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Radical-ion-pair reactions, central for understanding the avian mag-
netic compass and spin transport in photosynthetic reaction centers, were
recently shown to be a fruitful paradigm of the new synthesis of quantum
information science with biological processes. We here show that the mas-
ter equation so far constituting the theoretical foundation of spin chem-
istry violates fundamental bounds for the entropy of quantum systems. In
contrast, a new theory based on quantum measurements, quantum coher-
ence measures and quantum retrodiction, thus exemplifying the paradigm
of quantum biology, satisfies the same bounds. By considering the quantum
information extracted during the reaction we also unravel new magnetic-
field effects not conveyed by reaction yields. The results of the thesis are
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Chapter 1

Introduction

1.1 Quantum Biology

A new synthesis of two emerging fields, physics and biology have been
developed over the last several decades under the name of quantum biol-
ogy, to give rise and insight into the light-dependent chemical reactions
taking place in complex biological systems. This new synthesis tries to
take advantage of phenomena like quantum entanglement, quantum coher-
ence and decoherence, quantum measurements, quantum retrodiction and
other quantum-information type effects in order to describe biological pro-
cesses like light harvesting in photosynthesic reaction centers, avian com-
pass magnetoreception, the mechanism of olfaction and the energy trasport
in photosynthesis. By definition biological systems are open systems.They
are embeddedin environment that are noisy warm and wet and there is a
challenging question of how quantum coherence can survive in such envi-
ronments. Recent studies have shown that quantum coherence and entan-
glement can not only survive but it can also be enhanced by the interaction
between the system and the environment.

Although the field contains promisingly quantum effects, the funda-
mental master equation describing the chemical reaction processes is still
an open question. In this thesis we use quantum information theory and
quantum measurement theory in order to, first of all, provide a test to the
two master equations based on some fundamental information bounds that
must be satisfied by every physical system and last but not least to show
that the Haberkorn’s master equation violates some fundamental entropy
bounds based on informational characteristics. Furthermore, we show that
a modern master equation that Kominis derived through the years (2008-
2014) satisfies the same bounds. Besides the test on the two theories, the
quantum informational approach led to the observation of a new magnetic
field effect that is not observed in the reaction’s neutral yields and it is pos-
sibly an effect based on quantum coherence.

1.2 Quantum Information and the Radical-Pair Dynam-
ics

Quantum dynamics seem to have an important role in Bio-molecular pro-
cesses. Spin dynamics of such processes are of great importance since they
underlie all the quantum effects that are crucial for understanding magneto-
based processes such as the mechanism of migratory bird navigation, the
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dynamics of photosynthetic reaction centers and so on. The basic mecha-
nism that describes such processes is the Radical Pair mechanism.The mech-
anism first introduced in 1960 in order to explain anomalously large EPR
and NMR signals. Radical-pairs are molecular neighbour-pairs which are
created by an optical excitation and a charge transfer. Our interest is con-
centrated at the spin dynamics of such pairs. When the charge transfer is
completed, the (charge-polarized) radical-pair is created in an initial spin
state (which for all practical purposes is pre-determined by the total angu-
lar momentum conservation) and evolves under the influence of local and
global magnetic environments. At some point the charge transfer reverse
process neutralizes the radical-pair spontaneously in a spin-dependent way
and the "chemical reaction" is terminated in the sense that Hamiltonian
evolution is not possible since the radical pair does not exist. Of course
one could argue that a semi-classical description of such processes using
rate equations and population transfer would describe fair enough the Bio-
processes of interest (as usually done in Biology and Chemistry) but if co-
herent phenomena are slow enough (compared to system timescales) they
can have a significant role in the evolution of the radical pair . This is
the point where quantum coherence dynamics and quantum information
merge together to create the quantum biology science.

There are many evidences that under certain conditions, coherence time
scales in such environments are large enough compared to dissipation and
relaxation times, thus a fully quantum description is needed and the best
way to do so in such complex systems is by using a master equation de-
scription for the evolution of a well defined density matrix. Of course the
measurement observables and the experimental outcomes are given by the
expectation values of quantities that also a semi-classical theory would pro-
vide but in a high-decoherence way. Furthermore, with the development of
theoretical quantum metrology, using a well-defined theory would lead to
a greater insight at the rates of the system and the internal structure and
would also lead to technological advances in high precision measurements.
Besides quantum metrology, another modern and useful tool of quantum
theory is the science of quantum information. Quantum information and
branches of quantum information such as quantum communication, quan-
tum retrodiction and quantum cryptography can provide powerful tools
on establishing the fundamental theory of spin-dependent biological pro-
cesses and on manipulating quantum coherence in a path of advanced tech-
nology which probably would lead to high-efficiency quantum computers
and would open the road of quantum physics in biotechnology.

1.3 In This Thesis

This thesis is a great paradigm of the application of quantum information
in the science of quantum biology. We apply the Ozawa and Lanford-
Robinson entropy-information bounds in the fundamental theories of radical-
pair spin dynamical processes. In more detail, we show that Haberkorn’s
master equation violates the above bounds in the case where kS 6= kT while
Kominis master equation is valid in all the parameter regimes. In chapter 2
we will review the radical-pair mechanism and the two competing theories
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in detail, while in chapter 3 we will present the entropy bounds and the re-
sponse of the two theories to the fundamental inequalities. Finally we will
discuss the new field effect that appeared.
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Chapter 2

Master Equation Description of
the Radical-Pair Mechanism

2.1 Brief Review of the Radical-Pair Mechanism

As mentioned in Chapter 1, quantum biology[1-3] has been recently emerg-
ing as an interdisciplinary field pointing to certain biological processes which,
counterintuitively, exhibit quantum coherent dynamics, and accordingly
require for their understanding physical concepts developed in quantum
information science. This is surprising since decoherence is ordinary ex-
pected to be prevalent in complex biological matter. Yet, there appear to be
several cases where decoherence is not as detrimental, and moreover, where
quantum coherent dynamics seem to have an operational significance.

