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Μία Ιστορία Δύο Δέντρων: Μοντελοποίηση της Συνεισφοράς Κορυφαίων και 40 

Βασικών Δενδριτών στην Επιλεκτικότητα Διεύθυνσης Πυραμιδικών Νευρώνων 41 

των Στοιβάδων 2/3 του Πρωτοταγούς Οπτικού Φλοιού 42 

Περίληψη 43 

Οι πυραμιδικοί νευρώνες αποτελούν βασικό στοιχείο των φλοιικών περιοχών και δέχονται 44 

πληθώρα σημάτων από διάφορες περιοχές. Προσαγωγές συνάψεις άπτονται είτε του 45 

κορυφαίου είτε του βασικού δενδριτικού δένδρου, περιοχές με έντονη μορφολογική 46 

ποικιλομορφία. Και τα δύο δένδρα συνεισφέρουν διαφορικά στην απόκριση του σώματος του 47 

νευρώνα, αλλά οι ακριβείς ρόλοι τους παραμένουν ασαφείς. Ανατροφοδοτικά σήματα προς 48 

τους κορυφαίους δενδρίτες ολοκληρώνονται μαζικά στον κορυφαίο κορμό και μεταβαίνουν 49 

προς το σώμα. Οι βασικοί δενδρίτες, από την άλλη, εκφύονται άμεσα από το σώμα και δέχονται 50 

εμπροσθόδρομα σήματα που ολοκληρώνονται ημιανεξάρτητα. Άρα, τα δένδρα αυτά αποτελούν 51 

διακριτές ανατομικές και πιθανώς λειτουργικές υπομονάδες. Για να αξιολογήσουμε την 52 

ορθότητα του δευτέρου, μοντελοποιήσαμε το περίπλοκο μοτίβο απόκρισης ενός πυραμιδικού 53 

νευρώνα των στοιβάδων 2/3 του πρωτοταγούς οπτικού φλοιού σε χωρικά καλώς διατεταγμένα 54 

οπτικά ερεθίσματα. Ο στόχος μας ήταν η διαλεύκανση της συνεισφοράς του κάθε δένδρου στο 55 

μοτίβο απόκρισης του νευρώνα. Για την επίτευξη του στόχου αυτού, δημιουργήσαμε ένα 56 

μορφολογικά λεπτομερές μοντέλο ενός κυττάρου στο περιβάλλον προσομοιώσεων NEURON. Η 57 

ορθότητα του μοντέλου επαληθεύτηκε μέσω σύγκρισης της συμπεριφοράς του με δεδομένα 58 

ηλεκτροφυσιολογίας από in vivo και in vitro καταγραφές. Ερευνήσαμε το ρόλο της δενδριτικής 59 

ολοκλήρωσης στους βασικούς και κορυφαίους δενδρίτες, καθώς και τη συνεισφορά της στο 60 

σχηματισμό της νευρωνικής απόκρισης. Τα αποτελέσματα υποδεικνύουν ότι  σωματικά 61 
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δυναμικά ενέργειας παράγονται μόνο όταν σήματα εισόδου συμπίπτουν αμφιπλεύρως, καθώς 62 

μονόπλευρα ερεθίσματα γενικά δεν είναι ικανά να παράξουν επαρκή απόκριση του σώματος. 63 

Επιπρόσθετα, δεδομένου ότι υπάρχει ισοκατανομή των συνάψεων, οι αποκρίσης του νευρώνα 64 

φαίνεται να εκκινούνται από το κορυφαίο δένδρο, καθώς η παραγωγή αιχμών δυναμικού του 65 

προηγείται χρονικά αντίστοιχης δραστηριότητας του σώματος. Τελικά, η δραστηριότητα του 66 

βασικού δένδρου, ως εκπόλωση ή παραγωγή αιχμών, είναι απαραίτητη για την παραγωγή 67 

σωματικής δραστηριότητας, παρά το γεγονός ότι οι περισσότερες αιχμές δυναμικού του 68 

σώματος εκκινούνται από το κορυφαίο δένδρο. Το παρόν μοντέλο παρέχει στοιχεία υπερ 69 

διακριτών υπολογισμών που λαμβάνουν χώρα στα βασικά και κορυφαία δενδριτικά πεδία, και 70 

τονίζει το ρόλο σημάτων πρόβλεψης και προσοχής.  71 

A Tale of Two Trees: Modeling Apical and Basal Tree Contribution to L2/3 V1 72 

Pyramidal Cell Orientation Selectivity 73 

Abstract 74 

Pyramidal neurons, a mainstay of cortical regions, receive a plethora of inputs from various areas. 75 

Afferent synapses are received by either the apical or basal dendritic trees, which are 76 

morphologically distinct. Both trees differentially contribute to the somatic response, although 77 

their exact functional roles remain unclear. Feedback inputs to apical dendrites are integrated en 78 

masse at the apical trunk and propagate to the soma. Basal dendrites, on the other hand, branch 79 

out from the soma, with feedforward inputs being integrated semi-independently. Thus, these 80 

trees define distinct anatomical and possibly functional sub-units. To assess the latter, we 81 

modeled the complex response pattern of the L2/3 V1 pyramidal neuron to spatially tuned 82 
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synaptic input. Our goal was to elucidate the contribution of each tree to the response pattern 83 

of the neuron. Towards this goal, we created a morphologically detailed computational model of 84 

a single cell in the NEURON simulation environment. The model was validated against 85 

electrophysiological data recorded in vitro and in vivo. We investigated the role of dendritic 86 

integration at the basal and apical trees, and its contribution in shaping cell responses. Results 87 

indicate that somatic action potentials are generated only when input coincides bilaterally, as 88 

unilateral stimuli are generally unable to evoke an adequate response at the soma. In addition, 89 

given equal synaptic drive, the responses of the neuron appear to be initiated by the apical tree, 90 

as its dendritic spiking activity temporally precedes somatic spike-like activity. Finally, basal tree 91 

activity, in the form of either depolarization or spiking, is essential for producing somatic activity, 92 

despite the fact that most somatic spikes are apically-driven. This model provides evidence for 93 

distinct computations taking place in the basal and apical trees of the neuron, and emphasizes 94 

the role of predictive and attentional feedback input. 95 

 96 

1. Introduction 97 

1.1. The Visual System 98 

It is generally accepted that of all the senses humans possess, vision is the one that is most relied 99 

upon. As such, it is natural that in our attempts to understand sensory perception, the visual 100 

system is one of the most heavily examined. In broad terms, light enters our eyes through the 101 

pupil and is focused through the lens, which is warped into shape by the ciliary muscle. Reaching 102 

the retina, it passes through layers of ocular cells, reaching the photoreceptor layer. There, 103 
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photons excite the opsins that lie within the cones and rods, producing electrochemical impulses 104 

that travel outward through connections with bipolar cells to the ganglion cell layer, and from 105 

there, to the optic nerve. The two optic nerves travel through the cranium, with half of each 106 

nerve crossing over to the contralateral side at the optic chiasm. Reaching the lateral geniculate 107 

nucleus of the thalamus (LGN), the signal propagates through thalamocortical relay connections 108 

mostly to layer 4 (L4) of the primary visual cortex (V1) (Figure 1). The hierarchy of visual 109 

processing thereafter involves forwarding signals to L2/3 of V1, then L5, and afterwards to higher-110 

order cortices of the visual pathway (Salin & Bullier, 1995; Sun, Tan, Mensh, & Ji, 2016). The 111 

output of visual cortex neurons is clearly influenced by visual stimuli, and as such, there are areas 112 

of the visual space where the presence of a visual stimulus elicits a neuronal response. This space 113 

is the receptive field of the responding neuron. The receptive field can also be described in terms 114 

of retinal position; light stimulation of retinal areas will elicit a response from the neuron only if 115 

the area being stimulated is part of the retinal receptive field of the neuron.  116 

 117 

1.2. The Hubel & Wiesel Theory of Orientation Selectivity 118 

In 1962, David Hubel and Torsten Wiesel introduced their theory on the architecture of the visual 119 

cortex of the cat (Hubel & Wiesel, 1962). Two of the questions to be answered concerned the 120 

organization of the receptive fields of V1 neurons, as well as their responses to varying visual 121 

stimuli. To investigate this, the researchers anesthetized and prepared cats, inserting recording 122 

electrodes into the top layers of the V1 area (3 – 4 mm), while presenting light stimuli (either 123 

small dots or rod-shaped) to the contralateral eye of the animal.  124 
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 125 

It was already known at the time that retinal ganglion cells exhibited a particular receptive 126 

field organization conforming to one of two types: on-center and off-center (Kuffler, 1953). This 127 

same organization was observed in the LGN cells that relayed signals from the retina to V1. In 128 

general, light stimulation of retinal areas was observed to produce either excitation or inhibition 129 

in upstream neurons. These regions are thus named ON and OFF, respectively, in relation to their 130 

Figure 1. Simple sketch of the visual pathway in a human brain. Presentation of bar (1) or spot (2) light stimuli 
generates a response in V1 simple cells commensurate with the orientation or receptive field position of the stimulus, 
a phenomenon known as orientation selectivity in the first case. These receptive fields are subdivided into on-areas 
and off-areas (3) that produce excitation or inhibition in the neuron, respectively, when excited by light. Reproduced 
from Principles of Neural Science, 4th Edition (Kandel et al., 2000). 



