

Provenance Management for SPARQL Updates

Argyro Avgoustaki

Thesis submitted in partial fulfilment of the requirements for the
Masters’ of Science degree in Computer Science

University of Crete
School of Sciences and Engineering
Computer Science Department
Voutes Campus, Heraklion, GR-70013, Greece

Thesis Advisor: Prof. Dimitris Plexousakis

UNIVERSITY OF CRETE
COMPUTER SCIENCE DEPARTMENT

Provenance Management for SPARQL Updates

Thesis submitted by

Argyro Avgoustaki
in partial fulfillment of the requirements for the
Masters’ of Science de’gree in Computer Science

THESIT‘/

Author: r& (}/

Argyro Avgoust;akx

Committee approvals:

Yannis Tzitzikas
Assistant Professor, Committee Member

CWH‘VH pYF(G’AMV

Irini Fundulakl
Principal Researcher, Commiwxber
\

Departmental approval:

Antonis A. Ar yros‘
Professor, Director of Graduate Studies

Heraklion, December 2014

Abstract

During the last few years we have witnessed an explosion in the publication of
data in the Web, mainly in the form of Linked Data. Scientific, corporate or even
governmental data are made available for open access and used by applications,
individual users and communities. Given the increasing amount and the hetero-
geneity of this data, it is of crucial importance to be able to track its provenance.
Recording the provenance can help us to effectively support trustworthiness, ac-
countability and repeatability in the Web of Data.

A number of models have already been proposed to capture the provenance
information of query results; most of them considering RDF or relational data. On
the contrary, despite its importance, little research has been conducted in the case
of updates and especially of SPARQL updates.

In this thesis, we propose a new provenance model that borrows from both
how and where data provenance models, and is suitable for capturing the triple
and attribute level provenance of SPARQL update results. To the best of our
knowledge, this is the first model that deals with the provenance of SPARQL
updates using algebraic provenance expressions, in the spirit of the well-established
model of provenance semirings.

On the algorithmic side, we introduce an algorithm that records the provenance
of SPARQL update results in terms of the proposed model and a reconstruction
algorithm that uses the provenance of a quadruple to identify a SPARQL update
that is provably compatible to the original one. A SPARQL update is compatible
to another if they differ only in the variables names that they employ and the first
update contains a genuine subset of the unions that appear in the second one. The
latter algorithm is a necessary complement in order to fully describe the provenance
management, as it shows the determinant role of provenance information in the

persistence of SPARQL update results.

IMTepiAndm

To teheutaior ypdvia mopatnpeiton wa €xpndn otn dnuooicuor dedopévwy GToV
Hoyxbowio Ioté, xupiwe pe) popph) uvdedeuévwr Acdouévwr (Linked Data). Ae-
dopéva and didpopec VeEPATIXES TEPLOYES, T.Y. EMOTNUOVIXA, ETUEIXY, XUBECYNTIXS
xTA., Oativevton yia avoryth mpdoBacy xar ypnon ond EQUPUOYES, UEUOVOUEVOUS
YENOTES 1 axOPaL XAl XOWOTNTES YeNoT®WY. AedoUévou Tou ALEAVOUEVOU OYXOU Xl
NG ETEPOYEVELNS TWV OEOUEVWV QUTWY XPIVETAL EMITOXTIXG 1 AVEYXT] Yiol XOUTOY POt
of e mAnpogopias npoédevong (provenance). H yvdon tne npoéhevone pde dive
TN BUVATOHTNTA VoL UTOOTNRIEOVUE AMOTEAEOUATIXG EQapUoYEC oy oyeTiCovtal Ye Tnv
adlomoTiol, TV QEPEYYUOTNTA XAl TNV ETAVIANTTIXOTATA TWV OEQOUEVGY.

‘Eva tifdog and yovtéha €yet o mpotadel yia Ty xatorypagr tng mhnpogoplag
TPOEAEUOTIC TWV ATMOTENEOUETOY W ENEpwNone (query): to neploodtepa and o
omofa agopolv RDF W oxenaxd (relational) Sedoyéva. Avtideta, xou napd) onov-
daudtnTa Tou TEOBAAUATOS, 1) EpELVA YIX TNV TERIMTWOT TV evnuepdocwy (updates),
xan edwotepa TV SPARQL evnuepadoewy, Pploxeton axdpa o€ Tp®Io 0Tddto.

Yy epyacio aut), npoteivouue éva vEo HOVTENO Yiol TNV xotaypapy) xat Sioryel-
oon Tne mhnpogoplac mpoéhevone, ot exinedo tpimAérag (triple) xou yrwpioparog
(attribute), tov anotereopdtov wv SPARQL updates. To povtého autd, 10 onoio
DaVEILETOL YAPAXTNELOTIXG XAt WOLOTNTES And TA 1101 UTAPYOVT HOVTERX TOU where o
how givon 10 TpdTO TOL UTOGTNEILEL TN YEHOY AAYEBPIKGY ekPpdTewY GE EVNPEPOOELS,
axXOhOUVMOVTIC TNV TEOGEYYIOT, TOU HOVTEAOU TWV Provenance SEmirings.

Anéd ahyoprdpxic oxomde, napovotdlouye évay ahydpiduo, o onolog unohoy(Cel
TNy mhnpogopia tpoé¢heuoTg yia Ta anoteréopata Twv SPARQL updates pe Bdon to
TpoTEVOUEVO HoVTERO, Xxadds xou évav akydprduo avaxatacxeurc (reconstruction),
o omofog yernotgonotel TNV TAnpogopia Tpoéhevone wac tetpaniétas (quadruple) yio
va dnwoupyhoel éva SPARQL update, anodederypéva, ovppaté (compatible) pe to
apywé. ‘Evo SPARQL update eivor ouuBatd pe éva dAho, av dragépouy uévo ota
OVOUATO TOVY YETIBANTGY TOU YeNotdonotoly, xol To TpTo update nepiéyet €va yvhoto
LTOoUVOLO WV evhoewy (unions) mou epgavilovton oto dettepo. H mapoyR evic
oA Y0opld oy AVIXATACHEVTE XPIVETOL ATUPA{TN TN WOTE YA UTOPEGOVUE VA TIERLY pdfouue
TApwS TN Sty elpton TN TANpogoplag TPoéAEUaTC, X PAVERHOVEL TOV XadoploTiXd
o6ho tne mAnpogopiuc authc oty dathpnon e ovrektikdtntas (persistence) Twv
anoteheopdtwy 1wv SPARQL updates.

Yrovs yovei§ pov,
Anuntpn ka1 EAévn

Euyapiotieg

Trdpyouv téca mohhd dropga mou Yo Hleho vo euydploThow, xadévay yio Evay
EeywptoTto Aoyo. Apywxd, Yo ficha va evyopiotion Yeppd tov endnty pou, Kaldnynt)
x. Anuhten ITAeEovodxur, Yo Tny eUmoToolYn Tou pou €0elle xodmdg xou Yol T
othpiln Tou xad” OA1 TN BLIEXEL TWY PETATTUYLAXWY LOU GTOUBKY.

Entong, Ya fleha va euyapiotiow ex Padéwy toug ouvemBAénovieg tng epyaociog
wou, Tdpyo Phovpr, xou Eprvn ®ouvtouhdxy, yio tny xododrynor, tov eviouoto-
oud, Ti¢ ToAOTWES GUPPBOVAES xaddg xou TV umopovy Toug. Ot yvdoelg, 1 eunetpla
xat oL 18€e¢ Toug oUVEBahaY xodoploTixd TNV ohoxhfpwor, tng epyaoiag authc. H
ouvepyaoio pog ue BoRinoe va e€ehydod 1600 o€ emayYEAUATING AR X TPOCWTIXO
eninedo, 8ivovtag Hou TaUTOY POV TA ATUPULTHTA EPODLAL YIX TN CUVEYELN TRV GTOUDKDY
Hou.

Y10 onueio autd, Yo fdeha va euyaploThow ok to péAn Tou epyactnplou IThngo-
POPLOXWY LUGTNUATGY Yo TNV EVYdploTy ouvepyaoio. Idiaitepa, wotdo0, EuyapIOTH
toug [Ndvvn P, Havayiotn xou Xetotiva yatl extég and xahol ouvepydteg unhpéay
xou xahot gihot. Ta “coffee breaks™ wag Yo yetvouv otnv otopia...

Axopa, euyoptotd toug xaholg pou gihouc Baulevtiva, Bidha, Kdiha, Hpoxh?,
Niva, T'iwpyo xon Nixo. Eite xovtd, elte poxptd, dAlot mo mohl, dhhot o Alyo €xavay
Ohor auTd Tor yeovia var a&ilouv xar pou ydpioav unépoyec avauvioels. Kuplwg, dunc,
wou mpdopEpaY T1) Yapd Vo Exw dimha pou Eeywpelotols avipntoug.

Ou Hdeha vo avoapepte WBiutépwe oty Tohd xahy) wou @iy Aduntea xot vo Thy
EUYOPIOTHOW, EXTOC TV GAAWY, YIX TIC ETOLXODOPNTIXES GULNTAOEIS PG ARG ol TIC
Yepdteg arydmn xou ethixpiveto ovyPourés tne. H wpwdtnta e e Pordnoe todlég
POPES VAL 0w Ao JAAT omTixY| Ywvio To YEYOVOTAL.

Emuniéov, Yo flelo va euyaplotiow and xapdidg Tov adep@ixd wou @iho Mdvo,
YIOU TN CUVEYT X0 OVIBIOTEAY) AY AT}, UTOOTAREY XAl CUUTORACTACT) TTOU UOU TUPEYEL
and TNy npwtn wépa yvwerulog wag. H oyéorn pog ye éxave va motédw autd nou Aéve
‘o gihot etvorn 1) oixoyéveta Tou emhéyouue” xt eob eloan o adeppog mov dev elya Xta
e0xoha xou otol doxoha névto pali...

To peyahltepo OUWS EVYUPITTE AVAXEL GTNV OWXOYEVELX oL Xat IBLITERA GTOUC
yovelg you, Anunten xat EAévr, mou ue unépuetpn oydmy, XATovONoT Xl UTOUOVA
otnpilouv mavta xdde pou tpoomdieia. Ot apyéc mou ue didaay xou 1 dlamudory Yo
mou €haPa ye Porinoay va yopdiw tn dixr) pou mopeia ot Lwr. Efuar tuyeph mou
oug EYo...

Yog euyaplote Tohd dhoug!

Contents

1 Introduction

2 Preliminaries
2.1 RDF . . . o
22 SPARQL . . . e
2.3 Provenance Models for Queries with Positive Algebra

3 Motivating Example

4 SPARQL Update Language Semantics
4.1 Graph Update Operations
4.2 Graph Management Operations

5 Abstract Provenance Model

6 Provenance Algorithms
6.1 Provenance Construction Algorithm
6.2 Update Reconstruction Algorithm
6.3 Correctness Results L Lo
6.4 Complexity Analysis

7 Related Work

8 Conclusions and Future Work

21

27
28
39

49

55
56
61
67
71

73

77

II

List of Figures

2.1 Graphical representation of an RDF triple

2.2 Graphical representation of the RDF graph shown in Table 2.1

2.3 Comparison between Green et al., Karvounarakis et al., Buneman
et al. and proposed model L.

I1I

v

List of Tables

2.1
2.2
2.3
2.4
2.5
2.6

2.7
2.8

3.1

3.2
3.3

3.4

3.5

3.6

3.7

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Tabular representation of an RDF graph 9
A set of RDF quadruples. 9
Tabular representation of a Graph Store GS 14
Evaluation of quad pattern (%s, ?p, 20, <Pathologist>) 15
Evaluation of quad pattern (%o, ?z, %y, <Side Effects>) 16
Evaluation of graph pattern (?s, ?p, %0, <Pathologist>) . (%o, %z, %y,

<Side Effects>) 16
Evaluation of quad pattern (%s, ?p, 20, <Diabetologist>) 17
Evaluation of graph pattern (s, ?p, 20, <Pathologist>) UNION (s,

?p, %0, <Diabetologist>) 17
Tabular representation of Graph Store GS with additional informa-

tion for provenance and quadruple identifiers 22
Evaluation of quad pattern (%s, ?p, 0, <Pathologist>) 23
Evaluation of quad pattern (%o, <slightly increase>, “glucose”,

<Side Effects>) o 23

Evaluation of quad pattern (<hypertension>, ?p, 0, <Diabetologist>)

Evaluation of graph pattern (%s, ?p, %o, <Pathologist>) . (%o,
<slightly increase>, “glucose”, <Side Effects>) 23
Evaluation of graph pattern (%s, ?p, 70, <Pathologist>) . (%o,
<slightly increase>, “glucose”, <Side Effects>) UNION (<hypertension>,

?p, %0, <Diabetologist>) 24
Tabular representation of Graph Store G52 with additional informa-

tion for provenance and quadruple identifiers 24
Graph Store GS3 (INSERT DATA operation) 30
Graph Store GS4 (DELETE DATA operation) 31
Graph Store GS5 (INSERT operation) 33
Graph Store GSg (DELETE operation) 34
Graph Store GS7 (DELETE/INSERT shortcut) 36
Tabular representation of the named graph <HypertensionDrugs>' 37
Graph Store GSg (LOAD operation) 38
Graph Store GSg (CLEAR operation) 40

v

4.9 Graph Store GS19 (CREATE operation) 41
4.10 Graph Store GS11 (DROP operation) 43
4.11 Graph Store GS12 (COPY operation) 44
4.12 Graph Store GS13 (MOVE operation) 46
4.13 Graph Store GS14 (ADD operation) 47

Chapter 1

Introduction

During the last few years, we have witnessed an explosion in the volume of data
published in the Web, mainly in the form of Linked Data [1]. The main value
of such data stems from the unmoderated nature of data publication, interlinking
and reuse. This increases the added-value of interlinked data by identifying un-
known correlations and relationships, and by allowing the re-use of concepts and

properties.

Data on the web are usually published using the RDF [2] data model. The pop-
ularity of the RDF data model is due to the flexible and extensible representation
of information under the form of ¢riples, organized in named graphs [3], thereby
forming quadruples. An RDF triple (subject, predicate, object) asserts the fact that
subject is associated with object through predicate. Querying and updating RDF
data is performed using the SPARQL language [4, 5.

The open and unconstrained nature of data published in the Web, makes it
imperative to effectively support, e.g., trustworthiness, accountability and repeata-
bility. This is achieved by recording the provenance of published data, i.e., their

origin or source, that describes from where and how the data was obtained [6].

In this work we deal with the problem of capturing and managing the provenance
of quadruples constructed through SPARQL updates [5]. More specifically, we focus
on SPARQL INSERT operations (we refer to them as INSERT updates) used to
add newly created triples in a target named graph (i.e. forming quadruples). The
purpose of provenance for such operations is to record from where and how each

quadruple was constructed, thereby allowing us to determine the quadruples and

3

4 CHAPTER 1. INTRODUCTION

the SPARQL operators that were used to produce it.

Even though the problem of provenance has been extensively studied in the
literature [6, 7, 8, 9, 10, 11] most of the related works deal with SPARQL query
provenance. An approach for recording provenance is via algebraic expressions that
describe the origin of data in varying levels of detail [7, 12, 13, 14]; in the RDF
context, provenance is recorded via named graphs [3, 9, 14, 15]. Unfortunately, the
unique requirements associated with the provenance of SPARQL updates results

do not allow a direct reuse of such approaches.

A first problem stems from the fact that the named graph component of a
quadruple is defined by the user in the INSERT update. This implies that prove-
nance should be defined for quadruples, rather than triples (as is the case in most
works). Furthermore, the same fact implies that triples with different origin may be
added to the same named graph; thus, the standard approach of capturing prove-

nance through the named graph of a quadruple is not sufficient in our setting.

In addition, quadruples created via INSERT updates could be the result of com-
bining values found in different quadruples through different SPARQL operators.
This creates a unique challenge, because each attribute of a quadruple may have
a different provenance. Thus, fine-grained, attribute-level provenance models are
called for, and more expressive models that go beyond named graphs approach are

needed.

Another challenge stems from the persistence of a SPARQL update result. This
implies that when a quadruple is accessed, the SPARQL update that generated may
be no longer available. This requirement leads to the notion of reconstructability,
which refers to the ability of using the provenance expression for reconstructing an
INSERT update that is compatible (Definition 15) with the original INSERT update
that generated the quadruple.

Therefore, the provenance of a quadruple should be expressive enough to iden-
tify the quadruples that contributed to its creation (where provenance [16]), as well
as how these quadruples were used to generate the new one (how provenance [7]).
However, how provenance in this setting takes a much more demanding form than
in the case of query provenance. As an example, knowing that a join was used to

generate a quadruple during a query is enough to understand how it was gener-

ated; on the other hand, in the case of INSERT updates, we need to know more
fine-grained information, and more specifically which components of a quad pattern
were joined to generate the result.

To support the above requirements we introduce a novel triple and attribute
level, fine-grained provenance model that borrows from both where and how data
provenance models 7, 17], as well as algorithms for managing (recording and inter-
preting) provenance information. More specifically, the main contributions of this
thesis are:

- The introduction of an expressive provenance model suitable for encoding
triple and attribute level provenance of quadruples obtained via SPARQL
INSERT updates, and allowing the reconstructability of such updates from
their provenance.

