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Abstract

The  purpose  of  this  thesis  is  the  demonstration  of  the  utilization  of  a  polarimeter
developed to measure extremely weak optical rotations with unprecedented sensitivity. In
this work, the samples of interest were chiral vapors. More specifically, we focused on
methyl lactate. The measurements were based on a Cavity Ring-Down scheme, employing
two signal reversals, allowing us to obtain results for the absolute optical rotation of this
gaseous sample. We acquired measurements with a sensitivity of ~50  μdeg/√Hz, while
state-of-the-art  commercial  polarimeters  can  only  reach  a  sensitivity  down  to  ~5
mdeg/√Hz.  This work opens the way for measurements of the chiral optical rotation of
ethyl-1-d-benzene, which is expected to have small optical activity, as it is chiral only due
to isotopic substitution.



1: Theory

1.1 Gaussian Beams

The  mathematical  model  which  represents  the  distribution  of  the  electric  field  of
propagating light is what we refer to as Gaussian beam. The vast majority of optical beams
that propagate in free space can be described as transverse electric and magnetic (~TEM),
which means that the field components are perpendicular to the propagation direction. To
obtain  the  aforementioned  model  concerning  beams  created  by  lasers,  we  engage  an
approximate analytic solution to the wave equation under determined conditions. 

We begin with the form of the electric field E. The wave equation in this case is:
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We know that the field propagates with a velocity of c in free space. Therefore, the 
solution we are searching for, must be of the form: E(x , y , z)=E0ψ (x , y , z )e−i(kz−ωt)
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is excluded, since the variation with respect to the phase factor is very slow.

The solution of (1.1.3) gives E. 

The magnetic field B, can be obtained via solving: ∇×B=−∂E
∂ t

(1.1.4).

The TEMm,p modes can thus be constructed by combining the results of (1.1.3) & (1.1.4):
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where r2=x2+y2, and (x,y,z) are the Cartesian coordinates. We have considered z to be the 
propagation direction. 

Schematically, the cross sections of some of the first TEMm,p modes are: 



Figure 1: Cross sections of TEMm,p modes

Image from: https://www.edmundoptics.com.tw/knowledge-center/application-notes/lasers/laser-resonator-modes/ 

Furthermore:

• Hm & Hp are the Hermite polynomials of order m & p respectively

• w(z) is the spot size, or the diameter of the beam that can be observed at any point 

on the z-axis, given by: w (z)=w0 √1+(
z

z0

2
) (1.1.6)

• w0 is the minimum spot size (or waist), meaning the diameter of the beam at the 
focus 

• R(z) is the radius of curvature, given by: R(z)=z [1+( z

z0

)
2

] (1.1.7)

• z0 is the Rayleigh range, a constant showing the distance from the focus where 

approximately w(z)=w0, given by: z0=
πw0

2

λ0

(1.1.8) where λ0 is the wavelength of 

the light in free space

The quantities mentioned above are included in the following Figure, in which 2θ is the 
total angular spread:



Figure 2: The width of a Gaussian beam as a function of z along the beam

Image from: http://www.optique-ingenieur.org/en/courses/OPI_ang_M01_C03/co/Contenu_08.html

1.2 Polarization

The electric  field  of  light  as  an electromagnetic  wave oscillates  perpendicularly  to  the
propagation direction. Light is considered to be unpolarized if the direction of its electric
field fluctuates randomly in time. In the case of a well defined direction of the electric
field, light is considered to be polarized. Lasers are the most common source of polarized
light. 

There are three categories of polarization depending on the orientation of the electric field
of polarized light:

1. Linear – E is confined to a single plane along the propagation direction.

Figure 3: The electric field of linearly polarized light, confined to the x-z plane, along the propagation
direction

Image from: https://www.edmundoptics.com/knowledge-center/application-notes/optics/introduction-to-polarization/

http://www.optique-ingenieur.org/en/courses/OPI_ang_M01_C03/co/Contenu_08.html
https://www.edmundoptics.com/knowledge-center/application-notes/optics/introduction-to-polarization/


2. Circular –  E consists of two linear components that are perpendicular to each other,
equal in amplitude, but have a phase difference of  π/2.  As a result,  E rotates in a circle
around the propagation direction. It is called left- or right- hand circularly polarized light
(~ LCP/RCP), depending on the direction of rotation.

Figure 4: The electric field of circularly polarized light 

Image from: https://www.edmundoptics.com/knowledge-center/application-notes/optics/introduction-to-polarization/

3. Elliptical –  E describes an ellipse,  which is a result of the combination of two linear
components with different amplitudes and/or a phase difference that is not π/2. 

