
University of Crete

Computer Science Department

Interactive Exploration of Fuzzy RDF
Knowledge Bases

Nikos Manolis

Master's Thesis

Heraklion, 25 February 2011

PANEPISTHMIO KRHTHS

SQOLH JETIKWN KAI TEQNOLOGIKWN EPISTHMWN

TMHMA EPISTHMHS UPOLOGISTWN

Dialogik ExereÔnhsh B�sewn Gn¸sewn se Fuzzy RDF

ErgasÐa pou upobl jhke apì ton

Nikìlao E. Man¸lh

wc merik ekpl rwsh twn apait sewn gia thn apìkthsh

METAPTUQIAKOU DIPLWMATOS EIDIKEUSHS

Suggrafèac:

Nikìlaoc Man¸lhc, Tm ma Epist mhc Upologist¸n

Eishghtik Epitrop :

Iw�nnhc TzÐtzikac, EpÐkouroc Kajhght c, Epìpthc

Dhm trhc Plexous�khc, Kajhght c, Mèloc

AnastasÐa Analut , Ereun tria, InstitoÔto Plhroforik c ITE, Mèloc

Dekt :

'Aggeloc MpÐlac, Anaplhrwt c Kajhght c

Prìedroc Epitrop c Metaptuqiak¸n Spoud¸n

Hr�kleio, 25 FebrouarÐou 2011

3

4

Interactive Exploration of Fuzzy RDF Knowledge Bases

Nikos Manolis

Master’s Thesis

Computer Science Department, University of Crete

Abstract

In several domains objects descriptions and associations are accompanied by a nu-

meric degree expressing their strength, importance, or having other application specific

semantics (e.g. certainty, trust, etc). These degrees can be provided by humans or be the

result of automatic processes (like classification, mining or integration).

Users would like to browse and explore such information sources without having to be

aware of the employed terminology or the underlying structuring, nor the query language

of the source. Furthermore they would like the ability to reach states whose contents are

specified by conditions that involve the degrees of the descriptions/associations.

In this work we consider Fuzzy RDF as the representation framework for such “weighted”

descriptions/associations, and we propose a novel model for browsing and exploring such

sources, which allows formulating complex queries gradually and through plain clicks.

Specifically, in order to exploit the fuzzy degrees, the model proposes interval-based tran-

sition markers.

The merits of the proposed model is that it defines formally and precisely the state

space of an interaction that (a) allows users to locate the objects of interest, or to get

overviews, without having to be aware of the terminology nor the query language of the

underlying source, and without reaching states with empty results, (b) exploits fuzzy

degrees for enhancing the discrimination power of the interaction (without making it

complex for the end user), (c) generalizes the main browsing/exploration approaches for

plain RDF/S sources (also clarifying issues regarding schema and instance cyclic property

paths), (d) is query language independent, and (e) is visualization independent. Finally we

5

discuss issues concerning the realization of the model over the available query languages,

and we report experimental results regarding efficiency.

Supervisor: Yannis Tzitzikas

Assistant Professor

6

Dialogik ExereÔnhsh B�sewn Gn¸sewn se Fuzzy RDF

NÐkoc Man¸lhc

Metaptuqiak ErgasÐa

Tm ma Epist mhc Upologist¸n Kr thc

PerÐlhyh

Se poll� pedÐa oi perigrafèc kai oi susqetÐseic twn antikeimènwn sunodeÔontai apì

ènan arijmhtikì bajmì o opoÐoc mporeÐ na ekfr�zei thn isqÔ, th shmantikìthta na èqei

�llec shmasÐec (bebaiìthta, empistosÔnh klp). AutoÐ oi bajmoÐ mporeÐ na èqoun dojeÐ

apì anjr¸pouc na eÐnai apotèlesma automatopoihmènwn diadikasi¸n (l.q. taxinìmhshc,

exìruxhc olokl rwshc).

Oi qr stec ja jelan na plohgoÔntai kai na exereunoÔn tètoiec phgèc plhrofori¸n

qwrÐc na qrei�zetai na gnwrÐzoun thn orologÐa pou qrhsimopoieÐtai thn upokeÐmenh

dìmhsh, all� oÔte kai thn erwthmatik gl¸ssa thc phg c. Sun�ma ja jelan na mporoÔn

na ft�noun se katast�seic twn opoÐwn ta perieqìmena prosdiorÐzontai apì sunj kec pou

emplèkoun touc bajmoÔc.

Se aut n thn ergasÐa jewroÔme th Fuzzy RDF (Fuzzy Resource Description Frame-

work) wc to plaÐsio anapar�stashc tètoiwn �bebarhmènwn� perigraf¸n kai susqetÐsewn,

kai proteÐnoume èna nèo montèlo gia thn plo ghsh kai exereÔnhsh tètoiwn phg¸n, to

opoÐo epitrèpei th diatÔpwsh sÔnjetwn eperwt sewn me stadiakì trìpo kai mèsw apl¸n

klik. Sugkekrimèna, gia thn ekmet�lleush twn bajm¸n, to montèlo prosfèrei shmeiwtèc

metab�sewn (transition markers) pou antistoiqoÔn se diast mata bajm¸n.

Ta jetik� tou proteinìmenou montèlou eÐnai ìti orÐzei epakrib¸c kai tupik� to q¸ro

katast�sewn miac allhlepÐdrashc pou (a) epitrèpei stouc qr stec ton entopismì twn an-

tikeimènwn endiafèrontoc, thn epopteÐa aut¸n, qwrÐc na apaiteÐtai gn¸sh thc orologÐac

thc erwthmatik c gl¸ssac thc phg c, kai apotrèpontac katast�seic me kenì perieqìmeno

(b) axiopoieÐ touc bajmoÔc gia na aux sei th diakritik ikanìthta thc allhlepÐdrashc

7

(diathr¸ntac thn ìmwc apl sth qr sh), (g) apoteleÐ genÐkeush twn basik¸n proseg-

gÐsewn plo ghshc/exereÔnhshc pou èqoun protajeÐ gia koin (ìqi fuzzy) RDF/S, aposafh-

nÐzontac sun�ma zht mata pou aforoÔn thn plo ghsh se kuklik� monop�tia, kai (d) eÐnai

anex�rthth erwthmatik c gl¸ssac kai trìpou optikopoÐhshc. Tèloc sqoli�zontai zht -

mata pou aforoÔn thn ulopoÐhsh tou montèlou epÐ twn diafìrwn glwss¸n eperwt sewn

pou up�rqoun, kai anafèrontai peiramatik� apotelèsmata epÐdoshc.

Epìpthc kajhght c: Gi�nnhc TzÐtzikac

EpÐkouroc kajhght c

8

EuqaristÐec

Ja jela na euqarist sw ton epìpth kajhght mou k. Iw�nnh TzÐtzika gia thn ousi-

astik kajod ghsh kai sumbol tou sthn olokl rwsh aut c thc ergasÐac, kaj¸c epÐshc

kai gia th dunatìthta pou mou pareÐqe na sunergast¸ me to InstitoÔto Plhroforik c tou

IdrÔmatoc 'Ereunac kai TeqnologÐac.

Epiplèon, ja jela na euqarist sw touc fÐlouc kai sunerg�tec pou suneisèferan sthn

ekpìnhsh aut c thc ergasÐac. IdiaÐtera euqarist¸ touc F¸nta FafoÔth, Gi¸rgo Ploum�kh,

NÐko Armenatzìglou kai Panagi¸th Papad�ko gia thn polÔpleurh bo jei� touc.

Tèloc euqarist¸ touc goneÐc mou, EujÔmio kai D mhtra, gia th sumpar�stas touc

autì to di�sthma.

9

Contents

Table of Contents iii

List of Figures viii

1 Introduction 1

1.1 Organization of the thesis . 2

2 Browsing Approaches and Related work 5

2.1 Aspects of the Landscape . 5

2.1.1 Kinds of Information Needs . 6

2.1.2 Information Space . 7

2.1.3 Configuration . 8

2.1.4 State Space . 10

2.1.4.1 Characterizing Transitions 11

2.1.4.2 State Space and Ranking 13

2.1.5 Faceted Dynamic Taxonomies . 14

2.2 Related Work . 17

3 A Generic Interaction Model for navigation over RDF/S 23

3.1 RDF Background and Notations . 23

3.2 A Generic Browsing Model for RDF . 25

3.2.1 Class-based browsing . 27

3.2.2 Property-based browsing . 28

3.2.3 Property Path-based browsing . 30

i

3.2.4 Entity Type Switch . 32

3.3 Characterizing Sessions . 33

3.4 Path Expansion and Cycles: MaxExpansionSteps 34

3.5 Tracking History . 37

3.5.1 State-changing Clicks . 37

3.5.2 State-preserving Clicks. 38

3.6 Caching and State Identity . 39

3.7 RDF/S Query Languages . 40

3.8 On History Reduction . 44

3.8.1 On Cycles . 47

3.8.2 Client-Server Issues . 47

3.9 Related Works on RDF/S . 47

3.9.1 Transitions Supported By Related Works 48

3.9.2 Linked Data Browsers . 51

3.9.3 Graphical Query Formulators . 51

3.9.4 Inference Materialization . 51

3.9.5 History Tracking and Caching Mechanisms 52

4 Exploration over Fuzzy Object Descriptions and Associations 55

4.1 Background . 55

4.1.1 Fuzzy Set Theory . 55

4.2 Fuzzy Descriptions and Taxonomy-based Information Bases 57

4.2.1 Quantified Terms and their Semantics 57

4.2.2 Fuzzy Taxonomy-based Information Bases 58

4.2.3 Exploration over Fuzzy Descriptions 59

4.2.3.1 On Refining Zoom Points with Fuzzy Counts 60

4.2.3.2 Application Scenarios . 61

4.2.3.3 Plain Counts vs Fuzzy Counts 64

4.2.3.4 Ordering Zoom Points . 65

4.2.3.5 Ordering Objects . 66

ii

4.2.4 Implementation Requirements and Approaches 67

4.3 Exploration over Fuzzy RDF . 68

4.3.1 Fuzzy RDF Background and Notations 68

4.3.2 An Interaction Model for Fuzzy RDF 69

4.3.3 Discrimination power . 73

4.3.4 Implementation Requirements and Approaches 74

4.3.4.1 Query Languages for Fuzzy RDF 74

4.3.4.2 A Deductive Approach . 75

4.4 Experimental results . 78

4.4.1 Class-based browsing . 78

4.4.2 Property-based browsing . 81

5 Conclusion 87

6 Appendix 99

6.1 Fuzzy Queries over Relational DBs . 99

6.1.1 SQLf . 99

6.1.2 FSQL . 100

iii

iv

List of Tables

2.1 Faceted information sources and FDT interaction 15

2.2 List of Single-Entity browsing approaches and browsers 19

2.3 Multi-entity browsers and their Ranking Capabilities 20

2.4 List of Multi-Entity browsing approaches and browsers 21

3.1 Schema Triples . 25

3.2 SPARQL-expression of Notations for RDF Browsing 42

3.3 Query Generator . 42

3.4 History Reduction Rules . 45

3.5 Terminology . 48

3.6 Supported Transitions by Existing Systems 49

4.1 Basic notions and notations for Fuzzy taxonomy-based sources 59

4.2 SQL-expression of Notations for Fuzzy RDF Browsing 77

v

vi

List of Figures

2.1 Analysis of WSE queries in categories . 6

2.2 Kinds of Information Needs . 7

2.3 Categories of Information Spaces . 9

2.4 Applicability/Genericity of RDF browsing approaches 10

2.5 State Space from a structural point of view 11

2.6 Transition Objectives . 12

2.7 Browsing approaches and Ranking . 14

2.8 An example of Dynamic Taxonomies (assuming one facet) 17

2.9 mitos GUI for FDT-interaction . 18

3.1 An RDF KB . 26

3.2 Sketch of the GUI part for transition markers 26

3.3 Examples of transition markers . 29

3.4 Path Expansion Example . 31

3.5 Entity type switch on all the tms of the property path inv(uses).worksAt 33

3.6 Instance cycles example . 34

3.7 Path expansions of the example of Fig. 3.6 35

3.8 Instance cycles example . 39

4.1 Recipes with fuzzy descriptions . 61

4.2 Interaction based on zoom points with fcounts (Example 1) 62

4.3 Actors related Faceted Taxonomy . 63

4.4 Interaction based on zoom points with fcounts (Example 2) 63

4.5 Sketch of the GUI part for transition markers 70

vii

4.6 Interaction over fuzzy paths . 72

4.7 Sizes of datasets and their closures . 79

4.8 Query evaluation times for various |Φ| in bigger datasets (Y -axis in logscale) 79

4.9 Query evaluation times for various |Φ| over the 105 dataset 84

4.10 Query evaluation times for various |Φ| over the 106 dataset 84

viii

Chapter 1

Introduction

Several studies [75, 58] show that an important subset (over 60%) of web search queries

is recall-oriented. The objective in such queries is to locate a set of resources and get

information about them (e.g. bibliographic survey writing, medical information seeking,

travel planning). Furthermore, the fact that large amounts of structured data have been

made publicly available (e.g. billions of RDF triples due to Linked Open Data1) makes

modern information needs even more complex. However, current WSE (Web Search

Engines) do not provide adequate support for such needs. In most of them it is assumed

that the user knows exactly what he/she searches for and could express it through a text

query or through a structured query language such as SPARQL (in case of structured

data).

Therefore, there is a need for general purpose methods for guided exploration which

do not presuppose knowledge of the underlying vocabulary or query language. Special

focus should be given on session-based interaction, as opposed to the state-less query and

response interaction of current WSE, for enabling the gradual formulation of complex

conditions, and aiding decision making. Although plain web browsers, support sessional

browsing, it is however very primitive (just back and forth). End users need more effective

and flexible methods that allow them to progressively reach a state that fulfils their needs.

Moreover, in several domains, objects descriptions and associations are accompanied

by a numeric degree expressing their strength, importance, or having other application

1http://linkeddata.org

1

specific semantics (e.g. certainty, trust, etc). These degrees can be provided by humans

or be the result of automated tasks like classification [53], clustering [12] and data mining

[38]. Furthermore in an open environment like the Web, we may have data of various

degrees of credibility, as well data which are copies or modifications of other data. As a

result, data of the same entity can be erroneous, out-of-date, or inconsistent/conflicting

in different data sources. Therefore, even if the primary data are not fuzzy, the integrated

data as produced by an information integration system (that contains tasks like web

extraction) could be fuzzy.

Regarding information needs again, users would like to reach states whose contents are

specified by conditions that involve the degrees of the descriptions/associations. Although

several approaches support guided exploration over various information spaces, there is

not yet an approach that exploits fuzzy object descriptions/associations for improving the

information thinning process.

In this work we consider Fuzzy RDF [51, 70], a fuzzy extension for the RDF/S graph-

based data model, as the representation framework for such “weighted” descriptions/as-

sociations. We propose a novel model for browsing and exploring such sources, which

allows formulating complex queries gradually and through plain clicks. Specifically, in

order to exploit the fuzzy degrees, the model proposes interval-based transition markers.

The merits of the proposed model is that it defines formally and precisely the state

space of an interaction that (a) allows users to locate the objects of interest, or to get

overviews, without having to be aware of the terminology nor the query language of the

underlying source, and without reaching states with empty results, (b) exploits fuzzy

degrees for enhancing the discrimination power of the interaction (without making it

complex for the end user), (c) generalizes the main exploration/browsing approaches for

plain RDF sources (also clarifying issues regarding schema and instance cyclic property

paths), (d) is query language independent, and (e) is visualization independent.

1.1 Organization of the thesis

This thesis is organized as follows:

2

Chapter 2 introduces aspects and dimensions of the extensive area of browsing ap-

proaches and it then presents a survey of the most important ones.

Chapter 3 presents a precise and concise model capturing the essentials of browsing

approaches over RDF/S. It also studies several issues regarding interaction and the par-

ticularities of RDF/S model.

Chapter 4 proposes an interval-based extension of transition markers in order to sup-

port browsing and exploration over information spaces with fuzzy object descriptions and

associations.

Chapter 5 summarizes the results of this thesis and identifies topics that are worth

further work and research.

3

4

Chapter 2

Browsing Approaches and Related

work

This Chapter introduces aspects and dimensions of the extensive area of browsing ap-

proaches and it then presents a survey of the most important ones. Section 2.1 introduces

aspects and criteria required to characterize various approaches. Then Section 2.2 cate-

gorizes related works according to these criteria.

2.1 Aspects of the Landscape

This section introduces important aspects and dimensions of the extensive area of browsing

approaches. Particularly, we examine the following aspects:

• User goals and information needs. Each browsing approach could be characterized

by the user goals it succeeds to satisfy. User goals could be further analyzed according to

user information needs.

• Characteristics of the underlying information space. The structuring of the under-

lying information space is an important aspect since each case requires tackling different

difficulties.

• Configuration. Some approaches can be applied without requiring any form of spe-

cific configuration or application design with respect to the browsable information space.

Contrarily, in other approaches, the contents and structuring of the browsable part have

5

to be explicitly specified.

• State Space. In general we can view the interaction as a state space consisting

of states and transitions, therefore we can characterize, or comparatively evaluate, two

browsing approaches by comparing their state spaces, e.g. by identifying properties which

are satisfied by their state space. We then analyze in more detail these aspects.

2.1.1 Kinds of Information Needs

In general, we can identify precision-oriented needs (e.g. find the telephone of a store),

and recall-oriented needs (e.g. decide which car/vacation package to buy). According to

[75] the majority of information needs have exploratory nature, are recall-oriented (e.g.

bibliographic survey writing, medical information seeking, car buying) and aim at de-

cision making (based on one or more criteria). Fig. 2.1 illustrates some of the results

reported in [14] regarding WS (Web Search) query analysis. We should underline here

that in informational queries (corresponding to 50% of queries) the goal is to learn some-

thing/everything about a topic. Rose and Levinson [58] have more recently shown that

over 60% of web search queries are informational. Furthermore a subcategory of informa-

tional queries, called undirected [58] are exploratory in nature and express recall-oriented

needs. We should note at this point that current general-purpose WSE (Web Search En-

gines) do not provide adequate support for such needs (although some prototype WSE,

like [55], support it).

WSE queries

Transactional, i.e.
for performing a task
(e.g. “gaming servers”,
“music download”)

Informational
(e.g. the query
“new car models 2010”)

Navigational
(e.g. “Porsche site”.)

(Log: 50%)(Log: 20%) (Log: 30%)

Figure 2.1: Analysis of WSE queries in categories

Fig. 2.2 shows a small taxonomy of user goals. The left side concerns precision-oriented

information needs, where the objective is to locate one resource and get information about

its attributes or metadata. The right side concerns recall-oriented information needs. Here

6

the objective is to locate (and get information about) a set of resources. In this category

we can distinguish goals that require accessing sets of resources just in groups, or in

groups accompanied by count information for getting an overview of a set of resources.

Furthermore we may have goals that require more complex aggregated results like those

provided by data warehouses. For instance, [10] proposes aggregations of arithmetic

(min, max, average) and Boolean functions over several numeric attributes associated

with documents (results of free-text queries). For example, instead of just displaying the

number of an author’s books in a particular topic, a possible refinement is the average

price of each author’s books. Moreover, in [19], counts are computed and displayed over

combinations (in pairs, triples, etc) of attributes (of grouping criteria in general).

Goal

Locate ONE resource
and/or its attributes
(metadata)

Locate and analyze/compare a SET of resources
and/or their attributes (metadata), or
aggregated attributes or interrelationships

Information retrieval Information seeking

Browse the found resources in groups
according to various criteria

Obtain complex (OLAP-like) aggregated results

Obtain count information for the groups

Figure 2.2: Kinds of Information Needs

2.1.2 Information Space

Some browsing approaches are applicable to simple structures (like attribute-value pairs),

while others to complex information structures (e.g. OWL-based KBs). Therefore one

important aspect is how the underlying information is structured. There are several

options and some of them follow. As regards attribute-value pairs, the values could be

flat (e.g. name=Yannis) or hierarchically organized (e.g. location=Crete assuming that

Crete is a narrower term of Greece, and so on). Also, we could have Set-valued attributes

(e.g. accessories={ABS, ESP}). Regarding relational databases, we should note that

7

they do not have an explicit representation of the conceptual schema.

Furthermore, multi-entity or object-oriented is a conceptual model for navigation as-

suming an object-oriented view (e.g. RDF, Linked Open Data). This model describes

objects, their attributes and objects associations. We may have attribute-value pairs with

flat values and attribute-value pairs with hierarchically-organized values. For instance the

RDF/S graph-based data model is such a conceptual model and both alternatives are pos-

sible. The values here could be further distinguished in literal values and object values

according to the nature of properties (objects attributes or links to other objects).

Additionally, fuzziness could be applied over some of these information spaces in order

to extend their expressivity. Several fuzzy extensions for the Entity-Relationship data

molel have been studied (from [13], to [25] and [26]). Also, some fuzzy extensions for the

RDF/S graph-based data model have recently been proposed in literature [51, 70, 69].