6 
 

effects on a specific neuron. This nomenclature greatly facilitates the description of visual cortex 131 

receptive fields. 132 

While mapping the receptive fields of specific V1 cells, it was observed that they tended 133 

to conform to one of two categories: simple and complex. Simple cell receptive fields consisted 134 

of an elongated central ON area flanked by one (or two) OFF area(s), or vice versa (Figure 1). 135 

These simple cells could thus be labeled as on-center or off-center, similarly to LGN relay cells. 136 

Complex cells, on the other hand, conformed to no such stereotypical receptive field structure. 137 

Instead, they “responded to variously-shaped stationary or moving forms in a way that could not 138 

be predicted from maps made with small circular spots” (Hubel & Wiesel, 1962). In addition, even 139 

when ON and OFF regions could be identified, they did not have the same configuration or 140 

properties as these of simple cells.  141 

Another important observation was that the action potential generation rate (firing rate) 142 

of V1 neurons was modulated by the orientation of a rod-like light stimulus – a phenomenon now 143 

named orientation selectivity. These neurons exhibited a maximum firing rate for a particular, 144 

preferred orientation (Figure 1). At the same time, they exhibited a minimal response to stimuli 145 

of an orientation orthogonal to the preferred one. The preferred orientation of the neuron could 146 

be reliably predicted through the orientation of the ON region of its receptive field (Hubel & 147 

Wiesel, 1962). Given the responses of a neuron to stimuli of various orientations, we can 148 

generate the tuning curve of the neuron (see Figure 9 for an example), which allows the 149 

visualization of the response pattern of the cell by plotting the firing frequency against the 150 

corresponding stimulus orientations. 151 

Driven by this observation, Hubel and Wiesel proposed a theory to explain how simple 152 
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cell receptive fields arise. They hypothesized that simple cells receive input from LGN relay cells 153 

of the same type (on-center or off-center) whose retinal receptive fields lie along a well-defined 154 

orientation. As a result, the receptive field of the simple cell is a summation of the receptive fields 155 

of these LGN relay cells (Figure 2-A), and thus exhibits the structure that was experimentally 156 

observed: elongated ON/OFF areas flanked by one (or two) OFF/ON area(s). Similarly, the erratic 157 

receptive field structure of complex cells could be explained, Hubel and Wiesel argued, as 158 

consisting of the combined receptive fields of multiple simple cells, all of which project to this 159 

one complex cell (Figure 2-B).  160 

 161 

Figure 2. Feedforward models of simple (A) and complex (B) cells. ON regions noted with plus signs. OFF regions noted 162 
with triangle signs. Reproduced from Hubel & Wiesel, 1962. 163 

When comparing the visual system across different model species, however, a number of 164 

differences emerge. In rodents, orientation-selective cells akin to V1 simple cells have been 165 

discovered in the thalamus itself (Scholl, Tan, Corey, & Priebe, 2013), and direct thalamocortical 166 

projections to L1 of V1 have also been observed (Roth et al., 2016). In addition, rodent V1 167 

organization follows a dispersed salt-and-pepper motif, unlike the highly structured organization 168 

typical of higher mammals like primates and cats (Ohki & Reid, 2007). These differences are 169 

useful in understanding the function of the visual system when trying to infer general rules of 170 

function from information derived from different model animals. 171 
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1.3. Challenging the Hubel & Wiesel theory 172 

The theory of Hubel and Wiesel describes a feedforward model, as it explains the properties of 173 

receptive fields of V1 neurons solely in terms of well-arranged visual (feedforward) input to the 174 

V1 neurons. However, it fails to explain certain properties of V1 neurons, such as cross-175 

orientation suppression, contrast-invariant orientation tuning (Priebe, 2016) and more. Cross-176 

orientation suppression refers to the reduction in neuronal output when stimuli of both the 177 

preferred and orthogonal orientation are presented. Contrast-invariant orientation tuning is the 178 

robustness of orientation selectivity despite large changes in stimulus contrast (Priebe & Ferster, 179 

2012). Another overlooked factor is inhibition, which also plays a crucial role in shaping neuronal 180 

activity, both as a modulator of neuronal responses to stimulation (Haider, Häusser, & Carandini, 181 

2013), as well as a regulator of dendritic excitability and plasticity (Gidon & Segev, 2012). Given 182 

the recurrent nature of connections in the cortex, inhibitory regulation of pyramidal cell activity 183 

feeds back into the interneurons themselves, largely defining the activity of the network (Palmer, 184 

Murayama, & Larkum, 2012). It is thus evident that the simple feedforward model cannot fully 185 

explain the behavior of V1 neurons. 186 

More recently, a new type of model has been gaining traction; predictive coding. In this 187 

model, V1 neurons rely on feedforward as well as feedback input to produce their output. More 188 

Figure 3. Schematic representation of the predictive coding model. Reproduced from Rao & Ballard, 1999. 
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specifically, feedback connections from higher-order cortical areas carry a prediction signal that 189 

attempts to predict the activity of the lower-level area, and feedforward connections from lower-190 

order areas to higher-order areas carry a residual error signal, relaying the difference of the 191 

actual activity from the predicted activity to the neurons of the higher-order areas (Rao & Ballard, 192 

1999) (Figure 3). In this model, predictive input relies on “an efficient internal model of natural 193 

images” (Rao & Ballard, 1999), which is to say, Bayesian prior probabilities derived from the 194 

environment. This type of model, when simulated computationally using multi-layer artificial 195 

neural networks (ANNs), manages to independently exhibit the phenomenon of endstopping 196 

(Rao & Ballard, 1999); the suppression of neuronal response when the stimulus extends beyond 197 

its receptive field (Gilbert, 1977). As this behavior cannot be explained with the simple 198 

feedforward model, it provides evidence in support of predictive coding being in use in the visual 199 

cortex. This idea has been receiving more exposure lately, having been implicated in such 200 

phenomena as saliency maps (Spratling, 2012), the interpolation of vision in the retinal blind spot 201 

(Raman & Sarkar, 2016), as well as motion perception (Edwards, Vetter, McGruer, Petro, & 202 

Muckli, 2017). 203 

1.4. Current view of V1 204 

Currently, we know that in V1, layer 2 and 3 (L2/3) pyramidal neurons conform to a stereotypical 205 

morphology characterized by separate apical and basal dendritic arbors. The apical tree consists 206 

of a thick apical trunk that extends into L1 and splits into an apical tuft. The basal tree consists of 207 

numerous dendrites, the majority of which sprout directly from the base of the soma and can 208 

thus directly influence somatic output (Spruston, 2008). This morphological 209 
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compartmentalization of V1 neurons is reflected in the wiring diagram describing each 210 

compartment: L4 and L2/3 pyramidal neurons synapse with basal dendrites of L2/3 pyramidal 211 

neurons, providing them with feedforward input. The apical dendrites of the L2/3 pyramidal 212 

neurons instead receive signals from hierarchically superior areas of the cortex, supplying the 213 

neurons with feedback input (Coogan & Burkhalter, 1990; M. Larkum, 2013), as well as 214 

orientation-tuned thalamocortical input from L1 (Chen et al., 2013; Cruz-Martín et al., 2014; Jia, 215 