Figure 5: The electric field of elliptically polarized light 

Image from: https://www.edmundoptics.com/knowledge-center/application-notes/optics/introduction-to-polarization/

A noteworthy fact is that elliptical polarization is the most general description of polarized
light.  Linear  and  circular  polarized  light  are  viewed  as  special  cases  of  this  general
polarization type.

Studying and manipulating the polarization of light can get difficult. However, there are
certain  tools  that  have  been  developed so  as  to  simplify  the  process.  An outstanding
example is Jones Calculus, which we will further discuss further below.

https://www.edmundoptics.com/knowledge-center/application-notes/optics/introduction-to-polarization/
https://www.edmundoptics.com/knowledge-center/application-notes/optics/introduction-to-polarization/


1.3 Jones Calculus

In this context, Jones vectors represent polarized light and Jones matrices represent the
various  linear  optical  elements,  such  as  polarizers  and  phase  retarders.  When  light
traverses  such  an  element,  the  resulting  polarization  of  the  emerging  light  can  be
calculated by the product of the Jones matrix of the optical element and the Jones vector of
the incident light. It is critical to remember that Jones Calculus can be utilized only in the
case of fully polarized light. Concerning this work, light is very close to satisfying this
condition, and consequently, we consider Jones Calculus to be applicable.

Firstly, we designate the electric field:

E=(E x(t)
E y(t ))=(

E0 xe
−i(kz−ωt−φ x)

E0 ye
−i(kz−ωt−φ y))∼(E0 xe

iφx

E0 ye
iφ y) (1.3.1)

The Jones vectors that describe the three different polarization types are:

1. Linearly polarized: Elinear=(ab) (1.3.2)

    For instance, if the polarization is in the x direction: 

  Elinear=(1

0)   (1.3.3), also called horizontal.

    If it is in the y direction: Elinear=(0

1) (1.3.4), called vertical. 

2. Circularly polarized: Ecircular=
1

√2 (
1

±i) (1.3.5), where the (+) refers to LCP and the (-) to

RCP.

3. Elliptically polarized: Elinear=( a

be
iφ) (1.3.6).

The matrix describing the polarization rotation is the following:

R(θ)=(cosθ −sinθ

sinθ cosθ ) (1.3.7)

When it comes to the (2×2) Jones matrices that describe optical elements, we have:
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0 0) (16) Vertical: (0 0

0 1) (1.3.8)
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➢ Quarter-wave plates:
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As mentioned above, the multiplication of the Jones vectors representing the incident light
and matrices such as the ones listed here, leads to the calculation of the final effect on the
light  polarization  for  any  given  optical  elements  compilation.  We  should  take  into
consideration that the integrated intensity measurement does not correspond to the field
itself. It is connected to the surface of the given system for the detection of light.
            
            
1.4 Optical Cavities

An  optical  cavity  is  an  arrangement  of  optical  components,  usually  high  reflectivity
mirrors, which enables a beam of light to circulate in a close path again and again. We are
particularly interested in the mirror reflectivity, since we are aiming for a high amount of
round trips. At the same time, after each round trip, there is a small, but measurable, light
leakage that is detected by a diode system. 

Cavities can be constructed in various setups, all of which could be discerned between two
main types:

• Standing - In this case, light bounces back and forth between two end mirrors

Figure 6: A simple standing cavity with a curved folding mirror

• Running -  This  category has  no end mirrors,  and the  light  can circulate  in  two
different directions



Figure 7: A four-mirror bow-tie running cavity

The main difference is  the amount of  times light  traverses every cavity element.  That
number is 2 in the first case, and 1 in the second. In either case, the cavity can include
additional optical components that are traversed in every round trip. 
            
One can realize the significant applicability of cavities when attempting to measure light
absorption in low absorbance samples. A single pass measurement in this case would not
be the solution, since the intensity signal would be altered too vaguely to detect.

We shall now examine the effect of a cavity on the light intensity in such a situation. For
instance,  in  a  two-mirror  cavity,  supposedly  of  mirrors  M1 and  M2,  with  mirror
reflectivities R1 and R2 respectively, where a light pulse of initial intensity I0 is fired and
enters  the  cavity  through  M1,  we  could  detect  the  light  intensity  signal  by  setting  a
photodetection  system  right  after  M2.  As  discussed  previously,  due  to  the  fact  that

R1 , R2≠1 , after each round trip, there will be a detectable leakage of light. After n round
trips, the light intensity will have be of the form:

In=(R1⋅R2)
n
I0=S

n
I0=SIn−1 (1.4.1)

In order to construct a formula where I is a function of time, we need to determine the
time it takes for light to perform a complete round trip, called τrt. The lengths of the most
commonly used cavities are the order of a meter. As a result, τrt ~ ns. 

