di�erent. Speci�cally, the DOS is zero only
for ! = !c, while there is a range of frequencies around !c over which
DL(!)
�1a � 1. Thus, we have to discretize the continuum, even for fre-
quencies around the mid-gap frequency !c. Any attempt at applying the
discretization approach given by Eqs. (5.2) and (5.3) will lead to serious
computational problems as the factor 1=�L(!j) diverges for !j ! !c. On
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Fig. 5.4: The population in the upper state of a two-level atom is plotted as
function of the dimensionless time 
at. The solid lines are the solutions obtained
using pseudomodes for Æc = 0 (thick line) and Æc =

2
3
a (thin line), respectively.

The corresponding discretization solutions are: (a) dot-dashed line: N = 100 and
!up = �!low = 10
a; (b) dotted line: N = 150 and !up = �!low = 20
a; (c)
dashed line: N = 300 and !up = �!low = 30
a. Parameters: � = 
a, p = 6.

the other hand, the discretization given by Eqs. (5.6) and (5.7) seems to be
appropriate for the model under consideration.

Choosing an upper (!up) and a lower (!low) frequency, we substitute
the DOS by N equidistant discrete modes, symmetrically placed around !c.
The coupling of the atom to each of these modes is given by

G(!j) =
vuut 
a
2�

"
1� �p

(!j � !c)p + �p

#
Æ!; (5.29)

where Æ! = j!up� !low jN�1. For the sake of simplicity, let us de�ne all de-
tunings with respect to the central frequency !c. The part of the continuum
involving frequencies for ! < !low and ! > !up can be treated perturbatively
as before, but, only the Lorentzian part of Eq. (5.28) contributes. In Fig.
5.4, we present results pertaining to a sixth order Lorentzian pro�le (p = 6),
for two di�erent atomic detunings from the mid-gap frequency (Æc = !o�!c).
We also plot the solutions obtained using the pseudomode approach and we
�nd a very good agreement for suÆciently dense discretization.

A further issue needs to be brought up here, in connection with the time
scale of the persistence of any \photon + atom" bound state. As long as
the model for the DOS involves an exact zero over some frequency range,
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Fig. 5.5: The population in the upper state of a two-level atom is plotted as
function of the dimensionless time 
at, for various detunings of the atomic tran-
sition from the mid-gap frequency. Parameters: p = 8, � = 2
a. Discretization
parameters: N = 1000 and !up = �!low = 100
a.

the \photon + atom" bound state may live for ever, which mathematically
implies a non-zero fractional population trapping in the limit t ! 1. In
reality, however, the DOS, more often than not, will not involve an exact
zero but a deep minimum, as already mentioned in the beginning of this
section. As a result, the life-time of the \photon + atom" bound state,
is determined by the local DOS in the vicinity of the atomic transition
frequency, and it may be long on some time scale but not necessarily for
t ! 1 in the mathematical sense. For instance, it is this �niteness of the
lifetime of the \photon + atom" bound state that would cause the atomic
population for Æc =

2
3
a, in Fig. 5.4 to decay to zero, if the calculation were

extended to suÆciently long times. This behavior is even more clear in Fig.
5.5, where the atomic population is plotted for various detunings from the
mid-gap frequency.

In Fig. 5.6(a) we plot the excited-state population of a TLA, resonant
with the mid-gap frequency of a Lorentzian DOS, for various widths of the
gap. Note that, in analogy to CQED (see discussion in Sec. 3.4.2), for short
times the atom decays as if it were in open space, regardless of the value of
the ratio 
a=�. This behavior is even more clear in the logarithmic plot of the
excited-state population in Fig. 5.6(b). We may thus say that at the begin-
ning the atom emits without feeling the modal density. The initially emitted
wave-packet propagates in the crystal and is eventually Bragg-re
ected back
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to the atom, carrying the information about the periodic structure of the en-
vironment. In fact, the part of the population which is lost in the long-time
limit is determined by the ratio 
a=�. This can be understood by viewing
the atomic resonance as a Lorentzian of width 
a, centered around !o. The
part of the wings of this Lorentzian spectrum that lies in the allowed part
of the continuum will be emitted. Accordingly, as is depicted in Fig. 5.6(a),
the population trapping in the long-time limit increases, as we increase the
width of the gap in relation to the atomic linewidth.

The discretization approach has given us the opportunity to study the
problem of spontaneous emission in the context of various DOS, in a fast
and really e�ective way. Although some of these models are nothing more
than mathematical imitation of a real PBG continuum, we have been able to
draw some general conclusions about the parameters that a�ect the atomic
dynamics signi�cantly, for atomic transitions inside the gap or close to the
edge. We have already discussed the life-time of the \photon + atom" bound
state and the atomic behavior for short times. We additionally, may argue
with certainty that the dynamics of an atom coupled to a PBG continuum
depend mainly on the width of the gap and on the \band-edge behavior"
of the continuum. On the contrary, they slightly depend on the particular
pro�le of the DOS model we adopt. Finally, DOS models that do not exhibit
any peak close to the edge seem to be more e�ective in trapping the light,
since the vacuum Rabi splitting is relatively small and thus any phenomena
associated with it (such as losses through the component of the doublet lying
outside the gap, vacuum Rabi oscillations, etc) are suppressed.

5.2.3 Anisotropic Model

The discretization approach in the context of the anisotropic model presents
a diÆculty, in the sense that the corresponding DOS increases as we move
away from the edge. As a result, the atomic coupling to far o�-resonant
modes is signi�cant and accordingly the discretization approach is rather
sensitive to the choice of the upper limit. One can, however, circumvent
this diÆculty by introducing the following DOS

�(!) = �o

p
! � !ep

! � !e + 1
; (5.30)

which does approach the open-space value �o for ! � !e, whereas it has
the anisotropic behavior for frequencies close to the edge. Even in this case,
however, the convergence of the discretization is relatively slow.

5.3 Summary

We have developed the discretization technique, which is applicable to pho-
tonic reservoirs of any DOS. Having tested the validity of the method, in
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Fig. 5.6: (a) The population in the upper state of a two-level atom is plotted
as function of the dimensionless time 
at for Æc = 0, p = 8 and various widths
of the Lorentzian gap. (b) The logarithmic plot of the population. The solid line
corresponds to the open-space behavior. Discretization parameters: N = 500 and
!up = �!low = 50
a.
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contexts amenable to exact solutions, we may proceed to address problems
involving more than one photon in structured radiation reservoirs. In the
following chapters we focus on continua associated with PBG materials. As
we show, the discretization approach is capable of providing solutions to a
class of problems which can only be treated approximately through other
techniques. What should be always kept in mind, however, is the danger of
arti�cial oscillations and thus the convergence of our results has to be tested
in terms of all discretization parameters.
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Chapter 6

Cascade of Two Photons at the

Edge of a PBG

In this chapter, we have chosen to present results on a ladder atomic system
which in open space involves a cascade of two photon-emissions (see Sec.
3.6). As we show in the following sections, allowing both atomic transitions
to be strongly coupled to a PBG reservoir we obtain what should be called
\two-photon + atom" bound state [87]. The formation of such a state is then
found to be associated with a counterintuitive coherent evolution of the three
atomic states. Although the problem is mainly discussed in the context of
the isotropic model we do, examine the persistence of our predictions in the
context of a Lorentzian pro�le of DOS.

6.1 The System

Consider a three level atom in a cascade (�) con�guration, with atomic
levels j1i; j2i; j3i and energies !1; !2; 0 respectively, where (!1 > !2) [Fig.
6.1(a)]. Both atomic transitions (l = 1; 2) are considered to be coupled
near-resonantly to the edge of a PBG and are thus strongly modi�ed.

Neglecting the zero-point energies of the �eld modes and adopting the
RWA, the Hamiltonian of the system in the interaction picture is written as

V = i
X
�

g(1)� (ay��21e
�iÆ1�t � a��12eiÆ1�t) + i

X
�

g
(2)
� (ay��32e

�iÆ2
�
t � a��23eiÆ2�t);

(6.1)
where �kn denote the atomic dyadic operators with k; n 2 f1; 2; 3g; Æ1� =

(!1 � !2) � !�, Æ2� = (!2 � !3) � !�, while a�; ay�(a�; a
y
�) are the creation

and annihilation operators of the structured continuum, which is coupled to

the atomic transitions, via the respective coupling constants g(1)� ; g
(2)
� .

Let us denote by j3; 1�; 1�i, a state of the combined system (atom+�eld),
where the atom is in state j3i and two photons have been emitted into the
structured reservoir, populating the modes � and � respectively. Following
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Fig. 6.1: (a) Schematic representation of the atomic system and the possible
transitions. (b) The upper state simultaneously coupled to the intermediate state
and the ground state via a single- and two-photon process respectively.

this pattern of notation, and discretizing the near resonant part of continuum
(!low < !l < !up), the wavefunction of the complete system reads

j (t)i = aj1; 0i+
X
j

bjj2; 1ji+
X
j;m

(j�m)

Cjmj3; 1j; 1mi

+
X
�

b�j2; 1�i+
X
�;�

(���)

C��j3; 1�; 1�i: (6.2)

where j;m are indices over all discrete modes while �; � correspond to modes
with frequency !�;� > !up and !�;� < !low. Furthermore, due to the fact
that j1�; 1�i � j1�; 1�i, we have C�� = C��.

The time dependence of the amplitudes entering the wavefunction, is
governed by the Schr�odinger equation and after eliminating the o�-resonant
modes (see Sec. 5.2), we �nd

_a = �iS(1)a�
NX
j=1

G(1)j bje
iÆ1
j
t; (6.3)

_bj = �iS(2)bj �
NX

m=1

(m6=j)

G(2)m Cjme
iÆ2mt

�
p
2G(2)j Cjje

iÆ2j t + G(1)j ae�iÆ
1

j t; (6.4)

_Cjm = G(2)m bje
�iÆ2mt + G(2)j bme

�iÆ2j t; (6.5)

_Cjj =
p
2G(2)j bje

�iÆ2j t; (6.6)
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where by G(l)k we denote the coupling of the atomic transition l to the k
discrete mode. The shift terms in the equations of motion for the two upper
levels are given

S(l) =
Z !low

�1
d!
D(l)(!)

!l � ! +
Z 1

!up
d!
D(l)(!)

