
University of Crete
Computer Science Department

On Power Laws and the Semantic Web

Yannis Theoharis
Master's Thesis

Heraklion, February 2007

PANEPISTHMIO KRHTHS

SQOLH JETIKWN KAI TEQNOLOGIKWN EPISTHMWN

TMHMA EPISTHMHS UPOLOGISTWN

Sqetik� me touc Kanìnec thc DÔnamhc kai to

Shmasiologikì Istì

ErgasÐa pou upobl jhke apo ton

Iw�nnh F. Jeoq�rh

wc merik ekpl rwsh twn apait sewn gia thn apìkthsh

METAPTUQIAKOU DIPLWMATOS EIDIKEUSHS

Suggrafèac:

Iw�nnhc Jeoq�rhc, Tm ma Epist mhc Upologist¸n

Eishghtik Epitrop :

BasÐlhc QristofÐdhc, Anaplhrwt c kajhght c, Epìpthc

Panagi¸thc TsakalÐdhc, Anaplhrwt c kajhght c, Mèloc

Ge¸rgioc Gewrgakìpouloc, EpÐkouroc kajhght c, Mèloc

Dekt :

Panagi¸thc Traqani�c, Kajhght c

Prìedroc Epitrop c Metaptuqiak¸n Spoud¸n

Hr�kleio, Febrou�rioc 2007

On Power Laws and the Semantic Web

Yannis Theoharis

Master’s Thesis

Computer Science Department, University of Crete

Abstract

Semantic Web (as the WWW itself) can be seen as a decentralized system that

self organizes and evolves, scaling to unforeseen conditions, features which are typical

of complex systems. A big amount of Semantic Web (SW) schemas expressed in

either RDFS [11] or OWL [18] has been developed during the last years [43]. In their

majority, they are not specified at the same level of detail and hence, only few classes

appear as domain/range of many properties, while most appear as domain/range of

few or none. Furthermore, they usually form interconnected graphs as a result of

a social collaboration process, which involves the reuse and extension of the classes

and properties defined in different schemas. In this setting, it would be interesting

to investigate to what extent graph features that emerge in social network analysis,

such as power-law degree distributions and the small world phenomenon, could be

used to grasp the morphology of existing SW schemas.

The knowledge of these features is essential in several contexts. For instance, it

can be exploited for selecting or devising efficient index structures and search algo-

rithms [1] or it can be exploited for ontology visualization [50]. Furthermore, it can

be useful for revealing emerging conceptual modeling habits. Finally, it can be used

for guiding synthetic SW data generation in order to benchmark SW repositories and

query languages implementations in a credible manner. For instance, for developing

ontology-based repositories that will be able to cope with the expected size of the

Semantic Web in the coming years, we need to be able to create large datasets and

test now the scalability of storage, query or update methods.

This Thesis consists of two parts. The former focuses on the investigation of

graph features of real SW schemas, while the latter on the generation of synthetic

SW schemas that exhibit those features. Concerning the former part, the well-known

graph mining techniques cannot be used as such, since SW schemas are graphs en-

riched with the semantics of RDF/S [11] or OWL [18] specifications. In particular,

arcs in these graphs are of different nature, namely, a) arcs representing subsumption

relationships among classes, and b) arcs representing relations between classes (e.g.

has a) or attributes (e.g. title), collectively called properties. The existence of arcs

of the former kind implies additional arcs of the latter one, e.g., a class inherits the

properties of its ancestors. Hence, for each SW schema we essentially need to study

two graphs that have the same set of nodes (i.e., classes or literal types), namely, the

subsumption, and the property graph. Among the results of our experimental analy-

sis, we briefly mention that the total-degree distribution of the property graph as well

as the class descendants distribution of the subsumption graph of real SW schemas

follow a power-law. Moreover, the property graph of the their majority exhibits the

small world phenomenon.

Concerning the latter part of this Thesis, i.e., the generation of synthetic SW

schemas whose property and subsumption graphs exhibit the features observed in

the real SW schemas, the main challenge that was faced was the generation of the

subsumption graph given the in- and out-degree sequence of its transitive closure.

This implies the generation of transitively closed graphs given their in- and out-degree

sequences, problem that has not been studied before in the literature. We present a

reduction of this problem to the Linear Programming one.

Supervisor: Vassilis Christophides

Associate Professor

Sqetik� me touc Kanìnec thc DÔnamhc kai to

Shmasiologikì Istì

Iw�nnhc Jeoq�rhc

Metaptuqiak ErgasÐa

Tm ma Epist mhc Upologist¸n, Panepist mio Kr thc

PerÐlhyh

O Shmasiologikìc Istìc (SI) (ìpwc kai o pagkìsmioc istìc) mporeÐ na jewrhjeÐ

san èna apokentrwmèno sÔsthma pou autì-organ¸netai kai exelÐssetai k�tw apì aprì-

bleptec sunj kec, qarakthristik� pou apoteloÔn tupikèc idiìthtec twn polÔplokwn

susthm�twn. 'Enac meg�loc arijmìc sqhm�twn tou SI ekfrasmènwn eÐte se RDFS

 se OWL èqoun anaptuqjeÐ ta teleutaÐa qrìnia. Sthn pleioyhfÐa touc, den èqoun

analujeÐ ston Ðdio bajmì me apotèlesma lÐgec kl�seic na emfanÐzontai san to pedÐo

orismoÔ/tim¸n poll¸n idiot twn, en¸ oi perissìterec na emfanÐzontai san to pedÐo

orismoÔ/tim¸n lÐgwn kai kamÐac idiìthtac. Epiplèon, sun jwc sqhmatÐzoun diasund-

edemènouc gr�fouc san to apotèlesma miac diadikasÐac koinwnik c sunergasÐac, h opoÐa

perilamb�nei thn epanaqrhsimopoÐhsh kai epèktash kl�sewn kai idiot twn orismènwn

se diaforetik� sq mata. Mèsa s' aut� ta plaÐsia eÐnai endiafèrousa h exakrÐbwsh

tou bajmoÔ ston opoÐo gnwrÐsmata gr�fwn pou anadÔontai sthn an�lush twn koin-

wnik¸n diktÔwn, ìpwc oi katanomèc kanìna thc dÔnamhc gia touc olikoÔc bajmoÔc

kai to fainìmeno tou mikroÔ kìsmou, mporoÔn na qrhsimopoihjoÔn gia na "piasteÐ� h

morfologÐa twn uparqìntwn sqhm�twn tou SI.

H gn¸sh aut¸n twn gnwrism�twn eÐnai zwtik gia di�fora lìgouc. Gia par�deigma,

mporeÐ na qrhsimopoihjeÐ gia thn epilog thn epinìhsh apodotik¸n deikt¸n kai al-

gìrijmwn anaz thshc, ìpwc kai gia thn optikopoÐhsh twn ontologi¸n. Epiplèon,

mporeÐ na qrhsimopoihjeÐ gia thn apok�luyh anaduìmenwn sunhjei¸n ennoiologik c

montelopoÐhshc. Tèloc, mporeÐ na qrhsimopoihjeÐ gia thn kajod ghsh thc dhmiourgÐac

sunjetik¸n dedomènwn tou SI me skopì thn peiramatik axiolìghsh epidìsewn apo-

jhk¸n dedomènwn kai ulopoi sewn glwss¸n eperwt sewn tou SI me axiìpisto trìpo.

Gia par�deigma, gia thn an�ptuxh ontologiko-kentrik¸n apojhk¸n dedomènwn pou ja

eÐnai ikanèc na antapexèljoun sto anamenìmeno mègejoc tou SI ta epìmena qrìnia,

qrei�zetai na eÐmaste ikanoÐ na par�goume meg�la sÔnola dedomènwn kai na elègxoume

t¸ra thn klimakosimìthta twn mejìdwn apoj keushc, eper¸thshc kai enhmèrwshc.

H ergasÐa aut qwrÐzetai se 2 mèrh. To pr¸to esti�zei sthn exakrÐbwsh twn

gnwrism�twn twn gr�fwn twn sqhm�twn tou SI, en¸ to deÔtero sth dhmiourgÐa sun-

jetik¸n sqhm�twn pou emfanÐzoun aut� ta gnwrÐsmata.

'Oson afor� to pr¸to mèroc, oi gnwstèc teqnikèc exìruxhc gr�fwn de mporoÔn na

qrhsimopoihjoÔn autoÔsiec, afoÔ ta sq mata tou SI eÐnai gr�foi emploutismènoi me th

shmasiologÐa thc RDFS thc OWL. Sugkekrimèna, oi akmèc s' autoÔc touc gr�fouc

eÐnai diaforetik c fÔshc, dhlad a) akmèc pou anaparistoÔn sqèseic upallhlÐac metaxÔ

kl�sewn kai b) akmèc pou parist�noun sqèseic an�mesa se kl�seic gnwrÐsmata, apì

koinoÔ onomazìmenec wc idiìthtec. H Ôparxh akm¸n tou pr¸tou eÐdouc sunep�getai

epiprìsjetec akmèc tou deÔterou, p.q. mia kl�sh klhronomeÐ tic idiìthtec twn progìn-

wn thc. Epomènwc, gia k�je sq ma tou SI eÐnai an�gkh na melet soume dÔo gr�fouc

pou èqoun to Ðdio sÔnolo kìmbwn (dhlad to sÔnolo twn kl�sewn kai twn filologik¸n

tÔpwn), to gr�fo thc epallhlÐac kai to gr�fo twn idiot twn. An�mesa sta apotelès-

mata thc peiramatik c mac an�lushc en suntomÐa anafèroume ìti h katanom twn olik¸n

bajm¸n tou gr�fou twn idiot twn ìpwc kai h katanom twn apogìnwn twn kl�sewn

tou gr�fou thc epallhlÐac twn sqhm�twn tou SI akoloujoÔn ènan kanìna thc dÔ-

namhc. Epiplèon, o gr�foc twn idiot twn thc pleioyhfÐac twn sqhm�twn emfanÐzei to

fainìmeno tou mikroÔ kìsmou.

'Oson afor� to deÔtero mèroc thc ergasÐac aut c, dhlad th dhmiourgÐa sunjetik¸n

sqhm�twn twn opoÐwn oi gr�foi upallhlÐac kai idiot twn emfanÐzoun ta gnwrÐsmata

pou parathr jhkan sta pragmatik� sq mata tou SI, h megalÔterh prìklhsh pou an-

timetwpÐsame tan h dhmiourgÐa tou gr�fou thc epallhlÐac dosmènwn twn akolouji¸n

twn eiserqìmenwn kai exerqìmenwn bajm¸n tou metabatikoÔ kleisÐmatìc touc. Autì

sunep�getai th dhmiourgÐa metabatik� kleist¸n gr�fwn dosmènwn twn akolouji¸n

twn eiserqìmenwn kai exerqìmenwn bajm¸n touc, prìblhma pou den èqei melethjeÐ

prohgoumènwc sth bibliografÐa. Sthn ergasÐa aut parousi�zoume thn anagwg tou

probl matoc autoÔ sto prìblhma tou GrammikoÔ ProgrammatismoÔ.

Epìpthc Kajhght c: BasÐlhc QristofÐdhc

Anaplhrwt c Kajhght c

Sthn aderf mou, Eir nh

EuqaristÐec

Sto shmeÐo autì ja jela na euqarist sw ìlouc touc dask�louc mou apì to

Dhmotikì èwc to Panepist mio. Idiaitèrwc, ton k. Jemistokl Pepình, kajhght

majhmatik¸n twn lukeiak¸n mou qrìnwn, kai ton k. BasÐlh QristofÐdh epiblèponta

thc ptuqiak c all� kai thc metaptuqiak c mou ergasÐac. Ton pr¸to gia thn parousÐ-

ash twn majhmatik¸n ¸c zwntanì organismì kai gia thn apok�luyh thc sqèshc touc me

th fusik kai koinwnik pragmatikìthta. Ton deÔtero gia thn �yogh sunergasÐa mac

ta teleutaÐa 3 kai plèon qrìnia, karpìc thc opoÐac apoteleÐ, pèran poll¸n �llwn, kai

h paroÔsa ergasÐa. Oi gn¸seic kai h suneq c diajesimìthta tou gia bo jeia st�jhkan

idiaÐtera euergethkèc gia mèna.

IdiaÐterec euqaristÐec axÐzoun kai stouc k. Gi�nnh TzÐtzika kai Gi¸rgo Gewr-

gakìpoulo. Oi parathr seic kai oi prot�seic touc apedeÐqjhsan parap�nw apì qr -

simec gia thn per�twsh thc paroÔsac ergasÐac. Eidikìtera, ja jela na euqarist sw

ton k. Gi�nnh TzÐtzika gia thn �yogh sunergasÐa mac ta teleutaÐa 2 qrìnia mèsa apì

to ergast rio plhroforiak¸n susthm�twn tou ITE all� kai gia tic filosofikèc -

metamajhmatikèc suzht seic mac.

Ja jela akìma na euqarist sw ton k. Panagi¸th TsakalÐdh gia thn projumÐa

tou na summet�sqei sthn exetastik epitrop thc metaptuqiak c mou ergasÐac.

IdiaÐtera ja jela na euqarist sw to Tm ma Epist mhc Upologistwn tou Panepist -

miou Kr thc kai to Ergast rio Plhroforiak¸n Susthm�twn tou InstitoÔtou Plhro-

forik c tou ITE gia tic gn¸seic pou apèkthsa kat� th di�rkeia twn spoud¸n mou sthn

Kr th.

EpÐshc ja jela na euqarist sw touc fÐlouc mou, eidik� twn prìterwn qrìnwn,

Ant¸nh, Dhm trh, NÐko, Gi¸rgo, MarÐna, Pan�go, ArgÔrh, all� kai twn Ôsterwn

qrìnwn, Gi�nnh, Tz¸rtzh, Panagi¸th, M�rko, QristÐna, Rìza. Idiaitèrwc, ja jela

na euqarist sw thn Iw�nna pou tan prìjumh na apant sei stic aporÐec mou gia tic

teqnikèc leptomèreic thc morfopoÐhshc thc paroÔsac anafor�c.

Telik� kai p�nw apì ìla ja jela na euqarist sw thn aderf mou, Eir nh, kai

touc goneÐc mou, FÐlippo kai Bèra, gia thn upost rixh touc ìla aut� ta qrìnia.

Contents

Table of Contents iii

List of Figures viii

1 Introduction 1

2 Graph Features of SW Schemas 7

2.1 Semantic Web Schema Graphs . 7

2.1.1 SW Schema Graph Features 11

2.1.2 SW Schema Graph Distributions 13

2.2 Experimental Results . 15

2.2.1 SW Schemas Corpus . 15

2.2.2 Power-law Investigation Method 16

2.2.3 Features of the Property Graph 19

2.2.3.1 Distribution of Property Domains (out-degrees) . . . 20

2.2.3.2 Distribution of Property Ranges (in-degrees) 21

2.2.3.3 Distribution of Total Degrees 22

2.2.3.4 Small World Schema Graphs 22

2.2.3.5 Cyclic Paths . 24

2.2.4 Features of the Subsumption Graph 25

i

2.2.4.1 Distribution of Class Descendants (out-degrees) . . . 25

2.2.4.2 Distribution of Class Ancestors (in-degrees) 28

2.2.4.3 Distribution of Leaf Descendants 29

2.2.4.4 Distribution of Class Levels 30

2.2.5 Subproperty Hierarchies . 31

2.2.6 Combinatoric Features . 32

2.3 Towards a Morphology of SW Schemas 32

2.4 Related Work . 35

3 Graph Generation Using Linear Programming 39

3.1 Optimization Problems and LP . 40

3.2 Modeling Graphs using LP . 42

3.2.1 Non Transitive Edges . 43

3.2.2 Transitive Edges . 45

3.2.2.1 Directed Acyclic Graphs 45

3.2.2.2 Graphs . 51

3.2.2.3 Trees . 51

3.3 Related Work . 55

4 Sampling Discrete Random Variables With A Power Law Distribu-

tion 59

4.1 The Relation between PDF and VR Functions 60

4.2 Sampling According to the PDF . 60

4.2.1 Experimental Evaluation . 61

4.3 Sampling According to the VR . 65

4.3.1 Experimental Evaluation . 66

4.4 The Usefulness of Both Sampling Methods 69

ii

5 Synthetic SW Schema Generation 71

5.1 Generating The Property Graph . 71

5.1.1 Attributes . 74

5.2 Generating The Subsumption Graph 74

5.2.1 Generating Dout of G∗
s . 75

5.2.2 Generating Din of G∗
s . 76

5.2.3 Assuring that Dout and Din can be Simultaneously Realizable 77

5.3 Combining The Property and The Subsumption Graph 78

5.4 Experimental Evaluation . 78

5.4.1 Effectiveness . 79

5.4.1.1 Generating The Subsumption Graph 79

5.4.1.2 Generating The Property Graph 81

5.4.2 Efficiency . 82

6 Conclusion and Future Work 87

iii

iv

List of Tables

2.1 83 schemas with ≥ 100 classes (58 with ≥ 100 properties and 25 with

< 100 properties) . 17

2.2 Number of schemas exhibiting a power-law function for domain / range

/ total degrees . 20

2.3 Distribution of property domain/range 21

2.4 Number of small world schemas that approximate (ACC ≥ 0.9) a

power-law for property domain/range 22

2.5 Distribution of self-loops/multiple arcs 24

2.6 Distribution of cyclic paths . 24

2.7 Distribution of descendants/ancestors 27

2.8 Number of schemas exhibiting a power-law distribution for class de-

scendants . 28

2.9 Number of schemas exhibiting a power-law distribution for class ancestors 28

2.10 Distribution of percentages of leaf classes 29

2.11 Number of schemas exhibiting a power-law function for leaf descendants 29

2.12 Number of schemas exhibiting a power-law distribution for class levels 30

2.13 Number of schemas exhibiting a power-law distribution for property

descendants . 31

3.1 Graphs and Generation Algorithms 40

v

4.1 Sampling DRV s based on their PDF function 64

4.2 Sampling DRV s based on their VR function 69

5.1 Algorithm GenerateGp . 72

5.2 Algorithm GenerateGs . 75

vi

List of Figures

2.1 SW schemas reusability and extension (left) / Property and subsump-

tion graphs of schema ns1 (right) . 9

2.2 Treatment of union and intersection OWL constructs (left) / Connec-

tivity of a SW schema (right) . 10

2.3 Examples of different ACC values for functions CCDF and PDF . . . 18

2.4 Deviations from the power-law for class descendants (left) / total-

degree (right) VR functions . 19

2.5 Structural pattern of class hierarchies 26

2.6 Exponents vs number of classes for subclass FV (left) / VR (right) . 26

2.7 Exponents vs number of classes for VR class level distribution 31

2.8 Distributions of classes and properties w.r.t. their level in the sub-

sumption hierarchy . 33

3.1 An example of a DAG . 46

3.2 Three possible connections of three nodes 47

3.3 An Example of a Tree . 51

3.4 Two non-isomorphic trees whose transitive closures realize the same

sequences . 55

3.5 Algorithm [27, 29] Generating Undirected Graphs 56

3.6 Algorithm [42] Generating Directed Graphs (left) and its output (right) 56

vii

4.1 Sampling DRV s According to PDF function 61

4.2 Sampling with (b,M, N) = (2, 10000, 2500) 62

4.3 Sampling with (b,M, N) = (2, 2500, 2500) 62

4.4 Sampling with (b,M, N) = (2, 312, 2500) 63

4.5 Sampling with (b,M, N) = (2, 125, 250) 63

4.6 Sampling with (b,N, sum) = (0.5, 500, 10000) 66

4.7 Sampling with (b,N, sum) = (0.5, 500, 1000) 66

4.8 Sampling with (b,N, sum) = (0.5, 500, 500) 67

4.9 Sampling with (b,N, sum) = (0.5, 1000, 10000) 67

4.10 Sampling with (b,N, sum) = (1.0, 1000, 10000) 68

4.11 Sampling with (b,N, sum) = (1.5, 1000, 10000) 68

4.12 Sampling with (b,N, sum) = (2.0, 1000, 10000) 69

5.1 Sampling with (b,M, N) = (2.08, 299, 0.25 ∗ 300) to generate the out-

degree sequence of G∗
s . 79

5.2 The functions corresponding to the out-degree sequence of the gener-

ated G∗
s . 81

5.3 The PDF and CCDF function corresponding to the total-degree se-

quence of the generated Gp . 82

5.4 Number of Variables (left) / Constraints (right) of the LP1 instances

produced to generate Gp . 83

5.5 Memory Requirements (left) / Runtime (right) of the LP1 instances . 83

5.6 Number of Variables (left) / Constraints (right) of LP2 and LP3 In-

stances . 84

5.7 Memory Requirements (left) / Runtime (right) of LP2 and LP3 Instances 84

6.1 The main results of our analysis . 88

viii

Chapter 1

Introduction

In the next evolution step of the Web, termed the Semantic Web [6], vast amounts

of information resources (data, documents, programs) will be made available along

with various kinds of descriptive information, i.e., metadata. Better knowledge about

the meaning, usage, accessibility, validity or quality of web resources will considerably

facilitate automated processing of available Web content/services. The Resource De-

scription Framework (RDF) [38] enables the creation and exchange of resource meta-

data as normal Web data. To interpret these metadata within or across user commu-

nities, RDF allows the definition of appropriate schema vocabularies (RDFS) [11].

Semantic Web (as the WWW itself) can be seen as a decentralized system that

self organizes and evolves, scaling to unforeseen conditions, features which are typical

of complex systems. A big amount of Semantic Web (SW) schemas expressed in

either RDFS [11] or OWL [18] has been developed during the last years [43]. In their

majority, they are not specified at the same level of detail and hence, only few classes

appear as domain/range of many properties, while most appear as domain/range of

few or none. Furthermore, they usually form interconnected graphs as a result of

a social collaboration process, which involves the reuse and extension of the classes

and properties defined in different schemas. In this setting, it would be interesting

to investigate to what extent graph features that emerge in social network analysis

1

2 CHAPTER 1. INTRODUCTION

could be used to grasp the morphology of existing SW schemas.

The knowledge of these features is essential in several contexts. For instance, it

can be exploited for selecting or devising efficient index structures and search algo-

rithms [1] or it can be exploited for ontology visualization [50]. Furthermore, it can

be useful for revealing emerging conceptual modeling habits. Finally, it can be used

for guiding synthetic SW data generation in order to benchmark SW repositories and

query languages implementations in a credible manner. For instance, for developing

ontology-based repositories that will be able to cope with the expected size of the

Semantic Web in the coming years, we need to be able to create large datasets and

test now the scalability of storage, query or update methods.