- The provision of algorithmic support for our model via the Provenance Con-
struction and the Update Reconstruction algorithms. The former is used for
computing and recording the provenance of the result of a SPARQL INSERT
update based on the proposed model. The latter exploits the expressiveness
of our model to report on the generation process of a quadruple (using its
provenance), in the sense of reconstructing a SPARQL INSERT update that

is compatible with the original one that created said quadruple.

Structure. In Chapter 2, we briefly discuss basic concepts and definitions of RDF
(Section 2.1) and SPARQL (Section 2.2), as well as the most prevalent positive
provenance models (Section 2.3). A motivating example that will be used through-
out this thesis is provided in the Chapter 3. Chapter 4 describes the semantics
of SPARQL Update language. We define our provenance model in Chapter 5.
Chapter 6 presents the related algorithms (Sections 6.1, 6.2), their correctness re-
sults (Section 6.3), as well as their complexity analysis (Section 6.4). Finally, in

Chapter 7 we describe the related work and we conclude in Chapter 8.

CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries

In this chapter we discuss the Resource Description Framework (RDF) [2], a data
model used for describing and modelling information that is implemented in Web
resources. Additionally, we present SPARQL [4, 5|, the official W3C recommenda-
tion language for querying and updating data in RDF format. At the end of this
chapter we refer to some of the most prevalent positive provenance models that

our work builds on.

2.1 RDF

The Resource Description Framework (RDF) [2], a W3C recommendation, is a
model for representing information about resources in the World Wide Web (Web
resources). RDF enables the encoding, exchange and reuse of structured data,
providing therefore the means for publishing both human-readable and machine-
processable vocabularies. Nowadays, it is used in a variety of application areas,
such as the Linked Data initiative [1], which aims at connecting data sources on
the Web, and is employed as a standard for representing information on the Web
of Data.

RDF is based on a simple data model that facilitates Web data processing and
manipulation. The fundamental idea of RDF model is that everything we wish to
describe is a resource. A resource may be a title, an author, the modification date
of a Web document or even a relation between them, and is identified by using

Web identifiers, called Internationalized Resource Identifiers or IRIs (denoted by

7

8 CHAPTER 2. PRELIMINARIES

< >). The building block of the RDF data model is a ¢riple.
Assume two pairwise disjoint and infinite sets 1 and L, denoting IRIs and

literals, respectively.

Definition 1. An RDF triple t is a tuple of the form (subject, predicate, object).
The set T =1 x 1 x (IUL) is the set of all RDF triples.

An RDF triple asserts the fact that subject is associated with object through
predicate. 1t should be stressed that in this work, we are interested only in ground

triples and thus we do not consider blank nodes.

Example 1. For example (<hypertension>, <medication>, <diuretics>) is an RDF
triple, with <hypertension> being its subject, <medication> being its predicate and
<diuretics> being its object. O

S

Predicat

~
Py
’ N\
’ N
’
’ N
54 A

= €-----

|

Figure 2.1: Graphical representation of an RDF triple

Definition 2. An RDF graph G is a set of RDF triples, G C T. An RDF named
graph NG is an RDF graph that is uniquely identified by an IRI from the set I.
More specifically, NG = (n,G) where n € 1 and G is an RDF graph.

From this point on, and without loss of generality, we refer to a named graph

by using only its name n.

Definition 3. An RDF quadruple q (subject, predicate, object, named graph) con-
sists of an RDF triple and the IRI of a named graph that triple belongs to. Then,
set Q=1 x I x (I x L) x I is the set of all RDF quadruples.

2.1. RDF 9

Subject (S) Predicate (P) Object (O)
<hypertension> <medication> <diuretics>
<hypertension> <medication> <beta blockers>
<diuretics> <slightly increase> “glucose”

Table 2.1: Tabular representation of an RDF graph

“slucose”

A

<slighlty_increase>

<medication> (
<

<hypertension> iuretics>

<medication> <beta_blockers>

Figure 2.2: Graphical representation of the RDF graph shown in Table 2.1

Example 2. For example, consider (<hypertension>, <medication>, <diuretics>,
<Pathologist>) that is an RDF quadruple, with <hypertension> being its subject,
<medication> being its predicate, <diuretics> being its object and <Pathologist>

being the IRI of a named graph that the aforementioned triple belongs to. U
Subject (S) Predicate (P) Object (O) Named Graph (NG)
<hypertension> <medication> <diuretics> <Pathologist>
<hypertension> <medication> <beta blockers> <Pathologist>
<diuretics> <slightly increase> “glucose” <Side Effects>
<hypertension> <medication> <diuretics> <Diabetologist>
<bronchitis> <treat_with> <antibiotics> <Pneumonologist>
<bronchitis> <treat with> “aspirin” <Pneumonologist>

Table 2.2: A set of RDF quadruples

10 CHAPTER 2. PRELIMINARIES
2.2 SPARQL

SPARQL 1.1 [4, 5] is the official W3C recommendation for querying and updating
RDF graphs, and is based on the concept of matching patterns against such graphs.
Thus, a SPARQL query or a SPARQL update determines the pattern to seek for,
and the answer is the part of the RDF graph that matches this pattern.

The building block of a SPARQL statement is a triple pattern tp that resembles
an RDF triple, but may have a variable (prefixed with character ?) in any of its
subject, predicate, or object positions. Intuitively, triple patterns return the triples
in an RDF graph that have the form specified by those triple patterns.

In addition to the sets I and I we assume the existence of an infinite set V of

variables disjoint from the above sets.

Definition 4. A triple pattern tp is an element of the set TP = (I U V) x (I U
V) x (IULUWV).

Intuitively a triple pattern denotes the triples in an RDF graph that are of a

specific form.

Example 3. Consider the triple pattern (<hypertension>, ?p, ?0) that contains
the variables ?p and %o, which can be substituted by any IRI; as such, the previous

triple pattern can be used to denote all triples with subject <hypertension>. [

To take into account context information expressed in the form of named
graphs, SPARQL 1.1 defines quad patterns (tp,n) [4], that are essentially triple
patterns with an additional column that denotes the named graph in which said
triple pattern must be evaluated against. In this work, we allow only values from
the set of IRIs for the named graph column; i.e., variables are not allowed in the

graph position.

Definition 5. A quad pattern gp is an element of the set QP = (I U V) x (I U
V) x (TULUV) x L

Note that, as a consequence of Definition 5, a quadruple ¢ can be also considered

as a quad pattern.

2.2. SPARQL 11

Example 4. The quad pattern (<hypertension>, ?p, ?0, <Diabetologist>) matches
all triples with subject <hypertension> in the named graph <Diabetologist>.
In a similar manner, the quad pattern (%s, ?p, Y0, <Pathologist>) matches all

triples in the named graph <Pathologist>. O.

SPARQL queries and updates use graph patterns. Graph patterns, as triple
patterns and quad patterns, are matched against RDF graphs by substituting the

variables with matching IRIs or literals.

Definition 6. A SPARQL graph pattern gp is defined recursively as follows:
- A triple pattern tp is a graph pattern.

A quad pattern qp is a graph pattern.

If gp and gp’ are graph patterns then (gp . gp’), (gp UNION gp’), and (gp
OPTIONAL gp') are graph patterns.

If Cis a built-in condition, then (gp FILTER C) is a graph pattern.

A SPARQL built-in condition is constructed using elements of the set I U L U
V and constants, logical connectives (-, A, V), inequality symbols (<, <, >, >),
the equality symbol (=), unary predicates like bound, isBlank, and isIRI, plus

other features (see [4] for a complete list).

Example 5. For example the following statements are all graph patterns:

- (<hypertension>, ?p, 20, <Diabetologist>), (?s, ?p, 70, <Pathologist>),
(<bronchitis>, <treat with>, “aspirin”, <Pneumonologist>)
These graph patterns are quad patterns as well.

- (%s, ?p, 70, <Pathologist>) . (20, <slightly increase>, “glucose”,
<Side Effects>)
This graph pattern contains a join (on the variable ?0) between two other
graph patterns, (%s, ?p, %0, <Pathologist>) and (%0, <slightly increase>,
“glucose”, <Side Effects>).

- (%s, ?p, 20, <Pathologist>) . (%0, <slightly increase>, “glucose”,
<Side Effects>) UNION (<hypertension>, ?p, 20, <Diabetologist>)
This graph pattern contains a union between two other graph patterns, (s,
?p, 70, <Pathologist>) . (%0, <slightly increase>, “glucose”; <Side Effects>)
and (<hypertension>, ?p, %0, <Diabetologist>). O

12 CHAPTER 2. PRELIMINARIES

In our study, we focus on SPARQL INSERT updates containing graph patterns
that consider only the union (UNION) and join (“.") operators. In particular, we

restrict ourselves to INSERT updates of the following form:

Definition 7. A SPARQL INSERT update U is a statement of the form
U := INSERT {gpins} WHERE {gp}

where qpins 45 a quad pattern and gp is a graph pattern formed as a union of
individual graph patterns, gp* UNION ... UNION gp*. Each gp' is of the form
qpt qpi,. We require that for each qpé— there is a sequence <qp§.1, ...y of
quad patterns from gp', such that qpé- = qp;'-1 and each element in the sequence
has a common variable with the previous element in the sequence, whereas the first

element has a common variable with qp;ns.

This essentially corresponds to the class of SPARQL statements containing only
union and join operators, as all statements of this class can be equivalently written
in the above form [18]. The restriction on the existence of common variables is nec-
essary to “strip” the graph pattern in the WHERE clause from quad patterns that
play no essential role in its evaluation [18]. Furthermore, note that the SPARQL
statement INSERT DATA is a special case of the previous INSERT update where
gp is the empty graph pattern.

The INSERT clause of an update specifies what variables should be returned
as results to form the new quadruples. The WHERE clause includes all the quad
patterns that must be matched from the results. The full semantics of SPARQL
Update are formally described in Section 4.

Example 6. Consider the INSERT update U: INSERT {gpins} WHERE { gqp} . gp}
. qp} }, where:

qPins: (?s, ?p, 20, <MyGraph>)

qpi: (%s1, ?pl1, Pol, <nl>)

qps: (%s, ?p, 702, <n2>)

qpi: (283, ?p3, 20, <n3>)

We observe that the first quad pattern of the graph pattern in the WHERE
clause, (?s1, ?pl, %01, <nl>), belongs to the sequence (gpl), which does not

2.2. SPARQL 13

contain an element with a common variable with gp;,s. In contrast, the second
quad pattern, (?s, ?p, 202, <n2>), is related to the sequence (gpi) that has an
element with two common variables with ¢p;ns, ?s and ?p. For the third quad
pattern, (7s3, ?p3, 70, <n3>), there is a sequence (gp}) that its first and only
element shares a variable (20) with gpi,s. As a result, the first quad pattern is

omitted and U can be reworded as INSERT {gpins} WHERE {gp} . gpi}, where:

qpins: (s, ?p, 20, <MyGraph>)
api: (%s, ?p, 202, <n2>)
qps: (253, ?p3, %0, <n3>)

g

Example 7. Consider the INSERT update U: INSERT {gpins} WHERE { gpi
UNION ¢p? . qp2 }, where:

qpins: (<Alice>, 2b, ?¢, <MyGraph>)
apl: (%a, %, %c, <nl>)

gp?: (2d, ?b, Pc, <n2>)

qp3: (2d, <likes>, %e, <n3>)

The update U consists of two graph patterns, gp' and gp?, that are the operands
of the UNION operation. Then, for the quad pattern gpi of gp' there is a sequence
{ gpi) that contains only one element, which shares two common variables with
qPins, ?b and ?c. In graph pattern gp?, the quad pattern (%d, <likes>, ?e, <n3>)
joins the quad pattern (%d, 2b, ?c, <n2>) on the variable ?d, and therefore both
of them are elements of the sequence (qp%, qp%). Furthermore, the first element
of this sequence has two common variables (7b, ?c) with gp;,s. As a result, we can

not omit any quad pattern from the INSERT update U. U

According to SPARQL 1.1 Update [5], a SPARQL update is evaluated on a
Graph Store that is a mutable container of RDF graphs. For simplicity however,

in this thesis we define a Graph Store as:

Definition 8. A Graph Store GS is a pair (Qgs, Ngs) where Qgs is a set of
quadruples (Qgs C Q) and Ngs is a set of named graphs (Ngs C 1).

14 CHAPTER 2. PRELIMINARIES

gs

S P (@) NG
<hypertension> <medication> <diuretics> <Pathologist>
<hypertension> <medication> <beta blockers> <Pathologist>
<diuretics> <slightly increase> “glucose” <Side Effects>
<hypertension> <medication> <diuretics> <Diabetologist>
<bronchitis> <treat with> <antibiotics> <Pneumonologist>
<bronchitis> <treat with> “aspirin” <Pneumonologist>

Ngs
NG
<Pathologist>
<Side Effects>
<Diabetologist>

<Pneumonologist>

Table 2.3: Tabular representation of a Graph Store GS

For the evaluation of SPARQL graph patterns, we follow the semantics dis-
cussed in [18, 19]. More specifically, a solution mapping, or simply a mapping, u
from V to I UL is a partial function g : V — I U L. The domain of p, dom(u), is
the subset of V where y is defined. In case that dom(u) = 0 then uy = (; this is
the empty mapping. Abusing notation, for an arbitrary quad pattern gp we denote
by var(gp) the set of variables occurring in ¢p and by p(gp) the result obtained by
replacing the variables in ¢p with their assigned values according to u. Note that
only the triple pattern part (tp) of a quad pattern is permitted to contain variables
since n is always an IRI. Then, the evaluation of a quad pattern ¢gp = (tp,n) with
respect to a Graph Store GS returns a sets of mappings, denoted as Q = [[tp]]9°,

where.

([tpl15° = {u | dom(p) = var(gp) and pu(qp) C Tn} (2.1)

with 7T, being the set of triples that are related to the named graph n.

Before discussing the evaluation of a graph pattern we shall refer to some ad-

ditional notions related to mappings. Two mappings p1 and uo are compatible if

2.2. SPARQL 15

for every %z € dom(u1) N dom(pe) it is the case that ui(%z) = po(?2), ie., up U
2 is also a mapping |18, 19]. Note that two mappings with disjoint domains are
always compatible, and that the empty mapping py is compatible with any other
mapping. In addition, the join and the union of two sets of mappings €21 and €2,
are defined as:

- Q1) Qg ={pu Upg | pr € Qu, pua € Qg are compatible mappings}

- UQ={p|peQorpueQ}.

Then, the evaluation of a SPARQL graph pattern gp with respect to a given

Graph Store GS, is defined recursively as:
- [[tplgS < [[tpN]S7, if gp is of the form gp . gp’

- [[tp)9S U [[tp')99, if gp is of the form gp UNION gp/

where gp = (tp,n) and qp’ = (tp',n’).

Example 8. Consider the Graph Store GS (Qgs, Ngs), shown in Table 2.2, and
the INSERT update U: INSERT {gpins} WHERE {gpi}, where:

qpins: (?s, ?p, 20, <NewDoctor>)
qpi: (%s, ?p, 20, <Pathologist>)

Table 2.4 shows the evaluation of gp}, denoted as €23, where each column cor-
responds to a variable in the evaluated quad pattern and each row of the table

corresponds to a mapping.

‘ ?s ?p 20

p1: | <hypertension> <medication> <diuretics>
pa: | <hypertension> <medication> <beta blockers>

Table 2.4: Evaluation of quad pattern (s, ?p, 20, <Pathologist>)

According to the INSERT clause of U the result quadruples are formed us-
ing values from the evaluation of variable #s for the subject position, ?p for the
predicate position, ?o for the object position and the named graph <NewDoctor>.
Hence, the INSERT update U generates the result quadruples (<hypertension>,
<medication>, <diuretics>, <NewDoctor>) and (<hypertension>, <medication>,
<beta blockers>, <NewDoctor>).

Note that if U: INSERT {gpins} WHERE {gpi}, where:

16 CHAPTER 2. PRELIMINARIES

qpins: (<hypertension>, ?p, 20, <NewDoctor>)
qpi: (?s, ?p, %0, <Pathologist>)

Then, the evaluation of quad pattern gpl remains the same as well as the result
quadruples. However, it is worth pointing out that the value of subject position
in the result quadruples does not come from the evaluation of the variable ?s but

from the constant value <hypertension> as defined by the INSERT clause. 0

Example 9. Similarly to the previous example, consider the INSERT update U:
INSERT {qpins} WHERE { qp} . qp} }, where:

qPins: (?s, ?p, 20, <NewDoctor>)
qpi: (?s, ?p, %0, <Pathologist>)
qp: (%0, 22, ?y, <Side Effects>)

Tables 2.5- 2.6 show the evaluation of qp} (€) and gpt . g¢pi (1 x Qo)

respectively; the evaluation of quad pattern gp} was shown in Table 2.4.

