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NEOTEPEG TEXVIKEG OMELKOVIONG HMOYVNTIKOU OUVTOVIOHOU OTh HEAETN

OYKWV HoAakwv popiwv - Movtedonoinon dsiktwv q-MRI.
Z0voyn

OL Oykol Twv MoAoKwv popiwv TmeplthapBavouv éva gupl GACUO HPECEYXUHUATIKWV
VEOTIAQOUATWY, CUUTEPIAAUBAVOUEVWV TIEPLOCOTEPWYV ATIO EKATO SLadOPETIKWY UTIOTUTIWV. H
T(POEYXELPNTIK SdLayvwon mou kaBopiletal cuvnBwg amod tn BroPia pe komTouoa BeAdva Kot
Twv enakoAouBwy Lotomaboloylkwy efetdoswy sival amapaitntn ywa v afloAdynon tou
LOTOAOYLKOU UTIOTUTIOU Kall TG BLoAoyLkng oupmepldpopag tng PAABNS (kadondng i kakondng,
BaBuoc kakonBelag) mpokelwévou vo. kaboplotel n BEATLOTN Beparmeia. Itnv mepintwon twv
cOopKWHATWY, dnAadn ekeivwv pe kakondn cuumneptdpopd, n eupeia ekTopn Tou Oykou pall pe
£val xelAog yettovikol uyLloug LoTtou ival n xelpoupytkn Beparmeia emthoyng ya tn peiwon tou
KLWOUVOU TOTTKNG UTIOTPOTING. MNa tnv otadlonoinon tou OyKou, XPNOLUOTOLEITAL EUPEWS TO
ocuotnua tng FaAAwkng Opoomovdiag Kévtpwy Kapkivou Sarcoma Group (FNCLCC). Qotooo, to
Beparmeutiko anotédeopa pnopel va emnpeaotel anod tov tpono AfPng tng Blogiag kabwg avtn
oxetiletal pe EMUTAOKEG TTOU UTOpPEL va 0dnyrjoouv o voonpotnta, eopaApévn Stdyvwon Kal
oTo Un BéATioTto oxnpa s Bepamneiag. Emopévwg, N agLomLotn MPoEYXELPNTIKA SLAyVWOon e L

pn enepBoatikn pEBodo OMwWE N LATPLKA AMeLKOvLon kablotatat avaykaia.

H amewkévion payvntikol ouvioviopoU (AMZ) amotelel tnv BEATiotn emdoyn ylo v
T(POEYXELPNTIKN QTTELKOVLON TWV OYKWV HOAAKWV popilwv KaBwg mapxel e€alpetikn suKpivela
onuatog Kot prmopel va kateuBuvel tn Ann Blodlag os Kploleg UTIOTEPLOXEG TOU OYKOU.
JUYKEKPLUEVQ, N amelkdvion otoBpopévng dtaxuong (AZA) propel va avadeifel pun emeppatikd
OOULKEC Kol AELTOUPYLKEG LOLOTNTEG TOu LoTol Omwe n KuttapoPpibela, ayyelofpibela kal n
moAumAokotnta tou Lotol. O ¢awvopevog ocuvtedeotng Swayvong (PIA) Atav n mPWINn
TAPAUETPOG AZA YL TOV TTOOOTLKO TIPOCSLOPLOKO TNC KUTTOPORPLOELAG TOU LOTOU. TN CUVEXELQ,
npotadnke to povteho Intravoxel Incoherent Motion (IVIM) to omolo slonyaye pia S1-ekBeTIKNA
avamnopactoaon g ££aobévnong Tou oNUATOG, KABWG KAl Ta UN-OLOUEPLOMATIKA LOVIEAQ
stretched-exponential kat diffusion kurtosis yla Tov mTocoTtiko MPoodLOPLOO TNG HLKPOSOULKNAG
ETEPOYEVELAG TOU OYKOU Kal TNG TMOAUTAOKOTNTAG TwV LoTwV. MapdAAnAa pe TNV MOCOTIKNA
avaAuon ™ AMZ, n padloptkn (radiomics) SnuioUpynoe Ta TeAeuTala XpOVLA Lo wBNon otnv
UTIOAOYLOTLKI)  LOTPLKA  OTIELKOVION  €VOUVOMWVOVTOG  ONUOVTLKA TNV TPOYVWOTLKN
MOVTEAOTIOLNON KOL TTOOOTLKA AVAAUOH TWV ATIELKOVIOTLKWY SEGOUEVWV. ZNUAVTIKA oTolxela TNG
anoteAolVv n avaluaon vdng TNG elKOVAG Kal n e€oywyn MTOAUSLACTATWY XAPAKTNPLOTIKWVY Ao
ToAUTIAOKOL LOTIBA TwV SLAYVWOTIKWY ELKOVWV TIOU OTIAVLA UITOPEL val §€L TO avBpwTvo pATL
KaBw¢ KaL n Snuloupyla MPOYyVWOTIKWY UOVTEAWY OO TA XOPAKTNPLOTIKA QUTA yLa TNV akpLpn

Slayvwon, oxeSlaouo tng Beparmneiag kot mapakoAolBnong Twv acbevwy.



YOpdwva pe tnv 61ebvn BLBAoypadia, Evog onUavTikog aplBpog peAeTwy XL SLEPEUVATEL UN-
EMEUPATIKA TOV XOPAKTNPLOUO TOU MKPOTEPLBAAAOVTOG TV CapKwUATWY, TV Sladopornoinon
™G taflvopunong twv Oykwv Kal tnv afloAdynon tng avtamokplong tng Oeparmeiag pe
MEMOVWHEVA HOVTEAD AZA, uTtoBEToVTaG OTL Eval LOVASIKO LOVTEAND Uopel va xapaktnplost €
OAOKANPOU TO HLKpOTEPLBAAAOV KAl TNV MOAUTTAOKOTNTA TOu OyKou. QoTO00, N untdBeon autnh
OVTLKPOUETOL OTNV €TEPOYEVH $UOCN TOU OYKOU KABWG Kol og cuyxpoveg avadopEg oL omoleg
daAVEPWVOUV TNV AVATIOTEAECUATIKOTNTOA MEUOVWHEVWY HOVTEAWV AZA otnv Kataypadn Kol
TLOOOTLKOTOLNGN TWV GUVOALKWY AELTOUPYIKWY Kal avatoplkwy tdlotitwy Sltadopwv tuTou
OYKWV, KOToAyovtog o€ e0DAAUEVECG TUUEC TTOPAUETP WV aTto Ta AZA LOVTEAQ KOl OE OTOTLOTLKNA
enefepyaciao xwpic mpdtepo €Aeyxo TNG eAoyng KATAAANAOU POVTEAOU yLa KABE uTtomepLoxn
™G BAABNG. Ao TNV GAAN MAEUPA, av Kal N PAaSLOMIK avAaluon €xel HeAeTnOel ektevwg o€
SLadopoug TUMoUG OYKwY, EAAXLOTEG LEAETEG Exouv avadeifel To pOAO TNG PASLOULKAG OTNV
avaAuon Twv copKwUAtwv. EmumpdoBeta, undpyxouv apdiBorieg avadoplkd pE TOV TPOMO
ETUAOYNG TWV ONUOVTIKWYV PASLOMKWY XOPOKTNPLOTIKWY (padlopkn uroypadn), diwg déoov
adopd tnv cuvoxn Kal EMAVAANPLULOTNTA TNG amodoor| Toug Kabwg Kal 6Tov KaBopLopo evog

LoXUPOU Kot Stadpavouc mhatolou EETaonG Kat EMKUPWONG TWY POSLOUKWY OTOTEAECUATWVY.

Me Baon ta mpoavadepBévta, n mapovoa Slatplpr] €oTiace OTNV MOOCOTIKOMOINON TWV
Sebopévwv AZA Kot TNV paSLOMLIK OVAAUGCH YLOL TOV XOPAKTNPLOUO TWV CAPKWHATWY KoL TOV
OLUTOMLOTOTIOLNEVO SLOXWPLOUO TNG oTadLloToinNoNG ToUG e TNV epyacia cuveSpilou | va mapeyel
€va OAOKANPwUEVO TTAALCLO avaAuong yla Tnv moootikomoinon AZA amnd moAAamAd povtéda. H
avamntuén kat aéloAoynon Twv HoviéAwv AZA npaypatomnolfnke cUudwva Pe To HaBNUATIKO
mAaiolo onwg autd meplypadetal oto Kepahato | kal NG OTATIOTIKAG OVAAUONG OO TO
Kepahawo Il. Ta apBpa Il kat IV elonyayav éva mAalolo OTATIOTIKAG avAAuong ylo TV
afLoAoynon twv HovTéAwv AZA kal otnv Snuloupyia PeuSoXpWHATIKWY XapTwV Taflvounong
TIou avtikatomtpilouv tnv emhoyn Tou BEATIOTOU povtédou AZA yla kaBe elkovootolxsio. OL
napandavw dnUooteloelg odnynoav otnv avantuén uBpLSkwy Mapapétpwy AZA oo moAAanAd
MOVTEAQ YLO TOV TIOCOTIKO XOPOKTNPLOMO TNG BAARNG o€ dLddopoug TUMOUG COPKWHUATWY. Ta
anoteAéopata (apBpo 1) emkupwOBnkav pe LOTOMAOOAOYLKN) £EETAON TWV XELPOUPYLKWV
Selypatwy, anodidovrag véeg mapapetpouc UPNARG SLOKPLTIKAG Loxuog yia tnv dtadopormnoinon
™G otadlonoinong tou oykou. MapdaAAnAa, sEstdotnke n epappoyr tNG padLOUKN avAaluong
oe edopéva AMZ T2 uPnAng avaluong yla TNV avamtuén LOVTEAWV UNXAVLKAG LABnong kat
v autopatonolnuévn Stadopomoinon TG otadlomoinong Twv  CopKWHATWY. Ta
anoteAéopata apouatalovrol oto apBpo I, petd amnod die€odikr épeuva mou mponyndnke Kat
dnpootevBnke otnv epyacia ouvedpiou Il yia tnv afloAdynon tng YeVIKEUEVNG amodoong Kot
EMAVAANPLUOTNTOG TWV LOVTEAWV UNXAVIKAG LABNoNG, KaBwg KAl TnG EMUAOYNG TWV ONLAVTIIKWY
PASLOULIKWY XOPOKTNPLOTIKWV TIoU 0dnyolv otnv BEAtiotn mpoBAedn TNG amokplong otn

Oepareia TOU KAPKIVOU. JUMUITEPAOCHOTIKA, OL otoxol g SiatplBng ouvoyilovtol otnv



TIOOOTIKOTOLNGN TWV €LKOVWV AZA Kal TNG PASIOMIKNAG avAAuong yla Tov pn emepPatikod
XOPAKTNPLOMO TWV HOPPOAOYIKWY KAl AELTOUPYLKWY XOPAKTNPLOMWY TWV CAPKWUATWY KAl TV

oautopatonolnuévn dtadopormnoinon tov Babuou atadlomoinong tng BAABNG.



Advanced Magnetic Resonance Imaging techniques in soft tissue sarcoma
studies — Modelling of quantitative MRI parameters.

Abstract

Soft tissue tumors comprise a broad spectrum of mesenchymal neoplasms, including over a
hundred different subtypes. Preoperative diagnosis routinely established by core needle biopsy
and subsequent histopathologic examination is essential for assessment of histological subtype
and biological behavior (benign or malignant, malignancy grade) in order to determine the
optimal treatment. In the case of soft tissue sarcomas (STSs), i.e. those with malignant behavior,
wide excision of the tumor together with a rim of adjacent healthy tissue is the surgical
treatment of choice to reduce the risk of local recurrence. To assess STSs aggressiveness, the
French Federation of Cancer Centers Sarcoma Group (FNCLCC) grading system is widely used.
However, preoperative radiotherapy or chemotherapy may be indicated since the performance
of preoperative core needle or open biopsy is an invasive procedure associated with
complications that may lead to morbidity, misdiagnosis and alteration to less optimal treatment.
Therefore, reliable preoperative diagnosis by a non-invasive method like imaging would be of

immense value.

Preoperative imaging of STSs is optimally performed by magnetic resonance imaging (MRI), as it
provides supreme soft tissue contrast and may direct core or open biopsies to be taken at those
most representative sites in heterogeneous tumors. Specifically, diffusion weighted imaging
(DWI1) has the potential to reveal insights into the structural and functional tissue properties
such as cellularity, neovascularity and tissue integrity. To capture, non-invasively, these
properties, apparent diffusion coefficient (ADC) was the first diffusion-related imaging
parameter to quantify tissue cellularity. Next, the intravoxel incoherent model (IVIM) model was
proposed, introducing a bi-exponential representation of the signal attenuation. In addition, the
non-compartmentalized models including the stretched-exponential and the diffusion kurtosis
model were developed to quantify tumor microstructural heterogeneity and tissue complexity.
Apart from the quantitative MRI analysis, radiomics created an unprecedented momentum in
computational medical imaging over the last years by significantly advancing and empowering
correlational and predictive quantitative studies in numerous clinical applications. An important
element of this exciting field of research is multiscale texture analysis yielding the extraction of
high-throughput quantitative features from complex patterns of the diagnostic images that can
rarely be seen by the human eye, subsequently used as highly informative and non-invasive

imaging features for precise diagnosis, therapy planning and disease monitoring.

On one hand, a significant number of DWI studies, developed from single DWI models, has been
conducted to characterize STSs microenvironment, differentiate soft tissue tumor grading and

assess treatment response, assuming that single models can solely characterize the overall



tissue microenvironment. However, this assumption is in contradiction to the heterogeneous
nature of the tumor where recent reports claimed that single models fail to appropriately
capture regional functional and anatomical tumor properties, concluding to incorrect diffusion
parameter values and statistics with no prior examination of models' applicability. On the other
hand, although radiomics has been extensively studied in many anatomical areas, to the best of
our knowledge, few studies examined the role of radiomics in STSs grading. Additionally, several
concerns exist regarding the plethora of radiomics features used in the literature especially
regarding their performance consistency across studies and the lack of a robust and transparent

framework for the validation of the radiomic results.

Motivated by the aforementioned observations, conference paper | provides a comprehensive
analysis framework for DWI quantification from multiple models where most of its
functionalities were further used in the pre-processing part of the radiomic analysis pipeline.
DWI model development and validation was performed according to the mathematical models
and the statistical analysis framework reported in Book Chapters | and Il. Paper Ill and IV
introduce a statistical analysis framework in which suitability of several DWI models was
examined across all tumor pixels and a classification map was generated reflecting DWI model
preference on a pixel-by-pixel-basis. These publications have set the basis to develop hybrid
diffusion parameters from multiple models to differentiate low from high STSs grading. The
results, published in paper |, were validated by histopathological examination of the surgical
specimens, yielding to novel parameters of high discriminatory power. A secondary goal was
considered in this thesis in order to examine the application of radiomics and the use of high-
resolution T2-MRI in the differentiation of the STSs staging. This is outlined in paper II, following
a thorough investigation published in conference Paper Il to assess the generalization
performance and the intra-observer agreement of radiomic models as well as the relative
importance of radiomics features in predicting cancer therapy response. The goals of this thesis
were set towards the use of DWI quantification and radiomics into the non-invasive STSs

characterization and grading differentiation.
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Chapter 1 Introduction

1.1 Epidemiology

Soft tissue sarcomas (STSs) are neoplasms arising from the mesoderm derived tissues such as
muscle, fat and connective tissue, thus constituting a broad and heterogeneous category of
space occupying lesions. STSs are relatively rare and constitute less than 1.5% of all cancers with
an annual incidence of about 6 per 100,000 persons. More than 50 different STSs subtypes have
been defined by the World Health Organization (WHO), often associated with distinct
radiological phenotype, different tumor biology and clinical outcome [1]. WHO divides tumor
into benign, low grade (locally aggressive), intermediate grade (rarely metastasizing) and
malignant. Histopathologic type, grade and tumor size and depth are determinant factors for
soft tumor staging and therefore provide significant prognostic information. Core needle biopsy
has been established for preoperative tumor grading in an attempt to classify tumors as high or
low grade in order to contribute to the most appropriate therapeutic scheme [2]. Although
histopathologic assessment of biopsy samples is the gold standard method for accurate tumor
characterization and grading, it might often be subject to sampling errors underestimating thus
tumor grade and misguiding therapeutic approach. Moreover, biopsy is an invasive procedure
that can provoke several undesirable effects such as bleeding, pain, wound infection or
breakdown and spillage of tumor cells. Noninvasive tumor characterization at the early stage of
imaging is therefore of utmost importance to ensure the choice of the most appropriate

therapeutic plan and minimize patient discomfort.

1.2 MRI acquisitions in STSs

Magnetic resonance imaging (MRI) has emerged as the imaging modality of choice for
identification, staging, and monitoring of the response to therapy in patients with a suspicion
for a malignant soft tissue mass as it provides supreme soft tissue contrast at multiple planes
[3]. MRI reveals not only the anatomical extent of the tumor and the possible involvement of
adjacent structures, but also provides functional information indicative of properties related to
the degree of malignancy such as cellularity, vascularity or tissue integrity. Significant findings
from a recent study revealed that an underestimation of STS grading using exclusively sample
biopsy was evident in 40% of the enrolled patients, suggesting the inclusion of necrotic areas
during biopsy, and the use of baseline MRI exams as a complementary prognostic approach to
sample biopsy [4]. Conventional T1 and fat suppressed T2 sequences in coronal and axial planes
are usually used for the localization and the complete coverage of the lesion. However,
conventional MR imaging sequences have not equal power to biopsy in differentiating high from
low soft tissue neoplasms as they exhibit a significant number of overlapping radiological

features [5].



