
UNIVERSITY OF CRETE
DEPARTMENT OF COMPUTER SCIENCE

FACULTY OF SCIENCES AND ENGINEERING

Analyzing the Impact of Digital
Advertising on User Privacy

Panagiotis Papadopoulos

PhD Dissertation

Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

Heraklion, September 2018

UNIVERSITY OF CRETE

DEPARTMENT OF COMPUTER SCIENCE

Analyzing the Impact of Digital Advertising on User Privacy

PhD Dissertation Submitted

by Panagiotis Papadopoulos

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

APPROVED BY :

Supervisor: Prof. Evangelos P. Markatos, University of Crete, Greece

Committee Member: Dr. Sotiris Ioannidis, FORTH, Greece

Committee Member: Asst. Prof. Xenofontas Dimitropoulos, University of Crete, Greece

Committee Member: Dr. Nicolas Kourtellis, Telefonica Research, Spain

Committee Member: Asst. Prof. Michalis Polychronakis, Stony Brook University, USA

Committee Member: Dr. Nikolaos Laoutaris, Data Transparency Lab, Spain

Committee Member: Asst. Prof. Alexandros Kapravelos, North Carolina State University, USA

Department Chairman:

Heraklion, September 2018

Acknowledgments

During this amazing trip called PhD, I was fortunate to have some amazing people supporting

me. First of all, I am grateful to my supervisor Prof. Evangelos Markatos for shaping the

researcher I am today, and teaching me a unique research mentality. This thesis would not

be possible without his advices and our countless talks. I learned so many things next to

you that I will be always grateful for the influence you had in my life. I am also grateful to

my supervisor in Telefonica Research, Dr. Nicolas Kourtellis for his continuous support and

passion for work. It was always a pleasure working with you.

I consider myself very fortunate for being surrounded by brilliant minds, and therefore

I need to express my appreciation to Sotiris Ioannidis, Nikolaos Laoutaris, Elias Athana-

sopoulos, Michalis Polychronakis, Kostas Magoutis and Xenofontas Dimitropoulos for their

advices, mentoring and all the creative brainstorming time we spent together. Also I want

to thank every single co-author I had all these years: Elias Papadopoulos, Ilias Leontiadis,

Giorgos Vasiliadis, Panagiotis Ilia, Antonis Papadogiannakis, Alexandros Kapravelos, Eirini

Degkleri, Michalis Diamantaris, Michalis Pachilakis, Antonios Chariton, Giorgos Christou,

Thanasis Petsas, Alexandros Kornilakis, Manolis Karabinakis. We worked together, we got

rejected together, we resubmitted together. I really enjoyed working with you guys.

After spending a bit more than 7 years in Distributed Systems (DCS) lab, I feel like I have

found a second family there. I met and worked alongside great people in this lab and I want

to express my deepest gratitude to Antonis Krithinakis, Dimitris Deyannis, Panagiotis Gare-

falakis, Nikos Tsikoudis, Demetris Antoniades, Iason Polakis, Christos Papachristos, Lazaros

Koromilas, Eva Papadogiannaki, Despoina Antonakaki, Meltini Christodoulaki, Antonis Pa-

paioannou, Giorgos Tsirantonakis, Michalis Athanasakis, Evangelos Ladakis, Stamatis Vola-

nis, Zacharias Tzermias, Evangelos Dimitriadis, Laertis Loutsis, Manolis Stamatogiannakis

and all other past and present members of DCS for preserving the balance between computers

and real life, making the lab a fun place all these years.

I want to express my sincere thanks to Nikos Skotis, Aris Koutsouras, Giorgos Oikonomou,

Dimitris Patelis, Marina Aeraki, Stelios Ninidakis, Stephen Tripodianakis, Nikos Patsiouras,

Dimitris Chasapis, Dimitris Ioannidis, Bruno Cardoso, Minos Katevas and all other friends

for their support, love, tolerance, and all the great moments we have shared.

Finally, I would never have been able to reach this point without the unconditional love

and support from my parents Manolis and Evangelia, and my sister Kelina. Thank you for

bearing with me and being always by my side through my studies and life.

vii

Abstract

Digital advertising is a multi-billion dollar business that has the power to fuel the entire free

Internet. The recent years, it progressively moves towards a programmatic model in which

ads are matched to actual interests of individuals collected as they browse the web. The

advertiser pays a monetary cost to buy ad-space in a publisher’s medium (e.g., website) thus

delivering their digital advertisement along with the publisher’s interesting content in the

visitor’s display.

Unlike traditional advertisements in mediums such as newspapers, TV or radio, in the

digital world, the end-users are also paying a cost for the advertisement delivery. Whilst the

cost on the advertiser’s side is clearly monetary, on the end-user, it includes both quantifiable

costs, such as network requests and transferred bytes, and qualitative costs such as privacy

loss to the ad ecosystem. Indeed, as advertisements become more and more personalized to

match the users interests and become as effective as possible, more personal information about

the visiting users is needed. Motivated by that, tracking companies deploy sophisticated user-

tracking mechanisms retrieving any piece of information can reveal the user’s interests and

preferences.

Such information may include current and historical geolocations, installed apps, browsing

histories, and so forth. All this information is used to form rich user profiles and large

audience segments that can be shared with or sold to anyone interested (e.g., advertisers,

data brokers, data management platforms, etc.) beyond the control of the users. To conduct

such data markets and before performing any background user database merges, different

entities perform synchronizations of the different userIDs they have set for the same users.

This way they reduce the number of the different “aliases” with which they know a user,

increasing this way their capability of re-identifying users when they erase their browser

state (i.e., cookies) or even when they browse through VPN to preserve their privacy.

Besides the continuous growth of digital advertising and its impact on our everyday lives,

little we know about the flow of information within the participating companies and the

interconnections between them. Motivated by that, in this dissertation, we aim to enhance

the transparency in this large ecosystem and investigate the bidirectional effect between user

privacy and programmatic ad-buying. In particular, we explore the impact of personalized

advertising on the users privacy and anonymity given the elaborate deployed user tracking

and personal data collecting techniques. We experimentally measure the user information

leaks appeared while using websites and mobile apps. Based on the insight gained from these

experiments, we design countermeasures to mitigate the privacy loss.

ix

Towards the opposite direction, we study how these collected user data affect the pric-

ing dynamics of programmatic ad-auctions and how much advertisers pay to reach a user.

Then, we compare the costs imposed by digital advertising to both users and advertiser for

the very same delivered ad traffic. These costs include network overhead, temperature, en-

ergy consumption, loss of privacy. Finally, in an attempt to investigate privacy-preserving

alternatives for web monetization that can be completely detached from any personal data

requirement, we perform a detailed analysis of the profitability and the user-side overheads

of the emerging technology of web cryptomining .

Supervisor: Professor Evangelos P. Markatos

Περίληψη

Η ψηφιακη διαφημιση ειναι μια επιχειρηση πολλων δισεκατομμυριων δολαριων που εχει την δυναμη

να τροφοδοτει ολοκληρο το δωρεαν διαδικτυο. Τα τελευταια χρονια, προχωρα προοδευτικα προς

ενα προγραμματιστικο μοντελο στο οποιο οι διαφημισεις ταιριαζουν με τα πραγματικα ενδιαφερο-

ντα των ατομων τα οποια συλλεγονται καθως αυτοι περιηγουνται στον διαδικυο. Ο διαφημιστης

πληρωνει ενα χρηματικο κοστος για να αγορασει διαφημιστικο χωρο στο ψηφιακο μεσο ενος

εκδοτη (π.χ. ιστοτοπο) παρεχοντας ετσι την ψηφιακη του διαφημιση μεσα στο περιεχομενο του

οπου καταληγει στην οθονη του επισκεπτη.

Σε αντιθεση με τις παραδοσιακες διαφημισεις σε μεσα οπως οι εφημεριδες, η τηλεοραση

η το ραδιοφωνο, στον ψηφιακο κοσμο, οι τελικοι χρηστες πληρωνουν επισης ενα κοστος για

να λαβουν μια διαφημιση. Ενω το κοστος απο την πλευρα του διαφημιζομενου ειναι σαφως

νομισματικο, στον τελικο χρηστη, περιλαμβανει τοσο ποσοτικα, αμεσα προσδιορισιμα κοστη

(οπως HTTP requests και μεταφερομενα bytes), οσο και ποιοτικα οπως η απωλεια ιδιωτικοτητας

μεσα στο οικοσυστημα των ψηφιακων διαφημισεων. πραγματι, καθως οι διαφημισεις γινονται ολο

και πιο εξατομικευμενες ωστε να ταιριαζουν με τα ενδιαφεροντα των χρηστων και να γινονται

οσο το δυνατον πιο αποτελεσματικες, χρειαζονται περισσοτερες προσωπικες πληροφοριες για

τους επισκεπτες. Με τον τροπο αυτο, οι εταιρειες παρακολουθησης αναπτυσσουν εξελιγμενους

μηχανισμους παρακολουθησης χρηστων που ανακτουν οποιαδηποτε πληροφορια που μπορει να

αποκαλυψει τα συμφεροντα και τις προτιμησεις του χρηστη.

Αυτες οι πληροφοριες μπορει να περιλαμβανουν τρεχουσες και ιστορικες γεωγραφικες θε-

σεις, εγκατεστημενες εφαρμογες, ιστορικο περιηγησης, κ.ο.κ. Ολες αυτες οι πληροφοριες χρη-

σιμοποιουνται για την δημιουργια πλουσιων προφιλ χρηστων που μπορουν να μοιραστουν η να

πουληθουν σε οποιονδηποτε ενδιαφερομενο (π.χ. διαφημιστες, μεσιτες δεδομενων, πλατφορμες

διαχειρισης δεδομενων κ.λ.π.) περα απο τον ελεγχο των ιδιων των χρηστων.

Για την διεξαγωγη τετοιων αγορων δεδομενων και πριν απο την πραγματοποιηση συγχω-

νευσης οποιασδηποτε βασης δεδομενων, διαφορετικες οντοτητες εκτελουν συγχρονισμους των

διαφορετικων αναγνωριστικων χρηστη που εχουν ορισει για τους ιδιους χρηστες. Με αυτον

τον τροπο μειωνουν τον αριθμο των διαφορετικων αναγνωριστικων με τα οποια γνωριζουν εναν

χρηστη, αυξανοντας ετσι την ικανοτητα τους να ταυτοποιησουν ξανα τους χρηστες οταν αυτοι

διαγραφουν ολα τα δεδομενα του browser τους (π.χ. τα cookies) η ακομα και οταν περιηγουνται

στο δικτυο μεσω VPN για να διατηρησουν την ανωνυμια τους.

Εκτος απο την συνεχη αναπτυξη της ψηφιακης διαφημισης και την επιδραση της στην κα-

θημερινοτητα μας, ελαχιστα γνωριζουμε για την ροη πληροφοριων μεταξυ των συμμετεχουσων

εταιρειων και τις διασυνδεσεις μεταξυ τους. Με αυτη την διπλωματικη εργασια επιδιωκουμε να

xi

ενισχυσουμε την διαφανεια σε αυτο το μεγαλο οικοσυστημα και να διερευνησουμε την αμφιδρομη

επιδραση μεταξυ της ιδιωτικοτητας των χρηστων και της ψηφιακης διαφημισης. Συγκεκριμενα,

διερευναμε τον αντικτυπο της εξατομικευμενης διαφημισης στην ιδιωτικοτητα και την ανωνυμια

των χρηστων, δεδομενων των περιπλοκων εφαρμογων παρακολουθησης χρηστων και τεχνικων

συλλογης προσωπικων δεδομενων. Μετραμε πειραματικα τις διαρροες πληροφοριων χρηστων

που εμφανιζονται κατα την περιηγηση ιστοτοπων και χρηση εφαρμογων σε κινητα. Με βαση τις

γνωσεις που αποκτηθηκαν απο αυτα τα πειραματα, σχεδιαζουμε αντιμετρα για να μετριασουμε

την απωλεια της ιδιωτικης ζωης.

Επιπροσθετα, μελεταμε πως αυτα τα δεδομενα που συλλεγονται απο χρηστες επηρεαζουν την

τιμολογηση των προγραμματιστικων δημοπρασιων διαφημισης και ποσα πληρωνουν οι διαφημι-

στες για να προσεγγισουν εναν χρηστη. Στη συνεχεια, συγκρινουμε το κοστος που επιβαλλεται

απο την ψηφιακη διαφημιση τοσο στους χρηστες οσο και στους διαφημιζομενους για την ιδια

διαφημιση. Αυτα τα κοστη μπορουν ειτε να προσδιοριστουν αμεσα (π.χ. θερμοκρασια συστημα-

τος, bytes , ενεργεια) ειτε να ειναι ποιοτικα, οπως η ιδιωτηκοτητα. Τελος, σε μια προσπαθεια να

διερευνηθουν εναλλακτικες λυσεις για την διατηρηση των διαδικτυακων εσοδων των παραγωγων

περιεχομενου, οι οποιες δεν απαιτουν χρηση προσωπικων δεδομενων, διεξαγουμε μια λεπτομερη

αναλυση της αναδυομενης τεχνολογιας του web cryptomining αναφορικα με την κερδοφορια της

για τους παραγωγους περιεχομενου και του κοστους της στον χρηστη.

Επόπτης: Καθηγητής Ευάγγελος Π. Μαρκάτος

The research outlined in this dissertation has been conducted in the Institute of Computer

Science of Foundation of Research and Technology, Hellas and Telefonica Research Labs in

Barcelona, Spain.