‘ %0 fx Py

143 ‘ <diuretics> <slightly increase> “glucose”

Table 2.5: Evaluation of quad pattern (%o, ?z, %y, <Side Effects>)

‘ ?s “p 20 x 2y

u4:‘<hypertension> <medication> <diuretics> <slightly increase> “glucose”

Table 2.6: Evaluation of graph pattern (s, ?p, 20, <Pathologist>) . (%0, ?x,%y,
<Side Effects>)

According to the INSERT clause of U the result quadruples are formed using
the values from the evaluation of variable ?s for the subject position, ?p for the
predicate position, 2o for the object position and the named graph <NewDoctor>.
Hence, the INSERT update U generates only one quadruple (<hypertension>,
<medication>, <diuretics>, <NewDoctor>) (based on the evaluation results of the
graph pattern in the WHERE clause— see Table 2.6). U

Example 10. Consider the INSERT update U: INSERT {gpins} WHERE { gpi
UNION gp? }, where:

2.3. PROVENANCE MODELS FOR QUERIES WITH POSITIVE ALGEBRA17

qpins: (?s, ?p, 20, <NewDoctor>)
qp: (?s, ?p, %0, <Pathologist>)
qp¥: (?s, ?p, %0, <Diabetologist>)

The evaluation of gpi (€2;) was already shown in Table 2.4. Tables 2.7-
2.8 show the evaluation of gp? (Q3) and gp} UNION ¢p? (Q; U Q3), respectively.

‘ ?s p 20

5 ‘ <hypertension> <medication> <diuretics>

Table 2.7: Evaluation of quad pattern (?s, ?p, Y0, <Diabetologist>)

?s “p %0

te: | <hypertension> <medication> <diuretics>
wr7: | <hypertension> <medication> <beta blockers>

ug: | <hypertension> <medication> <diuretics>

Table 2.8: Evaluation of graph pattern (%s, ?p, %0, <Pathologist>) UNION (?s, ?p,
20, <Diabetologist>)

The result quadruples are formed using values from the evaluation of variable
?s for the subject position, ?p for the predicate position, ?o for the object posi-
tion and the named graph <NewDoctor>. Hence, the INSERT update U generates
the quadruples (<hypertension>, <medication>, <diuretics>, <NewDoctor>) (this
quadruple is generated with two different ways) and (<hypertension>, <medication>,
<beta blockers>, <NewDoctor>) (based on the evaluation results of the graph
pattern in the WHERE clause— see Table 2.8). g

For a thorough presentation of the semantics of the SPARQL language, we urge
the interested reader to read the SPARQL specification [4].

2.3 Provenance Models for Queries with Positive Alge-
bra

A great number of provenance models have been proposed so far. Most of them,
no matter which data model they support (RDF or relational), deal with the prob-

lem of provenance management for the positive fragment of a language (SPARQL

18 CHAPTER 2. PRELIMINARIES

or SQL). In particular, the positive fragment of SPARQL consists of statements,
queries or updates, that use only the SPARQL operators SELECT, AND, FIL-
TER and UNION [10], whereas the positive fragment of SQL is comprised of the

operators o (filtering), m (projection), U (union) and x (natural join) [7].

In this thesis, we propose a novel provenance model that is suitable to record
the provenance of SPARQL update results. As already described in Section 2.2,
we restrict our attention to unions of conjunctive INSERT updates and therefore
our model deals with the positive fragment of SPARQL language. In this Section

we will discuss the positive provenance models that our work builds on.

The most popular model among those to be discussed is the provenance semir-
ings; the notion of how provenance, i.e., how an output tuple is derived according to
a given query, was articulated for first time in this work. Green et al. [7] propose
an algebraic approach that consider various forms of annotated (tagged) relational
data and their transformations in the context of positive relational queries. A
transformation refers to the operations that can be applied to the source tuples.
Thus, source tuples can be either joined via a join operation (defined by the op-
erator “-”), or merged as an effect of a union or a projection operation (defined
by the operator “4”). Then, abstract tags and operators are combined to cre-
ate algebraic expressions that describe how source tuples generate a result tuple.
These expressions are in fact polynomials in a commutative semiring (K, +, -, 0,
1). Furthermore, the authors propose polynomials with integer coefficients —the
universal provenance semiring- and show that positive algebra semantics for any

commutative semiring factors through the provenance semantics.

In [10], authors extend the previous model and show that semirings approach
is sufficient for positive SPARQL queries on annotated RDF data as well. More
specifically, Karvounarakis et al. investigate how popular relational provenance
models, such as how and why, can be leveraged to capture the data provenance
of unions of conjunctive queries over Linked Data, despite their subtle differences.
In addition, they identify the limitations of these models (mainly because of the
SPARQL operator OPTIONAL) and advocate the need for new provenance mod-
els for SPARQL queries. We urge the interested reader to read [12, 13| for a full

representation of SPARQL algebra using abstract relational provenance models.

2.3. PROVENANCE MODELS FOR QUERIES WITH POSITIVE ALGEBRA19

The model of where provenance was introduced by Buneman et al. [16], and it
was firstly defined for a deterministic semi-structured data model and an associ-
ated query language. In contrast to how (and why) provenance that describe the
relationship between the source and the result tuples of a query, where provenance
indicates the origin of an attribute of a result tuple, i.e., from which location(s)
this attribute was copied. A location refers to an attribute of a tuple with respect
to a relation [6]. In [20], Buneman et al. extended the aforementioned work for a
relational model with SPJRU queries (in terms of selection (S), projection (P), join
(J), renaming (R) and union (U) operators) and defined the semantics of where
provenance through a set of annotation propagation rules. These rules determine
how annotations related to the source locations propagate to result locations in
order to form the where provenance of an attribute in a result tuple.

The Figure 2.3 shows a comparison of the main characteristics between the

previous models and the proposed one.

Greenetal. Karvounarakis Bunemanet Proposed Model
etal. al.
Operation queries gueries queries updates
updates
Data Model relational RDF relational RDF
Supported projection projection projection projection (copy”’)
Operators natural join filter rename join
union join join union
union union
Provenance how how where how
Model why where
Reconstruction no no no yes

of Operation

Figure 2.3: Comparison between Green et al., Karvounarakis et al., Buneman et
al. and proposed model

20

CHAPTER 2. PRELIMINARIES

Chapter 3

Motivating Example

In the last years there is an increasing interest for the use of RDF technologies in the
field of e-health and more specifically in medical applications [21, 22]. Scientists
are especially enthusiastic about using RDF, since it gives users the ability to
create descriptions in a very flexible and powerful way. Therefore, it is essential
for scientists to be able to have access to this huge and heterogeneous amount of

information, and at the same time track its provenance.

We will use, for illustration purposes, a simple example taken from the medi-
cal domain'. Table 3.1 illustrates the Graph Store GS (Qgs, Ngs) (presented in
Section 2.2) that we will be considering, where each row of Qgs corresponds to an
RDF quadruple, and columns S, P, O, NG stand for the subject, predicate, object
and named graph of the RDF quadruple. Additionally, we have included column
PROYV that is used to store the provenance of a quadruple and the unique identi-
fiers ¢; for referring to a quadruple g;. Furthermore, each row of Ngs corresponds

to a named graph.

Suppose now that a patient visits the hospital because of an urgent health issue.
The doctor diagnosed hypertension and decided to prescribe diuretic medication.
However, the patient’s history includes diabetes; diuretics may increase the blood
glucose 23], which is a dangerous condition for diabetics. For this reason, doctor
prefers to prescribe a medication based on other doctors’ opinion, stored in the

on-line medical system; the final medication is inserted in the on-line system as

! <http://www.nhlbi.nih.gov/>

21

22 CHAPTER 3. MOTIVATING EXAMPLE

well. To support this request, he executes the SPARQL INSERT update U:

INSERT {gpins} WHERE {gp1 . gp; UNION ¢p?}

where:
qpins: (<hypertension>, ?p, 20, <NewDoctor>)
qp: (?s, ?p, ?0, <Pathologist>)
qpy: (%0, <slightly increase>, “glucose”, <Side Effects>)
qp¥: (<hypertension>, ?p, 70, <Diabetologist>)
Qs
S P (0} NG PROV
c¢1 <hypertension> <medication> <diuretics> <Pathologist> D1
ca <hypertension> <medication> <beta_blockers> <Pathologist> D2
cg <diuretics> <slightly _increase> “glucose” <Side_ Effects> D3
¢y <hypertension> <medication> <diuretics> <Diabetologist> D4
c; <bronchitis> <treat with> <antibiotics> <Pneumonologist> D5
c¢ <bronchitis> <treat_with> “aspirin” <Pneumonologist> Dé
Ngs
NG

<Pathologist>
<Side Effects>
<Diabetologist>
<Pneumonologist>

Table 3.1: Tabular representation of Graph Store GS with additional information
for provenance and quadruple identifiers

Intuitively, the INSERT update U will insert in the Graph Store information
about a medicine that is a cure for hypertension and cause a slightly increase in
the blood glucose levels (by <Pathologist>" point of view), or just a medicine that
is a cure for hypertension (by <Diabetologist>" point of view; we consider that a
Diabetologist would never suggest a medicine that would be harmful for a diabetic).

The INSERT clause determines the form of the result quadruples while the
WHERE clause determines the values (through the evaluation process) for these

quadruples. In our example, the WHERE clause contains a JOIN expression be-

23

tween the quad patterns qp% and qp% on the variable %0, and a UNION expression
between graph patterns gpi . gp} (forms the graph pattern gp') and gp? (forms
the graph pattern gp?). Furthermore, it computes the values for the variables s,
?p and ?o.

Tables 3.2 - 3.4 show the evaluation of gp! (1), gp3 (Q2) and qp? (Q3), where
each column corresponds to a variable in the evaluated quad pattern and each row
of the table corresponds to a mapping. Similarly, Table 3.5 shows the evaluation
of the join between gpi and gpi (1 x Q2), or, more precisely, the join of the
corresponding mappings: g1 joins ps over variable %o, resulting to the mapping
ps. The evaluation of the union between gpi . gps and gp? ((€1 x Q2) U Q3), shown
in Table 3.6, is much simpler as it is the union of the corresponding mappings us

and g4 (coming from the evaluation of the individual graph patterns gp' and gp?).

‘ ?s p 20

p1: | <hypertension> <medication> <diuretics>
p2: | <hypertension> <medication> <beta blockers>

Table 3.2: Evaluation of quad pattern (s, ?p, Y0, <Pathologist>)

<diuretics>

H3:

Table 3.3: Evaluation of quad pattern (%0, <slightly increase>, “glucose”,
<Side Effects>)

“p 2]

w4 | <medication> <diuretics>

Table 3.4: Evaluation of quad pattern (<hypertension>, ?p, 20, <Diabetologist>)

‘ ?s ?p 20

15 ‘ <hypertension> <medication> <diuretics>

Table 3.5: Evaluation of graph pattern (%s, ?p, %o, <Pathologist>) . (%o,
<slightly _increase>, “glucose”, <Side Effects>)

24 CHAPTER 3. MOTIVATING EXAMPLE

?s “p 20)
114 <medication> <diuretics>
is: | <hypertension> <medication> <diuretics>

Table 3.6: Evaluation of graph pattern (%s, ?p, %0, <Pathologist>) . (%o,
<slightly increase>, “glucose”, <Side Effects>) UNION (<hypertension>, ?p, ?o,
<Diabetologist>)

For the evaluation of the INSERT clause we are interested only in variables
found in gpins (?p, ?0); each mapping of Table 3.6 is used to extract the values
for these variables. These values correspond, therefore, the predicate and object of
the result quadruple, respectively. Note that the subject of the result quadruple,
(<hypertension>), was introduced as a constant value by the update itself, whereas
the graph attribute is user-defined.

The result quadruple (<hypertension> <medication>, <diuretics>,
<NewDoctor>) (c7) and the named graph <NewDoctor> are inserted in Qgs and
Ngs of GS, respectively, forming thereby the new Graph Store GSs3 (Qgs,, Ngs,),
shown in Table 3.7.

9gs,

S P (0] NG PROV
c¢1 <hypertension> <medication> <diuretics> <Pathologist> D1
ca <hypertension> <medication> <beta_ blockers> <Pathologist> D2
cg <diuretics> <slightly _increase> “glucose” <Side_ Effects> D3
¢y <hypertension> <medication> <diuretics> <Diabetologist> D4
c; <bronchitis> <treat with> <antibiotics> <Pneumonologist> D5
c¢ <bronchitis> <treat_with> “aspirin” <Pneumonologist> Dé
c7 <hypertension> <medication> <diuretics> <NewDoctor> P7

Ngsz
NG

<Pathologist>
<Side_ Effects>
<Diabetologist>
<Pneumonologist>
<NewDoctor>

Table 3.7: Tabular representation of Graph Store GS» with additional information
for provenance and quadruple identifiers

The expression p7 below is used to describe the provenance of quadruple c7:

25

pr: { (J—7 qp%.p(cl {qp}.0o} O] {qp}.s} 63)7 qp}.o(cl {qp}.o} O] {qp}.s} 63))
s>

(J—v qp%p(&l)? qp%.o(c4)) }

Note that p7 records the fact that ¢; originates with two different ways (illus-
trated by the provenance UNION operator @), either via join (e.g., first operand
of UNION), or via “copy” values (e.g., second operand of UNION). In the first
case, we record the fact that the derivation involves a join over the object-subject
positions (O-8) of gpi, qp%, whose evaluation results to quadruples c1, ¢3 (cf. ¢
{gpt.o} © (qpb.s} C3). Further, it states that the subject (S) of the new quadruple
¢y is a constant value (L), the predicate (P) originates from the predicate (P) of
quadruple ¢1 (cf. 1 (. ..)), whereas its object (O) originates from the object (O)
of quadruple ¢y (cf. g1 ,4(...)). In the second case, we record the fact that some
attributes of the new quadruple derived from the quadruple ¢4 and, additionally,
that the subject (S) of the new quadruple ¢; is a constant value (L), its predicate

(P) originates from the predicate (P) of quadruple ¢4 (cf. (...)) and its object

api-p
(O) originates from the object (O) of quadruple ¢4 (cf. qp%ol(.)

The created expression (p7) is inspired by standard provenance expressions |7,
14] used in abstract provenance models, but contains additional information not
present in standard how provenance expressions. In particular, we include, for each
attribute of the new quadruple:

- a subscript denoting the information for the position of the quad pattern in
the WHERE clause that this element’s value is taken from (arbitrarily we
define this to be the first matching position)

- two subscripts in the provenance join operator (;; © ¢3) to describe the
positions of the quad patterns where the joins take place. This information
is important for understanding how ¢y found its way in the Graph Store; as
it turns out, this information is also enough for reconstructing a compatible
SPARQL INSERT update.

26

CHAPTER 3. MOTIVATING EXAMPLE

Chapter 4

SPARQL Update Language
Semantics

In the following sections, we discuss the formal semantics for the different oper-
ations of SPARQL Update according to our approach. SPARQL 1.1 Update [5]
supports two categories of update operations on a Graph Store, the Graph Update
(Section 4.1) and the Graph Management (Section 4.2) operations.

A SPARQL update can read from and write to several named graphs at the
same time. For simplicity, we restrict our attention to updates that affect only
a single RDF named graph each time, i.e., it is permitted to read from only one
graph and write to as well one graph (we refer to this graph as target graph) at the
same time (see Section 2). Let n, be the IRI of the target named graph and GS
(Qgs, Ngs) be a Graph Store. The result of the execution of a SPARQL update
operation on GS is a newly constructed Graph Store GS’ (Q/gs, és)

Note that in case that a graph is not related to any quadruple after an operation,
then it is not removed from the set of graphs Ngs in the Graph Store. According
to SPARQL 1.1 Update semantics it is up to the implementation to decide whether
an empty graph will be removed or not. Also, if the inserted data are related to a
graph that does not exist in the Graph Store then the graph is created and added
to the set of graphs Ngs in the Graph Store.

For ease of readability we define the auxiliary function EVAL (gp, Q) that will
be used to determine the semantics of some update operations:

- eval(quad pattern qp, set of mappings Q) = {u;(qp) | wi € Q}

The function returns a set of quadruples obtained by substituting the vari-

27

28 CHAPTER 4. SPARQL UPDATE LANGUAGE SEMANTICS

ables in ¢p according to each mapping u; in the set of mappings 2 and

assigning to them as graph attribute the corresponding value of quad pattern

qp-

For the rest of this Chapter we will consider the Graph Store GS2 (Qgs,, Ngs,)

of our Motivating Example (Chapter 3) for the in-line examples.

4.1 Graph Update Operations

This category concerns the addition and removal of quadruples within the Graph

Store, e.g., INSERT, DELETE, CLEAR, LOAD operations.

1. INSERT DATA
Let q (s,p,0,n,) be a ground quadruple. Then:

INSERT DATA {q}

INSERT DATA adds the quadruple ¢ to the Graph Store GS and more specif-
ically to Qgs. If the quadruple already exists in Qgs then no action is
performed for it. Note that INSERT DATA is a special case of the INSERT
operation, where grounded quadruples are inserted to the Graph Store. In

particular, we write:

INSERT {¢} WHERE { }

We define formally the semantics of the operation as follows:

/ /
gs GSs

insert data(q, GS) || Qgs U{ q} || Ngs U { ny, }

4.1.

GRAPH UPDATE OPERATIONS 29

Example 11. The following INSERT DATA operation adds the quadru-
ple (<ace_inhibitors>, <lower>, “blood pressure”, <HeartFailure>) into the
Graph Store. This quadruple is used to determine a treatment in case of
heart failure disease. We write here the update operation following the syn-
tax of SPARQL 1.1. Update:
INSERT DATA {

GRAPH <HeartFailure> { <ace_inhibitors> <lower> “blood pressure” }

We write the same update operation following our abstract syntax:
INSERT DATA {
(<ace_inhibitors>, <lower>, “blood pressure”, <HeartFailure>)

b

The quadruple cg and the named graph <HeartFailure> are inserted in the
Graph Store GSo, forming consequently the new Graph Store GS3, shown in
Table 4.1.

