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Abstract

The current PhD thesis addresses the formulation and implementation of a methodologi-

cal framework for robot Learning from Demonstration (LfD). The latter refers to method-

ologies that develop behavioral policies from example state-to-action mappings. To this

end, we study the reciprocal interaction of perception and action, in order to teach robots

a repertoire of novel action behaviors. Based on that, we design, develop and implement

a robust imitation framework, termed IMFO (IMitation Framework by Observation), that

facilitates imitation learning and relevant applications in human-robot interaction (HRI)

tasks. IMFO can cope with the reproduction of learned (i.e. previously observed) actions,

as well as novel ones. Mapping of human actions to the respective robotic ones is achieved

via an indeterminate depiction, termed latent space representation. The latter accom-

plishes a compact, yet precise abstraction of action trajectories, effectively representing

high dimensional raw actions in a low dimensional space.

Moreover, throughout this thesis, we examine the role of time in LfD by enhancing

the aforementioned framework with the notion of learning both the spatial and temporal

characteristics of human motions. Accordingly, learned actions can be subsequently re-

produced in the context of more complex time-informed HRI scenarios. Unlike previous

LfD methods that cope only with the spatial traits of an action, the formulated scheme

effectively encompasses spatial and temporal aspects. Extensive experimentation with a

variety of real robotic platforms demonstrates the robustness and applicability of the in-

troduced integrated LfD scheme.

Learned actions are reproduced under the high level control of a time-informed task

planner. During the implementation of the studied scenarios, temporal and physical con-

straints may impose speed adaptations in the performed actions. The employed latent

space representation readily supports such variations, giving rise to novel actions in the

temporal domain. Experimental results demonstrate the effectiveness of the proposed

enhanced imitation scheme in the implementation of HRI scenarios. Additionally, a set

of well defined evaluation metrics are introduced to assess the validity of the proposed

approach considering the temporal and spatial consistency of the reproduced behaviors.

A noteworthy extension of the above regards force-based object grasping for executing

sensitive manipulation tasks. This is also treated in the current thesis via a novel super-

vised learning scheme, termed SLF (Supervised Learning for Force-based manipulation).

SLF is formulated as a three-stage process: (a) supervised trial-execution in simulation

to acquire sufficient training data; (b) training to facilitate grasp learning with suitable
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robot-arm pose and lifting force; (c) grasp execution in simulation. Subsequently, follow-

ing sim-to-real transfer, operation in real environments is achieved in addition to simu-

lated ones, generalizing also for objects not included in the trial sessions. The proposed

learning scheme is demonstrated in object lifting tasks where the applied force varies for

different objects with similar contact friction coefficients, and likewise the grasping pose.

Experimental results on the manipulator YuMi show that the robot is able to effectively

reproduce demanding lifting and manipulation tasks after learning is accomplished.

In summary, our thesis has studied LfD and has contributed with a novel approach that

introduced latent space representations to encode the action characteristics. A framework

implementation (IMFO) of our approach allowed extensive experimentation and also con-

duction of HRI scenarios. The inclusion of temporal aspects in our approach enhanced it

to cope with complex, real-life interactions. Finally, the extension of IMFO with force-

based grasping facilitated manipulation tasks with sensitive objects.

Keywords: Learning from Demonstration, Machine Learning, Latent Representation, Neu-

ral Networks, Human-Robot Interaction, Temporal Planning, Force-based Manipulation.



Περίληψη

Η παρούσα διδακτορική διατριβή αφορά τη μελέτη, ανάπτυξη και εφαρμογή, με-
ϑόδων Μηχανικής Μάθησης μέσω Παρατήρησης (Learning from Demonstration) με
στόχο την ρομποτική αναπαραγωγή δράσεων χειρισμού. Η μεθοδολογία αυτή στη-
ρίζεται στην δημιουργία μιάς αντιστοίχισης (mapping) μεταξύ της κινηματικής του
ανθρώπινου χεριού και ενός ρομποτικού βραχίονα, ή πιο συγκεκριμένα μεταξύ του
πολυδιάστατου χώρου των κινήσεων του ανθρώπου (human actor) με τον επίσης
πολυδιάστατο χώρο δράσης του ρομπότ. Η συσχέτιση των ανθρώπινων ενεργειών
με αντίστοιχες ρομποτικές επιτυγχάνεται μέσω μιας άδηλης αναπαράστασης, που
ονομάζεται λανθάνουσα απεικόνιση χώρου (latent space). Πιο συγκεκριμένα, μελε-
τάμε την αμοιβαία αλληλεπίδραση της αντίληψης και της δράσης, προκειμένου να
διδάξουμε τα ρομπότ μια ποικιλία από νέες κινήσεις χειρός. Ως εκ τούτου, στα πλα-
ίσια της παρούσας διατριβής σχεδιάσαμε, αναπτύξαμε και εφαρμόσαμε ένα μεθοδο-
λογικό πλαίσιο μάθησης μέσω παρατήρησης, το οποίο ονομάζεται IMFO (Imitation
Framework by Observation), που διευκολύνει την αναπαραγωγή μαθημένων και νέων
κινήσεων χειρισμού από ένα ρομπότ (manipulation tasks) και, παράλληλα, έχει ευ-
ρεία εφαρμογή σε σενάρια αλληλεπίδρασης ανθρώπου-ρομπότ (HRI) σε καθημερινά
περιβάλλοντα.

Επιπλέον, σε αυτή τη διατριβή, εξετάζουμε το ρόλο της χρονικής διάρκειας εκτέλε-
σης μιας κίνησης μέσα από τη διαδικασία μάθησης από παρατήρηση, ενισχύοντας το
διαμορφωμένο πλαίσιο IMFO με την δυνατότητα αναπαράστασης και αναπαραγωγής
τόσο των χωρικών όσο και των χρονικών χαρακτηριστικών των ανθρώπινων κινήσε-
ων. Κατά συνέπεια, οι κινήσεις που μαθαίνονται μέσα από το προτεινόμενο πλαίσιο
μπορούν να εφαρμοστούν σε πιο σύνθετα σενάρια HRI, όπου η χρονική αλληλουχία
των δράσεων είναι σημαντική. Σε αντίθεση με άλλες μεθόδους μάθησης μέσω πα-
ρατήρησης (LfD) που περιγράφουν την εκτελούμενη δράση μόνο με βάση τα χωρικά
χαρακτηριστικά της, η προτεινόμενη μεθοδολογία περιλαμβάνει τη μελέτη των χωρο-
χρονικών πτυχών μιάς κίνησης. Η ευρεία εφαρμογή της μεθοδολογίας σε πραγματικά
πειράματα και διάφορες ρομποτικές πλατφόρμες αποδεικνύει την αποτελεσματι-
κότητα και αποδοτικότητα του προτεινόμενου συστήματος LfD. Παράλληλα, κατά
την εφαρμογή της συγκεκριμένης μεθοδολογίας, οι χρονικοί και φυσικοί περιορισμοί
μπορεί να επιφέρουν προσαρμογές στην ταχύτητα των αναπαραγόμενων δράσεων,
ενισχύοντας το προτεινόμενο πλαίσιο μάθησης και εφαρμογής του. Επιπρόσθετα,
εισάγεται ένα σύνολο καλά καθορισμένων μετρικών αξιολόγησης (evaluation metrics)
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για να αποτιμηθεί η εγκυρότητα της προτεινόμενης προσέγγισης λαμβάνοντας υπόψη
τη χρονική και χωρική συνέπεια των αναπαραγόμενων συμπεριφορών.

Μια αξιοσημείωτη επέκταση του προαναφερθέντος πλαισίου αναφέρεται στην εκ-
μάθηση της δύναμης που επιβάλλεται από τον χρήστη για την επιτυχημένη εκτέλεση
λεπτών χειρισμών. Αυτή η διαδικασία παρουσιάζεται επίσης στην παρούσα δια-
τριβή μέσω ενός νέου πλαισίου εποπτευόμενης μάθησης, το οποίο ονομάζεται SLF
(Supervised Learning scheme for Force-based manipulation). Το SLF διατυπώνεται
ως μία διαδικασία τριών σταδίων: (α) επιβλεπόμενη διαδικασία εκτέλεσης κινήσε-
ων χειρισμού σε προσομοίωση για την απόκτηση επαρκών δεδομένων, (β) διαδικα-
σία εκπαίδευσης (training) για τη διευκόλυνση της μάθησης κινήσεων χειρισμού με
την κατάλληλη προσαρμογή του καρπού και της δύναμη πιασίματος και μεταφοράς
και (γ) εκτέλεση της κίνησης από ρομποτικό βραχίονα σε προσομοίωση. Στη συ-
νέχεια, με τη χρήση της μεθόδου sim-to-real transfer, επιτυγχάνεται αναπαραγωγή
των μαθημένων δράσεων σε πραγματικά περιβάλλοντα γενικεύοντας την εφαρμογή
του πλαισίου μάθησης σε επιπλέον συνθήκες χειρισμού εύθραυστων αντικειμένων.
Τα αποτελέσματα με τη χρήση του ρομποτικού βραχίονα YuMi, σε πειράματα με
διαφορετικά αντικείμενα με παρόμοιους συντελεστές τριβής, και εναλλακτικές πόζες
πιασίματος, αποδεικνύουν ότι το ρομπότ είναι σε ϑέση να αναπαράγει αποτελε-
σματικά απαιτητικές κινήσεις μεταφοράς και χειρισμού μετά την ολοκλήρωση της
διαδικασίας μάθησης.

Συνοπτικά, η παρούσα διατριβή μελετά την διαδικασία μάθησης μέσω παρατήρη-
σης συνεισφέροντας με μια νέα προσέγγιση που εισάγει την μελέτη δράσεων χειρι-
σμού αντικειμένων μέσα από έναν χώρο μειωμένων διαστάσεων, για την εύκολη και
συμπαγή κωδικοποίηση των επιμέρους χαρακτηριστικών των δράσεων. Η ανάπτυξη
της προτεινόμενης προσέγγισης (IMFO) επιτρέπει την εφαρμογή της σε πειραματι-
κές διαδικασίας μεταφοράς αντικειμένων σε πραγματικά περιβάλλοντα και σενάρια
συνεργασίας ανθρώπου-μηχανής (HRI). Ταυτόχρονα μελετώνται τα χρονικά χαρα-
κτηριστικά των κινήσεων ώστε να ενισχυθεί η εφαρμογή της μεθόδου σε σύνθετες,
πραγματικές συνθήκες που απαιτούν χρονική ακρίβεια αναπαραγωγής. Τέλος, η δια-
μόρφωση μιας γενικευμένης διαδικασίας εποπτευόμενης μάθησης για τον χειρισμό
εύθραυστων αντικείμενων αναβαθμίζει περαιτέρω το αρχικό πλαίσιο μάθησης.
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Chapter 1

Introduction

1.1 Motivation

Learning new behaviors enables robots to expand their repertoire of actions and effec-

tively learn new tasks. The development of such policies by hand is often very challenging,

so machine learning techniques have been proposed to cope with the relevant inherent

complexity. A distinct approach to policy learning in a natural way, regards the so-called

Learning from Demonstration (LfD), also referred to in the literature as Imitation Learning

or Programming by Demonstration (PbD) [1].

Learning from Demonstration (LfD) has become an important topic in robotics re-

search with notable applications in broader areas, such as object manipulation, human-

robot interaction, robotic companions, and human-robot collaborative task execution

[2–6]. LfD can by itself reveal remarkable advantages as summarized below:

• LfD is a powerful mechanism for reducing the complexity of the search spaces for

learning. When observing either valid or non-valid examples, one can potentially

reduce the search for a possible solution, by either starting the search from the ob-

served valid solution, or conversely, by eliminating from the search space what is

known as unacceptable solution [7–9].

• Imitation learning offers an implicit means of training a machine, such that explicit

and tedious programming of a task can be minimized or even eliminated. Imitation

learning is thus a natural means of endowing robotic machines with new capabilities

[10].

• Studying and modeling the coupling of perception and action, which is at the core of

imitation learning, greatly facilitates the understanding of the mechanisms by which

the self-organization of the perception-action loop could arise during development

[1, 8].

LfD methods were originally introduced in order to achieve faster and more accurate

learning of robotic-manipulation tasks, in contrast to tedious explicit programming of

1
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robotic behaviors [11, 12]. In this thesis, we investigate the reciprocal interaction of per-

ception and action, in order to teach robots a variety of novel action behaviors. A major is-

sue in motor learning is concerned with the difficulty of learning motor skills that are high

dimensional. To deal with this problem, this thesis placed emphasis on representing the

high-dimensional motor space in a subspace of lower dimensionality, termed latent space.

Accordingly, our work focused on the design and implementation of a robust imitation

framework based on LfD that facilitates the execution of arm-motion behaviors and the

application of robots in human-robot interaction (HRI) tasks in everyday environments.

It is worth noting that depending exclusively on one perception channel greatly limits

the information that a robot may acquire and use for learning. Humans are endowed with

a very rich multimodal perception system [13,14], which is heavily used when performing

physical interaction tasks [15, 16]. In contrast research on LfD has focused on learning

tasks using unimodal sensing, i.e. vision. Taking inspiration from the above, this thesis

also proposes to merge vision and temporal cognition in order to improve the learning

process.

While most works in the field have focused on learning the kinematics of motions, re-

search regarding force-based skills has been very limited. Force-based grasping and ma-

nipulation may be crucial when contact with the environment takes place, mostly in ma-

nipulation of objects [17], and physical interaction with a partner [18]. Relevant works

have shown that the human central nervous system is composed of internal models that

control the interactions between the body and its surroundings [19, 20]. Some of these

models are dedicated to predicting the outcome or anticipating force resulting from an

individual’s conscious action. Inspired by the latter, our work also addressed how robots

may learn force-based manipulation tasks from human demonstrations.

1.2 Thesis Scope

The current PhD thesis aims at formulating, developing and implementing a novel method-

ological framework that facilitates robots to acquire human-like behavioral acts by ob-

serving human demonstrators. Accordingly, the introduced LfD framework, termed as

IMFO (IMitation Framework by Observation), facilitates learning and reproduction of ei-

ther observed or novel actions. Mapping of human actions to the respective robotic ones

is achieved via an intermediate depiction, termed latent space representation. The latter

accomplishes a compact, yet precise abstraction of action trajectories, effectively repre-

senting high dimensional raw actions in a low dimensional space.

In addition, despite the significant number of works exploring LfD, there are important

parameters of action implementation that have not been sufficiently studied yet. In par-

ticular the role of temporal information in the computational representation and repro-

duction of actions remains poorly understood. The execution time of activities is directly
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linked to the speed of reproduced actions. The ability to adjust speed is fundamental for

humans, allowing to deal with cases where the physical properties of manipulated objects

impose constraints (e.g. slow down to move a glass full of water), or emergency-like situ-

ations (e.g. speed up to accomplish a goal within certain time constraints). It is therefore

important to study how spatio-temporal variations affect the representation and execu-

tion of actions considered in LfD scenarios.

Accordingly, this thesis also addressed speed adaptation in the context of IMFO, con-

sidering how speed shapes the low dimensional latent representation of the demonstrated

actions. Specifically, the actions considered in the current study are arm motions, al-

though the introduced formulation can be readily generalized to other human actions.

In short, the proposed method regards augmenting the algorithm that implements the

transformation from the full configuration space to the compact latent space, with tem-

poral information that affects execution speed. The compressed representation of similar

actions with different temporal characteristics shows that speed plays a major role in the

derived latent representation, effectively separating similar arm motions that are executed

at different speeds. Accordingly, the latter actions assume unambiguous latent space rep-

resentations when only speed of execution varies, allowing thus the accurate reproduction

of acts with different velocities.

The proposed spatio-temporal formulation of IMFO readily lends itself to integration

with time-informed planning approaches [21] to effectively address temporal constraint

satisfaction in real-world scenarios. Following our previous work on latency estimation

[22], the composite system is capable to cope with cases where completion of certain be-

haviors is expected to be delayed. The elimination of latency is accomplished through the

estimation of a requested, reduced time for action completion. Taking advantage of learn-

ing from demonstration actions at different speeds, we select the action implementation

that best matches the requested completion time, therefore facilitating the realization of

the composite behavior within the predefined time limits.

Finally, the current thesis copes with the topic of impedance control through obser-

vation, by studying the more involved case of force-based object manipulation, that is the

case where the appropriate required force to lift and manipulate a rigid object varies for dif-

ferent objects and object positions relative to the arm. We present a Supervised Learning

scheme for executing sensitive Force-based manipulation tasks. The proposed scheme,

termed SLF, assumes prior knowledge of the position and the weight of the target object

which implicitly indicates the suitable force that has to be applied to achieve a precision-

grip lifting movement. SLF learns the required force via simulated training, whereas a

neural network structure is employed to map the observed lifting actions to actual grasp-

ing commands. The proposed learning scheme has been demonstrated in object lifting

and manipulation tasks where the applied force varies for different objects with similar

contact friction coefficients.
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Research Objectives. Though LfD has proven a successful tool for robot policy devel-

opment, there still exist open areas for research, several of which are covered in this thesis.

In particular, this thesis establishes a novel methodological framework for encoding novel

manipulation action behaviors and systematically pursues the following concrete objec-

tives:

• The majority of LfD methodologies are specific to executed tasks and also the em-

ployed robotic embodiments and do not easily scale to behaviors beyond the learned

ones. The development of a more general-purpose approach may greatly facilitate

robotic task execution in broader contexts. The proposed methodology focuses on

the formulation of an abstract and compact intermediate latent space that abstracts

the irrelevancies from different embodiments and also supports the execution of

novel behaviors.

• The temporal aspects of an unfolding task are usually not considered in LfD systems.

Still, rich information may be derived by including relevant temporal characteristics

in LfD scenarios. To this end, this thesis examines the role of time in the latent rep-

resentations of both the robotic and human demonstrator’s workspaces and studies

how speed shapes the low dimensional latent representations of the demonstrated

actions.

• Besides patio-temporal LfD, training to acquire impedance based control and hence

relevant behaviors is important in various tasks. This is addressed in our work via

the formulation of a Supervised Learning scheme for Force-based (SLF) lifting tasks.

SLF greatly facilitates reproduction of tasks that involve manipulation of sensitive

objects.

• A standardized set of evaluation metrics that would facilitate rigorous assessment of

the accuracy of the results and the level of imitation during robotic reproduction is

largely missing. The development of generally accepted metrics as well as the com-

pilation of benchmark-data is of utmost importance towards the systematic assess-

ment of LfD implementations. As a result, this thesis formulates well-defined met-

rics to effectively assess the validity and accuracy of the proposed methodologies.

• LfD furnishes robots with the ability to learn and reproduce useful tasks. Accordingly,

it may comprise an indispensable building block of more general Human-Robot In-

teraction (HRI) and/or Human-Robot Collaboration (HRC) frameworks. To this end,

the proposed LfD approaches are introduced, studied and assessed in HRI and HRC

scenarios.
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1.3 Contributions of this Dissertation

As already mentioned above, the current thesis addressed several topics in the broader

LfD field. More specifically, our initial work focused on the formulation and development

of the Imitation Framework by Observation (IMFO) for learning manipulation tasks by ob-

serving a human demonstrator. The relevant formulation is based on a low-dimensional

representation, termed latent space, with the aim of abstracting the trajectory and kine-

matic representations of observed actions. As it is common practice in LfD methodologies,

IMFO formulation comprises three distinct phases, i.e. (i) information acquisition (vision

based data acquisition), (ii) information encoding (dimensionality reduction approach),

and (iii) robotic reproduction (regardless of the embodiment, i.e. robotic platform). In

turn, we placed emphasis on the investigation of the temporal aspects of a demonstrated

action behavior and how the temporal characteristics can be transferred to the robotic re-

production. To this end, the basic IMFO formulation has been extended in order to allow

both spatial and temporal characteristics of the demonstrated actions to be considered. Fi-

nally, our research dealt with another challenging problem, namely learning force-based

robot behaviors through observation. The above comprise the main contributions of this

dissertation, as explained in more detail below.

• Given a set of demonstrated arm-movements, dimensionality reduction is used to

find a low-dimensional manifold (the latent space) on which the demonstrations lie.

The space defined by this manifold can then be used as the state-space represen-

tation of the relevant task. Our main contribution consists in the formulation of a

framework that implements the above, allowing at the same time preservation of the

useful properties of observed actions. Specifically, the introduced dimensionality re-

duction features particularly suitable assets, i.e. (i) different actions result in well

separated trajectories in the latent space, (ii) the neighbouring properties of a 3D tra-

jectory are maintained, via the continuous curves that are formed in the latent space,

and (iii) the abstract representation is formulated independently of the embodiment

of the actual demonstrator.

• By expanding the initial formulation of IMFO to involve temporal aspects of the

demonstrated actions, we enhance robots that learn from demonstration to execute

actions at variable speeds. Moreover, we shed light to the key role of temporal in-

formation in obtaining compact, latent representations of action behaviors. Addi-

tionally, the proposed extended scheme demonstrates the reversibility of the spatio-

temporal aspects of actions from the low dimensional latent space to the robotic

action space and also effectively combines at the same time temporal planning with

LfD.

