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Abstract

During the last few years we have witnessed an explosion in the publication of

data in the Web, mainly in the form of Linked Data. Scienti�c, corporate or even

governmental data are made available for open access and used by applications,

individual users and communities. Given the increasing amount and the hetero-

geneity of this data, it is of crucial importance to be able to track its provenance.

Recording the provenance can help us to e�ectively support trustworthiness, ac-

countability and repeatability in the Web of Data.

A number of models have already been proposed to capture the provenance

information of query results; most of them considering RDF or relational data. On

the contrary, despite its importance, little research has been conducted in the case

of updates and especially of SPARQL updates.

In this thesis, we propose a new provenance model that borrows from both

how and where data provenance models, and is suitable for capturing the triple

and attribute level provenance of SPARQL update results. To the best of our

knowledge, this is the �rst model that deals with the provenance of SPARQL

updates using algebraic provenance expressions, in the spirit of the well-established

model of provenance semirings.

On the algorithmic side, we introduce an algorithm that records the provenance

of SPARQL update results in terms of the proposed model and a reconstruction

algorithm that uses the provenance of a quadruple to identify a SPARQL update

that is provably compatible to the original one. A SPARQL update is compatible

to another if they di�er only in the variables names that they employ and the �rst

update contains a genuine subset of the unions that appear in the second one. The

latter algorithm is a necessary complement in order to fully describe the provenance

management, as it shows the determinant role of provenance information in the

persistence of SPARQL update results.





PerÐlhyh

Ta teleutaÐa qrìnia parathreÐtai mia èkrhxh sth dhmosÐeush dedomènwn ston
Pagkìsmio Istì, kurÐwc me th morf  Sundedemènwn Dedomènwn (Linked Data). De-
domèna apì di�forec jematikèc perioqèc, p.q. episthmonik�, etairik�, kubernhtik�
ktl., diatÐjentai gia anoiqt  prìsbash kai qr sh apì efarmogèc, memonwmènouc
qr stec   akìma kai koinìthtec qrhst¸n. Dedomènou tou auxanìmenou ìgkou kai
thc eterogèneiac twn dedomènwn aut¸n krÐnetai epitaktik  h an�gkh gia katagra-
f  thc plhroforÐac proèleushc (provenance). H gn¸sh thc proèleushc m�c dÐnei
th dunatìthta na uposthrÐxoume apotelesmatik� efarmogèc pou sqetÐzontai me thn
axiopistÐa, thn feregguìthta kai thn epanalhptikìthta twn dedomènwn.

'Ena pl joc apì montèla èqei  dh protajeÐ gia thn katagraf  thc plhroforÐac
proèleushc twn apotelesm�twn miac eper¸thshc (query); ta perissìtera apì ta
opoÐa aforoÔn RDF   sqesiak� (relational) dedomèna. AntÐjeta, kai par� th spou-
daiìthta tou probl matoc, h èreuna gia thn perÐptwsh twn enhmer¸sewn (updates),
kai eidikìtera twn SPARQL enhmer¸sewn, brÐsketai akìma se pr¸imo st�dio.

Sthn ergasÐa aut , proteÐnoume èna nèo montèlo gia thn katagraf  kai diaqeÐ-
rish thc plhroforÐac proèleushc, se epÐpedo triplètac (triple) kai gnwrÐsmatoc
(attribute), twn apotelesm�twn twn SPARQL updates. To montèlo autì, to opoÐo
daneÐzetai qarakthristik� kai idiìthtec apì ta  dh up�rqonta montèla tou where kai
how eÐnai to pr¸to pou uposthrÐzei th qr sh algebrik¸n ekfr�sewn se enhmer¸seic,
akolouj¸ntac thn prosèggish tou montèlou twn provenance semirings.

Apì algorijmik c skopi�c, parousi�zoume ènan algìrijmo, o opoÐoc upologÐzei
thn plhroforÐa proèleushc gia ta apotelèsmata twn SPARQL updates me b�sh to
proteinìmeno montèlo, kaj¸c kai ènan algìrijmo anakataskeu c (reconstruction),
o opoÐoc qrhsimopoieÐ thn plhroforÐa proèleushc miac tetraplètac (quadruple) gia
na dhmiourg sei èna SPARQL update, apodedeigmèna, sumbatì (compatible) me to
arqikì. 'Ena SPARQL update eÐnai sumbatì me èna �llo, an diafèroun mìno sta
onìmata twn metablht¸n pou qrhsimopoioÔn, kai to pr¸to update perièqei èna gn sio
uposÔnolo twn en¸sewn (unions) pou emfanÐzontai sto deÔtero. H paroq  enìc
algorÐjmou anakataskeu c krÐnetai aparaÐthth ¸ste na mporèsoume na perigr�youme
pl rwc th diaqeÐrish thc plhroforÐac proèleushc, kaj¸c faner¸nei ton kajoristikì
rìlo thc plhroforÐac aut c sth diat rhsh thc sunektikìthtac (persistence) twn
apotelesm�twn twn SPARQL updates.
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Stouc goneÐc mou,

Dhm trh kai Elènh



EuqaristÐec

Up�rqoun tìsa poll� �toma pou ja  jela na euqarist sw, kajènan gia ènan
xeqwristì lìgo. Arqik�, ja  jela na euqarist sw jerm� ton epìpth mou, Kajhght 
k. Dhm trh Plexous�kh, gia thn empistosÔnh pou mou èdeixe kaj¸c kai gia th
st rixh tou kaj' ìlh th di�rkeia twn metaptuqiak¸n mou spoud¸n.

EpÐshc, ja  jela na euqarist sw ek bajèwn touc sunepiblèpontec thc ergasÐac
mou, Gi¸rgo Flour  kai Eir nh Fountoul�kh, gia thn kajod ghsh, ton enjousia-
smì, tic polÔtimec sumboulèc kaj¸c kai thn upomon  touc. Oi gn¸seic, h empeirÐa
kai oi idèec touc sunèbalan kajoristik� sthn olokl rwsh thc ergasÐac aut c. H
sunergasÐa mac me bo jhse na exeliqj¸ tìso se epaggelmatikì all� kai proswpikì
epÐpedo, dÐnontac mou tautìqrona ta aparaÐthta efìdia gia th sunèqeia twn spoud¸n
mou.

Sto shmeÐo autì, ja  jela na euqarist sw ìla ta mèlh tou ergasthrÐou Plhro-
foriak¸n Susthm�twn gia thn euq�risth sunergasÐa. IdiaÐtera, wstìso, euqarist¸
touc Gi�nnh R., Panagi¸th kai QristÐna giatÐ ektìc apì kaloÐ sunerg�tec up rxan
kai kaloÐ fÐloi. Ta <<co�ee breaks>> mac ja meÐnoun sthn istorÐa...

Akìma, euqarist¸ touc kaloÔc mou fÐlouc BalentÐna, Biìla, K�llia, Hrakl ,
NÐna, Gi¸rgo kai NÐko. EÐte kont�, eÐte makri�, �lloi pio polÔ, �lloi pio lÐgo èkanan
ìla aut� ta qrìnia na axÐzoun kai mou q�risan upèroqec anamn seic. KurÐwc, ìmwc,
mou prìsferan th qar� na èqw dÐpla mou xeqwristoÔc anjr¸pouc.

Ja  jela na anaferj¸ idiaitèrwc sthn polÔ kal  mou fÐlh D mhtra kai na thn
euqarist sw, ektìc twn �llwn, gia tic epoikodomhtikèc suzht seic mac all� kai tic
gem�tec ag�ph kai eilikrÐneia sumboulèc thc. H wrimìthta thc me bo jhse pollèc
forèc na dw apì �llh optik  gwnÐa ta gegonìta.

Epiplèon, ja  jela na euqarist sw apì kardi�c ton aderfikì mou fÐlo M�no,
gia th suneq  kai anidiotel  ag�ph, upost rixh kai sumpar�stash pou mou parèqei
apì thn pr¸th mèra gnwrimÐac mac. H sqèsh mac me èkane na pistèyw autì pou lène
<åi fÐloi eÐnai h oikogèneia pou epilègoume>> ki esÔ eÐsai o aderfìc pou den eÐqa Sta
eÔkola kai sta dÔskola p�nta mazÐ...

To megalÔtero ìmwc euqarist¸ an kei sthn oikogèneia mou kai idiaÐtera stouc
goneÐc mou, Dhm trh kai Elènh, pou me upèrmetrh ag�ph, katanìhsh ki upomon 
sthrÐzoun p�nta k�je mou prosp�jeia. Oi arqèc pou me dÐdaxan kai h diapaidag¸ghsh
pou èlaba me bo jhsan na qar�xw th dik  mou poreÐa sth zw . EÐmai tuqer  pou
sac èqw...

Sac euqarist¸ polÔ ìlouc!
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Chapter 1

Introduction

During the last few years, we have witnessed an explosion in the volume of data

published in the Web, mainly in the form of Linked Data [1]. The main value

of such data stems from the unmoderated nature of data publication, interlinking

and reuse. This increases the added-value of interlinked data by identifying un-

known correlations and relationships, and by allowing the re-use of concepts and

properties.

Data on the web are usually published using the RDF [2] data model. The pop-

ularity of the RDF data model is due to the �exible and extensible representation

of information under the form of triples, organized in named graphs [3], thereby

forming quadruples. An RDF triple (subject, predicate, object) asserts the fact that

subject is associated with object through predicate. Querying and updating RDF

data is performed using the SPARQL language [4, 5].

The open and unconstrained nature of data published in the Web, makes it

imperative to e�ectively support, e.g., trustworthiness, accountability and repeata-

bility. This is achieved by recording the provenance of published data, i.e., their

origin or source, that describes from where and how the data was obtained [6].

In this work we deal with the problem of capturing and managing the provenance

of quadruples constructed through SPARQL updates [5]. More speci�cally, we focus

on SPARQL INSERT operations (we refer to them as INSERT updates) used to

add newly created triples in a target named graph (i.e. forming quadruples). The

purpose of provenance for such operations is to record from where and how each

quadruple was constructed, thereby allowing us to determine the quadruples and

3
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the SPARQL operators that were used to produce it.

Even though the problem of provenance has been extensively studied in the

literature [6, 7, 8, 9, 10, 11] most of the related works deal with SPARQL query

provenance. An approach for recording provenance is via algebraic expressions that

describe the origin of data in varying levels of detail [7, 12, 13, 14]; in the RDF

context, provenance is recorded via named graphs [3, 9, 14, 15]. Unfortunately, the

unique requirements associated with the provenance of SPARQL updates results

do not allow a direct reuse of such approaches.

A �rst problem stems from the fact that the named graph component of a

quadruple is de�ned by the user in the INSERT update. This implies that prove-

nance should be de�ned for quadruples, rather than triples (as is the case in most

works). Furthermore, the same fact implies that triples with di�erent origin may be

added to the same named graph; thus, the standard approach of capturing prove-

nance through the named graph of a quadruple is not su�cient in our setting.

In addition, quadruples created via INSERT updates could be the result of com-

bining values found in di�erent quadruples through di�erent SPARQL operators.

This creates a unique challenge, because each attribute of a quadruple may have

a di�erent provenance. Thus, �ne-grained, attribute-level provenance models are

called for, and more expressive models that go beyond named graphs approach are

needed.

Another challenge stems from the persistence of a SPARQL update result. This

implies that when a quadruple is accessed, the SPARQL update that generated may

be no longer available. This requirement leads to the notion of reconstructability,

which refers to the ability of using the provenance expression for reconstructing an

INSERT update that is compatible (De�nition 15) with the original INSERT update

that generated the quadruple.

Therefore, the provenance of a quadruple should be expressive enough to iden-

tify the quadruples that contributed to its creation (where provenance [16]), as well

as how these quadruples were used to generate the new one (how provenance [7]).

However, how provenance in this setting takes a much more demanding form than

in the case of query provenance. As an example, knowing that a join was used to

generate a quadruple during a query is enough to understand how it was gener-
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ated; on the other hand, in the case of INSERT updates, we need to know more

�ne-grained information, and more speci�cally which components of a quad pattern

were joined to generate the result.

To support the above requirements we introduce a novel triple and attribute

level, �ne-grained provenance model that borrows from both where and how data

provenance models [7, 17], as well as algorithms for managing (recording and inter-

preting) provenance information. More speci�cally, the main contributions of this

thesis are:

- The introduction of an expressive provenance model suitable for encoding

triple and attribute level provenance of quadruples obtained via SPARQL

INSERT updates, and allowing the reconstructability of such updates from

their provenance.

- The provision of algorithmic support for our model via the Provenance Con-

struction and the Update Reconstruction algorithms. The former is used for

computing and recording the provenance of the result of a SPARQL INSERT

update based on the proposed model. The latter exploits the expressiveness

of our model to report on the generation process of a quadruple (using its

provenance), in the sense of reconstructing a SPARQL INSERT update that

is compatible with the original one that created said quadruple.

Structure. In Chapter 2, we brie�y discuss basic concepts and de�nitions of RDF

(Section 2.1) and SPARQL (Section 2.2), as well as the most prevalent positive

provenance models (Section 2.3). A motivating example that will be used through-

out this thesis is provided in the Chapter 3. Chapter 4 describes the semantics

of SPARQL Update language. We de�ne our provenance model in Chapter 5.

Chapter 6 presents the related algorithms (Sections 6.1, 6.2), their correctness re-

sults (Section 6.3), as well as their complexity analysis (Section 6.4). Finally, in

Chapter 7 we describe the related work and we conclude in Chapter 8.
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Chapter 2

Preliminaries

In this chapter we discuss the Resource Description Framework (RDF) [2], a data

model used for describing and modelling information that is implemented in Web

resources. Additionally, we present SPARQL [4, 5], the o�cial W3C recommenda-

tion language for querying and updating data in RDF format. At the end of this

chapter we refer to some of the most prevalent positive provenance models that

our work builds on.

2.1 RDF

The Resource Description Framework (RDF) [2], a W3C recommendation, is a

model for representing information about resources in the World Wide Web (Web

resources). RDF enables the encoding, exchange and reuse of structured data,

providing therefore the means for publishing both human-readable and machine-

processable vocabularies. Nowadays, it is used in a variety of application areas,

such as the Linked Data initiative [1], which aims at connecting data sources on

the Web, and is employed as a standard for representing information on the Web

of Data.

RDF is based on a simple data model that facilitates Web data processing and

manipulation. The fundamental idea of RDF model is that everything we wish to

describe is a resource. A resource may be a title, an author, the modi�cation date

of a Web document or even a relation between them, and is identi�ed by using

Web identi�ers, called Internationalized Resource Identi�ers or IRIs (denoted by

7
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< >). The building block of the RDF data model is a triple.

Assume two pairwise disjoint and in�nite sets I and L, denoting IRIs and

literals, respectively.

De�nition 1. An RDF triple t is a tuple of the form (subject, predicate, object).

The set T = I× I× (I ∪ L) is the set of all RDF triples.

An RDF triple asserts the fact that subject is associated with object through

predicate. It should be stressed that in this work, we are interested only in ground

triples and thus we do not consider blank nodes.

Example 1. For example (<hypertension>, <medication>, <diuretics>) is an RDF

triple, with <hypertension> being its subject, <medication> being its predicate and

<diuretics> being its object. �

Figure 2.1: Graphical representation of an RDF triple

De�nition 2. An RDF graph G is a set of RDF triples, G ⊆ T . An RDF named

graph NG is an RDF graph that is uniquely identi�ed by an IRI from the set I.

More speci�cally, NG = (n,G) where n ∈ I and G is an RDF graph.

From this point on, and without loss of generality, we refer to a named graph

by using only its name n.