. DELETE DATA

Let q (s,p,0,ny) be a ground quadruple. Then:

DELETE DATA {¢}

DELETE DATA deletes the quadruple ¢ from the Graph Store GS and more
specifically from Qgs. If the quadruple does not exist in Qgs then no action
is performed for it. Note that DELETE DATA is a special case of the DELETE
operation, where grounded quadruples are deleted from the Graph Store. In

particular, we write:

DELETE {q} WHERE { }

30

C1
C2
C3
C4
Cs
Ce
cr

C8

CHAPTER 4. SPARQL UPDATE LANGUAGE SEMANTICS

Qg$3
S P (0) NG
<hypertension> <medication> <diuretics> <Pathologist>
<hypertension> <medication> <beta blockers> <Pathologist>
<diuretics> <slightly _increase> “glucose” <Side_ Effects>
<hypertension> <medication> <diuretics> <Diabetologist>

<bronchitis>
<bronchitis>
<hypertension>
<ace__inhibitors>

<treat_with>
<treat with>
<medication>

<lower>

NgSs

<antibiotics>
“aspirin”
<diuretics>

“blood pressure”

NG

<Pathologist>
<Side Effects>
<Diabetologist>

<Pneumonologist>

<NewDoctor>
<HeartFailure>

<Pneumonologist>
<Pneumonologist>
<NewDoctor>
<HeartFailure>

Table 4.1: Graph Store GS3 (INSERT DATA operation)

We define formally the semantics of the operation as follows:

/ /
QQS gs

delete data(q, GS)

Qgs ™ q || Ngs

Example 12. The following DELETE DATA operation removes the quadru-

ple (<hypertension>, <treatl>, <diuretics>, <NewDoctor>) from the Graph
Store. Following the syntax of SPARQL 1.1. Update, we write:

DELETE DATA {

GRAPH <NewDoctor> { <hypertension> <treatl> <diuretics> }

Following our abstract syntax, we write:

DELETE DATA {

4.1.

C1
Co
c3
Cq
Cs

C6

&

GRAPH UPDATE OPERATIONS 31

(<hypertension>, <medication>, <diuretics>, <NewDoctor>)

}

The quadruple ¢z is deleted from the Graph Store GS3, forming consequently
the new Graph Store GS4, shown in Table 4.2.

Qgs4

S P (0] NG
<hypertension> <medication> <diuretics> <Pathologist>
<hypertension> <medication> <beta blockers> <Pathologist>
<diuretics> <slightly increase> “glucose” <Side_ Effects>
<hypertension> <medication> <diuretics> <Diabetologist>
<bronchitis> <treat with> <antibiotics> <Pneumonologist>
<bronchitis> <treat with> “aspirin” <Pneumonologist>
| . licati fureti NewD
<ace_inhibitors> <lower> “blood pressure” <HeartFailure>

Ng$4
NG
<Pathologist>
<Side Effects>
<Diabetologist>

<Pneumonologist>
<NewDoctor>
<HeartFailure>

Table 4.2: Graph Store GS4 (DELETE DATA operation)

Note that the named graph <NewDoctor> is not removed from the Graph
Store GS3 (Ngs,), despite the fact that it is associated with no quadruple

any more.

. INSERT

Let qpins = (tpins,) be a quad pattern, gp be a graph pattern formed as
a union of individual graph patterns, gp' UNION ... UNION gp*. Each gp’
is of the form qpi . qpb gpi, and Q is the evaluation result of gp (see
Section 2.2 for details). Then:

32

CHAPTER 4. SPARQL UPDATE LANGUAGE SEMANTICS

INSERT {gpins} WHERE {gp}

INSERT adds quadruples to the Graph Store based on the evaluation results
of gpins on the set of mappings obtained from the evaluation of graph pattern

gp specified in the WHERE clause (see Section 2.2).

Formally, we define:

/ 1
gs GS

insert(qpins, gp, GS) || Qos U eval(gpins, Q) || Ngs U {n.}

Example 13. The following INSERT update modifies the predicate value of
the quadruples associated with the graph <Diabetologist> and adds them as
newly constructed quadruples into the Graph Store. Using the SPARQL 1.1.
Update syntax, we write:

INSERT { GRAPH <Diabetologist> { ?disease <treatment> ?medicine } }
WHERE { GRAPH <Diabetologist> { ?disease ?property ¢medicine } }

We write the same operation using our abstract syntax:
INSERT {(?s, <treatment>, 0, <Diabetologist>) }
WHERE { (%s, ?p, %0, <Diabetologist>).

}

The quadruple cg is inserted into the Graph Store GS4, forming consequently
the new Graph Store GS5, shown in Table 4.3.

. DELETE

Let qpger = (tpger, ny) be a quad pattern, gp be a graph pattern formed as
a union of individual graph patterns, gp' UNION ... UNION gp*. Each gp’
is of the form qpi . qpb gp’, and Q is the evaluation result of gp (see
Section 2.2). Then:

4.1.

C1
C2
c3
(&
Cs5
Ce
cs

C9

GRAPH UPDATE OPERATIONS 33

QQ’Ss
S P (0) NG
<hypertension> <medication> <diuretics> <Pathologist>
<hypertension> <medication> <beta blockers> <Pathologist>
<diuretics> <slightly increase> “glucose” <Side Effects>
<hypertension> <medication> <diuretics> <Diabetologist>
<bronchitis> <treat with> <antibiotics> <Pneumonologist>
<bronchitis> <treat with> “aspirin” <Pneumonologist>
<ace_inhibitors> <lower> “blood pressure” <HeartFailure>
<hypertension> <treatment> <diuretics> <Diabetologist>

NQS5
NG
<Pathologist>

<Side Effects>
<Diabetologist>
<Pneumonologist>
<NewDoctor>
<HeartFailure>

Table 4.3: Graph Store GS5 (INSERT operation)

DELETE {gp4.} WHERE {gp}

DELETE removes quadruples from the Graph Store based on the evaluation
results of gpge; on the set of mappings obtained from the evaluation of graph

pattern gp specified in the WHERE clause.

We define formally the semantics of the operation as follows:

/ /
gs gs

delete(qpaer, gp, GS) || Qgs ~ eval(qpger, Q) || Ngs

Example 14. The following DELETE update removes from the Graph Store
the quadruples that are related to the graph <Diabetologist> and have com-

CHAPTER 4. SPARQL UPDATE LANGUAGE SEMANTICS

mon subject and predicate values in graphs <Diabetologist> and <Pathologist>.
Using the SPARQL 1.1. Update syntax, we write:
DELETE { GRAPH <Diabetologist> { %s ?p %0 } }
WHERE { GRAPH <Diabetologist> {?s ?p %0 } .
GRAPH <Pathologist> {?%s #p 201} }

The same operation is written using our abstract syntax as:
DELETE {(%s, ?p, %0, <Diabetologist>) }
WHERE { (%s, ?p, ?0, <Diabetologist>).

(?s, ?p, %01, <Pathologist>) }

The quadruple ¢4 is removed from the Graph Store G55, forming consequently
the new Graph Store GSg, shown in Table 4.4.

QQSG
S P o NG
¢y <hypertension> <medication> <diuretics> <Pathologist>
co <hypertension> <medication> <beta blockers> <Pathologist>
cg <diuretics> <slightly increase> “glucose” <Side Effects>
¢s <bronchitis> <treat_with> <antibiotics> <Pneumonologist>
cg <bronchitis> <treat_with> “aspirin” <Pneumonologist>
cg <ace_inhibitors> <lower> “blood pressure” <HeartFailure>
c9 <hypertension> <treatment> <diuretics> <Diabetologist>
Ngs,
NG
<Pathologist>

<Side_ Effects>
<Diabetologist>
<Pneumonologist>
<NewDoctor>
<HeartFailure>

Table 4.4: Graph Store GS¢ (DELETE operation)

5. DELETE/INSERT

4.1.

GRAPH UPDATE OPERATIONS 35

Let qpger = (tPdel, Mu)s qPins = (tPins, M) be quad patterns, gp be a graph
pattern formed as a union of individual graph patterns, gp* UNION ... UNION
gp*. Each gp' is of the form qpt . qph qp, and € is the evaluation
result of gp (see Section 2.2). Then:

DELETE {gpaci} INSERT {gpins} WHERE {gp}

DELETE/INSERT is a shortcut for removing and adding quadruples from/to
the Graph Store based on the evaluation results of gpge; and gpins on the set
of mappings obtained from the evaluation of graph pattern gp specified in

the WHERE clause.

In the same manner as in INSERT and DELETE operations, we define for-

mally:

/ !
QQS Gs

delete/insert(qpact, qpins, 90, 9S) || (Qgs ~ eval(qpaer,) || Ngs U {nu}
U eval(qpins, 2)

Example 15. The following DELETE/INSERT removes from the Graph Store
the quadruples that are related to the graph <Diabetologist>. Additionally, it
inserts new quadruples with respect to the treatment of hypertension. Using
the SPARQL 1.1. Update syntax, we write:
DELETE { GRAPH <Diabetologist> { ?s %p %0 } }
INSERT { GRAPH <Pathologist> { ?s <treat3> %01 } }
WHERE { GRAPH <Diabetologist> {?s ?p 70 } UNION

{ GRAPH <Pathologist> {?%s ?p %0 .

GRAPH <HeartFailure> { %01 ?p1 %s1} } }

The same operation is written using our abstract syntax as:
DELETE {(%s, ?p, %0, <Diabetologist>) }

INSERT {(?s, <treat3>, ?01, <Pathologist>) }

WHERE { (%s, ?p, 70, <Diabetologist>) UNION

36 CHAPTER 4. SPARQL UPDATE LANGUAGE SEMANTICS

(%s, ?p, P01, <Pathologist>) .

(%01, ?pl1, ?s1, <HeartFailure>) }

The quadruple ¢g is removed from the Graph Store GS¢, whereas the quadru-

ple ¢y is inserted to it, forming thereby the new Graph Store GS7, shown in

Table 4.5.
gs,
S P (0) NG

c1 <hypertension> <medication> <diuretics> <Pathologist>
c2 <hypertension> <medication> <beta blockers> <Pathologist>
c3 <diuretics> <slightly _increase> “glucose” <Side_ Effects>
cs <bronchitis> <treat_with> <antibiotics> <Pneumonologist>
C6 <bronchitis> <treat with> “aspirin” <Pneumonologist>
cg <ace_inhibitors> <lower> “blood pressure” <HeartFailure>
. | . i . Diabetologi
c10 <hypertension> <treat3> <ace_inhibitors> < Pathologist>

NQS7

NG

<Pathologist>
<Side_ Effects>
<Diabetologist>
<Pneumonologist>
<NewDoctor>
<HeartFailure>

Table 4.5: Graph Store GS7 (DELETE/INSERT shortcut)

6. LOAD

Let nfyom be the IRI of the named graph, whose data we want to load. Then:

LOAD 74,0, INTO 1,

LOAD reads the RDF named graph nj.., and inserts its triples into the

4.1.

GRAPH UPDATE OPERATIONS 37

Graph Store, after appending to them as graph attribute the value n,, (form-
ing thereby quadruples). Note that graph 7 f,om does not necessarily belong
to the Graph Store.

We define formally the semantics of the operation:

/ 1

gs gs

load(n from, nu, GS) || Qgs U { (s,p,0,n4) | || Ngs U { ny }
(S’p7 O) € 7;Lfro'm}

with 7,

from

being the set of triples that are related to the named graph n ¢y,

Example 16. The following LOAD operation inserts the quadruples formed
by the triples in graph <HypertensionDrugs> and the graph <Drugs>. We
write the operation following the SPARQL 1.1. Update syntax:

LOAD <HypertensionDrugs> INTO GRAPH <Drugs>

We write the same operation using our abstract syntax:

LOAD <HypertensionDrugs> INTO <Drugs>

S P (0]
<lasix> <class> <diuretics>
<diuril> <class> <diuretics>

<lopressor> <class> <beta_ blockers>
<accupril> <class> <ace_inhibitors>
<monopril> <class> <ace_inhibitors>

Table 4.6: Tabular representation of named graph <HypertensionDrugs>'

This operation adds the quadruples c11, c12, c13, c14, c15 and the named
graph <Drugs> to the Graph Store GS7, forming thereby the new Graph
Store GSg, shown in Table 4.7.

7. CLEAR

This operation can be defined as:

'goo.gl/NACUXq

goo.gl/NACUXq

38

C1
C2
c3
Cs
C6
c8
C10
C11
C12
C13
C14

C15

CHAPTER 4. SPARQL UPDATE LANGUAGE SEMANTICS

QQSS
S P (¢} NG
<hypertension> <medication> <diuretics> <Pathologist>
<hypertension> <medication> <beta blockers> <Pathologist>

<diuretics>
<bronchitis>
<bronchitis>
<ace inhibitors>
<hypertension>
<lasix>
<diuril>
<lopressor>
<accupril>
<monopril>

<slightly _increase> “glucose”

<treat with> <antibiotics>
<treat with> “aspirin”

<lower> “blood pressure”
<treat3> <ace_inhibitors>
<class> <diuretics>
<class> <diuretics>
<class> <beta blockers>
<class> <ace_inhibitors>
<class> <ace__inhibitors>

NQSS
NG
<Pathologist>

<Side Effects>
<Diabetologist>
<Pneumonologist>
<NewDoctor>
<HeartFailure>
<Drugs>

<Side_ Effects>
<Pneumonologist>
<Pneumonologist>
<HeartFailure>
<Pathologist>
<Drugs>
<Drugs>
<Drugs>
<Drugs>
<Drugs>

Table 4.7: Graph Store GSg (LOAD operation)

CLEAR n,

The CLEAR operation removes the quadruples that are associated with the

specified graph n,, from the Graph Store.

Formally, we define the semantics for this operation:

4.2. GRAPH MANAGEMENT OPERATIONS 39

s gs
Clear(nu; gS) QQS N {(sapv 0, nu) | (Sapa 0) S 7;Lu } NQS

where 7, is the set of triples that are related to the named graph n,,.

Example 17. The following CLEAR operation removes from the Graph Store
GSs all quadruples that are related to the graph <Pathologist>. Following
the syntax of SPARQL 1.1. Update we write:

CLEAR GRAPH <Pathologist>

The same operation can be written using our abstract syntax as:

CLEAR <Pathologist>

This operation removes the quadruples cq, ¢3 and cq¢ from the Graph Store

GSsg, forming thereby the new Graph Store GSg, shown in Table 4.8.

4.2 Graph Management Operations

This category concerns the creation and deletion of graphs within the Graph Store,
as well as convenient shortcuts for Graph Update operations often used during

graph management (to add, move, and copy all quadruples that are related to a
graph), e.g., CREATE, DROP, COPY, MOVE, ADD.

1. CREATE

We define this operation as:

CREATE n,,

CREATE operation creates an empty named graph n, and inserts it into the
Graph Store GS and more specifically in Ngs. If the specified named graph

already exists in the Graph Store then no action is performed.

40

$ 9

3
Cs
C6

&3]

C11
C12
C13
Cl4

C15

CHAPTER 4. SPARQL UPDATE LANGUAGE SEMANTICS

QQSQ
S P 0] NG
<diuretics> <slightly increase> “glucose” <Side Effects>
<bronchitis> <treat with> <antibiotics> <Pneumonologist>
<bronchitis> <treat with> “aspirin” <Pneumonologist>
<ace inhibitors> <lower> “blood pressure” <HeartFailure>
<lasix> <class> <diuretics> <Drugs>
<diuril> <class> <diuretics> <Drugs>
<lopressor> <class> <beta blockers> <Drugs>
<accupril> <class> <ace_inhibitors> <Drugs>
<monopril> <class> <ace__inhibitors> <Drugs>

Ngs,
NG
<Pathologist>
<Side Effects>
<Diabetologist>

<Pneumonologist>
<NewDoctor>
<HeartFailure>
<Drugs>

Table 4.8: Graph Store GSg (CLEAR operation)

Formally, the semantics of this operation can be defined as:

/ /
Gs gs

create(n,, GS) || Qgs || Ngs U { ny }

Example 18. The following CREATE update operation inserts into the Graph
Store GSg the graph <Hypertension>, forming thereby the newly constructed
Graph Store GS1g, shown in Table 4.9. Following the syntax of SPARQL 1.1.
Update we write:

CREATE GRAPH <Hypertension>

4.2. GRAPH MANAGEMENT OPERATIONS 41

The same operation can be written using our abstract syntax as:

CREATE <Hypertension>

QQSm
S P (0] NG

c3 <diuretics> <slightly _increase> “glucose” <Side Effects>

¢s <bronchitis> <treat with> <antibiotics> <Pneumonologist>
c¢ <bronchitis> <treat with> “aspirin” <Pneumonologist>
cg <ace_inhibitors> <lower> “blood pressure” <HeartFailure>
c11 <lasix> <class> <diuretics> <Drugs>

c12 <diuril> <class> <diuretics> <Drugs>

c13 <lopressor> <class> <beta blockers> <Drugs>

c14 <accupril> <class> <ace_inhibitors> <Drugs>

c15 <monopril> <class> <ace_inhibitors> <Drugs>

NgSm
NG
<Pathologist>

<Side Effects>
<Diabetologist>
<Pneumonologist>
<NewDoctor>
<HeartFailure>
<Drugs>
<Hypertension>

Table 4.9: Graph Store GS19 (CREATE operation)

2. DROP

We define the operation as:

DROP n,

The DROP operation removes the named graph n, and the corresponding

quadruples from the Graph Store. If the graph does not exist in the Graph

42

CHAPTER 4. SPARQL UPDATE LANGUAGE SEMANTICS

Store, then no action is performed.