• Spatio-temporal LfD is further enhanced with the introduction of impedance con-
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trol for object grasping. A supervised learning scheme for executing sensitive force-

based manipulation tasks is also developed in this thesis. Accordingly, a robotic sys-

tem is trained to execute various actions by performing multiple trials of lifting boxes

that vary on the mass and the appropriate grasping configuration pose. A structured

Neural Network module is employed to encode a a force-based task where the model

variables come mainly from vision (i.e. target object’s position and encoded ob-

ject’s mass) and robot’s configuration (robot’s end-effector position and orientation).

Such encoding approach is then the basis to define a force-based LfD model that

controls the robot motion, and allows to extend the LfD paradigm to other scenarios,

for instance those where the robotic action is based on specific impedance-based be-

haviors, instead of merely following a given trajectory. Consequently, the proposed

force-based approach accomplishes to generalize on the appropriate force required

to be applied on a fragile object for effective lifting and manipulation.

• Evaluation metrics are of utmost importance in LfD developments since they facil-

itate rigorous and objective assessment of relevant implementations. Accordingly,

the metrics introduced in our research serve this goal, and fill a known gap in the

sector [1]. Interestingly, the mentioned metrics are quite general and avoid limiting

assumptions, and hence applicable in a variety of LfD systems and scenarios.

• Action learning and reproduction via observation can greatly support advanced Human-

Robot Interaction (HRI) and/or Human-Robot Collaboration (HRC) setups. The lat-

ter may benefit from the robotic capacity to naturally execute learned and novel ac-

tions in various contexts. This has been systematically pursued in the current thesis,

whereby developments in LfD have been incorporated and rigorously tested and as-

sessed in HRI/HRC scenarios.

1.4 Thesis Publications

Most of the material that is presented in the core technical chapters, i.e. Chapter 3, 4 and

5, has already been published in or submitted to peer-reviewed conference proceedings

and scientific journals. References to the publications are given below.

(1) Maria Koskinopoulou, Pietro Falco, and Panos Trahanias, A Supervised Learning

Scheme to Accomplish Force-based Object Manipulation, Under Review, IEEE Inter-

national Conference on Robotics and Automation (ICRA 2020), Submitted Sep. 2019.
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(2) Maria Koskinopoulou, Michail Maniadakis, and Panos Trahanias, Speed Adaptation

in Learning from Demonstration through Latent Space Formulation, Robotica, pp.1-

13, Sep. 2019 [23].

(3) Maria Koskinopoulou, Michail Maniadakis, and Panos Trahanias, Learning Spatio-

temporal Characteristics of Human Motions Through Observation. Advances in Ser-

vice and Industrial Robotics. RAAD 2018. Mechanisms and Machine Science, vol 67.

Springer, Cham., pp. 82–90, 2018 [24].

(4) Maria Koskinopoulou and Panos Trahanias, A Methodological Framework for Robotic

Reproduction of Observed Human Actions: Formulation using Latent Space Repre-

sentation, in proc. ACM/IEEE Intern Conf. on Humanoids 2016, pp. 565-572, Nov.

15-17 2016 [25].

(5) Maria Koskinopoulou, Stylianos Piperakis, and Panos Trahanias, Learning from demon-

stration facilitates human-robot collaborative task execution, in proc. 11th ACM/IEEE

Intern Conf. on Human-Robot Interaction (HRI 2016), pp.59-66, March 7-10 2016

[26].

Contributions to other works

(1) Michail Maniadakis, Hourdakis Emmanouil, Markos Sigalas, Stylianos Piperakis, Maria
Koskinopoulou, Panos Trahanias, Time-aware Multi-agent Symbiosis, Under Review,

Submitted for publication in Journal Frontiers in Robotics and AI, Oct. 2019.

(2) Emmanouil Papadakis, Fredy Raptopoulos, Maria Koskinopoulou and Michail Ma-

niadakis, On the use of vacuum technology for applied robotic systems, Accepted for

publication in proc. of ICMRE 2020-IEEE 6th International Conference on Mecha-

tronics and Robotics Engineering, 12-15 Feb. 2020.

(3) Stylianos Piperakis, Maria Koskinopoulou and Panos Trahanias, Non-Linear State

Estimation for Humanoid Robot Walking, Double Publication: IEEE Robotics and

Automation Letters (RA-L), vol.3, pp. 3347-3354, 2018/10 and in proc. IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems (IROS), 2018 [27], [28].

Announcements

(1) Maria Koskinopoulou and Panos Trahanias, (2016), Robots Learn Actions and Coop-

erative Tasks by Imitation, Section: Research and Innovation, ERCIM News No. 104.
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(2) Maria Koskinopoulou and Panos Trahanias, (2015), Robot learning by Demonstra-

tion using Gaussian Process Latent Variable Model, Workshop: Women in Robotics,

Robotics: Science and Systems (RSS) 2015. (Oral Presentation+Poster).

1.5 Outline of Dissertation

This thesis is structured in the following chapters:

• Chapter 2 presents an overview of the state of the art of LfD methodologies and im-

plementations, starting from the historical context and Neurophysiological basis of

LfD. Well-known learning algorithms as well as the different ways of transferring

skills to a robot are treated, with focus on the three distinct phases that appear in

the literature of LfD, namely (i) observation/perception of knowledge, (ii) represen-

tation of knowledge, and (ii) encoding of knowledge. Applications in the field are

briefly described in this chapter as well.

• Chapter 3 presents our LfD formulation using Dimensionality Reduction as well as

the design and implementation of IMFO. The latter is presented in sufficient detail,

with particular focus on the observation, encoding and reproduction of actions. Ex-

perimental results and a quantitative evaluation in HRI tasks are also presented.

• Chapter 4 aims at revealing the spatio-temporal representation of actions through

LfD. The IMFO framework is extended in order to deal with both spatial and tem-

poral characteristics of the demonstrated actions, and is combined with a high level

Daisy Planner to address the time-informed planning in multi-agent setups.

• Chapter 5 deals with the Supervised Learning scheme for Force-based (SLF) grasping

to achieve sensitive object manipulation. The appropriate force that is required to

be applied on a fragile object for effective lifting and manipulation through a feed-

forward neural network topology is examined in this chapter.

• Chapter 6 wraps-up the current PhD thesis and discusses new possible routes of re-

search arising from the work presented in the previous chapters. Issues concern-

ing robust temporal information encoding, learning of impedance-based behaviors,

role determination in HRI using temporal and force information, among others, are

discussed here.



Chapter 2

State of the Art

2.1 Historical Context and Neurophysiological Basis

Robot Learning from Demonstration has its roots in the early 1980s, and has developed

steadily ever since. Back then, and to a large extent even nowadays, robots had to be te-

diously hand programmed for every task they performed. LfD seeks to minimize, or even

eliminate, this difficult step by letting users train their robot to fit their needs [29].

Comprehensive surveys of the area [1], [30], highlight that the vast majority of works

in LfD follow a more engineering/machine learning approach. At the core, however, LfD

is inspired by the way humans learn from experience, e.g. infants from their parents [31].

Therefore, a large number of LfD methods are motivated from concepts of psychology

and biology. Going a step further, in some of these works a computational neuroscience

approach is followed whereby neural modeling is adopted to address LfD. Others follow

a more cognitive science approach and build conceptual models of imitation learning in

animals. Surveys of this area can be found in [32], [10].

The basic idea is derived from insights of the relevant functional mechanisms under-

lying imitation from behavioral and neuronal data. The central questions regarding robot

imitation are concerned with ”what to imitate and how to solve the correspondence prob-

lem across dissimilar embodiments and task constraints. Very often these differences sim-

ply do not allow for a matching on the level of motion trajectory or path. In the goal-

directed theory of imitation proposed by Bekkering and colleagues [33] imitative behavior

can be considered successful whenever the goal of an action in terms of the desired out-

come of the movement is reproduced. The focus on the consequences of the movement re-

quires that the imitator understands the demonstrator’s behavior as an intentional motor

act directed at a specific goal (e.g. placing an object at a certain position). The ”matching

hypothesis” forwarded by Rizzolatti and colleagues [34] based on their discovery of the

mirror system states that there are neurons, termed mirror neurons, that respond both

during the observation and the execution of a similar goal-directed action (motor simula-

tion).

Most relevant research projects have either focused on the perceptual side of imitation

9
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by investigating movement systems with low complexity (e.g. mobile robots, pick-and-

place industrial robots), or on the motor end by assuming the existence of all necessary

perceptual information.

Figure 2.1: Conceptual sketch of an imitation learning system.

Accordingly, the major components of an imitation learning system, inspired by the

physiological one, are shown pictorially in Fig. 2.1 [35]. Visual information that is captured

by the perceptual system (the human’s eyes and the camera system, respectively), is split to

spatial information that refers to the ”How” question, and object recognition that regards

the ”What” question. This is in direct analogy to the two paths that are followed by visual

information in the brain.

After spatial information about the demonstrator’s movement and object information

has been extracted, a major issue concerns how such information should be converted

into action. For this purpose, the conceptual sketch proposed by Schaal et al. [36] pro-

motes the formulation of movement primitives, also called ”movement schemas”, ”basis

behaviors” or ”units of action”. Movement primitives are action-sequences that accom-

plish a complete goal-directed behavior. A movement primitive can be as simple as an
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elementary action in the symbolic approaches to imitation. However, such low-level repre-

sentations may not scale well to tasks with many degrees-of-freedom. Thus, it is desirable

for a movement primitive to encode complete behaviors, like ”grasping a cup”, ”walking”

or ”catching an object”. Using such primitives dramatically reduces the number of pa-

rameters that need to be learned for a particular act. The drawback is that the possible

movement repertoire becomes more restricted [37], [38], [39].

In summary, the perceived action of the teacher is mapped onto a set of existing primi-

tives in an assimilation phase. Subsequently, the most appropriate primitives are adjusted

by learning to improve the performance in an accommodation phase. The conceptual

sketch of Fig. 2.1 highlights the process by which primitives that adequately match the

observed input are ultimately translated to motor commands. If a primitive cannot be ex-

tracted successfully, then the demonstrated behavior is not satisfactorily matched, and a

new primitive must be generated. This concept of movement primitives is closely related

to the interpretation of mirror neurons previously refereed. Mirror neurons are deemed to

code complete motor acts, that can be considered as movement primitives.

2.2 Observation - Perception of knowledge

Imitation performed through observation relies on data recorded by sensors located ex-

ternally to the executing platform or internally to the robot system. Generally speaking,

imitation implies a process of data selection that can be achieved in different ways. As a

characteristic example, the robot learner can directly observe the teacher executions, as

usually employed in the case of humanoid systems, where cameras are placed on the head,

much like the human eyes.

Typically, the external sensors used to record human teacher executions are vision-

based. Motion capture systems utilizing visual markers are applied for the perpose of

teaching human motion and manipulation tasks [40], [41]. Vision-based methods capture

the motion acts and external means of tracking human motion return precise measure-

ment of the angular displacement of the joints. This kind of data selection has been used

in various works for LfD of full body motion [42], [43]. Such methods are advantageous

in that they allow the human to move freely, but require good solutions to the correspon-

dence problem. Usually, this is accomplished by an explicit mapping between the human

and robot joints, but can be quite difficult if the robot’s kinematics differ substantially from

the human’s ones.

Another, commonly used type of observation is kinesthetic teaching. Here, the robot

is physically guided through the task by the teacher. Accordingly, no explicit physical cor-

respondence is needed, as the user demonstrates the skill on the robot’s own body. It also

provides a natural teaching interface to teach a skill correctly and precisely [44], [2], [45],

[39], [46], [47], [48]. One possible drawback of kinesthetic teaching relates with the fact
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that the human demonstrator acts with different kinematic characteristics of his/her own

body. In addition, tasks that would require synchronization between multiple limbs are

difficult to teach kinesthetically. The latter may be remedied by proceeding incrementally,

teaching first the task for one hand (e.g. the right hand) and then for the other; unavoid-

ably, this gives rise to a cumbersome process.

Moreover, in immersive teleoperation scenarios, as they are referred in literature, a hu-

man teacher is limited to use the robot’s own sensors and effectors to perform the task.

In an analogous manner to kinesthetic teaching, which limits the user to the robot’s own

body, immersive teleoperation essentially limits the user to the robot’s perception. The

teleoperation itself may be done using joysticks or other remote control devices, includ-

ing haptic devices. The later has the advantage that it can allow the demonstrator to teach

tasks that require precise control of forces, while joysticks would only provide kinematic

information (position, speed, etc). Recently, an alternative scheme has been proposed

by M. Liarokapis et al. in [49], to map humanlike trajectories to robot arm-hand systems

with arbitrary kinematics, using teleoperation. The formulating constrained optimization

scheme has minimal design complexity and specifications (only the robot forward kine-

matics (FK) are used).

Teleoperation may be advantageous in that it not only bypass the correspondence

problem, but also allows for the training of robots from a distance. As the teacher no

longer needs to be near the robot, it is well suited for teaching navigation and locomotion

patterns. For instance, in [50] and [51], a humanoid robot is taught balancing techniques

from human demonstrations. A haptic interface attached to the torso of the demonstrator

was designed to transmit the perturbations induced on the robot and allow the teacher to

adapt appropriately. The motion of the demonstrator was immediately re-transcribed in

similar robot motion and used for training a model of motion conditioned on perceived

forces.

However, as evidenced in the literature, [52], [53], [40], [54], [55], [56] teleoperation

is more frequently used solely to transmit the kinematics of motion. In [57], acrobatic

trajectories of a helicopter are learned by recording the pan and tilt motion of a helicopter

when teleoperated by an expert pilot. In [58], a robot dog is taught to play soccer with a

human guiding it via a joystick. Notwithstanding the advantages of teleoperation in LfD,

a main disadvantage is that the teacher often needs training to learn to use the remote

control device. Additionally, for high-degree of freedom robots, the teleoperation interface

can be very complex.

As outlined above, vision-based systems (e.g. cameras, optical tracking systems) have

been the most used hardware to observe the teacher demonstrations and perceive the

robot’s acting environment. Nevertheless, the robotic learner may be endowed with other

types of sensors depending on the task to carry out. For instance, proprioceptive sensors

provide information about the internal state of the robot (e.g. motor encoders), which
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is very useful during kinesthetic, or teleoperated teaching [59], [60]. Auditive perception

has also been used in LfD settings, where a human enhances the examples of the task by

uttering words or sentences that provide more information about the current state of the

demonstration [61].

2.3 Representation of knowledge

Once the demonstration phase is over, the data collected by the robot must be encoded

through a model that represents the taught task in a compact way. The assumed represen-

tation depends on what the robot needs to learn from the human demonstration and on

the complexity of the task.

When a robot is meant to carry out a specific set of motion acts (e.g. trajectories or

paths to be followed) depending on a given set of perceptions, where position, velocity

and acceleration are variables of interest, the task is usually depicted as a ”low-level” rep-

resentation (Fig. 2.2a). According to this representation, the robot actions are directly de-

termined by appropriate variables, which govern motor commands to be sent to a robotic

controller. Hence, an approximation of the perception-motion mapping function must be

found. This function must be able to generalize, such that valid solutions are also acquired

for similar states that might not have been encountered during demonstrations.

In cases that the robot is assumed to execute complex tasks, the latter are commonly

split into a set of subgoals to be achieved by the robot. Accordingly, the task representa-

tion is considered as ”high-level” (Fig. 2.2b), where the sub-goals are represented as action

primitives pairs. Here, the learning process involves the discovery of rules linking the dif-

ferent state-action combinations. Rules represent actions leading from one world state to

another, and are typically formulated as a set of preconditions that must hold in the world

state the action applies to, and a set of postconditions or effects of the represented action.

A sequence of actions is then planned using the learned rules. Unlike in LfD scenarios,

planning techniques frequently rely not only on state-action demonstrations, but also on

additional information of the teacher’s intentions and the acting environment. Moreover,

discrete encoding algorithms and graph-based models are used to represent this set of

tasks. Fig. 2.2 summarizes the two levels of task representation and their characteristics.

2.3.1 Policy Formulation

As mentioned in the introduction, the main issue in LfD techniques is the formulation

of a learning process that accomplishes a mapping between the real world state and the

robot’s one. To this end, LfD algorithms utilize a learned dataset of demonstrations to

derive a policy that represents the demonstrated behavior.

In this context, LfD can be studied as an instance of Supervised Learning. In the latter,



14 Chapter 2. State of the Art

(a)

(b)

Figure 2.2: The two levels of knowledge representation as proposed by Billard and col-
leagues in [62].

an agent learns an approximation to the objective function that has been produced by

the selected data. In LfD, the training dataset is collected by a sequence of demonstrated

examples of the task, executed by a teacher. In practice, as also detailed in [1], an LfD

problem should be formulated as follows. Given a set of states, S, and actions A, a policy is

defined as a mapping between the observed states and the actions, and can be described

by a probabilistic transition function T(A | S). To this end, the policy p : A | S learns

actions based on the current observation of the world state.

Policy formulation methods can be characterised as postulated by Argaal et al. [1]. Ac-

cordingly, three levels of an LfD framework are depicted. The first level, the phase of obser-

vation, is composed by the selected dataset, the second represents the policy formulation

and the third the policy learning phase.

With respect to the policy formulation, three basic approaches have emerged [1]:

• Mapping functions [63]: Demonstration data is used to directly approximate the un-

derlying function mapping from the world state observations to actions. The goal
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of this type of algorithms is to reproduce the underlying teacher policy, which is un-

known, and to generalize over the set of available training examples such that valid

solutions are also acquired for similar states that may not have been encountered

during demonstration. Essentially, this is the most common approach of policy for-

mulation that appears in LfD literature.

• System model [64]: Demonstration data is used to determine a model of the world

dynamics, and possibly a reward function R(x). A policy is then derived using this in-

formation. This approach is typically formulated within the realm of Reinforcement

Learning (RL). Demonstration data, and any additional autonomous exploration the

robot may perform, generally determine the transition function. To derive a policy

from this transition model, a reward function R(x), which associates reward value r
with world state s, is either learned from demonstrations or defined by the user.

• Plans [31], [65], [66]: Demonstration data, and often additional user intention infor-

mation, is employed to learn rules that associate a set of pre- and post-conditions

with each action, and possibly a sparsified state dynamics model. A sequence of ac-

tions is then planned using this information. The planning framework represents

the policy as a sequence of actions that lead from the initial state to the final goal

state. Actions are often defined in terms of pre-conditions, the state that must be es-

tablished before the action can be performed, and post-conditions, the state result-

ing from the action’s execution. Unlike other LfD approaches, planning techniques

frequently rely not only on state-action demonstrations, but also on additional infor-

mation in the form of annotations or intentions from the teacher. Demonstration-

based algorithms differ in how the rules associating pre- and post-conditions with

actions are learned, and whether additional information is provided by the teacher.

A pictorial depiction of the policy derivation approaches, as outlined above, is shown

in Fig. 2.3 [1].

2.4 Encoding of Knowledge

Learning a policy may involve simple learning of an approximation to the state-action

mapping (objective function), or learning a model of the world dynamics and deriving an

appropriate policy (system model). The Machine Learning literature has contributed a

good number of algorithms that have already been adopted by LfD methods [7], [64], [55].

Given an appropriate problem mapping, Machine Learning methods are employed to en-

code the skill so that the robot can successfully reproduce it. The selection process of the

model depends on the type of the imitation task and the level of representation of the

teacher demonstrations. Learning techniques based on dynamical system models and



16 Chapter 2. State of the Art

Figure 2.3: Policy derivation as proposed in [1], using the generalization approach for
determining (a) an approximation to the state given the action mapping
function, (b) a dynamic model of the system, and (c) a plan of sequenced
actions.

stochastic approaches stand out over more ad-hoc algorithms, because they provide a

more general structure to encode various skills using the same basic framework. The de-

sirable across all of the learning techniques is minimal parameter tuning and fast learning,

while requiring few training examples.

2.4.1 Dynamical Systems Models

In the process of learning how to imitate human-like motion acts, it is common to repre-

sent movements in kinematic coordinates, e.g. angle joint space of a robot or Cartesian

coordinates of an end-effector, etc. In practice only kinematic variables are observable

by a vision-based set-up and are useful in LfD methods. Nevertheless, a kinematic mo-

tion plan, as a change of position as a function of state or velocity, can be described in

motor commands by a controller. Dynamical Systems (DS) provide a powerful tool for

robust control of point to point robot motions from a small set of demonstrations. They

ensure high precision in reaching a desired target, yet can be easily modulated to generate

new motions in slightly different environments. Relevant works highlighted the success-

ful learning of discrete (i.e. point-to-point) robot motions either through time-dependent

or time-independent DS [67], [68]. While these works address the fundamental concern

when learning DS, i.e. stability, they can only be used for generating motions with zero ve-

locity at the target. More recently, in [69], S.M. Khansari-Zadeh and A. Billard studied DS

for discrete robot movements that model motions with both zero and non-zero velocities.