To this extend, since the radiological appearance of STSs may have a non-specific behavior in
conventional MRI, high resolution (HR) MRI and advanced MRI protocols, now play a significant
role towards this direction, providing a sensitive probe for the characterization of the disease at
the early stage and serving as a valuable tool for all subsequent procedures, including biopsy.
High resolution T2-weighted MRI acquired using a short-time protocol has been proved as a
promising technique in STSs, yielding complete tumor coverage in high resolution and multiple
possible planes, robustness to artifacts, low requirements in hardware and less patient
discomfort. Diffusion Weighted Imaging (DWI) is an indispensable part of routine oncologic
protocols in the clinical setting utilized to reveal insights into the structural and functional tissue
properties. Dynamic Contrast Enhanced (DCE) imaging technique depict tissue perfusion and the
microvascular environment. Since DCE-MRI is acquired after intravenous administration of
specific contrast agents and the focus of this study was to explore non-invasively the use of MRI
in the characterization of STSs and the differentiation of STSs grading, this technique was well
outside the range of this study. However, a thorough description can be found in one of our

publications [6].

1.3 Translating MRl into STSs features

1.3.1 Quantitative MRI using advanced DWI protocols

To investigate the role of advanced MRI towards the quantification of STSs characteristics,
different mathematical models have been developed. In case of DWI, Apparent Diffusion
Coefficient (ADC), derived when signal attenuation is expressed as a simple mono-exponential
decay, was the first and most extensively used quantitative parameter in cancer imaging
applications to describe cellular density [7]. However, in malignant areas where tissue
neovascularity might be also apparent due to the angiogenesis effect, the mono-exponential
model fails to capture the induced deviation in the signal decay caused by this effect and the
Intravoxel Incoherent Model (IVIM) model was then proposed, introducing a bi-exponential
representation of the signal attenuation occurred by a fast and a slow diffusion component [8].
Another aspect in cancer imaging is the complex and heterogeneous tissue microstructure of
many tumors, resulting to restrictions in water molecule diffusion and deviation of its
distribution from the Gaussian behavior. To quantify these specific characteristics, non-
compartmentalized models including the stretched-exponential [9] and the diffusion kurtosis
model [10] have been developed to reflect microstructural heterogeneity and tissue complexity.
Research efforts were directed towards the quantification of the DWI in STSs studies. Hong et al
suggested DWI along with conventional MRI analysis to assess tumor margin infiltration in STSs
[11], while a recent study showed increased performance in differentiating benign from

malignant soft tissue tumors when quantitative analysis using the mono-exponential model was



performed [12]. More advanced models including the IVIM and the diffusion kurtosis model
were applied and their corresponding parameters exhibited significant results in discriminating
STSs from vascular anomalies [13]. Radiotherapy response of STSs using the histopathology of
the surgical specimen and summary statistics obtained from the ADC and the IVIM-related
parameters yielded an increased median ADC after treatment and a correlation between ADC

and tissue cellularity [14].

1.3.2 MRI-based radiomics and machine learning in STSs

Recent advances in medical imaging and computational modelling techniques have drastically
altered the value of imaging data from qualitative representation of the disease to a significant
tool allowing disease characterization, precise diagnosis, therapy planning and disease
monitoring. On one hand, the emerging field of radiomics has enabled the conversion of routine
radiological images into high-throughput quantitative data, describing non-intuitive properties
of the tumor phenotype and microenvironment [15]. Within this context, handcrafted imaging
features related to intensity, shape, volumetric, texture and wavelet characteristics are
calculated from delineated regions of interest (ROIs), further comprising a representative high-
throughput feature vector of the tumor volume. When radiomics is embedded with machine
learning (ML) algorithms, automated decision support systems (DSS) are developed for the
clinicians, providing advanced analytics and insights regarding future events of the disease.
Corino et al. presented a radiomics analysis based on the ADC generated maps from diffusion-
weighted MRI to distinguish intermediate from high-grade soft tissue sarcomas [16]. The
performed analysis derived 64 imaging features and when applied to 19 patients achieved an
area under the curve (AUC) of 0.85+0.16 and 0.87%0.34 using the validation and test set
respectively. Another study explored the association between STS patients’ overall survival (OS)
and T1-weighted (T1w) contrast-enhanced MRI and found that the extracted radiomic features
can be promising predictors of OS [17]. The proposed radiomics model was trained using 165
patients and performance was assessed using external validation (independent cohort
comprising of 61 patients). Crombe and co-workers investigated the role of T2-based MRI delta-
radiomics in predicting response of high-grade STS patients to neoadjuvant chemotherapy [18].
A limited number of radiomic features was calculated (33 features) and best predictive
performance achieved from 3 top-ranked features (accuracy of 74.6%). Another study
conducted a multicentric radiomic study and developed a nomogram model to differentiate low-
from high-grade STSs [19]. Three radiomic models were implemented and the highest AUC that
was reported from the nomogram model was 0.78% using an independent validation set.
Multiple ML models were applied to conventional MRI data from 113 patients and radiomic data
were divided into the training set (80 patients) and the validation set (33 patients). The

performance of the examined models was assessed using a single validation set and an AUC of



0.96 was reported after radiomic feature selection and random forest (RF) classification.
Another similar to our study performed a radiomic analysis on fat-suppressed T2-weighted
(T2w) MRI on a 3.0T scanner from 35 pathologically diagnosed STS patients, identified 5 radiomic
features that best discriminate low from high-histopathological grades. The provided model
obtained an AUC of 0.92+0.07 using a 5-fold cross-validation. However, model performance was

calculated within the algorithm training from the average accuracy of the 5-folds [20].

1.3.3 Unmet needs in STSs MRI analysis

Despite the aforementioned promising findings, in most of the quantitative studies, cellularity,
neovascularity and microstructural complexity were quantified from summary statistics on
single model parameters assuming that single models can solely characterize the overall tissue
microenvironment. However, since DWI analysis with different models underpin different
aspects of the tissue properties and tumor heterogeneity is evident in STSs, single models may
fail to appropriately capture regional functional and anatomical tumor properties, concluding to

diffusion parameters and statistics with no prior examination of models' applicability.

The aforementioned limitations motivated a number of studies to assess model suitability in a
number of different cancers. Authors from [21] conducted a DWI analysis for antiandrogen
treatment response in prostate cancer bone metastasis using three diffusion models. Model
selection was performed across four different time points and stretched exponential was
favored as the most suitable model to monitor response to treatment. A recent study
investigated the role of diffusion related parameters from two models in radiotherapy response
using pre- and post-treatment DWI data [22]. Spatial variations of the suitability of the models
were prominent between pre- and post-therapy, indicating changes in tumor microstructure
and the presence of different tumor subregions. Results from [23] reported that when brain
tumor heterogeneity is ignored, single pharmacokinetic model analysis applied to Dynamic
Contrast Enhanced MRI yielded to incorrect model parameters in over 35% of the tumor pixels.
Additionally, when fitting quality of several models was examined, more than three models were
required to quantify robustly the biological properties of the whole tumor, suggesting that pixel-
based values in the parametric maps should be estimated according to the model selected for
each particular pixel. Although some recent publications highlight the necessity to embed model
selection in the quantification of the whole tumor microenvironment and the parametric map
calculation, to the best of our knowledge, the potential benefits these approaches offer to
discriminate patients into relative disease groups are still understudied. To this extend, none of
the studies in DWI has explored the synergistic effect of quantifying DWI from multiple models,

generating single parametric maps from several models using model selection techniques and



perform statistical analysis on these maps to differentiate patient groups of different cancers,

including STSs.

Towards this direction, the main goal from this study was to present a novel MRI-guided
computational framework, using DWI from multiple b-values, to quantify images on a pixel level
using 4 different models, statistically identify and select models that best characterize particular
STSs subregions, classify these regions into models and create corresponding pseudo-color
classification maps, generate new parametric maps (meta-maps) based on the relative
information content of each examined model as displayed in the classification map, and perform
histogram analysis on all derived maps to differentiate low from high grading of STSs. The
presented workflow was verified histopathologically using the surgical specimens and biopsy,

yielding to novel parametric meta-maps of high discriminatory power.

Although radiomics has been extensively studied in many anatomical areas including head and
neck, breast, liver and lung cancer, to the best of our knowledge, few studies examined the role
of radiomics in STSs grading [24][25]. Additionally, major challenges towards translating
radiomics into the clinical practice are usually arise due to the lack of a robust and transparent
framework for the validation of the ML results [26]. Even if a significant number of studies
reports good performance in their results, overfitting problems, feature stability and
reproducibility as well as assessment of the ML performance using the so-called internal
validation set are usually ignored or underestimated when designing the ML analysis framework.
It is notable that a recent review reported an average of only 6% of the 516 published models
that were developed using a proper validation schema [27]. Motivated by these observations, a
secondary goal was considered in this study in order to examine the application of radiomics in
the differentiation of the STSs staging under a careful design of the algorithms’ validation based
on nested cross-validation comprising multiple independent validation sets for ML performance
assessment. To this end, high resolution fat-suppressed T2-weighted images were used for the
analysis as they provide a rich spatial resolution, thus a more detailed representation of the

disease.

1.4 Thesis Roadmap

This doctoral thesis comprises seven chapters in total. Given the main epidemiology behind soft
tissue sarcomas, the role of advanced MRI acquisition protocols and post-processing techniques
comprising DWI quantification, radiomics and machine learning towards the disease
characterization and patients’ stratification (Chapter 1), Chapter 2 gives a brief overview of the
soft tissue sarcomas and their different subtypes in terms of the histopathological findings
encountered during patient enrollment. Chapter 3 moves into the quantification of the diffusion
signal attenuation using several mathematical models, describes the fitting techniques to

transform qualitative DWI results into a quantitative representation of the images, outlines the



necessity to assess fitting quality using different statistical metrics and presents a step-by-step
workflow for the DWI analysis through an in-house software implemented for this purpose.
Chapter 4 presents major aspects in the field of radiomics and machine learning and chapter 5
and 6 address specific clinical questions raised in STSs studies and present the results and
discussion related to them. Chapter 7 composes the final concluding aspect of this work as an

epilogue.

Chapter 2 Soft Tissue Sarcomas (STSs)

STSs are neoplasms arising from the mesoderm derived tissues such as muscle, fat and
connective tissue, thus constituting a broad and heterogeneous category of space occupying
lesions. More than 50 different STSs subtypes have been defined by the World Health
Organization (WHO), which are often associated with distinct radiological phenotype, different
tumor biology and clinical outcome [1]. WHO divides tumor into benign, low grade (locally
aggressive), intermediate grade (rarely metastasizing) and malignant. Histopathologic type,
grade and tumor size and depth are determinant factors for soft tumor staging and therefore
provide significant prognostic information. In the case of a malignant soft tissue tumors
(sarcomas), wide excision of the tumor together with a rim of adjacent healthy structures is the
surgical treatment of choice to reduce the risk of local recurrence. Grading is based on the
analysis of the degree of cell differentiation, histopathologic subtype, mitotic activity and
presence of necrosis. The most widely used systems for grading are the three-tiered ones

suggested by the French Federation of Cancer Centers Sarcoma Group (FNCLCC) [28] (Table 1).

Table 1 FNCLCC Scoring system for soft tissue sarcomas

Factor FNCLCC Scoring system

Score 1 (close similarity to normal cells) to score 3 (abnormal cell
Differentiation
morphology)

Mitotic Count Score 1 (low mitotic activity) to score 3 (high mitotic activity)

Extent of Necrosis Score 0 (very little dying tissue) to score 2 (larger area of dying tissue)

Staging in practice though, has functioned through a two-stage system classifying tumors as low
or high grade [29]. Core needle biopsy has been established for preoperative tumor grading in
an attempt to classify tumors as high or low grade in order to contribute to the most appropriate
therapeutic scheme. Although histopathologic assessment of biopsy samples is the gold
standard method for accurate tumor characterization and grading, it might often be subject to
sampling errors underestimating thus tumor grade and misguiding therapeutic approach [2].
Moreover, biopsy is an invasive procedure that can provoke several undesirable effects such as

bleeding, pain, wound infection or breakdown and spillage of tumor cells. Noninvasive tumor



characterization at the early stage of imaging is therefore of utmost importance to ensure the
choice of the most appropriate therapeutic plan and minimize patient discomfort. The following
sections give a thorough description and an illustrative overview from MRI and histology imaging
of the most common STSs types. The diagnostic pipeline workflow followed from this thesis is

displayed in Figure 1.

g Surgical Excision Histopathologic Analysis

Figure 1 Diagnosis Workflow Steps followed during this study (images from a dedifferentiated liposarcoma)

Specimen 1: Necrosis, 2: poorly differentiated, 3: well differentiated, 4: moderately differentiated liposarcoma.

2.1 Dedifferentiated Liposarcoma

Dedifferentiated liposarcomas (DDLS) are malignant adipocytic tumors showing transition from
atypical lipomatous tumor/well-differentiated liposarcoma (ALT/WDL) to a nonlipogenic
sarcoma of variable histological grade. DDLS are highly aggressive tumors and most of them
underlie chromosomal alterations (12q14-15 amplification involving MDM?2 gene) to well
differentiated liposarcomas. On MRI, ALT/WDL present as predominantly lipomatous tumors
with thick septa (>2 mm), globular and/or nodular areas, and/or associated masses. The
nonlipomatous component has low signal on T1-weighted MRI and intermediate to high signal
intensities on T2-weighted MRI due to histologic variations in the dedifferentiated region of the

tumor mass. The thick septa or nodules enhance markedly after contrast administration. Figure



2 depicts a dedifferentiated liposarcoma case from our studied cohort using multi-sequential

MRI examination.

Figure 2 MR imaging of a dedifferentiated liposarcoma. From left to right: T2 fat suppressed, DWI at b zero and T1

fat suppressed after contrast medium administration.

Indicative histology results depicted in the figures below (Figures 3-7) underline the highly
heterogeneous structure of a dedifferentiated liposarcoma. The histology images were acquired
from the true axial tumor plane in the middle of the tumor length, corresponding to the central

tumor MRl slice of the patient, showing different tumor subregions.

Figure 3 Microphotograph reveals well-structured areas of high cellularity. It illustrates an area of the
dedifferentiated non-lipogenic component of the tumor with an intermediate grade of malignancy consisting of
relatively monomorphic tumor cells with cytologic features of moderate dysplasia a solid architectural pattern, an

increased vascularity.



Figure 4 Microphotograph of a highly heterogeneous architecturally and cytologically area of the dedifferentiated
non-lipogenic component with solid regions consisting of pleomorphic anaplastic tumor cells with high mitotic rate,
plentiful abnormal mitoses, cystic and hemorrhagic cavities, a small area of necrosis. In the area is also included a

distinct small area of the well-differentiated lipogenic component (middle right).

Figure 5 A high-grade cellular area of the dedifferentiated non-lipogenic component with high vascularity, and both

solid and cystic architecture.



Figure 6 The most cellular and highest-grade area of the dedifferentiated non-lipogenic component consisting of a
highly pleomorphic tumor cell population including gigantic and multinucleated tumor cells with nuclear features

of extreme anaplasia, very high cellularity and increased vascularity with abnormally structured blood vessels.

Figure 7 An architecturally heterogeneous and complex area of the tumor highlighting areas of transition between
the relatively “well-differentiated” lipogenic and the dedifferentiated high-grade non-lipogenic tumor components,

regions of low and high cellularity, regions of dilated and ectatic abnormal blood vessels.

2.2 Pleomorphic Liposarcoma

Pleomorphic liposarcoma (PLS) is a rare subtype of liposarcoma (5%) characterized as a fast-

growing tumor, highly metastatic (more than 50% the risk of metastasis, primarily to the lungs)



and with increased mortality rate. PLS is characterized by a number of pleomorphic lipoblasts
that are frequently very large and contain irregular, hyperchromatic, scalloped nuclei, with
prominent nucleoli and multi-vacuolated cytoplasm. Genetically, pleomorphic liposarcomas
have complex caryotypes with a high frequency of p53 mutations. Treatment involves surgery
and preoperative chemotherapy in cases where PLS tumors are larger than 5-8 cm. PLS appears
as a non-specific soft-tissue mass in MRl where the non-lipomatous areas have intermediate

signal on T1-weighted MRI and intermediate to high signal on T2-weighted (indicative PLS in

Figure 8).

Figure 8 MR imaging of a pleomorphic liposarcoma. From left to right: T2 fat suppressed, DWI at b zero and T1 fat

suppressed after contrast medium administration.

Histologically PLS contains a variable number of pleomorphic lipoblasts, with hemorrhage and

necrosis commonly observed (Figures 9-11).

Figure 9 Pleomorphic lipoblasts in a pleomorphic liposarcoma case.



Figure 10 A pleomorphic lipoblast in a tumor composed predominantly of cells with an epithelioid morphology.

Image taken from [30].
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Figure 11 Malignant fibrous histiocytoma-like area of a pleomorphic liposarcoma. Pleomorphic lipoblasts were

only focally present in this tumor. Image taken from [30].

2.3 Well-differentiated liposarcoma

Well differentiated liposarcoma (WDL) is a low-grade and slow-growing malignancy. WDL is the
most common type in liposarcomas (approximately 50% of all liposarcomas), usually arises in
the retroperitoneum and the limbs and rarely metastasize. However, it tends to recur locally and
has the potential for de-differentiation and conversion to a higher grade liposarcoma. WDL has

predominantly adipose multi-lobulated and well circumscribed masses containing non-



lipomatous components. Fat cells vary in size and there are also scattered lipoblasts and thick-
walled blood vessels. Non lipomatous components are most often seen as prominent thick septa
within the adipocytic part, characterized by limited morbidity and lack of significant potential
for dedifferentiation. Surgical excision is the treatment of choice. A well-differentiated
liposarcoma as displayed by a multi-sequential MRl examination comprising T2, DWI and T1 fat

suppressed after contrast medium administration is given in Figure 12. Histologically common

characteristics of well-differentiated liposarcomas are depicted in Figures 13-15.

Figure 12 MR imaging of a well-differentiated liposarcoma. From left to right: T2, DWI at b zero and T1 fat

suppressed after contrast medium administration.
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Figure 13 Well-differentiated liposarcoma showing only a rare atypical stromal cell amid a mature lipomatous

backdrop. Image from [31].
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Figure 15 Nonlipogenic zone in a well-differentiated liposarcoma. Image from [31].