Generally, degree sequence, diameter and average distance are three main fea-

tures that characterize graphs. The internet topology [25] as well as WWW [37, 5]

have been observed to exhibit a power-law distribution for their in- and out-degree

sequences. Several models of power-law graphs evolution have been proposed [5, 9,

37, 36, 2] to capture the way in which such power-law distributions arise as graphs

evolve (see [3] for a comparison). Furthermore, social network analysis has focused

on the investigation of the small world phenomenon [53], i.e., graphs with small av-

erage distance and many clusters of nodes. However, such graph mining techniques

cannot be used as such, since SW schemas are graphs enriched with the semantics

of RDF/S [11] or OWL [18] specifications. In particular, arcs in these graphs are

of different nature, namely, a) arcs representing subsumption relationships among

classes, and b) arcs representing relations between classes (e.g. has a) or attributes

(e.g. title), collectively called properties. The existence of arcs of the former kind

implies additional arcs of the latter one, e.g., a class inherits the properties of its

ancestors. Hence, for each SW schema we essentially need to study two graphs that

have the same set of nodes (i.e., classes or literal types), namely, the subsumption,

and the property graph. It would be interesting to investigate whether the property

University of Crete, Computer Science Department

3

graph exhibits the small world phenonemenon or a power-law degree distribution,

while examining the distributions involved in the subsumption graph could provide

additional hints about the morphology of SW schemas. Note that, the structure of

the property graph is more complex than the graphs studied in the literature, since it

involves self-loops (e.g., recursive properties) and multiple arcs (i.e., two classes may

be connected by more than one property).

The main contributions of the first part of this thesis are:

i) We analyze the features of the property graph for individual SW schemas. In

particular, we show that 94.8% of the schemas with a significant number of

properties approximate a power-law for property total (in- and out-) degree

distributions with exponents in [0.79, 2.18] and that 67.2% of them exhibit the

small world phenomenon as an effect of the previous distributions in conjunction

with their trend to form clusters of classes. In contrast to our work, [48] studied

only the subsumption graph of schemas, while [26] studied the graph derived by

aggregating all schemas (regardless of whether they are interconnected or not)

but without distinguishing subsumption relationships from properties.

ii) We study the relationship among the distinct numbers of descendants per class

(i.e., subsumed classes). More precisely, we show that the relationship between

the i − th biggest number and its corresponding rank (in descending order), i,

is approximated by a power-law function with exponents in [0.97, 2.44] for the

87.9% of the schemas defining a significant number of classes. Unlike our work,

[48] examined only the frequency of the numbers of classes that have the same

number of descendants and not their correlation.

iii) We provide the means to sketch an abstract morphology of SW schemas. In

particular, we show that the classes with big degrees in the property graph (i.e.,

classes with many properties) are usually located at the higher levels of the

Yannis Theoharis

4 CHAPTER 1. INTRODUCTION

subsumption graph. Additionally, SW schemas have many clusters of connected

classes. Moreover, we observed that most schemas have many cyclic paths

of average size equal to 21. Finally, class subsumption hierarchies are mostly

unbalanced with large branches and many leaves. To the best of our knowledge,

no other work has reported similar results.

It should be stressed that, although SW schemas is a small subset of the WWW,

their graph morphology exhibit common features, i.e., power-law for their degree

distribution (i.e., properties relating classes versus hyperlinks connecting web pages),

while both exhibit the small world phenomenon. One plausible explanation for this

fact is the emergence in both graphs of the preferential attachment [5], which stems

from the rough divergence in the significance (for a specific domain of discourse) of

classes in SW schemas or the popularity of pages in the WWW.

The main contributions of the second part of this thesis are:

i) We propose algorithms to generate SW schemas given the characteristic expo-

nents of the total-degree distribution of their property graph and of the class

descendants distribution of their subsumption graph. The former guides the

generation of the property graph, while the latter the generation of the sub-

sumption graph. Combinatoric features of real SW schemas that correlate the

two graphs (that have the same set of nodes) are then exploited to generate a

SW schema. Specifically, the total-degree of each node is modeled as a Discrete

Real Random Variable (DRV) that follows a power-law with the given expo-

nent. The total-degree sequence of the property graph is produced by sampling

values of that DRV. Graph features of real SW schemas are then exploited

to produce the out- and in-degree sequences. Similarly, we produce the out-

degree sequence of the transitive closure of the subsumption graph using the

power-law exponent of the class descendants distribution. The corresponding

University of Crete, Computer Science Department

5

in-degree sequence is produced as a function of the number of classes according

to features observed in real SW schemas.

ii) We tackle the problem of the generation of directed graphs without self-loops or

multiple edges given either its out-/in-degree sequences, or the out-/in-degree

sequences of its transitive closure. The former problem can be solved by the

algorithm [42] in O(N3) time, where N is the number of graph nodes (i.e.,

schema classes and literal types). However, the latter one, i.e. the generation

of transitively closed graphs, has not been addressed in the literature yet. In

this thesis we propose its reduction to the Linear Programming problem. In

particular, we propose a reduction of the problem for trees of O(N3) complexity,

which yields a tree, whose transitive closure realizes the exact out- and in-

degree sequences that were given. Moreover, we propose a reduction of the

problem for DAGs of O(N5) complexity, which yields a DAG whose transitive

closure has out- and in-degree sequences that approximate the given ones. An

exact solution is also possible for DAGs by a reduction to the Integer Linear

Programming (ILP) problem. However, it is of no practical impact, since ILP

is an NP-complete [44] problem.

The remainder of this thesis is organized as follows: Chapter 2 elaborates on the

graph features of real SW schemas. Chapter 3 focuses on the problem of generating

graphs given their degree sequences. Additionally, Chapter 4 provides methods to

sample DRV s that follow a power-law distribution. Chapter 5 presents the generation

of SW schemas by combining the graph features (see Chapter 2) of real SW schemas,

the methods to generate graphs given their degree sequences (see Chapter 3) and the

methods to sample DRV s that follow a power-law distribution (see Chapter 4). It

also presents the results of the experimental evaluation of the generation of synthetic

SW schemas. Finally, Chapter 6 summarizes the contributions of this thesis as well

Yannis Theoharis

6 CHAPTER 1. INTRODUCTION

as identifies issues for future research.

University of Crete, Computer Science Department

Chapter 2

Graph Features of SW Schemas

In this Chapter we study the graph features of real SW schemas. Specifically, Sec-

tion 2.1 provides formal definitions of SW schema graphs, as well as definitions related

to power-law distributions and the small world phenomenon. Section 2.2 details the

corpus of schemas used in this work and the methods adopted in the experiments

performed, and details the results of our analysis. Based on these measurements

Section 2.3 sketches the general morphology of SW schemas. Finally, Section 2.4

resumes related work.

2.1 Semantic Web Schema Graphs

SW schemas are usually represented as directed labeled graphs, whose nodes are

classes or literal types and arcs are properties. These graphs may have self-loops

(representing recursive properties) and multiple arcs (when two classes are connected

by several properties). In particular, SW schemas have two different kinds of arcs:

subsumption arcs (rdfs:subclassOf or rdfs:subpropertyOf), and user defined ones. The

former comprises subsumption relationships among classes or properties (which are

7

8 CHAPTER 2. GRAPH FEATURES OF SW SCHEMAS

transitive in nature), while the latter comprises domain-specific attributes or rela-

tionships among classes, which are called properties. According to the RDFS se-

mantics [30], a class inherits all the properties of its (direct and indirect) subsuming

classes. As the interpretation of these two arc kinds is different, for each SW schema

we need to define two graphs: a) the property and b) the subsumption graph. Both

graphs have the same set of nodes (i.e., the union of classes and literal types used in

the schema) but they comprise different kinds of arcs.

Definition 1 The property graph of a schema is a directed graph Gp = ({C∪L}, P),

where C is a set of nodes labeled with a class name, L is a set of nodes labeled with

a literal type, P is a set of arcs of the form 〈c1, p, c2〉 where c1 ∈ C, c2 ∈ C ∪ L, and

p is a property name.¦

If 〈c1, p, c2〉 is an arc, we shall write domain(p) = c1 and range(p) = c2.

Definition 2 The class subsumption graph of a schema is a directed graph Gs =

(C, Ps), where C is a set of nodes labeled with a class name and Ps is a binary

relation over the elements of C.¦

We can denote an arc of this kind by 〈c1, rdfs:subclassOf, c2〉 meaning that c1 is

a subclass of c2. The property subsumption graph can be defined in a similar way,

where the nodes are the schema properties and the arcs are relationships of the form

〈p1, rdfs:subpropertyOf, p2〉 (p1, p2 ∈ P).

By considering the RDFS semantics we can obtain the closure of the subsumption

and property graph of a schema.

Definition 3 Let Gs = (C, Ps) be the class subsumption graph of a schema. The

closure of the class subsumption graph, denoted by G∗s, is the pair (C,P ∗
s) where P ∗

s

is the reflexive and transitive closure of Ps.¦

University of Crete, Computer Science Department

2.1. SEMANTIC WEB SCHEMA GRAPHS 9

E1

B1

F1

C1

p2

p1

B2 C2
p3

A2

D1 E1

B1

F1 G1

C1

p2

p1

A1

B2 C4
p2

A4

ns3

ns4

ns1

ns2

isA
property defined in the schema
property defined in other schemas

Class defined in the schema

Class defined in other schemas

Class Property

Resource
rdf-rdfs

instanceOf

seeAlso

E1

B1

F1

C1

p2

p1

Property Graph

Closure of the Property Graph

Subsumption Graph

Closure of the Subsumption Graph

D1 E1

B1

F1 G1

C1

A1

D1 E1

B1

F1 G1

C1

A1

E1

B1

F1

C1

p2

p1

G1D1

p1p1
p1

p1p1
p1p1p1

Figure 2.1: SW schemas reusability and extension (left) / Property and subsumption
graphs of schema ns1 (right)

Definition 4 Let Gp = ({C ∪ L}, P) be the property graph of a schema, and let

G∗s = (C, P ∗
s) be the closure of its class subsumption graph. The closure of the property

graph of the schema, denoted by G∗p, is the pair ({C ∪L}, P ∗) where P ∗ comprises all

arcs 〈c1, p, c2〉 such that there exists 〈c1, c3〉 ∈ P ∗
s , 〈c2, c4〉 ∈ P ∗

s and 〈c3, p, c4〉 ∈ P .¦

For example, the right part of Figure 2.1 depicts the property, the subsumption

graph and their closures of the schema ns1 illustrated in the left part of Figure 2.1.

It should be stressed that in order to study the cyclic paths, we need to reduce the

closure of the property graph to an undirected unlabeled one, denoted by G∗pun
, which

is derived by replacing the set P ∗ of arcs with the set P ∗
un = {(c1, c2) | 〈c1, p, c2〉 ∈

P ∗ or 〈c2, p, c1〉 ∈ P ∗}. Additionally, studying the local connectivity of nodes implies

the removal of self-loops from the G∗pun
, reaching thus way the G∗pun− , whose set of

edges is P ∗
un− = {(c1, c2) | (c1, c2) ∈ P ∗

un and c1 6= c2}.

Yannis Theoharis

10 CHAPTER 2. GRAPH FEATURES OF SW SCHEMAS

A B C

D

UnionOf: <A, p, B or C>

p

isA
property

A B C

D

IntersectionOf: <A, p, B and C>

p

C0

C1

C2

C3
C4

C6

C5

p1

p2

p3

p4

p5

p6

p7

p10

p9
p8

ns5

Figure 2.2: Treatment of union and intersection OWL constructs (left) / Connectivity
of a SW schema (right)

In this work we ignore the logic-style descriptions of schemas expressed in OWL [18]

and focus only on the core RDFS [11] features which are also exploited by OWL. In

addition, we transformed OWL schemas that contain unionOf and intersectionOf

expressions (in class or property definitions), into equivalent RDFS schemas (see the

Figure 2.2 left). In particular, for OWL schemas that contain expressions of the from

A∪B, A∪B∪C, A∩B, A∩B∩C, we have added the appropriate subsumption relation-

ships of the form 〈A∪B, rdfs:subclassOf, A∪B∪C〉, 〈A∩B∩C, rdfs:subclassOf, A∩B〉.
Finally, we also exploited the Restriction feature of OWL (someValuesFrom / allVal-

uesFrom) to identify the domain/range of properties.

SW schemas are subject of social collaboration by reusing and extending existing

concept and property definitions. Firstly, reusability of schemas is mainly achieved

through the definition of properties, i.e., a schema can define as domain/range of

one of its properties a class that is defined in another schema. This case is depicted

in Figure 2.1 (left) where schema ns4 defines that property p2, which is defined in

ns1, has as domain the class B2 (defined in ns2) and as range the class C4 (defined

in ns4). Extension of schemas is achieved through the introduction of subsumption

relationships between classes/properties defined in different schemas. For instance, in

Figure 2.1 (left) ns2 defines classes B2 and C2 and declares that they are subsumed

by E1 and F1 respectively, which have been introduced in schema ns1. Note that

University of Crete, Computer Science Department

2.1. SEMANTIC WEB SCHEMA GRAPHS 11

a schema can declare that two classes are related through the subsumption relation

without defining any of these two classes. For example, ns3 declares that classes B1

and C1, which are defined in ns1, are subclasses of E1 and F1 respectively, which

are also defined in schema ns1. Due to the aforementioned interconnection among

schemas, the (property or subsumption) graph of a schema is obtained from the union

of its classes and properties with those of the schemas that are reused or extended by

it. Finally, another way to reuse schemas defined in different namespaces is through

instantiation. As we can see from Figure 2.1 (left), all SW schemas are instances

of the rdf-rdfs meta-schema, i.e., their classes/properties that are instances of the

rdfs:Class/rdf:Property respectively (see Figure 2.1 (left)).

It is worth noticing that all schema classes may not have the same significance.

Intuitively speaking, there usually exist few ”central” classes (e.g., in Figure 2.2 right

class C2 is ”central”) that form the conceptual backbone of the defined schema, and

many ”peripheral” ones that are used to further detail the analysis of the former.

When a ”peripheral” class (e.g., C1 in Figure 2.2) is added to the schema, it is more

likely to be related through properties with ”central” classes rather than with other

peripheral ones. Moreover, the ”central” classes of a schema consist ideal articulation

points for interconnection with schemas defined in other namespaces, since many

properties are located in their neighbourhood (the path between a central concept and

the others is small). Both processes of SW schemas development fit in the definition

of preferential attachment [5] (also called the “rich-get-richer” phenomenon), which

has been proven to yield power-law degree distributions.

2.1.1 SW Schema Graph Features

As defined in [53] small world graphs are highly clustered like regular graphs, but

have short distances between arbitrary pairs of vertices like random graphs. These

Yannis Theoharis

12 CHAPTER 2. GRAPH FEATURES OF SW SCHEMAS

properties are quantified by the clustering coefficient and the average distance of the

graph. Furthermore, small world graphs are characterized by their small diameter. In

general, small world can emerge from the high variability of degree distributions and

the preference for local connectivity (i.e., the trend to form clusters of nodes) [34].

It should be noticed that, since the property graph is sparse, i.e., its number of

classes is usually bigger than its number of explicitly given properties (or at least of the

same order of magnitude), we consider its closure to examine whether RDFS graphs

exhibit a small world structure. Additionally, self-loops have to be removed, multiple

arcs should be replaced by single ones (unlabeled), while the directedness should

be ignored. This is because, in the small-world picture, we are interested only in

studying static patterns of whether nodes are connected or not (and hence, we consider

the G∗pun−). However, since all classes are instances of the rdfs:Resource and there

exist schema properties defined by the rdf(s) meta-schema with domain and range

rdfs:Resource (e.g., the property rdfs:seeAlso of Figure 2.1 (left)), every SW schema

results in a regular graph (i.e., all nodes are connected with all others). To avoid this

effect, we excluded from our computations the classes and properties of the rdf(s)

namespace (unlike [26]), which is reused by all schemas of our corpus.

We can define the neighbourhood of a class ci ∈ C, denoted by n(ci), the set

of nodes that are connected with ci in G∗pun− , i.e. n(ci) = {cj | (ci, cj) ∈ P ∗
un−}.

The clustering coefficient CCi for a class ci of an undirected simple graph G∗pun−

is the fraction of arcs connecting neighbours of ci (i.e., classes that are contained

in n(ci)) divided by the maximum number of edges that could exist among them

[53], specifically, CCi =
|{(cj ,ck) | (cj ,ck)∈P ∗un and cj ,ck∈n(ci)}|

|n(ci)|(|n(ci)|−1)

2

. Figure 2.2 (right) shows

an example of a property graph, where n(c2) = {c0, c1, c3, c4, c5, c6}, i.e., |n(c2)| = 6.

Among these 6 nodes there can be at most 6∗5
2

= 15 undirected edges. However, there

actually exist only 4 edges, i.e., (c3, c4), (c3, c6), (c5, c4), (c5, c6). Hence, the clustering

coefficient of c2 is 4
15

= 0.26.

University of Crete, Computer Science Department

2.1. SEMANTIC WEB SCHEMA GRAPHS 13

Definition 5 [53] The clustering coefficient for an undirected simple graph G∗pun− is

the average of the clustering coefficients of its classes, i.e., CCG∗pun−
= 1

|C|
∑|C|

i=1 CCi.¦

A necessary and sufficient condition to characterize a graph G∗pun− as a small world,

follows.

Definition 6 [53] Let G∗pun− be a graph and Grandom be a random graph with the same

number of nodes and arcs as G∗pun−. Also, let LG∗pun−
, Lrandom be the average distance

of G∗pun−, Grandom respectively and CCG∗pun−
, CCrandom be the clustering coefficient

of G∗pun−, Grandom respectively. G∗pun− is a small world iff, LG∗pun−
' Lrandom and

CCG∗pun−
À CCrandom.¦

In order to decide whether a graph is a small world or not, we need to set the

values of Lrandom and CCrandom. Fortunately, Erdös and Rényi have proved in [24]

that a random graph with N nodes and k arcs per node on average (i.e., N ∗ k arcs

totally) has average distance Lrandom ' log N
log k

and clustering coefficient CCrandom ' k
N

.

2.1.2 SW Schema Graph Distributions

It is well known that the distribution of the degree sequence determines partially

or totaly some other significant features, such as the average distance and diameter

of a graph, as well as the emergence of the aforementioned small world phenomenon.

Moreover, in our setting the study of the degree distribution can reveal classes of dif-

ferent significance (central or peripheral). Hence, we are interested in investigating the

degree distribution of each RDFS schema property graph. Since it is a directed graph,

we need to distinguish between out- and in-degree distributions. The out-degree can

be regarded as the distribution of property domains, while the in-degree as the distri-

bution of their ranges. However, from a conceptual modeling viewpoint, the direction

Yannis Theoharis

14 CHAPTER 2. GRAPH FEATURES OF SW SCHEMAS

of the properties is not important. One can replace the property 〈B1, p1, C1〉 of ns1 of

Figure 2.1 (left), with the property 〈C1, p3, B1〉 by inverting the direction and chang-

ing the property label (see also the OWL inverse properties). Thus, it is reasonable

to also study the total-degree distribution and try to compare its characteristics with

those of the in-/out-degrees. Furthermore, since subsumption plays a significant role

in SW schemas we will also investigate the out-/in-degree (corresponding to transitive

subclasses/superclasses respectively) distributions of the closure of the subsumption

graph, G∗s. Formally, we (mainly) consider the Discrete Random Variables (D.R.V.)

for the out-/in-/total-degrees of the property graph, Gp, and for the out-degrees of

the closure of the subsumption graph, G∗s.
Then, for each D.R.V. we study:

i) its probability density function (PDF), i.e., P (X = x)

ii) its complementary cumulative probability density function (CCDF), i.e., P (X ≥
x)

iii) the relationship among the values of its range and their rank in decreasing order

(VR)

The consideration of VR beyond the two frequency-based functions is necessary,

since it reflects the variability of the values (e.g., of the total degrees), while the

PDF measures only the frequencies of the values and not their correlation [40]. Note

also that the high variability of degrees, which is correlated with the total-degree

VR (and not PDF), is a necessary condition for a graph to be small world [34]. Next,

we introduce power-law functions.

Definition 7 A power-law (also denoted by P (α, β)) is a function f : X ⊆ R+
∗ → R+

∗

of the form: f(x) = αx−β, where α, β are constants, with α, β ∈ R+
∗ . Equivalently,

log f(x) = log α− β log x. ¦

University of Crete, Computer Science Department

2.2. EXPERIMENTAL RESULTS 15

This means that f(x) can be drawn as a line in log-log scale. Obviously, the slope

of this line equals −β. Power-law functions are scale-free, in the sense that if x is

rescaled by multiplying it by a constant, then f(x) would still be proportional to x−β.

Previous definition excludes the value β = 0.0, since in this case f(x) could be

equal to α for all values of x, i.e. f could be constant (uniform distribution, if f

is PDF of a D.R.V.). Loosely speaking, uniform distributions can be regarded as a

trivial case of power-law distributions. Intuitively, the value of β is a measure of the

skewness of the distribution, i.e. β = 0 implies no skewness, while increasing values of

it implies increasing skewness. However, it is worth noticing that a distribution can

be skewed without being a power-law and this is why the skewness of a distribution

can not be the only explanation for the emergence of a power-law.

2.2 Experimental Results

In this section, we detail our sampling, methodology and the results of our exper-

imental analysis1. For each of the three functions of the considered DRV s we mainly

focus on two aspects: a) the fraction of schemas that approximates a power-law ; and

b) the evidence or not for some correlation between the characteristic exponent of a

power-law function and the corresponding number of schema classes/properties.

2.2.1 SW Schemas Corpus

We collected 250 schemas from RDFSuite2, SchemaWeb3 and Swoogle4 schema

registries. We should stress that this corpus contains the biggest (in terms of number

of classes and properties) schemas published on the WWW until May 2006, including

1To perform this analysis we extended VRP[4].
2athena.ics.forth.gr:9090/RDF/VRP/Examples/
3www.schemaweb.info
4swoogle.umbc.edu/

Yannis Theoharis

16 CHAPTER 2. GRAPH FEATURES OF SW SCHEMAS

the largest schemas of the Swoogle2005 ontology set (with 4000 ontologies). The size

of each schema (i.e., the number of classes and properties) is crucial for our analysis

since for small schemas the ’noise’ would be significant and thus would hinder the

deduction of credible conclusions. Hence, we categorized (see Table 2.1) the schemas

of our corpus according to their size. One group consists of 83 schemas with more

than 100 classes. Note that there are four sets (i.e., 9−16, 18−26, 29−36, 54−55) of

strongly interconnected schemas (i.e., each schema of a set reuses/extends all the other

set schemas). A second group (subset of the first one) comprises 58 schemas that have

more than 100 properties. The motivation behind this decision is that searching for

any kind of distribution in schemas with less than 100 classes (properties respectively)

is meaningless as explained earlier5.