All of these works target to specify the semantics of the Fuzzy RDF conceptual model,

extending the RDF/S semantics with respect to fuzzy set theory. Compared to plain RDF,

a statement in Fuzzy RDF can describe simple facts where degrees (in (0, 1]) denote the

truth value of the statement.

Fig. 2.3 shows the above categories organized hierarchically where an option X is a

(direct or indirect) child of an option Y if whatever information can be expressed in Y

can also be expressed in X. The value of this diagram is that if a browsing approach is ap-

propriate for an option X then certainly it is appropriate for all options which are parents

of X. For instance, a browsing approach appropriate for Fuzzy RDF is also appropriate

for plain RDF, as well as for sources formed by attributes with fuzzy and hierarchically

organized values.

2.1.3 Configuration

Some approaches can be applied over an information base without requiring any form

of configuration or application design with respect to the browsable information space,

while others require configuration steps. In the view-based approach over a DB or an

RDF repository, the contents and structuring of the browsable part should be explicitly

specified by the designer. The desired view(s) over an information base could be defined

8

Attrs Flat Values

Attrs Hier. Values Attrs Set Values

O-O (multi-entity, RDF)

Logic-based (OWL)

Single Relational Table

Multi Table Relational DB

less expressive

more expressive

Fuzzy Attrs Hier. Values

Fuzzy OWL

Fuzzy RDF

single entity
multiple entity

Figure 2.3: Categories of Information Spaces

by using a query language supported by the underlying storage system. Therefore, its

structure may be different from that of the underlying information space. For example,

we may have an RDF KB, but through a QL (query language) we can define its browsable

part whose structure may be different from RDF. For example, it can have the form of

a relation table, and thus it could be explored using techniques applied over relational

tables. Alternatively, the views and the mapping of objects onto views could be defined

over a set of ontologies using logic rules. For instance, in [37] in order to form a view

hierarchy over an RDF KB, classes and the subClassOf relations are projected into a

tree. Even though a method like that could be characterized as automatic, it requires

a-priori knowledge of the underlying schema(s) in order the required logic rules to be

defined appropriately. In conclusion, view-based approaches can not support navigation

over arbitrary datasets.

For the object-oriented case (e.g. RDF KBs), Fig. 2.4 shows some categories regarding

the applicability (generality), or context dependency, of a browsing approach. The left side

corresponds to domain specific approaches that follow the view-based approach, while the

right side to generic ones that allow exploration of a dataset without a-priori knowledge

of its structure. The latter could be further distinguished to those applicable to triple sets

over a single schema and those applicable to heterogeneous datasets without following one

fixed schema.

9

Domain Specific
(over pre-known
Schema Info)

Generic

Multiple SchemasSingle Schema

Configuration/Applicability

View-based approach
(for specifying the visualized/
browsable content/structure)

applicable in
multi-entity
information spaces
(e.g. RDF)

Figure 2.4: Applicability/Genericity of RDF browsing approaches

2.1.4 State Space

Independently to the adopted configuration approach, the interaction could be viewed as

a state space consisting of states and transitions. In general we can consider that a state

has:

• An extension: A set of items displayed, e.g. the result set of a web search

• An intension: A set of conditions or a query satisfied by the extension

• A name or identity

• A number of transitions each leading to a different state

In addition each state has a visualization format for its (a) extension, (b) intention,

as well as (c) its transitions (e.g. a tree-control, a list, a table). Note that in some

works (e.g. [28]) a state can have more than one visualization formats (and some of these

formats may hide some of the transitions of the state). In any case, each transition has

a clickable transition marker signifying the existence of the transition. Subsequently, a

session is considered to be a sequence of states connected through transition markers.

Usually these markers are enriched with information regarding the target state. For

instance, suppose the user is currently at a state containing all hotels located at Greece.

From that state there are transitions allowing the user to refine his focus, e.g. there is

a transition towards a state that shows only the hotels of Athens. The marker of that

transition is an indication of the extra condition that will be added to the intention of the

10

current state (e.g. location=Athens will be added), as well as the size of the extension of

the new state (e.g. the count of hotels located in Athens is 80). This is why the transition

markers that correspond to refinements offer a short of synopsis or summarization of the

current extension (a term used in [61] and [22]). Furthermore, and before clicking on

Athens the user can see that there are more refinements, such as Historical Center

and Olympic Stadium. This means that the user can inspect transitions which are two or

more steps away in the state space. The other way around, the transition markers of the

transitions that allow the user to move to a broader focus (e.g. from Olympic Stadium

to Athens or to Europe), allow the user to realize the context of his current focus.

Fig. 2.5 shows the aforementioned structural elements in the form of a UML class

diagram (only the important multiplicities of the depicted associations are specified).

State

Resources

IntensionExtension

Transition

Visualization

1

*

1

<from

<to

*

1

associated with>

associated with>

associated
with

has><has

Figure 2.5: State Space from a structural point of view

2.1.4.1 Characterizing Transitions

The key notion in any kind of a browsing approach is that of transition. We can distinguish

transitions according to various criteria. For instance, we can distinguish transitions

on the basis of the user goals shown at Fig. 2.2. Below we will focus on goals that

require accessing a set of resources. Assuming an object-oriented structuring (since it

covers RDF), Fig. 2.6 shows one distinction of such transitions. The left part concerns

transitions that do not change the entity type and we can characterize such transitions

with respect to the relationship that holds between the extension of current state and

that of the target state and with respect to the “handle” that is used for changing the

focus (e.g. through attribute values, or through related entities, etc). The right part

11

concerns transitions that can change the entity type of the current focus. We could also

distinguish transitions on the basis of the cardinalities of the extensions of the source and

target states. Therefore, there are four types of transitions: one resource-to-one resource,

one resource-to-many resources, many-to-many resources, and many-to-one resource.

Transition Objectives

Same Entity Type
– Change Focus Change Entity

Type

Zoom-in Zoom-out Zoom-Side

Wrt the set-theoretic
relationship between current
and next state (assuming
their extensions are sets of
resources)

wrt method

Through
attribute values
(literals) of the
entity

Through relationships
with other entities

directly
related
entities

indirectly
related
entities

summarization context

transition markers offer

applicable in multi-entity
information spaces (e.g. RDF)

Figure 2.6: Transition Objectives

More precisely, let B denote an information base, and QL denote the query language

supported by B. If q is a query in QL, we shall use q(B) to denote its answer over B.

A query q is subsumed by q′, denoted by q ≤ q′ if q(B) ⊆ q′(B) in every information

base B. Let now s = (e, q) denote a state where e denotes its extension and q its

intension. These two elements should satisfy the following constraint: e = q(B). Note

that some approaches, like [55], offer exploration over the results of a keyword query kq

accomplished with a WSE. In that case B can be considered as the answer of the keyword

query, i.e. B = answer(kq) where answer(kq) is a list of hits, each described by metadata

values which are hierarchically organized. Now a transition from a state s = (e, q) to an

s′ = (e′, q′) can be characterized according to the relationships that hold between their

components. More specifically, we can call a transition s → s′:

• “refinement” (or zoom-in), if e′ ⊆ e or q′ ≤ q,

• “relaxation” (or zoom-out), if e ⊆ e′ or q ≤ q′,

12

• “side-moving”, if it is neither refinement nor relaxation but e ∩ e′ ̸= ∅.

If e and e′ contain entities of different types (and therefore it certainly holds e∩e′ = ∅), we

can call the transition s → s′ “entity type switch”. In conclusion, it could be considered

that each browsing approach actually defines a set of states, transitions and a visualization

method for them.

2.1.4.2 State Space and Ranking

Since the number of states and transitions can be numerous, there is a need for ranking

methods. Fig. 2.7 shows a taxonomy for that aspect. The left part concerns what

is getting ranked, and the right part concerns the information upon which ranking is

performed. For instance, Oren et al. [54] introduce metrics for automatically ranking

candidate properties (in the RDF language) based on their frequency and the number

of values (property values) associated with them. A frequency-based ranking method

is also adopted in [28, 27] for ranking properties and property values. In eBay.com the

most important attributes are determined in advance through query and click logs (as

also discussed in [32]). Li et al. [45] propose metrics for ranking attribute hierarchies

based on a navigational cost model. In MediaFaces [78] (Yahoo’s image search engine)

, the candidate properties after a text query are being ranked according to a statistical

analysis of image search query logs. [20] describes interactive browsing over billions of

triples, combining full text search and structured querying (over Virtuoso Cluster Edition),

where classes are ordered according to the number of instances that have a property value

matching with a particular text query. From another point of view, [34] presents a fuzzy

view-based approach in which navigation results are ranked according to resource’s fuzzy

descriptions (based on manually defined fuzzy concept inclusion axioms).

13

Ranking

What Based on

Information
Structure

Usage
Data

(Logs)

Classes Properties Objects Results of text
queries (based
on resources

labels)

Info Struct. &
text queries

Info Struct. &
usage data

Info Struct., text
queries, logs

Properties and
properties

values

Text queries
& usage data

Figure 2.7: Browsing approaches and Ranking

2.1.5 Faceted Dynamic Taxonomies

A widely adopted session-based interaction scheme for exploratory search [74] is Faceted

Dynamic Taxonomies (FDT). It bridges the gap between querying and browsing, it pro-

vides an overview of the information space, and allows the user to reduce the size of the

information space in a simple, flexible and gradual manner [62]. It can be applied over

information bases consisting of objects which are described with one or more terms (val-

ues or concepts) with respect to each facet and in addition permits having hierarchically

organized attribute domains and multiple classification. At this point we should underline

that the notion of term corresponds to that of transition marker previously described.

The upper part of Table 2.1 defines formally and introduces notations for terms, ter-

minologies, taxonomies, faceted taxonomies, interpretations, descriptions and material-

ized faceted taxonomies. The taxonomies may be predefined or produced by automatic

methods, e.g. by on-line results clustering [43] or by methods such as those proposed

at [18]. Regarding object-oriented conceptual models (i.e. the RDF conceptual model),

we should underline that the hierarchical organization of classes through the subclassOf

relation could define taxonomic structures. Therefore the provision of faceted dynamic

taxonomies is straightforward in case we consider object classification under classes.

14

MATERIALIZED FACETED TAXONOMIES

Name Notation Definition

terminology T a set of terms (can capture categorical/nu-
meric values)

subsumption ≤ a partial order (reflexive, transitive and an-
tisymmetric)

taxonomy (T,≤) T is a terminology, ≤ a subsumption rela-
tion over T

broaders of t B+(t) { t′ | t < t′}
narrowers of t N+(t) { t′ | t′ < t}
direct broaders of t B(t) minimal<(B+(t))
direct narr. of t N(t) maximal<(N+(t))
Top element ⊤i ⊤i = maximal≤(Ti)

faceted taxonomy F= {F1, ..., Fk} Fi = (T i,≤i), for i = 1, ..., k and all T i are
disjoint

object domain Obj any denumerable set of objects

interpretation of T I any function I : T→ 2Obj

materialized faceted taxon-
omy

(F , I) F is a faceted taxonomy {F1, ..., Fk} and I
is an interpretation of T=

∪
i=1,k T i

ordering of two interpreta-
tions

I ⊑ I′ I(t) ⊆ I′(t) for each t ∈ T

model of (T ,≤) induced by I Ī Ī(t) = ∪{I(t′) | t′ ≤ t}
Descr. of o wrt I DI(o) DI(o) = { t ∈ T | o ∈ I(t)}
Descr. of o wrt Ī DĪ(o) ≡ D̄I(o) { t ∈ T | o ∈ Ī(t)} =

∪t∈DI (o)
({t} ∪B+(t))

FDT-INTERACTION: BASIC NOTIONS AND NOTATIONS

focus ctx any subset of T such that ctx =
minimal<(ctx)

projection on facet Fi ctxi ctx ∩ Ti

Kinds of zoom points w.r.t. a facet i while being at ctx

zoom points AZi(ctx) { t ∈ Ti | Ī(ctx) ∩ Ī(t) ̸= ∅}
zoom-in points Z+

i (ctx) AZi(ctx) ∩N+(ctxi)

immediate zoom-in points Zi(ctx) maximal(Z+
i (ctx)) =

AZi(ctx) ∩N(ctxi)

zoom-side points ZR+
i (ctx) AZi(ctx) \ {ctxi ∪N+(ctxi) ∪B+(ctxi)}

maximal zoom-side points ZRi(ctx) maximal(ZR+(ctx))

Restriction over an object set A ⊆ Obj

reduced interpretation IA IA(t) = I(t) ∩A

reduced terminology TA { t ∈ T | ĪA(t) ̸= ∅} =
{ t ∈ T | Ī(t) ∩A ̸= ∅} =
∪o∈AB+(DI(o))

Table 2.1: Faceted information sources and FDT interaction

15

FDT Interaction Scheme

The main advantages of FDT interaction paradigm is that: (a) it provides an overview

of the returned answer (active facets, active values and count information), (b) it releases

the user from the effort of formulating queries for locating objects or for restricting his

focus (current object set), since he only has to click on the, so called, zoom points, usually

displayed at the left bar of the GUI (which also make evident how many hits he will get),

(d) it does not disappoint the user since clicks always lead to objects (no empty results

ever, so there is no need for techniques like those proposed in [16, 4]), (e) it is session-

based (in contrast to the state-less query-response) paradigm, thus allowing the user to

reach his target gradually through the so called information thinning process.

The user explores or navigates the information space (a materialized faceted taxonomy

according to Table 2.1) by setting and changing his focus. The notion of focus can be

specified intensionally, extensionally, or both. Specifically, any conjunction of terms (or

any boolean expression of terms in general) is a possible focus. For example, the initial

focus can be the empty, or the top term of a facet (in this case the entire set Obj is the

current object set). However, the user can also start from an arbitrary set of objects, and

this is the common case in the context of a Web Search Engine. In that case we can say

that the focus is defined extensionally. Fig. 2.9 shows the screendump of a WSE that

supports FDT-exploration of the answer based on the static and dynamic metadata that

are available [55]. Specifically, if A is the result of a free text query q (or if A is a set of

tuples returned by an SQL query q), then the interaction is based on the restriction of

the faceted taxonomy on A. For example, Fig. 2.8(a) shows a taxonomy (consisting of

the terms A-G) and 8 indexed objects (1-8). Let’s describe over this small example (that

consists of one facet), the exploration through Faceted Dynamic Taxonomies (FDT). Fig.

2.8(b) shows the dynamic taxonomy if we restrict our focus to the objects {4,5,6}. The

notion of restriction is defined formally at the bottom part of Table 2.1. Fig. 2.8(c) shows

the browsing structure that could be provided at the GUI layer and Fig. 2.8(d) sketches

user interaction.

At any point during the interaction, the immediate zoom-in/out/side points are com-

puted and provided to the user along with count information (as shown in Fig. 2.8(d)).

16

A

1 43

(a)

C

E

D G

B

F

2 5 876

A

4

E

D

B

F

5 6

(b)

A(3)

B(1)

D(1)

E(3)

F(2)

(c) (d)

A(3)

B(1)

E(3)

A(2)

B(1)

E(2)

F(2)

expand E Zoom-in on F

shrink E

Zoom-out on E

Zoom-side point

A(3)

B(1)

E(3)

F(2)

A(3)

B(1)

E(3)

A(2)

B(1)

E(2)

F(2)

expand E Zoom-in on F

shrink E

Zoom-out on E

Zoom-side point

A(3)

B(1)

E(3)

F(2)

Figure 2.8: An example of Dynamic Taxonomies (assuming one facet)

When the user selects one of these points then the selected term is added to the focus, and

so on. The corresponding interaction states are specified extensionally due to q(B) and

intentionally due to the conjunction of terms that corresponds to the user clicks. More

specifically and in terms of Section 2.1.4, consider a transition from a state s = (e, q) to

an s′ = (e′, q′). According to FDT, the refinement transitions are in the form of (e′, q′)

such that e′ ̸= ∅ and q′ is derived by replacing a conjunct of q with a term that is narrower

than q and it holds e′ ⊆ e or q′ ≤ q.

There are several applications of FDT interaction paradigm in e-commerce (e.g. ebay),

library and bibliographic portals (e.g. DBLP) and Web Search Engines (e.g. [55]). More-

over, several works [33, 48, 54, 22] attempt to apply the FDT interaction paradigm in

the Semantic Web. Also, in terms of of information spaces, it has been applied over flat

attribute domains [10], hierarchically organized attribute domains [77, 72], as well as over

RDF [33, 54, 22].

2.2 Related Work

Here we list and categorize several browsing approaches using the aspects that we have

previously described. As regards information space, in the simplest case we have attribute-

value pairs where the domain of attributes is flat, and such works require the single-entity

approach. Relational databases do not have an explicit representation of the conceptual

schema and thus they cannot be easily characterized to single or multi entity. Table 2.2

lists some single entity approaches and browsers, and characterizes them according to the

17

Facets
based on
staticmetadata

Facet based on dynamic
metadata extracted from
the top-k resources

A (objects
of focus)

facet

facet

facet

zoom
points facet

Figure 2.9: mitos GUI for FDT-interaction

18

assumed user goal and the structuring of the information space.

System Goal Information
space

RB++[83] Count AFV

Elastic Lists [68] Count AFV

Flexplorer [72] Count AHV

Flamenco [77] Count AHV

Faceted search impl. [10] Aggregation AFV

Dynamic Faceted Search
syst.[19]

Aggregation AHV

Count: Groups accompanied with count info
Aggregation: More complex aggregated results
AFV: Attribute Flat Values
AHV: Attribute Hierarchical Values

Table 2.2: List of Single-Entity browsing approaches and browsers

In an object oriented conceptual model we have classes, objects, attributes and links

between objects, so it requires a multi-entity approach. The RDF/S model falls into

this category, and related works include: BrowseRdf [54], Humboldt [41], VisiNav [28],

Parallax [36], Longwell [57], Ontogator [48], /facet [33], Camelis2 [22].

Regarding now configuration, we have domain-specific approaches, like mspace [52] and

generic approaches like /facet [33] and VisiNav [28]. The latest is applied over Linked

Open Data that is probably the most growing collection of linked datasets available in

RDF. We should note here, that since web data comes in a plethora of vocabularies

and there is no schema describing the interlinking between these datasets [40], generic

approaches are required.

Furthermore, as generic methods target to exploration of arbitrary RDF repositories

with no fixed schema, they often require automatic methods for facets selection and rank-

ing. For instance, Oren et al. [54] introduce metrics for automatically ranking facets

according to their quality for browsing. Hearst describes the selection of important facets

based on query logs and click logs [32]. MuseumFinland [37] supports access to het-

erogeneous content but with a limited variance in schemas from a number of museum

collections while mapping rules are used in order to face the peculiarities of the under-

lying data model. Table 2.3 concerns multi-entity approaches that provide ranking over

19

the browsable elements. It characterizes them according to what is ranked and on what

basis.

System Ranking of Based
on

BrowseRdf [54] properties IS

VisiNav [28] properties,
prop. values

IS

Faceted Wikipedia [27] properties IS

MediaFaces [78] properties IS+L

Faceted Data
Explorer[78]

classes IS+T

IS: Information Structure
L: Logs
T : Text queries

Table 2.3: Multi-entity browsers and their Ranking Capabilities

Table 2.4 focuses on multi-entity approaches and characterizes them according to the

assumed user goal, the structuring of the information space, the configuration require-

ments, and multitude of underlying data sources. It clearly emerges that although there

exist several browsers for navigation over the object-oriented conceptual model, no works

for generic exploration of fuzzy information bases have been proposed.

In the following Chapter we define a precise and concise state-based model capturing

the essentials of browsing approaches over RDF/S. Then in Chapter 4, we extend the

proposed model in order to capture the case of exploration over information spaces with

fuzzy objects descriptions and associations.

20

System Goal Information
space

Config. Data
Sources

mspace [52] Set O-O V one

Ontogator [48] Count O-O V one

MuseumFinland [37] Count O-O V multiple

Camelis2 [22] Count O-O V one

Faceted Data
Explorer[20]

Count O-O V one

NFB [35] Set O-O V one

GRQL [7] Set O-O V one

/facet [33] Count O-O G one

Longwell [57] Count O-O G one

Humboldt [41] Set O-O G one

VisiNav [28] Count O-O G multiple

Parallax [36] Count O-O G multiple

Faceted Wikipedia [27] Count O-O G one

MediaFaces [78] Count O-O G multiple

BrowseRdf[54] Set O-O G one

Fuzzy view based
search[34]

Set FRDF V one

Odalisque [5] Count OWL V one

OO: Object Oriented
FRDF: Fuzzy RDF
V:View-based
G:Generic

Table 2.4: List of Multi-Entity browsing approaches and browsers

21

22

Chapter 3

A Generic Interaction Model for

navigation over RDF/S

This Chapter defines a precise and concise state-based model capturing the essentials

of browsing approaches over RDF/S. Also, it studies several issues regarding interaction

and the particularities of the RDF/S model. Moreover, we examine here implementation

approaches and query language issues for the proposed model. Finally, this Chapter

surveys several browsing approaches in terms of the proposed interaction model.