2.4 Myxoid Liposarcoma

Myxoid liposarcoma (MLS) is the second most frequently encountered entity after well
differentiated liposarcomas. MLS is characterized by a mixed composition of myxoid and round
cell components and is characterized by increased cellularity, higher mitotic activity and necrosis
(Figures 16-18). A smooth transition is evident between myxoid and round cell components and
mature adipose tissue areas occupy a small percentage of the tumor. In general, MLS exhibit low
signal on T1-weighted and high signal on T2-weighted but MRI spectrum abnormalities can occur
due to the fat and myxoid component, degree of cellularity and vascularity and the presence of

necrosis (Figure 19). Contrast enhanced MRI is required to distinguish MLS from other benign



tumors as it sometimes mimic cystic tumors as the extracellular mucoid and myxoid

compartments attract water from the blood supply which is trapped inside the lesion.
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Figure 17 Myxoid liposarcoma with arborizing vasculature and lipoblasts at varying stages. Image from [31].



Figure 18 Unusual myxoid liposarcoma with rhabdomyoblastic differentiation. Image taken from [31].

Figure 19 MRI of a myxoid liposarcoma. From left to right: T2 fat suppressed, DWI at b zero and T1 fat suppressed

after contrast medium administration.

2.5 Leiomyosarcoma

Leiomyosarcoma is a rare malignant neoplasm (account for 5% to 10% of STSs) that affect
smooth muscles, mostly located to the retroperitoneum and can also affect large blood vessels.
Three different types of leiomyosarcoma exist, including the conventional/spindle cell type, the
myxoid and the epithelioid. Leiomyosarcoma is classified as an STS of poor prognosis and limited
therapeutic options and typically are large tumors with a mean diameter of 10cm.
Leiomyosarcomas have a fascicular growth histological pattern where tumor cells merge with
blood vessels. The tumours are usually compactly cellular and hemorrhagic, but fibrosis or
myxoid change may be present. Occasionally, leiomyosarcoma comprises poorly differentiated
pleomorphic areas (dedifferentiated leiomyosarcoma) and hypocellular zones and areas of

necrosis can be found frequently in larger leiomyosarcoma tumors. In MRI, leiomyosarcoma



exhibits an isointense to muscle T1 signal and mostly a hyperintense T2 fat suppressed signal.

Multiple MR images of a leiomyosarcoma are given in the following figure.

Figure 20 MRI of a leiomyosarcoma. From left to right: T2 fat suppressed, DWI at b zero and T1 fat suppressed after

contrast medium administration.

Leiomyosarcoma cases as illustrated from histopathological images (Figures 21-23).
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Figure 21 Well-differentiated leiomyosarcoma with a fascicular growth pattern. Image from [31].



Figure 22 Moderately differentiated leiomyosarcoma composed of deeply eosinophilic fascicles intersecting at right

angles. Image from [31].

Figure 23 Leiomyosarcoma with pleomorphic areas resembling undifferentiated pleomorphic sarcoma [31].

2.6 Alveolar soft part sarcoma

Alveolar soft part sarcoma (ASPS) is a rare sarcoma of uncertain origin (approximately 0.2% to
1% of all STSs) that comes from different anatomical areas including the muscles, fat and nerves
and typically occurs in young patients. The prognosis of ASPS is poor and although other high-
grade STSs rarely metastasize to the brain, ASPS is characterized by a late metastatic process
including the brain in up to 19% of the cases. Surgery is the treatment of choice while traditional
chemotherapy and radiotherapy have failed to provide significant results in patients’ survival.
ASPS is presented as a large and highly vascularized mass in MRI with an isointense or slightly

hyperintense signal on T1-weighted images, hyperintense T2 signal, enhanced signal in contrast



enhanced MRI due to the generated neovascularization network in the solid part of the tumor

and high signals on DWI (Figure 24).

Figure 24 MRI of an alveolar soft part sarcoma. From left to right: T2 fat suppressed, DWI at b zero and T1 fat

suppressed after contrast medium administration.

Histological findings report large eosinophilic tumor cells with an intravascular tumor extension
in most of the cases. Histology results from different subregions of an alveolar soft part sarcoma

are illustrated in the figures below.

Figure 25 An alveolar soft part sarcoma characterized by the orderly structured well- defined cellular tumor

compartments.



Figure 26 Histology image from an alveolar soft part sarcoma illustrating a tumor area consisting exclusively of

geometric honeycomb-like cellular compartments outlined by highly vascularized fibrous septa.

Figure 27 Less monomorphic but still distinct cellular compartments of various sizes and shapes with some

variations in cellularity divided by fibrous septa with ectatic (vascular) spaces from an alveolar soft part sarcoma.



Figure 28 An alveolar soft part sarcoma with geometric honeycomb-like cellular compartments divided by highly

vascularized fibrous septa containing congested variably sized blood vessels.

Figure 29 A relatively complex architecturally area of an alveolar soft part sarcoma exhibiting multiple variably
sized tumor cell nodules with uneven cellularity outlined by fibrous septa of variable thickness comprising unevenly

distributed variably sized and focally congested blood vessels.

Chapter 3 Advanced MRI

This chapter gives a general overview of all developed DWI models and their principles,
describes the most widely used techniques to assess model fitting quality, highlights common

representations of the DWI quantitative results and concludes to the design of a dedicated



software for DWI quantification further used as a pre-processing tool before the implemented
radiomic analysis (Chapter 4). It is highly noted that, as reported in the previous chapters, this
study focused exclusively on non-invasive quantitative MRI techniques, thus experiments
conducted on DCE-MRI data was beyond the scores of the current thesis. However, DCE-MRI

analysis and the current chapter are parts of one of our publications in this field, found in [6].

3.1 Diffusion Weighted Imaging (DWI)

Diffusion is the process of random motion of water molecules in a free medium. For human
tissues, water molecules can move inside cells, in the extracellular space, and also in the vessels.
A DWI, sensitized to microscopic water mobility by means of strong gradient pulses can be
utilized to provide insights in the complexity of the tissue microarchitecture. The amplitude and
duration of the diffusion gradients is represented by the “b-value” (measured in s/mm?), an
index used to control the sensitivity of DWI contrast to water mobility. A major requirement in
diffusion imaging is to select ultrafast pulse sequences that may freeze macroscopic motion in
the form of respiration, peristalsis or patient motion in general. For that reason, Echo Planar
Imaging (EPI) sequences modified with the addition of two identical strong diffusion gradients

are routinely used to provide diffusion images.
3.1.1 The mono-exponential model (MEM)

ADC [7] was the first and most widely used quantitative biomarker associated to cellular density
and the extracellular space fraction [32] with “apparent” giving away a reluctance to use it
literally as the distance travelled from the water molecule in a certain time in certain
surroundings. The simplest model assumes exponential signal decay where exponential
coefficient correlates with the product of b*ADC for each tissue type. For a given b-value, the
signal intensity of the Diffusion Weighted Image (DWI) depends on the ADC of tissue in each
individual pixel. ADC can be estimated with acknowledgment of two or more measurements on
different b-values (one with a b-value of zero and at least one with a higher b-value) as described
in the following mono-exponential equation:

Sb

% = exp(—b X ADC)

where S, and So denote the acquired diffusion signal for a particular degree of diffusion
weighting b (s/mm?) and the signal without diffusion sensitization, respectively. ADC is the
apparent diffusion coefficient (mm?/s), associated to tissue cellularity. The figure below depicts

an ADC map calculated from a patient with myxoid liposarcoma.



Figure 30 Apparent Diffusion Coefficient (ADC) map and its corresponding histogram of a patient with myxoid

liposarcoma of Grade 1.
3.1.2 The bi-exponential model (BEM)

After the introduction of the mono-exponential decay, a more complex model was proposed in
order to add sensitivity to the arbitrary motion related to micro-capillary perfusion, which
induced deviation from the initially assumed decay. The previously described mono-exponential
decay in many cases failed to estimate fast decaying signal appearing in the low b-values area,
attributed to faster water motion mimicking diffusion process in tissue, most probably to
arbitrary oriented flow in the micro-capillary network. A more complex model, Intravoxel
Incoherent Motion (IVIM) [8], was proposed by adding additional acquisitions at low b values to
sample the signal in the tissue where the faster decaying component contributes significantly to
the overall diffusion signal. The IVIM model assumes that tissue is primarily characterized by two
distinct compartments (an intravascular and an interstitial space) with negligible water exchange
between them, where the DW signal of each pixel can be expressed from the following bi-

exponential equation:

S
S_Z = f X exp(—b X Dfast) + (1 - f) X exp(—b X Dslow)

Similarly, to the mono-exponential fit equation, Sy is the measured signal intensity of the
diffusion-weighted image with a gradient factor attenuation b (s/mm?), and S, is the measured
signal intensity in the absence of diffusion weighting. The pure diffusion activity is given by the

slow diffusion coefficient (Dsow) (Figure 31). This new model attempted to measure the pure



diffusion signal contamination with the added term of “pseudo-diffusion” or the fast component
of diffusion (Dr.st), representing signal loss resulting from other processes, most likely micro-
perfusion of blood nutrients at capillary level. Ds.st is associated with blood velocity and vessel

geometry. Parameter f is the unitless fraction of fast component (f) (Figure 32).

Figure 31 Parametric map of the slow diffusion coefficient (Dso.) and its corresponding histogram of a patient with

alveolar soft part sarcoma (ASPS) of Grade 3.



Figure 32 Parametric map of the fraction of fast component (f) and its corresponding histogram of a patient with

alveolar soft part sarcoma (ASPS) of Grade 3. High values of f are depicted in the central part of the tumor indicative

to the vasculature characteristics of the ASPS.

3.1.3 The stretched exponential model (SEM)

Intravoxel heterogeneity in the distribution of diffusion coefficients because of heterogeneity in
fluid viscosity or diffusive restrictions has been quantified in the stretched exponential model
[9]. The existence of multiple pools rather than only two inside a ROl or pixel, together with
proton exchange between pools, have been pinpointed as the reason of mismatch observed
between expected volume fractions and fitted results from DWI data [33]. The proposed model
assumes continuous distribution of sources decaying at different rates without any restriction
in the number of participating sources and thus the signal attenuation can be attributed to the
aggregation of a number of uncoupled decay processes, such that:

Sp a
— =exp(—(b X DDC)?)
So

where a is the stretching parameter and a measure of deviation of the signal decay from the
simple mono-exponential behavior. Range of a is from 0 to 1. Lower values of parameter a
would imply presence of multiple compartments within the ROI, while at the upper limit (a = 1)
the model coincides with a simple exponential decay of a homogeneous sample. DDC is the
distributed diffusion coefficient (mm?/s) which is equivalent to the ADC when index a equals to

1. Figures 33-34 present SEM analysis results from a dedifferentiated liposarcoma case.



Figure 33 Distributed diffusion coefficient (DDC) map and related histogram from a patient with a dedifferentiated
liposarcoma (DDLS) of Grade 3.

Figure 34 Parametric map of the stretching parameter o revealing highly heterogeneous parts of a dedifferentiated

liposarcoma (DDLS) of Grade 3. Corresponding histogram of the tumor slice is also illustrated.

3.1.4 The diffusion kurtosis model (DKM)

Both the mono-exponential and the bi-exponential models rely on the assumption that water

mobility follows a random, unrestricted pattern, which can be considered as a Gaussian



displacement distribution. However, in biological tissues the presence of physical barriers like
cell membranes or compartments (intracellular and extracellular spaces) restrict the Brownian
motion of water [10]. When incorporating the assumption of a restrictive environment, the
displacement probability distribution for the water molecules deviates from the Gaussian shape
and the degree of this deviation is quantified by kurtosis. Kurtosis is a dimensionless metric
expressing the difference of an arbitrary distribution from a Gaussian with the same variance in

terms of more or less weight on the center and tails:

M,

Kapp =M—22—3

where M, is the n'" moment of the arbitrary distribution. Similarly, to the ADC, the diffusional
kurtosis (Kapp) is not specific for any tissue property and thus its interpretation in terms of tissue
structure is not always well defined. For example, changes in K,pp might be the overall result of
more than one complex processes in tissue and is unable to identify the precise biological
mechanisms behind this change (Figure 35). Several models have been proposed in order to
study the utility of kurtosis parameters in clinical practice. Most widespread model for kurtosis
stems from the expansion of Diffusion Tensor Imaging (DTI) approach where the exponential

decay of the signal is analyzed by Taylor series:

In(Sp) =InSy — b * Doy + O(b?) + -
With the introduction of high (b>1000) values in clinical practice the contribution from the
second order term cannot be considered negligible as when employed for DTI calculations and

the above expression can be rewritten as:

Sy 1, )
S—=exp (—beapp+g><b xDapp*Kapp)
0

Similarly, when b exceeds a certain upper limit, the latter expression may also suffer from
systematic errors in the calculation of D,pp and Kapp from the omission of even higher order
terms. Apparent kurtosis (Kapp, Unitless) reflects the deviation of water motion from the Gaussian
distribution, and apparent diffusion (Dapp, in mm?/s) equals to ADC when Ka,, equals to 0 (Figure

36).



Figure 35 A patient with pleomorphic undifferentiated sarcoma. Apparent kurtosis (K.pp) map and related

histogram illustrate areas of high tissue complexity (high K.pp values).

Figure 36 Apparent diffusion (D.pp) map and corresponding histogram of a patient diagnosed with a pleomorphic

undifferentiated sarcoma.



3.2 Fitting the diffusion signal attenuation

Several mathematical models have been proposed to quantify the DWI signal decay into
diffusion biomarkers. In contradiction to the mono-exponential model and the single ADC
biomarker calculated, a more complex mathematical framework is required for fitting the
diffusion signal according to the IVIM and the non-Gaussian models. In case of the IVIM and the
extended non-Gaussian IVIM model, two main categories are presented in the literature; a)
complete fitting methods for calculating simultaneously all the biomarkers using nonlinear
regression models and b) partial fitting methods that provide biomarkers in a more simplified
way based on observations related to the behavior of the true-diffusion and micro-perfusion

effects in the b-value range used.
3.2.1 Complete fitting

In order to extract multiple biomarkers from the IVIM and the non-Gaussian models, nonlinear
least squares (NLLS) are widely used. The NLLS fitting technique is based on the Levenberg-
Marquardt algorithm [34]. NLLS are minimization problems in mathematics that given initial,
lower, and upper bounds for the estimated parameters (i.e. Dsiow, Drast and f in case of the IVIM
model) approximate the diffusion model by a linear one and iteratively refine the values of the
parameters to reach their optimal values. The initial point is of crucial significance for the
convergence of the algorithm and a lot of attention has been paid for assessing the precision

and uncertainty in the estimation of the diffusion biomarkers as reported in [35].
3.2.2 Partial fitting

Many studies in the literature use partial fitting for calculating IVIM related biomarkers. Every
partial fitting method relies on the fact that, as stated in the IVIM theory, D+t is roughly one
order of magnitude greater than Dsow [36] at high b-values (b>200 s/mm?) and therefore the
micro-perfusion term in the IVIM model can be neglected. According to [37] the micro-perfusion
effect in high b-values is eliminated and the IVIM bi-exponential fit equation is simplified to the
following mono-exponential where D can be obtained linearly using least-squares regression.
Sb
5_0 = exp(—b X ADC)
The fitted curve from the mono-exponential model is then extrapolated at b=0 and the ratio
between the x-intercept and the DW-MRI data at b=0 gives an estimation of the perfusion
fraction f. Biomarkers Dsiow and f, are then substituted into the IVIM bi-exponential equation and
nonlinear least squares are applied to the entire b-value range for calculating Dsst. Alternatives

can be also found in [38].



3.3 Evaluation and representation of the fitted results

This section focuses on the assessment of the fitting performance when a mathematical model
is applied to the signal attenuation of the diffusion signal. This is an important step in the
guantitative MRI in general since fitting quality highly influences the model parameter values
calculation and therefore the representation of the tissue characteristics as depicted from each
corresponding parameter. Another important aspect in evaluating fitting performance lies on
comparative model selection studies where statistical metrics are calculated in order to find the
most suitable model that best quantifies the examined diffusion signal. This was a major
component of our analysis pipeline in differentiating STSs grading and is described thoroughly
in the following chapters. Finally yet importantly, the potential ability of a model parameter to
act as an indicator of a biological process and for monitoring the response to therapy can be
severely influenced by the lack of reproducibility and repeatability. Although repeatability and
reproducibility of the derived parameters was out of scope of this study, a thorough overview

of these tests is reported in our of our publication reports [39].
3.3.1 Model fitting techniques

Assessing how well models fit the real diffusion signal in every b-value is a crucial step in the
analysis. Without the knowledge of the trues values of the estimated biomarkers, an accurate
fit of the diffusion data can significantly provide relative confidence in the results. Several
statistical measures from the regression analysis can be used for evaluating models’ goodness
of fit to the diffusion data. R-square (R?) is one of the most commonly used statistical measure

for assessing the goodness of fit and is given by:

SSE
RZ=1-—"1

where SSE is the residual sum of squares and SST is the total sum of squares. R? values range
from 0 to 1 with 1 indicating a perfect fit and O a total dissimilarity. Alternatively, adjusted R?
can be used since it captures the number of the b-values used in the analysis (n), as well as, the
number of the parameters provided by each model (K).

(1-R%)x (N —1)
N—-—K-1

Riaj =1-—

Another statistical measure rely on the Root Mean Squared Error (RMSE) that estimates the
differences in signal intensity between the real and the modelled diffusion data in every b-value.
However, as reported in the literature, such metrics mainly rely on the measurement of the
absolute distance between the fitted curve and the acquired diffusion signal, thus tend to favour
the most complex models [40]. Statistically, a complex model (i.e. BEM) will fit better the data

than a simple model (i.e. MEM) causing overfitting and consequently false model selection in



many cases. For this reason, the aforementioned goodness-of-fit metrics mostly contribute to
assess the proximity of the fitted curve to the experimental data for each model, and act as a

thresholding criterion for excluding pixels that are noise and motion contaminated.