Prominent among such examples have been the excitation energy trans-
port in photosynthetic light harvesting[4-9] and the radical-pair mechanism
[3,10-18], which was introduced in the late 1960’s [22] to explain unexpect-
edly large signals in NMR measurements of organic radicals. The mech-
anism is the cornerstone of spin chemistry and photochemistry studying
the effects of electron and nuclear spins in chemical reactions [23]. Radical-
pair reactions have been studied extensively because, besides their poten-
tial role in avian magnetoreception [19-21], they regulate spin transport in
photosynthetic reaction centers [22].

The radical-pair mechanism has recently attracted renewed attention
when it was suggested [10] that radical-pair reactions involve quantum
measurement dynamics and require for their understanding concepts like
quantum coherence measures and the quantum communications concept of
quantum retrodiction [11,12], rendering the mechanism a vivid paradigm
for quantum biology on the qualitative level. On the quantitative level, we
have developed a master new equation describing the fundamental quan-
tum dynamics of RP reactions [3], which depart from the traditional the-
ory, attributed to Haberkorn [24]. The master equation describing the time
evolution of the radical-pair spin density matrix is the starting point for
virtually all theoretical predictions relevant to the radical-pair mechanism.
Radical-ion pairs are biomolecular ions (each carrying an unpaired elec-
tron •) created by an electron transfer from a photo-excited donor-acceptor
molecular dyad: DA→hvD∗A→ D•+A•−. The magnetic nuclei of D and A
couple to the respective unpaired electron via hyperfine interactions, lead-
ing to singlet-triplet (S-T) mixing, i.e. a coherent oscillation of the spin state
of the electrons and concomitantly the nuclear spins: SD•+A•−↔TD•+A•−.
The reverse charge transfer, called charge recombination, terminates the re-
action and spin-selectively leads to the formation of either singlet or triplet
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neutral reaction products. The theoretical description of radical-pair reac-
tions is accounted for by the density matrix ρ describing the spin state of
the molecule’s two electrons and any number of present magnetic nuclei.
In this work we will consider an radical-ion pair having just one nuclear
spin-1/2 particle, hence the density matrix is 8-dimensional. A simplified
schematic plot of energy levels of the reaction, is given in the following
figure.

DA

hν

D*A

TDA

 SD  +  A  TD  +  A

ISC

kS
kT

(a)

DA TDA

 
SD  +  A  

TD  +  A

kTkS

unitary dynamics

(b)

non-unitary dynamics

H

H

FIGURE 2.1: (a) Simplified energy level diagram depicting radical-ion pair reaction
dynamics. A donor-acceptor dyad is photo-excited and a subsequent charge trans-
fer produces a singlet radical-ion pair. Magnetic interactions within the radical
pair induce coherent singlet-triplet mixing, while spin-dependent charge recombi-
nation leads to singlet-triplet neutral products at the respective reaction rates kS
and kT . The reaction can, in principle, close through intersystem crossing from
the triplet to the singlet ground state. (b) Simplified version of (a) neglecting the
photo-excitation and charge transfer steps. Both diagrams could be misleading if
taken too literally, since they might suggest that e.g. only singlet RP’s recombine to
singlet neutral products. This is not the case, since a radical-ion pair in a coherent

S-T superposition can recombine into e.g. a singlet neutral product.

The dimension of the density matrix ρ is d = 4
M∏
n=1

(2In + 1) where In

is the nuclear spin of the nth nucleus, with n = 1, 2, ...M . We define two
orthogonal projector operator namelyQS andQT where they spam the elec-
tron singlet and triplet subspace and the role of them is to project the RP sys-
tem to this subspace. These operators are described by d×dmatrices which
satisfy the conditions (Qj)

2 = Qj ,QS + QT = I and QSQT = 0 = QTQS
where I is the d×d unity matrix, 0 is the d×d zero matrix and j = S, T . The
two operators are defined as: QS = 1

4 −~sD ·~sA and QT = 3
4 +~sD ·~sA where

~sD and ~sA are the spin operators of the donor and acceptor respectively,
written as proper dimensional matrices like: sjA = sj ⊗ I2 ⊗ ... ⊗ I2IM+1.
Using the definitions above we express all the quantities of interest in the
uncoupled many spin-1/2 basis. Another way to define the above oper-
ators, which is more simple and straightforward, is by first defining the
singlet-triplet spin states.

|S〉 =
1√
2

(|AB〉 − |BA〉) (2.1)
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|T0〉 =
1√
2

(|AB〉+ |BA〉) (2.2)

|T+〉 = |AA〉 (2.3)

|T−〉 = |BB〉 (2.4)

where |A〉 denotes the eigenstate of a spin-1/2 operator which the spin to
the eigenstate with the largest eigenvalue along the quantization axis, while
|B〉 denotes the eigenstate which corresponds to the smallest eigenvalue of
the spin along the quantization axis. In this way, the projector operators
take the simple form:

QS = |S〉 〈S| (2.5)

and
QT =

∑
q=±,0

|Tq〉 〈Tq| (2.6)

where one have to be careful to expand correctly the above matrices in the
case where nuclear spins are included. As it is depicted in Figure 2.1 there
are also the rates kS and kT to consider where if there are not magnetic
interactions (H = 0) and the radical pair is in singlet (triplet) state then the
population would decay exponentially at rates kS (kT ).