Contents

Table of Contents . xv

List of Figures . xix

List of Tables . xxv

1 Introduction . 1

1.1 Research Questions . 3

1.2 Contributions . 4

1.3 Outline of Dissertation . 6

1.4 Publications . 7

2 Background . 9

2.1 User Tracking . 9

2.1.1 Third party tracking in web sites . 9

2.1.2 Third party tracking in mobile apps 9

2.2 Real Time Bidding . 9

2.2.1 The key players . 11

2.2.2 RTB price notification channel . 12

3 Personal Data Collection and User Tracking . 15

3.1 Our dataset . 17

3.2 Monitoring outgoing traffic . 19

3.3 Privacy leak Analysis . 20

3.3.1 Encrypted sessions . 21

3.3.2 Identifiers leaked . 21

3.3.3 Diffusion of privacy leaks . 22

3.3.4 Mobile browsers leak too . 22

3.3.5 Performance cost of user tracking . 23

3.3.6 Lessons Learned . 24

3.4 Fortifying Apps from Trackers . 25

3.4.1 Our approach: antiTrackDroid . 25

3.4.2 Implementation . 26

3.5 Evaluation . 27

3.5.1 Privacy performance . 27

3.5.2 Latency overhead . 27

3.5.3 Benefits from the use of antiTrackDroid 29

4 Common User Identification . 33

xv

4.1 Cookie Synchronization . 35

4.1.1 How does Cookie Synchronization work? 36

4.1.2 Privacy implications for users . 36

4.1.3 Cookie Synchronization and Personalized Advertising 37

4.2 Cookie Synchronization Detection . 37

4.2.1 Heuristics-based detection . 38

4.2.2 Cookie-less detection . 40

4.3 Dataset . 43

4.3.1 Users . 44

4.3.2 Cookies . 44

4.4 Privacy Analysis . 45

4.4.1 Initiation of Cookie Synchronization 46

4.4.2 How are users exposed to CSync? . 47

4.4.3 Buy 1 - Get 4 for free: ID bundling and Universal IDs 48

4.4.4 Sharing sensitive information together with userIDs 49

4.4.5 Who are the dominant CSync players? 50

4.4.6 Spilling userIDs from Secure Sessions 51

4.5 Measuring ID-Spilling in the wild . 54

4.5.1 Data analysis . 55

4.6 Evaluation of Cookie-less Detection . 58

4.6.1 Detecting CSync in ID-sharing HTTP 60

4.6.2 Detecting CSync in HTTP with ID looking strings 60

4.7 Discussion . 61

4.7.1 Lessons Learned . 62

4.8 Countermeasures . 63

5 The Impact of User Data on Ad-pricing dynamics 65

5.1 Technical Challenges . 66

5.1.1 Encrypted vs. cleartext prices . 66

5.1.2 Encrypted prices on the rise . 68

5.2 Methodology . 68

5.2.1 Overall cost of the user’s data . 69

5.2.2 Price Modeling Engine . 70

5.2.3 YourAdValue . 71

5.3 Bootstrapping PME . 72

5.3.1 Dataset analysis . 72

5.3.2 Geo-temporal features . 73

5.3.3 User-related features . 74

5.3.4 Ad-related features . 76

5.3.5 Summary . 78

5.4 Charge Price Estimation . 78

5.4.1 Dimensionality reduction of features 79

5.4.2 Ad-campaigns setup . 80

5.4.3 Ad-campaigns analysis . 81

5.4.4 Encrypted price modeling . 83

5.5 User Cost for Advertisers . 84

5.5.1 Encrypted vs. cleartext price distributions 84

5.5.2 How much do advertisers pay to reach a user? 85

5.5.3 Summary . 87

5.6 Discussion . 87

5.6.1 Limitations . 87

5.6.2 Computing The financial worth of individuals 88

6 Costs of Advertising on Users and Advertisers . 89

6.1 Cost Analysis with OpenDAMP . 90

6.1.1 Quantitative & Qualitative User Costs 91

6.1.2 The OpenDAMP framework . 92

6.2 The view of the User . 93

6.2.1 Network resources consumption . 93

6.2.2 User privacy loss . 97

6.3 The view of the Advertiser . 98

6.4 Consolidating the two Views . 100

6.4.1 Cost on data plan vs. Cost of RTB . 101

6.4.2 Cost of Privacy vs. Cost of RTB . 102

6.5 Discussion . 103

6.5.1 Learnings . 103

6.5.2 Impact of Advertising Cost . 104

6.5.3 Reducing or rebalancing the costs . 105

7 Web-Mining as an Alternative Monetization Model 107

7.1 Background . 109

7.1.1 Web-based cryptocurrency mining . 109

7.1.2 How does web mining work? . 109

7.1.3 Cryptojacking . 110

7.2 Data collection and analysis . 111

7.2.1 WebTestbench framework for utilization analysis 111

7.3 Analysis . 113

7.3.1 Profitability of publishers . 113

7.3.2 Costs imposed on the user side . 115

7.4 Discussion . 122

7.4.1 User awareness . 122

7.4.2 Letting users choose . 122

7.4.3 Web-miner detection . 122

7.5 Summary . 123

7.5.1 Lessons Learned . 123

7.5.2 Can web-mining become the next web monetization model? 124

8 Related Work . 125

8.1 User tracking and Device Fingerprinting . 125

8.1.1 User ID Sharing . 126

8.2 User data and the Ad-Ecosystem . 127

8.2.1 Costs of Advertising . 128

8.3 Web-Mining and Monetization . 130

9 Conclusion . 133

9.1 Synopsis of Contributions . 133

9.2 Lessons Learned . 135

9.3 Directions for Future Work and Research . 136

Bibliography . 139

List of Figures

2.1 High level overview of the RTB ecosystem. Several entities interact with each

other, exchanging user’s personal data before it is finally converted to money. 10

3.1 High level overview of the data collection process. 17

3.2 Classification of apps based on the different content categories. 17

3.3 Number of analytics- or ad-related libraries per app. 43.33% of apps does not

contain any such library with the remaining 56.67% containing at least one. . 17

3.4 Percentage of apps, in which each ad-libraries is detected. 18

3.5 Overview of the monitoring methodology of apps and web related traffic. . . . 19

3.6 Use of SSL in apps and web. 20

3.7 Number of 3rd party tracking domains, with which the device interacts when

the user accesses each of the top 20 privacy-leaking services. 22

3.8 Percentage of apps, in which the top tracking domains were detected. 22

3.9 Number of requests to tracking domains for each browser, while fetching

google.com. 23

3.10 Distribution of total requests sent by services when accessed from web and app. 24

3.11 Distribution of tracking requests sent. 24

3.12 Distribution of total KBytes transferred. 25

3.13 Distribution of the tracking related KBytes transferred. 25

3.14 Defense mechanism overview. 26

3.15 Number of leaked ID without and with antiTrackDroid for the 30 apps with

the higher number of ID leaks. 28

3.16 Overall request forwarding time with and without antiTrackDroid. 28

3.17 Benefits from the use of antiTrackDroid. 28

4.1 Example of two entities (advertiser.com and tracker.com) synchronizing their

cookieIDs. Interestingly, and without having any code in website3, adver-

tiser.com learns that: (i) cookieIDs userABC==user123 and (ii) userABC has

just visited the particular website. Finally, both entities can conduct server-

to-server user data merges. 35

4.2 High-level overview of the internal components of CONRAD. 38

4.3 Heuristics-based Cookie Synchronization detection mechanism. 40

xix

4.4 Distribution of number of unique domains visited per user per month. The

median user in our dataset visits 20 - 30 different domains per month. 43

4.5 Distribution of number of times a user revisits the same domain per month.

The median user revisits the same domain around 7-10 times per month

through their mobile browser, while the 90th percentile may revisit the same

domains up to 25-29 times. 43

4.6 Number of (first and third-party) cookies per domain per user. We see that

the median user receives around 10 cookies per visited website. 44

4.7 Number of unique userIDs set per domain across the year. 80% of the users

are known to a single domain with only 2 aliases, on average, throughout the

entire year. 44

4.8 Distribution of the time it takes for the first CSync to appear per user. Around

20% of the users get their first userID synced in 1 day or less, when 38% of

users get synced within their first week of browsing. 46

4.9 CSyncs per HTTP request for the average user through the year, normalized

with their total number of requests. The average user receives 1 synchroniza-

tion every 68 HTTP GET requests. 46

4.10 Distribution of the synced userIDs per user. The median user has 7 userIDs

synced, and 3% of users has up to 100 userIDs synced. 47

4.11 Distribution of synchronizations per userID. The median userID gets synced

with 3.5 different entities. 47

4.12 Distribution of the number of entities learned at least one userIDs of the user

with and without the effect of Cookie Synchronization. As we can see, after

syncing the entities that learned about the median user grew by a factor of 6.75. 48

4.13 Portion of synced userIDs per content category. As expected, the vast majority

regards ad-related companies. 50

4.14 Portion of synced userIDs learned per entity over HTTP: 3 companies learn

more than 30% of the total userIDs in our dataset; 14 companies learn more

than 20% each. 50

4.15 High level overview of the TLS session leak. A privacy-aware user (1) visits a

webpage (example.com) over TLS and VPN. (2) It sends tracking information

to tracker1.com, and receives its cookie over TLS. (3,4) It takes only a HTTP-

based Cookie Synchronization (among tracker1.com and tracker2.com) in order

to spill user unique identifiers and visited website. Then, a snooping ISP can

re-identify the user just by monitoring the synced cookies, even if their real

IP address is hidden. 51

4.16 Distribution of the leaked TLS URLs per affected user. The median of those

users has 70 TLS URLs leaked through Cookie Synchronization, when the 90th

percentile has up to 226 TLS URLs leaked. 54

4.17 Distribution of the portion of TLS-based synchronizations per website for both

TLS and non-TLS websites. As we see, the median non TLS website has

around 27% of its Cookie Synchronizations over TLS when, most of the TLS-

protected websites have 92% of their synchronizations over TLS. 56

4.18 Distribution of non-TLS synchronizations per TLS website. Few websites (1

in 13) include quite a lot (up to 100!) of plain-HTTP CSync redirections. . . 56

4.19 Distribution of the non-TLS synchronizations per leaked userID. There is a

10% of IDs that gets synced with more than 17 third parties. 57

5.1 Portion of encrypted and cleartext pairs of ADX-DSP over time (2015). . . . 67

5.2 Cumulative portion of cleartext prices vs. ad-entities’ portion of RTB. 67

5.3 High level overview of our method. The user deploys YourAdValue on her

device, which calculates in real-time the total cost paid for her by advertisers.

In case of encrypted prices, it applies a decision tree model derived from the

PME. 69

5.4 Distribution of charge prices per city (sorted by city size). 74

5.5 Distribution of charge prices for different times of day. 74

5.6 Distribution of charge prices for different days of week. 75

5.7 Portion of RTB traffic for top mobile OSes. 75

5.8 Portion of RTB traffic normalized by OS. 75

5.9 Distribution of charge prices per mobile OS. 75

5.10 CDF of the generated cost per IAB category. 76

5.11 Ad-slot size popularity through time (sorted by area size). 76

5.12 Distribution of the charge prices per ad-slot size (sorted by area size). 77

5.13 Accumulated revenue per ad-slot size (sorted by area size). 77

5.14 Comparison of CPM costs for the different IAB categories in our dataset and

the 2 probing ad-campaigns. 82

5.15 Comparison of price distributions between cleartext and encrypted, for differ-

ent time periods and datasets (D vs. A1 and A2). 84

5.16 Cumulative CPM paid per user in our year long dataset. 85

5.17 Total cleartext vs. total estimated encrypted cost of each user in D (color

indicates nu- mber of users). 86

5.18 Average cleartext vs. average estimated encrypted price per impression of

each user in D. 86

5.19 Preliminary implementation of YourAdValue Chrome extension in use. 88

6.1 An example use of CSync in programmatic advertising. Advertisers can track

and re-identify users while they surf the web. 91

6.2 HTTP requests produced per user, across the year. Users create a relatively

stable HTTP traffic, increased during holiday periods. 93

6.3 Volume of total consumed KBytes per user, across the year. Users consume

an average of 5.9 GBytes per month. 93

6.4 Portion of HTTP requests produced across the day. As expected, users pro-

duce web traffic mostly from morning till early afternoon. 95

6.5 Portion of HTTP requests per content category the average user fetches through

the year. On average, 77% of the HTTP requests is associated with the content

the user is actually interested in. 95

6.6 HTTP requests received per user, per different resource type. 95

6.7 Bytes received per user, per different resource type. 95

6.8 KBytes per ad-related HTTP request per user, across the year. 96

6.9 Ad-related KBytes downloaded per user, through the year. 96

6.10 Portion of CSyncs per content category pair, through the year. 97

6.11 Synchronizations per HTTP request users receive through the year. The me-

dian user is exposed to a steady number of CSyncs. 97

6.12 Unique synced userIDs per user. The 50th (75th) percentile user gets up to

63 (195) unique IDs synced, at least once. 98

6.13 Portion of the total userIDs in our dataset each tracking entity learned. Some

entities have learned more than 10% of all userIDs. 98

6.14 Number of entities having access to a portion of a user’s IDs. The median user

loses up to 20% of its anonymity to 22 tracking entities. 99

6.15 Although there is an OpenRTB standard [110], every company follows its very

own protocol with different parameter naming, making RTB price filtering a

challenging task. 99

6.16 The RTB market share of the different bidders in our dataset. As we see, the

market share is mainly divided to a dozen of companies with the top 5 wining

67.7% of the RTB auctions. 100

6.17 Cost per user for advertisers to display ads across the year. The average

cost per impression for the median user is 0.9 CPM. The total cost paid by

advertisers for the median user is ∼22 CPM. 100

6.18 CDF of the average cost on the users’ data plan, and cost paid by advertisers

to deliver personalized ads to the same users. 101

6.19 CDF of the average CSyncs per impression retrieved per user, across the year. 101

6.20 Heatmaps of (a) average cost per impression for Bytes consumed by users

in advertising requests, (b) average Cookie Synchronizations per impression,

both compared against the average cost paid by advertisers to deliver RTB

ads to the same users (1-1 mapping), across the year. 102

7.1 Cryptomining market share per third party library in our dataset. Coinhive

owns the dominant share (69%) when JSEcoin follows with 13%. 110

7.2 High level overview of our measurement testbed. A Chrome-based platform

fetches each website for a specific time and its different components measure

the resources. 112

7.3 Estimation of monthly profit for the different monetization methods for a

website with 100K visitors and average visit duration of 1 minute. Even for

visitors with powerful devices (300Hashes/sec), a publisher gains 5.5× more

revenue by including 3 ads in its website. 114

7.4 Revenue per visitor for a website running in a background tab. In order for

a publisher to gain higher profit from mining than using ads (3 ad- slots), a

visitor must keep his tab open for duration > 5.3 minutes (depending on the

their device). 114

7.5 Revenue per visitor. In our Hybrid approach the revenue is bounded either

before or after the break-even point, to be always higher or equal to both ads

and web-mining . 116

7.6 Distribution of average real and virtual memory utilization through time.

Miner-supported websites although reserve (3.59x) larger chunks of virtual

memory, require 1.7x more MBytes of real memory than ad-supported websites.117

7.7 Distribution of the total transmitted volume of bytes per website for a visit

duration of 3 minutes. The median miner-generated traffic volume is 3.4x

larger than the median ad-generated. In 20% of the websites the difference

reduces significantly (less than 2x). 118

7.8 Distribution of the transmitted bit rate per miner-supported website in our

dataset. The median in-browser miner communicates with its remote MSP by

transmitting 1.17 Kbits per second. 118

7.9 Distribution of average temperatures per system’s core. When the visited

website includes miner, the average temperature of the cores may reach up to

52.8% higher (73− 77◦ Celsius) than when with ads. 120

7.10 Impact of background running miner- and ad-supported websites to a user’s

process. When the majority of ad-supported websites have negligible effect in

other processes, the median embedded miner in our dataset through its heavy

CPU utilization may cause a performance degradation of higher than 46% to

a parallel running process. 121

List of Tables

2.1 Examples of (A) cleartext, (B, C) encrypted RTB price notifications. “ID” is

typically a hexadecimal number. 12

3.1 Description of each ID we investigate, their required permissions (Normal per-

missions are marked with blue, when Runtime/Dangerous permissions with

red), their leakability by apps or browsers and the percentage of services found

retrieving the corresponding value of each ID. 30

3.2 Identifiers leaked by the most popular browser apps when visiting google.com. 31

4.1 Examples of userIDs getting synchronized between different entities. 39

4.2 Examples of Cookie Synchronization between third parties with plaintext and

encrypted cookie IDs. 41

4.3 Summary of contents in our dataset. 42

4.4 Breakdown of the Cookie Synchronization triggering factors. 45

4.5 Example of an ID Summary stored on the user’s browser with userIDs and

cookie expiration dates set by 4 different domains. 49

4.6 Example of leak in our dataset. Our crawler visited over TLS the https://example.com.

2 Cookie Synchronizations appear, where https://tracker1.com advertiser shares

with tracker2.com and tracker3.com the ID it assigned to the user. By doing

that over plain HTTP, the visited website is leaked through the referrer field

to a monitoring ISP or other entity. 53

4.7 Summary of results . 55

4.8 Performance of decision tree model trained on different subsets of features

available at runtime for classification, given already identified id-sharing en-

tries, and 10 cross-fold validation. 58

4.9 Performance of decision tree model trained on different subsets of features

available at runtime for classification, given a pre-filter for ID-looking strings.

All results besides the last row are with balanced dataset across the three

classes, and 10-cross fold validation. The last row’s results are computed given

an unseen, and unbalanced test set, maintaining the original ratio of classes. . 59

4.10 Detailed performance of decision tree model trained on different subsets of

features in a balanced dataset, and tested on an unseen, and unbalanced test

set, which maintains the original ratio of classes (last row of Table 4.9. 60

xxv

5.1 Summary of notations. 68

5.2 Summary of dataset and ad-campaigns. 72

5.3 Features extracted by summarizing data from parameters embedded in each

price notification detected in the dataset for users and advertisers. 73

5.4 Basic filters used in controlled ad-campaigns in Spain. In total, 144 experi-

mental setups were attempted. 81

7.1 Summary of our dataset . 111

7.2 Distribution of the average CPU Utilization for the different monetization

methods. The median miner-supported website utilizes 59x more the user’s

CPU than the median ad-supported website. 116

7.3 Distribution of the average consumption of power for the different monetization

methods. The median miner-supported website forces the user’s device to

consume more power than the median ad-supported website: 2.08x and 1.14x

more power for the CPU and the memory component, respectively. 119

Chapter 1

Introduction

In today’s data-driven economy, the amount of user data an IT company holds has a direct

and non- trivial contribution to its overall market valuation [211]. Digital advertising is the

most important means of monetizing such user data; it grew to $194.6 billion in 2016 [218]

and $209 billion in 2017 [119] of which $108 billion were due to mobile advertising. In

order to be more effective, digital advertising has become more personalized and targeted

thus changing the model of modern ad-buying. Nowadays, there is a whole new ecosystem,

where each ad-slot on a user’s display is getting auctioned in programmatic real-time auctions

where advertisers bid based on the profile of the user and how well their interests match the

advertised product.