The core statistics in DWI studies where multiple models contribute to the diffusion signal fitting
and a decision of the most suitable model for a particular signal needs to be taken, Akaike
Information Criteria (AIC) [41], its corrected approach (AlCc) [42], and the F-test statistics (F-
ratio) [43] are suggested (Figure 37). The corrected AIC is a more appropriate metric than the
standard AIC in studies where there is a relatively large number of estimated model parameters
compared to the number of b-values. AlCc is given by the following equation:

2X(K+1)x(K+2)
N—-—K-2

AlCc = AIC +

AIC is given according to:

RSS
AIC=N><ln(T)+2><(K+1)

where RSS is the sum of squares of residuals and low values for AIC and AlCc signify a good model

fitting.

Figure 37 A pseudo-colorized classification map depicting model suitability of four examined models across pixels
within a myxoid liposarcoma. Left: classification map based on the AIC criterion. Right: AlICc-based model suitability
map.

However, representing Akaike criterion scores with probability measures is reported to be more
beneficial in model selection studies since it facilitates a direct interpretation of the relative
merits of the investigated models [44]. To this end, Akaike Weights (AW) are calculated for each
model in the examined set using AlCc scores differences (AAICc) between all models and the

model with the lowest AlICc at a given pixel (i).

AAICc; = AlCc; — minAlCc



AlCc scores of all models are then transformed into conditional probabilities (varying from 0 to
1) using the following equation where R is the number of models in the examined set and the
sum of AW being equal to 1. An analytical representation of the proposed model suitability
procedure is well outside the range of this study and a thorough description can be found in

[45].

exp (_ AAéCci)

T e e (275

The last metric for model selection relied on a hypothesis test using F-ratio with a 5% level of

significance and is calculated based on the following equation:

_ (SSEy — SSE;)/SSE,
~ (DF, — DF,)/DF,

where DF is the degree of freedom given by the number of the b-values minus the number of
model parameters, and subscripts 1 and 2 present the simpler and the more complex examined
models respectively. F-ratio indicates a pairwise comparison between two candidate models for
best fitting, choosing the more complex model (i.e. with subscript 2) in case its p-value is less
than the one from the F-table with a 5% level of significance. Multiple pairwise comparisons are
then conducted between the candidate models until the best model is determined. Wilcoxon
signed-rank and Dunn's non-parametric statistical tests are used to disclose any significant

differences between all examined models.

3.3.2 Qualitative and quantitative data presentation

Pixel based calculation of DW related parameters has the advantage of a detailed view over the
area of interest compared to simple ROI techniques [46], but the size of data is sometimes
overwhelming and difficult to handle. In order to gain an immediate insight into the complete
information contained in the calculated indices, parametric maps and related histograms are
produced (Figure 38). The quantification of specific histogram metrics may serve as the ground
for statistical interpretation of the results and possibly indicate well-aimed biomarkers for
certain pathology. Histogram metrics in some cases are able to discriminate two groups that
simple ROI methods fail to [47]. Most histogram analyses use descriptive statistics such as the
mean, standard deviation, quartiles, minimum, maximum, skewness and kurtosis to characterize
and compare distributions of the diffusion biomarkers in examined ROIs in a quantitative

manner.
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Figure 38 ADC histogram analysis performed on a pleomorphic liposarcoma. ROIs on an overlaid ADC map to the

tumor DWI slice (left part). ROIs were drawn on two different tumor subregions reflecting areas of low (red

annotation) and high cellularity (green annotation) as depicted in the histograms on the right part of the figure.

3.3 Implemented Software

Quantification of DWI requires a pipeline process comprising several steps of analysis after
images are acquired from the MRI vendor. Within the scope of this thesis, a software platform
was developed and published in [48] deriving a number of functionalities made available via a
graphical user interface (GUI) for empowering users to read, analyze, visualize and quantify the
DWI data into diffusion related imaging biomarkers. The main idea behind this tool was to assist
clinicians with a simple and comprehensive processing tool for DWI preparation (e.g. tumor
annotation) with no restrictions in imaging data and meta-data sharing across multiple software
platforms. The presented software decomposed a highly complex analysis to a guided step-by-
step procedure, meaning from data import to their quantitative interpretation. The tool is
addressed to an experienced user who wants to structure a composite analysis with multiple
facets, but is equally appealing to a clinical user who wants to benefit from a robust and simple
workflow in order to employ with ease medical image analysis in DWI data. To achieve this goal,
the demanding programming aspects and the complexities of the computational infrastructure
in all steps of the analysis were covered by a pipeline process in which GUI buttons were linked

to all analysis steps.

DMT was developed natively in MATLAB software platform, packaged as an executable file
running under Windows and was structured in a simple five-step workflow underlined in the
document below. To further support the pre-processing steps required for the radiomic analysis
workflow (Chapter 4), an interconnection between the tool and in-house software developed

for radiomics was established and meta-imaging files of any kind of MRI sequence, containing



the annotated ROIs, were directly transferred for radiomic feature extraction and ML analysis.
The following subsection describes the main functionalities of the platform through a pipeline

analysis mostly used in DWI quantification.

3.3.1 Region of Interest (ROI) delineation

Once DWI data are imported in the software a pop-up window permits interaction with the user
and ROI delineations are performed either manually by contour drawing within the DWI slices
or by importing the ROIs that are stored locally as meta-imaging files (i.e. NIFTI format). Manual
drawing is assisted with tools for: a) adjusting the levels of the image, and b) navigation through
the b-value acquisitions and the slices of the data to best determine the site of interest for
analysis. Alternatively, ROl delineation can be performed under an automated process in which

the platform imports the associated to the ROIs medical file and place the delineated contours

within the slices (Figure 39).
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Figure 39 ROI delineation using freehand drawing contours. The mean exponentially decaying curve of the selected

ROIs (red curve on bottom of the image) is displayed automatically as a function of the b-values. Settings are

depicted on the right part of the window.

3.3.2 Image preprocessing and quality assessment

Medical images and particularly DWI are artifact prone data mainly influenced during the
acquisition process. The attenuation in the diffusion data, especially when the b-value increases,
yields to images with low Signal to Noise Ratio (SNR) and consequently to poor fitting success.

DWI data acquired at high b-values provide insight into the tissue microstructure, thus excluding



such data from the analysis will hamper the obtained quantitative and structural information of
the analyzed tissue. Spatially varying noise levels are inherent in the DWI data and advanced
image denoising techniques are required for noise reduction. The platform is equipped with fully
automated filters [49] that are applied iteratively to multiple 3D DW!I data acquired at different
b-values and reduce noise without affecting signal abundant areas. A common metric to assess
the quality of the diffusion signal is given from the SNR of every pixel within the examine ROI,
yielding to SNR parametric maps as depicted in Figure 40 and given by the following formula

when images obtained with parallel imaging techniques are considered [50].

SI tumor

2
7 —75%air

SNR =

where Slwmor Was the signal intensity of each tumoral pixel and sd.ir the standard deviation of a

region of interest drown in the air near the anterior abdominal wall.

Figure 40 A pleomorphic liposarcoma case. Left: ADC map and associated histogram. Right: Calculated SNR map

using the diffusion signal acquired at zero b-value

3.3.3. Quantification of the diffusion signal

This section describes the core DWI analysis, comprising the pixel-by-pixel quantification of the
diffusion signal attenuation using the aforementioned models. Parameters of each model are
calculated, using mathematical curve fitting methods, for further analysis and visualization. The
platform uses fitting techniques relying on NLLS minimization problems in mathematics that
given initial, lower, and upper bounds for the estimated parameters (i.e. ADC) approximate the

diffusion model by a linear one and iteratively refine the values of the parameters to reach their



optimal values. The platform supports statistical analysis to determine the fitting accuracy of

each model on the diffusion data using the statistical metrics outlined in Section 3.3.1.

3.3.4 Visualization of the results

DWI analysis visualization is a significant step in the pipeline process as it gives a through
qualitative representation of the results. To this end, within the platform, the visualization
screen can show the anatomy of the examined tissue with an overlay of the parametric map of
the selected parameter, the SNR map and the goodness-of-fit metric. The corresponding
histogram can be shown in the lower part of the image and the user is able to load previous
analyses of the same patient or of another person. The delineation of a smaller ROl inside the
initial is allowed in order to focus on a specific area, which may be presented with specific
characteristics and attract clinical interest. For that specific ROI, the signal drop is plotted both
on normal and logarithmic scale and the mean value of all related metrics is shown (Figure 41).
Once the analysis is over, the user can export the calculated values of each parametric map or a
set of statistical metrics (minimum, maximum, mean, standard deviation, median, skewness,
kurtosis, variance, 5%, 30%, 70% and 95% percentiles) from the corresponding histogram in a
format of his choice (DICOM, text or a csv file). Lastly, the user can recall results from previous
analyses and perform comparison between different studies in a single screen frame. This way,
the platform can be a tool for longitudinal evaluation of disease progression or therapeutic
outcome for a single patient, or may facilitate the clinician to perform group studies of specific

patient cohorts (Figure 42).
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Figure 41 Fitting accuracy represented in normal and logarithmic scale for all selected models and quantitative
assessment of their parameters and the relevant statistical metrics. The results may stem from the initial ROI, a
selected subpart of it or a single pixel within it.
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Figure 42 Longitudinal mean value changes of the IVIM parameters with 95% confidence intervals, calculated at
seven distinct time points (T1 to T7). Image taken from one of our e-posters published in the European Society of

Radiology (ECR) https://dx.doi.org/10.1594/ecr2017/C-2835.

Chapter 4 Radiomics

4.1 Introduction

Radiomics has recently gained a lot of attention in medical imaging as a promising technique to
extract high-throughput quantitative features from complex patterns of the diagnostic images
(e.g. MRI) that can rarely be seen by the human eye [51]. Radiomics enables digital decoding of
images into quantitative features using histogram analysis, shape characteristics and image
texture analysis which is a standard image processing technique to define local variations in the
signal intensity of the image, identify image patterns and quantify image characteristics into
high-throughput vectors of hand-crafted quantitative features. Main radiomics objective is to
shift from visual interpretation of medical images to the prediction of a clinical outcome when
machine learning is embedded to the radiomic analysis, allowing a more precise diagnosis,

therapy planning and disease monitoring.

4.2 Analysis pipeline

A radiomic analysis pipeline comprises several steps including the identification of the clinical
question, data collection, image acquisition protocol optimization and standardization, image
pre-processing, delineation of the examined tissue, radiomic feature extraction, feature
selection/reduction and machine learning model development and validation (Figure 43). The
clinical question should be precise and clear enough in order to address an unmet clinical need
in cancer management. Data collection issues including sample size, data quality and diversity
are important factors for accurate, reproducible and repeatable radiomic results. In general,
machine learning algorithms are “data hungry” approaches. However, a specific number
regarding the sample size required for model development cannot be easily defined since this
depends on the complexity of the model, the validation approach and the amount of
information that can be extracted from the images (i.e. high-dimensional data). As a rule of
thumb, an 1:10 ratio between the imaging features and the samples is recommended for

radiomics-based machine learning models to avoid overfitting. Data homogeneity in the



examined cohort is suggested in radiomics since it decreases variability on both data and analysis
results. Nonetheless, data heterogeneity and the design of multicenter radiomic studies (train
with data from one center and validate externally with data from other institutes) is inevitable
to meet real-life conditions and increase generalization performance of the models. Another
significant issue in imaging studies is the development of standardized and optimized acquisition
protocols. Although data heterogeneity is recommended as it potentially increases the
generalizability of the developed models, differences in the acquisition protocol and vendor
parameters yield spatial and contrast differences in the acquired images, further affect the
calculated radiomic features. Therefore, standardization of image acquisition and of the

radiomic features is an important step to maintain radiomics integrity.
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Figure 43 Radiomic analysis pipeline supporting precision medicine decision making. Image taken from the

European Research Consortium for Informatics and Mathematics (ERCIM) news.

Tumor delineation is a crucial part in the radiomic studies that can be performed either on a
two-dimensional basis (i.e., on a 2D MRI slice) or on the entire tumor volume (three-dimensional
using multiple MRI slices). Regions of interest (ROIs) can be drawn manually, semi- or fully
automatically using a variety of existed software solutions (e.g., deep learning models for tumor
segmentation). Pre-processing of the examined images is also an urgent step in the analysis
pipeline and generally includes pixels outlier filtering, noise reduction or elimination, and
discretization of the single intensity of all pixels within the examined ROIs. A thorough

presentation of the radiomic analysis pipeline can be found in [52].

4.2.1 Radiomic feature extraction



Radiomic feature extraction involves the calculation of high-dimensional handcrafted imaging
features once specific regions of the examined tissue are identified and segmented. These
features mainly include descriptors of the signal intensity of an image, size and shape-based
characteristics, features that identify potential relationships between the pixels of animage, and
texture features calculated using image transformation methods (e.g. wavelet transform, Gabor
filters, etc.). A broad categorization classifies the radiomic features into morphological, first and
higher-order texture features. Morphological features are related to the 2-dimensional and 3-
dimensional size and shape of the examined area given by a single ROI (e.g. from an MRI slice)
or several ROIs across multiple ROIs across all axis (e.g. 3D tumor volume from multiple MRI
slices). They assess the geometrical characteristics of the annotated area and, among others,
they include surface to volume ratio, sphericity, maximum 2D and 3D diameter, flatness,
perimeter, compactness, etc. First-order texture features are histogram-based features that
describe the distribution of the signal intensity of the pixels within the examined ROls. Among
others, these include the mean, median, entropy, uniformity, interquartile range, variance,
skewness (asymmetry) and kurtosis (flatness) of the histogram of values. Higher-order texture
features (see following section) are widely used in radiomics and describe spatial relationships
and statistical correlations between the pixels (inter-pixel relationships) within the ROI(s). Multi-
resolution transformations of the image using wavelets and Gabor filtering which is a multi-scale
technique able to quantitatively characterize texture at different scales and orientations are
transform-based techniques that are frequently used in radiomics in order to expand the
number of the acquired features and obtain more textural information across the different
scales of the image. The underlying concept behind multi-scale/resolution texture techniques is
that important information about the image structure is contained at a number of different
scales and not only at one scale. Therefore, scale can be considered as a continuous variable
rather than a simple parameter, and features may be extracted at multiple scales, therefore
allowing for a multi-scale representation. A comprehensive radiomic analysis using Gabor

filtering to predict breast cancer therapy response can be found in one of our publications [53].
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Figure 44 . Gabor scale-orientation filtering illustrated for orientations (8)={0° 45° 90°, 135°} and for scales {0.1,
0.2,0.3,0.4,0.5,0.6, 0.7, 0.8, 0.9, 1}. After applying the Gabor filter bank to the selected ROI of the image the filter

responses lead to 40 different scale-orientation image representations.

4.2.1.1 Higher-order texture features

Grayscale co-occurrence matrix (GLCM)
Grayscale co-occurrence matrix (GLCM) has proved to be a robust method for extracting texture

features from images. Haralick has defined fourteen features from GLCM, for the extraction of
the image texture characteristics. Considering a GLCM of size N; X N, and the description of
second-order joint probability function of the image is defined as P(i,j | §,0) where i;
represents the times of a certain combination that occur in the image which are separated by a
6 distance of pixels with angle . Indicative texture analysis results on whole MRl slice of a high

and low-grade STS are illustrated in Figure 45 and 46, respectively.



Figure 45 Whole image texture analysis on a high-grade STS (alveolar soft part sarcomal). Top left: the original T2w

MRI. Top right: Calculated image of the difference average. Bottom left: Calculated energy. Bottom right: Entropy
of the MR image.



Figure 46 Whole image texture analysis on a low-grade STS (myxoid tumor). Top left: the original T2w MRI. Top

right: Calculated image of the difference average. Bottom left: Calculated energy. Bottom right: Entropy of the MR

image.

Gray-Level Size-Zone Matrix (GLSZM)

An additional statistical texture descriptor is the Gray-Level Size-Zone Matrix. Similarly to GLCM,
GLSZM calculates the pixel intensities of an image. GLSZM considers the relationship between
same pixel intensities and areas. While GLCM uses one direction, GLSZM is calculated in all
directions. To calculate a GLSZM one has to measure the probabilities of different sized voxels
with certain intensities. Considering the following matrix of pixel intensities of an image, the
calculation of GLSZM requires to count the size of the relationship between same intensity
pixels. The connection which defines a relationship is same intensity value with a pixel offset
regardless the direction. A simpler approach/explanation would be to “follow” a single intensity
of a pixel and count how many times it occurred in our path. A simple visualization is shown

below.
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Figure 47 Example of filling the GLSZM for an image of size 4x4 including 4 gray levels.

GLSZM is particularly effective in characterizing texture homogeneity.

Gray Level Run Length Matrix (GLRLM)

A Gray Level Run Length Matrix (GLRLM) quantifies gray level runs of consecutive pixels with the
same gray level value, which are defined as the number of pixels. In a GLRLM the y axis
represents the number of runs of the gray levels and the x axis the occurrences in the image.
GLRLM is calculating for a single angle, however, one can calculate for several angles depending
on the application. As with the former matrices, more angles can provide better textural
information. One can deduct several textural features from a GLRLM. Considering N, is the
number of voxels in the image, N,- the number of discreet run lengths, N,-(©) the number of run
along angle 0, N, the number of discreet intensity values and p(i, j|6) the run length matrix

along an angle.
4.2.2 Radiomic feature selection/reduction

Since radiomics provides high-throughput imaging features to quantify non-invasively tumor
phenotype, feature selection has been proved to be a major step in the radiomic analysis
pipeline as it contributes significantly in the identification of relevant, non-redundant and stable
radiomic features, yielding most likely to increased machine learning models’ performance,
decreased time required for model training and reduction of model overfitting [54]. Most of the
machine learning algorithms used in radiomics are sensitive to the so-called curse of
dimensionality issues, thus an appropriate balance between the number of the examined
images and the radiomic features exported from these images is favorable to avoid a sparsely
populated examined feature space that makes the machine learning process to become more
difficult. To this end, several techniques have been developed to find the optimal feature subset
from a large pool of radiomic features according to a quantitative evaluation metric and are
broadly classified into four main categories: a) filter methods, b) wrapper methods, c) embedded
methods and d) hybrid methods [55].