If we set n= t

τ rt

, (1.4.2) becomes continuous: I (t )=SI (t−τ rt)  (1.4.3).

We now apply Taylor expansion, which leads to: dI
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=−

1−S

τ rt

I  (1.4.4).

At  this  point,  we  can  define  τ rd=
τ rt

1−S
(1.4.5),  where  τrd is  a  useful  quantity  called

ringdown time. 

We substitute (1.4.5) to (1.4.4): dI
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1

τ rd

I  (1.4.6), 

which is a simple differential equation with a solution of the form: I (t )=I0 e
− t

τrd  (1.4.7)



One final step is to multiply the light intensity that traverses M2 with its transmissivity, T2:

I (t )=T 2 I 0e
− t

τ rd (1.4.8)

We get a similar result in the case of a four-mirror bow-tie cavity. The only difference is
found in τrd, since S=R1R2R3R4, where Ri is the reflectivity of the ith mirror, and here, i=1,..,4.
Moreover, the final result in this case is multiplied with the transmissivity T4 of the fourth
mirror. Thus: 

I (t )=T 4 I0 e
− t

τrd (1.4.9), where τ rd=
τ rt

1−R1 R2 R3 R4

.

Adding a sample of absorbance A into the cavity leads us to the following results:

In=(R1⋅R2 A)n I 0=S
n

A I 0=SA I n−1 (1.4.10) and dI
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I ⇔
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1
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It  becomes  quite  clear  that  different  ringdown  times  are  subsequent  to  different
absorbances. It is now fairly easy to measure the absorbance:

A=

1−
τ rt

τ rd , A

1−
τ rt

τ rd

 (1.4.12)

The figure below includes three examples of ringdown signals:

  
Figure 8:   Ringdown signals with a difference in  ringdown times



The red curve represents the signal recorded while the cavity is empty, while the gray and
black curves represent the signal obtained when media of absorbances A1 and A2, where
A1<A2, respectively are inserted into the cavity.

The signals of our studies are characterized by the form of the next figure:

Figure 9:   Ringdown signal with an optically active medium inside the cavity

That is because our samples of interest do not just absorb some portion of the light when
added  into  our  four-mirror  cavity.  They  additionally  generate a  rotation  to  the
polarization of light.  This is a rotation of an angle φ per pass, and it cannot be observed
unless  we  insert  a  linear  polarizer  in  the  intermediate  space  between  M4 and  the
photodetection system. 

This type of intensity signals is described by:

I (t )=T 4 I0 e
− t

τrd cos
2(

φt

τrt

)  (1.4.13). 

Substituting φ/τrt with the angular frequency, we get:

I (t )=T 4 I0 e
− t

τrd cos
2(ωt )  (1.4.14).



1.5 Mode Matching

An important aspect of the nature of light that we must keep in mind when constructing
an optical cavity, is the beam’s tendency to broaden. This is even more critical when the
path length is significantly greater than the Rayleigh length. Cavities such as the ones we
usually work with are built with the purpose of reaching several dozens of round trips.
Thus, the path length of the beam reaches the order of a kilometer, which naturally leads
the beam broadening to a point where its waist would be quite larger than the surface of
the cavity mirrors. As a result, almost all of the beam light would escape. 

We come to the realization that a cavity must be carefully mode matched to be functional.
In our case, that means the curvature radius of the beam must be matched to the curvature
radius at the cavity mirrors. The beam originating from the laser must be mode matched
before it even enters the cavity. This is achieved by including suitable lenses in specific
distances between the laser and the cavity. That way, the beam waist coincides with the
position of the flat input coupler, so the curvatures of the beam and the coupler match at
their meeting point. The interior of the cavity includes both flat and spherical mirrors to
ensure mode matching occurs at each point.

In general, a cavity mode is a field distribution that reproduces itself in relative shape and
in relative phase after a round trip through the system. We can use this definition and the
application of  the so called ABCD law in order to find the characteristic  modes of an
optical cavity. 

We know a light wave E can be represented by a column vector and the effect of an optical
component on E has the form of a 2×2 matrix. 

We need to construct the matrix representing a round trip through the cavity. To that end,
we make the  assumption that  the  characteristic  modes  of  our cavity  are the  Hermite-
Gaussian beams, and we demand that the complex beam parameter q repeats itself after
each round trip.

Note that q is given by: 1

q
=

1

R
−i

λ

πw
2

(1.5.1)

In our case, we utilize the following matrices:  P=(1 d

0 1)  (1.5.2) and  M=(
1 0

−
2

R
1)

(1.5.3), which represent the propagation of light in free space and its reflection by a mirror,
respectively. 

