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Chapter 1

General Concepts on Statistical
Mechanics

1.1 Hamiltonian Dynamics

Statistical mechanics is generally concerned with the systematic study of large
assemblies of simple systems,varying in size from monatomic molecules in a gas
up to stars in a galaxy or even people forming communities.What is of primary
interest is to get a closer view to the behavior of the system in terms of the
behavior of its constituents.Just because of the interactions between the particles
of the system one does not expect that the system behaves as a superposition of
the individual constituents’ behaviors.The laws that govern the behavior of the
individual particles are well known from classical and quantum mechanics.

A class of systems that occupy the center of attention of statistical mechanics
are those that are governed by the laws of Hamiltonian dynamics.The structure
that characterizes Hamiltonian dynamics is common in classical and quantum
systems and is one of the reasons that make Hamiltonian dynamics especially
tempting.

Given a fixed instant of time,a system in Hamiltonian dynamics is character-
ized by a set of 2N variables which are, q1, ...qN known as generalized coordinates
and p1, ..., pN being the generalized momenta conjugate to the q′is .Although the
q′is and p′is may represent the physical space coordinates and momenta respec-
tively,they may also represent more abstract quantities (for instance the q′is may
be numbers characterizing the internal degrees of freedom e.t.c).So the dynamical
system is characterized by a point (q1, ...qN , p1, ...pN) or (q, p) abbreviated (where
q ≡ (q1, ...qN) , p ≡ (p1, ..., pN) ) in the 2N− dimensional Cartesian space.This
space bears the name phase-space and is the framework of dynamics and statis-
tical mechanics.
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Functions of the phase space variables (q, p) ,play an important role and will
be called dynamical functions denoted by b(q, p) .Physical quantities that can be
realized as functions of (q, p) are for instance the energy, the momentum and so
on. Certain types of dynamical functions are for example analytical functions of
q, p ,formally expressed by

b(q, p) =
∞∑

n1,...,nN ,m1,...,mN=0

β̄n1,...,mN
qn1
1 ...qnN

N pm1
1 ...pmN

N (1.1)

where β̄n1,...,mN
are real constants.In case b(q, p) obeys other smoothness criteria,

it can be represented as Fourier series or integrals, e.g
For the study of the evolution in time of the dynamical system use is made

of a specific dynamical function called the Hamiltonian H(q, p) of the system. In
most cases the Hamiltonian represents the total energy of a physical system. The
trajectory of the motion of the system in phase space described by the 2N time
dependent variables (q(t), p(t)) is determined by the 2N Hamilton’s equations:

q̇i =
∂H(q, p)

∂pi

(1.2)

ṗi = −∂H(q, p)

∂qi

(1.3)

together with the initial conditions qi(0) = q0
i , pi(0) = p0

i

Thus the rate of change of a dynamical variable b(q, p) with respect to time is

ḃ(q, p) =
N∑

n=1

(
∂b

∂qn

· q̇n +
∂b

∂pn

· ṗn) =

=
N∑

n=1

(
∂b

∂qn

· ∂H

∂pn

− ∂b

∂pn

· ∂H

∂qn

) (1.4)

Some elementary algebra may be introduced for the study of several concepts
on Hamiltonian dynamics. We introduce an operation between two dynamical
function b, c that is called Poisson bracket and is defined by

[b, c]P =
N∑

n=1

(
∂b

∂qn

· ∂c

∂pn

− ∂b

∂pn

· ∂c

∂qn

) (1.5)

so that equation ?? can be written in form ḃ = [b,H]P .
It is easily seen that the Poisson bracket is a closed algebraic operation on

dynamical functions and obeys the rules that characterize a Lie bracket, which
are:

[b, c]P = −[c, b]P (1.6)



the Jacobi relation

[b, [c, d]P ]P + [c, [d, b]P ]P + [d, [b, c]P ]P = 0 (1.7)

and for a scalar α
[b, α]P = 0 (1.8)

Other properties of the Poisson bracket are:

[(b + c), d]P = [b, d]P + [c, d]P (1.9)

for a scalar α
[αb, c]P = α[b, c]P (1.10)

and
[bc, d]P = b[c, d]P + [b, d]P c (1.11)

Finally, the Poisson bracket of any two dynamical functions b, c can be ob-
tained by the ”bracket multiplication table” of the fundamental elements qr, pr.
This table is

[qr, qs]P = 0 (1.12)

[pr, ps]P = 0 (1.13)

[qr, ps]P = δrs (1.14)

We are defining a dynamical algebra D as the set of all dynamical functions
and note that the operations of addition,multiplication and the Poisson bracket
are closed in D .Such a set adopts the special name of a Lie algebra.

Let α be an element of D. An operator [α] acting on an element b of the
algebra D is defined through

[α]b ≡ [b, α]P (1.15)

We wish to express the evolution in time of a dynamical function b(q, p; t) by
means of the aforementioned idea. Till now we know that for ”good” b(q, p; t) we
can write

b(q, p; t) =
∞∑

n1,...,nN ,m1,...,mN=0

β̄n1,...,nN ,m1,...,mN
qn1
1 (t)...qnN

N (t)pm1
1 (t)...pmN

N (t) (1.16)

or using the Hamilton’s equations we get an expression of b(q, p; t) as a function
of the initial conditions qi, pi, that is

b(q, p; t) =
∞∑

n1,...,nN ,m1,...,mN=0

β̄n1,...,nN ,m1,...,mN
(t)q1n1 ...qNnN p1m1 ...pNmN (1.17)



where in the aforementioned cases

β̄n1,...,nN ,m1,...,mN
(t) 6= β̄n1,...,nN ,m1,...,mN

(1.18)

with the second point of view being more close to statistical mechanics.
Now let b(q, p) be a dynamical function at time t = 0 and b(q, p; t) its value

at time t. We expand in Taylor series and get

b(t) =
∞∑

r=0

1

r!
trb(r)(0) (1.19)

Taking in consideration the fact that

ḃ = [b,H]P = [H]b (1.20)

we can easily find by induction that b(r)(t) = [H]rb(0) and hence get

b(t) =
∞∑

r=0

1

r!
tr[H]rb(0) = et[H]b(0) ≡ Ū(t)b(0) (1.21)

where Ū(t) = exp{t[H]} is the Green operator or propagator and has the prop-
erties of a group. Indeed, performing successively the operations Ū(t1) and Ū(t2)
is the same as if we performed the operation Ū(t1 + t2) e.t.c.

1.2 Classical Ensembles;The introduction of the

Distribution Function;The Liouville Equa-

tion

Macroscopic properties of the surrounding objects can be represented by functions
of the physical space x and of time t: B(x, t). Such continuous or even piecewise-
continuous (for certain classes of phenomena) functions are called fields and their
behavior is governed by partial differential and integrodifferantial equations (e.g
Navier-Stokes equations e.t.c).

The revolutionary advent of the atomistic theory gave a strike to our illusion
that matter is a continuum. When we move to magnitudes of length down to
10−7 cm what we observe is a collection of interacting particles and so the natural
framework of microscopic physics is that of the dynamics of the many body prob-
lem. Statistical mechanics is the bridge between these two levels of description.
One has to keep in mind that statistical mechanics not only provides the tools
needed to overcome the extreme difficulties that are involved in computations of



the dynamics of many bodies problem, but also provides the answers that have
a qualitative and quantitative significance.

Let’s examine closer the aforementioned correspondence rule between physical
space-time fields: B(x, t) and microscopic dynamical quantities that are functions
of the phase-space coordinates (q, p) and probably x: b(q, p; x; t) . The correspon-
dence rule in a more abstract language tells us that for any microscopic dynamical
function b(q, p; x; t) there corresponds a unique macroscopic function :

b(q, p; x; t) → B(x, t) (1.22)

This mapping is a functional and is denoted by 〈...〉 . That is

B(x; t) = 〈b(q, p; x; t)〉 ≡ 〈b〉 (1.23)

and is required to have special properties, which are
linearity : 〈βb + γc〉 = β〈b〉+ γ〈c〉
where β, γ are real numbers and b, c are dynamical functions
the unit may not be affected by the mapping: 〈1〉 = 1

If we define B(x, t) =
∫ ∫

dqdpb(q, p; x; t)F (q, p) then this operation will
satisfy the above two properties if we pose the extra requirement that∫ ∫

dqdpF (q, p) = 1 holds.
Any function F that is normalized to unity is called a phase-space distribution

function and is of great significance as it specifies the state of the system at a
given instant of time.

We may now add the extra condition F (q, p) ≥ 0 , so that F (q, p) could
be interpreted as the probability density that the system is located at (q, p) .
Although the formalism resembles the one used in probability theory ,it is only
an extramechanical ”statistical” assumption entering the theory. The system
obeys the rules of classical or quantum mechanics.

Going back to our problem , let F (q, p) be the distribution function describ-
ing the state of our system at time t = 0. Also ,let b(q, p; x; t = 0) = b(q, p; x)
.Then B(x, 0) =

∫ ∫
dqdpb(q, p; x)F (q, p) .In order to determine how the observ-

able B(x, t) changes with respect to time one needs to consider the Hamiltonian
character of the system. We then define

B(x, t) =

∫ ∫
dqdp[e[H]tb(q, p; x)]F (q, p) (1.24)

and in virtue of lemma...(see appendix)

B(x, t) =

∫ ∫
dqdp[e−[H]te[H]tb(q, p; x)][e−[H]tF (q, p)]

=

∫ ∫
dqdpb(q, p; x)[e−[H]tF (q, p)] (1.25)



What we have managed to do is to transfer the time dependence from the dy-
namical function to the distribution function and now we only need to solve an
initial value problem for a partial differential equation and the average value of
several quantities can be obtained.

The introduction of the time-dependent distribution function F (q, p; t) follows
naturally by the last equality and is given by

F (q, p; t) = e−[H]tF (q, p) (1.26)

Then the observable at time t is expressed as

B(x, t) =

∫ ∫
dqdpb(q, p; x)F (q, p; t) (1.27)

and the main problem of statistical mechanics reduces to the study of the dif-
ferential equation that governs the evolution of F (q, p; t). Indeed, differentiating
with respect to time 1.26 we get

∂tF (q, p; t) = −[e−[H]tF (q, p), H]P (1.28)

or
∂tF (q, p; t) = [H(q, p), F (q, p; t)]P = −[H]F (1.29)

an equation playing a central role in statistical mechanics that bears the name
Liouville equation, an analog of the Schrodinger equation for quantum mechanics.

We finally introduce the Liouville operator to be

ÃLF ≡ [H, F ]P =
N∑

n=1

{∂H

∂qn

· ∂F

∂pn

− ∂H

∂pn

· ∂F

∂qn

} (1.30)

Remark:A formal derivation of the Liouville equation through the measure pre-
serving property of the Canonical transformation is given in the appendix.

1.3 Reduced Distribution Functions;The BBGKY

Hierarchy

1.3.1 Reduced Distribution Functions

Let M be the phase space of the ensemble of N identical particles (dim M = 6N)
with coordinates xi = (qi, pi) i = 1, ..., N .Individual and collective measures are:
dµi = dxi = dqidpi, µ =

∏N
i=1 µi

The N particle distribution function

FN(q1, p1, ..., qN , pN , t) ≡ F (q, p, t) (1.31)



satisfies the Liouville equation

∂FN

∂t
= [H, FN ]P (1.32)

where FN is normalized to unity

∫
FN(q1, p1, ..., qN , pN , t)dµ = 1 (1.33)

Considering Hamiltonians of the form

H =
N∑

i=1

(
p2

i

2m
+ Vi(q)) +

∑
1≤i<j≤N

Vij(qi, qj) (1.34)

where Vi(q) is the potential due to an external field and Vij(qi, qj) is the mutual
potential of particles i and j
A similar decomposition can be presented for the Liouville operator.Thus

ÃL =
N∑

j=1

(
pj

m

∂

∂qj

− ∂Vj

∂q

∂

∂pj

)−
∑

1≤i<j≤N

ÃLij (1.35)

where

ÃLij =
∂Vij

∂qi

∂

∂pi

+
∂Vij

∂qj

∂

∂pj

(1.36)

We are now in position to define the reduced s-particle distribution function
writing

fs(x1, ..., xs) =
N !

(N − s)!

∫
dxs+1...dxNF (x1, ..., xs, xs+1, ..., xN) (1.37)

for s ≤ N − 1
and fN ≡ F (q, p, t) for s = N
The reduced s-particle distribution function is thus normalized by

∫
dx1...dxsfs =

N !

(N − s)!
(1.38)

The next step will be to write down a hierarchy for the distribution vector

f ≡ {f0, f1, ..., fN} (1.39)



1.3.2 The BBGKY Hierarchy

The Liouville equation of a system of N particles can be written according to the
aforementioned format as

∂tF =
n∑

i=1

ÃLiF +
∑ ∑

1≤i<j≤N

ÃLijF (1.40)

Since the number of particles in the system is conserved this implies that
∫

dx1...dxNF (x1, ..., xN , t) = const∀t (1.41)

so ∫
dx1...dxN∂tF (x1, ..., xN , t) = 0 (1.42)

or ∫
dx1...dxN{

N∑
i=1

ÃLi +
∑ ∑

1≤i<j≤N

ÃLij}F = 0 (1.43)

We can go on and write down relations that hold and will eventually be the
building tool for our hierarchy.Assuming that F falls sufficiently when pj → ∞
and vanishes in the physical boundaries one can obtain from Gauss’ theorem that

∫
dqj

∂F

∂qj

= 0 (1.44)

and ∫
dpj

∂F

∂pj

= 0 (1.45)

so it is easily implied that
∫

dxjLjF (x1, ..., xN) = 0 (1.46)

and ∫
dxjdxnLjnF (x1, ..., xN) = 0 (1.47)

The equation of evolution for the reduced distribution function fs is thus

∂tfs(x1, ..., xn) = ∂t
N !

(N − s)!

∫
dxs+1...dxNF (x1, ..., xN)

=
N !

(N − s)!

∫
dxs+1...dxN(

N∑
j=1

LjF +
∑

1≤i<j≤N

∑
LijF ) (1.48)



The term
∑N

j=1 LjF may be treated independently in the upcoming manner.
We write

N∑
j=1

LjF =
s∑

j=1

LjF +
N∑

j=s+1

LjF (1.49)

and remark that when j ∈ {1, ..., s} then Lj since it is not affected by the integra-
tion can be brought outside the integral and if j ∈ {s+1, ..., N} then it vanishes.
So

N !

(N − s)!

∫
dxs+1...dxN

N∑
j=1

LjF =
s∑

j=1

Lj
N !

(N − s)!

∫
dxs+1...dxNF (1.50)

the second term is treated taking in consideration three cases:
• If both j and n belong to {1, ..., s} then the operator Ljn can again be written
in front of the integral.
• If both j and n belong to {s + 1, ..., N} then we have already shown that it
vanishes.
• If j belongs to {1, ..., s} and n to the group {s + 1, ..., N} then

N !

(N − s)!

∫
dxs+1...dxN

s∑
j=1

N∑
n=s+1

LjnF (x1, ..., xN)

= ... =
s∑

j=1

∫
dxs+1Ljs+1fs+1(x1, ..., xs+1) (1.51)

The final equation we get after collecting the various terms is

∂tfs(x1, ..., xs) =
s∑

j=1

Ljfs(x1, ..., xs) +
∑ s∑

j<n=1

Ljnfs(x1, ..., xs)

s∑
j=1

∫
dxs+1Ljs+1fs+1(x1, ..., xs+1) (1.52)

1.4 Microcanonical and Canonical Ensembles

1.4.1 Microcanonical Ensemble

The system we are considering is an N particle system in a volume V whose total
energy is constrained to a narrow range above a reference energy E.

E ≤ energy ≤ E + ∆ (1.53)



with ∆ << E.
Thus we are keeping fixed 3 macroscopic quantities E, N and V as well as others
which will not be carried in our development.Our aim is to impose a probability
density on the phase space of the many particle system, such that information of
the system will be contained in the probability density.

The choice we are going to make is known as the ”postulate of equal a priori
probabilities” which is contained in the fact that we assign to the probability
density a constant value for all the accessible states of the system.The accessible
states are those consistent with the constraint (E,N, V, ...)

So in the classical case:

f({p, q}) =

{
1
Ω
, when E < H(p, q) ≤ E + ∆

0, elsewhwere
(1.54)

and

Ω ≡
∫

accessible

dp, dq = Ω(E, V, N) (1.55)

We may go on and obtain information for the state X, of a system which is

f(X) =

∫

except{p,q}
f({p, q}){dp, dq}

=
1

Ω

∫

except{p,q}
{dp, dq}

=
Ω
′
(consistentwithX)

Ω
(1.56)

1.4.2 Canonical Ensembles;The method of the most prob-
able distribution

We are about to present the traditional derivation of the Canonical Ensemble
based on ’the method of the most probable distribution’

We consider a ’Universe’ having energy E that is isolated (interchanges no
energy with its outside) and that consists of N sub-systems Si(i = 1, ..., N)
which are allowed to interchange energy but only weakly.We are thus in position
to disregard this correlation (due to energy exchange)

Let’s assume that the energy of Si is Ei then the energy of the whole universe
is E =

∑N
i=1 Ei.Each system Si possesses a different spectrum of eigenvalues

εl.The number of systems in the energy level εl is νl and thus a given a given
configuration can be realized in P = N !

ν1!ν2!...νl!...
ways.

What the ’method of the most probable distribution’ asserts is that the canon-
ical Ensemble will be gained by maximizing P (or equivalently log(P )) under the



only so far imposed constraints

∑

l

νl = N (1.57)

∑

l

νlεl = E (1.58)

We will use Lagrange’s method to optimize log(P ).Thus we are determining
the extremum of

log(P )− α
∑

l

νl − β
∑

l

νlεl (1.59)

(for α, β being the Lagrange multipliers).
Substituting 1.57,1.58 into 1.59and using the asymptotic approximation

log(n!) ≈ n log(n)− 1 (1.60)

We are thus led to the result

νl = e−α−βεl (1.61)

The first parameter to be eliminated is α.Thus, by 1.57

νl =
N∑

m e−βεm
e−βεl (1.62)

And the probability pl of finding the system in state l is

pl =
νl

N
=

e−βεl

∑
l e
−βεm

(1.63)

1.5 The Boltzmann Equation of Non-Equilibrium

Statistical Mechanics

The Boltzmann equation is the most fundamental kinetic equation of non-equilibrium
statistical mechanics. It was derived by Boltzmann in 1872 and describes the evo-
lution of the single-particle distribution function.

Consider a gas of N identical particles. Then the single-particle distribu-
tion function f(x, v, t) is defined in such a way that f(x, v, t)dxdv is the number
of particles located at time t in the (x, v) − space element dxdv around (x, v),
normalized by ∫

dxdvf(x, v, t) = N (1.64)



For the derivation of the Boltzmann equation, we follow the motion of a vol-
ume element in (x, v)−space during the time interval [t, t+dt]. The deformation
of a volume element in (x, v) − space is assumed to have a unit Jacobian. So if
dx

′
dv

′
is the deformed (x, v)− space element then dxdv = dx

′
dv

′
.

The number of particles at time t in dxdv is f(x, v, t)dxdv and the number of
particles in the volume element dx

′
dv

′
which develops after the time interval dt is

f(x+ vdt, v + 1
m

Fdt, t+dt)dx
′
dv

′
. If the gas particles were assumed collision free

then these two numbers would be the same. A change in these particle numbers
can only occur through collisions. We thus obtain:

[f(x + vdt, v +
1

m
Fdt, t + dt)− f(x, v, t)]dxdv =

∂f

∂t
|colldtdxdv (1.65)

i.e the change in the particle number is equal to the change due to collisions. The
expansion of the balance equation yields

[
∂

∂t
+ v∇x +

1

m
F (x)∇v]f(x, v, t) =

∂f

∂t
|coll (1.66)

The collision term in the right side of this equation can be represented as the
difference of gain and loss processes.

∂f

∂t
|coll = G− L (1.67)

Thus Gdxdv is the number of particles scattered during the time interval dt
into the volume dxdv by collisions and Ldxdv is the number of particles scattered
out of the volume dxdv during the same time interval.

The following expression is the celebrated Stosszahlansatz (assumption re-
garding the number of collisions)

∂f

∂t
|coll =

∫
dv2dv3dv4W (v, v2; v3, v4)[f(x, v3, t)f(x, v4, t)− f(x, v, t)f(x, v2, t)]

(1.68)
W (v, v2; v3, v4)is the transition probability v, v2 → v3, v4 ,i.e the probability that
in a collision of two particles with the velocities v, v2 the velocities of those two
particles will be v3, v4 afterwards.

The Stosszahlansatz together with the balance equation, yields the Boltzmann
equation

[
∂

∂t
+ v∇x +

1

m
F (x)∇v]f(x, v, t) =

∫
dv2

∫
dv3

∫
dv4W (v, v2; v3, v4)[f(x, v3, t)f(x, v4, t)− f(x, v, t)f(x, v2, t)]

(1.69)



The transition probability W (v, v2; v3, v4) has many symmetry properties
• Invariance under particle exchange:
W (v, v2; v3, v4) = W (v2, v; v4, v3)
• Rotational and reflection invariance:
W (Dv, Dv2; Dv3, Dv4) = W (v, v2; v3, v4) for an orthogonal matrix D
The inversion symmetry is contained in this relation:
W (−v,−v2;−v3,−v4) = W (v, v2; v3, v4)
• Time-inverse invariance:
W (v, v2; v3, v4) = W (−v3,−v4;−v,−v2) The combination inversion and time re-
versal yields the relation which we have already used W (v3, v4; v, v2) = W (v, v2; v3, v4)

1.6 The Boltzmann’s H-Theorem

We are now in position to answer the question, why Boltzmann’s equation shows
irreversible behavior. We will actually derive the second law of thermodynamics
following the steps of the famous H theorem that was derived by Boltzmann in
1872.

As is well known the second law claims the existence of a state function, that
bears the name entropy, that is not conserved. Rather it can only increase in time
during the evolution of an isolated system. When the system reaches equilibrium
this increase stops and at that point the entropy attains its maximum value.

Firstly, we introduce the quantity H which is related to the negative of the
entropy :

H(x, t) =

∫
d3vf(x, v, t) log f(x, v, t) (1.70)

We take the time derivative of H and make use of the Boltzmann equation

Ḣ(x, t) =

∫
d3v(1 + log f)ḟ

= −
∫

d3v(1 + log f)(v∇x +
1

m
F∇v)f − I

= −∇x

∫
d3v(f log f)v − I (1.71)

The second term in the large brackets in the last line is proportional to
∫

d3v∇v(f log f)
and vanishes, since there are no particles with infinite velocities, i.e f → 0 for
v →∞.
The collision term is

I =

∫
d3v1d

3v2d
3v3d

3v4W (v1, v2; v3, v4)(f1f2 − f3f4)(1 + log f1) (1.72)



and becomes by making use of the invariance of W with respect to the exchanges
1, 3 ↔ 2, 4 and 1, 2 ↔ 3, 4

I =
1

4

∫
d3v1d

3v2d
3v3d

3v4W (v1, v2; v3, v4)(f1f2 − f3f4) log
f1f2

f3f4

(1.73)

We note that (x− y) log x
y
≥ 0 for x ≥ y so it follows that I ≥ 0 .