!l � ! : (6.7)

6.2 Time-Evolution of the System

Isotropic Model: Adopting the isotropic model for the description of the
PBG continuum, the spectral response for transition l, is given by

D(l)
I (!) =

Cl

�

�(! � !e)p
! � !e

; (6.8)

where Cl is the e�ective coupling to the structured continuum.
Following the discretization approach we have developed in the previous

chapter, the continuum for ! � !e + 10C
2=3
1 , is replaced by 150 discrete

modes. The frequency of the j discrete mode, is then obtained through Eq.

(5.21) with Æ! being chosen suÆciently small (Æ! � 4:4� 10�4C
2=3
1 ), while

the corresponding coupling G(l)j for transition l is frequency-independent and
is given by

G(l)j � G(l) �
s
2Cl

�

p
Æ!: (6.9)

In general, the dipole moments h1jdj2i and h2jdj3i are di�erent and thus for
the rest of this chapter we let the couplings C1 and C2 be di�erent.

The set of Eqs. (6.3) � (6.6) is solved numerically and the results are
presented in Figs. 6.2� 6.6. We plot the population in the upper level (solid
line), the intermediate level (dashed line) and the lower level (dot-dashed
line), for various detunings of the upper (Æ12 = !1 � !2 � !e) and lower
(Æ23 = !2 � !3 � !e) transitions from the band-edge frequency.

In all �gures, we can identify a \transient regime", on a short time scale

of the order of C
2=3
1 , when part of the atomic population is lost. On a

longer time scale (\dynamic regime"), the populations in the atomic levels
undergo oscillations, strongly dependent on the relative detunings from the
band-edge, re
ecting the emission and reabsorption of the photon(s). The
localization at the atom of the photon emitted in the �rst transition, is
accompanied by emission of a photon in the lower transition, which will
be also localized at the atom. In analogy with the case of one photon in
a TLA, two photons are now backscattered to the atom after tunneling a
characteristic distance and reexcite it.

As is known from the coupling of a TLA to the PBG reservoir, the
dressing of the atom by its own localized radiation causes splitting of the
atomic levels. This splitting is suÆciently strong to push one level of the
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Fig. 6.2: The population in the atomic states as function of time. The solid
line is for j1i, the dashed line for j2i and the dot-dashed line for j3i. Parameters:

C2 = 1:5C1, Æ12 = �C2=3
2 and Æ23 = 0. The time is in units of C2=3

1 .

doublets outside the gap and the other inside. The dressed state outside the
gap looses all its population in the long-time limit, while the one inside the
gap is protected from dissipation and thus is stable. The number of stable
localized states, is intimately connected to the behavior of the system in the
long-time limit. One such state gives rise to steady state population in the
excited level, while two of them lead to an undamped beating of the system
between the two non-decaying states [6, 62].

For our three-level atom, two transitions are at the edge, and thus more
than one stable localized state can be found in the gap. In analogy to
the \single-photon + atom" bound state, we have the formation of a \two-
photon + atom" bound state, which exhibits population trapping in both
excited states, in the long-time limit. Thus, the atom is �nally excited, in a
superposition of the upper states (Fig. 6.2). This is a novel behavior, due
to the fact that both transitions and not only one, are coupled to the same
structured continuum. Note that, even in the case that only the (j2i ! j3i)
transition is at the edge of the gap, it is the intermediate level that exhibits
non-zero steady-state population but not the upper level [5, 53].

In the language of dressed states, the oscillations in the populations of
the atomic levels re
ect the interference between the dressed states of the
atom. We additionally note that the oscillations in the populations of the
intermediate and lower level are \in phase". This is a rather surprising
result, since one would expect the population in the intermediate state to
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Fig. 6.3: The population in the atomic states as function of time. The solid
line is for j1i, the dashed line for j2i and the dot-dashed line for j3i. Parameters:

C2 = 1:5C1, (a) Æ12 = �2C
2=3
2 and Æ23 = 1C

2=3
1 ; (b) Æ12 = �2C

2=3
2 and Æ23 = 1C

2=3
2 .

The time is in units of C2=3
1 .
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be maximum when the population in the lower state is minimum and vise-
versa. The phenomenon is even more pronounced in Fig. 6.3. After an initial
transient regime in which about 15% of the population is lost, the remaining
population oscillates between the upper level and the two lower levels, in
a non-dissipative way. The undamped oscillations imply the beating of the
system, between more than two non-decaying dressed states.

The \in phase" oscillations, stem from the localization of both photons at
the site of the atom. The system can make the transitions j1i $ j3i either
with a stepwise process (j1i $ j2i $ j3i) or with a two-photon process
(j1i $ j3i). Which of the two routes the system will follow to arrive at j3i
depends on the detuning Æ12. Speci�cally, if the upper transition is outside
the gap, irrespective of the detuning of the lower transition from the band-
edge, it seems preferable for the system to \decay" via the stepwise process
rather than the two-photon process indicated in Fig. 6.4. This is no di�erent
from the behaviour of a ladder system in open space. On the contrary, if the
upper transition is inside the gap, the system evolves in time as if the upper
state were coupled to the intermediate state via a single-photon process, and
simultaneously to the ground state via a \direct" two-photon process, with
respective frequencies 
1 and 
2. This can not be anticipated on the basis
of the behaviour in open space and it is what we meant by counterintuitive
in the introduction.

To gain further insight into this e�ect, we can adopt a simple three-level
model without dissipation and assign a single-photon Rabi frequency 
1

between j1i and j2i and a two-photon Rabi frequency 
2 between j1i and
j3i [Fig. 6.1(b)]. Denoting by Pn the population in state n and following an
analysis of the system through standard rate equations, we obtain

P1 = cos2(
q

2
1 + 
2

2t); (6.10)

P2 =

2
1


2
1 +
2

2

sin2(
q

2
1 + 
2

2t); (6.11)

P3 =

2
2


2
1 +
2

2

sin2(
q

2
1 + 
2

2t): (6.12)

Thus the populations of the atomic levels oscillate with the same frequency


 =
q

2
1 + 
2

2, with the oscillation of the two lower levels being in phase.
Furthermore, the ratio of the amplitude of the oscillation of the intermediate
level to that of the lower level is related to the ratio of the Rabi frequencies,
i.e., 
1=
2. In Fig. 6.3(b), representing the result of the numerical calcu-
lation for the system in the PBG reservoir, we note that the dashed and
the dot-dashed lines, corresponding to the populations in the intermediate
and ground levels, respectively, are indistinguishable. This implies that the
corresponding e�ective Rabi frequencies 
1 and 
2 are practically equal. It
is the combination of the coupling constants and detunings that conspire to
produce that behaviour.
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Fig. 6.4: The population in the atomic states as function of time. The solid
line is for j1i, the dashed line for j2i and the dot-dashed line for j3i. Parameters:

C2 = 1:5C1, (a) Æ12 = 1C
2=3
2 and Æ23 = �1C

2=3
1 ; (b) Æ12 = 2C

2=3
2 and Æ23 = 3C

2=3
1 .

The time is in units of C2=3
1 .



84 Cascade of Two Photons at the Edge of a PBG

The e�ective detuning of the j3i $ j1i transitions from the band-edge for
the \direct" two-photon process is de�ned as �(2) = !1�!3�2!e. From the
known dynamics of a TLA with transition frequency at the edge of the gap,
depending on �(2), we may expect suppression or inhibition of the \direct"
two-photon process. Speci�cally, for detunings inside the gap (�(2) < 0),
the \direct" two-photon emission should be totally or partially suppressed,
while for detunings outside the gap and almost at the edge (�(2) > 0), it
should be enhanced due to the high density of �nal available states.

For transitions symmetrically placed around the band-edge (Æ12 = �Æ23),
with the upper one being inside the gap (Æ12 < 0), the detuning for the \di-
rect" two-photon transition is exactly at the edge (�(2) = 0) (Fig. 6.5).
For the parameters used in Figs. 6.5 and without taking into account the
\direct" two-photon process, the \single-photon + atom" bound state for
the upper state should be metastable, in the sense that the main part of the
population should be lost in the long-time limit. On the contrary, we �nd
that this does not happen and the part of the population that has not been
lost in the transient regime, oscillates between the upper and the ground
state. These oscillations are not re
ected in the intermediate level's pop-
ulation which remains almost constant with some oscillations of negligible
amplitude. This behavior de�nitely indicates the coupling of the upper level
to the ground level via a \direct" two-photon process as described above.

Note again the \in phase" oscillations for the two lower levels. Choosing
Æ23 such that �(2) > 0 (Fig. 6.6), the main part of the population is indeed
lost in the long-time limit. The di�erence between Fig. 6.5(a) and Fig. 6.6
is the detuning of the lower transition from the band-edge. In both cases

(Æ23 = 2C
2=3
2 , Æ23 = 4C

2=3
2 ), the behavior of a TLA in the long-time limit

is the same, i.e., the population is lost. For the ladder system, however,
we note an oscillatory behavior where part of the population is trapped to

the atom in the long-time limit for Æ23 = 2C
2=3
2 and complete decay for

Æ23 = 4C
2=3
2 . The \photon + atom" bound state formed due to the upper

transition becomes therefore metastable (see Sec. 4.3) as soon as Æ23 is
chosen such that �(2) > 0. This is a conclusion that has been checked for
various detunings of the atomic transitions from the band-edge but with the
upper one always in the gap (Æ12 � 0).

Gap with a Lorentzian Pro�le of DOS: We proceed now to the explo-
ration of the ladder system under the DOS (4.8) adopting the speci�c case
of p = 6. The corresponding spectral response for transition l is of the form

D(l)
L (!) =


l
2�

"
1� �6

(! � !c)6 + �6

#
; (6.13)

where 
l is the decay rate for transition l in open space. Applying a uniform
discretization, we substitute the continuum for �20
2 < ! � !c < 20
2,
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Fig. 6.5: The population in the atomic states as function of time. The solid
line is for j1i, the dashed line for j2i and the dot-dashed line for j3i. Parameters:

C2 = 1:5C1, (a) Æ12 = �2C
2=3
2 and Æ23 = 2C

2=3
2 ; (b) Æ12 = �2C

2=3
1 and Æ23 = 2C

2=3
1 .