3.1 RDF Background and Notations

This section introduces notions and notations for the RDF/S model that shall be used in

the sequel. Let URI be the set of URI references and LIT be the set of plain and typed

literals. An RDF/S Knowledge Base (KB) is defined by a set of RDF triples of the form

(subject, predicate, object), where subject, predicate ∈ URI and object ∈ URI ∪ LIT . Let

K be a KB. The closure of KB K, denoted by C(K), contains all the triples of the form

(s, p, o), where s, o ∈ URI ∪ LIT and p ∈ URI , that either are explicitly asserted or

can be entailed from K based on RDFS-entailment of the RDF/S semantics [31].

Def. 1 The schema of an RDF/S KB K is a 6-tuple ΓK = ⟨C, Pr, domain, range, ≤∗
cl

, ≤∗
pr⟩, where:

23

• C is the set of classes of C(K), i.e. c ∈ C iff (c type1 rdfs:Class) ∈ C(K).

• Pr is the set of properties of C(K), i.e. pr ∈ Pr iff (pr type rdf :Property) ∈ C(K).

• domain is a total function domain : Pr → C that maps a property in Pr to its

domain, i.e. for pr ∈ Pr and c ∈ C, domain(pr) = c iff (pr rdfs:domain c) ∈ C(K).

• range is a total function range : Pr → C that maps a property in Pr to its range,

i.e. for pr ∈ Pr and c ∈ C, range(pr) = c iff (pr rdfs:range c) ∈ C(K).

• ≤∗
cl is the subClassOf relation between C, i.e. for c, c′ ∈ C, c ≤∗

cl c
′ iff (c rdfs :subClassOf

c′) ∈ C(K).

• ≤∗
pr is the subPropertyOf relation between Pr, i.e. for pr, pr′ ∈ Pr, pr ≤∗

pr pr′ iff

(pr rdfs :subPropertyOf pr′) ∈ C(K)2. 2

We consider an RDF/S KB K to be valid if (i) it has an RDFS-interpretation, ac-

cording to RDF/S semantics [31], (ii) the relations ≤∗
cl and ≤∗

pr are acyclic, (iii) the

total functions domain and range are well-defined, i.e. each property in Pr has a sin-

gle domain and range, and (iv) if pr ≤∗
pr pr′ then domain(pr) ≤∗

cl domain(pr′) and

range(pr) ≤∗
cl range(pr

′).

We define the resources of K as Res = {o | (o type rdfs:Resource) ∈ C(K)} and

the instances of K as Inst = Res \ (C ∪ Pr). We also define the instances of a class

c ∈ C as inst(c) = {o | (o type c) ∈ C(K)}, while the instances of a property pr ∈ Pr as

inst(pr) = { (o, pr, o′) | (o, pr, o′) ∈ C(K)}. Let VRDF be the set of URI references in the

rdf : and rdfs: namespace [31]. We can distinguish two sets of RDF triples, called schema

triples and instance triples. Schema triples are RDF triples of the form provided in Table

3.1, where c, c′, pr, pr′ ∈ URI \ VRDF and c′′ ∈ URI .

Def. 2 (Instance Triples) The instance triples of K are the RDF triples of the form

(o type c) and (o pr o′), where o ∈ Inst ∩ URI , o′ ∈ Inst , c ∈ (C \ VRDF), and pr ∈

(Pr \ VRDF). 2

We will refer to instance triples of the form (o type c), as class instance triples, and to

instance triples of the form (o pr o′), as property instance triples. Also, hereafter with C

we will refer to C \ VRDF and with Pr we will refer to Pr \ VRDF .

1For simplicity, we have eliminated the namespace prefix rdf : in front of the term type.
2Recall that according to the RDF/S semantics [31], ≤∗

cl and ≤∗
pr are reflexive and transitive relations.

24

triple abbreviation

c rdf :type rdfs :Class Class(c)
c rdfs :subClassOf c ′ c ≤cl c

′

pr rdf :type rdf :Property Property(pr)
pr rdfs:subPropertyOf pr ′ pr ≤pr pr

′

pr rdfs:domain c ′′ domain(pr) = c ′′

pr rdfs:range c′′ range(pr) = c ′′

Table 3.1: Schema Triples

3.2 A Generic Browsing Model for RDF

The objective is to define a precise and concise model capturing the essentials of RDF

browsing approaches for recall-oriented information needs. Also, the browsing approaches

we capture with this model support accessing resources in groups and with count infor-

mation, are applicable to Object-Oriented information spaces like RDF/S, support multi-

entity browsing and are generic.

The proposed interaction is modeled by a state space like that described in Section

2.1.4. We should remind here that each state has an extension and a number of transitions

leading to other states. Each transition is signified by a transition marker that is accom-

panied by a number showing the size of the extension of the targeting state. We will refer

to this as count information and represent it as s.count. Finally, we should underline

that our method abstracts from the various visualization approaches. In general each

state could have one or more visualization modes for its extension as well as its transition

markers.

[Running Example]. We shall use Fig. 3.1 as our running example. An instance of the

proposed interaction is sketched at Fig. 3.2. The figure depicts only the part of the UI

that shows the transition markers.

[Initial States] Consider that we are in the context of one RDF/S KB with a single

namespace with classes C and properties Pr. If s denotes a state we shall use s.e to

denote its extension. Let’s start from the initial state(s). Let s0 denote an artificial

initial state. We can assume that s0.e = URI ∪ LIT , i.e. its extension contains every

25

uses

Car

cr1 cr2

r
Person

Bob Alice

drivesr d knowsd r
works at

rd Organization

Computer
Science

Department FORTH

related tod r
Van Jeep Adult

Vehicle

Institute
Universitypaid from

d rCar
Manufacturer

European Japanese American

Fiat BMW Toyota

madeBy

r d
Available

ForSale ForRent

Not. Avail.

Status

cr30.90.2
0.20.60.5 0.4 0.21.0 1.0 1.01.0

0.8 0.5
1.0 rd

Figure 3.1: An RDF KB
Properties are depicted by rectangles and the letters “d” and “r” are used to denote
the domain and the range of a property. Fat arrows denote subClassOf/subPropertyOf
relationships, while dashed arrows denote instanceOf relationships.

[+] CarManufacturer (3)
[+] Organization (2)
[+] Person (2)
[+] Status (2)
[+] Vehicle (3)���������	
�� [+] CarManufacturer (3)
[+] Organization (2)
[+] Person (2)
[+] Status (2)
[-] Vehicle (3)

Car (3)
Jeep (1)

[-] Vehicle (3)
Car (3)
Jeep (1)

[-] Status (2)
Available (1)

ForSale (1)
Not. Avail (1)

by madeBy (2)
European (1)

BMW (1)
Japanese (1)

Toyota (1)
by inv(uses) (2)

Alice (1)
Bob (1)

by inv(drives) (1)
Bob (1)

���� �����	
����������������� ���� ����
[-] Vehicle (3)

Car (3)
Jeep (1)

[-] Status (2)
Available (1)

ForSale (1)
Not. Avail (1)

by madeBy (2)
European (1)

BMW (1)
Japanese (1)

Toyota (1)
by inv(uses) (2)

by worksAt (2)
CSD(1)
FORTH(1)

by inv(drives) (1)
Bob (1)

���� ��	������������ ����������

The transition markers
of the initial state

Class-based
transition markers

Property-based
transition markers

PropertyPath-
based
transition
markers

Figure 3.2: Sketch of the GUI part for transition markers

26

URI and literal of the KB. Alternatively, the extension of the initial state can be the result

of a keyword query, or a set of resources provided by an external access method. Given

a state we shall show how to compute the transitions that are available to that state.

From s0 the user can move to states corresponding to the maximal classes and properties,

i.e. to one state for each maximal≤cl
(C) and each maximal≤pr(Pr). Specifically, each

c ∈ maximal≤cl
(C) (resp. p ∈ maximal≤pr(Pr)) yields a state with extension inst(c)

(resp. inst(p)).

We will define formally the transitions based on the notion of restriction and join. To

this end we introduce some auxiliary definitions. We shall use p−1 to denote the inverse

direction of a property p, e.g. if (d, p, r) ∈ Pr then p−1 = (r, inv(p), d), and let Pr−1

denote the inverse properties of all properties in Pr. If E is a set of resources, p is a

property in Pr or Pr−1, v is a resource or literal, vset is a set of resources or literals, and

c is a class, we define the following notations for restricting the set E:

Restrict(E, p : v) = { e ∈ E | (e, p, v) ∈ inst(p)}

Restrict(E, p : vset) = { e ∈ E | ∃ v′ ∈ vset and (e, p, v′) ∈ inst(p)}

Restrict(E, c) = { e ∈ E | e ∈ inst(c)}

Now we define a notation for joining values, for computing either values or objects

associated with elements of E:

Joins(E, p) = { v | ∃ e ∈ E and (e, p, v) ∈ inst(p)}

Thereafter, we define precisely transitions and transition markers given a state s with

extension s.e.

3.2.1 Class-based browsing

The classes that can be used as class-based transition markers, denoted by TMcl(E), are

defined by:

TMcl(E) = {c ∈ C | Restrict(E, c) ̸= ∅} (3.1)

If the user clicks on a c ∈ TMcl(s), then the extension of the targeting state s′ is defined

as s′.e = Restrict(s.e, c), and its count information is s′.count = |s′.e|. For example,

27

suppose the user selects the class Vehicle. The user can then view its instances and fol-

low one of the following class-based transition markers: Vehicle, Car, Jeep, Status,

Available, ForSale, Not.Available. Notice that ForRent and Van are not included

because their extension is empty. Consequently, their intersection with the current exten-

sion will be empty.

The elements of TMcl(s) can be hierarchically organized based on the subclass relation-

ships among them. Specifically, the layout (e.g. the indentation in a text-based layout)

of the transition markers can be based on the relationships of the reflexive and transitive

reduction of the restriction of ≤∗
cl on TMcl(s) denoted by Rrefl,trans(≤∗

cl | TMcl(s)
). In our

case, we can get what is shown in Fig. 3.3(a).

Furthermore based on the relationship between the extensions s.e and s′.e, we could

characterize a transition or the corresponding transition marker as zoom-in/out/side (as

these are defined in Section 2.1.4.1).

3.2.2 Property-based browsing

Here we focus on another kind of transitions captured by the proposed interaction model,

called property-based transitions.

We will introduce this kind of transitions by first giving some examples over Fig. 3.1.

Suppose the user has focused on the class Car, and the extension of this state is {cr1,

cr2, cr3}. He can further restrict the extension also through properties whose domain

or range is the class Car, or a superclass of Car. In general, any property related with

the resources in s.e can be considered as candidate means for restricting it. For example,

consider a property madeBy whose domain is the class Car and suppose its range was the

String Literal class. In that case the firm names of the current extension can be used

as transition markers. Now suppose that the range of the property madeBy is not literal,

but the class CarManufacturer. In this case, the firms (URIs in this case) of the current

extension can again be used as transition markers, as shown in Fig. 3.3(b). Notice

that Fiat is not shown as it is not related to the current focus (i.e. to cr1, cr2 and

cr3)3. Formally, the properties (in their defined or inverse direction) that can be used for

3Since cr3 does not participate to a madeBy property, an alternative approach is to add an artificial

28

deriving transition markers are defined by:

Props(s) = {p ∈ Pr ∪ Pr−1 | Joins(s.e, p) ̸= ∅} (3.2)

For each p ∈ Props(s), the corresponding transition markers are defined by Joins(s.e, p),

and if the user clicks on a value v in Joins(s.e, p), then the extension of the new state is

s′.e = Restrict(s.e, p : v).

(a)
Vehicle(3)

Car(3)

Jeep(1)

Status(2)

Available(1)

ForSale(1)

Not. Avail(1)

(b)
by madeBy(2)

BMW(1)

Toyota(1)

(c)
by madeBy(2)

European(1)

BMW(1)

Japanese(1)

Toyota(1)

(d)
by inv(uses)(2)

Alice(1)

Bob(1)

by inv(drives)(1)

Bob(1)

(e)
by inv(uses)(2)

by worksAt(2)

CSD(1)

FORTH(1)

Figure 3.3: Examples of transition markers

Furthermore, the transition markers of a property p ∈ Props(s), i.e. the set Joins(s.e, p),

can be categorized based on their classes. In our example, the firms can be categorized

through the subclasses of the class CarManufacturer. These classes can be shown as inter-

mediate nodes of the hierarchy that lead to particular car firms, as shown in Fig. 3.3(c).

These classes can be computed easily, they are actually given by TMcl(Joins(s.e, p)).

Furthermore, these values can be used as complex transition markers, i.e. as shortcuts

allowing the user to select a set of values with disjunctive interpretation (e.g. he clicks on

Japanese instead of clicking to every Japanese firm). Specifically, suppose the user clicks

on such a value vc. The extension of the target state s′ will be:

s′.e = Restrict(s.e, p : Restrict(Joins(s.e, p), vc)) (3.3)

Returning to our example, and while the user has focused on cars, apart from madeBy,

the user can follow transitions based on the properties inv(drives) and inv(uses),

as shown in Fig. 3.3(d). In addition, the elements of Props(s) can be hierarchically

organized based on the subProperty relationships among them.

value, like NonApplicable/Uknown, whose count would be equal to 1, for informing the user that one
element of his focus has not value wrt madeBy.

29

3.2.3 Property Path-based browsing

Thereafter, we should be able to extend the property-based browsing in order to capture

property paths of length greater than one. This is required for restricting the extension

through the values of complex attributes or through the relationships (direct or indirect)

with other resources. Complex attributes are considered to be the attributes represented

as blank nodes 4 and identified by properties only. For instance, in the following set of

triples, :nikosAddress indicates the presence of a blank node:

exstaff : 85740 exterms : address : nikosAddress.

: nikosAddress exterms : street “LappaStreet”.

: nikosAddress exterms : city ”Heraklion”.

As regards resources relationships, one may want to restrict the set of cars so that

only cars which are used by persons working for CSD (Computer Science Department)

are shown. In that case we would like transition markers of the form shown in Fig.

3.3(e). It should also be possible the successive “application” of the same property. For

example, the user may want to focus to all friends of the friends of Bob, or all friends of

Bob at distance less than 5. Let’s now define precisely, this property path-based browsing

(expansion and cascading restriction). Let p1, . . . , pk be a sequence of properties. We call

this sequence successive in s if Joins(Joins(. . . (Joins(s.e, p1), p2) . . . pk) ̸= ∅. Obviously

such a sequence does not lead to empty results, and can be used to restrict the current

focus. Let M1, . . .Mk denote the corresponding set of transition markers at each point of

the path. Assuming M0 = s.e, the transition markers for all i such that 1 ≤ i ≤ k, are

defined as:

Mi = Joins(Mi−1, pi) (3.4)

What is left to show is how selections on such paths restrict the current focus. Suppose

the user selects a value vk from Mk. This will restrict the set of transitions markers in the

4http://www.w3.org/TR/rdf-syntax/

30

following order Mk, . . . ,M1 and finally it will restrict the extension of s. Let M ′
k, . . .M

′
1

be the restricted set of transitions markers. They are defined as follows: M ′
k = {vk},

while for each 1 ≤ i < k we have:

M ′
i = Restrict(Mi, pi+1 : M

′
i+1) (3.5)

for instance, M ′
1 = Restrict(M1, p2 : M ′

2). Finally, the extension of the new state s′ is

defined as s′.e = Restrict(s.e, p1 : M
′
1). Equivalently, we can consider thatM ′

0 corresponds

to s′.e and in that case Eq. 3.5 holds also for i = 0.

For example, consider an ontology containing a path of the form:

Car--hasFirm-->Firm--ofCountry-->Country and three cars c1, c2, c3, the first be-

ing BMW, the second VW and the third Renault. The first two firms come from Germany the

last from France. Suppose the user is on Cars, and expands the path hasFirm.ofCountry.

If he selects Germany, then the previous list will become BMW, VW (so Renault will be ex-

cluded) and the original focus will be restricted to c1 and c2. It follows that path clicks

require disjunctive interpretation of the matched values in the intermediate steps. Figure

3.4 illustrates this process.

M'2 = {Germany}M'1 = {BMW, VW}s'.e = M'0 = {cr1,cr2}
s.e =M0 = {cr1,cr2, cr3} M1 = {Renault, VW, BMW} M2 = {France, Germany} Mi = Joins(Mi-1 , pi)

M'i= Restrict(Mi , pi+1 : M'i+1)

hasFirm
Car

cr1 cr2

r Firm

BMWRenault

ofCountry
r Country

Germany

Jeep

d

cr3

Van

d

FranceVW

s'.e

s.e

Figure 3.4: Path Expansion Example

The above can be applied also for successive applications of the same property, e.g.

inv(drives).knows2.paidFrom is a property path that can be used to restrict cars to

those cars whose drivers know some persons who in turn know some persons who are paid

from a particular organization. In conclusion, we would say that the transitions based on

property paths would be useful on navigation over social data, as in FOAF5 and SIOC6

5http://xmlns.com/foaf/spec/
6http://rdfs.org/sioc/spec/

31

spaces where there are many blank nodes and there exist long property “chains” (e.g.

foaf:knows).

3.2.4 Entity Type Switch

So far we have described methods to restrict the current extension. Apart from the current

extension we can move to other objects. At the simplest case, from one specific resource

we move to one resource which is directly or indirectly connected to that.

Now suppose that the current focus is a set of resources (e.g. cars). Again we can

move to one or more resources which are directly or indirectly connected to all, or at least

one of the resources of the current focus. For example, while viewing a set of cars we

can change our focus to the list of their firms. In this way we interpret disjunctively the

elements associated with every object of the focus.

Moreover, we can move to indirectly connected resources. For instance, while viewing a

set of cars we can move to all related organizations through the path inv(uses).worksAt.

An interaction paradigm for the accomplishment of such a transition is sketched at Fig.

3.5. To capture this requirement it is enough to allow users to move to a state whose

extension is the current set of transition markers.

To capture the requirement of entity type switch it is enough to allow users to move to

a state whose extension is the current set of transition markers. As the notion of entity

type corresponds to the notion of RDF class, class-based browsing can be considered as

entity type switch, even though the source and target type may be subclassOf related.

We should note here that the classes of the transition markers are not necessarily different

than those of the current focus, e.g. in case we have cycles at schema level.

For a more generic example, consider a user who starts from the class Persons, and

then restricts his focus to those persons who workAt FORTH. Subsequently, he restricts his

focus through the property path drives.madeBy and by selecting the complex transition

marker European. At that point he asks to switch the entity type to Cars. This means

that the entity type of the extension of the new state should be Cars, and the extension of

the new state will contain European cars which are driven by persons working at FORTH.

The property drives (actually its inverse direction), could be used to restrict the current

32

[-] Vehicle (3)
Car (3)
Jeep (1)

[-] Status (2)
Available (1)

ForSale (1)
Not. Avail (1)

by madeBy (2)
European (1)

BMW (1)
Japanese (1)

Toyota (1)
by inv(uses) (2)

by worksAt (2)
<all >
CSD(1)
FORTH(1)

by inv(drives) (1)
<all>
Bob (1)

by inv(worksAt) (2)
<all >
Bob(1)
Alice(1)

����� ����	
 �������� ��� �����������
Figure 3.5: Entity type switch on all the tms of the property path inv(uses).worksAt

focus. Furthermore, the user can proceed and restrict his focus, that is European cars

which are driven by persons working at FORTH, to those which are ForSale, and so on.

3.3 Characterizing Sessions

A key characteristic of interactive search is that it is session-based. For this reason it

is worth identifying problematic cases, as redundant steps, for offering better guidance

during the interaction, e.g. notify or disallow the user from making redundant steps.

For example, the user may use path expansion using the same property in a direct and

indirect direction in an alternate fashion. Obviously this is redundant. A non trivial case

of extensionally equivalent sequences is that of cycles at schema and instance level, for

which we propose a special treatment in Section 3.4. Some related definitions follow.

• A session is a sequence of states (connected through transition markers).

• A sequence of steps is a refinement session if for any successive pair of states, s and

s′, it holds s′.e ⊆ s.e. If s′.e ⊂ s.e, the session s.s′ is strictly restrictive, while if

s′.e = s.e. then it is extensionally equivalent.

33

• A session is single entity if it does not contain any entity switch transition. In case

a session is not single entity, then it contains two successive states s and s′ such

that the intersection of their extension is empty.

3.4 Path Expansion and Cycles: MaxExpansionSteps

We may have cycles at schema and instance level. At schema level, a property sequence

may have the same starting and ending class forming a cycle. Cyclic properties can be

considered as a special case where the length of the sequence is 1 (or the domain and the

range of a property is the same class).