Rochefort, Chen, & Konnerth, 2010; Roth et al., 2015). These two input streams are transformed 216 

via the different properties of the two dendritic trees and are integrated at the soma, producing 217 

neuronal output.  The anatomical features of the apical and basal trees are also complemented 218 

by their distinct biophysical properties, documented as ion channels of different types and 219 

conductances along the respective trees (Cho et al., 2008). Further complicating input processing, 220 

in vitro studies have revealed multiple non-linear properties of synaptic integration, including 221 

active dendritic spikes (Häusser, Spruston, & Stuart, 2000; Spruston, 2008), the backpropagation 222 

of action potentials (G. J. Stuart & Sakmann, 1994; G. Stuart, Spruston, Sakmann, & Hausser, 223 

1997), dendritic properties of coincidence detection (M. E. Larkum, Zhu, & Sakmann, 1999; Shai, 224 

Anastassiou, Larkum, & Koch, 2015) and others. These dendritic non-linearities greatly augment 225 

the repertoire of single neuron computations (Poirazi, Brannon, & Mel, 2003; Silver, 2010). Thus, 226 

in a realistic theory of visual processing, it is essential to scrutinize the input structure along the 227 

distinct dendritic arbors.  228 

Few studies have undertaken the technically difficult task of measuring single spine and 229 

dendritic branch tuning properties in the visual cortex (Chen et al., 2013; Iacaruso, Gasler, & 230 

Hofer, 2017; Jia et al., 2010). Jia et al. (2010) showed that synaptic inputs of different orientation 231 
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preferences are distributed pseudorandomly throughout the dendritic tree. However, although 232 

dendrites receive functionally diverse inputs from extended regions of the visual space, spines 233 

with receptive fields similar to the soma are located more proximally on dendrites with low 234 

branch order. In contrast, spines with different receptive fields synapse on higher-order dendritic 235 

branches (Iacaruso et al., 2017). Most interestingly, Smith et al. (Smith, Smith, Branco, & Häusser, 236 

2013) suggested that dendritic spikes in the apical tuft of L2/3 V1 pyramidal neurons enhance 237 

orientation selectivity, thereby contributing to a behaviorally relevant computation. These 238 

seminal studies (Chen et al., 2013; Iacaruso et al., 2017; Jia et al., 2010; Smith et al., 2013) began 239 

to decipher how dendritic processes shape neuronal properties. 240 

Unfortunately, the numerous experimental and technical difficulties associated with the 241 

examination of dendritic activity (i.e. difficulties in long-term electrode placement, 242 

deconvolution of dendritic signal from somatic activity) has impeded rapid progress in the field.  243 

Thus, a viable alternative is turning to computational models, the domain of Computational 244 

Neuroscience. These models allow the researcher to rapidly search through the expansive 245 

parameter space of the model, locating conditions that produce interesting results. In 246 

computational experiments we can simulate nerve cells, or even networks of such, in an attempt 247 

to pinpoint promising hypotheses to be tested in vivo. In addition, this approach does not require 248 

any animals, special reagents or other materials, making it very inexpensive in comparison with 249 

in vivo and in vitro models.  250 

1.5. Research Goals 251 

In this work, we have created a computational model of a L2/3 V1 pyramidal cell as a biophysically 252 
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accurate and morphologically detailed reconstruction. After extensively validating the properties 253 

of this model, we have attempted to understand how somatic output is produced through the 254 

activity of the apical and basal dendritic trees. It is known that dendrites are capable of producing 255 

nonlinear input-output relations (dendritic nonlinearities) through the activity of their sodium, 256 

NMDA and calcium channels (Häusser et al., 2000; G. J. Stuart & Spruston, 2015), and that 257 

cooperativity between dendrites of the same tree facilitates action potential generation (Smith 258 

et al., 2013). Given that the pyramidal neurons of V1 respond to appropriate visual stimuli by 259 

producing action potentials, it is obvious that the combined activity of the apical and basal trees 260 

near the time of action potential generation must causally contribute to that event. Thus, our 261 

goal was to examine the activity of these neuronal compartments during a short time window 262 

before and after a spiking event in order to ascertain the causal triggers of neuronal activity in 263 

our L2/3 V1 pyramidal neuron model. To accomplish our goal, the model was subjected to 264 

extensive interventions aimed at modifying its input and biophysical properties in a carefully 265 

controlled manner. This allowed us to locate model configurations which, through their activity, 266 

betrayed the inner workings of the neuron. In doing so, we hoped to be able to identify the 267 

computations performed by these two distinct areas, and thus describe the modus operandi of 268 

the entire neuron. 269 

 270 

2. Methods 271 

2.1. Model Description 272 

The model used in this work was derived from the L2/3 V1 pyramidal cell model of Papoutsi et 273 
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al., (Papoutsi, Park, Ash, Smirnakis & Poirazi, 2017) created in the NEURON simulation 274 

environment (Hines & Carnevale, 2001). It is a morphologically detailed reconstruction, featuring 275 

43 apical dendrites (IDs A0 - A42), 7 basal dendrites (IDs B0 - B6) and an axon (Figure 4). As the 276 

model makes use of a variety of passive and active mechanisms (Tables 1-4), all 277 

electrophysiological properties were also validated against experimental data (Papoutsi et al., 278 

2017). 279 

 280 

Figure 4. Schematic of the L2/3 V1 pyramidal cell model. Compartments are annotated with their IDs. Blue: Soma. 
Red: Basal dendrites. Black: Apical dendrites. Green: Axon. 
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Compartment 
Type 

Passive/Active Mechanisms Synaptic Mechanisms 

Soma Hodgkin/Huxley voltage-gated Na+ channels 
Hodgkin/Huxley voltage-gated K+ channels 
Muscarinic voltage-gated K+ channels 
A-Type voltage-gated K+ channels 
T-Type Ca++ channels 
High voltage activated (HVA) Ca++ channels 
Calcium-dependent K+ channels 
Active ATP Ca++ pumps 

GABAA  (background-driven) 

Basal 
Dendrites 

AMPA (background-driven) 
NMDA (background-driven) 
GABAA (background-driven) 
AMPA (stimulus-driven) 
NMDA (stimulus-driven) 
GABAA (stimulus-driven) 

Apical 

Dendrites 

Table 1. Outline of passive, active and synaptic mechanisms present in the model neuron. 281 

 282 

Conductance 
(mS/cm2) 

Soma Apical Basal 

gNa 0.505 0.303 0.303 

gKdr 0.05 1.5*10-3 1.5*10-3 

gKm 2.8*10-3 1.27*10-3 1.27*10-3 

gA 5.4 Diameter ≤ 0.8 μm: 108 

Diameter > 0.8 μm: 10.8 
Diameter ≤ 0.8 μm: 108 

Diameter > 0.8 μm: 10.8 

gT 0.03 
x ≤ 260 μm: 
0.029*sin(0.009*x+0.88) 
x > 260μm: 0.012 

0.03+6*10-5*x 

gHVA  0.05*10-3 
x ≤ 260 μm: 
0.049*10-3*sin(0.009*x+0.88) 
x > 260μm: 0.02*10-3 

0.05*10-3+10-7*x 

gKCa 2.1*10-3 2.1*10-3 2.1*10-3 

Table 2. Outline of membrane mechanism conductances (not synaptic). Reproduced from Papoutsi et al., 2017. 283 

 284 

 Model Cho et al., 2010  

RMP, mV -79 -78.56 ± 1.34 

IR, MΩ 123.6 125.2 ± 8.2 

τ, ms 17.3 16 ± 0.7 

AP amplitude, mV 66.1 67.8 ± 1.8 

AP threshold, mV -41.8 -37.7 ± 1.3 

AHP, mV 17.9 13.3 ± 0.5 

P-T time, ms 38.6 55.3 ± 2.7 

AP adaptation 1.16 1.18 ± 0.02 

Table 3. Outline of model electrophysiological properties. RMP: resting membrane potential, IR: Input Resistance 285 
measured at hyperpolarizing current (-0.04 nA), AP: action potential, AHP: after hyperpolarization measured at 286 
depolarizing current (0.16 nA), P-T peak-trough. Reproduced from Papoutsi et al., 2017. 287 