The time is in units of C2=3
1 .
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Fig. 6.6: The population in the atomic states as function of time. The solid
line is for j1i, the dashed line for j2i and the dot-dashed line for j3i. Parameters:

C2 = 1:5C1, Æ12 = �2C2=3
2 and Æ23 = 4C2=3

2 . The time is in units of C2=3
1 .

by 150 discrete modes. The frequency !j corresponding to the j mode is
obtained by Eq. (5.6) and the corresponding coupling to atomic transition
l is

G(l)(!j) =
r

l
2�

vuut"1� �6

(!j � !c)6 + �6

#
Æ!; (6.14)

where Æ! � 0:27
2 is the spacing between two discrete modes.

The rest of the mode-density, for ! > !c + 20
2 and ! < !c � 20
2, can
be treated perturbatively leading to a shift for the two upper levels. The
relative positions of the upper and lower transition frequencies can now be
de�ned with respect to the central frequency !c of the gap, in terms of the
detunings: Æ12 = !1 � !2 � !c and Æ23 = !2 � !3 � !c, respectively.

In Fig. 6.7, we present the evolution of the population in the states of the
ladder system as a function of time, for a particular combination of detun-
ings. As in the previous �gures corresponding to the isotropic model, both
upper and lower levels exhibit non-zero steady-state population, as a conse-
quence of the \two-photon + atom" bound state. The oscillations, however,
in the atomic populations, which can be interpreted as interference between
the dressed states, are not present. It seems that this oscillatory behavior is
strongly related to the isotropic model. For the Lorentzian pro�le, the part
of the doublet that is pushed outside the gap, decays much faster than the
isotropic model would predict. From this we conclude that in the isotropic
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Fig. 6.7: The population in the atomic states as function of time. The solid
line is for j1i, the dashed line for j2i and the dot-dashed line for j3i. Parameters:

1 = 0:5
2, � = 
2, Æ12 = 0:1
2, Æ23 = 0:3
2 and !up = �!low = 20
2. The time is
in units of 
2.

model, the \dynamic regime" which follows the initial transient regime and
is dominated by the emission and reabsorption of photons, or else the inter-
ference between the various dressed states, is much more pronounced than
in the Lorentzian model, or we would argue any model that does not exhibit
the highly peaked feature of the isotropic model. Without the concentration
of the DOS around a peak, the notion of dressed states is diluted. Never-
theless, the coherent superposition of states and the \two-photon + atom"
bound state persists even in this model. Atomic populations remain trapped
for long times, long compared to 1=
2.

6.3 Summary

We have investigated the dynamics of a ladder atomic system with both
transitions coupled to the same structured reservoir. This has been possi-
ble through the discretization approach. We have found that this system
supports a \two-photon + atom" bound state which leads to a fractional
population trapping in both of the upper states and the atom can be in a
superposition of the upper levels even in the long-time limit. In the presence
of the two photons at the site of the atom, we have shown that the atom has
two paths for the j1i $ j3i transition, and found that a \direct" two-photon
process coexists with a stepwise one. Which of the two dominates is deter-
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mined mainly by the detuning of the upper transition from the band-edge.
We have further explored the persistence of this e�ect under a much more
relaxed forms of the DOS and shown that, although quantitatively modi�ed,
the basic e�ect remains.



Chapter 7

Resonance Fluorescence at the

Edge of a PBG

In this chapter we elaborate on certain aspects of resonance 
uorescence
in the context of PBG continua, by means of the discretization approach.
A TLA is driven by an initially populated near-resonant mode of the elec-
tromagnetic �eld, while simultaneously can decay into the other strongly
modi�ed modes which are initially unoccupied. For an atomic transition in-
side the gap, a defect-mode must exist with a frequency close to the atomic
one. For the remainder of this chapter, we thus refer to the initially pop-
ulated mode as defect-mode. Propagating the wavefunction of the system,
we obtain results pertaining to the problem of two and three photons in
the reservoir, for various states of the defect-�eld. We additionally explore
the range of computational demands and applicability of the discretization.
In that spirit, we discuss the scaling of computational requirements with
increasing number of photons.

7.1 The System

We consider a TLA with ground (jgi) and excited (jei) states whose energy
di�erence is !o. The atom is coupled to a continuum exhibiting a gap, as
well as an initially populated defect-mode of frequency !d. The Hamiltonian
for this system in the RWA reads

H = !o�ee + !da
y
dad +

X
�

!�a
y
�a� + gd(ad�

+ + a
y
d�

�)

+
X
�

(�6=d)

g�(a��
+ + ay��

�); (7.1)

where �� are the usual atomic raising and lowering operators and �ee =
�+��. The �eld operators (ad; a

y
d) and (a�; a

y
�) correspond to the defect-

89
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mode and the PBG reservoir, respectively, which are coupled to the atom
via the respective coupling constants gd and g�.

The defect-�eld, can be either in a pure Fock state or in a mixture. In
order to obtain the time-evolution of the system, we have to take into account
states beyond the one-photon sector of the reservoir. As the simplest case,
in the following section we consider the case of an initially excited TLA,
interacting with a defect-mode prepared in a Fock state and no photons
present in the PBG reservoir. We thus begin by considering the atom-�eld
state-vector j (n; t)i that evolves in time from an initial state with a �xed
number of excitations in the system.

7.2 Defect-�eld in a Pure Fock State

7.2.1 One Fluorescent Decay

When only a single excitation is shared between the defect-mode and the
atom, the wavefunction for the system can be written as

j (0; t)i= a0je; 0d; 0i+ b0jg; 1d; 0i+
X
�

b�jg; 0d; 1�i; (7.2)

where the states involved are product states and, for instance, jg; 0d; 1�i =
jgij0dij1�i where j0di is the zero-photon state of the defect-mode and j1�i
is an one-photon state of the reservoir.

The initial state-vector of the system is j (0; 0)i = je; 0; 0i and its evo-
lution can be obtained by the Schr�odinger equation with the Hamiltonian
given by Eq. (7.1). We thus have,

_a0 =
1

i
!oa0 +

1

i
gdb0 +

1

i

X
�

g�b�; (7.3)

_b0 =
1

i
!db0 +

1

i
gda0; (7.4)

_b� =
1

i
!�b� +

1

i
g�a0: (7.5)

Since the calculation involves one photon, it is amenable to standard tech-
niques such as the resolvent operator. Assuming, however, the defect-mode
initially prepared in a photon-number state jndi with n 6= 0, several ex-
citations of the structured continuum are involved, and the discretization
approach is necessary for the investigation of the atomic dynamics.

7.2.2 Two and Three Fluorescent Decays

Considering the defect-mode initially prepared in the one-photon Fock state
(n = 1) and the atom excited, we have a total of two excitations and thus,
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the state-vector of the system reads,

j (1; t)i = a0je; 1d; 0i+ b0jg; 2d; 0i+
X
�

a�je; 0d; 1�i

+
X
�

b�jg; 1d; 1�i+
X
�;�

(���)

b��jg; 0d; 1�; 1�i; (7.6)

where b�� = b��.
Let us �rst solve the problem in the context of the so-called isotropic

model, for which the spectral response of the continuum for the atomic
transition, is given by Eq. (4.9). Discretizing the near-resonant part of the
continuum in the way we have shown in Sec. 5.2.1, and after eliminating the
far o�-resonant part, the equations of motion for the amplitudes entering
the wavefunction (7.6) and are associated with the discrete modes read

_a0 =
1

i
(Æe + Æd � S)a0 +

1

i

p
2gdb0 +

1

i

NX
j=1

Gjbj ; (7.7)

_b0 =
2

i
Ædb0 +

1

i

p
2gda0; (7.8)

_aj =
1

i
(Æe + Æj � S)aj +

1

i
gdbj +

1

i

NX
k=1

(k 6=j)

Gkbjk + 1

i

p
2Gjbjj ; (7.9)

_bj =
1

i
(Æj + Æd)bj +

1

i
Gja0 + 1

i
gdaj ; (7.10)

_bjk =
1

i
(Æk + Æj)bjk +

1

i
Gkaj + 1

i
Gjak; (7.11)

_bjj =
2

i
Æjbjj +

1

i

p
2Gjaj ; (7.12)

where j; k are indexes over all discrete modes and for the corresponding
couplings we have Gj = Gk = G, with G being de�ned in Eq. (5.25), while
Æj(k) = !j(k) � !e and Æe = !o � !e, Æd = !d � !e. Finally, the shift term S

is the same with that in Eq. (5.26).
Solving this set of equations numerically, we may obtain the time-evolution

of the system. In Fig. 7.1, we plot the atomic population (dotted line), the
mean number of photons in the defect-mode (solid line) and the popula-
tions in the one-photon sector (dot-dashed line) and the two-photon sector
(dashed line) of the reservoir Hilbert space as functions of time, for various
couplings of the atom to the defect-mode. Both atom and defect-mode are
chosen to be slightly detuned from the band-edge frequency. Clearly, we
have an initial dynamic regime where the atom exchanges energy with both
the defect-mode and the PBG continuum. In this regime, part of the total
initial excitation is lost. On a longer time-scale, although the atom is not
fully excited, it seems to become transparent to the defect-�eld. Speci�cally,
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we see an exchange of energy (oscillation) between the defect-mode and the
one-photon sector of the reservoir. This oscillation must involve the atom,
since the defect-mode is not directly coupled to the reservoir, but is not re-

ected in the atomic inversion. As is evident in Fig. 7.1, although photons
are exchanged between the defect-mode and the reservoir through the atom,
after some initial time, the atomic population remains practically constant;
a rather surprising e�ect. Furthermore, a change in the magnitude of gd in
relation to C2=3 does not seem to a�ect the atomic oscillations for larger
times, but it does a�ect the relative oscillations of the excitations in the
defect-mode and the reservoir, which are smoothed out with increasing gd.

The results we have just presented, have of course been tested for conver-
gence in terms of the number of discrete modes and limits of discretization.
In Fig. 7.2, for example, we plot the atomic population for various dis-
cretization parameters. Speci�cally, the dotted line is for a calculation with
50 modes (!up = 10C2=3), the solid line is for 150 modes (!up = 10C2=3)
and the dashed line is for 300 modes (!up = 40C2=3). As we can see, the
three lines are almost indistinguishable, while as we expected, in the long-
time limit the calculation for 50 modes exhibits revivals. One could easily,
however, have used 50 discrete modes, for a calculation tailored to a shorter
time scale, without loosing accuracy.