Filter methods are simple, effective and computationally inexpensive feature selection
techniques that are independent of any employed model and applied prior to any machine
learning analysis. Within filtering feature selection, features are either ranked in a univariate

way (single and independent features) or selected as feature subsets (i.e. multivariate) based



primarily on statistical measures. In most of the univariate filtering methods, once features are
selected and ranked, a non-automated process needs to be applied in order to select the optimal
number of selected features further used as input to the machine learning models. Among other
filter selection techniques, correlation-based, statistical, and ranking filter methods are widely
used in radiomics. Correlation between radiomic features is examined in a pairwise fashion
where a linear relationship between two features is defined and quantified. Pearson and
spearman’s rank correlation coefficients are fast and easy to implement techniques to examine
whether two features are highly correlated among themselves and therefore keep one of the
redundant features for further processing. Statistical and ranking filter selection is mainly relied
on mutual information, information gain and pure statistical tests (i.e. ANOVA, chi-square and
wilcoxon rank sum test).

Unlike the filter techniques, wrapping methods use a certain subset of features and a machine
learning model to assess their predictive performance. This is a greedy and computational
expensive process since various feature subsets are generated and examined in terms of their
predictive performance until the optimal subset (i.e. best possible combination of features) is
found. Stopping criteria in searching the optimal subset needs to be defined by the machine
learning model prior to wrapping (e.g. select the feature subset one step before the model
performance starts to decrease) and selection of the feature subsets is made by forward feature
selection, backward feature elimination and recursive feature elimination. Forward selection
typically starts with no features and subsequently adds one or more features to the set at a next
step. In backward elimination, the entire feature set initially participates in the modelling phase
where one or more least significant features are iteratively removed from the examined set till
there is no improvement observed in the model performance. Recursive feature elimination is
a greedy optimization algorithm which aims to find the best performing feature subset by
creating models repeatedly and storing features from each iteration that yields the best or the
worst model performance. At the end of the process, until all features are examined
exhaustively, features are ranked according to their elimination order. Wrapper techniques are
more computationally demanding than filtering, especially in radiomic studies where data are
highly dimensional. Additionally, wrapper techniques are machine learning model dependent
and thus biased towards the model chosen to assess their significance in the prediction. Last,
embedded feature selection combines both filtering and wrapper techniques and is embedded
into the design of the machine learning model in order to reduce the computational time
required for identifying and selecting the most appropriate subset of features that yields to the

best performance.

4.2.3 Machine learning model development and validation



Radiomics aims to construct a machine learning model able to predict specific clinical questions
using a set of redundant and stable radiomic features after feature selection. According to the
different levels of the available clinical information and whether the clinical result is based on a
discrete (e.g. healthy vs malignant) or a continuous (e.g. time of relapse) outcome, several
machine learning models can be deployed, typically grouped into supervised, semi-supervised,
and unsupervised learning techniques. Unsupervised techniques (e.g. clustering) explore
whether potential associations and groups exist between the radiomic data without knowing a
priory any clinical information about the addressed question (i.e. unlabeled data). In semi-
supervised learning, models are developed using both unlabeled and labeled radiomic data from
a specific patient cohort. Supervised learning typically includes two steps of analysis: a) the
training and b) the testing phase. In the training phase, a large labeled dataset, in terms of the
recruited patient cohort, is used for building and fine-tuning the model while a smaller dataset
(ideally from a different data provider/institution) validates the model performance. Supervised
learning models that aim to predict a continuous clinical outcome are called regression
techniques whereas models that predict discrete outcomes (i.e. categorical outcome) are known
as classifiers. Widely used regression techniques include linear, logistic, LASSO-logistic and
elastic-net regression. Classifiers, according to their architecture design, can be further grouped
into tree-, distance- and rule-based machine learning models. Kernel-based classification
approaches including the support vector machines (SVMs) and their alternatives are common
distance-based techniques in radiomic analysis with generally a good predictive performance.
Rule-based classifiers are developed using various if-else rules coming from the data used for
training whereas tree-based techniques use a series of yes/no questions in order to determine
the predictive outcome. Decision trees are the most common tree-like classifiers comprising a
series of sequential decisions whereas random forests classifiers are developed using multiple

combinations of decision trees to construct the final decision.

In recent years, the ensemble classifier techniques are rapidly growing and enjoying a lot of
attention in radiomic studies due to their potential to greatly increase prediction accuracy of a
learning system. These techniques generally work by means of firstly generating an ensemble of
base classifiers via applying a given base learning algorithm to different permutated training
sets, and then the outputs from each ensemble member are combined in a suitable way to
create the prediction of the ensemble classifier. The combination is often performed by voting
for the most popular class and examples of these techniques, among others, include bagging,

adaboost and random forests.
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Figure 48 Common machine learning model categories. Image from [56].
Performance metrics
A crucial term for evaluation of the machine learning models is the classification error. However,
in many applications distinctions among different types of errors turn out to be important. In
order to distinguish among error types, a confusion matrix (see following Table) can be used to
lay out the different errors. In case of a binary classification problem, a classifier predicts the

occurrence (Class Positive) or non-occurrence (Class Negative) of a single event or hypothesis.

Table 2 Confusion matrix for a binary classification problem.

True Class
Predicted Class Class Positive Class Negative
Prediction Positive True Positives (tp) False Positives (fp)
Prediction Negative False Negatives (fn) True Negatives (tn)

Common metrics for evaluation of the classification performance, calculated from the
confusion matrix, are given below. Apart from the accuracy score, which is calculated as the
ratio of correctly classified samples by the total number of samples, showing the overall
accuracy of the model, other metrics of classification performance are also used.

tp +tn
tp+tn+fp+fn

ACC =

Precision (positive predictive value) can be interpreted as the ability of the classifier not to label
as positive a sample that is negative and is calculated as:

tp

PPV = ——
tr + fp



The sensitivity or Recall (true positive rate) of a test is its ability to determine the patient cases

correctly. This is also obvious through its calculation:

Specificity (true positive rate) represents the ability of a method to determine the negative
(patient) cases correctly. In simpler terms, a higher value of specificity will allow for less false

positives, or healthy subjects classified as patients.

The F1 score metric can be thought of as a combination of Recall and Precision as it is calculated
using these two metrics:

PPVXTPR _  2tp
PPV+TPR  tp+fp+fn

F1=2X

Sensitivity, specificity and accuracy describe the true performance with clarity, but failed to
provide a compound measure for the classification performance. This measure is given through
Receiving Operating Characteristic (ROC) analysis. For a two-class classification problem ROC
curve is a graphical plot of the sensitivity vs. 1-specificity as the discrimination threshold of the

classifier is varied (Figure 49).
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Figure 49 A typical ROC curve, showing three possible operating thresholds.

While the ROC curve contains most of the information about the accuracy of a classifier through
several values of thresholds, it is sometimes desirable to produce quantitative summary
measures of the ROC curve. The most commonly used quantitative measure is the area under
the ROC curve (AUC). AUC is a portion of the area of the unit square, ranging between 0 and 1,
and is equivalent to the probability that a classifier will rank a randomly chosen positive instance

higher than a randomly chosen negative instance.



Validation
In a machine learning analysis pipeline, a typical task is not only to learn a model for the available

data but also to learn a model with good generalization in its predictive performance. Such a
model may demonstrate adequate prediction capability on the training data and on future
unseen data (e.g. using an independent group of patients for validating externally model
performance). Cross validation is a procedure for estimating the generalization performance in
this context in a way to protect the classification model against over-fitting. No matter how
sophisticated and powerful algorithms for classification are developed, if no reliable
performance estimates are obtained, no reliable decisions can be made based on model results.
Basic forms in cross-validation are the k-fold and the leave-one-out cross-validation. In k-fold
cross-validation the data is first partitioned into k equally (or nearly equally) sized folds.
Subsequently k iterations of training and validation are performed such that, within iterations,
a different fold of the data is held-out for validation while the remaining k-1 folds are used for
learning. If k equals the sample size, this is called the leave-one-out. In case of stratified k-fold
cross-validation, the data are stratified prior to being split into k folds in order to ensure that
each fold is a good representative of the whole. Nested cross-validation techniques are used
both for the evaluation of the model’s performance in various stages, to select the best model
from a large grid of models as well as to optimize the model parameters. In this case, feature
selection, model selection and estimator hyper-parameter tuning and testing are all contained
within the bounds of the iterations of a single CV method. The generalization performance of
the proposed radiomic analysis reported in Chapter 6 was relied on the nested cross-validation
depicted in the following figure to eliminate random or cherry-picked train-test combinations

and provide a robust subgroup of radiomic features after feature selection.
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Figure 50 The proposed validation schema.



Chapter 5 Application of the DWI quantification into the
differentiation of STSs grading

5.1 Scope of the study

The presented study reports the core analysis results of the thesis aiming to investigate and
histopathologically validate the role of model selection statistical techniques in the design of
novel parametric meta-maps towards the discrimination of low- from high-grade soft tissue
sarcomas (STSs) using multiple Diffusion Weighted Imaging (DWI) models. The histologic analysis
on several tumor subregions confirmed model suitability results on these areas. Among all
examined histogram metrics, only 3 metrics all derived from the meta-maps were found to be
statistically significant in differentiating low- from high-grade STSs with an AUC higher than 89%.
DWI data of 28 patients with soft tissue malignancy were quantified using the mono-
exponential, bi-exponential, stretched-exponential and the diffusion kurtosis model outlined in
Chapter 3. Akaike Weights (AW) were calculated from the corrected Akaike Information Criteria
(AICc) to select the most suitable model for every pixel within the tumor volume (details can be
found in Chapter 3). All parametric maps were calculated using the aforementioned software
and pseudo-colorized composite diffusion model (CDM) maps were then generated to depict
model suitability, hypothesizing that every single model underpins different tissue properties of
cellularity, neovascularization, complexity and heterogeneity and cannot solely characterize the
whole tumor. Single model parametric maps were turned into meta-maps using the CDM map
and a histological validation of the model suitability results was conducted on several subregions
of different tumors. Histogram analysis on all maps and meta-maps was performed, Mann-
Whitney U test was conducted, p-values were adjusted for multiple comparisons and
performance of all statistically significant metrics was evaluated using the Receiver Operator

Characteristic (ROC) analysis.

5.2 Material and Methods

5.2.1 Patient population

This study was approved by the local's ethics committee. From July 2015 to February 2019, 31
patients with suspicion of a malignant soft tissue tumor underwent preoperative MRI
examination. Data were anonymized from the MRI vendor and within 14 days from the
acquisition, immediately after surgical excision, specimens were transferred to the pathology
laboratory for histopathologic evaluation and grading. Three patients were excluded due to
therapeutic intervention prior to surgery and 28 eligible patients (figure below) were grouped

according to the FNCLCC Histologic Grade (except for alveolar soft part sarcoma).
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Figure 51 The examined cohort.

A parallel preliminary study was also conducted using two additional patients diagnosed with
undifferentiated pleomorphic sarcoma (UPS) from an ultrasound-guided core needle biopsy and
spindle cell myxoid liposarcoma (SCML) when an open biopsy was taken from the dorsal site of
the tumor. A drug combination of tumor necrosis factor antagonist (TNF-a) and melphalan with
isolated limb perfusion (ILP) was administered as it has shown great anti-neovascularization
effects in STSs [57] and both patients underwent a baseline pre-therapy and a secondary MRI
examination 2 months after the end of the treatment. Patient diagnosed with UPS also received
a surgical excision of the mass after chemotherapy, while only chemotherapy was considered
adequate for the patient with SCML. The goal from this study was to investigate whether
vascularization, cellularity and tissue morphology changes induced by ILP with chemotherapy
and TNF-a could be assessed and monitored non-invasively from pixel level variations of DWI

model suitability within the tumor.

5.2.2 Histopathologic Analysis

Each fresh surgical specimen was oriented according to its anatomical axial plane based on
suture markings precisely placed by the surgeon, thoroughly inked at its outer surface with
permanent ink. Tumor distances were measured by a trained pathologist which consequently
sliced tumors in parallel consecutive thin slices 2-3 cm thick from its upper to its lower limit,
hence the preformed cuttings following the true axial tumor plane. The axial diameter of the
tumor mass was measured to identify the central tumor slice which subsequently was divided
in a grid-manner in orthogonal slabs each of which was placed in a labelled cassette. Standard

procedures for fixation, dehydration clearing and waxing were followed. 4um thick sections of



each of the FFPE (Formalin-fixed paraffin-embedded) tumor slab was placed into glass slides,
stained for H/E and examined microscopically (Nikon Eclipse E200) to characterize areas
according to cell type, tumor differentiation, cellular atypia, cellularity, mitotic activity,

vascularity and presence of necrosis.

5.2.3 MR examination protocol

All imaging data were acquired at a 1.5T scanner (Vision/Sonata hybrid System, Siemens,
Erlangen, Germany, Gradient Strength: 45mT m™, Slew Rate: 200mT m™ s?) in the local
university hospital. The protocol consisted of dual PD to T2 echo (TE1/TE2/TR : 13/80/ 3250m:s,
NEX:1) weighted sequence in axial and coronal planes with slice thickness 4mm (20% interslice
gap) to ensure complete lesion coverage and T1 TSE (TE/TR: 13/498ms) sequences which was
repeated after contrast medium administration. The number of slices and field of view were
adjusted among patients to cover the whole extent of the lesion ranging from 12-20 slices and
00x200mm (frequency phase matrix: 320x289) or 400x400mm (384x320) respectively. Also, the
coil differed among lesions, depending on the anatomy of interest and the optimal signal to
noise ratio (SNR). Spectral fat suppression was used to create fluid sensitive images with
increased lesion conspicuity. Acquisition time was 2min and 49s, regardless the variance in the
number of slices. The EPI DWI acquisition comprised 8 different b-values (0, 50, 100,150, 200,
500, 800, 1500 s/mm?) with TE/TR: 100/2900ms and slice positions / FOV / interslice gap were
identical to the dual echo acquisition. The matrix size was 128x128 or 92x92 for FOV of

400x400mm or 200x200mm respectively.

5.2.4 Image processing

For each patient, regions of interest (ROIs) on the outer edge of the lesion were traced manually
slice by slice on the diffusion images acquired at zero b-value with anatomical reference to the
co-registered PD and T2 dual echo images. Whole tumor volumes were determined from the
corresponding 2D slices by an expert with 12 years of experience, reviewed by a senior
radiologist with 34 years of experience in musculoskeletal MRI (both were blinded to the
histologic results) and copied to the diffusion images at the same slice location. Disagreement
between the two readers was resolved by consensus reading and refined annotations were
provided. Whole tumor volumes were digitally transferred to a personal computer for post-
processing using the developed software from Chapter 3. Diffusion signals within ROIs were
analyzed on a pixel-by-pixel basis and several parametric maps (exemplary images are shown in
Figure 52) were calculated using the mathematical models presented in Chapter 3. For the

reader’s convenience the equation of the four examined models are also given below:

1) The mono-exponential model (MEM):



Sp
— =exp(—b X ADC)
So

where Sy and So denote the acquired diffusion signal for a particular degree of diffusion
weighting b (s/mm?) and the signal without diffusion sensitization, respectively. ADC is the

apparent diffusion coefficient (mm?/s), associated to tissue cellularity.

2) The bi-exponential model (BEM):

Sp

Iy f X exp(—b X Dfast) + (1 - f) X exp(—b X Dslow)
0

where three parameters including the fast component of diffusion (Drs;, in mm?/s) related to
incoherent microcirculation, slow diffusion coefficient (Dsiow, in mm?/s) reflecting pure molecular
diffusivity, and the unitless fraction of fast component (f) were calculated using the above,

extended to the MEM, form.
3) The stretched-exponential model (SEM):

Sp a
— =exp(—(b X DDC)%)
So

where index a, varying from 0 to 1, corresponds to water molecular diffusion heterogeneity
(unitless), and DDC is the distributed diffusion coefficient (mm?/s) which is equivalent to the ADC

when index a equals to 1.

4) The diffusion kurtosis model (DKM):

S—b=exp(—b><Da +1><b2><D§ x K, )
SO pp 6 pp pp

where calculated apparent kurtosis (Kapp, Unitless) reflects the deviation of water motion from
the Gaussian distribution, and apparent diffusion (Dapp, in mm?/s) equals to ADC when Kipp

equals to 0.

In this study, mono-exponential, bi-exponential, stretched-exponential, and the diffusion
kurtosis model were referred as MEM, BEM, SEM and DKM, respectively. DWI data were fitted
nonlinearly using the Levenberg-Marquardt minimization algorithm and corresponding imaging
parameters from the four models were derived using the following constraints in their

initialization values:

1) MEM model: ADC from 0.1 (10mm?/s) to 4.0 (10*mm?/s) with an initial value of 1.5
(103mm?/s).

2) BEM model: Dgow from 0.1 (10 mm?/s) to 4.0 (10 mm?/s) with an initial value of 1.5 (10
3mm?/s), Drast from 10 (10°mm?/s) to 300 (10mm?/s) with an initial value of 50 (10

3mm?/s), and f from 0.05 to 0.9 with an initial value of 0.2.



3) SEM model: DDC from 0.1 (10*mm?/s) to 4.0 (10 *mm?/s) with an initial value of 1.5 (10
3mm?/s), and a from 0 to 1 with an initial value of 0.5.
4) DKM model: D,pp from 0.1 (102 mm?/s) to 4.0 (10 mm?/s) with an initial value of 1.5

(103 mm?/s), and Kap, from 0 to 2.5 with an initial value of 1.

Figure 52 An undifferentiated pleomorphic sarcoma (UPS) case. From top-left to bottom-right: parametric maps of

ADC, Kapp, a, and f derived from the MEM, DKM, SEM, and BEM, respectively.

5.2.5 Model Suitability

Small size corrected Akaike Information Criteria (AIC), denoted as AlCc, was initially calculated
to assess quantitatively how a model fits diffusion signal attenuation and select the most
suitable model for each pixel on the basis of a trade-off between fitting performance and
complexity (i.e. number of estimated model parameters). AICc, an adjustment to AIC used to
compensate for the relatively large number of the estimated model parameters (K equals to 1,
3,2 and 2 for the MEM, BEM, SEM and DKM, respectively) compared to the number of b-values
(N=8), was performed for all pixels within ROIs and models were ranked with lower AlCc score

implying a better score.

