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Abstract

Advances in networking and regulatory changes on access and competition rules enable new

network architectures, service paradigms, and partnerships. Unlike traditional spectrum and

wireless access markets, new types of markets are formed that have larger sizes, are more di-

verse, and can offer an improved set of services. The analysis of such markets is challenging

due to a plethora of phenomena that manifest in different spatio-temporal scales. The main

contribution of this thesis is the development of a modular multi-layer modeling framework

for analysing wireless access and spectrum markets. This framework employs game theory,

queueing-theoretical models, network economics, and clustering algorithms to instantiate a

market at multiple levels of detail. It allows providers to distinguish user sub-populations

with different profiles that depend on various parameters, such as, the willingness-to-pay,

quality of service requirements, and traffic demand and model their decision making sep-

arately. As the number of user sub-populations that providers consider increases, the level

of detail in the analysis also increases but so does the computational complexity. The goal

of a provider is to select the appropriate level of detail that results in high revenue benefits

and requires a low computational cost. The framework considers several providers, each

potentially offering multiple dataplans. It also models the user decision making in a realistic

manner assuming that they do not always make the optimal decisions in terms of the of-

fered prices and quality of service. To reduce the computational complexity even further, it

also develops a network decomposition methodology and algorithm based on the theorem of

Norton. This algorithm computes equivalent queueing network models for a specific region

of interest omitting the details of the entire networks of providers. Based on the modeling

framework, various market cases with strong commercial interest have been analysed, e.g.,

WiFi offloading, secondary spectrum markets for capacity enhancement, pricing via market

segmentation, and the flex service, a novel paradigm that allows users to dynamically select

their provider. The analysis indicates that when there is a strong correlation between the user
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willingness-to-pay and quality of service requirements, providers achieve revenue benefits

when they model users with a larger number of sub-populations. When those parameters are

independent, in some cases, providers may lose revenue when they model users in the same

level of detail. This framework can be the basis of a software tool that enables providers to

perform a detailed cost-benefit analysis of different market cases.

Page iv



Extended abstract in Greek�������� ��	�
��� �� 

���

Η πρόοδος στα ασύρματα δίκτυα σε συνδυασμό με αλλαγές στους ρυθμιστικούς κανόνες

για την πρόσβαση στο φάσμα και τον ανταγωνισμό παρέχουν νέες δυνατότητες για

δικτυακές αρχιτεκτονικές, υπηρεσίες και συνεργασίες μεταξύ των παρόχων. Σε αν-

τίθεση με τις παραδοσιακές αγορές ασύρματης πρόσβασης και φάσματος, εμφανίζον-

ται νέες αγορές που είναι μεγαλύτερες, πιο ετερογενείς, και παρέχουν νέες και βελτι-

ωμένες υπηρεσίες. Η ανάλυση αυτών των αγορών είναι δύσκολη λόγω μίας πληθώρας

φαινομένων που διαδραματίζονται σε διαφορετικές χωρικές και χρονικές κλίμακες. Η

κύρια συνεισφορά αυτής της διδακτορικής διατριβής είναι η ανάπτυξη ενός αρθρωτού

πλαισίου μοντελοποίησης για την ανάλυση των αγορών ασύρματης πρόσβασης και φάσ-

ματος. Το πλαίσιο μοντελοποίησης χρησιμοποιεί εργαλεία από τη θεωρία παιγνίων,

τη θεωρία ουρών, τα οικονομικά δικτύων, καθώς και αλγορίθμους ομαδοποίησης για

να μοντελοποιήσει αγορές σε διάφορα επίπεδα λεπτομέρειας. Συγκεκριμένα, επιτρέπει

στους παρόχους να διακρίνουν υποπληθυσμούς χρηστών με διαφορετικό προφίλ το οποίο

εξαρτάται από διάφορες παραμέτρους, όπως την προθυμία πληρωμής, τις απαιτήσεις σε

ποιότητα υπηρεσίας και τη ζήτηση και να μοντελοποιούν τις αποφάσεις τους ξεχωριστά.

Καθώς ο αριθμός των υποπληθυσμών αυξάνει, το επίπεδο λεπτομέρειας της ανάλυσης

αυξάνεται όπως επίσης και η υπολογιστική πολυπλοκότητα. Ο στόχος ενός παρόχου εί-

ναι να επιλέξει το κατάλληλο επίπεδο λεπτομέρειας που οδηγεί σε σημαντικά οφέλη στο

κέρδος απαιτώντας μικρό υπολογιστικό κόστος. Το πλαίσιο μοντελοποίησης θεωρεί

πολλαπλούς παρόχους, καθένας από τους οποίους μπορεί να παρέχει πολλαπλά πακέτα

χρέωσης. Επίσης, μοντελοποιεί τη συμπεριφορά των χρηστών με ένα ρεαλιστικό τρόπο

θεωρώντας ότι δεν κάνουν πάντα τη βέλτιστη επιλογή με κριτήριο τις προσφερόμενες

τιμές και την ποιότητα υπηρεσίας. Για να περιορίσει ακόμα περισσότερο την υπολο-

γιστική πολυπλοκότητα, αναπτύσσει μία μεθοδολογία και ένα αλγόριθμο αποσύνθεσης

δικτύων με βάση το θεώρημα του ������� Αυτός ο αλγόριθμος υπολογίζει ισοδύ-

��	
 �
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ναμα μοντέλα ουρών για τα δίκτυα μίας περιοχής ενδιαφέροντος, εξαλείφοντας τη λεπ-

τομέρεια ολόκληρων των δικτύων των παρόχων. Με βάση το πλαίσιο μοντελοποίησης,

μελετήθηκαν διάφορες τάσεις με ισχυρό εμπορικό ενδιαφέρον στις τηλεπικοινωνιακές

αγορές όπως η αποφόρτιση ���������	 των κυψελωτών δικτύων μέσω 
���� η συμμε-

τοχή των παρόχων σε δευτερεύουσες αγορές φάσματος για την αύξηση της χωρητικότη-

τας των δικτύων τους, η τιμολόγηση με βάση την τμηματοποίηση της αγοράς και το 
��

�������� μία νέα υπηρεσία που παρέχει τη δυνατότητα στους χρήστες να επιλέγουν τον

πάροχο τους δυναμικά. Η ανάλυση αναδεικνύει ότι στις περιπτώσεις όπου υπάρχει ισχυρή

συσχέτιση μεταξύ της προθυμίας πληρωμής των χρηστών και των απαιτήσεων τους σε

ποιότητα υπηρεσίας, οι πάροχοι επιτυγχάνουν σημαντικά οφέλη όταν μοντελοποιούν

τους χρήστες με μεγάλο αριθμό υποπληθυσμών. ΄Οταν όμως αυτές οι παράμετροι εί-

ναι ανεξάρτητες, σε κάποιες περιπτώσεις, οι πάροχοι μπορεί να καταγράψουν απώλειες

κέρδους όταν μοντελοποιούν τους χρήστες στο ίδιο επίπεδο λεπτομέρειας. Το πλαίσιο

μοντελοποίησης μπορεί να αποτελέσει τη βάση για την ανάπτυξη ενός λογισμικού που

θα πραγματοποιεί μία λεπτομερή ανάλυση κόστους-οφέλους για την υιοθέτηση νέων

τεχνολογικών τάσεων στις τηλεπικοινωνιακές αγορές.

���� ��
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Chapter 1

Introduction

1.1 The landscape of wireless access and spectrum markets

The rapid growth of wireless technologies and mobile devices leads to an increased demand
for wireless access. According to forecasts, by 2019, the mobile data traffic will exceed the
24.3 exabytes per month worldwide [1]. This explosion of the wireless traffic demand has
triggered a plethora of research activities for expanding the capacity of wireless networks
and improving the quality of service (QoS). To achieve this goal, an efficient allocation of
the available electromagnetic spectrum should be performed. Besides performance reasons,
the efficient spectrum utilization is important from an economic point of view: spectrum is
a scarce resource of high economic value (its worldwide value is approximately 1 trillion
USD) for both the society and the wireless industry with a wide variety of active business
stakeholders.

Spectrum markets define the process through which providers acquire licenses to op-
erate at certain portions of the spectrum. In traditional spectrum markets, the state assigns
nation-wide licenses that are valid for a long time period to various interested parties through
appropriate auction mechanisms [2, 3]. Due to these static allocation mechanisms, a large
percentage of the available spectrum remains underutilized. To improve the efficient use of
spectrum, more dynamic forms of spectrum access and trading have emerged.

In secondary spectrum markets, licence holders resell their spectrum access rights in
fine spatial and temporal granularities [4, 5, 6, 7, 8, 9, 10]. A large research effort has been
performed in the design of truthful, collusion-resistant, and effective auction mechanisms for
secondary spectrum markets [4, 5, 6, 7]. Given the rapid changes in the user traffic demand,
such markets can play an important role in improving the QoS of wireless networks.

To utilize the available spectrum more efficiently, opportunistic spectrum access
paradigms can also be applied [11, 12]. In these paradigms, some intelligent devices called
cognitive radios can function at licensed portions of the spectrum given that they do not
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affect the QoS of the licensed systems. Specifically, those devices can sense the licensed
spectrum, find currently unused bands (called spectrum holes) and use them to communi-
cate. On the other hand, the Body of European Regulators for Electronic Communications
(BEREC) envisages measures for roaming users and consumer empowerment to boost con-
sumer choices. Although traditionally users subscribe to or prepay for specific cellular op-
erators/providers for network access, new access paradigms can be designed in which users
will be able to select their provider dynamically each time they perform a new session.

To increase the capacity of wireless networks, new wireless access paradigms have
been proposed including, dynamic network selection, femtocells, and cooperative spectrum
access. In dynamic network selection, users can choose among a set of different available
networks (e.g., 3G, LTE, and WiFi networks) to connect to the Internet [13, 14]. Users can
dynamically select the best available network at small time scales (e.g., at the beginning of
each session). That way a load balancing can be performed among the different networks
improving the overall QoS.

The cooperation among users can also be a critical parameter in improving the per-
formance of wireless networks. In the femtocell paradigm, users can access the Internet by
connecting to the home wireless routers of other users instead of connecting to the cellu-
lar network of their provider [15, 16, 17]. This can significantly alleviate the congestion
in cellular networks and improve the utilization of the existing wired network infrastruc-
ture. Additionally, in cooperative spectrum access, users can forward the traffic of other
users forming a multi-hop network that expands the coverage of existing wireless networks
[18, 19, 20, 21].

Another popular method for expanding the capacity of cellular networks is mobile
data offloading [22, 23, 24, 25, 26, 27, 28, 29, 30]. To cope with the increase of the traffic
demand, providers may serve a part of the data traffic that is originally targeted to their
cellular networks by a complementary network infrastructure that has already been deployed
(e.g., based on a WiFi network, femtocells). This is a cost effective alternative to the leasing
of additional spectrum or the extension of the network infrastructure. Two types of WiFi
offloading schemes have been proposed, namely, the delayed offloading and on the spot
offloading. In delayed offloading, users wait until they are in the coverage of an access point
(AP) until sending their delay-tolerant traffic [22, 23, 24, 25]. In on-the-spot offloading,
users opportunistically transfer data via WiFi whenever they are in the coverage of an AP
[26, 27]. It is also assumed that the offloading process can be initiated either by the service
providers [27] or by the wireless users [30].

The cooperation among providers can also play an important role in the design of
more efficient wireless networks and markets. One form of cooperation could be the leasing
of network resources to other providers (e.g., access to a network infrastructure). Due to
such types of agreements, a new type of service providers has appeared, the mobile virtual
network operators (MVNOs) [31, 32]. These providers do not own a network infrastructure
but sublease network resources from other providers. Another form of cooperation among
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providers is the infrastructure sharing [33]. Providers can share a part of their network
infrastructure to reduce their capital and operational expenditures and improve their network
coverage and QoS.

In general, the landscape of wireless markets is under drastic changes. New markets
that are of larger size (in the number of users and providers), more heterogeneous (in the
user population and services), and more dynamic are formed. The modeling of such markets
is a challenging problem due to a plethora of technological and economic aspects that affect
their evolution.

1.2 State of the art in modeling of wireless markets

There is a plethora of models for wireless markets in the literature [34, 35, 28, 23, 36, 13,
14, 18, 19, 20, 21, 4, 37, 38, 9, 39, 40, 41]. These models can be classified into two general
categories, namely, the microscopic and macroscopic ones. Microscopic models usually
focus on a short spatial and temporal scale and evaluate the impact of various technical
aspects on the performance of a wireless market (i.e., on the revenue of providers and user
satisfaction). Examples of such technical aspects include mobile data offloading [28, 23],
femtocells [36], network selection mechanisms for users [13, 14], cooperative spectrum
access schemes for primary and secondary users in cognitive radio networks [18, 19, 20],
and multihop access paradigms [21]. Such models consider each provider and user as a
distinct entity with its own characteristics and utility function. They perform a detailed
analysis on a local scale and are accurate but usually not scalable.

On the other hand, macroscopic approaches focus on large-scale wireless markets and
make various simplifications in the modeling of the user population to decrease the computa-
tional complexity [4, 37, 38, 9, 39]. For example, they either consider a homogeneous user
population or provide models for the aggregate user traffic demand and behaviour. Other
studies define a probability distribution expressing the different preferences of users with
respect to the QoS [40, 41].

Unlike the traditional wireless markets, emerging ones are larger (in the number of
users, providers, and devices), more heterogeneous (in terms of user profiles and services),
and more complex and dynamic (e.g., in the interactions of providers and clients and their
decision making). Modeling such markets is challenging due to various business, network,
and service related phenomena that manifest at different spatio-temporal scales. Further-
more, the computational and scalability issues when analyzing the evolution of such markets
at large scales (e.g., at a nation-wide level) are prominent. Modeling such markets micro-
scopically or macroscopically may not be effective. Microscopic models are accurate but
not scalable and can not be applied in large-scale or nation-wide markets. On the other hand,
macroscopic models may result in inaccuracies due to the simplifications in the assumptions
they make.
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Figure 1.1: Modeling and analysis of wireless markets.

1.3 Main objectives of this Ph.D. thesis

In response to the above mentioned challenges, this Ph.D. thesis develops a multi-layer
modeling framework for analysing the emerging wireless access and spectrum markets. The
main objective is to design the framework to be general enough in order to study different
trends in wireless markets with a strong commercial interest, such as, market segmentation,
mobile data offloading, secondary spectrum markets, infrastructure sharing, and network
virtualization. Using this modeling framework providers will be able to comparatively anal-
yse different market cases and evaluate their benefits from adopting new wireless technolo-
gies and services.

Another important objective is to design the modeling framework to be multi-layer to
address the tradeoff between scalability and accuracy. In contrast to the previous approaches
that are either purely microscopic or macroscopic, this framework allows the instantiation
of a market at multiple levels of detail. At the microscopic level, the various entities are
modeled in fine temporal and spatial detail, while at the macroscopic level, entities are
described as homogeneous populations. Between these levels, various mesoscopic levels
are defined in which entities are modeled at different degrees of detail. By selecting the
appropriate mesoscopic level, one can achieve the desired tradeoff between accuracy and
computational complexity.

In summary, the objective of this thesis is to provide a methodology, algorithms, set of
tools, and software that will allow providers to analyse different market cases in an accurate
and computationally efficient manner. That way, they will be able to better design their
business plan and strategies in the emerging wireless access and spectrum markets.

1.4 Methodology

The proposed framework models wireless markets at two distinct layers, the technologi-
cal and the economic ones. The technological layer models the networks of providers as
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Figure 1.2: Multi-layer modeling framework for the analysis of wireless markets. (a) The
user clusters can be derived based on hierarchical clustering algorithms. (b) A clustering
approach on the spatial domain. (c) An example of the accuracy and scalability tradeoff (it
does not correspond to real data but just illustrates the tradeoff).

queueing networks and the user traffic demand with appropriate stochastic processes. It also
estimates the QoS that is offered by the providers. The economic layer models the interac-
tion of users and providers using game theory. Providers design their dataplans and services
and select their prices aiming to maximize their revenue, while users select the most ap-
propriate provider that better satisfies their requirements with respect to the offered prices
and QoS. The main components of the modeling framework are presented in Fig. 1.1. This
figure has been inspired by the one that Jean Walrand provided in his tutorial talk in ACM
Sigmetrics 2008.

To define the mesoscopic levels of detail, machine learning and data mining algo-
rithms have been employed (Fig. 1.2). In a “coarse-graining” procedure that results to a
loss of information in a controlled and hierarchical fashion, the individual entities of the
microscopic level (e.g., users) are replaced by clusters with certain attributes (Fig. 1.2a). In-
stead of modeling the decision making of each distinct user, the mesoscopic levels consider
a number of user clusters reducing significantly the computational complexity. Then, based
on the requirements of a specific study, the appropriate mesoscopic level can be selected that
achieves the desired tradeoff between accuracy and complexity (Fig. 1.2c).

To model the cellular networks of providers, and user traffic demand, the modeling
framework also employs Markovian processes and queueing networks. In order to attain a
succinct level of realism, often a large number of states needs to be taken into account. This
results in computationally expensive operations. Under certain conditions (e.g., local bal-
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Figure 1.3: The network decomposition technique based on the theorem of Norton.

ance, quasi reversibility) equilibrium solutions possess a product form but break down if the
state space becomes too large. This can be especially frustrating, as one is often interested
in the characteristics that are related to the behaviour of parts of the networks of providers
that depend only indirectly on the other states of these networks. Decomposition methods
can be applied to restrict the analysis to the part of interest, provided that the accuracy of this
isolated analysis remains tolerable. This thesis develops a network decomposition technique
based on the theorem of Norton [42]. This technique estimates equivalent queueing network
models for a specific region of interest and estimates the QoS of this region independently
of the remaining area of the network (Fig. 1.3).

1.5 Technical challenges

As mentioned earlier, the analysis of wireless markets involves various technological and
economic parameters (Fig. 1.1). Specifically, it incorporates models for the networks of
providers, user traffic demand, and mobility pattern, as well as, the economic interactions of
users and providers. The development of all those models requires knowledge from multi-
ple scientific fields, such as, queueing theory, game theory, network economics, dynamical
systems, and data mining. The design and implementation of the modeling framework in-
volves various technical challenges related to the mathematical analysis as well as numerical
analysis and programming-related issues.

The computation of the Nash equilibriums (NEs) of users and providers is in general
a difficult problem. For example, continuous games can be analysed efficiently only un-
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der certain assumptions: The strategy space should be rectangular and the utility functions
of players should be twice-continuously differentiable [43, 44, 45]. In some cases, those
assumptions may be restrictive. For example, in markets in which users are completely
rational in their service selection, the utility functions of providers have discontinues deriva-
tives. To resolve this issue, we have provided a novel algorithm for the computation of the
Nash equilibrium (NE) of providers presented in Chapter 7.

Another important mathematical issue is the existence of closed-form solutions for the
equilibriums of users and providers. Although in many cases the conditions of equilibrium
can be formulated as simple non-linear systems of equations, often such systems can not be
solved analytically. In such cases, the equilibriums can only be computed numerically. This
creates a computational complexity issue, as the numerical computation of the equilibriums
of users and providers should be performed for each possible market configuration.

During the implementation of the framework, various other numerical-analysis related
issues have emerged. For example, the computation of the NE of providers requires the
numerical evaluation of the derivatives of the provider utility functions. Traditional meth-
ods for evaluating the derivatives, such as [46, 47], are computationally expensive. To re-
solve this issue, we have proposed a problem-specific treatment to efficiently compute those
derivatives (described in the Appendix 7.D of Chapter 7).

The computation of the market equilibriums often requires the solution of non-linear
systems of equations and optimization problems. Providing a good initial guess for the
solutions of those problems is not a trivial task. A good initial guess can significantly reduce
the execution time of computing a solution and in some cases, it can affect the ability of the
algorithm to converge. To provide a good initial guess, often it is required to solve an
additional optimization problem to find a point that is close enough to the solution, such as,
the required execution time for the algorithm to converge is reduced.

Finally, during the implementation of the framework in matlab, some programming-
related issues arose. To write computationally efficient programs in matlab, one should
use matrices and vectors instead of the more conventional type of programming, like in C
or Java, using “for loops”. This can sometimes complicate the programming process. In
general, it requires an additional effort to implement the modeling framework in a compu-
tationally efficient manner.

1.6 Contributions

This thesis makes several contributions:

1. It develops a multi-layer game-theoretical framework for analysing wireless mar-
kets. The framework is general and can be used to study various market cases with a strong
commercial interest. It also allows providers to model users at different levels of detail
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and controls the tradeoff between the accuracy and computational complexity. Except from
modeling and analysing wireless markets, the tools and algorithms provided in this frame-
work can be used as a basis to study market cases from other research areas (e.g., from the
areas of public health and cloud computing).

2. It applies a network decomposition technique based on the theorem of Norton. This
technique provides equivalent queueing network models for a specific region of interest
omitting the details of the entire networks of providers. Often in the analysis of a market,
providers are interested in the performance of a specific part of their network. In such cases,
they can apply the theorem of Norton and restrict the analysis in their region of interest
achieving significant computational gains.

3. It uses the multi-layer modeling framework to analyse the performance of three
market cases, namely, pricing via market segmentation, WiFi offloading, and capacity plan-
ning. It performs an extensive set of experiments considering different scenarios with re-
spect to the user profiles and utility functions, mobility pattern, traffic demand, and pricing
strategies of providers. It also provides some conclusions and provider guidelines for those
market cases.

4. It models the user decision making in a realistic manner. In contrast to most game-
theoretical approaches that model users as rational entities, this thesis assumes that users
are not completely rational. Except from the price and QoS, other psychological and social
aspects affect the user decisions. The effect of all those aspects is captured by a noise
parameter in the user decision making process. This thesis compares the performance of
markets with completely rational entities with markets in which users are characterised by a
certain degree of irrationality.

5. It develops an event-based simulator that can be used as an alternative method for
analysing wireless markets. The simulator models in detail all the events that happen in a
market including session generations and terminations, price adaptation of providers, and
user service selections. It also models some phenomena at multiple levels of detail from the
microscopic to the macroscopic one.

1.7 Other related research activities outside the context of this
thesis

The research of this Ph.D. thesis is related with various other activities of the Mobile Com-
puting group of ICS-FORTH, under the supervision of Prof. Maria Papadopouli. One rele-
vant activity was the development of the u-map [48, 49], a crowdsourcing monitoring sys-
tem that collects network measurements and correlates them with user quality of experience
(QoE) feedback. In a real wireless market, the measurements collected by u-map can be
used to train the models of the framework presented in this thesis. In other words, a system
like u-map can be a useful tool for collecting the necessary data about the users to better
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design the models of their utility functions and behaviour and select their parameters (Fig.
1.1).

Another research activity was performed in collaboration with Neurocom S.A. The
main goal of this activity was to investigate the parameters that affect the adoption of a new
service in wireless markets. This research focused on studying the parameters that affect the
user service selection, including the price and QoS as well as other psychological and social
aspects, such as, brand name and brand equity, reputation of a provider, market share of a
provider, length of a customer association with a provider, and force of habit.

1.8 Roadmap

The structure of this Ph.D. thesis is as follows: Chapter 2 presents the publications that are
related to this Ph.D. thesis. Chapter 3 presents the multi-layer game-theoretical framework
for analysing wireless markets. The framework considers detailed models for the networks
of providers, user traffic, and mobility pattern. It also models the economic interactions of
users and providers as a two-stage game. The first stage models the competition of providers
through the price setting, while the second stage models the user service and provider se-
lection. The framework allows providers to model users at multiple levels of detail by dis-
tinguishing different user sub-populations and modeling their decision making separately.
It also models the user behaviour in a realistic manner assuming that they do not always
make the optimal decisions in terms of price and QoS. Finally, the framework providers a
network aggregation technique based on the theorem of Norton that computes equivalent
queueing network models only for a specific region of interest omitting the details of the
entire networks of providers. This results in significant computational gains.

The modeling framework is general and can be used to study various market cases
with a strong commercial interest. Chapter 4 presents the analysis of a market in which
providers apply a market segmentation approach for designing their dataplans and selecting
their prices. Providers, distinguish various user sub-populations with different profiles and
requirements and consider the decision making of those sub-populations when estimating
their utility functions. That way, they target the most suitable market segments improv-
ing their revenue. The analysis indicates the benefits of providers from modeling users at
different levels of detail and from offering a different number of dataplans.

Chapter 5 analyses the benefits of providers from applying the WiFi offloading, an
alternative method for expanding the capacity of the cellular networks and improving the
offered QoS. In WiFi offloading, a provider deploys a complementary network infrastructure
that mainly consists of WiFi APs and femtocells and offloads a part of its data traffic to
this infrastructure. This can significantly alleviate the congestion at the cellular network of
the provider improving the QoS. The analysis evaluates the benefits of the offloading in a
wireless oligopoly as well as its impact on the offered QoS and overall market equilibriums.
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Chapter 6 focuses on the problem of capacity planning. Due to the spatial hetero-
geneity of the traffic demand, some regions of the networks of providers may become con-
gested. To improve their QoS in these regions, providers may participate in a secondary
spectrum market to purchase additional spectrum. In such markets, the spectrum allocation
is performed according to an appropriate auction mechanism. This chapter analyses a VCG
spectrum auction and evaluates the benefits of providers from participating in this auction at
different market scenarios with respect to the user utility function and the available spectrum
for sale.

To model wireless markets in a realistic manner, the framework assumes that users
are not completely rational in their decision making. Specifically, it assumes that except
form the price and QoS, various other psychological and social aspects also affect the user
decisions. This assumption is meaningful and realistic in markets in which the decisions are
made by real users. However, they may be some market cases in which the decision making
is performed by software agents. Those agents make their decisions in a completely rational
manner. Chapter 7 presents a modeling framework for analysing wireless markets with
completely rational entities at the macroscopic level. It also uses this modeling framework
to analyse a wireless oligopoly of a small city and compares its performance with other
markets in which users are not completely rational.

Instead of performing a mathematical analysis of wireless markets, an alternative
method for evaluating their performance can be applied using an event-based simulator.
Chapter 8 presents such a simulator and describes in detail its main components. It also
presents appropriate tools and algorithms to analyse wireless markets at multiple levels of
detail from the microscopic to the macroscopic one. Based on this simulator, the perfor-
mance of a wireless oligopoly of a small city was analysed. This market offers the flex
service, a novel paradigm that allows users to select their provider dynamically each time
they perform a session. The analysis indicates the benefits of the flex service from the per-
spective of users and providers. Finally Chapter 9 presents the concluding remarks of this
Ph.D. thesis.
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Chapter 2

Related publications

The main contributions of this Ph.D. thesis have been included in the following publications:

Paper 1:
Georgios Fortetsanakis and Maria Papadopouli, “Multi-Layer Game-Theoretical Analysis
of Wireless Markets via Market Segmentation”, submitted to the IEEE/ACM Transactions
on Networking.

Abstract:
Market segmentation is important in the design of the marketing strategies of providers
in the telecom industry: To improve their performance, providers often target specific
user sub-populations to better satisfy their requirements and achieve higher revenues.
However, existing models of wireless markets usually do not consider the effect of
market segmentation on provider decisions. They are either microscopic, focusing on a
specific technical aspect (e.g., protocol, network topology, technology) at a fine scale or
macroscopic modeling wireless markets at a large-scale, e.g., considering homogeneous
user populations. In contrast to these approaches, this work introduces a multi-layer
game-theoretical framework. It allows providers to model users at different levels of detail
by considering a different number of user sub-populations. It also models the behaviour of
users in a realistic manner assuming that they do not always make the optimal decisions
in terms price and quality of service (QoS). The analysis indicates that in general, the
larger the number of the customer sub-populations that providers consider, the higher
their revenue gains and reduction of disconnected users. However, in some cases, when
providers consider the same number of user sub-populations, their competition becomes
more prominent, resulting in revenue loss.
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My contribution:
The idea came up from discussions with my advisor. I derived all the mathematical models
under the supervision of my advisor, implemented them in matlab, and performed all the
experiments presented in the performance evaluation. I also wrote most of the paper. My
advisor provided many comments for the improvement of the writing and presentation as
well as feedback on the performed experiments and results.

Paper 2:
Georgios Fortetsanakis, Ioannis Dimitriou, and Maria Papadopouli, “A Game-Theoretical
Analysis of Wireless Markets using Network Aggregation”, IEEE Transactions on Mobile
Computing (to appear).

Abstract:
Modeling wireless access and spectrum markets is challenging due to a plethora of
technological and economic aspects that affect their performance. This work develops a
modeling framework for analysing such markets using network economics, game theory,
and queueing networks. The framework models the service selection of users as well as
the competition and coalition among providers. It also develops tools and algorithms to
analytically compute the Nash equilibriums (NEs) under the presence of discontinuities
in the derivatives of the utility functions of providers. The analysis of different market
scenarios reveals various interesting trends in the offered prices, market share, and revenue
of providers depending on the user utility function, traffic demand, and mobility pattern.
It also demonstrates the role of the quality of service (QoS) in the user utility function in
reducing the intensity of competition and allowing for higher prices and revenue. However,
the analysis of large-scale markets exhibits a high computational complexity. To improve
the computational efficiency, we developed a network aggregation methodology based on
the theorem of Norton. This aggregation allows the construction of equivalent networks for
a specific region of interest, omitting the details of the entire networks of providers. We
demonstrate the aggregation algorithm in the context of capacity planning.

My contribution:
The idea came up from discussions with my advisor. I derived the mathematical models for
the economic interaction of users and providers under the supervision of my advisor, while
our collaborator Dr. Ioannis Dimitriou derived the mathematical models for the queueing
networks of providers and the network aggregation technique based on the theorem of
Norton presented in Sections 3.1 and 5.1, respectively. I implemented all the mathematical
models in matlab and performed all the experiments. I also wrote most of the paper. My
advisor provided much help in the editing process as well as comments on this work.
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Paper 3:
Georgios Fortetsanakis and Maria Papadopouli, “On Multi-layer Modeling and Analysis of
Wireless Access Markets”, IEEE Transactions on Mobile Computing, Jan. 2015, vol.14,
no. 1, pp. 113-125.

Abstract:
Advances in networking and regulatory changes on access and competition rules enable
new network architectures, service paradigms, and partnerships, opening new opportunities
for business cases. Unlike traditional cellular-based markets, new spectrum and wireless
access markets are formed that have larger sizes, are more diverse, and can offer an
improved set of services. The analysis of such markets is challenging due to a plethora of
phenomena that manifest in different spatio-temporal scales. The main objective of this
work is the development of a modular multi-layer modeling framework and simulation
platform for analyzing wireless access markets. This framework employs game theory and
queueing-theoretical models to instantiate a market at multiple spatio-temporal scales. At a
microscopic layer, it models each entity of the market in a fine level of detail. By applying
various aggregations, it also models the average behavior of certain clusters of entities. In
that way, it can analyze a certain phenomenon at the appropriate level of detail, addressing
the tradeoff between the loss of accuracy and computational complexity. The analysis then
focuses on the flex service, a novel paradigm which allows users to select their provider
dynamically. The proposed framework is used to model and analyze the performance of
markets that offer the flex service. It employs various metrics, such as blocking probability,
percentage of disconnected users, social welfare, and profit, to assess whether this service
is beneficial to users, regulators, and providers, respectively. Furthermore, it highlights
various challenges in modeling such markets and demonstrates the advantages in using the
proposed multi-layer framework.