When the frequencies of both the atom and the defect-mode are pushed
further inside the gap, the atom does not become transparent to the defect-
�eld. As is depicted in Fig. 7.3(a), for couplings of the same order of
magnitude with the atomic detuning, the atom (solid line) exchanges energy
with the defect-mode (dot-dashed line) and the PBG continuum, even for
larger times. Note also that a signi�cant part of the total initial excitation
(dashed line) remains trapped to the atom and the defect-mode. As the
coupling constant gd increases, however, the oscillations at larger times are
suppressed and we �nd less excitation trapping in the long-time limit.

In the language of dressed states, the coupling of the atom to the defect-
mode, as well as the interaction with its own localized radiation �eld, causes
a splitting of the atomic levels. A part of the dressed states is pulled into
the gap where it is protected from dissipation, while the other is pushed
away from the gap, towards the allowed part of the continuum. Hence,
any oscillations in the atomic population can be interpreted as interference
between these dressed states. In the long-time limit, the component outside
the gap will eventually decay. On the contrary, the stable dressed states
inside the gap are associated with a non-zero steady-state atomic population.
The coupling of the atom to the defect-mode determines the magnitude of
the splitting and thus the portion of the total initial excitation which remains
trapped to the atom and the defect-mode in the long-time limit.

The reverse case is depicted in Fig. 7.4, where the atomic and the defect-
excitations are plotted as functions of time for Æe = Æd = 3:0C2=3 and various
values of gd. For this particular choice of parameters, the defect-mode lies
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Fig. 7.1: The evolution of the system (atom + defect-mode + continuum) is
plotted as a function of time. The dotted line is the population in the upper atomic
state. The solid line is the mean number of photons in the defect-mode, the dot-
dashed line is the population in the one-photon sector of the reservoir Hilbert space
and the dashed curve is the population in the two-photon sector of the reservoir
Hilbert space. Parameters: N = 150, !up = 10C2=3, Æe = Æd = �0:1C2=3; (a)
gd = 1:0C2=3, (b) gd = 1:5C2=3.
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Fig. 7.2: The population in the excited atomic state is plotted as a function of
time. The solid line is the solution for N = 150, the dotted line is for N = 50 and
the long-dashed line is for N = 300. The insert shows a close-up of the long-time
behavior. Parameters: Æe = Æd = �0:1C2=3 and gd = 1:5C2=3.

within the allowed band of the continuum. For relatively weak values of gd
[Fig. 7.4(a)], the excitation is lost in the long-time limit. As gd, however,
becomes comparable to the atomic detuning from the band-edge frequency
[Fig. 7.4(b)], the corresponding splitting is strong enough to push part of
the dressed states inside the gap, leading thus to non-negligible population
trapping. This behavior becomes more clear for even larger values of gd [Fig.
7.4(c)], where about 25% of the total initial excitation remains trapped at
the atom and the defect-mode, in the long-time limit.

It is well known that in the isotropic model, the band-edge is associated
with an entire sphere, (k = jkej) rather than a point. This leads to an
arti�cial divergence of the isotropic DOS for frequencies close to the band-
edge, which is also re
ected in the corresponding spectral response [Eq.
(4.9)]. As we have seen, this sharp peak at the edge tends to exaggerate
certain e�ects, such as the existence of \photon + atom" bound state for
atomic transitions outside the gap. It is worth, therefore, investigating the
persistence of the above mentioned e�ects in the context of the Lorentzian
pro�le of DOS, with the corresponding spectral response given by Eq. (5.28).
Accordingly, the frequencies and the couplings of the discrete modes are
de�ned in Sec. 5.2.2, and the shift can be determined numerically.

In Fig. 7.5, we present results pertaining to an eighth order Lorentzian
pro�le DOS (p = 8). The population in the excited state of the atom (solid
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Fig. 7.3: The evolution of the system (atom + defect-mode + continuum) is
plotted as a function of time. The solid line and the dot-dashed line are the atomic
and the defect excitations respectively. The dashed line is the total excitation (atom
+ defect-mode). Parameters: N = 150, !up = 10C2=3, Æe = Æd = �1:0C2=3; (a)
gd = 1:0C2=3, (b) gd = 2:0C2=3, (c) gd = 3:0C2=3.

line), the defect-excitation (dot-dashed line) and the excitation in the PBG
continuum (dashed line), are plotted as functions of time for Æc = !o�!c =
0:5
a, Æd = !d � !c = 0:5
a and gd = 1:5
a. In contrast with the isotropic
model, the Lorentzian DOS is zero only for ! = !c. As a result the dressed
states inside the gap do not persist for ever and the corresponding excitation
will eventually be lost (Fig. 7.5). The time scale on which this decay takes
place is determined by the width and the depth of the gap.

By means of the discretization approach, problems pertaining to more
than two photons in a structured reservoir of any DOS can be treated in
the same way. It should be noted, however, that the number of equations to
propagate scales roughly as N q, where N is the number of discrete modes
and q is the number of excitations. Thus, the ultimate limitation of the
approach is determined by computer memory and CPU time. The wave-
function pertaining to a three-photon problem, for example, is of the form,

j (2; t)i= b0jg; 3d; 0i+ a0je; 2d; 0i+
X
j

bj jg; 2d; 1ji

+
X
j

aj je; 1d; 1ji+
X
j;k

(k�j)

bjkjg; 1d; 1j; 1ki
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Fig. 7.4: The evolution of the system (atom + defect-mode + continuum) is
plotted as a function of time. The solid line and the dot-dashed line are the atomic
and the defect excitations respectively. The dashed line is the total excitation
(atom + defect-mode). Parameters: N = 150, !up = 10C2=3, Æe = Æd = 3:0C2=3;
(a) gd = 1:0C2=3, (b) gd = 3:0C2=3, (c) gd = 5:0C2=3.

+
X
j;k

(k�j)

ajk je; 0d; 1j; 1ki+
X
j;k;l

(l�k�j)

bjkljg; 0d; 1j; 1k; 1li: (7.13)

with the coeÆcients bjk, ajk and bjkl, being invariant under any permutation
of the indexes j; k; l. The Sch�odinger equation leads to a somehow enlarged
and more complicated set of di�erential equations for the amplitudes:

_a0 =
1

i
(Æe + 2Æd � S)a0 +

1

i

p
3gdb0 +

1

i

NX
j=1

Gjbj ; (7.14)

_b0 =
3

i
Ædb0 +

1

i

p
3gda0; (7.15)

_aj =
1

i
(Æe + Æd + Æj � S)aj + 1

i

NX
k=1

(k 6=j)

Gkbjk

+
1

i

p
2gdbj +

1

i

p
2Gjbjj ; (7.16)

_bj =
1

i
(Æj + 2Æd)bj +

1

i
Gja0 +

p
2

i
gdaj ; (7.17)

_bjk =
1

i
(Æd + Æk + Æj)bjk +

1

i
gdajk +

1

i
Gkaj + 1

i
Gjak (7.18)

_bjj =
1

i
(Æd + 2Æj)bjj +

1

i

p
2Gjaj + gd

i
ajj ; (7.19)
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Fig. 7.5: The atomic excitation (solid line), the defect-excitation (dot-dashed
line) and the total excitation in the PBG continuum (dashed line) as functions of
time. Parameters: p = 8, � = 
a, !up = �!low = 20
a, N = 150, Æc = Æd = 0:5
a,
gd = 1:5
a.

_ajk =
1

i
(Æe + Æj + Æk � S)ajk + 1

i

NX
m=1

(m6=j 6=k)

Gmbjkm

+
1

i
gdbjk +

1

i

p
2Gkbjkk + 1

i

p
2Gjbjjk; (7.20)

_ajj =
1

i
(Æe + 2Æj � S)ajj +

1

i

NX
m=1

(m6=j)

Gmbjjm

+
1

i
gdbjj +

1

i

p
3Gjbjjj ; (7.21)

_bjkl =
1

i
(Æj + Æk + Æl)bjkl +

1

i
Glajk + 1

i
Gkajl + 1

i
Gjakl; (7.22)

_bjjk =
1

i
(2Æj + Æk)bjjk +

1

i
Gkajj +

p
2

i
Gjajk ; (7.23)

_bjkk =
1

i
(2Æk + Æj)bkkj +

1

i
Gjakk +

p
2

i
Gkajk ; (7.24)

_bjjj =
3

i
Æjbjjj +

p
3

i
Gjajj ; (7.25)

where j; k; l are mode indices over the discrete modes and Æj(k;l) = !j(k;l)�!e.
Adopting the isotropic model for the description of the PBG continuum, the
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time-evolution of the system is shown in Fig. 7.6, where we plot again the
excitations for various couplings and detunings of the atom and the defect-
mode from the band-edge. The dynamics resembles that of the two-photon
problem, with the atom and the defect-mode exhibiting non-zero excitation
trapping in the long-time limit, while the atom becomes transparent to the
defect-�eld for detunings slightly inside the gap.

A further issue needs to be brought up here in connection with the
steady-state population of an atom initially prepared in its ground state
(j (n; 0)i = jg;nd; 0i). Speci�cally, although the basic e�ects we have dis-
cussed so far remain practically the same (Fig. 7.7), the atom may exhibit
population inversion in the long-time limit. Such a case is depicted in Figs.
7.8(a) and (b) where the atomic inversion is plotted as a function of time,
for a defect-mode initially prepared in a 2- and 3-photon Fock state, respec-
tively. Clearly, although the defect-�eld is relatively weak, the atom can be
found inverted in the long-time limit. Such an inversion can not be obtained
in the context of resonance 
uorescence in ordinary vacuum even for strong
driving �elds. This is due to the fact that all three bands of the Mollow
triplet exhibit resonance 
uorescence. For a PBG, however, one or more
of them can be found inside the gap, exhibiting thus negligible decay and
population trapping in the long-time limit. It is the combination of the cou-
pling (gd) and the atomic detuning that conspire to produce this behavior
and consequently to lead the atomic system to a steady-state population
inversion in both Figs. 7.8(a) and (b). As gd increases in relation to Æe,
the main part of the atomic population is lost in the long-time limit [Fig.
7.8(c)].