2.2.2 Power-law Investigation Method

In this subsection, we aim at investigating whether the three functions of the con-

sidered DRV s (see Section 2.1.2) approximate a power-law and if they do, to which ex-

tent. For this purpose, we rely on a commonly used method (based on the least square

errors method), called Linear Regression [45], to fit a line in a set of 2-dimensional

points and, thus, to investigate whether the log-log plot of a function approximates

a line. The accuracy of the approximation is indicated by the correlation coefficient,

the absolute value of which (hereafter called ACC) always lies in [0, 1]. Since, there

is no formal definition of a threshold of ACC value over which the approximation

can be characterized as good, we used 6 scales, namely 0.7, 0.75, 0.8, 0.85, 0.9, 0.95

and looked at the plots to observe the credibility of the method6. By adopting this

5Detailed figures depicting the distributions of all corpus schemas are available at
athena.ics.forth.gr:9090/RDF/VRP/SWSchemas/

6www.tufts.edu/∼gdallal/corr.htm

University of Crete, Computer Science Department

2.2. EXPERIMENTAL RESULTS 17

id Name # of C. # of P.
1 tap 6031 379
2 dcd100 5112 355
3 not-galen 3135 484
4 opencycprotege 2966 1317
5 cyc 2731 1193
6 bsr 2724 1770
7 milo 2480 458
8 sweet data 2036 205

9-16 sweet phenomena 1923 190
17 clib-core-office 1352 1786

18-26 mds 856 914
27 weap of mass destr 828 263
28 ontology 823 296

29-36 science 790 301
37 sumo 643 254
38 framenet 1.1 inferred 537 753
39 adw 445 161
40 p3p-rdf-schema 422 379
41 akt-refont-20020509 362 243
42 kimo 341 126
43 akt portal ont 228 208
44 mgedontology 226 114
45 spacenamespace 224 143
46 resume 217 119
47 phontology 193 148
48 spase 051214 176 224
49 cerif 164 226
50 geo Inf Met 158 335
51 copyright Ontology 155 117
52 georelations 148 144

id Name # of C. # of P.
53 onto 115 190

54-55 geocoordsyst 113 102
56 moviedatabase 108 394
57 datatypes 101 334
58 cononto Fuzzy 101 117
59 unspsc84-title 16518 20
60 unspsc 9810 16
61 go 7006 25
62 acm-css 1483 16
63 mygrid-reasoned 1012 99
64 gams 795 16
65 facc 620 16
66 mygrid-services-lite 592 30
67 java ontology 503 28
68 mygriddomainontology 463 30
69 sweet hum act 295 24
70 sweet mat thing 295 24
71 orel 288 56
72 math inter 223 16
73 kmi basic 216 17
74 wine ontology 166 33
75 food ontology 166 33
76 substance 138 16
77 gold 129 24
78 sweto v2 3 127 85
79 earthrealm 125 16
80 property 125 16
81 openmath 107 16
82 pizza 20041007 101 46
83 sweet biosphere 100 16

Table 2.1: 83 schemas with ≥ 100 classes (58 with ≥ 100 properties and 25 with
< 100 properties)

approach, we observed that the approximation is: a) not good enough to be ac-

cepted for ACC < 0.85, b) quite good, but not to the same degree for all plots for

0.85 ≤ ACC < 0.9, and c) credible for ACC ≥ 0.9. For this reason, we present our

results7 for each distribution for two threshold values of ACC, namely 0.85 and 0.9.

We should notice that during our experiments we observed power laws PDF exhibit-

ing a characteristic ’heavy tail’, i.e., small values have big frequencies. This skewness

essentially consists a noise for the linear regression method, which computes a slope

(which equals to −β) smaller in absolute value than the real one (see the PDF of

schema 61 in Figure 2.3), as has been observed in [12]. In the literature there has

7To produce the plots as well as to perform linear regression we used Gnuplot, gnuplot.info

Yannis Theoharis

18 CHAPTER 2. GRAPH FEATURES OF SW SCHEMAS

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0 0.5 1 1.5 2 2.5

lo
g(

 %
 o

f
cl

as
se

s
w

ith
 >

=
 x

 d
es

ce
nd

an
ts

)

log(# of classes)

CCDF of schema 9
Fitting (ACC = 0.94)

-3

-2.5

-2

-1.5

-1

-0.5

0 0.5 1 1.5 2 2.5

lo
g(

 %
 o

f
cl

as
se

s
w

ith
 >

=
 x

 d
es

ce
nd

an
ts

)

log(# of classes)

CCDF of schema 45
Fitting (ACC = 0.91)

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0 0.5 1 1.5 2 2.5 3 3.5 4

lo
g(

 %
 o

f
cl

as
se

s
w

ith
 =

 x
 d

es
ce

nd
an

ts
)

log(# of classes)

PDF of schema 61
Fitting (ACC = 0.95)

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0 0.5 1 1.5 2 2.5

lo
g(

 %
 o

f
cl

as
se

s
w

ith
 =

 x
 d

es
ce

nd
an

ts
)

log(# of classes)

PDF of schema 6
Fitting (ACC = 0.93)

Figure 2.3: Examples of different ACC values for functions CCDF and PDF

been proposed to bin the data in logarithmic bins, i.e., bins with exponentially in-

creasing widths as we go towards the tail. However, this method introduces a new

source of noise, since binning leads to loss of information (all that we retain in a bin

is its average). Hence, it is recommended to derive the characteristic exponent of the

PDF from the corresponding exponent of the CCDF [12] which is more resistant to

noise. If PDF follows a power-law with exponent β, i.e., P (X = x) = αx−β, then

CCDF follows a power-law with exponent β − 1, i.e., P (X ≥ x) = γx−(β−1) [12]. Fi-

nally, the VR function is one-to-one and thus no noise incurs in the linear regression

method.

To provide a graphical representation of what the value of ACC means, Figure 2.3

illustrates the CCDF and PDF functions of subsumed classes (all figures are plotted

in log-log scale with log base 10) of schemas 9, 45 (CCDF) and 61, 6 (PDF). We

University of Crete, Computer Science Department

2.2. EXPERIMENTAL RESULTS 19

0

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2 2.5 3 3.5 4

lo
g(

 #
 o

f
de

sc
en

da
nt

s
of

 a
 c

la
ss

)

log(rank of y in decreasing order)

Subsumption VR of schema 38
Fitting

0

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2 2.5 3 3.5 4

lo
g(

 to
ta

l d
eg

re
e

of
 a

 c
la

ss
)

log(rank of y in decreasing order)

Total-Degree VR for schema 17
Fitting

Figure 2.4: Deviations from the power-law for class descendants (left) / total-degree
(right) VR functions

should mention that the VR function slightly diverges from a power-law, exhibiting a

frequent plot of a curve, like the one shown in Figure 2.4 (left), instead of a strict line

in log-log scale. This kind of divergences from a power-law has been also observed in

the degree distributions of other graphs, like the WWW and has led to the proposal of

the DGX [7] distribution, which is a truncated log-normal one. This observation also

holds for the degree VR function. Another plot observed during our experiments for

the VR function is that of wings-like plots (see Figure 2.4 (right) which corresponds

to the total-degree VR function of schema 17). The impact of both divergences in our

method is captured by observing the decreasing ACC values employed to demonstrate

the quality of the power-law approximation (and thus we stick on a standard log-log

method).

2.2.3 Features of the Property Graph

In order to obtain an accurate picture about the domain/range distributions we

considered the given property graph Gp (and not its closure). As we will see later on,

schema classes present strong differences in their significance. Few central classes are

developed in detail (i.e., they appear as domain/range of many properties), in contrast

Yannis Theoharis

20 CHAPTER 2. GRAPH FEATURES OF SW SCHEMAS

Domains (out-degrees)
Distribution ≥ 100 Properties ≥ 300 Properties

ACC = 0.85 ACC = 0.9 ACC = 0.85 ACC = 0.9
PDF & CCDF 51/58 (87.9%) 19/58 (32.7%) 27/30 (90%) 9/30 (30%)

VR 56/58 (96.5%) 34/58 (58.6%) 29/30 (96.6%) 20/30 (66.6%)

Ranges (in-degrees)
Distribution ≥ 100 Properties ≥ 300 Properties

ACC = 0.85 ACC = 0.9 ACC = 0.85 ACC = 0.9
PDF & CCDF 39/58 (67.2%) 14/58 (24.1%) 23/30 (76.6%) 12/30 (40%)

VR 50/58 (86.2%) 24/58 (41.3%) 27/30 (90%) 22/30 (73.3%)

Total (in- and out-degrees)
Distribution ≥ 100 Properties ≥ 300 Properties

ACC = 0.85 ACC = 0.9 ACC = 0.85 ACC = 0.9
PDF & CCDF 53/58 (91.3%) 39/58 (67.2%) 27/30 (90%) 25/30 (83.3%)

VR 58/58 (100%) 55/58 (94.8%) 30/30 (100%) 29/30 (96.6%)

Table 2.2: Number of schemas exhibiting a power-law function for domain / range /
total degrees

to many peripheral ones. Additionally, central classes appear both as domain/range

of many properties. This correlation reflects the fact that for schema developers the

direction of the properties is not important.

2.2.3.1 Distribution of Property Domains (out-degrees)

Table 2.3 (left) depicts the characteristics of the distribution of property domains

for schemas 1 − 58. For each schema, its min, max, mean, standard deviation and

C.O.V. (i.e., st.dev./mean) measure is shown. Table 2.2 (upper) shows the portion

of schemas that define more than 100/300 properties and also approximate a power-

law for each considered function of property domains and for two threshold values

of ACC, namely 0.85 and 0.9. The main conclusion that can be drawn is that

the VR functions of property domains of most schemas approximate a power-law.

However, we can not infer any relationship between the number of properties of

a schema that approximates a power-law and the exponent of it (the corresponding

University of Crete, Computer Science Department

2.2. EXPERIMENTAL RESULTS 21

domains ranges
id # of P. Min Max Mean St.dev. C.O.V. Min Max Mean St.dev. C.O.V.
1 379 0 313 18.95 67.53 3.56 0 22 1.11 1.24 1.1
2 379 0 45 18.03 13.59 0.75 0 4 1.23 0.6 0.48
3 484 0 17 2.93 2.55 0.87 0 4 1.11 0.39 0.35
4 1317 0 65 3.97 7.64 1.92 0 85 4.09 9.4 2.29
5 1193 0 63 4.07 7.79 1.91 0 77 4.1 9.18 2.23
6 1770 0 6 1.18 0.42 0.36 0 552 67.92 131.59 1.93
7 458 0 19 3.0 3.05 1.01 0 17 2.7 2.76 1.02
8 205 0 15 3.2 3.23 1.01 0 10 1.36 0.97 0.71

9-16 190 0 15 3.14 3.26 1.03 0 10 1.37 0.97 0.71
17 1786 0 225 6.41 23.81 3.71 0 197 3.98 14.18 3.55

18-26 914 0 11 2.06 1.85 0.89 0 32 1.94 3.12 1.6
27 263 0 19 3.52 3.31 0.93 0 17 3.03 3.15 1.03
28 296 0 15 2.69 2.82 1.04 0 12 2.31 2.53 1.09

29-36 301 0 7 1.76 1.28 0.73 0 30 1.79 3.38 1.87
37 254 0 19 3.66 3.38 0.92 0 17 3.16 3.25 1.02
38 753 0 6 2.66 1.69 0.63 0 4 2.4 1.01 0.42
39 161 0 8 1.59 1.3 0.82 0 31 6.6 9.7 1.45
40 379 0 313 21.82 72.87 3.33 0 42 1.1 1.67 1.5
41 243 0 10 2.51 2.11 0.84 0 38 2.27 4.28 1.87
42 126 0 12 2.69 2.48 0.92 0 34 2.74 5.35 1.95
43 208 0 21 3.14 3.84 1.22 0 8 1.92 1.66 0.86
44 114 0 6 2.15 1.34 0.62 0 4 2.4 1.01 0.42
45 143 0 16 5.15 5.3 1.02 0 19 5.45 6.0 1.1
46 119 0 12 2.37 2.44 1.02 0 16 1.84 2.64 1.43
47 148 0 29 8.78 8.79 1.0 0 19 3.4 3.95 1.16
48 224 0 124 4.55 16.8 3.68 0 133 9.61 30.14 3.13
49 226 0 12 3.81 3.28 0.86 0 4 1.4 0.79 0.57
50 335 0 21 4.45 3.74 0.84 0 10 1.63 1.33 0.81
51 117 0 9 2.79 1.95 0.7 0 7 2.16 1.59 0.73
52 144 0 11 3.56 2.78 0.78 0 8 2.0 1.71 0.85
53 190 0 38 4.54 7.84 1.72 0 30 3.48 6.17 1.77

54-55 102 0 11 3.76 2.83 0.75 0 4 2.09 1.08 0.51
56 394 0 70 6.45 12.8 1.98 0 286 12.28 52.67 4.28
57 334 0 30 4.54 5.27 1.15 0 20 3.17 4.75 1.28
58 117 0 6 1.77 1.14 0.64 0 4 1.44 0.83 0.57

Table 2.3: Distribution of property domain/range

figures are not illustrated in this paper). For PDF the range of exponents lies between

[1.82, 2.99], except for schema 2 with exponent 1.5, while for VR it lies between

[0.83, 2.22].

2.2.3.2 Distribution of Property Ranges (in-degrees)

Table 2.3 (right) depicts the basic characteristics of the distribution of property

ranges for schemas 1 − 58. Table 2.2 (middle) shows the portion of the schemas

that define more than 100/300 properties and also approximate a power-law for each

Yannis Theoharis

22 CHAPTER 2. GRAPH FEATURES OF SW SCHEMAS

Distribution PDF VR
ranges 12/39 21/39

domains 15/39 26/39
total 33/39 39/39

Table 2.4: Number of small world schemas that approximate (ACC ≥ 0.9) a power-
law for property domain/range

function of property ranges. We conclude that as the number of properties increases,

the portion of schemas that approximate a power-law also increases. The range of

PDF exponents for the majority of the schemas is [2.12, 2.71]. However, we can not

figure out any relationship between the exponent and the number of properties. Fi-

nally, for VR the corresponding range of its exponents is [0.91, 2.23]. One noteworthy

observation is that all schemas that approximate a power-law for property ranges

VR function, also approximate a power-law for property domains VR function.

2.2.3.3 Distribution of Total Degrees

We should stress that there is a strong correlation between the number of proper-

ties that have as domain a class and the number of properties that have as range the

same class. This correlation was revealed by the analysis of the total-degree (in- and

out-degree) functions, the results of which are shown in Table 2.2 (bottom). Note

that the percentages for total degrees are greater than those corresponding to both in-

(ranges) and out-degrees (domains). So if we consider the properties as undirected,

then their distribution better approximates a power-law. The range of the exponents

in this case lie in [1.65, 3.05] for PDF and in [0.79, 2.18] for VR.

2.2.3.4 Small World Schema Graphs

As has been mentioned in Section 2.1.1, to examine if a SW schema graph exhibits

the small world, we consider the G∗pun− . Additionally, to decide whether such a graph

University of Crete, Computer Science Department

2.2. EXPERIMENTAL RESULTS 23

is a small world or not, we need to further detail the necessary and sufficient condition

presented in Section 2.1.1, i.e., LG∗pun−
' Lrandom and CCG∗pun−

À CCrandom. For the

former, we consider that it is true if LG∗pun−
< 2 ∗Lrandom. This decision is motivated

by the fact that the average distance of small world graphs should not exceed by an

order of magnitude the average distance of a random graph with the same number

of classes and properties. Moreover, since we observed that SW schemas (treated

as undirected simple graphs) have small average distances, we further restrict the

upper bound into 2 ∗ Lrandom. For the latter (i.e., CCG∗pun−
), we consider the initial

assumption of the paper [53] that introduced this condition using as a threshold a

multiplicative of CCrandom. For example, in [53] the smallest threshold considered in

the examples presented there was 5. In our experiments, we increase it up to 8 (i.e.,

CCG∗pun−
> 8 ∗ CCrandom), since we observe a transition point there.

39 (i.e., the schemas with id 1−5, 7−26, 28−36, 40, 46, 48, 51, 53) out of the 58

schemas that contain more than 100 classes and more that 100 properties, are small

world graphs. All of them, approximate a power-law for total-degree VR function and

33 of them also approximate a power-law for the corresponding PDF (ACC ≥ 0.9).

The approximation of a power-law from the total-degree VR function of a schema

implies the high variability of total-degrees which is necessary for a graph to be small

world. The preference for local connectivity (i.e., the second necessary condition for

a graph to be a small world), although common, is exhibited by less schemas than

those exhibiting a power-law total degree VR function. Furthermore, as it has been

already mentioned in Section 2.1.2, the PDF does not provide any information about

the relationship among values (i.e., total-degrees in this case). The difference between

total-degree VR and PDF is even more clearly reflected for property domains/ranges

(Table 2.4). Also, it is worth mentioning that even the 19 schemas that do not exhibit

the small world phenomenon have small average distance (i.e. LG∗pun−
' Lrandom

holds), but not a sufficiently big clustering coefficient (i.e., CCG∗pun−
À CCrandom

Yannis Theoharis

24 CHAPTER 2. GRAPH FEATURES OF SW SCHEMAS

Distr. Min Max Mean St.dev. COV
self-loops 0.0 0.382 0.126 0.124 0.984

multiple arcs 0.0 0.626 0.177 0.194 1.09

Table 2.5: Distribution of self-loops/multiple arcs

Distr. Min Max Mean St.dev. COV
of cycles 0 65204 2315.51 9057.05 3.91

size of cycles 1 96 21.02 22.71 1.08

Table 2.6: Distribution of cyclic paths

does not hold). Specifically, CCG∗pun−
of the schemas 1 − 58 lies in [0.1, 0.82] (0.1

corresponds to schema 28 while 0.82 to schema 40), while
CCG∗pun−
CCrandom

lies in [0.58, 179.66]

(0.58 corresponds to schema 45 while 179.66 to schema 3).

2.2.3.5 Cyclic Paths

Another worth mentioning finding of our experiments concerns the percentage of

multiple arcs and self-loops in the property graph Gp. As we can see in Table 2.5,

the effect of self-loops is significant, i.e., 12.6% in the average case and its maximum

reaches the 38.2% for schema 37. The average percentage of multiple arcs is slightly

bigger, i.e., 17.7%, but its maximum roughly diverges from that of self-loops, reaching

the 62.6% for schema 56.

Finally, we also measure the number and the length of schema cycles (see Ta-

ble 2.6). With the term ’cycles’ we mean a path (of length ≥ 1) from a class to itself

in the undirected closure of the property graph G∗pun
. We should notice the big differ-

ence between the C.O.V. measure of the 2 distributions. The former is much more

skewed than the latter, i.e., most schemas have few or no cycles, while few schemas

have many cycles (up to 65,204). On the other hand, the corresponding deviation in

the cycle length distribution is relatively lower (i.e., 21.02 in the average case).

University of Crete, Computer Science Department

2.2. EXPERIMENTAL RESULTS 25

2.2.4 Features of the Subsumption Graph

Since subsumption is a transitive relationship, we consider the closure of the class

subsumption graph, G∗s. We mainly focus on the out-degree (i.e., class descendants)

functions. However, to better grasp the morphology of the class hierarchies in the

presence of multiple subsumers (i.e., tree vs DAG-shaped hierarchies) we also study

the in-degree (i.e., class ancestors) functions. Furthermore, to discover dominating

structural patterns of these hierarchies, we analyzed the DRV of class descendants

that are leaves. In addition to the depth-first view of the hierarchies provided by

these three DRV s, we finally employ a fourth one for analyzing the number of classes

located at each hierarchy level and thus, reveal a breadth-first view of the subsumption

hierarchies.

From our experiments we observed that class hierarchies are usually unbalanced,

i.e., some branches are very deep, while others are shallow. Thus, few classes located

highly in the closure of the subsumption graph have big out-degree (i.e., many descen-

dants), in contrary, most of those located at lower levels have small out-degree. In

particular, large branches expose few leaves at the medium levels, while most of them

are located at the maximum branch depth (see Figure 2.5). In conjunction with

the list-like structure [52] of subsumption relationships, we can sketch the general

morphology of class hierarchies as depicted in Figure 2.5.

2.2.4.1 Distribution of Class Descendants (out-degrees)

Table 2.7 (left) presents the basic characteristics of the class descendants distri-

bution for schemas with id 1 − 58. Table 2.8 shows the portion of schemas that

approximate a power-law for the three functions. Our results are presented for two

groups of schemas: one with ≥ 100, and another with ≥ 200 classes and for two

Yannis Theoharis

26 CHAPTER 2. GRAPH FEATURES OF SW SCHEMAS

C0

C10 C9C8C7C6

C5

C3C2

C1

isA

C4

C11

Figure 2.5: Structural pattern of class hierarchies

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

100 1000 10000 100000

ex
po

ne
nt

of classes

Exponent Vs Classes

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

10 100 1000 10000 100000

ex
po

ne
nt

of classes

Exponents Vs # of Classes

Figure 2.6: Exponents vs number of classes for subclass FV (left) / VR (right)

threshold values of ACC, namely 0.85 and 0.9. We can easily observe that the emer-

gence of a power-law is almost total for VR function, which better approximates a

power-law than the other two functions for all threshold values of ACC (confirming

that it is not sensible to noise, see Section 2.2.2). Also, by comparing the two columns

(’≥ 100 classes’ and ’≥ 200 classes’) of Table 2.8, we can observe that, as the number

of classes increases, the portion of schemas that approximate a power-law for some or

all of the 3 functions, also increases. Moreover, as the number of classes increases, the

results obtained for ACC = 0.85 converge to those obtained for ACC = 0.9 (column

University of Crete, Computer Science Department

2.2. EXPERIMENTAL RESULTS 27

descendants ancestors
id # of Classes Depth Max Mean St.dev. C.O.V. Max Mean St.dev. C.O.V.
1 6031 11 5455 28.25 232.53 8.22 17 6.94 2.53 0.36
2 5112 4 4227 101.37 425.48 4.19 9 4.7 0.82 0.17
3 3135 6 71 4.1 6.85 1.67 8 1.6 1.00 0.6
4 2966 14 2214 17.62 105.46 5.98 64 15.22 10.98 0.72
5 2731 3 1829 17.71 95.8 5.4 61 13.94 11.35 0.81
6 2724 5 108 4.14 7.44 1.79 5 1.94 0.94 0.48
7 2480 15 626 8.24 31.59 3.83 18 3.79 2.72 0.71
8 2036 9 240 9.72 21.48 2.2 12 3.29 1.91 0.58

9-16 1923 9 241 9.94 22.07 2.21 12 3.36 1.92 0.57
17 1352 15 737 19.09 60.87 3.18 28 11.49 5.64 0.49

18-26 856 4 44 3.82 4.96 1.29 15 2.18 2.28 1.04
27 828 15 626 14.95 50.24 3.35 18 6.89 2.84 0.41
28 823 12 474 22.32 58.63 2.62 19 7.38 2.96 0.40

29-36 790 9 86 7.62 13.06 1.71 10 3.80 2.01 0.52
37 643 13 626 15.96 54.92 3.44 18 7.29 2.69 0.37
38 537 5 74 4.49 10.92 2.43 12 1.9 1.97 1.03
39 445 5 319 18.48 53.42 2.89 7 3.42 1.43 0.41
40 422 4 318 49 98.6 2.01 7 4.42 1.72 0.39
41 362 9 151 5.92 15.19 2.56 22 6.22 5.77 0.92
42 341 8 262 12.15 33.05 2.72 11 4.78 1.82 0.38
43 228 10 167 10.07 22.71 2.25 15 5.48 3.65 0.66
44 226 7 212 19.42 42.6 2.19 11 5.3 2.57 0.48
45 224 7 161 22.08 43.13 1.95 9 3.43 1.56 0.45
46 217 3 47 6.87 9.21 1.33 5 1.9 1.11 0.58
47 193 12 188 15.49 33.18 2.14 12 7.29 2.69 0.36
48 176 4 54 5.59 8.64 1.54 13 4.08 2.98 0.73
49 164 3 29 5.78 6.27 1.08 3 1.67 0.7 0.41
50 158 3 22 3.4 4.4 1.29 3 1.43 0.7 0.49
51 155 6 28 4.17 5.94 1.42 11 2.68 3.08 1.14
52 148 4 49 11.93 14.84 1.24 4 1.89 0.8 0.42
53 115 4 23 4.39 5.97 1.35 7 2.05 1.84 0.89

54-55 113 3 49 20.5 19.9 0.97 3 1.67 0.57 0.34
56 108 3 29 15.66 10.15 0.64 2 1.89 0.3 0.16
57 101 5 16 4.07 3.65 0.89 5 2.14 0.96 0.45
58 101 5 11 3.99 2.96 0.74 6 2.17 1.37 0.63

Table 2.7: Distribution of descendants/ancestors

’≥ 200 classes’), i.e., the functions better approximate a power-law.