The time derivative of the H can be written in the form

Ḣ(x, t) = −∇xjH(x, t)− I (1.74)

where jH =
∫

d3vf log fv is the current density.
The first term on the right hand side of 1.74 gives the change in H due to the

entropy flow and the second gives the change in H due to entropy production.
Discussion:

a)If no external forces are present, F (x) = 0, then the simplified situation may
occur that f(x, v, t) = f(v, t) is independent of x. Thus 1.74 becomes (since
∇xjH(x, t) = 0) Ḣ = −I ≤ 0
The quantity H decreases and tends towards a minimum which is finite since
f log f has a lower bound and the integral over v exists (see appendix).
b)If F (x) 6= 0 and we are dealing with a closed system of volume V , then∫

V
d3x∇xjH(x, t) =

∫
O(V )

dOjH(x, t) = 0 holds

The flux of H through the surface of this volume vanishes if the surface is an ideal
reflector;then for each contribution −vdO there is a corresponding contribution
vdO and it follows that.

d

dt
Htot ≡ d

dt

∫

V

d3xH(x, t) = −
∫

V

d3xI ≤ 0 (1.75)

Htot decreases and we have irreversibility.The fact that irreversibility follows from
an equation derived from Newtonian mechanics, which itself is time-reversal in-
variant, was met at first with skepticism.However, the Stosszahlansatz contains
a probabilistic element that makes the difference.

1.7 Topics on Irreversibility

1.7.1 Poincare Recurrence Theorem

Theorem:The system trajectory of a bounded isolated system of finite energy will,
after sufficient time, return arbitrarily close to its initial location in Γ-space
Proof:Let z ≡ (q0, p0) be the initial state in the phase space Γ, which is contained
in a set Ω0 of measure m(Ω0) > 0 (z ∈ Ω0. Let also T̂ denote an operator of the



displacement/unit time.
Due to Liouville’s theorem

m(Ω0) = m(T̂Ω0) = m(T̂ (T̂Ω0)) ≡ m(T̂ 2Ω0) (1.76)

and if those sets (Ω0, T̂Ω0, T̂
2Ω0, ...) do not intersect then the space on which they

move would have to be of infinite measure. This contradicts our assumption, so

∃k, n ∈ N : T̂ kΩ0 ∩ T̂ nΩ0 6= ∅ (1.77)

Since T̂ is a one-to-one mapping due to uniqueness of trajectories we have

T̂ (A ∩B) = T̂ (A) ∩ T̂ (B)∀A,B ∈ Γ (1.78)

so applying T̂−n to 1.77 we get

T̂−n(T̂ kΩ0 ∩ T̂ nΩ0) 6= ∅ (1.79)

or
T̂ k−nΩ0 ∩ Ω0 6= ∅ (1.80)

and letting m(Ω0) be arbitrarily small establishes the theorem.

1.7.2 Recurrence Time

Zermelo (1896) based his criticism of the Boltzmann equation on Poincare’s
recurrence-time theorem. It states that a closed finite conservative system will
return arbitrarily closely to its initial configuration within a finite time, called
the recurrence time τp. According to Zermelo’s paradox, H(t) could not decrease
monotonically, but instead must finally again increase and regain its value H(0).

We are now going to estimate the recurrence time with the aid of a model
to adjudge this objection. The system we are going to use is the one of classical
harmonic oscillators with displacements qn, moment pn and the Hamiltonian

H =
N∑

n=1

{ 1

2m
p2

n +
mΩ2

2
(qn − qn−1)

2} (1.81)

The equations of motion are then obtained:

ṗn = mq̈n = mΩ2(qn+1 + qn−1 − 2qn) (1.82)

Assuming periodic boundary conditions q0 = qN , we are dealing with a trans-
lationally invariant problem, which is diagonalized by the Fourier transformation

qn =
1

(mN)1/2

∑
s

eisnQs, pn = (
m

N
)1/2

∑
s

e−isnPs (1.83)



Qs and Ps are called the normal coordinates (and momenta). The periodic bound-
ary conditions require that 1 = eisN i.e s = 2πl

N
with integral l. A possible choice

of the values l, e.g for odd N would be: l = 0,±1, ...,±(N − 1)/2. Since qn and
pn are real, it follows that
Q∗

s = Q−s and P ∗
s = P−s

The Fourier coefficients obey the orthogonality relations

1

N

N∑
n=1

eisne−is
′
n = ∆(s− s

′
) (1.84)

and the completeness relation

1

N

∑
s

e−isneisn
′
= δnn′ (1.85)

Insertion of the transformation to normal coordinates yields

H =
1

2

∑
s

(PsP
∗
s + ω2

sQsQ
∗
s) (1.86)

with dispersion relation

ωs = 2Ω(sin
1

2
) (1.87)

The motion of normal coordinates can be represented most intuitively by intro-
ducing complex vectors

Zs = Ps + iωsQs (1.88)

which move on a unit circle according to

Zs = ase
iωt (1.89)

with complex amplitude as

Assuming that the frequencies ωs of N − 1 such normal coordinates are in-
commensurate, i.e their ratios are not natural numbers. Then the phase vectors
Zs rotate independently of one another, without coincidences. We now want to
calculate how much time passes until all N vectors lie within an interval ∆φ
around their initial positions. The probability that Zs lies within ∆φ is given by
∆φ
2π

and the probability that all N − 1 vectors lie within this interval is (∆φ
2π

)N−1.
The number of rotations required for this recurrence is therefore ( 2π

∆φ
)N−1. The

recurrence time can now be easily found by multiplying by the typical rotational
period 1

ω
:

Thus, τp ' ( 2π
∆φ

)N−1 1
ω

Taking ∆φ = 2π
100

, N = 10 and ω = 10Hz, we obtain τp ' 1012 years, i.e more
than the age of the Universe. These times of course becomes much longer if we
consider a macroscopic system with N ' 1020. Thus, the recurrence time in
practice plays no role. We have thereby eliminated Zermelo’s paradox.



Chapter 2

Statistical Mechanics of
Transport
Phenomena(Kirkwood’s paper)

2.1 Abstract

We are following closely the lines of Kirkwoods IV (STM IV)publication in the
area of Statistical mechanics that bears the name ”The equations of Hydrody-
namics”.In the first section we are presenting the equations of hydrodynamics
(namely the continuity equation and the momentum and heat transport equa-
tions) derived in the phenomenological theory and go on with basic definitions
in Statistical mechanics that are essential for the development.In the next three
sections we are concerned with the derivation of these hydrodynamic equations
by means of classical Statistical mechanics and derive expressions for the stress
tensor and heat current density in terms of molecular variables.Finally,in the last
section a compilation of the results is performed.

2.2 Preliminaries

From continuum mechanics assumptions, letting ρ(r, t) and u(r, t) be the mass
density and local velocity at the point r at time t respectively, then the equations
of hydrodynamics take the form:

∂

∂t
ρ(r, t) = −∇r · [ρ(r, t)u(r, t)] (2.1)

∂

∂t
[ρu] +∇r · (ρuu) = X +∇r · σ (2.2)

23



∂

∂t
E +∇r · [Eu + q − u · σ] = 0 (2.3)

where X(r, t) is the force/unit volume due to external sources, σ(r, t) the stress
tensor, E(r, t) the total internal energy density consisting of three parts, the
interaction potential energy density Ev(r, t); the kinetic energy density Ek(r, t);
and the potential energy density Eψ(r, t) due to external sources assumed to be
conservative. Thus E = Ev + Ek + Eψ. Moreover, Eu is the convective energy
current and q is the conductive heat current...

For a phenomenological derivation of hydrodynamics equations see [...]. A
more abstract and mathematically speaking ’formal’ derivation is presented in
[...]

Now let’s shift to the statistical mechanical theory and consider a system con-
sisting of N molecules. The instantaneous state of the system may be represented
by a point in the 6N -dimensional Gibb’s phase space, representing the 3N coor-
dinates and 3N momenta of the system. The probability distribution function is
f(R1, R2, ..., RN ; p1, p2, ..., pN ; t) properly normalized by

∫
...

∫

6N−fold

f(R1, ..., RN ; p1, ..., pN ; t)dR1...dRNdp1...dpN = 1 (2.4)

where Ri and pi are the position and momentum of the i’th molecule. The
evolution of f is characterized by the Liouville equation

∂f

∂t
=

N∑

k=1

[− pk

mk

· ∇Rk
f +∇Rk

U · ∇pk
f ] (2.5)

(We note here that Ṙk = 1
mk

pk and ṗk = −∇Rk
U where U is the potential energy

of the system.)
If α(R1, ...RN ; p1, ..., pN) is any time independent dynamical variable then its

expectation value is

〈α; f〉 =

∫
...

∫

6N−fold

α(R1, ..., RN ; p1, ...pN)f(R1, ..., RN ; p1, ..., pN ; t)dR1...dRNdp1...dpN

(2.6)
The rate of change of the expectation value of α is

∂

∂t
〈α; f〉 = 〈α;

∂

∂t
f〉 =

N∑

k=1

[〈α;− pk

mk

· ∇Rk
f〉+ 〈α;∇Rk

U · ∇pk
f〉]

= 〈
N∑

k=1

[
pk

mk

· ∇Rk
α−∇Rk

U · ∇pk
α]; f〉 (2.7)



Finally,

∂

∂t
〈α; f〉 =

N∑

k=1

〈 pk

mk

· ∇Rk
α−∇Rk

U · ∇pk
α; f〉 (2.8)

is the general equation of change needed for the derivation of the equations of
hydrodynamics.

We will focus in expressing the mass,momentum and energy density as the
expectation values of certain dynamical variables over an ensemble having distri-
bution function f .

The probability/unit volume that the kth molecule be at Rk is

∫
...

∫

6N−3fold

f(R1, ..., RN ; p1, ..., pN ; t)dR1...dRk−1dRk+1...dRNdp1...dpN

(2.9)
similarly the probability/unit volume that the kth molecule be at r is

〈δ(Rk−r); f〉 =

∫
...

∫

6N−fold

δ(Rk−r)f(R1, ..., RN , ; p1, ..., pN ; t)dR1...dRNdp1...dpN

(2.10)
Next we give the expressions of the densities as expectation values.

ρ(r, t) =
N∑

k=1

mk〈δ(Rk − r); f〉 (2.11)

ρ(r, t)u(r, t) =
N∑

k=1

〈pkδ(Rk − r); f〉 (2.12)

Ek(r, t) =
N∑

k=1

〈 p2
k

2mk

δ(Rk − r); f〉 (2.13)

If we recall the fact that the probability /unit volume that the kth molecule be at
r at time t is 〈δ(Rk − r); f〉 then particle k contributes to the total mass density
at point r and time t,only if it is located at point r at time t and thus the first
equation establishes itself.

The mean momentum of the kth molecule,providing it is at r and the location
of the others are unspecified,is given by the ratio

〈pkδ(Rk − r); f〉
〈δ(Rk − r); f〉 (2.14)

so as 〈pkδ(Rk− r); f〉 is the product of the mean momentum of the k’th molecule
by the probability/unit volume that the k’th molecule be at r and the second



equation is derived.The last one is obtained along the same lines of reasoning.
The potential energy of the system can be written as

U =
N∑

k=1

ψk(Rk) +
1

2

∑ ∑

j 6=k

Vjk (2.15)

where ψk(Rk) is the potential energy of the kth molecule due to an external field
of force and Vjk is the mutual potential between the jth and kth molecules. The
potential energy density at r is

Eψ(r; t) =
N∑

k=1

〈[ψk(Rk)]δ(Rk − r); f〉 =
N∑

k=1

ψk(r)〈δ(Rk − r); f〉 (2.16)

and the external force/unit volume at r is

X(r; t) = −
N∑

k=1

〈[∇Rk
ψk(Rk)δ(Rk−r); f〉 = −

N∑

k=1

[∇rψk(r)]〈δ(Rk−r); f〉 (2.17)

If we assume the Vjk such that the total interaction potential energy residing in

the kth molecule is 1
2

∑N
j=1,j 6=k Vjk then the total interaction potential energy at

r is

EV (r; t) =
1

2

∑∑

j 6=k

〈Vjkδ(Rk − r); f〉. (2.18)

Finally, we define the pair density ρ(2)(r; r
′
; t) as the probability/unit volume

that any molecule be at r and another at r′. So

ρ(2)(r; r
′
; t) =

∑∑

j 6=k

〈δ(Rj − r)δ(Rk − r
′
); f〉 (2.19)

and the particle current density in pair space as

j(2)(r; r
′
; t) =

∑∑

k 6=i

〈 pk

mk

⊕ pi

mi

)δ(Rk − r)δ(Ri − r
′
); f〉, (2.20)

namely a six-component vector and its projection onto the space of its first ar-
gument as

j
(2)
1 (r; r

′
; t) =

∑ ∑

k 6=i

〈 pk

mk

δ(Rk − r)δ(Ri − r
′
); f〉 (2.21)

We now set forth to give the formal expressions of the various parts of the stress
tensor and heat current by means of statistical mechanics.



2.3 The Equation of Continuity

Taking α =
∑N

j=1 mjδ(Rj − r)
We calculate

pk

mk

· ∇Rk
α−∇Rk

U · ∇pk
α = −∇r · [pkδ(Rk − r)] (2.22)

and indeed get

∂

∂t
ρ(r; t) =

∂

∂t
〈α; f〉 = −∇r · [ρ(r; t)u(r; t)] (2.23)

2.4 The Momentum Transport Equation and the

Stress Tensor

This time taking α =
∑N

j=1 pjδ(Rj − r) we have

pk

mk

· ∇Rk
α−∇Rk

U · ∇pk
α = −∇r · [pkpk

mk

δ(Rk − r)]− (∇Rk
U)δ(Rk − r) (2.24)

We recall that U =
∑N

k=1 ψk(Rk) + 1
2

∑
j 6=k

∑
Vjk so

(∇Rk
U = ∇Rk

ψk(Rk) +
N∑

j=1,j 6=k

∇Rk
Vjk) (2.25)

and

∂

∂t
[ρ(r; t)u(r; t)] = −∇r ·

N∑

k=1

〈pkpk

mk

δ(Rk − r); f〉+ X(r; t)

−
∑∑

j 6=k

〈(∇Rk
Vjk)δ(Rk − r); f〉 (2.26)

We note that

N∑

k=1

mk〈( pk

mk

− u)(
pk

mk

− u)δ(Rk − r); f〉 =

... =
N∑

k=1

〈pkpk

mk

δ(Rk − r); f〉 − ρuu (2.27)

The last term of 2.26 is

−
∑∑

j 6=k

〈(∇Rk
Vjk)δ(Rk − r); f〉 =



... = ∇r·[1
2

∑∑

j 6=k

〈(∇Rk
Vjk)Rjk{1−1

2
Rjk·∇r+...+

1

n!
(−Rjk·∇r)

n−1+...}δ(Rj−r); f〉]

(2.28)

Finally we get

∂

∂t
[ρu] + [∇r · ρuu] = X +∇r · [−

N∑

k=1

mk〈( pk

mk

− u)(
pk

mk

− u)δ(Rk − r); f〉

+
1

2

∑

j 6=k

∑
〈(∇Rk

Vjk)Rjk{1− 1

2
Rjk ·∇r + ...+

1

n!
(−Rjk ·∇r)

n−1 + ...}δ(Rj−r); f〉]

(2.29)
Now we restrict ourselves to identical particles of mass m and use the assumption
that Vjk = V (Rjk) and

∇Rk
Vjk =

Rjk

|Rjk|V
′
(|Rjk|) (2.30)

The kinetic and intermolecular parts of the stress tensor are:

σk(r; t) = −
N∑

k=1

m〈( pk

mk

− u)(
pk

mk

− u)δ(Rk − r); f〉 (2.31)

σv(r; t) =
1

2

∑

j 6=k

∑
〈RjkRjk

|Rjk| V
′
(|Rjk|){1−1

2
Rjk·∇r+...+

1

n!
(−Rjk·∇r)

n−1+...}δ(Rj−r); f〉

(2.32)
the last one may be contracted in

σv(r; t) =
1

2

∫

3−fold

RR

|R| V
′
(|R|){1−1

2
R·∇r+...+

1

n!
(R·∇r)

n−1+...}ρ(2)(r, r+R; t)dR

(2.33)
It is now the appropriate time to comment on the interpretation of σk and σv

from a phenomenological approach.
At first σk is the kinetic contribution to the stress tensor and σk · dS is the force
acting across dS due to the spread of the fluid velocities about the mean fluid
velocity u.On the other hand σv is the contribution of intermolecular forces to
the stress tensor and σv · dS is the force acting across dS due to interactions of
molecules on opposite sides of dS.The σk term is dominant in gases and the σv

one in liquids.
The pair density can be expressed by means of the correlation function, namely
g(2) for a liquid with identical particles. Thus

ρ(2)(r, r + R; t) =
1

m2
ρ(r; t)ρ(r + R; t)g(2)(r, R; t) (2.34)



Taking into account the fact that the function ρ(r; t) is slowly varying with respect
to R then the last equation takes the form (when we neglect all but the first term
of the Taylor series)

σv(r; t) =
[ρ(r; t)]2

2m

∫
RR

|R| V
′
(|R|)g(2)(r; R; t)dR (2.35)

The pressure is obtained by taking the diagonal sum of the stress tensor

P = −1

3
Traceσ (2.36)

and taking in consideration the formulas

−1

3
Traceσk =

2

3

N∑

k=1

〈m
2
|pk

m
− u|2δ(Rk − r); f〉 (2.37)

−1

3
Traceσv = − [ρ(r; t)]2

6m2

∫

fold

|R|V ′
(|R|)(|R|)g(2)(r; R; t)dR (2.38)

The equilibrium pressure obtained is

Peq =
ρ

m
KT − 2π

3
(
ρ

m
)2

∫
R3V

′
(|R|)g(2)(R)dR (2.39)

2.5 The Energy Transport Equation and the Heat

Current Density(Heat Flux Vector)

For α =
∑N

j=1

p2
j

2mj
δ(Rj − r) then Ek(r; t) = 〈α; f〉

pk

mk

· ∇Rk
α−∇Rk

U · ∇pk
α = ... = −∇r · [ p2

k

2mk

pk

mk

δ(Rk − r)]

−[∇Rk
ψk(Rk) +

N∑

j=1,j 6=k

∇Rk
Vjk] · pk

mk

δ(Rk − r) (2.40)

So

∂

∂t
Ek(r; t) = −∇r ·

N∑

k=1

〈 p2
k

2mk

pk

mk

δ(Rk − r); f〉 −
N∑

k=1

[∇rψk(r)] · 〈 pk

mk

δ(Rk − r); f〉

−
∑∑

j 6=k

〈(∇Rk
Vjk) · pk

mk

δ(Rk − r); f〉 (2.41)



For α =
∑N

j=1 ψj(r)δ(Rj − r)

pk

mk

· ∇Rk
α−∇Rk

U · ∇pk
α = −ψk(r)∇r · [( pk

mk

)δ(Rk − r)] (2.42)

and

∂

∂t
Eψ(r; t) = −

N∑

k=1

ψk(r)∇r · 〈 pk

mk

δ(Rk − r); f〉 (2.43)

Finally for α = 1
2

∑∑
i6=j Vijδ(Rj − r) then Ev(r; t) = 〈α; f〉 and

pk

mk

· ∇Rk
α−∇Rk

U · ∇pk
α

=
pk

2mk

·
N∑

j=16=k

(∇Rk
Vjk)[δ(Rj − r) + δ(Rk − r)]− 1

2
∇r · [

N∑

j=16=k

Vjk
pk

mk

δ(Rk − r)]

∂

∂t
Ev(r; t) =

1

2

∑∑

j 6=k

〈(∇Rk
Vjk) · pk

mk

[δ(Rj − r) + δ(Rk − r)]; f〉

−1

2
∇r · [

∑∑

j 6=k

〈Vjk
pk

mk

δ(Rk − r); f〉] (2.44)

Adding the expressions for the various types of energies and the term ∇r · (Eu)
we get

∂

∂t
R(r, t) +∇r · (Eu) = −∇r · [

N∑

k=1

〈 p2
k

2mk

(
pk

mk

− u)δ(Rk − r); f〉

+
N∑

k=1

ψk(r)〈( pk

mk

− u)δ(Rk − r); f〉

+
1

2

∑

j 6=k

∑
〈Vjk(

pk

mk

− u)δ(Rk − r); f〉]

+
1

2

∑

j 6=k

∑
〈(∇Rk

Vjk) · pk

mk

[δ(Rj − r)− δ(Rk − r)]; f〉 (2.45)

The time has come to go on with the development under the assumption of a
single component,single phase system.Another assumption used is that of the
central intermolecular forces depending range.
Under the above assumption the second term on the right of the above equation



vanishes and to reveal the form of the hydrodynamic equation of energy we need
a definition of the heat current density (q(r, t)) which must satisfy:

∇r · (q − u · σ) = ∇r · [
N∑

k=1

〈 p2
k

2m
(
pk

m
− u)δ(Rk − r); f〉

+
1

2

∑

j 6=k

∑
〈V (Rkj)(

pk

m
− u)δ(Rk − r); f〉]

1

2

∑

j 6=k

∑
〈V

′
(Rkj)

Rkj

Rkj · pk

m
[δ(Rj − r)− δ(Rk − r)]; f〉 (2.46)

In the last equation ,use has been made of the relations:
Vjk = V (|Rjk|) and

∇Rk
Vjk =

Rjk

|Rjk|V
′
(|Rjk|) = − Rkj

|Rkj|V
′
(|Rjk|) (2.47)

Expressions for the heat current density finally obtained are

qk(r; t) =
N∑

k=1

〈m
2
| pk

mk

− u|2( pk

mk

− u)δ(Rk − r); f〉

qV (r, t) = u · [σV − 1

2

∑

j 6=k

∑
〈V (|Rkj|)1δ(Rk − r); f〉]

+
1

2

∑

j 6=k

∑
〈[V (|Rkj|)1− V

′
(|Rkj|)
|Rkj| RkjRkj{1 + ...

+
1

n!
(−Rkj · ∇r)

n−1 + ...}] · pk

m
δ(Rk − r); f〉 (2.48)

We will go on writing various equivalent relations for the last term in order to
involve the pair density and particle current density in pair space.So

qV (r, t) = u · [σV − 1

2

∑

j 6=k

∑
〈
∫

3−fold

δ(Rkj − r)

×V (|R|)1δ(Rk − r)dR; f〉] +
1

2

∑

j 6=k

∑
〈
∫

3−fold

δ(Rkj −R)

×[V (|R|)1− V
′
(|R|)
|R| RR{1 + ...

