
University of Crete

Computer Science Department

Monitoring QoS for Composite Web Services

Konstantina Konsolaki

Master's Thesis

Heraklion, June 2012

2

PANEPISTHMIO KRHTHS

SQOLH JETIKWN KAI TEQNOLOGIKWN EPISTHMWN

TMHMA EPISTHMHS UPOLOGISTWN

PARAKOLOUJHSH QARAKTHRISTIKWN POIOTHTAS GIA

SUNJETES HLEKTRONIKES UPHRESIES

ErgasÈa pou upobl�jhke apo thn:

KwnstantÈna A. Konsol�kh

wc merik� ekpl�rwsh twn apait�sewn gia thn apäkthsh

METAPTUQIAKOU DIPLWMATOS EIDIKEUSHS

Suggrafàac:

���������������

KwnstantÈna Konsol�kh, Tm�ma Epist�mhc Upologist°n

Eishghtik� Epitrop�:

����������������

Dhm�trhc Plexous�khc, Epäpthc

���������������

Ant°nhc SabbÈdhc, Anaplhrwt�c Kajhght�c

�����������������������

KwnstantÈnoc MagkoÌthc, Ereunht�c

Dekt�:

������������

`Aggeloc MpÈlac, Kajhght�c

Präedroc Epitrop�c Metaptuqiak°n Spoud°n

Hr�kleio, IoÌnioc 2012

3

4

Monitoring QoS for Composite Web Services

Konstantina Konsolaki

Master’s Thesis

Computer Science Department, University of Crete

Abstract

Web services are an emerging technology attracting a lot of attention from both

academia and industry in recent years. Thus, more and more businesses adopt them

to facilitate and automate their business processes. However, once services and business

processes become operational, several emerging issues must be considered throughout the

life-cycle of a Service-Based Application (SBA), such as the one concerning service moni-

toring. SBAs need to be managed and monitored, so that stakeholders have a clear view

of how services perform within their operational environment and take management deci-

sions. Many approaches have been proposed and have proven that Web service monitoring

is very crucial for successful invocations.

This thesis proposes a framework for monitoring SBAs. The main component of our

framework is Astro’s WS-MON. Based on this component we implement a framework

responsible for providing Astro with the necessary input files and also exploits the out-

put results of this monitoring tool in order to provide the user with more monitoring

properties. Furthermore, our framework checks at runtime the results of the monitors

and reports the occurring violations. Finally, a specific case study is used to illustrate its

functionality.

In summary, the contribution of this work lies in introducing a monitoring framework,

that extends an existing tool in order to detect violations at runtime. The reported

violations can be used in order for adaptation actions to take place.

Supervisor: Dimitris Plexousakis

Professor

5

PARAKOLOUJHSH QARAKTHRISTIKWN POIOTHTAS GIA

SUNJETES HLEKTRONIKES UPHRESIES

KwnstantÈna Konsol�kh

Metaptuqiak� ErgasÈa

Tm�ma Epist�mhc Upologist°n, Panepist�mio Kr�thc

PerÈlhyh

Oi hlektronikàc uphresÈec eÈnai mia anaptussämenh teqnologÈa pou trab�ei älo

kai perissätero thn prosoq� täso thc akadhmaðk�c koinäthtac äso kai thc biomhqanik�c

koinäthtac. `Etsi, älo kai perissäterec epiqeir�seic tic uiojetoÌn prokeimànou na dieukolÌnoun

kai na automatopoi�soun tic epiqeirhsi�kec touc diadikasÈec. Paräla aut�, apä th stigm�

pou oi hlektronikàc uphresÈec apàkthsan leitourghkäthta, prokÌptoun krÈsima zht�mata

kat� th di�rkeia tou kÌklou zw�c touc, äpwc autä pou afor� th parakoloÌjhsh touc.

Oi hlektronikàc uphresÈec pràpei na elàgqontai kai na parakoloujoÌntai, àtsi °ste ta

endiaferämena màlh na apokt�soun mÈa saf� äyh gia to pwc apodÈdoun mesa sto leitourgikä

touc perib�llon kai gia na p�roun apof�seic gia th diaqeÈrish touc. Pollàc proseggÈseic

àqoun protajeÈ gÌrw apä autä to jàma kai àqoun apodeÈxei th shmantikäthta tou gia

epituqhmành ektàlesh twn hlektronik°n uphresi°n.

H sugkekrimành ergasÈa proteÈnei àna sÌsthma gia th parakoloÌjhsh hlektronik°n

uphresÈwn. To kÌrio sustatikä tou sust�matoc mac eÈnai o WS-MON tou Astro.

Me b�sh autä to stoiqeÈo, ulopoi�same àna sÌsthma °ste na paràqoume sto Astro

äla ta apaitoÌmena arqeÈa eisädou kai epÈshc ekmetaleuämaste ta apotelàsmata autoÌ tou

ergaleÈou parakoloÌjhshc prokeimànou na paràqoume sto qr�sth perissäterec idiäthtec.

EpÈshc to sÌsthma mac, elàgxei kat� th di�rkeia ektàleshc ta apotelàsmta twn ergaleÈwn

parakoloÌjhshc kai katagr�fei tic parabi�seic pou sumbaÈnoun. Tàloc, qrhsimopoieÈtai

àna sugkekrimàno sen�rio °ste na parousiasjeÈ h leitourgikäthta tou.

Sumperasmatik�, h suneisfor� aut�c thc ergasÈac àgkeitai sthn parousÈash ànoc sust�matoc

parakoloÌjhshc, to opoÈo epekteÈnei àna up�rqon ergaleÈo prokeimànou na katagr�fontai

oi parabi�seic kata th di�rkeia ektàleshc. Oi parabi�seic autàc eÈnai dunatän na qrhsimopoihjoÌn

°ste na pragmatopoihjoÌne diorjwtikàc kin�sec.

Epäpthc Kajhght�c: Dhm�trhc Plexous�khc

6

Kajhght�c

7

8

EuqaristÈec

Sto shmeÈo autä ja �jela na euqarist�sw ton epäpth kajhght� mou k. Dhm�trh Plexous�kh

gia thn �yogh sunergasÈa mac ta 2 teleutaÈa qränia, kaj°c epÈshc kai gia thn ousiastik�

tou kajod�ghsh kai sumbol� sthn olokl�rwsh thc paroÌsac ergasÈac.

EpÈshc, ja �jela na ekfr�sw tic euqaristÈec mou, stouc kajhghtec k. Ant°nh SabbÈdh

kai k. KwnstantÈno MagkoÌth gia th meg�lh projumÈa touc na summetàqoun sthn trimel�

epitrop�.

Par�llhla, ja �jela na euqarist�sw ton Kuri�ko Krhtikä kai ton Qrusästomo ZegkÈnh

gia th meg�lh touc bo�jeia kai kajod�ghsh se älh th di�rkeia ekpänhshc thc ergasÈac.

Akäma ja �jela na euqarist�sw to InstitoÌto Plhroforik�c tou IdrÌmatoc TeqnologÈac

kai `Ereunac gia thn upost�rixh se ulikoteqnik� upodom� kai teqnognwsÈa.

Pollàc euqaristÈec ja �jela na ekfr�sw stouc fÈlouc mou, gia th st�rixh touc kai gia

älec tic stigmàc pou moirast�kame mazÈ älo autä ton kairä.

Tàloc, ja �jela na euqarist�sw idiaitàrwc touc goneÈc mou, Ant°nh kai Eir�nh kai tic

adelfàc mou, QaroÌla kai Baggeli° gia thn upost�rixh kai thn ag�ph pou me periàbalan.

9

Contents

Table of Contents iv

List of Tables v

List of Figures viii

1 Introduction 1

1.1 Web services . 1

1.1.1 Web Service Architecture . 2

1.1.2 The Web Services Technology Stack 4

1.2 Service Based Applications . 5

1.2.1 Types of services . 7

1.3 The need of monitoring . 7

1.4 Quality of Service Description (QoS) . 9

1.5 What a Service Level Agreement (SLA) Is 14

1.6 Web Service Composition . 15

1.7 Contributions . 18

1.8 Organization of the thesis . 19

2 Monitoring of Web services 21

2.1 Introduction . 21

2.2 Monitoring Taxonomy . 23

2.2.1 Taxonomy Dimension: Why? . 23

2.2.2 Taxonomy Dimension: Who? . 24

2.2.3 Taxonomy Dimension: What? . 25

i

2.2.4 Taxonomy Dimension: How? . 28

2.3 Monitoring Challenges . 31

3 Web Service Composition Languages 33

3.1 An Introdution to BPEL4WS . 33

3.1.1 Basic structure of a BPEL process 33

3.2 An Introduction to BPMN . 37

3.2.1 BPMN Basics . 37

3.2.1.1 Flow Objects . 38

3.2.1.2 Connecting Objects . 38

3.2.1.3 Swimlanes . 39

3.2.1.4 Artifacts . 40

3.3 Mapping a BPMN Diagram to a BPEL4WS 41

3.3.1 Industrial Tools for Mapping BPMN to BPEL 42

4 Monitoring Framework 45

4.1 Transform BPMN to Abstract BPEL Process 46

4.1.1 Implementation Procedure . 47

4.2 Transform OWL-Q to Astro’s Monitoring Language 50

4.2.1 Implementation Procedure . 51

4.3 Astro’s Monitoring Tool . 53

4.3.1 BPEL Execution Environment . 54

4.3.2 Run-Time Monitoring Environment 55

4.3.3 Structure of Monitors . 56

4.3.4 Monitoring Language . 57

4.3.5 Implementation Issues . 59

4.4 Report Violations . 61

5 Case Study 63

5.1 Traffic Management Case Study . 63

5.2 Case Study Implementation . 65

5.2.1 Accident Information Service . 65

ii

5.2.2 Air Pollution Service . 65

5.2.3 Noise Measurement Service . 66

5.2.4 Calendar Service . 67

5.2.5 Assessment Service . 67

5.2.6 Device Configuration Service . 68

5.2.7 Call Service . 68

5.2.8 Incident Assessment . 68

5.2.9 Implementation of Main Model . 68

5.2.9.1 Critical Traffic Situation 69

5.2.9.2 Normal Traffic Situation 71

5.3 Monitoring Properties . 72

5.3.1 Definition of Monitoring Properties in RTML 74

6 Experimental Evaluation 75

6.1 Metrics Input . 75

6.2 Execution of the Scenario . 77

6.2.1 First Execution . 77

6.2.2 Second Execution . 77

6.2.3 Third Execution . 77

6.2.4 Fourth Execution . 81

6.2.5 Fifth Execution . 82

6.2.6 Aggregated Results . 82

6.3 Check Availability . 85

6.4 Conclusion . 88

7 Related Work 89

7.1 Approaches to Monitoring of Service-Based Systems 89

7.1.1 Smart monitors for composed services 89

7.1.2 Dynamo . 90

7.1.3 Requirements monitoring based on event calculus 93

7.1.4 Planning and monitoring execution with business assertions 95

7.1.5 Cremona . 96

iii

7.1.6 Colombo . 97

7.1.7 Glassfish . 97

7.1.8 Query-based business process monitoring 98

7.2 Comparing monitoring approaches . 99

8 Conclusion and Future Work 101

iv

List of Tables

5.1 Monitoring Properties. 73

5.2 Definition of Monitoring Properties at RTML. 74

6.1 Thresholds of Monitoring Properties. 76

6.2 Thresholds of Monitoring Properties. 76

6.3 Aggregated Results. 83

6.4 Aggregated Results. 84

7.1 Comparison Table . 100

v

vi

List of Figures

1.1 The Web Service Architecture . 3

1.2 Web Services Standards Stack . 5

1.3 The service types diagram . 8

1.4 Orchestration: Web Services composed through a central process 16

1.5 Choreography: Collaboration between services 17

2.1 High-Level Monitoring Model . 22

2.2 Representation of the ‘why?’ taxonomy. 24

2.3 Representation of the ‘who?’ taxonomy. 25

2.4 Representation of the ‘what?’ taxonomy. 26

2.5 Representation of the ‘how?’ taxonomy. 30

3.1 Core structure of a BPEL process . 34

3.2 Synchronous Messaging . 36

3.3 Asynchronous Messaging . 36

3.4 Flow Objects. 38

3.5 Connecting Objects. 39

3.6 Swimlanes. 39

3.7 Artifacts. 40

3.8 BPMN Transformation Workflow . 41

3.9 A BPD with Annotations to Show the Mapping to BPEL4WS 42

4.1 Our Monitoring Framework. 45

4.2 Main Window of Monitoring Framework. 46

4.3 Configuring the ATL launch configuration. 48

vii

4.4 Transformation from BPMN to BPEL window. 49

4.5 Differences between BABEL BPEL output and bpmn2bpel output. 50

4.6 Structure of OWL-Q classes. 52

4.7 Creation of Monitoring Properties . 53

4.8 The ActiveBPEL engine extended with the run-time monitor environment 54

4.9 Methods of a monitor Java class. 56

4.10 WS-mon front end. 60

4.11 WS-console. 61

4.12 Example of violated properties . 61

5.1 Normal Traffic Situation . 64

5.2 Critical Traffic Situation . 64

5.3 Critical Situation Activities . 69

5.4 Manage Incident By Rescue Forces. 70

5.5 Complete Emergency Handling. 71

5.6 Take Adaptation Actions. 72

6.1 Violations of First Execution. 78

6.2 Violations of Second Execution. 79

6.3 Violations of Third Execution. 80

6.4 Violations of Fourth Execution. 81

6.5 Violations of Fifth Execution. 82

6.6 Deployment-Un-deployment of Services (Tomcat Console). 86

6.7 Reported violations for Availability. 87

6.8 Average Time Needed to Report a Violation. 88

7.1 Dynamo Monitoring Approach . 91

7.2 Requirements Monitoring Approach . 94

7.3 Planning and monitoring framework . 96

7.4 BP-Mon Architecture . 99

viii

Chapter 1

Introduction

1.1 Web services

A Web service is a software component identified by a URL, whose public interfaces

and bindings are defined and described using XML. Its definition can be discovered by

other software systems. These systems may then interact with the Web service in a

manner prescribed by its definition, using XML-based messages conveyed by Internet

protocols.

This definition has been published by the World Wide Web Consortium W3C in the

Web Services Architecture document [15] and it gives a concise presentation of the ad-

vantageous characteristics of Web services, which we will briefly examine here.

The defining characteristic of a Web service is the use of the Internet and the World

Wide Web as the communication medium for services to interact with each other and with

service consumers. By using WWW, Web services exploit the existing URI infrastructure

in order to be located by anyone having access to the Web. The URI scheme gives a

name to each Web service which uniquely identifies it and allows one to use all existing

operations on URIs in order to access it.

Web services make extensive use of the XML language [18]. From the definition of the

messages exchanged between services to the service description, everything is based on

XML, which is quite advantageous. XML is a simple language, both machine and human

readable, with an intuitive hierarchical structure. It is also self-describing, as each XML

data structure contains both a description of its structure and the content itself.

1

‘A Web service can be: (i) a self-contained business task, such as funds withdrawal or

funds deposit service; (ii) a full-fledged business process, such as the automated purchasing

of office supplies; (iii) an application, such as a life insurance application or demand

forecasts and stock replenishment; or (iv) a service-enabled resource, such as access to a

particular back-end database containing patient medical records. Web services can vary in

function from simple requests (e.g. credit checking and authorization, pricing enquiries,

inventory status checking, or a weather report) to complete business applications that

access and combine information from multiple sources, such as an insurance brokering

system, an insurance liability computation, an automated travel planner, or a package

tracking system [44]’.

1.1.1 Web Service Architecture

The Web service architecture consists of three entities, the service provider, the service

registry and the service consumer. Fig.1.1 1 depicts a graphical representation of the

traditional Web service architecture.

The Service Provider creates or simply offers the Web service. The service provider

needs to describe the Web service in a standard format, which in turn is XML and publish

it in a central Service Registry. The service registry contains additional information

about the service provider, such as address and contact of the providing company and

technical details about the service. The Service Consumer retrieves the information from

the registry and uses the service description obtained to bind to and invoke the Web

service.

For realizing the above operations some technologies have to be applied. When talking

about Web Services always three key-terms are mentioned, namely SOAP [17], WSDL

[20] and UDDI [41]. These are XML-based technologies and represent the three core

technologies of Web Services.

The basic idea of Web services is the use of SOAP messaging protocol to invoke soft-

ware method in remote systems. This is often described by some technologists as Remote

Procedure Calls (RPC) over the Internet protocols (e.g., HTTP). A SOAP message con-

sists of an ‘Envelope’, an optional ‘Header’, and a mandatory ‘Body’. The SOAP ‘Body’

1https://ensweb.users.info.unicaen.fr/cours/rest/presentationM2/index.php

2

Figure 1.1: The Web Service Architecture

carries application-specific contents including the method name and the serialized values

of the methods input or output parameters. Parameters of a Web services method can

be a simple value or a compound value (structure or array). Serializing a Web services

message in (pure text) XML format allows the SOAP XML to pass through Internet

firewall.

Web services can be considered as a set of callable interfaces to software programs

or components, regardless of their implementations. They can be invoked remotely via

SOAP messaging. Therefore, these programs can provide services to other applications

using Internet protocols.

Additional standards, WSDL and UDDI, were developed to support the description

and discovery aspect of the Web services. A WSDL file contains service definitions for

distributed systems to support the automatic creation of client-side stubs or proxies, and

the binding to the Web services. WSDL is specified in XML format. It describes the

interfaces to a Web services implementation in terms of format of the messages, binding

of the abstract messages to a concrete protocol, and address of the endpoint. It is a

‘take-it-or-leave-it’ technical contract offered by a Web services provider to Web services

consumers.

UDDI is a registry standard for Web services providers to publish their Web services.

It may be used by a Web service consumer to discover (search) Web services developed

by Web services providers. UDDI can store company information, services provided by a

3

company, and the specific technical information for binding with a specific service. The

technical binding information for using a Web service will be the URL reference to the

WSDL file of the Web service. The structure of UDDI repository is defined in XML

Schemas containing four entity types:

• Business Entity, which contains information about a company;

• Business Services, provided by a business entity;

• Binding Templates, which implement business services and

• ‘tModels’, which contain references to technical specifications for services;

The Web Service Architecture is a model for building loosely coupled software services

in distributed environments. The Web services network is an application level network

involving a number of participants: service providers, service consumers, and service

registry operators.