In order to investigate whether there is a correlation between the number of classes

of a schema that exhibits a power-law and its characteristic exponent (i.e., the value

of β), we plotted Figure 2.6 (left) depicting the subclass FV function (ACC ≥ 0.9): x

axis represents the number of schema classes and is plotted in log scale, while y axis

represents the corresponding power-law exponents. We can easily observe a trend

of increasing exponents with respect to the number of classes. The range of expo-

nents lies in [1.54, 2.47]. Figure 2.6 (right) illustrates the subclass VR function whose

Yannis Theoharis

28 CHAPTER 2. GRAPH FEATURES OF SW SCHEMAS

Distribution ≥ 100 Classes
ACC = 0.85 ACC = 0.9

PDF & CCDF 75/83 (90.3%) 50/83 (60.2%)
VR 82/83 (98.7%) 73/83 (87.9%)

Distribution ≥ 200 Classes
ACC = 0.85 ACC = 0.9

PDF & CCDF 60/61 (98.3%) 48/61 (78.6%)
VR 61/61 (100%) 59/61 (96.7%)

Table 2.8: Number of schemas exhibiting a power-law distribution for class descen-
dants

Distribution ≥ 100 Classes
ACC = 0.85 ACC = 0.9

PDF & CCDF 23/83 (27.7%) 17/83 (20.4%)

Distribution ≥ 200 Classes
ACC = 0.85 ACC = 0.9

PDF & CCDF 22/61 (36%) 16/61 (26.2%)

Table 2.9: Number of schemas exhibiting a power-law distribution for class ancestors

exponents lie in the range [0.97, 2.44], while their mean value is 1.4 approximately.

Although this figure reveals a rough fluctuation of exponents, we can also infer a

trend of decreasing exponents with respect to the number of schema classes.

2.2.4.2 Distribution of Class Ancestors (in-degrees)

Table 2.7 (right) illustrates the basic characteristics of the class ancestors distri-

bution for schemas with id 1 − 58. Due to the multiple subsumption relationships,

the maximum number of superclasses of a class surpasses the maximum depth of

many schemas (see Table 2.7 right). Table 2.9 details the portion of schemas that

approximate a power-law for PDF and CCDF functions. After computing additional

features of the subsumption graph, such as the number of direct ancestors (explicitly

given in Gs) per class, we observed that the schemas approximating a power-law for

class ancestors employ extensively multiple subsumption relationships. For instance,

University of Crete, Computer Science Department

2.2. EXPERIMENTAL RESULTS 29

Distr. Min Max Mean St.dev. COV
% of leaf classes 49.88% 96.37% 74.41% 0.1 0.14

Table 2.10: Distribution of percentages of leaf classes

Distribution ≥ 100 Classes
ACC = 0.85 ACC = 0.9

PDF & CCDF 75/83 (90.3%) 48/83 (68.5%)
VR 78/83 (93.9%) 73/83 (87.9%)

Distribution ≥ 200 Classes
ACC = 0.85 ACC = 0.9

PDF & CCDF 59/61 (96.7%) 44/61 (72.1%)
VR 60/61 (98.3%) 59/61 (96.7%)

Table 2.11: Number of schemas exhibiting a power-law function for leaf descendants

schemas 18 − 26, which approximate a power-law (ACC ≥ 0.9), the 18.9% of their

classes have more than one proper subsumer (up to 8). Another characteristic exam-

ple is schema 4, in which the 79.1% of the classes have more than one parent (up to

9). However, the majority of the schemas do not approximate a power-law for class

ancestor functions. This fact reveals that the effect of multiple subsuming classes is

not so important. The range of the corresponding PDF exponents lies in [1.98, 3.73].

It should be stressed that the VR of class ancestors does not approximate a power-

law by definition. This is due to the fact that all (or almost all) hierarchy levels

contain leaf classes. Hence, almost every integer value in [1,max] (i.e., up to the

maximum number of class ancestors), represents a distinct number of ancestors per

class. Hence, the plot of VR consists a line in linear-linear (and not in log-log as

required for power-law approximation) scale.

2.2.4.3 Distribution of Leaf Descendants

We observed that on average 75% of the classes of each schema are leaves (see

Table 2.10). Given that in most schemas subsumption hierarchies are deep (see

Yannis Theoharis

30 CHAPTER 2. GRAPH FEATURES OF SW SCHEMAS

Distribution ≥ 100 Classes
ACC = 0.85 ACC = 0.9

PDF & CCDF 74/83 (89.1%) 38/83 (45.7%)
VR 73/83 (87.9%) 35/83 (42.1%)

Distribution ≥ 200 Classes
ACC = 0.85 ACC = 0.9

PDF & CCDF 55/61 (90%) 35/61 (57.3%)
VR 58/61 (95%) 33/61 (54%)

Table 2.12: Number of schemas exhibiting a power-law distribution for class levels

Table 2.7), if the fanout (i.e., the number of direct descendants) was the same for all

classes, the percentage of leaves would be close to 50% (i.e., as in complete trees).

However, from our experiments we observed that the fanout is small for intermediate

level classes and big for the classes that are close to the leaves (see Figure 2.5).

Consequently, the DRV of leaf descendants has as range a set of values slightly

smaller than those of the corresponding DRV for class descendants, while bigger

values exhibit slightly bigger frequencies. As a result, the percentages of schemas

approximating a power-law for the considered functions (see Table 2.11) coincide with

those of class descendants (see Table 2.8) with comparable exponents, i.e., [1.38, 2.56]

for PDF and [1.00, 2.45] for VR.

2.2.4.4 Distribution of Class Levels

The PDF distribution is almost uniform (exponents lie in [−0.09, 0.12]). Specifi-

cally, in most cases PDF is a one-to-one function (or has only one pair with the same

range values), i.e., a discrete number of classes is placed at each level. Hence, the per-

centages for PDF presented in Table 2.12 essentially demonstrate the approximation

of the uniform and not of the power-law distribution. On the other hand, the VR of

42.1% of schemas approximate a power-law with exponents in [1.04, 2.38]. Moreover,

the corresponding exponent of the VR distribution increases as long as the number

University of Crete, Computer Science Department

2.2. EXPERIMENTAL RESULTS 31

1

1.2

1.4

1.6

1.8

2

2.2

2.4

100 1000 10000

ex
po

ne
nt

of classes

Exponents Vs # of Classes

Figure 2.7: Exponents vs number of classes for VR class level distribution

Distribution ≥ 100 Properties
ACC = 0.85 ACC = 0.9

PDF & CCDF 15/58 (25.8%) 5/58 (8.6%)
VR 17/58 (29.3%) 8/58 (13.7%)

Distribution ≥ 300 Properties
ACC = 0.85 ACC = 0.9

PDF & CCDF 8/30 (26.6%) 5/30 (16.6%)
VR 8/30 (26.6%) 7/30 (23.3%)

Table 2.13: Number of schemas exhibiting a power-law distribution for property
descendants

of classes increases (see Figure 2.7). The plot of Figure 2.7 is approximated by the

line y = 0.00017 ∗ x + 1.36.

Intuitively, the aforementioned results reflect the fact that usually deeper levels

contain a bigger number of classes. The biggest number of classes is observed between

the middle and the leaf levels. This is due to the fact that only few branches reach

the maximum depth of the hierarchies, while most of them end few levels higher.

2.2.5 Subproperty Hierarchies

Although property subsumption does not play a significant role as class subsump-

tion, we also studied the closure of the subsumption graph of properties. Table 2.13

Yannis Theoharis

32 CHAPTER 2. GRAPH FEATURES OF SW SCHEMAS

depicts the percentage of schemas exhibiting a power-law for property descendants

functions. The observed low percentages reflect the fact that subsumption relation-

ship for properties is not widely employed by existing SW schemas. The range of

exponents lies in [1.63, 2.63], except for schema 56 with exponent 0.09 for PDF and

in [0.96, 1.55] for VR.

2.2.6 Combinatoric Features

An interesting finding of our experiments is that most properties have as domain,

classes which are located highly in the class hierarchy, i.e., somewhere between the

root and the middle level. This was revealed by computing for each schema the corre-

lation coefficient (in most cases in [−1,−0.5]) between the depth in the subsumption

graph, Gs, of each class with its corresponding out-degree in the property graph, Gp.

It seems that the specification of a class in SW schemas is used more for classification

purposes rather than for refining classes with additional properties. The same trend

was observed for range classes, although the dominance of classes located higher over

those located lower in the subsumption graph is not so important as for property

domains.

2.3 Towards a Morphology of SW Schemas

Figure 2.8 illustrates, the abstract morphology of the graphs employed by the SW

schemas of our corpus. The upper left part of the figure depicts the distribution of

classes to the various subsumption hierarchy levels. The level of a class c equals 0

if c is the root, otherwise it equals p + 1 where p is the level of its parent class (if c

has more than one parents, then p is the maximum of their levels). The upper right

part of the figure shows the distribution of properties according to their level, by

University of Crete, Computer Science Department

2.3. TOWARDS A MORPHOLOGY OF SW SCHEMAS 33

Distribution of
Classes

(wrt to their level)

Literal classes are
all at level 1, plus
some common
used schemas
(e.g. Dublin core,

FOAF)

Because the class
subsumption

hierarchies are not
balanced

A

B

D

Level
Top classes (although
not many) have quite a

lot of properties

Very few
properties at

leaves

Most properties have
level slightly above

the middle one

Distribution of
Properties

(wrt to their level)

subclassOf property

C

Distribution of Classes and Properties (wrt to their level)

subclassOf property

|Classes| >> |Properties|

A

B

D

C

Level

|Classes| < |Properties|

Figure 2.8: Distributions of classes and properties w.r.t. their level in the subsumption
hierarchy

considering as level of a property the mean of the levels of the classes that it connects

(i.e., level(p) = (level(from(p)) + level(to(p)))/2).

The drawings of Figure 2.8 (which resemble vases and amphoraes) were derived by

first splitting the range of levels [0...maxDepth] into 4 equally sized intervals (named

A, B, C, D), and then counting the classes/properties that are located at each level

interval.

At the upper left part of the figure we can observe that the minimum number of

classes does not occur at level A (as one would expect) but between A and B. This

Yannis Theoharis

34 CHAPTER 2. GRAPH FEATURES OF SW SCHEMAS

is due to the fact that level A comprises all the literals, as well as, the classes of

commonly reused schemas (like the Dublin Core or the FOAF schema) with shallow

class hierarchies. The maximum number of classes is not placed at level D (as one

would expect) but at level C (see also Section 2.2.4.4). This is due to the fact that

class hierarchies are mostly unbalanced.

At the upper right part of figure we can see that the maximum number of proper-

ties are placed at level B (see also Section 2.2.6) and the minimum at level D. Notice

that the number of properties at level A is bigger than the corresponding number of

classes, since top level classes, although few, usually expose several properties.

The bottom part of the figure illustrates the total number of elements (classes and

properties) located at each level interval. In particular, the bottom right part of the

figure captures schemas that have more properties than classes. For those schemas,

the maximum number of properties is bigger than the maximum number of classes

for a specific level interval and as a consequence the bottom left part of the figure

converges to that of properties (upper right part).

On the other hand, schemas with much more classes than properties are divided

into two groups with respect to the level interval, denoted by M, at which the sum

of classes and properties reaches its maximum. The former comprises schemas for

which M converges to the level interval where the maximum number of classes occurs

(resulting in the bottom left part of the figure). The latter comprises schemas for

which M converges to the level interval where the maximum number of properties

occurs (resulting in the bottom right part of the figure). M actually depends on the

morphology of the subsumption hierarchy of each schema, i.e., its depth as well as

the percentage of its classes placed at lower levels.

University of Crete, Computer Science Department

2.4. RELATED WORK 35

2.4 Related Work

In this Section we position the contributions of this Chapter with respect to prior

research in the field. The results presented in this paper go beyond the statistical

analysis presented in [41], which provides only min/avg/max values for depth and

size of RDFS class (and property) subsumption hierarchies. Moreover, authors in

[52] analyzed the expressiveness of the OWL fragments employed by a large corpus of

SW schemas (we employee the same corpus of schemas but analyze only the big ones)

and discovered that only few OWL schemas are OWL Full, while most of them are

OWL Lite or DL. Furthermore, [48] classified the ontologies of the DAML ontology

library8 into three clusters, the taxonomic (i.e., ontologies with few properties and a

large number of classes), the logic-style (i.e., ontologies with a high number of axioms

per class) and the database-like one (i.e., ontologies of medium size containing on

average 65 classes and 25 properties). They observed that the distribution of the

DAML restrictions (e.g., property cardinalities) follows a power-law for each of the 3

clusters. They also observed that the cumulative class descendants distribution fol-

lows a power-law for the taxonomic cluster, while approximates a power-law for the

other two. However, they did not study the property graph. Moreover, according to

the analysis presented in [26], the cumulative total-degree distribution of the graph

obtained by aggregating all ontologies of the DAML library follows a power-law. How-

ever, authors did not distinguish between subsumption and user defined properties,

something which consists a decisive factor for the quality of the analysis method and

the interpretation of the presented results. Unlike that study, in our work we treat

and analyze the graphs of each SW schema separately (i.e., the graphs obtained from

the union of its classes/properties and only those of other schemas that it reuses

8www.daml.org/ontologies

Yannis Theoharis

36 CHAPTER 2. GRAPH FEATURES OF SW SCHEMAS

or/and extends). This is important for two main reasons: a) we need to know indi-

vidual schema graph features in order to generate realistic, synthetic SW schemas,

and b) the fact that the graph aggregating all schemas (regardless of whether they are

interconnected or not) exhibits some features does not necessary imply their emer-

gence for each individual one. This implication requires to study whether the graph is

scale-free9 (not addressed in [26]), i.e., whether it exhibits the same features irrespec-

tive of the employed scaling factor. On the contrary, from our experiments we found

a variety of schemas approximating a power-law for different distributions and with

different characteristic exponents. In the same direction, a recent work [32] analyzed

the graph structure of two OWL ontologies (one of them is schema 37 while the other

is small) focusing on measures like the diameter, the density of the graphs as well

as on different notions of centrality (i.e., degree, betweenness, eigenvector centrality).

They showed the usefulness of these measures for the identification of important (or

dummy) concepts, of clusters of concepts and of the core conceptual backbone of an

ontology. In this study both classes and properties have been considered as graph

nodes (i.e., a bipartite graph). Although useful for evaluating ontologies according

to various quality criteria, these metrics are not sufficient for generating synthetic

SW schemas, which is the main focus of our work.

Furthermore, authors in [19, 28] collected a voluminous set of online FOAF10

documents and analyzed the resulting RDF instance graph. They also observed a

power-law for both in- and out-degree distribution (data level), while authors in [46]

analyzed a slice of a specific folksonomy and found that the network composed of the

tags from the folksonomy exhibits both of small world and power-law degree distri-

bution. Our work focuses on SW schemas rather than their instances. Additionally,

authors in [20] focused on aspects such as the provenance, the age and the size of

9It is well known that the power-law distribution of total-degrees is a necessary but not a sufficient
condition for a graph to be scale-free [40].

10www.foaf-project.org/

University of Crete, Computer Science Department

2.4. RELATED WORK 37

SW documents (i.e., schema instances). They found that the CCDF of instances per

class follows a power-law, i.e., few classes are populated by many instances while most

classes by few instances or none at all. These results provide a complementary view

regarding the significance of classes, i.e., not only (as in our work) determined by the

number of properties for which they appear as a domain/range, but also by the cor-

responding number of instances. However, a study of the involved instance graphs is

not presented in [20]. Finally, authors in [47] analyzed subsets of the instance graphs

of the Gene Ontology (schema 61), which also exhibit power-law degree distributions

and the small world phenomenon.

Yannis Theoharis

38 CHAPTER 2. GRAPH FEATURES OF SW SCHEMAS

University of Crete, Computer Science Department

Chapter 3

Graph Generation Using Linear
Programming

In this Chapter we elaborate on the problem of generating synthetic graphs. In

particular, we are interested in the synthetic generation of the two graphs forming a

SW schema, namely Gp and Gs. We assume that the in/out-degree sequences of Gp

and the in/out-degree sequences of the transitive closure of Gs are given.

We propose a Linear Programming (LP) reduction of the problem of generating

directed graphs (without self-loops and multiple edges) given the out-and in-degree

sequence of it or of its transitive closure. This allows us to generate our graphs by

exploiting LP algorithms, such as Simplex [17], that have expected polynomial time

complexity [10], while their optimization has been extensively studied during the last

6 decades.

Previous works on generating graphs given their degree sequences can be catego-

rized with respect to the nature of the graphs that they generate (e.g. general graph

or DAG or tree) and the consideration of transitive edges or not. We position the

algorithms presented in this Chapter according to these axes in Table 3.1.

The remainder of this Chapter is organized as follows: Section 3.1 introduces

the LP problem in the abstract framework of optimization problems. Section 3.2

provides a model for graphs that allows to capture Gp and Gs in terms of variables and

39

40 CHAPTER 3. GRAPH GENERATION USING LINEAR PROGRAMMING

Non Transitive Edges Transitive Edges
Previous Contribution Previous Contribution

Work Work

Undirected [27, 29] O(NlogN) - - -
Graph [8] Ω(N3)

Directed [42] O(N3) Section 3.2.1 - Section 3.2.2.2
Graph O(N3) O(N5)
DAG - - - Section 3.2.2.1

O(N5)
Directed - - - Section 3.2.2.3

Tree O(N3)

Table 3.1: Graphs and Generation Algorithms

constraints of an LP. Specifically, Section 3.2.1 copes with the problem of generating

graphs with non transitive edges. Generating graphs with transitive edges is the

subject of Sections 3.2.2.1 (for DAGs), 3.2.2.2 (for graphs) and 3.2.2.3 (for Trees).

Finally, Section 3.3 subsumes related work and compare our algorithms to them.

3.1 Optimization Problems and LP

Many problems of both practical and theoretical importance concern themselves

with the choice of a ”best” configuration or set of parameters to achieve some goal.

Over the past few decades a hierarchy of such problems has emerged, together with a

corresponding collection of techniques for their solution. At one end of this hierarchy

is the general nonlinear programming (NLP) problem:

Find x to

Minimize f(x)

Subject to gi(x) ≥ 0, i = 1, ..., m

hj(x) = 0, j = 1, ..., p

where f , gi, hj are general functions of the parameter x ∈ Rn. The techniques for

University of Crete, Computer Science Department

3.1. OPTIMIZATION PROBLEMS AND LP 41

solving such problems are almost always iterative in nature, and their convergence is

studied using the mathematics of real analysis.

When f is convex, gi concave, and hj linear, we have what is called a convex

programming problem. This problem has the most convenient property that local

optimality implies global optimality. We also have conditions for optimality that are

sufficient, the Kuhn-Tucker conditions [44].

To take the next big step, when f and all the gi and hj are linear, we arrive at the

linear programming (LP) problem. Several striking changes occur when we restrict

attention to this class of problems. First, any problem in this class reduces to the

selection of a solution from among a finite set of possible solutions. The problem is

what we can call combinatorial. The finite set of candidate solutions is the set of

vertices of the convex polytope defined by the linear constraints.

The widely used simplex algorithm of G.B. Dantzig [17] finds an optimal solution

to a linear programming problem in a finite number of steps. This algorithm is based

on the idea of improving the cost by moving from vertex to vertex of the polytope.

Thirty years of refinement has led to forms of the simplex algorithm that are generally

regarded as very efficient. It is also true, however, that there are specially devised

problems on which the simplex algorithm takes a disagreeably exponential number of

steps.

Although, a polynomial algorithm for LP has been invented, i.e. the ellipsoid

algorithm [35], in practice simplex is still considered to be the most efficient algorithm

for LP. The general form of an LP problem follows.

Definition 8 [44] Given an m × n integer matrix A with rows ~aT
i , let M be the set

of row indices corresponding to equality constraints, and let M be those corresponding

to inequality constraints. Similarly, let ~x ∈ Rn and let N be the column indices

corresponding to constrained variables and N those corresponding to unconstrained

variables. Then an instance of the general LP is defined by

Yannis Theoharis

42 CHAPTER 3. GRAPH GENERATION USING LINEAR PROGRAMMING

min ~cT~x
~aT
i ~x = bi i ∈ M
~aT
i ~x ≥ bi i ∈ M

xj ≥ 0 j ∈ N

xj ∈ R j ∈ N

where ~b is an m-vector of integers and ~c an n-vector of integers.

The variables of the general form of the LP problem are real ones. If instead, we

restrict them to take only integer values, then we reach the Integer Linear Program-

ming (ILP) problem, which is NP-complete [44].

3.2 Modeling Graphs using LP

Let G : (V, E) be the graph that we want to generate, where V is the set of

its nodes and E the set of edges, i.e., the set of ordered pairs 〈u, v〉 u, v ∈ V . We

will consider a variable xu,v for a candidate edge from u to v. The value xu,v = 0

means that the edge 〈u, v〉 does not exist in G, while xu,v = 1 means that it exists.

Whenever, 0 < xu,v < 1 we will consider xu,v as the probability that the edge 〈u, v〉
exists in G. We should notice that if we did not allow non-integer values for each xu,v,

then our problem would no longer be an LP but an ILP instance, which is intractable

as noted in Section 3.1.