De�nition 3. An RDF quadruple q (subject, predicate, object, named graph) con-

sists of an RDF triple and the IRI of a named graph that triple belongs to. Then,

set Q= I × I × (I × L) × I is the set of all RDF quadruples.
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Subject (S) Predicate (P) Object (O)

<hypertension> <medication> <diuretics>

<hypertension> <medication> <beta_blockers>

<diuretics> <slightly_increase> �glucose�

Table 2.1: Tabular representation of an RDF graph

Figure 2.2: Graphical representation of the RDF graph shown in Table 2.1

Example 2. For example, consider (<hypertension>, <medication>, <diuretics>,

<Pathologist>) that is an RDF quadruple, with <hypertension> being its subject,

<medication> being its predicate, <diuretics> being its object and <Pathologist>

being the IRI of a named graph that the aforementioned triple belongs to. �

Subject (S) Predicate (P) Object (O) Named Graph (NG)

<hypertension> <medication> <diuretics> <Pathologist>

<hypertension> <medication> <beta_blockers> <Pathologist>

<diuretics> <slightly_increase> �glucose� <Side_E�ects>

<hypertension> <medication> <diuretics> <Diabetologist>

<bronchitis> <treat_with> <antibiotics> <Pneumonologist>

<bronchitis> <treat_with> �aspirin� <Pneumonologist>

Table 2.2: A set of RDF quadruples
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2.2 SPARQL

SPARQL 1.1 [4, 5] is the o�cial W3C recommendation for querying and updating

RDF graphs, and is based on the concept of matching patterns against such graphs.

Thus, a SPARQL query or a SPARQL update determines the pattern to seek for,

and the answer is the part of the RDF graph that matches this pattern.

The building block of a SPARQL statement is a triple pattern tp that resembles

an RDF triple, but may have a variable (pre�xed with character ? ) in any of its

subject, predicate, or object positions. Intuitively, triple patterns return the triples

in an RDF graph that have the form speci�ed by those triple patterns.

In addition to the sets I and L we assume the existence of an in�nite set V of

variables disjoint from the above sets.

De�nition 4. A triple pattern tp is an element of the set T P = (I ∪ V) × (I ∪
V) × (I ∪ L ∪ V).

Intuitively a triple pattern denotes the triples in an RDF graph that are of a

speci�c form.

Example 3. Consider the triple pattern (<hypertension>, ?p, ?o) that contains

the variables ?p and ?o, which can be substituted by any IRI; as such, the previous

triple pattern can be used to denote all triples with subject <hypertension>. �

To take into account context information expressed in the form of named

graphs, SPARQL 1.1 de�nes quad patterns (tp,n) [4], that are essentially triple

patterns with an additional column that denotes the named graph in which said

triple pattern must be evaluated against. In this work, we allow only values from

the set of IRIs for the named graph column; i.e., variables are not allowed in the

graph position.

De�nition 5. A quad pattern qp is an element of the set QP = (I ∪ V) × (I ∪
V) × (I ∪ L ∪ V) × I.

Note that, as a consequence of De�nition 5, a quadruple q can be also considered

as a quad pattern.
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Example 4. The quad pattern (<hypertension>, ?p, ?o, <Diabetologist>) matches

all triples with subject <hypertension> in the named graph <Diabetologist>.

In a similar manner, the quad pattern (?s, ?p, ?o, <Pathologist>) matches all

triples in the named graph <Pathologist>. � .

SPARQL queries and updates use graph patterns. Graph patterns, as triple

patterns and quad patterns, are matched against RDF graphs by substituting the

variables with matching IRIs or literals.

De�nition 6. A SPARQL graph pattern gp is de�ned recursively as follows:

- A triple pattern tp is a graph pattern.

- A quad pattern qp is a graph pattern.

- If gp and gp′ are graph patterns then (gp . gp′), (gp UNION gp′), and (gp

OPTIONAL gp′) are graph patterns.

- If C is a built-in condition, then (gp FILTER C) is a graph pattern.

A SPARQL built-in condition is constructed using elements of the set I ∪ L ∪
V and constants, logical connectives (¬, ∧, ∨), inequality symbols (<, ≤, ≥, >),
the equality symbol (=), unary predicates like bound, isBlank, and isIRI, plus

other features (see [4] for a complete list).

Example 5. For example the following statements are all graph patterns:

- (<hypertension>, ?p, ?o, <Diabetologist>), (?s, ?p, ?o, <Pathologist>),

(<bronchitis>, <treat_with>, �aspirin�, <Pneumonologist>)

These graph patterns are quad patterns as well.

- (?s, ?p, ?o, <Pathologist>) . (?o, <slightly_increase>, �glucose�,

<Side_E�ects>)

This graph pattern contains a join (on the variable ?o) between two other

graph patterns, (?s, ?p, ?o, <Pathologist>) and (?o, <slightly_increase>,

�glucose�, <Side_E�ects>).

- (?s, ?p, ?o, <Pathologist>) . (?o, <slightly_increase>, �glucose�,

<Side_E�ects>) UNION (<hypertension>, ?p, ?o, <Diabetologist>)

This graph pattern contains a union between two other graph patterns, (?s,

?p, ?o, <Pathologist>) . (?o, <slightly_increase>, �glucose�, <Side_E�ects>)

and (<hypertension>, ?p, ?o, <Diabetologist>). �
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In our study, we focus on SPARQL INSERT updates containing graph patterns

that consider only the union (UNION) and join (�.�) operators. In particular, we

restrict ourselves to INSERT updates of the following form:

De�nition 7. A SPARQL INSERT update U is a statement of the form

U := INSERT {qpins}WHERE {gp}

where qpins is a quad pattern and gp is a graph pattern formed as a union of

individual graph patterns, gp1 UNION . . . UNION gpk. Each gpi is of the form

qpi1 . . . . . qpim. We require that for each qpij there is a sequence 〈qpij1 , . . . 〉 of
quad patterns from gpi, such that qpij = qpij1 and each element in the sequence

has a common variable with the previous element in the sequence, whereas the �rst

element has a common variable with qpins.

This essentially corresponds to the class of SPARQL statements containing only

union and join operators, as all statements of this class can be equivalently written

in the above form [18]. The restriction on the existence of common variables is nec-

essary to �strip� the graph pattern in the WHERE clause from quad patterns that

play no essential role in its evaluation [18]. Furthermore, note that the SPARQL

statement INSERT DATA is a special case of the previous INSERT update where

gp is the empty graph pattern.

The INSERT clause of an update speci�es what variables should be returned

as results to form the new quadruples. The WHERE clause includes all the quad

patterns that must be matched from the results. The full semantics of SPARQL

Update are formally described in Section 4.

Example 6. Consider the INSERT update U: INSERT {qpins} WHERE { qp11 . qp
1
2

. qp13 }, where:

qpins: (?s, ?p, ?o, <MyGraph>)

qp11: (?s1, ?p1, ?o1, <n1>)

qp12: (?s, ?p, ?o2, <n2>)

qp13: (?s3, ?p3, ?o, <n3>)

We observe that the �rst quad pattern of the graph pattern in the WHERE

clause, (?s1, ?p1, ?o1, <n1>), belongs to the sequence 〈 qp11 〉, which does not
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contain an element with a common variable with qpins. In contrast, the second

quad pattern, (?s, ?p, ?o2, <n2>), is related to the sequence 〈 qp12 〉 that has an
element with two common variables with qpins, ?s and ?p. For the third quad

pattern, (?s3, ?p3, ?o, <n3>), there is a sequence 〈 qp13 〉 that its �rst and only

element shares a variable (?o) with qpins. As a result, the �rst quad pattern is

omitted and U can be reworded as INSERT {qpins} WHERE {qp11 . qp
1
2}, where:

qpins: (?s, ?p, ?o, <MyGraph>)

qp11: (?s, ?p, ?o2, <n2>)

qp12: (?s3, ?p3, ?o, <n3>)

�

Example 7. Consider the INSERT update U: INSERT {qpins} WHERE { qp11

UNION qp21 . qp
2
2 }, where:

qpins: (<Alice>, ?b, ?c, <MyGraph>)

qp11: (?a, ?b, ?c, <n1>)

qp21: (?d, ?b, ?c, <n2>)

qp22: (?d, <likes>, ?e, <n3>)

The update U consists of two graph patterns, gp1 and gp2, that are the operands

of the UNION operation. Then, for the quad pattern qp11 of gp
1 there is a sequence

〈 qp11 〉 that contains only one element, which shares two common variables with

qpins, ?b and ?c. In graph pattern gp2, the quad pattern (?d, <likes>, ?e, <n3>)

joins the quad pattern (?d, ?b, ?c, <n2>) on the variable ?d, and therefore both

of them are elements of the sequence 〈 qp21, qp22 〉. Furthermore, the �rst element
of this sequence has two common variables (?b, ?c) with qpins. As a result, we can

not omit any quad pattern from the INSERT update U. �

According to SPARQL 1.1 Update [5], a SPARQL update is evaluated on a

Graph Store that is a mutable container of RDF graphs. For simplicity however,

in this thesis we de�ne a Graph Store as:

De�nition 8. A Graph Store GS is a pair (QGS , NGS) where QGS is a set of

quadruples (QGS ⊆ Q) and NGS is a set of named graphs (NGS ⊆ I).
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QGS
S P O NG

<hypertension> <medication> <diuretics> <Pathologist>

<hypertension> <medication> <beta_blockers> <Pathologist>

<diuretics> <slightly_increase> �glucose� <Side_E�ects>

<hypertension> <medication> <diuretics> <Diabetologist>

<bronchitis> <treat_with> <antibiotics> <Pneumonologist>

<bronchitis> <treat_with> �aspirin� <Pneumonologist>

NGS
NG

<Pathologist>

<Side_E�ects>

<Diabetologist>

<Pneumonologist>

Table 2.3: Tabular representation of a Graph Store GS

For the evaluation of SPARQL graph patterns, we follow the semantics dis-

cussed in [18, 19]. More speci�cally, a solution mapping, or simply a mapping, µ

from V to I ∪L is a partial function µ : V → I ∪ L. The domain of µ, dom(µ), is

the subset of V where µ is de�ned. In case that dom(µ) = ∅ then µ∅ = ∅; this is
the empty mapping. Abusing notation, for an arbitrary quad pattern qp we denote

by var(qp) the set of variables occurring in qp and by µ(qp) the result obtained by

replacing the variables in qp with their assigned values according to µ. Note that

only the triple pattern part (tp) of a quad pattern is permitted to contain variables

since n is always an IRI. Then, the evaluation of a quad pattern qp = (tp, n) with

respect to a Graph Store GS returns a sets of mappings, denoted as Ω = [[tp]]GSn ,

where.

[[tp]]GSn = {µ | dom(µ) = var(qp) and µ(qp) ⊆ Tn} (2.1)

with Tn being the set of triples that are related to the named graph n.

Before discussing the evaluation of a graph pattern we shall refer to some ad-

ditional notions related to mappings. Two mappings µ1 and µ2 are compatible if
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for every ?x ∈ dom(µ1) ∩ dom(µ2) it is the case that µ1(?x) = µ2(?x), i.e., µ1 ∪
µ2 is also a mapping [18, 19]. Note that two mappings with disjoint domains are

always compatible, and that the empty mapping µ∅ is compatible with any other

mapping. In addition, the join and the union of two sets of mappings Ω1 and Ω2

are de�ned as:

- Ω1 on Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 are compatible mappings}

- Ω1 ∪ Ω2 = {µ | µ ∈ Ω1 or µ ∈ Ω2}.

Then, the evaluation of a SPARQL graph pattern gp with respect to a given

Graph Store GS, is de�ned recursively as:

- [[tp]GSn on [[tp′]]GSn′ , if gp is of the form qp . qp′

- [[tp]]GSn ∪ [[tp′]]GSn′ , if gp is of the form qp UNION qp′

where qp = (tp, n) and qp′ = (tp′, n′).

Example 8. Consider the Graph Store GS (QGS , NGS), shown in Table 2.2, and

the INSERT update U: INSERT {qpins} WHERE {qp11}, where:

qpins: (?s, ?p, ?o, <NewDoctor>)

qp11: (?s, ?p, ?o, <Pathologist>)

Table 2.4 shows the evaluation of qp11, denoted as Ω1, where each column cor-

responds to a variable in the evaluated quad pattern and each row of the table

corresponds to a mapping.

?s ?p ?o

µ1: <hypertension> <medication> <diuretics>

µ2: <hypertension> <medication> <beta_blockers>

Table 2.4: Evaluation of quad pattern (?s, ?p, ?o, <Pathologist>)

According to the INSERT clause of U the result quadruples are formed us-

ing values from the evaluation of variable ?s for the subject position, ?p for the

predicate position, ?o for the object position and the named graph <NewDoctor>.

Hence, the INSERT update U generates the result quadruples (<hypertension>,

<medication>, <diuretics>, <NewDoctor>) and (<hypertension>, <medication>,

<beta_blockers>, <NewDoctor>).

Note that if U: INSERT {qpins} WHERE {qp11}, where:
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qpins: (<hypertension>, ?p, ?o, <NewDoctor>)

qp11: (?s, ?p, ?o, <Pathologist>)

Then, the evaluation of quad pattern qp11 remains the same as well as the result

quadruples. However, it is worth pointing out that the value of subject position

in the result quadruples does not come from the evaluation of the variable ?s but

from the constant value <hypertension> as de�ned by the INSERT clause. �

Example 9. Similarly to the previous example, consider the INSERT update U:

INSERT {qpins} WHERE { qp11 . qp
1
2 }, where:

qpins: (?s, ?p, ?o, <NewDoctor>)

qp11: (?s, ?p, ?o, <Pathologist>)

qp12: (?o, ?x, ?y, <Side_E�ects>)

Tables 2.5- 2.6 show the evaluation of qp12 (Ω2) and qp11 . qp12 (Ω1 on Ω2)

respectively; the evaluation of quad pattern qp11 was shown in Table 2.4.

?o ?x ?y

µ3: <diuretics> <slightly_increase> �glucose�

Table 2.5: Evaluation of quad pattern (?o, ?x, ?y, <Side_E�ects>)

?s ?p ?o ?x ?y

µ4: <hypertension> <medication> <diuretics> <slightly_increase> �glucose�

Table 2.6: Evaluation of graph pattern (?s, ?p, ?o, <Pathologist>) . (?o, ?x,?y,
<Side_E�ects>)

According to the INSERT clause of U the result quadruples are formed using

the values from the evaluation of variable ?s for the subject position, ?p for the

predicate position, ?o for the object position and the named graph <NewDoctor>.

Hence, the INSERT update U generates only one quadruple (<hypertension>,

<medication>, <diuretics>, <NewDoctor>) (based on the evaluation results of the

graph pattern in the WHERE clause� see Table 2.6). �

Example 10. Consider the INSERT update U: INSERT {qpins} WHERE { qp11

UNION qp21 }, where:
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qpins: (?s, ?p, ?o, <NewDoctor>)

qp11: (?s, ?p, ?o, <Pathologist>)

qp21: (?s, ?p, ?o, <Diabetologist>)

The evaluation of qp11 (Ω1) was already shown in Table 2.4. Tables 2.7-

2.8 show the evaluation of qp21 (Ω3) and qp
1
1 UNION qp21 (Ω1 ∪ Ω3), respectively.