We also have the curvature radii of our four mirrors, being R1, R2, R3, and R4. In addition,
the longer cavity arm has a length of d1 and the shorter has a length of d2.  All of the
components needed for the construction of the ABCD matrix characterizing our system
are now assembled. Therefore:

M tot=M (R1)P(d1)M (R2)P(d2)M (R3)P(d1)M (R4)P(d2)⇔M tot=(A B

C D)  (1.5.4).



By acting on E with Mtot, we get the position and the inclination of the beam after each
round trip. We recall that q must transform into itself after a round trip, which means the
condition below must be satisfied:

q(z1+round trip)=q(z1)  (1.5.5), where q(z1) is the complex parameter of the initial beam. 

We now apply the ABCD law to find the left part of the equation:

q(z1+round trip)=
Aq(z1)+B

Cq(z1)+D
⇔

1

q(z1)
=

C+D
1

q(z1)

A+B
1

q(z1)

  (1.5.6)

Mtot must be unitary. Thus, solving for 1/q(z1), we are led to the following system:

B(
1

q
2
)+2(

A−D

2
)(

1

q
)−C=0  (1.5.7) and AD−BC=1  (1.5.8).

Every set of the parameters A, B, C, and D that satisfy (1.5.7) & (1.5.8), leads to a different
array  of  mirrors  in  certain  distances  that  ensure  the  occurrence  of  mode  matching.
Needless to say this is a mathematical approach, and it is practically impossible to have a
perfectly mode matched optical cavity in realistic setups. 

1.6 Birefringence

In general,  birefringence is an optical  property related to a difference in the refractive
index of a material. We discern two types of birefringence:

• Linear - The refractive index depends on the polarization direction. 

There  are  two  perpendicular  axes,  the  fast  and  slow  axes,  and  each  one  is
characterized by a refractive index, nf and ns respectively. We will examine how a
beam of polarized light is affected when traversing a linearly birefringent medium.
If  the  light  is  initially  polarized  at  an  angle  θ,  with  respect  to  the  fast  axis,
coinciding with the horizontal axis, we have:

             

            E=(cosθsinθ)  (1.6.1), which can be analyzed into: E=cosθEf+sinθ Es (1.6.2), 

             where Ef and Es are the components of the fast and slow axis of the polarization.
             After traversing a certain distance inside the medium, let’s say d, E becomes:

E '=cosθEf e
iknf d+sinθ Ese

ikns d⇔E '=e
iknf d( cosθ

sinθe
ik (ns−n f)d)⇔E '∼( cosθ

sinθe
iφ)  (1.6.3),

where  φ  is the phase picked up by the electric field during the aforementioned
process.



Thus, we understand that linear birefringence causes a fundamental change in the
polarization  of  light:  linearly  polarized light  transforms to  elliptically  polarized
light after traversing a linearly birefringent medium.

Figure 10: The effect of linear birefringence 

Image from: https://www.researchgate.net/figure/a-Magneto-optical-Faraday-effect-b-Magnetic-linear-birefringence_fig3_254877783

• Circular – The phenomenon in which there is a difference between the refractive
indices of a material for right- and left- circularly polarized light.

Suppose the refractive index of the right-circularly polarized light is represented by
n+ and n- is the corresponding characteristic for the left-circularly polarized light.
The effect of circular birefringence on a beam of light is examined in the next few
steps. Firstly, we consider the light polarization is along the x-axis, so:

E=(1

0)  (1.6.4) that can be analyzed into: E=
1

√2
[Ercp+Elcp ]  (1.6.5), where:

Ercp=
1

√2(
1

−i)  (1.6.6) and Elcp=
1

√2 (
1

i)  (1.6.7).

Again, we are looking for the form of the electric field after the beam has covered a
certain distance inside a circularly birefringent medium:

E '=
1

√2
[Ercp e

ikdn+¿+Elcpe
ikdn−¿]⇔E '=e

ikd (n+¿+n−¿)(cos[
k (n+¿−n−¿)

d
]

sin [
k (n+¿−n−¿)

d
]) (1.6.8).

We therefore deduct that the effect of circular birefringence on linearly polarized
light is the rotation of the initial electric field by an angle k(n+ - n-)/d.

https://www.researchgate.net/figure/a-Magneto-optical-Faraday-effect-b-Magnetic-linear-birefringence_fig3_254877783


            

                        

Figure 11: The effect of circular birefringence

Image from: https://www.researchgate.net/figure/a-Magneto-optical-Faraday-effect-b-Magnetic-linear-birefringence_fig3_254877783

There are at least two sources of linear and one source of circular birefringence that can
affect our optical setup. 