1

n!
(−R · ∇r)

n−1 + ...}] · pk

m
δ(Rk − r)dR; f〉



= u · [σV − 1

2

∫

3−fold

V (|R|)1
∑

j 6=k

∑
〈δ(Rkj −R)

×δ(Rkj − r); f〉dR] +
1

2

∫

3−fold

[V (|R|)1− RR

|R| V
′
(|R|)

×{1− 1

2
R · ∇r + ... +

1

n!
(−R · ∇r)

n−1 + ...}]

·[
∑

j 6=k

∑ pk

m
δ(Rkj −R)δ(Rk −R); f〉]dR

= −1

2
u(r, t) ·

∫

3−fold

[V (|R|)1− RR

|R| V
′
(|R|){1− 1

2
R · ∇r

+... +
1

n!
(−R · ∇r)

n−1 + ...}]ρ(2)(r, r + R, t)dR

+
1

2

∫

3−fold

[V (|R|)1− RR

|R| V
′
(|R|){1− 1

2
R · ∇r + ...

+
1

n!
(−R · ∇r)

n−1 + ...}] · j(2)
1 (r, r + R, t)dR (2.49)

Finally,taking in consideration the fact that ρ(2) and j
(2)
1 are slow functions of

r,we may neglect all but the first order’s terms and get the expression

qv(r; t) =
1

2

∫

3−fold

[V (|R|)1−RR

|R| V
′
(|R|)]·[j(2)(r, r+R; t)−u(r; t)ρ(2)(r, r+R; t)]dR

(2.50)

2.6 Compilation of Results

The various quantities that appear in the hydrodynamic equations and that have
been defined or obtained are:
• The mass density at r

ρ(r, t) =
N∑

k=1

mk〈δ(Rk − r); f〉 (2.51)

• The fluid velocity at r

u(r, t) =
1

ρ(r, t)

N∑

k=1

〈pkδ(Rk − r); f〉 (2.52)

• Body force/unit volume due to external fields at r

X(r, t) = −
N∑

k=1

[∇rψk(r)]〈δ(Rk − r); f〉 (2.53)



• Energy density at r
E(r, t) = Ek + Eψ + EV (2.54)

• Kinetic Energy density

Ek(r, t) =
N∑

k=1

〈 p2
k

2mk

δ(Rk − r); f〉 (2.55)

• Potential Energy density due to external fields

Eψ(r, t) =
N∑

k=1

ψk(r)〈δ(Rk − r); f〉 (2.56)

• Potential Energy density due to molecular interaction

EV (r, t) =
1

2

∑∑

j 6=k

〈Vjkδ(Rk − r); f〉 (2.57)

Now comes the time to write down definitions for the single component,single
phase system in which the intermolecular force depends on range only.Thus we
define:
• The stress tensor at r

σ(r, t) = σk(r, t) + σV (r, t) (2.58)

• The kinetic contribution to the stress tensor

σk = −
N∑

k=1

m〈(pk

m
− u)(

pk

m
− u)δ(Rk − r); f〉 (2.59)

• The intermolecular contribution to the stress tensor

σV (r, t) =
1

2

∫

3−fold

RR

|R| V
′
(|R|){1−1

2
R·∇r+...+

1

n!
(−R·∇r)

n−1+...}ρ(2)(r, r+R, t)dR

(2.60)
• The heat current density at r

q(r, t) = qk(r, t) + qV (r, t) (2.61)

• The heat current due to transport of thermal kinetic energy

qk(r, t) =
N∑

k=1

〈m
2
|pk

m
− u|2(pk

m
− u)δ(Rk − r); f〉 (2.62)



• The contribution to heat current density due to molecular interactions

qV (r, t) = −1

2
u(r, t) ·

∫

3−fold

[V (|R|)1− RR

|R| V
′
(|R|)

×{1− 1

2
R · ∇r + ... +

1

n!
(−R · ∇r)

n−1 + ...}]

×ρ(2)(r, r + R, t)dR +
1

2

∫

3−fold

[V (|R|)1− RR

|R| V
′
(|R|)

×{1− 1

2
R · ∇r + ... +

1

n!
(−R · ∇r)

n−1 + ...}] · j(2)
1 (r, r + R, t)dR (2.63)

Keeping in consideration the fact that ρ(2) and j
(2)
1 are slow functions of r (since

R is fixed) then we can truncate higher than first order terms in the expressions
for σV , qV .The simplified expressions are thus

qV (r, t) =
1

2

∫

3−fold

[V (|R|)1−RR

|R| V
′
(|R|)]·[j(2)

1 (r, r+R, t)−u(r, t)ρ(2)(r, r+R, t)]dR

σV (r, t) =
1

2m2
[ρ(r, t)]2

∫

3−fold

RR

|R| V
′
(|R|)g(2)(r, r + R, t)dR (2.64)

The definition of the correlation function g(2) is in

ρ(2)(r, r + R, t) =
1

m2
ρ(r, t)ρ(r + R, t)g(2)(r, R, t) (2.65)



Chapter 3

Static Mechanical Models and
Equilibrium Properties of
Polymer Molecules

3.1 Abstract

What makes the study of polymer molecular solutions so intense during the last
decades is not only the blooming industrial interest for macromolecule properties
but also the several ways by which they differ from small molecules treated in
traditional kinetic theories of gases and liquids.
These are:
a)Great diversity in structure:Organic chemists have synthesized straight chain
polymers, branched, closed-ring polymers e.t.c. Nowadays, research has primarily
been focused in linear flexible polymers.
b)Molecular weight distribution: Polymer molecules have varying length and this
”polydispersity” has enormous effect on the properties of their solutions.
c)Large number of internal degrees of freedom: Each polymer molecule is capable
of existing in a huge number of configurations. Forces transmitted along the chain
backbones are of specific interest in obtaining an expression for the stress tensor.

What must be kept in mind is that in the equilibrium state the calculations
of the properties of polymer solutions are much easier and can involve more
complex mechanical models, although nonequilibrium calculations which are of
great rheological interest have been available only for extremely simple models
(elastic dumbbells e.t.c)
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3.2 The Freely Jointed Bead-Rod Chain Model(Kramer’s

Chain Model or Pearl Necklace Model)

We consider a freely jointed chain of N beads of mass m and friction coefficient
ζ connected by N − 1 rigid, massless rods of length α.

By means of equilibrium statistical mechanics one can obtain the configura-
tional distribution function that the i′th link is found to be within the range
dθidφi about θi, φi. That is ψi,eq(θi, φi)dθidφi = 1

4π
sin θidθidφi. This is done by

assuming that the distribution function behaves as a ’random walk’ distribution
which is a quite good approximation.

Since each link can be taken to move independently of all the others, we can
obtain the configurational distribution function:

ψeq(θ
N−1, φN−1) =

N−1∏
i=1

ψi,eq = (
1

4π
)N−1

N−1∏
i=1

sin θi (3.1)

and the average value of a property B(θN−1, φN−1) that is a function of the
internal degrees of freedom is

〈B〉eq =

∫ ∫
BψeqdθN−1dφN−1 (3.2)

Example :Mean-Square End-to-End distance
First of all,an expression for the end-to-end vector is essential.So our expres-

sion will be

r =
N−1∑
i=1

aui (3.3)

where the ui is the unit vector in the direction of the i′th link.The square end-
to-end distance is

r2 = (r · r) = a2

N−1∑
i=1

N−1∑
j=1

(ui · uj) (3.4)

So the average value of this mean end-to-end distance is

〈r2〉eq = a2
∑

i

∑
j

∫ ∫
(ui · uj)ψeqdθN−1dφN−1 (3.5)

which after simple manipulation gives

〈r2〉eq = a2
∑

i

∑
j

δij = a2(N − 1) (3.6)

It has to be quoted,nevertheless that the excluded volume effect was not taken
in consideration and if it is accounted the mean-square end-to-end distance will
be increased.



3.3 The Freely Jointed Bead Spring Model

The main difference between a freely jointed bead-rod chain model and the freely
jointed bead-spring one, is that rods have been replaced by springs and so there
are no internal constraints. This is the most general linear mechanical model.

Each bead experiences a hydrodynamic drag force as it moves through the sol-
vent and this force is customarily described by Stokes law. If the springs are taken
to be Hookean it bears the special name Rouse chain or Rouse-Zimm chain model.
This specific model although exhibits orientability and stretchability suffers from
the disadvantage that the dumbbell can be practically extended to infinity. If
one wishes to overcome this difficulty then he has to include finitely extensible
springs (Warner, or ”FENE” springs) where the lengths of the connector vectors
cannot stretch to infinity.

The equilibrium configurational distribution function for the Rouse chain is
shown in the sequel to be

ψeq = (
H

2πKT
)3(N−1)/2 exp(−(

H

2KT
)
∑

i

(Qi ·Qi))

=
N−1∏
j=1

(
H

2πKT
)3/2 exp(−(

H

2KT
)Q2

j) (3.7)

The mean square end-to-end distance can be found for the Rouse chain to be

〈r2〉eq =

∫ ∑
i

∑
j

(Qi ·Qj)ψeq(Q1, ..., QN−1)dQN−1

=
∑

i

∫
Q2

i

N−1∏
j=1

(
H

2πKT
)

3
2 e−(H/2KT )Q2

j dQN−1

=
∑

i

(
H

2πKT
)

3
2 4π

∫ ∞

0

Q2
i e
−(H/2KT )Q2

i Q2
i dQi

=
3(N − 1)KT

H
(3.8)

3.4 Geometric Properties of Chainlike Molecules

We have to introduce some notation for the study of the general bead-rod or bead-
spring chains that consist of N identical beads joined together linearly by N − 1
connectors. No specific constraints will be used for this kind of development.



Starting we specify location of bead ν by means of the position vector rν with
respect to a fixed coordinate system. We denote by

Rν ≡ rν − rc (3.9)

the position vectors w.r.t the center of mass of the chain.
The ”Connector vector” Qk is defined by

Qk = rk+1 − rk, k = 1, ..., N − 1 (3.10)

and the center of mass of the chain is

rc =
1

N

∑
ν

rν . (3.11)

We relate position and ”connector” vectors by

Qk =
∑

ν

B̄kνrν (3.12)

and
rν − rc =

∑

k

BνkQk (3.13)

where
B̄kν = δk+1,ν − δk,ν (3.14)

and

Bνk =

{
k
N

, when k < ν
k
N
− 1, when k ≥ N

(3.15)

We also define two symmetric nonsingular matrices (Cij), (Aij) namely the Kramers
and Rouse matrices respectively by

Aij =
∑

ν

B̄iνB̄jν (3.16)

and
Cij =

∑
ν

BνiBνj (3.17)

Let aj, cj be the eigenvalues of AijandCij respectively then

aj =
1

cj

= 4 sin2(
jπ

2N
) (3.18)

Polar Angles



Other ways of specifying the chain configuration is by the use of polar angles.
That is, we specify the center of mass rc of the chain, the lengths of the connectors
Qk and polar angles θi, φi. Alternatively, we use the unit vectors uk in lieu of the
polar angles which is particularly useful for a freely jointed bead-rod chain with
equal connector lengths. One can also associate with each connector in the chain
a triad of unit vectors, sk, tk, uk :the first two in the positive θ and φ directions
and the third in the direction from bead k to k +1.For the use of included angles
see [18]
Equlibrium Properties of Polymer Molecules

We set forth with the definitions of generalized coordinates and momenta for
bead-rod-spring models. We then go on giving the various types of the phase-
space and configurational-space equilibrium distribution functions. We will then
be in position to calculate average values of properties in the equilibrium state,
as we have already done.
Generalized Coordinates and Momenta:

Let’s consider a macromolecular model consisting of N beads of mass mν(ν =
1, ..., N) connected in an arbitrary manner by springs and/or rigid rods. The
total mass mp of the molecule is

mp =
∑

ν

mν (3.19)

The location of bead ν is given by the position vector rν(ν = 1, ..., N) with
respect to an arbitrary origin of coordinates. The velocity of bead ν is

ṙν =
drν

dt
(3.20)

We define the center of mass of the chain and denote it by rc and its velocity
ṙc:

rc =
1

mp

∑
ν

mνrν (3.21)

and

ṙc =
1

mp

∑
ν

mν ṙν (3.22)

and we also define Rν = rν − rc, being the position of bead ν with respect to the
of mass rc. Then Ṙν = ṙν − ċν

We can easily note that the Rν , Ṙν are linearly dependent since

∑
ν

mνrν = 0 (3.23)



and ∑
ν

mν ṙν = 0 (3.24)

We have thus reached a critical point in the development. The Hamiltonian
of the system is generally (in most physical cases) expressed as the total energy
of the system. We have already seen that it is a function of the generalized
coordinates and its conjugate generalized momenta. In our case of a system with
N particles and no constraints it can be written as

H =
∑

ν

1

2mν

p2
ν + φ(rN) (3.25)

, which is the sum of the total kinetic energy plus the potential energy of the
system that depends on the coordinates of the particles.

The evolution of the system is characterized by the well known Hamilton’s
equations which are:

∂H

∂pν

= ṙν (3.26)

∂H

∂rν

= −ṗν (3.27)

if we substitute the expression of the Hamiltonian into the equations 3.26,3.27
we get the second law of motion for particle ν.

Fν = mν r̈ν (3.28)

For systems with constraints the Hamiltonian becomes

H =
1

2mp

p2
c +

1

2

∑
s

∑
t

GstPsPt + φ(rc, Q1, Q2, ..., Qd) (3.29)

and Hamilton’s equations of motion are:
∂H
∂rc

= −ṗc and ∂H
∂pc

= ṙc for center of mass
∂H
∂Qs

= −Ṗs and ∂H
∂Ps

= Q̇s for internal coordinates

3.5 The Distribution Function in the Equilib-

rium State of the System

For the study of equilibrium properties we take as the object of our study a dilute
solution of polymer molecules. The molecules being represented by bead-rod-
spring models. The solution is at temperature T and is contained in a volume



V ; there are n polymer molecules /unit volume and the solvent acts as in a
’temperature bath’. We want to know the phase-space distribution function in
this equilibrium state.

We firstly introduce the single-molecule-phase-space distribution function
feq(rc, Q, pc, P ). That is feq(rc, Q, pc, P )drcdQdpcdP reveals the number of poly-
mer molecules having configuration in the range drcdQ around rc, Q and momen-
tum in the range dpcdP around pc, P .

The distribution function feq is given by the product of the number of polymer
molecules in the system and the probability density that can be obtained by
equilibrium statistical mechanics and is proportional to exp(−H/KT ) where H
is the Hamiltonian of a single polymer molecule in the temperature bath. The
only thing left is that feq has to be properly normalized over the entire phase-
space,so

feq(rc, Q, pc, P ) =
nV e(−H/KT )

∫ ∫ ∫ ∫
e(−H/KT )drcdQdpcdP

=
ne(−H/KT )

∫ ∫ ∫
e(−H/KT )dQdpcdP

(3.30)

(The second form only in the case where H = K + φ, where φ is independent of
rc)

The configurational distribution function is denoted by Ψeq(rc, Q) and mul-
tiplied by drcdQ gives the number of polymer molecules in the configurational
range drcdQ about rc, Q. It is obtained by

Ψeq(rc, Q) =

∫ ∫
feq(rc, Q, pc, P )dpcdP

=
n

∫ ∫
e(−H/KT )dpcdP∫ ∫ ∫

e(−H/KT )dQdpcdP
= nψeq(Q) (3.31)

Thus

ψeq(Q) =

∫
exp(−∑

s

∑
t GstPsPt/2KT )dPe(−φ(Q)/KT )

∫ ∫
exp(−∑

s

∑
t GstPsPt/2KT )e(−φ(Q)/KT )dPdQ

(3.32)

When the integration over the P ′s is performed, it gives (2πKT )d/2/
√

det(Gst)
and setting g(Q) = det(gst) = 1

det(Gst)
then

ψeq(Q) =

√
g(Q) exp(−φ(Q)/KT )∫ √
g(Q) exp(−φ(Q)/KT )dQ

(3.33)

and since ψeq(Q) is normalized (
∫

ψeq(Q)dQ = 1) therefore ψeq(Q)dQ is the
probability that the internal configuration is in the range dQ about Q



3.6 Average Values

Quantities that are experimentally accessible are the results of measurements that
contain an enormous ensemble of molecules. Therefore, in order to be in position
to bridged the gap between experimental properties and the theory, one needs to
define average values of physical quantities.

We define the average value of a function B(rc, Q, pc, P ) in the phase space of
a single polymer molecule

〈B〉eq =

∫ ∫ ∫ ∫
BfeqdrcdQdpcdP∫ ∫ ∫ ∫
feqdrcdQdpcdP

=
1

nV

∫ ∫ ∫ ∫
BfeqdrcdQdpcdP (3.34)

One can also define averages in the momentum space (denoted by double
brackets), thus

[[B]]eq =

∫ ∫
BfeqdpcdP∫ ∫
feqdpcdP

=
1

Ψeq

∫ ∫
BfeqdpcdP (3.35)

and the phase space average can be written in form

〈B〉eq =
1

nV

∫ ∫
[[B]]eqΨeqdrcdQ (3.36)

If the quantity B is only a function of rc, Q then

[[B]]eq = B (3.37)

([[B]]eq is generally a function of rc, Q)
and 〈B〉eq = 1

nV

∫ ∫
BΨeqdrcdQ.

Then if B, φ are only functions of Q the phase-space average of B becomes

〈B〉eq =

∫
BΨeqdQ (3.38)

which leads to

〈B〉eq =

∫
B
√

ge−φ/KT dQ∫ √
ge−φ/KT dQ

(3.39)

We must however keep in mind that the last equation holds for B, φ being
functions only of the internal coordinates and the evaluation of the quantity

√
g

requires in general a difficult computation.



3.7 Contracted Distribution Functions

We define
ψ1,eq(Q) = 〈δ(Q1 −Q)〉eq (3.40)

therefore ψ1,eq(Q)dQ is the probability that the macromolecule chain has the con-
nector vector Q1 of the first spring in the range dQ1 about Q1 in the equilibrium
state. Let’s take the special case of the Rouse chain. Then after some calculations
we obtain

ψ1,eq(Q) = 〈δ(Q1 −Q)〉
=

∫
δ(Q1 −Q)ψeq(Q

N−1)dQN−1

=

∫
δ(Q1 −Q)(

H

2πKT
)3/2 exp((−H/2KT )Q2

1)dQ

=

∫

N−2fold

...

∫
[
N−1∏

k=2

(
H

2πKT
)3/2 exp(−(H/2KT )Q2

k)]dQ2dQ3...dQN−1

= (
H

2πKT
)3/2 exp((−H/2KT )Q2) (3.41)

Another interesting point is when we switch from a Cartesian coordinates
framework to a polar angle coordinate one. Then ψ1,eq(Q, θ, φ)dQdθdφ is the
probability that the first link be located within the range dθdφ about θ, φ and
has length within the range dQ about Q

Finally

ψ1,eq(Q) =

∫ ∫
ψ1,eq(Q, θ, φ)dθdφ

= 4πQ2(
H

2πKT
)3/2 exp((−H/2KT )Q2) (3.42)

where we have used the fact that

ψ1,eq(Q, θ, φ) = ψ1,eq(Qx, Qy, Qz)Q
2 sin(θ) (3.43)





Chapter 4

Brownian Motion and Stochastic
Modelling in Polymeric Liquids

4.1 Markov Processes the Master and Fokker

Planck equations

The defining property of Markov processes is that they have no memory. We go
on to present a mathematically rigorous definition.

Definition:For a Markov process, we have for all n and all t1 < t2 < ... < tn

P (Xn = xn, tn|Xn−1 = xn−1, tn−1, ..., X1 = x1, t1) = P (Xn = xn, tn|Xn−1 = xn−1, tn−1)
(4.1)

In other words one has to know only the actual state of the system (xn−1, tn−1)
in order to calculate the probability of the occurrence of (xn, tn). The n point
joint probability may be easily calculated by iteratively applying the Markovian
equation so

P (Xn = xn, tn; Xn−1 = xn−1, tn−1; ...; X1 = x1, t1) =
n∏

l=2

P (Xl = xl, tl|Xl−1 = xl−1, tl−1)P (X1 = x1, t1) (4.2)

Remember that Markov processes are very common in nature in the sense that
systems that obey the rules of Hamiltonian dynamics lack memory and the com-
plete knowledge of the state of the system at a given instant of time determines
its future behavior.

Now passing to the 3− point joint probability we have

P (X1 = x1, t1; X2 = x2, t2; X3 = x3, t3) =

P (X3 = x3, t3|X2 = x2, t2)P (X2 = x2, t2|X1 = x1, t1)P (X1 = x1, t1) (4.3)
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Next integrating over x2 we get

P (X1 = x1, t1; X3 = x3, t3) =

P (X1 = x1, t1)

∫
P (X3 = x3, t3|X2 = x2, t2)P (X2 = x2, t2|X1 = x1, t1)dx2 (4.4)

or

P (X3 = x3, t3|X1 = x1, t1) =

∫
dx2P (X3 = x3, t3|X2 = x2, t2)P (X2 = x2, t2|X1 = x1, t1)

(4.5)
for t3 ≥ t2 ≥ t1 which is the Chapman-Kolmogorov equation. We are now
ready to give the definition of a stationary Markov process and derive the Master
equation.

A stationary Markov process exhibits the properties

P (X = x, t) = peq (4.6)

P (X2 = x2, t2|X1 = x1, t1) = pt(x2|x1) (4.7)

for t = t2 − t1 where pt is the transition probability within the time interval t
from state x to state x2 :Using the Chapman-Kolmogorov equation for pt we get

pt+t′ (x3|x1) =

∫
dx2pt′ (x3|x2)pt(x2|x1) (4.8)

In order to derive the differential form of the Chapman-Kolmogorov equation
for stationary Markov processes we consider the case of small time intervals t

′

and write the transition probability in the following way.

pt′ (x3|x2) = (1− wtot(x2)t
′
)δ(x3 − x2) + t

′
w(x3|x2) + O(t

′
) (4.9)

where w(x3|x2) is the transition rate(transition probability/unit time) from x2 to
x3 and (1−wtot(x2)t

′
) is the probability to remain in state x2 up to time t

′
, that

is

wtot(x2) =

∫
dx3w(x3|x2) (4.10)

With the use of 4.40 and the Chapman-Kolmogorov equation one gets

pt+t′ (x3|x1) = (1− wtot(x3)t
′
)pt(x3|x1) + t

′
∫

dx2w(x3|x2)pt(x2|x1) (4.11)

or

pt+t
′ (x3|x1)− pt(x3|x1)

t′
=

∫
dx2w(x3|x2)pt(x2|x1)−

∫
dx2w(x2|x3)pt(x3|x1)

(4.12)



Taking the limit t
′ → 0 we arrive at the master equation which is the differential

version of the Chapman-Kolmogorov equation.
Thus

∂

∂t
pt(x3|x1) =

∫
dx2w(x3|x2)pt(x2|x1)−

∫
dx2w(x2|x3)pt(x3|x1) (4.13)

When we do not assume stationarity but keep the assumption of time-homogeneity,
then multiplying the last equation by p1(x1, t) and integrating over x1, we get

∂

∂t
p1(x3, t) =

∫
dx2w(x3|x2)p1(x2, t)−

∫
dx2w(x2|x3)p1(x3, t) (4.14)

or simplifying the expression

∂

∂t
p(x, t) =

∫
dx

′
w(x|x′)p(x

′
, t)−

∫
dx

′
w(x

′ |x)p(x, t) (4.15)

Let us now set forth for further approximations of the master equation and make
the following assumptions
• We write w(x|x′) = w(x− r; r) with r := x− x

′

• There are small ’jumps’ i.e w(x-r;r) as a function of r is a sharply peaked
function around r = 0
∃δ > 0 with w(x− r; r) ' 0 for |r| > δ
• w(x− r; r) is a slowly varying function of its first argument
∃δ′ > 0 with w(x− r; r) ' w(x

′
; r) |r| < δ

′

• The last holds true for p(x, t) also.
• w and p are sufficiently smooth functions of both arguments
So we can rewrite the last expression

∂

∂t
p(x, t) =

∫
drw(x− r; r)p(x− r, t)− p(x, t)

∫
drw(x;−r) (4.16)

Performing a Taylor expansion in x− r around r = 0
we obtain

∂

∂t
p(x, t) = p(x, t)

∫
drw(x; r)− p(x, t)

∫
drw(x;−r)

−
∫

drr
∂

∂x
[w(x; r)p(x, t)] +

1

2

∫
drr2 ∂2

∂x2
[w(x; r)p(x, t)]∓ ... (4.17)

yielding

∂

∂t
p(x, t) =

∞∑
n=1

(−1)n

n!