As a result, we see more and more IT companies rushing to participate in this rapidly

growing advertising business either as advertisers, ad-exchanges (ADXs), demand-side plat-

forms (DSPs), data management platforms (DMPs), or all of the above. All these different

types of entities are parts of the same process: the process of converting user data to money.

Evidently thus, the model of digital advertising has been become heavily data-centric:

the efficiency and effectiveness of the personalized ad delivery process depends on the quan-

tity and quality of the data known for the current user. All of these necessary user data

are nothing more than information that the user generates with their actions while surfing

the Internet. This information, when collected and processed, can form a rich user profile

that includes interests, preferences, financial status, etc. of a potential product buyer of an

advertised product. Hence, it is apparent, that in personalized advertising such information

is valuable and therefore the collection of such data the recent years has become more ag-

gressive and sometimes even intrusive [96,104]. This aggressiveness has raised a huge public

debate around the tradeoffs between (i) innovation in advertising and marketing, and (ii)

basic civil rights regarding privacy and personal data protection [139,155].

These increasing privacy concerns, is the motive to explore the current advances of user

tracking and measure the privacy loss of users. Although there is a significant body of

research in desktop devices, the same does not applies in the in the booming era of IoT. We

do not know what kind of personal information gets leaked while using websites or apps on

1

2 Chapter 1. Introduction

a mobile device. And given that (a) mobile devices have become strictly personal (i.e., each

user uses it’s own device which carries almost always with them), equipped with different

kinds of sensors (e.g., accelerometer, gyroscope, GPS, etc.), (b) the heterogeneity of apps is

huge with different developers being able to penetrate the app market getting their own fair

share, and (c) considering the progressive shift of user traffic from desktops to these devices, it

becomes apparent that transparency with respect to privacy is of paramount importance, and

more investigation is required regarding what third party entities have access on what data

(sensitive data, personal identifiable information (PII), user device fingerprinting information)

and how do they collect them (with or without user’s permission). Such privacy analysis, will

increase the awareness of users regarding which of the two options (browser accessed website

or mobile app) facilitates the most privacy leaks while accessing the same online service from

their mobile device.

Apart from analyzing the user tracking techniques and their privacy implications, still

little we know about how the leaked user personal data are getting shared among the different

entities and what is the information flow within the ad ecosystem. In addition, there is a

significant lack of transparency regarding the monetization of this information and how the

quality and quantity of the personal data affect the pricing dynamics. Although, we receive

hundreds of personalized advertisements in our everyday life, yet we do not know what is

the monetary cost these advertisers pay to reach each one of us. There exist several reports

about the average revenue per user (ARPU) from online advertising [43,99,188], but ARPU,

as its name suggests, is just an average. It can be calculated by dividing the total revenue of

a company by the number of its monthly active users. Computing the revenue per individual

user is a completely different matter for which very limited work is available.

Given the impact of user’s data to the ad-pricing, the above estimation of the monetary

value advertisers pay to reach an individual, increase the user awareness regarding the mon-

etary value spent for the privacy loss they sustain. But are the advertisers only the ones

paying for the ad delivery? Do users indeed get content free of charge from an ad-supported

service? Contrary to the traditional advertising (i.e. in newspapers, TV, radio), in the digital

world, it is not only the advertiser that pays this cost, but the user as well! Indeed, besides

the costs on privacy, users have also to sustain costs on their dataplan, energy consumption,

network traffic while downloading the additional ad-, analytics- and tracking- related KBytes.

Having these hidden costs in mind, it becomes questionable who pays the most for the same

transmitted ad traffic: the receiver (the user) or the sender (the advertiser).

The existence of the hidden costs have also made users take measures to reduce the

costs they pay. Indeed, a growing number of users (615 million devices – 30% growth since

last year [46]) decided to abdicate from receiving ads by adopting all-out approaches (like

deploying ad-blocking mechanisms [38, 179, 245] or ad-stripping browsers [25, 39, 75]). This

increasing ad-blocking trend made some major web publishers, after seeing their income to

significantly shrink (total losses of $22 billion [162]), to deploy ad-blocker detection tech-

1.1. Research Questions 3

niques [115, 161, 173] and deny serving content to ad-blocking users [42, 159, 216, 223]. Such

aggressive actions from both sides escalated an inevitable arms race between the ad-ecosystem

on the one side, and the ad-blockers and privacy advocates on the other side [20,163,173].

In such a dispute, evidently, publishers are trapped in the crossfire being unable to effec-

tively monetize their services. To that end, it did not take long for some of them to look

for reliable alternative schemes to support their websites. Some of these schemes include

paid website versions and user compensation (e.g., Basic Attention Token [12]). Recently,

the frenetic growth of cryptocoins made distributed in-browser mining an effective alterna-

tive for content monetization. Specifically, publishers borrow CPU cycles from the user’s

system while they browse the website’s content in order to compute hashes required by the

cryptominer. A great advantage of web mining over advertising is its zero user data re-

quirements (i.e., no user tracking and personal data collection is needed), thus making it

unequivocally GDPR compliant. Besides the popularity web mining enjoys, its profitability

and the imposed costs on the user side are not explored adequately, yet. As a result, it is

still unclear in what extent web mining can constitute the next primary monetization model

for the post-advertising era of free Internet.

1.1 Research Questions

This thesis raises a number of research questions which motivate the work presented in this

dissertation:

1. What kind of personal information gets leaked while using websites and apps on a

mobile phone?

2. Which of the two: browser accessed website or mobile app facilitates the most privacy

leaks considering the same online service?

3. How trackers and advertisers synchronize the user IDs they have set for the same user

profiles before they participate in data markets?

4. In the era of personalized advertising how much do advertisers pay to reach an in-

dividual? And how the personal data affect the pricing dynamics in programmatic

ad-buying?

5. Are the users indeed receiving the content they want free of charge in the ad-supported

web? If not, what are the costs the median user has to sustain and how comparable

these costs are with the monetary cost advertisers pay to deliver them ads?

6. Are there alternatives to the data-centric model of digital advertising nowadays? Can

the resource-borrowing model of cryptomining constitute the next primary monetiza-

tion model in the post-advertising era of free Internet?

4 Chapter 1. Introduction

1.2 Contributions

Thesis Statement: In this dissertation, we show that while users seemingly retrieve online

content for free, in the data-centric model of the ad-supported Internet, they have to sustain

hidden costs like privacy loss and in some cases monetary costs greater than what advertisers

pay to deliver the ad traffic. Experimental results show that data-less models based on resource

borrowing may become an effective and reliable alternative way of web monetization under

specific circumstances.

The key contributions of this dissertation are the following:

1. We conduct a comparative study regarding the device-related privacy leaks of mobile

apps and mobile browsers in Android. Our dataset includes a set of online services

accessible by both mobile apps and mobile-friendly web pages. For each of them, we

investigate if the associated app leaks more or less information than its website, accessed

through mobile browser. We design antiTrackDroid: a novel anti-tracking mechanism

for mobile devices. Similar to state-of-the-art browser ad-blockers, our approach blocks

any possible request may deliver to third parties data that can be used either for

user profiling or device fingerprinting. We implement antiTrackDroid as an integrated

filtering module for Android. antiTrackDroid uses a mobile- based blacklist, which we

publicly release, and it does not require changes in the respective OS or any kind of

external infrastructure (i.e. proxy). We experimentally evaluate our prototype and

show that it is able to reduce the leaking identifiers of apps by 27.41% on average,

when it imposes an insignificant latency of less than 1 millisecond per request.

2. In order to explore how trackers construct a universal identification for each user, we

design a heuristics-based mechanism to detect Cookie Synchronization (CSync) events,

along with the participating entities. Our detection mechanism, contrary to the early

proposed ones, is able to detect synchronizing userIDs wherever they are piggybacked

in the: 1) URL parameters, 2) URL’s path, or 3) referrer field. Using this detection

mechanism, we conduct the first to our knowledge in depth analysis of Cookie Syn-

chronization in the real (mobile) world, using a year-long dataset of 850 volunteering

users. Our results show that 97% of regular web users are exposed to CSync. In ad-

dition, the average user receives around 1 synchronization per 68 GET requests, and

the median userID gets leaked, on average, to 3.5 different ad-entities. Furthermore,

CSync increases the number of entities that track the user by a factor of 6.7. Addi-

tionally, we present in full detail how a last mile observer can snoop parts of a user’s

browsing history through Cookie Synchronization. As a proof of concept, we perform

active measurements through our secure VPN, by probing the top 12K Alexa sites, and

explore the feasibility and spread of these attacks in the wild. By fetching the landing

pages, we collect a dataset of 440K HTTP(S) requests, and by using it as input to our

1.2. Contributions 5

analyzer, we show that 1 out of 13 of the most popular websites worldwide expose their

users to these two privacy-breaching attacks.

3. To measure the impact of the collected user data on the pricing dynamics of the ad

ecosystem, we propose the first to our knowledge holistic methodology to calculate the

overall cost of a user for the RTB ad ecosystem, using both encrypted and cleartext

price notifications from RTB-based auctions. We study the feasibility and efficiency of

our method by analyzing a year-long weblog of 1600 real mobile users. Additionally,

we design and perform an affordable (a few hundred dollars cost) 2-phase real world ad-

campaign targeting ad-exchanges delivering cleartext and encrypted prices in order to

enhance the real-users’ extracted prices. We show that even with a handful of features

extracted from the ad-campaign, our methodology achieves an accuracy > 82%. The

resulting ARPU is 55% higher than that computed based on cleartext RTB prices alone.

Our findings challenge the related work’s basic assumption that encrypted and plain

text prices are similar (we found encrypted prices to be around 1.7x higher). Finally,

we validate our methodology by comparing our average estimated user cost with the

reported per user revenue of major advertising companies. Using lessons from this

study, we design a system where the users, by using a Chrome browser extension, can

estimate in real-time, in a privacy-preserving fashion on the client side, the overall cost

advertisers pay for them based on their exposed personal information. In addition,

they can also contribute anonymously their impression charge prices to a centralized

platform for further research.

4. We design a methodology to measure the costs a user pays when receiving ad-related

traffic. These costs may be either directly quantifiable (e.g., requests, bytes, energy),

or qualitative such as loss of privacy. In addition, our methodology estimates the costs

advertisers pay to display each of the advertisements a user receives through the contem-

porary programmatic RTB auctions. We implement our methodology in OpenDAMP

(open Digital Advertising Measurement Platform): a framework for passive weblog anal-

ysis oriented to digital advertising. OpenDAMP can analyze user HTTP traffic and

detect ID sharing incidents among third parties (known as Cookie Synchronizations).

In addition, by incorporating information from external resources and blacklists, Open-

DAMP can classify the traffic based on the content the domains deliver, and extract

metadata and charge prices from RTB ad-auctions. To assess the effectiveness of our

methodology, we apply it on the above year-long dataset of real volunteering users. Our

analysis shows that the costs advertisers and users pay are largely unbalanced, In fact,

users pay 3x more through their data plan to download ads, than what the advertis-

ers pay to deliver them to these users. Furthermore, the majority of users sustains a

significant loss of privacy to receive these personalized advertisements.

6 Chapter 1. Introduction

5. Finally, we explore the potential of web-mining to be used as an alternative, privacy-

preserving monetization method for web publishers. Specifically, we conduct the first

study on the profitability of web-based cryptocurrency mining. Our results show that

for the average duration of a website visit, ads are 5.5x more profitable than crypto-

mining. However, a miner-supported website can produce higher revenues if the visitor

remains in the website for longer than 5.3 minutes. We design a methodology to assess

the resource utilization patterns of ad- and miner- supported websites on the visitor’s

device. We implement our approach in WebTestbench framework and we investigate

what costs these utilization patterns impose on the visitor’s side with regards to the

user experience, the system’s temperature, and energy consumption and battery au-

tonomy. We collect a large dataset of around 200K ad- and miner- supported websites

that include different web-mining libraries and cryprocurrencies. We use this dataset

as input for the WebTestbench framework and we compare the resource utilization

and costs of the two web monetization models. Our results show that while browsing

a miner-supported website, the visitor’s CPU gets utilized 59 times more than while

visiting an ad-supported website, thus increasing the temperature (52.8%) and power

consumption (2x) of her device.

1.3 Outline of Dissertation

The rest of this dissertation is organized as follows. Chapter 2 provides some background

information about User Tracking and Device Fingerprinting techniques with which entities

collect information about the browsing user. Additionally, necessary knowledge about pro-

grammatic ad-buying is provided before presenting how contemporary real-time ad-auctions

work. Chapter 3 studies the data trackers collect from mobile users through both web brows-

ing and mobile apps in attempt to compare the generated privacy implications of these two

content receiving models. After that, a track-blocking countermeasure is proposed, able to

reduce the privacy risks in both apps and websites.

Chapter 4 explores how all the collected data are attributed to individual user profiles and

how web entities form universal user identifiers by syncing the different userIDs they assign for

the same user. By doing so, different companies can merge their databases on the background

and participate in user data markets. After presenting our novel technique to detect such

userID synchronization events, in this chapter, we analyze a large dataset to explore the

characteristics of this tracking mechanism. In Chapter 5, we analyze how the above collected

user data affect the pricing dynamics within the ad-ecosystem in an attempt to enhance

the transparency regarding the growing real-time programmatic ad-auctions. Specifically, we

develop a first of its kind methodology for computing exactly the price paid for a browsing

user by the ad ecosystem in real time. Our approach (namely YourAdValue) is based on

tapping on the Real Time Bidding (RTB) protocol to collect cleartext and encrypted prices

1.4. Publications 7

for winning bids paid by advertisers in order to place targeted ads.

Building on the above methodology, in Chapter 6, we compare the costs advertisers and

users pay for the same ad delivery. These costs may be either directly quantifiable (e.g.,

requests, bytes, energy), or qualitative such as loss of privacy. To achieve that we imple-

ment our methodology in OpenDAMP (open Dig- ital Advertising Measurement Platform):

a framework for passive weblog analysis oriented to digital advertising. After analyzing the

above user-side costs, in Chapter 7, we explore privacy preserving alternatives for publishers

that could be used as content monetization methods like in-browser cryptomining. To de-

termine if such approach could indeed constitute a solid option for publishers, we study the

profitability of cryptomining but also the costs it imposes to the user’s system.

Chapter 8 surveys prior work and in Chapter 9 we summarize the contributions and

results of this dissertation, and outline research directions that can be explored in future

work.