In DS approaches, the control policy to steer a robotic platform is modelled by a first



2.4. Encoding of Knowledge 17

or higher order DS. When controlled through a DS, robot motion unfolds in time with no

need to re-plan [70]. An estimate of the DS can be built from a few demonstrations of

the task at hand. The estimated DS captures the invariant features in the user demonstra-

tions, and can generate motions that resemble the learned ones [45], [71], [39], [40], [72],

[69], [73]. Each DS model codes a specific motion (behavior), and is called a movement

primitive (also known as motor primitive). They can be seen as building blocks that can

be used to generate more complex or new motions through sequencing or superimposi-

tion of the primitives. This modularity of DS-based movement primitives is essential as it

allows controlling a wide repertoire of movements from a (small) set of basic motions.

Regarding learning methods based on DS, Ijspeert et al. [3] proposed nonlinear differ-

ential equations to form control policies in trajectory formation. In the context of robot

imitation learning, Schaal et. al. [54] were among the first groups to suggest the idea of us-

ing a programmable DS formulation that can be adjusted to different tasks. This idea was

further extended in [30], where a method is proposed, called Dynamic Movement Primi-

tives (DMPs), to build an estimation of nonlinear DS via Imitation Learning. DMPs can be

used to generate discrete and rhythmic movements. The latter has been used for different

robotics applications such as walking [38], drumming [74], pouring [75], obstacle avoid-

ance [76], [77], and catching objects in flight [78]. In DMP approaches, the dynamical

system represents a complete flow field instead of a single-trajectory. In other words, they

encode a whole attractor landscape in which the desired trajectory is produced. Such flow

fields can be constructed from demonstrations, which can automatically correct external

perturbations and guarantee convergence to a goal state. DMPs have also been extensively

used in imitation of reaching movements [65], for encoding rest-to-rest motions in articu-

lated mobile robots, and also employed in manipulation tasks where the behavior of the

primitives is influenced by perceptual cues.

The main idea behind DMPs regards the definition of a dynamical system (e.g. a set of

first order systems) to describe the demonstrated motion. Formally speaking, for a state

variable ξ ∈ Rd that defines the state of a robotic system, its evolution in time is governed

by an autonomous (time-independent) DS according to:

ξ̇ = F(ξ, θ) (2.1)

where θ is the set of parameters defining F. In turn, the DS should be deformed in a man-

ner that will facilitate learning of the system’s parameters. In [51], for instance, Eq. 2.1 is

decomposed into two terms, and formulated as a product of a target field E(ξ, θE) and a

strength factor v(ξ, θu):

ξ̇ = v(ξ, θu) × E(ξ, θE) (2.2)

The structure of Eq. 2.2 is in accordance to principles from physics, where the motion

of a particle in space can be defined as the product of an appropriate field (e.g. gravity, elec-
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trical field, etc.) times a scalar (e.g. mass, electric charge, etc.). The former is a property

that describes the space that surrounds a particle, and the latter defines the characteristics

of the particle. Similarly, in Eq. 2.2, the target field describes the form of a motion and the

strength factor determines its intensity. The DS parameters θu and θE can be learned from

the teacher’s demonstrations. An important issue in such approaches lies in the fact that

these parameters should be estimated, such that they (a) ensure the accomplishment of

the task starting from any point in space (i.e. global convergence), and (b) generate robot

motions that follow the human demonstrations accurately.

Such an approach has been the basis for further reformulations and modifications of

DMP. For instance, Hoffmann et al. [79] stated that the original DMP could be expressed

with a mechanical analogy by defining the basis force components used in DMP to mod-

ulate the movement as virtual damped springs, thus moving the learning problem to the

estimation of virtual equilibrium points instead of estimating forces. On the other hand,

Pastor et al. [67] proposed a DMP framework where sensory information captured in the

demonstration phase may modify the desired trajectory in an online manner, so that the

measured sensory experience remains close to the expected one. This idea shares similar-

ities with the perceptual coupling for DMP proposed by Kober et al. [80]. In this work the

original formulation was modified by including a coupling with external variables, most

of them considered as perceptual cues.

As S.M. Khansari-Zadeh et al. pointed out [81], the main advantage of using DS-based

formulation can be summarized as: ”Modeling movements with DS allows having robotic

systems that have inherent adaptivity to changes in a dynamic environment, and that can

swiftly adopt a new path to reach the target”. This advantage is the direct outcome of

having a unified planning and execution unit.

Summarizing in a schematic graph of control flow of a dynamical system model in LfD,

Fig. 2.4 [3] depicts a motion in kinematic coordinates (i.e. the Cartesian or robot’s joint

space), viewing the process as a low-level controller that converts kinematic variables into

motor commands (e.g. force or torque). The whole architecture can be decomposed into

two loops. The inner loop consists of a controller generating the required commands to

follow the desired motion and a system block to model the dynamics of the robot. The

outer loop specifies the next desired position and velocity of the motion with respect to

the current state of the robot. An inverse kinematics block may also be considered in the

outer loop to transfer the desired trajectory from the Cartesian to the joint space. The

derived controller, driven by a DS, is robust to perturbations as it considers all possible

solutions to reach a single target.

2.4.2 Stochastic Models

Stochastic expressions are frequently adopted in LfD due to the following:
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Figure 2.4: Dynamical System Framework [3] commonly used in LfD.

• On-line learning can be accomplished using simple cumulative frequency calcula-

tion from interaction experience.

• The confidence of a decision can be expressed as a probability value; the latter may

also control robot interaction.

• A stochastic process may cancel out the influence of noise, such as user-errors in a

demonstration.

Bayesian Networks have been adopted in various works in order to build such a stochas-

tic model [8], [82], [83], [84]. A Bayesian Network is a reasoning model in which the rela-

tion between cause and effect of multiple phenomena is expressed as a probability value.

Gaussian Mixture Models (GMM) also constitute the basis of several LfD frameworks per-

forming successfully in a variety of scenarios [85], [86], [78], [87], [88]. Broadly speaking,

GMM can be considered as a statistical encoding tool where a mixture of experts (i.e. nor-

mal distributions acting as the states of the model) represent the data, allowing a localized

characterization of the different parts of the demonstrated task. Calinon et al. [41] used

this mixture modeling to teach simple manipulation tasks to a humanoid robot. How-

ever, one of the main drawbacks of GMM is the strong assumption of having aligned data

streams, that is, fixed time length demonstrations. Therefore, a pre-processing phase over

the training datapoints is needed to obtain such data. Among the solutions, one can find

Dynamic Time Warping (DTW) [4], [5] and Hidden Markov Models (HMM).

HMM is a powerful method to encode time-series data and may be also considered as

an extension of the original GMM, where the temporal evolution of the data is encoded
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through the evolution of a hidden state. Such temporal information is encapsulated by

transition probabilities for every pair of states. Thus, HMMs can be used to encode tem-

poral and spatial variations of complex signals, and to model, recognize and reproduce

various types of human demonstrations. Recently, some extensions of the standard HMM

formulation have also been applied to learn tasks from imitation. Kruger et al. [89] used

a parametric version of HMM to learn reaching movements, where the model states lin-

early depend on a given parameter of the task, i.e. the location of the object to be grasped.

In [90], the authors propose to encode time and space constraints of a trajectory following

task using an explicit-duration HMM, which was shown to provide good results when the

robot faced strong perturbations during the execution of the task.

In the context of LfD, a stochastic process is usually formulated as follows. A dataset

ξ = ξj
N is defined by N observations ξj ∈ RD of sensory data over time (e.g. joint angle

trajectories, hand paths), where each datapoint ξ consists of a temporal value ξt ∈ R and a

spatial vector ξs ∈ RD−1. The dataset ξ is modeled by a Gaussian Mixture Model (GMM) of

K components, defined by the probability density function of:

P(ξj) =
K∑
k=1

pkN(ξj | μk, σk), (2.3)

where pk are prior probabilities and N(ξj | μk, σk) are Gaussian distributions defined by

mean vectors μk and covariance matrices σk, whose temporal and spatial components can

be represented separately as:

μk =
{
μt,k, μs,k

}
σk =

σtt,k σts,k
σst,k σss,k

 (2.4)

For each component k, the expected distribution of ξs given the temporal value ξt is

defined by as:

P(ξs | ξt, k) =N(ξs | ξs,k, σss,k)
ξs,k = μs,k + σst,kσtt,k−1(ξt − μt,k)
σss,k = σss,k − σst,kσtt,k

−1σts,k

(2.5)

By considering the complete GMM, the expected distribution is formulated as:

P(ξs | ξt) =
K∑
k=1

βkN(ξs | ξs,k) (2.6)



2.4. Encoding of Knowledge 21

Figure 2.5: Stochastic processes in LfD.

where βk = P(k | ξt) is the probability of the component k that is responsible for ξt. By

using the linear transformation properties of Gaussian distributions, an estimation of the

conditional expectation of (ξs | ξt) is computed by P(ξs | ξt) ∼ N( ξs, σss), where the pa-

rameters of the Gaussian distribution are obtained as previously. By evaluating ( ξs, σss) at

different time steps, we obtain a generalized form of the motions ξ =
{
ξt, ξs

}
and associated

covariance matrices describing the applied constraints.

As a result, GMM can offer a stochastic representation of the data, allowing a localized

characterization of the different parts of the demonstrated task. Alternatively, HMMs have

also been proposed in the literature for encoding time-series data. In this context, HMMs

can be viewed as an extension of the original GMMs, where the temporal evolution of the

data is encoded through the evolution of a hidden state. Such temporal information is

encapsulated by transition probabilities for every pair of states. Thus, HMMs can be used

to encode temporal and spatial variations of complex signals, and to model, recognize

and reproduce various types of human demonstrations. In LfD, HMMs have been used

for teaching collaborative lifting tasks to a humanoid robot [91], [92], for learning and re-

production of a bi-manual task and tennis table strokes [93], [4], [81], and as a basis for a

hierarchical incremental learning of full body motion [94], [78].

Fig. 2.5 [90] presents a general block diagram of stochastic LfD processes.

2.4.3 Latent Representations

Feature selection methods usually operate by keeping only variables with high informa-

tion content and discarding others in the original data-space. This approach is useful

when it is essential to retain the original data provided by some of the inputs of the prob-

lem. In other words, the original features may convey information that can be further

interpreted and readily used, than if they were projected on a different space.

Dimensionality reduction consists a standard method to deal with either a large num-

ber of variables, or with highly correlated parameters. Several techniques have been pro-
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posed to achieve such a transformation. One standard linear transformation for dimen-

sionality reduction is Principal Component Analysis (PCA) [95]. This transformation is

derived from eigenvectors corresponding to the largest eigenvalues of the covariance ma-

trix of the data. The method seeks to optimally represent the data in terms of minimal

mean-square-error (MSE) between the representation and the original data.

PCA has been successfully applied in kinesthetic LfD for building a latent space onto

which spatio-temporal trajectories are projected, to find an optimal representation for

a given task [83], [8], [82]. This allowed to eliminate redundancies of the original train-

ing dataset while keeping the relevant information of the demonstrations in a subset of

new variables constructed from a linear combination of the original inputs. To this end,

given an observation data set X = {x1, x2, ..., xn}, xn ∈ RD, such methods search for an

L - dimensional representation, where usually L � D. The derived representation, Y =
{y1, y2, ..., yn}, yn ∈ RL, termed as latent variables, is obtained by an orthogonal linear

transformation of the original data Eq. 2.7, which is defined by the matrixA = {v1, v2, ..., vD},
with vi being the eigenvectors of the covariance matrix of X with associated eigenvalues

(linear PCA). D is the minimal number of eigenvectors used to obtain a satisfying repre-

sentation of the data.

xn = Wyn + ηn (2.7)

where the matrix W ∈ RD×L specifies the linear relationship between the data space and

the latent space (described below), the noise values ηn follow a Gaussian distributionN(ηn |
0, β−1I) with unit covariance, and β denotes the inverse variance. To this end, the condi-

tional probability of a data point xn will also follow a Gaussian distribution as shown in

Eq. 2.8:

p(xn | yn,W, β) = N(xn |Wyn, β−1I) (2.8)

In the need of expanding the problem in the non-linear case, a non-linear kernel func-

tion is used as a covariance matrix instead of the linear one used in PCA. Indeed, in [96],

Shon et al. learned a joint latent variable space with Gaussian processes, having applied a

generalization of PCA, called Gaussian Latent Variable Model [97], using the Radial Basis

Function (RBF) as a covariance matrix. One sample latent space, captured from [96], its

corresponding actor’s and robot’s states respectively, is illustrated in Fig. 2.6.

Another similar algorithm that makes use of second-order statistical information, namely

covariances, is the linear discriminant analysis (LDA) [53]. This technique applied to clas-

sification problems finds a transformation from the eigenvectors of a matrix that captures

the compactness of each class and the separation of the class means. Independent compo-

nent analysis (ICA) is another tool to find interesting projections of the data by maximizing

the divergence to a Gaussian density function in order to decorrelate and denoise the data,

as well as to reduce the dimensionality of the dataset to make this one tractable. This cri-

terion corresponds to finding a projection of data that looks maximally clustered [93].
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Figure 2.6: Imitation from motion capture as described in [96].

2.5 How to imitate: Learning a policy-mapping

Once the task model has been defined, it is essential that an appropriate learning strategy

is specified. In the case of dynamical systems, the task is often time-dependent, thus at the

reproduction phase the learned DMP is used to reproduce the task using temporal vari-

ables. The smoothness of the reproduction depends on the type of non-linear equations

used for encoding the demonstrations. Similarly, when encoding through probabilistic

models, retrieving smooth trajectories is a demanding issue too. To this end, averaging ap-

proaches have been employed where generalized movements are retrieved by averaging

over a large number of trajectories previously generated from the trained model. Such ap-

proaches are considered time consuming and computationally expensive, and still cannot

guarantee the smoothness of the end result.

Interpolation-based approaches were also proposed to obtain a reproduction from

HMM-based encoding, where the mean of the Gaussian distributions is considered to

obtain series of key points for interpolating them [37], [41]. The main drawback of such

approaches is the fact that the covariance information is ignored. Calinon et al. [4] in-

troduced the use of Gaussian Mixture Regression to retrieve a time-based trajectory from

a set of demonstrations encoded by a GMM. GMR also provides smooth generalized tra-

jectories with associated covariance matrices describing the variations and correlations

across different variables, considering the covariance data encapsulated by the Gaussian

states.

In contrast to the above approaches, other regression-based methods have been also

used to encode and reproduce robotic skills, mostly based on trajectory tracks. A com-
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monly used regression technique is locally weighted regression (LWR) [5], [48], [40], a

memory-based algorithm that combines the simplicity of linear least squares along with a

weighting mechanism to learn non-linear functions. This approach was the basis for two

further extensions, namely receptive field weighted regression (RFWR) [98], and locally

weighted projection regression (LWPR) [78]. The former dealt with the problem of mov-

ing from a batch process to an incremental learning strategy, but suffers from the curse

of dimensionality. This drawback was remedied by LWPR, which was shown to operate

efficiently in high dimensional spaces.

On the other hand, Gaussian processes (GP) have also been applied to LfD tasks. As

stated above, Grimes et al. [83] proposed to use GP for nonparametric forward model

learning in whole-body motions of a humanoid robot. Nonetheless, its main disadvantage

is considered to be its high computational cost. One possible solution to this problem is

based on sparse GP, where only a subset of the latent variables are treated exactly, and the

remaining variables are given some approximate, but computationally cheaper treatment.

Grollman and Jenkins compared this approach with LWPR in the context of LfD, where

both techniques provided good function approximation capabilities [99].

However, regarding hard memory and timing constraints, sparse GP showed to be

more suitable for real-time interaction. In contrast, Nguyen-Tuong et al. [100], solved the

high computational cost problem by partitioning the training data into local regions and

learning an independent GP model for each region, similarly to how LWPR works. Schnei-

der and Ertel [101] also proposed a local approximation, where the training inputs were

assigned to the local model that best fits and then an individual GP on each of these mod-

els was trained.

Furthermore, in [68], [39], Kronander and Khansari-Zadeh et al. proposed an alter-

native method called Stable Estimator of Dynamical Systems (SEDS) to ensure globally

asymptotical stability. Specifically, SEDS minimize the model estimation error given the

demonstrated data while ensuring that the learned autonomous DS is globally stable at

the target. They studied the outcome of two objective functions SEDS-MSE and SEDS-

Likelihood for this optimization problem. The models derived from the optimization of

both objective functions benefit from the inherent characteristics of autonomous DS, i.e.

online adaptation to both temporal and spatial perturbation. Accordingly, each objective

function has its own advantages and disadvantages. As shown in their experiments, log-

likelihood SEDS is more accurate and smoother than MSE. Furthermore, the MSE cost

function is slightly more time consuming since it requires computing GMR at each itera-

tion for all training data points. However, the MSE objective function requires fewer pa-

rameters than the likelihood one which may make the algorithm faster in higher dimen-

sions or when higher number of components is used.

Additionally, Khansari-Zadeh et al. [102] presented the Binary Merging (BM) algorithm,

that tackled the problem of estimating (identifying) an unknown non-linear dynamical
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system from a few demonstrations while ensuring its global stability. However, as the au-

thor quoted in [45], though BM provided sufficient conditions to make DS locally stable,

it had still relied on determining numerically the stability region and had had a limited

region of applicability.

In these approaches, robot discrete motions are formulated as a control law driven

by autonomous Dynamical Systems (DS). For a state variable ξ ∈ Rd that can be used to

unambiguously define a discrete motion of a robotic system (e.g. ξ could be the robot’s

joint angles, position and/or orientation of an arm’s end-effector in the operational space,

etc), the system is defined as:

ξ̇ = f (ξ), f ∈ Rd (2.9)

where f (ξ) is a continuous function that codes a specific behavior, such as reaching for a

cup or swinging a golf club, etc. Starting in an initial configuration ξ0, the robot motion ξt,
t ∈ [0,∞) is given by integrating from Eq. 2.9.

When modeling robot discrete motions with DS, the problem is defined as a problem

of estimating the optimal system’s parameters that can ensure global stability. It is noted

that the function ξ is globally asymptotically stable at the target ξ∗ if f (ξ∗) = 0 and ∀ξ0 ∈ Rd,

the generated motion converges asymptotically to ξ∗:

lim
t→∞

ξt = ξ∗,∀ξ0 ∈ Rd (2.10)

Which means that ξ is locally asymptotically stable if it converges to ξ∗ only when ξ0 is

contained within a subspace.

In a recent work, S.M. Khansari-Zadeh and A. Billard [81] approached LfD by defining

a Control Lyapunov Function (CLF) control scheme to ensure global asymptotic stability

of nonlinear DS. Given a set of demonstrations of a task, the proposed framework follows

three steps:

1. Learn a valid Lyapunov function from the demonstrations by solving a constrained

optimization problem,

2. Use a state-of-the-art regression technique to model an (unstable) estimate of the

motion from the demonstrations,

3. Use a valid Lyapunov function (1) to ensure stability of a regression model(2) during

the task execution via solving a constrained convex optimization problem.

The proposed approach allows learning a larger set of robot motions compared to ex-

isting methods that are based on quadratic Lyapunov functions. Additionally, by using the

CLF formalism, the problem of ensuring stability of DS motions becomes independent
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from the choice of regression method. Hence, it allows the user to adopt the most appro-

priate technique based on the requirements of the task at hand without compromising

stability.

Researchers in the field of LfD generally agree that a widely adopted assumption to

represent complex skills and non-linear motions is to decompose them into smaller units

of action, and weighted combination of linear systems. Examples of models that can be

reformulated in this way are the GMR based approaches, and methods whose core is the

DMP [38], [74]. In most of the papers associating with LfD, hybrid techniques are mostly

applied for formulating an LfD model and learning it, succeeding to combine the advan-

tages of each [102], [35].

Figure 2.7: An example of two-dimensional dynamics learned from three demonstra-
tions comparing five different methods: GMR, LWPR, GPR, BM, and SEDS,
captured by [45].

The performance of the above methods in a simple estimation task was examined

quantitatively by Khansari-Zadeh et al. [45]. Fig. 2.7 illustrates a case of an unstable estima-

tion of a non-linear DS using the above methods for learning a two dimensional motion.

Fig. 2.7 depicts the stability analysis of the dynamics learned with:

1. GMR, where the trajectories converge to a spurious attractor just next to the target.

In the rest space, they either converge to other spurious attractors far from the target

or completely diverge from it.
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2. LWPR, where all trajectories inside the black boundaries converge to a spurious at-

tractor, whereas outside them, the velocity is always zero (a region of spurious attrac-

tors) and the motion stops.

3. In the case of GPR trajectories converge to the target in a narrow area close to demon-

strations, and they are attracted to local minima outside that region.

4. BM ensures local asymptotic stability at the target, hence the model can only be ap-

plied in a region close to demonstrations.