My contribution:
A long-term goal of the research of my advisor was the development of multi-layer models
for telecom markets. This has triggered discussions from which the idea of this paper
came out. I derived the mathematical models under the supervision of my advisor and
implemented them in matlab. I also performed all the experiments. Our collaborator Dr.
Ioannis Dimitriou provided feedback on numerical methods for estimating the stationary
distribution of a finite-state two-dimensional Markov chain. The paper was written jointly
with my advisor that also provided valuable feedback on the performed experiments.

Paper 4:
Georgios Fortetsanakis and Maria Papadopouli, “How Beneficial is the WiFi Offloading?
A Detailed Game-Theoretical Analysis in Wireless Oligopolies”, IEEE WoWMoM,
Coimbra, Portugal, Jun. 2016.
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Abstract:
The rapid advances in networking, mobile computing, and virtualization, lead to a dramatic
increase in the traffic demand. A cost-effective solution for serving it, while maintaining a
good quality of service (QoS), would be to offload a part of the traffic originally targeted for
cellular base stations (BSs) to a WiFi infrastructure. Related work on the WiFi offloading
often considers markets with a single provider and omits parameters, such as the effect of
the offloading on the perceived QoS by users, the capacity of the WiFi infrastructure, and
competition of providers. In contrast to these approaches, this paper develops a detailed
modeling framework for analysing the WiFi offloading using network economics, game
theory, and queueing networks. It also proposes a novel network aggregation technique
to reduce the computational complexity of the analysis. Using this framework, the
performance of WiFi offloading was evaluated under various scenarios with respect to the
bandwidth of BSs and APs, coverage of WiFi, and user preferences. Our results highlight
that it is not always profitable for providers to invest in a large WiFi infrastructure. The
limited capacity of the WiFi APs restricts the benefits of the offloading.

My contribution:
I came up with the idea behind this paper with help from my advisor. I derived all the
mathematical models under the supervision of my advisor and implemented them in matlab.
I also performed all the experiments and wrote most of the paper. My advisor provided
comments for the improvement of the writing and presentation. Additionally, I presented
the paper at IEEE WoWMoM 2016.

Paper 5:
Georgios Fortetsanakis, Maria Papadopouli, Gunnar Karlsson, Manos Dramitinos, and
Emre A. Yavuz, “To Subscribe, or not to Subscribe: Modeling and Analysis of Service
Paradigms in Cellular Markets”, IEEE DySPAN, Bellevue, Washington, Oct. 2012.

Abstract:
Traditionally customers subscribe to specific providers and are served by accessing base
stations (BSs) of the network of their provider. Inevitably subscribers with relatively
“high” usage pattern and data-rate requirements are subsidized by the ones with lower
usage and data-rates. As the wireless technology advances, a diverse set of services will
be available. This paper introduces the “flex service” paradigm that allows a customer to
dynamically access BSs of different providers based on various criteria, such as profile,
network conditions, and offered prices. “Flex users” can select the appropriate provider
and BS on a per-session basis. This work considers a diverse customer population with
respect to their demand, their preference on data-rate over price, their tolerance on the
blocking probabilities of their sessions, and their willingness-to-pay for certain services.
Users can dynamically decide to buy a long-term subscription or become flex users. In
this paper, we develop a rich framework for modeling and analysis of such markets in
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different spatio-temporal scales. We analyse the evolution of markets with the flex service
paradigm, focusing on whether it can improve the quality-of-service (QoS), social welfare,
flexibility and further enhance the competition among providers. The main contribution of
this paper is detailed modeling and in-depth performance analysis of such complex markets,
in different spatial and temporal scales. It considers the perspective of clients, providers,
and regulators. It demonstrates the benefits of markets with the flex service paradigm and
compares them with the ones that only offer subscription contracts.

My contribution:
The idea came up from discussions with my advisor, Prof. Gunnar Karlsson, and Dr.
Emre A. Yavuz during my visit at KTH Royal Institute of Technology during the summer
of 2011. I derived all the mathematical models under the supervision of my advisor
and implemented them in matlab. I also performed all the experiments. Dr. Manos
Dramitinos and Dr. Emre A. Yavuz provided comments and feedback on this work. The
paper was written jointly with my advisor. I also presented the paper at IEEE DySPAN 2012.

Paper 6:
Georgios Fortetsanakis, Markos Katsoulakis, and Maria Papadopouli, “A Novel Multi-
Layer Framework for Modeling the Evolution of Spectrum Markets and Cognitive-Radio
Devices”, IEEE DySPAN, Aachen, Germany, May 2011.

Abstract:
This work presents a novel multi-layer modelling framework for the evolution of spectrum
markets of multiple spectrum/network operators that provide wireless access to users. It
integrates models of the channel, mobility, user preference, network operators (providers),
infrastructure deployment, user distribution, and price-adaptation mechanisms. Providers
aim to maximize their own profit, while clients decide based on criteria, such as the financial
cost of the access, transmission rate, and required transmission power. This paper gives a
brief description of the modelling framework and a novel price-adaptation algorithm for
providers. It presents how this framework can be used to instantiate a cellular-based market
in a small city. Finally, it analyzes the evolution of this market under different topologies
and user profiles, summarizing the main performance results.

My contribution:
The idea for this paper came up from discussions with my advisor and Prof. Markos
Katsoulakis. I derived the mathematical model under the supervision of my advisor and
implemented it in matlab. I also performed all the experiments. The paper was written
jointly with my advisor. I also presented the paper at IEEE DySPAN 2011.
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Paper 7:
Michalis Katsarakis, Georgios Fortetsanakis, Paulos Charonyktakis, Alexandros Kostopou-
los, and Maria Papadopouli, “On User-Centric Tools for QoE-Based Recommendation and
Real-Time Analysis of Large-Scale Markets”, IEEE Communications Magazine, Sep.
2014.

Abstract:
This article focuses on mechanisms that empower users with Quality of Experience (QoE)
recommendations and smart real-time analytics. It presents a user-centric recommendation
system (called u-map) that enables users to collect network measurements and subjective
opinion scores about the performance of various services. It also cross-correlates measure-
ments obtained by u-map to provide geo-statistics, user profiles, and QoE prediction models
for different services. The article also presents CoRLAB, a modular multi-layer framework
for modeling and assessing various markets, services, and their evolution under a diverse set
of customer populations and conditions. U-map feeds CoRLAB with user measurements
and feedback in (semi) real-time. The article discusses how u-map and CoRLAB have been
used to analyze telecommunication markets and services. It highlights the main research
results, challenges, and potential research directions.

My contribution:
The idea behind the paper came up from my advisor. I wrote the Section 3 which is related
to the contributions of my Ph.D. thesis and helped in the writing of the remaining Sections
by providing comments.

During my M.Sc. and Ph.D. studies at the department of Computer Science of the
University of Crete and at the Institute of Computer Science of the Foundation for Research
and Technology-Hellas, I also participated in some other research activities in the mobile
computing group that resulted in several publications:

Paper 8:
Alexandros Kostopoulos, Ioanna Papafili, Georgios Fortetsanakis, and Maria Papadopouli,
“Pricing Wireless Access Services: The Effect of Offloading and Users’ Bounded Rational-
ity”, IEEE/IFIP WONS, Cortina d’ Ampezzo, Italy, January 2016.

Abstract:
Offloading through WiFi access networks has been recently proposed as a cost-effective
solution for coming up against the unprecedented increase in the mobile data traffic volume.
However, apart from reducing the operational costs of a network operator, WiFi access can
be also promoted as an alternative low-cost service for users with low willingness-to-pay.
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In this paper, we consider a monopolistic scenario of a Mobile Virtual Network Operator
(MVNO) offering LTE and WiFi access services and make the optimal pricing decisions.
We further show that the presence of reluctant users to switch to the WiFi service could
increase the profits of the MVNO.

My contribution:
Our collaborator Dr. Alexandros Kostopoulos jointly with my advisor came up with the
idea behind this paper. I provided comments on the mathematical model and on the writing
of the paper.

Paper 9:
Georgios Fortetsanakis, Michalis Katsarakis, Maria Plakia, Nikos Syntychakis, and Maria
Papadopouli, “Supporting Wireless Access Markets with a User-Centric QoE-Based
Geo-Database”, ACM MobiArch, Istanbul, Turkey, Aug. 2012.

Abstract:
This paper presents the u-map, a novel user-centric geo-database for wireless access
markets that enables clients to upload information about their profile, their quality-of-
experience (QoE) feedback for a service, traffic demand, network/spectrum conditions
(e.g., interference, coverage), providers, and their position (e.g., GPS-based measurements)
in a spatio-temporal geo-database. To evaluate the impact of the u-map on wireless access
markets and study the evolution of such markets, we have developed an economic-driven
modeling framework. The framework integrates models of the channel, clients and
network operators, wireless infrastructures, types of interaction, and price adaptation in a
modular manner. We have implemented a simulation platform based on this framework
and instantiated a cellular-based duopoly. Via simulations, we analyzed the impact of the
u-map, user profiles, and network coverage of providers on the evolution of the market. The
analysis demonstrates that the u-map can be beneficial to users in their network operator
selection process. We also developed a proof-of-concept implementation of the u-map and
performed a preliminary analysis. Finally, the paper highlights the research directions that
need to be explored for developing a robust and effective mechanism.

My contribution:
The idea behind this paper came up from my advisor. I wrote the Section 4 of the paper
which is related to my research, implemented the respective models and performed the
experiments discussed in Section 4.2. I also contributed in the writing of the other Sections
of the paper and provided comments. Additionally, I presented the paper at ACM MobiArch
2012.
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Paper 10:
Ilias Tsompanidis, Georgios Fortetsanakis, Toni Hirvonen, and Maria Papadopouli, “A
Comparative Analysis of the Perceived Quality of VoIP under various Wireless Network
Conditions”, International Conference on Wired/Wireless Internet Communications
(WWIC), Lulea, Sweden, June 2010.

Abstract:
This paper performs a comparative analysis of the perceived quality of (unidirectional,
non-interactive) VoIP calls under various wireless network conditions (e.g., handover, high
traffic demand). It employs the PESQ tool, E-model and auditory tests to evaluate the
impact of these network conditions on the perceived quality of VoIP calls. It also reveals the
inability of PESQ and E-model to capture the quality of user experience. Furthermore, it
shows that the network condition and the evaluation method exhibit statistically significant
differences in terms of their reported opinion score values. Finally, the paper highlights the
benefits of the packet loss concealment of the AMR 12.2 kb/s and the QoS mechanisms
under these network conditions.

My contribution:
The idea for this paper came up from my advisor and our collaborator Ilias Tsompanidis. I
contributed in the writing of this paper and derived a mathematical model for the probability
of packet loss.

Paper 11:
Ilias Tsompanidis, Georgios Fortetsanakis, Toni Hirvonen, and Maria Papadopouli, “An-
alyzing the Impact of various Wireless Network Conditions on the Perceived Quality of
VoIP”, IEEE LANMAN, Long Branch, New Jersey, USA, May 2010.

Abstract:
This paper focuses on a comparative statistical analysis of the performance of VoIP calls
under various situations, namely, during a handover and under different background
traffic conditions at a wireless access point (AP). Using empirical-based measurements, it
demonstrates that these network conditions exhibit distinct statistical behaviour, in terms
of SNR, packet losses and end-to-end delays, and thus, impact the VoIP user quality in
a different manner. The analysis shows that both network conditions and codec type, as
well as their interaction, have a significant effect on the PESQ MOS values. Moreover, it
indicates statistically highly significant differences between the estimations of the PESQ
and E-model. Finally, it highlights the benefits of the packet loss concealment of the AMR
12.2 kb/s under these network conditions.
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My contribution:
The idea for this paper came up from my advisor and our collaborator Ilias Tsompanidis. I
contributed in the writing of this paper and derived a mathematical model for the probability
of packet loss.
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Chapter 3

Modeling framework

3.1 Modeling requirements and objectives

In the design of our modeling framework, we have set several objectives. First of all, the
framework should be general and expressive enough to model a variety of market cases with
different wireless technologies, access paradigms, and services. This will allow providers
to comparatively analyse different market scenarios and evaluate the profitability of various
strategies, such as, adopting a new wireless technology, offering a new service, or investing
in additional network infrastructure and spectrum.

Another important aspect in the design of the framework is the degree of realism. The
models of the networks of providers, user traffic demand and mobility, as well as the eco-
nomic interactions of users and providers should be realistic and capture the phenomena that
manifest in real wireless markets. This will result in accurate and meaningful predictions
that will be useful to the providers.

The scalability is another desired property of the framework. Providers should be
able to analyse different market scenarios at multiple spatial and temporal scales, from the
market of a small neighbourhood up to a nation-wide market. This raises accuracy and
computational complexity issues. For example, a microscopic model is accurate but requires
a large computational complexity especially in the case of large-scale markets. On the other
hand, a macroscopic model can be applied on a large-scale but due to its simplifications,
it may result in inaccuracies. Therefore, it is important to be able to select the appropriate
level of detail when modeling a market of interest that will result in a good tradeoff between
accuracy and computational complexity.

We have developed a game-theoretical modeling framework for wireless markets that
satisfies the above objectives. The framework defines multiple levels of detail that are called
mesoscopic. At each mesoscopic level, a provider applies a clustering algorithm on the
profiles of users and determines a set of clusters. Each of those clusters is modeled as a
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Figure 3.1: The main modules of wireless markets.

homogeneous sub-population with a representative profile that is the centroid of the profiles
of all users belonging in that cluster. Then, the provider can model the decision making of
these clusters of users by a system of ordinary differential equations. Using our modeling
framework, providers can select the appropriate level of detail that improves their revenue
while requiring a low computational complexity.

Except from the user heterogeneity, another aspect that can result in an increased com-
putational complexity when analysing wireless markets is the large size of the networks of
providers. However, often, in a study, the objective is the analysis of the performance of a
specific region of interest. In such cases, we can apply network aggregation techniques that
compute equivalent network models only for the region of interest omitting the details of
the entire networks of providers. In this chapter, we develop such an aggregation technique
based on the theorem of Norton [42] for queueing networks. This technique can result in
significant computational gains.

The structure of this chapter is as follows: Section 3.2 presents our multi-layer game-
theoretical framework for modeling wireless markets, while Section 3.3 presents the net-
work decomposition technique based on the theorem of Norton. Finally, Section 3.4 presents
the concluding remarks.

3.2 Multi-layer modeling of wireless markets

The evolution of wireless access and spectrum markets is affected by a variety of techno-
logical and economic aspects. Our framework provides elaborate models of those aspects
distinguishing two different layers, the technological and the economic one (Fig. 3.1). The
technological layer models the cellular networks of providers as queueing networks and
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the user traffic demand with appropriate stochastic processes. It also estimates the QoS of
providers based on the average and variance of data rate. The economic layer models the
interaction among a set of providers and a heterogeneous user population. Each provider
can model users at different levels of detail by considering a different number of user sub-
populations with distinct characteristics and preferences. It also offers different dataplans
to users that produce different traffic demand and selects their prices aiming to maximize
its revenue, while each user selects a provider considering the offered prices and quality of
service (QoS) guarantees.

In our framework, the user population is divided into segments, each having different
characteristics and preferences. For example, the business user segment is characterized by
a high willingness-to-pay and QoS requirements, while the low-profile user segment has a
low willingness-to-pay and a high tolerance on a degraded QoS. The value-for-money user
segment is characterized by a low willingness-to-pay and high QoS requirements, while the
lenient user segment has a high willingness-to-pay and high tolerance on a degraded QoS.
Throughout this chapter, we use the terms users and customers interchangeably (similarly
for the terms group and segment).

A two-stage game defines the interaction of users and providers. The first stage in-
stantiates the competition of providers and the second one the user decision making. A
population game models the user decisions: members of each user group could either select
to become subscribers of a certain provider or remain disconnected. The decisions of these
users are modeled by the Logit dynamics, a system of ordinary differential equations. They
are based on a utility function that depends on the price and QoS and a noise parameter that
defines how much trust users place on this utility function, capturing the user “irrationality”
and “stickiness” to a provider. On the other hand, the competition of providers is modeled
as a normal-form game in which providers strategically select their prices to optimize their
revenue. The utility functions of providers depend on the offered prices and the equilibrium
of users (Fig. 3.2). Our framework models a wireless access market of I providers and a
user population of J groups. Each provider has deployed a network of wireless BSs and of-
fers long-term subscriptions, which are best-effort data services. The following subsections
describe the components of our modeling framework in more detail.

3.2.1 The queueing networks of providers

Each provider (e.g., provider i) has deployed a number of BSs (Ki) covering a geographical
region (e.g., a city). We assume that in all BSs, the available bandwidth is shared equally
among connected users (i.e., processor-sharing discipline). For LTE cellular BSs, this band-
width allocation models a scheduler that divides the OFDMA resources among users in a
fair manner. Such fair allocation of bandwidth among connected users has been also as-
sumed in other studies of wireless markets (e.g., [50]). Users generate requests to connect
to a base station (BS) to start a session. During a session, a user transmits and receives data
via that BS. The session generation of a group of users j follows a Poisson process with a
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Figure 3.2: Main components of the modeling framework.

total rate of λj . This rate is allocated across providers according to the probability vector
zj = (zj0, zj1, ..., zjI). The ratio of members of the group j that select the provider i is
indicated by zji, while zj0 indicates the ratio of members of that group that select the dis-
connection. The vector z = (z1, ..., zJ) corresponds to the probability vector of each user
group and shows how the entire user population is divided among the available providers
and disconnection state.

Each provider (e.g., provider i) has deployed a number of BSs (Ki) covering a geo-
graphical region (e.g., a city). We assume that in all BSs, the available bandwidth is shared
equally among connected users (i.e., processor-sharing discipline). For LTE cellular BSs,
this bandwidth allocation models a scheduler that divides the OFDMA resources among
users in a fair manner. Such fair allocation of bandwidth among connected users has been
also assumed in other studies of wireless markets (e.g., [50]). Users generate requests to
connect to a base station (BS) to start a session. During a session, a user transmits and
receives data via that BS. The session generation of a group of users j follows a Poisson
process with a total rate of λj . This rate is allocated across providers according to the prob-
ability vector zj = (zj0, zj1, ..., zjI). The ratio of members of the group j that select the
provider i is indicated by zji, while zj0 indicates the ratio of members of that group that
select the disconnection. The vector z = (z1, ..., zJ) corresponds to the probability vector
of each user group and shows how the entire user population is divided among the available
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providers and disconnection state.

The mobility of members of the group j in the network of a provider is modeled
with a Markov-chain in which a state corresponds to the coverage area of a BS. The total
session generation rate of the members of the group j that select the provider i is further
divided among its BSs (k = 1, ...,Ki) according to the probabilities ωjik. These probabilities
correspond to the stationary distribution of the Markov chain modeling the user mobility.
Note that the handovers at a BS k of the provider i are modeled with a Poisson process of
total rate vik. This rate is estimated according to the fluid flow mobility model [51]. We also
assume that handovers are performed in a seamless manner. Table 3.1 defines the queueing-
theoretical parameters for the members of the group j when connected at the network of
the provider i. Let us now focus on a simple case in which all users select the provider i
(i.e., zji = 1 for all j = 1, ..., J). The total session arrival rate at a BS k from members
of the group j (γjik) consists of the new sessions (ajik = ωjikλj) and handover sessions from
neighbouring BSs (Fig. 3.3):

Table 3.1: Queueing-theoretical parameters for users of group j when connected at
the network of provider i

Parameter Description
Ki Number of BSs of the provider i
λj Total session generation rate

zji(zj0) Ratio of subscribers (disconnected users)
ωjik Steady-state probability for a user of

group j to be located within the coverage of BS k
vik Departure rate from BS k due to handover
µik Session service rate at BS k
dik Total departure rate from BS k (dik = vik + µik)
p
(j)∗
i,m,k Conditional prob. of handover from BS m

to BS k given that a handover occurs
p
(j)
i,m,k Unconditional prob. of handover from

BS m to BS k
(
p
(j)
i,m,k = vimp

(j)∗
i,m,k/dim

)
γjik Total session arrival rate at BS k
ajik Arrival rate of new sessions at BS k
ρjik Traffic intensity at BS k
ni Vector indicating the number of users at each BS

Qi(ni) Stationary distribution of number of users at BSs
Bik Bandwidth at BS k
Rji(z) Average data rate
Vji(z) Variance of data rate
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Figure 3.3: Session arrivals at a BS of the provider i from members of the group j.

γjik = ajik +

Ki∑
m=1

γjimp
(j)
i,m,k (3.1)

The traffic intensity generated by the users of the group j at the BS k of the provider i (ρjik)
is equal to the ratio of the total session arrival rate at the BS k from members of the group
j (γjik) over the total session departure rate at that BS (dik). However, to characterize the
performance of the network of the provider i, the total traffic intensity introduced by all user
groups at each BS needs to be estimated. By summing the Eq. 3.1 over all user groups, we
derive the traffic equations for the network of the provider i:

J∑
j=1

γjik =

J∑
j=1

ajik +

Ki∑
m=1

J∑
j=1

γjimp
(j)
i,m,k (3.2)

We now define the total session arrival rate at the BS k of the provider i from all user
groups γik =

∑J
j=1 γ

j
ik, the total arrival rate of new sessions at the BS k of the provider i

aik =
∑J

j=1 a
j
ik, and the average unconditional probability of a handover from the BS m

to the BS k over all user groups pi,m,k =
∑J

j=1 γ
j
imp

(j)
i,m,k/γim. The corresponding average

conditional probability of a handover from the BS m to the BS k given that a handover
occurs is defined as p∗i,m,k = pi,m,kdim/vim Then, the traffic equations can be rewritten as
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in Eq. 3.3:

γik = aik +

Ki∑
m=1

γimpi,m,k (3.3)

The queueing network of the provider i is modeled as a Markov chain. Each state corre-
sponds to a vector ni = (ni1, ..., niKi) indicating the number of connected users at all BSs.
State transitions correspond to various types of events including session arrivals, termina-
tions, and handovers. The stationary distribution of the Markov chain is estimated by solving
the global-balance equations. Such equations set the arrival rate at each state of the Markov
chain equal to the departure rate from that state. Due to the Markovian property and the
processor-sharing discipline of our system, the global-balance equations can be simplified
into a set of local-balance equations [52]. Unlike global-balance equations, local-balance
equations focus on the session arrivals and departures at specific BSs. According to these
equations (Eqs. 3.4), the rate leaving a state ni due to the departure of a user at a specific BS
k is equal to the rate entering that state due to the arrival of a user at the BS k either due to
a new session or a handover (Eq. 3.4a). Furthermore, the rate leaving the state ni due to the
arrival of a new session at a BS is equal to the rate entering that state due to the termination
of a session at a BS (Eq. 3.4b).

dikQi(ni) = aikQi(ni − eik) +

Ki∑
m=1

vimp
∗
i,m,kQi(ni − eik + eim) (3.4a)

Ki∑
k=1

aikQi(ni) =

Ki∑
k=1

µikQi(ni + eik) (3.4b)

In Eqs. 3.4, eik is a vector with all entries equal to 0 except the k-th entry which is equal
to 1. Fig. 3.4 illustrates the local-balance equations for a network of two BSs. Given that
ρik =

∑J
j=1 ρ

j
ik < 1 for each BS of the provider i, the stationary distribution of the number

of connected users at all BSs can be derived as follows:

Qi(ni) =

Ki∏
k=1

(1− ρik) (ρik)
nik (3.5)

By substituting Eq. 3.5 in the local-balance equations (Eqs. 3.4) and using simple algebra,
we derive the traffic equations (Eq. 3.3). This proves the validity of Eq. 3.5. Given that the
stationary distribution is in product form, each BS can be viewed as an independent M/M/1
queue with the processor-sharing discipline.

In the general case in which not all users select the provider i (i.e., zji < 1), we can
replace γjik, ajik, and ρjik with zjiγ

j
ik, zjia

j
ik, and zjiρ

j
ik, respectively and Eqs. 3.1-3.5 still

hold. In this case, the average number of connected users at the BS k of the provider i
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Figure 3.4: Local-balance equations for a network of the provider i consisting of two BSs.

is E[Nik] = ρik
1−ρik =

∑J
j=1 zjiρ

j
ik

1−
∑J

j=1 zjiρ
j
ik

[53], where ρik is the traffic intensity introduced by

all user groups (ρik =
∑J

j=1 zjiρ
j
ik). When a new user arrives at the BS k, it shares the

available bandwidth along with all other currently connected users at that BS. Therefore,
the amount of bandwidth that a new user gets when it connects to the BS k is Bik

E[Nik]+1 =

Bik(1−
∑J

j=1 zjiρ
j
ik), where Bik is the total bandwidth of that BS. The average data rate as

perceived by a user of the group j at the network of the provider i can be computed as the
weighted average of the data rate achieved at each BS (Eq. 3.6):

Rji(z) =

Ki∑
k=1

ωjikBik(1−
J∑
l=1

zliρ
l
ik) (3.6)

The spatial variability of data rate affects the QoS. Thus, the utility function of the members
of the group j (Eq. 3.8) incorporates the average data rate (Eq. 3.6) and variance of data
rate which is defined as a polynomial of second degree with respect to z (Eq. 3.7):

Vji(z) =

Ki∑
k=1

ωjik

(
Bik(1−

J∑
l=1

zliρ
l
ik)−Rji(z)

)2

(3.7)

The user service selection process employs the average and variance of data rate. The
sub-games modeling the user service selection and competition of providers are described
in Subsections 3.2.2 and 3.2.3, respectively.
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Table 3.2: Main parameters of a wireless market

Parameter Description
I Number of providers
J Number of user groups
Nj Number of users in group j
N Total number of users
c Vector with the prices of all providers
H User strategies

fj (Rji(z)) Impact of average data rate on
utility function of group j

wjV (wjP ) Weight of variance of data rate
(price) for users of group j

uji (z; c) Utility function of group j
dj Average traffic demand in MB that a member

of group j produces in a period of 1 month
z(t) User strategy profile at time t
z∗(c) Equilibrium of users when price vector is c
P Providers
C Provider strategy profiles

σi(c) Utility function of provider i

3.2.2 User service selection

The user service selection process is modeled by a population game. Each member of a user
group can choose among I + 1 available strategies H = {0, 1, ..., I}. Strategies 1, 2, ..., I
correspond to subscriptions with the providers 1, 2, ..., I , respectively, while strategy 0 de-
notes the disconnection state. We assume that each group corresponds to a homogeneous
sub-population, and as such, the utility attained when selecting a specific strategy is the
same for all users in that group. Therefore, it suffices to describe the service selection of
the members of the group j with a probability distribution over the set of strategies (H).
This distribution zj = (zj0, zj1, ..., zjI) is the strategy profile of the group j indicating how
members of this group are divided among the different strategies (subscriptions and discon-
nection). The strategy profile of the entire user population consists of the strategy profiles of
all groups (z = (z1, ..., zJ)). Additionally, the market share that corresponds to a strategy
i is the average percentage of customers over all user groups that select this strategy, i.e.,
zi =

∑J
j=1 zjiNj/N . All parameters of a wireless market are defined in Table 3.2.
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3.2.2.1 Utility function of the group j

A user from the group j selects a strategy (i.e., a subscription or disconnection) based on
the average and spatial variance of the achievable data rate at the networks of providers and
the offered prices:

uji(z; c) =

{
fj (Rji(z))− wjV Vji(z)− w

j
P ci(dj) if i = 1, ..., I

0 if i = 0
(3.8)

The function fj is concave, strictly increasing, and non-negative and defines the impact of
the average data rate (Rji(z)) on the utility of the members of the group j. In the analysis, we
assume that fj is exponential fj(x) = wjR(τj − exp(−hjx)). The parameter wjR expresses
the willingness-to-pay of the members of the group j. The larger the wjR, the larger the
maximum price that users from the group j can pay. The parameter hj defines the sensitivity
of the members of the group j to low data rate. The larger the hj , the larger the tolerance
of users to a low data rate. The impact of the variance of data rate (Vji(z)) and price of
the subscription of the provider i (ci(dj)) is assumed to be linear and their significance is
indicated by the positive weights wjV and wjP , respectively. The price that the members of
the group j pay when selecting the subscription with the provider i depends on the average
traffic demand they produce in a period of a month (dj) according to Eq. 3.9:

ci(dj) =


ci1 if 0 < dj ≤ D1

ci2 if D1 < dj ≤ D2

...

ciSi if DSi−1 < dj ≤ DSi

(3.9)

3.2.2.2 Dataplans

The provider i offers Si distinct dataplans each for different traffic demand levels. Depend-
ing on which interval the traffic demand of a user lies, that user pays a different price. In
other words, the provider i charges each user with a flat rate that depends on its level of
traffic demand according to Eq. 3.9. We assume that each user is aware of its own average
traffic demand per month when selecting a service 1. Furthermore, when a user selects the
disconnection (i.e., i = 0), it attains utility equal to 0. The parameters of the utility function
uji (i.e., wjR, τj , hj , w

j
V , wjP , and dj) constitute the profile of the members of the group j.

In our analysis, we distinguish four main categories of user groups, namely, the busi-
ness users, low profile users, value-for-money users, and lenient users. Business users have

1In this chapter, the term service refers to a subscription with a provider or the disconnection, while the term
dataplan refers to the offered price of a provider for a specific interval of traffic demand. A user selects a service
and pays the price corresponding to its level of traffic demand.
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Table 3.3: The four main user categories

Category Willingness to tolerance on low
pay (wjR) data rate (hj)

Business users > 50% percentile < 50% percentile
Low-profile users < 50% percentile > 50% percentile

Value-for-money users < 50% percentile < 50% percentile
Lenient users > 50% percentile > 50% percentile

a high willingness-to-pay (i.e., high value of wjR) but are highly sensitive on low data rate
(i.e., low value of hj). Low-profile users are the opposite. They can not pay a high price but
are more tolerant on low data rates. Value-for-money users are the most demanding ones in
the market. They have a low willingness-to-pay and can not tolerate low values of data rate.
Finally, lenient users are characterized by a high willingness-to-pay and do not consider the
data rate important. These users make their decisions considering mainly the price, i.e.,
they search for the cheapest service. The characteristics of these four categories of users are
given in Table 3.32.