?s ?p ?o

µ5: <hypertension> <medication> <diuretics>

Table 2.7: Evaluation of quad pattern (?s, ?p, ?o, <Diabetologist>)

?s ?p ?o

µ6: <hypertension> <medication> <diuretics>

µ7: <hypertension> <medication> <beta_blockers>

µ8: <hypertension> <medication> <diuretics>

Table 2.8: Evaluation of graph pattern (?s, ?p, ?o, <Pathologist>) UNION (?s, ?p,
?o, <Diabetologist>)

The result quadruples are formed using values from the evaluation of variable

?s for the subject position, ?p for the predicate position, ?o for the object posi-

tion and the named graph <NewDoctor>. Hence, the INSERT update U generates

the quadruples (<hypertension>, <medication>, <diuretics>, <NewDoctor>) (this

quadruple is generated with two di�erent ways) and (<hypertension>, <medication>,

<beta_blockers>, <NewDoctor>) (based on the evaluation results of the graph

pattern in the WHERE clause� see Table 2.8). �

For a thorough presentation of the semantics of the SPARQL language, we urge

the interested reader to read the SPARQL speci�cation [4].

2.3 Provenance Models for Queries with Positive Alge-

bra

A great number of provenance models have been proposed so far. Most of them,

no matter which data model they support (RDF or relational), deal with the prob-

lem of provenance management for the positive fragment of a language (SPARQL
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or SQL). In particular, the positive fragment of SPARQL consists of statements,

queries or updates, that use only the SPARQL operators SELECT, AND, FIL-

TER and UNION [10], whereas the positive fragment of SQL is comprised of the

operators σ (�ltering), π (projection), ∪ (union) and on (natural join) [7].

In this thesis, we propose a novel provenance model that is suitable to record

the provenance of SPARQL update results. As already described in Section 2.2,

we restrict our attention to unions of conjunctive INSERT updates and therefore

our model deals with the positive fragment of SPARQL language. In this Section

we will discuss the positive provenance models that our work builds on.

The most popular model among those to be discussed is the provenance semir-

ings; the notion of how provenance, i.e., how an output tuple is derived according to

a given query, was articulated for �rst time in this work. Green et al. [7] propose

an algebraic approach that consider various forms of annotated (tagged) relational

data and their transformations in the context of positive relational queries. A

transformation refers to the operations that can be applied to the source tuples.

Thus, source tuples can be either joined via a join operation (de�ned by the op-

erator �·�), or merged as an e�ect of a union or a projection operation (de�ned

by the operator �+�). Then, abstract tags and operators are combined to cre-

ate algebraic expressions that describe how source tuples generate a result tuple.

These expressions are in fact polynomials in a commutative semiring (K, +, ·, 0,

1). Furthermore, the authors propose polynomials with integer coe�cients �the

universal provenance semiring- and show that positive algebra semantics for any

commutative semiring factors through the provenance semantics.

In [10], authors extend the previous model and show that semirings approach

is su�cient for positive SPARQL queries on annotated RDF data as well. More

speci�cally, Karvounarakis et al. investigate how popular relational provenance

models, such as how and why, can be leveraged to capture the data provenance

of unions of conjunctive queries over Linked Data, despite their subtle di�erences.

In addition, they identify the limitations of these models (mainly because of the

SPARQL operator OPTIONAL) and advocate the need for new provenance mod-

els for SPARQL queries. We urge the interested reader to read [12, 13] for a full

representation of SPARQL algebra using abstract relational provenance models.
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The model of where provenance was introduced by Buneman et al. [16], and it

was �rstly de�ned for a deterministic semi-structured data model and an associ-

ated query language. In contrast to how (and why) provenance that describe the

relationship between the source and the result tuples of a query, where provenance

indicates the origin of an attribute of a result tuple, i.e., from which location(s)

this attribute was copied. A location refers to an attribute of a tuple with respect

to a relation [6]. In [20], Buneman et al. extended the aforementioned work for a

relational model with SPJRU queries (in terms of selection (S), projection (P), join

(J), renaming (R) and union (U) operators) and de�ned the semantics of where

provenance through a set of annotation propagation rules. These rules determine

how annotations related to the source locations propagate to result locations in

order to form the where provenance of an attribute in a result tuple.

The Figure 2.3 shows a comparison of the main characteristics between the

previous models and the proposed one.

Figure 2.3: Comparison between Green et al., Karvounarakis et al., Buneman et
al. and proposed model
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Chapter 3

Motivating Example

In the last years there is an increasing interest for the use of RDF technologies in the

�eld of e-health and more speci�cally in medical applications [21, 22]. Scientists

are especially enthusiastic about using RDF, since it gives users the ability to

create descriptions in a very �exible and powerful way. Therefore, it is essential

for scientists to be able to have access to this huge and heterogeneous amount of

information, and at the same time track its provenance.

We will use, for illustration purposes, a simple example taken from the medi-

cal domain1. Table 3.1 illustrates the Graph Store GS (QGS , NGS ) (presented in

Section 2.2) that we will be considering, where each row of QGS corresponds to an

RDF quadruple, and columns S, P, O, NG stand for the subject, predicate, object

and named graph of the RDF quadruple. Additionally, we have included column

PROV that is used to store the provenance of a quadruple and the unique identi-

�ers ci for referring to a quadruple qi. Furthermore, each row of NGS corresponds

to a named graph.

Suppose now that a patient visits the hospital because of an urgent health issue.

The doctor diagnosed hypertension and decided to prescribe diuretic medication.

However, the patient's history includes diabetes; diuretics may increase the blood

glucose [23], which is a dangerous condition for diabetics. For this reason, doctor

prefers to prescribe a medication based on other doctors' opinion, stored in the

on-line medical system; the �nal medication is inserted in the on-line system as

1<http://www.nhlbi.nih.gov/>

21
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well. To support this request, he executes the SPARQL INSERT update U :

INSERT {qpins}WHERE {qp11 . qp12 UNION qp21}

where:

qpins: (<hypertension>, ?p, ?o, <NewDoctor>)

qp11: (?s, ?p, ?o, <Pathologist>)

qp12: (?o, <slightly_increase>, �glucose�, <Side_E�ects>)

qp21: (<hypertension>, ?p, ?o, <Diabetologist>)

QGS
S P O NG PROV

c1 <hypertension> <medication> <diuretics> <Pathologist> p1

c2 <hypertension> <medication> <beta_blockers> <Pathologist> p2

c3 <diuretics> <slightly_increase> �glucose� <Side_E�ects> p3

c4 <hypertension> <medication> <diuretics> <Diabetologist> p4

c5 <bronchitis> <treat_with> <antibiotics> <Pneumonologist> p5

c6 <bronchitis> <treat_with> �aspirin� <Pneumonologist> p6

NGS
NG
<Pathologist>
<Side_E�ects>
<Diabetologist>
<Pneumonologist>

Table 3.1: Tabular representation of Graph Store GS with additional information
for provenance and quadruple identi�ers

Intuitively, the INSERT update U will insert in the Graph Store information

about a medicine that is a cure for hypertension and cause a slightly increase in

the blood glucose levels (by <Pathologist>' point of view), or just a medicine that

is a cure for hypertension (by <Diabetologist>' point of view; we consider that a

Diabetologist would never suggest a medicine that would be harmful for a diabetic).

The INSERT clause determines the form of the result quadruples while the

WHERE clause determines the values (through the evaluation process) for these

quadruples. In our example, the WHERE clause contains a JOIN expression be-
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tween the quad patterns qp11 and qp
1
2 on the variable ?o, and a UNION expression

between graph patterns qp11 . qp12 (forms the graph pattern gp1) and qp21 (forms

the graph pattern gp2). Furthermore, it computes the values for the variables ?s,

?p and ?o.

Tables 3.2 - 3.4 show the evaluation of qp11 (Ω1), qp
1
2 (Ω2) and qp

2
1 (Ω3), where

each column corresponds to a variable in the evaluated quad pattern and each row

of the table corresponds to a mapping. Similarly, Table 3.5 shows the evaluation

of the join between qp11 and qp12 (Ω1 on Ω2), or, more precisely, the join of the

corresponding mappings: µ1 joins µ3 over variable ?o, resulting to the mapping

µ5. The evaluation of the union between qp
1
1 . qp

1
2 and qp

2
1 ((Ω1 on Ω2) ∪ Ω3), shown

in Table 3.6, is much simpler as it is the union of the corresponding mappings µ5

and µ4 (coming from the evaluation of the individual graph patterns gp1 and gp2).

?s ?p ?o

µ1: <hypertension> <medication> <diuretics>

µ2: <hypertension> <medication> <beta_blockers>

Table 3.2: Evaluation of quad pattern (?s, ?p, ?o, <Pathologist>)

?o

µ3: <diuretics>

Table 3.3: Evaluation of quad pattern (?o, <slightly_increase>, �glucose�,
<Side_E�ects>)

?p ?o

µ4: <medication> <diuretics>

Table 3.4: Evaluation of quad pattern (<hypertension>, ?p, ?o, <Diabetologist>)

?s ?p ?o

µ5: <hypertension> <medication> <diuretics>

Table 3.5: Evaluation of graph pattern (?s, ?p, ?o, <Pathologist>) . (?o,
<slightly_increase>, �glucose�, <Side_E�ects>)
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?s ?p ?o

µ4: <medication> <diuretics>
µ5: <hypertension> <medication> <diuretics>

Table 3.6: Evaluation of graph pattern (?s, ?p, ?o, <Pathologist>) . (?o,
<slightly_increase>, �glucose�, <Side_E�ects>) UNION (<hypertension>, ?p, ?o,
<Diabetologist>)

For the evaluation of the INSERT clause we are interested only in variables

found in qpins (?p, ?o); each mapping of Table 3.6 is used to extract the values

for these variables. These values correspond, therefore, the predicate and object of

the result quadruple, respectively. Note that the subject of the result quadruple,

(<hypertension>), was introduced as a constant value by the update itself, whereas

the graph attribute is user-de�ned.

The result quadruple (<hypertension>, <medication>, <diuretics>,

<NewDoctor>) (c7) and the named graph <NewDoctor> are inserted in QGS and

NGS of GS, respectively, forming thereby the new Graph Store GS2 (QGS2 , NGS2),
shown in Table 3.7.

QGS2
S P O NG PROV

c1 <hypertension> <medication> <diuretics> <Pathologist> p1

c2 <hypertension> <medication> <beta_blockers> <Pathologist> p2

c3 <diuretics> <slightly_increase> �glucose� <Side_E�ects> p3

c4 <hypertension> <medication> <diuretics> <Diabetologist> p4

c5 <bronchitis> <treat_with> <antibiotics> <Pneumonologist> p5

c6 <bronchitis> <treat_with> �aspirin� <Pneumonologist> p6

c7 <hypertension> <medication> <diuretics> <NewDoctor> p7

NGS2
NG
<Pathologist>
<Side_E�ects>
<Diabetologist>
<Pneumonologist>
<NewDoctor>

Table 3.7: Tabular representation of Graph Store GS2 with additional information
for provenance and quadruple identi�ers

The expression p7 below is used to describe the provenance of quadruple c7:
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p7: { (⊥, qp11.p
(c1 {qp11.o} � {qp12.s} c3), qp11.o

(c1 {qp11.o} � {qp12.s} c3))
⊕
(⊥, qp21.p

(c4), qp21.o
(c4)) }

Note that p7 records the fact that c7 originates with two di�erent ways (illus-

trated by the provenance UNION operator ⊕), either via join (e.g., �rst operand

of UNION), or via �copy� values (e.g., second operand of UNION). In the �rst

case, we record the fact that the derivation involves a join over the object-subject

positions (O-S) of qp11, qp
1
2, whose evaluation results to quadruples c1, c3 (cf. c1

{qp11.o} � {qp12.s} c3). Further, it states that the subject (S) of the new quadruple

c7 is a constant value (⊥), the predicate (P) originates from the predicate (P) of

quadruple c1 (cf. qp11.p
(. . .)), whereas its object (O) originates from the object (O)

of quadruple c1 (cf. qp11.o
(. . .)). In the second case, we record the fact that some

attributes of the new quadruple derived from the quadruple c4 and, additionally,

that the subject (S) of the new quadruple c7 is a constant value (⊥), its predicate
(P) originates from the predicate (P) of quadruple c4 (cf. qp21.p

(. . .)) and its object

(O) originates from the object (O) of quadruple c4 (cf. qp21.o
(. . .)).

The created expression (p7) is inspired by standard provenance expressions [7,

14] used in abstract provenance models, but contains additional information not

present in standard how provenance expressions. In particular, we include, for each

attribute of the new quadruple:

- a subscript denoting the information for the position of the quad pattern in

the WHERE clause that this element's value is taken from (arbitrarily we

de�ne this to be the �rst matching position)

- two subscripts in the provenance join operator ({} � {}) to describe the

positions of the quad patterns where the joins take place. This information

is important for understanding how c7 found its way in the Graph Store; as

it turns out, this information is also enough for reconstructing a compatible

SPARQL INSERT update.
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Chapter 4

SPARQL Update Language

Semantics

In the following sections, we discuss the formal semantics for the di�erent oper-

ations of SPARQL Update according to our approach. SPARQL 1.1 Update [5]

supports two categories of update operations on a Graph Store, the Graph Update

(Section 4.1) and the Graph Management (Section 4.2) operations.

A SPARQL update can read from and write to several named graphs at the

same time. For simplicity, we restrict our attention to updates that a�ect only

a single RDF named graph each time, i.e., it is permitted to read from only one

graph and write to as well one graph (we refer to this graph as target graph) at the

same time (see Section 2). Let nu be the IRI of the target named graph and GS
(QGS , NGS) be a Graph Store. The result of the execution of a SPARQL update

operation on GS is a newly constructed Graph Store GS ′ (Q′GS , N ′GS).

Note that in case that a graph is not related to any quadruple after an operation,

then it is not removed from the set of graphs NGS in the Graph Store. According

to SPARQL 1.1 Update semantics it is up to the implementation to decide whether

an empty graph will be removed or not. Also, if the inserted data are related to a

graph that does not exist in the Graph Store then the graph is created and added

to the set of graphs NGS in the Graph Store.

For ease of readability we de�ne the auxiliary function eval (qp, Ω) that will

be used to determine the semantics of some update operations:

- eval(quad pattern qp, set of mappings Ω) = {µi(qp) | µi ∈ Ω}

The function returns a set of quadruples obtained by substituting the vari-

27
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ables in qp according to each mapping µi in the set of mappings Ω and

assigning to them as graph attribute the corresponding value of quad pattern

qp.

For the rest of this Chapter we will consider the Graph Store GS2 (QGS2 , NGS2)
of our Motivating Example (Chapter 3) for the in-line examples.

4.1 Graph Update Operations

This category concerns the addition and removal of quadruples within the Graph

Store, e.g., INSERT, DELETE, CLEAR, LOAD operations.

1. INSERT DATA

Let q (s,p,o,nu) be a ground quadruple. Then:

INSERT DATA {q}

INSERT DATA adds the quadruple q to the Graph Store GS and more specif-

ically to QGS . If the quadruple already exists in QGS then no action is

performed for it. Note that INSERT DATA is a special case of the INSERT

operation, where grounded quadruples are inserted to the Graph Store. In

particular, we write:

INSERT {q} WHERE { }

We de�ne formally the semantics of the operation as follows:

Q′GS N ′GS

insert data(q, GS) QGS ∪ { q } NGS ∪ { nu }
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Example 11. The following INSERT DATA operation adds the quadru-

ple (<ace_inhibitors>, <lower>, �blood pressure�, <HeartFailure>) into the

Graph Store. This quadruple is used to determine a treatment in case of

heart failure disease. We write here the update operation following the syn-

tax of SPARQL 1.1. Update:

INSERT DATA {

GRAPH <HeartFailure> { <ace_inhibitors> <lower> �blood pressure� }

}

We write the same update operation following our abstract syntax:

INSERT DATA {

(<ace_inhibitors>, <lower>, �blood pressure�, <HeartFailure>)

}

The quadruple c8 and the named graph <HeartFailure> are inserted in the

Graph Store GS2, forming consequently the new Graph Store GS3, shown in

Table 4.1.