1.1.2 The Web Services Technology Stack

When SOAP was first developed, it was intended as a simple messaging protocol to

provide remote procedure calls over the HTTP protocols. However, Web services have

been gradually used to support critical business applications; therefore, additional stan-

dards, such as security and composition, have been developed or should be developed to

support different aspects of Web services-based applications. Web services standards or

technology stack is shown in Fig. 1.2, ([19]), to illustrate the relationships and dependen-

cies among various Web services standards.

The bottom layer of the stack is the basic communication protocol layer for Web

services including TCP/IP, HTTP, Simple Mail Transfer Protocol (SMTP), etc. XML

1.0 Specification and XML Schema are the definition languages used to define all the

other Web services standards except the communication protocols. The basic messaging

protocol is SOAP. There are several efforts, such as WS-ReliableMessaging, to enhance

the functionality of SOAP via processing information placed in the SOAP header. The

grand vision of Web services architecture is that Web services can be composed and

invoked dynamically to support business processes within and across enterprises. Hence,

4

Figure 1.2: Web Services Standards Stack

the highest layer of the Web services standards stack, the Service Composition layer,

has emerged. This layer consists of standards that specify how individual Web services

can be composed to support business processes. A number of new languages have been

introduced to address this Web services composition issue, including BPEL4WS (Business

Process Execution Language for Web Services) [22], WSCI (Web Services Choreography

Interface) [4], and BPML (Business Process Modeling Language) [5].

1.2 Service Based Applications

Service-Based Applications (SBA) are defined as software systems that integrate exist-

ing services, which are individually made available by different service providers, and can

be accessed by service consumers, through a variety of connecting devices. SBA are open

systems, as they rest on a global infrastructure i.e. the Internet on which new services

may become available, or existing one disappear, and need to manage the heterogeneity

of service providers and the variability of contexts and devices they can be accessed from,

still maintaining their expected functionalities and qualities.

Service-based applications are often implemented in terms of an orchestration, that is,

a centralized logic that describes the order in which the various services are called and

the way their parameters are formed and used for further calls. This orchestration is also

called Service Process.

5

An SBA can be illustrated by its three functional layers: i)‘Business Process Man-

agement’ (BPM), ii) ‘Service Composition and Coordination’ (SCC) and iii) ‘Service

Infrastructure’ (SI) [30].

At the BPM layer the application activities, constraints and requirements are described

without design details. The basic workflow constructed at BPM is refined at the SCC

layer by the composition of suitable services. Finally, SI provides the underlying runtime

environment.

Below, we will introduce the key elements of each layer.

• BPM Layer. Workflow and key performance indicator (KPI) are the key ele-

ments relevant for BPM. Workflow is the abstract model of the business process

defining logical decision points, sequential or parallel work routes and exceptional

cases. While business activities constitute the workflow, business rules together

with business policies have an effect on the specification of business processes. KPI

is a metric that shows quantitatively if business performance meets the pre-defined

business goals.

• SCC Layer. Service composition, process performance metric (PPM) and service

metrics are the key elements relevant for SCC. Service composition is a combination

of services to realize a workflow. The designer needs to know descriptions, interfaces

and supported protocols of available services for composition. PPM measures perfor-

mance of a process or its parts in terms of cost, quality or duration. Service metrics

are basically QoS metrics which talk about non-functional properties of services.

• SI Layer. Service registry, discovery and selection mechanisms constitute infras-

tructural facilities to find and select the services required by composition. Service

registry is the information system where service descriptions are kept as a searchable

repository. Service discovery and selection are the basic functionalities that serve

SCC for the selection of most suitable services for SBA realization. Service realiza-

tion corresponds to the run-time environment on top of where services are executed

(e.g. grids, clusters, data servers, software, protocols and network infrastructure).

6

1.2.1 Types of services

Services exploited in a service-based application can be offered by various different

agents (for instance, they can be offered by Persons or by Organizations), or they can

simply be software services exploiting some specific technology, e.g., web services.

Besides for the agent that is providing them, services may also differ for their nature.

They can be abstract when they do not have a concrete implementation but only repre-

sent an idea that could correspond, possibly in the future, to various implementations. Of

course, they are concrete when they are actually provided by some actor. This distinc-

tion is quite relevant when developing adaptable service- based applications as a Service

Integrator at design time may reason even in the absence of Concrete Services simply

by exploiting Abstract Services. Clearly, in this case, the resulting application will be

executable only in those cases when at runtime some Concrete Service implementing the

abstract ones exists and these services are selected in some adaptation step.

Orthogonally to this classification, Services can also be distinguished in Simple and

Composite. Composite Services are service-based applications being accessible as ser-

vices. The current technology for building service-based applications, BPEL, actually,

only supports the development of Composite Services.

The last orthogonal classification refers to the statefulness of services. A special kind of

Stateful Services are the Conversational Services. These store the state of the conversation

with a single specific stakeholder, but keep the states of different conversations separate

from each other.

The three classifications are shown in Figure 1.3.

1.3 The need of monitoring

Software monitoring involves obtaining the information relating to the state, behavior,

and environment of a software system at runtime, so as to deal with potential deviations

of system behavior from requirements at the earliest possible time. Monitoring is usu-

ally carried out in parallel with the system’s normal execution, without interrupting its

operation. Starting from early 1960s with the advent of debuggers, software monitoring

7

Figure 1.3: The service types diagram

has been widely used for debugging and testing, correctness checking, security and de-

pendability analysis, performance evaluation and enhancement, and system control. A

recent taxonomy shows that runtime software monitoring has been used also for profiling,

software optimization, as well as software fault detection, diagnosis, and recovery.

As a special form of software, Web services also require monitoring. In particular, even

if it can be demonstrated that a system can meet its requirements prior to deployment,

at run-time these requirements may be violated. This may be the result of unpredicted

changes in the environment of a system or failure to anticipate the behavior of all the

agents interacting with it (i.e., other systems and human users).

The service monitoring phase concerns itself with service level measurement. Monitor-

ing is the continuous and closed-loop procedure of measuring, monitoring, reporting and

improving the Quality of Service (Qos) of systems and applications delivered by service-

oriented solutions. Service level monitoring is a disciplined methodology for establishing

acceptable levels of service that address business objectives, processes and costs.

The service monitoring phase targets continuous evaluation of service level objectives

and performance. To achieve this objective service monitoring requires that a set of QoS

metrics is gathered. In addition, workloads need to be monitored and the service weights

8

for request queues might need to be readjusted. This allows a service provider to ensure

that the promised performance level is being delivered, and to take appropriate actions

to rectify non-compliance with a Service Level Agreement (SLA) such as re-prioritization

and reallocation of resources.

To determine whether an objective has been met QoS metrics are evaluated based on

measurable data about a service - e.g., response time, throughput, availability, and so on

- performance during specified times, and periodic evaluations. A key aspect of defining

measurable objectives is to set warning thresholds and alerts for compliance failures. For

instance, if the response time of a particular service is degrading then the step could be

automatically routed to a backup service.

1.4 Quality of Service Description (QoS)

The international quality standard ISO 8402 describes quality as the totality of features

and characteristics of a product or service that bear on its ability to satisfy stated or

implied needs. According to [24], what defines quality is vague, and different views exist

in different studies and from different perspectives. The following three views are the

most common ones:

1. Quality as Functionality. According to this view, quality is considered as the amount

of functionality that a service can offer to its users. For example, if SP1 allows you

to rent a car besides booking flights and hotel rooms, and if this functionality is not

provided by SP2 or SP3, then SP1 is offering a better quality than SP2 and SP3.

2. Quality as Conformance. According to this view, quality means meeting specifica-

tions. For example, if SP1 has specified that his web service (WS) will be available

0.9999 of the time and this was true, then SP1 is considered as offering good quality

of service.

3. Quality as Reputation. According to this view, quality depends on users experience

and expectation from a WS and its value is built collectively over the time of the

service’s existence from users feedback. For example, if web services have consistently

provided specific functionality with specific performance levels at all time of their

operation, then they provide good quality of service.

9

These different views of quality require QoS to be monitored and measured differently.

Quality as functionality characterizes the design of a service and can only be measured

by comparing the service against other services offering similar functionalities. Quality

as conformance, on the other hand, can be monitored for each service individually, and

usually requires the user’s experience of the service in order to measure the promise against

the delivery. Finally, reputation can be regarded as a reference to a service’s consistency

over time in offering both functionality and conformance qualities, and can therefore be

measured through the other two types of quality over time.

While it is possible to establish all three types of quality for a service in an Service

Oriented Computing (SOC) environment, it is perhaps most interesting and relevant to

understand how quality as conformance may be monitored and measured. The reasons

for this are the following. Firstly, the first type of quality is already established in the

SOC environment with the usage of the WSDL and UDDI standards, although nobody

reassures that the functionality exposed by a service is the same with the one advertised by

the service provider. Secondly, the reputation of a service is just an indicator of the overall

QoS of the service over time that depends on user expectations and other imponderable

factors (advertisement, financial and political interests, etc.). So reputation can only be

considered as a QoS property that can be measured and computed by monitoring and

other authorities.

Another aspect which is usually neglected is that QoS must be seen in a broader end-

to-end sense as it affects the end-to-end quality received by the WS client when invoking a

particular WS. Thus, QoS characterizes not only the WS but any entity used in the path

from the user to the WS, including the WSs host and intervening network. Therefore, the

QoS characteristics of all these entities, as they affect the end-to-end quality, constitute

the QoS of a WS.

Thus, based on the above definition and aspects, we consider QoS of a WS as a set of

non-functional attributes of the entities used in the path from the WS to the client that

bear on the WS’s ability to satisfy stated or implied needs in an end-to-end fashion. The

values of QoS attributes can vary without impacting the core function of the WS which

remains constant most of the time during the WS’s lifetime. If a WS is advertised to

have certain values (or range of values) in these QoS attributes, then we say that the WS

10

conforms to provide a certain QoS level.

In general, the key elements for supporting QoS in a Web services environment are

summarized in what follows:

1. Performance. The performance of a web service represents how fast a service request

can be completed. It can be measured in terms of throughput, response time, latency,

execution time, and transaction time, etc.

Throughput is the number of web service requests served in a given time interval.

Response time is the time required to complete a web service request. Latency is

the round-trip delay (RTD) between sending a request and receiving the response.

Execution time is the time taken by a web service to process its sequence of activities.

Finally, transaction time represents the time that passes while the web service is

completing one complete transaction. This transaction time may depend on the

definition of web service transaction.

In general, high quality web services should provide higher throughput, faster re-

sponse time, lower latency, lower execution time, and faster transaction time.

2. Reliability. Web services should be provided with high reliability. Reliability here

represents the ability of a web service to perform its required functions under stated

conditions for a specified time interval. The reliability is the overall measure of a

web service to maintain its service quality. The overall measure of a web service

is related to the number of failures per day, week, month, or year. Reliability is

also related to the assured and ordered delivery for messages being transmitted and

received by service requesters and service providers.

3. Scalability. Web services should be provided with high scalability. Scalability rep-

resents the capability of increasing the computing capacity of service provider’s

computer system and system’s ability to process more users’ requests, operations or

transactions in a given time interval. It is also related to performance. Web services

should be scalable in terms of the number operations or transactions supported.

4. Capacity. Web services should be provided with the required capacity. Capacity

is the limit of the number of simultaneous requests which should be provided with

11

guaranteed performance. Web services should support the required number of si-

multaneous connections.

5. Robustness. Web services should be provided with high robustness. Robustness

here represents the degree to which a web service can function correctly even in the

presence of invalid, incomplete or conflicting inputs. Web services should still work

even if incomplete parameters are provided to the service request invocation.

6. Exception Handling. Web services should be provided with the functionality of ex-

ception handling. Since it is not possible for the service designer to specify all the

possible outcomes and alternatives (especially with various special cases and unan-

ticipated possibilities), exceptions should be handled properly. Exception handling

is related to how the service handles these exceptions.

7. Accuracy. Web services should be provided with high accuracy. Accuracy here is

defined as the error rate generated by the web service. The number of errors that

the service generates over a time interval should be minimized.

8. Integrity. Integrity for web services should be provided so that a system or compo-

nent can prevent unauthorized access to, or modification of, computer programs or

data. There can be two types of integrity: data integrity and transactional integrity.

Data integrity defines whether the transferred data is modified in transit. Transac-

tional integrity refers to a procedure or set of procedures, which is guaranteed to

preserve database integrity in a transaction.

9. Accessibility. Web services should be provided with high accessibility. Accessibility

here represents whether the web service is capable of serving the client’s requests.

High accessibility can be achieved, e.g., by building highly scalable systems.

10. Availability. The web service should be ready (i.e., available) for immediate con-

sumption. This availability is the probability that the system is up and related

to reliability. Time-to-Repair (TTR) is associated with availability. TTR repre-

sents the time it takes to repair the web service. The service should be available

immediately when it is invoked.

12

11. Conformance to standards. Describes the compliance of a Web service with stan-

dards. Strict adherence to correct versions of standards by service providers is

necessary for proper invocation of Web services by service requesters.

12. Interoperability. Web services should be inter-operable between the different de-

velopment environments used to implement services so that developers using those

services do not have to think about which programming language or operating sys-

tem the services are hosted on.

13. Security. Web services should be provided with the required security. With the

increase in the use of web services which are delivered over the public Internet,

there is a growing concern about security. The web service provider may apply

different approaches and levels of providing security policy depending on the service

requester. Security for web services means providing authentication, authorization,

confidentiality, traceability, data encryption, and non-repudiation. Each of these

aspects is described below:

- Authentication: Users (or other services) who can access service and data should

be authenticated.

- Authorization: Users (or other services) should be authorized so that they only

can access the protected services.

- Confidentiality : Data should be treated properly so that only authorized users

(or other services) can access or modify the data.

- Accountability : The supplier can be hold accountable for their services.

- Traceability : It should be possible to trace the history of a service when a

request was serviced.

- Data encryption: Data should be encrypted.

- Non-Repudiation: A user cannot deny requesting a service or data after the

fact. The service provider needs to ensure this security requirement.

13

1.5 What a Service Level Agreement (SLA) Is

An SLA sets the expectations between the consumer and provider. It helps define the

relationship between the two parties. It is the cornerstone of how the service provider

sets and maintains commitments to the service consumer. A good SLA addresses five key

aspects:

• What the provider is promising.

• How the provider will deliver on those promises.

• Who will measure delivery, and how.

• What happens if the provider fails to deliver as promised.

• How the SLA will change over time.

While defining an SLA, realistic and measurable commitments are important. Performing

as promised is important, but swift and well communicated resolution of issues is even

more important.

An SLA may have the following components:

- Purpose. Describing the reasons behind the creation of the SLA

- Parties. Describes the parties involved in the SLA and their respective roles

(provider and consumer).

- Validity period. Defines the period of time that the SLA will cover. This is

delimited by start time and end time of the term.

- Scope. Defines the services covered in the agreement.

- Restrictions. Defines the necessary steps to be taken in order for the requested

service levels to be provided.

- Service-level objective. The levels of service that both the users and the service

providers agree on, and usually include a set of service level indicators, like availabil-

ity, performance and reliability. Each aspect of the service level, such as availability,

will have a target level to achieve.

14

- Penalties. This field defines what sanctions should apply in case the service provider

underperforms and is unable to meet the objectives specified is the SLA

- Optional Services. Provides for any services that are not normally required by

the user, but might be required as an exception.

- Exclusions. Specifies what is not covered in the SLA.

- Administration. Describes the processes created in the SLA to meet and measure

its objectives and defines organizational responsibility for overseeing each of those

processes.

In a typical scenario, each web service interacts with many other web services, switching

between roles of being a provider in some interactions and a consumer in others. Each

of these interactions could potentially be governed by an SLA. Considering the legal

and monetary implications in violating SLAs, providers need to design their SLAs only

after understanding their capabilities. It is important to design SLAs that are able to

balance between risk and benefit of all parties. This balance should be based on a good

understanding of impact of various service levels on business processes in both the service

provider and the customer.

1.6 Web Service Composition

In the emerging Web Services world companies are proceeding to offer more and more

functionalities of their services as standardized Web Services, especially in the business-

to-business (B2B) area. Consider the following example scenario: A company enables

business partners to trace the processing of business orders online by invoking Web Ser-

vices. Service consuming partners on the other hand may want to combine this service

with other services they need in order to accomplish a certain goal. This aggregation of

various services into a larger course of action is referred to as composition. This result-

ing composition may then again be offered as a new, now composite, Web Service. Two

important aspects of composition are orchestration and choreography.

An orchestration defines the sequence and conditions in which one Web service invokes

other Web services in order to realize some useful function, that is, an orchestration is the

15

Figure 1.4: Orchestration: Web Services composed through a central process

pattern of interactions that a Web service agent must follow in order to achieve its goal.

It describes how web services can interact with each other at the message level, including

the business logic and execution order of the interactions. These interactions may span

applications and/or organizations, and result in a long lived, transactional, multi-step

process model. Furthermore, orchestration refers to an executable business process that

may interact with both internal and external web services. It exposes the internal logic

of a single component by specifying the control flow and data flow dependencies of that

component. Fig. 1.4, ([1]), shows a number of web services that composed through a

central process, the coordinator of the orchestration.

The Business Process Execution Language for Web Services (BPEL4WS) [2], which

is also referred to as BPEL, is currently a de facto standard for building, specifying

and executing business processes for web services composition and orchestration. BPEL

composes web services to get a specific result. The composition result is named a process,

involved services are called partners, and message exchange is referred to as an activity.

In other words, a process contains a set of activities and it invokes external partner

services using a WSDL interface.A BPEL process defines the order, in which involved

Web services are composed, either in sequence or in parallel. BPEL allows describing

conditional activities. An invocation of a Web service can for example rely on the result

of another web service’s invocation. With BPEL, it is possible to create loops, declare

16

Figure 1.5: Choreography: Collaboration between services

variables, copy and assign values as well as to use fault handlers. Complex business

processes can be built algorithmically by using all these constructs.