2X(K+1)x(K+2)

AlCc = AIC +
¢ N—K-2




AlIC is given according to:
RSS
AIC=N><ln(T)+2><(K+1)

where RSS is the sum of squares of residuals. However, representing Akaike criterion scores with
probability measures is reported to be more beneficial in model selection studies since it
facilitates a direct interpretation of the relative merits of the investigated models [44]. To this
end, Akaike Weights (AW) were calculated for each model in the examined set using AlCc scores

differences (AAICc) between all models and the model with the lowest AlCc at a given pixel.
AAICc; = AICc; — minAlCc

AlCc scores of all models were then transformed into conditional probabilities (varying from 0
to 1) using the following equation where R is the number of models in the examined set and the
sum of AW being equal to 1. An analytical representation of the proposed model suitability

procedure can be found in [45].

exp (_ AA;CCI-)

T e o (2700

5.2.6 Design of the parameters meta-map

Pixel-based model probabilities were further used to post-process every single model
parametric map. The underlying hypothesis was that since different pixels were assigned to
different models, single model parametric maps could not represent whole tumor
characteristics, thus resulting to incorrect values for each specific diffusion-related property (e.g.
cellularity). Therefore, post-processing of all acquired maps was performed using the AW,
yielding post-processed maps that only exhibit values from pixels that correspond to each
selected model (e.g. from the initial ADC map select only these pixels where MEM was selected
as the most suitable model). The CDM map design was focused on two directions. On one hand,
all derived parametric maps were optimized since only pixels that favored the selection of the
corresponding models participated in the analysis (herein meta-maps). This way, e.g. meta-Kapp
(exclusive to DKM) was computed only from the pixels that favor the DKM instead of the Kapp
map using all pixels within the examined ROI. On the other hand, meta-maps underlying the
same tissue properties (e.g. meta-ADC, meta-Dsow, meta-DDC and meta-Dapp) were fused into a

single meta-map (overall-meta-D), reflecting cellularity of the whole ROI (see below figure).

Precisely, the design of all post-processed maps, herein called meta-maps, comprises four
distinct phases outlined below. At the first step, once model weights had been assigned, a

composite diffusion model (CDM) map was generated based on a simple voting scheme where



a model with the highest AW was selected as the most suitable model for each examined pixel
within ROIls. Next, the composite map was overlaid on the diffusion images and subregions
within ROls were annotated and classified using a particular pseudo-color linked to the most
suitable model. Step 3, focused on the development of the following meta-maps: a) ADC meta-
map from MEM, b) Dsiow, Drast and f meta-maps from BEM, c) DDC and a meta-maps from SEM,
and d) Dapp and Kapp meta-maps from DKM. For the reader’s convenience, all meta-maps were
considered as meta-ADC, meta-Dsow, Mmeta-Dr.t, meta-f, meta-DDC, meta-a, meta-Dapp, and
meta-Kapp. Subsequently, at Step 4, tissue cellularity of the whole ROl was displayed by a unique
meta-map for D (overall-meta-D), generated by incorporating all subregions from meta-ADC,

meta-Dsjow, meta-DDC and meta-Dapp.

An indicative example is given in the following figure where maps related to tissue cellularity
were initially calculated from all models and for the entire ROl (1% column in the schematic
pipeline), the CDM map was masked individually to all maps (2" column), meta-maps were
generated exclusively from pixels assigned to the most suitable model (3™ column) and fused to

compose the overall-meta-D depicted at the final step of the pipeline process (4% column).

meta-
ADC

overall-
meta-D

MEM SEM

BEM DKM

Figure 53 An illustrative example of the parameter meta-map design displayed through a pixel-based 4-step
pipeline process. Step 1: Assuming that each rectangle on the left part of the figure represents whole slice tumor
delineation, ADC, Dslow, DDC and Dapp maps were initially derived using the 4 models. Step 2: Akaike Weights
were calculated, yielding the composite diffusion model (CDM) map for this particular slice. Step 3: CDM was
masked individually to each map, exhibiting only these pixels where the MEM, BEM, SEM, and DKM was the most
suitable for these particular pixels, respectively. Black regions include all rejected pixels. Subsequently, meta-maps
of ADC, Dslow, DDC and Dapp were calculated. Step 4: overall-meta-D was then generated, by a weighted sum of

all calculated meta-maps from step 3.

5.2.7 Ground-truth validation



Prior to the core analysis, validation of model suitability was carried out and parametric maps
from the four examined models were generated from several anatomical areas of known tissue
properties from pathology. Specifically, ROIs across multiple slices were drawn on the healthy
bladder, gallbladder and vasculature areas including the common iliac arteries. From one hand,
healthy bladder and gallbladder store the urine and the bile respectively, therefore a single
compartment of liquids is prominent and the MEM was expected to dominate in both areas. On
the other hand, clearly defined vasculature areas were annotated from multiple patients and
the BEM model, reflecting vascularization, was assumed to be the model that best characterizes

these particular areas.

5.2.8 Summary Statistics and parameters performance

Statistical analysis was conducted in R (version 3.6.1, R Foundation for Statistical Computing,
Vienna, Austria) and data were expressed as mean (standard deviation). Prior to any analysis,
goodness-of-fit of all models was evaluated using the bias corrected adjusted coefficient of
determination (adjusted-R2) and pixels having an adjusted-R2 of less than 0.7 for all models
were excluded from further processing, indicating noisy acquired signals, artifacts and failure of
the fitting. An exploratory whole-tumor histogram analysis was performed for each calculated
parameter summarized in Table 3, yielding several metrics including the mean, median,
skewness, kurtosis, entropy, and interquartile range (IQR) which quantifies the spread of data
between the 75" and 25 percentiles of the histogram. To this end, 102 histogram metrics were
produced by each patient further used to differentiate low- from high-grade STSs and normality
of their distribution was evaluated using Shapiro-Wilk test. When assumption was satisfied
metrics were compared between low- and high-grade STS using independent sample t-test;
otherwise a Mann-Whitney U test was conducted to disclose differences between the two
groups. STSs of grade 1 were classified as low-grade tumors whereas grades 2 and 3 were
classified as high-grade [58]. Results with p-values less than 0.0005 (i.e. 0.05/102 where 102 was
the number of the examined parameters) were declared statistically significant incorporating
correction to account for multiple comparisons using the Bonferroni adjustment. Prior to any
analysis, goodness-of-fit of all models was evaluated using the bias corrected adjusted
coefficient of determination (adjusted-R?) and pixels having an adjusted-R? of less than 0.7 for
allmodels were excluded from further processing, indicating noisy acquired signals and artifacts.
Subsequently, Receiver Operator Characteristic (ROC) analysis was used to assess the
performance of each statistically significant parameter. Quantitative metrics including the Area
Under the Curve (AUC), sensitivity, specificity, negative and positive predictive values (NPV and
PPV), accuracy and the optimal cutoff value of each ROC curve were calculated from ROC
analysis. The optimal cutoff was defined based on the Youden index and 95% confidence interval

(CI) for each metric was estimated using 1000 bootstrap resamples.



Table 3 Calculated parametric maps and related meta-maps from the four examined models

Parameters  Corresponding map

ADC apparent diffusion coefficient from MEM
meta-ADC ADC and the CDM

Dsiow slow diffusion coefficient from BEM
meta-Dsjow Dsiow and the CDM

DDC distributed diffusion coefficient from SEM
meta-DDC DDC and the CDM

Dapp apparent diffusion from DKM

meta-D,pp Dapp and the CDM

overall- overall diffusion from meta-ADC, meta-Dsiow, meta-DDC and Dapp
meta-D

Drast fast diffusion coefficient from BEM
meta-Dr.st Dtast and the CDM

f fraction of fast component from BEM
meta-f fand the CDM

a index a from SEM

meta-a a and the CDM

Kapp apparent kurtosis from DKM

meta-Kipp Kapp and the CDM

5.3 Results

5.3.1 Confirming the necessity of the proposed CDM approach

Prior to the core analysis, fitted pixels within ROls where all models failed to achieve an adjusted-

R? higher than 0.7 were excluded from the analysis (Table 4).

Table 4 Pixel-wise adjusted-R? for each of the four examined models expressed as mean (sd). Percentage of pixels
within tumor volumes and other anatomical areas having an adjusted-R? value below the defined threshold
(adjusted-R?<0.7) are given in brackets. Pixel percentages of the examined regions where all models achieved an

adjusted-R? less than 0.7 and therefore were excluded from further analysis are reported in the last column.

Adjusted-R?: d
juste mean (sd) %of excluded

Grade Patient [%of pixels below threshold] .
MEM BEM SEM DKM pixels
0.92(0.15) 0.93(0.17) 0.94 (0.15) 0.92 (0.17)
P1 5.79
[8.21] [8.07] [6.70] [9.17]
P2 0.91(0.16) 0.97(0.07)  0.98 (0.06) 0.94 (0.13) 0.60
[6.89] [0.90] [0.60] [3.74]
P3 0.99 (0.04) 0.99(0.05) 0.99(0.04) 0.99 (0.04) 0.42
Low [0.44] [0.75] [0.52] [0.53]
pa 0.98 (0.05) 0.99(0.06) 0.99(0.05) 0.99 (0.05) 0.56
[0.59] [0.90] [0.67] [0.71]
0.99 (0.01) 0.99(0.01) 0.99 (0.01)
P5 (0] 0] 1(0)o0 (0] 0
PG 0.95(0.07) 0.95(0.08) 0.96 (0.06) 0.95 (0.08) 0.70

[1.50] [0.92] [0.75] [1.27]



b7 0.98(0.07) 0.99(0.07) 0.99(0.06)  0.98(0.08) 0.75
[1.24] [1.10] [0.88] [1.44] ’
bg 0.99(0.05) 0.99(0.06) 0.99(0.05)  0.99 (0.06) 0.45
[0.54] [0.75] [0.54] [0.63] )
b 0.98(0.06) 0.99(0.04) 0.99(0.03)  0.99 (0.05) 0.10
[0.75] [0.17] [0.17] [0.54] ’
0.97(0.09) 0.97(0.1) 0.97(0.09) 0.97 (0.09)
P10 [1.59] [1.86] [1.46] [1.77] 1.27
0.97(0.07) 0.98(0.09) 0.98(0.08)  0.97 (0.08)
P11 [1.30] [1.47] [1.20] [1.47] 1.02
0.92(0.16) 0.94(0.19) 0.94(0.17)  0.92(0.17)
P12 [5.24] [6.31] [5.54] [6.05] 4.91
0.96(0.12) 0.98(0.09) 0.98(0.09)  0.96(0.12)
P13 [2.99] [1.42] [1.30] [2.42] 1.05
ppq  096(004) 098(0.02) 0.98(0.01)  0.97(0.03) 0
[0.14] [0] [0] [0]
0.97(0.09) 0.99(0.06) 0.99(0.06)  0.98(0.08)
P15 [1.54] [0.55] [0.53] [1.27] 0.42
0.87(0.18) 0.98(0.05) 0.97(0.05)  0.9(0.17)
P16 [11.75] [0.39] [0.78] [8.54] 0.19
0.92(0.13) 0.99(0.04) 0.99(0.03)  0.96 (0.08)
P17 [6.09] [0.22] [0.19] [1.69] 0.16
0.79(0.2) 0.92(0.12) 0.89(0.13)  0.76 (0.24)
P20 [22.43] [3.58] [6.88] [26.20] 1.92
_ 0.96(0.12) 0.99(0.08) 0.98(0.08)  0.97(0.12)
High P21 [2.70] [0.90] [1.17] [2.62] 0.72
0.94(0.09) 0.99(0.02) 0.99(0.03)  0.96(0.08)
P22 [2.63] [0.12] [0.14] [1.56] 0.05
0.91(0.13) 0.97(0.09) 0.97(0.08)  0.94(0.12)
P23 [6.71] [2.14] [1.58] [4.18] 1.17
0.87(0.19) 0.93(0.16) 0.94(0.14)  0.9(0.18)
P24 [10.27] [5.68] [4.41] [7.47] 3.73
0.98(0.05) 0.99(0.06) 0.99(0.04)  0.98(0.05)
P25 [0.47] [0.57] [0.47] [0.66] 0.28
0.96(0.06) 0.98(0.07) 0.99(0.06)  0.98(0.06)
P26 [0.87] [0.96] [0.65] [0.65] 0.48
0.98(0.05) 0.98(0.03) 0.99(0.02)  0.98(0.04)
P27 [0.66] [0.19] [0.16] [0.38] 0.07
0.99(0.05) 0.99(0.05) 0.99(0.05)  0.99 (0.05)
P28 [0.35] [0.39] [0.33] [0.41] 0.29
0.96(0.09) 0.99(0.03) 0.99(0.03)  0.97(0.07)
P29 [2.18] [0.13] [0.10] [1.08] 0.05
0.96(0.06) 0.98(0.03) 0.98(0.03)  0.96 (0.06)
P30 [0.98] [0.14] [0.13] [1.25] 0.11
_ _ 0.02 (0.08) 0.10(0.20)  0.01(0.05)
Iliac Arteries [100] 0.99 (0) [0] [98.33] [100] 0
0.97(0.02) 0.97(0.03) 0.97(0.02)  0.97(0.02)
Gallbladder [0] 0] [0] [0] 0
Bladder 0.99 (0.02) 0.99 (0.01) 0.99 (0.02) 0.99 (0.02) 0

[0

[0

(0]

[0




Known Anatomical sites
Model suitability was next validated using multiple annotations from anatomical areas of known

tissue properties from pathology. More than 96% and 98% of the bladder and gallbladder pixels
were assigned to the MEM, respectively. The BEM was favored from all pixels within the iliac
arteries. High meta-ADC (bladder: 3.35 (0.33) x10°mm?/s and gallbladder: 3.37 (0.57) x10°
3mm?/s) and meta-f values (iliac arteries: 0.87 (0.09)) were detected, as theoretically expected,
since a single compartment of liquids is prominent in the bladder and gallbladder, whereas

arteries comprise vasculature areas (Figure 54 and Table 5).
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Figure 54 Validating model preference using indicative anatomical areas of known tissue properties from
pathology. (Left): The composite diffusion model (CDM) map, overlaid to the right internal iliac artery (A), a bladder
(B) and a gallbladder (C). (Right): Calculated mean signal intensities and related fitted curves from all models when

applied on a pixel-by-pixel basis to the iliac artery (A), the bladder (B) and the gallbladder (C).

Table 5 Model preference in pixel percentages within the bladder, gallbladder and the iliac arteries. Meta-f and

meta-ADC were also displayed as mean (sd).

Area MEM BEM DKM SEM Parameter
(%) (%) (%) (%)




_ 3 2/c1-
Bladder 96.33 | 0.40 1.83 1.44 meta-ADC [x10° mm?/s]: 3.35
(0.33)
_ 3 2/c1-
Gallbladder | 98.57 | 0.94 0 0.49 meta-ADC [x107 mm?/s]: 3.37
(0.57)
Arteries 0 100 0 0 meta-f: 0.87 (0.09)

Pre and post-therapy induced changes
The purpose of this analysis was to examine whether therapy induced changes in the tumor

could be quantified non-invasively using the proposed technique. To this end, whole tumor
model suitability changes associated to treatment in patients diagnosed with undifferentiated
pleomorphic sarcoma (UPS) and spindle cell myxoid liposarcoma (SCML) were investigated and
the corresponding results are summarized in Table 6. According to the results, MEM was the
model of choice in post-therapy DWI from both tumor types. Especially for the UPS case, post-
treatment CDM maps reported MEM suitability in the majority of the pixels within the tumor
(83.07%), indicating a homogeneous non-vascularized tissue microenvironment almost fully
characterized by this model. Chemotherapy treatment caused an increase of 49.02% (from
34.05% pre-therapy pixels to 83.07% post-therapy pixels within the tumor) and 19.25% (from
33.65% pre-therapy pixels to 52.9% post-therapy pixels) of the UPS and the SCML pixels that
voted for the MEM when single-slice CDM maps were overlaid to each relative diffusion image,
respectively. On the contrary, BEM was the model of choice in 13.98% and 28.64% of the pre-
treatment UPS and SCML pixels, but model’s preference was restricted after chemotherapy
(3.11% and 18.19% respectively). Similarly, SEM and DKM were most suitable for characterizing
29.53% and 22.44% of the total tumor area in UPS before treatment. However, their applicability
in post-treatment DWI was significantly limited to an overall area of 5.53% and 8.29%,
respectively. Pre- and post-treatment CDM maps also demonstrated restrictions to pixel
percentages best characterized by the SEM in a patient with SCML. DKM almost equally
contributed to pre- and post-therapy CDM maps in case of the SCML patient. According to the
generated pre- and post-therapy CDM maps, in both cases, a drug combination of tumor
necrosis factor antagonist (TNF-a) and melphalan with isolated limb perfusion (ILP) targeted
neovasculature and highly heterogeneous parts of the tumor favored initially to the BEM and
the SEM models (pre-therapy), yielding post-therapy composite where MEM dominated their
areas (especially in the UPS case). In other words, heterogenous and vasculature subregions
were replaced by areas with pure cellularity.

Table 6 Before and after treatment pixel percentages of the whole tumor preferred by the 4 examined models in

an undifferentiated pleomorphic sarcoma (UPS) and spindle cell myxoid liposarcoma (SCML) patient. Treatment

induced changes were also reported as percentage changes of model preference between the two time points.