The main source of linear birefringence  in our cavity is a CeF3 magneto-optical crystal.
That happens if the beam does not propagate through the crystal in a path that is parallel
to the latter’s axis, and it can be handled via proper alignment. Linear birefringence can
also be introduced if the angle of the incident beam on a mirror is greater than the critical
angle. Since our mirrors are multi-layered, this problem can be dealt with if we ensure the
angles of incidence are quite low, at  an order of a few degrees,  during the process of
designing the cavity.

A potential source of circular birefringence is the non-planarity that can occur if any of our
cavity’s four mirrors is somehow found off the plane that is defined by the remaining
three. 

Additionally, there are sources of birefringence that cannot be controlled so easily, such as
particles  of  dust  in  the  cavity  environment  that  interfere  with  the  beam  of  light,  or
vibrations caused by mechanic or human motions taking place closely from the cavity. 

As one could imagine, avoiding every source of birefringence is an unrealistic expectation.
However, its effects can be minimized, if we include significant Faraday rotations in our
measuring method. 

https://www.researchgate.net/figure/a-Magneto-optical-Faraday-effect-b-Magnetic-linear-birefringence_fig3_254877783


1.7 Faraday Effect

The  Faraday  effect  is  a  magneto-optical  phenomenon  that  causes  the  rotation  of  the
polarization plane of a light beam traversing a material, due to the existence of a magnetic
field. It  is  named after Michael Faraday, who discovered that the polarization plane is
rotated when the light path and the direction of the applied magnetic field are parallel. 

If a light beam traverses a medium of length l and the applied magnetic field is of the form
B(z)=f (z ) ẑ ,  supposing  the  propagation  direction  is  along  the  z-axis,  the  Faraday

rotation can be calculated by:  φF=∫
0

l

Vf (z)dz , (1.7.1)

where V is the Verdet constant, a property of the medium, given by: V=
dn

dλ

λ

2c
2

q

m
 (1.7.2)

and:

• n is the refractive index of the medium
• q is the electron charge
• m is the electron mass

It is understandable that the magnitude of the rotation depends upon the strength of the
magnetic field, the nature of the transmitting medium, and the Verdet constant.

The most astonishing characteristic of this effect,  is that the direction of the rotation it
causes  is  the  same as  the  direction  of  current  flow in  the  wire  of  the  electromagnet.
Therefore,  the  sign  of  the  Faraday  rotation  is  not  affected  by  a  change  in  the  light’s
propagation direction. The only parameter that can cause a change in the sign of φF, is the
applied magnetic field. Schematically:

Figure 12: Polarization rotation due to the Faraday effect

Image from: https://www.holmarc.com/faraday_effect_laser.php

https://www.holmarc.com/faraday_effect_laser.php


1.8 Optical Activity

Optical activity is the ability of a substance to rotate the plane of polarized light.  Any
substance or compound is said to be optically active when linearly polarized light is being
rotated when passing through it. Optically active substances are classified in two types:

1. Dextrorotatory –  These substances rotate the plane-polarized light to the right or
clockwise direction. They are denoted by the prefix d or (+). 

2. Levorotatory – The substances of this category rotate the plane-polarized light to the
left or counterclockwise direction. They are designated by the prefix l or (-).

The optical rotation is the angle by which the polarization plane is rotated when polarized
light traverses an optically active material. It is assigned a positive value if it is clockwise
with respect to an observer facing the light source, negative if counterclockwise. 

The following figure describes the phenomenon of optical rotation:

Figure 13: The effect of an optically active substance in plane-polarized light

Image from: https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book
%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_%28Soderberg%29/03%3A_Conformations_and_Stereochemistry/

3.06%3A_Optical_Activity

The intensity of optical activity is expressed in terms of a quantity called specific rotation,
given by:

a= θ

lρ
 or θ=αlρ  (1.8.1),

where α is the specific rotation, in units degrees

dm
gr

ml

 ,  θ is the angle of optical rotation, l is

the length of the light path through the sample, and ρ is the density of the optically active
ssubstance. 

https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg)/03%3A_Conformations_and_Stereochemistry/3.06%3A_Optical_Activity
https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg)/03%3A_Conformations_and_Stereochemistry/3.06%3A_Optical_Activity
https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Book%3A_Organic_Chemistry_with_a_Biological_Emphasis_v2.0_(Soderberg)/03%3A_Conformations_and_Stereochemistry/3.06%3A_Optical_Activity


1.9 Chirality

Chirality is a geometric property of asymmetry. It refers to a structure lack of symmetry
elements, such mirror plane and inversion symmetry. 