On the other hand according to the W3C’s Web Services ChoreographyWorking Group

choreography is determined as the definition of the sequences and conditions under which

multiple cooperating independent agents exchange messages in order to perform a task

to achieve a goal state. Web services choreography concerns the interactions of services

with their users. Any user of a Web service, automated or otherwise, is a client of that

service. These users may, in turn, be other Web Services or applications. Choreography

tracks the sequence of messages that may involve multiple parties and multiple sources.

It is typically associated with the public message exchanges that occur between multiple

web services, rather than a specific business process that is executed by a single party.

Furthermore, choreography addresses the interactions that implement the collaboration

between services. Multiple agents are present where each of them describes its own part in

interaction. Another important thing is that service choreographies are not immediately

executed but they are enacted when its participants execute their roles. Fig. 1.5, ([1]),

shows the collaboration of the Web Services with choreography.

17

WS-CDL, the Web Services Choreography Description Language [32], is a language for

describing the choreography of Web Services. WS-CDL is specified purely as a descriptive

language and is not aimed at providing input for any kind of execution engine. The

authors of WS-CDL use the phrase common collaborative behavior to characterize the

content of a WS-CDL choreography description. A WS-CDL specification can be seen as

a contract between partners which collaborate to achieve a common business goal. To

overcome weaknesses of a formulation in a natural language (e.g. ambiguity), WS-CDL

offers constructs for a precise description of partners and their interactions, as seen from

a global viewpoint. Each participant is then responsible for conforming to this contract

by developing or adjusting its services accordingly. WS-CDL promises improvement in

interoperability, easy determination of conformance, and distinctness in the definition of

collaborations.

In addition, Business Process Modeling Notation (BPMN) [42], is another choreogra-

phy language. It is a modeling language, that supports modeling of complex control flow

scenarios and also supports modeling of both private (internal) processes and abstract

(public) processes. In order to model business entities and roles, BPMN uses ‘pools’. It

further allows combining the subsets of activities of a business process into ‘swim lanes’

and so makes the mapping of activities to organizational units possible. Besides allowing

to describe the control flow of a participant process, BPMN aims to support modeling of

the collaboration of several processes and thus choreographies. While the control flow de-

scribes behavior of each participant and specifies the ordering of the interaction-relevant

activities inside of each participant (BPMN pool), the message flow ‘ties’ the participating

processes into conversations.

BPMN and BPEL are explained in detail at section 3, since they are used for our

implementation.

1.7 Contributions

In a nutshell, the main contributions of this thesis are:

• We use a tested framework for monitoring web services.

• We extend the monitoring framework so as to monitor more monitoring properties.

18

• We provide tools to create the files needed as input for the monitoring tool.

• We report violations at run time.

• We provide a case study in order to test our framework.

• Interesting experimental results are reported.

1.8 Organization of the thesis

Chapter 2 introduces the fundamentals about monitoring. We group the elements

of the monitoring taxonomy in a way to answer the following four important questions:

‘Why to monitor?’, ‘Who monitors?’, ‘What to monitor?’, and ‘How to monitor?’.

Chapter 3 provides a brief presentation of two web service composition languages ,

BPMN and BPEL, since they are used for our implementation.

Chapter 4 introduces our monitoring framework and describes in detail the implemen-

tation procedure of our work and the tools, used for it.

Chapter 5 describes the case study used in order to test our monitoring framework.

Chapter 6 presents an experimental analysis of our work. We use some simple exper-

iments that validate our work.

Chapter 7 examines the state of the art approaches and tools used for monitoring Web

services.

Chapter 8 summarizes the results of this thesis and identifies topics that are worth

further work and research.

19

20

Chapter 2

Monitoring of Web services

2.1 Introduction

The term ‘monitoring’ has been widely used in many disciplines and in particular

in service-oriented design and engineering. Depending on a particular purpose of the

designed system, on the role the monitoring process plays in the system life-cycle, and

the kind of information being collected, the definition of the monitoring problem has

different interpretations. In a broad sense, monitoring may be defined as a process of

collecting and reporting relevant information about the execution and evolution of service-

based applications. This general definition becomes more concrete and clear when the

monitoring goals are considered. Monitoring may be used to discover problems in the

application execution. In this case monitoring may be defined as a problem of observing

the behavior of a system and determining if it is consistent with a given specification [23].

Another relevant issue for the description of monitoring is what kind of data is being

observed and reported, that is, the monitored information. In these regards one can

consider monitoring of functional or non-functional properties, instance or class-based

events, external or internal aspects, etc.

Monitoring approaches used to address one or another monitoring problem, are imple-

mented with the help of various monitoring techniques. These approaches and techniques

vary on the basis of such aspects as the way the monitoring information is specified, de-

gree of integration with the application, timing of collecting information and information

sources.

21

Figure 2.1: High-Level Monitoring Model

A high-level conceptual model of the monitoring concepts is represented in Fig. 2.1.

As it follows from the diagram, monitoring is performed with the help of ‘Monitoring

Mechanisms’, and in particular by the ‘Monitors’, which are implemented by a variety

of specific ‘Realization Mechanisms’ (tools and techniques). ‘Monitoring Mechanisms’ in-

clude also ‘Monitoring Properties’, which allow one to identify and focus only on the

important events and information. In order to observe those properties, ‘Monitors’ con-

tinuously collect data from various ‘Information Sources’ and detect ‘Monitored Events’

corresponding to these properties. Note that this model of monitoring may have recursive

implementation, in a sense that one monitor may serve as a source of information for

other monitors. Depending on the purpose and the problem in hand the monitors may

range from rather basic components that observe very simple properties, to rather com-

plex monitoring frameworks capable of observing very complex properties defined with

high-level specification languages.

‘Monitoring properties’ are used to characterize the ‘Monitoring Subject” under con-

sideration. Depending on the approach, the ‘Monitoring Subject” may refer to the SBA

itself or to its environment, to its particular elements or particular aspects of the func-

tionality, to a particular run or to the histories of executions.

The monitoring process involves various ‘Monitoring Actors’ that characterize different

22

roles, with which the users are involved in the process. One can identify the following

types of actors:

• Requester, characterizes the stakeholders, who define the requirements to the sys-

tem, or more precisely, to the monitoring subject.

• Designer, is responsible for defining the monitoring properties corresponding to

the requirements of the requesters, and, if necessary, to design the corresponding

monitoring approaches.

• Provider, represents a role in the ecosystem that owns or provides the monitoring

functionalities.

• Consumer, is interested in results of monitoring, i.e., aims to discover important

monitoring events and react to them triggering requirements for adaptation.

2.2 Monitoring Taxonomy

Relevant monitoring concepts are classified accordingly. The taxonomy aims to provide

a classification for and refine the key elements of the conceptual model of SBA monitoring.

We will group the elements of the monitoring taxonomy in a way to answer the following

four important questions: ‘Why monitor?’, ‘Who monitors?’, ‘What to monitor?’, and

‘How to monitor?’.

2.2.1 Taxonomy Dimension: Why?

The ‘Why?’ dimension (Fig. 2.2) provides a description of the motivation for the

monitoring. More precisely, the monitoring may be characterized by a particular Usage

of the monitored information. In general sense,monitoring is used to reveal critical changes

in the application or its environment, which require its adaptation. This generic purpose

may have different forms depending on a particular application, domain or requirements.

In particular, the following purposes of the SBA monitoring may be identified:

• Run-time Correctness Analysis, to check whether the execution of SBA is correct

with respect certain expected specification. This may further include Fault Moni-

toring, which is used to identify different application failures, and SLA Compliance

23

Figure 2.2: Representation of the ‘why?’ taxonomy.

necessary to check whether the parameters of run-time execution correspond to the

service-level agreement.

• Diagnosis, where monitoring is used to reveal and even predict various faults in the

application behavior.

• Optimization problem, where monitoring is used to identify a possibility for a sys-

tem to work more efficiently. For this purpose, different characteristics of the SBA

performance are continuously monitored.

• Context-awareness, where the monitored information reflects the changes in the

application environment and provides necessary drivers in order to accommodate

to those changes.

• Evolution, where the monitoring aims to observe the histories of application execu-

tion and changes in order to devise better SBA model, better adaptation mechanisms

and strategies.

2.2.2 Taxonomy Dimension: Who?

The ‘Who?’ dimension (Fig. 2.3) characterizes the monitoring problem from the

following points of view. First, we can characterize it from the point of view of the roles,

or Actors, involved into monitoring process. We remark here also that the same physical

entity may have different logical roles. Indeed, the monitoring results may be consumed

by the same stakeholder who defines the monitoring requirements. Second, the monitoring

may be seen from different Perspectives. One can distinguish:

24

Figure 2.3: Representation of the ‘who?’ taxonomy.

• client perspective, sees the system from ‘outside’, aiming to check whether it delivers

what is expected by the customers.

• provider perspective, helps to understand whether it is appropriate ‘inside’, i.e., sat-

isfy the expectations of the system owner.

• third-party perspective, takes an independent view on the subject of monitoring.

Note that these two aspects are rather orthogonal: the monitoring requirements may

come from either client- or provider-site; the monitoring mechanisms may be provided

together with the system (provider perspective), installed by the consumers (client per-

spective), or provided by third parties.

2.2.3 Taxonomy Dimension: What?

The ‘What?’ dimension (Fig. 2.4) is used to classify the subject of monitoring and

the way it is described. In this way, we consider the following elements of the taxonomy:

Monitoring Subject, Monitoring Aspect, and Monitored Property. For the Monitoring

Subject at the highest level we distinguish:

• SBA Instance, corresponding for instance to a particular BPEL process run, an

application customized to a particular user according to her user profile, a particular

configuration of a service composition, etc;

• SBA Class that define the whole application model, including its business process

model, business requirements and KPIs;

25

Figure 2.4: Representation of the ‘what?’ taxonomy.

• SBA Context, that describe the operational and information environment of the

application;

• Adaptation and Monitoring Mechanisms, providing a feedback over the way the

system is observed, changed, and managed.

These elements may be further decomposed into the elements with finer granularity, e.g.,

services, compositions, infrastructural elements, traces, locations, etc.

Monitoring Aspect refers to a particular concern of the monitored system relevant

for the monitoring requester. Such aspects may refer, to different dimensions of the

SBA quality model (e.g., security, dependability, usability), to the functional correctness

of the system, to Service-Level Agreements, user- related information and HCI aspects,

business-level metrics, KPIs, and requirements.

Monitored Property provides a way to represent these aspects of the monitored

system. We further classify monitored properties according to the type of the properties

and to their specification. Property Types define various characteristics of monitored

properties. We distinguish:

• basic or derived;

• functional or non-functional properties;

26

• internal or external properties;

• instant or aggregated properties.

Basic properties refer to the elementary primitives and events, while derived proper-

ties are recursively defined on top of other properties. Functional properties characterize

the function (or behavior) that a given system is expected to provide. Typical examples

of the functional properties are failures, assertions or behavioral properties, invariants.

Non-functional properties define quality characteristics that often can be measured in a

quantitative way. Typical non-functional properties refer to availability, latency, reliabil-

ity. Internal properties refer to the characteristics internal to the application. On the

contrary, external properties describe the environment of the application or its context,

whatever notion of the context is exploited. Instant properties refers to the observations

performed in a particular moment of time, while the aggregated properties characterize

the whole execution, sets of executions or event evolution of the system collecting and

aggregating historical data.

Specification of Monitored Properties characterizes the languages means used to

define the properties of interest. The relevant elements of such a classification are:

• monitoring primitives, i.e., basic building blocks used to define more complex derived

properties. A typical example is the event property, which refers to elementary events

mentioned in the monitored specification.

• notation and formalism used to unambiguously express the required properties.

• level of abstraction from the implementation and domain-specific details.

• degree of interleaving with the application specification that characterize how tight

the relation between the monitoring specification and application specification is.

This may range from cases, where the monitoring specification is a part of application

logic, to the cases, where it is defined and changed completely separately from the

application logic.

27

2.2.4 Taxonomy Dimension: How?

The way the monitoring approach is delivered may be further classified according to

how it is defined and is supposed to work (Monitoring Methodology), how it is structured

(Monitoring Architecture), and how it is realized (Monitoring Implementation). Fig. 2.5

depicts the graphical representation of the ‘how?’ monitoring taxonomy

Monitoring Methodology defines a set of characteristics of the monitoring process

itself. It describes, in particular:

• Information gathering, i.e., the approach used to collect and if necessary to aggregate

data from various information sources. One can distinguish between polling mode of

information gathering, when, e.g., the sources are periodically queried, push mode,

when the information gathering is event-driven, or more sophisticated simulation

mode: a certain model of the monitored property continuously evolve on the basis

of the information and events collected in either of the two previous modes.

• Timeliness, i.e., the characteristic of the time difference between the moment, when

the event actually takes place, and the moment it is reported by the monitor. In these

regards, one can distinguish reactive monitoring approaches, which aim to report

events as soon as it is possible, post-mortem approaches, which report information

considerably after the events (or even series of events) take place, and pro-active

approaches that try to predict the occurrence of events.

• Execution, i.e., the characteristics of the monitoring process with respect to the

system execution process. One can distinguish between blocking (or synchronous)

approaches, where the execution of the monitoring subject is blocked until all the

monitoring measurements are done, and non-blocking (or asynchronous) approaches,

where the monitoring process is performed in parallel with the execution / evolution

of the monitoring subject.

• Monitoring Techniques, i.e., particular solutions exploited in order to provide the

above characteristics of the monitoring process. Data or process mining, database

monitoring, automata-theoretic approaches to define the logics of the monitor model

are the examples of such techniques.

28

Monitoring Architecture defines the way the monitoring framework is structured

and decomposed. The relevant characteristics of this architecture are:

• Distribution, i.e., ‘horizontal’ structuring of the monitoring framework. It defines

how the components of the framework are logically and physically located. We

distinguish between centralized architectures, where the monitoring components are

concentrated in a single node, and distributed architectures, where the monitoring

components are distributed across the network, according, e.g., to the distribution

of SBA components.

• Functional SBA Layers involved in the monitoring, i.e.,’vertical’ structuring of the

monitoring framework. The monitoring framework may be built on top of the single

components and elements provided in business process management layer, service

composition layer, and service infrastructure layer, or may involve sets of those

components across functional layers (cross-layer monitoring).

• Invasiveness, i.e., characteristic of the monitoring framework from the perspective

of how tightly it is integrated with the monitoring subject. We distinguish between

the cases, when the monitoring facilities are integrated with the subject, the cases,

when the monitoring facilities are integrated with the platform, where the subject

operates, and the cases, when the monitoring facilities are completely separated and

independent from the subject of monitoring.

Monitoring Implementation defines the way the monitoring methodology and ar-

chitecture are realized. It is characterized by the Information Sources, the Realization

Mechanisms, and the Monitoring Infrastructure.

• Information Sources represent various components and entities that provide all the

data, which is used by the monitor in order to evaluate the monitored properties.

These sources may range from rather basic elements (such as messages, log files,

or timers), to more complex monitors based on top of them (sensors, probes), to

hierarchically complex monitoring systems, thus providing recursive and reusable

monitoring solutions. In other words, one monitor may re-use another monitor as a

source if information, where the information are the events reported by the latter.

29

Figure 2.5: Representation of the ‘how?’ taxonomy.

• Realization Mechanisms define the tools and facilities, necessary to enable a given

monitoring methodology, to implement the monitoring techniques, and to build the

corresponding monitoring architecture. As it follows from this generic definition,

realization mechanisms strongly depend on a given monitoring problem and on the

approach used for that. Typical examples include, in particular, aspect-oriented

programming techniques that enable injection of monitors into the application or to

the platform code; automatic generators of monitoring programs that are used to

device executable monitors from high-level monitoring specifications; dynamic mon-

itoring solutions, which enable on-the-fly modifications of the way the monitoring

of a given subject is performed, e.g., by changing the set of monitored properties or

their priorities.

• Monitoring Infrastructure refers to the tools and facilities that provides a basis for

the monitoring framework. It includes services and APIs for relating to specific

information sources, for accessing and managing other monitors, containers and ex-

ecution platforms to deploy and execute monitoring code, etc. As in the case of

30

realization mechanisms, these functionalities may be very specific for various moni-

toring approaches.

2.3 Monitoring Challenges

In domain of service-based applications, where the implementation and management

of the underlying services is not under the control of the system integrator, important

application characteristics, such as correctness, often can be evaluated only at the pro-

duction settings, and require dynamic means of the analysis. This leads to an increasing

importance and spread of monitoring techniques in the development and procurement of

the service-oriented architectures. A wide range of research and industrial approaches

towards run-time monitoring of service-based systems have been developed. These ap-

proaches target the problem from different perspectives, and provide a broad spectrum of

means for observing various application aspects at different functional SBA layers.

In spite of successful development in this area, the research community still has to

face a lot of very important challenges in order to be able to deliver complete and mature

monitoring solutions. One of the main problems in these regards relates to high fragmen-

tation and specificity of the proposed approaches. A typical situation is that the approach

addresses a very specific aspect of the system; it targets only a particular functional layer

of the application in isolation of other aspects and components. As a consequence, the

approaches often come up with a very specific, ad-hoc specification languages and method-

ologies, as well as specific and hardly adoptable implementation solutions. This not only

makes the application of many monitoring approaches difficult in practice, but gives rise

to another critical problem, the one of application diagnosability. Indeed, in order to

be able to identify the real source of the detected problem, it is necessary to observe the

execution of the application from all its aspects and to understand and infer dependencies

between these aspects.

The new approaches to the problem of monitoring service-based applications should

come up with holistic and comprehensive methodologies that:

• Integrate various monitoring techniques and methods at all the functional SBA lay-

ers;

31

• Provide a way to target all the relevant application aspects and information;

• Define rich and well-structured modeling and specification languages capable of rep-

resenting these aspects;

• Allow for modeling, identifying, and propagating dependencies and effects of mon-

itored events and information across various functional layers and aspects in order

to enable the diagnosability of applications.

32

Chapter 3

Web Service Composition Languages

3.1 An Introdution to BPEL4WS

In mid 2002, the first version of BPEL4WS (formerly BPEL) was developed by IBM,

BEA and Microsoft. It is an XML based language that utilizes several standards like

XPath [13], WS-Addressing [16] andWSDL. BPEL only allowsWeb services as its building

blocks and does not support human interaction (BPEL was designed for pure machine to

machine communication). IBM addresses these limitations by providing two standards

that extend the BPEL specication: BPELJ [14] and BPEL4People [33].