2. DELETE DATA

Let q (s,p,o,nu) be a ground quadruple. Then:

DELETE DATA {q}

DELETE DATA deletes the quadruple q from the Graph Store GS and more

speci�cally from QGS . If the quadruple does not exist in QGS then no action

is performed for it. Note that DELETE DATA is a special case of the DELETE

operation, where grounded quadruples are deleted from the Graph Store. In

particular, we write:

DELETE {q} WHERE { }
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QGS3
S P O NG

c1 <hypertension> <medication> <diuretics> <Pathologist>

c2 <hypertension> <medication> <beta_blockers> <Pathologist>

c3 <diuretics> <slightly_increase> �glucose� <Side_E�ects>

c4 <hypertension> <medication> <diuretics> <Diabetologist>

c5 <bronchitis> <treat_with> <antibiotics> <Pneumonologist>

c6 <bronchitis> <treat_with> �aspirin� <Pneumonologist>

c7 <hypertension> <medication> <diuretics> <NewDoctor>

c8 <ace_inhibitors> <lower> �blood pressure� <HeartFailure>

NGS3
NG

<Pathologist>

<Side_E�ects>

<Diabetologist>

<Pneumonologist>

<NewDoctor>

<HeartFailure>

Table 4.1: Graph Store GS3 (INSERT DATA operation)

We de�ne formally the semantics of the operation as follows:

Q′GS N ′GS

delete data(q, GS) QGS r q NGS

Example 12. The following DELETE DATA operation removes the quadru-

ple (<hypertension>, <treat1>, <diuretics>, <NewDoctor>) from the Graph

Store. Following the syntax of SPARQL 1.1. Update, we write:

DELETE DATA {

GRAPH <NewDoctor> { <hypertension> <treat1> <diuretics> }

}

Following our abstract syntax, we write:

DELETE DATA {
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(<hypertension>, <medication>, <diuretics>, <NewDoctor>)

}

The quadruple c7 is deleted from the Graph Store GS3, forming consequently
the new Graph Store GS4, shown in Table 4.2.

QGS4
S P O NG

c1 <hypertension> <medication> <diuretics> <Pathologist>

c2 <hypertension> <medication> <beta_blockers> <Pathologist>

c3 <diuretics> <slightly_increase> �glucose� <Side_E�ects>

c4 <hypertension> <medication> <diuretics> <Diabetologist>

c5 <bronchitis> <treat_with> <antibiotics> <Pneumonologist>

c6 <bronchitis> <treat_with> �aspirin� <Pneumonologist>

c7 <hypertension> <medication> <diuretics> <NewDoctor>

c8 <ace_inhibitors> <lower> �blood pressure� <HeartFailure>

NGS4
NG

<Pathologist>

<Side_E�ects>

<Diabetologist>

<Pneumonologist>

<NewDoctor>

<HeartFailure>

Table 4.2: Graph Store GS4 (DELETE DATA operation)

Note that the named graph <NewDoctor> is not removed from the Graph

Store GS3 (NGS3), despite the fact that it is associated with no quadruple

any more.

3. INSERT

Let qpins = (tpins, nu) be a quad pattern, gp be a graph pattern formed as

a union of individual graph patterns, gp1 UNION . . . UNION gpk. Each gpi

is of the form qpi1 . qpi2 . . . . . qpim and Ω is the evaluation result of gp (see

Section 2.2 for details). Then:
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INSERT {qpins} WHERE {gp}

INSERT adds quadruples to the Graph Store based on the evaluation results

of qpins on the set of mappings obtained from the evaluation of graph pattern

gp speci�ed in the WHERE clause (see Section 2.2).

Formally, we de�ne:

Q′GS N ′GS

insert(qpins, gp, GS) QGS ∪ eval(qpins,Ω) NGS ∪ {nu}

Example 13. The following INSERT update modi�es the predicate value of

the quadruples associated with the graph <Diabetologist> and adds them as

newly constructed quadruples into the Graph Store. Using the SPARQL 1.1.

Update syntax, we write:

INSERT { GRAPH <Diabetologist> { ?disease <treatment>?medicine } }

WHERE { GRAPH <Diabetologist> {?disease ?property ?medicine } }

We write the same operation using our abstract syntax:

INSERT {(?s, <treatment>, ?o, <Diabetologist>) }

WHERE { (?s, ?p, ?o, <Diabetologist>).

}

The quadruple c9 is inserted into the Graph Store GS4, forming consequently
the new Graph Store GS5, shown in Table 4.3.

4. DELETE

Let qpdel = (tpdel, nu) be a quad pattern, gp be a graph pattern formed as

a union of individual graph patterns, gp1 UNION . . . UNION gpk. Each gpi

is of the form qpi1 . qpi2 . . . . . qpim and Ω is the evaluation result of gp (see

Section 2.2). Then:
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QGS5
S P O NG

c1 <hypertension> <medication> <diuretics> <Pathologist>

c2 <hypertension> <medication> <beta_blockers> <Pathologist>

c3 <diuretics> <slightly_increase> �glucose� <Side_E�ects>

c4 <hypertension> <medication> <diuretics> <Diabetologist>

c5 <bronchitis> <treat_with> <antibiotics> <Pneumonologist>

c6 <bronchitis> <treat_with> �aspirin� <Pneumonologist>

c8 <ace_inhibitors> <lower> �blood pressure� <HeartFailure>

c9 <hypertension> <treatment> <diuretics> <Diabetologist>

NGS5
NG

<Pathologist>

<Side_E�ects>

<Diabetologist>

<Pneumonologist>

<NewDoctor>

<HeartFailure>

Table 4.3: Graph Store GS5 (INSERT operation)

DELETE {qpdel} WHERE {gp}

DELETE removes quadruples from the Graph Store based on the evaluation

results of qpdel on the set of mappings obtained from the evaluation of graph

pattern gp speci�ed in the WHERE clause.

We de�ne formally the semantics of the operation as follows:

Q′GS N ′GS

delete(qpdel, gp, GS) QGS r eval(qpdel,Ω) NGS

Example 14. The following DELETE update removes from the Graph Store

the quadruples that are related to the graph <Diabetologist> and have com-
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mon subject and predicate values in graphs<Diabetologist> and<Pathologist>.

Using the SPARQL 1.1. Update syntax, we write:

DELETE { GRAPH <Diabetologist> { ?s ?p ?o } }

WHERE { GRAPH <Diabetologist> {?s ?p ?o } .

GRAPH <Pathologist> {?s ?p ?o1} }

The same operation is written using our abstract syntax as:

DELETE {(?s, ?p, ?o, <Diabetologist>) }

WHERE { (?s, ?p, ?o, <Diabetologist>).

(?s, ?p, ?o1, <Pathologist>) }

The quadruple c4 is removed from the Graph Store GS5, forming consequently
the new Graph Store GS6, shown in Table 4.4.

QGS6
S P O NG

c1 <hypertension> <medication> <diuretics> <Pathologist>

c2 <hypertension> <medication> <beta_blockers> <Pathologist>

c3 <diuretics> <slightly_increase> �glucose� <Side_E�ects>

c4 <hypertension> <medication> <diuretics> <Diabetologist>

c5 <bronchitis> <treat_with> <antibiotics> <Pneumonologist>

c6 <bronchitis> <treat_with> �aspirin� <Pneumonologist>

c8 <ace_inhibitors> <lower> �blood pressure� <HeartFailure>

c9 <hypertension> <treatment> <diuretics> <Diabetologist>

NGS6
NG

<Pathologist>

<Side_E�ects>

<Diabetologist>

<Pneumonologist>

<NewDoctor>

<HeartFailure>

Table 4.4: Graph Store GS6 (DELETE operation)

5. DELETE/INSERT
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Let qpdel = (tpdel, nu), qpins = (tpins, nu) be quad patterns, gp be a graph

pattern formed as a union of individual graph patterns, gp1 UNION . . . UNION

gpk. Each gpi is of the form qpi1 . qpi2 . . . . . qpim and Ω is the evaluation

result of gp (see Section 2.2). Then:

DELETE {qpdel} INSERT {qpins} WHERE {gp}

DELETE/INSERT is a shortcut for removing and adding quadruples from/to

the Graph Store based on the evaluation results of qpdel and qpins on the set

of mappings obtained from the evaluation of graph pattern gp speci�ed in

the WHERE clause.

In the same manner as in INSERT and DELETE operations, we de�ne for-

mally:

Q′GS N ′GS

delete/insert(qpdel, qpins, gp, GS) (QGS r eval(qpdel,Ω)) NGS ∪ {nu}

∪ eval(qpins,Ω)

Example 15. The following DELETE/INSERT removes from the Graph Store

the quadruples that are related to the graph <Diabetologist>. Additionally, it

inserts new quadruples with respect to the treatment of hypertension. Using

the SPARQL 1.1. Update syntax, we write:

DELETE { GRAPH <Diabetologist> { ?s ?p ?o } }

INSERT { GRAPH <Pathologist> { ?s <treat3> ?o1 } }

WHERE { GRAPH <Diabetologist> {?s ?p ?o } UNION

{ GRAPH <Pathologist> {?s ?p ?o .

GRAPH <HeartFailure> {?o1 ?p1 ?s1} } }

The same operation is written using our abstract syntax as:

DELETE {(?s, ?p, ?o, <Diabetologist>) }

INSERT {(?s, <treat3>, ?o1, <Pathologist>) }

WHERE { (?s, ?p, ?o, <Diabetologist>) UNION
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(?s, ?p, ?o1, <Pathologist>) .

(?o1, ?p1, ?s1, <HeartFailure>) }

The quadruple c9 is removed from the Graph Store GS6, whereas the quadru-
ple c10 is inserted to it, forming thereby the new Graph Store GS7, shown in

Table 4.5.

QGS7
S P O NG

c1 <hypertension> <medication> <diuretics> <Pathologist>

c2 <hypertension> <medication> <beta_blockers> <Pathologist>

c3 <diuretics> <slightly_increase> �glucose� <Side_E�ects>

c5 <bronchitis> <treat_with> <antibiotics> <Pneumonologist>

c6 <bronchitis> <treat_with> �aspirin� <Pneumonologist>

c8 <ace_inhibitors> <lower> �blood pressure� <HeartFailure>

c9 <hypertension> <treatment> <diuretics> <Diabetologist>

c10 <hypertension> <treat3> <ace_inhibitors> <Pathologist>

NGS7
NG

<Pathologist>

<Side_E�ects>

<Diabetologist>

<Pneumonologist>

<NewDoctor>

<HeartFailure>

Table 4.5: Graph Store GS7 (DELETE/INSERT shortcut)

6. LOAD

Let nfrom be the IRI of the named graph, whose data we want to load. Then:

LOAD nfrom INTO nu

LOAD reads the RDF named graph nfrom and inserts its triples into the
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Graph Store, after appending to them as graph attribute the value nu (form-

ing thereby quadruples). Note that graph nfrom does not necessarily belong

to the Graph Store.

We de�ne formally the semantics of the operation:

Q′GS N ′GS

load(nfrom, nu, GS) QGS ∪ { (s, p, o, nu) | NGS ∪ { nu }

(s, p, o) ∈ Tnfrom
}

with Tnfrom
being the set of triples that are related to the named graph nfrom.

Example 16. The following LOAD operation inserts the quadruples formed

by the triples in graph <HypertensionDrugs> and the graph <Drugs>. We

write the operation following the SPARQL 1.1. Update syntax:

LOAD <HypertensionDrugs> INTO GRAPH <Drugs>

We write the same operation using our abstract syntax:

LOAD <HypertensionDrugs> INTO <Drugs>

S P O

<lasix> <class> <diuretics>

<diuril> <class> <diuretics>

<lopressor> <class> <beta_blockers>

<accupril> <class> <ace_inhibitors>

<monopril> <class> <ace_inhibitors>

Table 4.6: Tabular representation of named graph <HypertensionDrugs>1

This operation adds the quadruples c11, c12, c13, c14, c15 and the named

graph <Drugs> to the Graph Store GS7, forming thereby the new Graph

Store GS8, shown in Table 4.7.

7. CLEAR

This operation can be de�ned as:

1goo.gl/NACUXq

goo.gl/NACUXq
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QGS8
S P O NG

c1 <hypertension> <medication> <diuretics> <Pathologist>

c2 <hypertension> <medication> <beta_blockers> <Pathologist>

c3 <diuretics> <slightly_increase> �glucose� <Side_E�ects>

c5 <bronchitis> <treat_with> <antibiotics> <Pneumonologist>

c6 <bronchitis> <treat_with> �aspirin� <Pneumonologist>

c8 <ace_inhibitors> <lower> �blood pressure� <HeartFailure>

c10 <hypertension> <treat3> <ace_inhibitors> <Pathologist>

c11 <lasix> <class> <diuretics> <Drugs>

c12 <diuril> <class> <diuretics> <Drugs>

c13 <lopressor> <class> <beta_blockers> <Drugs>

c14 <accupril> <class> <ace_inhibitors> <Drugs>

c15 <monopril> <class> <ace_inhibitors> <Drugs>

NGS8
NG

<Pathologist>

<Side_E�ects>

<Diabetologist>

<Pneumonologist>

<NewDoctor>

<HeartFailure>

<Drugs>

Table 4.7: Graph Store GS8 ( LOAD operation)

CLEAR nu

The CLEAR operation removes the quadruples that are associated with the

speci�ed graph nu from the Graph Store.

Formally, we de�ne the semantics for this operation:
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Q′GS N ′GS

clear(nu, GS) QGS r {(s, p, o, nu) | (s, p, o) ∈ Tnu } NGS

where Tnu is the set of triples that are related to the named graph nu.

Example 17. The following CLEAR operation removes from the Graph Store

GS8 all quadruples that are related to the graph <Pathologist>. Following

the syntax of SPARQL 1.1. Update we write:

CLEAR GRAPH <Pathologist>

The same operation can be written using our abstract syntax as:

CLEAR <Pathologist>

This operation removes the quadruples c1, c2 and c10 from the Graph Store

GS8, forming thereby the new Graph Store GS9, shown in Table 4.8.

4.2 Graph Management Operations

This category concerns the creation and deletion of graphs within the Graph Store,

as well as convenient shortcuts for Graph Update operations often used during

graph management (to add, move, and copy all quadruples that are related to a

graph), e.g., CREATE, DROP, COPY, MOVE, ADD.

1. CREATE

We de�ne this operation as:

CREATE nu

CREATE operation creates an empty named graph nu and inserts it into the

Graph Store GS and more speci�cally in NGS . If the speci�ed named graph

already exists in the Graph Store then no action is performed.
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QGS9
S P O NG

c1 <hypertension> <medication> <diuretics> <Pathologist>

c2 <hypertension> <medication> <beta_blockers> <Pathologist>

c3 <diuretics> <slightly_increase> �glucose� <Side_E�ects>

c5 <bronchitis> <treat_with> <antibiotics> <Pneumonologist>

c6 <bronchitis> <treat_with> �aspirin� <Pneumonologist>

c8 <ace_inhibitors> <lower> �blood pressure� <HeartFailure>

c10 <hypertension> <treat3> <ace_inhibitors> <Pathologist>

c11 <lasix> <class> <diuretics> <Drugs>

c12 <diuril> <class> <diuretics> <Drugs>

c13 <lopressor> <class> <beta_blockers> <Drugs>

c14 <accupril> <class> <ace_inhibitors> <Drugs>

c15 <monopril> <class> <ace_inhibitors> <Drugs>

NGS9
NG

<Pathologist>

<Side_E�ects>

<Diabetologist>

<Pneumonologist>

<NewDoctor>

<HeartFailure>

<Drugs>

Table 4.8: Graph Store GS9 (CLEAR operation)

Formally, the semantics of this operation can be de�ned as:

Q′GS N ′GS

create(nu, GS) QGS NGS ∪ { nu }

Example 18. The following CREATE update operation inserts into the Graph

Store GS9 the graph <Hypertension>, forming thereby the newly constructed
Graph Store GS10, shown in Table 4.9. Following the syntax of SPARQL 1.1.