A  configuration is considered as chiral if it can be distinguished from its mirror image.
This  means  that,  a  chiral  object  and  its  mirror  image,  called  enantiomers,  cannot  be
superimposed to each other.
It does not take an effort to find a natural case of chirality. Our own body includes the
most easily recognizable example: human hands. This should not be surprising, since the
term itself originates from the Greek word “χειρ”, which translates to hand. Our left hand
is the mirror image of our right hand and vice versa, but when someone tries to place their
right hand on top of their left hand, they immediately come to the realization that they can
never coincide. The figure below clarifies this point:

Figure 14: Human hands as the perfect chirality example

Image from: http://spicyip.com/2015/09/patent-office-rejects-tofacitinib-patent-application-an-analysis-part-i.htm

From animal  or  sea  shells  to  the  weak nuclear  force,  there  are  countless  examples  of
chirality found everywhere in nature. Here, we present some examples of chiral molecules
we are all familiar with:

Figure 15: Examples of chiral molecules

Image from:   https://www.khanacademy.org/test-prep/mcat/chemical-processes/stereochemistry/a/chiral-drugs

https://www.khanacademy.org/test-prep/mcat/chemical-processes/stereochemistry/a/chiral-drugs
http://spicyip.com/2015/09/patent-office-rejects-tofacitinib-patent-application-an-analysis-part-i.htm


Chirality  generates  circular  birefringence.  Subsequently,  when  a  beam  of  light  passes
through  a  chiral  sample,  it  undergoes  optical  rotation.  The  sign  of  chiral  rotation  is
dependent  on  the  propagation  direction  of  the  beam  inside  the  sample  of  interest.
Schematically:

Figure 16: The dependence of the sign of chiral optical rotation on the propagation direction

Image from: https://www.fiberoptics4sale.com/blogs/wave-optics/99205446-faraday-effect

We must keep the reciprocal nature of chiral rotation in mind when designing the cavity
that is going to be used in such measurements. Standing cavities are unsuitable, due to the
fact that a beam of light in a cavity of this type traverses the chiral medium twice per
round trip, which leads to a null value in the total chiral rotation. Thus, we tend to make
use of running bow-tie cavities. Such cavities allow the beam to keep propagating in the
same direction when traversing the chiral medium. 

2: Experiment

2.1 Techniques

Our  goal  is  to  measure  rotations  in  the  polarization  plane  of  light  caused  by  chiral
samples.  However,  such  chiral  rotations  are  particularly  small,  at  the  order  of  a
microdegree,  which makes the detection process extremely difficult. In order to enhance
the obtained signal, we must increase the path length of the light through the sample. This
is achieved if utilizing a four-mirror bow-tie optical cavity, which allows the beam of light
to perform multiple passes through the chiral sample. 

Moreover, as mentioned above, we include a 4 mm long CeF3 magneto-optical crystal  in
one of our cavity’s arms, to exploit the Faraday effect. When we apply a magnetic field
that is parallel to the crystal, a Faraday rotation is introduced. This rotation, suppose θF, is
notably larger than the chiral rotation, φC, with a difference of approximately 4 orders of
magnitude. This is a tool that allows us to have a detectable signal, out of which we can
derive a measurement. It also eliminates the effects of linear birefringence. 

https://www.fiberoptics4sale.com/blogs/wave-optics/99205446-faraday-effect


The beating frequency becomes: ω=
(θF+φC )⋅c

L
(2.1.1), where c is the speed of light and L

is the total length of our cavity.

The main issue is that Faraday rotation cannot be determined with precision. This can be
handled  nevertheless.  A  four-mirror  bow-tie  cavity  can  support  two  distinct  counter-
propagating beams. An additional mirror out of the cavity can lead the back reflection of
the input coupler back inside the cavity, bringing in a second beam of light. These two
counter-propagating  beams,  that  we  will  refer  to  as  CW  (~clockwise)  and  CCW
(~counterclockwise),  perform  their  round  trips  in  the  cavity  simultaneously,  thus
undergoing the exact same effects that potential sources of noise or drifts could cause. The
importance of this aspect will be clarified soon. 

When passing through the  CeF3 crystal, the two beams pick up a Faraday rotation of the
same value and the same sign, since the Faraday effect is characterized as non-reciprocal.
Their propagation through the chiral medium has quite the opposite effect. Due to the
reciprocal character of chiral optical rotation, the two beams  pick it up with a difference in
the sign. 

The effect on the beating frequency is: ωCW=
(θF+φC)⋅c

L
and ωCCW=

(θF−φC)⋅c

L
(2.1.2).