7.3 Defect-�eld in a mixture of Fock states

Up to now, we have discussed problems with a well de�ned number of exci-
tations in the system. It could be argued, however, that the assumption of a
defect-mode initially prepared in a pure Fock state is somewhat restrictive.
Although in recent years such initial conditions have become experimentally
realizable, at least in the context of CQED [12, 14, 91, 117], a general and
more usual condition would involve a defect-�eld with well de�ned statisti-
cal properties but not number of photons. In that spirit, the state of the
defect-�eld may be a superposition of Fock states,

jF i =
1X
n=0

cnjndi; (7.26)

where jndi is the n�photon state, or even a mixture. Although the number
of photons is then uncertain, the statistical properties of the �eld are well
de�ned with mean number of photons �n and the photon-number distribution
P(n) = jcnj2, i.e., the probability of observing n photons. If the defect-�eld
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Fig. 7.6: The evolution of the system (atom + defect-mode + continuum) is
plotted as a function of time. The dotted line is the population in the upper
atomic state. The solid line is the mean number of photons in the defect-mode,
the dashed line is the population in the one-photon sector of the reservoir Hilbert
space, the long-dashed curve is the population in the two-photon sector of the
reservoir Hilbert space and the dot-dashed curve is the population in the three-
photon sector of the reservoir Hilbert space. Parameters: N = 50, !up = 10C2=3;
(a) gd = C2=3; Æe = Æd = �0:1C2=3; (b) gd = 3C2=3; Æe = Æd = �1C2=3.
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Fig. 7.7: The evolution of the system (atom + defect-mode + continuum) is
plotted as a function of time. Initial state j (n; 0)i = jg;nd; 0i. (a) n = 2 and
parameters as in Fig. 7.1(b). (b) n = 3 and parameters as in Fig. 7.6(a).
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Fig. 7.8: The atomic inversion is plotted as a function of time for Æe = Æd =
�2:0C2=3. Parameters: (a) N = 150, !up = 10C2=3, gd = 1:5C2=3, n = 2; (b) N =
50, !up = 10C2=3, gd = 1:5C2=3, n = 3; (c)N = 150, !up = 10C2=3, gd = 3:0C2=3,
n = 2.
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is in a coherent superposition of Fock states (coherent state), the photon
probabilities follow the Poissonian distribution (3.20), while for a thermal
defect-�eld, the photon-number distribution is given by Eq. (3.22).

One of the properties of the Hamiltonian (7.1) is that each state-vector
j (n; t)i evolves independently. As a result, if the combined system (atom
+ defect-mode + continuum) is initially prepared in a state of the form

j	(0)i =
1X
n=0

cnj (n; 0)i � jeijF ij0i; P(n) = jcnj2; (7.27)

the probability of �nding the atom excited at time t, is given by

�ee(t) =
X
R

1X
n=0

P(n)jhe;nd; Rj (n; t)ij2 (7.28)

where the �rst sum (
P

R) is over all possible states of the PBG reservoir while
the second one is over an in�nite number of state-vectors for the defect-mode.
If, however, the average number of photons �n in the defect-mode is small,
only terms involving small n will contribute signi�cantly, making thus the
computation feasible, as far as demands of the necessary number of discrete
modes are concerned. Let's consider now such a case where the defect-
�eld is initially prepared either in a coherent or a chaotic state with mean
number of photons �n = 0:5. For this choice of mean number of photons, the
contribution of state-vectors with n > 3 in the sum is negligible. Adopting
the isotropic model of DOS, we have the time-evolution of each state-vector
j (n; t)i, for a total of up to three excitations and thus the evaluation of
j	(t)i is feasible. Figs. 7.9(c), (d) show the time-evolution of the atomic
population for a coherent and chaotic defect-�eld. Additionally, we plot the
atomic population [Figs. 7.9(a), (b)] of an initially excited TLA resonantly
coupled to a high-Q cavity-mode, which is given by

h�eei =
X
n

P(n)cos2
h


p
n + 1t

i
; (7.29)

where 
 is the intrinsic Rabi frequency.
It is well known that the superposition of periodic oscillations such as Eq.

(7.29), produces irregular 
uctuations as is depicted in Figs. 7.9(a),(b). As
the driving �eld becomes stronger, i.e., the mean number of photons becomes
larger, the constructive interference between Rabi oscillations corresponding
to di�erent photon-numbers leads to collapse of the oscillations, which for a
coherent state, will revive afterwards (see Sec. 3.4.2). Due to computational
limitations for the time being, we restrict ourselves to weak �elds (�n < 1)
where such phenomena are not present. Even in this regime, however, the
atom with transition frequency at the edge of a PBG, exhibits substantially
di�erent behavior from a TLA coupled to a high-Q cavity mode.
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Fig. 7.9: (a) and (b): Population of an initially excited TLA interacting reso-
nantly with the thermal (a) or coherent (b) �eld of a high-Q cavity-mode. (c) and
(d): Population of an initially excited TLA with transition frequency close to the
edge of a PBG, interacting with thermal (c) or coherent (d) �eld of a defect-mode.
Parameters: N = 150, !up = 10C2=3; �n = 0:5, gd = 3C2=3; Æe = Æd = �1C2=3.

Speci�cally, in contrast to Figs. 7.9(a),(b), the 
uctuations in Figs.
7.9(c),(d) take place over short times. On a longer time scale the atom ex-
hibits non-zero steady-state population. This behavior is not related to the
so-called collapses in the Jaynes-Cummings model. On the contrary, as we
have discussed in previous sections, it is intimately connected to the exis-
tence of the gap. Even for larger mean number of photons, the population
trapping is expected to persist, since each state-vector j (n; t)i exhibits such
behavior [Figs. (7.3), (7.6)].

7.4 Summary

We have discussed the problem of resonance 
uorescence in the context of
PBG continua by means of the discretization approach. An atom with tran-
sition frequency near the edge of a gap is driven by a defect-mode centered
at frequency inside the gap. Although the atom is coupled to a dissipative
environment, for a wide range of parameters we found excitation trapping in
the long-time limit, which persists even for atomic interactions with coher-
ent or thermal defect-�elds. For moderate values of the atomic coupling to
the defect-mode, the atomic population may exhibit steady-state inversion.
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We have also investigated some of the these features in the context of a
Lorentzian, but still isotropic, DOS. For an atom and defect-mode slightly
detuned from the band-edge we found that after some initial time, the atom
becomes transparent to the defect-�eld. Although the defect-mode is not
directly coupled to the reservoir but only through the atom, photons are
exchanged between them while the atomic population remains practically
constant.



Chapter 8

Collective Behavior of Few Atoms

at the Edge of a PBG

In this chapter, we investigate the in
uence of the DDI on the radiative
dynamics of a collection of two closely-spaced identical, or non-identical,
initially excited TLAs. The atomic transitions are considered to be around
the band-edge frequency of a gap. We thus have a problem involving two
photons in a structured reservoir which can be solved by means of the dis-
cretization approach. Furthermore, a four-level con�guration is adopted for
the interpretation of the numerical results.

8.1 The system

We consider a system of two initially excited TLAs (A and B), separated by a
distance RAB. Both atoms are near-resonantly coupled to the edge of a PBG
continuum. We denote by jeA(B)i and jgA(B)i the excited and ground states,
respectively, of the atom A(B), whose energy di�erence (atomic transition
frequency) is !A(B). As a model for the description of the PBG reservoir,
we adopt the isotropic DOS.

The near-resonant, fast-varying part of the continuum is treated using
the discretization technique with !up being the upper cut-o� frequency. The
frequency of the j discrete mode is then obtained by Eq. (5.21), where Æ!
is chosen suÆciently small, while the atomic couplings GA;B to each one of
the discrete modes are determined by the following set of equations,

GAGAN =
Z !up

!e
d!D(A)

I (!); (8.1)

GBGBN =
Z !up

!e
d!D(B)

I (!); (8.2)

GAGBN =

Z !up

!e
d!MAB(!;RAB); (8.3)

105
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where D(A;B)
I (!) is the spectral response of the PBG continuum for atom A

and B respectively,

D(A;B)
I (!) =

CA;B

�

�(! � !e)p
! � !e ; (8.4)

and MAB(!;RAB), is the spectral response of the PBG continuum for the
system of the two atoms,

MAB(!;RAB) =
CM

�

�(! � !e)p
! � !e

: (8.5)

We denote by CA(B) the e�ective coupling of the atom A(B) to the struc-
tured continuum, while the modi�ed e�ective coupling of one of the atoms,
say A, due to the presence of the second atom (B) at distance RAB, is given
by

CM = �(rAB)
p
CACB; (8.6)

where rAB is the normalized inter-atomic distance with respect to the band-
edge wave-vector. In the � atomic con�guration, i.e., parallel atomic dipoles
and aligned perpendicular to the inter-atomic separation axis, �(rAB) reads

�(rAB) =
3

2

"
sin(rAB)

rAB
+
cos(rAB)

r2AB
� sin(rAB)

r3AB

#
: (8.7)

According to Eq. (8.6), CM di�ers from
p
CACB by the factor �(rAB),

and thus Eqs. (8.1)-(8.3) can not be ful�lled simultaneously. For small
interatomic distances, however, �(rAB) � 1 and accordingly CM � pCACB.
From Eqs. (8.1)-(8.5) we then obtain

GA �
s
2CA

N�

p
!up � !e; (8.8)

while the position-dependent coupling GB, is given by

GB =
CM

CA
GA: (8.9)

The far o�-resonant part of the continuum (! > !up) can be treated
perturbatively. As a result of this elimination, the upper atomic level of
atom A(B) is shifted by

SA(B) =
G2A(B)N
!up � !e ; (8.10)

towards the gap. We additionally have a coupling between the atoms due
to their interaction through the eliminated part of the continuum, which is
expressed by

SM =
GAGBN
!up � !e : (8.11)
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We thus obtain the e�ective Hamiltonian in an interaction picture ro-
tating at the band-edge frequency !e (�h = 1), for the description of the
radiative dynamics of the system

H = Ho +HDD +HAR; (8.12)

where

Ho = (ÆA � SA)jeAiheAj+ (ÆB � SB)jeBiheBj+
NX
j=1

Æja
y
jaj ; (8.13)

is the unperturbed Hamiltonian of the combined system (atoms + �eld)
with ÆA(B) = !A(B) � !e, Æj = !j � !e, while

HDD = (VAB � SM ) (jeAgBiheBgAj+ jeBgAiheAgBj) ; (8.14)

is the inter-atom interaction, with VAB being the principal value part of the
DDI integral for two atoms with transition frequencies close to the band-
edge. As we have discussed in Sec. 4.4 the dipole-dipole coupling approaches
its open-space value [Eq. (4.16)] for atomic transitions inside the gap, as
well as around the edge. For large inter-atomic separations, with respect
to the wavelength of the atomic transitions (rAB > 1), �(rAB) � 0 and
VAB � 0 and thus the two atoms are independent. On the contrary, for
small inter-atomic distances (rAB < 1), �(rAB) � 1 while VAB diverges as
1=r3AB.