2.2 The Hamiltonian

The Hamiltonian that drives the coherent singlet-triplet mixing of the rad-
icals, in the most general case contains the electron Zeeman interactions,
the hyperfine interactions between the electron and the nuclear spins, the
dipole-dipole interaction and the spin exchange interaction between the
two electron spins and the nuclear Zeeman interactions that are much smaller
than the electron ones. For simplicity, we suppose that couplings between
the donor’s spins and the acceptor’s ones are of no importance in the RP
dynamics. The Zeeman Interaction of the two electrons (n = 1, 2) with the
external magnetic field (for example Earth’s magnetic field

∣∣∣ ~B∣∣∣ ≈ 50µT)is
given by:

HZee =
2∑

n=1

µBgn ~B · ~sn (2.7)

where µB is Bohr’s magneton, gn is the g-factor of each electron and ~sn is the
electron spin operators that are coupled with the constant magnetic field.
The hyperfine interaction is of the form:

Hhyp =
2∑

n=1

M∑
m=1

µBgn~sn ·
↔
An,m · ~In,m (2.8)

and it couples the two electrons with theM nuclear spins at each site (donor-
acceptor site). The nuclear spin operators are denoted as ~In,m while the
coupling tensor is a second rank tensor that accounts for the geometry of
the coupling and is generally expressed with a matrix of the form:

↔
A =

 Axx Axy Axz
Ayx Ayy Ayz
Azx Azy Azz

 (2.9)
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For the most of the calculations in this thesis we used isotropic hyperfine
interactions with the same strength for the three axes i.e.

↔
A =

 Axx Axy Axz
Ayx Ayy Ayz
Azx Azy Azz

 =

 Axx 0 0
0 Ayy 0
0 0 Azz

 = Axx

 1 0 0
0 1 0
0 0 1


(2.10)

We suppose that the electron’s wavefunction, overlaps only with the nu-
cleus of the same molecule, thus, there are no hyperfine interactions be-
tween for example, the donor’s electron and the acceptors nucleus. In other
words there is no electron’s wavefunction overlap between donor and ac-
ceptor. In bibliography, this is known as Fermi’s contact interaction.

The electron spin exchange term can be neglected for sufficiently large
distances between the two molecules when the electronic wavefunctions
does not overlap. This interaction scales as: O(e−|~r|) where |~r| is the spatial
distance between the two spins.
The nuclear Zeeman interaction is three orders of magnitude smaller than
the electron Zeeman interaction due to the fact that mp

me
≈ 1836.

Finally, the dipole-dipole magnetic interaction depends also on the dis-
tance between the two spins and is of the form:

HDip = −µ0γ1γ2h̄
2

4π|~r|3
(3(~s1 · r̂)(~s2 · r̂)− ~s1 · ~s2) (2.11)

Thus it scales as O( 1
|~r|3 ) thus is also negligible.

2.3 Master Equations

In closed quantum systems, the evolution of a density matrix is, as we say
,unitary (conserves the total probability),is generated by the Hamiltonian
and is given by the von Neumann equation in differential form:

dρ

dt
= − i

h̄
[H, ρ] (2.12)

It describes the evolution of an ensemble of quantum objects completely
isolated from their environment. When there is interaction with the envi-
ronment or there is some population loss from the system then the evolu-
tion of the density matrix is given usually by a unitary Hamiltonian term
and a term that account for the interaction or the population loss. Thus the
equation that describes the evolution takes the form:

dρ

dt
= − i

h̄
[H, ρ] +G(ρ) (2.13)

In the theory of open quantum systems, where interaction with the environ-
ment dissipates the coherent dynamics that is generated from the Hamilto-
nian and in the Markov approximation, where the environment "forgets"
the effect from the system instantly, the G(ρ) has a very characteristic form
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and the whole master equation is, as we say, in Lindblad form:

dρ

dt
= − i

h̄
[H, ρ] +

∑
n

kn
2

(L†
n
Lnρ− ρL†nLn + LnρL

†
n
) (2.14)

2.3.1 Haberkorn’s Master Equation

In the Radical-Pair system, the time evolution of the density matrix ρ has
been traditionally described [24] by Haberkorn’s master equation (HME)
which is a phenomenological equation given from:

dρ

dt
= −i[H, ρ]− kS

2
(QSρ+ ρQS)− kT

2
(QTρ+ ρQT) (2.15)

The first term of HME is the ordinary unitary evolution driven by the Hamil-
tonian H which usually contains the magnetic interactions (Zeeman, hyper-
fine, etc). As singlet and triplet states are not eigenstates of H. this term
generates S-T coherence. The second term describes the population decay
in a spin selective way. This master equation describes mathematically the
reaction cycle of Figure 2.1. In the following, we plot the mean value of
the operator QT as a function of time first in the case of unitary evolution
only with the Hamiltonian while in the second case we use the whole mas-
ter equation .As we can see, there is a coherent singlet-triplet mixing in the
first case which is dissipated exponentially by the spin dependent popula-
tion loss of the radicals in the second plot.

0 2 4 6 8 10 12 14

0.0

0.2

0.4

0.6

0.8

1.0

t H1�AL

XQ
T

\

Triplet Probability

FIGURE 2.2: Mean value of the operator QT as a function of time in the parameter
regime where ω = 1, A = 10, kS = ω

4 , kT = ω using Hamiltonian evolution with
H = ω(s1,x + s2,x) + As1,xI1,x and supposing only one nuclear spin in hyperfine

interaction.

It is obvious that, when the rates kS and kT are much larger than the
Rabi frequency between the singlet-triplet states then the Hamiltonian evo-
lution is almost surpassed by the recombination process. In Haberkorn’s
case and also in Kominis’ , as we will see, the population is lost from the
system in a rate:

dTr{ρ}
dt

= −kSTr{ρQS} − kTTr{ρQT } (2.16)
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FIGURE 2.3: Mean value of the operator QT as a function of time in the parameter
regime where ω = 1, A = 10, kS = ω

4 , kT = ω using Haberkorn’s master equa-
tion with the Hamiltonian H = ω(s1,x + s2,x) + As1,xI1,x and supposing only one

nuclear spin in hyperfine interaction.