3.2.2.3 Evolution of user decision making

Based on the utility functions of all user groups, the evolution of the strategy profile of users
(z(t)) is described by the Logit dynamics, a system of ordinary differential equations (Eq.
3.10):

dzji(t)

dt
=

r

1 +
∑

k 6=i exp
(
ujk(z(t);c)−uji(z(t);c)

ε

) − rzji(t) (3.10)

Note that the evolution of the user decisions manifests at a much slower time scale compared
to the time scale at which sessions arrive and depart at the BSs of a provider. Specifically,
the session arrivals and departures are performed at a time scale of minutes, while the user
decisions manifest at a time scale of days or even months. Therefore, when the user strat-
egy profile changes from z to z′ over the course of several days, there is enough time for
the queueing network of a provider to reach the equilibrium, and therefore, we can safely
assume that the average data rate changes from Rji(z) to Rji(z′) and the spatial variance
of data rate changes from Vji(z) to Vji(z′). The parameter r controls the speed of the dy-
namics, while ε is the noise and takes values in the interval [0,∞). When ε = 0, users are
completely “rational”, i.e., always select the strategy that maximizes their utility function.
Specifically, if the strategy k has slightly larger utility than strategy i that has been selected
by a rational user, this rational user will then switch to strategy k. However, this behaviour
is not realistic.

2We have distinguished only 4 main user categories to make the discussion of the performance analysis
easier. However, one can define a larger number of user categories with different thresholds on the willingness-
to-pay and tolerance on low data rate.
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Users are reluctant to switch to another provider when the additional benefits are small.
According to a survey study, users should be offered additional benefits of around 40%
before they are highly likely to change their provider [54]. Several aspects, such as, the
brand name and brand equity [55], reputation of a provider [56, 57], market share of a
provider [58], length of customer association with a provider [59], and force of habit [60],
affect the user decision making. In this work, we model the aggregate effect of those aspects
by the noise of the Logit dynamics. As the noise increases from 0 towards infinity, users
become more “sticky” with their selected service and change provider only when the benefits
in terms of price and QoS are large enough. In the extreme case in which the noise parameter
tends to infinity, users become completely irrational: they select their services randomly and
are not affected by their utility function at all.

To compute the equilibrium of users for a given set of prices offered by the providers,
we solve the system of the Logit dynamics (Eq. 3.10) starting from an initial point at which
all user groups are uniformly distributed across the available strategies (i.e., subscriptions
with providers and disconnection). The point at which the Logit dynamics converge is the
user equilibrium.

3.2.3 Competition of providers

The competition of providers is modelled as a normal-form game (P,C, {σi}i∈P ). In this
game, each provider (say provider i) offers Si distinct dataplans to users. The strategy of
that provider ci = (ci1, ..., ciSi) is a vector containing the prices of all those dataplans. Each
price is selected from a closed interval [0, Cmaxi ]. The strategy space of providers is the set
of all possible combinations of prices that can be offered in the market and is a rectangle of
the form C = [0, Cmax1 ]S1 × [0, Cmax2 ]S2 × ... × [0, CmaxI ]SI . Each point of the strategy
space c = (c1, ..., cI) is a vector containing the offered prices of all providers.

We assume that each provider can model the user population at different levels of
detail. Specifically, it applies a clustering algorithm on the profiles of all user groups3 and
determines a number of clusters. It models the decision making of those clusters of users
based on the system of Logit dynamics (Eq. 3.10). For each set of offered prices c, a provider
solves the system of Logit dynamics modeling the decision making of these clusters of users
starting from uniform initial conditions and computes the corresponding equilibrium point
(ẑ∗(c)). Based on this equilibrium, the utility function of the provider i is defined according
to Eq. 3.11:

σi(c) =

Si∑
s=1

∑
j:Ds−1<dj≤Ds

Nj ẑ
∗
ji(c)cis (3.11)

This function computes the sum of the revenue collected by each of the offered dataplans

3The profile of a user group (say group j) is a vector containing the parameters of the utility function of that
group, i.e., (wj

R, τj , hj , w
j
V , w

j
P , dj).
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of the provider i. For a dataplan s, only the payments of the clusters corresponding to this
dataplan are considered (i.e., the user clusters that produce an average traffic demand lying
in the interval (Ds−1, Ds]).

When a user is rational (i.e., ε = 0), it selects the provider that maximizes its utility
function. Let us assume that such a user has selected the provider i. If at a certain point
the subscription of another provider k becomes slightly more profitable compared to the
subscription of the provider i, the user will switch providers. This extreme behaviour of
rational users introduces technical difficulties in the analysis: Various discontinuities appear
in the derivatives of the utility functions of providers. We developed a methodology to
analytically compute the NEs of providers under such discontinuities. This methodology
divides the strategy space of providers into various subsets called “regions” in which the
provider utility functions are continuously differentiable and analyses the game of providers
at each one of those regions separately. At the final step, it combines the results of the
analysis from all the regions to compute the global NEs of providers. A more detailed
description of this methodology can be found in Chapter 7.

This modeling approach can effectively compute the NEs of providers, when users are
completely rational and providers model users at the macroscopic level (i.e., considering
only 1 cluster) and offer only 1 dataplan4. However, what happens when providers have a
more rigorous knowledge about the market segments? In such a case, the computation of
the global NE becomes challenging: As the number of user clusters increases, the number
of (hyper-)surfaces at which the utility functions of providers have discontinuous derivatives
in the strategy space of providers also increases.

This issue is mainly due to the assumption of the user rationality. Under this assump-
tion, users can drastically change their behaviour even under small deviations in their utility
function. To more realistically model the user behaviour, we use the Logit dynamics (Eq.
3.10). Among other standard population dynamics, such as, the replicator, best response,
BNN, and Smith dynamics, these are the only ones that can model the user irrationality
[61]. As explained earlier, their noise parameter (ε) indicates how much the user decisions
deviate from the optimal ones based on their utility function capturing the effect of other
factors that influence users (e.g., psychological/social factors).

The noise of the Logit dynamics does not only make the model of users more realistic
but also simplifies the analysis by “smoothing out” the discontinuities in the derivatives of
the utility functions of providers. An example of the effect of noise is shown in Fig. 3.5. This
figure presents the utility function of a provider (say provider 1) offering only 1 dataplan in
an oligopoly with 5 distinct user groups, when the prices of its competitors remain fixed.
When the noise is equal to zero (i.e., ε = 0), the rational behaviour of users results in
various discontinuities in the derivative of the utility function of the provider 1 (Fig. 3.5a).
When the value of noise slightly increases (i.e., ε = 0.5), the discontinuities are smoothed

4In the worst case, the algorithm needs to solve two non-linear systems of I equations and a system of 2I
non-linear inequalities.
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(c) ε = 1.5

Figure 3.5: Effect of noise on the utility function of a provider in a market with 5 user
groups.

out (Fig. 3.5b). If the noise increases a little further (i.e., ε = 1.5), the utility function of the
provider becomes concave. This function (Fig. 3.5c) does not deviate significantly from the
corresponding one when users are completely rational (Fig. 3.5a).

In each market case, by selecting a sufficient amount of noise, the utility functions of
providers become concave. This simplifies the estimation of a global NE significantly. One
should simply set the derivatives of the utility functions of providers with respect to their
prices equal to 0:

∂σi(c)

∂cis
= 0, for all i = 1, . . . , I and s = 1, . . . , Si (3.12)

When the utility functions of providers are concave, a solution of the system 3.12 (c∗) is
guaranteed to be a global NE of the game of providers. At this point, the utility functions of
providers are maximized given the prices of their competitors [62] and therefore, no provider
has the incentive to change its strategy. Our algorithm for the estimation of a NE proceeds
as follows: First the system of Eqs. 3.12 is solved. If a solution is reported, it will be then
verified whether or not it corresponds to a global NE (i.e., at which the utility function of
each provider is maximized given the prices of the other providers). This final verification
step is necessary given that the concavity of the utility functions of providers is not always
guaranteed. For example, if the selected value of noise is not sufficiently large, the utility
function of one or more providers may not be concave, and thus, the solution of Eqs. 3.12
does not necessarily correspond to a global NE. This possibility is ruled out by the final
verification step.

3.3 Network decomposition technique

Often the analysis of wireless markets focuses on the performance a specific region of inter-
est. For example, when a specific part of the network of a provider becomes congested, that
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provider may need to lease additional spectrum or extend its network infrastructure to im-
prove the offered QoS in this region. To reduce the computational complexity of the analysis
in such cases, a queueing network aggregation methodology based on the theorem of Norton
[42] can be applied. This methodology proceeds as follows: First, the network of a provider
is divided into two parts, the region of interest (e.g., congested region) and the remaining
area. Then, appropriate Poisson sources are estimated modeling the input traffic from the
BSs of the remaining area to the BSs of the region of interest. The equivalent network of the
region of interest is formed by the subgraph of the original network that contains only the
BSs of the region of interest adding the Poisson sources modeling the input traffic from the
remaining area. Bellow the procedure is described in more detail.

3.3.1 Constructing the equivalent queueing network of the region of interest

Consider the network of a provider and let s = {M1, ...,Mn} be the subset that contains
the BSs of the region of interest and ŝ = {1, ...,K} be the subset that contains all BSs in
the remaining area. The first step of the algorithm constructs a reduced queueing network
of the remaining area in which all BSs of the region of interest are removed one by one by
a “shortening” process. Each time a BS is removed, the service rate of its corresponding
queue is set equal to infinity (i.e., all input traffic is immediately forwarded to the output of
the queue). This is performed in n phases. At the l-th phase, the BS Ml is removed and
only the BSs ŝ∪{Ml+1, ...,Mn} remain present. The transition probability matrix P (l) and
new session arrival rates at the l-th phase are estimated based on the following recursive
formulas:

p
(l)
k,v = p

(l−1)
k,v +

p
(l−1)
k,Ml

p
(l−1)
Ml,v

1− p(l−1)Ml,Ml

(3.13)

a
(l)
ik = a

(l−1)
ik + a

(l−1)
iMl

p
(l−1)
Ml,k

1− p(l−1)Ml,Ml

(3.14)

At the end of the n-th phase, the reduced queueing network of the remaining area has been
constructed and the corresponding traffic equations for this network (Eq. 3.3) are solved
to estimate the total input traffic of each BS k ∈ ŝ of the remaining area (i.e., γ̂ik) and
the corresponding traffic intensity (i.e., ρ̂ik). Then, for each BS of the region of interest
Mt ∈ s, the Poisson source that models the input traffic from the remaining area has a rate
of
∑

k∈ŝ γ̂ikpk,Mt . An example of the construction of the reduced network is shown in Fig.
3.6. At the first phase, the BS 1 is removed (in the middle). The new transition and session
arrival rates (e.g., p(1)2,2, a

(1)
i2 ) are computed based on Eqs. 3.13 and 3.14. At the second phase,

the BS 2 is removed and the reduced network is formed (at the right).

The construction of the equivalent queueing network of the region of interest is per-
formed as follows: A subgraph of the original queueing network of the provider is selected
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Figure 3.6: Example of the construction of the reduced network.

that contains only the BSs of the region of interest. Then, at each BS of this region, the cor-
responding Poisson source that models the input traffic from the remaining area (computed
earlier) is added to the total input traffic of that BS. By solving the traffic equations of this
network, we can compute the traffic intensity that corresponds to each station Mt ∈ s of
the region of interest (i.e., ρiMt). Based on the traffic intensities of the BSs in the region of
interest and the traffic intensities of the BSs in the remaining area, we can compute models
for the average and spatial variance of the achievable data rate.

When a change is performed in the network of the region of interest, we modify the
equivalent queueing network of this region accordingly. To estimate the average and spatial
variance of data rate, we only need to solve the traffic equations of the modified queueing
network of the region of interest and keep the traffic intensities corresponding to the BSs of
the remaining area unchanged.

The computational complexity of solving the traffic equations for the entire networks
of providers is of O(K3

i ), where i is the provider with the largest number of BSs. On the
other hand, if the largest subnetwork of providers in the region of interest has kj BSs, then by
applying the theorem of Norton, the computational complexity of estimating performance
metrics for this region becomes O(k3j ). Usually, Ki is much larger than kj indicating that
the application of the theorem of Norton results in significant computational gains.

3.4 Concluding remarks

This chapter develops a methodology and set of tools that allow providers to model wireless
markets at multiple levels of detail. First, it defines a method based on clustering algorithms
that identifies user clusters with different profiles and requirements and models their decision
making separately. By increasing the number of clusters, the accuracy in the modeling of
the user population increases but so does the computational complexity. Using the proposed
framework, a provider can select the appropriate number of clusters that models accurately
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the heterogeneity of the user population and their decision making while requiring a low
computational complexity.

Except from the user population, the framework can also apply aggregations on the
spatial domain. Often, providers are interested in the performance of a specific region. For
example, if a specific part of their network becomes congested, they may need to perform a
better capacity planning in this region by purchasing additional spectrum or extending the
network infrastructure. To decrease the computational complexity of the analysis in such
cases, aggregation methods can be applied. This chapter has developed such an aggregation
method based on the theorem of Norton for queueing networks. This method estimates
equivalent queueing network models for a specific region of interest omitting the details of
the entire network of a provider. This can significantly reduce the computational complexity
of the analysis.

We have used our multi-layer modeling framework and the network decomposition
technique based on the theorem of Norton to analyse three market cases with a strong com-
mercial interest, namely, pricing via market segmentation, WiFi offloading, and capacity
planning. The detailed analysis of these cases is presented in Chapters 4, 5, and 6, respec-
tively.
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Chapter 4

Market segmentation-driven analysis
of wireless markets

4.1 The concept of market segmentation and its impact on wire-
less markets

Market segmentation is an important aspect in almost all types of markets in the modern
economy [63]. It is the process of dividing a large diverse customer population into ho-
mogeneous sub-populations that can be interested in specific services and products [64].
A seller makes offers to specific sub-populations to better satisfy their requirements and
preferences. That way, the overall customer satisfaction is improved compared to applying
homogeneous marketing strategies allowing for sellers to achieve higher revenues. Although
the concept of market segmentation was introduced by Smith in the 1950s [65], it is still an
important focal point in the academic research and marketing practices [66, 67, 68].

In the telecom markets, the identification of the different user sub-populations has
received considerable attention [69]. Various clustering and data mining algorithms have
been proposed to identify the different market segments [70, 71, 72, 73]. Software tools
visualize the user sub-populations enabling the more efficient design of marketing strategies
[67, 74]. However, despite the extensive knowledge of the user characteristics and prefer-
ences in wireless markets, few modeling and analysis methods apply a market segmentation
approach for the design of the services of providers and optimal pricing.

Existing models of wireless markets that evaluate the profitability of different strate-
gies for providers (e.g., in the price determination) are based on game theory and are either
microscopic or macroscopic. Microscopic approaches usually study specific technical as-
pects (e.g., protocol, network topology, technology) on a short spatial and temporal scale,
often considering networks with a small number of base stations (BSs) and markets with a
single provider [13, 18, 20, 75, 76, 28, 23]. On the other hand, macroscopic approaches
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mainly focus on large-scale markets considering homogeneous populations to make the
analysis tractable [4, 37, 38, 9, 39].

To the best of our knowledge, there are no game-theoretical studies focusing on large-
scale wireless markets that consider the effect of market segmentation. This is due to the
technical difficulties that the modeling of different user sub-populations introduces in the
analysis. These challenges are enhanced by the assumption of the user rationality usually
considered in game theory. Specifically, it is assumed that each user selects the service that
maximizes a utility function that depends on the price and quality of service (QoS). How-
ever, in practice, various psychological and social aspects affect the user decision making
[54, 77, 56].

In this chapter, we model a market using the multi-layer framework of Chapter 3 and
assume that providers can offer multiple dataplans and apply a market segmentation ap-
proach when setting their prices. Specifically, they identify different user groups and offer
services targeted to the specific needs of those groups. The framework models a market at
an elaborate degree of detail, considering various technological and economic aspects. It
models the cellular networks of providers as queueing networks and the user traffic demand
with appropriate stochastic processes. It also estimates the perceived QoS of each user group
based on the average and variance of data rate at the network of a provider. Furthermore, it
models the user service selection in a realistic manner considering apart from the price and
QoS, aspects such as the “stickiness”/loyalty to a provider.

Our analysis indicates that by modeling users in a high degree of detail, providers make
better pricing decision achieving significant revenue gains and reducing the percentage of
disconnected users compared to modeling users macroscopically. However, there are cases
in which providers may lose revenue if they consider the same number of sub-populations
when modeling users. The structure of this chapter is as follows: Section 4.2 defines an
example of a wireless oligopoly of a small city. Section 4.3 presents the performance of
this market when providers identify a different number of user sub-populations when setting
their prices, while Section 4.4 presents the benefits of providers when they offer a different
number of dataplans in the market. Finally, Section 4.5 presents the concluding remarks and
some guidelines for providers.

4.2 An example of a wireless oligopoly

We have used the modeling framework of Chapter 3 and instantiated a wireless access mar-
ket of a small city, represented by a rectangle of 14.4 km x 12.5 km. In this market there
are 4 providers and a population of 300, 000 users. Each provider has deployed a cellular
network covering the entire city. The BSs at each network are placed on the sites of a trian-
gular grid, with a distance between two neighbouring sites of 1.6 km. The maximum data
rate with which a BS can serve sessions is 25, 22, 19, and 16 Mbps for the providers 1, 2, 3,
and 4, respectively. The average size of a session is 10 MB. Furthermore, the session service
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rate of a BS is µ1 = 18.75, µ2 = 16.50, µ3 = 14.25, and µ4 = 12.00 sessions/min for the
providers 1, 2, 3, and 4, respectively. We also consider different cases for the user traffic
demand. Specifically, for different average session generation rates over all users, from 0 up
to 1.5 sessions/hour, we estimate the impact on the provider and user equilibriums.

4.3 Modeling users at different levels of detail

We consider a heterogeneous user population consisting of 100 distinct groups (which
corresponds to the most detailed picture of the user population). Each group of users is
characterised by a different utility function defined according to Eq. 3.8. The maximum
willingness-to-pay (wjR) and tolerance on low data rate (hj) of these groups follow normal
distributions of mean 30 and 0.6 and standard deviation of 7.6 and 0.3, respectively1. In
real markets those two parameters may also be correlated. For example, users with a large
willingness-to-pay (high wjR) usually demand a high QoS and are less tolerant on low data
rate (low hj). To evaluate the impact of the correlation among the user willingness-to-pay
and tolerance on low data rate, we defined two scenarios in which those two parameters
are correlated and independent, respectively. Specifically, in the first scenario, the cross
correlation of wjR and hj is equal to −0.85 (Fig. 4.1a). This means that users with a
large willingness-to-pay (high wjR) usually are less tolerant on low data rate (low hj). In
the second scenario, the cross correlation of wjR and hj is equal to 0 and the maximum
willingness-to-pay and data rate requirements of groups are completely independent (Fig.
4.1b). At both scenarios, it is assumed that the traffic demand (dj) is the same for all user
groups and providers offer only one dataplan. Additionally, the weight of data rate variabil-

1Those distributions were selected to model a diverse user population. However, the modeling framework
is modular and allows the use of other distributions possibly resulting from empirical studies of real wireless
markets.
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Figure 4.1: User group distribution when wjR and hj are correlated (a) and when they are
independent (b), respectively.
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Figure 4.2: Performance gains when providers model users at different levels of detail com-
pared to macroscopic modeling when wjR and hj are correlated (top) and when they are
independent (bottom), respectively.

ity (wjV ) is set equal to 0 for all user groups, while the noise value (ε) that characterises the
user decision making (Eq. 3.10) is set equal to 1.5.2

For each scenario, we have defined different market cases in which providers model
the user population at different degrees of detail when estimating their utility functions. Each
provider applies a clustering algorithm (e.g., K-means) on the profiles of the 100 user groups
and determines a set of 5, 9, or 20 representative user clusters. Providers consider these sets
of clusters when estimating their utility functions. As the number of clusters increases, the
modeling of the user population becomes more accurate but the computational complexity
of estimating the NE of providers increases. Our objective is to select the most appropriate
level of detail that results in large performance gains for providers at a low computational
complexity. Fig. 4.2 shows the additional benefits of users and providers obtained when
providers model the user population at different levels of detail compared to modeling users
macroscopically (i.e., with only 1 cluster) when wjR and hj are correlated (Figs. 4.2a - 4.2c)

2In our performance evaluation, we have selected the minimum value of noise that results in concave provider
utility functions. However, in real markets, the noise parameter should reflect the user behaviour as captured in
real-world customer data.
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and when they are independent (Figs. 4.2d - 4.2f), respectively.

Case a: When the maximum willingness-to-pay (wjR) and tolerance on low data rate
(hj) are correlated, modeling the user population at a higher level of detail (with a larger
number of clusters) pays off for providers and users. Providers increase their revenue in al-
most all cases (Figs. 4.2b and 4.2c) and the percentage of disconnected users is significantly
reduced (Fig. 4.2a). When providers model users at the macroscopic level, they apply a
homogeneous marketing strategy by selecting their prices considering only aggregate pro-
filing information for the entire population, without detailed information for the different
sub-populations that reflect the diversity of the market. The provider 1 offers a price that
is close to the prices of the other providers and attracts both business and low-profile users.
Additionally, the providers 3 and 4 offer relatively high prices losing customers and revenue
form the low-profile user groups. In such a market, except from the revenue of providers,
the performance of users is also sub-optimal. A large percentage of users ends up selecting
the provider 1 resulting in a degradation of the offered quality of service. Furthermore, due
to the relatively high prices of the providers 3 and 4, more low-profile users become discon-
nected. In other words, under a macroscopic view of the market, providers make suboptimal
decisions, which have a negative impact on their revenue and performance of users.

When providers consider a larger number of clusters for the estimation of their util-
ity functions (e.g., 5, 9 or 20 clusters), they obtain a more detailed picture of the market,
and as a result, the performance of the market improves. The provider 1 offers a higher
price compared to the other providers and attracts mostly business users, while its share of
low-profile users drops. On the contrary, the providers 3 and 4 offer low prices and attract
the largest percentage of low-profile users, while their share of business users becomes low.
The strong providers (i.e., the ones with the largest cellular capacity) focus on users with
high willingness-to-pay and QoS requirements, while the weak providers focus on users
with low willingness-to-pay and QoS requirements. This improves the overall performance
of users (Fig. 4.2a) and reduces the intensity of competition allowing for a higher rev-
enue for providers (Figs. 4.2b and 4.2c). In general, as the degree of detail in modeling
the user population (i.e., number of clusters) increases, the performance of the market im-
proves. However, the computational complexity of computing the equilibriums of users and
providers increases. When the number of user clusters that providers consider increases, the
execution time also increases in a non-linear way (Fig. 4.3). It is in the interest of a provider
to select the appropriate number of clusters that results in high revenue benefits and at the
same time requires a low execution time (e.g., 9 clusters).

Under high traffic demand, a large decrease of the benefits of providers is observed
from a certain point onwards (Figs. 4.2b and 4.2c). At this point, the capacity of the net-
works of providers is reached and disconnected users start appearing. The first users that
become disconnected are the ones with a low willingness-to-pay. Providers enter a compe-
tition and restrain their prices aiming to prevent those users from becoming disconnected.
Even the provider 1 enters the competition regardless of its focus on business users. As the
traffic demand keeps increasing, it becomes less beneficial for providers to keep those users
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Figure 4.3: Execution time needed to perform the market analysis at different levels of
detail.

in the market. This weakens the competition allowing for a small recovery of the revenue
gains of providers.

Case b: If the maximum willingness-to-pay (wjR) and tolerance on low data rate (hj)
are independent, the modeling of users at a finer level of detail is beneficial for users: The
percentage of disconnected users is significantly reduced (Fig. 4.2d). Interestingly, the
performance of providers is not always improved. Under a low traffic demand, providers
achieve significant revenue gains, while under large traffic demand, they lose revenue com-
pared to a macroscopic modeling of users (Figs. 4.2e and 4.2f). Furthermore, the larger the
number of clusters, the more prominent the losses. This is a counter-intuitive result: One
would expect that the larger the degree of knowledge about the user population, the more
significant the benefits of the providers. To explain this phenomenon, we should focus on
the distribution of the user groups in this scenario (shown in Fig. 4.4).

In general, we can distinguish four different types of groups: the business users, low-
profile users, lenient users, and value-for-money users. The revenue losses are mainly due
to the pressure that value-for-money users and lenient users introduce in the market. Value-
for-money users have a low willingness-to-pay (i.e., low wjR) and small tolerance on low
data rate (i.e., low hj). Satisfying the requirements of those users can be difficult. Providers
should offer services of high data rate on low prices. Under a large traffic demand, when
the capacity of the networks of providers is reached, value-for-money users start becoming
disconnected. When modeling users at high levels of detail, providers are aware of the
presence of value-for-money users and restrict their prices in an effort to attract these users
given that they correspond to a significant percentage of the market (around 25%). This
results in a steep decrease of the provider revenues (Figs. 4.2e and 4.2f). As the number
of clusters increases, providers become aware of more “extreme” cases of value-for-money
users with stricter price and data rate requirements. Therefore, they become more aggressive
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Figure 4.4: Distribution of user groups for independent wjR and hj .

in the decrease of their prices, and as a result, they lose more revenue.

In the case of high traffic demand, value-for-money users eventually become discon-
nected and their influence weakens allowing for a slow recovery of the provider revenues.
However, in the case of the provider 4, its revenue gain always remains negative under large
traffic demand (Fig. 4.2f). This is due to the influence of lenient users. These users have
a high willingness-to-pay (high wjR) and high tolerance on low data rate (high hj). Price is
the parameter that mainly drives their decisions. Under a large traffic demand, disconnected
users appear in the value-for-money, low-profile and business users. However, almost all
lenient users remain connected due to their low data rate requirements and high willingness-
to-pay. Therefore, as the traffic demand increases, the influence of lenient users in the market
intensifies. This strengthens the competition of providers keeping their revenues low.

4.3.1 Impact of different degrees of knowledge

We repeated the analysis, considering now a market in which only the provider 1 models
users with 9 clusters, while all other providers model users macroscopically. Figs. 4.5a,
4.5b, and 4.5c show the differences in the prices, market share, and revenue of providers,
respectively, compared to a market in which all providers model users macroscopically when
wjR and hj are correlated. Figs. 4.5d, 4.5e, and 4.5f present the same differences when wjR
and hj are independent.
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Figure 4.5: Performance gains of a market in which only the provider 1 models users with
9 clusters, while all other providers model users macroscopically compared to a market in
which all providers model users macroscopically. The top (bottom) figures correspond to a
scenario in which wjR and hj are correlated (independent), respectively.

The provider 1 always achieves revenue gains. This is observed both when wjR and
hj are correlated and when they are independent (Figs. 4.5c and 4.5f, respectively). With
its higher degree of knowledge, the provider 1 can influence the market to its benefit out-
smarting the other providers. This is an important result which shows that the benefits of a
provider from modeling the user population in a high level of detail strongly depend on the
level of knowledge of the other providers about users.

Another interesting trend is that the effect of the knowledge of the provider 1 on the
revenues of the other providers is twofold. Under small traffic demand, the provider 1 raises
its price compared to the one offered at the macroscopic level (Figs. 4.5a and 4.5d). Given
that it is the most influential provider in the market, its price increase provides also an
opportunity to the other providers to raise their prices. This results in significant revenue
gains for all provider (Figs. 4.5c and 4.5f). However, when the traffic demand becomes
large, suddenly, the provider 1 “turns against” the other providers. When the capacity of the
networks of providers is reached and disconnected users appear, it reduces its price bellow
the prices of the other providers to attract those users (Figs. 4.5a and 4.5d). Given their
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macroscopic view of the market, the other providers do not react. This results in an increase
of the revenue gain of the provider 1 at the expense of the revenues of the other providers
(Figs. 4.5c and 4.5f).

Let us now explain the behaviour of the provider 1 in more detail. When the user
traffic demand is low, the provider 1 realizes that it is more beneficial to focus on business
users increasing its price. This results in a decrease of its market share compared to the one
obtained at the macroscopic level (Figs. 4.5b and 4.5e). However, this decrease of market
share is useful because it improves the quality of service of the provider 1 making its sub-
scription more appealing to business users. Given their improved satisfaction, those users
can pay a higher price to the provider 1 increasing its revenue. This trend persists as the
traffic demand increases until the capacity of the networks of providers is reached. From
this point onwards, the quality of service drops substantially and some of the business users
become dissatisfied and decide to disconnect. Then, the provider 1 suddenly changes its
strategy. Instead of focusing on the business users, it realizes that it is more beneficial to
restrict its price in order to prevent users with low willingness-to-pay from becoming dis-
connected and attract them to its network. Other providers do not realize this early enough
due to their macroscopic view of the market and they do not react. That way, the provider 1
achieves significant revenue gain at the expense of the revenues of the other providers.

We repeated the previous analysis considering now that only the provider 4 models
users with 9 clusters, while all other providers model users macroscopically (Fig. 4.6). The
provider 4 achieves revenue gains both when wjR and hj are correlated (Fig. 4.6c) and when
they are not (Fig. 4.6f). Additionally, when the traffic demand is low, all providers achieve
revenue gains, while under large traffic only the provider 4 gains additional revenue at the
expense of the revenues of the other providers (Figs. 4.6c and 4.6f). However, given that the
provider 4 is the weakest one in the market, its influence is low, and therefore, the observed
tends of Fig. 4.6 are subtler compared to Fig. 4.5.

4.3.2 Sensitivity analysis

To strengthen our results, we performed a sensitivity analysis. We studied a market in
which the 100 user groups differ in the weight of data rate variability (wjV ) except from
the willingness-to-pay (wjR) and tolerance on low data rate (hj). Again, we defined two sce-
narios in which these parameters are correlated and independent, respectively. We observed
similar trends as in Fig. 4.2. At high levels of detail, when wjR, hj , and wjV are correlated,
providers almost always achieve revenue gains, while there is a significant reduction of dis-
connected users compared to the macroscopic case. However, when the parameters wjR, hj ,
and wjV are independent, again there are some revenue losses for providers under a large
traffic demand. We also performed an experiment in which the capacities of the 9 central
BSs of each provider are increased by 50 %. We observed the same trends as in Fig. 4.2 but
with the corresponding curves shifted to the right: Given the increase of the capacity of the
central BSs of providers, disconnected users appear later.
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Figure 4.6: Performance gains of a market in which only the provider 4 models users with
9 clusters, while all other providers model users macroscopically compared to a market in
which all providers model users macroscopically. The top (bottom) figures correspond to a
scenario in which wjR and hj are correlated (independent), respectively.