The semantics of the operation are defined as:

Qs Gs
drop(ny, GS) || Qgs ~ {(s,p,0,n4)| (5,p,0) € T} || Ngs ~ { nu }

with 7T, being the set of triples that are related to the named graph n,,.

U

Example 19. The following DROP update operation removes from the Graph
Store GS19 the graph <Pneumonologist> and its corresponding quadruples cs
and cg. The newly constructed Graph Store GS1; is shown in Table 4.10. We
write the previous operation following the syntax of SPARQL 1.1. Update:
DROP GRAPH <Pneumonologist>

Using our abstract syntax the same operation can be written as:

DROP <Pneumonologist>

. COPY

Let 1 from be the IRI of the named graph whose data we want to copy. Then:

COPY nyfrom TO ny

COPY operation inserts the triples that are related to the graph 7., into
the Graph Store, as newly constructed quadruples with graph value n,. Data
related to the input graph n ..., is not affected, but data related to the target

graph n,, if any, is removed before insertion.

We define formally the semantics:

Qs Gs
COPY(nfromanua gS) (QQS ~ { (Svpaov nu) | (S,p, 0) € 7;?/1, }) NQS U
UL (0,0 na) [(s,0",0") € Tngro || {700 }

4.2. GRAPH MANAGEMENT OPERATIONS 43

QQSH
S P (0] NG
cg <diuretics> <slightly _increase> “glucose” <Side Effects>
. | hiti ~with ibioti p logi
e | hit; —with o an 5y p logi
cg <ace_inhibitors> <lower> “blood pressure” <HeartFailure>
c11 <lasix> <class> <diuretics> <Drugs>
cr2 <diuril> <class> <diuretics> <Drugs>
c13 <lopressor> <class> <beta blockers> <Drugs>
c14 <accupril> <class> <ace_inhibitors> <Drugs>
c15 <monopril> <class> <ace_inhibitors> <Drugs>
Ngs.,
NG
<Pathologist>
<Side_Effects>
<Diabetologist>
<Pnreumeonelogist>
<NewDoctor>
<HeartFailure>
<Drugs>
<Hypertension>
Table 4.10: Graph Store GS11 (DROP operation)
where Ty, , Tn;,,,, are the sets of triples that are related to the named graphs

Ny and N g, respectively.

Example 20. The following COPY operation inserts the quadruples that
formed by the triples related to the graph <HeartFailure> and the graph value
<Hypertension>, i.e., ¢, into the Graph Store GS11. The newly constructed
Graph Store GS12 is shown in Table 4.11. We write here the update operation
following the syntax of SPARQL 1.1 Update:

COPY GRAPH <HeartFailure> TO GRAPH <Hypertension>

Using our abstract syntax the same operation can be written as:

COPY <HeartFailure> TO <Hypertension>

44

c3

c8

C11
C12
C13
C14
C15

Ci6

4.

CHAPTER 4. SPARQL UPDATE LANGUAGE SEMANTICS

Qg$12

S

P

(0]

NG

<diuretics>
<ace__inhibitors>
<lasix>

<diuril>
<lopressor>
<accupril>
<monopril>
<ace__inhibitors>

<slightly increase>
<lower>

<class>

<class>

<class>

<class>

<class>

<lower>

NgSm

“glucose”

“blood pressure”
<diuretics>
<diuretics>
<beta blockers>
<ace inhibitors>
<ace_inhibitors>

“blood pressure”

NG

<Pathologist>
<Side Effects>
<Diabetologist>

<NewDoctor>

<HeartFailure>

<Drugs>

<Hypertension>

<Side_ Effects>
<HeartFailure>
<Drugs>
<Drugs>
<Drugs>
<Drugs>
<Drugs>
<Hypertension>

Table 4.11: Graph Store GS12 (COPY operation)

MOVE

Let nfpom be the IRI of a named graph from which we want to move all data.

Then, we define:

MOVE 7,0 TO n,,

MOVE operation inserts the triples related to the named graph ny,y, into

the Graph Store, as newly constructed quadruples with graph value n,. The

input graph 7,4, is removed after insertion and data related to the target

graph n,, if any, is removed before insertion.

4.2. GRAPH MANAGEMENT OPERATIONS 45

Formally, the semantics of MOVE operation can be defined as:

/ i
gs NQS

move(nfrom-,nua gS) ((QQS N { (s,p.,o,nu) | (57]7, 0) € 7;11,, }) NQS
UL (0,0 na) [(s, 0)) € Tnyro 3) U{n}
NP0 o) | (8,0,0") € Togrgn }|| N A prom }

where Ty, , Tn;,,,, are the sets of triples that are related to the named graphs

Ny and n grem respectively.

Example 21. This MOVE operation inserts the quadruples that consist of
the triples in graph <Drugs> and the graph <Hypertension>, i.e., c17, cis,
19, €20, €21, into the Graph Store GS12; before the insertion the quadruple ci6
is deleted. In addition, the graph <Drugs> and its corresponding quadruples
are removed from the Graph Store GS12. The newly constructed Graph Store
G813 is shown in Table 4.12. Following the syntax of SPARQL 1.1 Update
we write:

MOVE GRAPH <Drugs> TO GRAPH <Hypertension>

Using our abstract syntax this operation can be written as:

MOVE <Drugs> TO <Hypertension>

5. ADD
Let nfrom be the IRI of the named graph whose data we want to add in

another named graph. Then:

ADD 74,0, TO 1,

ADD inserts all triples related to the graph n .oy, into the Graph Store, as
newly constructed quadruples with graph value n,. Data related to the input
graph n .o, is not affected, and initial data related to the target graph n,,
if any, is kept intact.

The semantics of this operation can be defined as follows:

46

C3

&

c17
C18
€19
C20

C21

CHAPTER 4. SPARQL UPDATE LANGUAGE SEMANTICS

Qg$13
S P (0) NG
<diuretics> <slightly increase> “glucose” <Side Effects>
<ace__inhibitors> <lower> “blood pressure” <HeartFailure>
<lepresser> <elass> <beta—bloekers> <Drugs>
<ace inhibitors> <lower> « ” <Hypertension>
<lasix> <class> <diuretics> <Hypertension>
<diuril> <class> <diuretics> <Hypertension>
<lopressor> <class> <beta blockers> <Hypertension>
<accupril> <class> <ace__inhibitors> <Hypertension>
<monopril> <class> <ace_inhibitors> <Hypertension>
Ngsw
NG
<Pathologist>

<Side Effects>

<Diabetologist>

<NewDoctor>

<HeartFailure>

<Drugs>

<Hypertension>

Table 4.12: Graph Store GS13 (MOVE operation)

s ¢s
add(nfrom>nu7 Gs) Qgs U { (s,p,0,n4) | (5,p,0) € 7;lfrom } Ngs U
{nu}

with 7,, being the set of triples that are related to the named graph n tyom,-

Example 22. This ADD operation inserts the quadruples formed by the

triples of graph <Side Effects> and the graph <Impacts> (c22) into the

Graph Store GS13. The newly constructed Graph Store GS14 is shown in

4.2. GRAPH MANAGEMENT OPERATIONS

Table 4.13. Following the syntax of SPARQL 1.1 Update we write:
ADD GRAPH <Side Effects> TO GRAPH <Impacts>

Using our abstract syntax this operation can be written as:

ADD <Side Effects> TO <Impacts>

C3

c8

C17
C18
€19
€20
€21

C22

Q5514

S P (0] NG
<diuretics> <slightly _increase> “glucose” <Side_ Effects>
<ace inhibitors> <lower> “blood pressure” <HeartFailure>
<lasix> <class> <diuretics> <Hypertension>
<diuril> <class> <diuretics> <Hypertension>
<lopressor> <class> <beta blockers> <Hypertension>
<accupril> <class> <ace_inhibitors> <Hypertension>
<monopril> <class> <ace inhibitors> <Hypertension>
<diuretics> <slightly _increase> ‘“glucose” <Impacts>

Ngs,

NG

<Pathologist>
<Side Effects>
<Diabetologist>
<NewDoctor>
<HeartFailure>
<Hypertension>
<Impacts>

Table 4.13: Graph Store GS14 (ADD operation)

47

48

CHAPTER 4. SPARQL UPDATE LANGUAGE SEMANTICS

Chapter 5

Abstract Provenance Model

An abstract provenance model is comprised of abstract identifiers and abstract op-
erators |7, 10, 14]. Abstract identifiers (we refer to them as quadruple identifiers
and we denote them by ¢;) are uniquely assigned to RDF quadruples, whereas ab-
stract operators describe the computations performed between source quadruples
to derive a result quadruple.

Unlike previous abstract provenance models, we introduce the notion of quad
pattern positions. Quad pattern positions are used to describe the occurrence of
a constant or a variable in a quad pattern. We will refer to this notion in detail
below.

Using this infrastructure, RDF quadruples are then annotated with complex
algebraic provenance expressions that involve the identifiers, the operators and the

quad pattern positions of the abstract model. Formally:

Definition 9. The provenance p of a quadruple q is defined as p := {cpey,...,

cpey }, where cpe; is a complex provenance expression.

Definition 10. A complex provenance expression cpe is defined as cpe = pe' @
pe? @ ... ® pe™, where m > 1, pe? is a simple provenance expression and @ is the

commutative binary operator of union.

Definition 11. A simple provenance expression pe is of the form (provs, provy,

Prov,), where provpes being the provenance of the attribute pos.

Example 23. Consider the provenance p7 of quadruple ¢7 (see Chapter 3). The

provenance py contains the complex provenance expression cpe; that consists of

49

50 CHAPTER 5. ABSTRACT PROVENANCE MODEL

the simple provenance expressions, pe' and pe?, combined using the operator @.
The simple provenance expression pe! consists of provs (L) that is the provenance
of subject attribute, provy (;p1 p(Crygptoy © (gpi.s3€3)) that is the provenance of

predicate attribute and prove (gp1.o(Cigpioyp © fgp1.s3¢3)) that is the provenance

qp%‘o
of object attribute. The simple provenance expression pe? consists of provs (L),

provy (qp%p(c4)) and prov, (qp%_0(04)). O

A quadruple can be resulted more than once from either a single or different
INSERT updates applied over the course of time. To capture this feature, a complex
provenance expression cpe (Definition 10) records each way of generating the new
quadruple, whereas provenance p (Definition 9) encodes all the different ways,

structured in a set.
Example 24. Consider the update Uy: INSERT {gpins} WHERE {gpi}, where:

qPins: (?s, ?p, <steroids>, <NewDoctor>)
qpi: (?s, ?p, 0, <Pneumonologist>)

Intuitively, the INSERT update U; will ingsert in the Graph Store information
which determines that <NewDoctor> suggests as a treatment for pulmonary ail-
ments the <steroids>. The update U; is evaluated on the Graph Store GSy (see
Chapter 3). The result quadruple cg : (<bronchitis>, <treat with>, <steroids>,
<NewDoctor>) is inserted in the newly constructed Graph Store GS3; the named
graph <NewDoctor> already exists in the Graph Store GS5. There are two ways to
obtain cg, either through copying the subject and predicate value from quadruple
cs or through copying these values from quadruple cg; object value is a constant
value in both cases.

The provenance of the result quadruple cg is:

D5 = {(ap1a(e5)s apip(e5) L)y (gt 2(c6): gt plco) 1))

Note that, in this case, cper = (gp1.4(cs5), gp1,(c5), L) and cpea = (g1 4(co),
qp%.p(CG), 1), which represent the first and the second way, respectively, to obtain cg.
The complex provenance expression cpe; consists of a simple provenance expression

pel, where prov, is equal to qp%_5(05), prouvy, is equal to qp%.p(ckr)) and prov, is L. In

a similar manner, we find the individual provenance expressions for cpes. O

51

As already stated, INSERT updates may use the UNION operator. In such up-
dates, a result quadruple is generated from one or more operands of a UNION ex-
pression. In the first case (when the quadruple is generated from only one operand),
the provenance management is identical to the provenance management of UNION-
free updates, then cpe = pe!. In the second case (when the quadruple is generated
from more than one operands), each operand of the operator @ represents the

provenance of an operand of the UNION expression.

Example 25. Consider the update U and its result quadruple ¢7 (see Chapter 3).
The quadruple c; is obtained from both operands (gpi . gpi, gp?) of the UNION
expression. As a result, its provenance p; contains two simple provenance expres-
sions:
pe! = (L, o€l {gplo} © {aph.s) 3)s gptolCl (gplo} © {gph.sy ©3))
pe® = (L, g2p(ca), gp2olca))

Each one of the simple provenance expressions pe! and pe? is standing for the
provenance of c; derived from the operand (graph pattern) gpi . g¢pi and gp?,

respectively. O

Now let’s see how the simple provenance expression pe (Definition 11) is con-
structed. For reasons that will be made apparent later in Chapter 6, it is necessary
to refer to each individual variable or constant of an update. For this purpose, we

arbitrarily number:

- graph patterns, based on the order that they appear in the WHERE clause.
Then, the graph pattern gp’, i > 1, indicates the i*" graph pattern of the
WHERE clause.

- quad patterns, based on the order that they appear in a graph pattern gp'.
Then, the quad pattern qpé, j > 1, indicates the j** quad pattern in the
graph pattern gp’. A qp;'- is called a quad pattern identifier.

Moreover, we refer to the quad pattern in the INSERT clause as ¢pjps-
A quad pattern gp = (tp, n) has three positions (pos) for the subject s, predicate
p and object o of its corresponding triple pattern tp (same as quadruples). Thus,

each constant or variable of an INSERT update can be uniquely identified through

52 CHAPTER 5. ABSTRACT PROVENANCE MODEL

the quad pattern identifier and its position pos, where pos can be one of s, p,
o. For instance, gpi.s denotes the subject of the second quad pattern of the first
graph pattern in the WHERE clause (i.e., 0 in our Motivating Example), whereas
qPins-p denotes the predicate of the quad pattern in the INSERT clause (i.e., ?p in
our Motivating Example).

As shown in Definition 11, a simple provenance expression pe is broken down
in provg, provy, prov,, which records the provenance of the subject, predicate and
object of the quadruple respectively. This allows the identification of the origin
of each element-attribute individually (attribute-level provenance [17]). We are
not interested in the provenance of the graph component (the fourth element of
a quadruple), as this is explicitly defined by the INSERT update. Formally, we
define:

Definition 12. The provenance of attribute pos, namely provy,s, is an expression
of the form provpes = L | varsub(spe), where L is a special label, varSub is the

var subscript and spe is a standard provenance erpression.

Definition 13. A standard provenance expression spe can be defined as spe := (¢;

{joinSubl} © {joinSub?} Cj) <+ {joinSubr—1} © {joinSubr} Ck; where ¢, 15 a quadruple

identifier, joinSub® is a join subscript and © s the binary operator of join.

As proposed in [8, 17], the special label L is used in Definition 12 to record the
case where the INSERT update constructs an element of the new quadruple using
a constant, e.g., prov, in pe', pe? of provenance p; in our Motivating Example.

Instead of using a constant, we can alternatively construct an element of the
new quadruple by copying a value from an existing quadruple. This quadruple may
be in the Graph Store itself, or generated via SPARQL joins. This alternative is
recorded using the form ,q,5us(spe) of provys.

This form is composed of the varSub subscript, namely var subscript, and a
standard provenance expression spe. The var subscript represents a quad pat-
tern position qp;'» .pos, which denotes that the attribute pos of the new quadruple,
originates from the variable in qpé».pos, after applying the operation described in
spe. Recall, though, that the attribute pos is generated from the evaluation of the

variable in gpjns.pos (cf. Chapter 3), i.e., qp;'-.pos shares the same variable with

53

qPins-pos. As there could be multiple quad pattern positions in a gp® (e.g., joins)
that use the same variable with gp;,s.pos, the recorded quad pattern position in

the var subscript is by convention the first one that matches.

Example 26. In our Motivating Example, the expression pe' contains the var
subscripts qp%.p and qp%.o that appear in the provenance of predicate (prov,) and
object (prov,) attributes, respectively. The quad pattern position gpi.p shares the
variable ?p with ¢p;ns.p that generates the predicate attribute <medication> of
the result quadruple c7. Similarly, gpi.o has the same variable (?0) with gpins.0
that generates the object attribute <diuretics> of ¢7. Note that 2o appears in the
quad pattern position gpi.s as well, because of an existing join on this variable.
However, we record gpi.o as var subscript as it is the first quad pattern position of
the current gp’ that shares the same variable with gp;,s.pos.

Similarly, we compute that expression pe? is associated with the var subscripts

qp?.p and gp?.o for the predicate and object positions, respectively. (|

The standard provenance expression spe is closely related to the evaluation
process as it is composed of quadruple identifiers and potentially of quad pattern
positions too. Quadruple identifiers represent the quadruples that resulted from
the evaluation of the corresponding quad patterns, whereas quad pattern positions
describe the existing joins. Hence, if spe is a quadruple identifier, then we have a
“copy” in the sense of [17], e.g., prov,, prov, in pe? of provenance pr.

On the contrary, if spe is a more complex expression, then it describes a join
operation e.g., provp, prov, in pe! of provenance py. The latter case is indicated
by the existence of the binary operator of join ® (initially defined in [14]), where
each operand of the operator ® is a subscript, namely a join subscript.