The BPEL specification distinguishes two different kinds of business processes: exe-

cutable processes and abstract processes. Whereas executable processes must con-

tain all the details that are necessary to be executed by a BPEL engine, abstract processes

are not executable and can have parts where things are left unspecified or explicitly marked

as opaque (i. e., hidden)

3.1.1 Basic structure of a BPEL process

Fig. 3.1, ([48]), depicts the core structure of a BPEL process, and how it interacts with

components external to it; either web services that the BPEL process invokes (Service A

and Service B in this case) or external clients that invoke the BPEL process as a web

service. The BPEL process is divided into two distinct parts; the Partner Links, which

describe the interactions between the BPEL process and the outside world; and the core

BPEL process itself, which describes the process to be executed at run time.

33

Figure 3.1: Core structure of a BPEL process

The core BPEL process consists of a number of steps, or activities as they are called

in BPEL.These consist of simple activities, including:

• Assign: It is used to manipulate variables.

• Transform: It is a specialized assign activity that uses XSLT to map data from a

source format to a target format.

• Wait: It is used to pause the process for a period of time.

• Empty: It does nothing. It is used in branches where syntactically an activity is

required, but there is no need to perform one.

BPEL also consists of the structured activities which control the flow through the

process. These include:

• While: It is used for implementing loops.

• Switch: It is a construct for implementing conditional branches.

• Flow: It is used for implementing branches which execute in parallel.

• FlowN: It is used for implementing a dynamic number of parallel branches.

34

The activities within a BPEL process can be sub-divided into logical groups of activi-

ties, using the Scope activity. As well as providing a useful way to structure and organize

your process, it also enables you to define attributes such as variables, fault handlers, and

compensation handlers that just apply to the scope.

In addition, each BPEL process also defines variables, which are used to hold the

state of the process as well as messages that are sent and received by the process. They

can be defined at the process level, in which case they are considered global and visible to

all parts of the process. Or it can be declared within a Scope in which case they are only

visible to activities contained within that Scope. Variables can be one of the following

types:

• Simple Type: It can hold any simple data type defined by XML Schema (for

example string, integer, boolean, and float).

• WSDL Message Type: It is used to hold the content of a WSDL Message sent

to or received from partners.

• Element: It can hold either a complex or simple XML Schema element defined in

either a WSDL file or a separate XML Schema.

Variables are manipulated using the ‘assign’ activity, which can be used to copy data

from one variable to another, as well as create new data using XPath Expressions or

XSLT.

All interaction between a process and other parties (or partners) is via web services as

defined by their corresponding WSDL files. Even though each service is fully described

by its WSDL, it fails to define the relationship between the process and the partner,

that is who the consumer of a service is and who the provider is. On first appearance,

the relationship may seem implicit; however, this is not always the case. BPEL uses

Partner Links to explicitly define this relationship. Partner Links are defined using the

‘partnerLinkType’ which is an extension to WSDL.

Moreover, BPEL defines three messaging activities ‘receive’, ‘reply’, and ‘invoke’.

The use of these activities depends on whether the message interaction is either syn-

chronous or asynchronous and whether the BPEL process is either a consumer or provider

of the service.

35

Figure 3.2: Synchronous Messaging

Figure 3.3: Asynchronous Messaging

With synchronous messaging, the caller will block until it has received a reply or

times out. In this case the BPEL process will wait for a reply before moving onto the

next activity. As presented in Fig. 3.2, ([48]), Process A uses the “invoke” activity to

call a synchronous web service (Process B in this case) and once it has sent the initial

request, it blocks and waits for a corresponding reply from Process B. Process B, uses the

‘receive’ activity to receive the request and the ‘reply’ activity to send a response back to

Process A.

On the other hand, with asynchronous messaging, the key difference is that once the

caller has sent the request, the send operation will return immediately, and the BPEL

process may then continue with additional activities until it is ready to receive the reply.

In Fig. 3.3, ([48]), Process A uses the ‘invoke’ activity to call an asynchronous web service,

but contrary to synchronous request it does not block waiting for a response, but continues

processing until it is ready to process the response (‘receive’ activity). Conversely, Process

B uses a ‘receive’ activity to receive the initial request and an ‘invoke’ activity to send

back the corresponding response.

36

3.2 An Introduction to BPMN

The Business Process Management Initiative (BPMI) has developed a standard Busi-

ness Process Modeling Notation (BPMN). The primary goal of the BPMN effort was to

provide a notation that is readily understandable by all business users, from the business

analysts who create the initial drafts of the processes, to the technical developers respon-

sible for implementing the technology that will perform those processes, and, finally, to

the business people who will manage and monitor those processes.

BPMN defines a Business Process Diagram (BPD), which is based on a flowcharting

technique tailored for creating graphical models of business process operations. A Business

Process Model, then, is a network of graphical objects, which are activities (i.e., work)

and the flow controls that define their order of performance.

3.2.1 BPMN Basics

A BPD is made up of a set of graphical elements. These elements enable the easy

development of simple diagrams that will look familiar to most business analysts (e.g.,

a flowchart diagram). The elements were chosen to be distinguishable from each other

and to utilize shapes that are familiar to most modelers. For example, activities are

rectangles, and decisions are diamonds. It should be emphasized that one of the drivers

for the development of BPMN is to create a simple mechanism for creating business

process models, while at the same time being able to handle the complexity inherent to

business processes. The approach taken to handle these two conflicting requirements was

to organize the graphical aspects of the notation into specific categories. This provides

a small set of notation categories so that the reader of a BPD can easily recognize the

basic types of elements and understand the diagram. Within the basic categories of

elements, additional variation and information can be added to support the requirements

for complexity without dramatically changing the basic look-and-feel of the diagram. The

four basic categories of elements are:

• Flow Objects

• Connecting Objects

• Swimlanes

37

(a) Types of Events. (b) Activity. (c) Gateway.

Figure 3.4: Flow Objects.

• Artifacts

3.2.1.1 Flow Objects

A BPD has a small set of core elements, which are the Flow Objects, so that modelers

do not have to learn and recognize a large number of different shapes. The three Flow

Objects are:

1. Event. An Event is represented by a circle and is something that ‘happens’ during

the course of a business process. These Events affect the flow of the process and

usually have a cause (trigger) or an impact (result). Events are circles with open

centers to allow internal markers to differentiate different triggers or results. There

are three types of Events, based on when they affect the flow: Start, Intermediate ,

and End (Fig. 3.4a respectively).

2. Activity. An Activity is represented by a rounded-corner rectangle (Fig. 3.4b) and

is a generic term for work that company performs. An Activity can be atomic or

non-atomic (compound). The types of Activities are: Task and Sub-Process. The

Sub-Process is distinguished by a small plus sign in the bottom center of the shape.

3. Gateway A Gateway is represented by the familiar diamond shape (Fig. 3.4c) and

is used to control the divergence and convergence of Sequence Flow. Thus, it will

determine traditional decisions, as well as the forking, merging, and joining of paths.

Internal Markers will indicate the type of behavior control.

3.2.1.2 Connecting Objects

The Flow Objects are connected together in a diagram to create the basic skeletal

structure of a business process. There are three Connecting Objects that provide this

38

(a) Sequence Flow. (b) Message Flow. (c) Association.

Figure 3.5: Connecting Objects.

(a) Pool. (b) Lane.

Figure 3.6: Swimlanes.

function.These connectors are:

1. Sequence Flow A Sequence Flow is represented by a solid line with a solid arrow-

head (Fig. 3.5a) and is used to show the order (the sequence) that activities will

be performed in a Process. Note that the term control flow is generally not used in

BPMN.

2. Message Flow A Message Flow is represented by a dashed line with an open

arrowhead (Fig. 3.5b) and is used to show the flow of messages between two separate

Process Participants (business entities or business roles) that send and receive them.

In BPMN, two separate Pool in the Diagram will represent the two Participants.

3. Association An Association is represented by a dotted line with a line arrowhead

(Fig. 3.5c) and is used to associate data, text, and other Artifacts with flow objects.

Associations are used to show the inputs and outputs of activities.

3.2.1.3 Swimlanes

Many process modeling methodologies utilize the concept of swimlanes as a mecha-

nism to organize activities into separate visual categories in order to illustrate different

functional capabilities or responsibilities. BPMN supports swimlanes with two main con-

structs. The two types of BPD swimlane objects are:

1. Pool. A Pool represents a Participant in a Process. It is also acts as a graphical

container for partitioning a set of activities from other Pools (Fig. 3.6a).

39

(a) Data Ob-

ject.

(b) Group. (c) Annotation.

Figure 3.7: Artifacts.

2. Lane. A Lane is a sub-partition within a Pool and will extend the entire length of

the Pool, either vertically or horizontally (Fig. 3.6b). Lanes are used to organize

and categorize activities.

Pools are used when the diagram involves two separate business entities or participants

and are physically separated in the diagram. The activities within separate Pools are

considered self-contained Processes. Thus, the Sequence Flow may not cross the boundary

of a Pool. Message Flow is defined as being the mechanism to show the communication

between two participants, and, thus, must connect between two Pools (or the objects

within the Pools).

Lanes are more closely related to the traditional swimlane process modeling method-

ologies. Lanes are often used to separate the activities associated with a specific company

function or role. Sequence Flow may cross the boundaries of Lanes within a Pool, but

Message Flow may not be used between Flow Objects in Lanes of the same Pool.

3.2.1.4 Artifacts

BPMN was designed to allow modelers and modeling tools some flexibility in extending

the basic notation and in providing the ability to add context appropriate to a specific

modeling situation, such as for a vertical market (e.g., insurance or banking). Any number

of Artifacts can be added to a diagram, as appropriate for the context of the business

processes being modeled. The BPMN specification predefines only three types of BPD

Artifacts, which are:

40

Figure 3.8: BPMN Transformation Workflow

1. Data Object. Data Objects (Fig.3.7a) are a mechanism to show how data is re-

quired or produced by activities. They are connected to activities through Associa-

tions.

2. Group. A Group is represented by a rounded corner rectangle drawn with a dashed

line (Fig. 3.7b). The grouping can be used for documentation or analysis purposes,

but does not affect the Sequence Flow.

3. Annotation. Annotations are a mechanism for a modeler to provide additional

text information for the reader of a BPMN Diagram (Fig. 3.7c).

3.3 Mapping a BPMN Diagram to a BPEL4WS

BPMN diagrams can be mapped to Business Process Execution Language (BPEL) pro-

cesses to bridge the gap between business process design and implementation. However, it

is intrinsically complex to map the diagrams to BPEL processes because of the structural

disparity between BPMN and BPEL. BPEL is a block structured language overall, even

though a flow with links in BPEL can be more flexible. In contrast, BPMN is a con-

strained, but relative free form graph. Structurally, BPMN can be a super- set of BPEL.

There are no fundamental difficulties in mapping a BPEL process to an isomorphic BPMN

diagram. In other words, any BPEL process can be visualized as a BPMN diagram with-

out rearranging the flows. But it is not always possible to map a BPMN diagram directly

to an isomorphic BPEL process. Arbitrary sequence flows allowed in BPMN are similar

to the GOTO statements in some computer languages. Without analyzing and redrawing

41

such diagram flow structures, it is practically impossible to map all processes correctly.

Figure 3.9: A BPD with Annotations to Show the Mapping to BPEL4WS

The process of validating, redrawing and transforming BPMN is illustrated as a work-

flow in Fig.3.8, ([29]). Note it is critical to analyze if a BPMN diagram can be isomor-

phically mapped to BPEL. And it is technically challenging to rewrite arbitrary BPMN

diagrams to be BPEL isomorphic.

Finally, Fig. 3.9, ([47]), provides an example of a segment of a business process and

marks the mapping to the BPEL4WS execution elements.

3.3.1 Industrial Tools for Mapping BPMN to BPEL

A more detailed mapping of BPMN to BPEL has been implemented in a number of

tools.

ADONIS:Community Edition

ADONIS:Community Edition is a free version of its BPM-tool ADONIS. It is aimed

both at users new to Business Process Management, as well as experienced BPM prac-

titioners. It supports BPMN and features BPEL and XML exports for easy integration

with other tools and systems. The ADONIS Community Portal 1 offers the free download

of the ADONIS:Community Edition.

1www.adonis-community.com

42

Intalio

Intalio 2 provides an interesting alternative for business process modeling (BPM) tools.

It provides official support for BPEL and BPM projects. Intalio Designer is the tool for

modeling a business process with BPMN and this notation can be transformed to BPEL

by the Designer.

BPMN2BPEL

BPMN2BPEL 3 is an open source Eclipse plugin. The translator is implemented ac-

cording to [43].

Enterprise Architect

BPEL is supported in the Business and Software Engineering and Ultimate editions

of Enterprise Architect 4. It currently supports generating BPEL from executable pro-

cesses. With the help of the BPMN version 1.1 Profile, Enterprise Architect enables you

to develop BPEL diagrams quickly and simply.

Babel BPMN2BPEL

Babel BPMN2BPEL 5 is part of the process transformation tools developed in the

BABEL project (project developed by the Business Process Management group at QUT).

Babel BPMN2BPEL is the tool used in our implementation and is further explained at

section 4.

2http://www.intalio.com
3http://code.google.com/p/bpmn2bpel/
4http://www.sparxsystems.com
5http://www.bpm.scitech.qut.edu.au/research/projects/oldprojects/babel/tools/

43

44

Chapter 4

Monitoring Framework

In this chapter, we introduce the monitoring framework of our implementation, pre-

sented in Fig. 4.1. The main component of our framework is Astro’s WS-MON [7]. Based

on this component we implement a framework responsible for providing Astro with the

necessary input files and also exploits the output results of this monitoring tool in order

to provide the user with more monitoring properties. The input files needed for Astro

are: the abstract BPEL processes, the corresponding WSDL documents and also a

choreography (.chor) file, which contains the composition’s partners and also the defi-

nition of the monitoring properties. Furthermore, our framework checks at runtime the

results of the monitors and reports the occurred violations.

.bpmn

.owl

ATL Babel

.bpmn

.wsdl

BABEL.jar
.bpel

bpmn2bpel

project

Abstract

.bpel

Pellet

Reasoner

Astro’s

Monitoring

Properties

Other

Monitoring

Properties

Add

Properties

.chor WS-Mon
Astro’s

Results

Results

Check

Violations

Violated

Properties

Extended

Monitoring

Framework

Figure 4.1: Our Monitoring Framework.

The next subsections present in detail the various parts of our monitoring framework.Fig.4.2

45

Figure 4.2: Main Window of Monitoring Framework.

depicts the options our monitoring framework provides and will also be analyzed below.

4.1 Transform BPMN to Abstract BPEL Process

For the purpose of our implementation, we choose to provide the user the ability to

design BPMN models rather than abstract BPEL processes. BPMN enables the business

user to develop readily understandable graphical representations of business processes

and also is supported with appropriate graphical object properties that will enable the

generation of BPEL processes. BPMN is a significant simplification over existing notations

used for BPEL. The BPMN model is then mapped to the corresponding abstract BPEL

process, used as input to the Astro’s monitoring tool.

This step of our implementation requires several technologies that work together:

• Eclipse1. Eclipse is the master platform upon which the Eclipse SOA Tools Platform

Project (STP) plug-in runs on.

• Eclipse SOA Tools Platform (STP) plugin 2. The mission of STP project is to

build frameworks and exemplary extensible tools that enable the design, configura-

tion, deployment and management of software designed around a Service Oriented

Architecture It includes the BPMN subproject which provides an editor and a set

of tools to model business processes diagrams using the BPMN notation.

1http://www.eclipse.org
2http://www.eclipse.org/stp/

46

• Eclipse ATLAS Transformation Language (ATL) 3 ATL is a model transfor-

mation language and toolkit. In the field of Model-Driven Engineering (MDE), ATL

provides ways to produce a set of target models from a set of source models. In our

implementation, we will use ATL in order to perform a transformation, converting

Eclipse STP’s BPMN to BABEL BPMN.

• BABEL Tools 4 The BPMN2BPEL is a tool for translating process models repre-

sented in BPMN into process definitions represented in BPEL.

4.1.1 Implementation Procedure

In this section, we analyze the procedure needed to generate the BPEL process. It

consists of three steps that are given in detail below:

1. Creation of the BPMN diagram using the Eclipse BPMN Modeler.

2. Transformation of Eclipse STP’s BPMN to BABEL’s BPMN. Create a new project

within the Eclipse ATL to house the transformation rules. In this step, three more

files are needed:

• bpmn.ecore. An EMF file defining the structure for BABEL BPMN files.

• stpmodel.ecore. An EMF file defining the structure for STP BPMN files.

• bpmn2babel.atl. An ATL file defining the transformation from STP BPMN to

BABEL BPMN.

To proceed, click Run > Open Run Dialog. In the left-hand column, right-click

ATL Transformation, and click New. Name the launch configuration (Fig. 4.3) and

in the project pane select your project and the bpmn2babel.atl file Then select the

BPMN and BABEL Ecore metamodels in the metamodels panel. Moreover, choose

the source model and since the target model doesn’t exist yet copy the source model

file to the target model file, and type BABEL as the prefix to it. Finally, a library

is needed. Click Add library and add the bpmn2babel.asm file. Note that this file

is auto-generated by Eclipse ATL when it compiles the bpmn2babel.atl file.

3http://www.eclipse.org/modeling/m2m/downloads/index.php?project=atl
4http://www.bpm.scitech.qut.edu.au/research/projects/oldprojects/babel/tools/.

47

Figure 4.3: Configuring the ATL launch configuration.

3. Transformation from BABEL BPMN to BPEL. From the main window of the frame-

work, (Fig. 4.2), choose the “Convert BPMN to BPEL” option. A new window

pop-ups (Fig. 4.4), prompting the user to choose the BPMN file (generated in

the previous step) and the corresponding WSDL file. Finally, click the “Convert”

option in order to generate the abstract BPEL process. This last step consists of

two procedures:

(a) Firstly, the program edits the generated BPMN file as it consists of two<babelBpmn:DocumentRoot>

children element (only one is needed) and then evolves the BABEL BPMN2BPEL

library, in order to generate a temporary version of the BPEL file.