Now consider a user who wants to restrict the initial focus set, e.g. a set of persons,

through other persons connected with them through the property knows at depth m.

For this reason the user expands the property knows m times and then selects a person.

However, at some point we may want to stop suggesting path expansions, in order to

avoid prompting to the user the same set of transition markers (which may restrict the

initial focus in the same way). Fig. 3.7 shows how the transition markers change while

expanding the path inv(owns).knowsi over the example shown in Fig. 3.6. When the

property knows is expanded over 3 times, the transition markers (and their count info)

are being repeated while at the same time they lead to extensionally equivalent states.

At Fig. 3.7 we use only the first letter of a name, and paths over knows are depicted as

sequences of such letters.

CR1 Bob

CR2

TomAlice

owns knowsFocus

owns

knows

knowsknows
ICS

WorksAt

Sofia hasManager

CR3 Ian George
owns knows

Figure 3.6: Instance cycles example

We propose adopting the following policy:

Stop path expansion when each object of the s.e has been made accessible (i.e.

restrictable) through all transition markers that are possible.

34

TMs for inv(owns).knowsi ipath from
cr1

ipath from
cr2

ipath
from
cr3

i=1 A(2), G(1) B.A S.A I.G

i=2 T(2) B.A.T S.A.T -

i=3 B(2) B.A.T.B S.A.T.B -

i=4 A(2) B.A.T.B.A S.A.T.B.A, -

i=5 T(2) B.A.T.B.A.T S.A.T.B.A.T -

Figure 3.7: Path expansions of the example of Fig. 3.6

Below we explain how we can compute the maximum number of expansion steps at

interaction time.

Let Γ = (N,R) be a directed graph. We define a path from a node n1 to a node nk+1,

as any sequence of edges of the form (n1, n2) . . . (nk, nk+1) where (ni, ni+1) ∈ R, and i ̸= j

implies that ni ̸= nj. The length of such a path is k, and we shall write n1
k nk+1 to

denote that there exists a path of length k from n1 to nk+1. We shall also write n
∗ n′ to

denote that exists one or more paths from n to n′. Now we define the distance from n to

n′ as the length of the shortest path from n to n′, i.e. Dist(n → n′) = min{ k | n k n′}.

Given two subsets A and B of N (i.e. A,B ⊆ N), we define the distance from A to B as

the maximum distance between any pair of nodes form these sets, i.e.

Dist(A,B) = max{ Dist(a → b) | a ∈ A, b ∈ B} (3.6)

Returning to our problem, N is the set of all nodes of the RDF graph. For a property

p ∈ Pr we can define the edges Rp = {(a, b) | (a, p, b) ∈ C(K)}. We can now define

the reachable nodes from a node n (through p property instances) as Reachablep(n) =

{ n′ | n ∗ p n′}, where the meaning of the subscript p is that paths are formed from

elements of Rp. Being at a state s, the maximum number of path expansion steps (for

property p) that is required are:

MaxExpansionSteps(s, p) = Dist(s.e,
∪
n∈s.e

Reachablep(n)) (3.7)

With this number of steps it is guaranteed that each object of s.e has been made

accessible (restrictable) through all tms which are possible. The proof is trivial: the path

35

starting from an object o with length bigger than MaxExpansionSteps(s, p) will not

encounter a tm that has not already been reached.

Now consider path expansions over different properties, e.g. consider the property

path inv(owns).knows.knows. In such cases we would like to identify the maximum

expansion steps for each p that is used in the expansion, or the maximum expansion steps

in general. Let pset be a set of properties (i.e. pset ⊆ Pr). We can define the edges

by considering all properties in pset, i.e. Rpset = {(a, b) | p ∈ pset, (a, p, b) ∈ C(K)}.

Now we can define Reachablepset(n) = { n′ | n ∗ pset n
′}, where the subscript pset means

that paths consist of edges in Rpset. The set Reachablepset(n) is the set of all tms that

provide access to n through paths consisted of instances of properties in pset. Therefore

the tms that correspond to all objects in s are given by
∪

n∈s.eReachablepset(n). Being

at a state s, the maximum number of path expansion steps (using properties from pset)

that is required is:

MaxExpansionSteps(s, pset) = Dist(s.e,
∪
n∈s.e

Reachablepset(n)) (3.8)

By assuming in Fig. 3.6 that pset ={inv(owns), knows, worksAt, hasManager}

then the overall maximum expansion steps number is:

MaxExpansionSteps(s, pset) =Dist(s.e, {Bob, Ian,George, Sofia, Alice, Tom, ICS}) =

5, due to the path:

CR1.inv(owns).Bob.knows.Alice.knows.Tom.WorksAt.ICS.hasManager.Sofia Note

that this does not specify the maximum expansion steps for each property in pset (which

is obviously lower), but the overall. For example, if pset consists only of the property

inv(owns) then just one expansion is enough.

To find and propose to the user the appropriate properties for further expanding a

property path which uses properties in pset, for each candidate property p (such that

Joins(Mi, p) ̸= ∅), we compute MaxExpansionSteps(s, tmp), where tmp = pset ∪ {p}.

Then, we examine if the length of the path already formulated is equal to

MaxExpansionSteps(s, tmp) or less than it. If less then the expansion of p would be

rejected. For example, consider the property path inv(owns).knows.knows at Fig. 3.6

which has length equal to 3 and pset={inv(owns), knows}. Here we have M3 = {Tom}

36

and the properties that satisfy the condition Joins(M3, p) ̸= ∅ are: knows, inv(knows)

and WorksAt. Then for the property knows, we have that: tmp = {inv(owns), knows}

and MaxExpansionSteps(s, tmp) = 3. As the path length is equal to

MaxExpansionSteps(s, tmp), the expansion of the property knows is rejected. As for the

property inv(knows), we have that: tmp = {inv(owns), knows} and

MaxExpansionSteps(s, tmp) = 3. However, the path length is equal to

MaxExpansionSteps(s, tmp) and the expansion of the property inv(knows) is getting

rejected. Finally as regards the property WorksAt we have that:

tmp = {inv(owns), knows,WorksAt} and MaxExpansionSteps(s, tmp) = 4. Since the

length of the already formulated path is less than 4 that property would be proposed to

user and we would have that pset={inv(owns), knows,WorksAt} .

3.5 Tracking History

We can distinguish user clicks to (a) state-changing and (b) state-preserving. Clicks on

transitions markers correspond to (a) since they lead to a different state. On the other

hand, clicks which change only the visibility of the transition markers of the current state,

fall into category (b).

3.5.1 State-changing Clicks

Here we have clicks upon transitions markers which trigger a transition and thus a state

change.

Such clicks can be used for a history mechanism; the history of a state can be the

sequence of all state-changing clicks that leaded to the state (starting from the initial

state). To keep such clicks we need a simple format. Specifically, a click on a:

(i) class c ∈ TMcl(s) can be represented by the string: “CL c”,

(ii) value v ∈ Joins(s.e, p) can be represented by the string: “PR p:v”,

(iii) class c of the values in Joins(s.e, p) (recall complex transition markers), can be

represented by the string: “PR p:CL c”.

We can replace p by a property path p1.p2.pk, to capture transition markers

37

that correspond to property paths.

(iv) a request for entity switch over the values in Joins(s.e, p) can be represented by the

string: “SWITCH p”,

over a class c of the values in Joins(s.e, p) can be represented by the string: “SWITCH

p CL c”,

over the values reachable through a property path pp can be represented by the

string: “SWITCH pp”,

or over the values reachable through a property path pp restricted by a class c can

be represented by the string: “SWITCH pp CL c”.

If we want for each state to keep its history, then each state s can have a list of strings

denoted by s.hist, and whenever the user clicks on a transition marker v then the history

of targeting state s′ becomes s′.hist = s.hist+Click(v), where “+” appends a new string

at the end of the list and Click(v) denotes the string that represents the click according

to the format we described above.

3.5.2 State-preserving Clicks.

These clicks expand (or shrink) one class or a property path, thus changing the transition

markers which are visible in the current state. We shall assume the following set of

symbols/icons {�,�,I,J} since they are quite common (e.g. see Fig. 3.2). Specifically

in this category we can have clicks on the:

� of a class c whose outcome is to show the transition markers which are direct subclasses

of c,

� of a class c whose outcome is to hide the tms which are sublasses of c,

I of a property for expanding the property path with one more property,

J for shrinking a property path.

Although such clicks do not change the current state, we have to keep them in order

to restore a past state and its visible transition markers. Let s.vis denote the sequence of

such clicks, where each click is represented by a pair in SPC = {�,�,I,J} ×X where

an element of X can be the string that we denoted by Click(v) before.

38

If we want to retain the visibility of transition markers when the user changes states

(i.e. those which are applicable), then we can set s′.vis = s.vis. This can be exploited

for not letting the user to accomplish redundant steps. For example consider the case of

Fig. 3.8 and assume that s.e = {CR1, CR2, CR3}.

CR1 Bob

CR2

TomAlice

owns knows
Focus

owns

knows

knowsknows

Sofia

CR3 Ben George
owns knows

Figure 3.8: Instance cycles example

Suppose the user expands the property path inv(owns).knows and clicks on the tran-

sition marker Alice, leading to a new state s′ s.t. s′.e = {CR1, CR2}. If the new state

does not have the property path inv(owns).knows expanded, then the user could expand

again the same property path and select Alice, leading to an extensionally equivalent state

s′′.

3.6 Caching and State Identity

Caching can be used to save computational cost and speed-up the interaction (for a single

user or several users). Note that the existing caching techniques have been focused on

query-and-answer process (e.g. result caching [71]), or inverted list caching [8]). Caching

for speeding up the exploratory process has not been studied. However session-based

caching techniques are crucial for obtaining real-time exploration especially if the process

contains time consuming tasks. We should also mention that some RDF triple-stores

employ query caching mechanisms for improving the performance of triple-store based

applications, and there is currently an interest on how the results of a cached query can

be reused for answering subsequent queries [50].

A cache for exploratory searching can store information about states which have been

visited. Specifically for each such state it can keep stored its extension as well as its

39

transition markers along with their counts. However this raises the question on what the

identity of a state is. This is important since the identity of the state can be used as the

key for storing and looking up/retrieving cached states. Some choices are discussed:

• Extension (i.e. s.e). This is not practical since s.e can be too big to store or to

perform comparison operators. Such policy could make sense only if the extension

is small and the computation of the transition markers is expensive.

• History (i.e. s.hist). The history could be used as a key, however one shortcoming

is that there are more than one transition paths that lead to the same state, that is

a state having the same extension. This means that if the history is used as a key

for caching then we will get less cache hits than those that would be correct (false

negatives).

• Intention. Since each state essentially corresponds to a number of conditions, an

internal format can be used to keep these conditions for enabling the identification

of more or ideally all equivalent states. This is the more promising approach for

caching. One approach to describe the intention of a state is to process the history

of the state, and this is further analyzed in Section 3.8.

3.7 RDF/S Query Languages

We have defined the interaction model using only extensions, since the expression of the

intention depends on the Query Language (QL), or the abstraction of the QL that one

adopts. However, in many cases the underlying information source would be accessible

through a particular QL, e.g. the triples can be stored in a triple-store, like SESAME7 or

Virtuoso8, that offers a query language (e.g. RQL[39], or SPARQL [3]).

Table 3.2 shows the notations we have used for defining RDF browsing, and their

expression in SPARQL. In this description we consider that the extension of the current

state is stored in a temporary class with name temp. Note that if the underlying triple-

store supports SPARQL VIEWS (i.e. named SPARQL queries), then temp can be a

7http://www.openrdf.org/
8http://docs.openlinksw.com/virtuoso/

40

view. However to the best of our knowledge the existing RDF triple-stores do no support

views. We should mention here that [64] proposes extending SPARQL by namely binding

variables to results of filter expressions and supporting views on RDF graphs as datasets

for queries (by including CONSTRUCT queries in FROM clauses). In addition, RVL [47]

is a language which have been proposed (not implemented though) for specifying views

over RDF/S KBs. Alternatively, a query language that supports nested queries could

be used. For instance, nSPARQL [56] that has recently been proposed, supports nested

regural expressions to navigate RDF data. Also, it is expressive enough to capture the

deductive rules of RDF/S by directly traversing the input graph.

Furthermore in Table 3.2 we assume that all inferred triples are stored in a DBMS.

However, we should note that Virtuoso [21], which is a general purpose RDBMS, sup-

ports an extended SPARQL version with subClassOf and subPropertyOf inference at

query level. This means that triples entailed by subclass or subproperty statements in an

inference context (built from one or more graphs containing RDF schema triples) are not

physically stored, but they are added to the result set during query answering. This is

similar in spirit with [29] which proposes to query the Web of Linked Data by traversing

RDF links during run-time. This means that the SPARQL expressions of Table 3.2 would

not require another change except from defining the inference context.

[Query Construction Method]

Since views are not supported, here we describe a query construction method. The

method takes as input the history s.hist of the current state (in the format introduced at

Section 3.5.1) and returns a SPARQL query which is the intention of the current state.

At the beginning the query starts with select ?x. The process consumes each entry of

the history and extends the query as described at Table 3.3. Whenever we use a variable

with name starting from xN we denote a new variable which has not already been used

during the query construction process. The case of entity type switch is described below.

[Query Construction Method: Entity Type Switch]

Consider the query that returns the set of “red cars owned by persons working at CSD”.

This query could be yielded by a process that starts from cars, restricts the focus by

a property restriction over hasColour, and then performs a property path restriction

41

Notation Expression in SPARQL
Restrict(E, p : vset), vset =
{v1, ..., vk}

select ?x

where { ?x rdf:type ns:temp; ns:p ?V.

Filter (?V = ns:v_1 ||...|| ?V = ns:v_k)}

Restrict(E, c)
select ?x

where { ?x rdf:type ns:temp; rdf:type ns:c.}

Joins(E, p), where E = {e1, ..., ek} select Distinct ?v

where { ?x ns:p ?v. Filter (?x = ns:e_1 ||...||

?x = ns:e_k)}

TMcl(s) and counts
select Distinct ?c count(*)

where{?x rdf:type ?c; rdf:type ns:temp.}

group by ?c

Props(s)
select Distinct ?p

where{ {?x rdf:type ns:temp; ?p ?v.}

UNION {?m rdf:type ns:temp. ?n ?p ?m. }}

Joins(s.e, p) and counts
select Distinct ?v count(*)

where{ ?x rdf:type ns:temp; ns:p ?v.}

groupby ?v

Table 3.2: SPARQL-expression of Notations for RDF Browsing

History Entry SPARQL pattern
CL c (?x type c)

PR p:v (?x p v)

PR p:CL c (?x p ?xN) (?xN type c)

PR p1.p2...pk:v (?x, p1, ?xN1)(?xN1, p2, ?xN2)....(?xNk-1,pk,v)

Table 3.3: Query Generator

42

through the path ownedby.worksat. In SPARQL it can be expressed as:

SELECT ?x

WHERE {?x type cars.

?x hascolour red.

?x ownedby ?p.

?p worksat CSD. }

An entity type switch from cars to persons can be accomplished by the query:

SELECT ?p

WHERE{ ?x type cars.

?x hascolour red.

?x ownedby ?p.

?p worksat CSD. }

As stated earlier entity type switch can be achieved by turning the transition markers into

focus. In our case the persons who belong to the answer of the second query, were the

restricted tms (i.e. M ′
1 according to the notations of Section 3.2.2) during the property

restriction ownedby.worksat and the selection of the value CSD. In terms of the query

language this can be achieved by changing the variable in the SELECT clause, not the

whole graph pattern, of the previously formulated query (i.e. by selecting the variable

that correspond to the desired transition markers).

More specifically, and assuming the history format, in our example we would have

an entry “SWITCH ownedby”. To derive the desired query we locate the corresponding

pattern of the already formulated SPARQL query (i.e. here the pattern ?x ownedby ?p

) and we put the right variable of that pattern at the SELECT clause. As regards the case

of “SWITCH pp CL c”, it is treated as if it were “SWITCH pp” since the predicate for the

class restriction is already in the formulated query. Analogously, after having focused on

“CSD employees who are owners of red cars”, we can switch our focus to “the hometowns

of CSD employees who are owners of red cars” with the following query:

43

SELECT ?town

WHERE{ ?x type cars.

?x hascolour red.

?x ownedby ?p.

?p worksat CSD.

?p bornIn ?town}

The hometowns were actually the tms of a property restriction over bornIn.

Regarding related work, [7] proposes the creation of dynamic views during user’s

navigation, that relies on the generation of an appropriate RQL query. An algorithm

translates the user navigation into a set of schema triples and at each browsing step it

attempts to compute the minimal RQL query.

In Humboldt [41], a command queue tracks all user interactions in a session and

represents the implicit construction of a query without having to store intermediate result

sets. When the user makes state-changing clicks the extension is computed by parsing

the whole command queue and executing SPARQL queries on the data source.

The examples of entity type switch that we gave earlier are supported by [22]. Al-

though that work explains how a query result set (the so-called extent) is represented

in user interface terms, the implementation approach adopted for handling (keeping) a

query result set is not discussed.

3.8 On History Reduction

In this Section we aim to define the intention, and thus a kind of identity, of the current

state by exploiting its history. The objective is to achieve an intentional description,

which does not contain any redundant condition with respect to history information as

that described in Section 3.5.

History Reduction Rules

Given a state s with history s.hist, we can eliminate redundant elements of s.hist by

applying rules like those shown at Table 3.4. In particular these rules can be used to

44

reduce the subsessions of the history in case these are single entity subsessions. In such

subsessions no entity switch is accomplished. Methodologically, we can first identify

such subsessions, and then apply the rules to each one of them. Each rule consists of four

parts. The first and the second part (the two columns under title “Sequence” in Table

3.4) are considered to be entries of the subsession. Regarding the rules R1 − R4 if the

second part occurs after (not necessarily immediately after) the first, and the condition of

the 4th column is satisfied, then we can delete from the sequence the first entry. In brief,

(R1) concerns class-based restriction and exploits the semantics of the subClassOf rela-

tionships,

(R2) concerns property-based restriction and exploits the semantics of the subPropertyOf

relationships,

(R3) concerns property-based restriction and exploits the semantics of the subClassOf

relationships, and

(R4) concerns property-based restriction and exploits the semantics of the classification

relationships.

We can generalize and define a rule (R5) for reducing property path-based restrictions.

Recall that a property path-based restriction is logged by a sequence of entries of the from

“PR: p:CL c” or “PR: p:v”. Let denote such an entry that has length k by a = a1 ·. . .·ak.

The entry a can eliminate another (property path-based restriction) entry b = b1 · . . . · bk,

if each ai is equal to bi or ai can eliminate bi using the rules (R2), (R3) or (R4).

Sequence Condition Reduced Sequence

(R1) CL c CL c’ c′ ≤ c CL c’
(R2) PR p:v PR p’:v p′ ≤ p PR p’:v
(R3) PR p:CL c PR p:CL c’ c′ ≤ c PR p:CL c’
(R4) PR p:CL c PR p:v v ∈ inst(c) PR p:v
(R5) a1 · . . . · ak b = b1 · . . . · bk ∀ i ∈ 1..k ai = bi or ai

can eliminate bi using
the rules (R2), (R3),
(R4).

a1 · . . . · ak

Table 3.4: History Reduction Rules

We can iteratively apply these rules until no further entry can be deleted.

45

For instance suppose the following history entry:

CL Person

PR drives:CL Car

PR uses.madeby:CL Japanese

PR drives:CL Jeep

PR uses.madeby:Toyota.

By applying the reduction rules shown at table 3.4, we will get:

CL Person

PR drives:CL Jeep

PR drives.madeby:Toyota.

We have just seen how to reduce each single-entity subsession of the history.

The reduction of sessions that include entity type switches is more complex and depends

on the implementation method adopted. If entity type switch has been implemented by

changing the SELECT variable as described at Section 3.7, then the last SWITCH in the

history should be taken into account.

If entity type switch is implemented using a view-based approach, then the problem

of intention minimization (and thus intention-based state identification) can be reduced

to the general problem of query minimization and equivalence. Query minimization can

reduce the history, while in case the cache stores the original (and unreduced) history,

then query equivalence should be checked during cache lookups. Clearly such methods

depend on the QL adopted. Regarding related work, [66] proposes query minimization

techniques with respect to RQL while [65] studies query optimization aspects for SPARQL.

We should also stress here that SPARQL does not support nested queries, a mechanism

that would be useful for implementing entity type switch. Only recently, some extensions

of SPARQL supporting nested queries have been proposed in literature [56, 6]. In general,

we could say that the associated problems are subject of research that there are no mature

and widely adopted/tested techniques.

46

3.8.1 On Cycles

The mechanism for detecting redundant transitions (in case of cyclic property paths)

cannot be reduced to evaluation of a single query as it relies on property traversals of

variable length. Such traversals can be done in main memory (over a graph based model

of the involved part of the KB), or by adopting a rule-based language since with rules we

can express the required recursion.