Additionally, we will not consider any unconstrained variable, i.e., N ≡ ∅, because

the variables represent edges and thus are bounded in the range [0, 1]. Moreover, we

will consider c = ~0, (i.e., we will leave empty the objective function). This is due to

the fact that we will exclusively express the conditions for the given sequences to be

simultaneously realizable in terms of constraints of the LP instance. The features of

the graph that we want to generate, will affect the number of the candidate edges

University of Crete, Computer Science Department

3.2. MODELING GRAPHS USING LP 43

(i.e., the value of n in Definition 8), as well as the number (i.e., the value of m

in Definition 8) and the type (i.e., equality or inequality) of the constraints of the

LP instance. Specifically, the influencing factors are: a) whether G is a general graph

or a DAG or a tree and b) where the set of its edges, i.e. E, should be transitively

closed or not.

3.2.1 Non Transitive Edges

In this section we elaborate on the problem of generating a graph G that simul-

taneously realizes the given in-/out-degree sequences. In the rest of this Chapter, we

will denote with Dout/Din the out-/in-degree (respectively) sequence of G. Finally,

we will denote with Dout(u)/Din(u) the out-/in-degree (respectively) of node u in

G.

We consider as candidate edges all the possible edges of a directed graph without

self-loops and multiple edges. In such a graph every node can be connected with each

other once, resulting in a set of N(N − 1) candidate edges.

After having computed the set of candidate edges (i.e., the variables of the LP in-

stance) we turn our attention to the definition of constraints which guarantee that

G realizes the given sequences. It is evident that the sum of the values of all candi-

date out-/in-going edges from/to a node of G should be equal to its out-/in-degree

respectively:

∀u ∈ V,
∑

(u,v)∈E

xu,v = Dout(u) and ∀u ∈ V,
∑

(v,u)∈E

xv,u = Din(u) (3.1)

Considering additionally the constraints that bound each candidate edge between

0 and 1, we reach the reduction of our problem to the LP problem of the form LP1.

Definition 9 (LP1)

Let G be a graph and let E be the set of its candidate edges. The generation of G

given its out- and in-degree sequences can be reduced to an LP instance of the form:

Yannis Theoharis

44 CHAPTER 3. GRAPH GENERATION USING LINEAR PROGRAMMING

min ~0T~x∑
(v,u)∈E xv,u = Dout(v), ∀v ∈ V∑
(u,v)∈E xu,v = Din(v), ∀v ∈ V

0 ≤ xu,v ≤ 1, ∀〈u, v〉 ∈ E

The number of constraints of LP1 is 2 ∗N , since for each node u ∈ V we form 2

constraints (one corresponding to each in- and one corresponding to each out-degree).

Hence, the expected time complexity of simplex to solve an LP1 instance is O(N3).

We should stress that although we allowed the edges variables xu,v to take non-integer

values, every solution of an LP1 instance is integral (all the variables xu,v ∈ Z and

more specifically xu,v ∈ {0, 1}). To prove this fact we will first show (see Theorem 2)

that the matrix A of every LP1 instance is totaly unimodular (TUM), i.e. every

square submatrix of A has determinant equal to 0 or ±1 by exploiting Theorem 1

and then we will exploit Theorem 3 to conclude that every solution of an LP1 instance

is integral.

Theorem 1 [44] An integer matrix A with aij = 0, ±1 is TUM if no more than two

nonzero entries appear in any column, and if the rows of A can be partitioned into

two sets I1 and I2 such that:

• If a column has two entries of the same sign, their rows are in different sets;

• If a column has two entries of different signs, their rows are in the same set.

Theorem 2 Every LP1 instance can be described as {~x : A~x = ~b, 0 ≤ ~x ≤ 1} where

A is a TUM m× n matrix.

Proof. It is evident from the type of constraints of LP1 that each element aij of

A is either 0 or 1. Moreover, A can be split into two m
2
× n matrices C, D, i.e,

A = (C
D), where C corresponds to the first m

2
rows of A (i.e., those corresponding to

the out-degree constraints) and D corresponds to the next m
2

rows of A (i.e., those

corresponding to the in-degree constraints). Each variable xi,j appears in one and only

out-degree constraint, namely the constraint that corresponds to the Dout(i). Hence,

each column of C contains one and only nonzero element (i.e. equal to 1). Similarly,

University of Crete, Computer Science Department

3.2. MODELING GRAPHS USING LP 45

each variable xi,j appears in one and only in-degree constraint, namely the constraint

that corresponds to the Din(j). Hence, each column of D contains one and only

nonzero element. Hence, every column of A (which corresponds to a specific variable

xi,j) has 2 nonzero elements (i.e., +1) of the same sign. Moreover, the rows of A

can be partitioned into two sets I1 and I2 such that if a column has two entries of the

same sign, their rows are in different sets. It is evident that I1 coincides with the set

of rows of C and I2 with the set of rows of D. Since all the conditions of Theorem 1

are satisfied, we conclude that the matrix A of every LP1 instance is TUM.

Theorem 3 [31, 51] If A is a TUM matrix, then all the vertices of the polytope

{~x : A~x = ~b, ~x ≥ 0} are integer for any integer vector ~b.

Simplex algorithm seeks for the optimum in the vertices of the polytope defined

by an LP instance. Since, every vertex of the polytope defined by an LP1 instance is

integral (as a corollary of Theorems 2, 3), every solution of it is integral. Theorem 3

assumes that ~x ≥ 0. The additional range constraints ~x ≤ 1 of every LP1 instance

restricts the range of the coordinates of ~x in {0, 1}.

3.2.2 Transitive Edges

In this paragraph we elaborate on the problem of generating a transitively open

DAG G, whose transitive closure, denoted by G∗, simultaneously realizes the given in-

/out-degree sequences. Hereafter, we will denote with Dout/Din the out-/in-degree

(respectively) sequence of G∗ (and not G, as in Section 3.2.1). We first study the

problem in its generality and then under the assumption that G to is also a tree.

3.2.2.1 Directed Acyclic Graphs

We divide our method into two steps. The former is to generate G∗ while the

latter to compute the transitive reduction on G∗ in order to obtain G. Figure 3.1

shows a transitively open DAG whose transitive closure simultaneously realizes the

Yannis Theoharis

46 CHAPTER 3. GRAPH GENERATION USING LINEAR PROGRAMMING

1 2

3 4

(6, 0)

0

6

5

(3, 1)

(0, 2)

(3, 1)

(1, 3)

(0, 5)

(1, 2)

Figure 3.1: An example of a DAG

following sequences, Dout = 〈6, 3, 3, 0, 1, 1, 0〉, Din = 〈0, 1, 1, 2, 3, 2, 5〉. For each node

u, the pair (Dout(u), Din(u)) is drawn. As one can observe in Figure 3.1, each node

has more transitive descendants than any of each descendant (direct or transitive).

Similarly, it has less transitive ancestors than any of each descendants (direct or

transitive). The reader’s intuition is validated by the Lemma 1.

Lemma 1 An edge 〈u, v〉 ∈ V × V can be an edge of a transitively closed DAG

G∗ : (V, E∗) only if, Dout(u) > Dout(v) and Din(u) < Din(v).

Proof. Let 〈u, v〉 ∈ V × V be an edge of G∗ and let desc(u) be the set of the

transitive descendants of each node u in V , i.e. desc(u) = {v ∈ V | 〈u, v〉 ∈ E∗}.
Then, ∀w ∈ desc(v) it also holds that w ∈ desc(u). Equivalently, desc(v) ⊆ desc(u).

Moreover, v ∈ desc(u), while v /∈ desc(v). Hence, desc(v) ⊂ desc(u), i.e. Dout(u) >

Dout(v). Similarly, let anc(u) be the set of the transitive ancestors of each node u

in G∗, i.e. anc(u) = {v ∈ V | 〈v, u〉 ∈ E∗}. Then, ∀w ∈ anc(u) it also holds that

w ∈ anc(v). Equivalently, anc(u) ⊆ anc(v). Moreover, u ∈ anc(v), while u /∈ anc(u).

Hence, anc(u) ⊂ anc(v), i.e., Din(u) < Din(v).

We should notice that the strict inequalities in the formulae of the above lemma,

guarantee that no cyclic path can be obtained by the considered set of candidate

edges. Otherwise, all the nodes of the cyclic path would have exactly the same out-

and in-degree, since G∗ is transitively closed, something that contradicts to the fact

that the edges of the cyclic path are candidate.

University of Crete, Computer Science Department

3.2. MODELING GRAPHS USING LP 47

v w

u

v

w

u

v

wu

non-transitive edge
transitive edge

Figure 3.2: Three possible connections of three nodes

After having computed the set of candidate edges (i.e., the variables of the LP in-

stance) we turn our attention to the definition of constraints which guarantee that

G∗: a) realizes the given sequences and b) is transitively closed. Beginning with the

former, the condition presented in Section 3.2.1 for the out- and in degrees of nodes

holds for every graph and thus it also holds for G∗. Thus, for each node we consider

two linear equality constraints that express our goal that G∗ will have the given degree

sequences.

However, this is not sufficient for our problem. Many DAGs may simultaneously

realize the same pair of sequences. Among them, we seek for those (specifically

one of those) that are also transitively closed (recall we aim to generate G∗). As a

consequence, we need to model the transitivity of the edges as linear constraints for

the LP problem that we build. Figure 3.2 provides us the intuition behind the type

of linear constraints we seek.

Whenever two edges of the form 〈u, v〉, 〈v, w〉 exist in the generated graph, we

should enforce the edge 〈u,w〉 also to exist. The fact that 〈u, v〉, 〈v, w〉 exist implies

that xu,v + xv,w = 2. Note also that it always (irrespective of whether 〈u, v〉, 〈v, w〉
exist or not) holds that xu,v + xv,w ≤ 2 (since 0 < xu,v < 1,∀〈u, v〉 ∈ E). To enforce

that 〈v, w〉 exists whenever the other two edges exist, we write xu,v + xv,w−xu,w ≤ 1.

Lemma 2 Let G∗ : (V, E∗) be a transitively closed DAG. For every triple 〈u, v, w〉 ∈
V × V × V , such that 〈u, v〉, 〈v, w〉 ∈ E∗, it holds that: xu,v + xv,w − xu,w ≤ 1.

Yannis Theoharis

48 CHAPTER 3. GRAPH GENERATION USING LINEAR PROGRAMMING

Proof. Whenever either xu,v or xv,w does not exist, the above inequality obviously

holds since it is of the form a − b ≤ 1, where a, b ∈ [0, 1] (two such examples are

shown in the left and the center part of Figure 3.2). We focus on the case that both

xu,v and xv,w exist (see as an example the right part of Figure 3.2). Then, xu,w also

exists because G∗ is transitively closed. Hence, xu,v + xv,w − xu,w = 1 + 1 − 1 ≤ 1,

which obviously holds as equality.

We consider one such constraint for every triple 〈u, v, w〉 such that both 〈u, v〉, 〈v, w〉
are candidate edges. Adding the range constraints that bound every variable in [0, 1],

we have completed the reduction of the generation of G∗ to the LP problem of the

form LP2.

Definition 10 (LP2)

Let G∗ be a transitively closed DAG and E∗ be the set of its candidate edges.

Then, the generation of G∗ given its degree sequences, Dout, Din, can be reduced to

an LP instance of the form:

min ~0T~x∑
(u,v)∈E∗ xu,v = Dout(u), ∀u ∈ V∑
(v,u)∈E∗ xv,u = Din(u), ∀u ∈ V

xu,v + xv,w − xu,w ≤ 1, ∀〈u, v〉, 〈v, w〉 ∈ E∗

0 ≤ xu,v ≤ 1, ∀〈u, v〉 ∈ E∗

Let us now see an example of the proposed reduction for the generation of a

transitively closed graph given its sequences. Note that there is no reason to ex-

press constraints of the form
∑

(v,u)∈E∗ xv,u = 0 because, in this case, we know a

priori that ∀(v, u) ∈ E∗, xv,u = 0. Similarly, we do not express the constraint
∑

(root,u)∈E∗ xroot,u = Dout(root), since in a transitively closed graph, the root is con-

nected to every other node of the graph, i.e., ∀(root, u) ∈ E∗, xroot,u = 1. Moreover,

we replace xroot,u with 1 in every constraint that it appears.

University of Crete, Computer Science Department

3.2. MODELING GRAPHS USING LP 49

Example 1 The LP2 instance that corresponds to the sequences Dout = 〈6, 3, 3, 0,
1, 1, 0〉, Din = 〈0, 1, 1, 2, 3, 2, 5〉 follows:

min ~0T~x

+x1,3 + x1,4 + x1,5 + x1,6 = 3

+x2,3 + x2,4 + x2,5 + x2,6 = 3

+x4,6 = 1

+x5,6 = 1

+x1,3 + x2,3 = 1

+x1,4 + x2,4 = 2

+x1,5 + x2,5 = 1

+x1,6 + x2,6 + x4,6 + x5,6 = 4

+x1,4 + x4,6 − x1,6 ≤ 1

+x1,5 + x5,6 − x1,6 ≤ 1

+x2,4 + x4,6 − x2,6 ≤ 1

+x2,5 + x5,6 − x2,6 ≤ 1

0 ≤ x1,3 ≤ 1

0 ≤ x1,4 ≤ 1

0 ≤ x1,5 ≤ 1

0 ≤ x1,6 ≤ 1

0 ≤ x2,3 ≤ 1

0 ≤ x2,4 ≤ 1

0 ≤ x2,5 ≤ 1

0 ≤ x2,6 ≤ 1

0 ≤ x4,6 ≤ 1

0 ≤ x5,6 ≤ 1

The solution has the following 1-coordinates (x1,4, x1,5, x1,6, x2,3, x2,4, x2,6, x4,6, x5,6)

and all the other variables are zero. Note that x0,1, x0,2, x0,3, x0,4, x0,5, x0,6 have

been initially precomputed to be 1. The transitive reduction of G∗ is the DAG

obtained from the DAG shown in Figure 3.1, if we swap nodes 1 and 2, which have

the same out- and in-degree, i.e. (3,1).

The LP2 Instance Solution. Beginning with the case that the problem is in-

feasible, we can conclude that the constraints of the problem are not simultaneously

satisfiable, i.e., there does not exist a transitively closed DAG that simultaneously

Yannis Theoharis

50 CHAPTER 3. GRAPH GENERATION USING LINEAR PROGRAMMING

realizes the given sequences. However, if the LP2 instance is feasible, there is no

guarantee that the solution is integral, i.e., that all its variables are integers. We

should devise a method for obtaining the set of edges of the generated graph.

The fact that the LP2 instance is feasible provides us a crucial observation: there

exists at least one transitively closed DAG that simultaneously realizes the given

sequences. In the style of [55], we could adopt a method for selecting, according to

certain criteria, a non-integer variable and to generate two subproblems by setting

this variable to 0 and 1, respectively. These two subproblems are solved recursively,

repeating the above process for each subproblem. However, the recursion depth, which

determines the number of LP subproblems to be solved, can be big. The formulation

of sufficient criteria (if exist) to select among the non-integer variables of the solution

of the current subproblem the one (and to decide its value, i.e. 0 or 1) which faster

guides to an integral solution remains an open problem. Hence, we rely on heuristics

leading to ”good approximations”, i.e., the degree sequences of the generated graph

approximate the given ones. For instance we can consider a threshold value T ∈ [0, 1],

and consider that an edge 〈u, v〉 exists iff xu,v ≥ T . In Chapter 5 we will explore issues

concerning the value of T that yields the best approximations.

Complexity. To study the time complexity for solving the LP instance presented

above, we have first to bound the number of its variables and the number of its

constraints. The former is evident to be O(N2) (however, note that in practice it can

be much less than N(N − 1), depending on the given sequences), while for the latter

note that the degree constraints are 2∗N (N for out-degrees and N for in-degrees) and

the transitivity constraints are O(N3), since all possible triples u, v, w, such that both

〈u, v〉, 〈v, w〉 are candidate edges, are less (not all edges are candidate) than N3. We

conclude that simplex has expected time complexity O(N5). However, the constants

of the O definitions are quite small in practice for our framework. For instance, as has

University of Crete, Computer Science Department

3.2. MODELING GRAPHS USING LP 51

1 2

3 4

(6, 0)

0

65

(2, 1)

(0, 2)

(2, 1)

(0, 2) (0, 2) (0, 2)

Figure 3.3: An Example of a Tree

been observed in the Section 2.2.4 approximately 75% of the classes of a SW schema

are leaves (i.e., their out-degree is 0), and thus the number of variables is much less

than N(N − 1). Using the same observation we can also decrease the number of

constraints by a constant factor.

3.2.2.2 Graphs

Although in this work we do not need to generate any transitively closed graph

(G∗
s is a DAG or a tree), we note that if we modify appropriately the set of candidate

edges to allow cycles, then we can reduce the problem of the generation of transitively

closed graphs to an LP2 instance. Specifficaly, we need to replace the necessary and

sufficient condition for an edge 〈xu,v〉 to be candidate, i.e. Dout(u) > Dout(v) and

Din(u) < Din(v), with Dout(u) ≥ Dout(v) and Din(u) ≤ Din(v), since it is evident

that all the nodes of a cyclic path of a transitively closed graph have the same out-

and in-degree. However, notice that the transitive reduction of a graph that contain

cycles is not unique.

3.2.2.3 Trees

In this subsection we restrict our attention to the generation of trees. In this case,

it is possible to generate G immediately from the degree sequences of G∗, without

Yannis Theoharis

52 CHAPTER 3. GRAPH GENERATION USING LINEAR PROGRAMMING

generating firstly G∗. Below, we make clear the idea, beginning with an intuitive

example.

Figure 3.3 depicts a tree whose transitive closure simultaneously realizes the fol-

lowing sequences, Dout = 〈6, 2, 2, 0, 0, 0, 0〉, Din = 〈0, 1, 1, 2, 2, 2, 2〉. For each node

u, the pair (Dout(u), Din(u)) is drawn. Since, every tree is also a DAG, for each edge

〈u, v〉 it holds that Dout(u) > Dout(v) and Din(u) < Din(v). Additionally, as the

reader can observe from the tree drawn in Figure 3.3, for each edge 〈u, v〉 it holds

that Din(u) = Din(v)− 1. More formally, we prove the following lemma.

Lemma 3 An edge 〈u, v〉 ∈ V × V can be an edge of a Tree G : (V, E) only if,

Dout(u) > Dout(v) and Din(u) = Din(v)− 1.

Proof. Let 〈u, v〉 ∈ V ×V be an edge of G and let desc(u) be the set of the transitive

descendants of each node u ∈ V , i.e. desc(u) = {v ∈ V | 〈u, v〉 ∈ E∗}, where E∗

stands for the set of edges of G∗, i.e., the transitive closure of E. Then, ∀w ∈ desc(v)

it also holds that w ∈ desc(u). Equivalently, desc(v) ⊆ desc(u). Moreover, v ∈
desc(u), while v /∈ desc(v). Hence, desc(v) ⊂ desc(u), i.e. Dout(u) > Dout(v).

Similarly, let anc(u) be the set of the transitive ancestors of each node u in G∗, i.e.

anc(u) = {v ∈ V | 〈v, u〉 ∈ E∗}. Since G is a tree there is a unique path, denoted by

p = 〈root, ..., v〉, from the root node to node v and v has one and only parent node.

Thus, if 〈u, v〉 is an edge of G, then u is the immediate predecessor of v in p. Hence,

anc(v) \ anc(u) = u, i.e., Din(u) = Din(v)− 1.

Lemma 3 actually splits V into partitions of nodes which can not be intercon-

nected. Specifically, a node located at the i − th level of the tree can be connected

only with nodes located at the (i+1)− th level, since Din(u) coincides with the level

at which u is located. Moreover, ∀u ∈ Vi there should be a set S ⊆ Vi+1 such that
∑

v∈S Dout(v) + |S| = Dout(u). For instance, consider the node v0 of the tree drawn

in Figure 3.3. It holds that Dout(v1) + Dout(v2) + 2 = 2 + 2 + 2 = 6 = Dout(v0).

Based additionally on Lemma 3, as well as on the fact that for every tree each node

(except for the root) has one and only parent we formulate the problem of generating

G in terms of an LP instance as follows.

University of Crete, Computer Science Department

3.2. MODELING GRAPHS USING LP 53

Definition 11 (LP3) Let Vi = {v ∈ V | Din(v) = i} and d be the maximum value

of i. Vi corresponds to the set of nodes located to the i− th level of the tree G and d

to its depth. Then the problem of generating G given the sequences of its transitive

closure is reduced to the LP instance of the form :

min ~0T~x∑
u∈Vi+1

(Dout(u) + 1)xv,u = Dout(v), ∀i ∈ [0, d− 1], ∀v ∈ Vi s.t. Dout(v) 6= 0∑
u∈Vi−1

xu,v = 1, ∀i ∈ [1, d], ∀v ∈ Vi

0 ≤ xu,v ≤ 1, ∀〈u, v〉 ∈ E

Example 2 The LP3 instance that corresponds to the sequences Dout = 〈6, 2, 2, 0,
0, 0, 0〉, Din = 〈0, 1, 1, 2, 2, 2, 2〉 follows:

min ~0T~x

+3x0,2 + 3x0,1 = 6

+1x2,4 + 1x2,6 + 1x2,3 + 1x2,5 = 2

+1x1,4 + 1x1,6 + 1x1,3 + 1x1,5 = 2

+x0,2 = 1

+x0,1 = 1

+x2,4 + x1,4 = 1

+x2,6 + x1,6 = 1

+x2,3 + x1,3 = 1

+x2,5 + x1,5 = 1

0 ≤ x0,2 ≤ 1

0 ≤ x0,1 ≤ 1

0 ≤ x2,4 ≤ 1

0 ≤ x2,6 ≤ 1

0 ≤ x2,3 ≤ 1

0 ≤ x2,5 ≤ 1

0 ≤ x1,4 ≤ 1

0 ≤ x1,6 ≤ 1

0 ≤ x1,3 ≤ 1

0 ≤ x1,5 ≤ 1

The solution has the following 1-coordinates (x0,1, x0,2, x1,4, x1,6, x2,3, x2,5) and all the

other variables are zero. The corresponding tree is obtained from the tree shown in

Figure 3.3, if we swap nodes 3 and 6, which have the same out- and in-degrees, i.e.

(0, 2)

Yannis Theoharis

54 CHAPTER 3. GRAPH GENERATION USING LINEAR PROGRAMMING

The LP3 Instance Solution. Beginning with the case that the LP3 instance is

infeasible, we can conclude that there does not exist a tree whose transitive closure

simultaneously realizes the given sequences. Surprisingly enough, we observed that

whenever the LP3 instance is feasible, its solution is integral, i.e., all the variables

take integer values (0 or 1). This fact was not expected, since the matrix A that

corresponds to the constraints of the LP3 problem is not totally unimodular (TUM) in

the general case (e.g., consider the LP3 instance expressed in Example 2. Fortunately,

Theorem 4 guarantees the integrality of LP3 instance solutions,

Theorem 4 Every solution, ~x∗ of an LP3 instance is integral. Specifically, it holds

that ~x∗ ∈ {0, 1}n.