5. SEDS succeed to ensure global asymptotic stability. and all trajectories converge to

the target. This ensures that the task can be successfully accomplished starting from

any point in the operational space without any need to re-index or re-scale.

In all above cases, regions of attractions are usually very close to demonstrations and

thus should be carefully avoided. However, the critical concern is that there is not a generic

theoretical solution to determine beforehand whether a trajectory will lead to a spurious

attractor, to infinity, or to the desired attractor. Thus, it is necessary to conduct numerical

stability analysis to locate the region of attraction of the desired target which may not exist,

or be very narrow.

2.5.1 Metrics of Imitation

LfD is a relatively young but rapidly growing field. As highlighted by this report, a wide vari-

ety of approaches address the challenges presented by this learning method. However, to

date there exists little direct comparison between algorithms [103]. One reason for this ab-

sence of direct comparisons is that most approaches are tested using only a single domain

and robotic platform. As a result, such techniques are often customized to that particu-

lar domain and do not present a general solution to a wide class of problems. Addition-

ally, the field of LfD research currently lacks a standard set of evaluation metrics, further

complicating performance comparisons across algorithms and domains. Improved meth-

ods for evaluation and comparison constitute a fundamentally important area for future

work. Existing evaluation methods include several proposed for specific areas of LfD, and

potentially some from the Human-Robot Interaction (HRI) community [104], [105], [106].

Formulation of evaluation criteria would help to drive research and the development of

widely applicable general-purpose learning techniques.

As noted in [4], metrics of imitation can be categorized into subgroups with respect to

the imitation task. Defining a generalized imitation metric as a function of the variable

that is reproduced by the robot, may give rise to:

J = ‖ξθa − ξθrob‖
2
Wθ + ‖ξxa − ξxrob‖

2
Wx + ‖ξya − ξ

y
rob‖

2
Wy (2.11)
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where ξθ,x,ya is the actor’s studied variable each time, e.g. end effector’s trajectory, joint

angles configuration etc. Additionally, ξθ,x,yrob is the corresponding robot’s one. The vectors

Wθ,x,y are the computed weights. Depending on the task, these variables bear different

importance, and the different levels of relevance are extracted by observation of the task

produced by a human expert. In a goal-directed framework, these three variables have

also different levels of relevance. If an object is manipulated, the end-effector’s variable

reveals the highest importance. If there is no object in the scene, then usually the joint

angles are of higher importance. Moreover, in case of grasping, moving or dancing tasks,

the grasping or walking configuration is highlighted in relation to the others. Accordingly,

as can be seen in the literature, the quantification of the imitation success is a critical

element of LfD process.

2.6 Robot Reproduction

2.6.1 Applications - Experimental Scenarios

Works dealing with LfD have been carried out in different set-ups, where both sensory

information and demonstration samples differ for each application. Most of the efforts

have focused on teaching a given scenario or a specific trajectory to be followed by the

robot. Such trajectories may correspond to a set of desired variable profiles of the robot’s

space, such as position, velocity, joint angles, etc. This low-level learning has been suc-

cessfully applied mostly to manipulation tasks, grasping skills, gesture reproduction and

whole body motion pattern imitation. Furthermore, the development of compliant robots

brings new possibilities in imitation learning, by extending the skill transfer problem to-

wards tasks involving force control, and towards reactive systems able to cope with various

sources of perturbation coming from the interaction with the user and the environment.

In this section, we present selected important applications and notable experimental

setups that have arisen from LfD works. A large amount of research works in LfD have

focused on endowing robots with manipulation skills to allow them to interact with ob-

jects populating their environments. Assembly setups, such as the well-known peg-in-

hole task, have served as the appropriate bench to study LfD issues. Nevertheless, over the

years research on LfD has significantly strengthen and applied to more demanding scenar-

ios and high level tasks. As the most low level tasks and the simple manipulation scenarios

have been covered in the published book of A. Billard [62], in the rest of this section we will

present some more recent and notable developments in the field.

In [47], Hersch et al. proposed an algorithmic procedure that enables a robot to per-

form constrained reaching tasks in a dynamic environment. Their framework is grounded

by an hybrid LfD model consisting of constant movement feature extraction in conjunc-

tion with a dynamical system (Fig. 2.8a). This allows the system to reproduce a task, while
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adapting to new external conditions. The task of putting a ball into a box, regardless of the

environment conditions, was kinesthetically taught, as illustrated in Fig. 2.8b.

(a)

(b)

Figure 2.8: (a) LfD framework proposed in [47] [71]. (b) Hoap humanoid robot putting
an object into a box, kinesthetically driven by a human [71].

Sauser et al. [55] introduced an approach for grasp adaptation which learns a statis-

tical model to adapt hand posture based solely on the perceived contact between the

object and fingers. Using a multi-step learning procedure, the model dataset is built by

first demonstrating an initial hand posture, which is then physically corrected by a human

teacher pressing on the fingertips, exploiting compliance in the robot hand. To this end

the learner achieved to replay the resulting sequence of the hand postures, to generate a

dataset of posture-contact pairs that are not influenced by the touch of the teacher. The

key feature of this work was that the learned model may be further refined by repeating

the correction-replay steps. Alternatively, the model may be reused in the development

of new models, characterized by the contact signatures of a different object. The task that

was evaluated by i-cub robot, is illustrated in Fig. 2.9.

Furthermore, Billard’s group employed robots with sporting skills of playing golf or

tennis, previously driven by a human’s expertise. Obtained results reported in [3], [71] are

illustrated in Fig. 2.10a and Fig. 2.10b, respectively. Playing mini golf problem is tackled

as a hitting object task. To this end, having learned an adaptable hitting motion that can

be used to hit with different speed and direction, the robot needs to learn what speed
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Figure 2.9: Left: Schematical overview of the proposed framework. Right: Tactile cor-
rection for learning grasp adaptation. The teacher indicates adaptability
within the compliance constraints of a hand posture (Correction). The
learner then replays the sequence of corrected poses (Reproduction). The
final learned model is able to adapt the pose in response to different con-
tact signatures (Perturbation). Objects: small can (left panels), ruler (right,
top), large can and box (right, bottom).

and direction should be used in each situation, in other words, the optimal pair of the

sought variables should be computed for each input vector. The problem is solved by

using a supervised learning approach, providing a training set of appropriate parameters

for different inputs. It should also be noted that the training data is field-specific, as each

field requires different hitting parameters. The above works aimed at improving the DS

global stability. To this end, they achieved to deal with demanding high level issues that

can in real-time reciprocate to any perturbations and changes on the acting space.

In a recent work from the same group [78], the framework illustrated in Fig. 2.11 was

proposed for real time catching of flying objects with rigid but uneven mass distributions

and non-rigid mass distributions. They introduced a system composed by two iterating

threads. The first thread continuously predicts the object trajectory and iteratively up-

dates the best-catching configuration and catching time with each new measurement of
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(a) Learning to play mini golf [71].

(b) Learning to play tennis [3].

Figure 2.10: Learning sporting skills.

the flying object. The updated catching configuration is set as the target for the robot-

arm controller. The second thread, i.e. the arm controller, continuously adapts the end-

effector posture to the changes in the predicted best catching configuration and catching

time. The arm controller computes the trajectory of the hand in Cartesian space. The

latter is subsequently converted into joint angles by solving the Inverse Kinematics of the

robotic system.

In order to determine the final catching configuration, a data-driven probabilistic ap-

proach was employed for estimating a distribution of admissible grasping posture on the

object and computing the robot’s reachable space. In the same paper, they further show

that these techniques determine the optimal catching configuration in real time. To gen-

erate the robot arm and finger motion to intercept the object, DS models are used in con-

junction with a timing controller, as the task is highly time-dependant. As noted by the au-

thors, catching-failures were observed in real experiments, due to the fact that the robot’s

dynamics were not considered in the task-model.
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(a)

(b)

(c)

Figure 2.11: Imitation from motion capture as described in [96].
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Additionally, probabilistic models and dimensionality reduction techniques in the con-

text of LfD have been studied by the research group of P. N. Rao. In [107], [7], [108], they

examined the LfD framework based on stochastic model formulation and linear dimen-

sionality reduction methods that can reduce the dimensions of the acting space. To this

end, in [107] a HOAP-2 robot was taught to walk by humans, as illustrated in Fig. 2.12,

based on an intermediate, latent-space representation (see Fig. 2.12b). In this kind of rep-

resentation, each latent point represents a robot’s action state, whereas a sequence of la-

tent points represents a complete movement.

(a)

(b) The resulting latent space. (c) Robot learns to walk.

Figure 2.12: From latent space to robot’s walking.
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2.6.2 Reinforcement Learning: Real-time adaptation to the current
environment

Once a new skill is learned by a robotic system after imitating a teacher’s behavior, the next

issue regards how it should perform when it is confronted with a novel (previously unseen)

context. Early approaches addressed the above by having the agent ask the teacher explic-

itly. A better solution would be to allow the robot extract the necessary task-specific infor-

mation from the demonstrations. This so constructed task-dependent skill is much more

flexible than the context dependent one. Reinforcement Learning (RL) approaches, with

origins in the Machine Learning field, have been employed in relevant works [109], [3]. RL,

also referred in the literature as learning from experience, describes how a learning agent

can achieve optimal behaviour based on interactions with its environment and reward

feedback. RL enables a robot to autonomously discover an optimal behavior through trial-

and-error interactions with its environment. Instead of explicitly detailing the solution to

a problem, in RL the designer of a control task provides feedback in terms of a scalar objec-

tive function that measures the one-step performance of the robot. Especially in the field

of Robotics, previous work focused on using prior knowledge from expert demonstrators

to render the learning problem tractable and speed up learning [44], [55], [110], [111]. Even

though RL as an LfD approach has had successes, physical and computational differences

between demonstrator and learning agent, and limitations of the demonstrator, typically

result in suboptimal demonstrations, compromising the quality of behaviour that is ac-

quired by the agent [112], [113], [64].

The ability to learn from experience is a desirable trait in any learning system. The

most popular approaches implemented within LfD systems to date offer reward-type eval-

uations of policy performance. Reward functions are often sparse, and only offer an indi-

cation of how desirable a given state is; reward gives no indication of which action would

have been more appropriate. Richer forms of performance evaluation, however, could

benefit approaches able to incorporate policy performance feedback. There is no reason

to expect that formalizing these richer evaluations is easier than the admittedly challeng-

ing task of formally defining reward functions. One promising solution may be formulated

by having the demonstration teacher provide feedback on learner performance, in addi-

tion to providing the example executions.

2.7 Learning Force-based Manipulation

In the current section we briefly review and highlight representative works from contem-

porary literature regarding robot learning based on force limitations. Recently, Falco et al.

proposed a hybrid approach based on reactive control and Reinforcement Learning (RL)

to implement in-hand manipulation skills with a low-cost, underactuated prosthetic hand
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Figure 2.13: Overview of the proposed architecture in [114].

in the presence of irreversible events [114], [115]. The proposed architecture is depicted

in Fig. 2.13. The two layers work in synergy though a bidirectional exchange of informa-

tion. The Reinforcement Learning (RL) layer sends to the Reactive Control (RC) layer the

trajectory associated to the current policy. The RC layer locally corrects the trajectory in

order to avoid the object slipping during the learning procedure. On the other hand, the

control layer sends to the learning layer information concerning the control energy during

the trajectory, which mesueres how strong the tactile reactions were. Whereas, Kaelbling

in [116] exploited hidden Markov models to plan and act in partially observable stochas-

tic domains. Evrard et al. [117] adopted Gaussian mixture models to represent the vari-

ance over time in the demonstrated trajectories to teach a humanoid physical collabora-

tive tasks. Gupta et al. [118] proposed an algorithm for policy learning and generalization,

that allows complex dexterous manipulators to learn from multiple human demonstra-

tions. Additionally, Li et al. in [119] learn grasp adaptation through experience and tactile

sensing.

Execution of learned actions is in many cases affected by temporal and dynamical con-

straints or perturbations that are externally or naturally imposed [120], [121]. Various

works have attempted to introduce contemporary learning methods into the force and

impedance control to improve the tracking performance and the robustness of the repro-
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duced robotic behavior [122], [123], [124], [125], [126]. In [127], NN control was applied

in impedance controller to compensate the uncertainties in real time. Li and Liu [128]

designed an adaptive impedance hybrid controller, which could implement the required

contact force and track the target position in orthogonal subspaces with no other informa-

tion of the environment.

Current methods that learn force-based behaviors directly from demonstrations or

multiple trials [129,130] typically use a least squares formulation to solve for time-varying

impedances, either at each point in the demonstration or in the context of a Gaussian

mixture model [131], [132]. In [133] the authors propose to intentionally introduce pertur-

bations into the demonstrations to observe the human demonstrator’s recovery stiffness,

whereas in [134] more sophisticated input modalities were introduced to facilitate for the

demonstrators to directly specify the desired stiffness [134]. In a different approach, Lee et

al in [17] used a dataset of kinesthetically teaching trajectories to extract a single trajectory,

along with time-varying feedback gains that determine the required poses and forces for

a successful manipulation. Reciprocally, Rambow et al. in [135] used teleoperated demon-

strations to autonomously manipulate deformable objects. Moreover, in [136], A. Nair et

al. propose a combining self-supervised learning and imitation approach for vision-based

manipulation of deformable objects such as ropes and clothes.

During the last decade, Machine Learning approaches have gradually appeared both

in industrial applications [137], [138] as well as in house-robot scenarios [139], [140], [141].

Accordingly, our work follows a direct approach, whereby the system is trained by observ-

ing successful lifting and manipulation tasks, and learns to apply appropriate grasping

posture and the suitable required force, and also generalize the latter for various object

positions, shapes and masses (Chapter 5).



Chapter 3

Methodological Framework for Robot
Learning by Observation

In this Chapter we introduce IMFO (IMitation Framework by Observation) as a novel LfD

methodological framework to enable robots reproduce human actions, based on the cou-

pling of perception and action, which is at the core of imitation learning. IMFO can cope

with the reproduction of learned (i.e. previously observed) actions, as well as novel ones.

By modeling the reciprocal interaction of perception (actor’s world) and action (robot’s

world), the proposed framework effectively accomplishes to map the observed actor’s space

to the robot’s one by formulating an intermediate, latent space representation.

Accordingly, IMFO succeeds in endowing robotic systems with human-like action ca-

pabilities. At first, an initial, observation phase is formulated whereby, by means of kines-

thetic teaching, a set of demonstrated arm-motions is learned. In the learning process,

respective human and robot actions are represented in the corresponding latent spaces

and a mapping (association) across the latent spaces is established. In turn, a novel hu-

man action gives rise to a representation in the human latent space, which via the learned

mapping is transformed to the robot’s one. The latter is inversely mapped to the robot’s

action space effectively reproducing the observed behavior.

3.1 IMFO Formulation

IMFO comprises a complete methodological framework aiming at learning and reproduc-

ing human behavioral acts. It relies heavily on a latent space representation of both ob-

served and produced motions. The introduced representation greatly facilitates general-

isation of learned actions and abstraction of the robot kinematic configuration. Accord-

ingly, two distinct phases can be identified within IMFO, a training and a reproduction

phase. In turn, training consists of three steps:

• Observation, whereby, via an appropriate sensory set-up, data acquisition is per-

formed regarding an arm-motion of the demonstrator and the corresponding one

37
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Figure 3.1: IMFO Training Phase.

of the robotic system.

• Latent space formulation, by means of GPLVM: observed actions are compactly rep-

resented in an appropriate latent space.

• Space association, is accomplished via the ICP algorithm, which builds a mapping

across the two latent spaces.

Conceptually, IMFO training formulation is illustrated in Fig. 3.1. Following training

any novel action presented to the robot can effectively be represented in the robot’s latent

space. Via an inverse projection this is subsequently mapped to the robot’s physical con-

figuration space, and as a result the action is reproduced by a robotic system. The above

are presented in more detail in the following.

3.1.1 Training Phase

Observation-Data Acquisition

Imitation of actions via observation relies on data recorded by sensors that are usually

external to the executing platform. Typically, visual sensors are used to record human-

teacher actions. Motion capture systems utilizing visual markers on the observed joints

are generally employed for data acquisition of human motion and manipulation acts [26].

In the case of IMFO, human actions are recorded by an external RGB-D camera system.

By tracking the desired number of demonstrator’s joints, a high dimensional actor’s space

O = {o1 . . . on} of Ddimensions is established.
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Each demonstrated (observed) arm-motion is transferred to the robot’s action space by

means of “kinesthetic teaching”. More specifically, we capitalise on the robot’s compliance

to physically steer it through the task by the teacher. Accordingly, no explicit physical

correspondence is needed, as the user demonstrates the skill on the robot’s own body. It

also provides a natural teaching interface to teach a skill correctly and precisely [142].

In the current work we consider primitive arm-motion, and the human arm is tracked

by placing prominent color markers on each joint, namely shoulder (J1), elbow (J2) and

wrist (J3). For each joint the 3D coordinates (x, y, z) are derived by the external Kinect RGB-

D camera [143]. Additionally, we use a binary index (0 or 1) to represent the state of the

hand, i.e. 0 for closed fingers and 1 otherwise. Overall, the configuration of the human

arm is represented as a point in a 10D space, termed “Human Action Space” (HAS).

Figure 3.2: Left: Example of joint tracking via color detection for the actor; Right:
Kinesthetic teaching for the JACO arm.

The robotic system employed in this research is the JACO robotic arm, by Kinova Robotics,

namely a six-joint arm manipulator. Its physical space is represented by the angles of the

six joints and, moreover, the three angles of its hand-fingers. This results in a physical

representation for the robotic system in a 9D space, termed “Robot Action Space” (RAS).

A typical snapshot from the physical attachment of the robotic arm to the human arm is

illustrated in Fig. 3.2, whereby the latter steers the former kinesthetically.

Latent Space Formulation

A fundamental step of the IMFO methodological framework comprises the representation

of an action behavior in a suitable latent space. The relevant transformation is based on

the Gaussian Process Latent Variable Model, GPLVM in short, which is used in order to

derive the latent space representations [144]. GPLVM can be considered as a non-linear

generalization of PCA. Effectively, it provides a more accurate representation of an abstract
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multidimensional space projected to a lower dimensional one. The mathematical deriva-

tion of GPLVM is extensively described in the original publication [144]. Herewith, we

confine the relevant presentation to the essential algorithmic steps that are implemented

in order to formulate the two latent representations of the actor’s and the robot’s acting

spaces.

GPLVM performs a non-linear dimensionality reduction in the context of Gaussian pro-

cesses (GP); an algorithmic tabulation of its main steps is outlined in Alg. 1. The underlying

probabilistic model, specified by GPLVM, is still a GP regression model, that needs to be

learned, i.e. adjusting the Kernel’s parameters (β). Theoretically, both the observed data

O ∈ RD and the latent space data X ∈ Rq (where, q << D) should be known a priori, thus,

an initial estimation of X is performed using PCA.

Once X has been initialized, GP regressions and corrected estimations of X are per-

formed iteratively until convergence has been achieved or until a maximum number of

iterations has been reached. To perform the GP regression, the likelihood of the GP and X
given O has to be maximized with respect to the parameters of the kernel. In practice this

optimization is performed using scaled conjugate gradient descent (steps 5-10 in Alg. 1),

where β is Kernel’s parameter and μ, n are parameters of the gradient descent process.

Algorithm 1 Kernel GPLVM

1: Given a set of observations O ∈ RD, N: the number of iterations
2: Initialise latent variables X ∈ R2 through PCA
3: for N iterations do
4: Randomly Select a subset of X, xs ⊂ X & find the neighbors around xs : XS = X ∈ R
5: Compute the gradients: ∂L

∂XS
and ∂L

∂βS
6: Update X and β by:
7: ∆Xt = μx∆Xt−1 + nx ∂L

∂XS
8: Xt ← Xt−1 + ∆Xt
9: ∆βt = μβ∆βt−1 + nβ ∂L

∂βS
10: βt ← βt−1 + ∆βt
11: end for

By the end of this phase, the two latent space representations are established. More

specifically, the “Human Latent Space” (HLS) and the “Robot Latent Space” (RLS) are de-

rived as sets of points xai ∈ Rq and xri ∈ Rq, respectively. Via maximum-likelihood estima-

tion of the intrinsic input data dimension, as proposed in [145], the dimension of HLS and

RLS has been determined as q = 2; the latter was also experimentally verified.

Space Association

Having established the two latent point clouds, an appropriate matching transformation

across corresponding points in HLS and RLS should be defined. Given two sets of corre-
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sponding latent variables Xa = {xa1, . . . xan} ∈ Rq and Xr = {xr1, . . . xrn} ∈ Rq, the trans-

formation is derived as a pair of translation t and rotation r that minimizes the sum of

squared error:

E(t, r) = 1
n

n∑
i=1
‖xai − rxri − t‖2 (3.1)

where xai, xri are corresponding points. The correspondence between the pairings is en-

sured by the observation phase of IMFO, where the trajectories are captured kinestheti-

cally.