∂n

∂xn
[αn(x)p(x, t)] (4.18)

αn(x) =

∫ +∞

−∞
drrnw(x; r) (4.19)



which is the celebrated Kramers-Moyal expansion of the master equation.
Truncating all but the first two terms of the Kramers-Moyal expansion we get
the Fokker-Planck equation.

∂

∂t
p(x, t) = − ∂

∂x
[α1(x)p(x, t)] +

1

2

∂2

∂x2
[α2(x)p(x, t)] (4.20)

4.2 The Smoluchowski Equation

In order to derive the Smoluchowski equation we will consider a phenomenological
approach originated by Einstein. We will firstly consider the one-dimensional case
and the generalization to higher dimensions will follow naturally.

If c(x, t) is the concentration at point x and time t and j(x, t) is the flux then
the process of diffusion is macroscopically defined by Fick’s law that states

j(x, t) = −D
∂c

∂x
(4.21)

where D is the diffusion constant.
Combining the aforementioned equation with the Continuity equation

∂c

∂t
= − ∂c

∂x
(4.22)

we obtain the diffusion equation

∂c

∂t
= D

∂2c

∂x2
(4.23)

Some modifications have to be made if we allow an external potential U(x)
which will exert a force

F = −∂U

∂x
(4.24)

on the particle and in the usual condition of weak force this will be linear in F

v = −1

ζ

∂U

∂x
(4.25)

where ζ is the friction constant and its inverse 1
ζ

is called the mobility.
Modifying Fick’s law by adding an additional term we get the total flux

j = −D
∂c

∂x
− c

ζ

∂U

∂x
(4.26)



If we substitute in the above relation the concentration in the equilibrium
state which is given by the Boltzmann distribution

ceq(x) ∝ exp(−U(x)/KBT ) (4.27)

for which the flux must vanish, we obtain the Einstein relation

D =
KBT

ζ
(4.28)

Using the Einstein relation and the general flux formula we get

j(x, t) = −1

ζ
(KBT

∂c

∂x
+ c

∂U

∂x
) (4.29)

The diffusion equation is thus

∂c

∂t
=

∂

∂x

1

ζ
(KBT

∂c

∂x
+ c

∂U

∂x
) (4.30)

which is the Smoluchowski equation in the one-dimensional case.
If we are to express the flux as the gradient of a quantity then

j = −1

ζ
c

∂

∂x
(KBT ln c + U) (4.31)

The quantity U(x)+KBT ln c is the chemical potential of noninteracting par-
ticles of concentration c

4.3 The Langevin Equation

A classical problem of nonequilibrium statistical mechanics is the Brownian mo-
tion. Brownian motion was studied by Albert Einstein in his celebrated 1905
paper and independently by Myrian Smoluchowski. It refers to the motion of a
heavy colloidal particle immersed in a fluid made up of light particles and was
first observed by the Scottish botanist R.Brown back in 1827. We will depart
from the exact mechanical description by adding a probabilistic element in our
description of the phenomenon.

Thus a macroscopic treatment reveals that the Brownian particle during its
motion undergoes a friction force proportional to its velocity v
v̇ = −ζv (macroscopic)

If on the other hand we want to undergo to a microscopic description we must
add a random force that the Brownian particle experiences, so Newton’s second



law becomes
v̇ = −ζv + f(t) (microscopic)

Alternatively the Langevin equation may be written in the form ζ dx
dt

= −∂U
∂x

+
f(t) where U is the potential energy.

Although we cannot specify the force f(t), however, we can make various
assumptions about the average effect of collisions over a large number of identical
macroscopic situations. That’s why equations like the one above carry the name
’stochastic equations’.

The assumptions we use are the following:
1) The average of f(t) over an ensemble of Brownian particles at an instant of
time is 〈f(t)〉 = 0

This assumption shows the equivalence with the macroscopic behavior when
taking ensemble averages.
2)We may also make the assumption that collisions well separated in time are
not correlated. Hence for times t1, t2

〈f(t1)f(t2)〉 = φ(t1 − t2) (4.32)

where φ(t) is a sharply peaked at t = 0 function, vanishing for |t| > τc

where τc is the duration of a collision
The distribution of f(t) can be easily taken to be Gaussian and after taking

〈f(t)〉 = 0 (4.33)

〈f(t)f(t
′
)〉 = 2ζKBδ(t− t

′
) (4.34)

then the probability distribution of f(t) assumes the form

P [f(t)] ∝ exp(− 1

4ζKBT

∫
dtf(t)2) (4.35)

Considering now a free particle (U = 0) the Langevin equation reads

ζ
dx

dt
= f(t) (4.36)

If the particle is at x′ at time t = 0, its position at time t is given by

x(t) = x
′
+

1

ζ

∫ t

0

dt
′
f(t

′
) (4.37)

It can be shown that the distribution function of x(t) is also Gaussian. Hence

P (x(t), t) = (2πB)−1/2 exp (−(x− A)2

2B
) (4.38)



where A = 〈x(t)〉 and B = 〈(x(t)− A)2〉
so

A = 〈x(t)〉 = x
′
+

1

ζ

∫ t

0

dt
′〈f(t

′
)〉 = x

′
(4.39)

and

B = 〈(1
ζ

∫ t

0

dt
′
f(t

′
))(

1

ζ

∫ t

0

dt
′′
f(t

′′
))〉

=
1

ζ2

∫ t

0

dt
′
∫ t

0

dt
′′〈f(t

′
)f(t

′′
)〉

=
2KBT

ζ

∫ t

0

dt
′
∫ t

0

dt
′′
δ(t

′ − t
′′
) =

2KBT

ζ
t (4.40)

and using Einstein’s relation we obtain

B = 2Dt (4.41)

Thus

P (x(t), t) = (4πDt)−1/2 exp (−(x− x
′
)2

4Dt
) (4.42)

If the diffusion constant D is time-dependent then the Langevin has to be
modified and assumes the form

ζ
dx

dt
= −∂U

∂x
+ f(t) +

ζ

2

∂D

∂x
(4.43)

The Langevin equation corresponding to the Smoluchowski equation in multidi-
mensional phase-space is

d

dt
xn =

∑
m

Lnm(− ∂U

∂xm

+ fm(t)) +
1

2
KBT

∑
m

∂

∂xm

Lnm (4.44)

And the distribution of the random force is characterized by the moments

〈fn(t)〉 = 0 (4.45)

〈fn(t)fm(t
′
)〉 = 2(L−1)nmKBTδ(t− t

′
) (4.46)

4.4 The Irreversibility of the Smoluchowski Equa-

tion

Provided that the potential U({x}) is independent of time and that there is no
flux at the boundary Ψ approaches Ψeq where

Ψeq = exp(−U(x)/KBT )/

∫
dx exp(−U(x)/KBT ) (4.47)



Consider the functional

A[Ψ] ≡
∫

dxΨ(KBT ln(Ψ) + U) (4.48)

and taking the time derivative of A we have

d

dt
A =

∫
dx[

∂Ψ

∂t
(KBT ln(Ψ) + U) + KBT

∂Ψ

∂t
] (4.49)

Using the fact that

∂Ψ

∂t
=

∑
n,m

∂

∂xn

Ln,m(KBT
∂Ψ

∂xm

+
∂U

∂xm

Ψ) (4.50)

and after integration by parts

dA

dt
= −

∫
dxΨ

∑
n,m

Ln,m[
∂

∂xn

(KBT ln(Ψ) + U)][
∂

∂xm

(KBT ln(Ψ) + U)]

= −
∫

dxΨ
∑
n,m

Ln,m[KBT
∂

∂xn

ln(Ψ/Ψeq)][KBT
∂

∂xm

ln(Ψ/Ψeq)] (4.51)

which is negative unless Ψ is identical to Ψeq.So Ψ will eventually reach Ψeq after
a sufficiently long time.

4.5 Hydrodynamic Interaction and the Oseen

Burgers Tensor

4.5.1 Hydrodynamic Interaction

In this section we are taking in account the fact that any force acting on a particle
creates a velocity field that contributes to the motion of other particles.

The purpose of this chapter is to obtain a Smoluchowski equation after the
calculation of the mobility matrix.Let {R} = {R1, ..., RN} be the position of the
spheres and F1, ..., FN the forces acting on them.The velocities of the particles
can be written in the form

Vn =
∑
m

Hnm · Fm (4.52)

which defines the mobility matrix Hnm n,m ∈ {1, ..., N}.



The mobility matrix is assumed diagonal in very dilute solutions and takes
the form Hnm = Iδnm

ζ
where ζ = 6πηsα is the friction constant of the particle.In

more general cases it is a non-diagonal tensor describing the resolution of the
velocities due to the forces acting on the particles.

The calculation of the particle velocities Vn follows after the calculation of
the velocity field v(r).This can be done easily following continuum mechanics
arguments for the incompressible solvent.Thus

∂

∂rα

vα = 0 (4.53)

Neglecting the inertia term and letting σαβ(r) and gα(r) be respectively the stress
tensor and the external force acting on a unit volume of the fluid we have for the
incompressible solvent

σαβ = ηs(
∂vβ

∂rα

+
∂vα

∂rβ

) + Pδαβ (4.54)

an easy calculation including 4.53,4.54 and the fact that

∂

∂rβ

σαβ = −gα(r) (4.55)

reveals

ηs
∂2

∂rβ

vα +
∂

∂rα

P = −gα (4.56)

the so called Stokes approximation.
Regarding the particles as points then

g(r) =
∑

n

Fnδ(r −RN) (4.57)

and equation 4.56 reads

ηs∇2v +∇P = −
∑

n

Fnδ(r −Rn) (4.58)

The solution of this equation is

v(r) =
∑

n

H(r −Rn) · Fn (4.59)

with H(r) = 1
8πηsr

(I + r̂r̂) the Oseen tensor and r̂ being the unit vector parallel
to r̂.



The velocities Vn are then Vn = v(Rn) =
∑

m H(Rn − Rm) · Fm and H(Rn −
Rm) = Hnm for n 6= m and since Hnn = H(0) is not defined approximations for
Hnn are to be used.One common approximation is that Hnn = I

ζ
and Hnm =

H(Rn −Rm) for n 6= m
Finally the Smoluchowski equation takes the form

∂ψ

∂t
=

∑
n,m

∂

∂Rn

·Hnm · (KBT
∂ψ

∂Rm

+
∂U

∂Rm

ψ) (4.60)

.

4.5.2 Calculation of the Oseen Tensor

The Oseen tensor will be calculated by means of the Fourier transform

vk =
1

V

∫
drv(r)eik·r (4.61)

Equations 4.53,4.56,4.57 and 4.61 can be written in form

−ηsk
2vk − ikPk = −gk, k · vk = 0 (4.62)

which will give us

vk =
1

ηsk2
(I − k̂k̂) · gk (4.63)

Hence, by means of the inverse Fourier transform we have

v(r) =

∫
dŕH(r − ŕ) · g(ŕ) (4.64)

and

H(r) =
1

(2π)3

∫
dk

1

ηsk2
(I − k̂k̂)exp(ik · r) (4.65)

We will assume that
Hαβ(r) = Aδαβ + Br̂αr̂β (4.66)

So

Hαα = 3A + B (4.67)

Hαβ r̂αr̂β = A + B (4.68)

or

3A + B =
1

(2π)3

∫
dk

2

ηsk2
exp(−ik · r) (4.69)



and

A + B =
1

(2π)3

∫
dk

1− (k̂ · r̂)2

ηsk2
exp(−ik · r) (4.70)

In order to calculate the above integral we introduce a change of variables t = k̂r̂
and ξ = |k||r| and thus get

3A + B =
2

(2π)2

∫ ∞

0

dξ
2π

ηsr

∫ 1

−1

dtexp(−iξt)

=
1

π2ηsr

∫ ∞

0

dξ
sinξ

ξ
=

1

2πηsr
(4.71)

and

A + B =
1

(2π)3

∫ ∞

0

dξ
2π

ηsr

∫ 1

−1

dt(1− t2)exp(−iξt)

=
1

2π2ηsr

∫ ∞

0

dξ(1 +
∂2

∂ξ2
)
sinξ

ξ
=

1

4πηsr
(4.72)

Finally, we get the values

A = B =
1

8πηsr
(4.73)

and

H(r) =
1

8πηsr
(I + r̂r̂) (4.74)

4.6 The Rouse Model

In the Rouse model the excluded volume effect and hydrodynamic interactions
are being disregarded. The mobility tensor is taken to be Hnm = I

ζ
δnm, and the

interaction potential

U =
k

2

N∑
n=2

(Rn −Rn−1)
2 (4.75)

where K = 3KBT
b2

.
Let (R1, R2, ..., RN) ≡ {Rn} be the position of the beads. Beads motion is sup-
posed to be governed by the Brownian phenomenon.
The Smoluchowski equation of motion reads:

∂Ψ

∂t
=

∑
n

∂

∂Rn

·Hnm · [KBT
∂Ψ

∂Rm

+
∂U

∂Rm

Ψ] (4.76)



(remember that Ψ(R1, ..., RN , t) is normalized to unity )
and the Langevin equation

∂

∂t
Rn(t) =

∑
m

Hnm · (− ∂U

∂Rm

+ fm(t)) +
1

2
KBT

∑
m

∂

∂Rm

·Hnm (4.77)

or after substitution of the above values (the second term on the right in 4.77
vanishes ) the equation of motion for beads is

ζ
∂Rn

∂t
= −K(2Rn −Rn+1 −Rn−1) + fn (4.78)

and for beads 1 and N

ζ
∂R1

∂t
= −K(R1 −R2) + f1 (4.79)

ζ
∂RN

∂t
= −K(RN −RN−1) + fN (4.80)

The distribution of fn is Gaussian and characterized by the moments

〈fn(t)〉 = 0 (4.81)

and
〈fnα(t)fmβ(t

′
)〉 = 2ζKBTδnmδαβδ(t− t

′
) (4.82)

where the second subscripts α, β are the α’th and β’th component of vectors fn

and fm respectively.
Regarding n a continuous variable the continuous limit of 4.78 reads

ζ
∂Rn

∂t
= K

∂2Rn

∂n2
+ fn (4.83)

The above differential equation is the continuous analog of 4.78 which in difference
form. Care needs to be taken to include the special form of the equations for
beads n = 1 and n = N . The proper way is to introduce two artificial variables
R0, RN+1 such that R0 = R1 and RN = RN+1 so that the last two equations in
the continuous limit become:

∂Rn

∂n
|n=0 = 0 (4.84)

∂Rn

∂n
|n=N = 0 (4.85)

The moments for fn are now

〈fn(t)〉 = 0 (4.86)

〈fnα(t)fmβ(t
′
)〉 = 2ζKBTδ(n−m)δαβδ(t− t

′
) (4.87)



One has to keep in mind that the discrete and continuous models agree for
properties on a long time scale, but not for short times.What makes the Rouse
model of particular importance is that a linear Langevin equation with localized
interactions shows the behavior of the Rouse model in the long time scale
Let’s consider the general form of the linearized Langevin equation

∂Rn

∂t
=

∑
m

AnmRm + gn (4.88)

The system is homogeneous and Anm can be replaced by An−m so the Langevin
equation can be written as

∂Rn

∂t
=

∑
m

AmRn+m + gm (4.89)

In the long time scale Rn varies slowly with n and so Rn+m can be expanded with
respect to m.

∑
m

AmRn+m =
∑
m

Am(Rn + m
∂

∂n
Rn +

1

2
m2 ∂2

∂n2
Rn + ...)

= a0Rn + a1
∂

∂n
Rn + a2

∂2

∂n2
Rn + ... (4.90)

where a0 =
∑∞

m=−∞ Am , a1 =
∑∞

m=−∞ mAm ,a2 = 1
2

∑∞
m=−∞ m2Am

The coefficient a0 must vanish since the Langevin equation must be invariant
under the spacial translation ((Rn → Rn + r)) and a1 must also vanish since Am

is an even function of m. Therefore the asymptotic behavior of the Langevin
equation is

∂

∂t
Rn = a2

∂2

∂n2
Rn + gn(t) (4.91)

which is the continuous limit of 4.88.
Therefore the Rouse model displays the general features of a model that as-

sumes local interactions.

4.7 The Zimm Model

The dynamics of polymers in dilute solutions may be better described by taking
into account the hydrodynamic interaction. Thus the mobility matrix is
Hnn = I

ζ
and

Hnm = 1
8πηs|rnm| [r̂nmr̂nm + I] for n 6= m

where rnm ≡ Rn −Rm and r̂nm is the unit vector in the direction of rnm.



The Langevin equation then becomes

∂

∂t
Rn =

∑
m

Hnm · (− ∂U

∂Rm

+ fm(t)) (4.92)

because it can be easily shown that ∂
∂Rm

·Hnm = 0 or in the continuous limit we
have

∂

∂t
Rn =

∑
m

Hnm · (K ∂2

∂m2
Rm + fm(t)) (4.93)

which bears the name ”Zimm’s Model”
In order that we handle better Hnm we introduce a preaveraging approximation
and we get

〈Hnm〉 =

∫
d{Rn}HnmΨ({Rn}, t) (4.94)

or considering problems near equilibrium

〈Hnm〉eq ≡
∫

d{Rn}HnmΨeq({Rn}) (4.95)

we can go on writing

〈Hnm〉eq =
1

8πηs

〈 1

|rnm|eq 〉〈r̂nmr̂nm + I〉eq (4.96)

Using 〈r̂nmr̂nm〉eq = 1
3

we have

〈Hnm〉eq =
I

6πηs

〈 1

|Rn −Rm| 〉eq (4.97)

In the Θ condition we obtain

〈Hnm〉eq =

∫ ∞

0

dr4πr2(
3

2π|n−m|b2
)3/2 exp (− 3r2

2|n−m|b2
)

I

6πηsr

=
I

(6π3|n−m|)1/2ηsb
≡ h(n−m)I (4.98)

by the preaveraging approximation the Langevin equation becomes

∂

∂t
Rn(t) =

∑
m

h(n−m)(K
∂2

∂m2
Km(t) + fm(t)) (4.99)

Although the approximation may appear quite crude the results are not very
different than more sophisticated calculations. One can also mention that in



the Zimm model the interaction among the segments is not localized and that
constitutes a major difference with the Rouse model.

To analyze the last equation we rewrite it in terms of the Rouse normal
coordinates Xp defined by

∂

∂t
Xp(t) =

∑
q

hpq(−KqXq + fq) (4.100)

where kp has already been defined and

hpq =
1

N2

∫ N

0

dn

∫ N

0

dm cos(
pπn

N
) cos(

qπm

N
)h(n + m) (4.101)

using the definition of h(n−m) we have

hpq =
1

N2

∫ N

0

dn

∫ N−n

0

dm cos(
pπn

N
) cos(

qπ(n + m)

N
)

=
1

N2

∫ N

0

dn[cos(
pπn

N
) cos(

qπn

N
)

∫ N−n

−n

dmh(m) cos(
qπm

N
)

− cos(
pπn

N
) sin(

qπn

N
)

∫ N−n

−n

dmh(m) sin(
qπm

N
)] (4.102)

For large q the asymptotic values of the underlined integrals are

∫ ∞

−∞
dmh(m) cos(

qπm

N
) =

√
N

(3π3q)1/2ηsb
(4.103)

and ∫ ∞

−∞
dmh(m) sin(

qπm

N
) = 0 (4.104)

So ,

hqp '
√

N

(3π3q)1/2ηsb

1

N2

∫ N

0

du cos(
pπn

N
) cos(

qπn

N
) (4.105)

or approximatelly √
N

(3π3p)1/2ηsb

1

2N
δpq. (4.106)

Neglecting the off diagonal elements we get an equation that has the same struc-
ture as that of the Rouse model:

ζp
∂

∂t
Xp(t) = −KpXp + fp(t) (4.107)



where ζp = (hpp)
−1 = (12π3)1/2ηs(Nb2p)1/2 p = 1, 2, ... not correct for p = 0

and kp = 6π2KBT
Nb2

p2 p = 0, 1, 2, ...

Nevertheless, ζ0 = (h00)
−1 = 1

N2 [
∫ N

0
dn

∫ N

0
dmh(|n−m|)]−1 = 3

8
(6π3)1/2ηsb

√
N

Finally the DG diffusion constant and τp relaxation time are

DG =
KBT

ζ0

=
8KBT

3(6π3)1/2ηsb
√

N
= 0.196

KBT

ηsR̄
(4.108)

and τp = ζp

kp
= τ1p

−3/2

with τ1 = τr = ηs(
√

Nb)3√
3πKBT

= 0.325 ηsR̄3

KBT

where R =
√

Nb
so DG ∝ M−1/2, τr ∝ M3/2 which is in agreement with experimental results.



Chapter 5

Elastic Dumbbell Models

5.1 Preliminaries for the Elastic Dumbbells

We are now concerned with a dilute solution of a polymer, with n polymer
molecules/unit volume. The solvent is a Newtonian fluid with viscosity ηs. Poly-
mer molecules do not interact with one another. The polymer molecule is assumed
to be an elastic dumbbell, that is two beads each having mass m, joined by a
nonbendable spring. Let’s label those beads as bead ′1′ and ′2′ and let r1 and r2

be the position vectors of them respectively. Their connector vector is Q = r2−r1

and rc = 1
2
(r1 + r2) is the center of mass of the system.

As the flow field is taken to be homogeneous we can write the fluid velocity
as v = v0 + [k · r], where v0 is independent of r and k is traceless trk = 0 as the
fluid is taken to be incompressible.