2.3.2 Kominis’ Master Equation

The master equation derived by Kominis [10-12] reads:

dρ

dt
= −i[H, ρ]

−kS + kT
2

(QSρ+ ρQS − 2QSρQS)

−(1− pcoh)(kSQSρQS + kTQTρQT )

−pcoh
drS + drT

dt

1

Tr{ρ}
(QSρQS +QTρQT +

1

pcoh
QSρQT +

1

pcoh
QTρQS)

(2.17)
S-T coherence is generated by H, dissipated by the Lindblad term (sec-

ond term) ,which formally derived in [10,13], and quantified by pcoh, which
is a map of the density matrix onto the interval [0,1], defined in [3]. At the
single radical-pair level, this term is translated into unobserved randomly
occurring projections of the radical pair state ρ to either the singlet RP state
QSρQS
Tr{ρQS} with probability dpS = kS+kT

2 dtTr{ρQS} or to the triplet RP state:
QT ρQT
Tr{ρQT } with probability dpT = kS+kT

2 dtTr{ρQT }. That the second term
dissipates the S-T coherence can be seen by general decomposition of the
RP density matrix as ρ = IρI = (QS +QT)ρ(QS +QT) = QSρQS +QTρQT +
QSρQT+QTρQS . The first two terms account for singlet and triplet PR pop-
ulation, while the last two terms account for S-T coherence. When can thus
rewrite the Lindblad term in the form: −kS+kT

2 (QSρQT + QTρQS) i.e. this
term removes the S-T coherent part of the density matrix at a rate −kS+kT

2 .
The two last terms of the master equation are the reaction terms, reducing
the RP population, given by Tr{ρ}, in a spin-selective way, and derived in
[12] using the theory of quantum retrodiction.

For both theories the fraction of the RP population recombining into sin-
glet and triplet neutral products within the interval dt is drS = kSdtTr{ρQS}
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and drT = kTdtTr{ρQT }, respectively. A schematic representation of Ko-
minis master equation is given in Figure 2.2.

DA

magnetic
interactions

Singlet 
Reservoir

Triplet
Reservoir

Radical-Ion-Pair

 SD  +  A  TD  +  A

TDA

Population 
loss (rate kS)

Decoherence
  (rate kS/2)

Population 
loss (rate kT)

Decoherence
  (rate kT/2)

Open and Leaky Quantum System
Energy

H
εS

FIGURE 2.4: Detailed energy level structure of radical-ion pairs. The vibrational
excitations of the singlet SDA and the triplet TDA ground state form a reservoir
that probes the electron spin state of the RP, leading to an intramolecule measure-
ment of QS . Virtual transitions with rates kS

2 and kT
2 to the reservoir levels and

back to the RP lead to S-T decoherence, while real transitions with rates kS and kT
to the reservoir states followed by their decay to the ground state leads to recom-

bination.

Haberkorn’s theory considers pcoh to be always zero, i.e. it is a limiting
case of Kominis theory valid in the regime of strong spin relaxation, where
S-T coherence decays in a time scale much faster than 1

kS+kT
. However,

the difference between the two theories can be best elucidated by consider-
ing single radical-pair quantum trajectories. Such an analysis held in [14].
If one assumes, as has been the intuitive understanding in spin chemistry,
that RP’s only undergo unitary evolution until they recombine the HME
qualitatively and quantitatively disagrees with the quantum-trajectory av-
erage. However, one could decide to question the results of this quantum
trajectory analysis, as was done in [28], albeit unsuccessfully [29]. The fol-
lowing provides an independent demonstration of HME’s failure based on
entropy of quantum systems.

Before proceeding, we note (i) the case of RP’s with equal recombi-
nation rates is particularly innocuous. Setting kS = kT = k in HME,
it is trivial to show that its solution is ρ(t) = e−ktR(t) where R(t) sat-
isfies the equation: dR

dt = −i[H,R]. That is, the densisty matrix R un-
dergoes unitary and clearly physical evolution, while the RP density ma-
trix ρ(t) describes the exact same physical state as R but having an expo-
nentially decaying population. Similarly, Kominis master equation leads
again to ρ(t) = e−ktR(t) but now R(t) satisfies the Lindblad equation dR

dt =
−i[H,R] − k(QSR + RQS − 2QSRQS), which again is a physically accept-
able law [31] of evolving a density matrix. Hence, in the special case of
kS = kT , both theories produce physically acceptable evolution laws, so
we do not expect any of them to violate any entropy bound. The problems
with HME arise as soon as kS 6= kT . Physically,this is a very interesting pa-
rameter regime as it appears in photosynthetic reaction centers [22]. In the
following we will thus focus in the case kS 6= kT .(ii) HME keeps an initially
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pure state pure all the time. This can be easily proved by showing that all
time-derivatives of π(t) = Tr{ρ2}

Tr{ρ}2 are zero when evaluated at t = 0. In con-
trast, Kominis theory evolves an initially pure state into a mixture due to
the Lindblad dephasing term. To be able to compare the two theories,we
add a small spin-randomizing term of the form −γ(ρ− I

Tr{I}Tr{ρ}).
Since the population of the RP’s, given by Tr{ρ}, is time-dependent,

with Tr{ρ} = 1 at t = 0 and Tr{ρ} = 0 at t → ∞, the single-radical-pair
state at time t is ρ