We use join subscripts to record the quad pattern positions that were joined
(i.e. a join subscript is a set of quad pattern positions). Then, each operand of the
operator ® represents the quad pattern positions of the corresponding operand of
the SPARQL JOIN expression that participates in a join. We can easily figure out
which quad pattern positions share the same variable since the i** quad pattern
position of the first join subscript of ® operator (e.g. joinSub', joinSub3, ...) joins
the i" quad pattern position of the second join subscript (joinSub?, joinSub?, ...).

This allows determining the actual quad pattern positions that joins performed on,

o4 CHAPTER 5. ABSTRACT PROVENANCE MODEL

an information critical for reconstructability as we will see below.

Example 27. Consider the INSERT update U of our Motivating Example. In the
WHERE clause we meet the JOIN expression gpi . gp3, where gpi joins gpi on
the variable ?0. We create, therefore, the joinSub! = {qp}.o} and joinSub® =
{gpd.s} that represent the quad pattern positions of gp} and gp3, respectively, that
participate in the join. Moreover, from the evaluation of the JOIN expression (see
Table 3.5) it arises that we the result quadruple takes its values from the quadruple
c1 (evaluation result of gpi) and c3 (evaluation result of gp}). Thus, the resulting

spe expression is spe = ¢ {ap" .0} ® {qph.s} C3:]

Chapter 6

Provenance Algorithms

In this chapter we introduce the Provenance Construction (Section 6.1) and the
Update Reconstruction (Section 6.2) algorithms, as well as their correctness results
(Section 6.3) and their complexity analysis (Section 6.4). The first algorithm (Al-
gorithm 1 in Section 6.1) is used to record the provenance of quadruples resulting
from a SPARQL INSERT update. This algorithm takes as input an INSERT update
U and a Graph Store GS, and returns a provenance expression p; to associate with
each newly created quadruple ¢;. Each provenance expression p; is expressed under

the semantics of the proposed model (Chapter 5).

The second algorithm (Algorithm 3 in Section 6.2), provides the means to
exploit the rich semantics of the provenance expression of a quadruple in order to
determine how the quadruple found its way in the Graph Store. In particular, this
algorithm takes as input a complex provenance expression cpe that is part of the
provenance of the input quadruple ¢ and returns a compatible INSERT update U’.
It is worth noting the fact that the algorithm requires only a complex provenance
expression, instead of the full provenance, since a cpe is the minimum computed
provenance result of an INSERT update and therefore it is quite enough to be used

for the reconstruction of another INSERT update.

In Section 6.3, we present the correctness theorems of the above algorithms.
More specifically, Theorem 1 is used to prove the reciprocal relationship between
two compatible UNION-free INSERT updates. Furthermore, in Theorem 2 we
prove that the output U’ of Algorithm 3 is compatible (see Definition 15) with the
INSERT update U that was used to create ¢ in the first place. This theorem is also

95

56 CHAPTER 6. PROVENANCE ALGORITHMS

a correctness theorem, as it shows that the intended semantics of the provenance
model are correctly implemented by Algorithm 1 and utilized by Algorithm 3.
Finally, in the last section of this chapter (Section 6.4), we discuss the com-

plexity of provenance construction and update reconstruction algorithms.

6.1 Provenance Construction Algorithm

As shown in Algorithm 1, to compute the provenance py (Definition 9) of a newly
created quadruple ¢x, we have to compute the corresponding complex provenance
expressions cpe generated via the update U. Recall that the provenance p of a
single quadruple is of the form p = {cpey, ..., cpej}, where cpe = pe1 @D ...Ppe™.
Hence, for each graph pattern gp’ of the WHERE clause we call the algorithm
PE__COMPUTATION, which computes the individual simple provenance expressions
pe’. The pe' expressions are then used to form an expression cpe that is appended
to the provenance p of a quadruple q. For readability purposes, we define:
- PE' = {(q1, P€§_1)a (a1, pei_z) - (g5, pe;’_l—l)v (45, peé-_l)},
where pe}; m 1s the mt" simple provenance expression that created using the
graph patt_ern gp' for the quadruple g. Note that there may be created more
than one pe}; expressions for a quadruple g forming its corresponding cpey
expression.
- CPE = {(q1, cpe1_1), (q1, cpe1_2). .. (gj, cpej 1-1), (g5, cpej 1)},
where cpey, . is the " complex provenance expression created for the quadru-
ple gx. Note that there may be created more than one cpey, expressions for a
quadruple g forming its provenance py.
- P ={(a1, p1), --- (g5. j)},
where pg, is the provenance of quadruple g
Moreover, we define the following operations between them:
- CPE & PE'
This operation appends each simple provenance expression pe}; m of PE' to
the corresponding cpey, , expression, e.g., {(q1, cpe1 1)} @ {((;1, pel)} =
{(q1, cper 1 @ Pe%_l)}-
- PUCPE

This operation appends each complex provenance expression cpey , to the

6.1. PROVENANCE CONSTRUCTION ALGORITHM 57

corresponding provenance pg, e.g., {(q1, p1)} U {(q1, cper 1)} = {(q1, p1 U
cper 1)}

Algorithm 1 Provenance Construction Algorithm
Input: An INSERT update U, a Graph Store GS (Qgs, Ngs)
Output: The provenance p; of each result quadruple g, P
1: for all (gp' € WHERE clause) do
2: PE' = PE_ COMPUTATION(gp®, qDins, GS)
3: CPE = CPE @ PE'
4: return P U CPE

The algorithm PE_ COMPUTATION (see Algorithm 2), which is the main algo-
rithm of the provenance construction, is used to compute the provenance of the
subject, predicate and object attributes for each result quadruple of the update U.

We will explain how this is done for an arbitrary attribute (specified by pos)
but, as shown in Algorithm 2 (line 1), we follow the same process for the provenance
computation of subject (pos = s), predicate (pos = p) and object attribute (pos
= 0). For the rest of this Section we will consider for our examples the update U
and the Graph Store GSo, presented in our Motivating Example (Chapter 3).

To compute the provenance of the attribute pos we examine the value of
qpins-pos. Recall that the attribute pos of a result quadruple is generated from
the evaluation of the corresponding position in the INSERT clause (gpins.pos).
The value of gpins.pos can be either a constant or a variable. In the first case (line
15), the provenance computation of attribute pos (provp.s) is quite simple, since
we only assign to it the special label L (line 16) and we proceed to the provenance

computation of the next attribute (if any).

Example 28. The quad pattern position ¢pns.s of U (Chapter 3) contains the
constant value <hypertension>. Then, the provenance of attribute s is provs = L

both in case of gp! or gp? input. O

In the second case (line 2), the computation of provenance is more complicated,
as we have to evaluate the gp parameter and identify the joins (if any) that were
involved in the construction of a quadruple (lines 2-14).

As a first step in the latter case, we determine the MatchingPatterns set (line

3). This set contains the quad pattern identifiers that appear in the input graph

58 CHAPTER 6. PROVENANCE ALGORITHMS

pattern gp (mp; denotes the g quad pattern identifier in the set) and are related
directly or indirectly to the evaluation of the variable in ¢p;,s.pos. A quad pattern
is directly related to the evaluation of a variable, if any of its positions contains this
specific variable, or indirectly, if any of its positions joins (implicitly, via another
variable, or explicitly) a position in a quad pattern that contains the evaluated

variable.

Example 29. Consider the graph pattern gp': gpl . gp3 of the INSERT up-
date U (Chapter 3). The created MatchingPatterns set is {mp1, mps}, where
mp1, mpy denote the quad patterns gpi and gpl, respectively. Note that the
MatchingPatterns set is the same both in case of the variable ?p (gpins-p) and
20 (qpins-0). In the first case the variable #p is contained in qp% and qp% is related
indirectly to it, since it joins implicitly the variable Z0. In the second case the
variable ?o is contained in gpi and gp} is related directly to it, since gp} contains
also this variable.

In the same manner, we compute that MatchingPatterns set is {mp1}, where
mp; denotes the quad pattern gp?, both for variables #p and %o, if gp? is given as

input. O

In the simple case that MatchingPatterns set has only one element, then we
have no joins, i.e. we have a “copy” operation. Then, it is sufficient to compute the
quadruple identifiers (using the findIDs function) that result from the evaluation
of the variable in gp;,s.pos (line 4) and the var subscript (line 13). Each quadruple
identifier forms a new spe expression that entails the creation of different provp,s
expressions, e.g., in Example 24 we create a different spe expression for each of ¢35
and cg. The var subscript value is computed as defined in Chapter 5.

Eventually, the provenance of the attribute pos (line 14) for a “copy” operation

is of the form:

Provpos =mpy (Ca)

where varSub = mp; and spe = ¢4, with ¢, belonging to the quadruple identifiers

result of findIDs function (line 5).

Example 30. Consider the MatchingPatterns set of gp?, created in the previous
example, which contains only one element ({mp;}). We apply the findIDs func-

6.1. PROVENANCE CONSTRUCTION ALGORITHM 59

tion to mp; and we get from the evaluation of gp? the quadruple identifier c4; this
is the evaluation result both in case of gp;ns.p Or ¢Pins.o.

The var subscripts are gp3.p and gp3.o0 respectively for prov, and prov,. As a
consequence, we create the expression pei1 = (L, gp2p(ca), gp2.0(ca)). Note that
pe? and pe? | refer actually to the same expression. Then, we use the getQuad
function to get the quadruple ¢ (<hypertension>, <medication>, <diuretics>,

<NewDoctor>). Eventually, the output of PE_ COMPUTATION regarding gp? is
{(q1, pe? 1)} O

In the more complex case, where MatchingPatterns has more than one ele-
ments, we have to identify the corresponding JOIN expressions and record the
related joins, by iterating over them and recording the involved quadruple identi-
fiers and the quad pattern positions (in the form of join subscripts— see Chapter 5)
where the joins take place (lines 7-12). A JOIN expression is of the form joinOp;
. joinOpa, where joinOp; and joinOps are graph patterns denoting the first and
second operand of the join operation. By convention, we identify the JOIN expres-
sions sequentially based on their occurrence order in the WHERE clause (lines 8,
10, 11).

As already mentioned, for each JOIN expression we have to compute the corre-
sponding join subscripts (line 9) and quadruple identifiers. We can easily compute
join subscripts just by looking at the common variables of joinOpy, joinOpsy (see
Chapter 5 for details); quadruple identifiers are computed using the findI Ds func-
tion (line 10). The computed spe is used to form the final provenance result of the
algorithm for the specific position. Note that we create a different spe expression
for each quadruple identifiers combination. For instance, consider the combination
le1] joinsubt © joinsub? €2, €3], then we create two spe expressions for this position,
€1 joinsub! © joinsub? €2 AN C1 joinsubl © joinsub? C2-

Eventually, the provenance of attribute pos (line 14) for a join operation is of

the form:
PTOVpos =mpy, ((Ca {joinSub'} © {joinSub?} cb) -+ {joinSubr—1} © {joinSub"} cd)
where spe = (Ca {joinSub'} © {joinSub?} cb) <o {joinSubr—1} © {joinSubr} Cd (line

10) and varSub = mpy, (line 13). Note that we create a provp,s for each different

60 CHAPTER 6. PROVENANCE ALGORITHMS

Algorithm 2 PE_ COMPUTATION
Input: A graph pattern gp, the Graph Store GS (Qgs, Ngs), the quad pattern

qPins of U
Output: The peg n, expressions for each g quadruple, {(q1, pe1 1), (q1, pe1_2)
- (a5, pej 1)}

1: for all gp;,s.pos do

2 if valueOf(gpins.pos) € V then

3: Create the set MatchingPatterns {mp1, mpa ... mpy}

4 spe = FINDIDS(mp;)

5 Let joinOpi, joinOps be the two operands of a JOIN expression;
joinOp1 = mp1, joinOpy = null

6: j=1

7 while mp; 1 # null do

8: joinOpy = mpjy1

9: Create the joinSub' and joinSub?
10: Spe = SPe joinSubl © joinSub? FINDIDS(mpj-‘rl)
11: joinOpy = joinOpy . joinOps

12: j++

13: Create the varSub

14: ProvVpos = wvarSub (spe)

15: else

16: Provpes = L

17: pe = (provs, provy, prov,)

18:

19: for all created pej do

20: qx = GETQUAD(pe, qpins)

21: return {(q1, pe1 1), (q1, pe1_2)... (¢, pej_l)}

spe.
Finally, we combine the computed provenance for subject, predicate and object
attributes to create a pe expression. Each different combination of provs, prov,,

prov, requires the creation of a new pe expression.

Example 31. Consider the MatchingPatterns for gp', created in the Example 29,
which contains the elements mp; and mpy. Using the function findIDs, we get
that the quadruple identifiers resulted from the evaluation of mp; (gp}) are ¢; and
co. Afterwards, we identify the only existing JOIN expression for gp;,s.p, where
joinOpy = mp; (gpt) and joinOpy = mpy (qpl); the JOIN expression is the same

in case of gpins.0 as well. Following the semantics of our model, we compute the

6.2. UPDATE RECONSTRUCTION ALGORITHM 61

join subscripts, joinSub! = {gp}.o} and joinSub® = {gpi.s} and we apply once
again the findI Ds function to compute the quadruple identifiers for mps (gpd), cs.
As presented in Table 3.5, only ¢; and c3 meet the evaluation requirements of the
join between joinOp; . joinOps. Therefore, the created spe expression for both
@Pins-P and qPins-0 1S 1 (g1 0y © (gpl 5} C3-

The computed var subscripts, qp%.p and qp%.o, are, then, used to form the
corresponding pe expression, pe%_1 = (L gpip (1 (gplo} © fgpls) €3) 5 gplo (€1
(alo} @ fgpl.s) €3))- Note that pe%_l and pe! represents the same expression.
Then, we use getQuad to get the quadruple ¢; (<hypertension>, <medication>,
<diuretics>, <NewDoctor>). Eventually, the output of PE_COMPUTATION
regarding gp' is {(q1, pe1 1)}

Going back to Algorithm 1, we get that PE' = {(q1, pei)} (based on the
output of Algorithm 2 for gp'- see this example) and PE? = {qu, pe? 1)} (based
on the output of Algorithm 2 for gp?— see Example 30). Then, PE' and PE? are
combined through the union operator @ setting thereby CPE = {(q1, cpe1 1},
where cpe; 1 = pe} | @ pe? ;. Finally, the output of provenance construction

algorithm is P = {(q1, cpe1 1)} O

6.2 Update Reconstruction Algorithm

As already mentioned, the purpose of the reconstruction algorithm is to output
a SPARQL update U’, which is compatible with the original update that created
the input quadruple. Theorem 2 (see Section 6.3), which is a correctness theorem,
is used to prove this claim. Before proceeding to the presentation of algorithm,
we formally define the filter-compatible graph patterns and the compatible INSERT
updates:

Definition 14. Let gp and gp' be graph patterns. We say that gp’' is filter-
compatible to gp (denoted gp ~ gp') iff gp' differs from gp only in the filters that

it may employ.

Note that Definition 14 refers as well to implicit filters created by a constant

value in the WHERE clause, e.g., “glucose” in gpd of our Motivating Example.

62 CHAPTER 6. PROVENANCE ALGORITHMS

Definition 15. Let U and U’ be INSERT updates. We say that U’ is compatible
to U (denoted U ~» U’) if there is a renaming of variables in U’, such as qpins =
qpl,s and for each gp'* in U’ there is a filter-compatible gp® in U.

Reconstructing an INSERT update requires both the quad pattern gp;,s of the
INSERT clause and the graph pattern gp of the WHERE clause. For the for-
mer, we consider the global quad pattern gp/, ., which represents the quad pat-
tern in the INSERT clause of the compatible update U’; qpl, . gets its values
during the execution of Algorithms 3, 4. For the latter, we use the Algorithm
UPD__RECONSTRUCTION that utilizes the pe’ expressions of cpe to reconstruct the
individual graph patterns of gp’. Towards a better understanding of context we
will provide in line examples considering the provenance p; of quadruple ¢; and the
Graph Store GSs (Qgs,, Ngs,), presented in our Motivating Example (Chapter 3).
Recall that c¢7: (<hypertension>, <medication>, <diuretics>, <NewDoctor>) and
pr = {cper}, where cper = pe' @ pe?, pe' = (L, 1,(c1 (o © (gplsy)

qp%.o(c1 {QP%J)} © {qp%,s} 65)) and p62 = (J—a qp%.p(66)7 qp%.o(cfi))'

Algorithm 3 Update Reconstruction Algorithm

Input: A complex provenance expression cpe of the form pel @ ... @ pe¥, a

quadruple g (s,p,0,n), a Graph Store GS (Qgs, Ngs)
Output: An INSERT update U’
+ Let qpi, = (tPjns: 1)
: for all pos do
qP}ys-P0s = NEWVAR()

gp' = UPD_RECONSTRUCTION(pe', q, GS, qpl.,,)
gp" = gp’ UNION gp*

1
2
3
4: for all pe’ € cpe do
5
6
7. U' = INSERT {q¢p},,,} WHERE {gp'}

As shown in Algorithm 3, we can determine the graph attribute (n) of gp,,
using the fourth attribute of the input quadruple ¢ (line 1). For example, we can
determine the graph <NewDoctor> from c¢7. Then, we spawn a new variable for
each position of ¢p}, . (lines 2,3), e.g., qpl,,, = (Pv1, ?v2, ?v3, <NewDoctor>).