Update we write:

CREATE GRAPH <Hypertension>
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The same operation can be written using our abstract syntax as:

CREATE <Hypertension>

QGS10
S P O NG

c3 <diuretics> <slightly_increase> �glucose� <Side_E�ects>

c5 <bronchitis> <treat_with> <antibiotics> <Pneumonologist>

c6 <bronchitis> <treat_with> �aspirin� <Pneumonologist>

c8 <ace_inhibitors> <lower> �blood pressure� <HeartFailure>

c11 <lasix> <class> <diuretics> <Drugs>

c12 <diuril> <class> <diuretics> <Drugs>

c13 <lopressor> <class> <beta_blockers> <Drugs>

c14 <accupril> <class> <ace_inhibitors> <Drugs>

c15 <monopril> <class> <ace_inhibitors> <Drugs>

NGS10
NG

<Pathologist>

<Side_E�ects>

<Diabetologist>

<Pneumonologist>

<NewDoctor>

<HeartFailure>

<Drugs>

<Hypertension>

Table 4.9: Graph Store GS10 (CREATE operation)

2. DROP

We de�ne the operation as:

DROP nu

The DROP operation removes the named graph nu and the corresponding

quadruples from the Graph Store. If the graph does not exist in the Graph
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Store, then no action is performed.

The semantics of the operation are de�ned as:

Q′GS N ′GS

drop(nu, GS) QGS r {(s, p, o, nu)| (s, p, o) ∈ Tnu} NGS r { nu }

with Tnu being the set of triples that are related to the named graph nu.

Example 19. The following DROP update operation removes from the Graph

Store GS10 the graph <Pneumonologist> and its corresponding quadruples c5

and c6. The newly constructed Graph Store GS11 is shown in Table 4.10. We

write the previous operation following the syntax of SPARQL 1.1. Update:

DROP GRAPH <Pneumonologist>

Using our abstract syntax the same operation can be written as:

DROP <Pneumonologist>

3. COPY

Let nfrom be the IRI of the named graph whose data we want to copy. Then:

COPY nfrom TO nu

COPY operation inserts the triples that are related to the graph nfrom into

the Graph Store, as newly constructed quadruples with graph value nu. Data

related to the input graph nfrom is not a�ected, but data related to the target

graph nu, if any, is removed before insertion.

We de�ne formally the semantics:

Q′
GS N ′

GS

copy(nfrom, nu, GS) (QGS r { (s, p, o, nu) | (s, p, o) ∈ Tnu }) NGS ∪
∪ { (s′, p′, o′, nu) | (s′, p′, o′) ∈ Tnfrom

} { nu }
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QGS11
S P O NG

c3 <diuretics> <slightly_increase> �glucose� <Side_E�ects>

c5 <bronchitis> <treat_with> <antibiotics> <Pneumonologist>

c6 <bronchitis> <treat_with> �aspirin� <Pneumonologist>

c8 <ace_inhibitors> <lower> �blood pressure� <HeartFailure>

c11 <lasix> <class> <diuretics> <Drugs>

c12 <diuril> <class> <diuretics> <Drugs>

c13 <lopressor> <class> <beta_blockers> <Drugs>

c14 <accupril> <class> <ace_inhibitors> <Drugs>

c15 <monopril> <class> <ace_inhibitors> <Drugs>

NGS11
NG

<Pathologist>

<Side_E�ects>

<Diabetologist>

<Pneumonologist>

<NewDoctor>

<HeartFailure>

<Drugs>

<Hypertension>

Table 4.10: Graph Store GS11 (DROP operation)

where Tnu , Tnfrom
are the sets of triples that are related to the named graphs

nu and nfrom respectively.

Example 20. The following COPY operation inserts the quadruples that

formed by the triples related to the graph <HeartFailure> and the graph value

<Hypertension>, i.e., c16, into the Graph Store GS11. The newly constructed
Graph Store GS12 is shown in Table 4.11. We write here the update operation

following the syntax of SPARQL 1.1 Update:

COPY GRAPH <HeartFailure> TO GRAPH <Hypertension>

Using our abstract syntax the same operation can be written as:

COPY <HeartFailure> TO <Hypertension>
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QGS12
S P O NG

c3 <diuretics> <slightly_increase> �glucose� <Side_E�ects>

c8 <ace_inhibitors> <lower> �blood pressure� <HeartFailure>

c11 <lasix> <class> <diuretics> <Drugs>

c12 <diuril> <class> <diuretics> <Drugs>

c13 <lopressor> <class> <beta_blockers> <Drugs>

c14 <accupril> <class> <ace_inhibitors> <Drugs>

c15 <monopril> <class> <ace_inhibitors> <Drugs>

c16 <ace_inhibitors> <lower> �blood pressure� <Hypertension>

NGS12
NG

<Pathologist>

<Side_E�ects>

<Diabetologist>

<NewDoctor>

<HeartFailure>

<Drugs>

<Hypertension>

Table 4.11: Graph Store GS12 (COPY operation)

4. MOVE

Let nfrom be the IRI of a named graph from which we want to move all data.

Then, we de�ne:

MOVE nfrom TO nu

MOVE operation inserts the triples related to the named graph nfrom into

the Graph Store, as newly constructed quadruples with graph value nu. The

input graph nfrom is removed after insertion and data related to the target

graph nu, if any, is removed before insertion.
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Formally, the semantics of MOVE operation can be de�ned as:

Q′
GS N ′

GS

move(nfrom, nu, GS) ((QGS r { (s, p, o, nu) | (s, p, o) ∈ Tnu }) NGS

∪ { (s′, p′, o′, nu) | (s′, p′, o′) ∈ Tnfrom
}) ∪ { nu }

r { (s′, p′, o′, nfrom) | (s′, p′, o′) ∈ Tnfrom
} r { nfrom }

where Tnu , Tnfrom
are the sets of triples that are related to the named graphs

nu and nfrom respectively.

Example 21. This MOVE operation inserts the quadruples that consist of

the triples in graph <Drugs> and the graph <Hypertension>, i.e., c17, c18,

c19, c20, c21, into the Graph Store GS12; before the insertion the quadruple c16
is deleted. In addition, the graph <Drugs> and its corresponding quadruples

are removed from the Graph Store GS12. The newly constructed Graph Store
GS13 is shown in Table 4.12. Following the syntax of SPARQL 1.1 Update

we write:

MOVE GRAPH <Drugs> TO GRAPH <Hypertension>

Using our abstract syntax this operation can be written as:

MOVE <Drugs> TO <Hypertension>

5. ADD

Let nfrom be the IRI of the named graph whose data we want to add in

another named graph. Then:

ADD nfrom TO nu

ADD inserts all triples related to the graph nfrom into the Graph Store, as

newly constructed quadruples with graph value nu. Data related to the input

graph nfrom is not a�ected, and initial data related to the target graph nu,

if any, is kept intact.

The semantics of this operation can be de�ned as follows:
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QGS13
S P O NG

c3 <diuretics> <slightly_increase> �glucose� <Side_E�ects>

c8 <ace_inhibitors> <lower> �blood pressure� <HeartFailure>

c11 <lasix> <class> <diuretics> <Drugs>

c12 <diuril> <class> <diuretics> <Drugs>

c13 <lopressor> <class> <beta_blockers> <Drugs>

c14 <accupril> <class> <ace_inhibitors> <Drugs>

c15 <monopril> <class> <ace_inhibitors> <Drugs>

c16 <ace_inhibitors> <lower> �blood pressure� <Hypertension>

c17 <lasix> <class> <diuretics> <Hypertension>

c18 <diuril> <class> <diuretics> <Hypertension>

c19 <lopressor> <class> <beta_blockers> <Hypertension>

c20 <accupril> <class> <ace_inhibitors> <Hypertension>

c21 <monopril> <class> <ace_inhibitors> <Hypertension>

NGS13
NG

<Pathologist>

<Side_E�ects>

<Diabetologist>

<NewDoctor>

<HeartFailure>

<Drugs>

<Hypertension>

Table 4.12: Graph Store GS13 (MOVE operation)

Q′
GS N ′

GS

add(nfrom, nu, GS) QGS ∪ { (s, p, o, nu) | (s, p, o) ∈ Tnfrom
} NGS ∪

{ nu }

with Tnu being the set of triples that are related to the named graph nfrom.

Example 22. This ADD operation inserts the quadruples formed by the

triples of graph <Side_E�ects> and the graph <Impacts> (c22) into the

Graph Store GS13. The newly constructed Graph Store GS14 is shown in



4.2. GRAPH MANAGEMENT OPERATIONS 47

Table 4.13. Following the syntax of SPARQL 1.1 Update we write:

ADD GRAPH <Side_E�ects> TO GRAPH <Impacts>

Using our abstract syntax this operation can be written as:

ADD <Side_E�ects> TO <Impacts>

QGS14
S P O NG

c3 <diuretics> <slightly_increase> �glucose� <Side_E�ects>

c8 <ace_inhibitors> <lower> �blood pressure� <HeartFailure>

c17 <lasix> <class> <diuretics> <Hypertension>

c18 <diuril> <class> <diuretics> <Hypertension>

c19 <lopressor> <class> <beta_blockers> <Hypertension>

c20 <accupril> <class> <ace_inhibitors> <Hypertension>

c21 <monopril> <class> <ace_inhibitors> <Hypertension>

c22 <diuretics> <slightly_increase> �glucose� <Impacts>

NGS14
NG

<Pathologist>

<Side_E�ects>

<Diabetologist>

<NewDoctor>

<HeartFailure>

<Hypertension>

<Impacts>

Table 4.13: Graph Store GS14 (ADD operation)
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Chapter 5

Abstract Provenance Model

An abstract provenance model is comprised of abstract identi�ers and abstract op-

erators [7, 10, 14]. Abstract identi�ers (we refer to them as quadruple identi�ers

and we denote them by ci) are uniquely assigned to RDF quadruples, whereas ab-

stract operators describe the computations performed between source quadruples

to derive a result quadruple.

Unlike previous abstract provenance models, we introduce the notion of quad

pattern positions. Quad pattern positions are used to describe the occurrence of

a constant or a variable in a quad pattern. We will refer to this notion in detail

below.

Using this infrastructure, RDF quadruples are then annotated with complex

algebraic provenance expressions that involve the identi�ers, the operators and the

quad pattern positions of the abstract model. Formally:

De�nition 9. The provenance p of a quadruple q is de�ned as p := {cpe1, . . . ,
cpek}, where cpei is a complex provenance expression.

De�nition 10. A complex provenance expression cpe is de�ned as cpe := pe1 ⊕
pe2 ⊕ . . . ⊕ pem, where m ≥ 1, pej is a simple provenance expression and ⊕ is the

commutative binary operator of union.

De�nition 11. A simple provenance expression pe is of the form (provs, provp,

provo), where provpos being the provenance of the attribute pos.

Example 23. Consider the provenance p7 of quadruple c7 (see Chapter 3). The

provenance p7 contains the complex provenance expression cpe1 that consists of

49
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the simple provenance expressions, pe1 and pe2, combined using the operator ⊕.
The simple provenance expression pe1 consists of provs (⊥) that is the provenance
of subject attribute, provp (qp11.p(c1{qp11.o} � {qp12.s}c3)) that is the provenance of

predicate attribute and provo (qp11.o(c1{qp11.o} � {qp12.s}c3)) that is the provenance

of object attribute. The simple provenance expression pe2 consists of provs (⊥),
provp (qp21.p(c4)) and provo (qp21.o(c4)). �

A quadruple can be resulted more than once from either a single or di�erent

INSERT updates applied over the course of time. To capture this feature, a complex

provenance expression cpe (De�nition 10) records each way of generating the new

quadruple, whereas provenance p (De�nition 9) encodes all the di�erent ways,

structured in a set.

Example 24. Consider the update U1: INSERT {qpins} WHERE {qp11}, where:

qpins: (?s, ?p, <steroids>, <NewDoctor>)

qp11: (?s, ?p, ?o, <Pneumonologist>)

Intuitively, the INSERT update U1 will insert in the Graph Store information

which determines that <NewDoctor> suggests as a treatment for pulmonary ail-

ments the <steroids>. The update U1 is evaluated on the Graph Store GS2 (see

Chapter 3). The result quadruple c8 : (<bronchitis>, <treat_with>, <steroids>,

<NewDoctor>) is inserted in the newly constructed Graph Store GS3; the named
graph <NewDoctor> already exists in the Graph Store GS2. There are two ways to
obtain c8, either through copying the subject and predicate value from quadruple

c5 or through copying these values from quadruple c6; object value is a constant

value in both cases.

The provenance of the result quadruple c8 is:

p8 = {(qp11.s(c5), qp11.p
(c5),⊥), (qp11.s(c6), qp11.p

(c6),⊥)}

Note that, in this case, cpe1 = (qp11.s(c5), qp11.p
(c5), ⊥) and cpe2 = (qp11.s(c6),

qp11.p
(c6), ⊥), which represent the �rst and the second way, respectively, to obtain c8.

The complex provenance expression cpe1 consists of a simple provenance expression

pe1, where provs is equal to qp11.s
(c5), provp is equal to qp11.p

(c5) and provo is ⊥. In
a similar manner, we �nd the individual provenance expressions for cpe2. �
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As already stated, INSERT updates may use the UNION operator. In such up-

dates, a result quadruple is generated from one or more operands of a UNION ex-

pression. In the �rst case (when the quadruple is generated from only one operand),

the provenance management is identical to the provenance management of UNION-

free updates, then cpe = pe1. In the second case (when the quadruple is generated

from more than one operands), each operand of the operator ⊕ represents the

provenance of an operand of the UNION expression.

Example 25. Consider the update U and its result quadruple c7 (see Chapter 3).

The quadruple c7 is obtained from both operands (qp11 . qp12, qp
2
1) of the UNION

expression. As a result, its provenance p7 contains two simple provenance expres-

sions:

pe1 = (⊥, qp11.p
(c1 {qp11.o} � {qp12.s} c3), qp11.o

(c1 {qp11.o} � {qp12.s} c3))

pe2 = (⊥, qp21.p
(c4), qp21.o

(c4))

Each one of the simple provenance expressions pe1 and pe2 is standing for the

provenance of c7 derived from the operand (graph pattern) qp11 . qp12 and qp21,

respectively. �

Now let's see how the simple provenance expression pe (De�nition 11) is con-

structed. For reasons that will be made apparent later in Chapter 6, it is necessary

to refer to each individual variable or constant of an update. For this purpose, we

arbitrarily number:

- graph patterns, based on the order that they appear in the WHERE clause.

Then, the graph pattern gpi, i > 1, indicates the ith graph pattern of the

WHERE clause.

- quad patterns, based on the order that they appear in a graph pattern gpi.

Then, the quad pattern qpij , j > 1, indicates the jth quad pattern in the

graph pattern gpi. A qpij is called a quad pattern identi�er.

Moreover, we refer to the quad pattern in the INSERT clause as qpins.