Proof. Every LP3 instance can be described as {~x : A~x = ~b, 0 ≤ ~x ≤ 1}, where

A is an m× n matrix that can be split into two matrices C, D, i.e ., A = (C
D), where

C corresponds to the first m1 rows of A (i.e., those corresponding to the out-degree

constraints) and D corresponds to the next m−m1 rows of A (i.e., those corresponding

to the in-degree constraints), and~b can similarly be split in two vectors ~b1, ~b2. Then the

LP3 instance can be described as {~x : C~x = ~b1, D~x = ~b2, 0 ≤ ~x ≤ 1}. Each element

of D is either 0 or 1. Additionally, each column of D has only one nonzero entry,

because each variable xi,j appears in one and only in-degree constraint. Hence, D is

TUM according to Theorem 1. According to Theorem 3 each solution ~x∗ of the system

D~x = ~b2, ~x ≥ 0 is integral. Thus each solution of the system D~x = ~b2, 0 ≤ ~x ≤ 1

is contained in {0, 1}n. Additionally, each solution of an LP3 instance should also be

solution of the system D~x = ~b2, 0 ≤ ~x ≤ 1 and thus each solution of an LP3 instance

is contained in {0, 1}n.

It is worth noticing that integral solution does not necessary implies uniqueness

of solution (even if it is defined as uniqueness up to isomorphism). For instance,

consider the two non-isomorphic trees, depicted in Figure 3.4, that simultaneously

realize the same pair of sequences. The solution of the LP3 instance produced for

that case will be the left (in Figure 3.4) tree.

University of Crete, Computer Science Department

3.3. RELATED WORK 55

1 2

3 4

(11, 0)

0

87

(0, 1)

(4, 2)

(9, 1)

(0, 3)(0, 3) (0, 3)
5 6

10 11

(0, 3)

(0, 4)

(2, 3)

(0, 4)

9

(3, 2)

1 2

43

(11, 0)

0

76

(0, 1)

(4, 2)

(9, 1)

(0, 3)(0, 3) (0, 3)

9

10 11

(0, 3)

(0, 4)

(2, 3)

(0, 4)

8

(3, 2)

5

Figure 3.4: Two non-isomorphic trees whose transitive closures realize the same se-
quences

Complexity. The number of variables, i.e., the number of the candidate edges is

O(N2) (actually much less, since ∀〈u, v〉 ∈ E → Din(u) = Din(v)− 1). The number

of constraints is O(N), since for each node v ∈ V we consider one constraint for its

in-degree and possibly (only if Dout(v) 6= 0) another for its out-degree. Hence, the

expected time complexity for Simplex to solve this LP instance is O(N3).

3.3 Related Work

The problem of generating a graph given its degree sequence(s) dates back to [27,

29]. These works consider a given non-ascending sequence of non-negative integers

and provide the necessary and sufficient condition for that sequence to be realizable

(i.e., to exist a graph satisfying the given degree sequence). Authors considered only

simple (undirected, without self-loops and multiple edges) graphs.

Definition 12 [15, 23] Let n denote the number of nodes of the graph we wish to

generate. Let ui, 1 ≤ i ≤ n denote nodes and d1 ≥ d2 ≥ ... ≥ dn intended degrees

of these nodes. The necessary and sufficient condition for a degree sequence to be

realizable is:
∑k

i=1 di ≤ k(k − 1) +
∑n

i=k+1 min{k, di}

Yannis Theoharis

56 CHAPTER 3. GRAPH GENERATION USING LINEAR PROGRAMMING

u2 u3u1 un
… …

Figure 3.5: Algorithm [27, 29] Generating Undirected Graphs

s

l1

l2

l3

l4

l5

t

r1

r2

r3

r4

r5

0/2

0/2

0/1

0/0

0/0

0/0

0/1

0/1

0/1

0/2

1

2

3

4

5

Figure 3.6: Algorithm [42] Generating Directed Graphs (left) and its output (right)

The algorithm is iterative and maintains the residual degrees of vertices. In each

iteration it picks an arbitrary vertex u and adds edges from u to du vertices of highest

residual degree, where du is the residual degree of u (see Figure 3.5). The residual

degrees of the latter du vertices are updated appropriately. By connecting with du

highest degree vertices the algorithm ensures that the necessary and sufficient condi-

tion holds for the residual problem instance. However, this algorithm is not suitable

for synthetic SW schema generation. Specifically, for the generation of Gs we need to

consider the transitivity of the edges. Moreover, both Gs and Gp are directed graphs

(we consider two sequences).

Moreover, [42] proposed a reduction of the problem of generating directed graphs

that satisfy simultaneously a given degree sequence for in-degrees and for out-degrees.

The proposed method follows:

Let din = (din,1, din,2, ..., din,n) and dout = (dout,1, dout,2, ..., dout,n) be sequences of

integers (in no particular sorted order), with
∑n

i=1 din,i =
∑n

i=1 dout,i. We wish to

construct a directed graph on n nodes, such that node ui has din,i incoming edges

University of Crete, Computer Science Department

3.3. RELATED WORK 57

and dout,i outgoing edges, 1 ≤ i ≤ n. Consider the following graph. There is a source

s, a sink t, a set of nodes L = {l1, ..., ln} and a set of nodes R = {r1, ..., rn}. There

is a link of capacity 1 directed from each li to each rj, for 1 ≤ i, j ≤ n and i 6= j.

There is a link of capacity dout,i directed from s to each li, for 1 ≤ i, j ≤ n. Finally,

there is a link of capacity din, i directed from each ri to t, for 1 ≤ i, j ≤ n. We may

now consider integral maximum flows from s to t. If there is such a flow of value
∑n

i=1 din,i =
∑n

i=1 dout,i, then the corresponding degree sequences are simultaneously

realizable and the flow gives a directed graph that satisfies, simultaneously, in-degrees

din,i and out-degrees dout,i.

Figure 3.6 illustrates an example for this algorithm, where din = 〈0, 1, 1, 1, 2〉 and

dout = 〈2, 2, 1, 0, 0〉. The maximum integral flow of the graph of Figure 3.6 (left), is

maxFlow = 5 =
∑

d∈din
d =

∑
d∈dout

d. Hence, din, dout are simultaneously realizable

and the graph of the maximum flow, which is drawn in Figure 3.6 (right), satisfies

them.

This algorithm can be used for the generation of Gp, but not of that of Gs since: a)

the transitivity of the edges needs to be considered (we consider as given the sequences

of the transitive closure of Gs) and b) Gs is a DAG (i.e., no cycles are allowed). The

reduction of the problem considers 2 ∗N nodes and N2 edges, where N is the length

of the given sequences (the number of nodes of the graph we want to generate).

Several algorithms solving the Max-Flow problem have been proposed. They differ

in their time complexity: a) the algorithm of [16] costs O(|V |3), b) that of [21] costs

O(|V |2|E|) and c) that of [22] costs O(|V ||E|2). Since in our case asymptotically

|V | < |E| (since ∃N0 s.t. ∀N > N0, it holds that 2 ∗ N < N2), we consider the first

algorithm and its complexity as O(N3).

Furthermore, authors in [8] studied the number of simple undirected graphs that

realize a given sequence and proposed non-deterministic algorithms whose output is

one them. Specifically, they focused on how each one of the graphs that realize the

Yannis Theoharis

58 CHAPTER 3. GRAPH GENERATION USING LINEAR PROGRAMMING

given sequence is generated from their algorithms with as uniform distribution as

possible. Although theoretically interesting, that work cannot be used in our case for

the same reasons that the works [27, 29] can not.

Finally, in the bibliography there exists works, such as [13], studying the problem

of generating graphs given an expected degree sequence, i.e., the generated graph is

not guaranteed to realize the exact given sequences. These models are stochastic and

are based on the convergence of the graph sequence to the given one, as long as the

size of the graph increases. Since the graphs we want to generate is of relatively

small size (i.e., their nodes number is mostly in 100-5,000), these models cannot be

exploited (not to mention their inability to capture transitive edges).

To the best of our knowledge, in this Chapter we proposed the first algorithm to

generate a synthetic DAG given the in/out-degree sequences of its transitive closure.

In particular, we rely on a Linear Programming (LP) reduction, which allows us

to generate SW graphs in polynomial time (using algorithms such as Simplex [10]).

Adopting alternative LP formulations of graphs, we tackled both the problems of: a)

generating a graph that simultaneously realizes the given sequences and b) generating

a graph whose transitive closure simultaneously realizes the given sequences.

University of Crete, Computer Science Department

Chapter 4

Sampling Discrete Random
Variables With A Power Law
Distribution

In this chapter we elaborate on the problem of sampling Discrete Random Vari-

ables (DRVs) that follow a power-law distribution. This is needed to generate the in-

and out-degree sequences of G∗
s and Gp by exploiting features of real SW schemas

(Chapter 2). We will present two ways for the sampling. The former (Section 4.2)

implements well known ideas and is independent of the nature of the PDF function.

The latter (Section 4.3) is far from trivial and applies only when the VR function is

a power-law. The former is useful in the case that the DRV is bounded by a maxi-

mum value, while the latter in the case that the sum of the bag of sampled values is

predefined. The effectiveness of each method will be experimentally evaluated in Sec-

tions 4.2.1 and 4.3.1 respectively. The inherent relationship between the two methods

is the result of the relation between PDF and VR functions, presented in Section 4.1.

59

60
CHAPTER 4. SAMPLING DISCRETE RANDOM VARIABLES WITH A

POWER LAW DISTRIBUTION

4.1 The Relation between PDF and VR Functions

As noticed in [14] there exists a correlation between the PDF and the VR function

of a DRV X. Let us, assume that the VR of X is a power-law with characteristic

exponent 1
b−1

for i0 ≤ i ≤ n + i0, i.e., xi = ci−
1

b−1 . The constant c is determined

by the average value of X and i0 depends on the maximum value of X. Then the

PDF of X is a power-law with characteristic exponent b, i.e., f(x) = c′x−b.

The appearance of i0 has the meaning that if we ignore the first i0 values of X, then

the PDF function of X is also a power-law. In the sequel, we exploit the correlation

between PDF and VR functions ignoring the observation about i0 but keeping in

mind that the consideration of the first values may decrease the ACC value of the

VR plot. Specifically, we will examine whether γ = 1
b−1

holds, where γ/b stands for

the characteristic power-law exponent of the VR/PDF respectively. Consequently,

we will examine whether γ = 1
δ
, where δ is the characteristic exponent of the CCDF.

4.2 Sampling According to the PDF

Let X be a DRV and f its PDF. We consider that the range of X is a given

finite set of successive integers in the range [1,m], where m stands for the maximum

allowed value for X. In order to sample a number N of values of this DRV, we adopt

the following process.

We construct the plot (see Figure 4.1) of f (we plotted a power-law function,

although the method is the same for any function). Let Si be the space defined by the

x-axis, the function f and the parallel to y-axis lines x = i and x = i+1. We consider

the surface of Si, denoted by Ei, as the probability of X = i, i.e., P (X = i) = Ei,

∀i ∈ [1,m]. It is evident that Ei =
∫ i+1

i
f(x)dx. We then draw a new plot and define

S ′i to be the space that is defined by the x-axis, the parallel to it line y = 1 and the

parallel to y-axis lines x =
∑i−1

j=1 Ej and x =
∑i

j=1 Ej. The final step is to sample N

University of Crete, Computer Science Department

4.2. SAMPLING ACCORDING TO THE PDF 61

x

)(xf))1(,1(f

1

…
…

…

))(,(mfm

∑=mi iE
1

1E 21 EE +

2E
3E

3E
mE1E

1E

2E

1 2 3 m

Figure 4.1: Sampling DRV s According to PDF function

pseudo-random real numbers in the range [0,
∑m

i=1 Ei]. For each sampled number k,

we compute the i such that k ∈ S ′i, i.e.,
∑j=i−1

j=1 Ej ≤ k <
∑j=i

j=1 Ej. We then consider

that the value i has been sampled.

In order to apply the above process in our case, we need to clarify some issues which

depend on the specific function f . Firstly, since f(x) = eax−b, Ei =
∫ i+1

i
eax−bdx =

ea

1−b
[x1−b]i+1

i . The characteristic exponent of the power-law, i.e. b, is assumed (for

this method to apply) to be bigger than the unity and thus 1 − b can appear in the

denominator. Moreover, the value ea that appears in the formula of Ei is actually the

f(1), i.e., the probability of the most frequent value of X. Fortunately, the sampling

is independent of ea, because this quantity appears in Ei, ∀i ∈ [1,m]. What really

matters for each i, is not the quantity Ei, but its relation with Ej, ∀j ∈ [1, m], with

j 6= i and note that Ei

Ej
=

[x1−b]i+1
i

[x1−b]j+1
j

, i.e., the sampling is depended only on b.

4.2.1 Experimental Evaluation

Since the sampling of DRV s that follow a power-law depends on the sampling of

pseudo-random numbers, we need to examine the plots of the distribution that the

Yannis Theoharis

62
CHAPTER 4. SAMPLING DISCRETE RANDOM VARIABLES WITH A

POWER LAW DISTRIBUTION

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0 0.5 1 1.5 2 2.5 3 3.5 4

lo
g(

 P
(X

=
x)

)

log(x)

b=2.0 M=10000 N=2500

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0 0.5 1 1.5 2 2.5 3 3.5 4
lo

g(
 P

(X
>

=
x)

)

log(x)

b=2.0 M=10000 N=2500
Fitting

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

lo
g(

 v
al

ue
)

log(rank)

b=2.0 M=10000 N=2500
Fitting

Figure 4.2: Sampling with (b,M, N) = (2, 10000, 2500)

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0 0.5 1 1.5 2 2.5 3 3.5

lo
g(

 P
(X

=
x)

)

log(x)

b=2.0 M=2500 N=2500

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0 0.5 1 1.5 2 2.5 3 3.5

lo
g(

 P
(X

>
=

x)
)

log(x)

b=2.0 M=2500 N=2500
Fitting

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
lo

g(
 v

al
ue

)
log(rank)

b=2.0 M=2500 N=2500
Fitting

Figure 4.3: Sampling with (b,M, N) = (2, 2500, 2500)

generated values obey with respect to the given ones. Specifically, we consider as

input of the above sampling method: a) the characteristic exponent, denoted by b, of

the power-law that corresponds to the PDF function of X, b) the maximum value,

denoted by M , that X is allowed to take and c) the number of values, denoted by N ,

that we want to sample.

The output of the sampling is a bag of values, which can be modeled using another

DRV, denoted by Y . We can plot the PDF as well as CCDF and VR of Y in log− log

scale. Then we apply Linear Regression (as presented in Chapter 2) in order to

understand to what extent the distribution of Y approximates (in terms of ACC

values) a power-law and the characteristic exponent of it. Recall that we will use

CCDF (and not PDF) of X, Y to compare their distributions due to the reasons

explained in Chapter 2. Hence, if we give as input a characteristic exponent b for the

PDF of X, the corresponding exponent of its CCDF is b− 1.

Figure 4.2, depicts the sampling obtained for (b,M, N) = (2, 10000, 2500). The

University of Crete, Computer Science Department

4.2. SAMPLING ACCORDING TO THE PDF 63

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0 0.5 1 1.5 2 2.5

lo
g(

 P
(X

=
x)

)

log(x)

b=2.0 M=312 N=2500

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0 0.5 1 1.5 2 2.5

lo
g(

 P
(X

>
=

x)
)

log(x)

b=2.0 M=312 N=2500
Fitting

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

lo
g(

 v
al

ue
)

log(rank)

b=2.0 M=312 N=2500
Fitting

Figure 4.4: Sampling with (b,M, N) = (2, 312, 2500)

-2.5

-2

-1.5

-1

-0.5

 0

 0 0.5 1 1.5 2 2.5

lo
g(

 P
(X

=
x)

)

log(x)

b=2.0 M=125 N=250

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0 0.5 1 1.5 2 2.5

lo
g(

 P
(X

>
=

x)
)

log(x)

b=2.0 M=125 N=250
Fitting

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

lo
g(

 v
al

ue
)

log(rank)

b=2.0 M=125 N=250
Fitting

Figure 4.5: Sampling with (b, M,N) = (2, 125, 250)

CCDF exponent of X is 2 − 1 = 1. Moreover, the VR exponent of X is 1
2−1

= 1.

The CCDF power-law exponent of Y is 0.96 (very close to that of X), while the

approximation of Y to a power-law is good (ACC=0.939). The plot corresponding to

the VR of Y also approximates (ACC=0.967) a power-law with exponent 1.45. This

actually diverges from the VR power-law exponent of X (which is 1). Moreover,

from the plot of VR we can easily observe that the deviation of Y from a power-

law exhibits a similar behaviour to that reported for SW schemas (see Chapter 2)

and other real data sets [7].

We now keep b and N constant and decrease the value of M . Figure 4.3, shows

the sampling obtained for (b,M,N) = (2, 2500, 2500). The CCDF exponent of Y

increases (compared to Figure 4.2) up to 1.01 (almost the same as the CCDF exponent

of X). The same also holds for the ACC value, which increases up to 0.942. For the

corresponding VR plot we can observe a kind of deviation from a power-law similar

to that of Figure 4.2. The ACC value remains the same (i.e., 0.967) while the

Yannis Theoharis

64
CHAPTER 4. SAMPLING DISCRETE RANDOM VARIABLES WITH A

POWER LAW DISTRIBUTION

CCDF of Y VR of Y
(b,M,N) Exponent ACC Exponent ACC

(2.0, 10000, 2500) 0.96 0.939 1.45 0.967
(2.0, 2500, 2500) 1.01 0.942 1.38 0.967
(2.0, 312, 2500) 1.23 0.954 1.07 0.967
(2.0, 125, 250) 1.16 0.923 1.19 0.944

Table 4.1: Sampling DRV s based on their PDF function

characteristic VR exponent decreases down to 1.38.

We further decrease the value of M keeping constant the values of b and N . Fig-

ure 4.4, shows the sampling obtained for (b, M,N) = (2, 312, 2500). The CCDF ex-

ponent of Y increases (compared to that of the CCDF of Figure 4.3) up to 1.23 (and

thus diverges from the corresponding exponent of X which is 1). The ACC value

also increases up to 0.954. Concerning the plot of the VR, the ACC value remains

the same 0.967, while the computed characteristic exponent decreases down to 1.07

(and thus converges to the corresponding VR exponent of X).

We finally examine the case where both M , and N are small while b remains the

same. Figure 4.5, shows the sampling obtained for (b,M, N) = (2, 125, 250). The

CCDF exponent of Y is 1.16, while ACC = 0.923. Concerning the plot of the VR,

the ACC = 0.944 while the computed characteristic exponent is 1.19. Table 4.1

summarizes the experiments of this Section (since b = 2.0, the CCDF exponent of

X is 1.0 and its VR exponent is 1.0). As one can observe, the CCDF exponent of

Y and the corresponding ACC value increases as long as M increases. On the other

hand, the VR exponent of Y decreases (and the corresponding ACC value remains

constant) as long as M increases.

University of Crete, Computer Science Department

4.3. SAMPLING ACCORDING TO THE VR 65

4.3 Sampling According to the VR

Let X be a DRV and f its VR function. We consider that the range of X is

a given finite set of successive integers in the range [1, N], where N stands for the

number of values of X that we want to sample. Let S be the bag of values we want

to sample. Then, we consider that the quantity
∑N

i=1 S(i), i.e., the sum of the values

that will be sampled, is given. Since, f is a power-law, we can adopt the following

process to construct S.

The i− th biggest value, denoted by xi, of the range of X is given by the formula:

xi = eai−b. Specifically, the relation between two values of X, i.e., xi and xj, is

xi

xj
= i−b

j−b . Hence, for the constant factor ea we can choose any constant number. For

normalization purposes we will choose the quantity sum∑N
i=1 i−b

. This way the sum of the

sampled values is guaranteed to be equal to
∑N

i=1 S(i).

Definition 13 Let X be a DRV that follows a power-law with VR exponent b. We

can sample a bag S of N values of X of given sum as follows:

∀i ∈ [1, N], f(i) = b sum∑N
i=1 i−b

i−bc, where bxc, stands for the integral part of x.

The intuition behind the above definition is that bf(i)c and bf(i+1)c are different

integers if i is small, but the probability that they are the same increases as long as

i increases. Another way to grasp this idea is to observe that bf(i)c − bf(i + 1)c
decreases as long as i increases. Hence, the number m of successive i’s for which

bf(i)c − bf(i + m)c ≤ 1 increases as long as i increases. An indicative example

follows.

Example 3 Let X be a DRV that follows a power-law with VR exponent b = 1 and

consider we want to sample 100 values of sum 1000. Bellow we write each sampled

value, k, preceding by the range of i such that bf(i)c = k. (1, 192), (2, 96), (3,

64), (4, 48), (5, 38), (6, 32), (7, 27), (8, 24), (9, 21), (10, 19), (11, 17), (12, 16),

(13, 14), (14, 13), (15-16, 12), (17, 11), (18, 10), (19-20, 9), (21-23, 8), (24-26, 7),

(27-31, 6), (32-37, 5), (38-47, 4), (48-63, 3), (64-95, 2), (96-100, 1).

Yannis Theoharis

66
CHAPTER 4. SAMPLING DISCRETE RANDOM VARIABLES WITH A

POWER LAW DISTRIBUTION

-2.8

-2.6

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

lo
g(

 P
(X

=
x)

)

log(x)

b=0.5 N=500 sum=10000

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

lo
g(

 P
(X

>
=

x)
)

log(x)

b=0.5 N=500 sum=10000
Fitting

Figure 4.6: Sampling with (b,N, sum) = (0.5, 500, 10000)

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

lo
g(

 P
(X

=
x)

)

log(x)

b=0.5 N=500 sum=1000

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

lo
g(

 P
(X

>
=

x)
)

log(x)

b=0.5 N=500 sum=1000
Fitting

Figure 4.7: Sampling with (b,N, sum) = (0.5, 500, 1000)

We should notice that the consideration of sum∑N
i=1 i−b

as the constant factor of the

VR power-law function would normalize the xi’s, if they were real numbers. Since,

we consider them to be integers, the final sum of the sampled values, i.e.,
∑N

i=1 S(i),

is slightly different from the given sum.

4.3.1 Experimental Evaluation

The bag S of sampled values can be modeled by a DRV, denoted by Y . In order

to contrast the PDF and CCDF functions of Y to those of X, we considered two

experiments that show the effect of b values and of the sum of the values that will be

sampled, denoted by sum.