3.8.2 Client-Server Issues

Users would like to browse RDF KBs through their Web browsers. It follows that the

RDF KB should be accessible through a Web application. An important point is that

the application can be designed in a way where that client (web browser) at certain

occasions receives more data than those requested by a user click. In this way some of

the required processing (i.e. for computing transition markers and their counts, as well

as for performing transitions) can be done at client side (i.e. using JavaScript). The

benefit of this strategy is that the server receives less requests, and thus it has less load

(consequently lower infrastructure costs are needed).

For instance, suppose the user is on a state s and clicks on a transition marker. The

server instead of sending to the client the new state s′ (and its transition markers), it

can send all information required for all possible subsequent class-based restrictions of s′.

In this way the client can undertake all clicks on these transition markers9. In general,

chunks can contain property-based or property path-based subspaces.

3.9 Related Works on RDF/S

Here we review existing works in the light of the model described earlier.

9For example see the labor intensive strategy described at [61] for the case of faceted dynamic tax-
onomies over AHV information spaces.

47

3.9.1 Transitions Supported By Related Works

In this section we describe which transitions of the proposed interaction model are sup-

ported by existing systems. However, as we have already mentioned, the related literature

uses a quite heterogeneous terminology. For this reason below at Table 3.5 we list some

of the terms that we have used in this paper, and alternative terms which have been used

in the literature.

Our terminology Literature Terminology

transitions navigation modes [22], navigation links [5]
transition mark-
ers

zoom points [55], index term [22], restriction
value [54]

property-based
browsing

basic selection [54]

property path-
based browsing

indirect facets [17], join selection [54]

entity switch pivoting [41], refocusing [35], reversal [5, 22],
path traversal [28]

complex transi-
tion markers

complex class [22]

Table 3.5: Terminology

For each kind of transition, below we list the systems that support it (in a way).

Table 3.6 provides an overview, where X means yes, × no, and ? not specified.

Class-based restriction: /facet [33], Fuzzy view-based Search[34], Camelis2 [22],

Ontogator [48], MuseumFinland [37], Faceted Data Explorer [20], GRQL [7]

Property-based restriction: /facet [33], Longwell[2], Camelis2 [22], Faceted Wikipedia

[27], MediaFaces [78], GRQL [7]

Complex transition markers: To the best of our knowledge only the prototypes Odal-

isque [5] and Camelis2 [22] support the functionality of complex transition markers.

Property path-based restriction: BrowseRdf [54], NFB [35]. The directional behavior

[76] of mspace [52], that automatically proposes the next property (and candidate values)

after the selection of a particular property value, could act indirectly as such a mecha-

nism. However, in such an interaction model, the candidate properties for property path

formulation are pre-determined. However, none of the above works supports a mechanism

48

System Supported Transitions

Class-
based

Property-
based

Complex
Tran-
sition
Markers

Property
Path-
based

ESwitch Cycles

/facet X X × × X ×
Fuzzy view-
based Search

X × × × × ×

Ontogator X × × × × ×
MuseumFinland X × × × × ×
mspace × X × X × ?

Faceted Data
Explorer

X × × × × ×

Longwell × X × × × ×
Camelis2 X X X × X ×
Faceted
Wikipedia

× X × × × ×

MediaFaces × X × × × ×
Odalisque X X X × X ×
BrowseRDF X X × X × ×
NFB × X × X X ×
GRQL X X × × X ×
Humboldt × X × × X ×
VisiNav × X × × X ×
Parallax × X × × X ×

Table 3.6: Supported Transitions by Existing Systems

49

to recognize cycles at schema or instance level and prevent user from making redundant

steps.

Entity Type Switch: /facet [33], GRQL [7], Humboldt [41], VisiNav [28], Parallax [36],

Odalisque [5], Camelis2 [22].

We should note that systems like Humboldt and Parallax provide users an indirect means

to accomplish property path-based browsing: by combining the functionality of property-

based transitions and entity type switch. However, this may prove cumbersome for end-

users in case the focus entity type is identical with the targeting one (e.g. consider that

the focus entity is Cars and the user wants to find Cars owned by persons over 30 years

old, who also work at ICS). In such a case the user has to turn back to the initial focus en-

tity type (Cars) after accomplishing entity type switch and distant restrictions. Although

a history mechanism could help the user in accomplishing that, Clarkson, Navathe et al.

[17] stress the need for flexible methods that allow expressing zoom-in conditions (refine-

ments) based on properties which are distant from the current entity type, without having

to change the entity type.

On Disjunction

Although in the proposed model the user provides plain single clicks, the interaction

includes actions which have disjunctive nature. In particular, property paths, as well as

complex transition markers (Eq. 3.3) are the means to express disjunction. Also, note

that the semantics for subclassOf/subpropertyOf relations are disjunctive in nature

(i.e. the set of instances of a class/property is the union of the instances of its subclass-

es/subproperties).

Also, it would not be difficult to provide the user with a means to select all possible

transition markers for a given property. In that case a property-based transition would

return all resources of the initial focus that have this property independently of its values.

In literature this kind of transition is mentioned as existential selection [54]. Finally, as

already explained, when an entity type switch takes place, we interpret disjunctively the

elements associated with every object in the focus. For example, while viewing a set

of cars we can move to and focus on the list of their firms. In this way we interpret

disjunctively the elements associated with every object of the focus.

50

3.9.2 Linked Data Browsers

Linked Data browsers allow users to navigate between data sources by following links

expressed at RDF triples. Browsers that support such a functionality are Tabulator [11],

Disco10 , Marbles11(provenance of resources is also indicated) and the OpenLink Data

Explorer 12, a browser extension for viewing Data Sources associated with Web Pages.

A common point of these browsers is that they support one resource-to-one resource

transitions (navigation along in/outgoing links) while at each step of browsing only the

directly connected resources are accessible. Thus these approaches do not exploit the

structured organization of data for providing more sophisticated query capabilities. How-

ever, we should note that Tabulator allows the user to formulate queries in a query-by-

example style. Specifically, the user can highlight a formulated pattern of interest, query

for any similar patterns and further analyze the results through maps, timeline or other

conventional data presentation methods.

3.9.3 Graphical Query Formulators

There are some tools, usually called visual query systems, that offer interactive and graph-

ical methods to formulate SPARQL or SQL queries, e.g. NITELIGHT [59], SEWASIE

[15]. Such systems aim at providing a graphical query formulation process per se, while

the surveyed systems in this paper aim at supporting the information seeking process and

satisfying recall-oriented information needs as an ongoing sequence of browsing actions.

Essentially, these tools do not show an overview of the results of the partially formulated

query. None of the systems we surveyed is geared towards graphical query formulation

only.

3.9.4 Inference Materialization

In this section we investigate the approach that some related works follow for handling

inferable information.

10http://sites.wiwiss.fu-berlin.de/suhl/bizer/ng4j/disco/
11http://beckr.org/marbles
12http://ode.openlinksw.com

51

In /facet [33], which is a generic browser, in order to bypass the prohibiting (for inter-

action purposes) slow-down caused by RDFS and OWL-based reasoning at run time, they

compute and add closures of transitive and inverse properties to a triple store (supporting

prolog-based querying) when new data is added.

Longwell [2] can access data in several triple storage systems (e.g. Jena, Joseki, 3Store,

Sesame) but needs several configurations steps. Although it utilizes its built-in inference

mechanism to adapt the views to the changing RDF content, it does not have the option

of integrating an external inference engine and it does not use a RDF query language.

It emerges that there is not a clear correspondence in the level of required configuration

of a browser (view-based vs generic) and the kind of inference implementation.

3.9.5 History Tracking and Caching Mechanisms

Some of the latest related works support history tracking mechanisms. For instance, Hum-

boldt [41] displays the browsing history as a linear sequence of nodes, each representing

an entity-type that has been traversed at an entity-type switch. When the user steps back

to one of the earlier nodes and makes a refinement, then all other nodes are being refined

appropriately (similar functionality is supported by Parallax [36]). Regarding history

mechanism implementation, the core is a command queue which tracks all user interac-

tions in a session. When state-changing clicks take place, the extension of the result state

is computed by parsing the whole command queue and by executing SPARQL queries

over the data source. In conclusion, all required information is stored in the command

queue and there is no need for storing intermediate state extensions.

MultiBeeBrowse [44], a generic browser, allows users to keep track of the history of

the supported transitions (including refinements and entity switches). A browsing session

begins with a keyword query. The browser provides users with a structured means to

access previous states and continue browsing after selecting one of them. Also, a caching

mechanism allows users to review (in a time-based organization) all previous sessions,

in which a particular query (user independent) has been invoked. The continuation of

browsing after the selection of a particular session is supported. Regarding the implemen-

tation of mechanisms previously described, it is based on Service-Oriented Architecture

52

(SOA) paradigm.

53

54

Chapter 4

Exploration over Fuzzy Object

Descriptions and Associations

In this Chapter we propose an interval-based extension of transition markers in order to

support browsing and exploration over information spaces with fuzzy object descriptions

and associations. Specifically, after giving some background information about fuzzy set

theory then Section 4.2 proposes an extension of the Faceted Dynamic Taxonomies (FDT)

interaction scheme, by refining the notion of transition markers (or zoom points). The

proposed extension supports browsing over fuzzy and hierarchically organized attribute

domains. Regarding object-oriented conceptual models, in Section 4.3 we consider Fuzzy

RDF as the representation framework, and we propose a novel model for browsing and

exploration over such sources. Finally, Section 4.4 reports some experimental results

regarding efficiency.

4.1 Background

4.1.1 Fuzzy Set Theory

A fuzzy set A is defined by a membership function, which indicates the degree to which

the element u of the universe of discourse U is included in the concept represented by A.

Then a fuzzy set A over U is defined as a set of pairs given by:

55

A = (ui, µ(ui)),

where ui ∈ U , µA : U → [0, 1] is the membership function of A and µA(ui) is the

membership degree of the element ui to the fuzzy set A.

Standard fuzzy set operations are usually defined, after Zadeh [79], as:

• Standard complement: ∼ A(x) = 1− A(x)

• Standard intersection: (A ∩B)(x) = min[A(x), B(x)]

• Standard union: (A ∪B)(x) = max[A(x), B(x)]

where A(x) expresses the membership degree of x to A.

We can exploit fuzzy set theory in many ways. Some of them follow:

i) The definition of linguistic variables [81, 82] through membership functions. For ex-

ample the linguistic variable “age” could have as linguistic values the following: young,

middle-aged, old. Each linguistic value is represented by a fuzzy set with membership

functions µyoung(u), µmiddle−aged(u), µold(u), where u in real positive numbers expresses

the years of a person.

ii) As a means to define a similarity function to measure the similarity between two ele-

ments of a domain D of defined labels.

iii) In order to construct possibility distributions on the labels of a domain D, extending

the possibilities for expressing imprecise values, in such a way that each value di ∈ D has

a degree of truth associated with it.

The fuzzy set theory has been successfully applied in various domains such as the fuzzy

control, fuzzy diagnosis, fuzzy data analysis and fuzzy classification. Also it has been

applied to several systems such as pattern recognition, knowledge systems (databases,

expert systems etc).

56

4.2 Fuzzy Descriptions and Taxonomy-based Infor-

mation Bases

This Section presents an extension of the Faceted Dynamic Taxonomies (FDT) interaction

scheme for exploratory search, that permits browsing hierarchically organized attribute

domains with fuzzy descriptions. It investigates how the information thinning process can

leverage the fuzzy descriptions. Moreover, implementation requirements and approaches

are being discussed.

4.2.1 Quantified Terms and their Semantics

In the context of Faceted Dynamic Taxonomies we call quantified term, for short qterm,

any pair of the form (t, d) where t is a term and d ∈ (0, 1]. At this point we should remind

that the notion of term corresponds straightforwardly to that of transition marker. An

object can be described by associating it with one or more qterms. If (t, d) is associated

with o we shall write directDegree(o, t) = d. Now we will discuss the semantics of such

degrees, the semantics of the taxonomic relationships, and the consequences of these two.

Consider an object o described by two qterms (t1, d1) and (t2, d2). Now suppose that

both t1 and t2 are the only narrower terms of a term t′, i.e. t1 < t′ and t2 < t′ hold. The

first question is what is the degree d′ of o with respect to t′. In other words, what is the

degree of o with respect to t1 ∨ t2 (since Ī(t′) = I(t1) ∪ I(t2)). The second question is

what is the degree d12 of o with respect to t1∧ t2. To answer the above questions we need

to know the semantics of the degrees. We can distinguish two basic interpretations:

Fuzzy Interpretation. Such degrees express the strength of an association, and

can capture various application-specific semantics, such as relevance, precision, certainty,

trust, etc. According to the well known Fuzzy Set Theory by Zadeh [80], disjunction

corresponds to max and conjunction to min. It follows that in our case we have d′ =

max(d1, d2) and d12 = min(d1, d2).

Probabilistic Interpretation. If t1 and t2 correspond to disjoint elements of the

sample space, and d1 and d2 are their probabilities, then d′ = d1 + d2. If they are not

disjoint, then we need to know the probability of their conjunction for computing d′ (i.e.

57

d′ = d1 + d2 − P (t1 ∧ t2)). Regarding conjunctions, if t1 and t2 are independent elements

of the sample space then d12 = d1 ∗ d2. If they are not independent then we need to know

the conditional probability i.e. d12 = d1 ∗ P (t2|t1) = d2 ∗ P (t1|t2).

It follows that if the taxonomies have been formed in a way that the children of a term

denote disjoint elements of the sample space then we can compute d′. Analogously, if the

facet terminologies correspond to probabilistically independent elements of the sample

space, then we can compute the degrees that correspond to conjunctions (e.g. d12).

Now consider the case where d1 and d2 are frequencies (normalized or not). If t1 and t2

correspond to disjoint elements of the sample space then d′ = d1 + d2. If not, then we

need to know the frequency of their conjunction. It is not hard to see that frequencies

have the same requirements (regarding disjointness and independence) with probabilities.

Hereafter we shall focus on the fuzzy interpretation since it captures several application

scenarios and does not require extra sources of information for computing the degrees of

term disjunctions and conjunctions.

4.2.2 Fuzzy Taxonomy-based Information Bases

Here we describe information sources that consist of fuzzy object descriptions. We call

fuzzy term, for short fterm, any pair of the form (t, d) where t is a term and d ∈ (0, 1]

that has a fuzzy interpretation. There is a function D that associates to each object o

one or more fuzzy terms. If (t, d) is associated with o (i.e. if (t, d) ∈ D(o)), we shall

write directDegree(o, t) = d. The interpretation of a fuzzy term (t, d), denoted by J(t, d),

consists all those objects which are described by a pair (t, d′) and d ≤ d′. For example if

we have two objects the first described by (red, 0.6) and the second with (red, 0.8) then

only the second belongs to the interpretation of the fuzzy term (red, 0.7).

The model interpretation of a fuzzy term (t, d), denoted by J̄(t, d), is defined according

to the standard semantics of fuzzy set theory. Specifically, the degree of membership of

an object o to a term t, denoted by degree(o, t), is the maximum degree with which

o belongs to t or to one of the narrower terms of t, i.e. we can write degree(o, t) =

58

max{directDegree(o, t′) | t′ ≤ t}. We can therefore define J̄(t, d) as follows:

J̄(t, d) = { o ∈ Obj | degree(o, t) ≥ d}

= { o ∈ Obj | ∃(t′, g) ∈ D(o) and d ≤ g and t′ ≤ t}

Recall that Ī(t) is the union of all I(t′) where t′ ≤ t. It is not hard to see that it

holds J̄(t, d) =
∪

t′≤t J(t
′, d). Now the model interpretation of a conjunction of terms is

again defined according to the semantics of fuzzy set theory. Specifically, the degree of

membership of an object o to a conjunction of terms t is the minimum degree with which

o belongs to each term t of the conjunction. Recall that Ī(t1 ∧ . . . ∧ tk) = ∩k
i=1Ī(ti). The

degree of membership of an object o to Ī(t1∧. . .∧tk) is the minimum degree of membership

of o to Ī(ti), i = 1..k. Table 4.1 summarizes the above notions and notations.

Name Notation Definition

terminology T a set of names, called terms (they may capture
both categorical and numeric values)

subsumption ≤ a partial order (reflexive, transitive and antisym-
metric)

taxonomy (T,≤) T is a terminology, ≤ a subsumption relation over
T

faceted taxonomy F=
{F1, ..., Fk}

Fi = (T i,≤i), for i = 1, ..., k and all T i are dis-
joint

object domain Obj any denumerable set of objects
fuzzy terms B T × [0, 1]

description of o D any function D: Obj → 2B

interpretation of
T

I I(t) = { o | ∃(t, g) ∈ D(o)}

model induced by
I

Ī Ī(t) = ∪{I(t′) | t′ ≤ t}

fuzzy interpreta-
tion

J(t, d) J(t, d) = { o | ∃(t, g) ∈ D(o) and d ≤ g}

fuzzy model in-
duced by J

J̄(t, d) J̄(t, d) = { o | ∃(t′, g) ∈ D(o) and d ≤ g and t′ ≤
t}

Table 4.1: Basic notions and notations for Fuzzy taxonomy-based sources

4.2.3 Exploration over Fuzzy Descriptions

This section describes how the information thinning process (described at Section 2.1.5)

can leverage the fuzzy descriptions. Specifically we propose a new method for extending

and refining the notion of zoom point. Finally we discuss how such degrees have been

exploited for ordering a) zoom points, and b) objects.

59

4.2.3.1 On Refining Zoom Points with Fuzzy Counts

Here we refine and extend the notion of zoom point based on fuzzy degrees. The idea

is to analyze the count information of each zoom point to more than one counts each

corresponding to the objects whose membership degrees fall to a specified interval. For

example, consider a zoom point “z(20)”. We can present it as “z [low(10), medium(4),

high(6)]” where “low” may correspond to degrees (0,0.3], “medium” to (0.3,0.6] and “high”

to (0.6,1]. So the user has now three clicks (i.e. three focus refinement options) instead

of one. Therefore the set of all possible foci is more, so the discrimination power of

interaction increases.

Formally, let P be a partition of (0, 1] to a number of intervals, i.e. P = {p1, . . . pm}

where pi = [ai, bi] where 0 ≤ ai < bi ≤ 1, a1 = 0, bm = 1 and bi = ai+1. We do

not (for the moment) describe formally the boundaries (open or closed) of the intervals.

A common assumption is that P forms a partition, i.e. its elements cover the interval

(0,1], since this guarantees that all objects are accessible, and the elements of P are

pairwise disjoint (so each object contributes to the count of one interval). For example,

P = {(0, 0.5], (0.5, 0.8], (0.8, 1]} is a partition. However, overlapping intervals could also

be used and might be useful for some tasks [73]. Optionally each interval in P can also

be associated with a name (linguistic variable), e.g. “low”, “medium”, “large”.

Suppose a zoom point t. Instead of associating it with one count information we now

have |P | counts (where |P | denotes the number of intervals) and each count is clickable

and leads to those objects whose degree of membership d falls into the corresponding

interval. Suppose the user is in a focus specified by a set of objects A and suppose that t

is a zoom-point. If pi is one interval of P then the objects that their degree(o, t) falls in

this specific interval are given by:

Objects(t, pi) = {o ∈ Ī(t) ∩ A | degree(o, t) ∈ pi}

The cardinality of objects with degree(o, t) in pi is given by count(t, pi) = |Objects(t, pi)|

and this is what it is displayed. We shall call such counts, fcounts.

60

4.2.3.2 Application Scenarios

Here we sketch three application scenarios from different domains for demonstrating the

interaction with fuzzy counts.

Recipes Info-Base Fig. 4.1 shows a source with three facets for describing recipes.

The first facet (Location Of Origin) is hierarchically organized using part-of relation-

ships. Every object (recipe) is indexed under only one term of this taxonomy and the

descriptions of objects w.r.t. that facet are crisp. The second facet (Taste) is non-

hierarchical, and multiple classification is allowed for that facet as well as fuzzy degrees.

Finally, the third facet (Nutrition Value) has the same characteristics with the last

one, except that it is hierarchical. The last facet has the more complex navigation re-

quirements since it is fuzzy, multi-valued and hierarchically organized. Regarding the

interaction scheme that we propose, each zoom-point is accompanied by three counts

each corresponding to one degree interval (as shown in Fig. 4.2(a)).