The UPD_RECONSTRUCTION (Algorithm 4) is called for each pe’ expression to
reconstruct the corresponding graph pattern gp’ (lines 4-6). The individual graph
patterns gp’, then form the graph pattern gp’ in the WHERE clause of U’.

6.2. UPDATE RECONSTRUCTION ALGORITHM 63

As a first step of Algorithm 4, we compute the var subscript that exists in each
Provpes and assign to it the value of gp), ..pos. Note that if provp,s = L, then
there is no var subscript to be determined because this attribute has been created

through the assignment of a constant value.

Example 32. In our Motivating Example, the computed var subscripts for provy,
prov, of pe! are gpl.p and gpt.o, respectively. Then, we set gpi.p = QP = 702
and gpi.o = qPps-0 = ?v8. Similarly, we compute the var subscripts qp?.p, qp3.0
for prov, and prov,, respectively in pe? expression. As a result, qpi.p = qPpsP =
202 and qp?.0 = qp;,s-0 = ?v3. Note that the attribute provenance prov, is not

associated to any var subscript. (|

Subsequently, we create the SubsPatterns set (line 4). This set contains the
different quad pattern identifiers (sp,, denotes the m! quad pattern identifier in
the set) that appear in the subscripts of all provy.s in the input pet. As defined
earlier, though, provy,s is either of the form L or y,4rsup(spe) (Definition 12).

If provyes is of the first form, then there is no quad pattern to be identified.
Otherwise, we determine the quad pattern identifiers by checking the subscripts of
spe (join subscripts) and afterwards the varSub (var subscript). Note, however,
that we ignore multiple instances of the same quad pattern identifier, i.e. each
quad pattern identifier exists only once in SubsPatterns, and that we take into
account the occurrence order of the quad patterns, i.e. SubsPatterns is an ordered
set. Moreover, note that each element of SubsPatterns indicates a quad pattern in

the output gp'.

Example 33. Considering our Motivating Example, if pe! is the given input, then
SubsPatterns set is {sp1, spa}, where spy, spy identify gp} and gp3, respectively.
On the contrary, if pe? is the given input, then SubsPatterns = {sp1}, with gp?
being identified by sp;. 0

In addition, we create the ordered set PeGraphs (line 5) that contains the
graphs implied by the quadruple identifiers of pe’ expression. In more detail, for
each quadruple identifier existing in pe’ we identify and record its corresponding
graph. As with SubsPatterns set, we take into account only the first occurrence of

a graph.

64 CHAPTER 6. PROVENANCE ALGORITHMS

Example 34. Back to our Mmotivating Example, the pe! expression contains the
quadruple identifiers ¢, c¢3, and therefore PeGraphs = {<Pathologist>,
<Side Effects>}. In the same manner, we compute that PeGraphs is equal to

{<Diabetologist>} for pe? expression, because of the existence of cy. d

Algorithm 4 UPD RECONSTRUCTION

Input: A simple provenance expression pe' (prov, provy, prov,), a quadruple ¢
(s,p,0,m), a Graph Store GS (Qgs, Ngs)
Output: A graph pattern gp’
: for all prov,,s do
varSub = GETVARSUBSCRIPT(Provpos)
valueOf(varSub) = valueOf(qp},,,.pos)

1

2

3

4: Create the set SubsPatterns {spi, spa, ..., spi}
5: Create the set PeGraphs {ng, np, ..., nq}

6: ASSIGNGRAPHS(SubsPatterns, PeGraphs)

7: for all provy,s € pe' do

8 if provy,s # L then

9

: Create the set JoinSubs {joinSub', joinSub® ..., joinSub* 1,

joinSub®}

10: Let joinSub” be the r'" element in JoinSubs, and jp}, be the k' element
of joinSub”

11: r=1k=1

12: while joinSub” # null do

13: while jpj. # null do

14: if valueOf(jp}) = null then

15: valueOf(jp)) = NEWVAR()

16: ValueOf(jp,(:H)) = valueOf(jp},)

17: k++

18: r=r+2

19: else

20: valueOf(qp!,,,.pos) = valueOf(g.pos)

21: for all sp,, € SubsPatterns do

22: UnboundPos = GETUNBOUNDPOS(sp,)

23: for all qpé».pos € UnboundPos do

24: qpé-.pos = NEWVAR()

25: gp' = qpy - qP5 - QD]

26: return gp’

So far, we know the quad patterns (SubsPatterns) that constitute the output
graph pattern gp’ and the graphs (PeGraphs) appearing in them. Thus, since the

6.2. UPDATE RECONSTRUCTION ALGORITHM 65

two sets are ordered, we can properly relate a quad pattern with the correct graph
by applying the following simple rule: the k' graph of PeGraphs is assigned to the
graph attribute of the k' quad pattern of the SubsPatterns set; this is done using
the assignGraph function (line 6).

Example 35. Applying the assignGraph function for pe! and pe? of our Moti-
vating Example, results gpi = (tp}, <Pathologist>), qps = (tp3, <Side Effects>)
and qp? = (tp?, <Diabetologist>), respectively. O

At this point, we have to compute the values that appear in the s, p, o positions
of each created quad pattern. Hence, we exploit the information provided by the
provenance of each attribute (provs, provy, prov,). We will explain how this is done
for an arbitrary attribute (specified by pos) but, as shown in line 4, the process
is identical for the subject (pos = s), predicate (pos = p) and object (pos = o)
attribute.

If provpes = L (line 19), then the attribute pos of quadruple ¢ was created via
a constant value. As a consequence, we override the value of gp/,,..pos and set it to
be the same as the value of this attribute in the input quadruple ¢ (line 20). For
example, consider prov, both in pe' and pe?. In that instance, we set the value of
qp},s-S to be equal to <hypertension>.

On the contrary, if provpes = varsup(spe) (line 8), then the attribute pos of
quadruple ¢ was created via a construction. Hence, we have to determine if the
construction was the result of a “copy” or a join operation (see Chapter 5 for
details). To figure out the kind of operation we use the JoinSubs set (line 9). As
it is implied by its name, this set contains the join subscripts (denoted as joinSub',
...) that appear in the current provp,s. In the simple case that JoinSubs has no
elements, we have a “copy” operation and the block in lines 10-18 will be skipped.
Hence, the var subscript value is sufficient to indicate the variable that appear in

this position.

Example 36. The attribute provenances prov, and prov, of pe? expression in our
Motivating Example witness that the predicate and object attributes of ¢7 have
been constructed via a “copy” operation. Then, the corresponding quad pattern
positions gp?.p (702) and gp?.o (#v3) have already assigned to a variable via the

var subscripts computation. O

66 CHAPTER 6. PROVENANCE ALGORITHMS

In the more complex case, where JoinSubs contains some elements, we process
them in order to appropriately set the variables of the quad patterns so that those
that are involved in a join to have common variable names (line 10). Recall that a
join subscript is a set of quad pattern positions that participate in a join, and that
each JOIN expression requires two join subscripts to be represented.

Assume that jp) denotes the kt" element of joinSub”, then the element Jpy.
joins the element jpzﬂ; joinSub” and joinSub™t! have always the same number
of elements. If jp;. has already an assigned variable name, it is implied that jpj
participates as well in the provenance of other attributes that have been already
processed or it determines a var subscript. Otherwise, we use the function NewVar

to spawn a new variable name and assign it to jpj, (lines 14-16).

Example 37. Unlike pe? (see previous example), provy, and prov, of pel expression
indicate that the predicate and object attributes of ¢y have been constructed via
join operations. Then, we create the JoinSubs set that is both for prov, and
prov, equal to {joinSub!, joinSub®}, where joinSub' = {qp}.o} and joinSub® =
{qp%.s}. This implies that qp%.o joins qp%.s. Since, qp%.o has an assigned variable

already (7v3), we set gpi.s = qpt.o = #v3. O

Until now, we have assigned variable names to any quad pattern position that
is related somehow to a provyp.s. However, unbound quad pattern positions may
exist. A quad pattern position is called unbound, if it has not been assigned any
variable name. To find the unbound quad pattern positions, we search the created
quad patterns using the getUnboundPos function (line 22). The output of this
function is the UnboundPos set. In our example, UnboundPos = {qpi.s, qps.p,
qp%.o, qp%.s}. Then, each element of this set is being assigned a “fresh”, random
variable (lines 24).

Finally, we combine the created quad patterns into a big join that forms the
returned graph pattern gp’ (line 25). In our example, the reconstructed compatible

update is U':
INSERT {gp},,,} WHERE {gp} . qp; UNION gp?}

where:

6.3. CORRECTNESS RESULTS 67

qPi,s: (<hypertension>, 202, ?v3, <NewDoctor>)
qpi: (2v4, %v2, 208, <Pathologist>)

qps: (703, %v5, ?v6, <Side Effects>)

qp: (27, 202, ?v3, <Diabetologist>)

Note that U’ differs from the INSERT update U of our Motivating Example
only in the filters that U employs (“glucose” in gp} and <hypertension> in gp?) as

well as in their syntactic form (i.e. the variable names).

6.3 Correctness Results

As a consequence of the definition of compatible INSERT updates (Definition 15),

the following theorem can be deduced:

Theorem 1. Let U and U’ be UNION-free INSERT wupdates. If U’ is compatible
to U (U ~ U'), then U is also compatible to U' (U' ~~ U).

Proof. Assume that U is of the form U: INSERT {gpins} WHERE {gp'} and U’ is
of the form U’: INSERT {gp/,,} WHERE {gp''}. If U’ is compatible to U, then it
is implied that there is a renaming such as ¢pjns = ¢p},,, and gp* ~ gp'* (definition
of compatible INSERT updates). However, the definition of filter-compatible graph
patterns (Definition 14) implies that gp't ~ gp! as well. Then, gpl, . = qpins and
gp’t ~ gp', and therefore U is a compatible INSERT update to U’ (U’ ~ U). O

Lemma 1. Let U be an INSERT update and U’ be a compatible INSERT update of
it. U' was created via the Update Reconstruction algorithm with given input (cpe,
q, GS), where q (s,p,0,n) is a result quadruple of U, cpe is a complex provenance
expression that belongs to the provenance of q (as computed by the Provenance
Construction algorithm) and GS is the Graph Store where U was evaluated against.
Then, U’ differs from U in its syntactic form (variables’ names) and in the filter

conditions that U may employ.

Intuitively, we want to prove that U’ contains a consistent renaming of the

variables that appear in the quad pattern positions of U. For example, assume that

68

CHAPTER 6. PROVENANCE ALGORITHMS

valueO f(qpins-p) = valueOf(qp}.s) = %z in U, then we will prove that valueO f

(qpins-p) = valueO f(qpi.s) = ?yin U’. Note that variables names are insignificant

since they play no role in the evaluation process.

Proof. Following the semantics of our proposed model (see Section 4), we consider

the following forms for U, U’, c¢pe and pe:
- U: INSERT {gpins} WHERE {gp}
- U': INSERT {qp},,.} WHERE {gp'}
- cpe = pel @ pe? ... d pe™

- pe := (provs, Provy, prov,), where Provyes is the provenance of attribute pos

We distinguish different cases based on the cpe format to prove the correctness

of Lemma 1.

1. cpe := pe! or simply cpe := pe
This is the case of UNION-free INSERT updates. In this case, we have to

examine the provenance of each constituent of pe (provy.s) to determine

potential differences between U and U’. The attribute provenance provpes

may have one of the following forms:

a. Provpes = L

b.

This case implies that the attribute pos has been created through the
assignment of a constant value. However, the value of attribute pos in a
result quadruple g is determined through the evaluation of gp;,s.pos and
therefore valueO f(q.pos) = valueO f(qpins-pos) (line 20 in Algorithm
2). Additionally, every result quadruple ¢’ of U’ will have the same
value in pos attribute as the quadruple ¢ since valueO f(qp},,.pos) =
valueO f(q.pos) (line 20 of Algorithm 4). Then, gp/,,..pos and gpins.pos
will have the same value in the specific position of the INSERT clause.
As a result, U and U’ will always return exactly the same value for the

attribute pos no matter what variables exist in the WHERE clause.

Provpes ‘= varSub(Spe)
This case implies that the attribute pos has been constructed through a
“copy” or a join operation. By definition the var subscript (varSub) rep-

resents the first quad pattern position, qpé- .posa, in the WHERE clause

6.3. CORRECTNESS RESULTS 69

that shares the same variable with ¢p;,s.post, i.e., valueOf(qu» .posg) =
valueO f(qpins-posi) (see Section 4 for details). Line 13 of Algorithm 2
guarantees that. In addition, line 3 of Algorithm 4 assures that the quad
pattern position qp;k.p054, denoted by the varSub, will have the same
value as gpl,,.poss, i.e., valueOf (qp}f.poss) = valueO f(qpl,,.poss).
Moreover, lines 2 (Algorithm 4), 14 (Algorithm 2) imply that qpé- .poss
= quk.p034, ie., i = k, j = [and poss = posy, and qpins.pos1 =
qPps-POS3, 1., pos; = poss. Therefore, qpl, . .poss, qpins-posi and
quk.poszl, qpé-.posz refer to the same quad pattern positions and dif-
fer only in the variables’ names that they employ. As a consequence, we

have to examine the different forms of spe:

1. spe:=g¢;
This is the case of “copy” operation. In this case, there is only
one quad pattern position in the WHERE clause that contains the
same variable with ¢p;ns.pos; and it is mapped to a constituent
of ¢; through the evaluation process (lines 4, 20 of Algorithm 2).
Since this quad pattern position is unique it will coincide with the
varSub qp;'- .posa, which has already been proved that refers to the
same quad pattern position as quk’ .poSy4.

ii. spe = (Ca joinSubl @ joinSub? Cb) - - joinSubs—1 @ joinSube Cd
This is the case of a join operation. A joinSub” is a set of quad pat-
tern positions that participate in a join. Then, two join subscripts
(e.g. joinSub™! joinSub") are used to describe the existing joins
between two operands of a JOIN expression; the values of the cor-
responding quad pattern positions in the two sets have to be equal
(see Section 4 for details). In Algorithm 4, lines 9-18 claim the
previous statement, whereas Algorithm 2 ensures it in lines 5-12.
Moreover, line 9 in Algorithm 2 and lines 9-10 in Algorithm 4 as-
sert that the join subscripts of U and U’ will refer exactly to the

same quad pattern positions.

Until now, we have proved that each quad pattern position of INSERT
and WHERE clause of U that is associated somehow with an attribute

70 CHAPTER 6. PROVENANCE ALGORITHMS

provenance provpes of pe, will also appear in the INSERT or WHERE
clause of U’. Nevertheless, the same quad pattern positions may have
different variables’ names in U and U’. The rest of quad pattern posi-
tions of U may contain a constant value or a variable. These positions
are being characterized as unbound quad pattern positions in U’. Then,

we distinguish the following cases:

A. An unbound position of U’ contains a constant value in U
This is a filter condition. According to Algorithm 4 every unbound
quad pattern position is being assigned a new random variable (line
24). Then, U’ will return for this quad pattern position the maxi-
mum number of results that match this variable including the con-

stant value too.

B. An unbound position of U’ contains a variable in U
Following the previous consideration we have that an unbound po-
sition of U’ is being assigned a new random variable (line 24 of
Algorithm 4). Then, U’ will return for this quad pattern position

the same evaluation results as U.

2. cpe := pe! @ pe? ... ® pe™
A cpe expression of this form consists of individual simple provenance expres-
sions (pe”) that are constructed through Algorithm 4 and combined using the
operator @ (lines 2,3 of Algorithm 1). Then, the proof for this form is traced

back to the previous case.

Eventually, we conclude that U’ is a filter-free version of U with respect to cpe that

may differ from it in the variables’ names that they employ. O

Corollary 1. Let U be an INSERT update and U’ be a compatible INSERT update of
it, created via the Update Reconstruction algorithm with given input (cpe, q, GS);
q (s,p,0,n) is a result quadruple of U, cpe is a complex provenance expression
that belongs to the provenance of q (as computed by the Provenance Construction
algorithm) and GS is the Graph Store where U was evaluated against. Let also Qu
and Qy be the result sets of U and U’ respectively. Then q € Q.

6.4. COMPLEXITY ANALYSIS 71

Proof. As a consequence of Lemma 1, U’ returns a set of quadruples (Qp-) that
contains all quadruples of the result set of U (Qr) that are related to at least one
simple provenance expression pe’ of cpe; ¢ is related to every pe’ as implied by the

hypothesis of this corollary. As a result, g € Qp-. O

The following theorem (Theorem 1) proves that the output of Algorithm 3 in
the previous Section is compatible with the original INSERT update that created
the input quadruple. Thus, the intended semantics of a provenance expression,
as given in Section 5, are correctly recorded by Algorithm 1 (Section 6.1), and

interpreted by Algorithm 3 (Section 6.2).

Theorem 2. Let U be an INSERT update evaluated on the Graph Store GS (Qgs,
Ngs), q a result quadruple and cpe a complex provenance expression that belongs
to the provenance of q as computed by the Provenance Construction Algorithm.
Assume that we run the Update Reconstruction Algorithm with input (cpe, q, GS)
and we get as output the INSERT wupdate U'. Then, U’ returns q among other
quadruples and U ~ U’.