Figure 4.6 shows the sampling obtained for (b,N, sum) = (0.5, 500, 10000). In that

University of Crete, Computer Science Department

4.3. SAMPLING ACCORDING TO THE VR 67

-3

-2.5

-2

-1.5

-1

-0.5

 0 0.2 0.4 0.6 0.8 1 1.2

lo
g(

 P
(X

=
x)

)

log(x)

b=0.5 N=500 sum=500

-3

-2.5

-2

-1.5

-1

-0.5

 0 0.2 0.4 0.6 0.8 1 1.2

lo
g(

 P
(X

>
=

x)
)

log(x)

b=0.5 N=500 sum=500
Fitting

Figure 4.8: Sampling with (b,N, sum) = (0.5, 500, 500)

-3

-2.5

-2

-1.5

-1

-0.5

 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

lo
g(

 P
(X

=
x)

)

log(x)

b=0.5 N=1000 sum=10000

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

lo
g(

 P
(X

>
=

x)
)

log(x)

b=0.5 N=1000 sum=10000
Fitting

Figure 4.9: Sampling with (b,N, sum) = (0.5, 1000, 10000)

case the CCDF exponent of X is 1
1
2

= 2. The CCDF exponent of Y is 2.0, i.e., same as

for X, while the approximation of CCDF to a power-law is excellent (ACC = 0.98).

Decreasing the sum down to 1, 000 (Figure 4.7) results in the same CCDF exponent,

i.e., 2.0, but the ACC value decreases down to 0.92. To complete this group of

experiments we present the sampling obtained for (b,N, sum) = (0.5, 500, 500) in

Figure 4.8, for which the CCDF exponent is 2.04 while the ACC value decreases

down to 0.88. The main conclusion that can be drawn is that CCDF of Y coincides

with that of X. However, the approximation of CCDF to a power-law (ACC value)

decreases as long as sum increases.

To realize the effect of b values, we keep constant N and sum and we vary b. Fig-

ure 4.9 shows the sampling obtained for (b,N, sum) = (0.5, 1000, 10000). In that case

the CCDF exponent of X is 1
1
2

= 2. As one can see in Figure 4.9, the exponent of the

Yannis Theoharis

68
CHAPTER 4. SAMPLING DISCRETE RANDOM VARIABLES WITH A

POWER LAW DISTRIBUTION

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0 0.5 1 1.5 2 2.5 3 3.5

lo
g(

 P
(X

=
x)

)

log(x)

b=1.0 N=1000 sum=10000

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0 0.5 1 1.5 2 2.5 3 3.5

lo
g(

 P
(X

>
=

x)
)

log(x)

b=1.0 N=1000 sum=10000
Fitting

Figure 4.10: Sampling with (b,N, sum) = (1.0, 1000, 10000)

-3

-2.8

-2.6

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

 0 0.5 1 1.5 2 2.5 3 3.5 4

lo
g(

 P
(X

=
x)

)

log(x)

b=1.5 N=1000 sum=10000

-3.5

-3

-2.5

-2

-1.5

-1

 0 0.5 1 1.5 2 2.5 3 3.5 4

lo
g(

 P
(X

>
=

x)
)

log(x)

b=1.5 N=1000 sum=10000
Fitting

Figure 4.11: Sampling with (b,N, sum) = (1.5, 1000, 10000)

CCDF of Y is 2.0 while the ACC value is 0.97. Figure 4.10 illustrates the distribu-

tions of the corresponding samplings obtained when b is increased up to 1.0 (and thus

the CCDF exponent of X is 1
1

= 1). The CCDF exponent of Y decreases down to

0.99 and the ACC value also decreases down to 0.94. We further increase b up to 1.5

(and thus the CCDF exponent of X is 1
1.5

= 0.66) and the distributions correspond-

ing to the obtained sampling are depicted in Figure 4.11. The CCDF exponent of Y

decreases down to 0.66 and the ACC value also decreases down to 0.91. We complete

this group of experiments by increasing b up to 2.0 and thus the CCDF exponent of

X is 1
2

(Figure 4.12). The CCDF exponent decreases down to 0.49 and the respective

ACC value also decreases down to 0.88. The main conclusion that can be drawn

from these experiments (see Table 4.2) is that CCDF of Y coincides with that of X.

However, the approximation of CCDF to a power-law (ACC value) decreases as long

University of Crete, Computer Science Department

4.4. THE USEFULNESS OF BOTH SAMPLING METHODS 69

-3

-2.8

-2.6

-2.4

-2.2

-2

-1.8

-1.6

 0 0.5 1 1.5 2 2.5 3 3.5 4

lo
g(

 P
(X

=
x)

)

log(x)

b=2.0 N=1000 sum=10000

-3.4

-3.2

-3

-2.8

-2.6

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

 0 0.5 1 1.5 2 2.5 3 3.5 4

lo
g(

 P
(X

>
=

x)
)

log(x)

b=2.0 N=1000 sum=10000
Fitting

Figure 4.12: Sampling with (b,N, sum) = (2.0, 1000, 10000)

as b increases.

CCDF of X CCDF of Y
(b,N, Sum) Exponent Exponent ACC

(0.5, 500, 10000) 2.0 2.0 0.98
(0.5, 500, 1000) 2.0 2.0 0.92
(0.5, 500, 500) 2.0 2.04 0.88

(0.5, 1000, 10000) 2.0 2.0 0.97
(1.0, 1000, 10000) 1.0 0.99 0.94
(1.5, 1000, 10000) 0.66 0.66 0.91
(2.0, 1000, 10000) 0.5 0.49 0.88

Table 4.2: Sampling DRV s based on their VR function

4.4 The Usefulness of Both Sampling Methods

The existence of the two ways presented in Sections 4.2, 4.3, is important for both

theoretical and practical reasons. By a theoretical viewpoint, it provides the means

to realize the correlation between the PDF and the VR function of a DRV that

follows a power-law. Moreover the fact that selecting appropriate values for the

parameters of both methods we can produce deviations from power-laws that appear

to SW schemas, provides a hint for a more elaborated interpretation of the conditions

Yannis Theoharis

70
CHAPTER 4. SAMPLING DISCRETE RANDOM VARIABLES WITH A

POWER LAW DISTRIBUTION

of the evolution of SW schemas that result in the emergence of power-laws for various

kinds of distributions. This is part of our future work.

By a practical viewpoint, we notice that in order to produce the degree sequences

of G∗
s, Gp, the standard sampling method (Section 4.2) based on the PDF function is

not sufficient. For instance, in order to generate the in-degree sequence of G∗
s we can

exploit the observation (see Section 2.2.4.4) that the VR function of Level of Classes

distribution is a power-law. However, its PDF approximates the uniform distribution

(it is rare for two different levels to have the same number of classes located at them).

Using the sampling method that is based on the VR function we can sample a bag

of values, which guarantee that the VR is the given power-law while the respective

PDF is a constant function (i.e., uniform distribution). Such issues will become more

clear in Chapter 5.

University of Crete, Computer Science Department

Chapter 5

Synthetic SW Schema Generation

In this Chapter we elaborate on the generation of synthetic SW schemas based

on the findings of Chapter 2. To this end, we consider as given the number of schema

classes, denoted by Nc, and of properties, denoted by Np. Then, we essentially need to

generate the subsumption graph, Gs = (V, Es) and the property graph Gp = (V, Ep),

where V is a set of nodes corresponding to classes with |V | = Nc, Es ⊆ V × V a

set of edges representing subsumption relationships and Ep ⊆ V × V a set of edges

representing relationships between classes, with |Ep| = Np.

The remainder of this Chapter is organized as follows: Section 5.1 focuses on the

generation of Gp, while Section 5.2 of Gs. Then Section 5.3 aims at combining Gp

and Gs to generate a synthetic SW schema. Finally Section 5.4 presents the results

of the experimental evaluation of the generation of synthetic SW schemas.

5.1 Generating The Property Graph

In order to generate Gp we additionally consider as given the characteristic power-

law exponent, denoted by b, of the VR function of the total-degree distribution.

Table 5.1 sketches the algorithm that generates Gp. Bellow, we explain in detail each

of its steps.

71

72 CHAPTER 5. SYNTHETIC SW SCHEMA GENERATION

Algorithm GenerateGp

Input. b: the VR exponent of the total-degree distribution,
Nc/Np: the number of schema classes/properties respectively,
p0: percentage of classes that are neither domain or range

of any property.

(1) D := V RSampling(b, b(1− p0)Ncc, 2Np);
Din := ∅;
Dout := ∅;

(2) for i = 1 to Nc do
Din[i] = Dout[i] = 1

2
∗D[i];

(3) Chose randomly nodes and attach on them a set S
of b0.126 ∗Npc self-loops (modify Din and Dout);

(4) Chose randomly pairs of nodes and attach on them a set M
of b0.177 ∗Npc multiple edges (modify Din and Dout);

(5) E := the set of edges of the solution of the
LP1 instance corresponding to Din and Dout;

(6) Ep = E ∪ S ∪M ;

Table 5.1: Algorithm GenerateGp

Using the sampling method based on VR function that was presented in Section 4.3

we can generate the total-degree sequence, denoted by D, of the Gp based on b (step

1). D is the vector sum of Din and Dout, i.e. ∀v ∈ V , D(v) = Dout(v) + Din(v).

We choose to generate D instead of Dout and Din, because the percentage of real

SW schemas that approximate a power-law for the total-degree distribution is big-

ger than the corresponding percentages for out- and in-degree distributions (see Sec-

tion 2.2.3). Moreover, there exists a strong correlation between the out- and in-degrees

of nodes. Note that we choose to use the sampling method based on the VR and not

on the PDF function of the total-degree distribution (see Section 4.3). This is due to

the fact that the sum of the sampled values is determined by Np, i.e., the number of

schema properties. Specifically, since each edge 〈u, v〉 is counted twice in D (i.e., once

in the D(u) and once in the D(v)), it holds that
∑

v∈V D(v) = 2Np. We should also

University of Crete, Computer Science Department

5.1. GENERATING THE PROPERTY GRAPH 73

stress that there exist classes in real SW schemas that are neither domain nor range of

any property, i.e., their total-degree is 0. Although the percentage, denoted by p0, of

such classes can be a parameter of the generator, we report that in average case 50%

of the classes of each schema have total degree 0. D can be generated using the afore-

mentioned sampling method with parameters (b,N, sum) = (b, b(1− p0)Ncc, 2Np).

As a next step (2), we need a method that splits D into Dout and Din. This

method should exhibit the following characteristics :

• ∑
v∈V D(v) =

∑
v∈V Dout(v) +

∑
v∈V Din(v),

• ∑
v∈V Dout(v) =

∑
v∈V Din(v), because there is no graph that simultaneously

realizes Dout and Din if
∑

v∈V Dout(v) 6= ∑
v∈V Din(v), since every edge is

counted once in Dout and once in Din,

• nodes of high out-degree should also be of high in-degrees and similarly nodes

of low out-degree should also be of low in-degree (see Section 2.2.3.3).

A simple formula that conforms to all the above features is ∀v ∈ V, Dout(v) =

Din(v) = 1
2
D(v) (we can tackle odd values of D(v) by considering its value as bD(v)c

for one of the two sequences and as dD(v)e for the other).

In Section 3.2.1 we proposed the reduction of the generation of a directed graph

without self-loops or multiple edges to an LP1 instance. However, considerable per-

centages of edges of real SW are self loops, i.e., 12.6%, or multiple edges 17.7%

(see Section 2.2.3). Hence, we will choose nodes (whose both out- and in-degree

are bigger than 1) to assign them self-loops and pairs of nodes (whose both out-

and in-degree are bigger than 2) to assign them multiple edges (steps 3 and 4).

Since we do not have the means to distinguish nodes according to the number of

their self-loops or multiple edges, we will distribute them uniformly. Let S be the

set of the chosen self-loops and M the set of the chosen multiple edges. This pro-

cess will modify the Dout and Din. Specifically, for each self-loop 〈u, u〉, it will be

Yannis Theoharis

74 CHAPTER 5. SYNTHETIC SW SCHEMA GENERATION

Dout(u) := Dout(u)− 1 and Din(u) := Din(u)− 1. Similarly for each multiple edge

〈u, v〉, it will be Dout(u) := Dout(u)− 1 and Din(v) := Din(v)− 1.

The modified Dout and Din can now be used for the generation of a directed graph

without self-loops and multiple edges (step 5) according to the method presented in

Section 3.2.1.

Let E be the set of edges obtained from the solution of the corresponding LP1

instance. We will add to the generated graph the self-loops and multiple edges chosen

in steps (3) and (4), i.e., we will consider as the set of graph edges, denoted by Ep,

the union E ∪ S ∪M (step 6).

5.1.1 Attributes

In addition, we need to consider edges which have as destination Literals (e.g.,

String, Integer), i.e., attributes of classes. After generating Gp we can add to the set

of its nodes V , the Literal types, as specified in XML schema1. Then we connect them

to the pre-existent nodes of Gp under the condition that the total-degree sequence

of Gp remains the same. This constraint can be satisfied by replacing a number k

of edges of the form 〈u, v〉, where u, v correspond to classes, such that Dout(v) = 0

(nodes representing literal types should have out-degree zero) and Din(v) = 1, with

edges of the form 〈u,w〉, where w is a node that corresponds to a Literal type. The

number k of the attributes can be given as input (e.g., as a percentage of Np).

5.2 Generating The Subsumption Graph

In order to generate Gs we additionally consider as given the characteristic expo-

nent, denoted by b, of the power-law of the PDF function of the class descendants

distribution. Moreover, we will consider as given the depth, denoted by d, of Gs as

1http://www.w3.org/XML/Schema

University of Crete, Computer Science Department

5.2. GENERATING THE SUBSUMPTION GRAPH 75

Algorithm GenerateGs

Input. b: the PDF exponent of the class descendants distribution,
Nc: the number of schema classes.

(1) Dout := PDFSampling(b,Nc − 1, 0.25 ∗Nc);
(2) if Nc − 1 is not in Dout

Dout := Dout ∪ {Nc − 1};
(3) for i = 1 to b0.75 ∗Ncc − 1 do

Dout := Dout] {0};
(4) γ := 0.0017 ∗Nc + 1.36;
(5) S := V RSampling(γ, d, Nc) (Order S in descending order);
(6) k = b3

4
∗ dc;

(7) L := the set of G∗
s levels ordered according to f(l) = |k − l|;

(8) for i = 1 to d do
for j = 1 to S[i] do

Din.append(L[i]);
(9) Assure that

∑
v∈V Dout(v) =

∑
v∈V Din(v);

(10) Order Dout in descending and Din in ascending order;
(11) E∗

s := the set of edges of the solution of the LP2 (or LP3
if Gs is considered to be a tree) instance corresponding to
Din and Dout;

(12) Es := the transitive reduction of E∗
s ;

Table 5.2: Algorithm GenerateGs

well as the information whether Gs should be a DAG or a tree. Table 5.2 sketches

the algorithm that generates Gs. Bellow, we explain in detail each of its steps.

5.2.1 Generating Dout of G∗
s

Using the sampling method based on PDF function that was presented in Sec-

tion 4.2, we can generate the out-degree sequence of G∗
s. Specifically, the biggest

allowed value is Nc− 1, since the root node (that corresponds to the root of the class

hierarchy) has Nc − 1 descendants. Furthermore, on average the 75% of classes of

real SW are leaves (see Section 2.2.4), i.e. their out-degree is 0. Thus we choose the

Yannis Theoharis

76 CHAPTER 5. SYNTHETIC SW SCHEMA GENERATION

following parameters (b,M,N) = (b,Nc−1, 0.25∗Nc) for the sampling (step 1). Note

that we choose the sampling method based on the PDF instead of the VR function,

because we do not know the sum of the sampled values (needed as input for the VR-

based method) and even if we knew it, we could not guarantee that the value Nc − 1

would be contained in the bag of sampled values (e.g. the given sum may have not

allowed it).

Note that the value Nc − 1 will not certainly be contained in the bag of sampled

values. This is due to the fact that P (X = x) decreases as long as x increases. Hence,

we need to add the value Nc− 1 in the bag (step 2). In order to obtain a sequence of

length Nc we add 0.75 ∗Nc− 1 times (corresponding to the 0.75% of leaf classes) the

value 0 (step 3).

5.2.2 Generating Din of G∗
s

The generation of Din of G∗
s is not as easy as that of Dout. Firstly, we can

not use the class ancestors distribution, because real SW schemas do not follow

a power-law for it (see Section 2.2.4). Instead, we can exploit the findings about

the level of classes distribution. Its VR for real SW schemas approximates a power-

law . Moreover, the characteristic VR exponent, denoted by γ, approximately depends

linearly (see Section 2.2.4) on the number of nodes (classes). Hence, we can produce a

sequence of values, which correspond to numbers of nodes that are located at a specific

level, by sampling according to the VR function of the level of classes distribution

with parameters (b,N, sum) = (γ, d, Nc), since we want to distribute Nc nodes to d

levels (steps 4 and 5). Note that since Nc is orders of magnitude bigger than d the

sampled values comprise a set (i.e., each value presents only once), denoted by S.

However, we still do not know to which level a specific value of the sampled

set corresponds. We exploit the finding that the level, denoted by k, at which

the maximum number of nodes are located is approximately 0.75 ∗ depth for real

University of Crete, Computer Science Department

5.2. GENERATING THE SUBSUMPTION GRAPH 77

SW schemas (see Section 2.3). Let xi be the i − th biggest value of S. We will

define an one-to-one function m that maps each i to one and only level, denoted by

l, of G∗
s. We order levels according to their distance to the most populated level, i.e.,

L = 〈k, k + 1, k− 1, k + 2, k− 2, ...〉 (step 7). L has d− k elements obtained from the

sum k + m and k− 1 elements obtained from the difference k−n. Then, we consider

m(i) = L(i). For instance, consider that d = 4, then m(1) = 3, m(2) = 4, m(3) = 2,

m(4) = 1. The generation of Din directly follows, since the level at which a node is

located coincides with its in-degree (step 8).

5.2.3 Assuring that Dout and Din can be Simultaneously

Realizable

A final step of Dout and Din modification is needed in order to achieve that
∑

v∈V Dout(v) =
∑

v∈V Din(v) (step 9). This can be achieved by modifying the

frequencies of 0 and 1 in Dout. We should stress that it may not be possible to

achieve
∑

v∈V Dout(v) =
∑

v∈V Din(v) for every given depth d. The range of the

allowed values for d is depended on Nc, b and the percentage of d of the most populated

level (i.e., 0.75, since we observed that k = 0.75 for real SW schemas). The exact

computation of this range is left as future work.

Note that we could ignore this step and repeating the process of generating the two

sequences from the beginning, until
∑

v∈V Dout(v) =
∑

v∈V Din(v) holds. However,

it is not reasonable to spend time for that, not to mention that it is not guaranteed

that we will ever reach a state that
∑

v∈V Dout(v) =
∑

v∈V Din(v) holds (e.g. the

seed of the pseudo-random number generation needed for the generation of Dout

may prevent such a case). Finally, we need to order Dout in descending and Din in

ascending order (see Lemma 1).

In order to generate Gs, the modified Dout and Din sequences are given (step 11)

as input to the method presented in Section 3.2.2.1 if Gs should be a DAG (reduction

Yannis Theoharis

78 CHAPTER 5. SYNTHETIC SW SCHEMA GENERATION

to an LP2 instance) or to that presented in Section 3.2.2.3 if Gs should be a tree

reduction to an LP3 instance). The set of edges, denoted by E∗
s , obtained from the

solution of either LP2 or LP3 instance corresponds to G∗
s. Finally, we compute the

transitive reduction of E∗
s to obtain the set of edges of Gs, denoted by Es (step 12).

5.3 Combining The Property and The Subsump-

tion Graph

At this step we consider that Gs : (Vs, Es) and Gp : (Vp, Ep) are generated. Since

the two graphs have the same set of nodes we should define an one-to-one function

h : Vs → Vp that maps each node of Gs to one and only node of Gp. To this end, we

exploit the combinatoric finding that was presented in Sections 2.2.6, 2.3, i.e., that

nodes with high out-degree in the Gp are located highly in the Gs. Specifically, let k

be the level of G∗
s at which the source nodes (corresponding to domains of properties)

of most edges of Gp are located. We order the nodes of Vp in descending out-degree

order and we reach a list P . Also, let Vi be the set of nodes of G∗
s located at level i,

i.e., Vi = {v ∈ Vs | Din(v) = i}. Then, we map each node of the first |Vk| nodes of P

to one and only node of Vk. Similarly, we map the next |Vk+1| nodes of P to one and

only node of Vk+1 and the next |Vk−1| nodes of P to one and only node of Vk−1. This

process continues until we map the nodes of V0 and of Vd to nodes of Vp.

5.4 Experimental Evaluation

In this Section we experimentally evaluate the synthetic SW schema generator

presented in this thesis on two axis, namely, the effectiveness and the efficiency.

Concerning the former we present a detailed example of the generation of a synthetic

SW schema based on the methods presented in previous Chapters. On the course of

University of Crete, Computer Science Department

5.4. EXPERIMENTAL EVALUATION 79

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0 0.5 1 1.5 2 2.5

lo
g(

 P
(X

=
x)

)

log(x)

b=2.08 M=299 N=74

-2.6

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

 0 0.5 1 1.5 2 2.5

lo
g(

 P
(X

>
=

x)
)

log(x)

b=2.08 M=299 N=74
Fitting

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

lo
g(

 v
al

ue
)

log(rank)

b=2.08 M=299 N=74
Fitting

Figure 5.1: Sampling with (b,M, N) = (2.08, 299, 0.25 ∗ 300) to generate the out-
degree sequence of G∗

s

this process we will comment on details that have not been covered yet. Concerning

the latter we focus on time and memory requirements of the reduction of the problem

of generating Gs and Gp to the LP problem. Moreover, we measure the number of

variables and the number of constraints of the produced LP instances.

5.4.1 Effectiveness

We consider that we want to generate a schema of 300 classes and of 1000 proper-

ties. Moreover we consider that the power-law exponent of the total-degree distribu-

tion is 0.5, and that of the VR of the class descendants is 2.08. Finally, we consider

that Gs is a DAG and its depth is 4.

5.4.1.1 Generating The Subsumption Graph

In order to generate the Dout of G∗
s we use the sampling method (see Section 4.2)

based on the PDF of the class descendants distribution with parameters (b,M, N) =

(2.08, 299, 0.25∗300). Figure 5.1 shows the PDF and CCDF functions that correspond

to the bag of sampled values. We explicitly add the value 299 once and the value 0

0.75 ∗ 300 = 225 times. We reach the final Dout. The sum of Dout is 828.

We now generate the in-degree sequence of G∗
s. We consider the VR function of the

Yannis Theoharis

80 CHAPTER 5. SYNTHETIC SW SCHEMA GENERATION

level of classes distribution with exponent γ = 0.00017 ∗ 300 + 1.36 = 1.411 (see Sec-

tion 2.2.4.4). To find the number of nodes located at the 4 levels of Gs we use the sam-

pling method based on the VR function with parameters (b,N, sum) = (1.411, 4, 299).