UPS SCML

MEM (%)
Before Treatment 34.05 33.65



After Treatment 83.07 52.90

Treatment Changes +49.02 +19.25
BEM (%)

Before Treatment 13.98 28.64

After Treatment 03.11 18.19

Treatment Changes -10.87 -10.45
SEM (%)

Before Treatment 29.53 29.77

After Treatment 05.53 21.76

Treatment Changes -24 -08.01
DKM (%)

Before Treatment 22.44 07.94

After Treatment 08.29 07.14

Treatment Changes -14.15 -0.80

Single slice model suitability changes in UPS and SCML areas are illustrated in figures 55 and 56,
respectively. Taking into account the large variation in the shape and size of the mass preceding
chemotherapy, an absolute measurement of the same slice position with reference to
anatomical landmarks was not preferred as it corresponded to different relative position within
the lesion. Therefore, pre- and post-therapy slices were chosen from the central position as
defined by the middle of the maximum length of the lesion at the coronal slice at the
corresponding imaging sequence. Figures 55A, 56A, 55B and 56B depict a slice-to-slice pre- and
post-treatment comparison of the central part of the UPS and the SCML when the CDM map
was overlaid on the diffusion image, respectively. In both tumor types, pre-therapy slice reveals
multiple tumor subregions characterized by different models (Figures 55A and 56A). In case of
the UPS, the pre-therapy slice (Figure 55A) shows a peripheral area with vasculature activity that
best characterized by the BEM (green), an intermediate rounded part of the tumor that best
described by the single MEM (blue color), and the most heterogeneous and complex part of the
tumor (lower central part) as the SEM (orange) and the DKM (red) where the most applicable
models in this particular area. A significant increase in the percentage of pixels that favored the
MEM was apparent in the post-therapy slice of the UPS (Figure 55B), whereas BEM, SEM and
DKM preference was notably decreased. Accordingly, pre-therapy slice of the SCML (Figure 56A)
depicts a central area that mostly voted for MEM (blue), surrounded by a vasculature area
according to the BEM (green) and subregions of SEM. Figure 56B underpins the anti-
vascularization effect of the treatment, showing a significant decrease of pixels preferred by the

BEM and increased pixels of MEM.

Pre- and post-therapy overall-meta-D histograms of the whole UPS and SCML are demonstrated
in Figure 55C and Figure 56C showing a shift of overall-meta-D towards higher values. A decrease
in meta-f and meta-Ka,pp and higher meta-a values from the UPS patient were also apparent after

therapy (Figure 55D). All differences were statistically significant (p<0.001). Whole tumor



changes in the parameters related to vascularization, complexity and heterogeneity were shown
as bar plots in Figure 56D. In case of SCML tumor, all parameter differences except meta-a were
found to be statistically significant (p<0.001). Whole tumor changes in the parameter values for

both the UPS and SCML are also presented quantitatively in Table 7.

B Pre-Therapy M Post-Therapy

overall-meta-D
(p<0.001)

meta-Kapp meta-a
(p<0.001) (p<0.001)

* 1.0

Figure 55 Slice-to-slice pre- and post-treatment comparison of a patient diagnosed with an undifferentiated
pleomorphic sarcoma. A: central slice of a diffusion image before treatment overlaid with the calculated CDM map.
B: Superimposed CDM map to the central slice of the tumor after treatment. C: pixel-based histograms
demonstrating changes in the overall-meta-D values before (red) and after (green) treatment. D: Bar plots showing
treatment induced changes in meta-f, meta-Kapp and meta-a. Note: In both A and B different colors are associated

to different models depicting model preference across all pixels within the tumor.
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Figure 56 Slice-to-slice pre- and post-treatment comparison of a patient diagnosed with a spindle cell myxoid

liposarcoma. A: central slice of a diffusion image before treatment overlaid with the calculated CDM map. B:
Superimposed CDM map to the central slice of the tumor after treatment. C: pixel-based histograms demonstrating
changes in the overall-meta-D values before (red) and after (green) treatment. D: Bar plots showing treatment
induced changes in meta-f, meta-Kapp and meta-a. Note: In both A and B different colors are associated to different

models depicting model preference across every pixel within the tumor.

Table 7 Pre, post- and treatment changes in overall-meta-D, meta-f, meta-Kapp and meta-a calculated from their
corresponding meta-maps from 2 patients with undifferentiated pleomorphic sarcoma (UPS) and spindle cell

myxoid liposarcoma (SCML), respectively.

UPS SCML
overall-meta-D (x103 mm?/s)
Bef
etore 2.280(0.722) 1.863 (0.401)
Treatment
Aft
er 2.989 (0.462) 2.239 (0.509)
Treatment
Treatment
+0.709 (-0,260) +0,376 (+0.108)
Changes
meta-f
Before
0.231(0.167) 0.130 (0.078)
Treatment
Aft
er 0.182 (0.133) 0.185 (0.135)
Treatment
Treatment
-0.049 (-0.034) +0.055 (+0.057)
Changes
meta-Kapp
Bef
etore 0.486 (0.207) 0.401 (0.193)

Treatment



After

0.397 (0.275) 0.214 (0.110)
Treatment
Treatment

-0.089 (+0.068) -0.187 (-0.083)
Changes

meta-a

Before

0.793 (0.115) 0.889 (0.112)
Treatment
Aft

er 0.911 (0.085) 0.848 (0.101)

Treatment
Treatment

+0.118 (-0.030) -0.041 (-0.011)
Changes

As a next validation step, whole tumor model selection for a dedifferentiated liposarcoma
(DDLS) (highly aggressive with distinctive intra-tumoral heterogeneity) and an alveolar soft part
sarcoma (ASPS) (highly vascularized of uncertain differentiation) is summarized in Table 8. The
SEM was the most preferred model for the DDLS, accounting 52.04% of all tumor pixels whereas

the BEM was selected for 40.15% of the ASPS pixels.

Table 8 Whole tumor model preference percentages of a dedifferentiated liposarcoma (DDLS) (highly aggressive

with increased intra-tumoral heterogeneity) and an alveolar soft part sarcoma (ASPS) (rare and highly

vascularized).
MEM (%) BEM (%) SEM (%) DKM (%)
DDLS 10.31 6.54 52.04 31.11
ASPS 40.08 40.15 18 1.77

To investigate and illustrate the prospective associations between histology and model
suitability, a spatial alignment was obtained between the surgical specimen and the central DWI
slice of the DDLS and the ASPS by dividing tumoral area into several localized ROIs using a virtual
grid in the DWI matching the slabs of the central tumor slice. Furthermore, histopathology
sequential microphotographs illustrating areas of interest of the slabs of the central tumor slice
were taken. CDM map and five tumor subregions (black circles), associated to the corresponding
areas of the tumor slabs (microphotographs 57A-57E), were overlaid to the central DWI tumor
slice of the DDLS (Figure 57F). ROl A showed a mixed model suitability pattern, mostly favored
to the MEM which was confirmed from microphotograph 57A, illustrating an area of the
dedifferentiated non-lipogenic tumor component with an intermediate grade of malignancy
consisting of relatively monomorphic tumor cells with cytologic features of moderate dysplasia,
a solid architectural pattern and increased vascularity. SEM dominated ROI B, indicating high
heterogeneity. This was evident from the histopathology of this area (microphotograph 57B),
rendering a highly heterogeneous architecturally and cytologically solid-cystic dedifferentiated
tumor area (pleomorphic anaplastic tumor cells with high mitotic rate, plentiful abnormal

mitoses, cystic and hemorrhagic cavities, a small area of necrosis). ROI C also presented a mixed



pattern of three models (MEM, SEM and DKM). This area (microphotograph 57C) was defined
histopathogically by cellularity, high grade morphology and vascularity. The lowest a values of
the slice (0.476 (0.06)) were found in ROI D where the SEM was favored by all pixels. This result
was in accordance with the histology of this subregion (microphotograph 57D), reporting the
most cellular, highly anaplastic area of the dedifferentiated component, comprising a highly
pleomorphic tumor cell population of gigantic and multinucleated cells with nuclear features of
extreme anaplasia, very high cellularity and increased vascularity with abnormally structured
blood vessels. Finally, pixels from ROl E voted for the DKM where this subregion
(microphotograph 57E) was histologically characterized by cellularity and complexity with
multiple foci of transitions of the lipogenic well-differentiated component in the solid

dedifferentiated component.

Figure 57 A dedifferentiated liposarcoma. From (A) to (E): Tumor exhibiting a complex highly heterogeneous
architecture, cytologically, in the morphologies and feeding blood vessels in cellularity, presenting extreme
variations in the degrees of differentiation. (F): The composite diffusion model (CDM) map, overlaid to the central
DWI tumor slice. ROIs A-E were associated to the microphotographs of the surgical specimen. MEM: mono-

exponential; BEM: bi-exponential; SEM: stretched-exponential; DKM: diffusion kurtosis model.

BEM was the most voted model in the central tumor slice of the ASPS, confirming the highly
vascularized nature of the tumor (Figure 58F). Model preference from ROl A and C (MEM was
favored by all pixels) was in accordance with histology of the areas of the tumor slabs

(microphotographs 58A and 58C), which underpin the well-structured mostly cellular tumor



areas comprising well-defined compartments delineated by very thin focally dilated fibrous
septa. Highly vascularized areas were noticed in regions from ROI B and D (BEM dominated) and
also depicted in the microphotographs 58B and 58D where the histological examination
revealed tumor areas with geometric honeycomb-like cellular compartments outlined by a rich
network of thin-walled sinusoid like, regionally congested blood vessels. Finally, the SEM
dominated region from ROI E where histology reported an area of the tumor characterized by a
relatively complex nodular architecture consisting of multiple variously sized and variably
cellular tumor lobules, delineated by thick fibrous septa with random focally dilated and

congested blood vessels (microphotographs 58E).

Figure 58 An alveolar soft part sarcoma. (A): a tumor area characterized by the orderly structured well- defined
cellular tumor compartments, (B) a tumor area consisting exclusively of geometric honeycomb-like cellular
compartments outlined by highly vascularized fibrous septa, (C): less monomorphic but still distinct cellular
compartments of various sizes and shapes with some variations in cellularity divided by fibrous septa with ectatic
(vascular) spaces, (D): tumor area with geometric honeycomb-like cellular compartments divided by highly
vascularized fibrous septa containing congested variably sized blood vessels, (E): a relatively complex
architecturally area of the tumor exhibiting multiple variably sized tumor cell nodules with uneven cellularity
outlined by fibrous septa of variable thickness comprising unevenly distributed variably sized and focally congested
blood vessels, (F): the composite diffusion model (CDM) map, overlaid to the central DWI slice of the tumor. ROIs

A-E were associated to the microphotographs of the surgical specimen.

5.3.2 Assessing the statistical superiority of the CDM derived-metrics



Model preference for low- and high-grade STSs is summarized in Table 9, revealing contribution
of all examined models in the characterization of the low- and high-grade STSs. The MEM was
the most preferred model for both groups, favored by 38.23% (low-grade) and 36.51% (high-
grade) of all pixels within the tumor ROIls. The BEM was mostly suitable for pixels within high-
grade tumors (14.51%) compared to low-grade tumors (8.46%). AlCc analysis yielded increased
number of pixels from high-grade tumors classified to the SEM (29.03%) compared to pixels
within low-grade tumors (24.78%). On the contrary, the DKM model was selected as the most
suitable model in 28.53% and 19.95% of the total pixels for low-grade for high-grade STSs,

respectively.

Table 9 Model preference percentages of low and high-grade STSs.

MEM (%) BEM (%) SEM (%) DKM (%)
Low (n=9) 38.23 14.51 24.78 28.53
High (n=19) 36.51 08.46 29.03 19.95

Table 10 presents the statistical analysis of the diffusion parameters calculated from the whole
tumor. Statistical significance was only determined from three parameters out of the 102
examined metrics, all calculated after model selection using the CDM map. The analysis results
indicated statistically significant differences between the two groups when the skewness of the
meta-Dsiow (corrected p<0.05) and the overall-meta-D (corrected p<0.05) as well as the IQR of
the meta-Dapp Were calculated. Meta-Dgow and meta-overall-D were highly positively skewed in
high-grade STSs (0.985 and 0.809) whereas a negatively skewed distribution was reported in
low-grade patients (-0.467 and -0.796). According to the IQR metric, a higher variability in the
histogram calculated from the meta-Dapp of the high-grade group was computed compared to
the meta-Dapp histogram from the low-grade patients (0.345 vs 0.686).

Table 10 A comparative analysis of all acquired parameters from the four models calculated using parametric maps

from single models (left columns) and the CDM map after model selection (right columns) between low- and high-

grade STSs. Note: Statistically significant results are displayed in bold. P-values are corrected for multiple testing.

Model Metrics Parameters
ADC (x10® mm?/s) meta-ADC (x10° mm?/s)
Low (n=9) High (n=19) P- Low (n=9) High (n=19) p-
value value
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0.241 1.000
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The diagnostic performance of the three statistically significant parameters is given in Table 11.
Herein, high-grade STSs was considered the positive class and all performance metrics were
given by the optimal cutoff of the ROC curve. All significant parameters after model selection
differentiated low- from high-grade STSs with an AUC higher than 89%. Highest accuracy (88.9%
with 95% Cl of 88.2% and 89.6%) in grading STSs was obtained from the skewness of the overall-
meta-D and the IQR of the meta-Da,pp. Among all histogram metrics, skewness of the overall-
meta-D correctly classified all high-grade STSs (sensitivity of 100%), while the skewness of the
meta-Dqow Showed the highest specificity (88.9%) and a 95% Cl of 68.4% - 100%. Accordingly, the
skewness of the overall-meta-D had the highest negative predictive value (100%), while the
highest positive predictive value was calculated from the skewness of the meta-Dsow (PPV =93.8,

95% Cl = 81.9% - 100%).

Table 11 Performance assessment of the three statistically significant parameters using several quantitative
metrics from the ROC analysis. A 95% confidence interval (CI) for each metric was estimated using 1000 bootstrap

resamples.

Skewness IQR

overall-meta-D (x1073 meta-Dsiow (X107 meta-Dapp (1073

mm?/s) mm?/s) mm?/s)
Accuracy (%) 88.9 [88.2 - 89.6] 85.2 [84.3-86.1] 88.9[88.2 - 89.6]
AUC (%) 90.1[78.1 - 100] 90.7 [77.7 - 100] 89.5 [75.6 - 100]

Sensitivity (%) 100 [100 - 100]
Specificity (%) 66.7 [35.9 - 97.5]

NPV (%) 100 [100 - 100]
PPV (%) 85.7 [70.7 - 100]
Optimal

-0.514

Cutoff

83.3 [66.1 - 100]
88.9 [68.4 - 100]
72.7 [46.4 - 99.0]
93.8 [81.9 - 100]

0.153

94.4 [83.9 - 100]
77.8 [50.6 - 100]
87.5 [64.6 - 100]
89.5 [75.7 - 100]

0.382




5.4 Discussion

In the present study, novel DWI parametric meta-maps incorporating four diffusion models and
model selection were developed, providing insights into the characterization of the STSs
microstructure, assess therapy induced changes using pre- and post-therapy diffusion MR
images and the discrimination of STSs grading. A ground truth validation was initially conducted
using areas of known tissue properties (bladder and the gallbladder and iliac arteries). Then,
whole tumor model suitability changes associated to treatment received in patients diagnosed
with undifferentiated pleomorphic sarcoma (UPS) and spindle cell myxoid liposarcoma (SCML)
were investigated and patients treated with a drug combination of tumor necrosis factor
antagonist (TNF-a) and melphalan with isolated limb perfusion (ILP) shown a significant reduce
in neovasculature and heterogeneous parts of the tumor. Subsequently, a histopathological
analysis was performed on a DDLS and an ASPS, two highly aggressive STSs with poor prognosis.
DDLS is mostly characterized by major cellular heterogeneity and histomorphology diversity,
while ASPS is a very well-structured distinctly compartmentalized highly vascular soft tissue
sarcoma [31]. Tumor characteristics were disclosed in the calculated CDM maps of the whole
tumor where suitability of the SEM, presenting tissue heterogeneity, exceeded half of the DDLS
pixels (52.04%) whereas a vascularization activity was evident in 40.15% of the total pixels within
the ASPS. Finally, several histopathology microphotographs representative of previously
topographically well-defined areas of the tumor further aligned to the DWI were meticulously
reviewed. An excellent association was observed between histology and model suitability results
when tumor subregions of histopathologically proven cellularity, neovascularization activity,
tissue heterogeneity and complexity were assigned to the MEM, BEM, SEM and the DKM,

respectively.

Subsequently, the method was statistically validated in differentiating low from high-grade STSs.
A histogram analysis was applied to all maps and meta-maps and results demonstrated that only
the IQR of the meta-Dap, and the skewness of the overall-meta-D and the meta-Dgow Were
statistically significant to differentiate STSs low from high grading, all derived after model
selection. In detail, a positive skewness in the cellularity-based parameters of overall-meta-D
and the meta-Dsow Was observed in high-grade STSs compared to negative values in the low-
grade group. This finding is in agreement with reports from studies in other cancer types,
claiming that increased ADC skewness is associated with a more advanced cancer staging [59].
On the contrary, none of the parameters directly calculated from the traditional, single-model
maps yielded an adjusted p-value<0.05. Last, a ROC analysis resulted to AUC values higher than
89%, high values of sensitivity and specificity and narrow 95% Cl in most of the cases after

conducting a 1000 bootstrap resample test.



Despite the promising results, the relatively small size of the low-grade STSs was the major
limitation of this study. However, this is a common problem since STSs are rare tumors and the
incidence of low-grade lower than that of high-grade tumors. Another limitation is related to
the monocentric setup of our study in the sense that all imaging data were from a single vendor,
possibly limiting generalizability and calling for more extensive, multi-centric studies.
Additionally, investigating how whole tumor model suitability changes are associated to changes
induced from STSs therapy treatment will be explored in the future. Preliminary findings from
one of our radiomic studies on T2 images (Chapter 6) have shown promising results in

discriminating STSs [60] and a future goal is to embed radiomics in the proposed analysis.