The distribution function in position-velocity space which is F (r1, r2, ṙ1, ṙ2, t)
can be written in the form

F (r1, r2, ṙ1, ṙ2, t) = Ψ(r1, r2, t) · Ξ(ṙ1, ṙ2, r1, r2, t) (5.1)

The configuration space distribution function Ψ is independent of the location of
the center of masses of the polymer molecules (it is merely a function of their
configuration), whereas the velocity-space distribution function Ξ is taken to be
normalized and satisfies ∫ ∫

Ξdṙ1dṙ2 = 1 (5.2)

The configuration space distribution function Ψ is assumed to be factored as
Ψ(r1, r2, t) = nψ(Q, t). The distribution function ψ(Q, t) satisfies the normaliza-
tion condition

∫
ψ(Q, t)dQ = 1. Furthermore the velocity distribution can be

taken to be Maxwellian such that

Ξeq(ṙ1, ṙ2) =
exp{−[1

2
m(ṙ1 − v)2 + 1

2
m(ṙ2 − v)2]/KT}∫ +∞

−∞
∫ +∞
−∞ exp{−[1

2
m(ṙ1 − v)2 + 1

2
m(ṙ2 − v)2]/KT}dṙ1dṙ2

(5.3)
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For a general time-independent function B(r1, r2, ṙ1, ṙ2) the velocity-space av-
erage is

[[B]] =

∫ ∫
BΞdṙ1dṙ2 (5.4)

and the phase-space average of B(r1, r2, ṙ1, ṙ2) is

〈B〉 =
1

nV

∫ ∫
[[B]]Ψdr1dr2 (5.5)

If B is only a function of Q then

〈B〉 =

∫
BψdQ (5.6)

The kind of forces bead ν(ν = 1, 2) is presumed to experience are four, namely:

a)A hydrodynamic drag force F
(h)
ν . The force of resistance experienced by a bead

as it moves through the solution. This drag force may be isotropic or anisotropic
e.t.c
b)A Brownian force F

(b)
ν . The irregular manner by which beads are jostled about

due to thermal fluctuations in the liquid. It can however be expressed as a
function of the configuration distribution function.
c)An intramolecular force F

(φ)
ν . The force that a bead experiences due to the

spring in the dumbbell. It is the negative gradient of the potential energy of the
system.
d)An external force F

(e)
ν . These are gravitational, electrical forces e.t.c

The inertial term (mass × acceleration) can be neglected
As mentioned above when we neglect the inertial terms the equation of motion

for bead ν becomes
F (h)

ν + F (b)
ν + F (φ)

ν + F (e)
ν = 0 (5.7)

in which

F (h)
ν = −ζ · [[[ṙν ]]− (vν + v

′
ν)] (5.8)

F (b)
ν = − 1

Ψ

∂

∂t
· [[[m(ṙν − v)(ṙν − v)]]Ψ] (5.9)

F (φ)
ν = − ∂

∂rν

φ (5.10)

Thus the hydrodynamic force acting on bead ν is assumed proportional to
the difference between the bead velocity ṙν (averaged with respect to the velocity
distribution) and the sum vν + v

′
ν . The velocity vν = v0 + [k · rν ] is that of a flow

at bead ν though v
′
ν is the perturbation of the flow field at bead ν resulting from

the motion of the other bead and will be neglected.



The ’friction tensor’ ζ is a symmetric second order tensor and when taken
isotropic is written as ζ = δζ where the scalar ζ is called the ’friction coefficient’

The Brownian force takes the form of the divergence of the momentum flux
with respect to the velocity v at the center of mass of the dumbbell. When
equilibration in momentum space is assumed the Brownian force contribution
takes the form

F (b)
ν = −KT (

∂ ln Ψ

∂rν

) (5.11)

We define F (c) = F
(φ)
1 = −F

(φ)
2

The equation of motion if the Maxwell velocity distribution is used in the Brow-
nian motion term, takes the form

−ζ([[ṙν ]]− v0 − [k · rν ])−KT
∂

∂rν

ln(Ψ) + F (φ)
ν + F (e)

ν = 0 (5.12)

With the above equation we get

[[ṙc]] = v0 + [k · rc] +
1

2ζ

∑
ν

F (e)
ν (5.13)

[[Q̇]] = [k ·Q]− 2KT

ζ

∂

∂Q
ln(ψ)− 2

ζ
F (c) +

1

ζ
[F

(e)
2 − F

(e)
1 ] (5.14)

The equation of continuity for the configuration distribution function is

∂Ψ

∂t
= −(

∂

∂r1

· [[ṙ1]]Ψ)− (
∂

∂r2

· [[ṙ2]]Ψ) (5.15)

or rewritten in terms of rc and Q

∂Ψ

∂t
= −(

∂

∂rc

· [[ṙc]]Ψ)− (
∂

∂Q
· [[Q̇]]Ψ) = −(

∂

∂Q
· [[Q̇]]Ψ) (5.16)

and finally

∂ψ

∂t
= −(

∂

∂Q
· [[Q̇]]ψ) (5.17)

and by substituting [[Q̇]] from a former equation we take the diffusion equation

∂ψ

∂t
= −(

∂

∂Q
· {[k ·Q]ψ − 2KT

ζ

∂

∂Q
ψ − 2

ζ
F (c)ψ +

1

ζ
(F

(e)
2 − F

(e)
1 )ψ}) (5.18)



5.2 Expressions for the Stress Tensor

The stress tensor π in the polymer solution is given as the sum of the solvent’s
(πs) contribution and another contribution (πp) due to the presence of polymer
molecules, so

π = πs + πp = (psδ + τs) + (ppδ + τp) = pδ + τ (5.19)

where p = ps + pp and τ = τs + τp = −ηsγ̇ + τp

ηs:the solvent’s viscosity
γ̇ : γ̇ = ∇v +∇vT is the rate of strain tensor

The derivation for the πp expression will be empirical and quite fundamental.
We recognize three kinds of contributions to the stress tensor:
a)A contribution due to the intramolecular potential, π

(c)
p . The two beads of the

dumbbell being on opposite sides of an arbitrary plane will contribute a force
[η · π(c)

p ] acting on the plane, of tension or compression transmitted through the
connectors.
b)A contribution due to different external forces acting on the two beads π

(e)
p .

This will cause a force [η · π(e)
p ] acting on the arbitrary surface.

c)A Brownian (bead motion) contribution to the stress tensor. This will cause a

force [η · π(b)
p ] acting on the arbitrary plane.

5.2.1 Contribution from the Intramolecular Potential π
(c)
p

Let’s consider an arbitrary plane of area S in the solution moving with the solution
velocity v. Let η be the unit vector normal to the surface and n the number of
dumbbells/unit volume. Then the number of molecules straddling the plane, with
bead ′1′ on the negative side and bead ′2′ on the positive side is n(η·Q)·Sψ(Q, t)dQ

The contribution to the force of the ’negative material’ on the ’positive ma-
terial’ will be in the amount of −F

(φ)
1 . Hence the contribution of all orientations

with bead ′1′ in the negative region and bead ′2′ in the positive region to the
stress is

∫

integral over Q for which (η ·Q) > 0
n(η ·Q)ψ(Q, t)(−F

(φ)
1 )dQ (5.20)

The stress contribution of all orientations with bead ′2′ in the negative region
and bead ′1′ in the positive region is

∫

integral over Q for which (η ·Q) < 0
n(−η ·Q)ψ(Q, t)(−F

(φ)
2 )dQ (5.21)



Introducing the ’connector tension’ F (c) such that F (c) = F
(φ)
1 = −F

(φ)
2 the

sum of the above integrals is

−
∫

integral over all Q
n(η·Q)ψ(Q, t)F (c)dQ = −[η·n

∫
QF (c)ψ(Q, t)dQ] = [η·π(c)

p ]

(5.22)
So

π(c)
p = −n

∫
QF (c)ψ(Q, t)dQ = −n〈QF (c)〉 (5.23)

Since F (c) can be replaced by F (c)Q/|Q| the tensor π
(c)
p is shown to be symmetric.

5.2.2 Contribution from the External Forces π
(e)
p

Let’s assume that bead ′1′ is subjected to an external force F
(e)
1 and bead ′2′

may be subjected to force F
(e)
2 . Following similar arguments as in case a) the

contribution to the stress tensor is
∫

integral over all Q for which (η ·Q) > 0
n(η ·Q)ψ(Q, t)(−F

(e)
1 )dQ +

∫

integral over all Q for which (η ·Q) < 0
n(−η ·Q)ψ(Q, t)(−F

(e)
2 )dQ (5.24)

If we had just calculated the force exerted by the ’positive material’ on the
’negative material’ this would be

∫

integral over all Q for which (η ·Q) > 0
n(η ·Q)ψ(Q, t)(−F

(e)
2 )dQ +

∫

integral over all Q for which (η ·Q) < 0
n(η ·Q)ψ(Q, t)(−F

(e)
1 )dQ (5.25)

Then by identifying one half of the difference of these last two expressions as
[η · π(e)

p ] then π
(e)
p = 1

2
n〈Q(F

(e)
2 − F

(e)
1 )〉 which is not necessarily symmetric.

5.2.3 Contribution from Bead Motion π
(b)
p

The motion of beads will contribute to the stress tensor because of momentum
transported by the beads.The number of beads with velocity ṙ1 that cross an
arbitrary surface (whose area is S) in the time interval ∆t is

n((ṙ1 − v) · Sη)∆t (5.26)



Then the amount of momentum transported across the plane is

n((ṙ1 − v) · Sη)m(ṙ1 − v)∆t (5.27)

Thus the average of the momentum flux resulting from both beads is

nη ·
2∑

ν=1

∫
[[m(ṙ1 − v)(ṙ1 − v)]]ψ(Q, t)dQ (5.28)

and is identified by [η · π(b)
p ] so

π(b)
p = n

∫
[[

2∑
ν=1

m(ṙ1 − v)(ṙ1 − v)]]ψ(Q, t)dQ (5.29)

and integrating using the Maxwellian distribution we get π
(b)
p = 2nKTδ

The stress tensor is given by the summarizing expression

π = πs − n〈QF (c)〉+
1

2
n〈Q[F

(e)
2 − F

(e)
1 ]〉+ nm

2∑
ν=1

〈(ṙv − v)(ṙv − v)〉 (5.30)

5.3 Hookean Dumbbells

If we restrict ourselves to hookean spring connectors then F (c) = HQ where H is
the spring constant.

Then the polymer contribution to the stress tensor τp for the Kramers and
the Giesekus case respectively is
Kramers:

τp = −nH〈QQ〉+ nKTδ (5.31)

Giesekus:

τp =
nζ

4
〈QQ〉(1) (5.32)

After simple manipulations,one gets τp+λHτp(1) = −nKTλHγ(1)(remember δ(1) =
−γ(1))
and τ + λ1τ(1) = −η0(γ(1) + λ2γ2) in terms of τ where
η0 = ηs + nKTλH

λ1 = λH

λ = ( ηs

ηs+nKTλH
)λH

The aforementioned equation is the constitutive equation for the dilute solu-
tion and is of the form of the ’convected Jeffreys model’



The Hookean-dumbbell-solution const. eq. may be put into the form

τ = −ηsγ̇ +

∫ t

−∞
{nKT

λH

e−(t−t
′
)/λH}γ[0](t, t

′
)dt

′
(5.33)

where γ[0](t, t
′
) = δ −B = δ − E · E (B is the Finger strain tensor)

The average value of the square of the end-to-end distance is obtained by

taking the trace of 5.31, hence 〈Q2〉
〈Q2〉eq

= 1− trτp

3nKT
a ratio that can be measured by

means of light scattering.





Chapter 6

General Phase-Space
Theory(based on Bird and
Curtiss)

6.1 Abstract

The idea of a general Kinetic theory formulated in the phase space of the entire
polymeric liquid was initially captured in 1975 by Curtiss, Bird and Hassager
[18].This theory is summarized in [3]. Such a theory was useful for many rea-
sons.For instance it was essential in providing a common framework for the study
of rheological,diffusional and thermal phenomena e.t.c.

The framework we will be working in is thus the one of a phase-space kinetic
theory for models with no internal constraints. These are commonly called ’bead-
spring models’, nevertheless we allow any kind of connectivity, e.g chains, rings,
stars, combs e.t.c.

The notation we will continually use will be the one that labels the number
of the ’bead’ on the molecular model after (ν, µ, η, ...), the chemical species of
the molecule after (α, β, γ, ...) and the number of the molecule of that particular
species after (i, j, k, ...) in the liquid mixture. Therefore, symbols involving the
interactions of pairs of beads will carry six indices, three for each bead.

6.2 Preliminaries

6.2.1 Coordinates and Momenta for Bead-Spring Models

We consider various types of springs according to the kind of potential:
a)Hookean (or Gaussian) in which φ = 1

2
HQ2
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b)Fraenkel in which φ = 1
2
H(Q−Q0)

2

where Q0 is the length in the absence of tension.
c)Warner (or ’FENE’) in which φ = −1

2
HQ2

0 ln[1−( Q
Q0

)2] ,here Q0 is the maximum
extended length of the spring
in short φ is the potential energy of the spring, Q is the interbead distance and
H is the spring constant.

Hookean springs are ideal in obtaining analytical expressions e.g in the Rouse
and Zimm chain models. Fraenkel springs are useful in describing chains with
reduced degrees of freedom e.g constant bond lengths or angles. Finally, Warner
springs are used since they approximate roughly the behavior of the inverse
Langevin springs.

It is not a good idea to assume that a bead spring chain with Fraenkel con-
nectors and H →∞ gives the same statistical mechanical results as the bead-rod
chain. Indeed, this discrepancy was shown by Hassager and discussed by Gottlieb
and van Kampen.

Now it really the time to set forth the notation with the Coordinates and
Momenta for the bead-spring model.

We let rν , ν = 1, 2, ..., N be the position vector of bead ν with respect to an
arbitrary laboratory fixed coordinate system and mν the mass of bead ν. The
center-of-mass position vector rc is defined by

rc =
∑

ν

mνrν∑
ν mν

= (
1

mm

)
∑

ν

mνrν (6.1)

and the relative position vectors Qk, k = 1, 2, ..., N − 1 are defined by

Qk = rk+1 − rk =
N∑

ν=1

B̄kνrν (6.2)

where mm is the mass of the molecule
Then

rν = rc +
N−1∑

k=1

BνkQk (6.3)

and by this relation we can introduce position vectors referred to the center of
mass

Rν = rν − rc =
N−1∑

k=1

BνkQk (6.4)

Note from the above relation that Rν are functions of the Qk and that
∑

ν

mνRν = 0 (6.5)



.
Dots indicate time derivatives and we know that pν = mν ṙν . The above

matrices B̄kν and Bνk that have just been introduced are

B̄kν = δk+1,ν − δkν (6.6)

and

Bνk =

{
( 1

mm
)
∑k

µ=1 mµ, for k < ν

−( 1
mm

)
∑N

µ=k+1 mµ, for k ≥ ν
(6.7)

those matrices satisfy the following relations

∑
ν

B̄kν = 0 (6.8)

∑
ν

mνBνk = 0 (6.9)

∑
ν

B̄jνBνk = δjk (6.10)

∑

k

BνkB̄km = δνµ − (
mµ

mm

) (6.11)

We also generally use the N − 1 × N − 1 matrices Ajk, Cjk that are named
after Rouse and Kramers respectively and are defined by

Ajk =
∑

ν

B̄jνB̄kν (6.12)

and
Cjk =

∑
ν

BνjBνk (6.13)

with eigenvalues aj, cj respectively.
e.g for the elastic dumbbell model (two beads with mass m, connected by one
spring)

B̄11 = −1, B11 = −1

2
, A11 = a1 = 2 (6.14)

B̄12 = +1, B21 = +
1

2
, C11 = c1 =

1

2
(6.15)

Now let f(rc, Q1, ...QN−1, t) = g(r1, ..., rN , t) then by the chain rule we result
that

∂g

∂rν

=
mν

mm

∂f

∂rc

+
∑

k

b̄kν
∂f

∂Qk

(6.16)



and the Jacobian of the transformation is

| ∂(r1, ..., rN)

∂(rc, Q1, ..., QN−1)
| = 1 (6.17)

Up to this moment we have considered one polymer molecule only. If we need
to consider a chemical species α then we denote that by a superscript α:thus
corresponding to rν , rc, Qk, Rν and mm,mν , B̄kν , Bνk we write rα

ν , rα
c , Qα

k , Rα
ν and

mα
m,mα

ν , B̄α
kν , B

α
νk. We use the notation Nα for the number of beads in molecules

of species α. The various chemical species α, may be solvent molecules or polymer
molecules. Solvent molecules are labelled with an ′s′. Moreover, if we restrict to
the i’th molecule of species α then we attach an extra superscript i and corre-
sponding to rα

ν , rα
c , Qα

k , Rα
ν and mα

m,mα
ν , B̄α

kν , B
α
νk

we read rαi
ν , rαi

c , Qαi
k , Rαi

ν and mα
m,mα

ν , B̄α
kν , B

α
νk

Collections of coordinates or momenta carry special symbols. These sets are:
rα = set of all Nα coordinates rα

ν for the beads of a molecule of species α
pα = set of all Nα coordinates pα

ν for the beads of a molecule of a species α
Qα = set of all Nα − 1 relative position vectors Qα

k for a molecule of species α
and rαi = set of all Nα coordinates rαi

ν for the beads of the i’th molecule of species
α
pαi = set of all Nα momenta pαi

ν

We also use the abbreviations drα for drα
1 ...drα

Nα
and dQα for dQα

1 ...dQα
Nα−1

Finally, we give the following definitions

Rαi
νµ = rαi

µ − rαi
ν (6.18)

Rαi,βj
νµ = rβj

µ − rαi
ν (6.19)

with similar notation without the i′s and j′s to designate interbead vectors be-
tween beads of a molecule of species α, or between the beads of two molecules α
and β.
We end with:

Rαβ = rβ
c − rα

c (6.20)

that is the vector from the center of mass of a molecule of species α to the center
of mass of a molecule of species β and

rαβ
c =

mα
mrα

c + mβ
mrβ

c

mα
m + mβ

m

(6.21)

=Center of mass of a pair of molecules α and β
Beads of different molecules are assumed to interact with one another accord-

ing to a Lennard-Jones type of force which is attractive at large distances and
repulsive at small distances. The interbead force is taken to be collinear with the



interbead vector. As for the interbead forces within a single molecule those are
described by springs and if we want to take into account the ’excluded volume
effect’ then we can additionally include a Lennard-Jones type of interaction be-
tween beads not connected by springs. Here again, the interbead force is taken
to be collinear with the interbead vector.

6.2.2 Potentials and Forces for Bead-Spring Models

Here we give the potential energies describing forces between beads, including
the ’spring forces’ (excluded volume forces) and the ’Lennard-Jones type forces’
between molecules:
φαi:the potential energy of a single molecule αi (intramolecular contribution )
which is a function of rαi

ν (ν = 1, 2, ..., Nα)
φ(e)αi:the potential energy of a single molecule αi (external field contribution)
which is also a function of rαi

ν (ν = 1, 2, ..., Nα)
φ:the potential energy of all molecules in the liquid (intramolecular and inter-
molecular, but not external field, contributions) which is a function of rαi

ν (ν =
1, ...Nα, α = 1, 2..., i = 1, 2, ...)

The above can be written as sums of pairwise interactions (extra assumption):
Thus φαi = 1

2

∑
ν

∑
µ φαi

νµ in which, if ν 6= µ then φαi
νµ is a function of |Rαi

νµ| =

|rαi
µ − rαi

ν | and if ν = µ then φαi
νµ = 0

φ(e)αi =
∑

ν φ
(e)αi
ν in which φ

(e)αi
ν is a function of rαi

ν

Φ = 1
2

∑
αiν

∑
βjµ φαi,βj

νµ in which φαi,βj
νµ is a function of |Rαi,βj

νµ | = |rβj
µ − rαi

ν | ,φαi,αi
νν

are defined to be zero and φαi,αi
νµ = φαi

νµ

Sometimes, we write
Φ = 1

2

∑
ν

∑
µ φαi

νµ+ 1
2

∑
αiν

∑
βjµ φ

(d)αi,βj
νµ , where φ

(d)αi,βj
νµ differs from φαi,βj

νµ in that
in the former, if α = β those terms with i = j are zero.

We also define the forces acting on bead ν of molecule αi, corresponding to
the potential energies

F (φ)αi
ν = − ∂

∂rαi
ν

φαi = − ∂

∂rαi
ν

∑
µ

φαi
νµ =

∑
µ

F (φ)αi
νµ (6.22)

= force resulting from ’springs’ within one molecule.

F (e)αi
ν = − ∂

∂rαi
ν

φ(e)αi = − ∂

∂rαi
ν

φ(e)αi
ν (6.23)

= force exerted by an external field .

F (φ)αi
ν = − ∂

∂rαi
ν

Φ = − ∂

∂rαi
ν

∑

βjµ

φαi,βj
νµ =

∑

βjµ

F (Φ)αi,βj
νµ (6.24)



= force due to all other ’beads’ in the liquid (αiν 6= βjµ)
Additionally, we define

F (d)αi
ν = − ∂

∂rαi
ν

∑

βjµ

φ(d)αi,βj
νµ =

∑

βjµ

F (d)αi,βj
νµ (6.25)

and the total force on bead ν of molecule αi is

Fαi
ν = F (Φ)αi

ν + F (e)αi
ν = F (φ)αi

ν + F (d)αi
ν + F (e)αi

ν . (6.26)

Then according to Newton’s second law of motion:
Fαi

ν = ṗαi
ν and pαi

ν = mα
ν ṙαi

ν

Finally, we define symbols for forces on the center of mass of αi,

F (e)αi = − ∂

∂rαi
c

φ(e)αi (6.27)

=force due to external force

F (d)αi = − ∂

∂rαi
c

Φ (6.28)

=force due to all other molecules.

6.2.3 The Liouville Equation and the General Equation
of Change

The dynamical state of a polymeric liquid mixture in a fixed instant of time
is described by a point in the phase-space (i.e rαi

ν , pαi
ν , ν = 1, 2, ..., Nα, α =

0, 1, 2, ..., i = 1, 2, ...). We denote by r, p and x the complete set of position,
momentum and phase-space coordinates respectively.

The state of an ensemble of isolated systems is described by a distribution
function f(x, t) in the system phase-space, which is normalized to unity

∫
f(x, t)dx = 1 (6.29)

The average value of a function B(x) is given by
∫

B(x)f(x, t)dx = 〈B(x)〉 (6.30)

We define the configuration space distribution function Ψ(r, t) by
∫

f(x, t)dp = Ψ(r, t) (6.31)



and the average value of function B(r) is

∫
B(r)f(x, t)dx =

∫
B(r)Ψ(r, t)dr = 〈B〉 (6.32)

The Liouville equation reads

∂

∂t
f = −

∑
αiν

(
pαi

ν

mα
ν

· ∂

∂rαi
ν

f + Fαi
ν · ∂

∂pαi
ν

f) ≡ −ÃLf (6.33)

where ÃL is the Liouville operator.
The general equation of change is
∂
∂t
〈B〉 = 〈ÃLf〉 and by making various choices of B we can get:

a)The Continuity Equation
b)The Momentum Transport Equation
c)The Hydrodynamic Energy Equation
d)The Hydrodynamic Equation for the Angular Momentum
e)The Equation for the time evolution of the Singlet Distribution Function
in short all the kinetic theory equations

6.3 Distribution Functions in the Phase -Configuration

space of one or two molecules

We are about to present definitions and results for contracted distribution func-
tions, essential for further developments.