 288 
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 Conductance (nS) τ1, ms τ2, ms 

NMDA 1.15 2 30 

AMPA 0.84 0.1 2.5 

GABAA 1.25 0.2 1.4 

Table 4. Outline of synaptic mechanism conductances and time constants. Reproduced from Papoutsi et al., 2017. 289 

 290 

The model features both excitatory and inhibitory synaptic input. The first type is subdivided into 291 

background-driven (noise) and stimulus-driven, with the latter subdivision consisting of 292 

orientation-tuned synapses. Inhibitory synapses are modeled solely as background-driven. 293 

Synaptic input to the neuron is distributed uniformly on the target compartments using a density 294 

of 2 synapses per μm (DeFelipe & Fariñas, 1992; Schuz & Palm, 1989). Neurons with identical 295 

structural morphology but different patterns of synaptic distribution and/or input spike trains 296 

can be simulated by changing the neuron ID or the simulation ID respectively, as the random 297 

number generator seed used to produce these features is a function of the aforementioned IDs. 298 

Activation of synapses occurs via pseudo-randomly generated Poisson spike trains. Background-299 

driven and stimulus-driven synapses feature different activation frequencies, with the frequency 300 

of the latter also varying as a function of synaptic orientation preference. 301 

Orientation preference may be present on three levels: synaptic, dendritic and neuronal.  302 

The effect of single synapse orientation preference is explicitly modeled as an orientation weight 303 

vector biased towards a predefined mean orientation (μpref), which factors into the activation 304 

frequency of afferent stimulus-driven, orientation-tuned synapses. Thus, each synapse is 305 

assigned an orientation “tag”, increasing the synaptic weight for stimuli of that orientation. 306 

Dendritic “tags” are then distributed to all synapses of each dendritic tree using a Gaussian 307 

probability density function wrapped around the unit circle (Figure 5). As a result, the dendritic 308 
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orientation preference distribution is biased towards the chosen mean orientation preference 309 

for each tree and features a nonzero width as a result of the standard deviation of the distribution 310 

(Figure 6). The apical and basal dendritic arbors can have different mean orientation preferences, 311 

with their difference being tuning disparity (Δ). Naturally, neuronal orientation preference 312 

Figure 5. Wrapped Gaussian distribution, used to allocate synaptic tags to all synapses. W: Standard deviation 
(tuning width). s: Synaptic orientation preference (tag). b: Mean of the distribution (preferred orientation). k: 
Circularization term.  

Figure 6. Polar plots of synaptic tag distribution onto dendritic arbors. Note that each dendrite can have a wide 
array of synaptic tags. 
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emerges through the combinatory effect of all synaptic and dendritic orientation preferences, 313 

without requiring explicit, ad hoc modeling.  314 

The proportions of excitatory and inhibitory synapses to the apical and basal tree can 315 

follow one of two different configurations. Initial synapse count distribution was 40% apical to 316 

60% basal, in adherence with experimental data (DeFelipe & Fariñas, 1992). A modified version 317 

of the model is also used, with a distribution of 50% to both trees, so as to investigate the effects 318 

of morphology on visual processing separately from those produced from input structure. The 319 

amount of inhibition to the soma was the same in both configurations, at 7% of total inhibitory 320 

input. The model can thus be used in either of two configurations of synaptic distribution – even 321 

(excitation: 50% apical, 50% basal; inhibition: 46.5% apical, 46.5% basal, 7% soma) and biased 322 

(excitation: 40% apical, 60% basal; inhibition: 33% apical, 60% basal, 7% soma). Unless noted 323 

otherwise, the even distribution is used in simulations.  324 

 325 

2.2. Model Manipulations 326 

A series of procedures were implemented to facilitate alteration of model parameters, allowing 327 

for the performance of simulation experiments under multiple different sets of conditions: 328 

(1) Sodium (channel) blockage: Used to selectively nullify sodium channel conductance (gNa) in a 329 

designated compartment. Eliminates action potentials when applied at the soma, allowing for 330 

dendritic voltage recordings free of back-propagating action potentials. 331 

(2) Sodium channel weighting: Used to increase or decrease sodium channel conductance (gNa) 332 

of all dendrites on the apical and/or basal tree. Achieved by multiplying the corresponding 333 

conductance values with a pre-defined weight factor for the apical and/or basal tree. 334 
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(3) Synaptic silencing: Used to selectively nullify synaptic mechanism conductances 335 

(gAMPA/gNMDA/gGABAA) in a designated compartment.  336 

(4) Input manipulation: Used to selectively de-activate any and all types of input: excitatory 337 

stimulus-driven, excitatory background-driven, inhibitory background-driven. 338 

 339 

2.3. Recording Information 340 

Unless noted otherwise, all recordings of model neuron output (voltage/current) were obtained 341 

at a sampling rate of 40 KHz (0.025 ms interval between data points). All data points are products 342 

of the recording. No interpolation was used to generate additional data points. 343 

 344 

2.4. Simulation Protocols  345 

The following simulation protocols were computationally implemented for validation and 346 

simulation experiment purposes:  347 

(1) Paired-pulse protocol: Used for validation of dendritic non-linearities. Following complete 348 

synaptic silencing and sodium block of the entire model neuron excluding the dendritic 349 

compartment under investigation, a variable number of clustered (i.e. same attachment point on 350 

the target dendrite) excitatory synapses on the compartment are simultaneously activated twice, 351 

with a 20 ms interval (50 Hz activation frequency). Voltage at the midpoint was recorded for each 352 

dendrite examined.  353 

(2) Iterative paired-pulse protocol: Used to evaluate dendritic non-linearities. This protocol is 354 

similar to the paired-pulse protocol described previously, with the exception that afferent 355 
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synapses increase in number from iteration to iteration, from 1 to 100 in steps of 1. We evaluated 356 

non-linear behavior caused by sodium and NMDA spikes separately. To achieve the latter, we 357 

blocked sodium channels on the selected dendrite during the protocol, allowing only AMPA and 358 

NMDA currents to act upon dendritic potential.  359 

(3) Regular stimulation protocol: Using either the even or biased model configuration, the 360 

operation of the neuron is simulated for 2500 ms (2.5 s), with oriented stimulus onset at 500 ms 361 

(0.5 s). Voltage and/or current recordings can be obtained from any and all compartments, 362 

generally from their midpoint. No additional protocols are applied, with the exception of blocking 363 

somatic sodium in the cases where dendritic recordings are required. 364 

(4) Orientation tuning validation protocol: Using the regular stimulation protocol, we 365 

independently simulate 10 neurons using 10 different simulation IDs for each one, resulting in 366 

100 separate simulation categories. For each category, stimuli of 19 different orientations (0° to 367 

180° in steps of 10°) are presented in separate simulations. Using the resulting data, we can 368 

derive the maximum and minimum firing rates of the model cell, comparing them to ones 369 

obtained from live cell recordings. By adjusting the input resistance of the neuron, as well as the 370 

frequency of synaptic activation, we constrain the minimum and maximum firing rates so as to 371 

agree with experimental data. 372 

(5) Disparity protocol: Akin to the orientation tuning validation protocol, we independently 373 

simulate 10 neurons with 10 simulation IDs for each one, for 100 separate simulations. We also 374 

present stimuli of 4 different orientations (0° to 90° in steps of 30°). To evaluate the response of 375 

the neuron when there the orientation preference of the apical and basal trees is disparate, we 376 

keep the mean apical tree orientation preference fixed at 0°, and set the mean basal tree 377 
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orientation preference to any one of 10 different values (0° to 90° in steps of 10°). Thus, we 378 

introduce a degree of orientation tuning disparity in the model, ranging from 0° to 90°. Then, we 379 

derive the mean orientation preference of the neuron for each degree of disparity. Should the 380 

orientation preference of the neuron be closer to 0° (apical mean orientation preference) than 381 

to the mean orientation preference of the basal tree, then the apical tree dominates. Otherwise, 382 

the basal tree dominates. To easily visualize this fact, we plot neuronal responses per degree of 383 

disparity. The main diagonal of this plot represents the threshold for apical and basal dominance. 384 