1.4 Publications

The research activity related to this thesis has so far produced the following publications

(ordered by publication date):

1. Elias Papadopoulos, Michalis Diamantaris, Panagiotis Papadopoulos, Thanasis Petsas,

Sotiris Ioannidis and Evangelos P. Markatos. The Long-Standing Privacy Debate: Mo-

bile Websites Vs Mobile Apps, In proceedings of the 26th International World Wide

Web Conference (WWW’17), 2017, Perth, Australia. [179]

2. Panagiotis Papadopoulos, Nicolas Kourtellis, Pablo Rodriguez Rodriguez, Nikolaos

Laoutaris. If you are not paying for it, you are the product: How much do adver-

tisers pay to reach you?, In proceedings of the 17th Internet Measurement Conference

(IMC’17), 2017, London, UK. [185]

3. Panagiotis Papadopoulos, Nicolas Kourtellis, Evangelos P. Markatos. The Cost of Dig-

ital Advertisements: Comparing User and Advertiser Views, In proceedings of the 27th

International World Wide Web Conference (WWW’18), April 2018, Lyon, France. [183]

4. Panagiotis Papadopoulos, Nicolas Kourtellis, Evangelos P. Markatos. Exclusive: How

the (synced) Cookie Monster breached my encrypted VPN session, In proceedings of

the 11th European Workshop on Systems Security (EuroSec’18), April 2018, Porto,

Portugal. [184]

5. Panagiotis Papadopoulos, Panagiotis Ilia, Evangelos P. MarkatosTruth in Web Mining:

Measuring the Profitability and Cost of Cryptominers as a Web Monetization Model,

arXiv preprint arXiv:1806.01994, 2018. [181]

8 Chapter 1. Introduction

6. Panagiotis Papadopoulos, Nicolas Kourtellis, Evangelos P. Markatos. Cookie Synchro-

nization: Everything You Always Wanted to Know But Were Afraid to Ask, arXiv

preprint arXiv:1805.10505, 2018. [182]

Chapter 2

Background

2.1 User Tracking

2.1.1 Third party tracking in web sites

Traditionally, web sites keep track of users and sessions by using cookies. So by storing some

state (in the form of cookies) on the client side, an advertising or analytics company can

identify a user along with her interests, preferences, or even past purchases. The need for a

more centralized infrastructure, which will work as a data warehouse containing rich data for

several individual users and their interactions with different web sites, brought in the surface

mechanisms like web beacons [106] and cookie synchronization [2]. These mechanisms allow

third parties to collect user data bypassing the same origin policy [247], thus enriching their

profiles of the users.

2.1.2 Third party tracking in mobile apps

To earn ad revenue, app developers display ads from third parties in their apps. These ads are

usually delivered through RTB auctions [82]. To deliver effective advertisements to the end-

user, third party ad-networks request from app developers to embed in their apps external

third party ad-libraries, also known as in-app libraries [50]. The scope of these ad-libraries is

to allow the developer request at runtime an ad-impression to fill the app’s available ad-slots.

To facilitate the delivery of personalized advertisement, ad-libraries inherit all the permissions

enjoyed by the original app such as: access to the phone, access to contacts list, access to

device characteristics, etc. In this way, ad-libraries can track users as they use services in

cyberspace.

2.2 Real Time Bidding

An RTB auction is a programmatic, instantaneous type of auction, where a publisher’s ad-

vertising inventory is bought and sold on a per ad-slot basis. RTB accounts for 74% of

programmatically purchased advertising, reaching a total revenue of $8.7 billion in US [19],

9

10 Chapter 2. Background

User Tracking

(3) Bid request,
User info

Data Hub:
DMP, Data Broker,

etc.

(4) Retrieve user interests,
geolocation, behavior

SSP

(2) Ad request

(1) User visits
publisher’s
webpage

(5) Place bids

DSP

(7) “charge price” and
“impression rendered” notification

(6) Winner’s impression
delivery

Ad-
slot

ADX

User

Figure 2.1: High level overview of the RTB ecosystem. Several entities interact with
each other, exchanging user’s personal data before it is finally converted to
money.

allowing advertisers to evaluate the collected data of a given user at real-time and bid for an

ad-slot in the user’s display.

A typical transaction for an ad-slot begins with a user visiting a website. This triggers

a bid request from the publisher (or SSP) to an ADX (step 2 and 3 in Figure 2.1), usually

including various pieces of user’s data (e.g. browsing history, demographics, location, cookie-

related info, minimum acceptable price, etc.). Then multiple DSPs automatically submit

their impressions and their bids in CPM (i.e. cost per thousand impressions [113], typically

in US dollars or euros, based on the market) to the ADX. All bids are sealed so every

participant places only one bid for a particular ad-slot, this allows the RTB auction to finish

within milliseconds (the entire RTB protocol usually runs in around 100 ms). The ad slot

goes to the highest bidder and its impression is served in the user’s display. The charge price

for the ad slot is the second higher price following the Vickrey auctions [237]. The main

advantage of this type of auctions is that forces all bidders to have their bids truly reflect

on what they think the value of the ad slot should be. Note that minimum acceptable price

defined by the publisher can act as the second price in an auction, if the second highest bid

price falls below it.

2.2. Real Time Bidding 11

2.2.1 The key players

As it can be seen in Figure 2.1, the key roles of the RTB ecosystem include the Advertiser,

Publisher, DSP, Ad-exchange, and SSP, which interact with each other in several ways [11].

Note that it is very common for some (large) companies to play simultaneously different roles

even inside the same auction (e.g. Google’s DoubleClick Bid Manager [94] and DoubleClick

for Publishers [87].

Publisher: (e.g., CNN.com) is the owner of a website, where users browse for content and

receive ads (step 1). Each time a user visits the website, an auction takes place for each

available ad slot. The ad impression of the winning advertiser is finally displayed in each

auctioned slot of the website.

Advertiser: is the buyer of a website’s ad slots. The advertiser creates ad campaigns and

defines the audience that has to be targeted according to his marketing objectives, budgets,

strategies, etc. In each auction, the one with the highest bid wins the ad slot and places its

impression on the screen of the website’s visitor.

Supply-Side Platform (SSP): is an agency platform, which enables publishers to manage

their inventory of available ad slots and their pricing, allocate ad impressions from different

channels (e.g. RTB or backfill in case of unsold inventory [128]) and receive revenue1. SSP

is also responsible for interfacing the publisher’s side to multiple ad-exchanges (step 2) and

aggregate/manage publisher’s connections with multiple ad networks and buyers. In addition,

by using web beacons and cookie synchronization, SSPs perform user tracking in order to

better configure their ad slots’ pricing and achieve as many re-targeting ads as possible

and thus higher bids [125]. Popular vendors selling SSP technology are OpenX, PubMatic,

Rubicon Project, Right Media.

Ad-exchange (ADX): is a digital, real-time marketplace that, similarly to a stock exchange,

enables advertisers and publishers to buy and sell advertising space through RTB-based

auctions. ADX is responsible for hosting an RTB-based auction and distribute the ad requests

along with user information it owns (i.e. browsing history, demographics, location, cookie-

related info) among all the interested auction participants (step 3).

After the auction, the winning impression is served to the user’s display within 100 ms

of the initiating call (step 6) and the winning bidder is notified about the final charge price.

Popular ad-exchanges include: DoubleClick, MoPub, and OpenX.

Demand-Side Platform (DSP): is an agency platform, which employs decision engines

with sophisticated audience targeting and optimization algorithms aiming to help advertisers

buy the best-matched ad slots from ADXs in a simple, convenient and unified way. DSPs

retrieve and process user data from several sources (step 4) such as ADXs, Data Hubs, etc.

The result of this processing is translated to a decision in practice: How much is it worth

to bid for an ad slot for this user, if any? If the visitor’s profile matches the audience the

1Publishers can also interface directly with ADXs and handle their inventory on their own.

12 Chapter 2. Background

Winning Price Notification URLs

(A) cpp.imp.mpx.mopub.com/imp?ad domain=amazon.es&
ads creative id=ID&bid price=0.99&bidder id=ID&...
&bidder name=..&charge price=0.95&country=..&...
¤cy=USD&latency=0.116&mopub id=ID&pub name=..

(B) tags.mathtag.com/notify/js?exch=ruc&...
&price=B6A3F3C19F50C7FD&...
&3pck=http%3A%2F%2Fbeacon-eu2.rubiconproject.com%2F
beacon%2Ft%2Fce48666c-6eb4-46db-b0e9-6f4155eb557d%2F

(C) adserver-ir-p.mythings.com/ads/admainrtb.aspx?googid=ID&..
&width=300&height=250&...&cmpid=ID&gid=ID&mcpm=60&...
rtbwinprice=VLwbi4K21KFAAAm2ziqnOS O5oNkFuuJw&..

Table 2.1: Examples of (A) cleartext, (B, C) encrypted RTB price notifications. “ID”
is typically a hexadecimal number.

advertiser has focused his ad-campaign on, the DSP will submit to the ADX the impression

and a bid in CPM on behalf of the advertiser (step 5). Popular DSPs are MediaMath, Criteo,

DoubleClick, AppNexus and Invite Media.

User Data Hub, Data Exchange Platform (DXP): is a centralized data warehouse such

as a Data Management Platform (DMP) [22, 127] or a Data Broker [133] which aggregates,

cleans, analyzes and maintains user private data such as demographics, device fingerprints,

interests, online and offline contextual and behavioral information [118,120]. These user data

are typically aggregated in two formats: 1) a full, audience user profile for offline analytics

and data mining, 2) a run-time user profile, optimized for real-time requests such as RTB

queries from DSPs, before submitting their bids to ADXs [63,123] (step 4).

Such user profiles are sold to ad entities [14] because they increase the value of an RTB

inventory by enabling a more behavioral-targeted advertising (2.7× more effective than non-

targeted advertising [15,251]). In fact, Data Hubs are considered the core component of the

digital ad-ecosystem as they perform the attribution and labeling of users’ data and create

groups, namely audience segments, which are useful (i) to the publishers for their customer

understanding, (ii) to the SSPs for retrieving more re-targeted ads and (iii) to the DSPs for

feeding their bid decision engines. Further, quality scores are impartially assigned to users’

private data based on the success of ad-campaigns they were used, thus driving the bid prices

of future ad-campaigns. Notable DXPs are Turn, Adobe, Krux, Bluekai, Lotame.

2.2.2 RTB price notification channel

When an ADX selects the winning bid of an auction, the corresponding bidder must be

notified about its win to log the successful entry and the price to be paid to the ADX. One

2.2. Real Time Bidding 13

could implement this notification in two ways: (i) with a server-to-server message between

ADX and DSP, (ii) with a notification message conjoined with the price, passed through the

user’s browser as a call-back to the DSP.

The first option is straightforward and tamper-proof; no one can modify or block these

messages, allowing companies to ensure that their logs are fully synced at any time. In

addition, DSPs can hide information about the transactions, the purchased ad-slots and the

prices paid from the prying eyes of competitors. However, DSPs do not have any indication

of the delivery of each ad, in order to inform their campaigns and budget.

Instead, the second option not only can ensure the DSP that the winning impression was

indeed delivered (the callback is fired soon after the impression is rendered on the user’s

device), but also gives the opportunity to drop a cookie on the user’s device. Therefore, the

second option is the dominant one in the current market: the ADX piggybacks a notification

URL (nURL) in the ad-response, which delivers to the user the winning impression and the

ad (steps 6 and 7 in Figure 2.1). This nURL includes basically the winning DSP’s domain,

the charge price, the impression ID, the auction ID and other relevant logistics (see Table 2.1

for some examples). In this present work, we study such nURLs and the prices embedded

in them, as well as how they associate with the users’ browsing behavior and other personal

information.

14

Chapter 3

Personal Data Collection and User

Tracking

In the online era, where behavioral advertising fuels the Internet world as we know it, user pri-

vacy has become a commodity that is being bought and sold in a complex, and often ad-hoc,

data ecosystem [83,100,199]. Indeed, users’ personal data collected by IT companies consti-

tute a valuable asset, whose quality and quantity significantly affect each company’s overall

market value [211]. As a consequence, in order to gain advantage over their competitors, IT

companies participate in a user data collecting spree, aiming to retrieve and process as much

information as possible. This collection of user personal data has become so aggressive (and

sometimes even intrusive [96, 104]) that has raised a huge public debate around basic civil

rights regarding privacy and personal data protection [139, 155]. These increasing privacy

concerns, drew the attention of a significant body of research [2, 60, 67, 172, 180, 202, 232],

which studied users’ privacy loss in conjunction to existing user tracking techniques that

companies deploy in the web.

However, although some years ago the only way to connect and interact with online

services (or online web sites) was through web browsers, the proliferation of mobile devices and

developer tools gave service providers the chance to create their very own mobile applications

(or apps) that the users download and install in their devices. Each of the above two access

choices (i.e. apps vs. web browsers), offers different kinds of advantages [221]. For example,

web browsers can be found in most/all mobile devices and provide easy access to any mobile-

friendly web site. On the other hand, native apps may offer better support for specific

functionalities such as interactive gaming and offline access.

Choosing between the app and the browser is not easy. There is a lot of debating on the

web, with several studies trying to compare these two options across different dimensions [24,

27,76,220,221,248]. Fortunately, the majority of service providers support both options: they

provide both a mobile app and a mobile website. Although each option may have different

benefits, in this study, we are interested in exploring their privacy-related characteristics.

15

16 Chapter 3. Personal Data Collection and User Tracking

That is, which of the two options protects the users’ privacy in the best way? apps or browsers?

Or similarly, which of the two options facilitates the most privacy leaks?

Certainly, we are not the first ones to deal with this problem. For example, C. Leung

et al. attempt a comparison of mobile apps and vanilla browsers based on the amount of

personally identifiable information (PII) they leak [142]. The authors manually examined

a small group of 50 online services and they monitored the PII each of them shares, over

plaintext or encrypted connections. Their results show that there is no clear single answer.

Therefore, they implemented an online service [141] aiming to recommend the users the best

option for accessing a small sample of online services, based on the PII they care about the

most.

In this study, we conduct a similar comparison, but we significantly broaden the definition

of privacy. Apart from personal data, such as gender, email address, name, username, birth-

date, etc., that a service may leak, there is also device-specific information that can be used

as identifiers. Such identifiers may include: (i) installed applications, (ii) known SSIDs, (iii)

connected wifi, (iv) operating system’s build information, (v) carrier, etc. These identifiers

although seemingly unable, at a first glance, to reveal any possible sensitive data for the

user, they are able, when combined, to allow a monitoring entity to persistently track mobile

users without using any deletable cookies or resettable Advertising IDs [60, 154, 244]. This

way, the monitoring entity can uniquely identify the mobile user and monitor her behavior,

her actions or her interests in the online world: information, which is usually more useful for

the web entities (advertisers, analytics, etc.) to obtain than individual and possibly sensitive

parts of personal data.

To make matters worse, by deploying device fingerprinting a third party can also: (i) de-

cloak user’s anonymous sessions: by linking for example Tor sessions of the same device with

non anonymous ones [3,233] and (ii) link web with app sessions, one of the biggest challenges

of mobile ad networks [228]. Surprisingly, our results show that in case of device-specific

privacy leaks, there is a clear winner: mobile browsers leak significantly less information

compared to mobile apps. In most of the cases we studied, mobile apps leaked tons of infor-

mation that mobile browsers did not (or could not) leak. Thus, we urge users to consider

more seriously the use browsers whenever they have the choice.

Unfortunately, this choice may not always be available. For example, web sites may pro-

vide poor functionality to mobile devices and thus, the use of apps may seem the only reason-

able choice from a user experience point of view. To improve the privacy of users, who must

use mobile apps, we propose antiTrackDroid , an anti-tracking mechanism for mobile apps,

tantamount to the current state-of-the-art ad-blockers of mobile browsers. Our approach

constitutes an integrated monitoring and filtering module, which contrary to alternative ap-

proaches works solely in the users’ device, without requiring any additional infrastructure

(i.e. proxy or VPN). Our evaluation shows that antiTrackDroid is able to reduce the leaking

3.1. Our dataset 17

(1) Get top 300
services

headless Chrome

(3) Download
APK

(2) Get domain’s
category

Figure 3.1: High level overview of the data collection process.

identifiers of apps by 27.41% on average, when it imposes an insignificant latency of less than

1 millisecond per request.

3.1 Our dataset

Our dataset contains several popular online services along with their mobile application

(app) counterpart. We started with the 300 top online web services from Alexa and, for

each one of them, we tried to find its corresponding mobile app. To automate the mobile

apps collection process, we used the Selenium suite [212] to instrument Chrome browser

and the APK downloader plugin [196] to download the full APKs of the Android apps from

18%

15%

13%

13%

8%

8%

7%

6%

3%
3%

2%2%2% News

Shopping

Entertainment

Social

Communication

Finance

Travel

Sharing

Search Engines

Business

Education

Productivity

Other

Figure 3.2:
Classification of apps based on the different
content categories.