6.3.1 Singlet Distribution Function

The definition of the Singlet phase-space distribution function is:

fα(rα, pα, t) = 〈
∑

i

δ(rαi
i − rα

1 )δ(rαi
2 − rα

2 )...δ(pαi
1 − pα

1 )δ(pαi
2 − pα

2 )...〉

= 〈
∑

i

δ(rαi − rα)δ(pαi − pα)〉 (6.34)

The interpretation of the singlet distribution function is :

fα(rα
1 , rα

2 , ..., rα
Nα

, pα
1 , pα

2 , ..., pα
Nα

, t)drα
1 drα

2 drα
Nα

dpα
1dpα

2 ...dpα
Nα

=

the ensemble average of the number of molecules of species α,for which bead ”1”
is located in the range drα

1 about rα
1 with momentum in the range dpα

1 about



pα
1 ,bead ”2” is located in the range drα

2 about rα with momentum in the range
dpα

2 about pα
2 etc

The normalization of fα(rα, pα, t) is the following

∫ ∫
fα(rα, pα, t)δ(rα

c − r)drαdpα = nα(r, t) (6.35)

where nα(r, t) is the ensemble average of the number density of centers-of-mass
of species α at position r and time t.We define the singlet configurational distri-
bution function

Ψ̄α(rα, t) =

∫
fα(rα, pα, t)dpα = 〈

∑
i

δ(rαi − rα)〉 (6.36)

Ψ̄α is expected to vary slowly with respect to the location of the center of mass
over a macroscopic length scale.Therefore it may seem reasonable to introduce a
configuration function that carries the same amount of information but is defined
on a different set that spans the same space.Thus

Ψα(rα
c , Qα, t) = Ψ̄α(rα, t) (6.37)

which is normalized by:

∫
Ψα(rα

c , Qα, t)δ(rα
c − r)drα

c dQα =

∫
Ψα(r,Qα, t)dQα = nα(r, t) (6.38)

6.3.2 Doublet Distribution Functions

The doublet distribution function for a pair of molecules α β is defined by:

fαβ(rα, pα, rβ, pβ, t) = 〈
∑

i

∑
j

δ(rαi−rα)δ(pαi−pα)δ(rβj−rβ)δ(pβj−pβ)〉 (6.39)

If α = β terms with i = j are to be ommited.We go on with the interpretation of
the doublet distribution function:

fαβ(rα
1 , ..., rα

Nα
, pα

1 , ..., pα
Nα

, rβ
1 , ..., rβ

Nβ
, pβ

1 , ..., p
β
Nβ

, t)drα
1 ...drα

Nα

dpα
1 ...dpα

Nα
drβ

1 ...drβ
Nβ

dpβ
1 ...dpβ

Nβ
=

the ensemble average of the number of molecules of species α and β,such that bead
”1” of a molecule of α is located within the range drα

1 about rα
1 with momentum

in the range dpα
1 about pα

1 etc and that bead ”1” of a molecule of β is located



within the range drβ
1 about rβ

1 with momentum in the range dpβ
1 about pβ

1 etc
By means already familiar we obtain the configurational distribution function:

Ψ̄αβ(rα, rβ, t) =

∫
fαβ(rα, pα, rβ, pβ, t)dpαdpβ

= 〈
∑

i

∑
j

δ(rαi − rα)δ(rβj − rβ)〉 (6.40)

We also define Ψαβ in the following manner

Ψαβ(rα
c , Qα, rβ

c , Qβ, t) = Ψ̄αβ(rα, rβ, t) (6.41)

6.4 Averages of functions in the Phase-space of

one and two molecules

For the sake of future simplicity in the presentation we are about to derive formu-
las for averages involving functions in the phase-space of one or two molecules.For
this we need the following definition:
Let bα(rα, pα) be a function in the phase-space of a single molecule then its average
in momentum space is

[[bα]]α =

∫
bαfαdpα/

∫
fαdpα (6.42)

Similarly,we can define the average value of bα in the phase-space of a pair of
molecules like:

[[bα]]αβ =

∫ ∫
bα(rα, pα)fαβdpαdpβ/

∫ ∫
fαβdpαdpβ (6.43)

6.4.1 Averages involving Functions in the Phase-space of
one molecule only

Later on we will consider averages of the form

C̄α
ν = 〈

∑
i

bαi
ν Cαi

ν δ(rαi
ν − r)〉 (6.44)

in which in general bαi
ν will be a function of the pαi

µ for all µ and Cαi
ν is a function

of the rαi
µ for all µ.Our purpose of this section is to arrive to an expression of this

average by means of the single distribution function.



After simple manipulations we write down two equivalent expressions for C̄α
ν

which are

C̄α
ν =

∫ ∫ ∑
i

bαi
ν Cαi

ν f(x, t)δ(rαi
ν − rα

ν )δ(rα
ν − r)drα

ν dx (6.45)

and

C̄α
ν =

∫ ∫ ∫ ∑
i

bαi
ν Cαi

ν δ(rαi − rα)δ(pαi − pα)f(x, t)δ(rα
ν − r)drαdpαdx (6.46)

Because of the inclusion of the delta functions bαi
ν may be written as bα

ν and
similarly Cαi

ν may be written as Cα
ν so we get

C̄α
ν =

∫ ∫
bα
ν Cα

ν fα(rα, pα, t)δ(rα
ν − r)drαdpα (6.47)

or

C̄α
ν =

∫
[[bα

ν ]]αCα
ν Ψ̄α(rα, t)δ(rα

ν − r)drα (6.48)

We are now about to shift to another configuration of description:

C̄α
ν =

∫ ∫
[[bα

ν ]]αCα
ν Ψα(rα

c , Qα, t)δ(rα
c + Rα

ν − r)drα
c dQα (6.49)

or after integration

C̄α
ν =

∫
[[bα

ν ]]αCα
ν Ψα(r −Rα

ν , Qα, t)dQα (6.50)

The last step is to expand the integrand in a Taylor series about r,since Ψα is
slowly changing with respect to its first argument:So

C̄α
ν =

∫
[[bα

ν ]]αCα
ν Ψα(r,Qα, t)dQα −∇ ·

∫
Rα

ν [[bα
ν ]]αCα

ν Ψα(r,Qα, t)dQα

+∇∇ :

∫
Rα

ν Rα
ν [[bα

ν ]]αCα
ν Ψα(r,Qα, t)dQα + ... (6.51)

or in an equivalent form

C̄α
ν =

∫
[[bα

ν ]]αCα
ν Ψα(r,Qα, t)dQα

−∇ ·
∫ ∫ 1

0

Rα
ν [[bα

ν ]]αCα
ν Ψα(r − ξRα

ν , Qα, t)dξdQα (6.52)



6.4.2 Averages involving Functions in the Phase-space of
a pair of molecules

This time we are concerned with averages involving interactions between pairs
of beads belonging to different molecules.We will find expressions for averages of
the form:

C̄αβ
ν = 〈

∑
i

′∑
j

bαi
ν Cαi,βj

ν δ(rαi
ν − r)〉 (6.53)

where the prime symbol indicates that αi 6= βj as for bαi
ν it is a function of the

pαi
µ for all µ and Cαi,βj

ν is a function of rαi
µ for all µ and rβj

µ for all µ
The expressions we finally obtain are

C̄αβ
ν =

∫ ∫ ∫
[[bα

ν ]]αβCαβ
ν Ψ̃αβ(r−Rα

ν +
mβ

m

mα
m + mβ

m

Rαβ, Rαβ, Qα, Qβ, t)dRαβdQαdQβ

(6.54)
or

C̄αβ
ν =

∫ ∫ ∫
[[bα

ν ]]αβCαβ
ν Ψ̃αβ(r, Rαβ, Qα, Qβ, t)dRαβdQαdβ

−∇ ·
∫ ∫ ∫

(Rα
ν −

mβ
m

mα
m + mβ

m

Rαβ)[[bα
ν ]]αβ

Cαβ
ν Ψ̃αβ(r,Rαβ, Qα, Qβ, t)dRαβdQαdQβ + ... (6.55)

where Ψ̃αβ contains the same amount of information as Ψαβ with the only differ-
ence in the arguments.Since

Ψ̃αβ(rαβ
c , Rαβ, Qα, Qβ, t) = Ψαβ(rα

c , Qα, rβ
c , Qβ, t) (6.56)

6.5 The Hydrodynamic Equation of Continuity

The equation of continuity for a species α in a multicomponent mixture is:

∂

∂t
ρα = −(∇ · ραvα) = −(∇ · ραv)− (∇ · jα)(α = 1, 2, 3, ...) (6.57)

where
ρα:mass concentration of species α
vα:velocity of species α
jα:mass-flux vector of species α
The physical interpretation of quantity jα, is that for a surface element dS and
a unit vector η normal to dS then (η · jα)dS is the mass of species α that passes
through dS/per unit time from the negative to the positive side of dS.



One can easily see the following relations

ρ(r, t) =
∑

α

ρα(r, t) (6.58)

ρ(r, t)v(r, t) =
∑

α

ρα(r, t)vα(r, t) (6.59)

jα(r, t) = ρα(r, t)(vα(r, t)− v(r, t)) (6.60)∑
α

jα(r, t) = 0 (6.61)

and by adding the equation of continuity for each species we get the equation of
continuity ∂

∂t
ρ = −(∇ · ρv) for the liquid mixture.

What we need is a function Bα in the phase-space such that 〈Bα〉 is the
concentration ρα of species α and hence we can generate the equation of continuity
and find a proper expression for the mass-flux vector jα. We thus need to localize
the mass of α in a unit volume surrounding position r.
That is Bα =

∑
i

∑
ν mα

ν δ(rαi
ν − r)

and ρα = 〈Bα〉
Using results already shown we have

ρα =
∑

ν

mα
ν

∫
Ψ̄α(rα, t)δ(rα

ν − r)drα =
∑

ν

mα
ν

∫
Ψα(r −Rα

ν , Qα, t)dQα

=
∑

ν

mα
ν

∫
Ψα(r,Q, t)dQα −∇ ·

∑
ν

mα
ν

∫
Rα

ν Ψα(r,Qα, t)dQα + ...

nαmα
m − 0 +

1

2
∇∇ :

∑
ν

mα
ν

∫
Rα

ν Rα
ν Ψα(r,Qα, t)dQα − ... (6.62)

The relation ρα = nαmα
ν is not true, since the mass of a molecule is not

localized at the center of mass.
The general equation of change gives

∂

∂t
ρα = 〈

∑

βiµ

pβj
µ

mβ
µ

· ∂

∂rβj
µ

(
∑

i

∑
ν

mα
ν δ(rαi

ν − r))〉

= 〈
∑

i

∑
ν

pαi
ν

mα
ν

· ∂

∂rαi
ν

(mα
ν δ(rαi

ν − r))〉

= −〈
∑

i

∑
ν

(pαi
ν · ∂

∂r
δ(rαi

ν − r))〉



= −(∇ · 〈
∑

i

∑
ν

pαi
ν δ(rαi

ν − r)〉). (6.63)

We have used the fact that ( ∂
∂x

)δ(x− y) = −( ∂
∂y

)δ(x− y) and that ∂
∂r

,∇ are
identical operators. The quantity in brackets in the last relation is realized as
ραvα. We can now write

ραvα =
∑

ν

∫
[[pα

ν ]]αΨ̄α(rα, t)δ(rα
ν − r)drα

=
∑

ν

∫
[[pα

ν ]]αΨα(r −Rα
ν , Qα, t)dQα

=
∑

ν

∫
[[pα

ν ]]αΨα(r,Qα, t)dQα−∇·
∑

ν

∫
Rα

ν [[pα
ν ]]αΨα(r,Qα, t)dQα + ... (6.64)

and

jα(r, t) =
∑

ν

∫
([[pα

ν ]]α −mα
ν v(r, t))Ψ̄α(rα, t)δ(rα

ν − r)drα

∑
ν

∫
[[pα

ν ]]αΨα(r −Rα
ν , Qα, t)dQα − v(r, t)

∑
ν

mα
ν

∫
Ψα(r −Rα

ν , Qα, t)dQα

(6.65)
We make Taylor expansion for each term in 6.65. Thus

jα(r, t) =
∑

ν

mα
ν

∫
[[ṙα

ν ]]αΨα(r,Qα, t)dQα

−∇ ·
∑

ν

mα
ν

∫
Rα

ν [[ṙα
ν ]]αΨα(r,Qα, t)dQα

+
1

2
∇∇ :

∑
ν

mα
ν

∫
Rα

ν Rα
ν [[ṙα

ν ]]αΨα(r,Qα, t)dQα + ...

−v(r, t)
∑

ν

mα
ν

∫
Ψα(r,Qα, t)dQα + 0

−1

2
v(r, t) :

∑
ν

mα
ν

∫
Rα

ν Rα
ν Ψα(r,Qα, t)dQα + ... (6.66)



6.6 The Hydrodynamic Equation of Motion

The equation of motion for a fluid mixture is known to be

∂

∂t
[ρv] = −[∇ · ρvv]− [∇ · π] + G (6.67)

where
π: is the stress tensor
G: external force/unit volume
The stress tensor is defined in a way, such that for a surface element dS and a
unit vector η normal to dS the [η · π]dS is the force exerted from the negative to
the positive side of dS.

As done before, we need to find a vector function B in the phase space such
that 〈B〉 is the momentum flux ρv at position r and time t. We take
B =

∑
αiν pαi

ν δ(rαi
ν − r) and insert it into the general equation of change, thus we

have

∂

∂t
ρv = −∇ · 〈

∑
αiν

1

mα
ν

pαi
ν pαi

ν δ(rαi
ν − r)〉+ 〈

∑
αiν

Fαi
ν δ(rαi

ν − r)〉 (6.68)

The last term is idealized as a ’momentum source’ term S and we have

S = S(φ) + S(d) + S(e) = 〈
∑
αiν

(F (φ)αi
ν + F (d)αi

ν + F (e)αi
ν )δ(rαi

ν − r)〉 (6.69)

we can also see the stress tensor as the sum of four different contributions

π = π(k) + π(φ) + π(d) + π(e) (6.70)

the kinetic, intramolecular, intermolecular and external field contribution.

6.6.1 The kinetic Contribution to the Stress Tensor

We rewrite the first < ... > term in 6.68 by replacing pαi
ν by mα

ν (ṙαi
ν − r) and

supplying compensating terms. That is:

〈
∑
αiν

1

mα
ν

pαi
ν pαi

ν δ(rαi
ν − r)〉 = 〈

∑
αiν

mα
ν (ṙαi

ν − v)(ṙαi
ν − v)δ(rαi

ν − r)〉

+〈
∑
αiν

mα
ν (ṙαi

ν v + vṙαi
ν − vv)δ(rαi

ν − r)〉 (6.71)

One has to keep in mind that the last term gives

〈
∑
αiν

mα
ν (ṙαi

ν v + vṙαi
ν − vv)δ(rαi

ν − r)〉



=
∑

α

[ραvαv + vραvα − ραvv] = ρvv (6.72)

and the equation of motion takes the form

∂

∂t
[ρv] = −[∇ · ρvv]− [∇ · π(k)] + S. (6.73)

We can write π(k) = 〈∑αiν mα
ν (ṙαi

ν − v)(ṙαi
ν − v)δ(rαi

ν − r)〉

=
∑
αν

∫
mα

ν [[(ṙα
ν − v)(ṙα

ν − v)]]αΨα(r −Rα
ν , Qα, t)dQα

=
∑
αν

mα
ν

∫
[[(ṙα

ν − v)(ṙα
ν − v)]]αΨα(r,Qα, t)dQα + ... (6.74)

6.6.2 The external Force Contribution to the Stress Ten-
sor

The external force contribution to the Stress Tensor is:

S(e) = 〈
∑
αiν

F (e)αi
ν δ(rαi

ν − r)〉

=
∑

α

∑
ν

∫
F (e)α

ν Ψα(r −Rα
ν , Qα, t)dQα

∑
α

∫
F (e)αΨα(r,Qα, t)dQα−[∇·

∑
α

∑
ν

∫ ∫ 1

0

Rα
ν F (e)α

ν Ψα(r−ξRα
ν , Qα, t)dξdQα]

(6.75)
We make further identifications

G =
∑

α

∫
F (e)αΨα(r,Qα, t)dQα (6.76)

and π(e) =
∑

α

∑
ν

∫ ∫ 1

0
Rα

ν F
(e)α
ν Ψα(r − ξRα

ν , Qα, t)dξdQα

=
∑

α

∑
ν

∫
Rα

ν F (e)α
ν Ψα(r,Qα, t)dQα + ... (6.77)

If the external forces/unit mass are the same for all beads of a given molecule,

so that all F
(e)α
ν /mα

ν are constant and equal to gα then G =
∑

α ραgα and π(e) is
equal to zero.



6.6.3 The Intramolecular Contribution to the Stress Ten-
sor

The intramolecular contribution to the source term S(φ) is,

S(φ) = 〈
∑
αiν

F (φ)αi
ν δ(rαi

ν − r)〉 (6.78)

Using results of Section 6.3 we have

S(φ) =
∑

α

∑
ν

∫
F (φ)α

ν Ψα(r −Rα
ν , Qα, t)dQα

=
∑

α

∑
ν

∫
F (φ)α

ν Ψα(r,Qα, t)dQα−[∇·
∑

α

∑
ν

∫ ∫ 1

0

Rα
ν F (φ)α

ν Ψα(r−ξRα
ν , Qα, t)dξdQα]

(6.79)

The first term vanishes since
∑

ν F
(φ)α
ν =

∑
ν

∑
µ F

(φ)α
νµ = 0 and we identify π(φ)

as

π(φ) =
∑

α

∑
ν

∫ ∫ 1

0

Rα
ν F (φ)α

ν Ψα(r − ξRα
ν , Qα, t)dξdQα

=
1

2

∑
ανµ

∫
Rα

νµF
(φ)α
νµ Ψα(r,Qα, t)dQα + ... (6.80)

6.6.4 The Intermolecular Contribution to the Stress Ten-
sor

As done in 7.3 we write

S(d) = 〈
∑
αiν

F (d)αi
ν δ(rαi

ν − r)〉 = 〈
∑
αiν

∑

βjµ

F (d)αi,βj
νµ δ(rαi

ν − r)〉 (6.81)

π(d) =
∑

αβνµ

∫ ∫ ∫
(Rα

ν −
mβ

m

mα
µ + mβ

µ

Rαβ)F (d)αβ
νµ Ψ̃αβ(r,Rαβ, Qα, Qβ, t)dRαβdQαdQβ

(6.82)
We now make use of the symmetry property of Ψ̃αβ and using Newton’s Third
law the second term can be rewritten as

π(d) =
∑

αβνµ

∫ ∫ ∫
(Rα

ν −
1

2
Rαβ)F (d)αβ

νµ Ψ̃αβ(r, Rαβ, Qα, Qβ, t)dRαβdQαdQβ (6.83)

or

π(d) =
1

2

∑

αβνµ

∫ ∫ ∫
Rβα

µν F (d)αβ
νµ Ψ̃αβ(r, Rαβ, Qα, Qβ, t)dRαβdQαdQβ (6.84)



6.7 The Hydrodynamic Energy Equation

The energy equation for the multicomponent mixture is

∂

∂t
(
1

2
ρu2 +ρÛ) = −(∇· (1

2
ρv2 +ρÛ)v)− (∇· q)− (∇· [π · v])+ (v ·G)+J (6.85)

where the last three terms are respectively the work done on an element of the
fluid by the stresses, external forces and diffussional effects.
q is the heat-flux vector
and Û is the internal energy/unit mass (excluding the energy associated with the
kinetic energy and any contribution associated with external forces).

We have to find a function B in the phase-space such that 〈B〉 = 1
2
ρu2 + ρÛ

is the total energy/unit volume. We therefore take

B =
∑
αiν

(
1

2mα
ν

pαi
ν · pαi

ν + Uαi
ν )δ(rαi

ν − r) (6.86)

in which we have localized the potential energies associated with each of the beads
resulting from intra. and intermolecular bead-bead interactions. We have done
this by assigning to each bead a ’fair share’ of the energy of the pair of interaction
for the pair of beads,
so

Uαi
ν =

1

2

∑

βjµ

φαi,βj
νµ =

1

2

∑
µ

φαi
νµ +

1

2

∑

βjµ

φ(d)αi,βj
νµ (6.87)

Thus

〈B〉 = 〈
∑
αiν

(
1

2
mα

ν u2 +
1

2
mα

ν (
pαi

ν

mα
ν

− v)2 + Uαi
ν )δ(rαi

ν − r)〉 (6.88)

or 〈B〉 = 1
2
ρu2 + ρÛ

in which 1
2
ρu2 is the kinetic energy associated with the mean motion and ρÛ is

the kinetic energy of the beads relative to the flow velocity v plus the potential
energies, excluding potential energies associated with the external forces.

The general equation of change for B results

∂

∂t
(
1

2
ρu2 + ρÛ) = −∇ · 〈

∑
αiν

ṙαi
ν (

1

2
mα

ν (ṙαi
ν · ṙαi

ν ) + Uαi
ν )δ(rαi

ν − r)〉

+〈
∑
αiν

∑

βjµ

(ṙαi
ν · ∂

∂rαi
ν

Uβj
µ )δ(rβj

µ − r)〉

〈
∑
αiν

(ṙαi
ν · Fαi

ν )δ(rαi
ν − r)〉 (6.89)



To transform the aforementioned equation into the form of the energy equation
we begin by replacing the ṙαi

ν just after the summation sign in the first line by
ṙαi
ν − v and add the appropriate compensating term.

We then get

∂

∂t
(
1

2
ρu2 + ρÛ) = −(∇ · (1

2
ρu2 + ρÛ)v) + Q(k) + Q(e) + Q(φ) (6.90)

where

Q(k) = −∇ · 〈
∑
αiν

(ṙαi
ν − v)(

1

2
mα

ν ṙαi
ν · ṙαi

ν + Uαi
ν )δ(rαi

ν − r)〉 (6.91)

Q(φ) = 〈
∑
αiν

(ṙαi
ν · F (φ)αi

ν )δ(rαi
ν − r)〉+

1

2
〈
∑
αiν

∑

βjµ

(ṙαi
ν · ∂

∂rαi
ν

∑

γkη

φβj,γk
µη )δ(rβj

µ − r)〉

(6.92)

Q(e) = 〈
∑
αiν

(ṙαi
ν · F (e)αi

ν )δ(rαi
ν − r)〉 (6.93)

We now try to express the heat-flux vector q by various manipulations.

6.7.1 The Kinetic Contribution to the Heat Flux Vector

In the contribution Q(k) we replace both of the ṙαi
ν in the dot product by ṙαi

ν − v
and use the appropriate compensating terms; We have

Q(k) = −∇ · 〈
∑
αiν

(ṙαi
ν − v)(

1

2
mα

ν (ṙαi
ν − v)2 + Uαi

ν δ(rαi
ν − r)〉

−∇ · 〈
∑
αiν

mα
ν (ṙαi

ν − v)(ṙαi
ν − v) · vδ(rαi

ν − r)〉

= −(∇ · q(k))− (∇ · [π(k) · v]) (6.94)

where we define q(k) as the kinetic contribution to the heat-flux vector and using
previous results we go on with the analysis

q(k) =
∑
αν

1

2
mα

ν

∫
[[(ṙα

ν − v)(ṙα
ν − v)2]]αΨα(r −Rα

ν , Qα, t)dQα

+
1

2

∑
ανµ

∫
φα

νµ[[ṙα
ν − v]]αΨα(r −Rα

ν , Qα, t)dQα

+
1

2

∑

αβνµ

∫ ∫ ∫
φ(d)αβ

νµ [[ṙα
ν−v]]αβΨ̃αβ(r−Rα

ν +
mβ

m

mα
m + mβ

m

Rαβ, Rαβ, Qα, Qβ, t)dRαβdQαdQβ.

(6.95)



One has to note that for a surface element dS the first term of q(k) multiplied
by η reveals the rate of diffusion of kinetic energy across dS, so just because of
η · (ṙαi

ν − v) we have that diffusion at a small angle to the surface is less effective
for transporting kinetic energy than diffusion at a large angle. The second and
third term dotted into η and multiplied by dS, describe the rate of diffusion of
intra- and intermolecular potential energy across dS.