Responses above the diagonal represent basal dominance, as the neuron favors orientations 385 

closer to the basal orientation preference (which will most often be greater than 0°, and thus 386 

higher on the y-axis). On the other hand, responses below the diagonal represent apical 387 

dominance, as the neuron tends to favor orientations closer to 0° regardless of basal orientation 388 

preference. 389 

(6) Causal intervention protocol: Using fixed neuron and simulation IDs, prior knowledge of action 390 

potential occurrence is obtained via the regular stimulation protocol, and the exact timing of all 391 

action potentials is recorded. Afterwards, the protocol is similar to the regular stimulation 392 

protocol with somatic sodium blockage, until a time point ti before a somatic action potential is 393 

to occur. At that time, sodium is blocked on either the apical or basal tree dendrites in two 394 

separate simulations. The time point ti is defined as the time of somatic spike occurrence, offset 395 

towards zero by 1 ms plus the temporal distance of the earliest dendritic spike (of the tree to be 396 

blocked) to the somatic spike timing, limited to a time window of 3 ms prior to the somatic spike 397 



21 
 

(Figure 7). This protocol is repeated for all pre-recorded action potentials. Voltage recordings are 398 

obtained from all 51 compartments of the neuron. The ensuing traces are analyzed to ascertain 399 

whether the somatic action potential under investigation was rendered extinct or survived the 400 

manipulation. Depending on the result of this protocol, all action potentials can be classified in 401 

one of four different categories, based on the most likely causal instigator (Figure 8): apically-402 

driven, basally-driven, bistable and unstable. Apically-driven spikes are somatic spikes produced 403 

by apical tree dendritic spiking activity. Similarly, basally-driven spikes are somatic spikes 404 

produced by basal tree dendritic spiking. Bistable spikes are somatic spikes that cannot be 405 

rendered extinct by removing either one of the two dendritic components. Unstable spikes, 406 

finally, are somatic spikes that are lost when either of the two dendritic arbors is silenced. 407 

Figure 7. Schematic description of ti. The timepoint ts is the time of somatic spike occurrence. Timepoint td represents 

the occurrence of the earlies dendritic spike preceding the somatic spike, but limited to within 3 ms of somatic spike 
occurrence. 
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 408 

2.5. Causal Classification  409 

We executed regular stimulation experiments with somatic sodium blockage, using both the even 410 

and biased distribution models while also applying a weight factor on the sodium channel 411 

conductance of the basal tree dendrites. For the even model, the weight factor corresponded to 412 

an effective increase of basal sodium conductance by 0 to 20%, in steps of 1%. For the biased 413 

model, the weight factor had the opposite effect, reducing basal sodium conductance by 0 to 414 

20% in steps of 1%. We then used two approaches in an attempt to classify causal triggers of 415 

neuronal output: 416 

(1) Simple Classification Algorithm: This algorithm was created to coarsely label the data obtained 417 

by the experiments outlined above, in an attempt to later use the resulting dataset to train a 418 

Machine Learning classifier that would then accurately classify the causal triggers of neuronal 419 

output. It takes as input 51 voltage traces generated by the simulated neuron. Afterwards, it 420 

evaluates the percentage of apical and basal dendrites that exhibited a dendritic sodium spike 421 

Block apical Na
+

 

Block basal Na
+

 

For each somatic spike: 

…and separately 

Figure 8. Causal Intervention protocol description, alongside the types of spikes that can be thus inferred. 
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shortly before the soma (3 ms) and compares the two percentages. Whichever dendritic tree had 422 

a greater percentage would be labeled as the causal trigger. The calculated apical and basal 423 

percentages corresponded to the posterior probability of any given apical or basal dendrite 424 

exhibiting a dendritic spike before the corresponding somatic spike. Using this reasoning, we 425 

designed an evaluation function that took as input the output of the simple classifier. It would 426 

then calculate the logarithm of the quotient of the returned percentages – henceforth “log-427 

likelihood”. Comparing it to a significance level α, it determined whether the absolute value of 428 

the log-likelihood of each sample in the data was sufficient to warrant labeling it with high 429 

confidence. In our case, in order to completely exclude ambiguous data (i.e. somatic spikes that 430 

were temporally preceded by a mix of apical and basal dendritic spikes), we chose to exclude all 431 

samples for which the absolute value of the log-likelihood was finite. This excluded all ambiguous 432 

data while still leaving a sufficiently large number of samples for training. In the end, the 433 

evaluation function returned two subsets of data: trivially classifiable data, labeled with high 434 

confidence, and trivially unclassifiable data, labeled with low confidence. The former consists of 435 

somatic spikes that were preceded by dendritic spikes from only one tree (single tree spiking 436 

data), while the latter category contains somatic spikes that were preceded by a mix of dendritic 437 

spikes from both trees (coincident spiking data). 438 

(2) Causal Classification Algorithm: Machine Learning algorithms were used in conjunction with 439 

the high-confidence data labeled using the Simple Classification Algorithm and verified via causal 440 

intervention experiments (n = 1729) as well as with the low-confidence data labeled solely using 441 

the results of causal intervention experiments (n = 659). To simplify classification by rendering it 442 

binary, samples of unstable and bistable spikes (n = 69 and n = 121, respectively) were excluded. 443 
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In order to ensure selection of the best model possible, we used a 10-times Repeated, Stratified, 444 

Nested 10-Fold Cross-Validation (RS-NCV) protocol (Tsamardinos, Rakhshani, & Lagani, 2015) 445 

that allows us to test the stability of the chosen model, as well as account for non-uniform class 446 

priors. Feature extraction and transformation was required to reduce data dimensionality, as the 447 

original dimensions of the dataset used were more than 5 ∗ 106. For every recorded spike, we 448 

extracted the timing difference of each dendritic spike to the somatic spike (50 features), the 449 

absolute timing of each dendritic spike (50 features), the max depolarization amplitude (51 450 

features) and the total area under the compartment voltage trace (51 features). The soma was 451 

not included in the first two features, as the corresponding values bore no information (zero 452 

variance). We scaled the extracted features using min-max normalization applied on all members 453 

of each feature category on a per-sample basis, to avoid carrying information across samples 454 

through normalization. Classification accuracy and area under the Receiver Operating 455 

Characteristic curve (auROC) were selected as model performance metrics. To ensure an 456 

adequate level of performance, the values of these metrics for the selected model were 457 

compared to those of a trivial classifier, which always classifies all samples to the most populated 458 

class (apically-driven). The protocol evaluated and selected among the following classifiers: 459 

Random Forests (RF), Naïve Bayes (NB), K-Nearest Neighbors (KNN), and Support Vector 460 

Machines (SVM). A narrow set of hyperparameters were provided for each classifier in an 461 

attempt to further optimize performance (Table 5). NB prior class probabilities were not selected 462 

for optimization, as attempts to use other probability distributions (i.e. uniform) drastically 463 

reduced the performance of the classifier. We avoided Artificial Neural Networks (ANN) because 464 

of the difficulties involved in using them in a Cross-Validation protocol (Tsamardinos et al., 2015). 465 
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RS-NCV was preferred over the Tibshirani and Tibshirani method (TT) (Tibshirani & Tibshirani, 466 

2009) because of its tendency to underestimate the true performance of the model, giving it a 467 

more conservative nature (Tsamardinos et al., 2015), which is desirable in this type of analysis, 468 

where class labels are relatively uncertain. 469 

Classifier Hyperparameters Possible Values 

RF Number of trees, Minimum leaf node size 51, [1,2,3,4,5] 

NB Prior class probabilities Empirically calculated 

KNN Number of neighbors (K) [1,2,3,4,5,6,7,8,9,10] 

SVM Kernel function Linear, Polynomial, Gaussian 

Table 5. Classifier models and hyperparameter sets used in the RS-NCV protocol. 470 

 471 

2.6. Data Acquisition and Analysis 472 

All simulations were performed on the High-Performance Computational Cluster at IMBB-FORTH, 473 

featuring 312 high-performance CPU cores and 1,150 GB of RAM, through the NEURON 474 

simulation environment (Hines & Carnevale, 2001). Data analysis was performed on MATLAB 475 