4.4 Offering of multiple dataplans

We have defined a market in which users of different groups deviate not only in their
willingness-to-pay (wjR) and tolerance on low data rate (hj) but also in their traffic demand
(dj). As in Section 4.3, wjR and hj follow normal distributions, while the average session
generation rate over all user groups (λ =

∑J
j=1 λj/

∑J
j=1Nj) varies from 0 up to 1.5 ses-

sions/hour. The normalized session generation rate nj =
λj/Nj

λ
of user groups follows a

normal distribution of mean 1 and standard deviation 0.2.3 Some user groups correspond to
“heavy” users producing a large amount of traffic (users groups with a large nj), while other
groups correspond to “light” users (groups with a low nj). Again we distinguish two market
scenarios. In the first scenario, the cross correlation of wjR and hj is equal to −0.85, while
the cross correlation of wjR and nj is 0.85. This means that users with a large willingness-

3Note that λj is the total session generation rate of the members of the group j, Nj is the number of users in
group j, and N is the total number of users in the entire population (see Tables 3.1 and 3.2).
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Figure 4.7: Performance gains when providers model users at different detail and offer 3
dataplans compared to modeling users macroscopically and offering 1 dataplan when wjR,
hj , and nj are correlated (top) and independent (bottom), respectively.

to-pay (high value of wjR) usually are heavy users (high value of nj) and less tolerant on
low data rate (low value of hj). In the second scenario, the cross correlation among wjR, hj ,
and nj is equal to 0 and the maximum willingness-to-pay, data rate requirements and traffic
demand of groups are completely independent. In this set of experiments, we set the noise
parameter of the Logit dynamics modeling the user decision making equal to 2.

We assume that a provider i offers a total number of Si dataplans each corresponding
to a different interval of traffic demand and flat-rate price. The first dataplan applies to
light users with a normalized session generation rate up to 100/Si% percentile, while the
last dataplan corresponds to heavy users with normalized session generation rate lying in
the interval from (Si − 1) ∗ 100/Si% up to 100% percentile. In other words, the range of
the values of the normalized user session generation rate is divided into Si segments. Users
groups belonging to different segments are charged with a different price. Providers can also
model users at different levels of detail by estimating a different number of user clusters.
We have analysed a market in which providers offer 3 dataplans to users. The performance
gains obtained when providers model users at different levels of detail compared to when
they model users macroscopically and offer only 1 dataplan are presented in Fig. 4.7. The
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top (bottom) figures correspond to the case that wjR, hj , and nj are correlated (independent),
respectively.

Similar trends are observed as in Fig. 4.2. When wjR, hj , and nj are correlated,
in most cases, providers achieve revenue benefits when they model users at a higher level
of detail (Figs. 4.7b and 4.7c), while the reduction of the percentage of disconnected users
becomes more prominent (Fig. 4.7a). However, in a small interval around 0.95 session/hour,
providers lose a small amount of revenue when they model users in higher detail. When
the number of user clusters increases, an increase of the number of dataplans is required
to perform a better pricing. With a larger number of dataplans, providers can charge the
different user clusters more efficiently achieving higher revenue. In the cases of 9 clusters
and 20 clusters, when the number of dataplans is increased above 3, the revenue losses
around 0.95 sessions/hour are reduced.

When wjR, hj , and nj are independent, the observed trends are exactly the same as in
Fig. 4.2. An increase of the number of user clusters results in a more prominent reduction
of the percentage of disconnected users (Fig. 4.7d). Additionally, under a low traffic de-
mand, an increase of the number of clusters always results in revenue benefits for providers.
However, under a large traffic demand, modeling users with a large number of clusters re-
sults in revenue losses compared to the macroscopic case (Figs. 4.7e and 4.7f). Again those
revenue losses are due to the existence of value-for-money users and lenient users. Those
users intensify the competition of providers under a large traffic demand resulting in lower
offered prices and revenue.

We have also studied a market in which providers offer a different amount of dataplans
(i.e., 1, 3, or 5 dataplans). In this market, each provider models the users with 9 clusters.
The performance gains compared to a market in which providers model users macroscop-
ically and offer only 1 dataplan are depicted in Fig. 4.8. In the top (bottom) figures the
parameters wjR, hj , and nj are correlated (independent), respectively. When wjR, hj , and nj
are correlated, if providers offer only 1 dataplan, at an interval of the traffic demand around
0.9 sessions/hour, they achieve revenue losses compared to the macroscopic case (Figs. 4.8b
and 4.8c). Those losses are mainly due to the limited amount of degrees of freedom when
setting the prices of providers. Specifically, providers offer the same price both to heavy
users with a large willingness-to-pay and to light users with a low willingness-to-pay. To
prevent light users from becoming disconnected, providers restrict their prices regardless of
the high willingness-to-pay of heavy users losing revenue. However, when providers offer
3 or 5 dataplans, the heavy and light users are charged with a different price. Therefore,
providers are able to offer a high price to heavy users and a low price to light users always
achieving revenue benefits (Figs. 4.8b and 4.8c).

When wjR, hj , and nj are independent, a counter intuitive result is observed. An
increase in the number of offered dataplans does not result in revenue benefits for providers.
On the contrary, under a large traffic demand, the offering of a larger number of dataplans
results in revenue losses (Figs. 4.8e and 4.8f). In this case, the willingness-to-pay and traffic
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Figure 4.8: Performance gains when providers model users with 9 clusters and offer a dif-
ferent number of dataplans compared to macroscopic modeling when wjR, hj , and nj are
correlated (top) and when they are independent (bottom), respectively.

demand of user clusters are independent. This means that the average willingness-to-pay of
heavy and light users is almost the same. When providers offer different dataplans to these
users, their competition is intensified. Given that the light users produce a low amount of
traffic, their admission at the network of a provider does not significantly affect its QoS.
Therefore, providers have the incentive to reduce their offered prices to light users in order
to attract them to their networks entering a price war. Additionally, providers can not charge
the heavy users with a high price due to their relatively low willingness-to-pay (almost the
same as the one of light users). Therefore, providers would lose revenue by offering a larger
number of dataplans in this market.

4.5 Lessons learned

This chapter analyses the impact of market segmentation on the performance of a wireless
access market of a small city. Providers model users at multiple levels of detail by consid-
ering a different number of user clusters with distinct characteristics, utility functions, and
requirements. They also offer multiple dataplans depending on the level of the user traffic
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demand. By performing a market segmentation, providers can identify the most suitable
user clusters to target to improve their revenue. In market scenarios in which there is a
strong correlation between the user willingness-to-pay and QoS requirements (i.e., markets
with mostly business and low-profile users), market segmentation is beneficial. The strong
providers (i.e., the ones with the largest cellular capacity) focus on user clusters with high
willingness-to-pay and QoS requirements, while the weak providers focus on clusters with
low willingness-to-pay and QoS requirements. This market segmentation improves the user
satisfaction and reduces the intensity of competition improving the revenue of providers.

In general, one would expect that when providers model users in a higher level of detail
(considering a larger number of clusters) or when they offer a larger number of dataplans,
they make better decisions improving their revenue. Our analysis indicates that this is always
true in market scenarios in which there is a strong correlation between the user willingness-
to-pay and QoS requirements. In other market cases in which those two parameters are
completely independent, a different trend is observed. Providers improve their revenue when
they model users in a higher level of detail only under a low user traffic demand, while they
achieve revenue losses in the case of a large traffic demand. Additionally, the offering of a
large number of dataplans is not beneficial and it may also result in revenue losses. In such
market cases, when all providers model users in a high level of detail, they end up enhancing
their competition and lose revenue compared to applying a homogeneous marketing strategy.

Another important result that our analysis reveals is that when a provider models users
at a high level of detail, its revenue benefits strongly depend on the knowledge of the other
providers about users. As mentioned earlier, in markets in which the user willingness-to-
pay and QoS requirements are completely independent, if all providers model users at a
high level of detail, they may enhance their competition losing revenue. However, when
only one provider models users at a high level of detail and all other providers model users
macroscopically, the first provider always achieves significant revenue benefits.

Our modeling framework can be a useful tool that can help providers select the optimal
level of detail for modeling users and the number of offered dataplans that will improve their
revenue. This selection depends on a variety of factors including, the correlation among the
willingness-to-pay and QoS requirements in the user population, the level of the user traffic
demand, and the level of knowledge of the other providers about users. Specifically, a
provider should first estimate the profiles of its customers in terms of willingness-to-pay,
QoS requirements, and traffic demand. Then, it can use our modeling framework to select
the optimal number of clusters and dataplans that will maximize its revenue for a specific
market setting.
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Chapter 5

On the impact of WiFi offloading in
wireless markets

5.1 Use of WiFi offloading for increasing the capacity of wireless
networks

According to forecasts, the wireless traffic will exceed the 24.3 exabytes per month world-
wide by 2019 [1]. To cope with this explosion of traffic demand, providers aim to increase
the capacity of their cellular networks. Traditional solutions for expanding the capacity
involve the leasing of additional spectrum or the extension of the network infrastructure.
However, such solutions are costly and time consuming. A cost-effective alternative for
increasing the capacity that has received considerable attention is the data offloading: A
provider leases access to some third-party WiFi access points (APs) and femtocells and of-
floads a part of its traffic to these APs. Alternatively, the provider can deploy its own WiFi
infrastructure. This can alleviate the congestion of its cellular network.

Most approaches that study the WiFi offloading claim that it is beneficial for providers
to offload as much traffic as possible to WiFi APs (e.g., [27, 28, 26, 23]). Their main
argument is that a large volume of offloaded traffic alleviates the congestion in cellular
networks and reduces the operational costs. Such studies usually omit the effect of the
limited capacity of WiFi APs on the quality of service (QoS) and its long-term impact on
the revenue of providers. Only a few studies consider the effect of the offloading on the
QoS [50, 78]. Typically, they only focus on the physical layer (e.g., on the achievable
data rate and SINR) and omit economic aspects, such as, the effect of the offloading on
the competition of multiple providers and user decisions. In this chapter, we evaluate the
impact of the offloading using the multi-layer game-theoretical framework of Chapter 3.
The framework models markets with multiple competing providers that can perform WiFi
offloading and a population of users that select their provider considering the offered prices
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and QoS. Several questions drive this research: What is the optimal percentage of traffic
that should be offloaded to a WiFi network? How does the coverage of WiFi, user traffic
demand, and user preference affect it? What is its impact on users? Under which cases is
it beneficial for providers to invest in WiFi infrastructure? To answer these questions, we
have evaluated the performance of WiFi offloading under various scenarios based on the
bandwidth of cellular BSs, the coverage of the WiFi network, and the user utility.

Our framework employs detailed queueing-theoretical models of the networks of
providers, base stations (BSs), access points (APs), user arrivals, departures, and handovers
and provides a methodology to analyse large-scale wireless markets. It is also modular, in
that, it can incorporate different user utility functions and traffic demand, mobility patterns,
and network topology models. The analysis highlights that it is not always profitable for a
provider to invest in a large number of WiFi APs. The benefits of the offloading increase
with the WiFi coverage but with a diminishing rate. Furthermore, it is not beneficial to of-
fload the entire traffic that can be served by APs. From a certain point onwards the APs will
become congested. This will result in a QoS degradation reducing the revenue of providers.

The structure of this chapter is as follows: Section 5.2 presents the related work in
the modeling of WiFi offloading. Section 5.3 presents our experiment setting for evaluating
the impact of WiFi offloading on a wireless oligopoly of a small city. Sections 5.3.1 and
5.3.2 present the benefits of WiFi offloading when providers have deployed an LTE or 3G
network infrastructure, respectively. Finally, Section 5.4 presents the concluding remarks.

5.2 State of the art in modeling of WiFi offloading

The problem of WiFi offloading has received considerable attention. The proposed ap-
proaches can be classified into two general categories, namely the delayed offloading and
on-the-spot offloading. In delayed offloading, users wait until they are in the coverage of
an AP before sending their delay-tolerant traffic [23, 24, 25]. In on-the-spot offloading,
users opportunistically transfer data via WiFi whenever there are in the coverage of an AP
[26, 27]. When a user moves out of the coverage of the AP with which it has been associated,
a vertical handover is performed back to the cellular network of its provider. The delayed
offloading cannot be always an appropriate option, especially for real-time applications.

Prior studies of offloading have made various simplifications. Most of them analyse
the optimal decisions of a single provider and do not study the impact of offloading in
markets with multiple competing providers [26, 28, 23, 24]. Only a few papers focus on
scenarios with multiple providers that can perform WiFi offloading [27]. Typically, they
assume that the larger the volume of the offloaded traffic, the larger the benefits for providers
[28, 27, 24]. Such approaches usually consider only the operational cost omitting other
aspects. There are also several studies that investigate the impact of the offloading on the
QoS [50, 78]. However, they focus on the physical layer omitting economic aspects, such as,
the competition of providers and user decisions. In addition to the theoretical approaches,

Page 54 of 132



Experiment setting

there are experimental evaluations of the benefits of WiFi offloading [79, 80]. Incentive
mechanisms to enable third-party resource owners to share their infrastructure have also
been proposed [81]. In contrast to the above approaches, this chapter focuses on the on-the-
spot offloading and evaluates the impact of the offloading on the competition of multiple
providers, the offered QoS and the equilibriums of users and providers.

5.3 Experiment setting

Using the modeling framework of Chapter 3, we instantiated a wireless oligopoly of a small
city of 180 km2 with 4 providers and a population of 300, 000 users.

Network infrastructure. Each provider has deployed a cellular network covering the
entire city. The BSs at each network are placed on the sites of a triangular grid, with a
distance between two neighbouring sites of 1.6 km. The city is divided into 9 equally sized
rectangular areas. We assume that a WiFi AP infrastructure has been deployed at different
areas in the city. A provider with access to the APs of a specific area may offload a part of its
mobile data traffic to these APs. A number of the new sessions that are generated within the
coverage of an AP (say AP q) may be served by that AP. Furthermore, when a user moves
into the coverage of that AP during a session, a vertical handover can be performed to that
AP. From all the above sessions, a provider offloads to the AP q a certain percentage denoted
as offloading percentage. Note that the offloading percentage is the same for all APs of a
provider. When a user who is being served by an AP moves out of the coverage of that AP,
a vertical handover is performed back to the cellular network of its provider. The goal of a
provider is to select the optimal offloading percentage that will maximize its revenue in the
market. Apart from the traffic of cellular BSs, the WiFi APs may also serve their own WiFi
customers. This reduces the effective capacity of APs which is available for offloading.
We have performed a set of experiments in which the optimal offloading percentage of a
provider was estimated under different cases with respect to: (a) the bandwidth of cellular
BSs, (b) the coverage of the WiFi network, and (c) the user utility function.

Bandwidth of wireless stations. We distinguish two scenarios with respect to the ca-
pabilities of the BSs and APs: the 3G scenario with BSs of lower bandwidth than that of
APs (e.g., [26]) as well as the LTE scenario with BSs that have bandwidth larger than that
of WiFi APs. In this analysis, the bandwidth of an AP is 6 Mbps. In 3G, the maximum data
rate with which a BS can serve sessions is 5, 4.5, 4, and 3.5 Mbps for the providers 1, 2, 3,
and 4, respectively, while in LTE, the maximum data rates of providers are 25, 22, 19, and
16 Mbps, respectively.

WiFi infrastructure. We assumed that in the city of interest, there exists a WiFi infras-
tructure. In our experiments, either the strongest provider (provider 1) or the weakest one
(provider 4) may perform offloading. With respect to the WiFi coverage, we have consid-
ered cases in which APs are located in one, two, or three different areas close to the city
center. We have also defined different cases in which the number of APs that correspond
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to a single BS varies from 1 up to 15. It is assumed that the APs associated with a BS are
located within its cell and their coverage areas do not overlap. 16 APs are required to cover
a cell, and therefore, the larger the number of APs per BS, the larger the WiFi coverage.
Furthermore, an AP serves sessions from its own WiFi customers with a total arrival rate of
2 sessions per minute. Due to the traffic demand of WiFi customers, the effective bandwidth
of APs that can be used for offloading is reduced from 6 to around 3.3 Mbps.

User utility function. In this set of experiments, we model users as a homogeneous
population (i.e., as 1 group). The user utility function is defined as follows:

ui(zi; c) =

{
wR (τ − exp(−hRi(z)))− wV Vi(z)− wP ci if i = 1, ..., I

0 if i = 0
(5.1)

Note that in the definition of the user utility, we do not use the index j since there is only
1 user group. We assume that the dependence of the user utility on the average data rate
(Ri(z)) is exponential and the values of wR, τ , and h are equal to 30, 1, and 0.6, respec-
tively. The parameterswR defines the user willingness-to-pay, while the parameter h defines
the tolerance of users on low values of data rate. The user utility function has a diminishing
derivative with respect to the data rate. For each case, we computed the market equilibri-
ums given that no offloading is performed, and then, we computed the optimal offloading
percentage for a provider, its additional revenue and the decrease in disconnected users.

5.3.1 The LTE scenario

We evaluated the performance of the WiFi offloading in the case of LTE. In this scenario, the
average traffic demand of a user varied from 0.9 up to 1.5 sessions/hour. Fig. 5.1 presents
the benefits of WiFi offloading. In general, as the number of APs associated with a BS
increases, the additional revenue from the offloading also increases but in a diminishing
manner (Figs. 5.1a and 5.1d). By increasing the number of APs per BS up to 6, the optimal
offloading percentage is equal to 100% (Figs. 5.1b and 5.1e) which results in an increased
revenue. However, an increase of the number of APs above this threshold has a diminishing
“return” due to the decrease of the optimal offloading percentage (Figs. 5.1b and 5.1e). In
other words, it is profitable for a provider to invest in WiFi infrastructure up to a certain
threshold (e.g., around 6 APs per BS in this scenario). Above this threshold, the investment
would not be beneficial.

Under large WiFi coverage, the low optimal offloading percentage (e.g., Figs. 5.1b
and 5.1e) is due to two opposing trends: The increased offloading percentage alleviates the
congestion at BSs allowing for higher data rates for users. On the other hand, it also results
in a larger number of users being served by APs, which have lower bandwidth compared to
that of BSs. Therefore, the data rate of these users decreases. In general, it is not always
profitable for a provider to offload all traffic that can be served by APs. The optimal of-
floading percentage achieves the best load balancing among APs and BSs. It is selected in
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Figure 5.1: Benefits of offloading in the LTE scenario. Only the provider 1 (4) performs
offloading in top (bottom) figures, respectively.

such a way to improve the average data rate, attract more users, and maximize the revenue
of the provider. As expected, an increase in the number of APs per BS results in a larger
decrease in the percentage of disconnected users (Figs. 5.1c and 5.1f). Furthermore, when
the number of areas with a WiFi infrastructure expands, the revenue of a provider grows and
the percentage of disconnected users drops. Surprisingly, it also results in a slight decrease
of the optimal offloading percentage (Figs. 5.1b and 5.1e). This is due to the phenomenon
discussed earlier. In general, an increase in the WiFi coverage results in a decrease of the
optimal offloading percentage. Let us now discuss the case in which the provider 4 performs
the offloading. Although the percentage increase of its revenue is higher compared to that
of the provider 1 (Figs. 5.1a and 5.1d), the corresponding absolute increase of its revenue
and the reduction of disconnected users are lower compared to the provider 1 (Figs. 5.1c
and 5.1f). Therefore, from the perspective of the overall market performance, it is more
beneficial for the provider with the largest capacity to perform the offloading.

5.3.2 The 3G scenario

We repeated the analysis of Section 5.3.1 for the 3G scenario. In this scenario, the traffic
demand of a user varied from 0.15 up to 0.25 sessions/hour. Fig. 5.2 presents the results.
The percentage increase of the revenue of providers is higher in the 3G scenario compared
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Figure 5.2: Benefits of offloading in the 3G scenario. Only the provider 1 (4) performs
offloading in top (bottom) figures, respectively.

to the LTE one (Fig. 5.1). There is also a more prominent decrease in the percentage of
disconnected users. The bandwidth of BSs in the 3G scenario is closer to the one of APs
compared to the LTE scenario increasing the benefits of the offloading.

The larger effective bandwidth of the BSs of the provider 1 (i.e., 5 Mbps) compared
to that of APs (i.e., 3.3 Mbps) results in a reduction of the optimal offloading percentage
of the provider 1 above a certain threshold (Fig. 5.2b). On the contrary, the bandwidth of
the BSs of the provider 4 is very close to that of APs (i.e, 3.5 Mbps) resulting in an optimal
offloading percentage equal to 100% for almost all cases (Fig. 5.2e). In general, the closer
the effective bandwidth of APs to that of BSs, the more traffic the BSs can offload to these
APs without negatively affecting the QoS.

5.4 Lessons learned

We performed an extensive evaluation of the WiFi offloading under various scenarios. Our
results highlight the benefits of the WiFi offloading to users and providers. It is not always
beneficial for providers to invest in a large number of APs. The additional revenue of a
provider from the offloading increases with the WiFi coverage but with a diminishing rate.
Our framework can be used to enable providers to design their business plan for offloading.
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Specifically, a provider has mainly two options for performing WiFi offloading. Either,
it can lease access to third-party WiFi APs and femtocells, or it can deploy its own WiFi
infrastructure. In both cases, a detailed cost-benefit analysis is required to indicate whether
or not the offloading is a viable option for the provider.

In the first case, the cost that the provider pays to the third-party AP owners can be
determined by appropriate double or reverse auction mechanisms (e.g., [82, 83]). In such
cases, our framework can be used by providers to estimate their expected benefits for differ-
ent outcomes of the auction and determine their optimal bids. When a provider deploys its
own WiFi infrastructure, the capital and operational expenditures (CAPEX/OPEX) should
be estimated. The CAPEX involves investment costs for the WiFi and backhaul equipment
and installation, as well as, the WiFi core network equipment (servers, gateways, and por-
tals) [84]. On the other hand, the OPEX involves per month operational costs for WiFi and
backhaul site rental and maintenance, as well as, the traffic backhaul cost [84]. Specifically,
the provider can perform a detailed cost analysis for deploying and maintaining the WiFi
infrastructure for an extended time period of several years. Based on the expected traffic
demand, the provider can use our framework to estimate its additional revenue due to the of-
floading for different cases of WiFi coverage and AP density. Given the additional revenue
and required cost, the provider can then select the optimal infrastructure deployment that
maximizes its total benefit. The outcome of such an analysis estimates the expected return
of investment (ROI) and indicates whether the WiFi offloading is a viable business plan for
the provider.
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Chapter 6

On capacity planning

6.1 Participating in secondary spectrum markets for leasing
spectrum

Due to the spatial heterogeneity of the user traffic demand, certain regions of the networks
of providers may become congested. To improve their quality of service (QoS) in the these
regions, providers can purchase additional spectrum by participating in a secondary market
[85]. In such a market, spectrum licenses are traded in a short spatial and temporal scale.
This means that providers can lease additional spectrum only at their specific regions of
interest improving their overall QoS.

In secondary spectrum markets, the spectrum is allocated via auction mechanisms. De-
termining the optimal bidding strategy in such auctions can be challenging. Providers should
estimate their benefits from all possible allocations of spectrum considering the amount of
spectrum they can get as well as the amount of spectrum that their competitors acquire.
In general, a provider does not only aim to purchase additional spectrum to improve its
QoS but also to minimize the amount of spectrum that its competitors can get. If a large
amount of spectrum is allocated to the competitors of a provider, these providers will get an
advantage possibly attracting more customers. Through its bidding, a provider declares its
willingness-to-pay for all possible allocations of spectrum. Usually, a provider favours more
the outcomes in which it acquires the required amount of spectrum, while its competitors do
not get a large portion of the spectrum.

To estimate its optimal bidding strategy in such auctions, a provider can use our multi-
layer game-theoretical framework. That way, it can compute the provider and user equi-
libriums for each possible allocation of spectrum and estimate its revenue benefits. Based
on these benefits, the provider can then determine its bidding strategy. For example, in
a second-price auction (e.g., a Vickrey-Clarke-Groves (VCG) auction), a provider has the
incentive to submit its true willingness-to-pay. In this case, it can submit its estimated rev-
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enue benefits for each possible allocation of spectrum. We have performed an experiment
in which the networks of providers become congested at a specific region of interest. Those
providers participate in a secondary spectrum market to lease additional spectrum and im-
prove their QoS. In this market, the spectrum is allocated according to a VCG auction.

The structure of this chapter is as follows: Section 6.2 defines a VCG spectrum auc-
tion. Section 6.3 analyses the problem of capacity planning in a wireless oligopoly. Finally,
Section 6.4 presents the concluding remarks and some provider guidelines.

6.2 A VCG spectrum auction

Let us consider a scenario in which the networks of providers become congested at a certain
region. To improve their QoS, providers may engage in a secondary spectrum market. We
assume that the spectrum allocation in such a market is performed according to a VCG
auction [86, 87]. The VCG auction has been used for spectrum allocation in wireless markets
[4, 88]. In this auction, license holders offer a certain amount of spectrum for sale which
is divided into Q equally sized chunks. The outcome of the auction is an allocation vector
q = (q1, ..., qI) in which qi is the total number of spectrum chunks that have been allocated
to the provider i and

∑I
j=1 qj ≤ Q. Note that some spectrum chunks may not be allocated

to any provider. Each provider submits a bid for all possible outcomes of the auction (i.e.,
for each possible value of the allocation vector q). The bid of a provider i for a specific
allocation vector q is denoted as bi(q) and is the total amount that the provider i is willing
to pay to the spectrum seller if the outcome of the auction is the vector q. The optimal
allocation is the one that maximizes the sum of the bids of all providers. The cost that a
provider pays is equal to the externality it causes to other providers. This externality is the
total utility reduction that is caused by that provider (e.g., provider i) and is computed as
follows: Let q∗ be the optimal allocation of spectrum and q the optimal allocation without
considering the participation of the provider i in the auction. The cost that the provider i
pays is equal to

∑
j 6=i bj(q) −

∑
j 6=i bj(q

∗). The total amount of spectrum that is allocated
to a provider in the auction is divided equally among its BSs in the region of interest.

It has been proven that the VCG auctions are truthful [89], i.e., the best strategy for a
provider is to submit its true willingness-to-pay. However, one of the drawbacks of the VCG
mechanism is its computational complexity. Specifically, each provider should submit a bid
for each possible allocation of spectrum. The number of allocations increases exponentially
with the number of spectrum chunks. In practice, a small number of chunks is selected
(e.g., around 8) to reduce the computational requirements. Determining the optimal bidding
strategy of a provider in VCG auctions requires the estimation of the market equilibriums
for all possible allocations of spectrum. The estimation of these equilibriums imposes a
significant computational burden due to the large size of the networks of providers. Even
if the additional spectrum is purchased at a specific region, in order to obtain the neces-
sary information to determine the market equilibriums, we have to take into account the
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entire network of BSs. To overcome such problems, we can apply the network aggregation
methodology based on the theorem of Norton described in Chapter 3.

6.3 Performance analysis setting

We used the multi-layer framework of Chapter 3 and instantiated a wireless access market
of a small city, represented by a rectangle of 14.4 km x 12.5 km. In this market there are 4
providers and a population of 300, 000 users.

Network infrastructure. Each provider has deployed a cellular network covering the
entire city. The BSs at each network are placed on the sites of a triangular grid, with a
distance between two neighbouring sites of 1.6 km. The maximum data rate with which a
BS can serve sessions is 25, 22, 19, and 16 Mbps for the providers 1, 2, 3, and 4, respectively.
The average size of a session is 10 Mbytes. Furthermore, the session service rate of a BS is
µ1 = 18.75, µ2 = 16.50, µ3 = 14.25, and µ4 = 12.00 sessions/min for the providers 1, 2,
3, and 4, respectively.

The user mobility among the BSs of a provider is modeled by a Markov chain. The
transition probabilities from a BS to its neighbouring BSs are determined according to a
Zipf distribution (f(k; s,N) = 1/ks∑N

n=1 1/n
s
, where N is the number of neighbouring BSs,

k is the order of a specific neighbouring BS with respect to its distance from the center of
the topology, and s is the exponent characterizing the distribution). In general, the closer a
neighbouring BS is to the center of the network topology, the larger is the transition prob-
ability to this BS. Furthermore, the larger the exponent of the Zipf distribution, the larger
the concentration of user traffic demand towards the center of the topology. In this series of
experiments, we set s equal to 0.075. This results in the area around the center of the city to
become congested. We varied the user session generation rate from 0 to 1.5 sessions/hour
and performed a VCG spectrum auction in the central region.

User utility function. In this set of experiments, we again model users as a homoge-
neous population. The user utility function is defined as follows:

ui(zi; c) =

{
wR (τ − exp(−hRi(z)))− wV Vi(z)− wP ci if i = 1, ..., I

0 if i = 0
(6.1)

We assume that the dependence of the user utility on the average data rate (Ri(z)) is ex-
ponential and the values of wR, τ , and h are equal to 30, 1, and 0.6, respectively. The
parameters wR defines the user willingness-to-pay, while the parameter h defines the toler-
ance of users on low values of data rate.

We defined several market scenarios with respect to the amount of available spectrum
for sale (BW) and weight of data rate variability in the user utility function (wV ). The term
BW defines the additional bandwidth per BS that corresponds to the available spectrum for
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Figure 6.1: Performance of a VCG spectrum auction. (a)-(e) Revenue of providers and
spectrum seller for different cases of auctioned spectrum (BW) and weight of data rate
variability (wV ). (f) Decrease in the percentage of disconnected users.

sale. Fig. 6.1 presents the revenue of providers in the auction (additional revenue due to the
purchased spectrum minus the paid cost) and the revenue of the spectrum seller.

In general, the spectrum auction is beneficial only when the user traffic demand is
large (i.e., when there are disconnected users in the market). In the case of low user traffic
demand (i.e., there are no disconnected users), the additional amount of spectrum intensifies
the competition of providers, reducing prices and revenue. In such cases, it is not profitable
for providers to participate in the auction and the additional revenues of all providers and
the spectrum seller is equal to 0. In cases with disconnected users, the spectrum auction is
always profitable.

Interestingly, when the weight of data rate variability (wV ) is equal to 0, each provider
gets almost no additional revenue from the auction and all the profit is collected by the spec-
trum seller (Fig. 6.1a). In this case, the increase of the average data rates of providers due
to the extra spectrum is similar resulting in similar bids. Therefore, based on the charging
scheme of the VCG auction (Section 6.2), the winner achieves a very small revenue. When
the wV is increased, the profits are divided among the spectrum seller and providers more
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fairly (Figs. 6.1b and 6.1c). A provider is not interested in acquiring all the available spec-
trum but only such an amount that improves its average and spatial variance of data rate and
maximizes its revenue. The purchase of all the available spectrum may enhance the vari-
ance of data rate reducing the user utility and the revenue of the provider. This lessens the
competition resulting in multiple winners in the auction each of which achieves additional
revenue.