6.7.2 The External Force Contribution to the Heat Flux
Vector

We have denoted
Q(e) = 〈

∑
αiν

(ṙαi
ν · F (e)αi

ν )δ(rαi
ν − r)〉 (6.96)

and using simple manipulations

Q(e) =
∑
αν

∫
[[ṙα

ν ]]α · F (e)α
ν Ψα(r −Rα

ν , Qα, t)dQα

=
∑
αν

∫
[[ṙα

ν ]]α · F (e)α
ν Ψα(r,Qα, t)dQα

−[∇ ·
∑
αν

∫ ∫ 1

0

Rα
ν F (e)α

ν · [[ṙαi
ν ]]αΨα(r − ξRα

ν , Qα, t)dξdQα] (6.97)

We for once more replace ṙαi
ν with ṙαi

ν − v and add compensating terms. We get:

Q(e) =
∑
αν

∫
[[ṙα

ν − v(r, t)]]α · F (e)α
ν Ψα(r,Qα, t)dQα

+v(r, t) ·
∑
αν

∫
F (e)α

ν Ψα(r,Qα, t)dQα

−∇ ·
∑
αν

∫ ∫ 1

0

Rα
ν F (e)α

ν · [[ṙα
ν − v(r, t)]]αΨα(r − ξRα

ν , Qα, t)dξdQα

−∇ · [
∑
αν

∫ ∫ 1

0

Rα
ν F (e)α

ν Ψα(r − ξRα
ν , Qα, t)dξdQα · v(r, t)]

= J + (v ·G)− (∇ · q(e))− (∇ · [π(e) · v]) (6.98)

The third term is the divergence of the external force contribution to the heat-flux
vector, which is

q(e) =
∑
αν

∫ ∫ 1

0

Rα
ν F (e)α

ν · [[ṙα
ν − v]]αΨα(r − ξRα

ν , Qα, t)dξdQα



=
∑
αν

∫
Rα

ν F (e)α
ν · [[ṙα

ν − v]]αΨα(r,Qα, t)dQα + ... (6.99)

The first term J is the ’diffussional source’ term

J =
∑
αν

∫
[[ṙα

ν − v]]α · F (e)α
ν Ψα(r,Qα, t)dQα (6.100)

Let gα = F
(e)α
ν

mα
ν

and suppose that gα are constant and independent of v, then

J =
∑

α(jα · gα) and this expression is generally seen in continuum mechanics
treatments.

We also note that (η · q(e))dS is the rate of work that is done as the beads
diffuse under the external force that is acting on the beads.

6.7.3 The Intramolecular Contribution to the Heat Flux
Vector

We turn now to the source term Q(φ)

Q(φ) = +〈
∑
αiν

∑

βjµ

(ṙαi
ν · F (φ)αi,βj

νµ )δ(rαi − r)〉

−1

2
〈
∑
αiν

∑

γkη

(ṙαi
ν · F (φ)αi,γk

νµ )δ(rαi
ν − r)〉

−1

2
〈
∑
αiν

∑

βjµ

(ṙαi
ν · F (φ)αi,βj

νµ )δ(rβj
µ − r)〉

=
1

2
〈
∑
αiν

∑

βjµ

((ṙαi
ν + ṙβj

µ ) · F (φ)αi,βj
νµ )δ(rαi

ν − r)〉 (6.101)

We now only consider terms for which αi = βj that is the intramolecular contri-
bution Q(φ)

Q(φ) =
1

2
〈
∑
αiνµ

((ṙαi
ν + ṙαi

µ ) · F (φ)αi
νµ )δ(rαi

ν − r)〉

=
1

2

∑
ανµ

∫
[[ṙα

ν + ṙα
µ ]]α · F (φ)α

νµ ψα(r −Rα
ν , Qα, t)dQα

−∇ · 1

2

∑
ανµ

∫ ∫ 1

0

Rα
ν F (φ)α

νµ · [[ṙα
ν + ṙα

µ ]]α · ψα(r − ξRα
ν , Qα, t)dξdQα

−∇ · 1

2

∑
ανµ

∫ ∫ 1

0

Rα
ν F (φ)α

νµ · [[ṙα
ν + ṙα

µ ]]αψα(r − ξRα
ν , Qα, t)dξdQα



−∇ · [
∑
ανµ

∫ ∫ 1

0

Rα
ν F (φ)α

νµ · [[(ṙα
ν ) + (ṙα

µ − v)]]α · ψα(r − ξRα
ν , Qα, t)dξdQα

−∇ ·
∫ ∫ 1

0

Rα
ν F (φ)α

νµ ψα(r − ξRα
ν , Qα, t)dξdQα · v(r, t)]

= −(∇ · q(φ))− (∇ · [π(φ) · v]) (6.102)

We have thus defined the intramolecular potential contribution q(φ) to the heat
flux vector.
Then

q(φ) =
1

2

∑
ανµ

∫ ∫ 1

0

Rα
ν F (φ)α

νµ · [[(ṙα
ν − v) + (ṙα

µ − v)]]αΨα(r − ξRα
ν , Qα, t)dξdQα

=
1

2

∑
ανµ

∫
Rα

νµF
(φ)α
νµ · [[ṙα

ν − v]]αΨα(r,Qα, t)dQα + ... (6.103)

where we have used Newton’s third law for pairs of beads on one molecule and
the definition that Rα

µν = rα
ν − rα

µ

Finally, (η · q(φ))dS is the rate at which work is done on the fluid on the
positive side of dS by the fluid on the negative side. The dot product of η with
Rα

µν indicates that springs that make a small angle with the plane of dS contribute
less in the averaging process than springs that make a large angle.

6.7.4 The Intermolecular Contribution to the Heat Flux
Vector

We can get the intermolecular contribution to the heat flux vector by considering
terms for which αi 6= βj. The first term drops out by Newton’s third law.

Q(d) =
1

2
〈
∑
αiν

∑

βjµ

((ṙαi
ν + ṙβj

µ ) · F (d)αi,βj
νµ )δ(rαi

ν − r)〉

=
1

2

∑

αβνµ

∫ ∫ ∫
[[ṙα

ν + ṙβ
µ]]αβ · F (d)αβ

νµ Ψ̃αβdRαβdQαdQβ

−∇ · 1

2

∑

αβνµ

∫ ∫ ∫
(Rα

ν −
mβ

m

mα
m + mβ

m

Rαβ)[[ṙα
ν + ṙβ

µ]]αβ · F (d)αβ
νµ Ψ̃αβdRαβdQαdQβ

−∇1

2

∑

αβνµ

∫ ∫ ∫
(Rα

ν −
mβ

m

mα
m + mβ

m

Rαβ)F (d)αβ
νµ Ψ̃αβdRαβdQαdQβ · v(r, t)



= −(∇ · q(d))− (∇ · [π(d) · v]) (6.104)

so after modifications

q(d) =
1

2

∑

αβνµ

∫ ∫ ∫
(Rα

ν −
1

2
Rαβ)[[(ṙα

ν − v)(ṙβ
µ − v)]]αβ · F (d)αβ

νµ Ψ̃αβdRαβdQαdQβ

(6.105)
or finally

q(d) =
1

2

∑

αβνµ

∫
Rβα

µν F (d)αβ
νµ · [[ṙα

ν − v]]αβΨ̃αβ(r,Rαβ, Qα, Qβ, t)dRαβdQαdQβ

(6.106)
and (η · q(d))dS is the rate at which work is done on the fluid on the positive
side of dS by the fluid on the negative side, as a result of bead-bead interactions
between beads on different molecules.

6.8 The Hydrodynamic Equation for the Angu-

lar Momentum

The conservation of the angular momentum as applied to a system in which there
is no intrinsic angular momentum can be set formally as

∂

∂t
[r × ρv] = −[∇ · v[r × ρv]]− [∇ · {π × r}] + [r ×G] + T (6.107)

where T is the external torque/unit volume applied to the fluid and G is the
external force/unit volume.

The cross product of the position vector r with the hydrodynamic equation
of motion leads to

∂

∂t
[r × ρv] = −[∇ · v[r × ρv]]− [∇ · {π × r}] + [r ×G]− [ε : π] (6.108)

ε is the third-order tensor and its elements εijk are the permutation symbols.
By those two equations we get that T = −[ε : π] which shows that the antisym-
metrical part of the stress tensor is related to the external torque.

We now shift to the statistical mechanics aspects and seek a phase-space
function B

′
such that < B

′
> is the density of the total angular momentum. We

note that [rαi
ν × pαi

ν ] is the angular momentum of a bead with respect to some
arbitrarily chosen fixed reference frame.

Let
B
′
=

∑
αiν

[rαi
ν × pαi

ν ]δ(rαi
ν − r) (6.109)



then

〈B′〉 = 〈
∑
αiν

[rαi
ν × pαi

ν ]δ(rαi
ν − r)〉 = r × 〈

∑
αiν

pαi
ν δ(rαi

ν − r)〉 = [r × 〈B〉] = [r × ρv]

(6.110)
where B =

∑
αiν pαi

ν δ(rαi
ν − r)

and we can also find that the general equation of change is

〈LB
′〉 = [r × 〈LB〉]. (6.111)

6.9 An Equation of Motion for the Singlet Dis-

tribution Function

In this part of the development we are concerned with a formal derivation of the
differential equation for the singlet distribution function.

We start by applying the quantity

B =
∑

i

Bi =
∑

i

δ(rαi − rα)δ(pαi − pα), (6.112)

for which 〈B〉 = fα(rα, pα, t)
The general equation of change is

∂
∂t
〈B〉 = 〈ÃLB〉 so we have

∂

∂t
fα = 〈

∑

βjν

(
pβj

ν

mβ
ν

· ∂

∂rβj
ν

∑
i

Bi + F βj
ν · ∂

∂pβj
ν

∑
i

Bi)〉

= −
∑
iν

(
1

mα
ν

· ∂

∂rα
ν

· 〈pαi
ν Bi〉+

∂

∂pα
ν

· 〈F αi
ν ·Bi〉) (6.113)

and the last equality is due to the fact that contribution comes from terms with
β = α and j = i

We can also write 〈pα
ν Bi〉 instead of 〈pαi

ν Bi〉 and 〈F (e)α
ν Bi〉, 〈F (φ)α

ν Bi〉 instead

of 〈F (e)αi
ν Bi〉 and 〈F (φ)αi

ν Bi〉 respectively due to the fact that the integration over

the phase-space involves delta functions. The term 〈F (d)αi
ν Bi〉 requires special

treatment (remember that Fαi
ν = F

(e)αi
ν + F

(φ)αi
ν + F

(d)αi
ν ).

We make various manipulations

∑
i

∑

βjµ

∫
F (d)αi,βj

νµ δ(rαi − rα)δ(pαi − pα)f(x, t)dx



=
∑

i

∑

βjµ

∫ ∫ ∫
F (d)αi,βj

νµ δ(rα−rα)δ(pαi−pα)δ(rβj−rβ)δ(pβj−pβ)f(x, t)drβdpβdx

=
∑

βµ

∫ ∫
F (d)αβ

νµ 〈
∑

i

∑
j

δ(rαi − rα)δ(pαi − pα)δ(rβj − rβ)δ(pβj − pβ)〉drβdpβ

∑

βµ

∫ ∫
F (d)αβ

νµ fαβ(rα, pα, rβ, pβ, t)drβdpβ (6.114)

and get

∂

∂t
fα = −

∑
ν

(
pν

mα
ν

· ∂

∂rα
ν

fα + F (e)α
ν · ∂

∂pα
ν

fα + F (φ)α
ν · ∂

∂pα
ν

fα)

−
∑

ν

(
∂

∂pα
ν

·
∑

βµ

∫ ∫
F (d)αβ

νµ fαβ(rα, pα, rβ, pβ, t)drβdpβ) (6.115)

Finally, after integrating over all momenta pα
ν we have

∂

∂t
Ψ̄α(rα, t) = −

∑
ν

(
∂

∂rα
ν

· [[ṙα
ν ]]αΨ̄α) (6.116)

or the equation for Ψα(rα
c , Qα, t),that is

∂

∂t
Ψα(rα

c , Qα, t) = −(
∂

∂rα
c

· [[ṙα
c ]]αΨα)−

∑
j

(
∂

∂Qα
j

· [[Q̇α
j ]]αΨα) (6.117)

after a simple chain differentiation.
We note that we can only use the aforementioned equations when we know more
about the momentum-averaged quantities.

6.10 Equations of Internal Motion for the Molecules

Hydrodynamic and Brownian Forces

Simple manipulations on the equation for time-evolution of the singlet distribu-
tion function gives

mα
ν

∂

∂t
[[ṙα

ν ]]αΨ̄α = −mα
ν

∑
µ

(
∂

∂rα
µ

· [[ṙα
µ ṙα

ν ]]αΨ̄α)

+F (e)α
ν Ψ̄α + F (φ)α

ν Ψ̄α +
∑

β

∫
F (d)αβ

ν Ψ̄αβdrβ (6.118)



and using the notation uαi
ν (rα, t) = [[ṙα

ν ]]α as well as introducing the quantity
[[(ṙα

µ − uα
µ)(ṙα

ν − uα
ν ]]α together with the appropriate compensating terms, we get:

mα
ν

∂

∂t
uα

ν Ψ̄α + mα
ν

∑
µ

(
∂

∂rα
µ

· uα
µuα

ν Ψ̄α)

= −mα
ν

∑
µ

(
∂

∂rα
µ

· [[(ṙα
µ − uα

µ)(ṙα
ν − uα

ν )]]αΨ̄α)

F (e)α
ν Ψ̄α + F (φ)α

ν Ψ̄α +
∑

β

∫
F (d)αβΨ̄αβdrβ (6.119)

The terms on the left side after calculations give

mα
ν Ψ̄α

∂

∂t
uα

ν + mα
ν Ψ̄α

∑
µ

(uα
µ ·

∂

∂rα
µ

uα
ν ) (6.120)

and dividing by Ψ̄α 6.120 we get

mα
ν (

∂

∂t
uα

ν +
∑

µ

(uα
µ ·

∂

∂rα
µ

uα
ν )) = F (b)α

ν + F (e)α
ν + F (φ)α

ν + F (h)α
ν (6.121)

Therefore we have introduced the averaged Brownian and Hydrodynamic force
acting on bead ν of molecule α.

F (b)α
ν (rα, t) = − 1

Ψ̄α

·mα
ν [[(ṙα

µ − uα
µ)(ṙα

ν − uα
ν )]]αΨ̄α) (6.122)

and

F (h)α
ν (rα, t) =

1

Ψ̄α

∑

βµ

∫
F (d)αβ

νµ Ψ̄αβdrβ (6.123)

this specification follows quite naturally although especially 6.123 has not been
evaluated for any molecular model or flow.Therefore, we have introduced empir-
ical expressions involving the so called ’friction coefficient’.





Chapter 7

Appendix

7.1 Canonical Transformations

The fact that the Jacobian of a canonical transformation is unity was first proved
by Liouville.

Consider a system with N degrees of freedom that passes via a canonical
transformation from state (q, p) to state (q′, p′). Thus the Jacobian of the trans-
formation

|∂(q
′
, p

′
)

∂(q, p)
| = det

(
∂q
′
1

∂q1

∂q
′
2

∂q1
...

. . .

)
(7.1)

is a 2N × 2N determinant.

Recalling that |∂(q
′
,p
′
)

∂(q,p)
| = |∂(q

′
,p
′
)

∂(q,p′ ) |/|
∂(q,p)

∂(q,p′ ) |
the Jacobian reduces to the quotient of two N ×N determinants, namely

J =
∂q

′
/∂q|p′

∂p/∂p′|q ≡
Jn

Jd

(7.2)

the subscripts p′ and q in the numerator and denominator respectively denote
variables that are kept fixed during differentiation.
The ik element of Jn is

J ik
n =

∂q
′
i

∂qk

(7.3)

and since the transformation (q, p) → (q
′
, p

′
) is canonical there exists a generating

function G such that

J ik
n =

∂2G

∂p
′
i∂qk

(7.4)

in a similar manner the ik element of the denominator is

J ik
d =

∂2G

∂qi∂p
′
k

(7.5)

95



so J ik
n = Jki

d Thus

∂(q
′
, p

′
)

∂(q, p)
= J =

Jn

Jd

= 1 (7.6)

Remark: The geometric significance of the Liouville theorem is that under a
canonical transformation a volume Ω transforms into Ω′ in Γ-space in a way
that m(Ω) = m(Ω′). In other words volume elements in Γ-space are canonical
invariants.

The time has come to prove a useful lemma:
Lemma:If the same canonical transformation e[G]r(for an arbitrary dynamical
function G and a parameter r)is applied to both factors in the integrand∫

dpdqb(q, p; x, t)c(q, p; x, t) then its value remains unchanged.
Proof:If we remember that
∫

dqdp[e[G]rb(q, p; x, t)][e[G]rc(q, p; x, t)] =

∫
dqdpb(qr, pr; x, t)c(qr, pr; x, t) (7.7)

where

qr = e[G]rq (7.8)

pr = e[G]rp (7.9)

the only thing left is a change of integration variables

∫
dqdpb(qr, pr; x, t)c(qr, pr; x, t) =

∫
dqrdpr|J |b(qr, pr; x, t)c(qr, pr; x, t) (7.10)

where J is equal to ∂(q,p)
∂(qr,pr)

and since the Jacobian of a canonical transformation
is unity we have obtained the desired conclusion
Remark:We can generalize the aforementioned lemma up to integrands that con-
tain a finite number of dynamical functions

7.2 A second derivation of the Liouville equa-

tion

Let f(q, p, t) be the phase space distribution function, properly normalized in
a Hamiltonian system with N particles and dΩ a volume element in the phase
space.If dN is the number of particles in dΩ at time t then

dN = Nf(q, p, t)dΩ = Nf(q, p, t)dpdq (7.11)



Those particles following the systems trajectories will occupy after time dt
the volume element dΩ′

So
dN = Nf(q(t + dt), p(t + dt), t + dt)dΩ′ (7.12)

We already know that the motion of these points comprises a canonical transfor-
mation so dΩ′ = dΩ and f(q, p, t) remains constant on system trajectories so
df
dt

= 0 or equivalently

∂f

∂t
= −

N∑
n=1

{ ∂f

∂pn

· ∂pn

∂t
+

∂f

∂qn

· ∂qn

∂t
} (7.13)

7.3 The normal modes for the Rouse Model

We consider the linear transformation of Rn(t)

Xp(t) =

∫ N

0

dnφpnRn(t) (7.14)

φpn chosen in the way that

ζp
∂

∂t
Xp = −kpXp + fp (7.15)

we have

ζp
∂Xp

∂t
= ζp

∂

∂t

∫ N

0

dnφpnRn(t) = ζp

∫ N

0

dnφpn
∂Rn(t)

∂t

ζp

ζ

∫ N

0

dnφpn(k
∂2Rn

∂n2
+ fn)

=
ζp

ζ

∫ N

0

dnφpnk
∂2Rn

∂n2
+

ζp

ζ

∫ N

0

dnφpnfn (7.16)

The right hand side can be rewritten after integrating by parts

rhs =
ζp

ζ
[φpnk

∂Rn

∂n
]N0

ζp

ζ
[k

∂φpn

∂n
Rn]N0

+
ζp

ζ

∫ N

0

dn[k
∂2φpn

∂n2
Rn + φpnfn] (7.17)

So we can write down 7.16 in the form

−ζp

ζ
[k

∂φpn

∂n
Rn]N0 +

ζp

ζ

∫ N

0

dn[k
∂2φpn

∂n2
Rn + φpnfn]

=

∫ N

0

dn(−kpφpnRn) + fp (7.18)



In order that the last equation holds we must have

ζp

ζ
k
∂2φpn

∂n2
= −kpφpn (7.19)

with
∂φpn

∂n
= 0

at n = 0 and n = N
and fp = ζp

ζ

∫ N

0
dnφpnfn

The solution to 7.19 together with the boundary conditions is

φpn =
1

N
cos(

pπn

N
)(p = 0, 1, 2, ...) (7.20)

and kp = k ζp

ζ
(pπ

N
)2

The ζp can be arbitrarily chosen so that

〈fpx(t)fpx(0)〉 = 2ζpkBTδ(t) (7.21)

We calculate the left hand side

〈fpα(t)fqβ(t)〉 =
ζpζq

N2ζ2

∫ N

0

dn

∫ N

0

dm cos(
pπn

N
) cos(

qπm

N
) (7.22)

〈fnα(t)fmβ(0)〉 =
ζpζp

N2ζ2

∫ N

0

dn cos(
pπn

N
) cos(

qπm

N
) (7.23)

2ζkBTδαβδ(t) =
ζ2
p

N2ζ2

1 + δp0

2
Nδpq2ζkBTδαβδ(t) (7.24)

7.4 Treatment of systems with Rigid Constraints

We now present two general ways in treating systems with rigid constraints.
This is essential in studying for example models like rigid dumbbells or a rodlike
polymer. Constraints we are considering are those that can be written in form
Cp({R}) = 0p = 1, 2, ..., Nc.

The hydrodynamic relation we are considering is

Vm = k ·Rm +
∑

n

Hnm · Fn (7.25)

and we are solving this equation under the constraints given. One way to do
this is by introducing generalized coordinates and specify the configuration of the
beads uniquely. Another way to do this is by the use of Lagrangian multipliers
for the constraints. Both methods have their pros and cons (e.g the method of
the generalized coordinates is impractical to the freely jointed model).



7.4.1 The Method of the Generalized Coordinates

Let {Q} ≡ {Q1, Q2, ..., QNf
} the set of the generalized coordinates. Then the

position vectors Rm are expressed in the form Rm = Rm({Q})m = 1, ..., N
and

Vm =

Nf∑
α=1

∂Rm

∂Qα

Vα =
∂Rm

∂Qα

Vα(summationconvention) (7.26)

where Va is the velocity of the generalized coordinate Qa (e.g Vα = dQα

dt
).

To obtain Fm we use the principle of virtual work, which is the work necessary
to change Qα by δQα. If we recall that the total energy of the system is U +
KBT ln(Ψ) then the work done is

δ(U + KBT ln(Ψ)) = [
∂

∂Qα

(U + KBT ln(Ψ)]δQα (7.27)

and it can be also calculated by

δ(U + KBT ln(Ψ) = −Fm · δRm (7.28)

where δRm = ∂Rm

∂Qα
δQα

Thus we have

Fm · ∂Rm

∂Qα

= − ∂

∂Qα

(KBT ln(Ψ) + U) (7.29)

By 7.25,7.26,7.29 we determine Va and Fm.