Tr{ρ} .
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Chapter 3

Entropy of Quantum Systems:
The Radical-Pair System

3.1 Quantum Measurement and Entropy

The scope of this thesis is to apply the Ozawa Entropy bound and the
Lanford-Robinson bound in the radical-pair system. Before doing so, we
have to acquire an intuitive understanding of quantum measurement the-
ory and its applications, thus in this chapter,first of all, we will discuss the
source of these bounds then we will apply them to a simple system such
as a spin-1 particle to get an intuitive understanding on the way that these
bounds work and finally we will apply them to the two radical-pair mas-
ter equations described in Chapter 2. The traditional theory of quantum
measurement established by thought experiments of Bohr and von Neu-
mann was based on the interaction of a quantum system with a classical
apparatus. Recently this picture has changed and the idea of modern quan-
tum measurement theory is that interactions between different quantum
systems ,with arbitrary many degrees of freedom, can be described as a
quantum measurement process. Usually the interaction between the two
systems is described by a Hamiltonian Hint which contains operators from
both interacting systems. The most common and simple quantum measure-
ment that can be made on a quantum system system is the von Neumann
measurement. This kind of measurement is described by a set of projector
operators {|n〉 〈n|} which project a system described by a density matrix ρ
to an eigenstate of this operator. One can show that all possible measure-
ments that can be made on a quantum system can be derived from the von
Neumann measurement. In order to do so, we will use a quantum sys-
tem with dimension N as our "target" system and a quantum system of
dimension M as our "probe" system. The two systems are prepared in two
different states, one independent of the other. The idea is that we let the
two systems interact,thus, they become correlated and entangled and then
we make von Neumann measurements to the probe system. In this way we
gain information about the target system of interest. We denote the basis
that we measure the probe as {|n〉}, n = 0, ...,M − 1. For simplicity and
without loss of generality we choose the probe system to be in the ground
state i.e. ρprobe = |0〉 〈0| thus at time t = 0 the combined density matrix is

ρcomb = ρprobe ⊗ ρtarget = |0〉 〈0| ⊗ ρtarget (3.1)

The interaction between the two systems may be described by a unitary
operator that acts in the joint space of both systems. Since U acts in the
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tensor-product space, it can be written in the matrix form:

U =
∑
nn′kk′

unn′kk′ |n〉 |sk〉
〈
n′
∣∣ 〈sk′ | (3.2)

or in a more compact form:

U =
∑
nn′

|n〉
〈
n′
∣∣⊗Ann′ (3.3)

where
Ann′ =

∑
kk′

unn′kk′ |sk〉 〈sk′ | (3.4)

It is clear that |sk〉 is a set of basis states for the target system. Since U
is unitary matrix it should be true that U †U = I this immediately implies a
condition on the the A matrices of the form:

I =
∑
n

A†nAn (3.5)

where An ≡ A0n for short-hand. Any set of operators that satisfy the above
condition can describe a possible quantum measurement on the system.
This is because the above equation is sufficient to ensure that there exists a
unitary matrix U with all the good properties. We now apply the unitary
interaction U to the initial state of the two systems and then project the
probe system onto the state |n〉 using a von Neumann projection. The final
state is:

ρ(t)comb =

Pr ojector︷ ︸︸ ︷
(|n〉 〈n| ⊗ I)U(|0〉 〈0| ⊗ ρtarget)U †︸ ︷︷ ︸

Interaction

Pr ojector︷ ︸︸ ︷
(|n〉 〈n| ⊗ I) (3.6)

using Eq.(3.3) we immediately obtain ρ(t)comb = |n〉 〈n| ⊗ A†nρtargetAn thus
the final state of the target is

ρ̃targetn =
A†nρtargetAn

Tr{A†nρtargetAn}
(3.7)

and the probability of obtaining the above state is given by:

pn = Tr{A†nAnρtarget} (3.8)

The above derivation is based on [27].Besides measuring the probe system
using a von Neumann measurement, one could also trace out the probe’s
degrees of freedom from the compound target-probe system. This is like
taking an average over all the von Neumann measurement outcomes.

ρtarget(t) = TrE{U(|0〉 〈0| ⊗ ρtarget)U †} =
∑
M

〈M |U |0〉ρtarget 〈0|U † |M〉

≡
∑
M

M̂MρtargetM̂
†
M (3.9)
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where the operators M = 〈M |U |0〉 are named Kraus operators. Supposing
that the system is initially in a pure state we have:

ρtarget(t) =
∑
M

M̂M |s〉 〈s| M̂ †M =
∑
M

∣∣∣Ψ̃M

〉〈
Ψ̃M

∣∣∣ (3.10)

where
∣∣∣Ψ̃M

〉
≡ MM |s〉 and the tilda is to remind us that the states are in

general not normalized and not orthogonal to each other. We can normalize
the states in the following way:

|ΨM(t)〉 =

∣∣∣Ψ̃M(t)
〉

∥∥∥Ψ̃M(t)
∥∥∥ (3.11)

where,∥∥∥Ψ̃M(t)
∥∥∥2 =

〈
Ψ̃M(t)

∣∣∣ ∣∣∣Ψ̃M(t)
〉

= 〈ΨM(0)|M †MMM |ΨM(0)〉 ≡ PM (t) (3.12)

Substituting this back to equation (3.10) we can see that:

ρtarget(t) =
∑
M

∣∣∣Ψ̃M

〉〈
Ψ̃M

∣∣∣ =
∑
M

PM (t) |ΨM(t)〉 〈ΨM(t)| (3.13)

which is a mixed state. The conclusion is that, we start initially with a pure
state with zero entropy (by definition pure states have zero entropy) and af-
ter the interaction of the target system with the environment, the system’s
state is a mixed state with non-zero entropy.Thus there is a production of
entropy due to the interaction. It is not difficult to show in the same way
that there is also generation of entanglement due to the interaction but this
is irrelevant for this thesis. Since we know how to describe a quantum
measurement in terms of the measurement operators we here introduce the
Ozawa bound as introduced by Ozawa [25] and later by Jacobs [27]. Con-
sider a system described by the density matrix ρ. If an efficient quantum
measurement is performed, with the possible post-measurement states ρ̃n
occurring with probabilities pn, then

Ozawa︷ ︸︸ ︷∑
n

pnS [ρ̃n] ≤ S [ρ] (3.14)

where S [r] = −Tr{r ln r} is the von Neumann entropy of the den-
sity matrix r. The interpretation is that our ignorance after the measure-
ment averaged over the possible measurement results,