In this work the Iterative Closest Point (ICP) algorithm [146] is employed to solve eq. (3.1),

as it is a powerful algorithm for calculating such geometric transformations across 2D
spaces with high accuracy. ICP uses an iterative process to align the two point clouds and

estimate the combination of rotation and translation using the mean squared error cost

function. The resulting transformation pair LT = (t, r) can subsequently be used to map a

novel point from HLS to the corresponding point in RLS.

3.1.2 Robot Reproduction Phase - Inverse Projection

The proposed IMFO framework, as explained above, can be employed to associate a hu-

man action behavior with a robotic one. Effectively, a correspondence is established in the

two latent action representations. In order to reproduce a demonstrated novel action by

a robotic arm, a final step is needed to transform the representation in the robot’s latent

space (RLS) backward to a robot’s physical configuration, namely RAS. Formally speaking,

this inverse process should be implemented as the inverse of GPLVM. This inverse trans-

formation (marked as INV-Tr) is formulated, as proposed in [147], [148], as a high order

interpolation of the training learned data, using Radial Basis Function (RBF).

In IMFO this is addressed by computing off-line the latent representations (RLS) of a

sufficiently large population of physical configurations (RAS) of the robotic arm. In prac-

tice, we iterate over all arm-DoFs, and for each arm configuration in RAS, the representa-

tion in latent space (RLS) is obtained via the GPLVM. The above iterations are performed

by (a) respecting the physical limits of each arm-joint, and (b) employing an appropriate

iteration step. A small step value results in a denser representation of the RAS-RLS pairings.

For points in RLS that are not included in the above pre-computed pairs, the correspond-

ing points in RAS are derived by interpolation. Experimentally it has been established that

neither the step-value nor the actual method of interpolation were critical. This is due to

the fact that the employed inverse transformation should not render an accurate (exact)

replica of a demonstrated act, but rather a reproduced robotic behavior sufficiently similar

to the latter.

Accordingly, the following steps are employed to effectively reproduce a novel arm mo-

tion by the robotic system (Fig. 3.3):
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• Novel act observation: the act is perceived and mapped as a trajectory in HAS.

• Human latent space transformation: GPLVM is employed to represent the above tra-

jectory in HLS.

• Mapping to robot latent space: the LT = (t, r) mapping across the two latent spaces

is used to obtain the representation in RLS.

• Action reproduction: the formulated inverse transformation INV-Tr maps the latter

representation to RAS, therefore accomplishing recreation of the observed action.

Figure 3.3 presents a block diagram of the above outlined steps.

Human 
Action

Observation

NOVEL Behavior 
in HAS

Projection
in HLS

Mapping
in RLS

NOVEL Behavior 
in RAS

GPLVM × LT 𝐼𝐼𝐼𝐼𝐼𝐼 − 𝑇𝑇𝑇𝑇

Robotic
Action 
Reproduction

Figure 3.3: IMFO Reproduction Phase.

3.2 IMFO Evaluation

Extensive experimentation has been performed to assess the performance of IMFO method-

ological framework in realistic scenarios. As mentioned above, the relevant experimental

set-up regarding the training phase, involved kinesthetic teaching in order to demonstrate

certain action behaviors to the robotic arm. In all our experiments a six-joint arm manip-

ulator was used, namely the JACO robotic arm, by Kinova Robotics. Its joints can be con-

trolled independently either with position-control or with torque-control. Accordingly,

the compliant mode of the JACO arm was used in order to physically steer the arm to exe-

cute various motion trajectories. The training dataset is composed by sequences of paired

poses executed by the two agents, i.e. actor human arm and JACO robot arm, respectively.

More specifically, the training actions recorded were basic right-arm-movements of reach-

ing, pushing and grasping with differences in the posture configuration.

The employed procedure, besides being simple and robust, facilitated the execution

of multiple demonstrations. Accordingly, the described procedure, i.e. action demonstra-

tion, action replication by the robotic arm, registration of HAS-RAS parameters, was re-

peatedly executed for an adequate number of manipulating actions. More specifically, the

training phase included 30 actions, of approximately 200 frames each (at 30 f ps), hence a

number of 6000 configuration poses. In other words, the result of the training phase was

the population of HAS and RAS with 6000 points each. In our experiments we concluded
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that a number of 30 actions was completely satisfactory, by starting from a rather small

number of 10 actions and gradually increasing the training data set. Although 10 actions

might seem a small number, experimentally it was verified that they span densely HAS

and RAS and, moreover, are adequate for the considered human-like scenarios. By pro-

gressively increasing the action count to 30, algorithm’s scalability has also been verified.

Following the algorithmic steps of IMFO as described in Section III, the corresponding

latent space representations have been extracted. In other words, via GPLVM the above

HAS and RAS point clouds have been transformed to HLS and RLS representations, re-

spectively. The latter, for a sample subset of seven training trajectories (out of the total

30 training actions), marked as Train1 . . .Train7, are provided in Fig. 3.4. The left part

of Fig. 3.4 illustrates the HLS representations, whereas the right part illustrates the cor-

responding RLS ones. As can be observed, the obtained representations are appropriate

for the given task, since different actions result in distinct trajectories in the latent spaces.

Moreover, the neighbouring property of GPLVM is effectively demonstrated, resulting in

adjacent latent points for adjacent points in the physical space.
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Figure 3.4: Derived latent representations for actor and JACO arm, respectively.

We note at this point that the derived RLS depends on the specific kinematics of the

employed robot. If the JACO robot where to be replaced by another one, a different latent

space representation would result. Such differences are in practice not observed in the

derived HLS. Substitution of the actor by another one (with minor arm-kinematic differ-
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ences) does not actually affect the actor’s latent space.

3.2.1 Scenario WRITE

Having established the training dataset of learned actions as described above, we adopted

two scenarios to systematically evaluate IMFO. In the current section we present in de-

tail the first evaluation scenario, namely WRITE whereas Section IV-B accounts for the sec-

ond, namely PICK-PLACE. More specifically, in scenario WRITE we conducted a set of ex-

periments whereby the robotic arm was assumed to write its own name, that is the word

“JACO”. In other words, the observed novel actions were the four actions that correspond

to the writing of the four letters “J”, “A”, “C”, “O” on a flat level surface. Snapshots from the

above described procedure are illustrated in the right column of Fig. 3.5, where the human

actor is performing the motions for the four letters.

According to the steps outlined in Section III, the trajectories of the above four novel

acts are projected to HLS via the GPLVM. LT is then employed to map the latter repre-

sentations to RLS. Finally INV-Tr is invoked to inversely transform the trajectories to RAS,

effectively resulting to the motions being reproduced by the robotic arm. The left column

of Fig. 3.5 shows sample instances from the reproduction of the four named letters.

The above experimental procedure was repeated 40 times in order to extract statisti-

cally meaningful error measures. Figure 3.6 illustrates the trajectories that correspond to

the four letters in the latent spaces. Figure 3.6(Left) refers to HLS, whereas Fig. 3.6(Right)

shows the representation in RLS. For visualisation purposes, both figures present the mean

trajectories over the 40 iterations. Additionally, the covariances over the individual trajec-

tories are depicted on the figures as gray scales. As can be observed, the uncertainty in the

trajectories is rather limited for the case of the human actor. This is due to the fact that

the four motions were performed by the same actor and hence they were very similar in

subsequent iterations. The trajectory uncertainties are somewhat higher in RLS, which is

due to the LT transformation that performs the mapping from HLS to RLS. Nevertheless,

visual inspection of the induced covariances in both plots of Fig. 3.6 verifies that the uncer-

tainty introduced by LT is insignificant and, as will be shown in subsequent results, within

acceptable limits.

Aiming at a rigorous quantitative assessment of IMFO, we introduce herewith three

error measures that quantify (a) RLS consistency and repeatability (ERLS); (b) RAS consis-

tency and repeatability (ERAS); (c) robotic end-effector trajectory (EEF).

RLS consistency and repeatability - ERLS

Human actions that are very similar (almost identical) should result to RLS representa-

tions with small deviations. Such actions are the ones that correspond to the 40 iterations

for each of the four letters in “JACO”. In other words, the 40 HAS trajectories for each letter
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Figure 3.5: Right column: Demonstration of actions corresponding to the letters of
the word “JACO”; Left column: Robotic reproduction of the same actions.
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Figure 3.6: Illustration of the novel latent trajectories with each variance: Left: HLS
representations for the four novel actions. Right: Corresponding RLS rep-
resentations.

should ideally give rise to 40 similar RLS trajectories. The latter is quantitatively assessed

with the ERLS error, defined as follows.

Let a trajectory Xi
r = {xir1 . . . x

i
rM} in RLS. Let also N such trajectories corresponding to

N similar actions in HAS (N = 40 in our case) and let Xr be the mean trajectory over all N
trajectories. The Mahalanobis distance ofXi

r from Xr is obtained as:

D(Xi
r, Xr) = 1

M

M∑
k=1
‖xi

rk − xrk‖
2
S−1

(3.2)

where M is the number of points in each trajectory. The mean over allD(Xi
r, Xr) errors pro-

vides a quantitative measure of action consistency and repeatability in RLS; it is computed

as:
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ED = 1
N

N∑
i=1
D(Xi

r, Xr) (3.3)

where N = 40 is the number of iterations. As a final step, ED is normalized according

to the actual magnitude of RLS. In practice, the loci of points in RLS, after the training

phase, approximates the surface of an ellipsoid. We take as the RLS magnitude the ellip-

soid characteristic variable d =
√

(a2 − b2), where a, b are the semi-major and semi-minor

axes, respectively. Accordingly, ERLS is computed as:

ERLS = ED
d % (3.4)

The computed values of ERLS for the four letters of the word “JACO” are given in Fig.3.7

(black error bars). As can be observed, the errors in all cases are very small, ranging from

1% to 4%.

RAS consistency and repeatability - ERAS

Trajectories in RLS give rise, via the INV-Tr, to trajectories in RAS. The latter defines the

actual robotic action that is reproduced as a result of a demonstrated novel action by a hu-

man actor. Following similar formulation as in the case of ERLS, we compute ERAS in order

to quantitatively characterize the reproduction of novel actions by the robotic system.

Given a trajectory Xi
R = {xiR1 . . . x

i
RM} in RAS, and XR be the mean trajectory over all N

trajectories, we define in a similar fashion the distance ofXi
R from XR as:

DR(Xi
R,

XR) = 1
M

M∑
k=1
‖xi

Rk − xRk‖
2 (3.5)

Accordingly, the mean error in RAS is obtained as:

EDR = 1
N

N∑
i=1
DR(Xi

R,
XR) (3.6)

Finally,EDR is normalized according to the magnitude of JACO’s operational space. The

latter is approximately a sphere of radius r = 0.9m (e.g. the absolute stretching of the arm).

Hence, the normalized error ERAS is obtained by:

ERAS =
EDR

r % (3.7)

Figure 3.7 summarizes the obtained ERAS errors (grey error bars), contrasting them

with the previously computed ERLS errors. As expected, physical space errors are relatively
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higher, and this is due to the fact that, errors in the physical robot’s space are derived

after the inverse mapping transformation INV-Tr, which unavoidably increases the error.

Further to that, the low error values in both RAS and RLS are commendable. As such they

serve as the experimental verification of the adopted means to obtain the latent space

representation and, from that, the actual reproduction of the observed action.
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Figure 3.7: Error bars denoting consistency and repitability in RLS and RAS.

Robotic end-effector trajectory - EEF

An additional error measure is calculated as a metric of imitation of the end-effector. More

specifically, EEF is assumed to quantify the precise reproduction of a demonstrated act by

the robotic end-effector, and it is defined as the 3D-error in the latter’s trajectory. Thus,

for a mean actor’s trajectory XA = {xA1 . . . xAM} and the corresponding reproduced by the

robot XR = {xR1 . . . xRM}, EEF is given by the formula:

EEF = 1
M

M∑
k=1
‖xAk − xRk‖2 (3.8)

Interestingly, in all four cases EEF resulted in very small values, and specifically less than

20 millimetres. More importantly, the computed errors are negligible for the studied imi-
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tation tasks, and do not affect the behaviors exhibited by the robotic system.

3.2.2 Scenario PICK-PLACE

The above described evaluation scenario resulted in very promising quantitative metrics.

By design, in scenario WRITE the robotic end-effector was confined to move on a 2D plane.

Although this does not limit by any means the performed IMFO evaluation, we conducted

an additional scenario whereby the above restriction was removed. The latter, namely

scenario PICK-PLACE, assumed a 3D trajectory of the robotic end-effector in a pick-and-

place task.

Accordingly, the demonstrated action consisted of (a) picking a blue object from a box

(orange box in Fig. 3.8) using a top spherical grasping configuration, (b) following a 3D

trajectory in space, and (c) placing it on a shelf with a rotated (lateral) posture. Snapshots

of the human demonstration, along with the robotic reproduction are shown in Fig. 3.8.

Figure 3.8: Scenario PICK-PLACE. Top row: Demonstration of a novel pick-and-place
action; Bottom row: Robotic reproduction of the demonstrated action.

Similarly to the above described scenario WRITE, the current pick-and-place task was

repeated 40 times, in order to use the same performance metrics as above. The obtained

ERLS, ERAS and EEF for the PICK-PLACE scenario are tabulated in Table 3.1.

As can be observed, even in this more demanding scenario, very accurate performance

metrics were obtained. The consistency and repeatability measures assumed slightly higher

values compared to the previous evaluation scenario, whereas the error in the end-effector
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trajectory increased by very little.

Effectively, the obtained results provide important evidence regarding the accuracy

and robustness of the proposed framework. This is also demonstrated in the provided

snapshots from our experiments, and in particular in the supplementary video that docu-

ments IMFO and the conducted evaluation scenarios (https://www.youtube.com/watch?

v=d-ggpYQbm3Y).

Table 3.1: Indicative Errors for the novel action behavior.

ERLS 5.57%
ERAS 5.98%
EEF 47mm

3.3 Applications in HRI

As it is noted, we have set the goal, throughout this thesis, to formulate an LfD method-

ological framework, based on a latent space representation of the actors’ configurations

using dimensionality reduction, for learning robotic action behaviors. An advantage of

the proposed formulation over other state of the art methods for imitation learning, as

already mentioned, is that the mapping between the observed and the action spaces is

established independently of the teacher’s and the robot’s kinematics. At the same time,

LfD methods are usually faced with the correspondence problem across the two (teacher-

learner) spaces [149], [150]. The latter is greatly facilitated in our approach with the em-

ployment of the latent space representation. As a result, besides successful reproduction

of demonstrated actions, the proposed approach is also capable to learn novel action be-

haviors. To this end, the latter behaviors can credibly be applied in real Human-Robot

Collaboration (HRC) scenarios for cooperative task execution [151]. The latter constitutes

a main contribution of our work, demonstrating effective HRC.

3.3.1 Novel Action Execution

In this part, novel action imitation was tested on the JACO robotic arm. JACO’s compliant

mode of operation is particularly useful in order to appropriately steer the arm and hence

have it execute (learn) a desired action behavior.

Here, the physical spaces of the demonstrator and the robot were recorded by utilizing

information for the joints of the respective arms. In the case of the human actor the three

arm joints were used, namely shoulder, elbow and wrist, and for each one of them the 3D

coordinates (x, y, z) were derived. Prominent color markers were placed on each joint, and

a Kinect RGB-D camera was utilized to unambiguously track the joints and extract their 3D

https://www.youtube.com/watch?v=d-ggpYQbm3Y
https://www.youtube.com/watch?v=d-ggpYQbm3Y
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coordinates (see Fig. 3.9a) [152], [153]. By tracking the three arm joints of the teacher as

above, a 9Drepresentation of the observed physical space is formed. The above procedure,

besides being simple and robust, facilitated the execution of multiple demonstrations.

(a)

(b)

Figure 3.9: (a) Kinesthetic training of the robotic arm. (b) A novel human motion be-
havior (left), reproduced by the robotic arm (right).

Regarding the robot’s physical space, we obtained the angles of the arm’s six joints dur-

ing a performed act via the available encoders. This resulted in a 6D physical represen-

tation for the robotic system. The above described procedure, i.e. action demonstration,

action replication by the robotic arm, registration of the physical space parameters for

both arms, was repeatedly executed for an adequate number of reaching actions. More

specifically, the training phase was completed with 30 actions, of 30 f ps each. In our ex-

periments we concluded that a number of 30 actions was utterly satisfactory, by gradually

increasing the training data set, starting from a rather small number of 10 actions. Al-

though 10 actions might seem a small number, experimentally it was verified that they

span densely the action space and, moreover, are adequate for the considered HRC tasks.

By gradually increasing the action count to 30, algorithm’s scalability has been verified. It

is noted at this point that actions with different durations are regarded different in our im-

plementation, since time is not directly taken into account in the proposed method but

rather is considered as an intrinsic feature of the motion-action captured. Examples of
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the performed actions by the human teacher are shown in Fig. 3.9a. In the same figure,

the physical attachment of the robotic arm to the human arm is also illustrated. Accord-

ingly, the robotic arm performs an arm motion similar to the one performed by the human

arm.

Following the above, the latent space representation has been extracted for both cases,

human and corresponding robot trajectories. A home-made implementation of GPLVM

has been utilized for this task. Experimentally it was established that a latent space dimen-

sion of 2 was appropriate for the tested actions. Nonetheless, theoretical verification of

the above has also been obtained via maximum-likelihood estimation of the intrinsic in-

put data dimension, as proposed in [145]. For illustrative purposes, four sample motions

have been identified, and the corresponding latent space representations are provided

in Fig. 3.10, with the four motions being marked as D1 . . .D4. In Fig. 3.10b the named

representations are given for the case of the demonstrator, whereas Fig. 3.10a shows the

respective plots for the robotic arm. As can be observed, the obtained representations are

appropriate for the given task, since different actions result in distinct trajectories in the

latent spaces. Moreover, the neighbouring property of GPLVM is effectively demonstrated,

resulting in adjacent latent points for adjacent points in the physical space. As a last step,

ICP was used to establish the correspondence across the two latent spaces and form the

latent hyperspace.
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Figure 3.10: Extracted Latent Hyperspace formulated by five sample trajectories
marked as D1−D4 and NOVEL ACTION, accomplished by actor and JACO,
respectively: (a) Actor’s Latent Space, and (b) JACO’s Latent Space.

To examine the validity of the extracted latent hyperspace, a set of experiments was
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conducted whereby, firstly, a newly presented action behavior was asked to be reproduced

by JACO and in turn, the latter learned actions (novel or not) are involved in human-robot

collaborative tasks. At first, a novel action was either performed by a different human ac-

tor, or by the same one like above but this time performing a behavior not included in the

set of learned actions. Fig. 3.9b shows a sample experiment, where a different actor per-

forms a “docking action” (pushing the orange box). This 120-frame sequence of 9Dvectors

is projected to the formatted actor’s latent space of Fig. 3.10b, marked as NOVEL ACTION.

By left multiplying the latter with the transformation matrix obtained by the space associ-

ation algorithm , the initial actor’s trajectory is projected to the JACO’s latent space, shown

in Fig. 3.10a. Finally, the representation of the indicative movement in JACO’s joints angles

is computed by applying INV-Tr, resulting in a representation in the actual joint space of

JACO. This action can be effectively reproduced by JACO; a snapshot of this behavior is

shown in Fig. 3.9b.

3.3.2 Cooperative Task Execution

This category of experiments regards the validation of realistic HRC scenarios on two robotic

systems, i.e. six-joint arm manipulator JACO KINOVA arm and the NAO the NAO hu-

manoid robot by Aldebaran Robotics which comprises a small humanoid with 25 DoFs; in

the case of the latter. For the tasks at hand, posture control was accomplished as in [154],

whereas only one arm of the humanoid with six DoFs was used. Evidently, the kinematics

of the two systems, i.e. the JACO arm and the NAO arm, are completely different. The

latter allowed us to validate the abstraction property of the latent space representation.

Accordingly, the learned actions by a robotic system were utilized in a real HRC con-

text, where the robotic system was expected to perform specific actions. The actual ex-

periments conducted assumed HRC scenarios, whereby a human was opening a closed

compartment and removing an object from it. Subsequently, the robot was expected to

perform the correct action to properly close the compartment. Example cases of com-

partments tested involve drawers, closets and cabinets. The respective actions that the

robotic systems should perform consisted of “forward pushing” (close a drawer), “side-

ward reaching” (close an open closet door) and “reaching from the top” (close a cabinet).

Furthermore, the robots were trained with two additional actions namely “hello-waving”

and “sidewards pointing”. Those additional actions were included in order to furnish the

robots with richer repertoire of actions and hence operate more realistically in the HRC

scenarios.