A quad pattern qp = (tp, n) has three positions (pos) for the subject s, predicate

p and object o of its corresponding triple pattern tp (same as quadruples). Thus,

each constant or variable of an INSERT update can be uniquely identi�ed through
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the quad pattern identi�er and its position pos, where pos can be one of s, p,

o. For instance, qp12.s denotes the subject of the second quad pattern of the �rst

graph pattern in the WHERE clause (i.e., ?o in our Motivating Example), whereas

qpins.p denotes the predicate of the quad pattern in the INSERT clause (i.e., ?p in

our Motivating Example).

As shown in De�nition 11, a simple provenance expression pe is broken down

in provs, provp, provo, which records the provenance of the subject, predicate and

object of the quadruple respectively. This allows the identi�cation of the origin

of each element-attribute individually (attribute-level provenance [17]). We are

not interested in the provenance of the graph component (the fourth element of

a quadruple), as this is explicitly de�ned by the INSERT update. Formally, we

de�ne:

De�nition 12. The provenance of attribute pos, namely provpos, is an expression

of the form provpos := ⊥ | varSub(spe), where ⊥ is a special label, varSub is the

var subscript and spe is a standard provenance expression.

De�nition 13. A standard provenance expression spe can be de�ned as spe := (ci

{joinSub1} � {joinSub2} cj) . . . {joinSubr−1} � {joinSubr} ck, where cx is a quadruple

identi�er, joinSubz is a join subscript and � is the binary operator of join.

As proposed in [8, 17], the special label ⊥ is used in De�nition 12 to record the

case where the INSERT update constructs an element of the new quadruple using

a constant, e.g., provs in pe
1, pe2 of provenance p7 in our Motivating Example.

Instead of using a constant, we can alternatively construct an element of the

new quadruple by copying a value from an existing quadruple. This quadruple may

be in the Graph Store itself, or generated via SPARQL joins. This alternative is

recorded using the form varSub(spe) of provpos.

This form is composed of the varSub subscript, namely var subscript, and a

standard provenance expression spe. The var subscript represents a quad pat-

tern position qpij .pos, which denotes that the attribute pos of the new quadruple,

originates from the variable in qpij .pos, after applying the operation described in

spe. Recall, though, that the attribute pos is generated from the evaluation of the

variable in qpins.pos (cf. Chapter 3), i.e., qpij .pos shares the same variable with
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qpins.pos. As there could be multiple quad pattern positions in a gpi (e.g., joins)

that use the same variable with qpins.pos, the recorded quad pattern position in

the var subscript is by convention the �rst one that matches.

Example 26. In our Motivating Example, the expression pe1 contains the var

subscripts qp11.p and qp
1
1.o that appear in the provenance of predicate (provp) and

object (provo) attributes, respectively. The quad pattern position qp11.p shares the

variable ?p with qpins.p that generates the predicate attribute <medication> of

the result quadruple c7. Similarly, qp11.o has the same variable (?o) with qpins.o

that generates the object attribute <diuretics> of c7. Note that ?o appears in the

quad pattern position qp12.s as well, because of an existing join on this variable.

However, we record qp11.o as var subscript as it is the �rst quad pattern position of

the current gpi that shares the same variable with qpins.pos.

Similarly, we compute that expression pe2 is associated with the var subscripts

qp21.p and qp
2
1.o for the predicate and object positions, respectively. �

The standard provenance expression spe is closely related to the evaluation

process as it is composed of quadruple identi�ers and potentially of quad pattern

positions too. Quadruple identi�ers represent the quadruples that resulted from

the evaluation of the corresponding quad patterns, whereas quad pattern positions

describe the existing joins. Hence, if spe is a quadruple identi�er, then we have a

�copy� in the sense of [17], e.g., provp, provo in pe
2 of provenance p7.

On the contrary, if spe is a more complex expression, then it describes a join

operation e.g., provp, provo in pe1 of provenance p7. The latter case is indicated

by the existence of the binary operator of join � (initially de�ned in [14]), where

each operand of the operator � is a subscript, namely a join subscript.

We use join subscripts to record the quad pattern positions that were joined

(i.e. a join subscript is a set of quad pattern positions). Then, each operand of the

operator � represents the quad pattern positions of the corresponding operand of

the SPARQL JOIN expression that participates in a join. We can easily �gure out

which quad pattern positions share the same variable since the ith quad pattern

position of the �rst join subscript of � operator (e.g. joinSub1, joinSub3, . . .) joins

the ith quad pattern position of the second join subscript (joinSub2, joinSub4, . . .).

This allows determining the actual quad pattern positions that joins performed on,



54 CHAPTER 5. ABSTRACT PROVENANCE MODEL

an information critical for reconstructability as we will see below.

Example 27. Consider the INSERT update U of our Motivating Example. In the

WHERE clause we meet the JOIN expression qp11 . qp12, where qp
1
1 joins qp12 on

the variable ?o. We create, therefore, the joinSub1 = {qp11.o} and joinSub2 =

{qp12.s} that represent the quad pattern positions of qp11 and qp
1
2, respectively, that

participate in the join. Moreover, from the evaluation of the JOIN expression (see

Table 3.5) it arises that we the result quadruple takes its values from the quadruple

c1 (evaluation result of qp11) and c3 (evaluation result of qp12). Thus, the resulting

spe expression is spe = c1 {qp11.o} � {qp12.s} c3. �



Chapter 6

Provenance Algorithms

In this chapter we introduce the Provenance Construction (Section 6.1) and the

Update Reconstruction (Section 6.2) algorithms, as well as their correctness results

(Section 6.3) and their complexity analysis (Section 6.4). The �rst algorithm (Al-

gorithm 1 in Section 6.1) is used to record the provenance of quadruples resulting

from a SPARQL INSERT update. This algorithm takes as input an INSERT update

U and a Graph Store GS, and returns a provenance expression pi to associate with

each newly created quadruple qi. Each provenance expression pi is expressed under

the semantics of the proposed model (Chapter 5).

The second algorithm (Algorithm 3 in Section 6.2), provides the means to

exploit the rich semantics of the provenance expression of a quadruple in order to

determine how the quadruple found its way in the Graph Store. In particular, this

algorithm takes as input a complex provenance expression cpe that is part of the

provenance of the input quadruple q and returns a compatible INSERT update U ′.

It is worth noting the fact that the algorithm requires only a complex provenance

expression, instead of the full provenance, since a cpe is the minimum computed

provenance result of an INSERT update and therefore it is quite enough to be used

for the reconstruction of another INSERT update.

In Section 6.3, we present the correctness theorems of the above algorithms.

More speci�cally, Theorem 1 is used to prove the reciprocal relationship between

two compatible UNION-free INSERT updates. Furthermore, in Theorem 2 we

prove that the output U ′ of Algorithm 3 is compatible (see De�nition 15) with the

INSERT update U that was used to create q in the �rst place. This theorem is also

55
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a correctness theorem, as it shows that the intended semantics of the provenance

model are correctly implemented by Algorithm 1 and utilized by Algorithm 3.

Finally, in the last section of this chapter (Section 6.4), we discuss the com-

plexity of provenance construction and update reconstruction algorithms.

6.1 Provenance Construction Algorithm

As shown in Algorithm 1, to compute the provenance pk (De�nition 9) of a newly

created quadruple qk, we have to compute the corresponding complex provenance

expressions cpe generated via the update U . Recall that the provenance p of a

single quadruple is of the form p = {cpe1, . . ., cpej}, where cpe = pe1 ⊕ . . .⊕ pem.
Hence, for each graph pattern gpi of the WHERE clause we call the algorithm

pe_computation, which computes the individual simple provenance expressions

pei. The pei expressions are then used to form an expression cpe that is appended

to the provenance p of a quadruple q. For readability purposes, we de�ne:

- PEi = {(q1, pe
i
1_1), (q1, pe

i
1_2). . . (qj , pe

i
j_l−1), (qj , pe

i
j_l)},

where peik_m is the mth simple provenance expression that created using the

graph pattern gpi for the quadruple qk. Note that there may be created more

than one peik expressions for a quadruple qk forming its corresponding cpek

expression.

- CPE = {(q1, cpe1_1), (q1, cpe1_2). . . (qj , cpej_l−1), (qj , cpej_l)},

where cpek_r is the r
th complex provenance expression created for the quadru-

ple qk. Note that there may be created more than one cpek expressions for a

quadruple qk forming its provenance pk.

- P = {(q1, p1), . . . (qj , pj)},

where pk is the provenance of quadruple qk

Moreover, we de�ne the following operations between them:

- CPE ⊕ PEi

This operation appends each simple provenance expression peik_m of PEi to

the corresponding cpek_r expression, e.g., {(q1, cpe1_1)} ⊕ {(q1, pe
i
1_1)} =

{(q1, cpe1_1 ⊕ pe11_1)}.

- P ∪ CPE
This operation appends each complex provenance expression cpek_r to the
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corresponding provenance pk, e.g., {(q1, p1)} ∪ {(q1, cpe1_1)} = {(q1, p1 ∪
cpe1_1)}.

Algorithm 1 Provenance Construction Algorithm

Input: An INSERT update U , a Graph Store GS (QGS , NGS)
Output: The provenance pk of each result quadruple qk, P
1: for all (gpi ∈ WHERE clause) do
2: PEi = pe_computation(gpi, qpins, GS)
3: CPE = CPE ⊕ PEi

4: return P ∪ CPE

The algorithm pe_computation (see Algorithm 2), which is the main algo-

rithm of the provenance construction, is used to compute the provenance of the

subject, predicate and object attributes for each result quadruple of the update U .

We will explain how this is done for an arbitrary attribute (speci�ed by pos)

but, as shown in Algorithm 2 (line 1), we follow the same process for the provenance

computation of subject (pos = s), predicate (pos = p) and object attribute (pos

= o). For the rest of this Section we will consider for our examples the update U

and the Graph Store GS2, presented in our Motivating Example (Chapter 3).

To compute the provenance of the attribute pos we examine the value of

qpins.pos. Recall that the attribute pos of a result quadruple is generated from

the evaluation of the corresponding position in the INSERT clause (qpins.pos).

The value of qpins.pos can be either a constant or a variable. In the �rst case (line

15), the provenance computation of attribute pos (provpos) is quite simple, since

we only assign to it the special label ⊥ (line 16) and we proceed to the provenance

computation of the next attribute (if any).

Example 28. The quad pattern position qpins.s of U (Chapter 3) contains the

constant value <hypertension>. Then, the provenance of attribute s is provs = ⊥
both in case of gp1 or gp2 input. �

In the second case (line 2), the computation of provenance is more complicated,

as we have to evaluate the gp parameter and identify the joins (if any) that were

involved in the construction of a quadruple (lines 2-14).

As a �rst step in the latter case, we determine the MatchingPatterns set (line

3). This set contains the quad pattern identi�ers that appear in the input graph
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pattern gp (mpj denotes the j
th quad pattern identi�er in the set) and are related

directly or indirectly to the evaluation of the variable in qpins.pos. A quad pattern

is directly related to the evaluation of a variable, if any of its positions contains this

speci�c variable, or indirectly, if any of its positions joins (implicitly, via another

variable, or explicitly) a position in a quad pattern that contains the evaluated

variable.

Example 29. Consider the graph pattern gp1: qp11 . qp12 of the INSERT up-

date U (Chapter 3). The created MatchingPatterns set is {mp1, mp2}, where

mp1, mp2 denote the quad patterns qp11 and qp12, respectively. Note that the

MatchingPatterns set is the same both in case of the variable ?p (qpins.p) and

?o (qpins.o). In the �rst case the variable ?p is contained in qp11 and qp
1
2 is related

indirectly to it, since it joins implicitly the variable ?o. In the second case the

variable ?o is contained in qp11 and qp12 is related directly to it, since qp12 contains

also this variable.

In the same manner, we compute that MatchingPatterns set is {mp1}, where

mp1 denotes the quad pattern qp21, both for variables ?p and ?o, if gp2 is given as

input. �

In the simple case that MatchingPatterns set has only one element, then we

have no joins, i.e. we have a �copy� operation. Then, it is su�cient to compute the

quadruple identi�ers (using the findIDs function) that result from the evaluation

of the variable in qpins.pos (line 4) and the var subscript (line 13). Each quadruple

identi�er forms a new spe expression that entails the creation of di�erent provpos

expressions, e.g., in Example 24 we create a di�erent spe expression for each of c5

and c6. The var subscript value is computed as de�ned in Chapter 5.

Eventually, the provenance of the attribute pos (line 14) for a �copy� operation

is of the form:

provpos =mp1 (ca)

where varSub = mp1 and spe = ca, with ca belonging to the quadruple identi�ers

result of findIDs function (line 5).

Example 30. Consider the MatchingPatterns set of gp2, created in the previous

example, which contains only one element ({mp1}). We apply the findIDs func-
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tion to mp1 and we get from the evaluation of qp21 the quadruple identi�er c4; this

is the evaluation result both in case of qpins.p or qpins.o.

The var subscripts are qp21.p and qp21.o respectively for provp and provo. As a

consequence, we create the expression pe21_1 = (⊥, qp21.p
(c4), qp21.o

(c4)). Note that

pe2 and pe21_1 refer actually to the same expression. Then, we use the getQuad

function to get the quadruple q1 (<hypertension>, <medication>, <diuretics>,

<NewDoctor>). Eventually, the output of pe_computation regarding gp2 is

{(q1, pe
2
1_1)}. �

In the more complex case, where MatchingPatterns has more than one ele-

ments, we have to identify the corresponding JOIN expressions and record the

related joins, by iterating over them and recording the involved quadruple identi-

�ers and the quad pattern positions (in the form of join subscripts� see Chapter 5)

where the joins take place (lines 7-12). A JOIN expression is of the form joinOp1

. joinOp2, where joinOp1 and joinOp2 are graph patterns denoting the �rst and

second operand of the join operation. By convention, we identify the JOIN expres-

sions sequentially based on their occurrence order in the WHERE clause (lines 8,

10, 11).

As already mentioned, for each JOIN expression we have to compute the corre-

sponding join subscripts (line 9) and quadruple identi�ers. We can easily compute

join subscripts just by looking at the common variables of joinOp1, joinOp2 (see

Chapter 5 for details); quadruple identi�ers are computed using the findIDs func-

tion (line 10). The computed spe is used to form the �nal provenance result of the

algorithm for the speci�c position. Note that we create a di�erent spe expression

for each quadruple identi�ers combination. For instance, consider the combination

[c1] joinSub1 � joinSub2 [c2, c3], then we create two spe expressions for this position,

c1 joinSub1 � joinSub2 c2 and c1 joinSub1 � joinSub2 c2.

Eventually, the provenance of attribute pos (line 14) for a join operation is of

the form:

provpos =mpk ((ca {joinSub1} � {joinSub2} cb) . . . {joinSubr−1} � {joinSubr} cd)

where spe = (ca {joinSub1} � {joinSub2} cb) . . . {joinSubr−1} � {joinSubr} cd (line

10) and varSub = mpk (line 13). Note that we create a provpos for each di�erent
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Algorithm 2 PE_COMPUTATION

Input: A graph pattern gp, the Graph Store GS (QGS , NGS), the quad pattern
qpins of U

Output: The pek_m expressions for each qk quadruple, {(q1, pe1_1), (q1, pe1_2)
. . . (qj , pej_l)}

1: for all qpins.pos do
2: if valueOf(qpins.pos) ∈ V then
3: Create the set MatchingPatterns {mp1, mp2 . . . mpx}
4: spe = findIDs(mp1)
5: Let joinOp1, joinOp2 be the two operands of a JOIN expression;
joinOp1 = mp1, joinOp2 = null

6: j = 1
7: while mpj+1 6= null do
8: joinOp2 = mpj+1

9: Create the joinSub1 and joinSub2

10: spe = spe joinSub1 � joinSub2 findIDs(mpj+1)
11: joinOp1 = joinOp1 . joinOp2
12: j++

13: Create the varSub
14: provpos = varSub (spe)
15: else
16: provpos = ⊥
17: pe = (provs, provp, provo)
18:

19: for all created pek do
20: qk = getQuad(pek, qpins)

21: return {(q1, pe1_1), (q1, pe1_2). . . (qj , pej_l)}

spe.