∑
n
pnS [ρ̃n], should

be smaller than our initial ignorance about the system, S [ρ], if we are to
extract information about the system.Another interpretation is that the av-
erage amount of information that we get from these measurements must be
smaller or equal to the total amount of information that the system contains.
To get an insight into the quantum measurements and the Ozawa bound,
in the next section, we illustrate an example with a simple spin-1 system.
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3.2 The Spin-1 Paradigm

We here provide an intuitive understanding of the Qzawa bound using
a simple spin-1 system evolving under the influence of a magnetic field
and a continuous quantum measurement. We consider a spin-1 initially
in the state |1〉, the m = 1 eigenstate of sz , residing in a constant mag-
netic field along the x-axis, i.e. the Hamiltonian is H = ωsx. A con-
tinuous quantum measurement is performed at a rate . We remind the
reader that every set of operators Ln satisfying the condition

∑
n
L†nLn = I

describes a possible quantum measurement, the possible measurement re-

sults being ρ̃n = LnρL
†
n

pn
with probability pn = Tr{ρL†nLn}. We here take

L = |1〉 〈1|, and as measurement operators L1 =
√
κdtL, L2 =

√
κdt(I − L)

and L3 =
√

1− κdt(I − iHdt). Since L and I − L are Hermitian operators,
it is easily seen that the condition L†1L1 + L†2L2 + L†3L3 = I is satisfied.

If the spin’s state is ρt at time t, then in the following time interval dt

the spin is transformed into the state ρ̃j =
LjρL

†
j

Tr{ρL†
jLj}

with probability pj =

Tr{ρL†jLj}. Since
∑
n
L†nLn = I , it follows that

∑
j
pj = 1. Writing ρt+dt =∑

j
pj ρ̃j , we find the expected Lindblad equation dρ

dt =
ρt+dt−ρt

dt = −i[H, ρ]−

κ(Lρ+ ρL− 2LρL).
The ensemble of spins described by ρ at time t is a mixture consisting

of those spins that have evolved unitarily and those that at some earlier
time have been projected by either L or I − L. The mixture has a non-zero
von Neumann entropy Sinitial = S [ρ]. Now, among those dt spins that
have undergone a measurement during dt, a fraction p = Tr{ρL} and 1− p
end up in the state ρ̃1 and ρ̃2, respectively. Hence the entropy of the mea-
surement results is Sfinal = −pTr{ρ̃1 ln ρ̃1} − (1 − p)Tr{ρ̃2 ln ρ̃2}. Accord-
ing to the Qzawa bound, it should be Sfinal ≤ Sinitial. This is the case, as
shown in Fig.3.1.(a). Furthermore, the Lanford-Robinson bound states that
the positive (according to Ozawa) difference Sinitial − Sfinal, which is the
information gain from the measurement, cannot be larger than the Shannon
information of the probability distribution defined by p and 1− p i.e.

Sinitial − Sfinal ≤ H [p]︸ ︷︷ ︸
Lanford−Robinson

(3.15)

whereH [p] = −p log p−(1−p) log(1−p). Again, this bound is also satisfied
as shown in Fig.3.1.(b), the Lanford-Robinson bound is saturated at those
times when the spin is in an eigenstate of the measurement operator L,
which should be expected, since the information extraction is optimal.

Finally, as shown in Fig.3.1.(c), the spin precesses on the y − z plane,
spiralling towards the maximally mixed state with matrix elements ρij =
δij
3 . Thus,the entropy of ρ should tent to Log(3). Moreover, the fraction of

spins projected to |1〉 〈1|tends to 1/3, hence the fraction of spins projected
to the space spanned by |0〉 and |−1〉 tends to 2/3. The state of the latter
tends to the fully mixed 2x2 density matrix having entropy Log(2)., hence
the final entropy (the state |1〉 〈1| is pure and has zero entropy) tends to
2
3Log(2). Finally, as the state is diagonal at t→∞, the extracted information
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is maximal and equal to Shannon’s information, which is H
[
1
3

]
.

FIGURE 3.1: Spin-1 precessing in a magnetic field under the influence of a contin-
uous quantum measurement with the projector L = |1〉 〈1| .(a) Average entropy
of the measurement outcomes(black line) is lower than the entropy of the pre-
measurement spin state(red line),as dictated by the Ozawa bound.(b) The differ-
ence is smaller than the information content of the spin state, as dictated by the
Lanford-Robinson bound. (c) Spin expectation values as a function of time, ap-
proaching the maximally mixed state ρij =

δij
3 having 〈sx〉 = 〈sy〉 = 〈sz〉 = 0. The

measurement rate was κ = ω/5.

3.3 Ozawa Entropy bound and the Radical-Pair Mech-
anism

3.3.1 Haberkorn’s Master Equation Violates the Ozawa Entropy
Bound

The spin-1 example was a very good illustration of the Ozawa bound and
gave us a good insight of how these bounds apply. Here we apply the same
bounds to the more complicated system of radical-ion pairs. To do so we
remind that the single-radical-pair state at time t is ρ

Tr{ρ} and hence the von
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Neumann entropy of the radical-pairs prior to the measurement is Sinitial =

S
[

ρ
Tr{ρ}

]
. From Kominis theory’s perspective, during the time interval dt

at time t there will be drS singlet and drT triplet neutral products, as well as
dpS and dpT projections to the singlet and triplet RP states, respectively. For
both cases the respective spin states are ρS = QSρQS

Tr{ρQS} and ρT = QT ρQT
Tr{ρQT } ,

only in the latter case the electron is localized back in the donor, which is
irrelevant for the spin state entropy. Hence

SKfinal =
drS + dpS

drS + drT + dpS + dpT
S [ρS ] +

drT + dpT
drS + drT + dpS + dpT

S [ρT ]

(3.16)
From Haberkorn’s theory perspective, there are only singlet and triplet neu-
tral products produced during dt, hence

SHfinal =
drS

drS + drT
S [ρS ] +

drT
drS + drT

S [ρT ] (3.17)

The reduction in the post-measurement entropy compared to the pre-measur
ement is about the information conveyed by the measurement. According
to the Lanford-Robinson bound [26,27], this information is bound by the
Shannon entropy of the pre-measurement state: Sinitial − Sfinal ≤ H [qS ]

where qS = Tr{ρQS}
Tr{ρ} and qT = 1 − qS are the probabilities that the radical-

pair is in the singlet or triplet state, respectively and H [qS ] = −qS log qS −
(1− qS) log(1− qS).