The above actions were demonstrated by a human actor and learned by both robotic

systems, in a similar way as already explained in Subsection 3.3.1. Figure 3.11 presents

the latent spaces that were registered for the human actor and the NAO arm in this train-

ing session. In the actual execution of the HRC scenario, visual recognition of the relevant



54 Chapter 3. Methodological Framework for Robot Learning by Observation

−1000 −500 0 500 1000 1500 2000 2500

−600

−400

−200

0

200

400

600

x

y

 

 

ActorT1
ActorT2
ActorT3
ActorT4
ActorT5

(a)

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

 

 

NAOT1
NAOT2
NAOT3
NAOT4
NAOT5

(b)

Figure 3.11: Extracted NAO’s Latent Hyperspace, formulated by five sample trajecto-
ries T1 − T5, accomplished by actor and NAO, respectively: (a) Actor’s La-
tent Space, and (b) NAO’s Latent Space.

compartment was used in order to index in the latent space and retrieve the correct action

representation. In addition, the robotic action was triggered by visual detection of the

removed object based on color information [155]. Interestingly, in all HRC experiments

conducted, both robotic systems collaborated successfully and capably closed the respec-

tive compartment by employing the correct action behavior (https://www.youtube.com/

watch?v=h7cMOX_hXGI). Example cases are illustrated in Fig. 3.12 for both robotic systems

employed in the relevant experiments.

Quantitative Evaluation in HRI

According to [4], the definition of imitation metrics in LfD is task specific. In other words,

the task under consideration may give rise to appropriate metrics for quantitatively char-

acterizing execution of the learned behavior. A general formula has been proposed in [4],

as:

J = ‖ξθa − ξθrob‖
2
Wθ + ‖ξxa − ξxrob‖

2
Wx + ‖ξya − ξ

y
rob‖

2
Wy (3.9)

where, ξθ,x,ya are the actor’s variables that are considered in the demonstrated action, e.g.

3D-coordinates of the arm’s joints. Similarly, ξθ,x,yrob are the corresponding robot’s ones, and

Wθ,x,y are appropriate weights that effectively scale the contribution of each variable in

the final result. In order to quantitatively assess the reproduction of learned actions by a

https://www.youtube.com/watch?v=h7cMOX_hXGI
https://www.youtube.com/watch?v=h7cMOX_hXGI


3.3. Applications in HRI 55

Figure 3.12: HRC scenario whereby a robot assumes a learned action behavior to close
an open closet door. Top: JACO arm; Bottom: NAO humanoid robot arm.

robotic platform, we have instantiated eq.(3.9) as follows:

ERRORTraj = ‖ξEEa − ξEErob‖
2 (3.10)

where ξEEa and ξEErob stand for the end-effector’s 3D trajectories (3D coordinates) accom-

plished by actor and robot, respectively. For the set of experiments conducted in our study,

eq. (3.10) captures the error between the demonstrator’s and the robot’s 3D-trajectories

and therefore quantitatively evaluates task reproduction. Fig. 3.13 illustrates the end-effectors’

3D-trajectories followed by the three agents involved, namely Actor, NAO and JACO, dur-

ing the two HRI behaviors “Close an open closet” and “Close an open drawer”, respectively.

Table 3.2 summarizes the quantitative evaluation results, as derived from eq.(3.10), for

each of the five sample arm-motions that were used to formulate the latent hyperspaces

of JACO and NAO respectively. The first two rows in each table correspond to the assumed

trajectories for the “Close an open closet” and “Close an open drawer”, respectively (see

Fig. 3.13). As can be observed from the tabulated figures in Table 3.2, both robotic systems

performed the learned actions with high accuracy. The 3D-trajectory errors are very small

(less than 10 centimeters in all experiments). More importantly, the computed errors are

negligible for the studied imitation tasks, and do not affect the behavior expressed by the
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Figure 3.13: Trajectories of end-effectors’ movement during the two aforementioned
HRC tasks.

Table 3.2: Performance Metrics
ERRORTraj(m)

Action JACO NAO

T1 0.086 0.089

T2 0.078 0.068

T3 0.049 0.063

T4 0.088 0.040

T5 0.064 0.056

robotic system.

Lately, the proposed formulation is also being tested in a time-aware multi-agent sym-

biotic scenario [156]. Following this scenario, the robotic action is triggered by visual de-

tection of a red bowl based on color information. The HRI system is composed by an ex-

ternal RGB-D camera, a six-joint-arm, JACO Kinova Robot and the NAO humanoid robot.

The JACO robotic arm is supposed to pick some objects and place them in a red bowl,

that NAO robot carries on. Grasping movements are previously learnt through an off-line

learning process. The robotic arm is taught to perform a variety of grasping movements
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by observing a set of demonstrations provided by a human teacher kinesthetically.

Snapshots from the real experiment are illustrated in Fig. 3.14, where both robotic sys-

tems collaborated successfully in order to serve breakfast to the human agent on time.

Figure 3.14: Time-aware multi-agent symbiosis.

3.4 Chapter highlights

In this chapter we dealt with the formulation and experimental assessment of IMFO, as

a novel LfD methodological framework. Accordingly, LfD has been approached by em-

ploying a low dimensional, latent space representation that effectively abstracts small

variations in demonstrated actions. It does so by recording significant features of arm-

motions, abstracting at the same time irrelevant differences that stem from different em-

bodiments and arm kinematics. The employed GPLVM transformation from the actor’s

physical space to the actual latent space was proven very effective in appropriately encod-

ing the salient, pertinent information from a motion act by robustly formulating the afore-

mentioned space. More specifically, different actions result in well separated trajectories

in the latent space, and also the neighboring property of a 3D trajectory is maintained, by

the continuous curves that are formed in the latent space. Additionally, we have studied

and validated IMFO methodology and have successfully applied this in HRC task execu-

tion scenarios. In the current work an action behavior was deemed successful, provided

that the reproduced trajectory was appropriate for the task at hand. For a more systematic

assessment of learned actions we have also introduced suitable error metrics to cater for

mismatches in the reproduced trajectories and measure the obtained errors.

The so far encouraging results attest for the validity and effectiveness of the proposed

approach in various scenarios, namely ”write” scenario, ”pick-and-place” and several HRC

tasks. Nevertheless, open issues for investigation still exist and constitute promising areas

of future work. Specifically, we intend to extend our approach with additional relevant

parameters, such as velocity, acceleration and force. Such a holistic approach to LfD may

clearly support more complex HRC scenarios, such as cases where action timing plays a
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role in human-robot cooperation. The latter scenarios, augmented with the presence of

additional agents (humans and/or robots), constitute interesting research directions.



Chapter 4

Time-informed Action Learning and Re-
production

Interestingly, the topic of speed adaptation of executed actions has received rather lim-

ited attention. In [4] the high level temporal alignment of demonstrated actions is used

to guide trajectory generation in the actor space. In addition, in [157] actions learned

through a slow demonstration procedure are gradually self-improved to accomplish speed

adaptation in action execution. Furthermore, to the best of hour knowledge, LfD and as-

sociated latent representations that compactly describe spatio-temporal features have not

been extensively studied to-date in a temporal context. However, indicative works, such

as those of Calinon et al. in [4] and in [158] have set the basis, by formulating the well

known Dynamical Movement Primitives (DMPs), learning time and space constraints dur-

ing a task. Additional works [159], [160], [130], [161], by Ijspeert et al., Rozo et al. and

Ewertoneta et al. have also investigated the implementation of DMPs within multiple con-

ditions to reproduce force-based manipulation tasks and learn reactive and proactive be-

haviors in Human-Robot Collaboration.

Execution of learned actions is in many cases affected by temporal constraints that are

externally imposed [162]. Processing of such constraints in planning problems has been

typically based on Simple Temporal Networks, which are mapped on the equivalent Dis-

tance Graphs, to verify the existence of no negative cycles and thus prove the consistency

and dispatchability of the plan [163]. Along this line, recent works have considered back

propagation rules to dynamically preserve dispatchability of plans [164], as the implemen-

tation of the plan proceeds and time constraints are updated. However, these works focus

on specifying the start moment of a given action in relation to the others, without consid-

ering the role of speed adaptation on action synchronization and temporal constraint sat-

isfaction. To address this issue, we have recently proposed an interval calculus approach

to estimate the expected latency of actions which directs informed adaptations on action

implementation [22]. The present work aims at combining the estimation of expected la-

tency and the concise specification of a revised execution time, with the ability to learn by

59



60 Chapter 4. Time-informed Action Learning and Reproduction

observation actions demonstrated at different speeds, in order to implement an enhanced

composite system that is capable to effectively comply with dynamically changing tempo-

ral constraints.

4.1 Spatio-Temporal Representation of Actions

In this Chapter, following the basic formulation introduced in Chapter 3, we extend the

IMFO methodological framework [25] to incorporate action learning and representation

in the spatio-temporal domain. The latter effectively facilitates action reproduction in a

given scenario, and action execution at a speed different than the learned one. Action

learning is accomplished via a latent representation of observed actions. Such a represen-

tation achieves to compactly depict pertinent action information and abstract from the

actual kinematic configuration of a system, e.g. human demonstrator or robotic platform.

4.1.1 Learning Phase

A conceptual representation of the employed methodology is depicted in Figure 4.1. Hence-

forth, and without loss of generality, we consider only arm motions. The spatial repre-

sentation of such actions is readily available from the trajectory of the parameters in the

arm’s configuration space. The latter parameters, that convey spatial information of the

executed action, are augmented with timestamps that signify time of occurrence of the

particular snapshot in the action trajectory. Effective transformation of the spatial (config-

uration space) and temporal (timestamp) parameters into a latent (compact) space estab-

lishes a unified spatio-temporal representation of the considered action, which enables

robots to execute actions at different speeds. With the above representation in place, learn-

ing is accomplished by establishing an association across the two latent representations,

that correspond to the human action and the robotic one. This is presented in detail in the

following.

Data Acquisition

Let an arm motion trajectory performed by a human actor and the corresponding one by

the robotic system. The former describes a trajectory in a 11D configuration space, that is

3 joints of 3 coordinates each, 1 grasp parameter and 1 timestamp value. This is termed

as HAS (Human Action Space). The coordinates for the 3 joints in HAS are computed as

the center points of relevant joints. For that a model based approach has been adopted,

analogous to the approach followed in [143]. Similarly, we obtain an 8D representation

for robot arm actions (6 arm-joints, 1 grasp parameter, 1 timestamp value), termed as RAS

(Robot Action Space). The latter representation arises since we employ in this work the

6-joint-arm JACO, by Kinova Robotics. The grasp parameter introduced above assumes
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Figure 4.1: Schematic overview of the learning process.

values 0, 1 or 2, to represent the grasping configuration pose of the hand, as illustrated in

Fig. 4.2. The correspondence of human and robot arm motions is achieved by adopting

kinesthetic teaching. In other words, the human demonstrator performs several demon-

strations that form trajectories in a rather high dimensional actor space (HAS). The same

acts are performed by the robotic platform, physically steered by the human, formulating

an equivalent high robot’s space (RAS).

Figure 4.2: Grasping configuration poses; i.e. Grasping handle encoded as “0” (Left),
“1” (Center) and “2”(Right).
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Latent Space Representation

In order to facilitate meaningful association across HAS and RAS, both action spaces are

transformed to analogous latent representations. To this end, we employ the Gaussian

Process Latent Variable Model algorithm, GPLVM in short [144], as formulated in [25]; an

algorithmic depiction of GPLVM is outlined in Alg. 1 template of Chapter 3.

As it previously refferred, GPLVM effectively provides an accurate representation of an

abstract multidimensional space projected to a lower dimensional one, by performing a

non-linear dimensionality reduction in the context of Gaussian processes. Hence, two

latent space representations are established. The “Human Latent Space” (HLS) is derived

as a set of points XHLS ∈ R
q and the “Robot Latent Space” (RLS) as XRLS ∈ R

q. Using

maximum-likelihood estimation methodology [145], the optimal dimension of HLS and

RLS is determined as q = 2. The latter has been also experimentally verified.

Space Association

Having established the two latent spaces, an appropriate geometric transformation GTr,

that matches the corresponding points across the derived latent representations HLS and

RLS, is defined. Given two sets of corresponding 2D latent variablesXHLS = {XH1, . . .XHn} ∈

R2 and XRLS = {XR1, . . .XRn} ∈ R
2, the transformation is derived as a pair of translation t

and rotation r that minimizes the sum of squared error:

E(t, r) = 1
T

n∑
i=1
‖XHi − rXRi − t‖2 (4.1)

where XHi,XRi are corresponding points. The correspondence between the pairings is en-

sured during the data acquisition, where the trajectories are captured by kinesthetic teach-

ing. The Iterative Closest Point (ICP) algorithm [146] is employed to minimize eq. (4.1).

The resulting transformation pair GTr(t, r) can subsequently be used to map any point

from HLS to the corresponding point in RLS.

Inverse Transformation

In order to enable the robotic arm to reproduce a demonstrated human action, it is nec-

essary to transform the RLS representation to the robotic physical configuration space,

namely RAS. Formally speaking, this association should be implemented as the inverse of

GPLVM, which is not analytically available. To approximate this inverse transformation

(marked as INVTr), a high order interpolation of the training learned data is formulated, as

presented in Section 3.1.2. Here, this is addressed by computing off-line the latent repre-

sentations (RLS) of a sufficiently large population of physical configurations (RAS) of the
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robotic arm. In practice, we iterate over all arm-DoFs, and for each arm configuration in

RAS, the representation in latent space (RLS) is obtained via the GPLVM.

The above iterations are performed by (a) respecting the physical limits of each arm-

joint, and (b) employing an appropriate iteration step. A small step value results in a

denser representation of the RAS-RLS pairings. For points in RLS that are not included

in the above pre-computed pairs, the corresponding points in RAS are derived by interpo-

lation. Experimentally it has been established that neither the step-value nor the actual

method of interpolation were critical. This is due to the fact that the employed inverse

transformation should not render an accurate (exact) replica of a demonstrated act, but

rather a reproduced robotic behavior sufficiently similar to the latter.

Consequently, learning concludes with the two latent space representations (HAS →
HLS and RAS → RLS) along with the geometric transformation GTr that associates them

(HLS ↔ RLS) and the established inverse mapping INVTr (RLS → RAS). As already men-

tioned above, Fig. 4.1 schematically presents the learning process.

4.1.2 Speed Inference Based on Temporal Information

A variety of issues may affect the temporal aspects of task execution in real world applica-

tions. These may regard, for example, the physical properties of interacting objects (e.g.

slow down to move a glass of water) or, the need to synchronize with real world tempo-

ral constraints or ongoing procedures (e.g. speed up to open the door after a bell-ring).

However, time is a parameter that, so far, has been rather rarely considered in robot action

planning.

Recently we introduced the Daisy Planner, in an attempt to address time-informed

planning in multi-agent setups [21]. Below, we summarize the most relevant issues which

are essential for the completeness of the present work. The planner uses a fuzzy number

representation of time to enable the processing of temporal information and develop time-

informed multi-criteria optimized plans. More specifically, each time interval is mapped

on a trapezoidal fuzzy number that is represented by the quadruple (p,m,n, q). For ex-

ample, following this formulation, Fig. 4.3 depicts the time interval “approximately 6 to 9

moments” represented as the fuzzy number TB = (3,6,9, 10). In the same figure, negative

values represent past time moments.

The present work exploits the fuzzy number representation of time intervals in order

to (i) monitor the temporal aspects of composite task implementation, (ii) adapt the exe-

cution of individual primitive actions, and (iii) enforce the timely implementation of the

overall task. In particular, using the ordinary fuzzy calculus, it is possible to associate the

temporal properties of individual actions, predict delays and then take corrective mea-

sures that account for speed adaptations, in order to ensure that composite behaviors are

implemented on time.
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As an illustrative example, we consider the case of a composite task that is based on

the sequential implementation of actions A, B and C. The prior knowledge of the system

on the completion time of the three actions is as follows TA = (3,4, 7,9), TB = (3,6,9, 10),

TC = (5,6,9, 11). Using the well known L-R calculus [165], the total implementation time

for the three actions is estimated as: Ttotal = (11, 16,25,30). To clarify the concept, let

a temporal constraint in the problem formulation, which requires that the three actions

should complete at a specific maximum time of Cmax = 20. The system monitors the

sequential execution of actions to ensure the timely accomplishment of the composite

task. Assuming that 7 moments have been devoted to the implementation of action A,

then B and C should be implemented at a maximum time of Cmax = 13 moments. This is

represented by the fuzzy time interval (0,0, 13, 13).

In order to find a safe completion time for action B, the time to be spend on C is sub-

tracted from the maximum available time. According to the L-R fuzzy calculus, this re-

sults into AB = (0,0, 13, 13) − (5,6,9, 11) = (−11,−9, 7,8), which is the time available

for B. We take the intersection of the estimated available time AB and the actual, known

by experience, implementation time TB to estimate the available temporal flexibility for

the execution of B. The intersection of AB and TB is calculated as shown in Fig. 4.3. The

defuzzification of this interval (implemented by the classic graded mean integration rep-

resentation [166]) results into the requested action B implementation time, that is t = 6.2.

Figure 4.3: Graphical illustration of the intersection of two fuzzy intervals.

4.1.3 Time-informed Robotic Action Execution

The present work considers tasks implemented as a sequence of three actions, namely

reach, grasp, and move/place. To ensure that the composite task is implemented on time,

the system monitors the execution of each action, estimates possible delays as described

above and suggests a completion time for the action to be implemented next. The re-

quested time is used to create an implementation of a known act to within the provided

time interval. The obtained, time-modulated human action in HAS is represented through
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Figure 4.4: Block diagram representation of time-informed robotic action execution.

GPLVM compression to HLS. The latter is in turn transferred to the robot’s space by means

of the learned HLS to RLS mapping, and subsequently unfolded to RAS. The robot im-

plements the action within the requested time limits by implementing the sequence of

configurations encoded in RAS.

In particular, the framework comprises off-line (action learning) as well as on-line (ac-

tion execution) modules. Accordingly, the following steps, summarized also in Fig. 4.4, are

employed to effectively reproduce an arm motion by the robotic system:

(i) A demonstrated action, presented as a sequence of points in HAS, namely Xtn
HAS =

{x1, x2, . . . xn}, is mapped to the corresponding one in HLS; GPLVM transforms Xtn
HAS

to Xtn
HLS.

(ii) Mapping to robot latent space: the GTr(t, r) mapping is used to obtain the relevant

RLS representation, XRLS.

(iii) Action reproduction: the formulated inverse transformation INVTr maps the XRLS to

RAS, formulating a set of points XRAS ∈ R
8.

(iv) The planer’s output specifies the action to be implemented (i.e. reach, grasp, move),

and the requested execution times. The latter determines the speed of action execu-

tion i.e. low, normal, high.

(v) Action is reproduced by the robot at the appropriate speed. Successful completion of

the action is visually verified by a human observer (e.g. successful grasp of an object).

In case of unsuccessful robotic action, the session is dropped.
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4.2 Experimental Results

The methodological framework presented in the previous sections of this Chapter has

been implemented and exhaustively tested in order to assess its performance in realis-

tic cases. In this section, we report relevant results that quantify the effectiveness of action

reproduction at the learned or different execution speeds.

In the current study the relevant experimental set-up regarding the learning phase in-

volved kinesthetic teaching in order to demonstrate certain action behaviors to the robotic

arm. In all our experiments a six-joint arm manipulator was used, namely the JACO robotic

arm, by Kinova Robotics. Its joints can be controlled independently either with position-

control or with torque-control. Accordingly, the compliant mode of the JACO arm was

used in order to physically steer the arm to execute various motion trajectories.

The learning set is composed by sequences of paired poses executed by the two agents,

i.e. actor human arm and JACO robot arm, respectively. More specifically, we recorded a

set of 30 primitive right-arm-movements of reaching, grasping and placing an object of

100 frames each. Each demonstrated action is performed either at low, normal, or high

speed. Given that for a human actor it is rather unrealistic to exactly perform actions at

certain speeds, we employed the following convention in our experiments. At first, in an

off-line session, the human demonstrator performed repeatedly the 30 actions in order to

train with respect to the execution speeds. This resulted at a consistency in the execution

times within a 20% margin. In other words, a sample reach/grasp/move action at normal

speed, after training would have a duration of 10 ± 2sec. Similarly, durations at high-to-

low speed were performed on the average at 5 − to − 16sec, respectively. Subsequently,

we used a threshold-based categorization to assign learned actions as low, normal or high

speed ones. The corresponding thresholds were set at durations of (a) 7sec to discriminate

between high and normal speed actions, and (b) 14sec to distinguish among normal and

low speed actions. In order to end up with an un-biased population of the demonstrated

actions, out of the 30 recorded actions 1/3 were executed at each of the three specified

execution speeds.

Demonstration of the above outlined 30 actions, and concurrent kinesthetic teaching

to the JACO arm, gave rise to the establishment of the HAS and RAS spaces that were in-

stantiated with the recorded samples from the actions’ configuration spaces. More specif-

ically, both HAS and RAS assumed 3000 configuration poses (samples) at the end of the

training phase (30 actions × 100 frames each). Following the learning phase, as described

above, GPLVM was employed in order to compress the high dimensional acting spaces to

the latent ones. As a result, HAS and RAS point clouds have been transformed to HLS and

RLS representations, respectively.