We choose the sum to be 299 and not 300, because we consider one node (the root)

with in-degree equal to 0. We obtain the sequence L = 〈173, 65, 36, 24〉, i.e., the most

populated level has 173 nodes, the second most populated has 65, etc. We observe

that
∑

x∈L x = 298 and not 299 (see Section 4.3). We need to add one more node to

a specific level. We choose to increase the nodes of the most populated level. Hence,

we reach the sequence L = 〈174, 65, 36, 24〉. As a next step, we map numbers of

classes to specific levels, i.e., we compute the function m. The most populated level

is 0.75 ∗ 4 = 3. Hence, m(1) = 3, m(2) = 4, m(3) = 2, m(4) = 1, i.e., the third

level has 174 nodes, the fourth has 65, the second 36 and the first 24. Since, the

level at which a node is located coincides with its in-degree in G∗
s and thus we have

generated the Din. However,
∑

d∈Din d = 820 6= 828 =
∑

d∈Dout d. To achieve that
∑

d∈Din d =
∑

d∈Dout d we will modify Dout. Since
∑

d∈Din d <
∑

d∈Dout d we consider
∑

d∈Dout d−
∑

d∈Din d nodes of out-degree equal to 1 as nodes with out-degree equal to

0. Finally, we order Dout in descending and Din in ascending order (see Lemma 1).

The produced Dout and Din are given as input of the method presented in 3.2.2.1.

The LP2 instance aims at generating G∗
s. However, the solution is not integral. There

exist coordinates (corresponding to edges of G∗
s) that are real numbers in (0, 1). To

reach a final set of edges we consider a threshold value T ∈ [0, 1]: an edge 〈u, v〉 exists

iff xu,v ≥ T . The use of such heuristic for deciding whether non-integer edges exist

or not may violate transitivity of G∗
s, i.e., G∗

s may not be a transitively closed graph,

since some transitive edges may miss. For instance, consider that T = 0.6 and in the

LP solution xu,v = 0.7, xv,w = 0.8 and xu,w = 0.5. Then, xu,v + xv,w − xu,w = 1 ≤ 1,

as required for the edges of a transitively closed DAG (see Lemma 2). However, to

make the solution integral, we will consider that xu,v = 1, xv,w = 1 and xu,w = 0. By

University of Crete, Computer Science Department

5.4. EXPERIMENTAL EVALUATION 81

-1.7

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

-1

-0.9

-0.8

-0.7

 0 0.5 1 1.5 2 2.5

lo
g(

 P
(X

=
x)

)

log(x)

PDF

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

 0 0.5 1 1.5 2 2.5

lo
g(

 P
(X

>
=

x)
)

log(x)

CCDF
Fitting

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1 1.2

lo
g(

 v
al

ue
)

log(rank)

VR
Fitting

Figure 5.2: The functions corresponding to the out-degree sequence of the generated
G∗

s

transitive reduction of G∗ we obtain G. We can then compute the approximation (or

distance) of the degree sequences of the transitive closure of G with the given ones.

Concerning the value of T , we should notice that a big threshold value (i.e., close to

1), e.g., T = 0.9, decreases the probability of missing transitive edges, but ignores

many edges and thus the generated Dout and Din roughly diverge from the given

ones. On the other hand, a small threshold value (i.e., close to 0), e.g., T = 0.1,

results in bigger number of edges than in the given sequences. After experiments we

found that the value T = 0.6 leads to best approximations with respect to the given

sequences Dout and Din. This is due to the fact that the missing transitive edges

from the produced G∗
s are minimized for T = 0.6, while the number of generated

edges converges to those of the given sequences. The PDF, CCDF and VR functions

of the transitive closure of the generated Gs are shown in Figure 5.2.

5.4.1.2 Generating The Property Graph

In order to generate the total-degree sequence D we use the sampling method

based on the VR function of the total-degree distribution with parameters (b,N, sum) =

(0.5, 150, 2000). Figure 5.3 shows the PDF and CCDF functions that correspond to

the bag of sampled values. As a next step, we split D into Dout and Din. After,

choosing nodes to assign on them 0.126 ∗ 1000 = 126 self-loops and pairs of nodes

Yannis Theoharis

82 CHAPTER 5. SYNTHETIC SW SCHEMA GENERATION

-3

-2.5

-2

-1.5

-1

-0.5

 0.8 1 1.2 1.4 1.6 1.8 2

lo
g(

 P
(X

=
x)

)

log(x)

b=0.5 N=150 sum=2000
Fitting

-3

-2.5

-2

-1.5

-1

-0.5

 0.8 1 1.2 1.4 1.6 1.8 2

lo
g(

 P
(X

>
=

x)
)

log(x)

b=0.5 N=150 sum=2000
Fitting

Figure 5.3: The PDF and CCDF function corresponding to the total-degree sequence
of the generated Gp

to assign 0.177 ∗ 1000 = 177 multiple edges, we use the modified Dout and Din for

the generation of a directed graph without self-loops and multiple edges according to

the method presented in Section 3.2.1. It should be noticed that the solution of the

LP1 instance is always integral (see Section 3.2.1) and thus the generation of Gp is

finished.

5.4.2 Efficiency

In this Section we report the time and memory requirements of the LP instances

produced for the generation of synthetic SW schemas of various size. To solve the

LP instances we used the academic software Soplex [54]. The measurements reported

below are strongly depended on the efficiency of Soplex. Improved measurements

can be obtained by using more sophisticated simplex implementations, such as the

commercial CPLEX [33]. We also measure the number of variables and the number of

constraints of the produced LP instances. These measurements show the complexity

of the reduction of our problem to the LP instances and are independent of the specific

software implementation of simplex, which was used to solve them. Experiments were

carried out on a PC with a Pentium IV 3.2GHz processor and 512MB of main memory

(1GB of Virtual Memory), over Suse Linux (v9.1).

Figure 5.4 shows the number of variables and constraints of the LP1 instances

University of Crete, Computer Science Department

5.4. EXPERIMENTAL EVALUATION 83

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 220000

 240000

 300 400 500 600 700 800 900 1000

of

 V
ar

ia
bl

es

of Classes

Variables

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 300 400 500 600 700 800 900 1000

of

 C
on

st
ra

in
ts

of Classes

Constraints

Figure 5.4: Number of Variables (left) / Constraints (right) of the LP1 instances
produced to generate Gp

 150

 200

 250

 300

 350

 400

 450

 500

 300 400 500 600 700 800 900 1000

M
B

of Classes

Memory Requirements

 20

 40

 60

 80

 100

 120

 140

 160

 180

 300 400 500 600 700 800 900 1000

se
c

of Classes

Runtime

Figure 5.5: Memory Requirements (left) / Runtime (right) of the LP1 instances

that are produced to generate Gp for various number of classes, namely 300 − 1000.

Specifically, we considered as constant b = 0.6 and Np = 1000 and we vary Nc.

Since we assume that 50% of nodes have zero total-degree, the number of variables

is numOfV ars = Nc

2
∗ (Nc

2
− 1) and the number of constraints is 2 ∗ numOfV ars.

Note that for Nc = 900 or 1000, the percentage of zero total-degree nodes is slightly

bigger than 50%, as a result of the value of b. Hence, the number of variables and

constraints is slightly smaller than that computed by the above formula. Figure 5.5

shows the time and space requirements of Soplex to solve the LP1 instances produced

to generate Gp.

Concerning the LP instances that are produced to generate Gs, we compare (see

Figure 5.6) the sizes (in terms of variables and constraints) of LP2 (assuming that

Yannis Theoharis

84 CHAPTER 5. SYNTHETIC SW SCHEMA GENERATION

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

of

 V
ar

ia
bl

es

of Classes

Variables of LP2
Variables of LP3

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

of

 C
on

st
ra

in
ts

of Classes

Constraints of LP2
Constraints of LP3

Figure 5.6: Number of Variables (left) / Constraints (right) of LP2 and LP3 Instances

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

M
B

of Classes

Memory Requirements of LP2
Memory Requirements of LP3

 0.1

 1

 10

 100

 1000

 10000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
im

e
(s

ec
)

of Classes

Runtime of LP2
Runtime of LP3

Figure 5.7: Memory Requirements (left) / Runtime (right) of LP2 and LP3 Instances

Gs is a DAG) and LP3 instances (assuming that Gs is a tree). We also compare (see

Figure 5.7) the space and time requirements of Soplex to solve them. In particular,

we consider the degree sequences of the transitive closures of trees (whose 75% of

nodes are leaves) and we reduce their generation to an LP2 and to an LP3 instance.

As one can observe in Figure 5.6 (left), the number of variables of the LP3 instance

is smaller compared to LP2 instance for the same given Dout and Din. This is due

to the fact that in case of LP3 instances, not all possible edges are candidates, i.e.,

only nodes of successive levels can be connected since Gs is considered to be a tree.

Furthermore, the number of constraints corresponding to LP2 is orders of magnitude

bigger than LP3, as Figure 5.6 (right) shows (y−axis is plotted in log scale). This is

due to the fact that LP2 instances, except for degree constraints, additionally have

transitivity constraints, the number of which is O(N3), where N is the number of

University of Crete, Computer Science Department

5.4. EXPERIMENTAL EVALUATION 85

classes. The big difference in the sizes of the LP2 and LP3 instances is reflected

in the space requirements and runtime of Soplex to solve them (see Figure 5.7). In

particular, Soplex crashes for N = 1023 (needs more than 1GB memory), while the

runtime to solve LP2 instances is orders of magnitudes bigger than LP3 instances.

Yannis Theoharis

86 CHAPTER 5. SYNTHETIC SW SCHEMA GENERATION

University of Crete, Computer Science Department

Chapter 6

Conclusion and Future Work

To the best of our knowledge, this is the first work that measured and analyzed

the graph features of individual schemas coming from an adequately big SW corpus.

The main conclusions drawn from our analysis (see Figure 6.1) are that the majority

of schemas with a significant number of classes and properties approximate a power-

law for class descendants and property total degree distributions while they also

exhibit the small world phenomenon. These findings reveal emerging conceptual

modeling practices employed by SW schema developers, namely: a) the existence

in each schema of few central concepts that have been analyzed in detail (i.e., have

many properties and subclasses) and are further connected with central concepts of

other schemas, b) the trend to form clusters of connected classes, c) the fact that

class subsumption hierarchies are unbalanced, with large branches and many leaves,

d) the fact that most properties have as domain/range classes that are located highly

at the class subsumption hierarchies, e) the importance of recursive/multiple arcs and

f) the relatively large cyclic paths in the undirected closure of the property graph of

most schemas in our corpus.

We also exploited these findings to generated synthetic SW schemas. Specifically,

we proposed the generation of the property and the subsumption graph, given the

schema size (in terms of classes and properties), as well as the power-law exponents for

87

88 CHAPTER 6. CONCLUSION AND FUTURE WORK

*
sG

pG

58.6 % PL

0% PL

41.3 % PL

87.9 % PL

|propertiesTo(c)| |propertiesFrom(c)|

|ancestors(c)|

|descendants(c)|

c

94.8 % PL|properties(c)|
c

c

|descendants(p)|

p

13.7% PL

|propertiesFrom(c)| = |{p ∈ P | from(p)=c}|

|propertiesTo(c)| = |{p ∈ P | to(p)=c}|

|properties(c)| = |propertiesFrom(c)| + |propertiesTo(c)|

Class Subsumption

property

“Undirected property”

PL: Power Law (ACC>=0.9)

: Average cycle length = 21 properties
: 17% of the properties of each schema are “multiple arcs”
: 12% of the properties of each schema are self-loops

*
pG

pG
pG

* −punG : avg(CC) = 0.26
avg(CC/CCrandom) = 19.9

avg(L) = 1.55
avg(L/Lrandom) = 0.6

Figure 6.1: The main results of our analysis

the total-degree and the class descendants distributions. The former was constructed

given its degree sequences, while the latter was constructed given the degree sequences

of its transitive closure. Especially for the generation of the subsumption graph, we

faced the problem of generating graphs given the out- and in-degree sequences of

their transitive closure, problem not previously addressed in the bibliography. In this

thesis we proposed its reduction to the Linear Programming problem. In order to

combine the property and subsumption graph to compose the synthetic schema, the

combinatoric feature reported in Section 2.2.6, i.e., that nodes with high out-degree

in the Gp are located highly in the Gs, was proven very useful since it combines

University of Crete, Computer Science Department

89

characteristics of both graphs (property and subsumption) on the same set of nodes.

We plan to exploit the generator proposed in this thesis for synthetic SW data

generation as a part of our RDF benchmarking efforts [49]. In particular, we aim

at creating large datasets and testing the scalability of storage, query or update

methods implemented by current SW tools. The refinement of our generator to

also conform to other features, except for the degree distributions, such as the small

world phenomenon, is also left as future work. Finally, it would be useful if we could

devise a more efficient method (of complexity lower than O(N5)) to generate Gs

when it is considered to be a DAG. To this end, it would be interesting to investigate

if graph generation methods exploiting the ideas of self-similarity and fractals [39],

could be modified to take as input the degree sequences, or at least the characteristic

power-law exponent of their distribution.

Yannis Theoharis

90 CHAPTER 6. CONCLUSION AND FUTURE WORK

University of Crete, Computer Science Department

Bibliography

[1] L. A. Adamic, R. M. Lukose, A. R. Puniyani, and B. A. Huberman, “Search in

Power-law Networks”, Physical Review E 64 (2001), no. 46135.

[2] W. Aiello, F. Chung, and L. Lu, “A random graph model for massive graphs”,

Procs of the 32nd Annual ACM Symposium on Theory of Computing (Toronto,

Canada), 2000, pp. 171–180.

[3] W. Aiello, F. Chung, and L. Lu, Handbook of massive data sets, ch. “Random

Evolution in Massive Graphs”, Kluwer, 2002.

[4] S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis, and K. Tolle,

“The ICS-FORTH RDFSuite: Managing Voluminous RDF Description Bases”,

2nd International Workshop on the Semantic Web, May 2001.

[5] A. Barabási and R. Albert, “Emergence of scaling in random networks”, Science

286 (1999), no. 509.

[6] Tim Berners-Lee, James Hendler, and Ora Lassila, The semantic web, Scientific

American (2001).

[7] Zhiqiang Bi, Christos Faloutsos, and Flip Korn, “The ”DGX” Distribution for

Mining Massive, Skewed Data”, Procs of the KDD 2001 (San Francisco, CA),

August 2001.

91

92 BIBLIOGRAPHY

[8] Joseph Blitzstein and Persi Diaconis, “A Sequential Importance Sampling Al-

gorithm For Generating Random Graphs With Prescribed Degrees”, Annals of

Applied Probabilty.

[9] B. Bollobás, O. Riordan, J. Spencer, and G. Tusnády, “The degree sequence of a

scale-free random graph process”, Random Structures and Algorithms 18 (2001),

no. 3, 279–290.

[10] K. H. Borgwardt, “The Average number of pivot steps required by the Simplex-

Method is polynomial”, Mathematical Methods of Operations Research 26

(1982), 157–177.

[11] Dan Brickley and R. V. Guha, “Resource Description Framework Schema

(RDF/S) Specification 1.0”.

[12] Deepayan Chakrabarti and Christos Faloutsos, “Graph mining: Laws, Genera-

tors, and Algorithms”, ACM Computing Surveys (CSUR) 38 (2006), no. 2.

[13] Fan Chung and Linyuan Lu, “Connected Components in Random Graphs With

Given Expected Degree Sequences”, Annals of Combinatorics 6 (2002), 125–145.

[14] Fan Chung, Linyuan Lu, and Van Vu, Eigenvalues of random power law graphs,

Annals of Combinatorics 7 (2003), 21–33.

[15] Berge Claude, Graphs and hypergraphs, North Holland Publishing Company,

1973.

[16] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to

algorithms, 2nd ed., ch. 26.4-26.5, MIT Press and McGraw-Hill, Cambridge,

Mass, 2001.

University of Crete, Computer Science Department

BIBLIOGRAPHY 93

[17] G. B. Dantzig, “Activity Analysis of Production and Allocation”, ch. Program-

ming of Interdependent Activities, II, Mathematical Model, pp. 19–32, John

Wiley and Sons Inc., New York, 1951.

[18] M. Dean and G. Schreiber, “OWL Web Ontology Language Reference: W3C

Recommendation”,W3C Recommendation, Febrouary 2004.

[19] L. Ding, T. Finin, and A. Joshi, “Analyzing Social Networks on the Semantic

Web”, IEEE Intelligent Systems (2005).

[20] Li Ding and Tim Finin, Gauging ontologies and schemas by numbers, Procs of

the 5th International Semantic Web Conference, ISWC’06 (Athens, GA, USA),

2006.

[21] E. A. Dinic, “Algorithm for Solution of a Problem of Maximum Flow in a Network

With Power Estimation”, Soviet Math. Doklady 11 (1970), 1277–1280.

[22] Jack Edmonds and Richard M. Karp, “Theoretical Improvements in Algorithmic

Efficiency for Network Flow Problems”, Journal of the ACM 19 (1972), no. 2,

248–264.

[23] P. Erdös and T. Gallai, “Graphs with prescribed degree of vertices”, Mat. Lapok

11 (1960), 264–274.

[24] P. Erdös and A. Rényi, “On the evolution of random graphs”, Publ. Math. Inst.

Hungar. Acad. Sci. 5 (1960), 17–61.

[25] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power law relationships of the

internet topology”, Procs of ACM SIGCOMM’99, 1999.

[26] R. Gil, R. Garćıa, and J. Delgado, “Measuring the Semantic Web”, Semantic

Web Challenges for Knowledge Management: towards the Knowledge Web 1

(2004), 69–72.

Yannis Theoharis

94 BIBLIOGRAPHY

[27] S.L. Hakimi, “On the realizability of a set of integers as degrees of the vertices

of a graph”, SIAM Appl. Math. 10 (1962), 496–506.

[28] Harry Halpin, Valentin Robu, and Hana Shepherd,

The dynamics and semantics of collaborative tagging,

http://www.cwi.nl/themes/sen4/seminar/sen4seminar/bottom.html, 2006.

[29] V. Havel, “A remark on the existence of finite graphs”, Casopis Pest. Mat. 80

(1955), 477–480.

[30] Patrick Hayes, RDF Semantics. W3C Recommendation, February 2004.

[31] A. J. Hoffman and J. B. Kruskal, Linear inequalities and related systems, ch. In-

tegral Bounding Points of Convex Polyedra, pp. 223–246, Princeton University

Press, 1956.

[32] Bettina Hoser, Andreas Hotho, Robert Jäschke, Christoph Schmitz, and Gerd

Stumme, “Semantic Network Analysis of Ontologies”, Procs of the 3rd European

Semantic Web Conference (Budva, Montenegro), 2006.

[33] M. Hsu and T. E. Cheatham, “Rule Execution in CPLEX: A Persistent Ob-

jectbase”, Advances in Object-Oriented Database Systems: Proc. of the 2nd

International Workshop (K. R. Dittrich, ed.), Springer, Berlin, Heidelberg, 1988,

pp. 150–155.

[34] S. Jin and A. Bestavros, “Small-World Internet Topologies. Possible Causes and

Implicationson Scalability of End-System Multicast”, Tech. Report BUCS-TR-

2002-004, Boston University, Janouary 2002.

[35] L. G. Khachiyan, “A Polynomial Algorithm for Linear Programming”, Doklady

Akad. Nauk USSR 244 (1979), no. 5, 1093–1096, Translated in Soviet Math.

Doklady, 20, 191-194.

University of Crete, Computer Science Department

BIBLIOGRAPHY 95

[36] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins, and E. Up-

fal, “Stochastic models for the web graph”, Procs of the 41st Annual Symposium

on Foundations of Computer Science, FCOS 2000, 2000, pp. 57–65.

[37] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins, “Extracting large scale

knowledge bases from the Web”, Procs of 8th WWW Conference, April 1999.

[38] O. lassila and R. Swick, “Resource Description Framework (RDF) Model and

Syntax Specification”, W3C Recommendation, February 1999.

[39] Jure Leskovec, Deepayan Chakrabarti, Jon M. Kleinberg, and Christos Falout-

sos, “Realistic, mathematically tractable graph generation and evolution, using

kroneckermultiplication”, PKDD”05: 10th European Conference on Principles

and Practice of Knowledge Discovery in Databases, 2005, pp. 133–145.

[40] Lun Li, David Alderson, John C. Doyle, and Walter Willinger, “Towards a The-

ory of Scale-Free Graphs: Definition, Properties, and Implications”, Internet

Math 2 (2005), no. 4, 431–523.

[41] A. Magkanaraki, S. Alexaki, V. Christophides, and D. Plexousakis, “Bench-

marking RDF schemata for the Semantic Web”, Procs of the 1st International

Semantic Web Conference, ISWC’02, 2002.

[42] M. Mihail and N. Visnoi, “On generating graphs with prescribed degree sequences

for complex network modeling applications”, Procs of Approx. and Randomized

Algorithms for Communication Networks (ARACNE), 2002.

[43] P. Mika, “Ontologies Are Us: A Unified Model of Social Networks and Seman-

tics”, Procs of the 4th International Semantic Web Conference, 2005.

[44] Christos H. Papadimitriou and Kenneth Steiglitz, Combinatorial optimization :

Algorithms and complexity, Dover Publications, Mineola, N.Y., 1998.

Yannis Theoharis

96 BIBLIOGRAPHY

[45] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical

recipes in c, Cambridge University Press, 1992, (2nd edition).

[46] K. Shen and L. Wu, “Folksonomy as a Complex Network”, Cornell University

Library, http://arxiv.org/PS cache/cs/pdf/0509/0509072.pdf.

[47] L. Tari, C. Baral, and P. Dasgupta, Understanding the global properties of

functionally-related gene networks using the gene ontology, Pacific Symposium

on Biocomputing 10 (2005), 209–220.

[48] C. Tempich and R. Volz, “Towards a benchmark for Semantic Web reasoners-an

analysis of the DAML ontology library”, Procs of The 2nd Int. Workshop on

Evaluation of Ontology-based Tools, EON2003, 2003.

[49] Y. Theoharis, V. Christophides, and G. Karvounarakis, “Benchmarking Database

Representations of RDF/S Stores”, Procs of the 4th International Semantic Web

Conference, ISWC’05, 2005.

[50] Y. Tzitzikas and J. L. Hainaut, “How to Tame a Very Large ER Diagram (using

Link Analysis and Force-Directed Placement Algorithms)”, Procs of 24th Inter-

national Conference on Conceptual Modeling, ER’05, 2005.

[51] Arthur F. Veinott and George B. Dantzig, “Integral Extreme Points”, SIAM

Review 10 (1968), no. 3, 371–372.

[52] Taowei David Wang, “Gauging Ontologies and Schemas by Numbers”, Procs of

the 4th International EON Workshop, located at the 15th International World

Wide Web Conference WWW 2006 (Edinburgh, United Kingdom), 2006.

[53] D.J. Watts and S.H. Strogatz, “Graph structures in the Web”, Collective dynam-

ics of small world networks 393 (1998), 440–442.

University of Crete, Computer Science Department

BIBLIOGRAPHY 97

[54] Roland Wunderling, “Paralleler und Objektorientierter Simplex-Algorithmus”,

Ph.D. thesis TR 96-09, ZIB, 1996.

[55] J. Xu and M. Li, “Assessment of RAPTOR”s Linear Programming Approach in

CAFASP3”, Proteins 53 (2003), 579–584.

Yannis Theoharis

98 BIBLIOGRAPHY

University of Crete, Computer Science Department