The third term in Eq. (8.12) describes the coupling of each atom to the
near-resonant, fast-varying part of the continuum, which is modeled by N
discrete modes, and in RWA is given by

HAR =
NX
j=1

�
GAayj jgAiheAj+ GBayj jgBiheBj+H:c:

�
; (8.15)

where the sum is over all discrete modes. The creation(annihilation) oper-

ator ayj(aj) in Eqs. (8.13)-(8.15), pertain to the j discrete mode, which is
coupled to atom A(B) with coupling constant GA(B).

The relevant states of the problem are of the form

jEi = jeA; eB; 0i;
jAji = jeA; gB; 1ji;
jBji = jgA; eB; 1ji;

jGj;mi = jgA; gB; 1j; 1mi; (8.16)

where, for instance, jgA; gB; 1j; 1mi = jgA; gBij1j; 1mi denotes a state of
the combined system (atoms + �eld), where both atoms (A and B) are in
their ground states and two photons have been emitted into the structured
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reservoir, populating the modes j and m respectively. Accordingly, the
wavefunction of the complete system reads

j (t)i = a0jEi+
X
j

(aj jAji+ bj jBji) +
X
j;m

(m�j)

CjmjGj;mi; (8.17)

while, due to the fact that jGj;mi � jGm;ji, we have Cjm = Cmj . Before
proceeding to the numerical results, it is worth discussing the problem under
consideration in the context of the so-called Dicke states.

It is evident from Eq. (8.14) that the DDI mixes only intermediate levels
of the combined system, involving the same �eld state, i.e., jeA; gB; 1ki and
jgA; eB; 1ki. Diagonalizing thus the Hamiltonian in the absence of the atoms-
�eld interaction term (HAR), and in the basis formed by the vectors (8.16),
we obtain a new set of eigenstates

j eei = jeA; eB; 0i;
j (+)j i = j (+); 1ji;
j (�)j i = j (�); 1ji;
j ggi = jgA; gB; 1j; 1mi: (8.18)

The symmetric (j (+)i) and antisymmetric (j (�)i) atomic states are

j (�)i =
�
C�1 jeA; gBi+ C�2 jgA; eBi

�
; (8.19)

and the corresponding eigenvalues are given by

"� =
ÆA + ÆB

2
� R

2
; R =

q
(ÆA � ÆB)2 + 4~V 2

AB; (8.20)

where ~VAB = VAB � SM . The coeÆcients in Eq. (8.19) are

C
(�)
1 =

"
1 +

�2�
~V 2
AB

#� 1

2

; C
(�)
2 = ���C

(�)
1

~VAB
; (8.21)

with �� = 0:5 [(ÆA � ÆB)� R]. The system of the two interacting TLAs can
thus be treated as a single four-level atomic system of a cascade con�gura-
tion, with upper state j eei, intermediate states j (+)i, j (�)i and ground
state j ggi (Fig. 8.1).

Before proceeding to the investigation of the dynamics for the two ini-
tially excited TLAs, let us test the validity of the discretization in the con-
text of resonant DDI (see Sec. 4.4). Speci�cally, consider only one of the
atoms, let's say A, initially excited and the other, which is identical to A, in
its ground state. The problem involves a single excitation (relevant states

j eei, j (+)j i, j (�)j i) and is amenable to the resolvent technique. In Fig.



8.2 Equations of Motion and Results 109

j eei

j (�)i

j ggi

j (+)i

�
(2)

�

R

2

+
R

2

�+

�+

�
�

�
�

Fig. 8.1: Schematic representation of the collective atomic states and the possible
transitions. The solid arrows denote the stepwise decay routes, while the dashed
arrows denote the two-photon transition. The corresponding detunings from the
band-edge frequency, as well as the shift of the symmetric and antisymmetric states
are shown.

8.2, we plot the population in the upper state of atom A, for transition fre-
quencies inside and outside the gap and two di�erent values of ~VAB. The
solid lines correspond to the solution obtained by the direct solution of the
Scr�odinger equation, whereas the dashed lines correspond to the discretiza-
tion approach for 50 modes. Clearly, although a relatively small part of the
continuum has been discretized, the agreement with the exact solution is
very good. Since, however, the phenomenon under consideration, that is
DDI, results from virtual transitions, it is worth keeping a suÆciently wide
range of frequencies in our simulations, to obtain reliable results.

8.2 Equations of Motion and Results

The time dependence of the amplitudes in Eq. (8.17) is governed by the
Schr�odinger equation with the Hamiltonian given by Eqs. [(8.12)-(8.15)],
from which we obtain

_a0 =
1

i
(�A + �B)a0 +

1

i

NX
j=1

(GBaj + GAbj) ; (8.22)

_aj =
1

i
(�A + Æj) aj +

1

i
~VABbj +

1

i
GBa0
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Fig. 8.2: The population in the upper state of atom A. The solid line is the
exact solution and the dashed line corresponds to the discretization approach. Pa-
rameters: 50 modes, !up = 10C2=3; CB = CA = C, CM � C; (a) ÆA = ÆB = 1C2=3

and VAB = 4C2=3; (b) ÆA = ÆB = �3C2=3 and VAB = 7C2=3.
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+
1

i

NX
m=1

(m6=j)

GACjm +
1

i

p
2GACjj ; (8.23)

_bj =
1

i
(�B + Æj) bj +

1

i
~VABaj +

1

i
GAa0

+
1

i

NX
m=1

(m6=j)

GBCjm +
1

i

p
2GBCjj ; (8.24)

_Cjm =
1

i
(Æj + Æm)Cjm +

1

i
(GA(aj + am) + GB(bj + bm)); (8.25)

_Cjj =
2

i
ÆjCjj +

1

i

p
2(GAaj + GBbj); (8.26)

where j;m are mode indexes running over all discrete modes and �A(B) =
ÆA(B) � SA(B). Throughout this section we restrict ourselves to the regime
of small inter-atomic distances where CM remains practically constant, i.e.,
CM � p

CACB, while ~VAB increases rapidly as we reduce the inter-atomic
separation.

8.2.1 Non-Identical Atoms

The set of di�erential equations (8.22)-(8.26) is solved for 170 discrete modes

(!up � 13C
2=3
A ; Æ! � 4:4 � 10�4C

2=3
A ) and the results are presented in Fig.

8.3. We plot the population in the fully excited state (solid line), the sym-
metric state (dashed line), the antisymmetric state (dot-dashed line) and
the ground state (dotted line) of the system as functions of time, for various
atomic detunings from the band-edge frequency, and di�erent inter-atomic
couplings.

In the picture of Dicke states, the system of the two TLAs resembles a
double ladder system (Fig. 8.1). From the known dynamics of a cascade
three-level atom with both its transitions at the edge of a PBG, we may
expect three di�erent decay channels. Speci�cally, the system can make the
transition j eei ! j ggi either via one of the possible stepwise processes,
i.e., j eei ! j (+)i ! j ggi and j eei ! j (�)i ! j ggi (solid arrows in Fig.
8.1), or via a direct two-photon process (j eei ! j ggi) (dashed arrows in
Fig. 8.1). The latter case involves a collective decay of the system and the
corresponding e�ective detuning from the band-edge frequency is de�ned as
�(2) = ÆA + ÆB . Which of the three routes the system will follow to arrive
at j ggi depends on the position of the upper transitions, j eei ! j (+)i
and j eei ! j (�)i, with respect to the band-edge frequency. Let Æ+, Æ� be
the relative detunings for j eei ! j (+)i and j eei ! j (�)i, respectively.
It can be shown that

Æ� =
ÆA + ÆB

2
�
q
(ÆA � ÆB)

2 + 4~V 2
AB

2
; (8.27)
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Fig. 8.3: The population in the Dicke states as function of time. The solid
line is for j eei, the dashed line for j (+)i, the dot-dashed line for j (�)i and the

dotted line for j ggi. Parameters: CB = 1:5CA; (a) ÆA = 2C
2=3
A , ÆB = �2C

2=3
A and

~VAB = 5C2=3
A ; (b) ÆA = 5C2=3

A , ÆB = �2C2=3
A and VAB = 5C2=3

A . The time is in

units of C
2=3
A .
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while the corresponding couplings to each one of the discrete modes read

G� =
�
C�1 GB + C�2 GA

�
; (8.28)

with GA, GB being de�ned in Eqs. (8.8) and (8.9). For the two remaining
(subsequent) transitions, j (+)i ! j ggi and j (�)i ! j ggi, the relative
detunings from the band-edge are Æ� and Æ+ respectively.

Clearly, both Æ� depend on the DDI which, for given atomic detunings
(ÆA(B)), is the one that determines the atomic dynamics. For instance, if

both atomic detunings ÆA(B) are positive or negative and ~V 2
AB < ÆAÆB, Æ�

are also positive or negative respectively. This means that all transitions in
the four-level con�guration are inside or outside the gap. In the latter case,
the system exhibits open-space behavior while in the former, all transitions
are suppressed. On the contrary, if ~V 2

AB > ÆAÆB , irrespective of the atomic
detunings, we have Æ� > 0 and Æ+ < 0. The transitions j eei ! j (�)i and
j (+)i ! j ggi therefore, are in the allowed part of the continuum, while
j eei ! j (+)i and j (�)i ! j ggi lie inside the gap.