An increase in the amount of spectrum to be auctioned results in an increase of the
total revenues of the spectrum seller and providers (Figs. 6.1c - 6.1e). Interestingly, when
the amount of additional spectrum is above a certain threshold, the revenue of the spectrum
seller decreases (Fig. 6.1e), while the revenues of providers increase. As mentioned earlier,
providers are not interested in acquiring all the available spectrum. The more is the available
spectrum, the weaker the competition. This results in an advantage for providers over the
spectrum seller. In general, it is in the interest of the spectrum seller to offer such an amount
of spectrum to achieve a high revenue and keep the competition of providers intense. Finally,
Fig. 6.1f presents the perspective of users. As expected, when the amount of spectrum to be
auctioned increases, the decrease in the percentage of disconnected users is more prominent.
Furthermore, an increase in the weight of the data rate variability also results in a larger
reduction of disconnected users. The additional bandwidth at the central region improves
the variance of data rate increasing the user utility. This increase in the user utility becomes
larger when the weight of data rate variability increases leading to a larger reduction of the
percentage of disconnected users.

To reduce the computational complexity of the bid estimation in the VCG auction,
we employed the network aggregation method based on the theorem of Norton presented in
Chapter 3. Our analysis indicates that this method reduces the execution time of the esti-
mation of the QoS by 83%. The error of this estimation is on the order of 0.019 Mbps and
0.01 Mbps2 for the average and variance of data rate, respectively. These results indicate
that the application of the network aggregation method based on the theorem of Norton sig-
nificantly reduces the computational complexity, while it achieves a high level of accuracy
in the estimation of the QoS.

6.4 Lessons learned

The model of the user utility function that providers consider when determining their bidding
strategy in a VCG spectrum auction is crucial. If providers assume that the user utility
depends only on the average data rate, they aim to purchase all the available spectrum to
maximize the achievable data rate in their networks making similar bids. In this case, the
winner of the auction pays a price close to its bid and achieves a very low additional revenue.
However, when providers assume that the user utility is affected by the spatial variance
of data rate, their competition weakens and there are multiple winners in the auction that
achieve significant revenue benefits. Therefore, it is beneficial for providers to make their
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bids aiming to offer a similar data rate in all geographical regions of their network and not
just increase the average value of data rate across their network.

Our modeling framework can be used by providers to design their optimal bidding
strategy in secondary spectrum markets. Specifically, providers can predict their revenue
benefits when a specific spectrum allocation is performed. Then, based on these revenue
benefits, they can determine their optimal bidding strategy in the spectrum auction.

Our analysis also indicates that when the amount of the available spectrum for sale is
above a certain threshold, the competition of providers weakens resulting in revenue losses
for the spectrum seller. In general, the spectrum seller should offer such an amount of
spectrum that will keep the competition of providers intense in order to achieve a high
revenue.
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Analysis of markets with rational
entities

7.1 Degree of rationality in the decisions of real users and soft-
ware agents

Our game-theoretical modeling framework is a powerful tool that can be used to analyse a
variety of different market scenarios. It allows providers to model users at different levels
of detail (by considering a different number of user clusters when they estimate their utility
function) and controls the tradeoff between the accuracy and computational complexity.
Additionally, it models the behaviour of users in a realistic manner assuming that they do
not always make the optimal decisions in terms of price and quality of service (QoS) but are
also affected by a variety of other psychological and social aspects. Those aspects result in
a user behaviour that is not completely rational.

In real markets, when users select their provider and service, a degree of irrationality
always affects their decision making. However, in some market cases, the decisions could
be made by software agents. Such agents can be programmed to make optimal decisions
in terms of price and QoS, and therefore, they are completely rational. This rational be-
haviour of software agents introduces challenges in the analysis. Discontinuities appear in
the derivatives of the utility functions of providers making the computation of their Nash
equilibrium (NE) a difficult task.

In this chapter, we propose a set of tools and algorithms to analyse wireless markets
when all the involved entities (i.e., providers and users) are completely rational. To compute
the NE of providers in such markets, we apply a novel methodology. This methodology
analyses the game of providers at various subsets of the strategy space at which the utility
functions of providers have a continuous derivative and combines the results from these
subsets to compute the global Nash equilibriums (NEs).
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Figure 7.1: The main modules of wireless markets.

The structure of this chapter is as follows: Section 7.2 presents the modeling frame-
work for analysing wireless markets at a macroscopic level of detail when all the in-
volved entities are completely rational. Section 7.3 analyses the performance of a wireless
oligopoly of a small city, while Section 7.4 compares this wireless oligopoly with markets
in which there is a degree of irrationality in the user decision making. Finally, section 7.5
presents the concluding remarks.

7.2 Modeling framework for a macroscopic analysis with ratio-
nal entities

We model wireless markets with two main types of entities, namely, the providers and users.
Providers offer various types of services to users aiming to maximize their revenue, while
users select the service that best satisfies their requirements with respect to price and QoS.
In this sense, users are completely rational in their decisions. Providers try to balance price
and QoS to keep their customers satisfied and increase their revenue.

We have developed a modeling framework that consists of two layers, the technolog-
ical layer and the economic one (Fig. 7.1). The technological layer models the cellular
networks of providers as queueing networks and the user traffic demand with appropriate
stochastic processes. It also estimates the QoS of providers based on the average and vari-
ance of data rate. The economic layer models the market as a two-stage game. The first
stage instantiates the competition of providers and the second one the user decision making.
A population game models the user decisions: each user could either select to become a
subscriber of a certain provider or remain disconnected based on a utility function that de-
pends on the price and QoS. On the other hand, the competition of providers is modeled
as a normal-form game in which providers strategically select their prices to optimize their
revenue. The utility functions of providers depend on the offered prices and the NE of users
(Fig. 7.2). Our framework models a wireless access market of I providers and N users.
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Figure 7.2: Main components of the modeling framework.

Each provider has deployed a network of wireless BSs and offers long-term subscriptions,
which are best-effort data services. The following subsections describe the components of
the modeling framework in more detail. The modeling framework of this chapter is a pre-
liminary version of the framework presented in Chapter 3. In this framework, users are
completely rational in their decision making and are modeled as a homogeneous population
with only 1 group, while providers can offer only 1 dataplan.

7.2.1 The queueing networks of providers

As in Chapter 3, each provider (e.g., provider i) has deployed a number of BSs (Ki) covering
a geographical region (e.g., a city). We also assume that in all BSs the available bandwidth is
shared equally among connected users (processor-sharing discipline). For LTE cellular BSs,
this bandwidth allocation models a scheduler that divides the OFDMA resources among
users in a fair manner. Users generate requests to connect to a BS to start a session. During
a session, a user transmits and receives data via that BS. The user session generation follows
a Poisson process with a total rate of λ. This rate is allocated across providers according
to the current market share z = (z0, z1, ..., zI). The ratio of subscribers of the provider i
is indicated by zi, while z0 indicates the ratio of disconnected users. The user mobility in
the network of a provider is modeled with a Markov-chain in which a state corresponds to
the coverage area of a BS. The total session generation rate of subscribers of the provider i
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is further divided among its BSs (k = 1, ...,Ki) according to the probabilities ωik. These
probabilities correspond to the stationary distribution of the user mobility in the network
of the provider i. Note that the handovers at a BS k of the provider i are modeled with a
Poisson process of rate vik. This rate is estimated based on the fluid flow mobility model
[51]. Table 7.1 defines the parameters of the queueing network of the provider i. Let us now
focus on a simple case in which all users select the provider i (i.e., zi = 1). The total session
arrival rate at a BS k (γik) consists of the new sessions (aik = ωikλ) and handover sessions
from all neighbouring BSs (Fig. 7.3):

γik = aik +

Ki∑
m=1

γimp
(i)
m,k (7.1)

The traffic intensity at the BS k of the provider i (ρik) is equal to the ratio of the total session
arrival rate at the BS k (γik) over the total session departure rate at that BS (dik).

The queueing network of the provider i is modeled as a Markov chain. Each state

Table 7.1: Parameters of queueing network of provider i

Parameter Description
Ki Number of BSs
λ Total session generation rate of users

zi(z0) Ratio of subscribers (disconnected users)
ωik Steady-state probability for a user to

be located within the coverage of BS k
vik Departure rate from BS k due to handover
µik Session service rate at BS k
dik Total departure rate from BS k (dik = vik + µik)
p
(i)∗
m,k Conditional prob. of handover from BS m

to BS k given that a handover occurs
p
(i)
m,k Unconditional prob. of handover from

BS m to BS k
(
p
(i)
m,k = vimp

(i)∗
m,k/dim

)
γik Total session arrival rate at BS k
aik Arrival rate of new sessions at BS k
ρik Traffic intensity at BS k
ni Vector indicating the number of users at each BS

Qi(ni) Stationary distribution of number of users at BSs
Bik Bandwidth at BS k
Ri(zi) Average data rate
Vi(zi) Variance of data rate
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Figure 7.3: Session arrivals at a BS of the provider i.

corresponds to a vector ni = (ni1, ..., niKi) indicating the number of connected users at
all BSs. State transitions correspond to various types of events including session arrivals,
terminations, and handovers. The stationary distribution of the Markov chain is computed
by solving the global-balance equations. Such equations set the arrival rate at each state of
the Markov chain equal to the departure rate from that state. Due to the Markovian property
of our system and the processor-sharing discipline, the global-balance equations can be
simplified into a set of local-balance equations [52]. Unlike global-balance equations, local-
balance equations focus on the session arrivals and departures at specific BSs. According
to these equations (Eqs. 7.2), the rate leaving a state ni due to the departure of a user at a
specific BS k is equal to the rate entering that state due to the arrival of a user at the BS k
either due to a new session or a handover (Eq. 7.2a). Furthermore, the rate leaving the state
ni due to the arrival of a new session at a BS is equal to the rate entering that state due to
the termination of a session at a BS (Eq. 7.2b).

dikQi(ni) = aikQi(ni − eik) +

Ki∑
m=1

vimp
(i)∗
m,kQi(ni − eik + eim) (7.2a)

Ki∑
k=1

aikQi(ni) =

Ki∑
k=1

µikQi(ni + eik) (7.2b)
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Figure 7.4: Local-balance equations for a network of the provider i consisting of two BSs.

In Eqs. 7.2, eik is a vector with all entries equal to 0 except the k-th entry which is equal
to 1. Fig. 7.4 illustrates the local-balance equations for a network of two BSs. Given that
ρik < 1 for each BS of the provider i, the stationary distribution of the number of connected
users at all BSs can be derived as follows:

Qi(ni) =

Ki∏
k=1

(1− ρik) (ρik)
nik (7.3)

By substituting Eq. 7.3 in the local-balance equations (Eqs. 7.2) and using simple algebra,
we derive the traffic equations (Eq. 7.1). This proves the validity of Eq. 7.3. Given that the
stationary distribution is in product form, each BS can be viewed as an independent M/M/1
queue with the processor-sharing discipline.

In the general case in which not all users select the provider i (i.e., zi < 1), we can
replace γik, aik, and ρik with ziγik, ziaik, and ziρik, respectively and Eqs. 7.1-7.3 still
hold. In this case, the average number of connected users at the BS k of the provider i
is E[Nik] = ziρik

1−ziρik [53]. When a new user arrives at the BS k, it shares the available
bandwidth along with all other currently connected users at that BS. Therefore, the amount
of bandwidth that a new user gets when it connects to the BS k is Bik

E[Nik]+1 = Bik(1−ziρik),
where Bik is the total bandwidth of that BS. The average data rate of a user session at the
network of the provider i is the weighted average of the data rate achieved at each BS (Eq.
7.4):

Ri(zi) =

Ki∑
k=1

ωikBik(1− ziρik) (7.4)

Page 72 of 132 The queueing networks of providers



Modeling framework for a macroscopic analysis with rational entities

The spatial variability of data rate affects the QoS. Thus, the user utility function (Eq. 7.6)
incorporates the average data rate (Eq. 7.4) and variance of data rate which is defined as a
polynomial of second degree with respect to zi (Eq. 7.5).

Vi(zi) =

Ki∑
k=1

ωik (Bik(1− ziρik)−Ri(zi))2 (7.5)

The user service selection employs the average and variance of data rate in the decision mak-
ing process (Fig. 7.2). The sub-games modeling the user service selection and competition
of providers are described in Subsections 7.2.2 and 7.2.3, respectively.

7.2.2 User service selection

The user service selection process is modeled by a population game. Each user chooses
among I + 1 available strategies H = {0, 1, ..., I}. Strategies 1, 2, ..., I correspond to
subscriptions with the providers 1, 2, ..., I , respectively, while strategy 0 denotes the dis-
connection state. We assume that the population of users is homogeneous, and as such, the
utility attained when selecting a specific strategy is the same for all users. Therefore, it suf-

Table 7.2: Parameters of a wireless market

Parameter Description
I Number of providers
N Number of users
c Vector with the prices of all providers
H User strategies

f (Ri(zi)) Impact of average data rate on user utility
wV (wP ) Weight of variance of data rate (price)
ui (zi; c) User utility function
z(t) Market share of users at time t
z∗(c) User NE
P Providers
C Provider strategy profiles

σi(c) Utility function of provider i
σri (c) Utility function of provider i restricted in

the region r of the strategy space of providers
grj (c) ≤ 0 j-th constraint used to define the region r

of the strategy space of providers
Ar Set of price vectors corresponding to the

region r of the strategy space of providers
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Table 7.3: Dependence of user utility on average data rate

Name Formula Parameters
Linear wRRi(zi) wR

Exponential wR
(
τ − e−hRi(zi)

)
wR, τ , h

Logarithmic wR ln (h (Ri(zi)− q)) wR, h, q

Isoelastic wR (h (Ri(zi) + q)κ − τ) wR, h, q, κ, τ

fices to describe the service selection of users with a probability distribution over the set of
strategies (H). This distribution z = (z0, z1, ..., zI) is the user strategy profile also denoted
as market share. All parameters of a wireless market are defined in Table 7.2.

7.2.2.1 User utility function

A user selects a strategy (i.e., a subscription or disconnection) based on the QoS and price:

ui(zi; c) =

{
f (Ri(zi))− wV Vi(zi)− wP ci if i = 1, ..., I

0 if i = 0
(7.6)

The function f is concave, strictly increasing, and non-negative and defines the impact of the
average data rate (Ri(zi)) on the user utility. The analysis considers four different functions
f , namely, a linear, logarithmic, exponential, and isoelastic one (Table 7.3). The impact
of the variance of data rate (Vi(zi)) and price of the subscription of the provider i (ci) is
assumed to be linear and their significance is indicated by the positive weights wV and wP ,
respectively. Furthermore, when the user selects the disconnection state (i.e., i = 0), it
attains utility equal to 0.

7.2.2.2 User population dynamics

Based on the user utility function, the evolution of the market share of users (z(t)) is de-
scribed by the replicator dynamics, a system of ordinary differential equations (Eq. 7.7):

dzi(t)

dt
= zi(t)

ui (zi(t); c)−
∑
j∈H

zj(t)uj (zj(t); c)

 (7.7)

Depending on the initial conditions, the replicator dynamics may converge to different equi-
librium points. However, not all these equilibriums are NEs (e.g., the equilibrium where
all users are disconnected), since at a NE, no user has the incentive to change its strategy.
Every population game admits at least one NE (as can be proven by applying Kakutani’s
fixed point theorem [90]).
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7.2.2.3 Computation of the user NE

At a user NE, we can divide the set of strategies H into two disjoint subsets X and Y ,
such that: (i) X is non-empty, (ii) all strategies in X correspond to the same utility, (iii) all
strategies in Y correspond to a market share of 0. The ability to construct the sets X and Y
is proven in the Appendix 7.A. To compute a NE, we distinguish the following cases with
respect to the sets X and Y . Depending on the case, a different system of equations needs
to be solved.

Case (a). The subscriptions of all providers correspond to the same utility and there
are no disconnected users: X = {1, ..., I} and Y = {0}.

ui (zi; c) = u1 (z1; c) ∀i ∈ {2, ..., I},
I∑
j=1

zj = 1 (7.8)

For the solution of Eqs. 7.8 z1(c) = (z10(c), z11(c), ..., z1I (c)) to be a NE, additional con-
ditions should be satisfied (inequalities 7.9). First, z1(c) should be a valid probability dis-
tribution and c should lie in the strategy space of providers (inequalities 7.9b and 7.9c,
respectively). Furthermore, the utility of the disconnection should be less than or equal to
the utilities of the subscriptions (inequality 7.9a). Otherwise, there is a contradiction to the
definition of a NE.

u1
(
z11(c); c

)
≥ 0 (7.9a)

z1i (c) ≥ 0, ∀i ∈ {1, ..., I} (7.9b)

ci ≥ 0, ∀i ∈ {1, ..., I} (7.9c)

When the conditions 7.9 are true, the solution of Eqs. 7.8 (z1(c)) is a user NE for the
price vector c. No user has the incentive to change its strategy at that equilibrium. In
general, two types of transitions may happen, namely, (i) a subscriber may change provider,
and (ii) a subscriber may become disconnected. However, in this case, none of these can
occur: a transition of type (i) is not profitable, since all subscriptions have equal utility at
the equilibrium (Eqs. 7.8), and a transition of type (ii) reduces the user utility since all
subscriptions have higher utility than the disconnection (Eqs. 7.8 and 7.9a).

Case (b). All strategies, including the disconnection, correspond to the same utility:
X = H and Y = ∅.

ui(zi; c) = 0 ∀i ∈ {1, ..., I},
I∑
j=0

zj = 1 (7.10)

For the solution of Eqs. 7.10 z2(c) = (z20(c), z21(c), ..., z2I (c)) to be a NE, additional condi-
tions should be satisfied (inequalities 7.11). The vector z2(c) should be a valid probability
distribution (inequalities 7.11a and 7.11b) and c should lie in the strategy space of providers
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(inequality 7.11c).

z20(c) ≥ 0 (7.11a)

z2i (c) ≥ 0, ∀i ∈ {1, ..., I} (7.11b)

ci ≥ 0, ∀i ∈ {1, ..., I} (7.11c)

When the conditions 7.11 are true, the solution of Eqs. 7.10 (z2(c)) is a user NE for the price
vector c. At that equilibrium, no user has the incentive to change its strategy. Except from
(a) and (b), other cases can be defined in which the subscriptions of one or more providers
belong in the set Y (i.e., obtain a market share of 0). However, as it will be shown in Section
7.2.3, the computation of the user NE in these cases is not necessary because providers set
their prices aiming to achieve a strictly positive market share and revenue. Thus, we can
ignore the other cases in which the subscription of one or more providers corresponds to a
market share of 01.

7.2.3 Competition of providers

The competition of providers is modeled as a continuous normal-form game
(P,C, {σi}i∈P ). In this game, each provider (say provider i) selects a price for its sub-
scription (ci) belonging in a closed interval [0, Cmaxi ]. The strategy space of providers is
the set of all possible combinations of prices that can be offered in the market and is a
rectangle of the form C = [0, Cmax1 ] × ... × [0, CmaxI ]. Each point of the strategy space
c = (c1, ..., cI) is a vector containing a specific price for each provider and corresponds to a
user NE z∗(c) = (z∗0(c), z∗1(c), ..., z∗I (c)). Based on this equilibrium, the utility function of
a provider i is defined as σi(c) = Nz∗i (c)ci and indicates the total revenue of the provider i
in the market.

In general, continuous games can be analysed efficiently provided that they have a
rectangular strategy space and twice continuously differentiable utility functions [91, 43].
However, in our case, there exists a finite set of surfaces in the strategy space, at which, the
derivatives of the utility functions of providers are discontinuous. Those surfaces divide the
strategy space into a finite number of regions. At the interior of each region, the set of user
strategies that obtain a strictly positive market share at the user NE is fixed. Fig. 7.5 depicts
two examples of the strategy space of providers in a simple case of a duopoly under large
and small user traffic demand (Figs. 7.5a and 7.5b, respectively). These figures have been
constructed by computing the user NE over a set of prices. At the interior of each region, all
strategies that correspond to a strictly positive market share at the user NE are listed. The

1Note that the user NE is unique, if the utility functions ui(zi; c) are strictly decreasing in zi (proven in
the Appendix 7.B). However, when wV > 0, there are cases in which the above condition does not hold, and
therefore, there may exist multiple user NEs (i.e., there may exist multiple solutions for Eqs. 7.8 and 7.10). In
such cases, we select the solution that the non-linear equation solver computes starting from an initial point that
corresponds to an equal market share for all strategies.
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Figure 7.5: Examples of the provider strategy space in a duopoly under large user demand
(a) and small demand (b).

region 1 (region 2) is composed by the price vectors that satisfy the conditions of case (a)
(case (b)) of Section 7.2.2.3, respectively. The region 2 is larger in Fig. 7.5a compared to
Fig. 7.5b, since under large traffic demand, disconnected users appear more frequently. In
the case of low traffic demand (Fig. 7.5b), there are two additional regions (the regions 6
and 7) where all users become subscribers of one provider.

The segmentation of the strategy space appears in markets with multiple providers,
each offering a unique dataplan for a price and with users that make rational decisions. In
such markets, a NE can be narrowed down in the regions 1 and 2. This can be easily proven
by contradiction. If a NE existed outside those regions, then at least one provider would
obtain a market share of 0. However, this provider would have the incentive to reduce its
price and obtain a strictly positive market share and revenue. This contradicts the definition
of a NE. For example, if a NE existed in the region 3 of Fig. 7.5a (e.g., at the point X),
then the provider 2 would obtain a market share of 0. However, this provider would have
the incentive to reduce its price to obtain a strictly positive market share and revenue.

At the boundaries of regions, the derivatives of the provider utility functions are dis-
continuous. Let us explain that with an example. Assume that the currently offered prices
correspond to the point A of Fig. 7.5a. At this point, the user NE contains subscribers of
both providers and disconnected users. If the provider 2 starts reducing its price, it will at-
tract disconnected users to its network leaving the provider 1 unaffected. If we assume that
some subscribers of the provider 1 switch to the provider 2, then the QoS of the provider
1 will be slightly increased, making the utility of its subscription larger than 0. This will
result in a “flow” of disconnected users to the provider 1 until its utility becomes again equal
to 0. Therefore, the market share of the provider 1 remains unaffected by the reduction of
the price of the provider 2. When the offered prices reach the boundary of the region 1,
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no disconnected users will remain. If the provider 2 keeps reducing its price, it will attract
users from the provider 1. In other words, the utility function of the provider 1 remains
fixed as long as the prices remain in the region 2, while it decreases when the prices enter
the region 1. Furthermore, when disconnected users join the provider 2 in the region 2, the
utility of disconnection does not change, while when subscribers of the provider 1 switch to
the provider 2 in the region 1, the utility of the subscription of the provider 1 is improved.
This means that for the same deviation of the price of the provider 2 around the point of the
boundary, a smaller number of subscribers of the provider 1 should switch to the provider 2
in the region 1 compared to the number of disconnected users that should join the provider
2 in the region 2 until the user equilibrium is reached. This results in a discontinuity of
∂z∗2(c)/∂c2. Therefore, the derivatives of the provider utility functions are discontinuous on
the boundary. Similar arguments can be made for the boundaries of other regions.

7.2.3.1 Computation of the NEs of the game of providers

To compute the NEs of providers, we propose a novel algorithm (illustrated in Fig. 7.6):
First, the strategy space is split into the different regions. Two separate games are defined
for the regions 1 and 2. The problem of computing the NEs of a game with its strategy space
restricted in a single region is a generalized Nash equilibrium problem (GNEP) [44, 45].
The final step checks whether the NEs corresponding to the regions 1 and 2 are also global
NEs of the game of providers. Let us now describe the algorithm in more detail.

Computation of NEs in the region 1. The region 1 is the set of price vectors that
satisfy the constraints 7.9 (case (a) of Section 7.2.2.3). At a NE, the price of a provider is a

1. Split strategy space

2a. Compute the NEs of providers
in region 1 (GNEP)

2b. Compute the NEs of providers in region 2 (GNEP)

3. Compute global NEs

1

2

3 4

5

At boundary, solve inequalities 7.15 
to compute set of NEs

The NE from region 2 is global if inequalities 7.19 are true

Global NEs at boundary: intersection
of the sets of NEs of the games
restricted in regions 1 and 2

*

*

*

Within region 1, solve Eqs. 7.13
to compute NE

Within region 2, solve Eqs. 7.16 to compute NE

At boundary, solve inequalities 7.17
to compute set of NEs (indicated by 
the green color)

*

The NE from region 1 is global if conditions of NE hold for 
the points on the dotted lines in region 2 (inequalities 7.18)

Figure 7.6: The main idea for computing the NEs of providers.
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best response to the prices of its competitors. To compute its best response, a provider solves
an optimization problem to select from the set of available prices the one that maximizes its
revenue. As it will be shown bellow, all NEs lie either in the interior of the region 1 or at
the set of points at which the constraint 7.9a is active2 (Fig. 7.5b). The local maxima of the
utility functions of providers at these sets of points satisfy the linear independence constraint
qualification (LICQ)3, and thus, at a NE, the Karush-Kuhn-Tucker (KKT) conditions of the
optimization problems of individual providers should be satisfied [92]. The system 7.12
combines the KKT conditions of these problems. The derivation of this system is described
in the Appendix 7.C.

∂σ1i (c)

∂ci
=

2I+1∑
j=1

λij
∂g1j (c)

∂ci
, i = 1, . . . , I (7.12a)

g1j (c) ≤ 0, j = 1, . . . , 2I + 1 (7.12b)

λij ≥ 0, i = 1, . . . , I and j = 1, . . . , 2I + 1 (7.12c)

λijg
1
j (c) = 0, i = 1, . . . , I and j = 1, . . . , 2I + 1 (7.12d)

To compute a NE, we distinguish various cases with respect to the location of that
equilibrium. A point at which at least one of the constraints 7.9c is active can not be a NE:
At such a point, there is always a provider with price equal to 0 that has the incentive to
increase its price and attain a strictly positive utility (e.g., point D in Fig. 7.5b). Similarly,
a point at which a constraint 7.9b is active can not be a NE. At such a point, there is always
a provider with 0 market share that has the incentive to reduce its price and attain a strictly
positive utility (e.g., point E in Fig. 7.5b). Therefore, all NEs lie either in the interior of
the region 1 or at the set of points at which only the constraint 7.9a is active. In the interior
of the region 1, all inequalities 7.12b are strict and therefore, based on the complementary
slackness KKT conditions (Eq. 7.12d), all Lagrange multipliers are equal to 0. This reduces
the system 7.12 into the following system:

∂σ1i (c)

∂ci
= 0, for all i = 1, . . . , I (7.13)

Standard numerical analysis methods are used to solve this system4. If the solution satisfies
the constraints 7.12b (i.e., the inequalities 7.9) and corresponds to a global maximum of the
utility functions of providers, it is a NE. Let us now focus on the set of points at which only

2A constraint g(c) ≤ 0 is active when the equality holds.
3Consider a local maximum x∗ of an optimization problem with continuously differentiable objective and

constraint functions. If the gradients of the active inequality constraints and the gradients of the equality con-
straints are linearly independent at x∗, the KKT conditions should be satisfied at x∗.

4The derivatives of the provider utility functions are computed numerically according to the method de-
scribed in the Appendix 7.D.
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the constraint 7.9a is active. Based on the complementary slackness KKT conditions (Eq.
7.12d) and the fact that all other constraints except 7.9a are not active, we derive that all
Lagrange multipliers are equal to 0 except those corresponding to the constraint 7.9a. This
reduces the system 7.12 into the following system:

∂σ1i (c)

∂ci
− λi1

∂g11(c)

∂ci
= 0, i = 1, . . . , I (7.14a)

λi1 ≥ 0, i = 1, . . . , I (7.14b)

The derivative ∂g11(c)
∂ci

is always positive, for all different user utility functions considered in
this work. Therefore, the system of Eqs. 7.14 is reduced to the following inequalities:

∂σ1i (c)

∂ci
≥ 0, i = 1, . . . , I (7.15)

This system of inequalities restricted at the points in which the constraint 7.9a is active
corresponds to a feasibility problem that can be solved efficiently. Such a problem may have
uncountable solutions and therefore, the set of NEs on the surface separating the regions 1
and 2 may be infinite.

Computation of NEs in the region 2. To compute the NEs of the game of providers
in the region 2, we follow a similar procedure. The region 2 is the set of price vectors that
satisfy the constraints 7.11. As in the case of the region 1, a point at which at least one of
the constraints 7.11c or 7.11b is active can not be a NE (e.g., points D and E in Fig. 7.5a).
Therefore, the NEs could either lie in the interior of the region 2 or at the set points at which
the constraint 7.11a is active. To search for a NE in the interior of the region 2, the following
system of equations should be solved:

∂σ2i (c)

∂ci
= 0, for all i = 1, . . . , I (7.16)

The term σ2i (c) corresponds to the utility function of the provider i restricted in the region 2.
If the solution of Eq. 7.16 satisfies the constraints 7.11, it is a NE of the game of providers
restricted in the region 2. Furthermore, a point c at which the constraint 7.11a is active is a
NE, if the following conditions hold:

∂σ2i (c)

∂ci
≤ 0, i = 1, . . . , I (7.17)

Again, solving the inequalities 7.17 restricted at the points at which the constraint 7.11a is
active corresponds to a feasibility problem with potentially uncountable solutions.

Computation of global NEs. Let us denote the sets of price vectors corresponding to
the regions 1 and 2 as A1 and A2, respectively. The games restricted in these regions can be
then defined as Γ1 =

(
P,A1, {σ1i }i∈P

)
and Γ2 =

(
P,A2, {σ2i }i∈P

)
, respectively. A more
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general game Γ = (P,A1 ∪A2, {σi}i∈P ) that is restricted on the union of the regions 1 and
2 can be now formed. The following set of theorems (proven in the Appendix 7.F) relate the
NEs of the game Γ with the NEs of the games Γ1 and Γ2.
Theorem 1: A point c∗ ∈ A1 ∩ A2 is a NE of the game Γ, if and only if, it is a NE of the
games Γ1 and Γ2.

Theorem 2: A point c∗ ∈ A1\A2 is a NE of the game Γ, if and only if, it is a NE of the
game Γ1 and the following conditions are true:

σ1i (c
∗
i , c
∗
−i) ≥ σ2i (ci, c∗−i), ∀ci : (ci, c

∗
−i) ∈ A2, ∀i ∈ P (7.18)

Theorem 3: A point c∗ ∈ A2\A1 is a NE of the game Γ, if and only if, it is a NE of the
game Γ2 and the following conditions are true:

σ2i (c
∗
i , c
∗
−i) ≥ σ1i (ci, c∗−i), ∀ci : (ci, c

∗
−i) ∈ A1, ∀i ∈ P (7.19)

In the inequalities 7.18 and 7.19, the point c∗ is also denoted as (c∗i , c
∗
−i), where c∗i is the

price of the provider i and c∗−i is a vector containing the prices of all other providers except i,
at c∗. Theorem 2 implies that if there exists a NE in the interior of the region 1 (i.e., solution
of Eqs. 7.13) and if the conditions of NE hold for points lying in the region 2 (inequalities
7.18), then it is also a global NE. For example, in Fig. 7.6, a NE in the interior of the region
1 is global if the inequalities 7.18 hold. The dotted lines in the region 2 correspond to the
points (ci, c

∗
−i) ∈ A2 considered in the inequalities 7.18. Similarly, Theorem 3 implies that

if there exists a NE in the interior of the region 2 (i.e., provided by Eqs. 7.16), then it is also
a global NE, if the conditions of inequalities 7.19 are satisfied. Furthermore, according to
the Theorem 1, the set of NEs at the surface separating the regions 1 and 2 is the intersection
of the sets of NEs of the games restricted in the regions 1 and 2, respectively (Fig. 7.6).