We consider a radical-ion pair with one nuclear spin having isotropic
hyperfine coupling with e.g. the donor’s unpaired electron. In Fig.3.2.(a)
we show Haberkorn’s prediction for Sinitial and Sfinal. Evidently, the Ozawa
bound is violated, hence the difference Sinitial − Sfinal being negative, it is
meaningless to test the Lanford-Robinson bound. In Fig.3.2.(b),(c) we show
the results of Kominis master equation, which satisfies both Ozawa and
Lanford-Robinson bounds.

To understand the root of Haberkorn’s violation, we note that Sfinal is
similar in both theories. Hence the root of the violation in the former is the
underestimation of Sinitial. For the sake of this explanation we omit the rate
kS , since anyhow we consider the case kT >> kS . It follows from HME that
the coherence QSρQT + QTρQS decays at the rate kT

2 , whereas the popu-
lation QTρQT decays at rate kT . Thus the coherence decays just due to the
population loss, i.e. there is no intrinsic dissipation of coherence, and there-
fore an initially pure state remains pure. In contrast, from Kominis theory
it follows that the coherence is dissipated at the rate kT [1/2 + qT ] ≥ kT /2,
whereas population decays at the rate kT [1 + pcoh(qT − 1)] ≤ kT (obviously
0 ≤ qT ≤ 1). Thus the coherence is faster than what would result just due
to population loss,which makes for the entropy production.

On a more abstract level, HME fails to account for the fact that radical-
pair recombination essentially is a rate process conditioned on the quan-
tum state of the molecule. To understand this subtle point consider two-
level atoms (with two long-lived states |g〉 and |e〉) escaping a box with a
hole, if they are in the |g〉 state. The hole’s diameter determines the escape
rate (the equivalent of the recombination rates). However, every time the
atom approaches the hole, some physical process must measure the atom’s
state,which in general could be in any coherent superposition of |g〉 and |e〉.
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FIGURE 3.2: The simulations were performed with an isotropic Hamiltonian H =

A~I ·~sD, asymmetric recombination rates, kS = A/100 and kT = A/5 ,a randomizing
term with γ = A/2000 and initial state |S〉 ⊗ |↑〉.

If the result of this measurement is positive, the atom will escape with a
given probability. It is this measurement (the equivalent of the state projec-
tions leading to S-T dephasing in our theory) that is an entropy source for
the atoms remaining in the box.

Besides serving as a test of the master equation, the quantum informa-
tion approach to RP reactions is useful in its own right. This is because,
by definition, it carries in an abstract way the full information that can be
extracted from the reaction by any kind of measurement. To define the ex-
tracted information relevant to metrology, we first note that the RPs being
projected to the singlet and triplet neutral subspaces, with the respective
probabilities dpS and dpT , are not physically accessible as are the singlet
and triplet neutral products. In other words, the actual information that
can be extracted along the reaction is determined by the change in entropy
of those drS + drT radical pairs which lead to the drS singlet and drT triplet
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neutral reaction products.We thus define the integrated extracted informa-
tion by:

Iex =

∫
{(drS + drT + dpS + dpT )Sinitial

−(drS + dpS)S [ρS ]− (drT + dpT )S [ρT ]} (3.18)

FIGURE 3.3: (a) Singlet reaction yield dependence (left y-axis) on the magnetic
field, depicting low- and high-field effects. (b) Extracted information Iex(B) ex-
hibits both low- and high-field effect, but also reveals a new field-effect at B = A.
This is evidenced by measuring the coherence ρ35, the relevant "yield" shown in the
right y-axis of (a). The calculation was performed withH = A~I ·~sD+B(sDz+sAz),

kS = kT = A/20, γ = A/2000 and initial state |S〉 ⊗ |↑〉.

We will now demonstrate the utility of Iex. A central observable in RP
reactions is the magnetic field effect [33], i.e. the reaction yield dependence
on the applied magnetic field B. For example, considering the singlet reac-
tion yield YS =

∫
drS , the dependence YS(B), the dependence stems from

the modulation of the S-T mixing by the Zeeman terms B(sDz + sAz) of the
donor and acceptor electron entering the Hamiltonian.

In Fig.3.3.(a) we plot (left y-axis) the ordinary field effect YS(B), de-
picting the low-field effect due to zero-field level crossings, and the high-
field effect due to the triplet states shifting out of resonance with the singlet
[34]. In Fig.3.3.(b) we plot the B−dependence of the integrated extracted
information,Iex(B). Apparently, the quantity also conveys the low-field
and the high-field effect. Interestingly though, it carries additional informa-
tion, as evidenced by the dip at B = A. The reason that this new field-effect
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is not observed in the singlet reaction yield of Fig.3.3.(b) is that measuring
the singlet character of the RP state is not optimal for extracting this partic-
ular field effect. By changing the measurement, and instead of the projector
QS , measuring the absolute value of the element ρ35 of the density matrix
we can observe such a field effect, as seen in Fig.3.3.(a) (right y-axis). This
matrix element corresponds to the coherence |↑↓〉 〈↓↑| ⊗ |⇑〉 〈⇑|.