Finally, we combine the computed provenance for subject, predicate and object

attributes to create a pe expression. Each di�erent combination of provs, provp,

provo requires the creation of a new pe expression.

Example 31. Consider theMatchingPatterns for gp1, created in the Example 29,

which contains the elements mp1 and mp2. Using the function findIDs, we get

that the quadruple identi�ers resulted from the evaluation of mp1 (qp
1
1) are c1 and

c2. Afterwards, we identify the only existing JOIN expression for qpins.p, where

joinOp1 = mp1 (qp
1
1) and joinOp2 = mp2 (qp

1
2); the JOIN expression is the same

in case of qpins.o as well. Following the semantics of our model, we compute the
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join subscripts, joinSub1 = {qp11.o} and joinSub2 = {qp12.s} and we apply once

again the findIDs function to compute the quadruple identi�ers for mp2 (qp
1
2), c3.

As presented in Table 3.5, only c1 and c3 meet the evaluation requirements of the

join between joinOp1 . joinOp2. Therefore, the created spe expression for both

qpins.p and qpins.o is c1 {qp11.o} � {qp12.s} c3.

The computed var subscripts, qp11.p and qp11.o, are, then, used to form the

corresponding pe expression, pe11_1 = (⊥, qp11.p
(c1 {qp11.o} � {qp12.s} c3) , qp11.o

(c1

{qp11.o} � {qp12.s} c3)). Note that pe11_1 and pe1 represents the same expression.

Then, we use getQuad to get the quadruple q1 (<hypertension>, <medication>,

<diuretics>, <NewDoctor>). Eventually, the output of PE_COMPUTATION

regarding gp1 is {(q1, pe1_1)}.

Going back to Algorithm 1, we get that PE1 = {(q1, pe
1
1_1)} (based on the

output of Algorithm 2 for gp1� see this example) and PE2 = {(q1, pe
2
1_1)} (based

on the output of Algorithm 2 for gp2� see Example 30). Then, PE1 and PE2 are

combined through the union operator ⊕ setting thereby CPE = {(q1, cpe1_1},

where cpe1_1 = pe11_1 ⊕ pe21_1. Finally, the output of provenance construction

algorithm is P = {(q1, cpe1_1)}. �

6.2 Update Reconstruction Algorithm

As already mentioned, the purpose of the reconstruction algorithm is to output

a SPARQL update U ′, which is compatible with the original update that created

the input quadruple. Theorem 2 (see Section 6.3), which is a correctness theorem,

is used to prove this claim. Before proceeding to the presentation of algorithm,

we formally de�ne the �lter-compatible graph patterns and the compatible INSERT

updates:

De�nition 14. Let gp and gp′ be graph patterns. We say that gp′ is �lter-

compatible to gp (denoted gp ∼ gp′) i� gp′ di�ers from gp only in the �lters that

it may employ.

Note that De�nition 14 refers as well to implicit �lters created by a constant

value in the WHERE clause, e.g., �glucose� in qp12 of our Motivating Example.
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De�nition 15. Let U and U ′ be INSERT updates. We say that U ′ is compatible

to U (denoted U  U ′) if there is a renaming of variables in U ′, such as qpins =

qp′ins and for each gp′i in U ′ there is a �lter-compatible gpi in U .

Reconstructing an INSERT update requires both the quad pattern qpins of the

INSERT clause and the graph pattern gp of the WHERE clause. For the for-

mer, we consider the global quad pattern qp′ins, which represents the quad pat-

tern in the INSERT clause of the compatible update U ′; qp′ins gets its values

during the execution of Algorithms 3, 4. For the latter, we use the Algorithm

upd_reconstruction that utilizes the pei expressions of cpe to reconstruct the

individual graph patterns of gp′. Towards a better understanding of context we

will provide in line examples considering the provenance p7 of quadruple c7 and the

Graph Store GS2 (QGS2 , NGS2), presented in our Motivating Example (Chapter 3).

Recall that c7: (<hypertension>, <medication>, <diuretics>, <NewDoctor>) and

p7 = {cpe1}, where cpe1 = pe1 ⊕ pe2, pe1 = (⊥, qp11.p
(c1 {qp11.o} � {qp12.s} c5),

qp11.o
(c1 {qp11.o} � {qp12.s} c5)) and pe

2 = (⊥, qp21.p
(c6), qp21.o

(c6)).

Algorithm 3 Update Reconstruction Algorithm

Input: A complex provenance expression cpe of the form pe1 ⊕ . . . ⊕ pek, a
quadruple q (s, p, o, n), a Graph Store GS (QGS , NGS)

Output: An INSERT update U ′

1: Let qp′ins = (tp′ins, n)
2: for all pos do
3: qp′ins.pos = NewVar( )

4: for all pei ∈ cpe do
5: gpi = upd_reconstruction(pei, q, GS, qp′ins)
6: gp′ = gp′ UNION gpi

7: U ′ = INSERT {qp′ins} WHERE {gp′}

As shown in Algorithm 3, we can determine the graph attribute (n) of qp′ins

using the fourth attribute of the input quadruple q (line 1). For example, we can

determine the graph <NewDoctor> from c7. Then, we spawn a new variable for

each position of qp′ins (lines 2,3), e.g., qp
′
ins = (?v1, ?v2, ?v3, <NewDoctor>).

The upd_reconstruction (Algorithm 4) is called for each pei expression to

reconstruct the corresponding graph pattern gpi (lines 4-6). The individual graph

patterns gpi, then form the graph pattern gp′ in the WHERE clause of U ′.
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As a �rst step of Algorithm 4, we compute the var subscript that exists in each

provpos and assign to it the value of qp′ins.pos. Note that if provpos = ⊥, then
there is no var subscript to be determined because this attribute has been created

through the assignment of a constant value.

Example 32. In our Motivating Example, the computed var subscripts for provp,

provo of pe
1 are qp11.p and qp

1
1.o, respectively. Then, we set qp

1
1.p = qp′ins.p = ?v2

and qp11.o = qp′ins.o = ?v3. Similarly, we compute the var subscripts qp21.p, qp
2
1.o

for provp and provo, respectively in pe2 expression. As a result, qp21.p = qp′ins.p =

?v2 and qp21.o = qp′ins.o = ?v3. Note that the attribute provenance provs is not

associated to any var subscript. �

Subsequently, we create the SubsPatterns set (line 4). This set contains the

di�erent quad pattern identi�ers (spm denotes the mth quad pattern identi�er in

the set) that appear in the subscripts of all provpos in the input pei. As de�ned

earlier, though, provpos is either of the form ⊥ or varSub(spe) (De�nition 12).

If provpos is of the �rst form, then there is no quad pattern to be identi�ed.

Otherwise, we determine the quad pattern identi�ers by checking the subscripts of

spe (join subscripts) and afterwards the varSub (var subscript). Note, however,

that we ignore multiple instances of the same quad pattern identi�er, i.e. each

quad pattern identi�er exists only once in SubsPatterns, and that we take into

account the occurrence order of the quad patterns, i.e. SubsPatterns is an ordered

set. Moreover, note that each element of SubsPatterns indicates a quad pattern in

the output gpi.

Example 33. Considering our Motivating Example, if pe1 is the given input, then

SubsPatterns set is {sp1, sp2}, where sp1, sp2 identify qp11 and qp12, respectively.

On the contrary, if pe2 is the given input, then SubsPatterns = {sp1}, with qp
2
1

being identi�ed by sp1. �

In addition, we create the ordered set PeGraphs (line 5) that contains the

graphs implied by the quadruple identi�ers of pei expression. In more detail, for

each quadruple identi�er existing in pei we identify and record its corresponding

graph. As with SubsPatterns set, we take into account only the �rst occurrence of

a graph.
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Example 34. Back to our Mmotivating Example, the pe1 expression contains the

quadruple identi�ers c1, c3, and therefore PeGraphs = {<Pathologist>,

<Side_E�ects>}. In the same manner, we compute that PeGraphs is equal to

{<Diabetologist>} for pe2 expression, because of the existence of c4. �

Algorithm 4 UPD_RECONSTRUCTION

Input: A simple provenance expression pei (provs, provp, provo), a quadruple q
(s, p, o, n), a Graph Store GS (QGS , NGS)

Output: A graph pattern gpi

1: for all provpos do
2: varSub = getVarSubscript(provpos)
3: valueOf(varSub) = valueOf(qp′ins.pos)

4: Create the set SubsPatterns {sp1, sp2, . . ., spl}
5: Create the set PeGraphs {na, nb, . . ., nd}
6: assignGraphs(SubsPatterns, PeGraphs)
7: for all provpos ∈ pei do
8: if provpos 6= ⊥ then
9: Create the set JoinSubs {joinSub1, joinSub2, . . ., joinSubx−1,
joinSubx}

10: Let joinSubr be the rth element in JoinSubs, and jprk be the k
th element

of joinSubr

11: r = 1 k = 1
12: while joinSubr 6= null do
13: while jprk 6= null do
14: if valueOf(jprk) = null then
15: valueOf(jprk) = NewVar( )

16: valueOf(jp
(r+1)
k ) = valueOf(jprk)

17: k++

18: r = r+2

19: else
20: valueOf(qp′ins.pos) = valueOf(q.pos)

21: for all spm ∈ SubsPatterns do
22: UnboundPos = getUnboundPos(spm)
23: for all qpij .pos ∈ UnboundPos do
24: qpij .pos = NewVar( )

25: gpi = qpi1 . qp
i
2 . . . . . qp

i
l

26: return gpi

So far, we know the quad patterns (SubsPatterns) that constitute the output

graph pattern gpi and the graphs (PeGraphs) appearing in them. Thus, since the
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two sets are ordered, we can properly relate a quad pattern with the correct graph

by applying the following simple rule: the kth graph of PeGraphs is assigned to the

graph attribute of the kth quad pattern of the SubsPatterns set; this is done using

the assignGraph function (line 6).

Example 35. Applying the assignGraph function for pe1 and pe2 of our Moti-

vating Example, results qp11 = (tp11, <Pathologist>), qp12 = (tp12, <Side_E�ects>)

and qp21 = (tp21, <Diabetologist>), respectively. �

At this point, we have to compute the values that appear in the s, p, o positions

of each created quad pattern. Hence, we exploit the information provided by the

provenance of each attribute (provs, provp, provo). We will explain how this is done

for an arbitrary attribute (speci�ed by pos) but, as shown in line 4, the process

is identical for the subject (pos = s), predicate (pos = p) and object (pos = o)

attribute.

If provpos = ⊥ (line 19), then the attribute pos of quadruple q was created via

a constant value. As a consequence, we override the value of qp′ins.pos and set it to

be the same as the value of this attribute in the input quadruple q (line 20). For

example, consider provs both in pe1 and pe2. In that instance, we set the value of

qp′ins.s to be equal to <hypertension>.

On the contrary, if provpos = varSub(spe) (line 8), then the attribute pos of

quadruple q was created via a construction. Hence, we have to determine if the

construction was the result of a �copy� or a join operation (see Chapter 5 for

details). To �gure out the kind of operation we use the JoinSubs set (line 9). As

it is implied by its name, this set contains the join subscripts (denoted as joinSub1,

. . .) that appear in the current provpos. In the simple case that JoinSubs has no

elements, we have a �copy� operation and the block in lines 10-18 will be skipped.

Hence, the var subscript value is su�cient to indicate the variable that appear in

this position.

Example 36. The attribute provenances provp and provo of pe
2 expression in our

Motivating Example witness that the predicate and object attributes of c7 have

been constructed via a �copy� operation. Then, the corresponding quad pattern

positions qp21.p (?v2) and qp21.o (?v3) have already assigned to a variable via the

var subscripts computation. �



66 CHAPTER 6. PROVENANCE ALGORITHMS

In the more complex case, where JoinSubs contains some elements, we process

them in order to appropriately set the variables of the quad patterns so that those

that are involved in a join to have common variable names (line 10). Recall that a

join subscript is a set of quad pattern positions that participate in a join, and that

each JOIN expression requires two join subscripts to be represented.

Assume that jprk denotes the kth element of joinSubr, then the element jprk

joins the element jpr+1
k ; joinSubr and joinSubr+1 have always the same number

of elements. If jprk has already an assigned variable name, it is implied that jprk

participates as well in the provenance of other attributes that have been already

processed or it determines a var subscript. Otherwise, we use the function NewV ar

to spawn a new variable name and assign it to jprk (lines 14-16).

Example 37. Unlike pe2 (see previous example), provp and provo of pe
1 expression

indicate that the predicate and object attributes of c7 have been constructed via

join operations. Then, we create the JoinSubs set that is both for provp and

provo equal to {joinSub
1, joinSub2}, where joinSub1 = {qp11.o} and joinSub

2 =

{qp12.s}. This implies that qp
1
1.o joins qp

1
2.s. Since, qp

1
1.o has an assigned variable

already (?v3), we set qp12.s = qp11.o = ?v3. �

Until now, we have assigned variable names to any quad pattern position that

is related somehow to a provpos. However, unbound quad pattern positions may

exist. A quad pattern position is called unbound, if it has not been assigned any

variable name. To �nd the unbound quad pattern positions, we search the created

quad patterns using the getUnboundPos function (line 22). The output of this

function is the UnboundPos set. In our example, UnboundPos = {qp11.s, qp
1
2.p,

qp12.o, qp
2
1.s}. Then, each element of this set is being assigned a �fresh�, random

variable (lines 24).

Finally, we combine the created quad patterns into a big join that forms the

returned graph pattern gpi (line 25). In our example, the reconstructed compatible

update is U ′:

INSERT {qp′ins}WHERE {qp11 . qp12 UNION qp21}

where:
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qp′ins: (<hypertension>, ?v2, ?v3, <NewDoctor>)

qp11: (?v4, ?v2, ?v3, <Pathologist>)

qp12: (?v3, ?v5, ?v6, <Side_E�ects>)

qp21: (?v7, ?v2, ?v3, <Diabetologist>)

Note that U ′ di�ers from the INSERT update U of our Motivating Example

only in the �lters that U employs (�glucose� in qp12 and <hypertension> in qp21) as

well as in their syntactic form (i.e. the variable names).

6.3 Correctness Results

As a consequence of the de�nition of compatible INSERT updates (De�nition 15),

the following theorem can be deduced:

Theorem 1. Let U and U ′ be UNION-free INSERT updates. If U ′ is compatible

to U (U  U ′), then U is also compatible to U ′ (U ′  U).

Proof. Assume that U is of the form U : INSERT {qpins} WHERE {gp1} and U ′ is

of the form U ′: INSERT {qp′ins} WHERE {gp′1}. If U ′ is compatible to U , then it

is implied that there is a renaming such as qpins = qp′ins and gp
1 ∼ gp′1 (de�nition

of compatible INSERT updates). However, the de�nition of �lter-compatible graph

patterns (De�nition 14) implies that gp′1 ∼ gp1 as well. Then, qp′ins = qpins and

gp′1 ∼ gp1, and therefore U is a compatible INSERT update to U ′ (U ′  U).