(b) The BPEL file is used by the bpmn2bpel project, provided by our framework,

in order to complete the BPEL activities.

In this step, we parse the WSDL file, obtaining:

• The namespace.

• The process name.

• The partnerLinkTypes, with the corresponding role and portType.

• For each portType, the corresponding operation and input messages.

48

Figure 4.4: Transformation from BPMN to BPEL window.

• The properties, needed for creating the correlation sets at the BPEL file.

In order for this step to proceed with success, the name of the one role must

contain the word ‘Provider’ and the name of the other role must contain the

word ‘Requester’. This restriction exists in order to be able to map correctly

the roles to the corresponding ‘myRole’ and ‘partnerRole’ of the BPEL process.

Finally, we parse the BPEL file, for making the required changes (Fig. 4.5):

• Adapt the process definition.

• Add the partnerLinks, with the corresponding roles.

• Add the variables. Create one variable for each input message.

• Add the correlation sets.

• Adjust activities, such as ‘receive’, ‘invoke’, ‘onMessage’.

In this step, we map the name of the invoke or onMessage activity (created with

BABEL library) with an operation of the WSDL file. In case, there is not an

operation with this name , we replace the invoke activity with an empty activity

or for the onMessage activity we inform the user for the error and proceed.

49

Figure 4.5: Differences between BABEL BPEL output and bpmn2bpel output.

4.2 Transform OWL-Q to Astro’s Monitoring Language

For the purpose of our implementation, we choose to use OWL-Q [34] for the definition

of the QoS description of the web services.

Although OWL-S [40] provides a complete ontology for the description of Web services,

it leaves the definition of QoS aspects to the service provider. OWL-Q is a semantic,

rich and extensible QoS description model for Web services. It is designed modularly,

incorporating several independent facets, each one focusing on a particular part of QoS-

based Web service description. There are facets regarding the connection of OWL-Q with

OWL-S, the description of QoS offers and requests, the QoS metric model, the definition of

constraints, to name a few. OWL-Q also incorporates reasoning by allowing the definition

of rules to reason about class properties.

Different facets are used for our implementation. The QoSSpec class (belogs to the

Basic Facet) represents the actual QoS description of a WS. It describes the security and

transaction protocols used, the cost of using the service and the associated currency for

50

the cost, the validity period of the offer or demand and an arbitrary OpenMath expression

(om:OMOBJ). This expression represents what is or must be guaranteed and contains

variables which are associated to QoS Metrics.

The QoS Metric Facet describes all the appropriate classes and properties used for a

proper formal definition of a QoS metric. This metric facet is actually an upper ontology

representing any abstract QoS metric. A specific QoS metric can be created by refining

the QoSMetric class. The QoSMetric is one of the most important classes of OWL-Q

representing a QoS metric. The values of a QoS metric are provided by a service provider

or a requester or a third-party. It measures a QoSProperty on a specific ServiceElement.

The value type of a QoSMetric is an instance of the QoSValueType class while the unit

of the value is an instance of the Unit class. It can be a simple QoS metric measuredBy a

MeasurementDirective or a complex one. ComplexMetrics are derived from other metrics

with the help of a OMFunction.

The Function Facet describes all the appropriate concepts and properties for the proper

definition of metric functions. The OMFunction class is the basic concept that represents

a QoS Metric Function.

The Measurement Directive Facet describes the concept of measurement directive

which is used for the measurement of simple metrics. A MeasurementDirective is com-

posed of a URI that describes where and how to get a value of a resource’s property.

The main structure of the OWL-Q classes used by our work is presented in Fig. 4.6.

4.2.1 Implementation Procedure

In this section, we analyze the procedure that must take place, in order to produce

the monitoring properties. Two steps are required:

1. Define the OWL-Q file, specifying the QoS description, based on the structure de-

picted in Fig. 4.6.

2. From the main window of the framework, (Fig. 4.2), choose the “Get the monitoring

properties” option. A new window pop-ups (Fig. 4.7), prompting the user to choose

the choreography file (in which the monitoring properties will be added)) and the

.owl file.

51

QosSpec

ComplexConstraint

guarantees

SimpleConstraint

containsConstraint

Metric ComparisonOperator Datatype

hasFirstArgument

hasOperator

hasSecondArgument

MeasurementDirective
� AVAILABILITY

� Count

� ExecutionTime

� THROUGHPUT

MetricFunctionCall ServiceElement

evaluates ofObject

MetricMetricFunction

callFunction hasArgument

Datatype

(string)

Datatype

(string)

Operation

elementName

elementUri

contaisElement

Figure 4.6: Structure of OWL-Q classes.

In order to parse the .owl file, we used the Pellet Reasoner 5. The first step is to check

the consistency of the model and then retrieve the required properties and classes

needed to create the monitoring properties. By using the obtained properties and

classes, we create Astro’s Monitoring properties (if it exists), otherwise we check if

the property can be monitored by the “Extended Monitoring Framework”. If this

case, we forward it to the framework, otherwise the property is rejected.

The ‘Extended Monitoring Framework’, mostly relies on the results of Astro’s mon-

itor. It is used to evaluate properties like maximum or minimum execution time,

throughput (minimum,maximum,average), but it can also be used to monitor the

availability of a service. In order to start it, click on the ‘Start Monitoring’, before

the execution of BPEL process and after the termination of the processes click to

‘Stop Monitoring’. This option terminates the execution of the monitors and also

opens the file with the violated properties.

5http://clarkparsia.com/pellet/

52

Figure 4.7: Creation of Monitoring Properties

Finally, when the properties are created, they are automatically added to the chore-

ography file.

4.3 Astro’s Monitoring Tool

As mentioned at the previous sections, the monitoring tool used in our implementation

is Astro’s WS-MON 6. Astro is a research project in the field of web services and service-

oriented applications, with a focus on the integration of business processes.

The tool provides the ability to monitor service compositions implemented in BPEL4WS.

The tool has the following main features:

• The monitor engine and the BPEL execution engine are executed in parallel on

the same application server. This allows for an integration of the two engines,

still maintaining the two run-time environments distinct, and keeping the monitors

clearly separated from the BPEL processes. Monitors observe their behavior by

intercepting the input/output messages that are received/sent by the processes, and

signal misbehaviors or, more in general, situations or events of interest.

• Both instance and class monitors are supported. Instance monitors deal with the

execution of a single instance of BPEL business process, while class monitors extract

information from and/or check the behavior of all the individual instances of a

business process.

6http://astroproject.org/

53

Figure 4.8: The ActiveBPEL engine extended with the run-time monitor environment

• An expressive monitoring language, namely Run-Time Monitoring specification Lan-

guage (RTML) is proposed. It allows for expressing behavioral properties of service

composition instances, together with the timing and statistical information and of

composition classes.

• A technique for the automatic generation of the code implementing the instance and

class monitors is provided. Monitors are automatically generated as Java programs

that can be deployed in the run-time environment of the monitor engine.

At the following sections a more detailed survey of the tool is provided.

4.3.1 BPEL Execution Environment

Among the existing engines, the authors choose ActiveEndpoint’s engine, ActiveBPEL

[27], since it is available in an open source and also it implements a modular architecture

that is easy to extend.

From a high-level point of view, the ActiveBPEL runtime environment can be seen as

composed of four parts (light components of Figure 4.8). A Process Inventory contains

all the BPEL processes deployed on the engine. A set of Process Instances consists of the

instances of BPEL processes that are currently in execution. The BPEL Engine is the most

complex part of the run-time environment, and consists of different modules (including

the Process Manager, and the Queue Manager), which are responsible of the different

54

aspects of the execution of the BPEL processes. The Admin Console provides web pages

for checking and controlling the status of the engine and of the process instances.

For the monitoring purposes, the most relevant aspects in the execution of BPEL

processes are the creation and the termination of a new process instance, and the input

and output of messages. The engine manages to create a new instance for a BPEL process

in the inventory when one of its start activities is triggered by an incoming message. The

creation of the process instance is supervised by the Process Manager, and consists in the

activation of the initial set of BPEL activities for that process. When all the activities of a

process instance have been executed, the Process Manager terminates that instance. The

Queue Manager is responsible for dispatching incoming and outgoing messages. When

an incoming message is received, the engine tries to find an active process instance that

matches the correlation data included in the message. If such an instance is found, then

the message is stored in the ‘inbound queue’ for that process instance, where it waits until

it gets consumed by one of the activities of the process instance. If no matching instance

is found, the message is parked in a unmatched message queue until a matching instance

is found. The management of outgoing messages is much simpler. The engine provides an

‘outbound queue’, where outgoing messages are stored by invocation or reply activities.

The Queue Manager is responsible for picking messages from the ‘outbound queue’ and

for dispatching them to the destination services.

4.3.2 Run-Time Monitoring Environment

The Astro’s WS-Mon is implemented as an extension of the ActiveBpel environment.

In particular, the ActiveBpel is extended with five new components (dark part of Fig.

4.8). The Monitor Inventory and the Monitor Instances are the counterparts of the

corresponding components of the BPEL engine: the former contains all the monitors

deployed in the engine, while the later is the set of instances of these monitors that

are currently in execution. The RunTime Monitor (RTM) is responsible to support the

life-cycle (creation and termination) and the evolution of the monitor instances. The

Mediator allows the RTM to interact with the Queue Manager and the Process Manager

of the BPEL engine and to intercept input/output messages as well as other relevant

events such as the creation and termination of process instances. The Extended Admin

55

Figure 4.9: Methods of a monitor Java class.

Console is an extension of the ActiveBPEL Admin Console that presents, along with other

information on the BPEL processes, the information on the status of the corresponding

monitors.

The framework supports two kinds of monitors. Instance Monitors (IMs), which ob-

serve the execution of a single instance of a BPEL process; and Class Monitors (CMs),

which report aggregated information on all the instances of a given BPEL process. The

two kinds of monitors are reflected in the architecture of the monitoring framework.

Indeed, according to 4.8, there are two distinct sets of monitor instances, namely IM

Instances and CM Instances. In the RTM, the IMs and CMs are managed by two specific

handlers, the IM Handler and the CM Handler. Also the Extended Admin Console pro-

vides two viewers, a IM Viewer and CM Viewer, to display the status of the two kinds of

monitors.

4.3.3 Structure of Monitors

A monitor is a Java class implementing the IMonitor interface, described in Fig. 4.9.

More precisely, IMs implement the IInstanceMonitor interface, while CMs implement the

IClassMonitor interface.The IMonitor interface defines four methods which are common

to all monitors: getProperty and getDescription return a short and a long description

of the property that is monitored; getProcessName returns the name of the BPEL

process the monitors are associated to and getValue returns the current value of the

monitor.

The methods defined by interfaces IInstanceMonitor and IClassMonitor manage the

56

evolution of the monitors, and are better explained describing the life-cycle of instance

and class monitors. The IMs life-cycle is influenced by three events: the process instance

creation,the input/output of messages, and the termination of the process instance. When

the RTM receives the notification of the creation of a new BPEL process,it creates a set

of monitor instances that are specific for that process instance.The monitor instances

are initialized through the method init. When the RTM receives a message from the

Mediator, it sends it to the Instance Monitor Handler which dispatches the message

to all the matching monitor instances through the method evolve. For each message,

the Mediator provides also information on the process instance receiving/sending the

message, as well as on the BPEL process specification corresponding to the instance.The

process termination is captured via a termination event, which is dispatched, through the

invocation of method terminate, to all the monitor instances associated to the process

instance.

The life-cycle of a class monitor is quite different. Method init is called only once,

when the single instance of the class monitor is created.The evolution of the class monitor

is triggered whenever the RTM receives a message or an event is received from any instance

of the BPEL process to be monitored. More precisely, after the Instance Monitor Handler

has dispatched the event or message to the relevant monitor instance, and this has been

updated, it signals to the Class Monitor Handler that also the class monitors have to

be updated.The Class Monitor Handler invokes method update on all the different class

monitors associated to the BPEL process, which can update their internal status.

4.3.4 Monitoring Language

RTML, the Run-Time Monitoring specification language is used to define the moni-

toring properties. RTML is rather expressive: it allows for the specification of IMs as well

as CMs; moreover, it allows for specifying boolean properties related to the execution of

processes, as well as statistic properties and time-related properties.

According to the framework the relevant events for monitors are:

• The creation and termination of a process instance; these two events are modeled

through keywords ‘start’ and ‘end’ in RTML.

57

• The input and output of messages; in this case, RTML requires to specify the link

on which the message is received or sent, the fact that the message is an input or

an output, and the message type.

In some cases, it is preferable to speak of the effects of an event on the status of an

interaction protocol, rather than of the event itself. In order to express such cases in

RTML we can use: ‘cause(link.var = val)’ to denote all events that cause variable var of

BPEL process link to assume value val.

The complete grammar for events e is the following:

e ::= start | end |

msg(link.input/output = msg[opt-constraints]) |

cause(link.var = val) |

cause(link.state = label)

Instance Monitor Formulas

The following grammar defines the formulas that specify instance monitors. We dis-

tinguish boolean formulas b, which monitor properties that can be either true or false,

and numeric formulas n, which monitor properties that define a numerical value.

b ::= e | Yb | O b | H b | b Sb |

n = n | n > n | ¬ b | b ∧ b | true

n ::= count(b) | time (b) | b?n:n |

n + n | n - n | n * n | n/n | 0 | 1 | ...

A boolean formula can be an event e, a Past LTL [26] formula (operators Y, O, H,

and S), a comparison between numeric formulas, or a logic combination of other boolean

formulas. A numeric formula can be either a counting formula (operators count and time),

a conditional expression (b?n:n), or an arithmetic operation on other numeric formulas.

Formulas are evaluated whenever a relevant event is received by the instance monitor.

Formula e is true if it is compatible with the occurring event. Past LTL formulas have

the following meaning:

• Y b means b was true in the previous step;

• O b means b was true (at least) once in the past;

• H b means b was true always in the past;

58

• b1 S b2 means b1 has been true since b2.

The automatic translation of an RTML instance formula into the Java code imple-

menting the monitors is provided by the framework.

Class Monitor Formulas

Also in case of class monitors, boolean formulas B and numeric formulas N are pro-

vided, as shown by the following grammar.

B ::= And (b) | Y B | O B | H B | B S B |

N = N | N >N| ¬B | B ∧ B | true

N ::= Count(b) | Sum (n) |

N + N | N - N | N * N | N/N | 0| 1 | ...

where b and n are instance monitor formulas. Most of the operators are identical to

those of the instance monitor formulas. Boolean formula And (b) checks if property b is

true for all the instances of the BPEL process corresponding to the monitor. Numeric

formula Count(b), instead, counts the number of instances of the BPEL process for which

formula b holds. Numeric formula Sum (n) is similar, but aggregates numeric instance

module formulas: it sums up the values of numeric formula n on all the instances of the

BPEL process.

Also in case of class monitors, a translator from RTML to Java code is provided. The

key difference with respect to instance monitors is in the implementation of operators And,

Count, and Sum. Indeed, these operators serve as link between class-level monitoring and

instance level monitoring. The translation algorithm adopts the following approach:

• An instance monitor is generated for each instance property b or n that appears as

argument of operators And, Count, and Sum in the class formula.

• One class monitor is generated that aggregates the data of the instance monitors

according to the formula.

4.3.5 Implementation Issues

As mentioned at the previous sections, Astro’s WS-Mon takes as input a choreography

file in order to generate the Java code responsible for the creation of the monitors for the

composed process and deploys them to the monitor framework. The monitor generation

59

Figure 4.10: WS-mon front end.

process, has been implemented at the Astro framework, as an Eclipse plugin, presented

in Fig. 4.10.

To present the status of the monitors associated with each process instance, Astro

provides a WS-console which, extends the Active BPEL administration console(Fig. 4.11).

For the purpose of our implementation, we also need these results,to be written at

files. In order to achieve this, at the main framework click ‘Add code for Logs’ and select

the ‘build’ folder that was created, during the monitoring generation process. Then, re-

run the ‘compile and deploy monitor’ step, from Astro’s plug-in. The file contains the

following information:

• The timestamp of the event.

• The process name.

• The functional layer.

• The property.

• The value the property has.

These information are required in order to check violations of the monitored properties.

60

Figure 4.11: WS-console.

Figure 4.12: Example of violated properties

4.4 Report Violations

The last part of our implementation reports the occurred violations of the monitoring

properties. A snapshot of the file is depicted at Fig. 4.12

The file consists of the following information:

• The timestamp of the event (when the violated event occurred).

• The process name.

• The property.

• The value the property has.

61

• The comparison operator used to check the property

• The desired upper/lower bound the property has.

62

Chapter 5

Case Study

This chapter describes the case study we decided to use in order to test our monitoring

framework.

5.1 Traffic Management Case Study

This case study describes a traffic management system designed to manage normal

traffic situations as well as emergency cases [25]. Such emergency case handling includes

several different actions, such as directing the rescue forces to the accident location and

managing traffic deviations. Fig. 5.1 and Fig. 5.2 respectively illustrate these two cases.

Each figure depicts the three functional layers presented at chapter 1. In both cases,

workflow tasks are executed either manually or by mapping them on (Web) services.

Each service is then mapped to the appropriate infrastructure.

The actors involved are traffic managers, i.e., individuals accountable for entities con-

trolling the traffic management system, generic rescue forces (e.g., police and ambulances),

and citizens, such as motorists and pedestrians.

Fig. 5.1 illustrates normal traffic conditions, where the system tries to optimize some

parameters such as total noise, overall throughput, and air pollution. In particular, the

system shall consider different needs, such as the ones of pedestrians and motorists, and

other factors like heavy traffic, public events, school and working hours, holidays or public

regulations which may alter traffic demand and needs during conditions that do not

involve emergencies. The system interrupts the Normal Traffic Situation process, when

63

B
P

M
 L

a
y
e

r
S
C

C
 L

a
y
e

r
S
I
La

y
e

r

AAccident
? Critical

Situation

Yes

No Monitor
environmental

variables

Check for
heavy traffic

Check
for

accident

Check for high
traffic hours

and days

Assess
situation

AHandling
needed?