Proof. In Corollary 1 we have proved that ¢ belongs to the result set of U and U’
as well. Then, it is sufficient to prove that U’ is a compatible INSERT update to
U. By definition, an INSERT update U’ is compatible to an INSERT update U if
there is a renaming of variables in U’ such as qpl,,, = qpins and for each gp" in U’
there is a filter-compatible gp’ in U (Definition 5). In Lemma 1 we proved that U’
is a filter-free version of U with respect to cpe and these two updates may differ

only in their variables names. Consequently, we prove that U ~ U’.]

6.4 Complexity Analysis

The complexity of Provenance Construction algorithm (Algorithm 1) is consid-
ered with respect to a) the update size and b) the size of the input Graph Store.
The update size refers to the number of quad patterns in the WHERE clause.
The complexity regarding this parameter is linear, namely O(m) where m is the
number of quad patterns. To see this, note that we have to execute lines 2-17 of

Algorithm 2 three times, where each execution running for one evaluated position

72 CHAPTER 6. PROVENANCE ALGORITHMS

of gpins (8,p,0). Each of these runs costs O(m;), where m; is the number of quad
patterns in the input gp’ that participate in a join. The algorithm runs for all gp’
of the WHERE clause, so, in the worst-case, where all quad patterns are involved
in joins, we have that the total computational cost is O(3-), m;) = O(m).

The size of the Graph Store refers to the number of quadruples that exist in
the Graph Store, more specifically in Qgs, where the input INSERT update will
be evaluated. In this case, the complexity is O(logR), where R is the number of
quadruples that exist in the Graph Store. More specifically, we need O(logR) time
to compute the corresponding quadruple identifiers resulting from the evaluation
of a quad pattern, assuming that quadruples have been sorted based on their
identifier (binary search). Additionally, we need three accesses in the Graph Store
to compute the s, p, o attributes of each quadruple; each access in the Graph Store
costs O(logR) time (totally 3 * O(logR)). Therefore, the total time complexity is
O(logR) + 3% O(logR) = 4% O(logR) = O(logR).

The complexity of Update Reconstruction algorithm (Algorithm 3) is considered
regarding the size of the input cpe expression. In particular, we are interested in
the number of unions (as determined by the appearance of @) that exist in cpe.
Recall that cpe is of the form cpe := pe! @ ... @ pe™. Then, each operand pe’
of a union operator requires time O(z;), where x; is the number of quad patterns
that exist in pe’. Hence, the complexity is O(}; z;) = O(m), where m is the total
number of quad patterns in the WHERE clause.

Chapter 7

Related Work

Data provenance has been widely studied in several different contexts such as
databases, distributed systems, Semantic Web etc. In [11], Moreau explores the
different aspects of provenance in the Web. Likewise, Cheney et al. [6] provide
an extended survey that considers the provenance of query results in relational

databases regarding the most popular provenance models.

Research on data provenance can be categorized depending on whether it deals
with, updates [8, 9, 17, 24, 25| or queries |7, 8, 9, 12, 13, 14, 17, 26]. Com-
pared to querying, the problem of provenance management for updates is less

well-understood.

Another important classification is based on the underlying data model, SQL |7,
8, 17] or RDF |9, 12, 13, 14, 25, 26|, which determines whether the model deals with
the relational or SPARQL algebra operators respectively. Despite its importance,
only a few works deal with the problem of update provenance, and even fewer

consider the problem in the context of SPARQL updates [25].

A third categorization stems from the expressive power of the employed prove-
nance model, e.g., how, where, why, lineage etc. Since our proposed model is
based on how and where provenance models, we discuss them thoroughly here.
Where provenance is a popular data provenance model [8, 9, 14, 17, 24, 16] that
describes where a piece of data is copied from, i.e., which quadruples contributed
to produce a result quadruple in our context. How provenance describes not only
the quadruples used for producing an output, but also how these source quadru-

ples were combined (through operators) to derive it. In [7], provenance semirings

73

74 CHAPTER 7. RELATED WORK

are used to record how provenance for the relational setting through polynomials;
whereas [12, 13, 14| showed how to apply provenance semirings for the RDF/S-
PARQL setting. Our provenance model is inspired by these models (see 2.3 for
details).

Another relevant dimension of provenance is granularity. In standard relational
settings, three granularity levels are admitted (attribute, tuple and table), but most
works deal only with tuple-level provenance (an exception is [17], which deals with
all levels of provenance). Our approach deals both with ¢riple (aka tuple) and

attribute level provenance.

An important work on update provenance for the relational setting is [17], which
focuses on the copy and modify operations. The proposed formalization is based
on “tagging” tuples using “colors” propagated along with their data item during
the computation of the output. The provenance of the output is the provenance
propagated from the input item(s). Our model follows this approach to capture
the provenance of a quadruple attribute, but uses identifiers instead of colors, as

well as a more expressive provenance model.

In the context of SPARQL update provenance, there are no works that consider
abstract provenance models. Instead, RDF named graphs are used to represent
both past versions and changes to a graph [25]. This is achieved by modelling
the provenance of an RDF graph as a set of history records, including a special

provenance graph and additional auxiliary versioning named graphs.

Moreover, our work builds on [14]. This work presents how abstract relational
data provenance models can be adapted to capture the provenance of the results
of positive SPARQL queries, i.e., without SPARQL OPTIONAL clauses (see Sec-
tion 2.3 for details). The present work extends this model in order to address the
extra challenges associated with provenance management of SPARQL updates (as

opposed to queries).

Another major line of work deals with the different ways in which provenance
can be serialized and modelled in an ontology in the form of Linked Data (|27,
28, 29]). In [28], Hartig proposes a provenance model that captures information
about Web-based data access as well as information about the creation of data.

Moreau et al. created the Open Provenance Model [29] that supports the digital

75

representation of provenance for any “thing”, no matter how it was produced. In
this context, PROV was released as a W3C reccomendation [27|. The goal of
PROV is to enable the wide publication and interchange of provenance on the Web
and other information systems. PROV enables one to represent and interchange

provenance information using widely available formats such as RDF and XML.

76

CHAPTER 7. RELATED WORK

Chapter 8

Conclusions and Future Work

As the volume of data made available in the Web is continuously increasing, the
need for capturing and managing the provenance of such data becomes all the more
important. Our work addresses this problem for RDF data, by proposing a novel,
fine-grained and expressive provenance model to record the triple and attribute-

level provenance of RDF quadruples generated through SPARQL INSERT updates.

Our work follows the approach of [9, 14], where the use of abstract identi-
fiers and operators is proposed. Abstract identifiers are uniquely assigned to RDF
quadruples, whereas abstract operators describe how a result quadruple was de-
rived. In addition, we introduce the notion of quad pattern positions, which allows
the identification of the attributes of quad patterns that were involved in a join
or a “copy” operation. Hence, identifiers, operators and quad pattern positions
are combined to create abstract algebraic expressions to annotate RDF quadru-
ples. Our model is richer than standard query provenance models since it captures

fine-grained provenance both at triple and attribute level.

Our main contribution is the exploitation of the expressive power of the pro-
posed provenance model to introduce the feature of reconstructability. Recon-
structability prescribes that the information stored in the provenance of a quadru-
ple allows the identification of an INSERT update that is almost identical (in the
sense of compatibility) to the original one that was used to create the implied
quadruple. This can be viewed as a stronger form of how provenance. On the
algorithmic side, we introduce two algorithms that allow recording the provenance

information, as well as interpreting it to identify how the quadruple found its way

77

78 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

in the Graph Store, through the identification of a compatible INSERT update as
described above.

We are currently working on a first implementation of our ideas on top of
the Virtuoso database engine that aims to test the correctness of the proposed
algorithms. In the future, we plan to experimentally evaluate the performance of
our model with more complex data and real world applications, e.g., health care, as
well as its performance and its scalability for large INSERT updates and/or updates
with a large output. We also plan to consider FILTER and non-monotonic SPARQL
operators. This would lead to a stronger version of reconstructability, i.e., being
able to reconstruct an INSERT update that is equivalent (modulo variable naming)
to the original one. In addition, we will study the SPARQL DELETE, CREATE and
DROP operations since all SPARQL operations can be written as a combination of
INSERT, DELETE, CREATE and DROP statements. Finally, we intend to explore
the use of PROV and CIDOC CRM [30] approaches for representing our model in
the form of Linked Data.

Bibliography

1]

2]

8]

9]

[10]

“W3C Linking Open Data,” World Wide Web Consortium, Tech.
Rep. [Online|. Available: http://www.w3.org/wiki/SweolG /TaskForces/
CommunityProjects/LinkingOpenData

F. Manola and E. Miller, Eds., RDF Primer. W3C, 2004. [Online|. Available:
http://www.w3.org/ TR /2004 /REC-rdf-primer-20040210/

J. J. Carroll, C. Bizer, P. Hayes, and P. Stickler, “Named Graphs,” Journal of
Web Semantics, vol. 3, no. 4, pp. 247-267, 2005.

S. Harris and A. Seaborne, “SPARQL 1.1 Query Language,” World
Wide Web Consortium, Tech. Rep., 2013. [Online|. Available: http:
//www.w3.org/TR/2013/REC-sparqll1-query-20130321/

P. Gearon, A. Passant, and A. Polleres, “SPARQL 1.1 Update,”
World Wide Web Consortium, Tech. Rep., 2013. [Online]. Available:
http://www.w3.org/TR/2013/REC-sparqll1-update-20130321/

J. Cheney, L. Chiticariu, and W.-C. Tan, Foundations and Trends
in Databases, vol. 1, no. 4, pp. 379-474, 2009. [Online]. Available:
http://dx.doi.org/10.1561 /1900000006

T. J. Green, G. Karvounarakis, and V. Tannen, “Provenance semirings,” in
Principles Of Database Systems. ACM, 2007, pp. 31-40.

S. Vansummeren and J. Cheney, “Recording Provenance for SQL Queries and
Updates.” IEEE Data Eng. Bull., vol. 30, no. 4, pp. 29-37, 2007.

G. Flouris, I. Fundulaki, P. Pediaditis, Y. Theoharis, and V. Christophides,
“Coloring RDF Triples to Capture Provenance,” in International Semantic
Web Conference, A. Bernstein, D. R. Karger, T. Heath, L. Feigenbaum,
D. Maynard, E. Motta, and K. Thirunarayan, Eds., vol. 5823. Springer,
2009, pp. 196-212.

G. Karvounarakis, 1. Fundulaki, and V. Christophides, “Provenance for
linked data,” in In Search of FElegance in the Theory and Practice
of Computation, ser. Lecture Notes in Computer Science, V. Tannen,

79

http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.w3.org/TR/2013/REC-sparql11-update-20130321/
http://dx.doi.org/10.1561/1900000006

80

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

BIBLIOGRAPHY

L. Wong, L. Libkin, W. Fan, W.-C. Tan, and M. Fourman, FEds.
Springer Berlin Heidelberg, 2013, vol. 8000, pp. 366-381. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-41660-6 19

L. Moreau, “The foundations for provenance on the web,” Foundations and
Trends in Web Science, vol. 2, no. 2-3, pp. 99-241, 2010. [Online|. Available:
http://dx.doi.org/10.1561 /1800000010

F. Geerts, G. Karvounarakis, V. Christophides, and I. Fundulaki, “Algebraic
Structures for Capturing the Provenance of SPARQL Queries,” in Interna-
tional Conference on Database Theory. ACM, 2013, pp. 153-164.

C. V. Damasio, A. Analyti, and G. Antoniou, “Provenance for SPARQL
Queries,” in International Semantic Web Conference, P. Cudrré-Mauroux,
J. Heflin, E. Sirin, T. Tudorache, J. Euzenat, M. Hauswirth, J. X. Parreira,
J. Hendler, G. Schreiber, A. Bernstein, and E. Blomqvist, Eds., vol. 7649.
Springer, 2012, pp. 625-640.

Y. Theoharis, I. Fundulaki, G. Karvounarakis, and V. Christophides, “On
Provenance of Queries on Semantic Web Data,” TEFEE Internet Computing,
vol. 15, no. 1, pp. 31-39, 2011.

J. J. Carroll, C. Bizer, P. J. Hayes, and P. Stickler, “Named graphs, provenance
and trust,” in Proceedings of the 14th International Conference on World Wide
Web, WWW 2005, Chiba, Japan, May 10-14, 2005, 2005, pp. 613-622.

P. Buneman, S. Khanna, and W. C. Tan, “Why and where: A characterization
of data provenance,” in Proceedings of the 8th International Conference
on Database Theory, ser. ICDT ’01. Springer-Verlag, 2001, pp. 316-330.
[Online|. Available: http://dl.acm.org/citation.cfm?id=645504.656274

P. Buneman, J. Cheney, and S. Vansummeren, “On the Expressiveness of
Implicit Provenance in Query and Update Languages.” in International Con-
ference on Database Theory, T. Schwentick and D. Suciu, Eds., vol. 4353.
Springer, 2007, pp. 209-223.

J. Perez, M. Arenas, and C. Gutierrez, “Semantics and Complexity of
SPARQL,” in International Semantic Web Conference, 1. F. Cruz, S. Decker,
D. Allemang, C. Preist, D. Schwabe, P. Mika, M. Uschold, and L. Aroyo, Eds.,
vol. 4273. Springer, 2006, pp. 30-43.

M. Arenas, C. Gutierrez, and J. Perez, “On the Semantics of SPARQL,” in
Semantic Web Information Management, R. D. Virgilio, F. Giunchiglia, and
L. Tanca, Eds. Springer, 2009, pp. 281-307.

P. Buneman, S. Khanna, and W.-C. Tan, “On propagation of deletions
and annotations through views,” in Proceedings of the ACM Symposium on

http://dx.doi.org/10.1007/978-3-642-41660-6_19
http://dx.doi.org/10.1561/1800000010
http://dl.acm.org/citation.cfm?id=645504.656274

BIBLIOGRAPHY 81

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

Principles of Database Systems, ser. PODS ’02. ACM, 2002, pp. 150-158.
[Online|. Available: http://doi.acm.org/10.1145/543613.543633

R. Krummenacher, E. P. B. Simperl, D. Cerizza, E. D. Valle, L. J. B.
Nixon, and D. Foxvog, “Enabling the european patient summary through
triplespaces,” Computer Methods and Programs in Biomedicine, vol. 95, no.
2-S1, pp. 33-43, 2009.

D. Schmidt, G. Lindemann, and T. Schrader, “First steps towards an intelli-
gent catalogue within the open european nephrology science center?open.sc,”
2012 IEEE 24th International Conference on Tools with Artificial Intelligence,
vol. 2, pp. 39-44, 2007.

E. Grossman, P. Verdecchia, A. Shamiss, F. Angeli, and G. Reboldi, “Diuretic
treatment of hypertension,” Diabetes Care, vol. 34, no. Supplement 2, pp.
S313-S319, 2011.

P. Buneman, A. Chapman, and J. Cheney, “Provenance management
in curated databases,” in Proceedings of the 2006 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’06.
New York, NY, USA: ACM, 2006, pp. 539-550. [Online|. Available:
http://doi.acm.org/10.1145/1142473.1142534

H. Halpin and J. Cheney, “Dynamic provenance for SPARQL updates using
named graphs,” in Theory and Practice of Provenance, 2011.

M. Wylot, P. Cudré-Mauroux, and P. T. Groth, “Iripleprov: efficient
processing of lineage queries in a native RDF store,” in 23rd International
World Wide Web Conference, WWW ’14, Seoul, Republic of Korea, April
7-11, 2014, 2014, pp. 455-466. [Online]. Available: http://doi.acm.org/10.
1145/2566486.2568014

“An Overview of the PROV Family of Documentsl,” World Wide Web
Consortium, Tech. Rep., 2013. [Online]. Available: http://www.w3.org/TR/
2013/NOTE-prov-overview-20130430

O. Hartig, “Provenance Information in the Web of Data,” in Proceedings
of the WWW2009 Workshop on Linked Data on the Web, LDOW
2009, Madrid, Spain, April 20, 2009., 2009. [Online]. Available:
http://ceur-ws.org/Vol-538/1dow2009 _paperl8.pdf

L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. T. Groth,
N. Kwasnikowska, S. Miles, P. Missier, J. Myers, B. Plale, Y. Simmhan,
E. G. Stephan, and J. V. den Bussche, “The Open Provenance Model core
specification (v1.1),” Future Generation Comp. Syst., vol. 27, no. 6, pp. 743~

756, 2011. [Online|. Available: http://dx.doi.org/10.1016/j.future.2010.07.005

http://doi.acm.org/10.1145/543613.543633
http://doi.acm.org/10.1145/1142473.1142534
http://doi.acm.org/10.1145/2566486.2568014
http://doi.acm.org/10.1145/2566486.2568014
http://www.w3.org/TR/2013/NOTE-prov-overview-20130430
http://www.w3.org/TR/2013/NOTE-prov-overview-20130430
http://ceur-ws.org/Vol-538/ldow2009_paper18.pdf
http://dx.doi.org/10.1016/j.future.2010.07.005

82 BIBLIOGRAPHY

[30] M. Theodoridou, Y. Tzitzikas, M. Doerr, Y. Marketakis, and V. Melessanakis,
“Modeling and querying provenance by extending cidoc crm,” Distrib. Parallel
Databases, vol. 27, no. 2, pp. 169-210, Apr. 2010. [Online|. Available:
http://dx.doi.org/10.1007 /s10619-009-7059-2

http://dx.doi.org/10.1007/s10619-009-7059-2