0%

10%

20%

30%

40%

50%

60%

0 1 2 3 4 5 6 7 8 9

56.67%

Pe
rc

en
ta

ge
 o

f a
pp

s

of build-in third-party tracking libraries

43.33%

22.66%

10.67%9.33% 9.33%

0.67%
3.33%

0.00% 0.00% 0.67%

Figure 3.3:
Number of analytics- or ad-related libraries per app.
43.33% of apps does not contain any such
library with the remaining 56.67% containing
at least one.

18 Chapter 3. Personal Data Collection and User Tracking

1%

10%

100%

G
oogleS

ervices

A
ndroidS

upportv4

G
oogleA

ds

A
pacheH

ttp

Fabric.io
N
ineO

ldA
ndroids

A
pacheC

om
m

on

Facebook

Fasterxm
l

com
S
core

N
ostra13

S
ignpost

A
m

azon
Tap
P
arse.com

S
tartapp

C
odehaus

C
rashlytics

Tw
itter

InM
obi

M
oP

ub
N
ew

relic
A
dM

arvel

D
oubleclick

Flurry
A
dW

hirl
A
ppboy

M
edialets

U
rbanairship

M
ixpanel

P
e

rc
e

n
ta

g
e

 o
f

a
p

p
s

Popularity of build-in third-party libraries

 56

 39

 28

 17 17 17 15 15
 12 11

 10
 9 8 8 7 7

 5
 5

 4
 3 3 3

 3 3

 1 1 1 1 1 1

Figure 3.4: Percentage of apps, in which each ad-libraries is detected.

Google Play. Figure 3.1 summarizes our dataset collection process. Note that at the time

of experimentation (February 2016) only 116 (of the top 300 Alexa sites) provided a mobile

app. Thus, our final dataset consists of 116 apps along with their associated mobile-friendly

web counterpart, making it larger than datasets explored in similar manually investigative

studies([142]: 50 apps, [198]: 100 apps , [255]: 110 apps).

Before we analyze the privacy leaks of apps and web in our dataset, we first explore the

characteristics of our dataset:

Application Categories. As presented in Figure 3.1, we used CYREN [49] to extract the

category of each service in our dataset. Figure 3.2 shows the breakdown of our services into

different categories. As expected, News-, Shopping- and Social-related services dominate the

dataset, but it seems that we have services from all over the spectrum.

Third party in-app libraries. As we discussed in Section 7.1, the majority of free apps

embed a third party, in-app library. These third party libraries are used for analytics- and

ad- related purposes, thus sending to third parties information about the user, which is

important for the targeted advertising delivery. To identify these in-app libraries in our

dataset, we use LibRadar [147], a tool for Android which detects embedded libraries, even if

obfuscation methods were deployed. After the in-app library extraction, we manually filtered

out libraries other than analytics- and ad-related. Figure 3.3 presents the analytics- and ad-

related libraries found per app and as we see, 56.67% of apps contain at least one such library,

when there is also 1 app with 9 of such in-app libraries. Note that these results, are verified

by other studies as well [166]. In Figure 3.4, we see the popularity of the top third party

3.2. Monitoring outgoing traffic 19

Testbed Raspberry PI

Traffic Monitoring
& Trace Filtering

Analysis

 Data leakage,
 Traffic statistics, ...

Online Service

Web

App

unencrypted

mitmproxy
certificate

encrypted

AP

Figure 3.5: Overview of the monitoring methodology of apps and web related traffic.

libraries in our dataset, with GoogleAds residing in 28% of the apps and Fabric.io following

with 16.67%.

3.2 Monitoring outgoing traffic

In Figure 3.5, we see an overview of our testbed. Using a NEXUS 6 smartphone running

Android 6.0.1, we run each online service (i) from the corresponding app and (ii) from its

website by using Firefox mobile browser1. Each run lasts for approximately 20 minutes

where we perform the same user actions in both counterparts of the service including login,

registration, search, share, etc. In order to capture the devices’ network traffic (both HTTP

and HTTPS), we used a dedicated monitoring component, which captures all the outgoing

requests of both apps and browsers. For our monitoring component, we use a raspberry PI

2 [194] device configured as an access point and by running mitmproxy [45], an SSL-capable

monitoring proxy, we are able to monitor SSL sessions as well. After capturing both HTTP

and HTTPS traffic, the traces are forwarded to our Traffic Monitoring & Trace Filtering

module, in which the tracking related requests are identified by using a filtering list based

on a popular mobile-based blacklist [122], enhanced with entries we collected after manual

inspection. Finally, the categorized traffic is passed to the Analysis module to produce

statistics and the privacy leak analysis results. In this module, we filter possible leaked

identifiers by performing pattern matching using a list of ID keywords we discover after

studying device’s settings. Moreover, we implemented an app able to collect all these IDs,

with a view to find and verify the correctness of them. Then, we manually inspect the results

to eliminate possible false positives.

Muffling Background Apps. To prevent apps running simultaneously during our experi-

1We choose Firefox mobile browser for its ability to support browser extensions

20 Chapter 3. Personal Data Collection and User Tracking

0%

20%

40%

60%

80%

100%

Apps Web

P
e
rc

e
n
ta

g
e

o
f
a
p
p
s
/w

e
b
s
it
e
s

SSL usage in mobile devices
HTTPS HTTP

Figure 3.6: Use of SSL in apps and web.

ments, we limit the background app activities while capturing the trace of each app in our

dataset. More technically, we use the available developer options of the mobile device and by

using a custom bash script that employs the adb toolkit [7], we kill the background processes

of the device.

Bypassing SSL Certificate Pinning. Certificate (or SSL) Pinning [95,239] is a technique

used by several mobile apps to avoid MITM attacks. Through SSL pinning, a mobile app

checks the certificate received by the server during the SSL handshake, and compares it to

a known copy of the particular certificate, that was bundled with the app. To bypass SSL

Certificate pinning and allow our monitoring component to capture the SSL traffic unimpeded,

we use a modified version of JustTrustMe [241] module of Xposed Framework [204]. By

using this module, we hook into SSL-related functions and nullify the code responsible for

performing SSL pinning checks.

3.3 Privacy leak Analysis

In this section, we present the core analysis of our privacy-related study. Specifically, by

using the network traces we collected with our monitoring proxy, we measure and compare

the quantity and the type of information leaked, as well as the diffusion of these leaks in both

web and app versions of our collected online services.

Apart from the personal data a service may leak (such as birth-date, email addresses,

gender, etc.), there is also device-specific information, which, if leaked, can also be used

as identifiers. Although unable, at a first glance, to reveal any personal data for the user,

these identifiers are able to allow a tracking entity to follow mobile users inside a network

3.3. Privacy leak Analysis 21

without using any deletable cookies or resettable Advertising IDs. Table 3.1 presents a short

description of the leaks and identifiers we detected.

3.3.1 Encrypted sessions

Both apps and web browsers need to communicate with their associated online service in

order to send and retrieve updated information. In our first experiment, we measure the

adoption of SSL in the transactions of both apps and websites to explore the possibility of a

passive observer to learn user info by monitoring the traffic.

First we measure the use of SSL in apps, and our results indicate that only 18.97% of

the apps use exclusively HTTPS, 2.58% use solely HTTP, and 78.45% a susceptible [91]

mixture of both. Consequently, it should not come as a surprise that we found 2 apps sending

user’s credentials in plaintext over HTTP. We informed the corresponding providers and we

can confirm that at least one of them has fixed it. In Figure 3.6, we compare the use of

SSL in web and apps. We see that apps are more likely to use HTTPS (62% of total

traffic) compared to web browsers (47%).

3.3.2 Identifiers leaked

In our next experiment, we set out to explore what kinds of identification information is

leaked. Table 3.1 presents a list of such identifiers including “Advertising ID”, “Android ID”,

“AP SSID”, etc. along with its required permissions. We immediately see that apps are very

aggressive at leaking such information (see column “Services(%))”). For example, we see

that 57.76% of the apps leak the “Android ID” identifier. Surprisingly, we observe that none

of the web browsers (see 4th column) leak this information. This happens, contrary to apps,

because web browsers typically do not have access to this information. In summary, we see

that apps are much more prone than web browsers to leak device identification

information.

Table 3.1 also shows that mobile apps leak a huge variety of information including the

list with the rest of the installed apps, too. This list allows an observing entity to easily infer

important PII about the user including gender, age, preferences, interests etc. There are

3.45% of the applications, sending the whole list of the installed apps to a remote domain.

Interestingly, in one of them, the remote server after conducting some analysis on the data,

responded back with an approximation of the user’s gender, age range, a list of possible

interests and a number of recommended brand names.

In addition, there are also five applications and one website leaking the nearby WiFi

Access Points. Such data can be correlated with online AP maps [23] and reveal the exact

location of the user and possible interpersonal relations of people being in the same location

at the same time. In addition, there is one app leaking the entire list of known APs, which

22 Chapter 3. Personal Data Collection and User Tracking

 0

 5

 10

 15

 20

 25

S
tum

bleU
pon

IG
N

K
ayak

N
Y
Tim

es
P
hotobucket

B
ing

D
ailym

otion

N
D
TV

D
ailym

ail

K
akaku

N
B
C
 N

ew
s

W
ordpress

Telegraph

V
ice

4share
C
net

E
S
P
N

Foxnew
s

O
K
.R

U
S
napdeal

Y
ahoo

#
 o

f
th

ir
d

 p
a

rt
y
 t

ra
c
k
e

rs

Services

app
web

Figure 3.7:
Number of 3rd party tracking domains, with
which the device interacts when the user
accesses each of the top 20 privacy-leaking
services.

1%

10%

100%

google-analytics

doubleclick

graph.facebook

crashlytics

scorecardresearch

googlesyndication

flurry
adjust
crittercism

criteo
m

obileapptracking

m
ixpanel

m
oatads

quantserve

appsflyer

appspot
m

opub
new

relic

P
e

rc
e

n
ta

g
e

 o
f

a
p

p
s

Popularity of top tracking domains

 56 54 50
 36

 29
 18

 11
 9 9

 7 7 6 6 6 6
 4 4 4

Figure 3.8:
Percentage of apps, in which the top tracking
domains were detected.

can reveal previous locations the user has visited, even before the installation of the app.

Finally, there is one app leaking the device’s current running processes.

3.3.3 Diffusion of privacy leaks

After analyzing the type of information an app and a web browser can leak, we set out to

explore the number of third party entities that receive this kind of information. First, we

measure the number of third party trackers in apps and web browsers. Figure 3.7 shows that

in most cases, it is the app that provides identifying information to more third party trackers.

Indeed, we see that apps leak information to an average of 11.7 third party trackers while web

browsers leak information to an average of 5 trackers. Similarly, as many as 93.9% of Android

apps leak data to one or more third-party trackers, while the corresponding percentage for

web browsers is 69.3%.

Finally, in Figure 3.8, we present the most popular tracking domains in the dataset of

the collected apps. As we see, Google’s analytics and advertising domains (google-analytics,

doubleclick) dominate, having access in 56% and 53.6% of the apps respectively. Facebook,

one of the most common social media apps, follows with 50.4%.

3.3.4 Mobile browsers leak too

Up to this point, we compare app and web counterparts of the online services. However, let

us not overlook that mobile websites are being accessed by web browsers, which are mobile

3.3. Privacy leak Analysis 23

 0

 1

 2

 3

 4

 5

 6

Yandex

Boat

O
pera

O
pera M

ini

D
olpin

U
C
 Brow

ser

C
M

 Brow
ser

D
U
 Brow

ser

N
ext Brow

ser

Adblock

C
hrom

e

Firefox

Puffin

M
axthon

APU
S

#
 o

f
th

ir
d

-p
a

rt
y
 t

ra
c
k
e

rs

Browser apps

Figure 3.9: Number of requests to tracking domains for each browser, while fetching
google.com.

apps themselves. As a consequence, browser apps may leak data to remote entities as well.

To explore this, we experimented with the 15 most popular web browsers in Android. We

fetch a simple, tracker-free website like google.com using each one of them and we monitor

their traffic. As we see in Figure 3.9, the vast majority of browsers sends a significant number

of third party tracking requests to the network. Surprisingly, we see that even the Adblock

browser sends a request to a tracking domain (i.e. adjust.com).

In order to further-investigate the possible privacy leaks of web browsers, we analyze the

content of the above tracking requests. In Table 3.2, we present the identifiers each browser

leaks to both first and third parties. We see that there is a significant number of browsers

leaking an abundance of identifiers (more than 10 in some cases). A careful reader may

have observed that although some identifiers are not leaked from a website (see Table 3.1),

interestingly, they are getting leaked through the browser app itself (see Table 3.2). Hence, we

see that mobile web browsers constitute ordinary apps, thus including third-party trackers of

their own. As a consequence, when a user visits a website (e.g cnn.com), the website running

inside the browser’s sandbox cannot access, for example AdvertisingID, but the browser app

(along with its included third-party trackers) can, pairing this way the website visit with the

specific AdvertisingID.

3.3.5 Performance cost of user tracking

Trackers do not cost only in the privacy of the user, they also consume resources of both

web and apps by generating requests not relevant with the content the user chose to browse.

In Figure 3.10 and Figure 3.11, we present the number of the total and tracking requests

respectively for both web and app versions of our collected online services. We see that apps,

24 Chapter 3. Personal Data Collection and User Tracking

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

 0 500 1000 1500 2000 2500 3000

C
D

F

of total requests sent

app
web

Figure 3.10:
Distribution of total requests sent by services
when accessed from web and app.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

 0 100 200 300 400 500 600 700

C
D

F

of tracking requests sent

app
web

Figure 3.11:
Distribution of tracking requests sent.

in general, send more requests to the network (367 for the 50% of the apps) than web (221 for

the 50% of the websites), when the portion of tracking requests is 8.5% and 5% respectively.

Regarding bytes, we see in Figure 3.12 and Figure 3.13, that the transferred volume of bytes

is similar in both apps and web, as expected given their similar functionality. The tracking

related bytes are 192 KB in apps and 77 KB in web per service. Apparently, this amount of

Bytes regard unnecessary tracking content, constituting a significant monetary cost for the

user’s data plan.

3.3.6 Lessons Learned

In the above analysis, we explore the information leaked in each of the two versions of an

online service. We see that both web and apps leak important fingerprinting information

about the user’s device. This allows third parties to not only cross-channel track the users

by linking web with app sessions but also correlate eponymous with anonymous sessions.

In addition, we see apps leaking information (e.g. installed and running apps, nearby APs,

etc.) that may allow a tracking domains to infer the user interests, gender, even behavioral

patterns. Furthermore, we studied the diffusion of the above privacy leaks and we see that

apps tend to send requests to more tracking domains than their web counterpart.

Our results prove that both versions of the online service leak information that can be

used beyond the control of users (for targeted advertising purposes or an asset for sale to

other entities [133]). However, recalling the motivating question of our study: to identify

which of the two, web or app, facilitates the most privacy leaks, the answer is straightforward.

Apps leak significantly more device-specific information.

3.4. Fortifying Apps from Trackers 25

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

 0 40000 80000 120000 160000

C
D

F

of KBytes transferred

app
web

Figure 3.12:
Distribution of total KBytes transferred.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

 0 3000 6000 9000 12000 15000

C
D

F

of tracking-related KBytes transferred

app
web

Figure 3.13:
Distribution of the tracking related KBytes
transferred.

3.4 Fortifying Apps from Trackers

3.4.1 Our approach: antiTrackDroid

Our findings so far suggest that apps leak more information than web browsers. Thus, it

is reasonable for privacy-aware users to prefer using web browsers instead of apps to access

online services. However, this is not always possible, or desired [221]. As a result, the use

of mobile apps is, in many cases, unavoidable. To provide these users with better privacy

guarantees, we propose antiTrackDroid : an anti-tracking mechanism able to preserve the

privacy of the users by blocking many personal and device information leaks to any third

parties. Specifically, antiTrackDroid is a module which filters all outgoing requests and blocks

the ones delivering tracking information.