Traffic
management

device
configuration

Yes

No

Accident
Information

Service

Air pollution,
Noise

Measurement
Service

Calendar
Service

Traffic
Service

Assessment
Service

Device
Configuration

Service

Database
-

Server

Pollution
-

Noise Sensors
Database

Sensor
-

Server
Server

Software Network
Devices Wireless

Figure 5.1: Normal Traffic Situation

B
P

M
 L

a
y
e
r

S
C

C
 L

a
y
e

r
S
I L

a
y
e

r

Citizens
inform traffic

manager

Call- SMS
Service

Calendar
Service

Assessment
Service Manually

Device
configuration –

GPS/SMS Service

Device
Configuration

Service

Mobile
Phone

Database Server --

Software
Network Devices

Wireless/GPS
Mobile Phone

Software
Network
Devices
Wireless

Check for
high hours
and days

Assess
incident

Go to
accident's
location

Devices
reconfiguration

–
Inform citizens

Take
adaptation
actions to

control
situation

Inform traffic
manager
situation
handled

Rescue
Forces
Actions

Traffic
Manager
Actions

Complete
emergency
Handling –

Everything Back
to normal

Information
Service

Database
Server

Figure 5.2: Critical Traffic Situation

an accident happens, and jumps to the Critical Traffic Situation subprocess.

Fig. 5.2 depicts a Critical Traffic Situation, in which a serious car accident occurs at

a central road. In particular, the involved citizens inform the traffic manager that must

control the overall traffic situation (control traffic devices, inform citizens) and assess

the incident so as to inform the appropriate rescue forces about the accident and direct

them to the specific location. Moreover, the traffic manager monitors the environment

variables, such as air pollution and noise. Different adaptation actions must be taken by

the traffic manager as well as by the rescue forces, such as:

• Traffic management device reconfiguration (e.g., traffic lights) by the traffic manager,

in order to reduce stop-and-go traffic. This should also help to keep air pollution

low, even if it is not critical during emergency situations.

• Accident reporting to citizens via their devices (e.g, GPS, mobile phones) by the

64

traffic manager to avoid traffic congestion at the accident location.

• Traffic closing/limiting to or from the involved location by the rescue forces.

• Traffic deviation by the rescue forces through alternative places not intended for

heavy traffic.

After a complete emergency handling, there is a gradual return back to the normal

situation. The rescue forces inform the traffic manager, who updates the system and

informs the citizens through their devices.

5.2 Case Study Implementation

In Section 5.1 we presented the main idea of the case study, without including details

of our implementation. In this section we introduce in detail our model and also the

services we have implemented in order to cover the needs of our model. Both services and

main model were implemented in BPEL4WS as asynchronous web services.

5.2.1 Accident Information Service

This service is responsible to inform the traffic manager for the occurrence of an

accident. The input of this process is the city we want to examine and also a random

integer number that is provided by the user. An accident occurs when the remainder

of the division of the integer with number nine is equal to eight. This means that the

possibility of an accident is 89%. In case of an accident the process selects randomly the

location of the accident, otherwise it informs the traffic manager that no accident has

been occurred. The output of this process is either the location of the accident or the

message “No accident”.

5.2.2 Air Pollution Service

The aim of this service is to “measure” the air pollution of a particular city. The scale

used to define the air pollution metrics is the one used in Canada [28]. According to this

scale :

• 1-3 Air Quality Health Index: Low health risk.

65

• 4-6 Air Quality Health Index: Moderate health risk.

• 7-10 Air Quality Health Index: High health risk.

• Above 10 Air Quality Health Index: Very High health risk.

The input of this process is the city we want to examine and also a random integer

number that the user provides. The result of the remainder of the division of the integer

with number eleven, indicates the health risk. For example, if the result is equal to 5, then

the health risk is “Moderate”. The area of the city that the air pollution service checks is

picked randomly. The output of this service is the health risk and also the location that

have been checked.

5.2.3 Noise Measurement Service

Respectively to the aforementioned service, noise measurement service is responsible

to “check” the noise pollution in a particular city. The scale used in this service has three

levels: Normal, High and Very High. Noise is measured in decibel (db) 1. According to

these levels:

• 1-65 db : Normal noise level.

• 66-85 db : High noise level.

• 86-100 db: Very High noise level.

The input of this process is the city we want to examine and also a random integer

number that the user provides. The result of the remainder of the division of the integer

with 100, indicates the noise level. For example, if the input number is equal to “997”

then the result is equal to “97”. According to the above levels the noise level is “Very

high”. The output of this service is the noise level and the area of the city that has been

randomly picked.

1http://en.wikipedia.org/wiki/Decibel

66

5.2.4 Calendar Service

Calendar service is responsible to check for public events, school and working hours,

holidays or public regulations which may alter traffic demand and needs. The initial aim

of this process was to check the current time and day in order to decide if it is rush

hour or holiday. Unfortunately, BPEL 1.0 did not provide a function to get current time

and day, that’s why we ask the user for a random integer number in order to decide the

traffic level. The possibility to be a holiday is 10%. In this case the traffic level is “Low”.

The possibility to be rush time is 30% and in this case the traffic level is “Heavy”. The

possibility to be night is also 30% and in this case the traffic level is equal to “Low”.

Finally, in all the other cases (30% possibility) the traffic level is ”Normal”.

In case the traffic level is equal to “Heavy”, the calendar service also returns the loca-

tion.The location is decided randomly and the process may return one to three locations.

The input of this process is also the city we want to examine and a random integer

number. Finally the output, is the traffic level and the location.

5.2.5 Assessment Service

The Assessment web service is responsible to decide the actions that must be taken

according to the result of the last three aforementioned web services. The adaptation

actions that can take place are the configuration of traffic lights, the placement of traffic

policeman or both. We examine three different cases:

• First Case. The air pollution level is “Low” or “Moderate”, the noise pollution

level is “Normal” and the heavy traffic level is “Low” or “Normal”. In this case the

assessment service takes no adaptation actions.

• Second Case. The air pollution level is “High” or “Very High”, the noise pollution

level is “High” or “Very High” and the heavy traffic level is “Heavy”. In this case

the assessment service takes both adaptation actions.

• Third Case. One or two of the above levels has exceeded the “Normal” value. In

this case, we decide randomly which adaptation action should take place.Only one

of them is going to be executed.

67

The output of this process is the adaptation action that should take place and the

location.

5.2.6 Device Configuration Service

The Device Configuration service is responsible for the configuration or re-configuration

of traffic lights. The input of the process is the action (configuration or re-configuration)

that should take place and the area of the city. Depending on the action the service “ex-

ecutes” the appropriate activity. The output is a report that informs the traffic manager

that the actions executed with success.

5.2.7 Call Service

The aim of this process is to ”inform” the appropriate role for the existence of an

event. This services “executes” an activity that indicates that a “call” is performed.

5.2.8 Incident Assessment

This process is only executed in case of an accident. The aim of this process is to

check for heavy traffic at the location of the accident. It invokes the calendar service, in

order to get the locations of heavy traffic and then examines whether the accident’s place

is included. If this is the case, this information is passed to the output. The input of this

service is the location of the accident, the involved city and also a random integer number

needed for the calendar service.

5.2.9 Implementation of Main Model

The aim of this main process is to handle the normal traffic situation as well as the case

of an accident. The input of this process is the city to be checked and a random integer

needed by the aforementioned web services. Unfortunately BPEL 1.0 does not have a

function for the generation of random numbers, so the user should provide this number.

Initially our model is applied only for “Heraklion” city, but if needed is easily extended.

In case the user types another city, the system returns an “invalid city” message and

the process ends. Otherwise, the process invokes the Accident Information service and

68

Figure 5.3: Critical Situation Activities

the output is checked in order to decide what actions should take place (jump to critical

situation or execute normal’s situation activities).

5.2.9.1 Critical Traffic Situation

The process interrupts the normal traffic situation in order to handle the accident.

Figure 5.3 illustrates the activities that are executed in this case. The call service is

invoked in order to inform the traffic manager about the accident. Then the Incident

Assessment service informs both the traffic manager and the rescue forces, for traffic at

the accident’s location.

69

Figure 5.4: Manage Incident By Rescue Forces.

The traffic manager invokes the Device Configuration service, in order to reduce stop-

and-go traffic, and the Call service, in order to inform citizens about the accident,avoiding

thus traffic congestion.

On the other hand, the rescue forces are informed about the accident (Call service is

invoked) and the ManageIncidentByRescueForces subprocess is invoked (Figure 5.4). Aim

of this subprocess is to execute all the actions that the rescue forces should do, in order

to handle the accident. Most of these are manually activities, so in our subprocess are

implemented by an empty BPEL activity. The rescue forces go the accident’s locations

in order to close/limit the traffic and also to deviate it through alternative places not

intended for heavy traffic. When the situation is handled the Call service is invoked in

order to inform the traffic manager.

Once the two subprocesses are executed, actions for the completion of the emergency

handling takes place (Figure 5.5). They are responsible to reinstate everything back to

normal. The traffic manager invokes the Device Configuration service but in this case the

input is the re-configuration of the traffic lights. On the other hand, the rescue forces

fix traffic back to normal. This is also depicted with an empty BPEL activity, as it is

manual. Finally the rescue forces inform the traffic manager that situation is handled and

in turn traffic manager informs citizens. In both cases, the call service is invoked.

70

Figure 5.5: Complete Emergency Handling.

5.2.9.2 Normal Traffic Situation

Normal traffic activities are executed either after the handling of an accident or after

the invocation of Accident Information service, in case no accident has occurred. The

process checks the environmental variables and the traffic. For this reason the Noise

Measurement, the Air Pollution and the Calendar services are invoked.

Then the Assessment service is invoked in order to determine which adaptation actions

should take place. Depending on this result different services are invoked (Figure 5.6).

Three different cases are detected:

• First Case. The Assessment’s service output is “No Actions”, so there is no need to

take any adaptation actions.

• Second Case. According to the result, the system must configure the traffic lights

and also place traffic policeman. In order for these two requirements to be fulfilled,

the Device configuration and the Call services must be invoked.

• Third Case. One of the above adaptation actions must take place. The process

checks the output and if it is equal to “Configure traffic lights”, the Device Configu-

ration service is invoked. Otherwise, the Call service is used, in order to inform the

traffic policeman.

71

Figure 5.6: Take Adaptation Actions.

In case the Device Configuration service, is called the process invokes this service again,

with a different parameter. This time the input of the service is “Re-Configuration”,

instead of “Configuration”.

Finally the process returns a report, that informs the user, whether there was an

accident and which adaptation actions took place.

5.3 Monitoring Properties

For the implementation of our Case Study, we monitor the following monitoring prop-

erties of each process:

• Execution Time for each process.

• Minimum, Maximum and Average Execution Time.

• Throughput.

• Minimum, Maximum and Average Throughput.

• Successability 2.

• Availability.

2http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsqm

72

• Minimum, Maximum and Average Availability.

• Number of times no accident has occurred.

• Number of times high environmental conditions has occurred (traffic, air pollution,

noise pollution).

Table 5.1 presents for each aforementioned property, which monitoring component is

responsible for its evaluation and also distinguishes the properties that refer to instance

monitors from those that refer to class monitors.

Monitoring Property

Monitoring Tool

Instance Monitor Class Monitor
Astro Extended

Framework

Execution Time � �

Minimum Execution Time � �

Maximum Execution Time � �

Average Execution Time � �

Throughput � �

Minimum

Throughput � �
Maximum

Average

Successability � �

Availability � �

Minimum

Availability � �

Maximum

Average

Times of no accident,

environmental conditions

�

�

Table 5.1: Monitoring Properties.

In order to define the aforementioned monitoring properties, we based to the following

definitions :

• Execution Time is the time taken by a Web Service to process its sequence of

activities.

• Throughput represents the number of Web Services requests served in a given time

period. In order to cover the needs of our implementation , the time period used is

73

equal to one minute and thirty seconds.

• Successability can be calculated as the number of successful invocations over the

number of invocations.

• Availability is the absence of service downtimes. Availability represents the prob-

ability that a service is available. In order to to monitor this property, the Extended

Monitoring Component pings the service every fifteen seconds and after two minutes

and fifty seconds reports the probability that a service is available.

5.3.1 Definition of Monitoring Properties in RTML

Table 5.2 depicts the definition of the above monitoring properties at RTML, the moni-

toring language Astro use’s. These properties arise automatically with the transformation

of the OWL-Q ontology.

Property Property expressed in RTML

Execution Time time(!end S start)

Successability (Count(O end))

(Count(O start))

Number of High Traffic Count (cause(Calendar.pc=CalendarService_HeavyTraffic))

Number of No Accidents Count (cause(AccidentInformationProcess.pc=NoAccident))

Number of High-Very Air Pollution Count (cause(AirPollution.pc=AirPollution_VeryHighRisk))

+

Count (cause(AirPollution.pc=AirPollution_HighRisk))

Number of High-Very Noise Pollution

Count (cause(NoiseMeasure.pc=NoiseMeasure_VeryHighTraffic))

+

Count (cause(NoiseMeasure.pc=NoiseMeasure_HighTraffic))

Table 5.2: Definition of Monitoring Properties at RTML.

74

Chapter 6

Experimental Evaluation

In this section, we experimentally measure the above monitoring properties, for our

case study. We execute our scenario for 5 times and each time, we execute forty iterations

with a different random number as input for each loop. In order to create this number,

we multiply, every time, the last integer that has been created with the number of the

loop we execute.

For the execution of our case study, we use soapUI eclipse-plugin 1. soapUI is an Open

Source Functional Testing Tool, mainly it is used for Web Service Testing . SoapUI sup-

ports multiple protocols such as SOAP, REST, HTTP, JMS, AMF and JDBC. It enables

one to create advanced Performance Tests very quickly and run Automated Functional

Tests.

All experiments were carried out in a PC with processor Intel Core2 Duo 2,00 GHz, 3

GB Ram, running Windows 7 64-bit. Also, time was measured in milliseconds.

6.1 Metrics Input

In Tables 6.1 and 6.2, we provide the upper or lower bound we have used in order to

test which monitoring properties are reported as violated during the execution of the case

study. A violation occurs when a monitoring value exceeds the threshold we have defined.

The above values are selected because we want violation to be occurred during the

execution of the process. This choice was made in order to test that our monitoring

1http://www.soapui.org/IDE-Plugins/eclipse-plugin.html

75

Process Execution Time Throughput

Min(sec) Max(sec) Average(sec) Class(sec) Operator Min Max Average Class Operator

AccidentInformationProcess 2.1 2.5 2.5 2.1

‘>=’

4 7 6.5 4

‘<’

OR

‘=<’

AirPollution 1 1.1 0.5 1.03 4 7 6.3 4

Assesement 2.03 2.29 2.1 2.1 4 8 6.1 5

CallService 1.1 1.5 1.1 1.1 9 20 25.5 10

Calendar 1.05 1.2 1.09 1.1 7 8 9.9 8

DeviceConfiguration 1 1.04 1 1.03 3 5 3.0 4

IncidentAssessment 1.1 1.3 1.1 1.2 1 3 1.5 2

InformationService 5.5 6 5.2 5.2 1 3 1.5 2

NoiseMeasure 1 2 0.9 1.5 4 6 6 4

NormalTraffic 18 21 20 20.03 4 8 6.3 5

Table 6.1: Thresholds of Monitoring Properties.

Process

Count

No Accidents

Count

of High

Traffic

Count

of High

Noise

Count of

High

Pollution

Availability SuccessabilityClass Oper-ator Class Oper-ator Class Oper-ator Class Opera-tor Min Max Average Class Oper-ator Class Oper-ator
AccidentInformation

Process

50 ‘>=’ 0.99 0.99 0.99 0.99

‘<=’

OR

‘<’

0.9

‘=<’

AirPollution 50 ‘>=’ 0.99 0.99 0.99 0.99 0.9

Assesement 0.99 0.99 0.99 0.99 0.9

CallService 0.99 0.99 0.99 0.99 0.9

Calendar 50 ‘>=’ 0.99 0.99 0.99 0.99 0.9

DeviceConfiguration 0.99 0.99 0.99 0.99 0.9

IncidentAssessment 0.99 0.99 0.99 0.99 0.9

InformationService 0.99 0.99 0.99 0.99 0.9

NoiseMeasure 50 ‘>=’ 0.99 0.99 0.99 0.99 0.9

NormalTraffic 0.99 0.99 0.99 0.99 0.9

Table 6.2: Thresholds of Monitoring Properties.

76

framework catches the occurring violations at run-time.

6.2 Execution of the Scenario

As mentioned before, for the purpose of our evaluation, we have executed five times our

scenario and at each execution a loop of forty iterations is used. During the executions,

the occurred violations were only related to throughput (min,max,average,class) and to

execution time (min,max,average,class). As expected availability and successabilty were

never violated, since our services were always up.

6.2.1 First Execution

The random integer used as input for this execution is ‘9’. During this first execution

‘253’ violations were reported and the first ‘45’ are depicted in Figure 6.1.

During this execution, twenty times an accident did not occur,three times we had high

noise pollution , twenty-seven times high air pollution and forty-two times heavy traffic.

According to Table 6.2, none of these properties is violated.

6.2.2 Second Execution

The random integer used as input for the second execution is ‘8’. As mentioned, this

number changes during each loop. During this second execution ‘111’ violations were

reported and the first ‘45’ are depicted in Figure 6.2.

During the second execution, eighteen times an accident did not occur, one time we

had high noise pollution , twenty-five times high air pollution and forty-six times heavy

traffic. According to Table 6.2, none of these properties is violated.

6.2.3 Third Execution

The random integer used as input for the third execution is ‘25’. During this execution

‘59’ violations were reported and the first ‘51’ are depicted in Figure 6.3.

During this execution, twenty times an accident did not occur, we did not have high

noise pollution , twenty-six times high air pollution occurred and forty times heavy traffic

occurred. According to Table 6.2, none of these properties is violated.

77

Figure 6.1: Violations of First Execution.

78

Figure 6.2: Violations of Second Execution.

79

Figure 6.3: Violations of Third Execution.

80

Figure 6.4: Violations of Fourth Execution.

6.2.4 Fourth Execution

The random integer used as input for the fourth execution is ‘7’. During this execution

‘53’ violations were reported and the first ‘51’ are depicted in Figure 6.4.