The new field effect is due to level-crossings that appear when express-
ing the density matrix ρ and its non-reacting evolution law in Liouville
space. This will be explored in detail elsewhere, together with the discus-
sion on how to perform generalized measurements optimally extracting the
information that can in principle be extracted, by Iex(B). To explain in de-
tail the low and high magnetic field effects we show in the table 3.1 the
eigenvalues and the eigenstates of the Hamiltonian used in the simulations
and we plot in Figure 3.5 the eigenvalues as a function of the magnetic field.
We also plot in Figure 3.4 the energies of the singlet and triplet states as a
function of the magnetic field’s magnitude. The idea of the low field effect
as described in [33] is that in zero magnetic field we have as you can see in
figure[3.5] degeneracy of the energy levels.When we increase a little bit the
magnetic field the degeneracy is lifted, thus there are more ways of singlet-
triplet mixing as you can also see from the table, thus the radical pair stays
for longer time in triplet state.This is the reason we see a reduction in the
singlet yield.This can also be seen from the figure 3.4 where in low magnetic
fields all triplet states are energetically close to singlet and thus they can be
easily mixed. In a more mathematical way, if we write the density matrix in
the basis of the zero field eigenstates, we can see some off-diagonal matrix
elements know as the zero quantum coherences. Zero quantum coherences
are responsible for the singlet-triplet mixing in the zero field regime. When
we apply a weak magnetic field the coherences are increased, thus there are
more channels available for singlet-triplet mixing. In the high field regime,
there is only mixing between the states S − T0 hence, there is again an in-
crease in the yield.

Eigenstates Eigenvalues
|ψ1〉 = 1√

2
(|T0, ↑〉 − |S, ↑〉) E1 = A

4

|ψ2〉 = 1√
2

(|S, ↑〉+ |T0, ↑〉) E2 = A
4

|ψ3〉 = |T+, ↑〉 E3 = 1
4(A− 4B)

|ψ4〉 = |T−, ↓〉 E4 = 1
4(A+ 4B)

|ψ5〉 = c1 |T+, ↓〉+ c2√
2

(|S, ↑〉+ |T0, ↑〉) E5 = 1
4(−A− 2B − 2

√
A2 +B2)

|ψ6〉 = c2 |T−, ↑〉+ c1√
2

(|T0, ↓〉 − |S, ↓〉) E6 = 1
4(−A+ 2B − 2

√
A2 +B2)

|ψ7〉 = c3 |T+, ↓〉+ c4√
2

(|T0, ↑〉+ |S, ↑〉) E7 = 1
4(−A− 2B + 2

√
A2 +B2)

|ψ8〉 = c4 |T−, ↑〉+ c3√
2

(|T0, ↓〉 − |S, ↓〉) E8 = 1
4(−A+ 2B + 2

√
A2 +B2)

TABLE 3.1: Eigenstates and eigenvalues of the Hamiltonian
H = A~I · ~sD +B(sDz + sAz)

where:

c1 =
−B −

√
A2 +B2√

A2 + (B +
√
A2 +B2)

2
(3.19)
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c2 =
A√

A2 + (B +
√
A2 +B2)

2
(3.20)

c3 =
−B +

√
A2 +B2√

A2(−B +
√
A2 +B2)

2
(3.21)

c4 =
A√

A2(−B +
√
A2 +B2)

2
(3.22)

FIGURE 3.4: Singlet and triplet energy states as a function of the magnetic field’s
magnitude. 2J is the energy difference between the states S−T0 and it is a function

of the distance between the two interactiong spins J(r) = J0e
−r/r0 .
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FIGURE 3.5: Eigenstates of the Hamiltonian H = A~I · ~sD + B(sDz + sAz), as a
function of the magnetic field’s magnitude when A = 1.

Magnetic field effects in the radical pair mechanism have been stud-
ied extensively and except from theory there are also some remarkable ex-
periments in the field. A relatively recent experiment on radical pairs [37]
showed a high sensitivity of the absorption in the magnitude and direction
of the magnetic field. They used an experimental configuration of two pairs
of Helmholtz coils in order to create a large area of homogeneous magnetic
field in the middle. They used carotenoid-porphyrin-fullerene radical pairs
[C•+−P −F •−] for the measurements where a pulsed probe laser at 532nm
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with power 5 mJ generates the reaction and a pump laser was used for the
absorption. The important results are depicted in the following plots. As
you can see, there is a dependence of the absorption on the magnitude of
the magnetic field. The blue results differ from the red in the delay time
after the activation of the reaction. Each dot in the plot indicates a measure-
ment and sequential measurement differ by 50ns.

FIGURE 3.6: Changes in the transient absorptionA(B0)−A(0) of [C•+−P−F •−] at
119K averaged over a 50ns period centered at 100ns and 400ns after its formation.

Maeda et.al., Nature , 453, 387-390 (15 May 2008)

FIGURE 3.7: The red dots show the dependence of the [C•+−P −F •−] absorption
on the direction of the magnetic field θ. The solid line is the best fit to a sin2θ form.
The blue dots are the signals detected when the polarization axis of the probe light
was z (that is, vertical). No θ-dependence is expected or seen.Errors bars, ±1 s.d.,

Maeda et.al., Nature , 453, 387-390 (15 May 2008)
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3.4 Conclusions-Discussion

In summary, we introduced the quantum information and entropy perspec-
tive in radical-pair reactions, which are a central paradigm in the new field
of quantum biology. This approach serves as a testbed for our understand-
ing of the fundamental quantum dynamics of the radical-pair mechanism,
ruling out the master equation traditionally used until now. For example,
considering the entropy of radical-pairs along the lines of [28] is not even
possible in the first place, since the density matrices introduced in [28] in
the attempt to consistently describe radical-pair quantum trajectories from
Haberkorn’s perspective have negative eigenvalues[29]. Finally, our ap-
proach also leads to a deeper insight of the metrological aspect of these
reactions, which realize a quantum magnetometer in a biochemical context,
revealing magnetic field effects conveyed by the information extracted dur-
ing the reaction.
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