The core design principles of antiTrackDroid include the ability to operate (i) for all apps,

and (ii) without the need for any additional infrastructure (e.g. VPN, Proxy, etc.). To meet

these principles, antiTrackDroid leverages Xposed [204]: a popular Android framework, which

allows system-level changes at runtime without requiring installation of any custom ROM or

modifications to the application. By using Xposed, antiTrackDroid is able to intercept every

outgoing request and check if the destination’s domain name exist in a blacklist of mobile

trackers. In case of match (i.e. the destination is blacklisted), the outgoing request is blocked.

Figure 3.14 summarizes the design of our approach.

26 Chapter 3. Personal Data Collection and User Tracking

Internet Connectivity

App Code

3rd Party
Lib 1

3rd Party
Lib N

Application

Internet

AntiTrackDroid
(Xposed)

Host
Names

Apps

API Calls
Sockets
Family

loopback

Figure 3.14: Defense mechanism overview.

3.4.2 Implementation

To assess the effectiveness and feasibility of our approach, we implemented a prototype of

antiTrackDroid for Android. Our system consists of the following main components:

1. The Filtering module, which implements the IXposedHookLoadPackage and filters the

tracking requests based on the Xposed module.

2. An Android Activity (hereafter named Launcher), with a graphical user interface to

allow the users configure the Filtering module.

3. The AppList Updater, which listens for newly added or removed packages and updates

the list of applications being monitored, using a Broadcast Receiver.

Launcher Activity. Launcher acts as an interface between the Filtering module and the

user. It contains a menu allowing the user to (i) load a different blacklist or exclude an

application from the filtering procedure. Launcher is also responsible of maintaining two

different data structures: a HashSet with the tracking domain names loaded from the blacklist,

and a HashSet with the applications being monitored. By using HashSets, antiTrackDroid is

able to perform look-ups with O(1) complexity reducing significantly the per request latency

overhead.

Filtering Module. Mobile applications send data over HTTP/HTTPS requests by using

TCP sockets. Therefore, Filtering module dynamically hooks on the constructor of the TCP

socket opened by the applications residing in the HashSet of monitored apps. In addition, it

re-writes the destination IP address with localhost in case of a blocked request. This loop-

back interface is a virtual network interface that does not correspond to any actual hardware,

so any packets transmitted to it, will not generate any hardware interrupts. By redirecting

to loop-back, antiTrackDroid avoids possible crashes of apps caused by aborted connections.

3.5. Evaluation 27

AppList Updater. Since users may install or remove applications at any time, our system

must be able to update the list of monitored apps. In Android, every time an app is added or

removed in the system, a broadcast message is send through the PackageManager component,

which can reach any app in the device. By using a Broadcast Receiver [8], the AppList

updater, running as a background service, can listen such messages and update the list of

monitored apps.

Blacklist of Trackers. To determine if a request is a tracker or not in the Filtering Module,

we use the popular mobile-based blacklist of AdAway [122], which we extended by including

the tracking domains we collected manually during our privacy leak analysis. Our publicly

released blacklist of antiTrackDroid which we update frequently, currently contains 66k en-

tries in total. Recall that in Launcher Activity, the user is free to change the used blacklist

by loading one of her choice.

3.5 Evaluation

In this section, we evaluate the effectiveness and performance of our antiTrackDroid, and we

explore its benefits.

3.5.1 Privacy performance

To evaluate the privacy preservation of antiTrackDroid, we inspect the identifiers leaked to

the network with and without the use of antiTrackDroid. In Figure 3.15, we see the number

of leaked IDs with and without antiTrackDroid for the 30 more leaking apps. Our results

show that antiTrackDroid is able to reduce the number of leaked identifiers by 27.41% on the

average. Note that since our approach blocks the majority of third party trackers, the rest

of the leaking IDs exist due to requests destined to the developer’s first party domains and

content providers (e.g. CDNs). Blocking such requests would cause degradation of the user

experience or even fatal error to the application.

3.5.2 Latency overhead

Although antiTrackDroid significantly improves privacy, it may have an impact on the overall

latency of the apps as well. Indeed, antiTrackDroid may increase latency because it includes

an extra check with the blacklist. On the other hand, it may significantly reduce the latency

imposed by blacklisted tracker requests as these requests will be blocked and the app will not

have to suffer their latency. To measure the impact on latency, we created an Android app,

with which we can send arbitrary number of requests to a server of ours. Thus, we create 1000

requests carrying 15KB of data each, and we send these requests to the server sequentially

after a short time interval. We run this experiment 3 times: (i) once with antiTrackDroid

switched off, (ii) once with antiTrackDroid enabled and the domain not included in the

28 Chapter 3. Personal Data Collection and User Tracking

 0

 2

 4

 6

 8

 10

 12

 14

 16

O
K

.ru
T
m

a
ll

S
p
e
e
d
te

st
T
a
o
b
a
o

W
e
ib

o
G

ro
u
p
o
n

S
n
a
p
d
e
a
l

C
h
in

a
d
a
ily

N
d
tv

Y
a
n
d
e
x

A
so

s
C

n
e
t

E
sp

n
E

tsy
K

a
ya

k
A

d
o
b
e
R

e
a
d
e
r

A
m

a
zo

n
A

O
L

A
skfm

B
a
d
o
o

D
a
ilym

a
il

N
Y

T
im

e
s

S
in

a
S

o
u
n
d
C

lo
u
d

S
tu

m
b
le

T
w

itte
r

Y
a
h
o
o

A
g
o
d
a

B
u
zzF

e
e
d

T
rip

A
d
viso

r

#
 o

f
le

a
k
e

d
 I

D
s

Services

app
apps with antiTrackDroid

Figure 3.15:
Number of leaked ID without and with
antiTrackDroid for the 30 apps with the
higher number of ID leaks.

 1

 10

 100

Vanilla antiTrackDroid
benign request

antiTrackDroid
tracker request

A
v
g

.
fo

rw
a

rd
in

g
 t

im
e

 (
m

s
)

88.58 89.33

9.56

Figure 3.16:
Overall request forwarding time with and
without antiTrackDroid.

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60%

C
D

F

percentage of KBytes saved

(a) Percentage of KBytes saved.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

10
0

10
1

10
2

10
3

10
4

10
5

10
6

C
D

F

energy consumed (mW)

total
trackers

(b) Watts saved due to the less tracking request sent.

Figure 3.17: Benefits from the use of antiTrackDroid.

blacklist (benign request), and (iii) one more with antiTrackDroid enabled and the domain

of the server blacklisted (Tracker request).

Figure 3.16 shows that the vanilla (no antiTrackDroid) request (see 1st bar) takes about

100 ms. When we switch on antiTrackDroid (see 2nd bar), the latency is practically the same.

Indeed, a few lookups in a blacklist do not add any overhead noticeable in the 100 ms range

(less than 1 ms). Finally, when we switch on antiTrackDroid and make an access to a tracker

(see 3rd bar), the latency drops to less than 10 ms as the request is blocked. We are happy

to see that antiTrackDroid, not only improves privacy, but it also improves performance.

3.5. Evaluation 29

3.5.3 Benefits from the use of antiTrackDroid

Besides preserving the user’s privacy, the blocking functionality of our approach improves

also the performance of apps in the user’s data-plan and battery.

Bytes transferred. By blocking the tracking related requests antiTrackDroid is able to

save a significant amount of data, an aspect of great importance when it comes to mobile

users with specific data plan. To determine the different volume of data transferred to/from

the apps in a device running antiTrackDroid, we conduct the following experiment: we run

all apps in our device as previously, but instead of blocking the requests we calculate the

outgoing bytes of requests and the incoming bytes of the associate responses. In addition,

we measure the overall traffic of the app and finally calculate the portion of traffic marked

as tracker-related. Figure 3.17(a), presents the results, where we see that antiTrackDroid

reduces the volume of transferred bytes by 8% for the 50% of the apps.

Energy cost There are several studies [103, 156] attempting to measure the energy cost

imposed by the ad-related content to a user’s device. It is apparent that every connection an

app opens with a network entity, it imposes an overhead to the overall energy consumption

of the device [168]. As a consequence, by reducing the requests an app sends or receives,

along with their transferred data, antiTrackDroid is able to reduce the energy cost of the

application as well.

Measuring the energy consumption in a mobile device is a challenging task. In order to es-

timate our gain with antiTrackDroid, we perform a simulation, based on the energy readings

of Appscope [252]. Figure 3.17(b) presents the distributions of the per-app power consump-

tion for (i) the total and (ii) the tracker-related transferred bytes. From our simulation we

find that there is a significant reduction of about 7,5% for the 50% of the applications.

30 Chapter 3. Personal Data Collection and User Tracking

IDs Description Permission
Group

App Services(%) Web Services(%)

Build The Android OS build version code NONE X 100.00 X 0.00
Model The device model or its codename NONE X 100.00 X 9.48
OS Version The OS or SDK version NONE X 100.00 X 100.00
Manufacturer The device manufacturer NONE X 78.45 X 24.14
Screen Ressolution The screen resolution of the device NONE X 75.00 X 42.24
Location Device’s GPS coordinates LOCATION X 66.38 X 85.34
Carrier The Mobile Network Operator PHONE X 64.66 - 0.00
Advertising ID User-resettable, unique, anonymous ID

for advertising, provided by Google Play
services(ADID)

NONE X 62.93 - 0.00

Android ID A random 64-bit number that is gener-
ated when the device boot’s for the first
time

NONE X 57.76 - 0.00

CPU The device’s CPU architecture NONE X 35.34 X 20.69
IMEI International Mobile Equipment Iden-

tity
PHONE X 24.14 - 0.00

Timezone User’s timezone NONE X 24.14 X 9.48
City The city name of the device’s location NONE X 22.41 X 25.86
Device SN A unique hardware serial number of the

device
NONE X 14.66 - 0.00

MAC Address The MAC address from the device WiFi
NIC

WIFI STATE X 14.66 - 0.00

AP SSID Access Point’s MAC Address or SSID WIFI STATE X 9.48 - 0.00
IMSI International Mobile Subscriber Identity PHONE X 9.48 - 0.00
Local IP Device’s local(LAN) IP address WIFI STATE X 6.03 X 0.00
Fingerprint A string that uniquely identifies the de-

vice’s build
NONE X 5.17 - 0.00

Memory Info The device’s (total/free) memory infor-
mation

NONE X 5.17 - 0.00

Phone Number The SIM number PHONE X 5.17 - 0.00
WiFi Scan Scan for nearby routers and devices and

grab their MAC Address and SSID
WIFI STATE
and LOCA-
TION

X 4.31 - 0.00

Contacts The device’s contacts list CONTACTS X 3.45 - 0.00
Installed Apps The device installed apps NONE X 3.45 - 0.00
ICCID The SIM card Serial Number PHONE X 2.59 - 0.00
Kernel Version The OS kernel version NONE X 2.59 - 0.00
Baseband The radio driver in which the info re-

lated to the telephone communications
of the device is stored

NONE X 1.72 - 0.00

Bootloader The system bootloader version number NONE X 0.86 - 0.00
GSF Google Services Framework Key ID,

paired with the user’s account
GSERVICES X 0.86 - 0.00

Stored SSIDs The SSID/MAC of all connected Access
Point’s

WIFI STATE X 0.86 - 0.00

Logcat The log of system messages, including
stack traces

NONE X 0.86 - 0.00

SMS The device’s sent/received SMS SMS X 0.00 - 0.00

Table 3.1: Description of each ID we investigate, their required permissions (Normal
permissions are marked with blue, when Runtime/Dangerous permissions
with red), their leakability by apps or browsers and the percentage of services
found retrieving the corresponding value of each ID.

3.5. Evaluation 31

Leaked
IDs

Adblock APUSBoat Chrome CM
Browser

Dolphin DU
Browser

FirefoxMaxthonNext
Browser

Opera Opera
Mini

UC
Browser

Yandex

Coordinates - X X - X X - - X X X X - X
City - - X - X X - - X - - - - X
Timezone - - - - X - - - - - - - - X
Android ID - - - - X X X - X X X X X X
Advertising
ID

X - X - X - - X - - X X X X

IMEI - - - - - - X - X - - - X -
IMSI - - - - - - X - - - - - X -
ICCID - - - - - - - - X - - - - -
MAC
Address

- - - - X - - - X - - - X X

Device SN. - - - - - - - - - - - X X -
OS Version X X X X X X X - X X X X X X
Build Ver-
sion

X X X X X X X - X X X X X X

Carrier - - X - X X X - - - X X X -
Manufacturer X - X - X X X X - - X X - X
Model - X X X X X X X X X X X X X
CPU Arch - - - - X - - - - - X X - X
Screen
Resol.

X - X - X X X X - - X X - X

AP SSID - - - - - - - - - - - - - X
WiFi Scan - - - - - - - - - - - - - X
TOTAL 5 4 9 3 13 9 9 4 9 5 10 11 10 14

Table 3.2: Identifiers leaked by the most popular browser apps when visiting google.com.

32

Chapter 4

Common User Identification

In the online era, where behavioral advertising fuels the Internet world as we know it, user

privacy has become a commodity that is being bought and sold in a complex, and often

ad-hoc, data ecosystem [83,100,199]. Users’ personal data collected by IT companies consti-

tute a valuable asset, whose quality and quantity significantly affect each company’s overall

market value [211]. As a consequence, it is of no doubt that in order to gain advantage over

their competitors, web companies such as advertisers and tracking companies participate in

a user data collecting spree, aiming to retrieve and process as much information as possible

(sometimes in both the online and the offline world [118, 120]) and reconstruct user profiles.

These detailed profiles contain personal data1 such as interests, preferences, personal iden-

tifying information (PII), geolocations, etc. [32, 235], and could be sold to third parties for

advertising or other purposes beyond the control of the user [135,189,197]. Here, “sale” may

be access to an API for ad-audience planning (e.g., Facebook), or even actual sharing of data

to third parties [148].

Highlighting the importance of this data collection, web companies have invested a lot in

elaborate user tracking mechanisms. The most traditional one includes the use of cookies:

they have been commonly used in the World Wide Web to save and maintain some kind

of state on the web client’s side. This state has been used as an identifier to authenticate

users across different sessions and domains. However, over the past few years, cookies have

also been massively used to track users as they surf the web. Initially, first-party cookies

were used to track users when they repeatedly visited the same site, and later, third-party

cookies, were invented to track users when they move from one website to another. The

same-origin policy (SOP) invented a few years later [247] placed constraints on what each

party can access locally on the user’s device. In effect, this policy forbids the cross-domain

tracking of users, and consequently restricts the potential amount of information trackers can

collect about a user and share with other third party platforms. Therefore, the SOP had the

potential to slow down the increasingly aggressive tracking, and prevent web entities from

tracking all users’ activities on the web.

1https://ec.europa.eu/info/law/law-topic/data-protection/reform/what-personal-data_en

33

https://ec.europa.eu/info/law/law-topic/data-protection/reform/what-personal-data_en

34 Chapter 4. Common User Identification

To overcome this restriction, and also create unified identifiers for each user, the ad-

industry invented the Cookie Synchronization (CSync) process: a mechanism that can prac-

tically “circumvent” the same-origin policy [89], and allow web entities to share (synchronize)

cookies, and match the different IDs they assign for the same user while they browse the web.

Sadly, recent results show that most of the third parties are involved in CSync: 157 of top 200

websites (i.e. 78%) have third parties which synchronize cookies with at least one other party,

and they can reconstruct 62-73% of a user’s browsing history [67]. Furthermore, 95% of pages

visited contain 3rd party requests to potential trackers and 78% attempt to transfer unsafe

data [253]. Finally, a mechanism for respawing cookies has been identified, with consequences

on the reconstruction of users’ browsing history, even if they delete their cookies [2].