Figure 4.5 illustrates the resulting latent spaces. It is of utmost importance that the de-

rived representations in HLS and RLS reveal well-separated sectors that correspond to the
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three implemented speeds. In other words, the sole information of action execution speed

seems adequate to classify the action representations in the latent space in practically non-

overlapping clusters. Interestingly, the latter holds true for both derived latent representa-

tions, namely HLS and RLS. This result should come as no surprise since the information

conveyed by speed is quite discriminative, at least as opposed to spatial information that

for the studied human actions designates small differences in the recorded trajectories.

Furthermore, each point in the latent space represents an 11D vector in the acting space

of human and an 8D vector for the robot case. In other words, every latent point includes

the information of the human or the robot state, the grasping configuration and the times-

tamp. To this end, it is worth noting that the formulated latent spaces feature important

and at the same time useful properties. Different actions result in well separated trajecto-

ries in the latent space, and also the neighboring property of a 3d trajectory is maintained

given the continuous curves that are derived in the latent space. Furthermore, actions at

different speeds are depicted in distinct point clouds in the latent space.

Besides the rather straightforward classification of actions in the latent spaces as exem-

plified above, additional noteworthy remarks can also be drawn from Fig. 4.5. More specifi-

cally, for each action in HAS (and its corresponding in RAS) recorded at a certain speed, we

have “mentally” derived the two analogous actions in the other two implemented speeds.

As a result, the three actions instantiated the same spatial actions at the three speeds, i.e.

low, normal and high. Subsequent derivation of the latent representations gave rise to

motion paths as the ones illustrated in Fig. 4.5 with the marked trajectories.

As can be observed, actions in the latent spaces are characterised by spatial continuity,

that is neighbouring points in the acting space result in neighbouring points in the latent

space. In other words, the physical continuity of an action’s 3D trajectory is also main-

tained in the derived latent representation. This is in full accordance with the findings

in our previous work [25], where we considered the latent representations of actions at a

single execution speed.

4.2.1 Performance Metrics of Spatio-temporal Accuracy

In order to quantitatively assess the proposed spatio-temporal LfD methodological frame-

work, we adopt in this work similar evaluation metrics as in [25], i.e. HLS and RLS con-

sistency and repeatability (EHLS, ERLS), robotic end-effector trajectory (EEF), and temporal

consistency (Et). To this end, let a novel action XN performed from the human demonstra-

tor at normal speed. From XN, the spatially equivalent actions at low (XL) and high (XH)

speed are artificially generated. Additionally, from each of the three actions XN, XL and

XH, a set of M actions Xi,N, Xi,L, Xi,H, i = 1, ..,M is produced by keeping the temporal com-

ponents of the actions unaltered and randomly perturbing the spatial ones. Accordingly,

M action trajectories are produced for each speed category that are variations of the same
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Figure 4.5: Formulated latent space representations for human actor (left) and JACO
arm (right), respectively. Actions performed at normal speed are repre-
sented by magenta circles, whereas slow and fast actions (in low and high
speed respectively) are depicted with cyan and yellow circles, respectively.

initial human action; a value of M = 50 has been used in our experiments. Subsequently,

each one is projected via GPLVM to HLS, and GTr is then employed to map the latter rep-

resentations to RLS. Finally INVTr is invoked to inversely transform the trajectories to RAS,

effectively resulting to the motions being reproduced by the robotic arm along with their

execution times.

HLS Consistency and Repeatability - EHLS

Let the three sets of actions in HLS, depicted from sets of low, normal, and high speed, re-

spectively, Xi,L
HLS, Xi,N

HLS, Xi,H
HLS, i = 1, ..,M. Let also Xi,L

HLS, Xi,N
HLS, Xi,H

HLS be their corresponding

mean trajectories. EHLS is defined as:
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EHLS = E
[
1
M

M∑
i=1

∥∥∥∥Xi,K
HLS −

Xi,K
HLS

∥∥∥∥2

S−1

∣∣∣∣∣
{K=L,N,H}

]
(4.2)

where distances in above eq. 4.2 are Mahalanobis distances expressed in the correspond-

ing ellipsoids of HLS (Fig. 4.5 left). E[·] denotes the mean value of the three quantities that

result for K values marked as N,L,H.

RLS Consistency and Repeatability - ERLS

In a similar manner as above, ERLS is obtained as the relevant sum of Mahalanobis dis-

tances expressed in RLS:

ERLS = E
[
1
M

M∑
i=1

∥∥∥∥Xi,K
RLS −

Xi,K
RLS

∥∥∥∥2

S−1

∣∣∣∣∣
{K=L,N,H}

]
(4.3)

where symbols in eq. 4.3 above are interpreted as in eq. 4.2.

Robotic end-effector trajectory - EEF

A Euclidean distance metric is calculated as an index of imitation of the end-effector’s

movement. More specifically, EEF is assumed to quantify the precise reproduction of a

demonstrated act by the robotic end-effector, and it is defined as the 3D-error in the lat-

ter’s trajectory. By this metric, only the spatial information is isolated, as the execution

time is not considered in the relevant equation. In other words, this measure computes

the Euclidean (3D) differences in trajectories between the robotic action reproduction and

the demonstrated one, assuming the same execution times; it is obtained as:

EEF = E
[
1
M

M∑
i=1

∥∥∥∥Xi,K
HEF
−Xi,K

REF

∥∥∥∥2∣∣∣∣∣
{K=L,N,H}

]
(4.4)

where Xi,K
HEF

,Xi,K
REF

indicate the end effector trajectories of the human actor and the robotic

arm, respectively, at K speed, i.e. low, normal, and high.

Temporal consistency - Et

A final metric is evaluated to describe the differences rendered in the execution times.

More specifically, let tHAS
i,N be the normal execution time of human action Xi,N

HAS and sim-

ilarly for the execution times at low and high speeds. Let also tRASi,N be the execution

time of the robotic reproduced action Xi,N
RAS, with similar definitions again for reproduced

actions at low and high speeds. The differences in the execution times averaged over all

actions at a certain speed give rise to Et as follows:
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Et = E
[
1
M

M∑
i=1

∥∥∥∥tHAS
i,K
− tRASi,K

∥∥∥∥2∣∣∣∣∣
{K=L,N,H}

]
(4.5)

The complete set of thirty demonstrated actions was employed for assessment pur-

poses.

The values obtained in this case, for the above described performance metrics, are

summarized below in Table 4.1 as percentage figures. Following common practice in the

area [4], [25], mean values of the obtained errors are presented, along with the relevant

standard deviations.

Table 4.1: Mean error values (μ) and standard deviation (σ) of the computed metrics
for each group of speed, namely Low (L), Normal (N) and High (H)

Low (L) Normal (N) High (H)
Metrics μ σ μ σ μ σ
EHLS 2.7 % 0.1% 3.2% 0.1% 3.4% 0.2%
ERLS 2.9 % 0.1% 4.6% 0.3% 5.1% 0.2%
EEF 2.7 % 0.2% 3.7% 0.3% 4.4% 0.3%
Et 2.4 % 0.1% 2.8% 0.3% 3.2% 0.3%

As can be observed, all performance metrics assumed very low values, indicating ac-

curate and effective spatio-temporal representation and reproduction of actions. Inter-

estingly, for the Low (L) case the errors are slightly smaller, becoming gradually larger as

speed increases. This is rather expected, since lower speed values give rise to smoother

trajectories, which in turn facilitate more accurate reproduction of relevant actions.

4.2.2 Use Case Application - Service Scenario

The second category of experiments regards the validation of robotic performance in a

realistic service scenario. In particular, the available reaching, grasp, move actions are

exploited to address time-constrained tray filling. The examined scenario is inspired by

restaurant standing queues with customers served one at a time. Robot aims at filling

the tray within the requested time frame, in order to serve humans on time. Humans are

supposed to wait in front of the serving queue. The simplified serving considered here

assumes two cups and one bowl to be placed on each tray. We consider varying times of

requested tray filling, centered at 2.0 minutes (the average period of customer arrival). In

short, when serving a customer is delayed, the system tries to compensate this latency by

asking for faster filling of future trays. Following this formulation/scenario, the repetitive

tray filling task must be implemented at varying time limits and hence robot action speeds.
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We have developed a simple setup that enables tray filling in naturalistic conditions

(see Fig. 4.6). It is noted here, that the proposed approach and the Daisy Planner in par-

ticular, manage the temporal constraints on tasks by enabling both the increment and the

decrement of speed. In general both options are required and the proposed work provides

a systematic approach to encompass both speed adaptations, and also demonstrates the

latter in real application scenarios. To this end, a service scenario application case is used

to demonstrate the validity of the approach, showing at the same time its ability of gener-

alization and natural flow.

Additionally, for quantitative assessment of the action execution times, we conducted

20 repetitions of the tray filling task; cases where grasp failures where encountered were

dropped out and the experiment was repeated. Accordingly, we ended up with 20 suc-

cessful task completions for which we contrasted the actual execution times against the

commanded ones by the planner. Time differences above 10% were regarded as failures.

Interestingly, only 3 executions did not meet the latter criterion, and were marked unsuc-

cessful. Given the complexity and variability of the studied scenario, the accomplished

result is considered highly promising and indicative of the method’s potential. A better

appreciation of the described experiments can be acquired by the supplementary video in

high resolution at https://youtu.be/WGG0vI6NiMU.

Figure 4.6: Snapshots from the serving scenario.

https://youtu.be/WGG0vI6NiMU


72 Chapter 4. Time-informed Action Learning and Reproduction

4.3 Chapter Highlights

In the current Chapter we introduced a novel spatio-temporal formulation that compactly

represents spatial and temporal aspects of studied actions. The latter is accomplished by

assuming latent space representations and further combined with a time-informed task

planner to effectively schedule actions in the course of a complete task. Our examina-

tion has revealed very useful and interesting properties of the formulated latent repre-

sentations, namely (i) well-separated latent representations for actions executed at differ-

ent speeds, (ii) neighboring points in the configuration space are mapped to neighboring

points in the latent space, thereby preserving action continuity in the latent depiction, and

(iii) errors in the spatial and temporal domains due to the latent transformation are very

small and in practice do not affect the method’s performance.

The described framework has been employed in the execution of a realistic service sce-

nario. Our results demonstrate the successful involvement of the robotic system in the

accomplishment of relevant tasks, whereby learned action behaviors are appropriately ex-

ecuted at varying speeds. The main contributions of the proposed method are summa-

rized as follows:

• Enhance robots that learn from demonstration to execute actions at variable speeds;

• Provide insight to the key role of temporal information in obtaining compact, latent

representations of human arm motions;

• Demonstrate the reversibility of the spatio-temporal aspects of actions from the low

dimensional space to the actual action space;

• Combine temporal planning with LfD.

Having dealt with the additional parameter of time, a natural next step is to extend this

methodological framework in the case of multi-robot collaborative systems, where time-

constrained task fulfillment is a critical issue. In addition the method’s extensibility by

incorporating further dynamic parameters, such as force, will be further examined in the

following Chapter, aiming at more challenging tasks as in the case of lifting and manipula-

tion of fragile and sensitive objects.



Chapter 5

Force-based Object Manipulation

Machine Learning methods has been widely employed for robotic reproduction of human

behaviors [119], [167], [136] with corresponding implementations in various application

domains. In our recent works [25], [24] we developed and evaluated an imitation frame-

work, termed IMFO (IMitation Framework by Observation), that is based on the compact,

low-dimensional representation of both human and robot arm motions, which are prop-

erly associated to facilitate learning of movements in various reproduction speeds. Similar

approaches have also been studied in [4], [168], [169], [157], [12].

Industrial applications often depend on robots that need to manipulate fragile objects,

in a precise and sensitive way. Such manipulations require a suitable force to be applied to

the object; that is, the grasping force needs to be sufficiently large to lift the object and at

the same time it cannot be too large to avoid object deformations and/or destruction. Ac-

cordingly, here, we study the more involved case of force-based object manipulation, that

is the case where the suitable required force to lift and manipulate a delicate object varies

for different objects and object positions relative to the arm. More specifically, we present

a Supervised Learning scheme, termed SLF (Supervised Learning scheme for Force-based

manipulation), to learn both the trajectory and the suitable gripper’s force for rigorous

manipulation of such objects.

In the proposed scheme, data acquisition results in a high dimensional dataset of an

adequate number of lift and manipulation actions (data points), recorded in a GAZEBO

simulated environment that facilitates ground truth availability. During learning, two al-

ternative neural network topologies are employed and compared, a 3-layer Deep Neural

Network (DNN) and a Recurrent Neural Network (RNN), to effectively derive the input-

output relationship. The mechanism by which the two types of NNs represent the learning

process is different. In the case of DNN, a feed forward neural network is implemented,

whereas in the RNN topology the hidden layers are fed by the previous step as an addi-

tional input into the next step. While the RNN builds up memory in this process, it is not

looking for the same patterns over successive time steps. The latter happens to be the case

for a DNN that is looking for the same patterns over different spatial regions. To this end,

73
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we further investigate whether the temporal dependence of the recorded trajectories, that

is encoded as memory in the RNN topology, strengthens the learning process.

The proposed SLF accomplishes to generalize with respect to the suitable force re-

quired to be applied on a delicate object for effective lifting and manipulation. The latter

constitutes the main contribution of the current work. Moreover, our approach achieves

to formulate a generalized trajectory to a target position, and reproduce at the same time

a successful pick-and-place movement. The above are successfully demonstrated in sim-

ulated and real experimental sessions conducted with a YuMi robotic arm (Fig. 5.1).

ABB YuMi Arm Ridgeback YuMi

Simulated Model

xy

z

Figure 5.1: Left: ABB YuMi Arm. Right: Ridgeback-YuMi robot model in Gazebo sim-
ulator. Red-Green-Blue lines denote the XYZ axes, respectively, for the
world, the left arm’s end-effector and the wrist.

5.1 SLF Formulation

In the current work, we put forward a learning scheme (SLF), that is used to derive the

grasping pose and the lifting force in order to manipulate delegate objects. Conceptu-

ally, the proposed formulation is comprised by three fundamental phases, as depicted in

Fig. 5.2: (i) data acquisition phase via supervised trial-execution in simulation, (ii) training

phase using a proper Neural Network topology, and (iii) execution phase both in simula-

tion and real environment. Accordingly, a robotic system is initially set to execute grasping

actions in simulation, applied to objects that vary in size, mass and location in workspace.

In the latter actions the grasping pose is dictated by the supervisor, whereas the proper

lifting force is obtained in a trial-and-error fashion, starting from a low force-value and

gradually increasing it. Subsequently, training is facilitated via the employment of ap-
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propriate Neural Network (NN) structures. Two alternative NNs are exploited, both with

their own merits. Specifically, Deep Neural Networks (DNN) and Recurrent Neural Net-

works (RNN) are used to facilitate the learning process and generate sequences of com-

mands, directly fed to a low-level control loop. DNNs are known structures that succeed

in encoding the spatial characteristics of the recorded movements, whereas RNNs better

handle the temporal information as an inherent memory feature. The trained system ac-

complishes object-manipulation via proper grasping pose and lifting force, proving thus

suitable for the case of sensitive objects. Following sim-to-real transfer, operation in real

environments is achieved in addition to simulated ones, generalizing also for objects not

included in the trial sessions.

Supervised Trial 
Execution

in Simulation

Training 
 Force-based 

Manipulation

Neural Network Module

Sim-to-Real 
Transfer

• Position of End  Effector
• Orientation of End  Effector
• Object’s Position 
• Object’s Mass

Grasp-lifting 
Execution

• Grasping Pose
• Grasping Force 
• Grasping Trajectory

Figure 5.2: Conceptual scheme of the proposed SLF.

5.1.1 Supervised Trial Execution in Simulation

In order to facilitate training, a large dataset is collected that serves as input to the learning

process. For data acquisition, the YuMi robot is set to perform several pick-and-place

movements in the GAZEBO simulated environment, i.e. reach the target, grasp it, and

lift/place down. The zero velocity crossing algorithm [170] is employed in order to segment

an arm movement into the three distinct actions.

Trial sessions differ in the grasping configuration pose with respect to the mass of the

object. Figure 5.3 illustrates the three grasping poses used during learning for each class of

objects. All the grasping poses respect the kinematic constraints of the arm, i.e. the YuMi
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Figure 5.3: Left: Configuration grasping poses for green objects, marked as “light”
graspingPose#1. Middle: the “normal” grasping Pose#2. Right: the “heavy”
one Pose#3.

arm needs to apply different forces to lift the same object (mass), when the arm is fully

extended or not. As already mentioned above, during training the required lifting force

is obtained via trial-and-error, starting from a low force-value and gradually increasing it.

The grasping poses are selected by imitating the demonstrator’s real grasping pose while

grasping a light, normal or heavy object.

Further to that, we note that the YuMi arm can lift objects in the range of (0,0.5]kg. Ac-

cordingly, three groups of objects are used for training, asClass : {Object Color, Mass, Grasping Pose}:

• Light : {Green, (0.00,0.16]kg, Pose#1}

• Normal : {Blue, (0.16,0.33]kg, Pose#2}

• Heavy : {Red, (0.33,0.50]kg, Pose#3}

Given that the appropriate force in order to successfully lift an object depends on the

object’s weight and the friction coefficient μo, we have employed in the current study a

number of objects with similar friction coefficients, i.e. approximately ' 0.4. Accordingly,

the network is trained to estimate the force based on the object’s weight, factoring out μo.
Evidently, objects with different values of μo could have been considered with appropriate

modifications in the network topology. This has been pursued in the current work, given

experimental inadequacy to input in real-timeμo to the neural network. However, estimat-

ing the friction coefficient is often not trivial. To this end, our approach is independent of
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this estimation step by considering friction implicitly.

Completion of the trial sessions results in the compilation of the training set; the latter

consists of N trajectories of T frames each. For each training data point, a 19-dimensional

vector of the XYZ-position (i.e. xneet , y
n
eet , z

n
eet) and the quaternion XYZW-rotation of the

robot’s arm end-effector (i.e. qxneet , qy
n
eet , qz

n
eet , qw

n
eet), the target-object position (namely xnt , ynt , znt ),

its mass (m), the robot’s joint angles (q1nt , . . . , q7nt ) and the force attributes of the gripper,

Fn
wt , is recorded as:

Dn
t ={xneet , y

n
eet , z

n
eet , qx

n
eet , qy

n
eet , qz

n
eet , qw

n
eet , x

n
t , ynt , znt ,m

q1nt , q2n
t , q3n

t , q4n
t , q5n

t , q6n
t , q7nt ,Fn

wt}

where t ∈ [1,T] refers to the time frame of the movement and n ∈ [1,N] is the nth trial

session of the total N ones.

5.1.2 Training to Facilitate Force-based Manipulation

In this part of the proposed SLF, two alternative approaches are implemented and tested

for their accuracy and validity for the learning process. More specifically, we investigate

the role of (a) pattern similarities over different spatial regions, and (b) temporal depen-

dency of the recorded sequences of poses (trajectories). The former is accomplished via a

3-layer Deep Neural Network (DNN) implementation, while a Recurrent Neural Network

(RNN) is employed for the latter.

Irrespectively of the training process, the Neural Network (NN) module learns how to

plan a task by repeating successful task sequences for multiple objects and also figures

out a good grasp configuration choice among infinite possible ones in the joint space to

effectively grasp and lift the given object.

Deep Neural Network: In the current case, training is accomplished via a DNN struc-

ture that is set to learn the grasping pose and lifting force of the industrial robot YuMi.

DNN input is composed of 11 variables, namely robot’s end-effector position and orien-

tation, target position and mass {xee, yee, zee, qxee, qyee, qzee, qwee, x, y, z, m} (target’s

orientation is considered fixed), whereas the DNN outputs 8 variables that denote the joint

states of the 7-joint YuMi arm along with the force value of the gripper {q1, q2, q3, q4, q5, q6, q7, Fw}.

The joint angles {q1 · · · q7} for the output data, are calculated by using a home-made In-

verse Kinematics analytical solution for the YuMi model, based on available ROS KDL

package [171]. Moreover, the force value Fw is the resultant force of the two fingers force

components as they are highlighted in Fig 5.1(left) with the red arrows. The number of the

hidden layers and neurons are experimentally set to 3 and 7, respectively. The neurons

in two adjacent layers are connected with weights randomly initialized within the range
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[−1, 1]. During the learning process, the back propagation algorithm is applied for train-

ing the weights. Fig. 5.4 summarizes the overall structure of the proposed NN.