Location Of Origin Taste Nutrition Value

Calories3

Facet3Facet2Facet1

D(Recipe1) = {Greece1, (Sweet2, 0.4), (Satured3,0.2), (Calories3, 0.3)}

D(Recipe2) = {Greece1, (Bitter2, 0.5), (Satured3,0.9), (Calories3, 0.8)}

D(Recipe3) = {Italy1, (Sour2, 0.3), (UnSatured3,0.4),(Satured3,0.3), (Calories3, 0.6)}

D(Recipe4) = {Italy1, (Sweet2, 0.9), (Sour2, 0.8), (Macro Minerals3, 0.5), (Trace
Minerals3, 0.8), (Calories3, 0.4)}

Europe1

Greece1

Italy1

Asia1

South America1

Africa1

Sweet2

Sour2

Bitter2

Salty2

Fats3

Saturated3

UnSaturated3

Minerals3

Macro Minerals3

Trace Minerals3

Protein3

Vitamins3

Recipe1 Recipe2 Recipe3 Recipe4

Figure 4.1: Recipes with fuzzy descriptions

Each count can be visualized using a different hue saturation for aiding the discrimi-

nation of the degree intervals (increased saturation denotes higher membership degree).

Fig. 4.2(b) shows how the faceted taxonomy changes if the user clicks (zooms-in) on

fcount “low” of term Saturated.

61

Location Of Origin

Europe (4)

Greece (2)

Italy (2)

Taste

Sweet (2)

Sour (2)

Bitter (1)

1 11 1

1 1

11

Nutrition Value

Calories (4)

Fats(4)

Saturated (3)

Unsaturated (1)

Minerals (1)

Trace (1)

Macro (1)

1

2 11

11

1

2

11

1

Location Of Origin

Europe (2)

Greece (1)

Italy (1)

Taste

Sweet (1)

Sour (1)

11

1

Nutrition Value

Calories (2)

Fats (2)

Saturated (2)

Unsaturated (1)

2

1

11

1

Low
Medium
High

Low
Medium
High

Left bar Left bar

After click

(a) (b)

Figure 4.2: Interaction based on zoom points with fcounts (Example 1)

Actors Images The following scenario is inspired from W3C Incubator Group’s Re-

port for uncertainty reasoning for the World Wide Web and based on a real world in-

dustrial application scenario about casting for TV commercials and spots. Suppose a

production company with an image database, like the one of CINEGRAM S.A.1, contain-

ing a huge amount of vague data and a method to produce and query a fuzzy knowledge

base (like that described in [67]). The company wants to publish on the Web this knowl-

edge base 2 so that producers could easily find the most appropriate actors to employ by

interacting through the FDT exploration scheme.

As an example, Fig. 4.3 shows a faceted taxonomy with 3 facets related to actors.

The descriptions of images under concepts of Facet1 are crisp (it could be considered that

degree(o, t) = 1) while fuzzy in the other two facets.

Regarding the interaction scheme that we propose, each zoom-point is accompanied

by three counts each corresponding to one degree interval (as shown in Fig. 4.4(a)). Fig.

4.4(b) shows how the faceted taxonomies change if the user clicks on fcount “high” of

1http://www.cinegram.gr/
2In [62] it has been shown how a knowledge base can fit into the framework of dynamic taxonomies.

62

term Slim. In this way an expressive query like “Find actors who are very slim” can

be formulated easily. If then the user selects the fcount “low” of term Aggresive, the

formulated query becomes “Find actors who are very slim and their faces are slightly

aggressive”. We should stress here that from a set with 103 images the user has restricted

his focus to 10 objects with 2 clicks.

Gender Actor’s Body Actor’s Face

Round3

Facet3Facet2Facet1

Woman1

Man1

Slim2

Plump2

Athletic2

Expressive3

Smile3

Aggressive3

Soft3

Glance3

Tall2

Figure 4.3: Actors related Faceted Taxonomy

Low
Medium
High

Low
Medium
High

Left bar Left bar

After click

Left bar

Low
Medium
High

(a) (b) (c)

Genre

Man (400)

Woman (600)

Actor’s Body

Slim (200)

Athletic (300)

Plump (100)

Tall (400)

80120

8020

200

150150

200

Actor’s Face

Expressive (500)

Glance (200)

Smile (300)

Aggressive (200)

Soft (100)

Round (200)

200

50150

50

120

50

60

180

140

Genre

Man (30)

Woman (50)

Actor’s Body

Slim (80) 80

2010

1020

1010

Actor’s Face

Aggressive (30)

Soft (30)

Round (20)

After click

Genre

Man (9)

Woman (1)

Actor’s Face

Aggressive (10) 10

Actor’s Body

Slim (10) 55

Figure 4.4: Interaction based on zoom points with fcounts (Example 2)

63

4.2.3.3 Plain Counts vs Fuzzy Counts

At first we should note, as discussed also in [74], that in order to evaluate exploratory

search systems several metrics have to be examined simultaneously because such systems

affect multiple aspects of the information seeking behavior. However, there are no stan-

dard collections and metrics for comparatively evaluating interaction information retrieval

schemes3.

Returning to the problem at hand, in our case we have to compare the interaction

with plain counts versus the interaction with fuzzy counts. An aspect that has been used

in the literature for comparing interaction schemes is the discrimination power, i.e. the

set of queries that can be expressed by the navigation mechanism (e.g. [22]). Compared

to plain counts, an advantage of fuzzy counts is that they correspond to range queries

over the membership degrees, whose evaluation respects the fuzzy inference along the

taxonomy hierarchy as explained in Section 4.2.2). Obviously this is not possible with

plain counts. Furthermore, fuzzy counts allow formulating conjunctions over such queries

(i.e. conjunctions of range queries over the membership degrees) through the session-based

interaction scheme.

The discrimination power can also be quantified by counting the number of states. If

we assume only conjunctions that consist of only one term from each Ti then the upper

bound of the number of states in the plain FDT interaction is B = |T1| ∗ . . . ∗ |Tk|. The

upper bound is reached when all conjunctions have non empty extension in Ī (we also

ignore A-restrictions). According to our approach the upper bound is B′ = |T1| ∗ (|P | +

1) ∗ . . . ∗ |Tk| ∗ (|P | + 1) = B(|P | + 1)k, i.e. (|P | + 1)k times more states than the plain

FDT interaction (e.g. if |P | = 3 and k = 5 then we get 45 = 1024 times more states, i.e.

three orders of magnitude more). If we assume that the intentional part of a state can be

any conjunction of terms in T , where T = T1 ∪ . . . ∪ TK , then the upper bound of states

in plain FDT iteration is 2|T |. With fcounts the upper bound of states is (|P |+2)|T | since

each term can be absent, or it can be present, or it can participate with one of the |P |

intervals. This means that with fcounts we have
(|P |+2

2

)|T |
=

(
1 + |P |

2

)|T |
more states.

3In the IR domain, the most close track of TREC was the Interactive Track which was organized in
2002 (http://trec.nist.gov/data/t2002 interactive.html).

64

To summarize, the benefits of the proposed interaction scheme is that it (a) provides

richer and more informative overviews of the information space regarding membership

degrees, and (b) it greatly increases the discrimination power of interaction.

4.2.3.4 Ordering Zoom Points

We have just showed how to increase the discrimination power of the information thinning

process, through fcounts. Apart from this, fuzzy degrees can be used for ordering the zoom

points (which are usually shown at the left bar of a GUI).

In plain sources zoom points are usually ordered based on their count information. In

fuzzy sources, they can be also ordered using metrics that exploit fuzzy degrees, e.g. by

summing or averaging the degrees of the objects which are directly or indirectly associated

with them. For instance, we can sum the degrees of memberships of the objects in the

extension of a term t in order to get an “accumulated fuzzy value” for each zoom point.

Specifically, if t is a zoom-in point and A is the current focus, then we define the fuzzy

value of t by summing or averaging, i.e:

fvaluesum(t) =
∑

o∈A∩Ī(t)

degree(o, t)

fvalueavg(t) = avgo∈A∩Ī(t)degree(o, t)

The application/user can order the zoom points of a facet in descending order with respect

to these values. The decision between sum, avg or other operators (e.g. min, max) depends

on the application, and therefore all of these options should be provided.

Several variations are also possible, and below we discuss those that have been pro-

posed in the literature. For instance, in [42] the classification degrees of pages to topics

(topics are what in this paper we call terms) are used for ordering the topics based on the

number of pages that belong to them with a degree over a threshold θ:

fvalueavg,θ(t) =
|{ o ∈ A ∩ Ī(t) | degree(o, t) ≥ θ}|

|A ∩ Ī(t)|

We should stress at this point that the fcounts that we propose, allow even to a non-

expert user to easily discriminate the objects having low from those having high degrees,

without being asked to specify thresholds values.

65

Finally, in e-RARE [63], a shade of red indicates the average frequency of signs in the

current set of diseases. Since signs are hierarchically organized, each entry has a color

indication of the average frequency of all its descendant signs. However, as clarified in

Section 4.2.2, in a probabilistic/frequency interpretation we may not have the information

required for computing degree(o, t). Probably, for this reason the author of [63] adopts a

formula of the form:

fvalueDirectavg(t) = avgt′≤t tvalueDirectavg(t
′) where

tvalueDirectavg(t) = avgo∈Ī(t)∩A(directDegree(o, t))

4.2.3.5 Ordering Objects

The ordering of the objects of the current focus is usually specified by an external access

method (e.g. in the case of a WSE). However, while the user restricts his focus by clicking

on various zoom points, the degrees of membership to the terms of the current focus could

also be exploited for re-ordering objects. Regarding related work, in [63] the elements

of the focus, which consists of diseases, are ordered by decreasing average frequency of

symptoms in the focus. In this case fuzzy interpretation is not applicable, so the author

of that work uses:

scorectx,avg(o) = avgt∈ctxdirectDegree(o, t)

Now in [46] the score of the objects depend on their fuzzy descriptions plus on weights

provided by the users.

If we would like to adopt a general method, which is consistent with the semantics of

fuzzy set theory, we could define:

Scorectx(o) = mint∈ctxdegree(o, t)

That score could be used for ordering objects independently of the externally provided

object ranking.

66

4.2.4 Implementation Requirements and Approaches

We will discuss implementation requirements and approaches comparatively to those for

exploring non fuzzy taxonomy-based sources, for short plain sources, aiming at reveal-

ing the main performance trade-off. The key capability required for implementing the

proposed model is that of traversals (due to taxonomies). We can dichotomize implemen-

tation approaches, on the basis of the assumed application scenario. In the first scenario

updates are not frequent and emphasis is given on maximizing the speed of exploration

services. At the other extreme, we have a scenario where the updates are frequent and

emphasis is given on reducing the storage space and the effort/cost for maintaining the

integrity of the data after updates. A general implementation approach for the first sce-

nario is to materialize inferred information for avoiding traversals at run time at the cost

of extra memory space and more costly updates. A general implementation approach

for the second scenario is to avoid storing any inferable information so that updates are

supported efficiently at the cost of less efficient exploration services (due to the required

traversals).

For scenarios with rare-updates dedicated indexes have been proposed (e.g. [60, 10]).

For scenarios with frequent updates DBMS have also been used (e.g. [77]). However, we

should mention that the latter approach requires knowing the depth of the hierarchies,

or adopting query languages that support recursion for computing the zoom points with

one query (alternatively we can use SQL with while).

Returning to the sources at hand, i.e. fuzzy information bases, the aforementioned

tradeoffs apply here as well. An implementation approach for a rare-updates scenario

requires extending the physical index with fuzzy degrees and for providing fast exploration

services it is beneficial to keep stored every degree (instead of directDegree). On the other

hand, a DBMS implementation approach for the frequent-update scenarios apart from

extending the stored data with fuzzy counts, it requires tackling the fuzzy semantics (max

for unions, min for conjunctions) using the supported query language. An issue here is

whether the supported query language offers a straightforward way to express the required

queries. Fuzzy extensions for relational databases have been studied (from [13], to [25]

and [26]). Although there exist implementations of such languages (SQLf [13], FSQL[25])

67

4 over PostgreSQL [49] and over Oracle [24], it is not referred to support recursive queries

in combination with fulfilment thresholds at the query conditions concerning attribute

values. An alternative approach to tackle the need for recursion and fuzziness is to

exploit the reasoner of a deductive system that supports fuzziness. We have accomplished

some experiments over such a system the results of which are presented in the Section

4.4.

4.3 Exploration over Fuzzy RDF

In Section 4.2 we have proposed an interval-based refinement of transitions markers for

improving the information thinning process in case we have fuzzy (taxonomy-based) object

descriptions. However, in case of multi-entity information spaces we could exploit degrees

that are also applied over object associations. In this Section, we propose a generic

interaction model for exploration over the representation framework of Fuzzy RDF.

4.3.1 Fuzzy RDF Background and Notations

A statement in Fuzzy RDF can describe simple facts where degrees (in (0, 1]) denote the

truth value of the statement. In order to add such meta-statements about RDF triples,

reification [1] is the only standardized mechanism. For instance, the statement “A topic

of interest of Nikos is the Semantic Web with a degree of truth 0.9”, would be represented

via reification by the following triples (the subject in each case is “ : stmt3”):

:stmt3

rdf:type rdf:Statement ;

rdf:subject ns:Nikos ;

rdf:predicate foaf:topicOfinterest;

rdf:object dbpedia:Semantic Web;

fuzzy:value "0.9" xsd:decimal.

4More details for these languages and some query examples are given in the Appendix

68

The main advantage of the reification method is that no change to RDF data is

required. However, it remains without a semantic specification meaning, e.g. reified

statements are not affected by RDF/S inferences. Thereafter, such statements have to be

appropriately managed by a deductive system according to the underlying theory. Finally,

although there are recent proposals [69] on methods to extend fuzzy annotations in order

to interplay with standards like RDF/S and SPARQL, there is not yet a standard general

annotation framework.

Here we introduce some notations for Fuzzy RDF that will be used in the sequel.

Each instance triple tr, either class or property instance triple, is accompanied by a

degree expressing the truth value of the statement. Such a degree will be denoted by

directdegree(tr). We can now define the degree of a triple tr, denoted by degree(tr),

based on the semantics of RDF/S, and the axioms of Fuzzy Set Theory. We will adopt

Zadeh’s theory and consequently we shall use max for union and min for conjunctions 5.

Specifically,

degree(o, type, c) = max{ directdegree(o, type, c′) | c′ ≤cl c}

degree(o, p, o′) = max{ directdegree(o, p′, o′) | p′ ≤pr p}

Let Φ = {φ1, . . . φm} be a set of intervals in [0,1]. We define:

inst(c, φ) = { o ∈ inst(c) | degree(o, type, c) ∈ φ}

inst(p, φ) = { (o, p, o′) ∈ inst(p) | degree(o, p, o′) ∈ φ}

4.3.2 An Interaction Model for Fuzzy RDF

The general idea is that each transition of the interaction model (introduced in Chap-

ter 3) is now analyzed into |Φ| transitions, one for each φ ∈ Φ. Each one is signified

by the count of the resultant state’s extension. Fig. 4.5 shows how fuzzy degrees are

exploited. For example, consider a transition marker “z(20)”. We can present it as

“z(20)[low(10), medium(4), high(6)]” where “low” may correspond to degrees (0,0.3],

“medium” to (0.3,0.6] and “high” to (0.6,1]. So the user has now three more clicks, each

corresponding to a transition.

5However one could also adopt alternative definitions for the operators
⊗

,
⊕

(e.g. as proposed in
[70]).

69

[+] CarManufacturer (3) [1,2,0][+] Organization (2) [0,0,2][+] Person (2) [0,0,2][+] Status (2) [0,0,2][+] Vehicle (3) [0,0,3][+] CarManufacturer (3) [1,2,0][+] Organization (2) [0,0,2][+] Person (2) [0,0,2][+] Status (2) [0,0,2][-] Vehicle (3) [0,0,3]Car (3) [0,0,3] Jeep (1) [0,0,1][-] Vehicle (3) [0,0,3]Car (3) [0,0,3] Jeep (1) [0,0,1][-] Status (2) [0,0,2] Available (1) [0,0,1] ForSale (1) [0,0,1] Not. Avail (1) [0,0,1]by madeBy (2) European (1) BMW (1) [1,0,0]Japanese (1) Toyota (1) [0,0,1]by inv(uses) (2) Alice (1) [0,1,0]Bob (1) [1,0,0]by inv(drives) (1) Bob (1) [1,0,0][-] Vehicle (3) [0,0,3]Car (3) [0,0,3] Jeep (1) [0,0,1][-] Status (2) [0,0,2] Available (1) [0,0,1] ForSale (1) [0,0,1] Not. Avail (1) [0,0,1]by madeBy (2) European (1) BMW (1) [1,0,0]Japanese (1) Toyota (1) [0,0,1]by inv(uses) (2)by worksAt (2) CSD(1) [0,1,0] FORTH(1) [1,0,0]by inv(drives) (1) Bob (1) [1,0,0]

AssumingΦ = {(0,3],(0.3,0.6],(0.6,1]}���������	
������ �����	
�������������������������
���� ��	������������ ����������

Class-based
transition markers

Property-based
transition markers

PropertyPath-
based
transition
markers

Figure 4.5: Sketch of the GUI part for transition markers

70

To define these transitions we extend the definitions given in Section 3.2 so that each

of them takes an interval as additional parameter. Specifically, each Restrict takes as

input an additional parameter φ, and the same for Joins, i.e.:

Restrict(E, c, φ) = { e ∈ E | e ∈ inst(c, φ)}

Restrict(E, p : v, φ) = { e ∈ E | (e, p, v) ∈ inst(p, φ)}

Restrict(E, p : vset, φ) = { e ∈ E | ∃ v′ ∈ vset and (e, p, v′) ∈ inst(p, φ)}

Joins(E, p, φ) = { v | ∃ e ∈ E and (e, p, v) ∈ inst(p, φ)}

Regarding class-based transitions, it follows that for each tm in TMcl(s) we now have

one TMcl(s, φ) for each φ ∈ Φ, where:

TMcl(s, φ) = {c ∈ C | Restrict(s.e, c, φ) ̸= ∅}, and if the user clicks on a c ∈ TMcl(s, φ),

then s′.e = Restrict(s.e, c, φ).

Regarding property-based transitions, for each p ∈ Props(s), the corresponding transi-

tion markers in plain RDF were defined by Joins(s.e, p). Now, each element in Joins(s.e, p)

is analyzed to one Joins(s.e, p, φ) for each φ ∈ Φ. If the user clicks on a value v in

Joins(s.e, p, φ), then s′.e = Restrict(s.e, p : v, φ). Regarding presentation, we do not

show intervals, instead we show the corresponding count information. For example, for

each e ∈ E =
∪

φ∈Φ TMcl(s, φ) we show e once and its counts for each φ ∈ Φ. Analogously

for properties.

Let’s now focus on property paths. For example consider two property instances pi1

and pi2 that form a path (e.g. (cr2,inv(uses),Bob,0.2) and (Bob,worksAt,CSD,0.8)),

each associated with fuzzy degree d1 and d2, respectively. The degree of path pi1 · pi2 is

min(d1, d2), in our case 0.2, since each path actually corresponds to a conjunction. This

means that if the user’s focus is cars and he wants to restrict it through the organization

of the users of the cars, then the path pi1 · pi2 will be taken into account for computing

the count of the transition marker CSD whose interval encloses the degree min(d1, d2). To

define this precisely, we first introduce some notations. Let pp = p1, . . . , pk be a property

path. An instance path of pp is a sequence of the form ip = (v0, p1, v1) · . . . · (vk−1, pk, vk)

where for all 1 ≤ i ≤ k: (vi−1, pi, vi) ∈ C(K). The degree of an instance path ip is defined

as the minimum degree of its edges (property instance triples). The degree of a path from

o to o′ over pp, denoted as degree(o, pp, o′), is the maximum degree of all instance paths

71

of pp between these two objects. We can now define joins and restrictions based on fuzzy

paths:

Joins(E, pp, φ) = { vk | ∃ e ∈ E such that degree(e, pp, vk) ∈ φ} (4.1)

Restrict(E, pp : vk, φ) = { e ∈ E | degree(e, pp, vk) ∈ φ} (4.2)

Now we will analyze the algorithmic aspect of the above (since the previous two

definitions were declarative). Consider a property path pp = p1 · ... · pk. The transition

markers at each stage are defined as before, i.e. Mi = Joins(Mi−1, pi). For each individual

element e ∈ s.e we define the set of transition markers of level i (where 1 ≤ i ≤ k) which

are associated with it, as:

ETMi(e) = {mi ∈ Mi | ∃ s ∈ ETMi−1(e) and (s, pi,mi) ∈ inst(pi)} (4.3)

assuming that ETM0(e) = {e}.

A B C

a1

a2

a3

b1

b3

c1

c2

p1 (0.9)

p1 (0.4)

p2 (0.8)

p2 (0.5)

a1
a2
a3

by p1 (3)
b1(1,0,1)
b3(1,1,0)

by p1 (3)
by p2 (3)

C1(1,1,1)
C2(1,1,0)

a1
a2
a3

by p1 (1)
by p2 (1)

C1(1,0,0)
C2(1,0,0)

a2

Figure 4.6: Interaction over fuzzy paths

For example consider the case shown at Fig. 4.6. Let A be the extension of the cur-

rent state (M0 = A = s.e). For a path consisting only of one property p1 we have that

M1 = Joins(M0, p1) = {b1, b3}, while for p1 · p2 we have M2 = Joins(M1, p2) = {c1, c2}.