Lemma 1. Let U be an INSERT update and U ′ be a compatible INSERT update of

it. U ′ was created via the Update Reconstruction algorithm with given input (cpe,

q, GS), where q (s, p, o, n) is a result quadruple of U , cpe is a complex provenance

expression that belongs to the provenance of q (as computed by the Provenance

Construction algorithm) and GS is the Graph Store where U was evaluated against.

Then, U ′ di�ers from U in its syntactic form (variables' names) and in the �lter

conditions that U may employ.

Intuitively, we want to prove that U ′ contains a consistent renaming of the

variables that appear in the quad pattern positions of U . For example, assume that
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valueOf(qpins.p) = valueOf(qp12.s) = ?x in U , then we will prove that valueOf

(qpins.p) = valueOf(qp12.s) = ?y in U ′. Note that variables names are insigni�cant

since they play no role in the evaluation process.

Proof. Following the semantics of our proposed model (see Section 4), we consider

the following forms for U , U ′, cpe and pe:

- U : INSERT {qpins} WHERE {gp}

- U ′: INSERT {qp′ins} WHERE {gp′}

- cpe := pe1 ⊕ pe2 . . . ⊕ pem

- pe := (provs, provp, provo), where provpos is the provenance of attribute pos

We distinguish di�erent cases based on the cpe format to prove the correctness

of Lemma 1.

1. cpe := pe1 or simply cpe := pe

This is the case of UNION-free INSERT updates. In this case, we have to

examine the provenance of each constituent of pe (provpos) to determine

potential di�erences between U and U ′. The attribute provenance provpos

may have one of the following forms:

a. provpos := ⊥
This case implies that the attribute pos has been created through the

assignment of a constant value. However, the value of attribute pos in a

result quadruple q is determined through the evaluation of qpins.pos and

therefore valueOf(q.pos) = valueOf(qpins.pos) (line 20 in Algorithm

2). Additionally, every result quadruple q′ of U ′ will have the same

value in pos attribute as the quadruple q since valueOf(qp′ins.pos) =

valueOf(q.pos) (line 20 of Algorithm 4). Then, qp′ins.pos and qpins.pos

will have the same value in the speci�c position of the INSERT clause.

As a result, U and U ′ will always return exactly the same value for the

attribute pos no matter what variables exist in the WHERE clause.

b. provpos := varSub(spe)

This case implies that the attribute pos has been constructed through a

�copy� or a join operation. By de�nition the var subscript (varSub) rep-

resents the �rst quad pattern position, qpij .pos2, in the WHERE clause
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that shares the same variable with qpins.pos1, i.e., valueOf(qpij .pos2) =

valueOf(qpins.pos1) (see Section 4 for details). Line 13 of Algorithm 2

guarantees that. In addition, line 3 of Algorithm 4 assures that the quad

pattern position qp′kl .pos4, denoted by the varSub, will have the same

value as qp′ins.pos3, i.e., valueOf (qp′kl .pos4) = valueOf(qp′ins.pos3).

Moreover, lines 2 (Algorithm 4), 14 (Algorithm 2) imply that qpij .pos2

= qp′kl .pos4, i.e., i = k, j = l and pos2 = pos4, and qpins.pos1 =

qp′ins.pos3, i.e., pos1 = pos3. Therefore, qp′ins.pos3, qpins.pos1 and

qp′kl .pos4, qp
i
j .pos2 refer to the same quad pattern positions and dif-

fer only in the variables' names that they employ. As a consequence, we

have to examine the di�erent forms of spe:

i. spe := ci

This is the case of �copy� operation. In this case, there is only

one quad pattern position in the WHERE clause that contains the

same variable with qpins.pos1 and it is mapped to a constituent

of ci through the evaluation process (lines 4, 20 of Algorithm 2).

Since this quad pattern position is unique it will coincide with the

varSub qpij .pos2, which has already been proved that refers to the

same quad pattern position as qp′kl .pos4.

ii. spe := (ca joinSub1 � joinSub2 cb) . . . joinSubx−1 � joinSubx cd

This is the case of a join operation. A joinSubr is a set of quad pat-

tern positions that participate in a join. Then, two join subscripts

(e.g. joinSubr−1, joinSubr) are used to describe the existing joins

between two operands of a JOIN expression; the values of the cor-

responding quad pattern positions in the two sets have to be equal

(see Section 4 for details). In Algorithm 4, lines 9-18 claim the

previous statement, whereas Algorithm 2 ensures it in lines 5-12.

Moreover, line 9 in Algorithm 2 and lines 9-10 in Algorithm 4 as-

sert that the join subscripts of U and U ′ will refer exactly to the

same quad pattern positions.

Until now, we have proved that each quad pattern position of INSERT

and WHERE clause of U that is associated somehow with an attribute
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provenance provpos of pe, will also appear in the INSERT or WHERE

clause of U ′. Nevertheless, the same quad pattern positions may have

di�erent variables' names in U and U ′. The rest of quad pattern posi-

tions of U may contain a constant value or a variable. These positions

are being characterized as unbound quad pattern positions in U ′. Then,

we distinguish the following cases:

A. An unbound position of U ′ contains a constant value in U

This is a �lter condition. According to Algorithm 4 every unbound

quad pattern position is being assigned a new random variable (line

24). Then, U ′ will return for this quad pattern position the maxi-

mum number of results that match this variable including the con-

stant value too.

B. An unbound position of U ′ contains a variable in U

Following the previous consideration we have that an unbound po-

sition of U ′ is being assigned a new random variable (line 24 of

Algorithm 4). Then, U ′ will return for this quad pattern position

the same evaluation results as U .

2. cpe := pe1 ⊕ pe2 . . . ⊕ pem

A cpe expression of this form consists of individual simple provenance expres-

sions (pex) that are constructed through Algorithm 4 and combined using the

operator ⊕ (lines 2,3 of Algorithm 1). Then, the proof for this form is traced

back to the previous case.

Eventually, we conclude that U ′ is a �lter-free version of U with respect to cpe that

may di�er from it in the variables' names that they employ.

Corollary 1. Let U be an INSERT update and U ′ be a compatible INSERT update of

it, created via the Update Reconstruction algorithm with given input (cpe, q, GS);
q (s, p, o, n) is a result quadruple of U , cpe is a complex provenance expression

that belongs to the provenance of q (as computed by the Provenance Construction

algorithm) and GS is the Graph Store where U was evaluated against. Let also QU

and QU ′ be the result sets of U and U ′ respectively. Then q ∈ Q′U .
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Proof. As a consequence of Lemma 1, U ′ returns a set of quadruples (QU ′) that

contains all quadruples of the result set of U (QU ) that are related to at least one

simple provenance expression pei of cpe; q is related to every pei as implied by the

hypothesis of this corollary. As a result, q ∈ QU ′ .

The following theorem (Theorem 1) proves that the output of Algorithm 3 in

the previous Section is compatible with the original INSERT update that created

the input quadruple. Thus, the intended semantics of a provenance expression,

as given in Section 5, are correctly recorded by Algorithm 1 (Section 6.1), and

interpreted by Algorithm 3 (Section 6.2).

Theorem 2. Let U be an INSERT update evaluated on the Graph Store GS (QGS ,
NGS), q a result quadruple and cpe a complex provenance expression that belongs

to the provenance of q as computed by the Provenance Construction Algorithm.

Assume that we run the Update Reconstruction Algorithm with input (cpe, q, GS)
and we get as output the INSERT update U ′. Then, U ′ returns q among other

quadruples and U  U ′.

Proof. In Corollary 1 we have proved that q belongs to the result set of U and U ′

as well. Then, it is su�cient to prove that U ′ is a compatible INSERT update to

U . By de�nition, an INSERT update U ′ is compatible to an INSERT update U if

there is a renaming of variables in U ′, such as qp′ins = qpins and for each gp′i in U ′

there is a �lter-compatible gpi in U (De�nition 5). In Lemma 1 we proved that U ′

is a �lter-free version of U with respect to cpe and these two updates may di�er

only in their variables names. Consequently, we prove that U  U ′.

6.4 Complexity Analysis

The complexity of Provenance Construction algorithm (Algorithm 1) is consid-

ered with respect to a) the update size and b) the size of the input Graph Store.

The update size refers to the number of quad patterns in the WHERE clause.

The complexity regarding this parameter is linear, namely O(m) where m is the

number of quad patterns. To see this, note that we have to execute lines 2-17 of

Algorithm 2 three times, where each execution running for one evaluated position
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of qpins (s,p,o). Each of these runs costs O(mi), where mi is the number of quad

patterns in the input gpi that participate in a join. The algorithm runs for all qpi

of the WHERE clause, so, in the worst-case, where all quad patterns are involved

in joins, we have that the total computational cost is O(3 ·
∑

imi) = O(m).

The size of the Graph Store refers to the number of quadruples that exist in

the Graph Store, more speci�cally in QGS , where the input INSERT update will

be evaluated. In this case, the complexity is O(logR), where R is the number of

quadruples that exist in the Graph Store. More speci�cally, we need O(logR) time

to compute the corresponding quadruple identi�ers resulting from the evaluation

of a quad pattern, assuming that quadruples have been sorted based on their

identi�er (binary search). Additionally, we need three accesses in the Graph Store

to compute the s, p, o attributes of each quadruple; each access in the Graph Store

costs O(logR) time (totally 3 ∗ O(logR)). Therefore, the total time complexity is

O(logR) + 3 ∗O(logR) = 4 ∗O(logR) = O(logR).

The complexity of Update Reconstruction algorithm (Algorithm 3) is considered

regarding the size of the input cpe expression. In particular, we are interested in

the number of unions (as determined by the appearance of ⊕) that exist in cpe.
Recall that cpe is of the form cpe := pe1 ⊕ . . . ⊕ pem. Then, each operand pei

of a union operator requires time O(xi), where xi is the number of quad patterns

that exist in pei. Hence, the complexity is O(
∑

i xi) = O(m), where m is the total

number of quad patterns in the WHERE clause.



Chapter 7

Related Work

Data provenance has been widely studied in several di�erent contexts such as

databases, distributed systems, Semantic Web etc. In [11], Moreau explores the

di�erent aspects of provenance in the Web. Likewise, Cheney et al. [6] provide

an extended survey that considers the provenance of query results in relational

databases regarding the most popular provenance models.

Research on data provenance can be categorized depending on whether it deals

with, updates [8, 9, 17, 24, 25] or queries [7, 8, 9, 12, 13, 14, 17, 26]. Com-

pared to querying, the problem of provenance management for updates is less

well-understood.

Another important classi�cation is based on the underlying data model, SQL [7,

8, 17] or RDF [9, 12, 13, 14, 25, 26], which determines whether the model deals with

the relational or SPARQL algebra operators respectively. Despite its importance,

only a few works deal with the problem of update provenance, and even fewer

consider the problem in the context of SPARQL updates [25].

A third categorization stems from the expressive power of the employed prove-

nance model, e.g., how, where, why, lineage etc. Since our proposed model is

based on how and where provenance models, we discuss them thoroughly here.

Where provenance is a popular data provenance model [8, 9, 14, 17, 24, 16] that

describes where a piece of data is copied from, i.e., which quadruples contributed

to produce a result quadruple in our context. How provenance describes not only

the quadruples used for producing an output, but also how these source quadru-

ples were combined (through operators) to derive it. In [7], provenance semirings
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are used to record how provenance for the relational setting through polynomials;

whereas [12, 13, 14] showed how to apply provenance semirings for the RDF/S-

PARQL setting. Our provenance model is inspired by these models (see 2.3 for

details).

Another relevant dimension of provenance is granularity. In standard relational

settings, three granularity levels are admitted (attribute, tuple and table), but most

works deal only with tuple-level provenance (an exception is [17], which deals with

all levels of provenance). Our approach deals both with triple (aka tuple) and

attribute level provenance.

An important work on update provenance for the relational setting is [17], which

focuses on the copy and modify operations. The proposed formalization is based

on �tagging� tuples using �colors� propagated along with their data item during

the computation of the output. The provenance of the output is the provenance

propagated from the input item(s). Our model follows this approach to capture

the provenance of a quadruple attribute, but uses identi�ers instead of colors, as

well as a more expressive provenance model.

In the context of SPARQL update provenance, there are no works that consider

abstract provenance models. Instead, RDF named graphs are used to represent

both past versions and changes to a graph [25]. This is achieved by modelling

the provenance of an RDF graph as a set of history records, including a special

provenance graph and additional auxiliary versioning named graphs.

Moreover, our work builds on [14]. This work presents how abstract relational

data provenance models can be adapted to capture the provenance of the results

of positive SPARQL queries, i.e., without SPARQL OPTIONAL clauses (see Sec-

tion 2.3 for details). The present work extends this model in order to address the

extra challenges associated with provenance management of SPARQL updates (as

opposed to queries).

Another major line of work deals with the di�erent ways in which provenance

can be serialized and modelled in an ontology in the form of Linked Data ( [27,

28, 29]). In [28], Hartig proposes a provenance model that captures information

about Web-based data access as well as information about the creation of data.

Moreau et al. created the Open Provenance Model [29] that supports the digital
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representation of provenance for any �thing�, no matter how it was produced. In

this context, PROV was released as a W3C reccomendation [27]. The goal of

PROV is to enable the wide publication and interchange of provenance on the Web

and other information systems. PROV enables one to represent and interchange

provenance information using widely available formats such as RDF and XML.
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Chapter 8

Conclusions and Future Work

As the volume of data made available in the Web is continuously increasing, the

need for capturing and managing the provenance of such data becomes all the more

important. Our work addresses this problem for RDF data, by proposing a novel,

�ne-grained and expressive provenance model to record the triple and attribute-

level provenance of RDF quadruples generated through SPARQL INSERT updates.

Our work follows the approach of [9, 14], where the use of abstract identi-

�ers and operators is proposed. Abstract identi�ers are uniquely assigned to RDF

quadruples, whereas abstract operators describe how a result quadruple was de-

rived. In addition, we introduce the notion of quad pattern positions, which allows

the identi�cation of the attributes of quad patterns that were involved in a join

or a �copy� operation. Hence, identi�ers, operators and quad pattern positions

are combined to create abstract algebraic expressions to annotate RDF quadru-

ples. Our model is richer than standard query provenance models since it captures

�ne-grained provenance both at triple and attribute level.

Our main contribution is the exploitation of the expressive power of the pro-

posed provenance model to introduce the feature of reconstructability. Recon-

structability prescribes that the information stored in the provenance of a quadru-

ple allows the identi�cation of an INSERT update that is almost identical (in the

sense of compatibility) to the original one that was used to create the implied

quadruple. This can be viewed as a stronger form of how provenance. On the

algorithmic side, we introduce two algorithms that allow recording the provenance

information, as well as interpreting it to identify how the quadruple found its way
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in the Graph Store, through the identi�cation of a compatible INSERT update as

described above.

We are currently working on a �rst implementation of our ideas on top of

the Virtuoso database engine that aims to test the correctness of the proposed

algorithms. In the future, we plan to experimentally evaluate the performance of

our model with more complex data and real world applications, e.g., health care, as

well as its performance and its scalability for large INSERT updates and/or updates

with a large output. We also plan to consider FILTER and non-monotonic SPARQL

operators. This would lead to a stronger version of reconstructability, i.e., being

able to reconstruct an INSERT update that is equivalent (modulo variable naming)

to the original one. In addition, we will study the SPARQL DELETE, CREATE and

DROP operations since all SPARQL operations can be written as a combination of

INSERT, DELETE, CREATE and DROP statements. Finally, we intend to explore

the use of PROV and CIDOC CRM [30] approaches for representing our model in

the form of Linked Data.
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