Interestingly, past literature on CSync has focused so far on desktop devices and browsing,

and there was no focus on mobile. Mobile devices, with their ubiquitous nature and the

plurality of sensors embedded in them, have essentially allowed personalization of the web

experience for each user-device owner, at the expense of user privacy. Considering the large

population of mobile devices around the world, and the ever increasing usage of mobile devices

in everyday activities, mobile traffic recently has taken over the majority of web traffic. In

fact, in 2018, 52.2% of all website traffic worldwide was generated through mobile phones (up

from 50.3% in the previous year) [219]. This increasing trend appears to be consistent and

not expected to stop in the near future. Furthermore, mobile devices have become important

sources of user personal information, leading to increased risk for privacy and anonymity loss

for the mobile users - data owners, and to critical questions such as: Which are the basic

characteristics of CSync, and the mechanics used in the mobile ecosystem? Which entities

are involved? How does CSync impact the user’s privacy and anonymity on the mobile web?

In this chapter, we aim to answer these and related questions on user mobile privacy and

anonymity with respect to CSync, by studying this mechanism in depth, its use and growth

through time, dominant entities, along with its side-effects on user privacy. More specifically,

we design and implement CONRAD: (COokie syNchRonizAtion Detector) a holistic, hybrid

mechanism to detect at real time CSync events and the privacy loss on the user side even

when synced IDs are concealed or obfuscated by participating companies aiming to reduce

identifiability from traditional, heuristic-based detection algorithms. In such cases when

non-ID related features are used, our approach achieves high accuracy (84%-90%) and AUC

(0.89 - 0.97). We perform the first of its kind, large-scale, longitudinal study of Cookie

Synchronization on mobile users in the wild. This study is done on a large set of 850

volunteering mobile users, with a passive data collection lasting over an entire year. This

means that the data collected are not crawled, like in past studies, and therefore do not

capture a distorted or biased picture of CSync on the web. Instead, these data provide a rare

glimpse of CSync on the mobile space, and an opportunity to study CSync and its impact

on real mobile users’ privacy and anonymity. Using the proposed detection mechanism, we

conduct an in-depth privacy analysis of Cookie Synchronization. Our results show that

4.1. Cookie Synchronization 35

website3

website2

website1

Figure 4.1: Example of two entities (advertiser.com and tracker.com) synchronizing their
cookieIDs. Interestingly, and without having any code in website3, adver-
tiser.com learns that: (i) cookieIDs userABC==user123 and (ii) userABC
has just visited the particular website. Finally, both entities can conduct
server-to-server user data merges.

97% of regular web users are exposed to CSync. In addition, the average user receives ∼1

synchronization per 68 GET requests, and the median userID gets leaked, on average, to 3.5

different ad-entities. Furthermore, CSync increases the number of entities that track the user

by a factor of 6.7. We also detect CSync involved in different scenarios such as breaking-off

an SSL session and exposing the CSync action in cleartext, and bundling IDs together in the

same CSync event. Finally, we find at least eight different types of PII leakage triggered by

CSync.

4.1 Cookie Synchronization

Cookies is an age-old technique, useful for maintaining a kind of state on the user’s side

and also works as an identifier to authenticate the user across different sessions and domains.

Cookies, however, are domain-specific, which means those created by one third-party entity

cannot be read by anyone else (see same-origin policy [247]: one of the foundational con-

cepts in web security). This policy, by forbidding the cross-domain tracking of users, restricts

the potential amount of information advertisers can collect about a user. In this section, we

discuss the basic concepts of the Cookie Synchronization mechanism, which enables third

parties to share information they acquired about a user bypassing the same-origin policy, as

well as a heuristic-based methodology to detect CSync events.

36 Chapter 4. Common User Identification

4.1.1 How does Cookie Synchronization work?

Figure 4.1 presents a simple example to understand in practice what is Cookie Synchroniza-

tion and how it works. Lets assume a user browsing several domains like website1.com and

website2.com, in which there are third parties like tracker.com and advertiser.com, respectively.

As a consequence, these two third parties have the chance to set their own cookies on the

user’s browser, in order to re-identify the user in the future. Hence, tracker.com knows

the user with the ID user123, and advertiser.com knows the same user with the ID userABC.

Now lets assume that the user lands on a website (say website3.com), which includes some

JavaScript code from tracker.com but not from advertiser.com. Thus, advertiser.com does

not (and cannot) know which users visit website3.com. However, as soon as the code

of tracker.com is called, a GET request is issued by the browser to tracker.com (step 1), and

it responds back with a REDIRECT request (step 2), instructing the user’s browser to issue

another GET request to advertiser.com this time, using a specifically crafted URL (step 3):

GET advertiser.com?syncID=user123&publisher=website3.com

Cookie: {cookie ID=userABC}

When advertiser.com receives the above request along with the cookie ID userABC, it finds

out that userABC visited website3.com. To make matters worse, advertiser.com also learns

that the user whom tracker.com knows as user123, and the user userABC is basically one and

the same user. Effectively, CSync enabled advertiser.com to collaborate with tracker.com,

in order to: (i) find out which users visit website3.com, and (ii) synchronize (i.e., join) two

different identities (cookies) of the same user on the web.

4.1.2 Privacy implications for users

There are several privacy implications for the online users who access websites planted with

such sophisticated tracking technologies. Using CSync, in practice, advertiser.com learns

that: (i) what it knew as userABC is also user123, and (ii) this user has just visited website

website3.com. This enables advertiser.com to track a user to a much larger number of websites

than was initially thought. Indeed, by collaborating with several trackers, advertiser.com is

able to track users across a wide spectrum of websites, even if those websites do not have

any collaboration with advertiser.com.

To make matters worse, the ill effects of CSync may reach way back in the past - even up

to the time before the invention of CSync. Assume, for example, that someone manages to

get access to all data collected by tracker.com, and all the data collected by advertiser.com

(e.g., by acquisition [135, 189], merging or hacking of companies [124]). In the absence of

CSync, in those two datasets, our user has two different names: user123 and userABC. However,

after one single CSync, those two different names can be joined into a single user profile,

effectively merging all data in the two datasets. Nowadays, such cases of server-to-server

4.2. Cookie Synchronization Detection 37

user data merges are taking place at a massive scale [67], with the different web entities

conducting mutual agreements for data exchanges or purchases, in order to enrich the quality

and quantity of their user data warehouses [36,135].

As if these threats to user privacy were not enough, CSync can rob users of the right

to erase their cookies. Indeed, when coupled with other tracking technologies (i.e. ever-

cookie [206], or user fingerprinting [60]), CSync may re-identify web users even after they

delete their cookies. Specifically, when a user erases her browser state and restarts brows-

ing, trackers usually place and sync a new set of userIDs, and eventually reconstruct a new

browsing history. But if one of them manages to respawn [2] its cookie (e.g. through ever-

cookie [206]), then through CSync, all of them can link the user’s browsing histories from

before and after her state erasure. Consequently: (i) users are not able to abolish their as-

signed userIDs even after carefully erasing their set cookies, and (ii) trackers are enabled to

link user’s history across state resets.

4.1.3 Cookie Synchronization and Personalized Advertising

Digital advertising has moved towards a more personalized model, where ad-slots are pur-

chased programmatically (e.g., Real Time Bidding (RTB) based auctions) in auctions, based

on how well the profile of the visitor matches the advertised product. Consequently, ad-

vertisers need to obtain user data (e.g., interests, behavioral patterns) to use as input in

their sophisticated decision engines. The core component for this data purchasing/sharing

includes Cookie Synchronization [81]. It allows different entities (e.g., trackers and advertis-

ers) to perform common user identification and by participating in data markets enrich their

knowledge base with user information from several data sources.

4.2 Cookie Synchronization Detection

In this chapter, we design CONRAD: a holistic methodology to detect Cookie Synchroniza-

tion events in real time, on the user side. CONRAD, monitors the HTTP(S) traffic of

the user on the browser level and detects userIDs when shared from one domain to the

other. To achieve that, it uses a (i) Heuristics-based (stateful) detection mechanism (Sec-

tion 4.2.1), where the IDs from cookies are tainted and alert is raised when they are ex-

filtrated to a domain other than the owner of the cookie. However, as also presented in

past studies [11], more and more companies include encryption (or cryptographic hashing)

in the Cookie Synchronization-related APIs, thus concealing the synced IDs. To deal with

these cases, CONRAD uses a (ii) ML-based (stateless) detection mechanism (Section 4.2.2)

capable of classifying with high accuracy such possible concealed Cookie Synchronizations,

without relying on any previously stored cookie IDs, but only using characteristics from the

connections themselves.

38 Chapter 4. Common User Identification

Heuristics-
based detection

ML-based
cookie-less detection

Cookie Synchronization
Detection

Privacy Analysis

- Statistics
- Diffusion of leaked IDs
- Personal information

leaks

HTTP
traffic Results

Figure 4.2: High-level overview of the internal components of CONRAD.

For each Cookie Synchronization detection method, CONRAD extracts its information

flow: the chain of entities that share the synced ID, the domain that triggered the Cookie

Synchronization event, the entities that (without having access to the website) used this sync

request to set and sync their own userIDs (see Section 4.4.1). This way, our tool is able to

measure the diffusion of anonymity loss for the given user by analyzing what number of their

overall userIDs budget got synced, and to how many third party domains. In addition, by

using a simple pattern matching technique, CONRAD extracts possible personal information

leaks tailored with the synced ID (see Section4.4.4). Figure 4.2, provides a high level overview

of CONRAD’s internal components.

Although there are several existing techniques for detecting ID-sharing events even when

cookies are encrypted, accurate CSync detection in real time is a hard task. The main

advantages of our approach, contrary to existing detection mechanisms [2, 11, 67] are as

follows: (i) It offers the ability to detect synchronizations when the userID is embedded

not only in the URL’s parameter, but also in its path (either in case of request/response

URL or Location URL of the referrer). (ii) By filtering-out domains of the same provider,

our approach can discriminate between intentional CSync and unequivocally legitimate cases

of internal ID sharing, thus avoiding false positives. (iii) It is capable of detecting Cookie

Synchronization at real time, even when shared IDs are encrypted.

4.2.1 Heuristics-based detection

Technically, as we see in Table 4.1, CSync is nothing more than a request from the user’s

browser to a third party domain carrying (at least one) parameter that constitutes a unique

ID set by the calling domain. However, what CSync typically enables is a multiple, back-

to-back operation with several third party domains getting updated with one particular ID.

This multiple synchronization happens by utilizing URLs of HTTP requests (i.e., the Location

HTTP header), in which the cookie ID (i.e., the userID) of the triggering entity is embedded.

The userID may be embedded in the: (i) parameters of the URL, (ii) URL path, or (iii)

4.2. Cookie Synchronization Detection 39

URLs of Cookie Synchronization HTTP Requests

1. a.atemda.com/id/csync?s=L2zaWQvMS9lkLzMxOUwOTUw
2. bidtheater.com/UserMatch.ashx?bidderid=23&
bidderuid=L2zaWQvMS9lkLzMxOUwOTUw&
expiration=1426598931

3. d.turn.com/r/id/L2zaWQvMS9lkLzMxOUwOTUw/mpid/

Table 4.1: Examples of userIDs getting synchronized between different entities.

referrer field. In some cases, detection may be straightforward: one can simple look for specific

parameter names (e.g., syncid, user id, uuid). However, different companies use different

APIs and parameter naming; relying only on string matching for Cookie Synchronization

detection will lead to a large number of false negatives in case of newcomer syncing domains.

To remedy this, we design a stateful heuristics-based detection algorithm, which relies on the

previously set cookies to taint userIDs that may get synced with entities different than the

cookie setter. In particular, our Cookie Synchronization detection methodology includes the

following steps, which are also illustrated in Figure 4.3:

1. First of all, we extract all cookies set on the user’s browser. To accomplish that, we

parse all HTTP requests in our dataset and extract all Set-Cookie requests.

(a) We filter out all session cookies. These are cookies without expiration date, which

get deleted right after the end of a session.

(b) We parse the cookie value strings using common delimiters (i.e. “:”, “&”). By

extracting potentially identifying strings (cookie IDs), we create a list with the

cookie IDs that could uniquely identify the user in the future.

2. Second, we exclude any possible ID-sharing URL from the HTTP trace:

(a) We identify ID-looking strings carried either (i) as parameters in the URL, (ii) in

URL path, or (iii) in the referrer URL. As ID-looking strings, we define strings

with specific length (> 10 characters) – false positives do not matter at this point.

(b) Upon detection, each of such ID-looking strings is stored in a hashtable along with

the URL’s domain (receiver of the ID).

(c) In case we have already seen the same ID in the past, we consider it as a shared

ID and the requests carrying it as ID-sharing requests.

(d) To check if the above ID-sharing requests regard different entities, we use several

external sources (DNS whois, blacklists etc.) to filter-out cases where the IDs

are shared among domains owned by the same provider (e.g., amazon.com and

40 Chapter 4. Common User Identification

ID-looking strings
in params/path/Referrer:
(length, # of digits/alphas)

Have you
seen this
ID again?

Yes

No

Yes

Store it along with
its domain

Cookie
Synchronization!

From different domain?
(DNS whois, blacklists)

Capture set HTTP cookies
filter session cookies,

extract cookie IDs

ID == cookie ID?

Yes

1

3

2a

2d

2b
2c

Figure 4.3: Heuristics-based Cookie Synchronization detection mechanism.

amazonaws.com) [152]. This way, our approach can discriminate between inten-

tional ID leaking and legitimate cases of internal ID-sharing, thus avoiding false

positives.

3. Finally, in order to verify if the detected shared ID is a userID, able to uniquely identify

a user, we search this ID in the list of the cookie IDs that we extracted in the first step.

If there is a match, then we consider this request as Cookie Synchronization.

4.2.2 Cookie-less detection

It is apparent that in order for the above methodology to be a viable CSync detection method,

cookie IDs need to be shared in plaintext. However, major web companies [89] have started

encrypting the cookie ID in an attempt to protect the actual cookie from being revealed to

unwanted parties. Such entities can be third parties snooping on the user traffic (plugins or

even ISPs), as well as syncing partners.

While the former case is obvious why companies would want to block such snooping,

the latter case may not be clear why and, thus, we discuss this case further. In particular,

under the traditional, plaintext case of cookie ID syncing, the same source company can

sync independently with multiple third parties for the same user cookie ID. Thus, no-one

forbids these other third parties from syncing their IDs with each other, and find out that

they have information about the same user, something that goes beyond what the source

company intended to do (top example of Table 4.2). With hashing or encryption of the

cookie ID, these third parties are unable to do this syncing (bottom example of Table 4.2).

4.2. Cookie Synchronization Detection 41

ID syncs beyond the 1-1 of source entity (plaintext):

Domain syncs ID with Tracker1 ID1; → ID1=ID;
Domain syncs ID with Tracker2 ID2; → ID2=ID;
Tracker1 syncs ID1 with Tracker2 ID2; → ID2=ID1=ID;

ID syncs beyond the 1-1 of source entity (encrypted):

Domain syncs h(ID,A) with Tracker1 ID1; → ID1=h(ID,A);
Domain syncs h(ID,B) with Tracker2 ID2; → ID2=h(ID,B);
Tracker1 syncs ID1 with Tracker2 ID2; → h(ID,A)!=h(ID,B), i.e., ID1!=ID2;

Table 4.2: Examples of Cookie Synchronization between third parties with plaintext
and encrypted cookie IDs.

As a consequence of this encryption, CSync events can proceed undetected, if the previously

used detection method is employed.

In order to address this scenario, in this chapter, we propose a novel method for identifying

CSync which is oblivious to the IDs shared. This mechanism is able to identify with high

accuracy CSync events in web traffic, even when the leaked IDs are protected and cannot

be matched. To build this mechanism, we employ machine learning methods, which we

train on the ground truth datasets created with the previous, heuristic-based technique. In

particular, we analyze various features extracted from the web traffic due to CSync, and

train a machine learning classifier to automatically classify a new HTTP connection as being

a CSync event or not. Here, we make the assumption that the various features used to

characterize, and eventually detect, CSync with plaintext IDs, are equally used, and have

the same distributions and variability as in the CSync with encrypted IDs. We believe this

is a reasonable assumption, since the companies employing encrypted IDs are not expected

to change the rest of their mechanism which delivers these IDs and triggers CSync with their

partners; these companies only want to obfuscate the IDs to avoid further, and unwanted,

CSync.