In Fig. 8.3(a), we plot the populations in the Dicke states for ÆA = 2C
2=3
A ,

ÆB = �2C2=3
A and ~VAB = 5C

2=3
A . First of all note that for this particular

choice of parameters, ~V 2
AB > ÆAÆB and �(2) = 0. Hence, the two-photon

process dominates over the channel j eei ! j (+)i ! j ggi, which is sup-
pressed since its upper transition is inside the gap (Æ+ < 0). In analogy to
the coupling of a cascade three-level atom to a PBG reservoir (Chap. 6), our
four-level system evolves in time as if the fully excited state were coupled to
the symmetric state via a single-photon process and simultaneously coupled
to the ground state via a direct two-photon process. We have thus a counter-
intuitive evolution of the system which is expressed through the oscillations
in the populations of j eei, j (+)i, j ggi. On the other hand, the direct
two-photon transition compete with the alternative stepwise decay route�
j eei ! j (�)i ! j ggi

�
, which leads the system to a nearly exponential

decay into j (�)i and �nally the formation of a \two-photon + two-atom"
bound state due to the fact that Æ+ < 0. The oscillations between the pop-
ulations in j (�)i and j ggi stem from the emission and reabsorption of
photons in the transition j (�)i ! j ggi. If the atomic detunings are chosen
such that both �(2); Æ� > 0, the oscillations between the populations of j eei
and j ggi disapear, indicating that the two-photon transition lies outside the
gap, whereas the oscillations associated with the transition j (�)i ! j ggi
persist. Such a case is depicted in Fig. 8.3(b).

Choosing both atomic transition frequencies being well inside the gap
and for relatively large values of ~VAB, all the decay channels are practically
forbidden (Fig. 8.4). In fact, the only allowed transition in our system is
j eei ! j (�)i, which falls in the allowed part of the continuum and as such,
is purely Markovian and involves an exponential decay. Thus, the system
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Fig. 8.4: The population in the Dicke states as function of time. The solid
line is for j eei, the dashed line for j (+)i, the dot-dashed line for j (�)i and the

dotted line for j ggi. Parameters: CB = 1:5CA, ÆA = �10C2=3
A , ÆB = �8C2=3

A and
~VAB = 15C

2=3
A . The time is in units of C

2=3
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will eventually end up in a purely antisymmetric atomic state of the form

j fi = �jeA; gBi+ �jgA; eBi; (8.29)

where there is no entanglement between the atoms and the �eld. Let F be
the �delity of the �nal state with respect to j (�)i.

As long as the DOS is zero over a range of frequencies and Æ+ � 0,
the state of the atomic system in the long-time limit will be j fi = j (�)i
(F = Fmax = 1) (Fig. 8.4). Furthermore, under such conditions, the two
atoms will be entangled forever, which mathematically implies t!1. In a
real photonic crystal, however, the gap involves a range of frequencies over
which DOS is several orders of magnitude smaller than its open-space value.
As a result, the life-time of j fi is �nite, while due to losses via the channel
j eei ! j (+)i ! j ggi, the �nal state diverges from j (�)i (F < Fmax).
Nevertheless, even in this case, the decay rate for the transitions j eei !
j (+)i and j (�)i ! j ggi is much smaller than open-space decay rate (since
�(Æ+)� �o), and thus F � Fmax while the time scale over which the atomic
system remains trapped in j fi can be so long that for all practical purposes
is equivalent to t!1.

Another point which should be also noted here is the dependence of the
coeÆcients C�1 and C�2 in j (�)i, on the inter-atomic coupling as well as
the atomic detunings [Eq. (8.21)]. Hence, to prepare a desired entangled



8.2 Equations of Motion and Results 115

state of the atoms, one actually needs a mechanism that controls either the
inter-atomic separation or one of the atomic detunings, with the latter one
being more feasible. For instance, one possibility is to use an external weak
laser �eld with frequency outside the gap, which couples the upper state
of one of the atoms, o�-resonantly to higher atomic states. In this way
we avoid population transfer to higher atomic levels, while simultaneously
we are able to tune the atomic transition frequency, with respect to the
band-edge. Alternatively, the same result can be achieved by means of an
external static �eld. In conclusion, if we are able to control losses as well as
the perfection of the gap, we may then have a way to entangle non-identical
atoms in a controllable way.

8.2.2 Identical Atoms

Let's consider now the case of two identical atoms, i.e., CA = CB = C,
ÆA = ÆB = Æe. The symmetric and antisymmetric atomic states read

j (�)i = 1p
2
(jeA; gBi � jgA; eBi) ; (8.30)

while the couplings G� are given by

G� =
1p
2
(GB � GA) ; (8.31)

and using Eqs. [(8.6)-(8.9)], we obtain

G� =
1p
2
GA (�(r)� 1) : (8.32)

For small inter-atomic distances we thus have G� � 0, which means that
the antisymmetric state j (�)i is decoupled from the initially excited state
j eei and the four-level atomic system (Fig. 8.1) is e�ectively reduced to
a three-level cascade with states j eei, j (+)i and j ggi. In other words
the evolution of the atomic system is restricted to a Hilbert subspace which
involves only symmetrical superradiant, at least in open space, states.

The detunings for the upper and the lower transitions from the band-
edge frequency, are Æ+ and Æ� respectively and are given by Æ� = Æe � ~VAB.
Clearly, the e�ect of the dipole-dipole coupling is to shift the intermediate
level towards the gap. Although in open space such shifts are responsible for
the so-called frequency chirping e�ects in superradiance emission, their role
near the edge of a gap seems to be rather crucial. In particular, they may
be associated with suppression or enhancement of the collective decay. For
relatively large values of the inter-atom coupling, ( ~VAB > Æe), the behav-
ior of the system, resembles that of a single cascade three-level atom with
both its transitions near resonantly coupled to the edge of a PBG (Chap.
6). Speci�cally, for Æ+ � 0 and �(2) � 0 we expect the formation of a
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\two-photon + two-atom" bound state which is associated with fractional
population trapping in both upper levels, as well as a counterintuitive co-
herent evolution of all three levels. On the contrary, if �(2) > 0 a collective
decay of both TLAs takes place.

On the other hand, for small interatomic coupling, i.e., ~VAB � Æe the
dipole-dipole shift is negligible and the collective atomic levels are practi-
cally equidistant leading to problem of superradiance at the edge of a PBG.
Introducing the Dicke notation, the Hamiltonian for the system in RWA and
in the context of discretization, reads

H = (!o � S)Jz +
X
k

!ka
y
kak +

X
k

gk(a
y
kJ

� + akJ
+); (8.33)

where the macroscopic atomic dipole and inversion operators (J�; Jz) have
been de�ned in Sec. 3.7, while the shift terms stem from the adiabatic
elimination of the o�-resonant modes. Accordingly, the wavefunction of
the total system can be written in terms of the Dicke states j1; mi, where
m 2 [�1; 1], as

j (t)i = boj1; 1ij0i+
X
j

bj j1; 0ij1ji+
X
n;j

(n�j)

bjnj1;�1ij1j; 1ni (8.34)

with bjn = bnj , and from Schr�odinger equation we obtain:

i_bo = (Æe � S)bo +
p
2

NX
j=1

Gjbj ; (8.35)

i_bj = (Æj � S)bj + 2Gjbjj +
p
2

NX
n=1

(n6=j)

Gnbjn +
p
2Gjbo; (8.36)

i_bjn = (�Æe + Æj + Æn)bjn +
p
2Gjbn +

p
2Gnbj; (8.37)

i_bjj = (�Æe + 2Æj)bjj + 2Gjbj ; (8.38)

where j; n are indexes over all discrete modes, while all transitions j1; mi $
j1; m�1i are identically coupled to each one of themwith a coupling constant
given by Eq. (6.9) and !up is the upper limit of the discretized part of the
DOS. The detunings are de�ned with respect to the band-edge frequency,
while the shift term S can be obtained from Eq. (5.19). It is worth noting
here the appearance of the factor

p
2 in front of the couplings in Eqs. (8.35)-

(8.38), which indicates that the collective radiative decay rate for the two-
atom superradiant system in the isotropic PBG model is 22=3 times larger
than the decay rate of each individual atom. Propagating Eqs. (8.35)-(8.38),
for N = 50 we obtain the evolution of the initially excited system.

In Fig. 8.5(a), we plot the atomic inversion hJzi as a function of time
for various detunings of the atomic resonant frequency from the band-edge.



8.3 Summary 117

For detunings far outside the gap (solid line), the dynamics resemble that
of a superradiant system in open space; that is the system has completely
decayed in the long-time limit. For detunings inside the gap, however, we
note a substantially di�erent behavior (dashed and dot-dashed line). After
an initial transient regime where part of the population is lost, the super-
radiant behavior is turned-o� and thus a signi�cant part of the total initial
excitation remains bound at the atoms, in the long-time limit. The atomic
excitation at each time is given by

h�+1 ��1 + �+2 �
�
2 i = 2jb0j2 +

X
k

jbkj2: (8.39)

where �+1 (�
�
1 ) and �

+
2 (�

�
2 ) are the raising(lowering) atomic operators.

The quantum correlation between the two atoms (1 and 2), as is deter-
mined by h�+1 ��2 i, is plotted in Fig. 8.5(b). In open space, the correlation
increases from zero at t=0 to a maximumvalue as the system cascades down
the ladder of Dicke states. The maximum value corresponds to half-excited
system and as the system keeps cascading down the ladder, the correlation
between the atoms goes to zero. In the PBG case, however, the atoms are
correlated in the long-time limit, with the degree of the �nal correlation
being dependent on the atomic detuning from the band-edge. Note also
the oscillatory behavior of both inversion and correlation, instead of the ex-
ponential decay of open space. Apparently, the behavior of the collection
has the main features of the single atom dynamics at the edge of the gap.
These oscillations stem from the strong interaction of the ensemble with its
own localized radiation which leads to vacuum Rabi splitting of the atomic
levels. As we have already discussed, in the isotropic model of DOS these
oscillations are more pronounced than any other DOS model.