During the fourth execution, twenty times an accident did not occur, two times we

had high noise pollution , twenty-four times high air pollution and forty-three times heavy

traffic. According to Table 6.2, none of these properties is violated.

81

Figure 6.5: Violations of Fifth Execution.

6.2.5 Fifth Execution

The random integer used as input for the execution is ‘2’. During this execution ‘41’

violations were reported (Fig. 6.5).

During the fifth execution, twenty-one times an accident did not occur, one time we

had high noise pollution, twenty-three times high air pollution and thirty-nine times heavy

traffic. According to Table 6.2, none of these properties is violated.

6.2.6 Aggregated Results

Tables 6.3 and 6.4, summarize the aforementioned results for each process and execu-

tion. When a number of an execution is not depicted at the table, this means that at the

corresponding execution no violations occurred .

82

Process

Execution Time Throughput

Min

(sec)

Max

(sec)

Average

(sec)

Class

(sec)

Min Max Average Class

Acciden

tInform

ationPr

ocess

2 1

violation (3.0) 1 violation (6.333333333333333) 1 violation (3.0)
3 1

violation (3.0) 1 violation (3.0)
5 1 violation(2.141) 1 violation (2.141)

AirPollu

tion

1 10 violations(0.5525, 0.71033330000000010.53675 ,0.5525,0.52625, 0.5235,0.5211667 ,0.51815390000000010.5179642999999999,0.50072415)
2 15 violations(0.523, 0.5195, 0.5181667, 0.5911429, 0.519125, 0.5743333, 0.5187999999999999, 0.5639090999999999, 0.5181667, 0.55646155, 0.5179286, 0.5179375,0.517722)2, 0.5439474, 0.5175) 1

violation

(3.0)

1 violation

(6.166666666666667) 1 violation

(3.0)

3 6 violations(0.5305, 0.52275, 0.5061481600000001, 0.5072414,0.50825806, 0.50915152) 3 violations(1.046, 1.03, 1.076)
4 5 violations(0.5325, 0.5306000000000001, 0.5291667, 0.50265216, 0.50424) 1 violation

(1.03)

5 3 violations(0.613, 0.56625, 0.5535)
Process Execution Time Throughput

Min(sec) Max(sec) Average(sec) Class(sec) Min Max Average Class

Assesement 1 1 violation

(2.135)

1 violation

(4.0)

2 1 violation

(3.0)

1 violation

(4.0)

1 violation

(3.0)

3 1 violation

(2.059, 2.044)

2 violations

(2.059, 2.0515)

1 violation

(4.0)

4 1 violation

(4.0)

1 violation

(4.0)

5 1 violation

(2.152)

3 violations

(2.135,2.076,

2.0566667)

1 violation

(2.152)

1 violation

(4.0)

CallService

1 1 violation

(1.984)

1 violation

(1.984)

11 violations (1.975, 1.515, 1.3463334 ,1.262, 1.211, 1.1771666 , 1.1532858000000001, 1.134751.1206666, 1.10940000000000021.1002726999999999) 1 violation

(1.984)

1 violation

(8.0)
2 violations

(8.0, 16.0)

6 violations(8.0, 12.0 , 18.666666666666668, 21.75, 24.0 ,24.666666666666668) 1 violation

(8.0)

2 1 violations

(18.0,)

6 violations(18.0, 13.5, 16.666666666666668, 19.5, 22.0, 23.5) 1 violation

(9.0)

3 1 violation

(6.0)

2 violations

(6.0, 18.0)

6 violations(6.0, 12.0, 18.666666666666668, 21.75, 23.8,24.333333333333332) 1 violation

(6.0)

4 1 violation

(4.0)

2 violations

(4.0, 17.0)

5 violations(4.0, 10.5, 17.666666666666668, 21.25, 23.4) 1 violation

(4.0)

5 1 violation

(6.0)

2 violations

(6.0, 16)

5 violations

(6.0, 11,18,21.25,23.6)

1 violation

(6.0)

Calendar 2 1 violation

(9.75)

2 violations

(9.6, 9.5)

4 1 violation

(1.123)

5 1 violation

(1.052)

Table 6.3: Aggregated Results.

83

Process Execution Time Throughput

Min(sec) Max(sec) Average(sec) Class(sec) Min Max Average Class

DeviceConfigu

ration

1 1 violation

(1.076)

1

violatio

n

(1.076)

1 violation

(1.069)

1 violation

(1.076)

1 violation

(4.0)

2 1 violation

(2.0)

1 violation

(4.0)

1 violation

(3.0)

1 violation

(2.0)

3 1 violation

(1.03)

4 1 violation

(1.03)

1 violation

(4.0)

5 1 violation

(1.031)

1 violation

(1.025)

1 violation

(1.031)

1 violation

(4.0)

IncidentAssess

ment

2 1 violation

(2.0)

1 violation

(1.5)

1 violation

(1.0)

InformationSe

rvice

1 1 violation

(2.0)

2 1 violation

(2.0)

1 violations

(1.5)

1 violation

(1.0)

5 1 violation

(2.0

NoiseMeasure

1 1 violation

(1.057)

1 violation

(1.123)

2 1 violations

(1.017)

1 violation

(1.039)

1 violation

(3.0)

1 violation

(3.0)

3 1 violation

(1.045)

1 violation

(1.03)

4 2 violations

(1.046, .014)

3

violations

(1.108,

1.069,1,05

6)

Process Execution Time Throughput

Min(sec) Max(sec) Average(sec) Class(sec) Min Max Average Class

Normal

Traffic

1 10 violations

(20.216 ,20.21320.15, 20.08920.181,20.11820.229,20.22520.212,20.214)

1 violations

(4.0)

2

2 violations

(20.252,19.437

1 violation

(43.156)

1 violation

(20.261)

12 violations

(20.252, 20.117, 43.156, 20.365, 20.106, 20.222, 35.271, 20.112,20.238, 20.259,20.25, 20.25)

1 violation

(3.0)

1 violation

(6.166666666666667) 2 violations

(3.0, 4.0)

3 12 violations

(20.311, 20.358, 20.39, 20.28, 20.233, 20.327, 20.233, 20.42, 20.389, 20.342, 20.39, 20.467)

1 violation

(4.0)

4 8 violations

(20.545, 20.264, 20.437, 20.623, 20.358, 20.607, 20.296, 20.561) 1 violation

(4.0)

5 7 violations

(20.202, 20.127, 20.157, 20.355, 20.311, 20.239, 20.348) 1 violation

(4.0)

Table 6.4: Aggregated Results.

84

6.3 Check Availability

According to the aforementioned results availability was never violated. In order to test

if our framework is able to catch violations regarding to availability we created a program

that randomly deploys and un-deploys services. The program runs for ten minutes and

Fig. 6.6 depicts the deployment and un-deployment of services. During the execution of

the program, the processes were un-deployed and re-deployed with the following order:

1. AirPollution.

2. InformationService.

3. NormalTraffic.

4. Assesement.

5. Assesement.

6. NoiseMeasure.

7. InformationService.

8. CallService

9. AccidentInformation

10. AirPollution.

11. Assememt.

12. Calendar.

13. IncidentAssessment.

14. Calendar.

15. Assememt.

16. NoiseMeasure.

17. CallService

18. CallService

19. Assememt.

20. DeviceConfiguration.

21. NormalTraffic.

22. CallService

23. Assememt.

24. InformationService.

25. NoiseMeasure.

26. IncidentAssessment.

27. AccidentInformation

28. AccidentInformation

29. CallService

30. InformationService.

31. InformationService.

32. DeviceConfiguration.

33. NoiseMeasure.

34. NormalTraffic.

35. NormalTraffic.

36. CallService

37. Calendar.

38. AirPollution.

39. Calendar.

40. Calendar.

41. Calendar.

42. InformationService.

43. NormalTraffic.

44. InformationService.

45. CallService

46. CallService

47. IncidentAssessment.

48. NoiseMeasure.

49. CallService

50. NormalTraffic.

51. AirPollution.

85

Figure 6.6: Deployment-Un-deployment of Services (Tomcat Console).

52. IncidentAssessment.

53. Calendar.

54. NoiseMeasure.

55. IncidentAssessment.

56. Assememt.

57. Calendar.

58. AirPollution.

During the execution ‘197’ violations were reported and the first ‘51’ are depicted in

Figure 6.7.

86

Figure 6.7: Reported violations for Availability.

87

Figure 6.8: Average Time Needed to Report a Violation.

6.4 Conclusion

The objective of our work was not only to report the monitoring properties and catch

the occurred violations, but also to report these violations on time. So, we measure

the delay in reporting a violation. For each of the above 5 executions, we evaluate the

average time in milliseconds to report a violation. In Figure 6.8, we provide a diagram

with the results of each execution. As seen, our monitoring framework is able to report

the occurred violations on time. The average time needed to report a violation is one

second

88

Chapter 7

Related Work

7.1 Approaches to Monitoring of Service-Based Systems

The need to monitor SOAs at run-time has inspired a large number of research projects,

both academic and industrial. The differences between these research proposals are mani-

fold, and quite evident after an accurate analysis. This has led to an unfortunate situation

in which the term monitoring is commonly used, but with many possible interpretations.

Although their main goal discovering potential critical problems in an executing system-

remains the same, there are differences that concern important aspects, such as the goals

of monitoring, the stakeholders who might be interested in them, the potential problems

one might try to detect, etc.

In this section we survey the state-of-the-art works in monitoring of service-based ap-

plications. We describe a number of different approaches and at section 7.2 a comparison

of them is provided.

7.1.1 Smart monitors for composed services

In [9] the authors proposed an approach towards monitoring of service compositions

specified as BPEL processes against contracts expressed as assertions on service. In

particular, the assertion defines the pre- and post-conditions on service invocations, and

characterizes functional expectations of the correct service behavior. The authors propose

the process annotations as a way of specifying the contract assertions. These annotations

are then automatically translated into the corresponding code extensions that interact

89

with the dedicated monitor components in order to perform the assertion checking. In

their proposal these monitors are web services themselves, which receive the instructions

from the transformed process, perform the analysis and return the result to the executed

process.

In order to implement the monitoring functionality, the authors present two comple-

mentary approaches. The first one relies on the C# object-oriented language for specifying

and implementing monitor specifications. In this approach, the assertions are expressed

completely in this language, thus providing very expressive means for the specification.

The corresponding monitor is then automatically generated in this language and deployed

as a Web service. The approach is very flexible and expressive; however, it requires the

process designer to work at a very low programming level. The other approach relies on

the use of CLIX, a rich and expressive XML-based assertion language, based on first-order

logic, which supports, for instance, quantifiers. The implementation of the monitor in this

case relies on wrapping the corresponding assertion processor as a Web service. The ap-

proach is less flexible, but benefits from high-level and declarative assertion specification

language.

7.1.2 Dynamo

In [10, 11, 8], Baresi and Guinea extend and elaborate the ideas presented in previous

approach [9].The main challenges for the new approach are:

• to enable separation of concerns in the design of monitoring specification so that

new monitoring rules are defined separately from the process itself;

• to come up with a well-defined and expressive language for the monitoring specifi-

cations;

• to provide means for monitoring non-functional (QoS) properties of the services;

• to support the collection of the information from external sources;

• to provide means for managing monitoring process;

• to devise and implement the corresponding architecture.

90

Figure 7.1: Dynamo Monitoring Approach

The authors propose an extended notation for specifying monitoring rules. Monitoring

rules are defined explicitly and externally in a well-defined structured file. This separation

allows different sets of rules to be associated with same process. Monitoring rules abstract

Web services into suitable UML classes, and use this abstraction to specify constraints on

execution. The rules define the location, where the evaluation should be performed, and

its type. For precondition and postcondition, location indicates the BPEL invoke activity,

to which the rule is applied; for an invariant it indicates the BPEL scope; and in case of

assertion it indicates any point of WS-BPEL process before the assertion should hold.

Monitoring expressions are specified in WS-CoL (Web Service Constraint Language

[10]) , a special-purpose assertion specification language that borrows its roots from JML

(Java Modeling Language [36]), and extends it with constructs to gather data from exter-

nal sources (i.e., to interact with external data collectors). The language enables specifying

expressions over the process variables and supports a set of built-in functions, logical and

mathematical operators, and quantification.

Besides constraining the execution, monitoring rules provide parameters to govern the

degree of run-time checking. After weaving selected rules into the process at deployment

time, the user can set the amount of monitoring at run-time by means of these parameters.

The monitoring rules are deployed together with the process through a weaving procedure,

i.e., parsing monitoring rules and adding specific WS-BPEL activities to process in order

to achieve dynamic monitoring. At run-time the modified process interacts with the proxy

service, namely rule manager, which is responsible for processing the monitoring manage-

ment instructions, processing monitor configuration, obtaining information from external

91

data sources, evaluating monitoring expressions, and interacting with the actual services

(instead of the original process). If some constraints are not met, monitoring manager is

responsible to inform BPEL process. Fig.7.1 illustrates this monitoring approach.

In [8] the authors extend this work for what concerns the kind of properties the ap-

proach can monitor. The extended specification language, namely TimedWSCoL now

allows for specifying temporal properties over the events that occur during the process

execution. In particular, the authors present classical linear temporal operators (always,

sometime, until) and specific operators to express a property over restricted time window

(within, between, count). The monitoring of these temporal properties is asynchronous,

and performed by a new dedicated component called WSCoL Analyzer. This analyzer

is executed in parallel with the execution of a process, and receives the relevant event

through a dedicated publish/subscribe mechanism. The automata-based algorithms are

used to devise the monitor for a dedicated temporal property.

In [11] the authors show how this approach may be integrated with the WS-Policy

framework [6].

WS-Policy is emerging as the standard way to describe the properties that characterize

a Web service. By means of this specification, the functional description of a service can

be tied to a set of assertions that describe how the Web service should work in terms

of aspects like security, transactionality, and reliable messaging. These assertions can

be used to express both functional and non-functional aspects. Policies can be defined

by several actors and during different phases of the Web service life-cycle. Besides im-

plementing the application, service developers also specify the properties that must hold

during the execution regardless of the platform on which the services will be deployed

(service policies). On the other hand, service providers specify the features supported by

the application servers on which services are deployed (server policies). The intersection

of service and server policies results in supported policies, which define the properties of

the services deployed on a specific platform. Finally, Web service users state the features

that should be supported by the services they want to invoke (requested policies). By

combining requested policies and supported policies, we obtain the so called effective poli-

cies. Effective policies represent the set of assertions that specify the properties of a Web

service deployed on a particular server and invoked by a specific user.

92

In [11] the author’s work concentrates on the effective policies. Once effective policies

are derived, services should be monitored at run-time to guarantee that they offer the

service levels stated by their associated policies.

7.1.3 Requirements monitoring based on event calculus

In [39, 38, 46], the authors approach the problem of monitoring service-based systems

for conformance to a set of behavioral properties and assumptions. Behavioral properties

are automatically extracted from the specification of the composition process of the SBS

system and assumptions are additional requirements about the behavior of agents inter-

acting with the system, or the individual services of it. In particular, the works address

the ability to represent and monitor complex and expressive properties that deal with

events, states, timing constraints and relations. Furthermore, there is a need to refer not

only to functional but also to non-functional characteristic of the system, as dictated by

the necessity of the run-time compliance checking between the actual behavior and the

service-level agreement specifications [39].

The service level agreements that can be monitored by the framework (Fig.:7.2) are ex-

pressed using an extension of WS-Agreement [3]. This extension supports the description

of: (a) the operational context of an agreement, (b) the policy for monitoring an agree-

ment, and (c) the functional and quality requirements for the service which is regulated

by the agreement and need to be monitored (i.e., the guarantee terms in the terminology

of WS-Agreement). The extensions of WS-Agreement (a) and (b) have been directly inte-

grated in the XML schema that defines this language. To support the specification of (c),

the authors developed a new language in which service guarantee terms are specified in

terms of: (i) events which signify the invocation of operations of a service by the composi-

tion process of an SBS system and returns from these executions, (ii) events which signify

calls of operations of the composition process of an SBS system by external services and

returns from these executions, and (iii) the effects that events of either of the above kinds

have on the state of an SBS system or the services that it deploys (e.g., change of the

values of system variables). This language has been defined by a separate XML schema

and is called EC-Assertion. EC-Assertion iis based on Event Calculus (EC) [45] which

is a first order temporal logic language. Specifications of service guarantee terms in EC-

93

Figure 7.2: Requirements Monitoring Approach

Assertion can be developed independently of WS-Agreement and subsequently referred

to by it.

Monitoring is performed in parallel with the normal operation of an SBS system with-

out interrupting it. This is possible by intercepting events which are exchanged between

the composition process of an SBS system and its services and the effects of these events

on the state of the composition process of the system. This approach makes run-time

monitoring non intrusive as: (a) it does not affect the performance of SBS systems, and

(b) it does not require the instrumentation of the code of the composition process of

SBS systems or their services to generate the events which are required for monitoring.

Furthermore, the framework can monitor three different types of deviations from service

guarantee terms including: (a) violations of terms by the recorded behavior of a system,

(b) violations of service guarantee terms by the expected behavior of the system and (c)

cases of unjustified system behavior that may arise when a system acts incorrectly due to

incorrect information about its state.

The monitoring framework was implemented as a toolkit for monitoring service compo-

sitions specified in BPEL. The logs generated by the process engine were used to identify

the events and update the corresponding formula templates in the monitors. In order to

94

evaluate and validate the presented approach, the authors set up a comprehensive bench-

mark with many test and generated events based on a simple case study parametrized by

the frequency of events and the scale of the involved components.

7.1.4 Planning and monitoring execution with business assertions

In [35] Lazovik et al. apply monitoring to a framework, where the user requests are used

to dynamically customize and execute standard business processes. Such customization

aims at satisfying the user constraints and requirements to the execution of a standard

business process, parametric to the set of available concrete services participating in the

process. These services, however, as well as their composition, should satisfy certain

domain business rules, referred to in the framework as assertions.

Three kinds of assertions are supported depending on their operational context and

complexity: simple assertions, where simple reachability conditions are checked; preserva-

tion assertions, where maintenance of some condition needs to be satisfied throughout a

path comprising a set of states traversed by the process during execution time; and busi-

ness entity assertions, where the evolution sequence of a particular variable is monitored

for correctness. Assertions are specified in the assertion language XSAL (Xml Service

Assertion Language).