In turn, we minimize a cost function C, that is given as the mean squared error between

the estimated and the actual values of the output variables:

C(Wy
x) = 1

2‖hw(x) − y‖2, (5.1)

where, w is the set of the weights in the network to be trained, y is the output label, and

hw(x) is a hypothesis function yielding an estimated output. The overall cost function for

a batch training is defined as:

C(W) = 1
N

∑
k

C(Wyk
xk ) + λ

2N

D∑
l
‖W‖2F (5.2)

where, N is the training set size, D is the depth of the NN, λ is a regularization parameter

and the term ‖W‖2F is the Frobenious norm, defined as:

‖W‖2F =
nl−1∑
i=1

nl∑
j=1

(wn
ij)

2 (5.3)

where, n is the number of the nodes at the lth layer, and wn
ij ∈W is the weight of the edges

between a node i in the layer l−1 and a node j in the layer l. We want to obtain the optimal

Input Layer Hidden Layers Output Layer

qxee

qyee

qzee

qwee

m

q4

y

z

x

q5

q6

Fw

q2

q3

q1

Wki Wjk

yee

zee

xee

q7

Figure 5.4: Block diagram of the proposed DNN topology.
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parameter set W* to achieve the minimization of the objective function as follows:

W* = argmin
w

C(w) (5.4)

which can be achieved by the back propagation algorithm. In the latter the weight vectors

are updated from the top layer to the bottom one by using the stochastic gradient method:

wn
ij = wn−1

ij + δ∂C(W)
∂wn−1

ij
(5.5)

where δ is an adaptation parameter, experimentally set to 0.5.

Recurrent Neural Network: Recurrent Neural Networks (RNNs) are quite popular mod-

els that have shown great promise in many learning tasks [172]. The main idea behind

RNNs is the exploitation of sequential information. In a traditional NN, as described

above, we assume that all inputs (and outputs) are independent of each other. RNNs are

called recurrent because they perform the same task for every element of a sequence, with

the output being depended on previous computations. In other words, they are supposed

to have a “memory” that captures information about what has been calculated so far. In

theory, RNNs can make use of information in arbitrarily long sequences, but in practice

they are limited to looking back only a few steps.

In the proposed scheme, we train sequences of poses that have a temporal dependence

among them. Subsequently, we employ a task-specific version of an RNN topology that is

appropriate for SLF as shown in Fig. 5.5. In this implementation the inputs and outputs

are the sequences of the demonstrated data, in full analogy with those used in the DNN

formulation.

h1 h2 h3

Input
X

Xt-1 Xt Xt+1

Output
Y

Wki Wij

Figure 5.5: Schematic block diagram of the proposed RNN topology.
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5.1.3 Grasp-lifting Execution

After learning the weight parameters, two types of executions are performed, both in sim-

ulation and in real robot using sim-to-real transfer. Sim-to-Real Transfer Learning, as it is

often termed, offers a great potential to bridge the gap between simulation and real data

in machine learning process control [173]. To this end, in the case of real robot we take

advantage of the large number of trials that can be acquired through simulation. In turn,

the following steps are employed to effectively reproduce a generalized lifting movement

by the robotic system (Fig. 5.6).

i An external camera system detects the position of the target object; the mass of the

object is assumed known. In practice the latter is color-coded in our implementation.

ii Through the trained NN module the output variables are predicted, e.g. the joint states

of the arm and the desired lifting force.

iii Finally, the arm executes the predicted trajectory to the goal pose and applies the re-

quired predicted force to successfully lift the object.
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Figure 5.6: Integrated system design.

By this process, given a set of novel input data, we derive the corresponding output

values that are appropriate for the task at hand. The described learning system achieves

to: (i) implicitly implement a kinematic model of the YuMi arm, (ii) predict the output in

high accuracy, achieving at the same time both trajectory and force predictive control, (iii)

adapt and generalize for the case of novel objects that were not used during training. In the

following section we present detailed experimental results that demonstrate the above.

5.2 Experimental Results

The proposed Supervised Learning scheme has been implemented and experimentally

validated in both simulated and real robot environments. In the current section we present
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at first quantitative results, that demonstrate the accuracy and robustness of the proposed

force-based manipulation scheme in simulation. Further to that, evaluation results are

outlined for the case of a YuMi robotic platform that is set to manipulate appropriate ob-

jects.

5.2.1 Simulation Experiments

In order to train the system and obtain quantitative assessment results, a large amount

of data should be recorded. To this end, we assume the YuMi arm in a simulated Gazebo

environment, executing a variety of pick-and-place movements.

To effectively accomplish training of the NN module, we employed two sets of data,

one to train the module, and one to validate it. The complete dataset is comprised of

50 arm-motion trajectories for each class of objects, of 1000 data points each, hence in

total 150,000 data points constitute the simulated data set. Every recorded trajectory is

composed of three distinct motions, namely Reach-Grasp-Place. The above dataset is di-

vided in two subsets: (a) 45 arm-motion trajectories are randomly selected and assigned

to the training dataset, and hence the latter contains 135,000 data points; (b) the remain-

ing 5 arm-motion trajectories are assigned to the test dataset which contains 15,000 data

points.

Training of the simulated grasping and lifting is accomplished in a trial-and-error fash-

ion. Accordingly, for a given object, the gripper attempts to grasp and lift it, initially by ap-

plying the smallest possible force from the three force-profiles that are employed. If this is

a successful attempt, it is recorded as such and used as a training case. In many cases this

fails, and hence when the gripper closes and attempts to lift the object the latter slips and

remains on the table (Fig. 5.7-top row). This attempt is then dropped, the applied gripper

force is increased to the next higher one, and grasping and lifting is attempted again. Suc-

cess or failure would again lead to the same actions as above; in the latter case (failure),

the gripper force is increased to the highest value, and the task is repeated for the last time

(Fig. 5.7-bottom row). The above training procedure has been repeated two times for both

NN module implementations, i.e. DNN and RNN.

Figure 5.8 summarizes the Loss and Accuracy plots derived from the training phase for

the DNN and RNN modules, respectively. The Loss plots are calculated by employing the

Root Mean Square Error (RMSE) metric. In short, the Loss function is a commonly adopted

metric in artificial NNs, used to measure the inconsistency between the predicted values

and actual ones. In most cases it results in a decreasing curve that drops significantly after

a sufficient number of training epochs. As can be observed from Fig. 5.8, for both DNN and

RNN implementations, Loss has dropped considerably after approximately 2000 epochs,

and reached almost a plateau at 10,000 epochs. While in both cases Loss has achieved a

final small value, for the case of DNN the obtained RMSE value of 0.03 is superior to the
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Figure 5.7: Top row: Snapshots from failure case of lifting object because of slipping.
Bottom row: Successful reproduction of lifting motions after training of
the proposed scheme.

0.28 for the case of RNN. Similarly, the Accuracy figure is used to quantify the error be-

tween a learned action (training data point) and the reproduced one during training. The

relevant Accuracy plots for DNN and RNN are also depicted in Fig. 5.8, verifying robust per-

formance of both networks already after approximately 2000 training epochs. The final

achieved Accuracy figures of 0.91 for DNN and 0.80 for RNN are sufficiently appropriate

for the studied task. The results summarized in Fig. 5.8 indicate that the DNN implemen-

tation has accomplished better training when compared to the RNN.

Analogous results were obtained when measuring RMSE for the seven arm joints (q1 · · · q7)

and the gripper force Fw. Given the simulated environment, ground truth information is

available for all involved quantities, and hence RMSE can be computed. Figure 5.9 illus-

trates RMSE obtained for both modules, i.e. DNN and RNN. Evidently, in all cases the

prediction errors are very small, indicating appropriate training. Still, DNN has consis-

tently resulted in smaller RMSE values, suggesting superior performance with respect to

RNN. Interestingly, as can be observed, the larger errors correspond to joint q2, which is

expected since q2 is mostly used for the arm motions in our experiments.

The results outlined above and summarized in Figs. 5.8, 5.9 indicate that whereas both
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Accuracy DNN
Accuracy RNN

Figure 5.8: Learning curves for the cases of DNN and RNN training.

NN formulations, i.e. DNN and RNN, gave rise to similar results, DNN is consistently

slightly more accurate. Overall, for the 7 arm-joints the RMSE error for the DNN imple-

mentation is approximately 2%, whereas RNN training resulted in total error of 3.5%. Er-

rors in the gripper force are very small, 0.1% and 0.5%, respectively for DNN and RNN.

Accordingly, the DNN formulation is adopted and used in our system, since it consistently

outperforms RNN. In essence, the internal temporal dependence of the RNN circuit does

not seem to contribute sufficiently to the training at hand, whereas the spatial structure of

the DNN better adapts to the characteristics of the object manipulation task.

5.2.2 Transfer Learning for Real Robot Experiments

To further evaluate the performance of our force-based lifting scheme, we conducted a set

of experiments with the ABB YuMi manipulator comprising left-hand reach-grasp-place

movements. The training set consisted of 30 real-world lifting attempts (10 for each ob-

ject class) that were conducted via kinesthetic guidance by a human operator. Figure 5.10

illustrates the mean trajectories recorded for each class of objects.

It is noted here that in order to effectively record during kinesthetic teaching the suit-

able force that the human teacher applies in each successful grasping manipulation, we

augmented the YuMi gripper with two Force Sensing Resistors (FSR). Figure 5.11 shows
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Figure 5.9: RMSE for the six arm joints and the wrist’s force from the 1000 simulations;
green bars indicate the prediction errors for the green class of objects, blue
bars for the blue one and red bars for the red one; black lines indicate
the standard deviation from the corresponding mean values; bold bars
indicate the errors with the DNN implementation and light bars with the
RNN in all cases.

the demonstrator teaching kinesthetically the arm to grasp the 3 objects used to represent

each class, i.e. a black box of 0.01kg mass for the light class (Fig. 5.11-left); a remote con-

trol of 0.1kg for the normal one (Fig. 5.11-middle); a green box of 0.5kg that represents the

heavy class of objects (Fig. 5.11-right). Additionally, the integrated FSR-circuit that was

embedded on the left arm of the YuMi robot can be observed in Fig. 5.11.

Training via kinesthetic teaching is inherently a very slow process, and can involve only

a limited number of sessions, i.e. object manipulations. Accordingly, and in order to suf-

ficiently train the NN module, we employed the transfer learning approach by combining

the recorded data from the simulated experiments with the data from the real ones. In this

context, the NN module (DNN as derived above) was trained using the training set from

the simulation experiments (135,000 points) and the one from the kinesthetically trained

YuMi arm (30,000 points). The obtained results are illustrated in Fig. 5.12, showing very

similar Loss and Accuracy plots with the DNN ones (Fig. 5.8).

Following Sim-to-Real transfer learning, we conducted an experiment to assess the

trained system in real reach-grasp-lift scenarios. To that end, we used 4 novel objects
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Figure 5.10: Mean trajectories of object lifting manipulation during training via kines-
thetic teaching. Green Curve: average trajectory for reach-grasp-lift the
green class object. Blue Curve: average trajectory for reach-grasp-lift the
blue class object. Red Curve: average trajectory for reach-grasp-lift the red
class object. Standard deviations are marked with the lighter thick line for
each trajectory. Black circle denotes the starting point, whereas black and
yellow crosses indicate the grasp and place points, respectively, as they
were computed via the zero velocity crossing algorithm.

(varying on mass), namely green box (0.015kg), empty cup (0.03kg), tape (0.2Kg), bottle

(0.42kg) and repeatedly executed the manipulation task 25 times for each object. Table 5.1

summarizes the results for all repetitions for the 4 novel objects. As can be observed, the

results show very accurate reach and grasp movements, despite the fact that the 4 objects

were not used during training.

A final, more challenging experiment, was conducted where the manipulated object

was an egg. As in the case of all previous experiments, YuMi was set to reach, grasp and

place the egg-object, by applying the proper required force for effectively lifting it. Ob-

viously, applied forces with lower or higher values would cause the egg to break; in the

former case due to the egg slipping from the gripper and in the latter due to the egg being

squeezed by the gripper. More specifically, a small egg of 0.046kg weight (considered as

light class) was used, and placed on the workspace-table in front of the YuMi arm. The

experiment was repeated 10 times and succeeded in 9 times with the predicted force at
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Figure 5.11: Left: a black box of 0.01kg mass for the light class; Middle: a remote con-
trol of 0.1kg for the normal one; Right: a green box of 0.5kg that represents
the heavy class of objects.

5.22N. One failure case did happen where the predicted force was higher, at 6.5N, and the

egg was smashed.

Indicative results from our experiments are showcased in the supplementary video,

and relevant snapshots are also shown in Figures 5.13 and 5.14 . Overall, the obtained

results demonstrate high accuracy in learning and predicting the required suitable force,

Loss Sim-to-Real

Accuracy Sim-to-Real

Figure 5.12: Sim-to-Real learning curve.
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Table 5.1: Experimental Results for novel object manipulation

Objects Successful Attempts Failures
Slip Squeeze

Green Box 24 0 1
Empty Cup 23 0 2

Tape 23 1 1
Bottle 22 1 2

Figure 5.13: Two representative grasp-lifting shots from the objects used for validation,
namely tape and green box, are shown in this figure.

along with the arm’s motion trajectory, to manipulate delicate objects. All the presented

experiments can be also visualized in high resolution at https://youtu.be/l_lv0yAywXA.

5.3 Chapter Highlights

In this Chapter, we presented a novel supervised learning scheme to effectively accom-

plish reach-grasp-lift tasks for delicate objects. After suitable training, the reaching trajec-

tory, grasping pose and the appropriate applied force are learnt and effectively used for

object manipulation tasks.

The proposed scheme employs an NN as the primary module that facilitates training

to reach and grasp with the proper required force. We have formulated two appropriate

modules, namely DNN and RNN, and experimentally have shown the DNN to perform

very accurately. The latter has been adopted in our implementation, and based on Sim-

to-Real transfer learning we have accomplished robust and proper manipulation of novel

objects with the suitable required force. Quantitative and qualitative experimental results

attest the above; in addition, the proposed SLF has succeeded in the most challenging

https://youtu.be/l_lv0yAywXA
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Figure 5.14: Snapshots from the implemented egg-lifting experimental setup.

manipulation of an egg object.

In our future work, we plan to apply the proposed integrated learning scheme to rou-

tine tasks in realistic setups, where force/torque feedback is required. Relevant tasks in-

clude manipulation of food items, such as tomatoes and pies, and grasping and placing of

deformable objects. In this context, we aim at including in our formulation additional ob-

ject attributes, besides the mass, such as shape, orientation, size, etc. Moreover, we plan to

extend force-based skill learning to robots in an active learning for auto-correction and on

line update of recovered movements. Also, the proposed SLF can potentially be combined

with slipping avoidance techniques as in [115], to offer an integrated scheme that caters

for suitable force-based grasping, enhanced with intrinsic slippage prevention. Finally, a

longer-term extension of the approach regards dual-arm robots, multi-robot systems and

human-robot collaborative setups where force-based manipulation is more involved.



Chapter 6

Discussion

6.1 Conclusions

A major issue in motor learning regards the difficulty in acquiring kinematic capacities

that are inherently high dimensional. To deal with this problem, a direction of research

in this thesis focused on obtaining an appropriate mapping of the high-dimensional mo-

tor space in a subspace of lower dimensionality, called latent space. In order to establish

a latent space encapsulating the main characteristics of the motion, several linear and

nonlinear methods have been proposed as already presented in Chapter 2. Among linear

methods, Principal Component Analysis (PCA) is one of the most common approaches

used in various fields of research where the datasets consist of human motion data. In this

work, in order to tackle the inherent nonlinearities of the motion, we developed an LfD

approach based on the non-linear dimensionality reduction technique, namely Gaussian

Process Latent Variable Model (GPLVM).

Capitalizing on the GPLVM-based encoding of observed actions in latent representa-

tions, we then formulated and implemented a robust LfD framework, termed Imitation

Framework by Observation (IMFO). As a typical LfD scheme, IMFO comprises three dis-

tinct phases: (i) observation and data acquisition, (ii) latent space formulation, and (iii)

robotic reproduction. By modeling the reciprocal interaction of the two ends, i.e. observed

and reproduced actions, the proposed formulation effectively accomplishes to map the

observed world to the robot’s one. Accordingly, IMFO succeeds in endowing robotic sys-

tems with human-like action capabilities. Our extensive examination has revealed very

useful and interesting properties of the formulated latent representations, namely: (i) well-

separated latent representations for different actions, (ii) neighboring points in the config-

uration space are mapped to neighboring points in the latent space, thereby preserving

action continuity in the latent depiction, and (iii) errors in the spatial and temporal do-

mains due to the latent transformation are very small and in practice do not affect the

method’s performance.

It is interesting to note that research in the LfD field has rather overlooked two particu-

lar and relevant topics. On one hand, most of the work in LfD has focused on how to repre-

89
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sent and reproduce a given action task, and only a few researchers have worked on finding

possible solutions to the ”what to imitate” problem. On the other hand, learning has been

applied in trajectory following tasks, where only spatial information -coming mostly from

vision systems- has been used as input to encode and reproduce the demonstrated skill.

Nevertheless, it is worth emphasizing that such learning systems may miss relevant data

in more general scenarios, like tasks implying physical contacts, fine manipulation skills

or multi-agent skills with temporal constraints.

In turn, our research investigated the role of temporal planning in LfD, by enhanc-

ing the basic formulation of IMFO framework with the feature of action execution time.

Accordingly, we succeed to encode both the spacial and temporal aspects of the learned

motor behaviors. This spatio-temporal framework has been extensively tested in the ex-

ecution of a realistic serving scenario, where execution time is critical for the customer’s

idle time. Obtained results regarding reproduction of the spatio-temporal characteristics

of the demonstrated actions, validate the successful involvement of the robotic system in

the accomplishment of relevant tasks, whereby learned action behaviors are appropriately

executed at varying speeds.

During the last year of this PhD, our internship in ABB Corporate Research Center in

Vasteras, Sweden, under the supervision of Dr. Pietro Falco, resulted in a formulation re-

garding a learning scheme for dexterous manipulation of fragile objects. The proposed,

Supervised Learning scheme for Force-based lifting and manipulation, has been validated

using an ABB YuMi robotic platform. The conducted experiments attest for the system’s

accuracy and validity by effectively learning the appropriate force required for a successful

object lifting.

Overall, the current thesis contributed to LfD by proposing a comprehensive frame-

work (IMFO) to deal with action observation, encoding and reproduction. The compact

representation of actions in a latent space lies in the heart of IMFO and constitutes a key

development of our work. Interestingly, IMFO has been successfully advanced to also

include temporal aspects of relevant actions as well as features involved in force-based

lifting and manipulation. By systematically pursuing the above, we believe we have suc-

ceeded in accomplishing to:

• Effectively learn and reproduce action behaviors, irrespective of the robotic embod-

iment;

• Deal with novel actions in HRI/HRC contexts;

• Reveal spatial and temporal aspects of the studied actions, effectively facilitating ac-

tion learning and reproduction at different speeds;

• Provide insight to the key role of spatio-temporal information in the obtained latent

representations of both human and robot arm motions;
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• Predict the suitable force that has to be applied on a sensitive object for effective

lifting and manipulation.

The above are also evidenced by the extensive experimental results obtained in the context

of this thesis.

6.2 Directions for Future Work

Evidently, the formulation of the proposed LfD methodological framework appears to be

a tangible technical contribution in domains such as robot learning and imitation, mo-

tor control, HRI and HRC. Nevertheless, work in the current thesis, besides addressing

specific and challenging problems, has opened up future research directions in multiple

directions.

At first, it seems rather straightforward to opt for the extension of the proposed frame-

work to formulate a generic methodology for full body imitation through latent represen-

tation. Through the current formulation, we have set the basis to imitate human arm-

motions by mere observation. Since no limiting assumptions underly the latter, full body

imitation lends itself as a direct extension, relying on contemporary full body tracking sys-

tems [174], [175].

Further to the above, the application of the proposed integrated learning scheme to

routine, yet challenging tasks in realistic scenarios and industrial setups, whereby force/torque

feedback is crucial, is a fruitful direction. Relevant tasks include manipulation of sensitive

food items and grasping and placing of deformable objects [176], [177]. The evaluation

metrics introduced in this thesis can be systematically employed in the above cases to

rigorously assess the performance in the named scenarios.

Another promising direction for future work is the combination of our approach with

obstacle avoidance methods. In other words, assuming the presence of objects in the

robot’s workspace, the representation of obstacles in the latent space should systemati-

cally be investigated in order to enhance the current imitation framework with the ability

of auto-correction and recovering movements for online adaptation to unexpected pertur-

bations, i.e. obstacles, novel environments, etc.

The issues addressed in our study regard mostly the single-robot LfD problem, i.e.

developing imitation strategies from multiple demonstrations. More involved scenarios

should consider multiple agents, and hence noteworthy extensions regard dual-arm robots,

multi-robot systems and advanced human-robot collaborative setups where force-based

manipulation is more involved.

Broadly speaking, LfD technologies developed in the current PhD thesis address spe-

cific applications, but at the same time bear potential for far-reaching impact. The ad-

vent of smart robot companions, hybrid-agent systems, and human-robot symbiotic se-

tups, calls for robust LfD implementations. In this context, the proposed framework along
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with all developed modules may be particularly beneficial and form the seed for more en-

hanced systems. The directions for future work proposed in the current section augment

nicely contemporary technologies, ultimately leading to skilled AI agents. Imitation ca-

pacities in turn can significantly promote the behavioral traits of the latter, and pave the

way towards robots acceptable in man-made environments.
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