Now, for each element e ∈ s.e we have the following sets of transition markers of level i:

level 0:

level 1:

level 2:

ETM0(a1) = {a1}

ETM1(a1) = {b1}

ETM2(a1) = {c1}

ETM0(a2) = {a2}

ETM1(a2) = {b1, b3}

ETM2(a2) = {c1, c2}

ETM0(a3) = {a3}

ETM1(a3) = {b3}

ETM2(a3) = {c1, c2}

In addition, for each element e ∈ s.e and transition marker mi ∈ ETMi(e), we in-

troduce a value denoted by Deg(e,mi), which is actually the degree of a path from e to

72

mi over pp (note that if pp is empty then we assume Deg(e, e) = 1). This value can be

computed gradually (i.e. as the path gets expanded) as follows:

Deg(e,mi) = max
mi−1∈ETMi−1(e)

{min(degree(mi−1, pi,mi), Deg(e,mi−1))} (4.4)

In our example we have: Deg(a2, b1) = maxa∈ETM0(a2){min(degree(a, p1, b1), Deg(a2, a))} =

min(degree(a2, p1, b1), Deg(a2, a2)) = 0.2. Analogously, Deg(a2, b3) = 0.1. Now, the de-

gree of a2 to the transition marker c1 is computed as:

Deg(a2, c1) = maxb∈ETM1(a2){min(degree(b, p2, c1),Deg(a2, b))}=max{min(degree(b1, p2, c1),

Deg(a2, b1)), min(degree(b3, p2, c1), Deg(a2, b3))} = max{min(0.8, 0.2), min(0.7, 0.1)} =

max{0.2, 0.1} = 0.2. Analogously, Deg(a1, c1) = 0.8 and Deg(a3, c1) = 0.4.

Finally, the count for each mi of Mi that corresponds to φ is given by:

count(mi, φ) = |{e ∈ s.e | Deg(e,mi) ∈ φ}| (4.5)

e.g. at Fig. 4.6 and for φ = (0, 0.3], we have count(c1, φ) = 1. By clicking on the count

count(mi, φ) the extension of the current state is restricted as follows:

s′.e = {e ∈ s.e | Deg(e,mi) ∈ φ}.

4.3.3 Discrimination power

For each of the above transitions, the main advantage of the interval-based transition

markers is that they increase the discrimination power of the interaction. We should

remind here that each transition marker is an indication of the extra condition that could

be added to the intentional part of the current state. For each such condition we have now

|Φ| refinements. This means that for states corresponding to queries with k conditions

we now have |Φ|k more states.

For example consider the query “ Japanese cars for sale which are driven by persons

who work at FORTH and know a person who knows Bob”, where each individual un-

derlined part represents a condition. In this example we have k = 6 conditions. By

considering that for each of them the possible refinements are |Φ| = 3, then we would

have |Φ|k = 36 more states. In conclusion, the interval-based transition markers enhance

significantly the discrimination power of the interaction.

73

4.3.4 Implementation Requirements and Approaches

This section examines implementation requirements and approaches. The key aspect for

implementing the model is that of traversals due to the subClassOf and subPropertyOf

hierarchies. We can dichotomize implementation approaches, on the basis of the assumed

application scenario. In Section 4.2.4, we have already described these scenarios (rare-

updates vs frequent-updates) and discussed the related tradeoffs.

The aforementioned tradeoffs apply here as well. A general implementation approach

for the rare-updates scenario is to materialize information inferred by RDF/S rules and

fuzzy logic, for avoiding traversals at run time but at the cost of extra memory space

and more costly updates. A general implementation approach for the frequent-updates

scenario is to avoid storing any inferable information so that updates are supported ef-

ficiently at the cost of less efficient exploration services (due to the required traversals).

In general, we can say that implementations are dichotomized to forward and backward

chaining approaches.

4.3.4.1 Query Languages for Fuzzy RDF

As regards the frequent-updates scenario and in order to avoid storing inferred informa-

tion, a query language for RDF/S is required to effectively accomplish inference at query

level. Regarding QL for fuzzy RDF, there is not a standardized language widely used.

However, authors of [9] have recently proposed a fuzzy extension of the RDF/S model and

a query language named FSAQL to query fuzzy annotations defined under fuzzy RDF/S

semantics. As an example, Restrict(E, c, φ) can be expressed as:

SELECT ?X

FROM <Fuzzy RDFS repository>

WHERE n:<?X rdf:type ns:temp; rdf:type ns:c>

HAVE VALUES (n >= 0.8)

where we consider that the extension of the current state is stored under a class with name

ns:temp and degree(x, type, ns : temp) = 1. To evaluate FSAQL queries it is not required

74

to compute the transitive closure of the RDFS graph but several rules are invoked based

on the statements defined in the query.

Another proposed language is tSPARQL [30], an extension of SPARQL which pre-

supposes a weighted RDF graph and permits accessing trust values in queries through

trust-aware basic graph pattern matching. The trustworthiness of RDF triples is repre-

sented by a trust value in the interval [-1,1] where -1 corresponds to absolute ”negative

trust”, 0 ignorance and 1 to absolute trust. In our context, we could use this machin-

ery as follows: we use only positive values in the interval (0,1], and the instances of the

temporary class have trust equal to 1 (i.e. degree(x, type, ns : temp) = 1). However, this

QL does not support fuzzy inference wrt subclassOf/supropertyOf hierarchies at query

level, meaning that degree(o, type, c) has to be computed by an external method. As an

example, Restrict(E, c, φ) can be expressed as:

SELECT ?x

WHERE ?x rdf:type ns:temp; rdf:type ns:c.

ENSURE TRUST (phi.low, phi.up).

4.3.4.2 A Deductive Approach

As regards the rare-updates scenario, several works in literature treat the problem of

querying fuzzy ontologies as a problem of storing fuzzy knowledge. One approach is to

store fuzzy knowledge in existing storing systems and by exploiting a fuzzy reasoning

engine. For instance, Simou et al. [67] propose a method based on the use of blank nodes

in order to store membership degrees. Also they extend SPARQL in order to evaluate

threshold queries defined in a fuzzy reasoning engine over the Sesame RDF store. In our

context, the required SPARQL query for Restrict(s.e, c, ϕ) would be:

SELECT ?x

WHERE ?x rdf:type C

?x ns:degreeC ?dom1

?x rdf:type Temp

?x ns:degreeTemp ?dom2

75

Filter (?dom1 >= "1.0" xsd:float)

Filter (?dom2 >= "0.7" xsd:float)

Moreover, some recently proposed deductive systems, e.g. [70, 69], support fuzzy an-

swering over unions of conjunctive queries, by computing the closure of a fuzzy RDF

graph, storing it into a relational database and then using internally SQL queries. That

is, these systems exploit their reasoner for materializing all inferred triples in the under-

lying DBMS. For example, degree(o, type, c) is computed as we have defined it, however

degree(o, p, o′) is not directly supported.

More specifically, in fuzzy RDF system [70], the membership degrees are represented

syntactically through RDF reification. Then the closure of the considered fuzzy RDF

graph is computed and stored is MonetDB6. The underlying relational schema consists of

the following tables:

• type(subject, object,degree),

• subclassOf(subject, object, degree),

• subpropertyOf(subject, object, degree),

• domain(subject, object,degree),

• range(subject, object,degree) and

• propi(subject, object, degree) ,where propi is a table for every distinct property.

Table 4.2 shows directly the SQL queries that are needed by our interaction model for

Fuzzy RDF.

Regarding property paths (as described in 4.3.2), at each step we can compute Mi =

Joins(Mi−1, pi) with a single SQL query (as shown in Table 4.2). In case we consider that

Mi−1 is stored under a class c1 then the query would be:

SELECT pi.object

FROM pi,type

WHERE pi.subject=type.subject AND type.object=’C1’

6http://monetdb.cwi.nl/

76

Notation Expression in SQL
Restrict(E, c, φ)

select subject from type

where object=’c’ and subject in E

and degree>phi.low and degree<=phi.up

Restrict(E, p : vset, φ)

select subject from p_i

where object in VSET and subject in E and

degree>phi.low and degree<=phi.up

Joins(E, p)

select object from p_i

where subject in E

TMcl(s, φ) and counts

select object,

sum(case when degree>phi.lower

and degree <= phi.upper then 1 else 0 end),

from type

where subject in s.e

group by object

ETM(e, Prev)

select object from p_i

where subject in Prev

DegMIN (e, subj,mi, d), where subj ∈
ETMi−1(e) and d = Deg(e, subj)

select case when degree > d

then d else degree end as DEG_MIN

from p_i

where subject=’subj’ and object=’m_i’

Table 4.2: SQL-expression of Notations for Fuzzy RDF Browsing

77

The difference of fuzzy paths vs non fuzzy paths, is that for moving from a stage i of the

path to a stage i + 1, we have for each e ∈ s.e to keep (a) ETMi(e), and (b) Deg(e,mi)

for each mi ∈ ETMi(e) ⊆ Mi. To compute ETMi(e) we can use a query of the form

ETM(e, Prev) (shown in Table 4.2) where Prev = ETMi−1(e). For instance, the follow-

ing simple query would return ETM1(e): select object from pi where subject=’e’.

To compute Deg(e,mi) we can use a query of the form DegMIN(e, subj,mi, d) for every

subj ∈ ETMi−1(e) (and accordingly d = Deg(e, subj)) and then get the max.

4.4 Experimental results

This Section describes some experiments accomplished over fuzzy RDF system [70]. Par-

ticularly, we compare the required computational cost for computing the count infor-

mation of the “refined” transition markers 7 versus that of plain regarding the case of

class-based transitions and property-based transitions as well. We show that the required

computation cost is not prohibitive for real-time interaction even in case of large datasets.

4.4.1 Class-based browsing

Here we report experimental results that compare the required times to compute the plain

counts versus fcounts corresponding to transition markers in case we only have class-based

browsing.

In many practical cases, fuzzy descriptions are automatically extracted from datasets

with plain attributes. Therefore, we have not localized a large dataset with fuzzy objects

descriptions. For this reason we accomplished the following experiments using datasets

synthetically generated. Specifically, we created a schema consisting of 209 classes

forming a tree with depth 4. The top level of the hierarchy contains a single class, the

second level 8 classes, the 3rd and 4th levels have 40 and 160 classes, respectively. The

average number of direct subClassOf relationships is 8 for a class of level 1, 5 for a class

of level 2 and 4 for a class of level 3. We have defined all subClassOf relationships

as crisp (not fuzzy). Subsequently, we created 3 datasets (D1-D3) with 10, 102, 103

7We will use for short the term “fcounts”.

78

resources each. Although we aimed at creating bigger datasets, when we created a dataset

with 104 resources the JVM (over which the fuzzy RDF system runs) crashed during the

computation of the closure (due to the high main memory requirements). We have to note

that for each resource instance statement with a fuzzy degree, 5 triples are being added

(by the Jena8 model which is included in the implementation of fuzzy RDF) for reification

purposes. So, each dataset (before the computation of closure) is represented by 50, 5∗102,

5 ∗ 103 triples while the schema constantly contains 208 triples. All resources have been

categorized in a fuzzy manner and randomly under the class hierarchy just described. A

resource can be instance of multiple leaf nodes.

Figure 4.7: Sizes of datasets and their closures

The X-axis of Fig. 4.7 corresponds to the number of explicitly defined schema and

instance triples of each dataset, while the Y -axis corresponds to the number of triples after

the computation of closure. The measurements verify the theoretically derived result that

the size of the closure of an RDF graph has a quadratic upper bound.

1

10

100

1000

10000

1 2 3 4 5

Tim
e (

mi
llis

 in
 lo

g
sca

le)

#Intervals

DataSet (10^5) DataSet (10^6) Dataset (10^7)

Figure 4.8: Query evaluation times for various |Φ| in bigger datasets (Y -axis in logscale)
8http://jena.sourceforge.net/

79

Subsequently we measured the times required to compute counts and fcounts. For plain

counts we measured the time required to compute the counts of all classes. This means

that we actually request all resources which are direct or indirect instances of a class (of

the schema) with a degree in (0,1]. As regards fuzzy counts, we distinguish different cases

each corresponding to a different number of intervals that partition the interval (0,1], i.e.

to a different |Φ|. It follows that a class gets |Φ| different fcounts. In our experiments we

used the values from 2 to 5 for |Φ| and again we measured the time required to compute

the fcounts for all classes of the schema. Although every query according to fuzzy RDF

system’s language, is interpreted to one SQL query that is executed over MonetDB (where

the closure of the RDF graph is stored), we used directly MonetDB queries to get these

results. We used one query to get either the plain or the fuzzy counts of all classes.

Specifically for |Φ| = 1:

SELECT object, count(*)

FROM type

GROUP BY object

while for |Φ| = 2:

SELECT object,

SUM(CASE WHEN degree < 0.5 OR degree = 0.5 THEN 1 ELSE 0 END),

SUM(CASE WHEN degree > 0.5 THEN 1 ELSE 0 END)

FROM type

GROUP BY object

and so on. For each dataset, we posed the corresponding query (where |Φ| was ranging

from 1 to 5) several times and measured the average query evaluation times. In all cases

the times were less than 4 ms.

To bypass Jena’s inability to compute the closure for big datasets (using limited main

memory), we created bigger datasets (105, 106 and 107 instances) and stored them directly

to MonetDB without first computing their closure. This allows us to test the efficiency

of MonetDB in the above kinds of queries on larger datasets. The measurements (shown

80

at Fig. 4.8 in log scale) are representative for scenarios where the closure is already

materialized, or for scenarios where the terms of the facets are flat (not hierarchically

organized). We observe that the computation takes less than 0.4 secs for the 106 dataset

and |Φ| = 5. Also, for the 107 dataset it takes less than 3 secs for the case of |Φ| = 5.

Comparatively to the cost for computing plain counts (|Φ| = 1), the cost for computing

fcounts is around |Φ| ∗ 1.75 times greater in the case of one million objects and |Φ|*1.3 in

that of 107 dataset.

We also measured the time required to order all classes (that have instances) according

to the average degree of their instances (i.e. fvalueavg(t), however recall that here we do

not have hierarchically organized values), and at the same time to compute their fcounts.

For |Φ|=2 we use the following query:

SELECT AVG(degree) AS score, object,

SUM(CASE WHEN degree < 0.5 OR degree = 0.5 THEN 1 ELSE 0 END),

SUM(CASE WHEN degree > 0.5

THEN 1 ELSE 0 END)

FROM type

GROUP BY object

ORDER BY score

We tested this type of queries over the 106 and 107 datasets. The required times (for

|Φ| from 1 to 5) are almost equal to those measured in case of just computing fcounts

(shown in Fig. 4.8). To synopsize, if degrees are materialized, then the required cost

to compute fcounts is affordable for real-time interaction even over datasets with 107

resources.

4.4.2 Property-based browsing

We have also conducted an experiment over the fuzzy RDF system regarding property-

based transition markers. Specifically, in this Section we present experimental results

that compare the required times to compute the plain count information versus that of

“refined” transition markers corresponding to a particular property.

81

In order to create a synthetic dataset, we consider a schema with 2 classes (c1, c2)

related through the property pr. As instances of the class c1 are considered to be all the

resources in the current state extension, while instances of c2 are all the resources related

with instances of c1 through property pr (all the candidate transition markers for the

property pr). We consider that all possible inferred information (i.e. by RDF/S inference

rules for subclassOf and subproperty hierarchies) has been pre-computed and stored in

the database. Also, we should note that the degrees applied over property instances have

been randomly selected.

Subsequently, we have created 2 datasets (D1,D2) with 105, 106 resources under class

c1 in each dataset, respectively. All resources have been categorized in a fuzzy manner

and randomly under the class hierarchy previously described. In both datasets, under

c2 there have been added 3 instances, tm1, tm2 and tm3. We consider that each one is

possible to restrict 1%, 10% and about 100% of the initial focus set (resources under c1)

respectively. We should note that a particular resource under c1 is possible to be related

with more than one transition markers.

For each resource instance statement (considering classes or properties) with a fuzzy

degree, 5 triples are being added by the Jena model which is included in the implemen-

tation of the fuzzy RDF for reification purposes. Also degrees of truth are selected and

applied randomly over property instances. At this point, we should also remind that the

underlying relational schema in fuzzy RDF system keeps a table propi(subject, object,

degree) for every distinct property. In our context, resources under c1 are possible sub-

jects while tm1− tm3 are the possible objects.

Then the required time to compute counts and fcounts could be measured. Regarding

plain counts, we measured the required time to compute the number of objects in the

focus set that are related with a particular transition marker through property Prop.

As regards fuzzy counts, we distinguish different cases each corresponding to a different

number of intervals that partition the interval (0, 1]. Each tm gets |Φ| different fcounts.

It is possible to use one query to get either the plain or the fuzzy counts of all transition

markers related with the focus set through property Prop 9. Specifically, for |Φ| = 1:

9We consider that resources under c1 are stored in the type table.

82

SELECT prop.object, count(*)

FROM prop,type

WHERE prop.subject=type.subject AND type.object=’c1’

GROUP BY prop.object

while for |Φ| = 2:

SELECT prop.object

SUM (CASE WHEN prop.degree < 0.5 OR prop.degree=0.5 THEN 1 ELSE 0

END),

SUM (CASE WHEN prop.degree > 0.5 THEN 1 ELSE 0 END)

FROM prop,type

WHERE prop.subject=type.subject AND type.object=’c1’

GROUP BY prop.object

and so on.

In order to get either the plain or the fuzzy counts of a particular transition marker

the appropriate queries would for |Φ| = 1:

SELECT prop.object, count(*)

FROM prop,type

WHERE prop.object=’tm’ AND prop.subject=type.subject

GROUP BY prop.object

while for |Φ| = 2:

SELECT prop.object

SUM (CASE WHEN prop.degree < 0.5 OR Prop.degree=0.5 THEN 1 ELSE 0

END),

SUM (CASE WHEN prop.degree > 0.5 THEN 1 ELSE 0 END)

FROM prop,type

WHERE object=’TMi’ AND prop.subject=type.subject

GROUP BY prop.object

83

For each dataset, we posed the corresponding query (where |Φ| was ranging from 1

to 5) several times and measured the average query evaluation times. The measurements

for the 105 and 106 datasets are shown at Fig. 4.9 and Fig. 4.10 respectively. Note

that for each |Φ| there exist 3 bars, each representing the required computation time for

each transition marker’s counts and fcounts. We observe that for the 105 dataset the

computation takes less than 0.3 secs in the worst case that a transition marker is related

with almost 105 objects in the focus set and |Φ| = 5. Moreover, for the same case it

takes about 2 secs in the 106 dataset and about 3 secs if almost the whole initial focus

set is restricted by a transition marker (tm3 case). We observe that as |Φ| changes, the

computation times considering a transition marker’s fcounts in a particular dataset, do

not change remarkably.

0
50

100
150
200
250
300
350

1 2 3 4 5

Tim
e (

mi
llis

)

#Intervals

10^3 (tm1) 10^4 (tm2) ~10^5 (tm3)

Figure 4.9: Query evaluation times for various |Φ| over the 105 dataset

0
500

1000
1500
2000
2500
3000
3500

1 2 3 4 5

Tim
e (

mi
llis

)

#Intervals

10^4 (tm1) 10^5 (tm2) ~10^6 (tm3)

Figure 4.10: Query evaluation times for various |Φ| over the 106 dataset

In all previous queries we have compared the required times to compute counts versus

fcounts for transition markers corresponding to a particular property considering that the

84

availability of this property is a priori known. However in practice, given a focus set, it

would be required to find the appropriate properties (properties in Props(s)) that can

be used for deriving transition markers. We remind that in the fuzzy RDF system, the

underlying relational schema contains a table domain(subject,object,degree), where

subjects are properties and objects are their domain classes. Therefore, an appropriate

query to get candidate properties would be the following:

SELECT domain.subject

FROM domain, type

WHERE type.object=domain.object

As this query does not contain any aggregation function, the required time to get a

response would not be larger than that previously counted in the |Φ| = 1 case.

Regarding now property paths, an important aspect is how we would keep Mi and

ETMi(e) required for moving from a stage i of the path to a stage i+1 for the plain and

fuzzy case, respectively. In order to testify if the fuzzy RDF system could be used to

store the above in real-time interaction, we have measured the times required for inserting

objects sets of various orders of magnitude in MonetDB (the underlying database of the

fuzzy RDF system). The inserted resources are considered to be stored as instances of

a temporary class. In order to accomplish the insertions, we have used a SQL query

of the form: INSERT INTO type VALUES (’subj’,’temp’,’Degree’), where subj is a

resource’s identifier, temp the temporary class and Degree = 1. For the 102 object set,

the total insertion time is 2 secs while for the 103 and 104 object sets the required times are

about 22 secs and 242 secs, respectively, that are not affordable for real time interaction.