Finally, we apply the method of magnetic reversal, which means that the direction of the
magnetic field is reversed after an adequate pulse number. Therefore, we obtain a second
set of beating frequencies, with a negative sign to the Faraday rotation. Each measurement
includes four different signals, and so we get four different beating frequencies:

ωCW (±B)=
(±θF+φC)⋅c

L
and ωCCW (±B)=

(±θF−φC)⋅c

L
(2.1.3).

As a consequence, the chiral optical rotation can be calculated by:

φC=
[(|ωCW (+B)|−|ωCCW (+B)|)−(|ωCW (−B)|−|ωCCW (−B)|)]⋅L

4 c
(2.1.4). 

This result proves why the aforementioned techniques were of critical importance. The
introduction of a magneto-optical crystal provides us with a measurable quantity.  The
existence of two counter-propagating beams of light inside the cavity allows us to take
advantage of  the Faraday effect  without  the need to determine the exact  value of  the
polarization rotation angle caused due to the crystal. Finally, magnetic reversal contributes
to the elimination of various noises and enhances the presence of chiral rotation.

2.2 Setup

The laser we employ throughout our experiment is a pulsed diode laser (RLTMPL-532-
500-3-19042759) of a 554 mW power, producing 5.83 nsec pulses at a repetition rate that
varies from 1 to 10 kHz.



Before the light beam emitted by the laser enters the cavity, it is mode matched with the
utilization of two lenses placed before the input coupler and a lens that is placed in the
path of the reflection. The latter is used for a correction in the path difference the main and
the back-reflected beam present.

A customized isolation system is set before the cavity to ensure the avoidance of feedback
phenomena caused by the back-reflected beam, that could return back to the laser. This
isolator is consists of four main parts: two polarizing beam splitters as our polarizers, a
cylindrical permanent magnet and a Terbium Gallium Garnet (~TGG) crystal. The light
losses of this system were reduced to a minimum with the assistance of a quarter wave
plate.

Moving on to the cavity itself, two out of its four mirrors are flat anti-reflection (~AR)
coated mirrors of reflectivity Rp=99.9%, and the remaining two are spherical AR coated
mirrors of reflectivity Rs=99.98% and their radius of curvature is r=1.5 m. The total length
of our cavity is L=3.61 m, with the smaller arm being 85 cm and the larger one being 95
cm. Potential ellipticity signs in the polarization of light were tackled using a half wave
plate. 

Two analyzers, one concerning the CW and one for the CCW beam are placed right after
the cavity. Their transmission axes are perpendicular to the input light polarization. The
output beams are focused on two photodetectors via two lenses. These photodetectors are
connected to a PC and their signals are transferred to a Fast Data Acquisition Card that the
PC is supplied with. 

A schematic of the layout described above is depicted as follows:

Figure 17: Experimental Setup – Scheme



Figure 18: Experimental Setup – Photograph

The cell  containing  our  gaseous  samples  has  a  length  l=55  cm and is  connected to  a
mechanical oil pump reaching a vacuum at the order of 10 -2 mbar after functioning for
approximately 3-5 minutes. The main part of the cell is enclosed by two high reflectivity
anti-reflection coated windows. As depicted below, there is a separate cell compartment
that isolates the sample, in its liquid phase, via a valve. 

Figure 19: Gas Cell – Photograph

We have also constructed a 3 cm long,  23-layer  and 30-turn coil,  so as to introduce a
Faraday rotation in addition to the chiral one. The diameter of the cable used in the coil
construction is 1 mm.  We control the current running through the coil via a DC current
generator, which, furthermore, incorporates a relay that is responsible for reversing the
direction of the current, after a relative PC command. The coil includes a cooling system
which  enables  a  mixture  of  water  and  ethanol  to  circulate  its  enclosure,  so  that  its
components are not affected by rising temperatures and that the crystal remains intact
concerning thermal phenomena. 



Figure 20: Coil – Photograph

2.3 Measurement Acquirement

The experimental process begins with setting up the laser to operate at a repetition rate of
10 kHz and a duty cycle of 99.984%, which is the maximum value the laser can be set to
function at. 

The power supply of our current generator is regulated to provide a DC current of I=7.5 A.
This leads to a magnetic field of approximately 1200 G at the center of the coil, which is
home to the CeF3 magneto-optical crystal. At the same time, we initiate the operation of
the coil’s cooling system. We allow the plain operation of the current generator for about
15 to 20 minutes before acquiring any measurements to ensure the thermal equilibrium of
the coil-crystal system, and thus avoid the interference of thermal phenomena with the
process.