Chapter 6 Application of the DWI quantification into the
differentiation of STSs grading

6.1 Scope of the study

The presented study reports aimed to develop an MRI-based radiomics analysis framework and investigate
the feasibility of the calculated quantitative imaging features for differentiating low from high grade soft
tissue sarcomas (STSs). A total of 22 patients (9 low grade and 13 high grade) who were pathologically
diagnosed with soft tissue sarcomas were recruited for the analysis and corresponding T2-weighted MR
images were acquired for further post-processing. Tumor delineations were manually traced slice by slice
concluding to whole tumor annotated volumes from all enrolled patients. A total of 1165 high-throughput
patient-specific quantitative imaging features were exported from each volume using radiomics and
evaluated using random forest machine learning classifiers. The overall analysis framework was coupled
with feature selection and oversampling techniques to address high-dimensionality dataset issues and the
unbalanced ratio between the two examined groups. Validation was performed using repeated nested
cross-validation to eliminate overfitting problems and assess the stability of the classification performance.
The classifier, using the 13 most important radiomic features selected though training, yielded an accuracy
of 0.808+0.135, an area under the receiver operating characteristic curve equal to 0.884+0.154, F1-score
of 0.735+0.209, 0.760+0.295 and 0.680+0.304 for precision and recall respectively using independent test
sets. To this end, radiomic features from routine MR imaging protocols can provide a strong discriminatory

performance between low- and high-grade soft tissue sarcomas.

6.2 Material and Methods

6.2.1 Study Population

Twenty-six patients with soft tissue tumors of variable degree of malignancy underwent MRI
examination from July 2015 to February 2019. Exclusion criteria included compromised co-

operation, claustrophobia, patients who underwent therapy prior to imaging or between



imaging and surgical excision, and tumors completely suppressed by fat saturation. Hence, a
total of 22 patients were eligible for this study and corresponding images were anonymized and
transferred to a local database for further post processing. The examination protocol was
submitted and approved by the local ethics committee and all patients signed an informed
consent for the use of their data for research purposes. All data were anonymized at the hospital
premises. Within a short time-interval from radiological examination surgical excision took place
and the specimen was transferred to the pathology department for histopathologic analysis to
conclude on tissue type and grading. Grading was based on the FNCLCC system (grades 1-3).
Group A tumors of grade 1 (low grade) comprised 9 patients with histopathologically proven
well differentiated liposarcomas, myxoid liposarcomas, hibernoma (1 patient), desmoid tumor
(1 patient) and angiolipoma (1 patient). Group B (high grading tumors of grade 2 and 3) was
composed of 13 patients with poorly differentiated liposarcoma, pleomorphic liposarcomas,

Ewing sarcoma, leiomyosarcoma and alveolar soft part sarcoma. Indicative MR images depicting

low- and high-grade STSs are shown in the following figure.

Figure 59 Axial fat suppressed T2w (TE=80ms) TSE MRI in two different patients. (a) Low-grade myxoid tumor from
a male patient aged 26, and (b) a high-grade soft tissue tumor (alveolar soft part sarcoma) from a female aged 28.

Both are located in the shoulder girdle area.

6.2.2 MR acquisition protocol

Imaging protocol performed at 1.5T scanner (Vision/Sonata hybrid System, Siemens, Erlangen,
Germany, Gradient Strength: 45mT m?, Slew Rate: 200mT m™ s?) included dual PD to T2w echo
(TE1/TE2/TR: 13/80/3250ms, NEX:1) sequence in axial and coronal planes with slice thickness
4mm (20% interslice gap) to ensure complete lesion coverage as well as pre- and post-contrast
Tiw TSE (TE/TR: 13/498ms) sequences. The number of slices differed between patients
depending on lesion size. Given the variable locations of the lesions, the coil selection differed
between acquisitions to ensure complete lesion coverage at highest possible SNR. The field of
view depended on the lesion size and location and was set to 200x200mm (frequency phase

matrix: 320x289) or 400x400 mm (384x320). Spectral fat suppression was used to create fluid



sensitive images with increased lesion conspicuity. Acquisition time was 12min 49s, regardless

the variance in the number of slices.

6.2.3 MRI post-processing

The overall framework was developed to address four major steps of radiomics analysis
including tumor segmentation, calculation of high-dimensional quantitative imaging features,
feature selection, and development of predictive models relying on machine learning techniques

(Figure 60).
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Figure 60 Conceptual overview of the proposed radiomics analysis framework comprising of the four major steps

of tumor segmentation, feature extraction, feature selection and model development.

Initially, tumor delineations were manually traced slice by slice on T2w images by an MR
physicist with 12 years of clinical experience. ROIs were re-examined by a senior radiologist with
34 years of experience in musculoskeletal MRI. Tumor delineations were performed using a
modified version of our in-house developed software presented in Chapter 3, concluding to 22
whole tumor volumes from all enrolled patients. High-throughput patient-specific quantitative
imaging features were calculated from all tumor volumes using image analysis techniques to
derive a comprehensive spatial and functional view of the examined tissue areas based on
intensity, shape and textural characteristics. Specifically, histogram analysis describing the
spatial relationships between pixels was applied to each volume resulting to quantitative metrics
including mean signal intensity (Sl), standard deviation, median, skewness, kurtosis, variance,
10% and 90% percentiles, etc. Volumetric and shape-based features that capture the shape
characteristics of the tumor were also calculated (e.g. volume, surface area, sphericity, spherical
disproportion, maximum 3D diameter, etc.). Second-order statistics based on grey-level co-
occurrence matrices (GLCM), Gray Level Run Length Matrix (GLRLM) and Gray Level Size Zone
Matrix (GLSZM) were applied to all delineated tumor volumes providing relevant information
about the inter-pixel relationships within each examined region. All the aforementioned
techniques were extended to a multiresolution image scaling using wavelet decompositions of

level 1 and 2 and the extracted radiomic features were exported across different scales and



frequency directions. A total of 1165 imaging features were calculated using Python software

and the Pyradiomics library [61].

Prior to predictive modelling, preprocessing of the extracted radiomic features was employed
including feature selection, feature scaling and oversampling. To reduce high-dimensionality of
the provided radiomic signature, a univariate feature selection was initially performed and
Spearman’s rank correlation coefficient (rho) was calculated for each feature with respect to
tumor grading. A correlation above 0.4 was considered as significant and the remaining,
indicated by Spearman’s correlation coefficient, features were normalized using RobustScaler
using scikit-learn Python library [62]. RobustScaler was used instead of other widely used
techniques (e.g. StandardScaler from scikit-learn) as it is robust to outliers and can operate on
features that are not normally distributed. In this study all radiomic features were tested for
normality using Shapiro-Wilk test and most of them failed to achieve a p-value higher than 5%
indicating a non-normal distribution. A multivariate feature selection and ranking was then
performed using minimum redundancy maximal relevance (mRMR) [63]. Feature selection and
ranking was performed sequentially using a tradeoff for relevance and redundancy by
calculating the mutual information (Ml) between the radiomic features and the features with
the corresponding outcome. The 100 most highly ranked radiomic features selected from mRMR
were then forward as input to the predictive modelling phase. In the current study, an
unbalanced ratio was evident between the two classes (9/22 patients with low-grade tumor).
To tackle this issue, a synthetic minority oversampling (SMOTE) technique was conducted to
increase the size of the minority class by introducing synthetic patients from the corresponding
radiomic features [64]. The predictive modelling phase was based on ensemble techniques using
Random Forest classifier from scikit-learn Python library. Random Forest (RF) classifier was
chosen to discriminate low from high grade STSs as it is less prone to overfitting and generally

performs well when applied to high-dimensional low sample size datasets [65].

To assess the generalization performance of the proposed radiomics analysis framework and
eliminate any bias occurred during training, validation and testing of the technique, a repeated
nested cross-validation (CV) schema was followed as outlined in Figure 61. Although
hyperparameter optimization was out of scope of this study since the provided classifier was
launched using its default parameters, a nested CV comprising of an inner stratified 3-fold CV
and an outer stratified shuffle split (20% for testing and 80% for training) was used for selecting
the optimal subset of radiomic features and avoid any overfitting issues. The overall
preprocessing of the radiomic features was nested using the inner CV level and the chosen
subset of features were finally used to calculate the predictive performance of the model at the
outer shuffle split level. In more detail, at the outer level, the overall dataset was divided into

training (80% of the overall patients) and testing set (20%) using stratified random sampling.



Subsequently, the training set from the outer level was further divided into 3 inner folds to
define and evaluate the preprocessing phase. Each fold was acted as a validation set within the
inner CV to evaluate the performance generalizability of the classifier when trained using the
remaining inner folds. The whole nested schema was repeated 100 times to iterate through all

possible combination of train, validation and test sets.

outer stratified shuffle train-test split

Train Test
Test Over each Test set:
. Apply preprocessing
. Apply trained model
Test . Assess model performance

(
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Test Train

Over each Train set: N
Apply Spearman’s correlation
coefficient
Normalize features

inner stratified k-fold cross-validation

Train e Train Va I Id Apply feature selection
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. . . Over each Validation set:
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Estimate feature importance

Figure 61 The proposed nested cross-validation schema to assess the generalization performance of the radiomics

framework and to select candidate radiomic features for discriminating low from high grade STSs.

6.3 Results

A high-dimensional dataset comprising of 1165 radiomic features was calculated from 22
patients (9 of low-grade STS) and further analyzed using the proposed repeated nested cross-
validation (CV) schema. A total of 300 independent training/validation iterations (3 inner folds x
100 outer iterations) were performed to assess the importance of each radiomic feature in
discriminating low from high grade STSs and 957 out of 1165 features were reported from the
MRMR method as candidate features for modelling. During the inner part of the repeated nested
CV, feature importance was quantified using: a) the proportion of the number of times each of
the 957 features was selected as input to the classifier out of the maximum number of iterations
(300), and b) the feature importance as it is calculated from the RF using Gini impurity as a
criterion. Indicative results from the 10 most important radiomic features in terms of a) and b)

are presented in Table 12 and 13 respectively.

Table 12 The ten most important radiomic features according to their proportion of the number of times they

appear in the classification process during the repeated nested cross-validation.

Radiomic Features Proportion (%)




wavelet2-LLL_glrlm_LongRunLowGrayLevelEmphasis 80.25

wavelet2-LLL_glrlm_LowGrayLevelRunEmphasis 79.75
wavelet2-LLL_glrlm_ShortRunLowGrayLevelEmphasis 75.75
wavelet2-LLL_glszm_LowGrayLevelZoneEmphasis 71.75
wavelet2-LLH_firstorder_Skewness 65.5
wavelet-LLH_firstorder_Skewness 62.75
original_glrim_LongRunLowGrayLevelEmphasis 62.5
wavelet2-LLL_glszm_SmallAreaLowGrayLevelEmphasis 61.25
original_glrim_LowGrayLevelRunEmphasis 61
original_glrim_ShortRunLowGrayLevelEmphasis 58.5

Table 13 The ten most important radiomic features according to Gini impurity criterion using a RF classifier.

Radiomic Features Gini Impurity
original_shape_Elongation 0.036
wavelet2-LLL_glrlm_LongRunLowGraylLevelEmphasis 0.033
original_firstorder_Kurtosis 0.031
wavelet2-LLL_glrim_LowGrayLevelRunEmphasis 0.029
wavelet2-LLL_glrlm_ShortRunLowGrayLevelEmphasis 0.028
wavelet2-LLL_glszm_LowGrayLevelZoneEmphasis 0.018
wavelet2-LLH_firstorder_Skewness 0.016
wavelet-LLH_firstorder_Skewness 0.016
original_glrim_LongRunLowGrayLevelEmphasis 0.016
wavelet2-LLL_glszm_SmallAreaLowGrayLevelEmphasis 0.013

Concerning criterion a), a subset of radiomic features with proportion values above the 95%

percentile of the proportions related histogram was selected as candidate biomarkers.



Accordingly, all features having an importance based on Gini impurity above a specific threshold
(above 95% percentile) were also determined. To account both in radiomic feature stability as it
is quantified using criterion a) and feature’s classification importance as determined by the RF
(criterion b) an intersection of the two distinct aforementioned subsets concluded to 13 most
highly ranked group of radiomic features (Table below).

Table 14 The 13 most significant radiomic features based on both criteria as outlined from the proportion of the

number of times they appear in the classification process and their feature importance level according to Gini

impurity criterion from the RF classifier during the repeated nested cross-validation.

Radiomic Features Proportion (%) Gini Impurity
original_shape_Elongation 49.5 0.036
wavelet2-LLL_glrlm_LongRunLowGraylLevelEmphasis 80.25 0.033
original_firstorder_Kurtosis 54.5 0.031
wavelet2-LLL_glrim_LowGrayLevelRunEmphasis 79.75 0.029
wavelet2-LLL_glrlm_ShortRunLowGrayLevelEmphasis 75.75 0.028
wavelet2-LLL_glszm_LowGrayLevelZoneEmphasis 71.75 0.018
wavelet2-LLH_firstorder_Skewness 65.5 0.016
wavelet-LLH_firstorder_Skewness 62.75 0.016
original_glrim_LongRunLowGrayLevelEmphasis 62.5 0.016
wavelet2-LLL_glszm_SmallAreaLlowGraylLevelEmphasis  61.25 0.013
original_glrim_RunEntropy 48.75 0.011
original_glrim_LowGrayLevelRunEmphasis 61 0.011
wavelet-HHL_glcm_InverseVariance 43.75 0.011

RF performance was evaluated comprehensively across the 100 outer stratified shuffle split
iterations using accuracy, area under the curve (AUC), Fl-score, precision and recall. The
selected radiomic ‘signature’ from the inner part of the proposed CV schema comprising of 13
imaging features was examined in terms of its predictive performance using the unseen 100
testing sets. All metrics are reported as mean * std where ‘std’ stands for standard deviation.
The classifier achieved an accuracy of 0.808+0.135, an AUC equal to 0.884+0.154, F1-score of
0.735£0.209, 0.760+0.295 and 0.680+0.304 for precision and recall respectively.



6.4 Discussion

Our results suggested that the emerging field of radiomics offer a massive amount of
guantitative imaging features from T2w MR images from which significant biomarkers for
differentiating low from high grade soft tissue sarcomas can be identified after proper analysis.
In the current study a total of 13 radiomic features were selected as the most significant imaging
features that contribute to the best predictive performance when Random Forest classifier was
used for classification. The proposed classifier achieved an AUC of 0.884 +0.154 using a repeated
nested cross-validation schema comprising of 100 independent testing sets to assess its
generalization performance. A comprehensive preprocessing phase including feature selection,
feature scaling and oversampling was applied through the training phase to each independent
training set and a subset of radiomic features was defined each time to serve as candidate
biomarkers for differentiating low from high grade STSs. Two distinct criteria were followed to
select the most important set of radiomic features that concluded to the best predictive
performance. A limitation of our study was related to the rather limited size of patients recruited
for the analysis. Limited sample sizes of high-dimensional imaging features are a general concern
when performing radiomics analysis and overfitting problems might easily occur when data is
not handled carefully during model training and testing. Additionally, RF classifier and mRMR
were chosen by default as the most suitable methods for classification and feature selection
respectively. A large parameter grid consisting of several classifiers and feature selection
techniques which runs in parallel under a generalized repeated cross-validation framework
might potentially yield to a better predictive performance. Lastly, advanced MRI acquisition
protocols such as the Diffusion Weighted MRI when further analyzed using radiomics, can
provide additional information to the corresponding anatomical information retrieved from the

T2w images about the functional and morphological environment of the STSs.

Chapter 7 Conclusion

Considering the importance of accurate pre-operative and non-invasive characterization and the
discrimination of soft tissue sarcomas into low- and high-grade tumors, this thesis presented a
novel MRI-guided computational framework flexible enough to be applied both to advanced
MRI protocols (e.g. DWI of multiple b-values) and high resolution fat-suppressed T2-weighted
MR images. The overall scope of this work was to maximize the impact of pre-operative MRI for
soft tissue sarcomas and to present a comprehensive quantitative MRI methodology and a
radiomic analysis pipeline flexible enough to be deployed and in other fields of oncology.
Regarding the use of advanced DWI, the main goal was to quantify diffusion images on a pixel
level using 4 different mathematical models, spatially identify and select models that best
characterize subregions of the tumor, generate new parametric maps (meta-maps) based on the

relative information content of each examined model for the overall region of the tumor, and



perform a statistical analysis on all derived maps to differentiate low from high grading of STSs.
A secondary aim was considered in order to examine the application of radiomics in the
differentiation of the STSs staging based on anatomical high-resolution fat-suppressed T2-

weighted MRI. The conclusions drawn from this study are summarized below:

7.1 Differentiating low from high grade soft tissue sarcomas using post-
processed quantitative imaging biomarkers derived from multiple DWI

models

An excellent association was observed between histology and the derived composite diffusion
model (CDM) maps when tumor subregions of histopathologically proven cellularity,
neovascularization activity, tissue heterogeneity and complexity were selected for validating the
proposed technique. Additionally, therapy induced changes using a drug combination of tumor
necrosis factor antagonist (TNF-a) and melphalan with isolated limb perfusion (ILP) were
quantified non-invasively using the calculated pre- and post-therapy CDM maps. The
aforementioned results indicated that the proposed analysis workflow can potentially assist pre-
operative biopsy especially in heterogenous tumors and to assess non-invasively pre-operative
diagnosis of tumor type and grade, which is essential for adequate treatment planning. Meta-
parametric maps were subsequently calculated and a statistical analysis demonstrated that only
the histogram metrics IQR and the skewness derived from the meta-maps were statistically
significant to differentiate STSs low from high grading, showing AUC values higher than 89%,
high values of sensitivity and specificity. To this end, a DWI quantification using multiple models
and the design of composite parametric maps after model selection are suggested as statistically

significant and discriminatory factors in STSs grading.

7.2 High-resolution fat-suppressed T2-based MRI radiomic features for

discriminating tumor grading in soft tissues sarcomas

A radiomic analysis pipeline, comprising the calculation of high-dimensional handcrafted
features from T2-MRI, a feature selection strategy to select a stable and non-redundant subset
of radiomic features, the design of an ensemble machine learning model using random forests,
and a careful validation and assessment of the generalization performance of the model using a
nested cross-validation schema, resulted to an AUC of 0.884 + 0.154 and to 13 radiomic features
as the most significant imaging features that best predict tumor grading in soft tissue sarcoma.
To this end, radiomic features from routine MR imaging protocols can provide a strong

discriminatory performance between low- and high-grade soft tissue sarcomas.
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