An algorithm for the computation of a NE. The KKT system 7.12 is a set of nec-
essary conditions for a point to be a NE of the game of providers restricted in the region 1.
These conditions are also sufficient only if the utility functions of providers are concave in
their prices [62]. Given that the utility functions of providers are concave, the methodology
described in Section 7.2.3.1 is guaranteed to compute a global NE if one exists. However,
there are scenarios in which the utility functions of providers are not concave in the region
1. In such a case, while the KKT conditions 7.12 are still necessary for a set of prices c to be
a NE, they are not sufficient. Therefore, when computing a solution of these conditions, we
should verify if it is a NE or not. Specifically, we should verify whether or not this solution
corresponds to a global maximum of the utility functions of providers with respect to their
prices.

Our algorithm for the computation of a NE proceeds as follows: First, it attempts to
compute a NE at the interior of the region 2 by solving Eqs. 7.16 and checking the conditions
7.19. If a global NE is computed, it is returned, otherwise, the algorithm attempts to compute
a NE at the interior of the region 1 by solving Eqs. 7.13. If a solution is computed, the
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algorithm verifies whether or not it corresponds to a global maximum of the utility functions
of providers. If it corresponds to a global maximum of the utility functions of providers, it
is a global NE and is returned. If it corresponds to a local maximum of the utility functions
of providers, the algorithm reports it as a “local NE”. Finally, if the solution corresponds to
a local minimum for at least one of the providers or if no solution was computed for Eqs.
7.13, the algorithm searches for a NE at the surface separating the regions 1 and 2 by solving
the inequalities 7.15 and 7.17. Note that if the utility functions of providers are not concave
at the interior of the region 1, there may be scenarios in which there is no pure-strategy NE
of the game of providers. In such cases, our algorithm will not report a NE.

7.2.3.2 Cooperation of providers: computation of the Pareto optimal solution

Until now, we had assumed that providers are fully competitive. Let us now define a market
case in which providers cooperate aiming to optimize a common objective function. An
example of such a function could be the sum of the utility functions of individual providers
(i.e., S(c) =

∑I
i=1 σi(c)). The price vector c that maximizes the function S(c) is a Pareto

optimal solution. The closer a competitive NE to a Pareto optimal solution, the more efficient
[71]. A Pareto optimal solution can be computed by solving an optimization problem in
which the function to be minimized is −S(c). The constraints of the optimization problem
define the strategy space of providers. As mentioned earlier, the utility functions of providers
are not continuously differentiable at the entire strategy space (C). However, we could again
divide the strategy space C into a number of regions (as shown in Fig. 7.5a) in which the
utility functions of providers have a continuous derivative.

To compute the Pareto optimal solution, we only need to search the regions 1 and 2.
At all points outside these regions, the market share of one or more providers is equal to 0.
We can reduce the prices of these providers by such an amount that we reach the boundary
of the region 1 or region 2. The value of the objective function at the point of the boundary
is the same as the value at the initial point because only providers with a market share of 0
changed their prices. For example, if the currently offered prices correspond to the point X
of Fig. 7.5a, the price of the provider 2 can be reduced until it reaches the point Y on the
boundary of the region 2. The value of the objective function (S(c)) at pointsX and Y is the
same because only the price of the provider 2 which has a market share of 0 at bothX and Y
has changed. Therefore, we can restrict our attention in the regions 1 and 2. When searching
for the Pareto optimal solution at the regions 1 and 2, we solve two optimization problems in
which the function to be minimized is −S(c), under the corresponding constraints defined
by the inequalities 7.9 and 7.11, respectively. The Pareto optimal solution is the one that
corresponds to the highest value for the function S(c).
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7.3 Analysis of a wireless oligopoly

We implemented the modeling framework in Matlab and instantiated a wireless access mar-
ket of a small city, represented by a rectangle of 14.4 km x 12.5 km. In this market there
are 4 providers and a population of 300, 000 users. Each provider has deployed a cellular
network covering the entire city. The BSs at each network are placed on the sites of a trian-
gular grid, with a distance between two neighbouring sites of 1.6 km. The maximum data
rate with which a BS can serve sessions is 25, 22, 19, and 16 Mbps for the providers 1, 2,
3, and 4, respectively. The average size of a session is 10 Mbytes. Furthermore, the session
service rate of a BS is µ1 = 18.75, µ2 = 16.50, µ3 = 14.25, and µ4 = 12.00 sessions/min
for the providers 1, 2, 3, and 4, respectively.

7.3.1 Impact of traffic demand

We analysed the performance of our modeling framework and estimated the impact of the
user traffic demand on the market equilibriums. Specifically, we varied the session gener-
ation rate of each user from 0 up to 1.5 sessions/hour. Furthermore, we assumed that the
dependence of the user utility function (Eq. 7.6) on the average data rate is exponential
(f(x) = wR

(
τ − e−hx

)
), where wR, τ and h are equal to 30, 1, and 0.6, respectively, while

the weight of data rate variability (wV ) was set equal to 0. Fig. 7.7 shows the prices and
revenue of providers, and market share of users. Figs. 7.7a, 7.7b, and 7.7c correspond to the
NE, while Figs. 7.7d, 7.7e, and 7.7f correspond to the Pareto optimal solution.

The type of the NE varies with the user traffic demand. When the traffic demand is
close to 0, the competition is not sustainable and the providers 3 and 4 obtain a market share
of 0. As the traffic demand increases, the provider 3 and subsequently the provider 4 enter
the market (Fig. 7.7b). Furthermore, low traffic demand results in low prices (Fig. 7.7a).
This is due to the high intensity of competition. The price is the most significant parameter
that drives the user decisions leading to a price war. As the traffic demand increases, the
competition weakens. The effect of market share on the achievable data rate becomes more
prominent and the intensity of competition is reduced leading to higher prices. In this case,
the NE of providers lies in the interior of the region 1 (Fig. 7.5a), as explained in Section
7.2.3.

The prices of providers increase with the user traffic demand until a certain threshold.
At this threshold, the NE moves from the interior of the region 1 to the surface separating
the regions 1 and 2. In this equilibrium, the prices of providers have been slightly decreased.
We observe this decrease of prices for a relatively small range of traffic demand around 0.95
sessions/hour (Fig. 7.7a). Then, the NE moves in the interior of the region 2: the prices
become fixed and independent of the traffic demand and disconnected users appear (Figs.
7.7a and 7.7b, respectively).

As mentioned in Section 7.2.3.2, in the Pareto optimal solution, providers cooperate
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Figure 7.7: Competitive market equilibrium (top) and Pareto optimal solution (bottom) as a
function of the user traffic demand with wV = 0.

aiming to optimize a common objective function. When the user traffic demand is low,
the Pareto optimal solution follows the reverse trend compared to the NE. Specifically, the
prices of providers start at a high level and are reduced as the traffic demand increases (Fig.
7.7d). At the NE, due to the effect of competition, the prices start at a low level and increase
as the traffic demand increases (Fig. 7.7a). As explained earlier, in the NE, the low traffic
demand intensifies the competition, which has as a result reduced prices. On the other hand,
in the Pareto optimal solution, providers are cooperative and offer prices at the level of
the user willingness-to-pay. The larger the user traffic demand, the lower the achievable
data rate in the networks of providers, and therefore, the lower the user willingness-to-pay,
resulting in lower prices. The gap between the NE and the Pareto optimal solution decreases
as the traffic demand increases until the two solutions become identical. This happens, when
the generated traffic becomes too large to be served by the networks of providers. In this
case, the competition between the providers is nullified and the prices become fixed and
independent of the traffic demand. The above analysis demonstrates that a QoS-based user
utility function can act as a catalyst in the competition and allow for higher prices. The
absence of the QoS may trigger a price war. This also indicates that monitoring the QoS in
real markets could be proven beneficial to providers.
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Figure 7.8: Competitive market equilibrium (top) and Pareto optimal solution (bottom) as a
function of the user traffic demand with wV = 0.5.

7.3.2 Impact of data rate variability

. This analysis was repeated by increasing the weight of data rate variability (wV = 0.5).
Fig. 7.8 shows the market equilibriums. Similar trends with Fig. 7.7 are observed: under
low traffic demand, the NE lies in the interior of the region 1 and the prices are increasing
with traffic demand (Fig. 7.8a). Above a certain threshold, the NE moves at the surface
separating the regions 1 and 2 in which it remains for a small interval. Finally, the NE
moves in the interior of the region 2 in which the prices remain fixed and disconnected users
appear (Fig. 7.8b).

Despite the similarities, there are also important differences. Under low traffic de-
mand, a large weight of data rate variability in the user utility function prevents the move-
ment of large crowds towards a specific provider weakening the competition and increasing
the prices. On the contrary, in case of large traffic demand, the variance of data rate re-
duces the user utility resulting in lower prices and revenue (e.g., Fig. 7.8a compared to
Fig. 7.7a). Furthermore, under low traffic demand, a large weight of data rate variability
results in similar market share of providers (Fig. 7.8b) compared to the case of low weight,
in which the providers with the largest amount of bandwidth have a clear advantage (Fig.
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7.7b). An increase in the market share of the large providers results in an increase of their
data rate variance. This interrupts the flow of users to these providers. Another interesting
trend is that the ordering of prices in Fig. 7.8a is reversed compared to Fig. 7.7a. This is
due to the larger data rate variability in the networks of large providers compared to small
ones resulting in slightly larger prices for small providers. Despite this, the ordering in the
market share and revenue (Figs. 7.8b and 7.8c) remains the same as in Figs. 7.7b and 7.7c,
respectively.

7.3.3 Impact of average data rate

The impact of the average data rate on the user willingness-to-pay is expressed through
the function f (Eq. 7.6). The analysis has considered linear, exponential, logarithmic,
and isoelastic functions (Table 7.3). However, in the case of linear functions, the assumed
linear dependence of the user willingness-to-pay on the average data rate causes a pathology.
Specifically, providers set their prices in such a way that there are at most two connected
users at each of their BSs, on average. This is a not realistic outcome especially when there
is a large amount of bandwidth available at BSs. The user willingness-to-pay is not linearly
dependent on the average data rate. For example, if two users have data connections of 1
Mbps and 10 Mbps, respectively, an increase of the data rate by 1 Mbps will have a different
impact on each of these users. This trend can be expressed by functions with a diminishing
derivative with respect to the data rate. Examples of such functions that are commonly used
in the economic literature are the exponential, logarithmic, and isoelastic ones [93].

7.3.4 Impact of network heterogeneity

The user mobility among the BSs of a provider is modeled by a Markov chain. The transition
probabilities from a BS to its neighbouring BSs are determined according to a Zipf distribu-
tion (f(k; s,N) = 1/ks∑N

n=1 1/n
s
, where N is the number of neighbouring BSs, k is the order

of a specific neighbouring BS with respect to its distance from the center of the topology,
and s is the exponent characterizing the distribution). In general, the closer a neighbouring
BS is to the center of the network topology, the larger is the transition probability to this BS.
Furthermore, the larger the exponent of the Zipf distribution, the larger the concentration of
user traffic demand towards the center of the topology. We have defined several scenarios in
which, we varied the exponent of the Zipf distribution from 0 to 0.14 keeping all other pa-
rameters fixed. In general, as the exponent increases, the user traffic demand becomes more
concentrated towards the center of the topology. This results in a decreased average value
and increased spatial variance of data rate. Therefore, in the corresponding market equilib-
riums, the prices and revenue of providers decrease, while the percentage of disconnected
users increases.
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Non-rational users (noise level = 0.25)
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Non-rational users (noise level = 1.5)
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Figure 7.9: Performance of markets with different degrees of user rationality.

7.4 Comparison with markets in which users are not completely
rational

We performed an additional experiment to compare the performance of a market with com-
pletely rational users with markets in which users are characterized by a certain degree of
irrationality. Those markets were analysed at the macroscopic level according to the frame-
work presented in Chapter 3. Figs. 7.9a - 7.9c present the offered prices, market share, and
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revenue of providers, respectively, in a market with completely rational users. The analysis
of this market was performed according to the methodology presented in this chapter. On
the other hand, Figs. 7.9d - 7.9f present the same performance metrics for a market in which
users are not completely rational. The decision making of those users was modeled by the
Logit dynamics (Eq. 3.10) and was affected by a noise level of 0.25. Finally, Figs. 7.9g -
7.9i correspond to a market in which users are affected by a noise level of 1.5 when they
make their decisions. Except from the user irrationality, all other parameters of the market
are kept the same as in Section 7.3.

In general, as the value of noise decreases, the performance metrics become closer
to the ones of Figs. 7.9a - 7.9c. In other words, when the noise decreases towards 0, the
results of the analysis performed using the multi-layer framework of Chapter 3 converge to
the results obtained when applying the modeling framework of this chapter, which assumes
that users are completely rational.

If we now study the Figs. 7.9a - 7.9i in more detail, we can observe some additional
interesting trends. When users are completely rational, the prices of providers are increasing
with the user traffic until a certain threshold. Then, the prices are slightly decreased, and fi-
nally, they become fixed and independent of the traffic demand (Fig. 7.9a) and disconnected
users appear (Fig. 7.9b).

When the value of noise increases, this rapid change in the offered prices of providers
is smoothed out. When the noise is equal to 0.25 the transition from increasing prices to
fixed prices (Fig. 7.9d) is more smooth compared to the case of completely rational users
(Fig. 7.9a). When the noise becomes equal to 1.5, this transitions has been completely
smoothed out and the offered prices of providers resemble a sigmoid-like function of the
user traffic demand (Fig. 7.9g). In this case, when the capacity of the networks of providers
is reached and disconnected users appear, the prices continue to increase with the user traffic
demand instead of becoming fixed but with a much smaller rate (Fig. 7.9g).

7.5 Concluding remarks

This chapter contributes with a novel methodology for the analytical estimation of the NEs
of users and provider in markets in which users make their decisions in a completely ratio-
nal manner. This methodology can be applied at the macroscopic level in which users are
modeled as a homogeneous population. Based on this methodology, we have analysed a
wireless oligopoly of a small city. We have distinguished scenarios in which providers are
fully competitive with ones in which providers cooperate to optimize a common objective.

The analysis has demonstrated that the QoS is an important parameter of the user util-
ity function which can reduce the intensity of competition and allow for higher prices and
revenue. It has also illustrated that the model of the user utility function is important. For
example, when it considers the effect of the spatial variance of data rate except from its av-
erage value, different trends are observed in the offered prices, market share, and revenue of
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providers. The analysis has also shown that at the macroscopic level, there is a convergence
of the performance metrics produced by the framework of Chapter 3 with the ones produced
by the framework presented in this chapter when the value of noise tends to 0.
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7.A Estimation of the user NE

For each user NE z∗ = (z∗0 , z
∗
1 , ..., z

∗
I ), we can prove the following lemmas:

Lemma 1: All strategies with a strictly positive market share at a user NE z∗ should
correspond to the same utility.
Proof: If the Lemma 1 does not hold, there will exist at least two strategies i, j with a
strictly positive market share such that ui(z∗i ; c) > uj(z

∗
j ; c). Users that have selected the

strategy j would have the incentive to select the strategy i as it offers a higher utility. This
contradicts the definition of a NE.

Lemma 2: All strategies with a market share of 0 at a user NE z∗ should correspond to a
utility that is lower than or equal to the utility of the strategies with a strictly positive market
share.
Proof: If the Lemma 2 does not hold, there will be at least two strategies i, j such that the
strategy i has a market share of 0 (i.e., z∗i = 0) and the strategy j has a strictly positive
market share (i.e., z∗j > 0) and ui(z∗i ; c) > uj(z

∗
j ; c). Users that have selected the strategy j

would have the incentive to select the strategy i as it offers a higher utility. This contradicts
the definition of a NE.

Lemma 3: At a user NE z∗, we can divide the set of strategies H into two disjoint subsets
X and Y , such that: (i) X is non-empty, (ii) all strategies in X correspond to the same
utility, (iii) all strategies in Y correspond to a market share of 0. The pair X and Y is not
necessarily unique.
Proof: For a user NE z∗, we will construct two sets X and Y that satisfy the conditions of
the Lemma 3. The set of all strategies with a strictly positive market share at z∗ is non-empty
(given that

∑
j∈H z

∗
j = 1) and is denoted asX1. Based on the Lemma 1, all strategies inX1

correspond to the same utility (U ). All other strategies in H − X1 correspond to a market
share of 0. Therefore, according to the Lemma 2, all strategies in H − X1 correspond to
a utility that is lower than or equal to U . We divide the set H − X1 into two subsets, one
containing the strategies with utility equal to U and one containing the strategies with utility
strictly lower than U (denoted asX2 andX3, respectively). For each subset S ⊆ X2, we can
define the sets X = X1 ∪ S and Y = (X2 − S) ∪X3. The set X is non-empty (given that
X1 is non-empty) and all strategies in X correspond to a utility equal to U . All strategies in
Y correspond to a market share of 0. Therefore, the sets X and Y satisfy the conditions of
the Lemma 3. If X2 = ∅, then based on the above construction process, the sets X and Y
are unique. Otherwise, they are not unique.
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7.B Uniqueness of user NE

As mentioned in Section 7.2.2, every population game admits at least one NE (as can be
proven by applying Kakutani’s fixed point theorem). Now, we will prove the uniqueness of
the user NE for each price vector c of providers in the case that the functions ui(zi; c) are
strictly decreasing in zi.

Theorem 1: If the utility functions ui(zi; c) are strictly decreasing in zi, for each price
vector c of providers, there exists a unique user NE.
Proof: First, we will prove that at a user NE z∗, all strategies with a strictly positive market
share should correspond to the same utility. If this is not true, then there will be two strategies
k and j with strictly positive market share, such that uk(z∗k; c) < uj(z

∗
j ; c). This contradicts

the definition of NE at z∗ because users that have selected the strategy k would have the
incentive to select the strategy j as it corresponds to a higher utility. Let us now assume that
for a specific price vector c, there exist multiple user NEs. We select an arbitrary pair of
such equilibriums z+ =

(
z+0 , z

+
1 , ..., z

+
I

)
and z− =

(
z−0 , z

−
1 , .., z

−
I

)
. When a user selects a

strategy that has a strictly positive market share at the equilibrium z+, it will obtain a utility
denoted as U+. Similarly, when a user selects a strategy with a strictly positive market share
at the equilibrium z−, it will obtain a utility denoted as U−. If we assume that z+ 6= z−,
then there will be two different strategies k, j ∈ H , such that z+k > z−k and z+j < z−j . First,
given that z+ 6= z−, there will be at least a strategy k ∈ H , such that z+k 6= z−k . Without
loss of generality, we assume that z+k > z−k , then:

z+k > z−k ⇒ 1− z+k < 1− z−k ⇒
∑
i 6=k

z+i <
∑
i 6=k

z−i (7.20)

We still need to prove that there exists a strategy j 6= k, such that z+j < z−j . We will
prove that by contradiction. Specifically, we assume that z+i ≥ z−i for all i 6= k. Then,∑

i 6=k z
+
i ≥

∑
i 6=k z

−
i . This contradicts the inequality 7.20. In summary, we have proven

that if z+ 6= z−, then there will be two different strategies k, j ∈ H , such that z+k > z−k and
z+j < z−j . We will now distinguish two cases:

Case (a): None of the strategies k, j is the disconnection. As mentioned earlier, each
strategy, except the disconnection, has a strictly decreasing utility function. Therefore, the
functions uk(zk; c) and uj(zj ; c) are strictly decreasing in zk and zj , respectively, and it
follows that:

z+k > z−k ≥ 0⇒ U+ = uk(z
+
k ; c) < uk(z

−
k ; c) ≤ U− (7.21a)

z−j > z+j ≥ 0⇒ U− = uj(z
−
j ; c) < uj(z

+
j ; c) ≤ U+ (7.21b)
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The final inequality in 7.21a is true because if z−k > 0, then uk(z−k ; c) = U− (as shown
earlier, all strategies with a strictly positive market share should correspond to the same
utility, i.e., U−), while if z−k = 0, then uk(z−k ; c) ≤ U− (otherwise there is a contradiction
in the definition of NE at z−). A similar argument can be made for the final inequality of
7.21b. The inequalities 7.21a and 7.21b contradict each other.

Case (b): One of the strategies k, j is the disconnection. Without loss of generality, we
assume that k = 0 and j 6= 0. Given that the utility function uj(zj ; c) is strictly decreasing
in zj , it follows that:

z+0 > z−0 ≥ 0⇒ U+ = u0(z
+
0 ; c) = u0(z

−
0 ; c) ≤ U− (7.22a)

z−j > z+j ≥ 0⇒ U− = uj(z
−
j ; c) < uj(z

+
j ; c) ≤ U+ (7.22b)

The inequalities 7.22a and 7.22b contradict each other. Therefore, z+ and z− should co-
incide. We have proven that for each arbitrary pair of user NEs z+ and z− at c, those
equilibriums should coincide. Therefore, each vector of offered prices c corresponds to a
unique user NE.

7.C The GNEP problem

Consider the game of providers with its set of strategies restricted in the region 1. This
region corresponds to an orthogonally convex set5 A1 ⊂ C that can be defined by a number
of inequalities. The orthogonal convexity of the regions 1 and 2 is proven in the Appendix
7.E.

A1 =
{
c ∈ C : g1j (c) ≤ 0, ∀j ∈ {1, ..., 2I + 1}

}
(7.23)

Each provider i ∈ P is characterized by its utility function σ1i : A1 → R which is
restricted on the set A1. A strategy profile c ∈ A1 is a vector containing the prices offered
by all providers and can be annotated as (ci, c−i), where ci is the price of the provider i
and c−i is a vector containing the prices of all other providers except i. To proceed with
the analysis, we make the following assumption: σ1i (·, c−i) and g1j (·, c−i) are continuously
differentiable ∀c−i, i = 1, ..., I, j = 1, ..., 2I + 1.

A game satisfying the above condition is annotated as Γ1 = (P,A1, {σ1i }i∈P ). One
necessary and sufficient condition for a point c∗ ∈ A1 to be a Nash equilibrium of the game
Γ1 is that for each provider i, its chosen strategy (c∗i ) is a best response to the strategies of
all other providers.

5A set S in the Euclidean space is called orthogonally convex, if any segment parallel to any of the coordinate
axes connecting two points of S lies totally within S.
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σ1i (c
∗
i , c
∗
−i) ≥ σ1i (ci, c∗−i), ∀ci ∈ X1

i (c∗−i) (7.24)

The set X1
i (c∗−i) contains all possible prices that can be offered by the provider i when the

prices of all other providers are c∗−i (X1
i (c∗−i) = {ci : (ci, c

∗
−i) ∈ A1}). In general, the price

of a provider i ∈ P at the Nash equilibrium c∗ can be determined by solving the following
optimization problem.

minimize
ci∈X1

i (c
∗
−i)

− σ1i (ci, c∗−i)

subject to g1j (ci, c
∗
−i) ≤ 0, j = 1, . . . , 2I + 1.

(7.25)

The Lagrange function of the problem is defined in Eq. 7.26.

L1
i (ci, c

∗
−i, λi) = −σ1i (ci, c∗−i) +

2I+1∑
j=1

λijg
1
j (ci, c

∗
−i) (7.26)

The vector λi = (λi1, λi2..., λi2I+1) contains the Lagrange multipliers that correspond to
all inequality constraints. The KKT conditions for the problem (7.25) are defined in detail
in the system 7.27.

∂L1
i (ci, c

∗
−i, λi)

∂ci
= 0

g1j (ci, c
∗
−i) ≤ 0, j = 1, . . . , 2I + 1

λij ≥ 0, j = 1, . . . , 2I + 1

λijg
1
j (ci, c

∗
−i) = 0, j = 1, . . . , 2I + 1

(7.27)

We can now combine the KKT conditions of the optimization problems of individual
providers to the general system 7.28.

∂L1
i (c, λi)

∂ci
= 0, i = 1, . . . , I (7.28a)

g1j (c) ≤ 0, j = 1, . . . , 2I + 1 (7.28b)

λij ≥ 0, i = 1, . . . , I and j = 1, . . . , 2I + 1 (7.28c)

λijg
1
j (c) = 0, i = 1, . . . , I and j = 1, . . . , 2I + 1 (7.28d)

The NEs of the game of providers restricted in the region 1 can either lie in the interior of
the region 1 or at the surface separating the regions 1 and 2. All local maxima of the utility
function of each individual provider (solutions of the problem 7.25) at these sets of points
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satisfy the LICQ constraint qualification. Therefore, the conditions of the system 7.28 are
satisfied at each pure-strategy NE of the game of providers restricted in the region 1 [92]. A
similar argument can be made for the game of providers restricted in the region 2.

7.D Estimation of the derivatives of the utility functions of
providers

In the region 1, the user NE z∗(c) corresponds to the solution of Eqs. 7.8, i.e. to z1(c).
Therefore, the derivatives of the provider utility functions in the region 1 are derived as
follows:

∂σ1i (c)

∂ci
= N

∂z1i (c)

∂ci
ci +Nz1i (c) (7.29)

Given that the user NE z1(c) is estimated numerically, no closed-form solution can be de-
termined for the function ∂z1i (c)

∂ci
and therefore, for the function ∂σ1

i (c)
∂ci

. However, the user
NE at the region 1 satisfies the Eqs. 7.8:

ui(z
1
i (c); c) = u1(z

1
1(c); c) ∀i ∈ {2, ..., I} ⇒

gi(z
1
i )− wP ci = g1(z

1
1)− wP c1 (7.30)

In Eq. 7.30, gi(z1i ) = f
(
Ri(z

1
i )
)
− wV Vi(z1i ). Now, we will differentiate Eq. 7.30 with

respect to ck:

∂gi(z
1
i )

∂z1i

∂z1i (c)

∂ck
− wP

∂ci
∂ck

=
∂g1(z

1
1)

∂z11

∂z11(c)

∂ck
− wP

∂c1
∂ck

Based on Eqs. 7.8, z11 = 1−
∑I

j=2 z
1
j . We substitute this expression in the above equation.

∂gi(z
1
i )

∂z1i

∂z1i (c)

∂ck
− wP

∂ci
∂ck

= −∂g1(z
1
1)

∂z11

I∑
j=2

∂z1j (c)

∂ck
− wP

∂c1
∂ck
∀i ∈ {2, ..., I} (7.31)

Note that in Eq. 7.31, all terms are known except from the terms
∂z1j (c)

∂ck
for j ∈ {2, ..., I}.

Therefore, it is a linear system of I − 1 equations with I − 1 unknowns. Similar systems
can be defined for all k ∈ {1, ..., I}. By solving these systems of equations, we estimate
the values of ∂z1i (c)

∂ci
needed for the estimation of the derivatives of the utility functions of
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providers (Eq. 7.29). The derivatives of the provider utility functions in the region 2 are
estimated similarly.

7.E Orthogonal convexity of regions 1 and 2

As mentioned in the Appendix 7.C, for the formulation of the GNEP problems that
correspond to the regions 1 and 2, it is required that these regions are orthogonally convex.
The orthogonal convexity of these regions is proven by the following theorems.

Theorem 1: The region 2 is orthogonally convex.
Proof: Consider two price vectors ca = (c1, ..., c

a
i , ..., cI) and cb = (c1, ..., c

b
i , ..., cI) in the

region 2 (i.e., ca, cb ∈ A2) with cbi > cai (Fig. 7.10). The vector ca differs from cb only in
the price of the provider i. Take an arbitrary point c = (c1, ..., ci, ..., cI) on the line segment
connecting ca and cb. We will prove that this point belongs in the region 2.

* *𝑐𝑏𝑐𝑎 𝑐

Axis of prices of the provider 𝑖

Region 2

Figure 7.10: The vectors ca, cb, and c.

Given that ca, cb ∈ A2, there exist two market share vectors that are NEs of the game
of users at ca and cb, respectively. At these NEs, the utilities of all strategies are equal to 0
(case b of Section 7.2.2.3). We denote these vectors as z+ = (z+0 , z

+
1 , ..., z

+
i , ..., z

+
I ) and

z− = (z−0 , z
−
1 , ..., z

−
i , ..., z

−
I ). The vector z+ is the one in which the market share of the

provider i is the largest (i.e., z+i > z−i ) 6 and corresponds to one of the price vectors ca

or cb which we denote as c+, while the other is denoted as c−. The price vectors c+ and
c− (i.e., ca and cb) belong in the region 2 and therefore, the utilities of all strategies at the
equilibriums z+ and z− are equal to zero (see case b in Section 7.2.2.3). Based on the
definition of the user utility function (Eq. 7.6), the following equations are derived:

f
(
Ri(z

+
i )
)
− wV Vi(z+i ) = wP c

+
i (7.32a)

f
(
Ri(z

−
i )
)
− wV Vi(z−i ) = wP c

−
i (7.32b)

6Note that z+i and z−i cannot be equal because in such a case, the utility that corresponds to the strategy i
could not be equal to zero at both z+ and z−.
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We define a new function gi(zi) = f (Ri(zi)) − wV Vi(zi). This function is continuous.
Specifically, f (Ri(zi)) is continuous as a composite of the continuous functions f(x) and
Ri(zi). Furthermore, gi(zi) is continuous as the sum of the continuous functions f (Ri(zi))
and −wV Vi(zi). According to the intermediate value theorem, there exists a zi ∈ [z−i , z

+
i ]

such that gi(zi) = wP ci. We can now construct a market share vector z∗ which is a NE of
the game of users at c as follows:

z∗ = (z∗0 , z
∗
1 , ..., z

∗
i , ..., z

∗
I ) =

1−
∑
j 6=0,i

z+j − zi, z
+
1 , ..., zi, ..., z

+
I

 (7.33)

It is evident that
∑I

j=0 z
∗
j = 1. Furthermore, z∗j ≥ 0 for j 6= 0, i as part of the user NE

at c+, z∗i = zi ≥ z−i ≥ 0, and z∗0 = 1 −
∑

j 6=0,i z
+
j − zi ≥ 1 −

∑
j 6=0 z

+
j = z+0 ≥ 0. In

summary, z∗ is a valid probability distribution and when the market share of users becomes
equal to z∗ at c, the utilities of all strategies become equal to 0 (i.e., it satisfies the conditions
of Eqs. 7.10 and 7.11). Therefore, c belongs in the region 2. A similar argument can be
made for all other points on the line segment connecting ca and cb. Therefore, the entire
line segment is included in the region 2. This proves that the region 2 is orthogonally convex.