In this approach the authors propose an architecture, where the planning-based adap-

tation of the business process is interleaved with the execution and monitoring of the pro-

cess and the corresponding assertions. The adaptation requests are specified in a XSRL

(Xml Service Request Language) query language that defined functional constraints and

preferences of the user.

This framework is based on reactive monitoring. In particular, designers can define

three kinds of properties: (1) goals that must be true before transitioning to the next

state (2) goals that must be true for the entire process execution, and (3) goals that must

be true for the process execution and evolution sequence. The XSRL language also allows

for the definition of constraints as boolean combinations of linear inequalities and boolean

propositions. It provides sequencing operators such as achieve-all, before and then, prefer

goal x to goal y, and then. It also defines a number of operators that can be used on the

propositions themselves, defining how these propositions should be satisfied such as vital

95

Figure 7.3: Planning and monitoring framework

and optional. The delivery platform continuously loops between execution and planning.

In particular, the latter activity is achieved by taking into account the context and the

properties specified for the state-transition system. This makes it possible to discover, each

time it is undertaken, whether a property has been violated by the previously executed

step, or if execution is proceeding correctly. In case a violation of the plan or an assertion

is detected, the platform tries to dynamically modify the plan taking into account new

situation and assertions.

This approach is presented in Fig. 7.3

7.1.5 Cremona

In [37] Ludwig et al. propose an architecture and implementation for creation, man-

agement and monitoring service-level agreements represented as WS-Agreement docu-

ments. Cremona is a proposal from IBM and stands for “Creation and Monitoring of

WS-Agreements”.

Regarding the monitoring problem, the Cremona framework provides an Agreement

Provider component, whose structure incorporates, among other things, a Status Mon-

itor. This component is specific to the system providing the service. By consulting the

resources available on the system and the terms of an agreement, it helps decide whether

a negotiation proposal should be accepted or refused. Once an agreement has been ac-

cepted by both parties (the client and the provider), its validity is checked at run-time

by a Compliance Monitor, a sophisticated system-specific component that can check for

96

violations as they occur, predict violations that still have to occur, and take corrective ac-

tions. Since both monitoring components are system dependent, designers are guaranteed

great flexibility in terms of the properties they can check.

7.1.6 Colombo

In [21] the authors propose a platform for developing, deploying, and executing service-

oriented applications and system that incorporates the tools and facilities for checking,

monitoring, and enforcing service requirements expressed in WS-Policy notations. Apart

from checking the compliance of policies at deployment-time, it is necessary to verify

them at run-time, when, e.g., service invocations calls/bindings take place or messages

are sent/received.

The Colombo platform comes with the module that manages the policy assertions.

Apart from evaluating the assertions attached to particular service-related entity, the

framework provides means for policy enforcement, e.g., it may approve the delivery of a

message, reject the delivery, or defer further processing.

Colombo is a lightweight middleware for service-oriented architectures proposed by

IBM. It advocates that an optimized and native run-time environment, which does not

build upon previously existing application servers, can provide greater performance, and

guarantee simplified models for development and deployment. It supports the entire web

service stack and, in particular, orchestrated collaborations defined using BPEL.

7.1.7 Glassfish

GlassFish [31] is an open-source community implementation of a server for Java EE

5 applications. Regarding monitoring of deployed services, GlassFish provides a number

of specific tools. Using technologies such as ‘J2EE Management’ and ‘Java Management

Extensions’, GlassFish makes it possible to access information on resources and properties

that are tied to the web services to be monitored. This information is given in the form

of operational statistics (and in graphical form as well). The nature of the monitored

aspects depends on the level of monitoring chosen for a given service.

There are three possible levels:

97

• ‘ Low’: which monitors response times, throughput, and the total number of requests

and faults;

• ‘ Medium’: which adds message tracing under the form of content visualization;

• ‘ Off ’: in which no data is collected.

Captured information can also be automatically aggregated to obtain minimum response

times, maximum response times, average response times, etc.

Analysis of the monitored data could be achieved either manually, or automatically,

possibly in conjunction with a more sophisticated monitoring approach, such as Dynamo.

7.1.8 Query-based business process monitoring

In [12] Beeri et al. propose an approach to the monitoring of business processes

specified in BPEL. While the goal of the monitoring approach is similar to many other

proposed approaches, the specific focus of the approach is different. In particular, the

authors try to address the following monitoring design and implementation issues: the

monitor specification should target the same level of abstraction as the original process;

the monitoring activity should take into account the specific features of the underlying

process models; the monitors should be deployed and executed in the same environment

as the original process, without putting additional requirements on that environment.

For these purposes the Business Process Monitoring (BP-Mon) system is presented

(Fig. 7.4). In order to specify the monitoring properties, a novel query language for

monitoring business processes is proposed, that allows users to visually define monitoring

tasks and associated reports, using a simple intuitive interface, similar to those used

for designing BPEL processes. BP-Mon queries the actual execution flow of a live and

running BPEL process and therefore allows to monitor processes at run time. Queries

consist of two main ingredients: execution patterns that should be matched against the

actual execution traces, and report specification generated from these matches. The

patterns represent the composite events as partial control flow specifications, where the

elements specify the activities that should appear in the critical execution. Additionally,

the query contains the definition of the time window (period and interval), in which the

query should be evaluated, and the condition to restrict the set of matched executions.

98

Figure 7.4: BP-Mon Architecture

When the query is matched, the report is populated and emitted. The report represents

a parametric XML pattern, which is instantiated when the pattern is matched. Two

reporting modes are provided: a local one, where an individual report is issued for each

process instance and a global one that considers all the instances.

To perform the run-time analysis, a specific pattern matching algorithm is proposed.

The algorithm tries to greedily simulate the pattern to match events as early as possibly

and backtracking on failure. A report is issued as soon as a match for the pattern is

identified.

The system is implemented as follows. A BP-Mon query is compiled into a BPEL

process specification, whose instances perform the monitoring task, which is translated

into an executable code to be run on same BPEL engine as the monitored business pro-

cess. An additional component, dispatcher, is used to listen to the events on the process

activities, and forward them to the query process instance. An important feature of the

approach is that it does not target a particular monitoring goal. Indeed, the reports pro-

vide just the required values, and therefore may be used for various purposes regarding

BPEL processes.

7.2 Comparing monitoring approaches

A summary of all the aforementioned approaches is presented in Table 7.1. The

approaches are compared according to intrusiveness and timeliness. The timeliness of

a monitoring system presents the ability of the framework to signal violations of the

99

Approach

Name
Intrusiveness

Collaboration

Paradigm
Timeliness

Type of

properties

Kind Scope

Dynamo

[10, 11,8]
No

BPEL-based

orchestrations

Signal information of

interest as soon as

they occur

Functional

Non- Functional
Instance

Smart monitors

[9]
Yes

BPEL-based

orchestrations

Signal information of

interest as soon as they

occur

Functional Instance

Requirements

monitoring

[39,38,46]

No
BPEL-based

orchestrations
Post-mortem

Functional

Non-Functional
Instance

Lazovik [35] No

Proprietary

orchestration

based deliver

framework

Errors discovered as

soon as they occur
Functional Instance

Colombo [21] No

Optimized

middleware for

SOA that

supports BPEL

Before a message leaves

the system, or before the

incoming message is

processed.

Non-Functional
Instance-Class

Cremona [37] No

No specific

paradigm, but any

interaction

between a caller

and the provider

Re-active approach
Functional

Non-Functional
Instance-Class

Glassfish [31] No

Proprietary

deployment

Infrastructure

No automatic analysis.

Timeliness does not

depend on the system

Mainly non-functional Instance

BP-Mon

[12]
No

BPEL-based

orchestrations

Signal information of

interest as soon as they

occur

Functional

Non-Functional
Instance

Astro [7] No
BPEL-based

orchestrations

Signal information of

interest as soon as they

occur

Functional

Non-Functional
Instance-Class

Extended

Monitoring
No

BPEL-based

orchestrations

Signal violations of

interest as soon as they

occur

Non-Functional Class

Table 7.1: Comparison Table

monitoring properties the time they occur and not after the termination of the instance.

Moreover approaches which perform monitoring by weaving code that implements the

required checks inside the code of the system that is being monitored are concerned as

intrusive approaches. Furthermore the kind and the scope of the monitored information

is provided. The former one refer to the functional and non functional properties of a

SBA while the latter one to instance or class application of the approach. Finally, the

last property refer to the collaboration paradigm, it’s monitoring approach use.

100

Chapter 8

Conclusion and Future Work

Our work focuses on monitoring the QoS compliance of Web services.

In this master thesis, we present a framework regarding to the problem of monitoring

web services described as BPEL processes. The main component of our framework is

Astro’s WS-MON. Based on this component we implement a framework responsible for

providing Astro with the necessary input files and also exploits the output results of this

monitoring tool in order to provide the user with more monitoring properties. The input

files needed for Astro are: the abstract BPEL processes, the corresponding WSDL

documents and also a choreography (.chor) file, which contains the compositions’s

partners and also the definition of the monitoring properties. Furthermore, our framework

checks at runtime the results of the monitors and reports the occurred violations. Finally,

a specific case study is used to illustrate its functionality and to test the monitoring

framework.

We believe that the main issue remaining for future work is to focus on the adaptation

actions that must take place after a violation is detected. The dynamic and ever-changing

nature of the business and physical environment requires Web services to be highly reac-

tive and adaptive to the changes and variations they are subjected to. They should be

equipped with mechanisms to ensure that they can adapt to meet changing requirements.

A possible following future direction is the creation of a framework that is able to detect

monitored events and derive suitable adaptation strategies.

101

102

Bibliography

[1] A. ALBRESHNE, P. FUHRER, and J. PASQUIER. Web services orchestration and

composition. 2009.

[2] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,

D. Roller, D. Smith, S. Thatte, et al. Business process execution language for web

services, 2003.

[3] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, J. Pruyne, J. Rofrano,

S. Tuecke, and M. Xu. Web services agreement specification (ws-agreement). In

Global Grid Forum, number GFD. 107, pages 1–47. The Global Grid Forum (GGF),

2004.

[4] A. Arkin, S. Askary, S. Fordin, W. Jekeli, K. Kawaguchi, D. Orchard, S. Pogliani,

K. Riemer, S. Struble, P. Takacsi-Nagy, et al. Web service choreography interface

(wsci) 1.0. Standards proposal by BEA Systems, Intalio, SAP, and Sun Microsystems,

2002.

[5] A. Arkin et al. Business process modeling language. BPMI. org, 2002.

[6] S. Bajaj, D. Box, D. Chappell, F. Curbera, G. Daniels, P. Hallam-Baker, M. Hondo,

C. Kaler, D. Langworthy, A. Malhotra, et al. Web services policy framework (ws-

policy). Specification, IBM, BEA, Microsoft, SAP AG, Sonic Software, VeriSign,

2004.

[7] F. Barbon, P. Traverso, M. Pistore, and M. Trainotti. Run-time monitoring of in-

stances and classes of web service compositions. In Web Services, 2006. ICWS’06.

International Conference on, pages 63–71. IEEE, 2006.

103

[8] L. Baresi, D. Bianculli, C. Ghezzi, S. Guinea, and P. Spoletini. A timed extension of

wscol. In Web Services, 2007. ICWS 2007. IEEE International Conference on, pages

663–670. IEEE, 2007.

[9] L. Baresi, C. Ghezzi, and S. Guinea. Smart monitors for composed services. In

Proceedings of the 2nd international conference on Service oriented computing, pages

193–202. ACM, 2004.

[10] L. Baresi and S. Guinea. Towards dynamic monitoring of ws-bpel processes. Service-

Oriented Computing-ICSOC 2005, pages 269–282, 2005.

[11] L. Baresi, S. Guinea, and P. Plebani. Ws-policy for service monitoring. Technologies

for E-Services, pages 72–83, 2006.

[12] C. Beeri, A. Eyal, T. Milo, and A. Pilberg. Monitoring business processes with

queries. In Proceedings of the 33rd international conference on Very large data bases,

pages 603–614. VLDB Endowment, 2007.

[13] A. Berglund, S. Boag, D. Chamberlin, M.F. Fernandez, M. Kay, J. Robie, and

J. Siméon. Xml path language (xpath). World Wide Web Consortium (W3C),,

2003.

[14] M. Blow, Y. Goland, M. Kloppmann, F. Leymann, G. Pfau, D. Roller, and M. Rowley.

Bpelj: Bpel for java technology (bpelj). IBM developerWorks website, http://www.

ibm. com/developerwork/library/specification/ws-bpelj.

[15] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, and D. Or-

chard. Web services architecture, w3c working group note, 2004. URL: http://www.

w3. org/TR/2004/NOTE-ws-arch-20040211.

[16] D. Box, F. Curbera, et al. Web services addressing (ws-addressing), 2004.

[17] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H.F. Nielsen,

S. Thatte, and D. Winer. Simple object access protocol (soap) 1.1, 2000.

[18] T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler, and F. Yergeau. Extensible

markup language (xml). World Wide Web Journal, 2(4):27–66, 1997.

104

[19] M. Chen, A.N.K. Chen, and B. Shao. The implications and impacts of web ser-

vices to electronic commerce research and practices. Journal of Electronic Commerce

Research, 4(4):128–139, 2003.

[20] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, et al. Web services de-

scription language (wsdl) 1.1, 2001.

[21] F. Curbera, M.J. Duftler, R. Khalaf, WA Nagy, N. Mukhi, and S. Weerawarana.

Colombo: Lightweight middleware for service-oriented computing. IBM Systems

Journal, 44(4):799–820, 2005.

[22] F. Curbera, Y. Goland, J. Klein, F. Leymann, S. Weerawarana, et al. Business

process execution language for web services, version 1.1. 2003.

[23] N. Delgado, A.Q. Gates, and S. Roach. A taxonomy and catalog of runtime software-

fault monitoring tools. Software Engineering, IEEE Transactions on, 30(12):859–872,

2004.

[24] V. Deora, J. Shao, W. Gray, and N. Fiddian. A quality of service management

framework based on user expectations. Service-Oriented Computing-ICSOC 2003,

pages 104–114, 2003.

[25] E. Di Nitto, V. Mazza, and A. Mocci. Collection of industrial best practices, scenarios

and business cases. S-Cube Consortium, Deliverable CD-IA-2.2, 2:29–05, 2009.

[26] E.A. Emerson. Temporal and modal logic. Handbook of theoretical computer science,

2:995–1072, 1990.

[27] A. Endpoints. Activebpel open source engine, 2007.

[28] C.C.C. Federation, C.E. Law, and P. Probe. Advancing environmental health in child

care settings. 2010.

[29] Y. Gao. Bpmn-bpel transformation and round trip engineering. URL: http://www.

eclarus. com/pdf/BPMN BPEL Mapping. pdf, 2006.

[30] J. Hielscher, A. Metzger, and R. Kazhamiakin. Taxonomy of adaptation principles

and mechanisms. S-Cube project deliverable, 2009.

105

[31] H. Hrasna. Glassfish community building an open source java ee 5 applica-tion server.

2006.

[32] N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, Y. Lafon, and C. Barreto.

Web services choreography description language version 1.0. W3C Working Draft,

17:10–20041217, 2004.

[33] M. Kloppmann, D. Koenig, F. Leymann, G. Pfau, A. Rickayzen, C. von Riegen,

P. Schmidt, and I. Trickovic. Ws-bpel extension for people–bpel4people. Joint white

paper, IBM and SAP, 2005.

[34] K. Kritikos and D. Plexousakis. Owl-q for semantic qos-based web service description

and discovery. In Proceedings of the SMR2 2007 Workshop on Service Matchmaking

and Resource Retrieval in the Semantic Web, pages 123–137. Citeseer, 2007.

[35] A. Lazovik, M. Aiello, and M. Papazoglou. Associating assertions with business

processes and monitoring their execution. In Proceedings of the 2nd international

conference on Service oriented computing, pages 94–104. ACM, 2004.

[36] G.T. Leavens, A.L. Baker, and C. Ruby. Preliminary design of jml: A behavioral

interface specification language for java. ACM SIGSOFT Software Engineering Notes,

31(3):1–38, 2006.

[37] H. Ludwig, A. Dan, and R. Kearney. Cremona: an architecture and library for

creation and monitoring of ws-agreents. In Proceedings of the 2nd International

Conference on Service oriented computing, pages 65–74. ACM, 2004.

[38] K. Mahbub and G. Spanoudakis. Run-time monitoring of requirements for systems

composed of web-services: Initial implementation and evaluation experience. In Web

Services, 2005. ICWS 2005. Proceedings. 2005 IEEE International Conference on,

pages 257–265. IEEE, 2005.

[39] K. Mahbub and G. Spanoudakis. Monitoring ws-agreements: An event calculus-based

approach. Test and Analysis of Web Services, pages 265–306, 2007.

106

[40] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIlraith,

S. Narayanan, M. Paolucci, B. Parsia, T. Payne, et al. Owl-s: Semantic markup

for web services. W3C Member submission, 22:2007–04, 2004.

[41] U. OASIS. Universal description, discovery, and integration (uddi) 2.0. Orga-

nization for the Advancement of Structured Information Standards, Boston, MA

(http://www.uddi.org).

[42] Tech. Rep. OMG. Business process modeling notation (bpmn) specification, final

adopted specification. Feb 2006, www.bpmn.org.

[43] C. Ouyang, M. Dumas, W.M.P. Aalst, A.H.M.T. Hofstede, and J. Mendling. From

business process models to process-oriented software systems. ACM transactions on

software engineering and methodology (TOSEM), 19(1):2, 2009.

[44] M. Papazoglou. Web services: principles and technology. Addison-Wesley, 2008.

[45] M. Shanahan. The event calculus explained. Artificial intelligence today, pages 409–

430, 1999.

[46] G. Spanoudakis and K. Mahbub. Requirements monitoring for service-based systems:

Towards a framework based on event calculus. In Automated Software Engineering,

2004. Proceedings. 19th International Conference on, pages 379–384. IEEE, 2004.

[47] S.A. White. Introduction to bpmn. IBM Cooperation, pages 2008–029, 2004.

[48] M. Wright and A. Reynolds. Oracle SOA suite developer’s guide. Packt Publishing,

2009.

107