In  order  to  proceed  with  data  acquisition,  we  make  use  of  the  Ultrachiral  Software,
developed exclusively to this end, and installed in our PC. This software enables us to
record three signals simultaneously, two of which are the signals of the CW and CCW
beams,  and  the  third  one  being  the  trigger.  The  trigger  signal  is  obtained  from  a
photodetector that is placed close to the point where light meets our isolator. 

An image representing the Graphical User Interface of the Ultrachiral Software is included
below:



Figure 21: Ultrachiral GUI

The signal that can be observed in the GUI figure is a live representation of the signal
during  data  acquisition:  the  blue  curve  stands  for  the  CW  beam,  while  the  red  one
represents the CCW beam. 

The variable numerical inputs that we choose and set before acquiring a measurement, in
order of appearance in the figure above, are the following:

• Buffer Window Delay: It refers to the amount of time during which there will be no
signal recording after the current direction is reversed. It is critical for the coil to
have time to settle. 

• Windows: The number of pulses recorded by the system throughout a complete
measurement.



• Samples per Window: It is a number proportional to the amount of time (in μsec)
during which a pulse’s ringdown is recorded. 

• Transfer Buffer Size: The number of pulses the system records and averages before
the  software  commands  the  magnetic  field  reversal  via  the  relay.  One  full
measurement demands double the amount of these pulses.

The remaining inputs are set  as initial  guesses of these parameters,  used in the fitting
process of the Ultrachiral Software. 

A complete measurement requires the following time:

τmeasurement=
2 tbs

repetitionrate
≈0.2 sec (2.3.1), where tbs stands for the transfer buffer size.

2.4 Experimental Results

After completing the aforementioned steps, we move on with our measurements. To begin
with, we pump the empty cell until the vacuum reaches a value of about 10 -2 mbar. When
that limit is reached, we acquire a measurement concerning the empty cell. Then, we open
the valve that connects the compartment of the cell housing the liquid Methyl Lactate,
allowing vapors to fill the cell, and acquire another measurement, concerning our gaseous
sample inside the cell.  When the measurement  is  completed,  we close the valve,  thus
isolating this compartment from the rest of the cell, and restart pumping. Then, we wait
until the vacuum value returns to its previous level, and obtain a measurement concerning
the empty cell.

The pressure inside the cell is measured using a Thermovac, attached to the part of the cell
between the main chamber and the potentially isolated compartment. The difference in the
vacuum values shown in the Thermovac in the case of the empty cell and the filled cell is
several (~3) orders of magnitude. 

We repeat the process mentioned above five times, and the results are presented in the
following figure:



Figure 22: Chiral optical rotation angles of the empty cell and  Methyl Lactate

Next up, we show the mean value the total measurement:

Figure 23: Mean value of chiral optical rotation angles  of the empty cell and Methyl Lactate

The final result  for the chiral  optical  rotation angle of Methyl Lactate is derived if  we
subtract the mean value of the measurements concerning the empty cell from the mean
value of the ones concerning the filled-with-sample cell. 

We get: φc=0.279±0.027mdeg .

Applying (1.8.1) to find the specific rotation of Methyl Lactate yields:

α=2.54±0.25
deg⋅cm3

dm⋅gr
 

Note that ρ in (1.8.1) is found using the Ideal Gas Law for a temperature of T=25° C.



2.5 Final Remarks

We have managed to successfully measure the particularly weak chiral optical rotation of
gaseous methyl lactate samples, with a sensitivity at the order of 30  μdeg. The rotation
angles  characterizing  such  samples  cannot  be  determined  with  the  application  of
conventional methods, such as single pass measurements.

In the past, we have effectively applied our technique in various other samples, i.e. gas-
phase α-pinene and liquids such as tartaric acid, lysozyme and tears. 

Near  future  plans  include  measuring  the  chiral  optical  rotation  of  Ethyl-1-d-benzene
vapor, which is a result of the overlapping between electronical and vibrational states of
the  molecule  by  breaking  down  the  Born-Oppenheimer  approximation,  making  it

extremely weak,  with an expected specific  rotation of  about  0.1-1  deg cm
3

dmgr
.  Angular

measurements of ethyl-1-d-benzene vapor are the order of our current sensitivity, so we
must further improve our setup in order to succeed. 

These improvements will include:

• A laser with increased power, by a factor of 6

• Obtaining better optics 

• Improve the operation of the relay

• Lowering the CeF3 crystal’s losses by a factor of 2 with finer coatings 
(~current losses: 0.2%, losses goal: 0.1%)

• More effective cooling of the coil

• Better isolation of existing vibrations
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