Theorem 2: If the utility functions ui(zi; c) are strictly decreasing in zi, the region 1 is
orthogonally convex.
Proof: Consider two price vectors c+ = (c1, ..., c

+
i , ..., cI) and c− = (c1, ..., c

−
i , ..., cI)

belonging in the region 1 (c+, c− ∈ A1). The vector c+ differs from c− only in the price
of the provider i and we assume that c+i > c−i (Fig. 7.11). Take an arbitrary point c =
(c1, ..., ci, ..., cI) on the line segment connecting c+ and c−. We will prove that this point
also belongs in the region 1.

* *𝑐+𝑐− 𝑐

Axis of prices of the provider 𝑖

Region 1

Figure 7.11: The vectors c+, c−, and c.

Given that c+, c− ∈ A1, there exist two market share vectors z+ =
(z+0 , z

+
1 , ..., z

+
i , ..., z

+
I ) and z− = (z−0 , z

−
1 , ..., z

−
i , ..., z

−
I ) that are NEs of the game of users

at c+ and c−, respectively. Additionally, the market share of the disconnection at these equi-
libriums is equal to zero (i.e., z+0 = 0, z−0 = 0) (see case a in Section 7.2.2.3). At the point

Page 96 of 132



Orthogonal convexity of regions 1 and 2

c, there exists a unique user NE z∗ (proven in the Appendix 7.B). We will distinguish cases
for this NE. First, we will assume that this equilibrium contains positive market share for
the disconnection (i.e., z∗0 > 0). Given that z∗0 > 0, there exists a strategy j ∈ {1, ..., I}
such that z+j > z∗j . This can be easily proven by contradiction. If j = i, then:

z+i > z∗i , c
+
i > ci ⇒

ui(z
∗
i ; ci) > ui(z

+
i ; ci) > ui(z

+
i ; c+i ) (7.34)

Given that the disconnection has a strictly positive market share at z∗, then according to
the Lemmas 1 and 2 of the Appendix 7.A, it follows that ui(z∗i ; ci) ≤ 0 and based on the
inequalities 7.34 ui(z+i ; c+i ) < 0. This contradicts the definition of NE at c+ because users
that have selected the strategy i would have the incentive to select the disconnection as it
offers higher utility compared to the strategy i 7. If j 6= i, then:

z+j > z∗j ⇒ uj(z
∗
j ; cj) > uj(z

+
j ; cj) (7.35)

Given that the disconnection has a strictly positive market share at z∗, it follows that
uj(z

∗
j ; cj) ≤ 0. Therefore, based on the inequality 7.35 uj(z+j ; cj) < 0. This also con-

tradicts the definition of NE at c+. In summary, at c, it is not possible for a NE to have a
positive market share for the disconnection (i.e., z∗0 = 0).

We will now prove that at z∗, the subscriptions of all providers correspond to the same
utility. According to the Lemmas of the Appendix 7.A, all strategies with a strictly positive
market share at z∗ correspond to the same utility (U ). We divide the set of strategiesH−{0}
into two subsets X and Y , such that, X contains all strategies with utility equal to U and Y
contains all strategies with utility strictly lower than U , at z∗. Note that, at z∗, there are no
strategies with utility larger than U . Additionally, all strategies in Y correspond to a market
share of 0. Otherwise, there would be a contradiction in the definition of NE. Let us now
assume that not all subscriptions of providers correspond to the same utility, at z∗. Then,
the set Y will be non-empty. If i ∈ Y , then:

z+i ≥ z
∗
i = 0, c+i > ci ⇒

U > ui(z
∗
i ; ci) ≥ ui(z+i ; ci) > ui(z

+
i ; c+i ) (7.36)

Given that c+ belongs in the region 1, at z+, the subscriptions of all providers correspond
to the same utility (see case a in Section 7.2.2.3). Therefore, ui(z+i ; c+i ) = uk(z

+
k ; ck) for

all k ∈ X . Furthermore, at z∗, all strategies in X correspond to utility equal to U (i.e.
uk(z

∗
k; ck) = U for all k ∈ X). By substituting the above expressions in Eq. 7.36, it follows

7Note that in Eq. 7.6, the utility that corresponds to a provider i ∈ {1, ..., I} depends only on the market
share (zi) and price (ci) of that provider. To simplify the analysis in this proof, we will denote the utility that
corresponds to a provider i as ui(zi; ci) instead of ui(zi; c).
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that:

U = uk(z
∗
k; ck) > uk(z

+
k ; ck) ∀k ∈ X ⇒

z∗k < z+k ∀k ∈ X ⇒
∑
k∈X

z∗k <
∑
k∈X

z+k (7.37)

However, at z∗, all strategies with a strictly positive market share belong in X and therefore∑
k∈X z

∗
k = 1. Based on Eq. 7.37, it follows that

∑
k∈X z

+
k > 1 which is a contradiction.

If i ∈ X , then we distinguish two additional cases:

Case (a): There exists a strategy k ∈ Y such that, z−k > 0. In this case, we can easily
prove by contradiction that there exists another strategy j ∈ X such that, z∗j > z−j .

If j = i: z∗i > z−i , ci > c−i ⇒ ui(z
∗
i ; ci) < ui(z

−
i ; c−i ) (7.38a)

If j 6= i: z∗j > z−j ⇒ uj(z
∗
j ; cj) < uj(z

−
j ; cj) (7.38b)

Given that c− belongs in the region 1, at z−, the subscriptions of all providers correspond
to the same utility (see case a in Section 7.2.2.3). Therefore, uj(z−j ; cj) = ui(z

−
i ; c−i ) =

uk(z
−
k ; ck). Based on Eqs. 7.38, it follows that uj(z∗j ; cj) < uk(z

−
k ; ck). However, the

strategy k belongs in Y and its market share is equal to 0 at z∗ (i.e., z∗k = 0). Therefore,
z−k > 0 = z∗k ⇒ uk(z

−
k ; ck) < uk(z

∗
k; ck). By combining the above expressions, it follows

that uj(z∗j ; cj) < uk(z
∗
k; ck). This contradicts the definition of NE at z∗ because users that

have selected the strategy j would have the incentive to select the strategy k as it offers
higher utility.

Case (b): z−k = 0 for all strategies k ∈ Y . In this case, all strategies k ∈ Y correspond
to a market share of 0 at both z∗ and z−. Therefore, uk(z∗k; ck) = uk(z

−
k ; ck) for all k ∈ Y .

Furthermore, given that c− belongs in the region 1, at z−, the subscriptions of all providers
correspond to the same utility, i.e., uk(z−k ; ck) = ui(z

−
i ; c−i ) = uj(z

−
j ; cj) for all j ∈

X − {i}. By combining the above equations, it follows that uk(z∗k; ck) = ui(z
−
i ; c−i ) =

uj(z
−
j ; cj) for all j ∈ X − {i}. Furthermore, at z∗, the utilities of all strategies in Y are

strictly lower than the utility of strategies in X , i.e., uk(z∗k; ck) < uj(z
∗
j ; cj) for all j ∈ X .

Based on the above expressions, it follows that uj(z∗j ; cj) > uj(z
−
j ; cj) for all j ∈ X −{i}.

Additionally, given that c−i < ci, it follows that ui(z∗i ; ci) > ui(z
−
i ; c−i ) > ui(z

−
i ; ci).

Therefore, uj(z∗j ; cj) > uj(z
−
j ; cj), for all j ∈ X . However, the functions uj(zj ; cj) are

strictly decreasing with respect to zj and therefore:

z∗j < z−j ∀j ∈ X ⇒
∑
j∈X

z∗j <
∑
j∈X

z−j (7.39)

Given that the setX contains all strategies with strictly positive market share at z∗, it follows
that

∑
j∈X z

∗
j = 1. If we substitute this expression in Eq. 7.39,

∑
j∈X z

−
j > 1. This is a

contradiction. In summary, at z∗, the utilities of all subscriptions are the same and the
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market share of the disconnection is equal to 0. Therefore, c belongs in the region 1. A
similar argument can be made for all other points on the line segment connecting c+ and c−.
Therefore, the entire line segment is included in the region 1. This proves that the region 1
is orthogonally convex.

7.F Estimation of global NEs

Let us denote the sets of price vectors that correspond to the regions 1 and 2 as A1 and
A2, respectively. The games of providers restricted in these regions can be then defined as
Γ1 =

(
P,A1, {σ1i }i∈P

)
and Γ2 =

(
P,A2, {σ2i }i∈P

)
, respectively. A more general game

Γ = (P,A1 ∪A2, {σi}i∈P ) that is restricted on the union of the regions 1 and 2 can now be
formed. The following set of theorems relate the NEs of the game Γ with the NEs of the
games Γ1 and Γ2.

Theorem 1: A point c∗ ∈ A1 ∩ A2 is a NE of the game Γ, if and only if, it is a NE of the
games Γ1 and Γ2.
Proof: Assume that a point c∗ ∈ A1 ∩A2 is a NE of the game Γ. This implies the following
inequalities.

σi(c
∗
i , c
∗
−i) ≥ σi(ci, c∗−i), ∀ci ∈ Xi(c

∗
−i) (7.40)

The set Xi(c
∗
−i) contains all possible prices that can be offered by the provider i ∈ P when

the prices of all other providers are c∗−i (Xi(c
∗
−i) = {ci : (ci, c

∗
−i) ∈ A1∪A2}). If we define

X1
i (c∗−i) = {ci : (ci, c

∗
−i) ∈ A1} and X2

i (c∗−i) = {ci : (ci, c
∗
−i) ∈ A2} as the sets of prices

that can be offered by the provider i at the games Γ1 and Γ2, respectively, when the prices
of all other providers are c∗−i, we deduce the following inequalities.

σ1i (c
∗
i , c
∗
−i) ≥ σ1i (ci, c∗−i), ∀ci ∈ X1

i (c∗−i)

σ2i (c
∗
i , c
∗
−i) ≥ σ2i (ci, c∗−i), ∀ci ∈ X2

i (c∗−i)
(7.41)

Therefore, c∗ is a NE of the games Γ1 and Γ2. Let us now consider the reverse statement
and assume that a point c∗ ∈ A1 ∩ A2 is a NE of the games Γ1 and Γ2. This implies the
following inequalities.

σ1i (c
∗
i , c
∗
−i) ≥ σ1i (ci, c∗−i), ∀ci ∈ X1

i (c∗−i)

σ2i (c
∗
i , c
∗
−i) ≥ σ2i (ci, c∗−i), ∀ci ∈ X2

i (c∗−i)
⇒ (7.42)

σi(c
∗
i , c
∗
−i) ≥ σi(ci, c∗−i), ∀ci ∈ X1

i (c∗−i) ∪X2
i (c∗−i)⇒ (7.43)

σi(c
∗
i , c
∗
−i) ≥ σi(ci, c∗−i), ∀ci ∈ Xi(c

∗
−i) (7.44)

Therefore, the point c∗ is a NE of the game Γ.
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Theorem 2: A point c∗ ∈ A1\A2 is a NE of the game Γ, if and only if, it is a NE of the
game Γ1 and the following conditions are true.

σ1i (c
∗
i , c
∗
−i) ≥ σ2i (ci, c∗−i), ∀ci ∈ X2

i (c∗−i), ∀i ∈ P. (7.45)

Proof: Assume that a point c∗ ∈ A1\A2 is a NE of the game Γ. This implies the following
inequalities.

σi(c
∗
i , c
∗
−i) ≥ σi(ci, c∗−i), ∀ci ∈ Xi(c

∗
−i)⇒ (7.46)

σ1i (c
∗
i , c
∗
−i) ≥ σ1i (ci, c∗−i), ∀ci ∈ X1

i (c∗−i)

σ1i (c
∗
i , c
∗
−i) ≥ σ2i (ci, c∗−i), ∀ci ∈ X2

i (c∗−i)
(7.47)

Therefore, the point c∗ is a NE of the game Γ1 and σ1i (c
∗
i , c
∗
−i) ≥ σ2i (ci, c

∗
−i), ∀ci ∈

X2
i (c∗−i). Let us now consider the reverse statement and assume that a point c∗ ∈ A1\A2 is

a NE of the game Γ1 and σ1i (c
∗
i , c
∗
−i) ≥ σ2i (ci, c

∗
−i), ∀ci ∈ X2

i (c∗−i). Then, we can deduce
the following inequalities.

σ1i (c
∗
i , c
∗
−i) ≥ σ1i (ci, c∗−i), ∀ci ∈ X1

i (c∗−i)

σ1i (c
∗
i , c
∗
−i) ≥ σ2i (ci, c∗−i), ∀ci ∈ X2

i (c∗−i)
⇒ (7.48)

σi(c
∗
i , c
∗
−i) ≥ σi(ci, c∗−i), ∀ci ∈ X1

i (c∗−i) ∪X2
i (c∗−i)⇒ (7.49)

σi(c
∗
i , c
∗
−i) ≥ σi(ci, c∗−i), ∀ci ∈ Xi(c

∗
−i) (7.50)

Therefore, the point c∗ is a NE of the game Γ.

Theorem 3: A point c∗ ∈ A2\A1 is a NE of the game Γ, if and only if, it is a NE of the
game Γ2 and the following conditions are true.

σ2i (c
∗
i , c
∗
−i) ≥ σ1i (ci, c∗−i), ∀ci ∈ X1

i (c∗−i), ∀i ∈ P. (7.51)

Proof: Similar as Theorem 2.
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Chapter 8

A preliminary analysis of wireless
markets using an event-based
simulator

8.1 Event-based simulator: an alternative approach for
analysing wireless markets

So far, this thesis has developed mathematical tools and algorithms to analyse wireless mar-
kets at multiple levels of detail and compute their corresponding equilibriums. An alterna-
tive methodology for the analysis of such markets could be also applied using an event-based
simulator. Such a simulator replays in detail all the events that happen in a specific market,
such as, session arrivals and terminations, user service and provider selection, user move-
ment, and price adaptations of providers. Then, it estimates the evolution of the market and
computes various performance metrics.

We have developed such an event-based simulator that can analyse the performance of
a wireless access market of a small city. To reduce the computational complexity, we have
provided a methodology that models various phenomena in such a market at a mesoscopic
or macroscopic level of detail. This chapter defines in detail the components of the event-
based simulator. It also analyses the performance of the wireless access market of a small
city at multiple levels of detail from the microscopic to the macroscopic one and evaluates
the tradeoff between the accuracy and computational complexity. As a driving force, it also
analyses the impact of the flex service, a novel paradigm that allows users to select their
provider dynamically each time they perform a new session.

The event-based simulator presented in this chapter corresponds to a preliminary
framework for analysing wireless markets that was developed during the early stages of
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this Ph.D. The mathematical frameworks presented in Chapters 7 and 3 were developed
later.

The structure of this chapter is as follows: Section 8.2 presents the components of the
event-based simulator, while Section 8.4 presents the performance of the wireless access
market of a small city when simulated at multiple levels of detail from the microscopic to
the macroscopic. Finally Section 8.5 presents the concluding remarks.

8.2 Components of the event-based simulator

Wireless access markets are complex systems that involve various economic and techno-
logical parameters. In such markets, there are mainly two types of entities, the providers
and users. A provider has deployed a cellular infrastructure and offers subscription and flex
services to users. Two important decision making processes take place: (A) Periodically,
providers set the prices of their services aiming to maximize their revenue. (B) Each user
periodically selects the most appropriate provider and service. While a user has an active
subscription or flex service, it initiates sessions. During a session, a user transmits and re-
ceives data via a BS. The price for a service as well as the service selection of a user last for
the time period of an epoch. Note that in our framework, the epoch has a fixed duration and
lasts for several days (or months). A session lasts for several minutes (Fig. 8.3).

For an educated selection of the service and provider, users should consider their traffic
demand, willingness-to-pay, and requirements, as well as the cost of the service. However,
a typical user is not willing to process such complex information. A software agent running
on the user mobile device could in a (semi-)automatic manner select the best service on
behalf of the user. In this work, we assume the presence of such a software agent, called
client throughout this work. We also assume the existence of a server attached to a data
repository that collects measurements about the sessions, traffic demand, and user profiles
through a crowdsourcing monitoring system called u-map. The client uploads measurements
about its sessions on the u-map server. Statistics on u-map data are available to clients and
providers. We have developed and evaluated the u-map prototype [48]. This work uses u-
map to represent the collected knowledge about the users and performance of services. The
main components of the market are presented in Fig. 8.1 and are described in more detail in
the following subsections.

Infrastructure: Each provider has deployed a cellular topology that offers wireless
access via its BSs to clients in a small city. Providers divide their channels into time slots
according to TDMA. The interference power at a BS during a time slot is computed consid-
ering the contribution of all interfering devices at co-channel BSs.

Clients: To start a session, a client generates a request to connect to a BS. The duration
of a session and the off duration (i.e., the time interval between the end of a session and the
start of the immediately next one of the same client) are given by theoretical distributions.
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Client 

•Profile 

•Service selection 

•BS selection 

•Sessions 

•Blocking prob. estimation 

•Mobility 
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Figure 8.1: Main entities and modules.

To initiate a session, the client needs to first select a BS. The BS selection is based on either
the data-rate or price. Specifically, a price-conscious client selects the BS that minimizes
its cost spending, while a QoS-conscious client selects the BS that maximizes its achievable
data rate. Furthermore, each client is characterized by a data-rate threshold (Ru) which is
the minimum required data rate. When a client can not satisfy its data-rate requirement with
any BS in its neighborhood, its session becomes blocked.

Service types: Two service types are considered, the subscription and flex service.
Periodically, a client is required to select a service type or remain disconnected. During a
disconnection period, the client does not have any active service, and thus, cannot initiate
sessions. A subscriber or flex user needs to first select a BS in order to start a session. A
flex user may select a BS of any provider, while a subscriber of a certain provider may
select only BSs of that provider. We assume that a flex user has a “basic” subscription with
the network infrastructure of each provider in order to receive notifications, incoming calls
or other data sessions. However, in order to initiate and complete a session, a flex user is
required to select a provider dynamically.

Charging: The subscription and flex services are charged according to different
schemes: The pricing for subscriptions is a flat rate scheme that charges the user with a
specific fixed cost (per epoch). On the other hand, the flex users are charged for each ses-
sion in a cost-per-minute manner. The service (i.e., flex service, or subscription) or the
disconnection lasts for an epoch. The selection of the service type is performed once during
each epoch. The BS selection takes place before the start of each session. Fig. 8.2 illustrates
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Figure 8.2: An example of a wireless access duopoly.

the decision-making mechanism of a typical subscriber and a typical flex user in a wireless
access duopoly.

u-map: u-map is modeled as a data structure which stores information about users and
providers. Periodically, each client reports the status (successful or blocked) and duration of
its sessions along with its service type, client id, provider id, and constraints. Clients obtain
information about the average blocking probability per service, which is computed as the
percentage of the blocked sessions that were made during the last w epochs, as reported by
clients of that service in u-map.

8.3 Game-theoretical modeling

The evolution and performance of wireless access markets involve networking and business
aspects that manifest various spatio-temporal dependencies and localities. For example, user
profiles, network topology, and channel conditions may vary across regions. Also, local
decisions of users and providers may be required. This motivated us to develop a game-
theoretical modeling framework and simulation platform that encompass multiple levels of
detail, from a microscopic level to a macroscopic one.

The framework considers a wireless access market that consists of two providers P =
{1, 2} and a population of n users U = {1, ..., n}. This market is modeled using two distinct
games, one for the competition of providers and one for the user decision making. The game
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of providers takes place at epochs (i.e., time periods of fixed duration). At the beginning of
each epoch, providers adapt the prices for their services aiming to maximize their revenue.
Each user selects a type of service depending on its price and performance (according to a
utility function).

Our modeling framework is configurable and parameterized based on the channel,
infrastructure and network topology, type of users (e.g., service, demand, mobility, con-
straints, preferences), providers (e.g., price adaptation, services), and available information.
The simulation environment that implements this framework is also modular, in that, it can
instantiate and implement different models for the aforementioned parameters. The games
of users and providers are described in detail in the following subsections.

8.3.1 Game of users

The service selection of users is modeled as a population game. Each member of the pop-
ulation can choose among four available strategies H = {1, 2, 3, 4}. Strategies 1 and 2
correspond to subscriptions with Providers 1 and 2, respectively, strategy 3 indicates the
flex service, and strategy 4 denotes the disconnection state. All users have the same options
with respect to service selection, and as such, the set of all possible combinations of user
choices (i.e., set of user strategy profiles) is defined as S = Hn. The selection of a strat-
egy (i.e., service) is based on a utility function that expresses the tradeoff between quality
of service and price. In this work, the utility function is a linear combination of blocking
probability and price.

πui(s) =


−Bi(sui )− bucsi if i = 1, 2

−Bi(sui )− bucfu(sui ) if i = 3

−ku if i = 4

, (8.1)

Utility function: Eq. 8.1 defines the utility of a user u ∈ U , when the strategy profile
of all users is s ∈ S and the user u switches to strategy i ∈ H from its current service.
The strategy profile resulting from this transition is defined as sui . Bi(sui ) is the blocking
probability that is associated with the service i, and csi is the subscription rate of Provider
i. The client estimates the price that the user u pays per epoch when it selects the flex
service cfu(sui ) = (au1c

f
1 + au2c

f
2)du (1−B3(s

u
i )), where du is the average total duration

of all sessions of user u per epoch. The probabilities au1 and au2 indicate the frequencies
with which user u has selected Providers 1 and 2, respectively, during the last w epochs
(as reported by u-map). The duration du is divided between providers according to the
probabilities au1 and au2 . The total cost is estimated based on the time spent at the network
of each provider and their flex rates (cf1 and cf2 , respectively). Only non-blocked sessions
contribute to the total payment (indicated by the term (1−B3(s

u
i ))). All the parameters of

Eq. 8.1 are estimated with the data collected in u-map.
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The user profile is expressed by the utility function, which is parameterized based on
the price sensitivity (bu), disconnection threshold (−ku), and average total session duration
per epoch (du) of a user (u), respectively. The price sensitivity is a positive value that indi-
cates the importance of price compared to blocking probability in the user utility function.
The higher the price sensitivity, the larger the significance of price on the user decision mak-
ing. The disconnection threshold is the minimum utility acceptable by a user. If this utility
can not be achieved with any of the offered services, the client remains disconnected for
an epoch. Finally, the average total session duration per epoch is the average demand in
minutes that a user generates per epoch. The profile of a user u ∈ U with respect to service
selection is annotated as (bu,−ku, du). In summary, the game of users can now be defined
by the triplet g = (U, S, {πui}u∈U,i∈H).

The analytical study of the user population game is challenging. For the estimation of
the Nash equilibriums (NEs), a closed form of the blocking probabilities is required. How-
ever the analytical estimation of the blocking probabilities in the presence of the flex service
is difficult even when all users are identical with respect to their profile (see Section 8.3.3).
For that reason, we proceed to study the game of users via simulations. Specifically, for a
given set of offered prices, we simulate the user movement, session generation, and service
selection. During service selection, a client first estimates the total cost for each service as
well as the corresponding blocking probabilities. For that, we assume that the client can
approximately estimate the average total duration of its sessions per epoch based on the his-
tory of performed sessions via u-map. Then, it checks whether the utilities of the various
services are higher than its disconnection threshold (−ku). The blocking probability of sub-
scribers of a certain provider is estimated as the percentage of blocked sessions performed
by all subscribers of that provider during the last w epochs at u-map. The blocking proba-
bility for the flex service is estimated as the percentage of blocked sessions performed by all
flex users during the last w epochs at u-map. The client selects the service with the highest
utility value above the disconnection threshold. If there is no such service, the user becomes
disconnected for an epoch.

After the service-type selection, a user who is not disconnected initiates sessions. For
each session, a client first selects a BS based on either data rate or price. As mentioned
earlier, price-conscious clients select the BS that minimizes their cost spending, while data
rate conscious clients select the BS that maximizes their achievable data rate. The decision
making of users is shown in Fig. 8.3.

8.3.2 Game of providers

The competition of providers is modeled as a normal-form game (P,C, {σp}p∈P ), where
P is the set of providers and C is the set of strategy profiles. A strategy profile c ∈ C
contains the offered subscription and flex rates of both providers c = (cs1, c

f
1 , c

s
2, c

f
2), where

csp and cfp are the subscription and flex rates of provider p, respectively. Each provider can
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Figure 8.3: Decisions of providers and users during the evolution of a market.

choose its subscription and flex rates from two finite and discrete sets of prices Cs and Cf ,
respectively and as such the game is finite. The utility function of each provider p ∈ P is
defined as σp(c) = U sp (c) + Ufp (c), where U sp (c) is the total revenue from subscribers and
Ufp (c) is the total revenue from flex users.

Empirical game: The lack of a closed form solution for the equilibrium of the user
population game prevents us from estimating closed form solutions for the functions U sp (c)

and Ufp (c). For that reason, we define the game of providers as an empirical game [94].
An empirical game is exactly the same as a normal-form game with the difference that
there is no analytical expression for the utility functions of players. Instead, it provides a
game simulator Θ that for any strategy profile c ∈ C, it reports the corresponding revenues
({σp(c)}p∈P ). A formal definition of the empirical game is G = (P,C,Θ). Various algo-
rithms have been proposed in the literature to solve empirical games (estimate pure strategy
NEs). Examples of such algorithms are (tabu) best response [95], and minimum regret first
search [96]. In this work, we use the best response due to its simplicity, although other al-
gorithms can be incorporated easily. Specifically, at the beginning of each epoch providers
adapt their rates in two phases: their subscription rate at the first phase and their flex rate at
the second phase. At the first phase, all providers (in parallel) simulate the market for all
possible subscription rates they can offer keeping the subscription rate of the other provider
and flex rates unchanged. Each provider selects the subscription rate that maximizes its
immediate revenue. In the second phase, a similar process is followed: all providers (in par-
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allel) simulate the market, computing their profit for each flex rate they can offer, keeping
fixed the flex rate of the other provider and subscription rates. Then, each provider selects
the flex rate that maximizes its immediate revenue.

In contrast to classical normal-form games, empirical games are analysed via simula-
tions. Therefore, the computational complexity of the simulator Θ is an important parameter.
In our case, at the microscopic level, the game simulator generates a large number of events
which increases the execution time for the best response algorithm in the order of several
days! This motivated us to explore the multi-layer aspect: model the game of users (service
selection) at a mesoscopic or macroscopic level to reduce the computational complexity.

8.3.3 Multi-layer modeling

As mentioned earlier, the microscopic modeling framework describes each user as a dis-
tinct entity. However, the diversity and large size of the user population makes the analysis
challenging due to the estimation of many different utility functions. To reduce the compu-
tational complexity of the game simulator, various aggregations are performed. Specifically,
we divide the user population into a set of clusters UJ = {1, ..., J}, each corresponding to
a “homogeneous” population, i.e., its members are characterized by the same representative
profile. The representative profile of a cluster j ∈ UJ , denoted as (bj ,−kj , dj), corresponds

Table 8.1: Parameters of the game of users at the micro (meso) level

Parameter Description
U(UJ) Set of users (clusters) at micro (meso) level
n Number of users at micro level
J Number of clusters at meso level
H Set of user strategies

S(SJ) Set of user strategy profiles at micro level
(meso level with J clusters)

s User strategy profile at micro level
z User strategy profile at meso level

πui(πji) Utility function of user u (cluster j)
when selecting strategy i

Bi Blocking probability of service i
bu(bj) Price sensitivity of user u (cluster j)
−ku(−kj) Disconnection threshold of user u (cluster j)
du(dj) Average total session duration per epoch

of user u (cluster j)
aui (aji ) Probability for flex user u (a flex user

in cluster j) to select Provider i
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Figure 8.4: Game of users at multiple levels of detail.

to the centroid of that cluster, as reported by a clustering algorithm on the profiles of all
users of the microscopic modeling. As mentioned, the profile of each user u is modelled as
a vector (bu,−ku, du) containing the price sensitivity, disconnection threshold, and average
total session duration per epoch of that user. This work employs the K-means algorithm
[97]. The aim of this algorithm is to partition the user profiles into (J) clusters such that
each user profile belongs to the cluster with the nearest centroid. The number of user clus-
ters (J) determines the mesoscopic level. Fig. 8.4 illustrates the transformation of the user
population from the microscopic level to the mesoscopic level via clustering. Tables 8.1 and
8.2 summarize the main parameters of the modeling framework at these levels.

Table 8.2: Parameters of the game of providers

Parameter Description
P Set of providers
csi Subscription rate of Provider i
cfi Flex rate of Provider i
C Set of provider strategy profiles
σp Utility function of Provider p
U sp Utility of Provider p from subscribers
Ufp Utility of Provider p from flex users
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Due to the homogeneity of a cluster of users, all its members are “assigned” the same
utility, when selecting the same strategy. Unlike the microscopic level that simulates the
decisions of each user with respect to service, the mesoscopic levels estimate the percentage
of users of each cluster that choose each service. That is, for each cluster, the strategies of
its members can be represented by a probability distribution over the set of strategies (H).
The set of all probability distributions over H is defined as ∆(H), and the set of strategy
profiles of all clusters is SJ = ∆(H)J . The utility of the users of cluster j when they select
the strategy i ∈ H is defined as follows:

πji(z) =


−Bi(z)− bjcsi if i = 1, 2

−Bi(z)− bjcfj (z) if i = 3

−kj if i = 4

, (8.2)

In Eq. 8.2, z ∈ SJ is the user strategy profile. It is composed by J probability
distributions (z = (z1, ..., zJ)), one for each cluster. The probability distribution zj =
(zj1, ..., zj4) shows the distribution of users of cluster j across the available strategies i ∈ H .
Indices 1 and 2 correspond to subscriptions with Providers 1 and 2, respectively, index 3
indicates the flex service, and index 4 denotes the disconnection state. Bi(z) is the blocking
probability associated with the service i and cfj (z) is the price that a flex user in cluster

j pays per epoch cfj (z) = (aj1c
f
1 + aj2c

f
2)dj (1−B3(z)). The total session duration of

any flex user of cluster j per epoch (dj) corresponds to the total session duration spent at
the network of each provider. The probabilities aj1 and aj2 indicate the frequencies with
which the user chooses Providers 1 and 2, respectively. Thus, the total cost of the flex
service is estimated according to the time spent at the network of each provider and the
corresponding flex rates (cf1 and cf2 , respectively). Again blocked sessions are ignored for
the estimation of the cost. Formally, at the mesoscopic level, the game of users is defined as
gJ = (UJ , SJ , {πji}j∈UJ ,i∈H).

The macroscopic level corresponds to a mesoscopic level with only one user cluster.
That is, the user population is assumed homogeneous and the user choices are described
by one probability vector over the set of strategies. Formally, at the macroscopic level,
the definition of the user population game becomes g1 = (U1, S1, {πi}i∈H). The set U1

contains one user cluster with the representative profile (b,−k, d) which is computed as the
centroid of the profiles of users at the microscopic level, and S1 = ∆(H).