R2017a (Mathworks Inc.), using publicly available libraries as well as custom-made scripts and 476 

functions. These include: 477 

(1) Dendritic Spike Detection: Presence of sodium spikes in data obtained from paired-pulse 478 

protocol experiments was verified via a simple spike detection algorithm that identified short-479 

lived (around 1 ms) depolarizations exceeding a -20 mV threshold. Identification of NMDA spikes 480 

was implemented via an algorithm that located inflection points on the voltage trace. We 481 

exploited the characteristic shape of the NMDA spike and calculated the number of inflection 482 

points immediately after the second pulse. Excitatory Post-Synaptic Potentials (EPSPs) and 483 

sodium spikes only have one inflection point, as the exponential decay in membrane voltage 484 

continues up to the resting potential. As the NMDA spike does not conform to this description, 485 
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and instead exhibits a voltage plateau, 2 or more inflection points indicate an NMDA spike. 486 

Inflection points were discovered by taking the points where the second derivative of the voltage 487 

trace is zero. As our voltage measurements are not continuous, we are unlikely to encounter a 488 

measurement point for which the second derivative is exactly zero. Thus, we assume an inflection 489 

point exists at some point Pn if and only if (Pn-1 ∙ Pn+1) < 0, where Pn-1 and Pn+1 refer to existing 490 

points in the second derivative of the voltage trace, immediately preceding and anteceding the 491 

theorized inflection point. 492 

(2) Quantification of Dendritic Nonlinearities: Using data from iterative paired-pulse protocol 493 

experiments, the neuronal output signal is extracted. The selected signal is usually the maximum 494 

amplitude of depolarization, although the width of the excitatory post-synaptic potential (EPSP) 495 

at half amplitude is used in cases of sodium blockage. A linear input-output curve is then 496 

generated, extrapolating from the response of the dendrite to a single synaptic input. This curve 497 

is compared to the actual response of the dendrite to increasing input in an “Expected vs. Actual” 498 

plot, thus characterizing the dendrite as sub-linear or supra-linear. The non-linear behavior of the 499 

dendrites was quantified using the Nonlinearity Relative to Linear Extrapolation (NRLE) metric 500 

(Behabadi, Polsky, Jadi, Schiller, & Mel, 2012), which is defined as the maximum ratio of actual 501 

to expected neuronal output signal. An NRLE value of less than 1 denotes a sub-linear dendrite. 502 

NRLE of exactly 1 indicates a linear dendrite. NRLE values over 1 characterize a dendrite as supra-503 

linear. The non-linearity threshold of all dendrites was also calculated, measured as the minimum 504 

number of synapses required to elicit the corresponding electrogenic event (sodium or NMDA 505 

dendritic spike). 506 

 507 
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3. Results 508 

3.1. Model Validation 509 

Constraining our model is a crucial step that ensures validity of results. This involves the 510 

replication of experimentally-derived response values using permissible alterations in free model 511 

parameters. In our case, we needed to ensure our model cell responded to stimuli of a preferred 512 

orientation with a firing rate of approximately 1.50 Hz, and to orthogonal stimuli with a firing rate 513 

of approximately 0.26 Hz, on average (Adesnik, Bruns, Taniguchi, Huang, & Scanziani, 2012).  We 514 

used an orientation tuning validation protocol (see “Methods”) to minimize model bias and 515 

ensure robustness of results. The ensuing orientation tuning curve resembles a Normal 516 

(Gaussian) distribution with a mean of 0° and a standard deviation of 30° (Figure 9). 517 

 518 

 519 

 520 

Figure 9. Orientation tuning curve of the model neuron. Frequency is averaged across 10 repetitions for each 
orientation. Error bars: Standard error of the mean. 
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3.2. Evaluation of Dendritic Non-Linearities 521 

To ensure the highest possible degree of biophysical accuracy, we need to ensure that our 522 

dendrites exhibit electrogenic activity – dendritic spikes. Hence, we need to verify that both 523 

sodium and NMDA spikes are present in our model, thus rendering our dendrites capable of 524 

nonlinear integration of synaptic input. To that end, we used a paired-pulse stimulation protocol 525 

(see “Methods”). We find that both sodium and NMDA spikes are present in our model (Figure 526 

10), but the synapse count required to elicit such events in each dendrite varies. 527 

 528 

 529 

Figure 10. Sodium and NMDA spike samples as exhibited by the model neuron, recorded from apical dendrite 35 (A35) 530 
(top), compared to experimental recordings (bottom) reproduced from Stuart & Spruston, 2015. 531 

 532 

Next, we systematically examined all voltage traces from each dendrite, attempting to 533 

find the threshold for each type of dendritic nonlinearity as the minimum number of synapses 534 
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required to elicit a spiking event of the corresponding type – either a sodium spike or an NMDA 535 

spike (Figure 11, Supplementary Figure 3). Following that, we separated the dendrites into two 536 

broad categories: low-threshold (i.e. apical 35, basal 5) and high-threshold (i.e. apical 1, basal 0), 537 

with the cutoff arbitrarily set at 50 synapses, half of the examined maximum number. 538 

In order to ascertain whether electrogenic activity allows the dendrites to perform 539 

nonlinear integration of synaptic input, we use an iterative paired pulse protocol (see 540 

“Methods”). To compare the output of each dendrite to the synaptic input received, we used the 541 

“Expected vs. Actual” plot (see “Methods”), with the maximum postsynaptic depolarization 542 

amplitude acting as the output signal (Figure 12, Supplementary Figures 2-A and 2-B). However, 543 

while the expected vs. actual plot clearly highlights dendritic non-linearities in the control case, 544 

it fails to give useful information when sodium channels are blocked. This can be amended by 545 

choosing a different type of output signal - in our case, we selected the duration of the EPSP 546 

following the second pulse, measured as the width at half maximum EPSP amplitude. By plotting 547 

this metric against the number of synapses, the NMDA-derived dendritic nonlinearities can be 548 

qualitatively observed (Figure 13).  549 
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Figure 11. Number of synapses required to elicit sodium (blue) and NMDA (green) spikes for basal (A) and apical (B) 550 
dendrites. Asterisks denote a dendrite that did not exhibit that type of non-linearity for up to 100 simultaneously 551 
activated afferent synapses. 552 
 553 

 554 

 555 

 556 

 557 

 558 

 559 

 560 

Figure 12. Expected vs Actual plot for basal dendrite 5 (B5). Supralinear behavior is lost if sodium channel conductance is 
nullified (sodium block). 
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Finally, we wanted to quantitatively characterize the nonlinear behavior of each dendrite. 561 

To do this, we used the Nonlinearity Relative to Linear Extrapolation (NRLE) metric (see 562 

“Methods”). We used the total area under the voltage trace as the output signal, measured both 563 

from the dendrite as well as from the soma. Nevertheless, many types of output signals can be 564 

used to derive an NRLE value for each dendrite. Results indicate that the dendrites of the model 565 

neuron all exhibit supra-linear input-output relations, as indicated by their NRLE values exceeding 566 

1 (Figure 14). 567 

Figure 13. NMDA-derived EPSP duration at half max amplitude allows visualization of NMDA non-linear behavior. Each 
trace represents the behavior of an individual apical (top) or basal (bottom) dendritic branch. 
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  568 

Figure 14. Frequency histogram of NRLE values for apical (red) and basal (black) dendrites. Values of NRLE are generally 569 
lower for apical dendrites. 570 

3.3. Dendritic Contribution to Orientation Selectivity 571 

Having thoroughly characterized dendritic nonlinearities in our model, we want to determine the 572 

roles of the apical and basal trees in shaping the orientation preference of the neuron. To achieve 573 

this, we perform a regular stimulation protocol simulation (see “Methods”), with sodium 574 

channels at the soma being blocked, preventing backpropagating action potentials from 575 

interfering with dendritic recordings. To investigate the role of the dendritic trees, we perform  576 

four such simulations, in which either the apical tree, basal tree, both trees (negative control) or 577 

none of the trees (positive control) have their sodium channels blocked. 578 

We observe that somatic spiking activity seems to occur when both the apical and basal 579 

tree exhibit dendritic sodium spikes or depolarization within a brief time window prior to the 580 

somatic spike - a bilateral input coincidence (Figure 15-A). Interestingly, it appears that the apical 581 

dendrites drive the somatic spiking activity, as their activity temporally precedes both the 582 

somatic as well as the basal activity (Figure 15-A, detail). 583 
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 584 