8.3 Summary

We have studied the radiative dynamics of two nearby TLAs interacting with
a PBG continuum. Both atomic transitions have been considered to be near
the band-edge frequency. A four-level con�guration has been adopted for
the description of the system. In analogy to a cascade three-level atom,
the localization of the two emitted photons at the site of both atoms, leads
to a competition between the two stepwise decay paths and the \direct"
two-photon process. The dipole-dipole interaction has been shown to play a
pivotal role in this competition. We have further found that the generation
of any pure antisymmetric state of two non-identical atoms is possible. For
two identical TLAs, the dynamics of the atomic superradiant system for
atomic transitions inside the gap, is substantially di�erent than in open
space, in terms of the inversion as well as the correlation between the two
atoms. Speci�cally, the system reaches a stable state in the long-time limit
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Fig. 8.5: The inversion (a) and the correlation (b) between the two atoms are
plotted as functions of time, for various detunings from the band-edge: Æe = �3C2=3

(dashed line), Æe = �1C2=3 (dot-dashed line), Æe = 3C2=3 (solid line). Parameters:
N = 50, !u = 10C2=3.
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where a signi�cant part of the excitation remains bound at the atoms. As a
result the atoms are correlated with degree of correlation being dependent
on the atomic detunings from the band-edge frequency.
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Chapter 9

Epilogue

9.1 Thesis summary

The main theme of this thesis is the interaction of small quantum systems
with structured radiation reservoirs. This is a problem which emerges in
many contexts of physics and the fundamental diÆculty in its formulation
stems from the invalidation of standard approximations. In particular we
focused on the behavior of atomic systems with few quantal degrees of free-
dom, embedded in PBG materials. Mathematical diÆculties had limited
relevant investigations to problems involving one-photon 
uorescence in the
structured photonic continuum. In order to overcome the shortcomings of
the Born and Markov approximations and thus be able to deal with multiple
excitations in the structured reservoir, in Chap. 5, we proposed and imple-
mented the discretization approach. The idea rests upon the substitution
of the near-resonant strongly varying part of the continuum, by a relatively
large number of discrete modes. The information about the structure of the
continuum is thus incorporated, either in the couplings or the frequencies of
these modes. The far o�-resonant part of the continuum can be treated per-
turbatively, while the atomic dynamics can be obtained through the direct
solution of a number of coupled di�erential equations for the amplitudes en-
tering the wavefunction of the total system. Armed with the discretization
technique, we then proceeded to address problems beyond single photon-
emission at the edge of a PBG continuum.

Speci�cally, in Chap. 6 we investigated the dynamics of a ladder atomic
system with both transitions coupled to the same structured reservoir and
we found that this system supports a \two-photon + atom" bound state
which leads to a fractional population trapping in both of the upper states.
In addition we have shown that due to the localization of two photons at
the site of the atom, a \direct" two-photon process coexists with a stepwise
one. Which of the two dominates is determined mainly by the detuning of
the upper transition from the band-edge.

121
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In Chap. 7, we elaborated on certain aspects of resonance 
uorescence
close to the edge of a PBG. An atom with transition frequency near the
edge of a gap is driven by an initially populated defect-mode centered at
a frequency inside the gap. Irrespective of the state of the defect-�eld, the
splitting of the atomic levels due to the coupling between the atom and the
defect-mode, may lead to a signi�cant excitation trapping in the long-time
limit, while the atomic population may exhibit inversion. Furthermore, if
both atom and defect-mode are slightly detuned from the band-edge we have
shown that after some initial time, the atom may become transparent to the
defect-�eld.

Finally, in Chap. 8, we studied the radiative dynamics of two nearby
TLAs interacting with a PBG continuum. In analogy to the ladder system,
the localization of the two emitted photons at the site of both atoms, leads
to a competition between the stepwise decay path(s) and the \direct" two-
photon process. The dipole-dipole interaction has been shown to play a
pivotal role in this competition, and accordingly in the enhancement of
the collective atomic decay. On the other hand, dipole-dipole interaction
may lead the atomic system to a pure antisymmetric state. If both atomic
transitions lie far inside the gap, the system reaches a stable state where a
signi�cant part of the excitation remains bound at the collection and the
atoms are correlated in the long-time limit.

9.2 Outlook

To the best of our knowledge, no experiments probing the atomic dynamics
in PBG structures have been carried out so far, since large-scale PCs exhibit-
ing full 3D band gap in optical regime are not available yet. There have been
only some experimental veri�cations of inhibition and suppression of 
uores-
cence by dye molecules embedded in opal structures [93, 99, 106, 129, 132].
For this reason, throughout this thesis we have not considered any speci�c
atomic transition or a real DOS for the photonic continuum and our studies
had a model character. Nevertheless, as we have alluded to Sec. 4.1, the
LDOS (the DOS at the location of the atom) is the one that is expected to
play a pivotal role in any quantum optical experiment and not the total DOS
[112]. Furthermore, even if the existed PCs do not exhibit a full PBG, their
LDOS may exhibit pseudogaps as well as Van-Hove singularities, providing
thus the appropriate \colored vacuum" for many of the novel phenomena
we have discussed to be observed. It is thus likely that the �rst quantum
optical experiments will be performed in the near future and at that time,
in order to compare theory with experiment, realistic parameters for both
the atom and the photonic DOS will be necessary.

From that point of view, discretization is a rather promising approach,
in the sense that it allows a direct incorporation of realistic band-structure
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calculations into investigations of the dynamics of atoms embedded in PCs.
Speci�cally, the coupling constants and frequencies corresponding to each
one of the discrete modes can be obtained from band-structure calculations
and thus the discretization provides a way of interpreting experimental re-
sults. On the other hand, as we have shown in this thesis, the discretization
is capable of handling at least few photons in structured radiation reservoirs
of any DOS. The limitation on the number of photons that can be treated
through the discretization comes from purely computational considerations,
at least in the present form of the approach. Whether an alternative form
may improve the eÆciency and the accuracy of the approach in terms of the
CPU time and computer memory, remains to be seen.

The doors are, therefore, open for the development of new theoretical
methods, and the improvement of the already existing ones, to deal with
many-excitation non-Markovian problems in the context of radiation reser-
voirs of any DOS. As we have seen, by adding one and two photons to the
systems we have discussed in this thesis, a variety of unexpected phenomena
has emerged. We may thus say with certainty that their many-photon exten-
sion will introduce considerable further richness in the behavior of few-level
atomic systems coupled to strongly modi�ed radiation reservoirs.
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Appendix A

Application of QMC and QSD

A general idea of QMC and QSD methods has been given in Chap. 3. In this
appendix, we apply the methods to the problem of resonance 
uorescence
by a single TLA, in open space [81]. The atom-laser Hamiltonian in an
interaction picture rotating at the laser frequency and in RWA is:

Hs = �L�z +



2
(�+ + ��); (A.1)

while we have only one Lindbland operator Ly =
p

a�

+, where 
a is the
atomic decay rate, and the master equation describing the dynamics of the
system is given by Eq. (3.74). Let's assume that the combined system (atom
+ �eld) at time t is described by the wave function

j (t)i � (aejei+ agjgi)jf0�gi; (A.2)

and let dt be a time interval such that dt << 
�1a ;
�1 ;��1
L . This ensures

that at most one photon can be emitted within this interval.
In the context of QMC approach, the wavefunction at time t+dt can be

obtained by evolving j (t)i during the interval dt, with the non-Hermitian
Hamiltonian

Hu = Hs � i
a
2
�+��: (A.3)

Simultaneously, we compare the probability of having spontaneous emission
during dt, which is dp = 
ajaej2dt, with a random number " uniformly
distributed within [0; 1]. We have thus two possibilities:

� If dp > ", the new normalized wave-function at t+ dt is

j (t+ dt)i = e�iHutj (t)ip
1� dp

: (A.4)

� If " < dp a quantum jump occurs which is associated with the projec-
tion of the wavefunction onto the ground state jgi and the detection of
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Appendix B

A Photonic Band-Gap in the

Scalar Approximation

The propagation of a monochromatic electromagnetic wave in an inhomoge-
neous, non-dissipative dielectric medium is governed by the following equa-
tion

�r2E +r(r �E)� !2

c2
�f (r)E = ��

!2

c2
E; (B.1)

where ! and c are the frequency and the speed of light in the medium, whose
dielectric constant has been written as its average value ��, plus a 
uctuating
part, i.e., �(r) = �� + �f (r), while �(r) > 0. The term !2

c2
�� on the right

hand side of Eq. (B.1) can be viewed as an energy eigenvalue, whereas the

term !2

c2
�f (r), as a \potential". From this point of view, Eq. (B.1) is the

electromagnetic analogue of the Schr�odinger equation.
Let us consider now an 1D crystal, consisting of periodically arranged

dielectric scatterers of radius a and refractive index n. Setting �� = 1, the
wave-equation (B.1) reads

�r2 (x) + �(x) (x) =
!2

c2
 (x); (B.2)

where �(x) = �!2

c2
�f (x) is the periodic "potential", and

�f (x) =
m=1X
m=�1

u(x�mL); (B.3)

with L = 2a+ b being the lattice constant and

u(x) =

(
n2 � 1; jxj < a
0; otherwise.

(B.4)

The \potential" can thus be viewed as a sequence of \potential-barriers"
u(x), of width 2a (Fig. B.1). Restricting ourselves to a unit cell of the
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mL (m+ 1)L(m� 1)L

b

a L

n
2
� 1

Fig. B.1: The periodic \potential" in the isotropic model

crystal, the wave function can be written as

 (x) =

8><
>:
Aei�x + Be�i�x; x < �a
Cei�

0x +De�i�
0x; jxj < a

Eei�x + Fe�i�x; x > a

(B.5)

where � = !=c and �0 = n!=c. According to the Floquet theorem,  (x)
must satisfy the following relation

 (x+ L) = eikL (x); (B.6)

for suitable k and accordingly

d (x+ L)

dx
= eikL

d (x)

dx
: (B.7)

Furthermore, both  (x) and d =dxmust be continuous at x = �a. Applying
all these conditions, we may obtain the coeÆcients entering the wavefunc-
tion, as well as the following transcendental equation:

cos(kL) = cos

�
2na!

c

�
cos

�
b!

c

�
� n2 + 1

2n
sin

�
2na!

c

�
sin

�
b!

c

�
; (B.8)

which for b = 2na can be solved analytically, yielding the dispersion relation
for the 1D crystal,

!k =
c

4na
arccos

"
4ncos(2ka(1 + n)) + (1� n)2

(1 + n)2

#
: (B.9)
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