Blocking probability model: To estimate the blocking probabilities at the meso-
scopic and macroscopic levels, we employ a simple Markovian queueing-theoretical model.
Specifically, we focus on a small region containing one BS per provider. The session and off
durations of each user follow exponential distributions. The parameters of the distributions
are selected so that the average session generation and service rates over all users coincide
with the ones at the microscopic level. The BS of Provider 1 (2) is modeled as a finite queue
with m1 (m2) servers, respectively. A server of a BS corresponds to a time slot (in a TDMA
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scheme). A session is blocked when there are no available slots to serve the user request.

The total session generation rate of all users is λ and is composed by the session
generation rates of all user clusters. The session generation rate for a cluster j ∈ UJ is
denoted as λcj . Eq. 8.3 estimates the session generation rates for subscribers of Providers 1

and 2, λs1 and λs2, respectively, and flex users λf by summing the contributions of each user
cluster.

λs1 =
J∑
j=1

zj1λ
c
j , λ

s
2 =

J∑
j=1

zj2λ
c
j , λ

f =
J∑
j=1

zj3λ
c
j (8.3)

A new session of a subscriber can only be served by the BS of its own provider, while
a new session of a flex user can be served by either provider. In general, a flex user selects
a BS according to a probability distribution (δ, 1− δ). With respect to the BS selection, we
consider two types of user preference, the price preference, and rate preference one. In price
preference, a flex user selects the BS of the cheapest provider (i.e., δ = 1 if Provider 1 is
the cheapest, otherwise δ = 0), while in rate preference, it selects the BS that maximizes
its achievable data rate (δ is the probability that the achievable data rate in the network of
Provider 1 is larger compared to the one of Provider 2).

When the BS of one provider is fully utilized, a flex user can only connect to the BS
of the other provider assuming that the criteria for the BS selection are satisfied. In general,
when there are available slots at both BSs, the session arrival rate at the BS of Provider 1
is λ1 = λs1 + δλf , while when the BS of Provider 2 is fully utilized, the arrival rate for
Provider 1 becomes λ′1 = λs1 + λf . Similarly, the arrival rates λ2 and λ′2 of Provider 2 are
defined.

A large user population (compared to the number of time slots) is considered. Thus,
the total session generation rate is not affected by the number of users being served [53].
We then model the market using a Markov chain with a two dimensional state space as

Table 8.3: Parameters of the Markov-chain model

Parameter Description
λ Total session generation rate
µ Session service rate
λcj Session generation rate for users of cluster j
λsi Session generation rate for subscribers of Provider i
λf Session generation rate for flex users
mi Time slots available at the BS of Provider i
δ Probability for flex user to select the BS of

Provider 1 when both BSs are not fully utilized
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Figure 8.5: The Markov-chain model of the cellular network. The state (x, y) corresponds
to the total number of time slots x and y that serve sessions at the BSs of Provider 1 and
Provider 2, respectively.

shown in Fig. 8.5. To estimate the blocking probabilities for the three types of services, the
steady-state distribution of the Markov chain is computed:

Φ = (ϕ0,0, ϕ1,0, ..., φm1,0, ..., ϕ0,m2 , ϕ1,m2 , ..., ϕm1,m2) (8.4)

where ϕx,y is the steady-state probability for the state (x, y). The probabilities that the BSs
of Providers 1 and 2 are fully utilized (Φ1 and Φ2, respectively) and the probability that both
BSs are fully utilized (Φ3) are defined as follows:

Φ1 =

m2∑
y=0

ϕm1,y, Φ2 =

m1∑
x=0

ϕx,m2 , Φ3 = ϕm1,m2 (8.5)

The Markov chain of Fig. 8.5 corresponds to a “finite-loss system of two queues with
overflow” and there is no simple analytical solution for the forward Kolmogorov equations
of such a system [98, 99]. On the other hand, numerical methods can be employed to
solve the system of Kolmogorov equations. By taking advantage of the structure of the
transition rate matrix of the Markov chain, we determine the steady-state probabilities in a
low computational cost [100, 101]. In this work, we applied the method proposed in [100].
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As in the microscopic level modeling, a user aims to achieve a target data rate at the
start of a session. If this data rate can not be achieved, the session is blocked. The probability
that an arbitrary user can achieve its target data rate in the network of Provider i is denoted
as qi. The blocking probabilities (Bi) for all services (i = 1, 2, 3) can now be defined as
follows:

B1 = (1− q1) + q1Φ1, B2 = (1− q2) + q2Φ2

B3 = (1− q1)(1− q2) + q1(1− q2)Φ1 + q2(1− q1)Φ2 + q1q2Φ3
(8.6)

To estimate the blocking probability of sessions of subscribers of Provider i, we dis-
tinguish two cases: (1) a subscriber of Provider i cannot achieve its target data rate at the
start of a session, which happens with probability 1− qi. In this case, that session becomes
blocked, and (2) with probability qi, a subscriber of Provider i can achieve its target data rate.
In that case, the session gets blocked only when the BS of Provider i is fully utilized. This
happens with probability Φi. Therefore, the overall blocking probability for a subscriber of
Provider i is (1− qi) + qiΦi.

To estimate the blocking probability of a session of a flex user (given by Eq. 8.6), we
can distinguish the following cases: With probability (1− q1)(1− q2), the flex user cannot
achieve the target rate in the network of either provider and its session is blocked. The
user achieves its target rate only in the network of Provider 1 (Provider 2) with probability
q1(1 − q2) (with probability q2(1 − q1)), and its session becomes blocked with probability
Φ1 (Φ2), respectively. Finally, with probability q1q2, the user can achieve its target rate in
either of the two networks of providers. In that case, its session gets blocked when the BSs
of both providers are fully utilized, which occurs with probability Φ3.

User population dynamics: Based on the user utility function (Eq. 8.2) and blocking
probability model (Eqs. 8.4, 8.5, 8.6), the user population game can be simulated. Specif-
ically, we simulate the user evolution by applying the smoothed best response dynamics
[102], also known as Logit dynamics, a system of ordinary differential equations (8.7).

dzji(t)

dt
= r ∗

(
1

1 +
∑

κ6=iGjκi(z(t))
− zji(t)

)
(8.7)

The parameter r controls the speed of the dynamics, while Gjκi(z(t)) are functions of the
difference in utility that a user in cluster j achieves when it selects the strategy κ ∈ H
compared to when it selects the strategy i ∈ H (Eq. 8.8).

Gjκi(z(t)) = exp

(
πjκ(z(t))− πji(z(t))

ε

)
(8.8)

The term ε is a parameter that indicates the user irrationality: when ε tends to zero,
users are completely rational, while when ε increases, a degree of irrationality is introduced
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in the user decision making.

8.3.3.1 Convergence and complexity issues

The existence of a NE in the game of providers is guaranteed, since according to the theo-
rem of Nash, each finite game has at least one NE [91]. For the estimation of a NE, a closed
form of the utility functions of providers is required. However, the utilities of providers (i.e.,
profit) depend on the equilibrium of the user population game. This equilibrium indicates
the portion of users that choose each service, which is a metric necessary for the estimation
of the utilities of providers. To derive the equilibrium points of the user population game,
a closed form of the blocking probability for all services is necessary. The estimation of
the blocking probabilities of the various services is based on the queuing-theoretical model
presented above. As mentioned, there is no simple analytical solution for the forward Kol-
mogorov equations of such a model. The lack of a closed form solution for the blocking
probabilities prevents the provision of analytical expressions for the equilibrium points of
the user population game and for the NEs of the game of providers.

Our scenarios involve complex games for which it is very difficult to derive the ex-
pected utilities of providers, even if complete policies for all providers are given. Empirical
game theory is a relatively recent research direction in game theory for analysing such com-
plex games [94]. Various algorithms have been proposed in the literature to solve empirical
games and estimate evolutionary stable NEs [95, 96]. These algorithms converge to a pure
strategy NE if one exists. In most of the simulation scenarios presented in this work, the
best response algorithm converges to a pure strategy NE. In cases in which the game does
not have pure strategy NEs (all NEs are mixed strategy ones), the best response algorithm
converges to a periodic solution (market oscillations).

At the beginning of each epoch, providers adapt their prices based on the best response
algorithm. Specifically, they simulate the market at the macroscopic level for all possible
subscription and flex rates and select the rates that maximize their revenue. The computa-
tional complexity of the process is O(L ×M), where L is the number of subscription and
flex rate levels and M is the complexity of simulating the game of users at the macroscopic
level. After the price determination, during the epoch, users are simulated at a mesoscopic
level with J clusters. The ODE solver performs a number of steps (N ) to determine the
evolution of the user strategy profile (z) depending on the stiffness of the problem.

The field of numerical analysis focuses on the convergence of the various ODE solvers,
without providing an algorithmic complexity of the methods to achieve a certain level of
accuracy in the solution. At each step, the blocking probabilities are estimated by computing
the steady state of the Markov chain defined in Fig. 8.5 (O(m1 ×m2

3)) and the right side
of Eqs. 8.7 (O(J)). The overall complexity for the simulation of the game of users at the
mesoscopic level with J clusters (MJ ) is of O(N × (m1×m2

3 +J)). In general, the larger
the number of user clusters, the higher the accuracy, but also the larger the computational
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Figure 8.6: Algorithms at the mesoscopic level and their complexity.

complexity (see also Sec. 8.4.4). Fig. 8.6 outlines the computational complexity of the
analysis of a market.

Although this work focuses on a duopoly, the framework can be easily extended to
incorporate a larger number of providers. However, the state space of the corresponding
Markov chain increases resulting to a significant computational complexity for the blocking
probability estimation.

8.4 Performance evaluation

8.4.1 Simulation setup

We implemented the modeling framework in Matlab and instantiated various wireless access
markets for its performance evaluation. For the analysis of the flex service, we instantiated
a wireless access market of a small city, represented by a rectangle of 11 km x 9 km and
performed simulations for different scenarios. The parameters of the user profiles remained
fixed throughout a simulation scenario. Each experiment (i.e., simulation run) represents
the evolution of the market during a period of 50 epochs, each lasting 5 days.

Wireless network infrastructure: Each provider has a cellular network that consists of
49 BSs placed on a triangular grid, with a distance between two neighboring sites of 1.6 km.
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Moreover, each provider owns bandwidth of 5.6 MHz, that is divided into 28 channels of
0.2 MHz width. These channels are allocated to BSs according to a frequency reuse scheme
with spatial reuse factors of 4 and 7, for Provider 1 and Provider 2, respectively. Each chan-
nel is further divided into three time slots in a TDMA scheme, resulting in 21 time slots
per BS of Provider 1 and 12 slots per BS of Provider 2. A single time slot of a given BS
can be offered to only one client. A client can use only one time slot of a given BS, and
can be associated with only one BS during a given session. Although, this work assumes a
TDMA protocol for wireless access, the framework can employ other medium access pro-
tocols, such as CSMA or CDMA, by modifying the user utility function appropriately (e.g.,
using the achievable data rate as an indicator of the QoS). The channel quality is described
based on the Okumura Hata path-loss model for small cities considering the contribution of
shadowing to the channel gain [103, 104]. The maximum transmission power that a client
can use is 2 Watts. The chosen parameters correspond to a typical microcellular network of
a small city [105] and the channel availability of BSs was determined to match the demand
of the user population.

User population: There are 28000 users in total, distributed according to a uniform
distribution in the simulated region of this small city. The parameters of the user profiles
follow Gaussian distributions. The mean values of the disconnection threshold (−ku) and
data-rate threshold (Ru) are−0.2 and 0.1 Mbps, respectively, while their standard deviation
is 0.01. On the other hand, the price sensitivity (bu) is the same for all users (equal to
0.025).1 In each scenario, a user selects the BS with the best data rate.

Client demand: A client generates a sequence of session requests. The session du-
ration follows a Pareto distribution of mean 5 min (the scale and shape parameters are
equal to 3.890 and 4.500, respectively). The off period follows a log-normal distribution
with different location parameter for each user, selected with a uniform distribution from
[4.068, 6.215], and a scale parameter equal to 0.368. This corresponds to a client demand
(du) that varies from 33 to 267 minutes (in total) per epoch. The Pareto and log-normal
distributions have been used in studies of wireless traffic to describe the session on and off
durations [106].

Estimation of blocking probability: For the service selection of users, the blocking
probability is estimated based on the status of recent sessions reported at u-map during the
last 2 epochs.

User mobility: During off periods, clients move with a pedestrian speed with a maxi-
mum value of 1 m/s, while they remain stationary during sessions. In this work, we do not
consider handovers: a client remains connected at the same BS for the entire duration of the
session. In general, a session could be blocked not only at its initiation (as in this work) but
also during a handover between BSs. The estimation of the blocking probability of handover
sessions in an on-going work.

1This value was chosen to transform the prices of the subscription and flex services in the same scale as the
values of the blocking probability.
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To highlight the impact of the flex service, two market types were simulated: a
subscriber-only market (baseline), in which each user can either become a subscriber of
a provider or remain disconnected, and a mixed market, in which users have the additional
option of becoming flex users. The analysis evaluates the impact of the flex service on the
evolution of the market, using metrics that can provide insights to regulators, users, and
providers. The performance of a provider is characterized by its revenue, while the perfor-
mance of a client is indicated by the blocking probability of its sessions. Furthermore, the
session blocking probability, social welfare, market share, and percentage of disconnected
users are computed. The session blocking probability of a client is the ratio of its blocked
sessions over the total number of session requests. The social welfare is defined as the sum
of the net benefit of all users and providers. The net benefit of a provider is its revenue, while
the net benefit of a user is the difference of the user valuation for wireless connectivity and
what the user paid for his/her wireless access. The user valuation for wireless connectivity
is the price that the user is willing to pay when the blocking probability is zero. Finally, the
market share is a vector that shows the percentage of users that choose each service. Our
reported results are average statistics over all epochs.

8.4.2 Analysis of flex service at the micro level

To evaluate the performance of the flex service, we performed a series of experiments. The
game of users was simulated at the microscopic level, while the game of providers was ex-
ecuted at the macroscopic level to reduce the computational complexity of the price setting
algorithm. The flex service improves the performance of users. It significantly reduces the
percentage of disconnected users (Fig. 8.7b), increases the social welfare (Fig. 8.7c), and
improves the blocking probability in most scenarios (Fig. 8.7a). Provider 1 has an advan-
tage in the revenue over Provider 2 due to the larger channel availability of its BSs. In
some cases, the market manifests strong oscillations. The oscillations are caused by the
relatively “stale” data in the estimation of the blocking probability that is employed for the
service selection of users. The blocking probability is estimated by u-map, based on histor-
ical feedback that users upload in u-map about the status of their sessions. Specifically, in
certain epochs, the percentage of subscribers of Provider 2 falls close to zero. After some
epochs, u-map reports a low blocking probability for the subscribers of Provider 2. This
low blocking probability in conjunction with a low subscription rate motivates many users
to become subscribers of Provider 2. The massive “flow” of users to Provider 2 results in
an increased blocking probability. Users will realize a performance degradation after some
time (due to the uploading delay), and then, they will once again abandon Provider 2. This
phenomenon will be repeated (Fig. 8.7f). The intensity of the oscillations depends on the
flex service, market share, uploading frequency, and number of epochs based on which the
blocking probabilities of the various services are estimated. The higher the intensity of the
oscillations, the higher the average blocking probability. As a result, in certain scenarios, the
blocking probability in the mixed market is slightly larger compared to the subscriber-only
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Figure 8.7: Performance at the microscopic level: (a) Blocking prob. (b) Disconnected users
(percent) (c) Social welfare (d), (e) Revenue of providers (f) Market share in the mixed
market with a disconnection threshold of -0.175.

one (Fig. 8.7a). The use of “stale” data causes these oscillations, and the suboptimal per-
formance. Similar oscillations have been also observed in agent economies and biological
systems. An extensive discussion can be found in [107]. To improve the estimation of the
blocking probability, the Markov-chain model described in Section 8.3.3 can be employed.

In our earlier study [107], the user utility function was not a weighted sum of the
blocking probability and cost. Instead, there were two types of scenarios in which all users
were selecting the service that minimizes either the cost or the blocking probability. Part of
the user profiles were a willingness-to-pay and a blocking probability tolerance threshold.
The benefits of the flex service were also prominent under such user profiling, namely an
improvement in the number of disconnected users, blocking probability, and social welfare
as well as some trends (e.g., oscillations in market share). The flex service was a preferable
choice for users with a low blocking probability tolerance and users with low traffic demand.
Regarding providers, that study indicated some interesting phenomena: When clients select
BS based on the data rate, the revenue of providers increases in the mixed market com-
pared to the subscriber-only one. The reverse trend holds when clients select BS based on
the price. Furthermore, under large user population (e.g., 28000 users), the provider with
most resources outperforms in terms of revenue (this was also observed here), while under
small population size (e.g., 5000 users), the provider with the best channel quality has the
advantage.
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Figure 8.8: Performance at the macroscopic level: (a) Blocking prob. (b) Disconnected
users (percent) (c) Social welfare (d), (e) Revenue of providers (f) Market share in the mixed
market with a disconnection threshold of -0.175.

8.4.3 Comparative analysis at micro & macro levels

We performed a series of simulations of the game of users and the game of providers at the
macroscopic level. As it happens also at the microscopic level, the flex service improves
the performance of users. Specifically, it reduces the percentage of disconnected users (Fig.
8.8b) and blocking probability (Fig. 8.8a) in most cases. Furthermore, in the mixed market,
the social welfare is similar or slightly larger compared to the subscriber-only one (Fig.
8.8c). Another common trend of the microscopic and macroscopic levels is that Provider 1
has the advantage in terms of revenue (Figs. 8.8d and 8.8e). The impact of the mean value
of the user disconnection threshold (−k) was also analysed. At both the microscopic and
macroscopic level, the revenue of the providers decreases, when the disconnection threshold
of users increases. The higher the disconnection threshold, the more likely a user will choose
to be disconnected. This has as a result low prices and revenue.

Significant differences of the performance of the two levels also exist. The
macroscopic-level models underestimate the blocking probability compared to the
microscopic-level ones (Figs. 8.7a, 8.8a). This is due to the difference in the market share
at the two levels. In the mixed market, at the macroscopic level, the user population usually
converges to a stable equilibrium point in which there are only flex users (e.g., Fig. 8.8f).
In general, the flex service is characterized by a much lower blocking probability compared
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to subscriptions. Therefore, at the macroscopic level, the tendency of users to select the flex
service results in a reduced average blocking probability. On the other hand, at the micro-
scopic level, the market share exhibits intense oscillations, as explained earlier. These oscil-
lations cause an increased number of users to select a certain service, during some epochs,
raising the average blocking probability. Furthermore, the percentage of disconnected users
is larger at the microscopic level compared to the macroscopic one (Figs. 8.7b, 8.8b). The
market oscillations at the microscopic level result in very high blocking probabilities at some
epochs. Therefore, in the subsequent epochs, many users choose to become disconnected.
Moreover, at the microscopic level, the user traffic demand varies. This means that at the
microscopic level, there are users with higher demand than at the macroscopic level. When
these users choose the flex service, they may need to pay a high price which sometimes
surpasses their tolerance, leading to an increased percentage of disconnected users.

In some cases, providers exhibit different performance depending on the level. Specif-
ically, at the macroscopic level, in most scenarios, the revenue in the mixed market is larger
compared to the subscriber-only one (Figs. 8.8d, 8.8e). On the contrary, at the microscopic
level, the revenue in the mixed market is larger compared to the subscriber-only one when
the disconnection threshold is relatively high (e.g., -0.125, -0.100). In the remaining scenar-
ios, the revenue in the mixed market is similar or even smaller compared to the subscriber-
only one (Figs. 8.7d, 8.7e). This is due to the level that the price setting algorithm simulates
the game of users. The estimation of the revenue at the macroscopic level (for the price
setting) is not as accurate as the estimation at the microscopic level, leading to suboptimal
performance.

As mentioned earlier, at the macroscopic level, in the mixed market, the user popu-
lation usually converges to an equilibrium, in which there are only flex users. Therefore,
the offered subscription rates do not significantly affect the performance of the market. For
example, in some scenarios, Provider 2 can not attract subscribers by offering a very low
subscription rate. In such scenarios, the market usually converges to an equilibrium in which
Provider 2 offers the lowest possible subscription rate. However, users still choose the flex
service and the performance of the market is not affected by this strategy of Provider 2. On
the contrary, at the microscopic level, conditions are different. The population of users is
heterogeneous, possibly with users that prefer subscriptions over the flex service. For ex-
ample, a user with high traffic demand may prefer the flat rate of subscriptions. Therefore,
by offering a very low subscription rate, Provider 2 may lose profit from these users. Fur-
thermore, the very low subscription rate of Provider 2 intensifies the oscillations. This may
result to an increased blocking probability that may surpass even the one of the subscriber-
only market.

The above example shows that pricing decisions performed at the macroscopic-level
may lead to suboptimal performance when used at the microscopic level (even if they are
optimal at the macroscopic level), both from the perspective of users and providers. This
further motivates the design of the mesoscopic levels. The price setting algorithm could be
formulated at a mesoscopic level to achieve a good tradeoff between accuracy and computa-
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Figure 8.9: Performance at multiple levels of detail: (a), (b) Blocking prob. and discon-
nected users (percent) (c) Social welfare (d), (e) Revenue of providers (f) Execution time.

tional complexity. This can prevent providers from taking wrong decisions, and at the same
time, keeps the computational complexity of the price setting algorithm relatively low.

8.4.4 Performance at mesoscopic levels

To quantify the tradeoff between accuracy and computational complexity, we simulated
the game of users at several levels of detail. Specifically, we defined games with
1, 4, 20, 100, 500, 1000, and 28000 user clusters according to the mesoscopic modeling. The
games with 1 and 28000 clusters correspond to the macroscopic and microscopic levels, re-
spectively. In each experiment, the game of providers was simulated at the macroscopic
level.

In general, the larger the number of user clusters, the closer the performance of the
mesoscopic level to the microscopic level (Figs. 8.9a - 8.9e). The microscopic level “corre-
sponds” to the ground truth, since it models each user as a distinct entity, with its complete
profile (as opposed to other levels that apply aggregations). The larger the number of user
clusters, the more accurate the results. Furthermore, as mentioned in Section 8.3.3.1, the
larger the number of user clusters, the larger the computational complexity. We quantified
this trend and measured that the difference in the execution time of the microscopic and
macroscopic levels is up to three orders of magnitude! (Fig. 8.9f).
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The macroscopic level tends to overestimate the revenue of providers, especially in
the mixed market (Figs. 8.9d and 8.9e). Specifically, at the macroscopic level, the estimated
revenue in the mixed market is higher compared to the subscriber-only one. However, the
reverse trend appears in all other levels. As mentioned, to reduce the computational require-
ments, the price setting is performed at the macroscopic level. An inaccurate prediction of
revenue may mislead a provider in taking decisions that result in suboptimal performance.
Instead of simulating the game of providers at the macroscopic level, a mesoscopic level that
achieves a good tradeoff between accuracy and computational complexity can be selected
(e.g., the mesoscopic level with 100 user clusters). Actually, in experiments in which the
simulator of the game of providers was based on this mesoscopic level, we did observe an
increased revenue of providers compared to the corresponding case at the macroscopic level.

8.5 Concluding remarks

This chapter presents a methodology for analysing wireless markets that uses an event-
based simulator. It also shows the importance and practical merit of this methodology by
investigating the roll out of a new service, the flex service. The analysis demonstrates the
following trends: the flex service dramatically reduces the percentage of disconnected users,
decreases the blocking probabilities, and improves the social welfare.

Using the proposed methodology, we have analysed a wireless oligopoly of a small
city at the macroscopic and microscopic levels. The two levels manifest similarities: e.g.,
the flex service improves the performance of the market with respect to the blocking proba-
bility and percentage of disconnected users. The analysis also reveals important differences.
Interestingly, while at the macroscopic level, the revenue of both providers is larger in the
mixed market compared to the subscriber-only one, at the microscopic level, this does not
always hold. Furthermore, the market exhibits intense oscillations at the microscopic level,
while at the macroscopic level, it usually converges to a stable equilibrium. The competition
among providers as well as the delay in the dissemination of the user feedback via u-map
cause strong oscillations at the microscopic level. In addition, the difference in the execution
time of the microscopic and macroscopic levels is prominent.

The multi-layer modeling pays off. The simulation of a market at multiple levels of
detail provides a quantitative measure of the tradeoff between accuracy and complexity and
can help us select the appropriate level.
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Conclusions

This thesis presents a modular multi-layer modeling framework for analysing wireless mar-
kets. The framework employs queueing theory to model the networks of providers and user
traffic demand as well as game theory to model the user service selection and the competition
of providers. It allows providers to model users at different levels of detail by distinguishing
different user sub-populations and modeling their decision making separately. It also mod-
els the user decision making in a realistic manner assuming that they do not always make the
optimal decisions in terms of the offered prices and quality of service. Except from those
parameters, a variety of psychological and social aspects affect the user decisions that are
captured by a noise parameter in the user service selection process.

To decrease the computational complexity of the analysis even further, the framework
provides a network aggregation technique based on the theorem of Norton. Many times,
providers are interested in the performance of a specific region of interest within their net-
work. For example, they may need to participate in a secondary spectrum market to pur-
chase additional spectrum and improve their QoS at a congested part of their network. In
such cases, the theorem of Norton can compute equivalent queueing network models only
for the region of interest omitting the details of the entire networks of providers. This results
in significant computational gains.

The proposed modeling framework is a powerful tool that can be used to study various
market cases with a strong commercial interest. In this thesis, we have analysed three such
cases, namely, pricing via market segmentation, WiFi offloading, and capacity planning.
In pricing via market segmentation, providers distinguish various user sub-populations with
different profiles and requirements and design their dataplans aiming to improve the satisfac-
tion of those sub-populations and maximize their revenue. Using our modeling framework
providers can select the optimal level of detail for modeling users such that they improve
their revenue. Our analysis indicates that in market scenarios in which there is a strong cor-
relation between the user willingness-to-pay and QoS requirements, when providers model
users with a larger number of sub-populations or offer a larger number of dataplans they
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achieve revenue benefits. In other market cases in which those two parameters are com-
pletely independent, a different trend is observed. In such markets, providers improve their
revenue when they model users in a higher level of detail only under a low traffic demand,
while they achieve revenue losses in the case of a large traffic demand. Additionally, the
offering of a large number of dataplans in such a market is not beneficial and in some cases
it may also result in revenue losses.

In WiFi offloading, a provider can serve a part of its data traffic by a complementary
network infrastructure that mainly consists of WiFi APs and femtocells. Our analysis in-
dicates that it is not always profitable for providers to invest in a large WiFi infrastructure.
The benefits of a provider from the offloading increase with the coverage of the WiFi infras-
tructure but with a diminishing rate. Our framework can be extended to enable providers
to design their business plan for offloading. Specifically, it can incorporate the capital (e.g.,
investment for WiFi, backhaul equipments, installation) and operational (e.g., WiFi and
backhaul site rentals, maintenance) expenditures for supporting the offloading. Based on
that, it can perform a cost-benefit analysis to estimate whether offloading is profitable.

In capacity planning, providers can purchase additional spectrum at a congested part
of their network to improve their offered QoS. In this thesis, we have analysed such a market
in which the available spectrum is allocated to providers according to a VCG auction. The
analysis indicates that the model of the user utility function that providers consider is crucial.
If providers assume that users are only affected by the average achievable data rate, they end
up making similar bids and therefore, the winner of the auction does not achieve significant
benefits. However, when providers assume that the user satisfaction is also affected by the
spatial variance of the achievable data rate, then competition of providers weakens in the
auction allowing for multiple winners each of which achieves significant additional revenue
benefits.

The proposed framework could also be used to study problems from other research
areas except from wireless markets. For example, it could model the economic interactions
of autonomous systems/networks on the Internet. Some of these networks may forward
traffic of other networks for a price. These networks corresponds to the providers of our
framework, while their customers correspond to the users. Each customer network has its
own utility function that depends on the offered price and bandwidth. The framework could
also be used to model routing decisions of nodes in a network, where each link may be
associated with a different cost and bandwidth. Another example is from the area of public
health in which several primary and secondary health institutions may form agreements for
serving patients. In general, this framework can model various types of markets in which
a set of service providers with limited resources serve a set of customers with different
characteristics and demand. The use of this framework may provide interesting insight for
the performance of such markets.

Page 124 of 132



Bibliography

[1] Cisco, “Cisco visual networking index: Global mobile data traffic forecast update,
2014-2019,” Feb. 2015, White Paper.

[2] P. C. Cramton, “Money out of thin air: The nationwide narrowband PCS auction,” J.
Economics Manage. Strategy, vol. 4, pp. 267–343, 1995.

[3] P. Blanc, N. Bes, and S. Basu, “Spectrum valuation: A holistic approach,” Insights,
Capgemini’s Telecom, Media & Entertainment Journal, vol. 8, pp. 36–43, Nov. 2010.

[4] J. Jia, Q. Zhang, Q. Zhang, and M. Liu, “Revenue generation for truthful spectrum
auction in dynamic spectrum access,” in 10th ACM Int. Symp. Mobile Ad Hoc Netw.
Comput., 2009, pp. 3–12.

[5] X. Zhou and H. Zheng, “Trust: A general framework for truthful double spectrum
auctions,” in IEEE Int. Conf. Comput. Commun., Apr. 2009, pp. 999 –1007.

[6] Y. Wu, B. Wang, K. J. R. Liu, and T. C. Clancy, “A scalable collusion-resistant multi-
winner cognitive spectrum auction game,” IEEE Trans. Commun., vol. 57, no. 12, pp.
3805 –3816, Dec. 2009.

[7] Z. Ji and K. J. R. Liu, “Multi-stage pricing game for collusion-resistant dynamic
spectrum allocation,” IEEE J. Sel. Areas Commun., vol. 26, no. 1, pp. 182 –191, Jan.
2008.

[8] G. S. Kasbekar and S. Sarkar, “Spectrum auction framework for access allocation in
cognitive radio networks,” IEEE/ACM Trans. Netw, vol. 18, no. 6, pp. 1841–1854,
2010.

[9] D. Niyato and E. Hossain, “Competitive pricing for spectrum sharing in cognitive
radio networks: Dynamic game, inefficiency of Nash equilibrium, and collusion,”
IEEE J. Sel. Areas Commun., vol. 26, no. 1, pp. 192–202, 2008.

[10] ——, “Competitive spectrum sharing in cognitive radio networks: a dynamic game
approach,” IEEE Trans. Wireless Commun., vol. 7, no. 7, pp. 2651 –2660, Jul. 2008.

Page 125 of 132



BIBLIOGRAPHY

[11] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, “Next generation/dynamic
spectrum access/cognitive radio wireless networks: a survey,” Computer Networks,
vol. 50, no. 13, pp. 2127–2159, 2006.

[12] Q. Zhao and B. M. Sadler, “A survey of dynamic spectrum access,” IEEE Signal
Processing Magazine, vol. 24, no. 3, pp. 79–89, 2007.
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