Low Nonlinearity Threshold (<50 synapses): Apical 35, Basal 5 

High Nonlinearity Threshold (>50 synapses): Apical 1, Basal 0 

A 

B 

C 

D 

Figure 15. Dendritic contribution to neuronal output. A: Somatic sodium channels are blocked. Coincident spiking 
(bilateral input coincidence) of the apical and basal dendrites appears to produce somatic spiking. Detail (asterisk): 
apical sodium spikes temporally precede basal and somatic spikes. B: All sodium channels blocked. No activity. C: 
Somatic and basal sodium channels blocked. Apical dendrites still exhibit spiking activity, and somatic spiking is 
reduced, but not extinct. D: Somatic and apical sodium channels blocked. Basal dendrites still exhibit spiking activity, 
but both apical and somatic spiking is completely extinct. 
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Furthermore, if the apical tree sodium channels are blocked, the basal tree is completely unable 585 

to elicit spiking activity in the soma, and basal spiking is reduced (Figure 15-D). Inversely, if the 586 

basal tree is likewise treated, the apical tree is still capable of producing some spiking activity in 587 

the soma, albeit greatly reduced. It also suffers a reduction of its own spiking activity (Figure 15-588 

C). These results, however, are not sufficient evidence from which to draw a conclusion. 589 

 590 

3.4. Orientation Tuning Dominance 591 

To identify whether the effect of dendritic tree tuning on somatic orientation selectivity is biased 592 

towards a specific dendritic tree, we used a disparity protocol and analyzed the resulting 593 

orientation preference data (see “Methods”). When using the even model, neuronal tuning 594 

favors the apical tree orientation preference. However, this trend is reversed in the biased model, 595 

with the neuron exhibiting basal dominance (Figure 14). 596 

  597 

Figure 16. Shift in neuronal orientation preference with increasing apical-basal tuning disparity. In the even input 
distribution model, orientation preference is dictated by the apical tree. Trend reverses if using the biased model, with 
the basal tree now dictating neuronal orientation preference. Error bars: Standard error of the mean (SEM). 
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To differentiate between synaptic count and synaptic potency as determinants of dendritic 598 

dominance, we changed sodium conductance on the basal tree dendrites. When increasing 599 

sodium conductance in the basal tree by 20% using the even model, the curve shifts towards 600 

basal dominance. Inversely, a 20% decrease in basal sodium conductance in the biased model 601 

shifts the curve towards apical dominance (Supplementary Figure 2). This indicates that overall 602 

synaptic effectiveness, rather than synaptic count, is the deciding factor in shaping orientation 603 

tuning on a neuronal level. 604 

 605 

3.5. Causal Interventions 606 

In order to elucidate the exact contribution of the two dendritic arbors to somatic output, we 607 

needed to be able to clearly label each occurrence of an action potential (or suprathreshold 608 

somatic depolarization, in the case of somatic sodium blockage) in terms of causal instigation. As 609 

such, we used a causal classification protocol for simulations (see “Methods”), obtaining a large 610 

amount of spiking data from both the even and biased model configurations (ntotal = 2388, neven 611 

= 872, nbias = 1516). This data was used in conjunction with a causal intervention protocol (see 612 

“Methods”) in order to ascertain the most probable causal trigger of recorded somatic spikes. 613 

We find that the vast majority of somatic spikes are causally instigated by apical tree dendritic 614 

spikes (even: 79.12%; biased: 81.47%), which is surprising, considering that feedforward visual 615 
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input reaches mostly the basal tree, with few afferents reaching distal apical dendrites. However, 616 

non-zero percentages of basally-driven (even: 18.24%; biased: 7.52%), unstable (even: 0.92%; 617 

biased: 4.02%) and bistable (even: 1.72%; biased: 6.99%) spikes exist as well (Figure 17).  618 

Control 

Apical Na
+

 block 

Basal Na
+

 block 

Figure 17. Classification of all somatic spikes, and sample recordings demonstrating causal intervention results, for 
both the even and biased models. Most spikes are apically-driven in both models. Rightmost set of recordings 
represent an instance of an apically-driven spike: First, the blue trace is recorded. Then, when apical sodium 
conductance is nullified (red trace), there is no somatic activity. Last, if basal sodium conductance is nullified, the 
amplitude of the spike changes, but not its timing.  
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We next used a simple classification algorithm (see “Methods”) in an effort to broadly 619 

separate spiking data into high-confidence and low-confidence sets (Figure 18), characterized by 620 

single-tree spiking and coincident spiking (on both trees), respectively. These datasets 621 

characterized somatic activity solely in terms of being apically-driven or basally-driven, ignoring 622 

the remaining two categories.  Then, we used the high-confidence data as a training set to train 623 

a Machine Learning model to classify causal triggers of neuronal activity in the low-confidence 624 

data, via an RS-NCV protocol (see “Methods”). Results indicated supra-trivial but still marginally 625 

improved performance (Accuracy: 0.8577 trivial, 0.7967 trained; auROC: 0.5 trivial, 0.6183 626 

trained) (Figure 19). Given that the true labels were known through the causal intervention 627 

experiments, we tried using the low-confidence data as the training set instead, testing on the 628 

remaining data. This resulted in classification performance that was notably supra-trivial in terms 629 

of auROC (Accuracy: 0.8816 trivial, 0.7698 trained; auROC: 0.5 trivial, 0.9052 trained), despite 630 

inferior accuracy (Figure 17). As auROC is a better metric of true performance, this indicates a 631 

Figure 18. Example sorted stack of traces from a low-confidence spike (left), and the sorted stack of traces after causal 
intervention that allows us to assign a label with high confidence regardless. 
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good level of performance in this classification task. However, our trivial classifier that always 632 

labels each sample as apically-driven has superior accuracy. The reason the trivial classification 633 

has such a high accuracy is merely because apically-driven spikes are overrepresented, leading 634 

to an accuracy that is equal to the fraction of apically-driven spikes in the dataset. Thus, accuracy 635 

is a misleading metric in this case. In cases where all outcomes have identical prior probabilities 636 

(equal amounts of each in the samples), accuracy is more reliable. 637 

 638 

  639 

 640 

 641 

 642 

 643 

 644 

4. Discussion 645 

Neuronal computation involves the spatiotemporal integration of disparate signals. It is well 646 

known that visual (feedforward) input reaches the basal tree of L2/3 V1 pyramidal neurons via 647 

afferent connections from L4 of V1 and the LGN. At the same time, attention- and prediction-648 

related signals are received by the apical tree of these neurons, propagated from higher-order 649 

cortical areas such as V2, V3, LM, PFC and others (Coogan & Burkhalter, 1990; M. Larkum, 2013). 650 

The combination of these different types of input with the non-linear integration characteristics 651 

B A 

Figure 19. Causal classification performance when training on single tree spiking data or coincident spiking data. A: 
accuracy and auROC for all cases. Trivial accuracy shown corresponds to testing on low-confidence data. B: ROC curves 
for all classifiers. Coincident spiking data offers the best performance as a training set. 
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shown to exist on a majority of dendrites (Hausser et al., 2000; Spruston, 2008) gives rise to a 652 

large spectrum of possible computations. In addition, it has been demonstrated that despite 653 

being fully capable of generating dendritic spikes, single dendrites are generally incapable of 654 

producing a significant somatic response (Smith et al., 2013). This would by necessity entail that 655 

multiple dendrites need to be activated in order to generate a spike at the soma, which in turn 656 

further expands the space of possible neuronal computations. 657 

In this work, we have attempted to delineate the dendritic constituents of neuronal 658 

computation in L2/3 of V1 pyramidal cells using a detailed computational model. Our primary 659 

goal was to identify the relative contribution of the two dendritic arbors to somatic output. 660 