Fn = (H−1)nm · (Um − k ·Rm) = (H−1)nm(
∂Rm

∂Qα

Vα − k ·Rm) (7.30)

where (H−1)nm ·Hmk = δnkI
Substituting into 7.29 we get

∂Rn

∂Qα

· (H−1)nm · [∂Rm

∂Qb

Vb − k ·Rm] = − ∂

∂Qα

(U + KBT ln(Ψ) (7.31)

We can denote

(h−1)αβ =
∂Rn

∂Qα

· (H−1)nm · ∂Rm

∂Qβ

(7.32)

F (E)
α = − ∂

∂Qα

(U + KBT ln(Ψ) (7.33)

and

V (V )
α = hαβ

∂Rn

∂Qβ

· (H−1)nm · k ·Rm (7.34)



We can rewrite 7.31 in the form

(h−1)αβ(Vβ − V
(V )
b ) = F (E)

α (7.35)

or

Vα = V (V )
α + hαβF

(E)
b

= −hαβ
∂

∂Qβ

(U + KBT ln(Ψ)) + V (V )
α (7.36)

hence

Fn = (H−1)nm · (∂Rm

∂Qα

hαβF
(E)
b +

∂Rm

∂Qα

V (V )
α − kRm) (7.37)

7.4.2 The Method of Lagrangian Multipliers

Another method of dealing with systems of rigid constraints is by the use of the
Lagrangian multipliers.Our endeavor will be to minimize the chemical potential
KBT ln Ψ + U under the system of constraints Cp({R}) = 0.
We are thus solving the system

∂

∂Rm

(KBT ln Ψ + U) = λp
∂Cp

∂Rm

(7.38)

Cp({R}) = 0 (7.39)

or better

∂

∂Rm

(KbT ln Ψ + U) = λp
∂Cp

∂Rm

(7.40)

∂Cp

∂Rm

· Vm = 0 (7.41)

One needs to keep in mind the hydrodynamic equation

Vm = κ ·Rm +
∑

n

Hnm · Fn (7.42)

and also that the force Fm may now be expressed as

Fm = − ∂

∂Rm

(KBT ln Ψ + U) + λp
∂Cp

∂Rm

(7.43)

The coefficients may now be calculated by 7.38,7.41 and 7.43 so our calculation
leads to

λp = (h̃−1)pq
∂Cp

∂Rn

·Hnm · ∂

∂Rm

[KBT ln Ψ + U ]− (h̃−1)pq
∂Cq

∂Rn

· κ ·Rn (7.44)



where (h̃−1)pq is the inverse of the matrix

(h̃)pq ≡ ∂Cp

∂Rn

·Hnm · ∂Cq

∂Rm

(7.45)

The Smoluchowski equation may be obtained by the continuity equation :

∂Ψ

∂t
= − ∂

∂Rm

· (VmΨ)

=
∂

∂Rn

·Hnm ·Ψ(
∂

∂Rm

− ∂Cp

∂Rm

(h̃−1)pq
∂Cq

∂Rk

·Hki · ∂

∂Ri

)(KBT ln Ψ + U)

− ∂

∂Rm

· (κ ·Rm −Hmk · ∂Cp

∂Rk

(h̃−1)pq
∂Cq

∂Rn

· κ ·Rn) (7.46)

7.5 Elements of Probability Theory

Elements of probability theory that are essential in understanding the concepts
in chapters that deal with polymer dynamics are reviwed here.The pattern we
are following is the measure theoretic one.

7.5.1 Probability Spaces and Random Variables

The probability space of a random experiment is a general measure space(Ω, F, P )
in which measure P is called a probability measure and possesses the extra prop-
erty that is normalized to unity.

The space Ω is called the outcome space and its elements ω are outcomes of
the experiment.F is a σ-algebra (σ-field) on Ω (a set of subsets of Ω) that satisfies
the following requirements
1. If A ∈ F then Ac ∈ F
2. If A1, A2, ... ∈ F then

⋃∞
n=1 An ∈ F

A σ-algebra can be found to be closed under complementarity, countable union
and countable intersection with use of simple set theoretic properties.

The probability measure P is a real valued set function P : F → [0, 1] satis-
fying
1.P (Ω) = 1
2.P (A) ≥ 0 for all A ∈ F
3.If A1, A2, ... ∈ F are disjoint then P (

⋃∞
n=1 An) =

∑∞
n=1 P (An)

A random variable X is simply a measurable function (X : Ω −→ <),that is,for
every Borel measurable set B then X−1(B) ∈ F .



7.5.2 Moments

The expectation of the random variable X is E(X) =
∫
Ω

X(ω)dP (ω) =
∫

R
xdFX(x)

where x are the realizations of X.
We also define for a Borel measurable function g

E(g(X)) =

∫

Ω

g(X(ω))dP (ω) =

∫

R

g(x)dFX(x) (7.47)

7.6 Elements from Tensor Analysis

7.6.1 Notational Preliminaries;Vectors and Tensors

We are about to give a brief summary on the most common vector operations
treated from an analytical viewpoint (we will avoid the interpretation with the
various geometric properties of these operations).

We will begin with the definition of the permutation symbol εijk which takes
values +1,−1 for even and odd permutations of the indices ijk respectively or
the value 0 if any two indices are alike.

Vectors

Let δ1, δ2, δ3 be the unit vectors in the direction of the x, y, z axes.The definitions
of the dot and cross products of the vectors are

(δi · δj) = δij (7.48)

and

[δi × δj] =
3∑

k=1

εijkδk (7.49)

Any vector in the physical configuration space can be expanded in terms of its
components.So if v1, v2, v3 are the projections on the coordinate axes then the
vector v can be written as

v =
3∑

i=1

δivi (7.50)

Let v1, v2, v3 and w1, w2, w3 be the components of vectors v, w respectively.Then
the most common vector operations are:
The addition (subtraction) of vectors

v + w =
∑

i

δi(vi + wi) (7.51)



Multiplication of a vector by a scalar s

sv =
∑

i

δi{svi} (7.52)

The dot product of two vectors

(v · w) =
∑

i

∑
j

δijviwj =
∑

i

viwi (7.53)

The cross product of two vectors

[v × w] =
∑

i

∑
j

∑

k

εijkδivjwk (7.54)

The multiple vector product

(u · [v × w]) =
∑

i

∑
j

∑

k

εijkuivjwk (7.55)

Tensors

The key point when one deals with tensor operations is to define a new kind of
product,namely the dyadic product δiδj.Operations that have to do with tensors
will be defined according to the following table:

(δiδj : δkδl) = (δj · δk)(δi · δl) = δjkδil (7.56)

[δiδj · δk] = δi(δj · δk) = δiδjk (7.57)

[δi · δjδk] = (δi · δj)δk = δijδk (7.58)

{δiδj · δkδl} = δi(δj · δk)δl = δjkδiδl (7.59)

{δiδj × δk} = δi[δj × δk] =
3∑

l=1

εjklδiδl (7.60)

{δi × δjδk} = [δi × δj]δk =
3∑

l=1

εijlδlδk (7.61)

If τij are the components of tensor τ then τ can be written as

τ =
3∑

i=1

3∑
j=1

δiδjτij (7.62)

Addition of tensors
σ + τ =

∑
i

∑
j

δiδj(σij + τij) (7.63)



Multiplication of a tensor by a scalar s

sτ =
∑

i

∑
j

δiδj{sτij} (7.64)

The double dot product of two tensors

(σ : τ) =
∑

i

∑
j

σijτji (7.65)

Dot product of a tensor with a vector

[τ · v] =
∑

i

δi{
∑

j

τijvj} (7.66)

The cross product of a tensor with a vector

{τ × v} =
∑

i

∑

l

δiδl{
∑

j

∑

k

εjklτijvk} (7.67)

Differential Operations

The first object to define is the ”nabla” operator which is defined as

∇ =
∑

i

δi
∂

∂xi

(7.68)

For a scalar function s we define the gradient of s as

∇s =
∑

i

δi
∂s

∂xi

(7.69)

The divergence of the vector field v (a vector function of the variables x1, x2, x3)
is

(∇ · v) =
∑

i

∂vi

∂xi

(7.70)

The Curl of a vector field v is

[∇× v] =
∑

i

∑
j

∑

k

εijkδi
∂

∂xj

vk (7.71)

The gradient of the vector field v is

∇v =
∑

i

∑
j

δiδj
∂

∂xi

vj (7.72)



The divergence of a tensor field τ is

[∇ · τ ] =
∑

k

δk{
∑

i

∂

∂xi

τij} (7.73)

The Laplacian of a Scalar field is

(∇ · ∇s) = {
∑

i

∂2

∂x2
i

s} (7.74)

The Laplacian of a vector field is

[∇ · ∇v] =
∑

k

δk(
∑

i

∂2

∂x2
i

vk) (7.75)

7.6.2 Integral Theorems

• The Gauss Divergence Theorem.

If V is a closed region with surface S then
∫

V

(∇ · v)dV =

∫

S

(η · v)dS (7.76)

in which η is the outwardly directed unit normal vector.
In the case of a tensor τ Gauss’ Theorem reads

∫

V

[∇ · τ ]dV =

∫

S

[η · τ ]dS (7.77)

where we can replace straightforwardly the tensor τ with the dyadic product vw
of two vectors v, w and thus get

∫

V

[∇ · vw]dV =

∫

S

[η · vw]dS (7.78)

• The Stokes Curl Theorem
If S is a surface bounded by a closed curve C then

∫

S

(η · [∇× v])dS =

∮

C

(t · v)dC (7.79)

where t is the unit tangential vector in the direction of integration along C.
Stokes Theorem for Tensors is:

∫

S

[η · {∇ × τ}]dS =

∮

C

[t · τ ]dC (7.80)



7.6.3 Transformation of Coordinates

To get along with the high number of indices that we are going to use in this
section, we will start by stating two items that may help us avoid too much
confusion. The first one is a ’mnemonic’ trick, namely ’The Conservation of
Indices’ that states that lower and upper tensor indices are balanced across equal
signs. The other is an ’abbreviation convention’ which states that repeated indices
are summed unless otherwise noted and bears the name ’Einstein summation
formula’

Starting, let qi and q̄i be two sets of (generally) non-orthogonal, curvilinear
coordinates that are related to one another by the coordinate transformations:

q̄i = q̄i(q1, q2, q3); qi = qi(q̄1, q̄2, q̄3) (7.81)

We make use of the chain rule of differentiation and write

dq̄i = (
∂q̄i

∂qj
)dqj; dqi = (

∂qi

∂q̄j
)dq̄j (7.82)

Let gi and ḡi be the base vectors in the original and barred coordinate system
respectively. Then
dr = gidqi and dr = ḡidq̄i

The above two relations are essential to obtain the transformation rules for the
base vectors:

gi =
∂q̄j

∂qi
ḡj (7.83)

and

ḡi =
∂qj

∂q̄i
gj (7.84)

Now its time to introduce the notation for the contravariant base vectors. These
are inserted in such a way that

gi · gj = δi
j; gi · gj = δj

i (7.85)

and
ḡi · ḡj = δi

j; ḡi · ḡj = δj
i (7.86)

We define the contravariant (or reciprocal) base vectors by

g1 =
[g2 × g3]

(g1 · [g2 × g3])
(7.87)

and g2, g3 are obtained by cyclic permutations
where the denominator is the volume of the parallelepiped formed by g1, g2, g3

(or ḡ1, ḡ2, ḡ3 in the second case)



Thus the transformation rules for the contravariant base vectors are
gi = ∂qi

∂q̄j ḡ
j and ḡi = ∂q̄i

∂qj g
j

Now a vector v may be written in two forms in both coordinate systems
v = giv

i = ḡiv̄
i or v = givi = ḡiv̄i

We can easily get from the above relations that

vi =
∂qi

∂q̄j
v̄j; v̄i =

∂q̄i

∂qj
vj (7.88)

vi =
∂q̄j

∂qi
v̄j; v̄i =

∂qj

∂q̄i
vj (7.89)

The time has come to introduce the metric tensors gij and gij by

gi · gj = gij (7.90)

and
gi · gj = gij (7.91)

We note that
√

g is equal to (g1 · [g2 × g3])
The distance between two points in a manifold is now given by

dr2 = gijdqidqj = gijdqidqj (7.92)

We have expressed vectors in terms of base vectors, analogously we can do
that with tensors

τ = gigjτ
ij = gigjτij = gig

jτ i
j = gigjτ

j
i (7.93)

the τ ij, τij and (τ i
j or τ j

i ) are the covariant, contravariant and mixed components
of tensor τ , respectively.

The covariant and contravariant components are simply related (remember
the conservation of indices)

vj = gijv
i (7.94)

and
τ ij = gikgjlτkl (7.95)

We are now in position to define the Cristoffel symbols Γk
ij by

Γk
ij =

1

2

∑

l

gkl(
∂gil

∂qj
+

∂gjl

∂qi
− ∂gij

∂ql
) (7.96)

Recall that the gi are the base vectors of the qi coordinates and one can prove
that the following hold

∂

∂qj
gi = Γk

ijgk (7.97)



and
∂

∂qj
gi = −Γi

kjg
k (7.98)

Finally, defining the gradient operator ∇ as ∇ = gi ∂
∂qi we can verify that

(∇ · v) =
1√
g

∂

∂qi
(
√

gvi) (7.99)

and

∇2s =
1√
g

∂

∂qi
(
√

ggij ∂s

∂xj
) (7.100)

7.7 The Fourier Transform

For a function v ∈ L1(R
d) we define its Fourier transform for ξ = (ξ1, ..., ξd) ∈ Rd

by

Fv(ξ) = v̂(ξ) =

∫

Rd

v(x)e−ix·ξdx (7.101)

and the inverse Fourier transform by

F−1v(x) = v̌(x) = (2π)−d

∫

Rd

v(ξ)eix·ξdξ = (2π)−dv̂(−x) (7.102)

Defining the inner product of two integrable real (or complex) valued functions
v, w as

(v, w) =

∫

Rd

v(x)w(x)dx((v, w) =

∫

Rd

v(x)w(x)dx) (7.103)

then Parsevals formula states
∫

Rd

v(x)w(x)dx = (2π)−d

∫

Rd

v̂(ξ)ŵ(ξ)dξ (7.104)

A norm can be defined by ‖ v ‖= (
∫

Rd v2(x)dx)1/2 so Parsevals formula states

‖ v ‖= (2π)−d/2 ‖ v̂ ‖ (7.105)

We state some other properties of the Fourier transform
• Fv(·+ y)(ξ) = eiy·ξv̂(ξ) transformation of the argument of the function y units
right.
• Fv(α·)(ξ) = α−dv̂(α−1ξ)y for α > 0
• F (Dαv)(ξ) = (iξ)αv̂(ξ)



Finally a convolution of the two functions v, w is defined by

(v ∗ w)(x) =

∫

Rd

v(x− y)w(y)dy =

∫

Rd

v(y)w(x− y)dy (7.106)

For the Fourier transform of the convolution we obtain

F (v ∗ w)(ξ) = Fv(ξ)Fw(ξ) (7.107)

7.8 The Stress Tensor at Equilibrium (A proof

on the uniqueness of the stress tensor)

Questions may arise that deal with the uniqueness of the stress tensor.
a)The equation of motion in continuum mechanics is ∂

∂t
(ρv) + (divρvv) = −(∇ ·

π) + G and thus we are led to the fact that adding a divergencefree tensor will
not affect the equation of motion.On the other hand that will cause a change to
the force acting on a surface element which is [η · π]dS.
b)One could identify the S(e) with the G and set π(e) equal to zero. This would
also lead to a different result for the force [η · π]dS on a surface element.

To overcome these difficulties we will derive an expression for the stress tensor
at equilibrium and show that none of the above actions are legal in the equilibrium
state. This discussion will be restricted to systems for which the external forces
are independent of position and the total external force on a single molecule is
zero.

In the phase space we have

d

dt
rαi
ν pαi

ν =
1

mα
ν

pαi
ν pαi

ν + rαi
ν F̃αi

ν =
1

mα
ν

pαi
ν pαi

ν + rαi
ν (Fαi

ν + F (w)αi
ν ) (7.108)

where F̃αi
ν is the total force on a bead;that is the sum of Fαi

ν (inter- and in-

tramolecular plus external forces) and the force F
(w)αi
ν due to the walls of the

container enclosing the liquid.
Summing over all beads in the system integrating w.r.t time from 0 to τ we

get:
1

τ

∑
αiν

rαi
ν pαi

ν |τ0 = K + Ξ + Ξ(w) (7.109)

where

K =
∑
αiν

1

mα
ν

〈pαi
ν pαi

ν 〉τ =
∑
αiν

1

τ

∫ τ

0

pαi
ν pαi

ν dt (7.110)



Ξ =
∑
αiν

〈rαi
ν Fαi

ν 〉τ =
∑
αiν

1

τ

∫ τ

0

rαi
ν Fαi

ν dt (7.111)

Ξ(w) =
∑
αiν

〈rαi
ν F (w)αi

ν 〉τ =
∑
αiν

1

τ

∫ τ

0

rαi
ν F (w)αi

ν dt (7.112)

In the equilibrium state the term on the left of 7.109 becomes 0 as τ → ∞,
because the position vectors are bounded and the momenta will be very large
only over very small time intervals. In the same limit, the time averages of the
first two terms on the right side may be replaced by the phase space averages,
using the equilibrium distribution function.
Hence

K =
∑
αiν

1

mα
ν

〈pαi
ν pαi

ν 〉 =
∑
αiν

1

mα
ν

∫
pαi

ν pαi
ν feq(x)dx (7.113)

and

Ξ =
∑
αiν

〈rαi
ν Fαi

ν 〉 =
∑
αiν

∫
rαi
ν Fαi

ν feqdx

=
∑
αiν

∫
rαi
ν Fαi

ν Ψeqdr (7.114)

where the last average is w.r.t the equilibrium distribution function.
We only need to evaluate Ξ(w). For this we note that the time average of the

sum of all forces on the beads due to the wall is the negative of the time average
force on the wall by the beads. From continuum arguments, this force (per unit
area) is [η · π].

To show now that the choice of the expression for π is the correct one we
define a quantity π̂ as follows:

π̂ = π + c1π
(e) + c2β (7.115)

in which π is the sum of four contributions, π(e) is the external field contribution
to the stress tensor,β is a divergencefree tensor, and c1, c2 are arbitrary constants.
If π̂ is taken to be the stress tensor then the force /unit area on a wall is[η · π̂]
and thus

Ξ(w) = −
∫

r[η · π̂]ds = −{
∫

η · π̂rds}T (7.116)

Applying Gauss theorem we obtain

Ξ(w) = −{
∫

∇ · π̂rdr}T = −
∫

r[∇ · π̂]dr −
∫

π̂dr (7.117)

For the fluid under consideration, namely a fluid at rest with the total external
force per molecule being zero the equation of motion simplifies to [∇ · π] = 0,



substitution into 7.109 for π̂, gives us

Ξ(w) = c1

∫
r[∇ · π(e)]dr −

∫
(π + c1π

(e) + c2β)dr (7.118)

or

−(K + Ξ) = −c1

∫
r[∇ · π(e)]dr −

∫
πdr − c1

∫
π(e)dr − c2

∫
βdr (7.119)

We will show later that the left side of the equation is equal to − ∫
πdr and

therefore we obtain:

0 = −c1

∫
r[∇ · π(e)]dr − c1π

(e)
b V − c1

∫
(π(e) − π

(e)
b )dr − c2

∫
βdr (7.120)

in which the subscript b indicates the value in the bulk of the fluid (not in the
thin layer near the wall).

We now want to determine c1 and c2. The second term on the right depends
on the magnitude of V but not the shape of the container. The values of the 1, 3
and 4′th term depend on the shape of the container.
(a)Case I:β is a constant tensor.In this case the fourth term becomes −c2βV and
is independent of the container. Therefore the sum of the first and third terms
must be equal to zero (shape-independent terms).
It can be concluded from the latter relation that c1, c2 are zero.
(b)Case II: β is not a constant tensor. In this case the second term is the only
shape-independent term and setting it equal to zero gives c1 equal to zero. Then
setting the sum of the shape-dependent terms equal to zero gives c2 equal to zero.

We are thus led to the conclusion that π and π̂ are the same.
It remains to be shown that −(K + Ξ) is equal to − ∫

πdr or∫
πdr =

∑
αiν

1

mα
ν

∫
pαi

ν pαi
ν feq(x)dx +

∑
αiν

∫
rαi
ν Fαi

ν Ψeq(r)dr (7.121)

We can replace rαi
ν by Rαi

ν just because we have restricted the discussion to
systems for which the total external force on a molecule is zero.∫

πdr =
∑
αiν

∫
pαi

ν pαi
ν feq(x)dx =

∑
αiν

∫
Rαi

ν Fαi
ν Ψeq(r)dr (7.122)

We then write
∑
αiν

1

mα
ν

∫
pαi

ν pαi
ν feq(x)dx =

∑
αiν

1

mα
ν

∫ ∫
pαi

ν pαi
ν feq(x)δ(rαi

ν − r)drdx

=

∫ ∑
αiν

1

mα
ν

∫
pαi

ν pαi
ν feq(x)δ(rαi

ν − r)dxdr (7.123)

and the internal integral is equal to π(k)

Exactly the same steps may be carried for the second term of 7.109.





Chapter 8

Biographical Notes

8.1 Ludwig Boltzmann

Ludwig Boltzmann (1844 Vienna -1906 Duino) son of a taxation official was
awarded a doctorate from the University of Vienna in 1866 for a thesis on the
kinetic theory of gases supervised by Joseph Stefan. Soon after his doctorate
dissertation Boltzmann started travelling and teaching , moving from one place
to another (e.g Graz, Heidelberg, Berlin) and studied under brilliant names of his
time. Boltzmann’s nature made him subject to rapid swings between happiness
and sadness and nowadays it seems that he suffered a kind of depression with
elevated expansive or irritable moods (a manic-depressive illness or else bipolar-
disorder would fit to the features of a modern psychiatric diagnosis). In 1900 he
moved to Leipzig for occupational reasons and became a colleague with one of
his strongest scientific opponents, Wilhelm Ostwald. Depressed by his conflict
with Ostwald he made his first major suicide attempt. In 1902 Boltzmann moved
back to Vienna where he held his chair of theoretical physics, giving philosophy
lectures.

Boltzmann’s main contribution is the invention of statistical mechanics, which
he did independently of Willard Gibbs in a more physical manner. His monu-
mental work included the derivation of the Maxwell-Boltzmann distribution in
1871, the derivation of the Boltzmann equation and the H-theorem in 1872, the
derivation of Stefan’s empirical T 4 law for black-body radiation using principles
of thermodynamics in 1884 e.t.c. The strong opposition to his work on statistical
mechanics by Ostwald, Zermelo, Loschmidt and many others made him more vol-
nurable and Boltzmann had to defend every opposing argument. The main reason
for the strong conflict he faced is that the probabilistic character of his description
that departed from the laws of exact mechanics and his famous ’Stosszahlansatz’
assumption in the derivation of his celebrated equation could not be conceived as
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’healthy’.
Finally, on a holiday with his family at the bay of Duino near Trieste, Boltz-

mann hanged himself while his wife and daughter were swimming.

8.2 Josiah Willard Gibbs

Josiah Willard Gibbs (1839 New Haven -1903 New Haven) son of a Yale’s professor
showed early commitment to academic work and was described as withdrawn. In
1854 he entered Yale college where he excelled in Latin and Mathematics and
attained his doctorate in 1863 in engineering (the first engineering doctorate to
be conferred in the United States). In his dissertation he used geometric methods
to study the design of gears. Gibbs went to Europe for the time interval between
1866 to 1869 spending one year in Paris, Berlin and Heidelberg respectively.
He then returned to Yale and two years later he was appointed a professor of
Mathematical Physics at Yale while he had not yet produced any scientific work!

Gibbs first papers appeared in 1873 and were Graphical Methods in the Ther-
modynamics of Fluids and A method of Geometrical Representation of the Ther-
modynamic Properties of Substances by Means of Surfaces. In 1876 and 1878
he published the two parts of his work On the Equilibrium of Heterogeneous
Substances. He also made great contribution on vector analysis, he developed a
method of finding the orbit of a comet using three observations (the latter was
successively applied in the case of Swift’s comet of 1880) and he published on the
area of electromagnetic theory of light. His contribution on Statistical Mechanics
came in his very late years when he published the monumental Elementary Prin-
ciples in Statistical Mechanics setting the foundation of Statistical Mechanics on
a firm basis.
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