In conclusion, the required times for computing (over a DBMS) a particular transition

marker’s counts and fuzzy counts are not prohibitive for real-time interaction. However,

storing in a DBMS the required sets of transition markers is not affordable for real-time

interaction in case of large datasets. A practical solution is a query construction method

(like the one proposed in Section 3.8) targetting to property paths, that could efficiently

support the interaction model we have proposed as it overrides the requirements for

storing intermediate sets of transition markers. The input of such a method would be

the expanded property path while the output would be a SPARQL query that returns

85

the appropriate transition markers at each step. Alternatively, an extension of SPARQL

that supports nested queries and regular expressions (i.e. nSPARQL [56]) could be used.

However, there is not yet a consensus on how to define such a QL in the Semantic Web

community.

86

Chapter 5

Conclusion

This thesis proposed a novel session-based model for browsing and exploring Fuzzy RDF

knowledge bases. The proposed model allows formulating complex queries gradually and

through plain clicks over interval-based transition markers. The contribution of this thesis

lies in:

• proposing a model that it defines formally and precisely the state space of an in-

teraction that is query language and visualization independent and never leads to

empty result sets.

• clarifying issues regarding schema and instance cyclic property paths. Particularly,

in Section 3.4 we have proposed an algorithmic way to treat instance cyclic property

paths in order to eliminate possible redundant steps in sessions.

• analyzing the requirements that concern the implementation of the proposed model

over the available query languages. Specifically, we have identified some important

limitations of the current query languages (nested queries, transitive traversal of

properties) and triple-stores (named queries, query minimization and equivalence).

The advancement of existing QLs and triple-stores with such capabilities would

allow a straightforward implementation of the proposed model and would greatly

reduce the required application code.

• accomplishing and reporting experimental results regarding the efficiency and scal-

ability of the proposed interaction method and in case all the inferred information

87

is stored in a DBMS. However, as regards the case of property path-based browsing,

implementation issues have to be studied more thoroughly while more experiments

(on efficiency) should be accomplished.

• surveying the main exploration/browsing approaches for plain RDF sources in terms

of a state-based analysis.

Directions for further research regard:

• ranking methods for the transition markers. For instance, fuzzy degrees can be

exploited for clustering transition markers, or for ranking them through more refined

methods than those which have been proposed for plain RDF sources, e.g. [54, 23].

• the exploitation of fuzzy degrees applied at schema level (fuzzy subsumption rela-

tions) for even more efficient guided exploration.

• the adjustment of the model in order to be applicable over objects descriptions and

associations accompanied by intervals of degrees instead of degrees.

• the refinements of transition markers by exploiting other domains of Annotated

RDF/S [69], like the temporal one where instead of degree intervals we would have

time intervals.

88

Bibliography

[1] Rdf semantics. http://www.w3.org/TR/rdf-mt/.

[2] SIMILE: Longwell RDF Browser (2003-2005). http://simile.mit.edu/wiki/

Longwell/.

[3] SPARQL Query Language for RDF, W3C Candidate Recommendation, 15 January

2008 (http://www.w3.org/TR/rdf-sparql-query/).

[4] S. Agrawal, S. Chaudhuri, G. Das, and A. Gionis. Automated ranking of database

query results. In Procs. of CDIR, 2003.

[5] P. Allard and S. Ferré. Dynamic taxonomies for the semantic web. In Procs of the

19th International Conference on Database and Expert Systems Application (DEXA),

2008.

[6] R. Angles and C. Gutierrez. SQL Nested Queries in SPARQL. In Procs of Alberto

Mendelzon Workshop on Foundations of Databases, AMW 2010, 2010.

[7] N. Athanasis, V. Christophides, and D. Kotzinos. Generating on the fly queries for

the semantic web: The ics-forth graphical rql interface (grql). In Intern. Semantic

Web Conf. (ISWC), 2004.

[8] R. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdock, V. Plachouras, and F. Silvestri.

Predictive caching and prefetching of query results in search engines. In Procs of the

30th annual Intern. ACM SIGIR Conf. on Research and development in information

retrieval, SIGIR 07, Amsterdam, The Netherlands, July 2007.

89

[9] A. Bahri, R. Bouaziz, and F. Gargouri. Querying fuzzy rdfs semantic annotations.

In IEEE International Conference on Fuzzy Systems (FUZZ), 2010.

[10] O. Ben-Yitzhak, N. Golbandi, N. Har’El, R. Lempel, A. Neumann, S. Ofek-Koifman,

D. Sheinwald, E. Shekita, B. Sznajder, and S. Yogev. Beyond basic faceted search.

In WSDM ’08: Proceedings of the International Conference on Web Search and Web

Data Mining, pages 33–44, 2008.

[11] Tim Berners-lee, Yuhsin Chen, Lydia Chilton, Dan Connolly, Ruth Dhanaraj, James

Hollenbach, Adam Lerer, and David Sheets. Tabulator: Exploring and analyzing

linked data on the semantic web. In In Procs of the 3rd International Semantic Web

User Interaction Workshop (SWUI06), 2006.

[12] James C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms.

Kluwer Academic Publishers, 1981.

[13] P. Bosc and O. Pivert. Fuzzy queries and relational databases. In SAC ’94: Procs

of the 1994 ACM symposium on Applied computing, pages 170–174, NY, USA, 1994.

ACM.

[14] Andrei Broder. A taxonomy of web search. SIGIR Forum, 36(2):3–10, 2002.

[15] Tiziana Catarci, Tania Di Mascio, Enrico Franconi, Giuseppe Santucci, and Sergio

Tessaris. An ontology based visual tool for query formulation support. In OTM

2003Workshops, pages 32–33. Springer Berlin / Heidelberg, 2003.

[16] S. Chaudhuri and L. Gravano. Evaluating top-k selection queries. In Procs. of VLDB,

pages 399–410, 1999.

[17] Edward C. Clarkson, Shamkant B. Navathe, and James D. Foley. Generalized formal

models for faceted user interfaces. In JCDL ’09: Proceedings of the 9th ACM/IEEE-

CS joint conference on Digital libraries, pages 125–134, New York, NY, USA, 2009.

ACM.

90

[18] W. Dakka and P.G. Ipeirotis. Automatic extraction of useful facet hierarchies from

text databases. In Procs of the 24th Intern. Conf. on Data Engineering, (ICDE’08),

pages 466–475, Cancún, México, April 2008.

[19] Debabrata Dash, Jun Rao, Nimrod Megiddo, Anastasia Ailamaki, and Guy Lohman.

Dynamic faceted search for discovery-driven analysis. In CIKM ’08: Proceeding of

the 17th ACM conference on Information and knowledge management, pages 3–12,

2008.

[20] O. Erling and I. Mikhailov. Faceted views over large-scale linked data. In Procs of

the WWW2009 Workshop on Linked Data on the Web, 2009.

[21] Orri Erling and Ivan Mikhailov. Rdf support in the virtuoso dbms. In Procs of 1st

Conf. on Social Semantic Web, 2007.

[22] S. Ferré. Conceptual Navigation in RDF Graphs with SPARQL-Like Queries. Formal

Concept Analysis, pages 193–208, 2010.

[23] N. Fuhr. A probability ranking principle for interactive information retrieval. Infor-

mation Retrieval, 11(3):251–265, 2008.

[24] Galindo. FSQL (fuzzy SQL): A fuzzy query language. http://www.lcc.uma.es/

~ppgg/FSQL/#Ref, April 2010.

[25] J. Galindo. Fuzzy Databases: Modeling, Design, and Implementation. IGI Publishing,

2006.

[26] Jose Galindo. Handbook of Research on Fuzzy Information Processing in Databases.

Information Science Reference - Imprint of: IGI Publishing, Hershey, PA, 2008.

[27] Rasmus Hahn, Christian Bizer, Christopher Sahnwaldt, Christian Herta, Scott

Robinson, Michaela Bürgle, Holger Düwiger, and Ulrich Scheel. Faceted wikipedia

search. In Business Information Systems, volume 47 of Lecture Notes in Business

Information Processing, pages 1–11. 2010.

91

[28] A. Harth. Visinav: Visual web data search and navigation. In Procs of the 20th

Intern. Conf. on Database and Expert Systems Applications (DEXA ’09), 2009.

[29] O. Hartig, C. Bizer, and J.-C. Freytag. Executing sparql queries over the web of

linked data. In Procs of the 8th Intern. Semantic Web Conference (ISWC ’09).

Springer, 2009.

[30] Olaf Hartig. Querying trust in rdf data with tsparql. In 6th Annual European

Semantic Web Conference (ESWC09), pages 5–20, 2009.

[31] P. Hayes. RDF Semantics, W3C Recommendation, 2004.

[32] Marti A. Hearst. Uis for faceted navigation: Recent advances and remaining open

problems. In Workshop on Computer Interaction and Information Retrieval, HCIR

2008, 2008.

[33] M. Hildebrand, J. Ossenbruggen, and L. Hardman. /facet: A browser for heteroge-

neous semantic web repositories. In Procs of ISWC ’06, 2006.

[34] M. Holi and E. Hyvönen. Fuzzy view-based semantic search. In ASWC, 2006.

[35] D. Huynh. Nested faceted browsing. http://people.csail.mit.edu/dfhuynh/

projects/nfb/, 2010.

[36] D. Huynh and D. Karger. Parallax and companion: Set-based browsing for the data

web. (submitted to WWW ’09), 2009.

[37] E. Hyvönen, E. Mäkelä, M. Salminen, A. Valo, K. Viljanen, S. Saarela, M. Junnila,

and S. Kettula. MUSEUMFINLAND - Finnish Museums on the Semantic Web.

Journal of Web Semantics, 3(2-3):224–241, 2005.

[38] Cengiz Kahraman. Fuzzy Applications in Industrial Engineering (Studies in Fuzziness

and Soft Computing). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[39] G. Karvounarakis, V. Christophides, and D. Plexousakis. RQL: A Declarative Query

Language for RDF. In Eleventh International World Wide Web Conference (WWW),

Hawaii, USA, May 2002.

92

[40] S. Khatchadourian and M. Consens. Explod: Summary-based exploration of inter-

linking and rdf usage in the linked open data cloud. The Semantic Web: Research

and Applications, pages 272–287, 2010.

[41] G. Kobilarov and I. Dickinson. Humboldt:Exploring linked data. In Linked Data on

the Web Workshop at WWW2008, Beijing, China, 2008.

[42] Christian Kohlschütter. Using link analysis to identify aspects in faceted web search.

SIGIR 2006 Workshop on Faceted Search, pages 55–59, 2006.

[43] S. Kopidaki, P. Papadakos, and Y. Tzitzikas. STC+ and NM-STC: Two novel online

results clustering methods for web searching. In WISE ’09: Procs of the 10th Intern.

Conf. on Web Information Systems Engineering, October 2009.

[44] Sebastian Ryszard Kruk, Adam Gzella, Filip Czaja, Wladyslaw Bultrowicz, and

Ewelina Kruk. Multibeebrowse: accessible browsing on unstructured metadata. In

Proceedings of the OTM - Volume Part I, OTM’07, 2007.

[45] Chengkai Li, Ning Yan, Senjuti Basu Roy, Lekhendro Lisham, and Gautam

Das. Facetedpedia: dynamic generation of query-dependent faceted interfaces for

wikipedia. In WWW, pages 651–660, 2010.

[46] J. Lu, Y. Zhu, X. Zeng, L. Koehl, J. Ma, and G. Zhang. A fuzzy decision support

system for garment new product development. In Australasian Conf. on Artificial

Intelligence, pages 532–543, 2008.

[47] Aimilia Magkanaraki, Val Tannen, Vassilis Christophides, and Dimitris Plexousakis.

Viewing the semantic web through rvl lenses. Web Semant., 1, October 2004.

[48] E. Mäkelä, E. Hyvönen, and S. Saarela. Ontogator - A Semantic View-Based Search

Engine Service for Web Applications. In Procs of ISWC ’06, pages 847–860, 2006.

[49] J. Maraboli R., Abarzua. FSQL-f representacion y consulta por medio del leguaje

PL/PGSQL de informacion imperfecta. PhD thesis, Universidad Catolica del

Maule,Chile, 2006.

93

[50] Michael Martin, Jörg Unbehauen, and Sören Auer. Improving the performance of

semantic web applications with sparql query caching. In ESWC (2), pages 304–318,

2010.

[51] M. Mazzieri. A fuzzy rdf semantics to represent trust metadata. In 1st Workshop on

Semantic Web Applications and Perspectives (SWAP2004), 2004.

[52] schraefel m.c, D.A. Smith, A. Owens, A. Rusell, C. Harris, and M.L. Wilson. The

evolving mSpace platform: leveraging the Semantic Web on the Trial of the Memex.

In Proceedings of Hypertext 2005, pages 174–183, 2005.

[53] Andreas Meier and Nicolas Werro. A fuzzy classification model for online customers.

Informatica (Slovenia), 31(2):175–182, 2007.

[54] E. Oren, R. Delbru, and S. Decker. Extending Faceted Navigation for RDF Data. In

Procs of ISWC ’06, 2006.

[55] P. Papadakos, S. Kopidaki, N. Armenatzoglou, and Y. Tzitzikas. Exploratory web

searching with dynamic taxonomies and results clustering. In ECDL ’09: Proceedings

of the 13th European Conference on Digital Libraries, September 2009.

[56] J. Pérez, M. Arenas, and C. Gutierrez. nSPARQL: A navigational language for RDF.

Web Semantics: Science, Services and Agents on the World Wide Web, 2010.

[57] E. Pietriga, C. Bizer, D. Karger, and R. Lee. Fresnel - a browser-independent presen-

tation vocabulary for rdf. In Procs of the Second InterN. Workshop on Interaction

Design and the Semantic Web, pages 158–171. Springer, 2006.

[58] Daniel E. Rose and Danny Levinson. Understanding user goals in web search. In

Proceedings of the 13th international conference on World Wide Web, WWW ’04,

2004.

[59] Alistair Russell, Paul R. Smart, Dave Braines, and Nigel R. Shadbolt. Nitelight: A

graphical tool for semantic query construction. In Semantic Web User Interaction

Workshop (SWUI 2008), April 2008.

94

[60] G. M. Sacco. Efficient implementation of dynamic taxonomies. Technical report,

Univ. di Torino, 2004.

[61] G. M. Sacco and Y. Tzitzikas (Editors). Dynamic Taxonomies and Faceted Search:

Theory, Practise and Experience. Springer, 2009. ISBN = 978-3-642-02358-3.

[62] G. M. Sacco and Y. Tzitzikas. Dynamic Taxonomies and Faceted Search: Theory,

Practice, and Experience. Springer, 2009.

[63] Giovanni Maria Sacco. e-rare: Interactive diagnostic assistance for rare diseases

through dynamic taxonomies. In DEXA Workshops, pages 407–411. IEEE Computer

Society, 2008.

[64] Simon Schenk. A sparql semantics based on datalog. In KI 2007: Advances in

Artificial Intelligence, volume 4667 of Lecture Notes in Computer Science, pages

160–174. Springer Berlin / Heidelberg, 2007.

[65] M. Schmidt, M. Meier, and G. Lausen. Foundations of SPARQL query optimization.

In Proceedings of the 13th International Conference on Database Theory, pages 4–33.

ACM, 2010.

[66] G. Serfiotis, I. Koffina, V. Christophides, and V. Tannen. Containment and mini-

mization of RDF/S query patterns. The Semantic Web–ISWC 2005, pages 607–623,

2005.

[67] N. Simou, G. Stoilos, V. Tzouvaras, G. Stamou, and S. Kollias. Storing and querying

fuzzy knowledge in the semantic web. In 7th Int. Workshop on Uncertainty Reasoning

For the Semantic Web, 2008.

[68] M. Stefaner, T. Urban, and M. Seefelder. Elastic lists for facet browsing and resource

analysis in the enterprise. In Procs of the 19th Intern. Conf. on Database and Expert

Systems Application (DEXA’08), pages 397–401, 2008.

[69] U. Straccia, N. Lopes, G. Lukacsy, and A. Polleres. A general framework for repre-

senting and reasoning with annotated semantic web data. In Twenty-Fourth AAAI

Conference on Artificial Intelligence (AAAI-2010), 2010.

95

[70] Umberto Straccia. A minimal deductive system for general fuzzy rdf. In Procs of the

3rd Intern. Conf. on Web Reasoning and Rule Systems (RR ’09), 2009.

[71] F. Silvestri T. Fagni, R. Perego and S. Orlando. Boosting the performance of web

search engines Caching and prefetching query results by exploiting historical usage

data. In ACM Transactions on Information Systems (TOIS), pages 51–78, 2006.

[72] Y. Tzitzikas, N. Armenatzoglou, and P. Papadakos. FleXplorer: A Framework

for Providing Faceted and Dynamic Taxonomy-Based Information Exploration. In

Database and Expert Systems Application, 2008. DEXA’08. 19th International Con-

ference on, pages 392–396, 2008.

[73] W. A. Voglozin, G. Raschia, L. Ughetto, and N. Mouaddib. Querying a summary of

database. J. Intell. Inf. Syst., 26(1):59–73, 2006.

[74] R. W. White and R. A. Roth. Exploratory Search: Beyond the Query-Response

Paradigm. Morgan & Claypool Publishers, 2009.

[75] Ryen W. White, Bill Kules, Steven M. Drucker, and m.c. schraefel. Supporting

exploratory search, introduction, special issue, communications of the acm. Commu-

nications of the ACM, 49(4):36–39, April 2006.

[76] Max L. Wilson, Paul André, and mc schraefel. Backward highlighting: enhancing

faceted search. In Proceedings of the 21st annual ACM symposium on User interface

software and technology, UIST ’08, 2008.

[77] K.-P Yee, K. Swearingen, K. Li, and M. Hearst. Faceted metadata for image search

and browsing. In Proceedings of the SIGCHI Conference on Human factors in Com-

puting Systems, pages 401–408, 2003.

[78] Roelof Z., B. Sigurbjornsson, R. Adapala, L. Garcia Pueyo, A. Katiyar, K. Kurapati,

M. Muralidharan, S. Muthu, V. Murdock, A. Ng, P.and Ramani, A. Sahai, S. T.

Sathish, H. Vasudev, and U. Vuyyuru. Faceted exploration of image search results.

In WWW’10: Proceedings of the 19th international conference on World wide web,

2010.

96

[79] L. A. Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst., pages

3–28, 1978.

[80] L.A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.

[81] Lotfi A. Zadeh. The concept of a linguistic variable and its application to approximate

reasoning - i. Inf. Sci., 8(3):199–249, 1975.

[82] Lotfi A. Zadeh. From computing with numbers to computing with words - from

manipulation of measurements to manipulation of perceptions. In Intelligent Systems

and Soft Computing, pages 3–40, 2000.

[83] J. Zhang and G. Marchionini. Evaluation and evolution of a browse and search inter-

face: Relation browser++. In Procs of the national conference on Digital government

research (DG. ’05). Digital Government Society of North America, 2005.

97

98

Chapter 6

Appendix

6.1 Fuzzy Queries over Relational DBs

Several fuzzy extensions for querying relational databases have been proposed in literature. A

flexible querying process operating on relational databases searches the tuples for adequacy to

a query using an extension of a standard language, usually SQL [73].

6.1.1 SQLf

The querying language SQLf [13], proposed by Bosc and Pivert, is a fuzzification of SQL allowing

fuzzy queries over precise data producing discriminated answers. In SQLf, linguistic terms may

appear as fuzzy values, modifiers (i.e. very, really, more), and quantifiers (i.e. most, a dozen)

in the WHERE clause and other clauses. It includes extensions of the SQL standards until

the SQL3 comprehending recursive queries too. However, SQLf allows users to specify desired

thresholds for general satisfaction degree but not over a particular attribute. For instance the

threshold degree 0.75 in the following query will determine totally which data will participate

in the answer.

SELECT *

FROM PEOPLE

WHERE Weight = Weighted AND Stature = Tall WITH CALIBRATION 0.75 ;

99

6.1.2 FSQL

FSQL (Fuzzy SQL) [25], another fuzzy extension of the SQL language, supports queries over

fuzzy data elements and fulfilment thresholds that can be applied at different levels of querying

condition. SQL is extended to allow flexible conditions using linguistic labels, fuzzy comparison

operators, fuzzy constants and many other fuzzy constructs. Each condition in a query can be

given a threshold that sets the minimum satisfaction degree for the condition. The following

query follows the syntax of FSQL:

SELECT *

FROM PEOPLE

WHERE Weight FEQ Weighted 0.75 AND Stature FEQ Tall 0.75 ;

Although there exist implementations of such languages (SQLf, FSQL) over PostgreSQL

[49] and over Oracle [24], it is not referred to support recursive queries in combination with

fulfilment thresholds at the query conditions concerning attributes values.

100