Results indicated that apical tree dendritic spikes instigate somatic spiking in the vast majority of 661 

cases (Figure 15). Thus, we can surmise that neuronal output is primarily determined by 662 

predictive and attentional inputs. Meanwhile, however, we also find that the orientation 663 

preference of a model cell is a function of the synaptic efficacy of its dendritic arbors – by 664 

increasing either the number of stimulus-driven synapses on the basal tree (basal bias model) or 665 

their weight, the neuron follows the orientation preference of the basal tree. In the even 666 

distribution case, or when apical synaptic weights are increased, the neuron follows the apical 667 

tree orientation preference instead. These results indicate that even though most somatic spikes 668 

are instigated through apical tree dendritic spikes, they are also heavily influenced by basal tree 669 

activity, to the point that the overall orientation preference of the cell can follow what the basal 670 

tree dictates.  671 

Close examination of the performance results returned by our Machine Learning models 672 

reveals yet another interesting peculiarity. Comparing the model trained on high-confidence data 673 
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to the model trained on low-confidence data, there is a significant difference, with the latter 674 

being clearly superior in terms of auROC (see “Results”). This would mean that there is some sort 675 

of information content (Shannon information) in the low-confidence data that is missing from 676 

the high-confidence data. However, both datasets contain examples of apically- and basally-677 

driven somatic spikes, caused by apical and basal dendritic spikes, respectively. The only 678 

difference in these two datasets is that the latter consists of examples in which dendrites from 679 

both trees fire in close temporal proximity – coincident spiking. As such, the missing information 680 

content must lie within this dendritic spiking coincidence. Given that the dendrites in question 681 

belong to different trees, this points towards the existence of intra-tree dendritic cooperativity – 682 

a synergistic effect between apical and basal dendrites that exhibit dendritic spikes in relative 683 

synchrony. This inference is further supported by the fact that there exist unstable somatic spikes 684 

that become extinct when either of their dendritic components is lost.  685 

Finally, causal intervention results indicate that it is indeed possible to classify causal 686 

triggers of neuronal output in terms of dendritic origin. However, the task is complicated enough 687 

that our simple algorithm could not confidently classify any case exhibiting coincident dendritic 688 

spiking (see “Results”). Interestingly, given an adequate training set, we found that a Machine 689 

Learning model can be used to accurately discern the causal origins of neuronal activity. This 690 

opens up the possibility of using calcium imaging data from dendrites alongside such Machine 691 

Learning models to classify causal triggers of neuronal activity in vivo. Before that can happen, 692 

however, testing of this approach in simulated models using calcium signals rather than 693 

membrane voltage is needed. 694 

Driven by our observations, we hypothesize that somatic output is determined through a 695 
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form of coincidence detection we call bilateral input coincidence. The basal tree receives visual 696 

feedforward input, representing the information therein as a series of hyperpolarizations, 697 

depolarizations, and occasional dendritic spikes. Thus, visual input defines a basal “backdrop” of 698 

depolarizations that represents visual information. At the same time, predictive and attentional 699 

signals from higher-order cortices reach the apical tree of the neuron, causing the generation of 700 

dendritic spikes that propagate to the soma and are temporally summed with any concurrent 701 

basal depolarization. In the event that visual input is non-existent, or of a non-preferred 702 

orientation, the depolarization is minimal or zero. Thus, the apical dendritic spike will not be 703 

significantly augmented through summation and will fail to produce a somatic response in the 704 

vast majority of cases. If there is visual input, however, especially of an orientation matching the 705 

preferred orientation of the basal tree, the “backdrop” will include multiple sub-threshold 706 

depolarizations, perhaps even dendritic spikes. The apical dendritic spikes will thus be temporally 707 

summed with these depolarizations and will be more likely to generate a somatic action 708 

potential. As such, even though most somatic spikes will be generated through an apical tree 709 

dendritic spike, the cases in which this is possible in the first place will be dictated by the backdrop 710 

of depolarizations provided by the basal tree.  711 

Our hypothesis can also explain how L2/3 V1 pyramidal cells can assist in performing basic 712 

feature extraction from the visual input. It is obvious that the near-infinite amount of information 713 

contained in even the most rudimentary visual scene could never be fully represented using the 714 

finite space of the brain. As such, it is necessary for the visual system to extract salient features 715 

from the input and recombine them in such a way as to create an adequate representation of 716 

the true visual scene in the brain. This “simplification” of visual perception can be explained 717 
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through predictive coding (Rao & Ballard, 1999). Our hypothesis predicts that salient stimuli are 718 

either attended to or predicted in advance, so that the corresponding signals that reach the apical 719 

tree will “highlight” the appropriate parts of the “backdrop” generated by the visual input 720 

reaching the basal tree. This would result in a neuron that is activated only when specific features 721 

are present in its receptive field, rendering non-salient stimuli invisible. Such phenomena have 722 

been observed experimentally, and it has been indeed hypothesized that they are caused by the 723 

effects of attention, or lack thereof (Simons & Chabris, 1999). 724 

It has long been proposed (de-Wit, Machilsen, & Putzeys, 2010; Petro & Muckli, 2016; Rao 725 

& Ballard, 1999) that the visual cortex operates by relying heavily on predictive signals. In these 726 

predictive models, a linear stimulus that is perceived at the level of V2 would generate feedback 727 

signals from V2 to the corresponding pyramidal neurons in V1, causing them to generate action 728 

potentials in response to that stimulus, even if they had not originally perceived it. This can 729 

potentially explain phenomena such as the perception of a triangle in the negative space of the 730 

Kanisza illusion (Figure 19), which would therefore operate by the perception of an existing line 731 

segment propagating from V1 to higher-order areas, which would in turn activate V1 neurons 732 

along the extrapolated direction of the line, thus creating the perception of a linear stimulus 733 

where there is none. Simply put, the visual system “expects” a line to be present where none 734 

exists, and thus one is perceived. 735 
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 736 

 737 

However, multiple questions still remain unanswered. First of all, the exact nature of the 738 

attentional and predictive signals received by the apical tree remains to be demystified. 739 

Separating one from the other, and clearly defining the origin and function of each, will greatly 740 

improve our understanding of the network-level computations of the visual system. Secondly, 741 

the formation of the visual “backdrop” as a result of basal tree depolarization merits further 742 

study. Encoding of visual information using mostly subthreshold depolarizations despite noisy 743 

inputs is an interesting problem, most likely resolved through the effects of intra-tree dendritic 744 

cooperativity, where apical spikes sharpen responses to true input rather than noise. The role of 745 

basal AMPA and NMDA receptors is also a field of possible study, as our manipulations when 746 

silencing a dendritic tree were limited to nullification of sodium channel conductances. As such, 747 

AMPA and NMDA receptors could still be activated. In fact, the large percentage of apically-748 

driven spikes we find are most likely the result of intra-tree cooperativity between apical 749 

Figure 20. The Kanisza Triangle optical illusion. An inverted triangle can be perceived in the negative space in between 
the partial circles and chevron-shaped lines. 
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dendritic spikes and basal AMPA-derived depolarizations. Finally, perhaps the most interesting 750 

unanswered question is whether these computations take place elsewhere in the cortex as well, 751 

be it in the visual system or not. The large amounts of information the brain must process 752 

necessitate the existence of a simplifying mechanism to render this intractable task possible. 753 

Predictive coding as a means of stimulus compression has already been proposed as a way to 754 

simplify visual perception (Rao & Ballard, 1999), and this might also be the case for other sensory 755 

or cognitive tasks. Regardless, further investigation is required in order to unravel the Gordian 756 

knot that is visual perception. 757 
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7. Supplementary Information 888 

 889 

Figure S1. Orientation tuning dominance curves shift towards the opposing side when increasing sodium conductance 890 
of the least favored dendritic tree by 20%. Error bars: Standard error of the mean (SEM). 891 
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895 
Figure S2-A. Expected vs. Actual plot for all apical dendrites. All dendrites exhibit supralinear behaviour due to the 896 
generation of dendritic sodium spikes. 897 
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 903 
 904 
Figure S2-B. Expected vs. Actual plot for all basal dendrites. All dendrites exhibit supralinear behaviour due to the 905 
generation of dendritic sodium spikes. 906 

 907 
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 908 

Figure S3. Sodium spike threshold frequency histograms for the basal (A) and apical (B) trees. Sodium spike thresholds 909 
are generally lower for basal tree dendrites. 910 

 911 