For training the classifier, we extract various relevant features from the network traces. As

ground truth, we use confirmed CSync events which were detected with the heuristics-based

method described earlier. Beyond these confirmed events, there are id-sharing events which

were first selected by the method as potential CSync events, but eventually were rejected as

non-CSync, as they did not match cookie IDs already seen by the method (step 1 in Figure

3).

The features available for these network events can be several; we constrain the machine

learning algorithm to use only features available at run time, and during the user’s browsing

to various websites:

• EntityName: {domain of recipient company}
• TypeOfEntity: {Content, Social, Advertising, Analytics, Other}

42 Chapter 4. Common User Identification

Description #

Total mobile users 850
HTTP requests captured 179M
Unique Cookies (C) 8978275

ID sharing requests 412805

Unique shared IDs (S) 68215
Unique userIDs got synced (C ∩ S) 22329
Cookie Synchronization requests 263635

Table 4.3: Summary of contents in our dataset.

• ParamName: {aid, u, guidm, subuid, tuid, etc.}
• WhereFound: {parameter in URL, parameter in Referrer, in the URL path}
• StatusCode: {200, 201, 202, 204, etc.}
• Browser: {Firefox, Chrome, Internet Explorer, etc.}
• NoOfParams: {0, 1, 2, ..., etc.}

Various machine learning algorithms can be applied in this case: Random Forest, Support

Vector Machines, Naive Bayes, and even more advanced methods such as Neural Networks.

However, a balance must be found between training the given algorithm to reach a good

accuracy, the computation cost for this training, as well as the capability of the algorithm to

be used at real time on the user device.

This method aims to address two possible scenarios that can arise while IDs are being

shared: First, we consider the realistic scenario that an already identified set of id-sharings are

candidate CSync events (as found by the heuristics-based method), but cannot be validated as

CSyncs because of the cookie ID being encrypted or unavailable, and therefore not matching

the repository of IDs. Second, we consider the scenario where various HTTP connections

are ingested by the method, and it needs to decide at run-time which are CSync events and

which are not. This case is a more generalized version of the previous scenario, and attempts

to detect CSync events, as an alternative method to the heuristic-based approach. In either

of the two cases, we follow a generally accepted methodology that separates training such

a machine learning model, from applying it at real-time. The training can be performed

offline, on an existing dataset (e.g., the one we collected, or from anonymous user network

traffic donations), and the model trained can be distributed accordingly with the tool at

hand. Then, the tool can apply the classifier on each network connection under question, for

real-time classification.

4.3. Dataset 43

 0

 20

 40

 60

 80

 100

 120

Jan
Feb

Mar
Apr

May
Jun

Jul
Aug

Sep
Oct

Nov
Dec

V
is

it
e

d
 d

o
m

a
in

s
 p

e
r

u
s
e

r

Month of the year

Figure 4.4:
Distribution of number of unique domains
visited per user per month. The median user
in our dataset visits 20 - 30 different domains
per month.

 0

 5

 10

 15

 20

 25

 30

Jan
Feb

Mar
Apr

May
Jun

Jul
Aug

Sep
Oct

Nov
Dec

N
u

m
b

e
r

o
f

re
v
is

it
s

Month of the year

Figure 4.5:
Distribution of number of times a user revisits the
same domain per month. The median user revisits
the same domain around 7-10 times per month
through their mobile browser, while the 90th
percentile may revisit the same domains up to
25-29 times.

4.3 Dataset

In this section, we describe the data collection process and our year long dataset. In order

to collect data from real users, we set a group of proxies fronted by a load balancer, and

gathered 850 volunteering users residing in the same country. These users agreed to strip

their browsers from any previous state (i.e., cookies, cache, webStorage) and have their

devices to continuously redirect their network traffic through our proxies for 12 consecutive

months (2015-2016). They signed a consent form allowing us to collect and analyze their

data during this period, and publish any anonymized results. They were well-aware of the

purposes of the data collection, and were compensated with free data plan, as long as they

were using the proxies. Before the analysis was performed, all data were anonymized and

never shared with any other entities.

Given the long duration of the experiment, and in order not to jeopardize the confiden-

tiality of the users’ secure sessions, we capture only their HTTP traffic. On the server-side

and based on the user agent of each request, we filtered out any possible app-related traffic.

Overall, we collected a dataset containing a total of 179M HTTP2 requests, spanning an

entire year. Table 4.3 summarizes the contents and CSync findings in our dataset.

2For confidentiality purposes, users agreed to provide only their HTTP traffic. However, our proposed
methodology works in the same way for HTTPS traffic as well.

44 Chapter 4. Common User Identification

 0

 5

 10

 15

 20

 25

 30

 35

 40

Jan
Feb

Mar
Apr

May
Jun

Jul
Aug

Sep
Oct

Nov
Dec

U
n
iq

u
e
 c

o
o
k
ie

s
/d

o
m

a
in

p
e
r

u
s
e
r

Month of the year

Figure 4.6:
Number of (first and third-party) cookies
per domain per user. We see that the
median user receives around 10 cookies
per visited website.

0%

20%

40%

60%

80%

100%

 1 10 100 1000C
u
m

u
la

ti
v
e
 d

is
tr

ib
u

ti
o
n

 o
f

u
s
e
rs

Median number of different
userIDs per domain

Figure 4.7:
Number of unique userIDs set per domain
across the year. 80% of the users are known
to a single domain with only 2 aliases,
on average, throughout the entire year.

4.3.1 Users

To analyze our dataset, we create a simple HTTP weblog parser. As noted earlier, this dataset

consists of web browser traffic from the mobile devices of 850 users. After separating the flows

of each one of them, we produced their timelines, and in Figure 4.4, we present the number

of different domains each user visits per month. As we see from the distribution (Percentiles:

10th, 25th, 50th, 75th, 90th), the median user in our dataset visits 20-30 different domains

depending on the month (we observe a seasonal phenomenon with increases during spring

break and summer holidays).

Similarly, in Figure 4.5, we present the number of times each of these domains gets

revisited by the median user in our dataset. In every revisit, there is a new HTTP request

that asks the user’s browser if there is a previously set cookie. If this Get-Cookie request

regards a previously set cookie, this means that the domain already knows the user and we

consider it as a revisit. We observe that the median user revisits around 7 times the same

domain from their mobile browser. Again, we observe the seasonal phenomenon as earlier,

when users tend to have more time to spend browsing the web. Also, the 75th percentile of

the users may revisit the same website more than 15 times (March, August).

4.3.2 Cookies

In order to have a good view of the cookie activity of users, we extract all (first and third

party) cookies set in the users browsers across the year, and in Figure 4.6, we plot the

4.4. Privacy Analysis 45

Initiator Portion

(i) Publisher syncs its userID 2.692%

(ii) Embedded third party trig-
gers syncing of its own set
userID

49.668%

(iii) Third party uses sync request
to share its own set userID

45.697%

(iv) Third party uses sync request
to share with other domains
the publisher’s set userID

0.2658%

Table 4.4: Breakdown of the Cookie Synchronization triggering factors.

distribution (percentiles: 10th, 25th, 50th, 75th, 90th) of the number of cookies per visited

website. The median user receives a fairly constant number of cookies per month: 12.25

cookies per visited website on average.

Next, we extract the unique identifiers set in these cookies (cookie IDs). A cookie ID,

in essence, constitutes a unique string of characters that websites and servers associate with

the browser and, thus, the user in which the cookie is stored. Thereby, in the rest of this

section, we consider a cookie ID as a unique user identifier called userID. As it can be seen

in Table 4.3, in our dataset, there are almost 9 million such unique IDs.

In Figure 4.7, we plot the distribution of the number of unique userIDs assigned to

the users per domain. The vast majority of the users (80%) receive, on average, only 2.2

userIDs per domain, across the year. This means that users tend not to erase their cookies

frequently, thus, allowing web domains to accurately identify them through time and during

the users’ browsing. Only 1.13% of users erase their cookies (either manually or by browsing

with Private/Incognito Browsing), receiving more than 9.5 different userIDs per domain, on

average. This means that it is very rare for a domain to meet a previously known user with

a different alias.

4.4 Privacy Analysis

In this section, we present the results of CONRAD when applied in the dataset we described

in the previous section. As expected, there are several IDs passed from one entity to another.

We detect 68215 such unique shared IDs. From these IDs, 22329 were actually cookie IDs

from previously set cookies that were synced among different domains. In total, these cookie

IDs were found in 263635 synchronization events (see Table 4.3 for a summary).

From the total CSyncs detected in our dataset, userIDs were found in 91.996% of the

cases inside the URL parameters, 3.705% in the Referrer URL, and in 3.771% of the cases in

46 Chapter 4. Common User Identification

0%

20%

40%

60%

80%

100%

 0 50 100 150 200

C
D

F

of days

Figure 4.8:
Distribution of the time it takes for the first
CSync to appear per user. Around 20% of the
users get their first userID synced in 1 day or
less, when 38% of users get synced within
their first week of browsing.

 0

 0.005

 0.01

 0.015

 0.02

J
a

n

F
e

b

M
a

r

A
p

r

M
a

y

J
u

n

J
u

l

A
u

g

S
e

p

O
c
t

N
o

v

D
e

c

A
v
e

ra
g

e
 s

y
n

c
s
/r

e
q

 p
e

r
u

s
e

r

Time Period

Figure 4.9:
CSyncs per HTTP request for the average user
through the year, normalized with their total
number of requests. The average user receives
1 synchronization every 68 HTTP GET requests.

the URI path. Therefore, our enhanced detection algorithm was able to detect 3.771% more

cases of CSyncs than existing detection methods [2, 176,183].

4.4.1 Initiation of Cookie Synchronization

First, we correlate the cookie domain (the setter), the synchronizing HTTP request’s Referrer

field, and the publisher that the user visited, in order to extract the entity that triggered

the CSync on the user’s browser. As seen in Table 4.4, there are 4 distinct cases: (i) the

CSync was initiated by the publisher who syncs the userID he assigned for the user: we find

2.692% of these cases in our dataset, (ii) the synchronization was initiated from a publisher’s

iframe, by the guest third party which syncs its own userID (49.668%), (iii) a third party

which participated in a previous synchronization (case (i) or (ii) above) and uses the sync

request to share its own userID (45.697%). Lastly, there is a rare case (iv), where a third

party which participated in a previous synchronization of the publisher’s userID (case (i))

initiates a new round of syncs while it continues to share the publisher’s userID (0.2658%).

It is apparent, that in case (iv), the initiating third party shares with its third party affiliates,

a userID assigned by an entity (the publisher) beyond its control, and possibly awareness.3

3We reported all such cases and we notified the respected publishers.

4.4. Privacy Analysis 47

0%

20%

40%

60%

80%

100%

10
0

10
1

10
2

10
3C

u
m

u
la

ti
v
e

 d
is

tr
ib

u
ti
o

n
 o

f
u

s
e

rs

Total User IDs synced

Figure 4.10:
Distribution of the synced userIDs per user.
The median user has 7 userIDs synced, and
3% of users has up to 100 userIDs synced.

0%

20%

40%

60%

80%

100%

10
1

10
2

10
3

C
u

m
u

la
ti
v
e

 d
is

tr
.

o
f

u
s
e

r
ID

s

of synchronizations

Figure 4.11:
Distribution of synchronizations per userID.
The median userID gets synced with 3.5
different entities.

4.4.2 How are users exposed to CSync?

CSync impacts users’ privacy by leaking assigned userIDs, and sharing them with third

parties. In our dataset, we see that for users with regular activity on the web (> 10 HTTP

requests per day), 97% were exposed to CSync at least once. This means that CSync

constitutes a phenomenon affecting the totality of online users.

Next, we study how long it takes for the first synchronization to happen, or in effect, how

quickly a user gets exposed to CSync after she starts browsing. Recall that as mentioned

in Section 4.3, all participating users, during bootstrapping phase, had all state from their

browsers erased. This means that our proxy was able to capture the very first cookie that

was set during the user’s monitoring period. Of course, the time depends on the browsing

patterns of each user, however, as we see in Figure 4.8, a median user experiences at least

one CSync within the first week of browsing. In fact, a significant 20% of users gets their

first userIDs synced in 1 day or less. It is worth noting at this point, that users tend

to browse the same top websites again and again (e.g., facebook.com, twitter.com, cnn.com),

so the set cookies are already shared and no sync is fired.

Next, we investigate if the synchronizations the users are exposed to, change over time.

Hence, we extract CSyncs per user, and normalize with the user’s total number of requests.

In Figure 4.9, we plot the average synchronizations per HTTP request across the year. As

shown, CSync is persistent through the duration of an entire year, with the user being exposed

to a steady number of synchronizations across time. Specifically, we see that the average user

receives around 1 synchronization per 68 GET requests.

Considering the different userIDs that tracking entities may assign to a user, in Fig-

48 Chapter 4. Common User Identification

0%

20%

40%

60%

80%

100%

 1 10 100 1000

C
D

F
 o

f
s
y
n

c
e

d
 u

s
e

rs

Domains learned about the user

before CSync
after CSync

Figure 4.12: Distribution of the number of entities learned at least one userIDs of the user
with and without the effect of Cookie Synchronization. As we can see, after
syncing the entities that learned about the median user grew by a factor of
6.75.

ure 4.10, we measure the number of unique userIDs that got synced per user. Evidently, a

median user gets up to 6.5 userIDs synced, and 3% of users has up to 100 userIDs

synced. It becomes apparent that the IDs of a user may leak to multiple third party domains

through CSync. To measure the userID leak diffusion, in Figure 4.11, we plot the distribu-

tion of synchronizing requests per userID. As we see, the median userID gets leaked, on

average, to 3.5 different entities. There is also a significant 14%, that gets leaked to up

to 28 different third parties.

To better understand the effect of CSync on the diffusion of the overall user privacy, we

measure for each user the number of entities that learned about them (i.e., that learned at

least one of their userID) before and after CSyncs. As we can see from the plotted distribution

in Figure 4.12, the entities that learned about the median user after CSyncs grew

by a factor of 6.75, and for 22% of users, this factor becomes > 10. This means that before

the rise of CSync, when the user visited a website, the entities that could track them were

only the publisher and the included third parties, but in an independent fashion. However,

with the introduction of CSync, the number of entities that can track the user drastically

increased (6.75x for the median user), severely decreasing their anonymity on the web.

4.4.3 Buy 1 - Get 4 for free: ID bundling and Universal IDs

In our dataset, we find 63 cases of domains which set on the users’ browsers cookies

with userIDs previously set by other domains. For example, we see the popular

baidu.com, the world’s eighth-largest Internet company by revenue, storing a cookie with an

4.4. Privacy Analysis 49

ID Summary stored in cookie by adap.tv

“key=valueclickinc:value=708b532c-5128-4b00-a4f2-2b1fac03de81:expiresat=wed apr 01
15:03:42 pdt 2015,key=mediamathinc:value=60e05435-9357-4b00-8135-273a46820ef2:
expiresat=thu mar 19 01:09:47 pst 2015,key=turn:value=2684830505759170345:expiresat=
fri mar 06 16:43:34 pst 2015,key=rocketfuelinc:value=639511149771413484:expiresat=sun
mar 29 15:43:36 pst 2015”

Table 4.5: Example of an ID Summary stored on the user’s browser with userIDs and
cookie expiration dates set by 4 different domains.

ID baiduid = {idA}, and more than 5 different domains after this incident setting their own

cookie using the same ID baiduid = {idA}. This byproduct of CSync, enables trackers to use

universal IDs, thus, bluntly violating the same-origin policy and merging directly (without

background matching) the data they own about particular users.

In addition, we find 131 cases of domains storing in cookies the results of their

CSyncs, thus composing ID Summaries. In these summaries, we see the userIDs that

other domains use for the particular user previously obtained by CSyncs. An example of such

summaries in JSON is shown in Table 4.5. As one can see, the cookie set by adap.tv includes

the userIDs and cookie expiration dates of valueclick.com, mediamath.com, turn.com and

rocketfuel.com. In our dataset, we find at least 3 such companies providing ID Summaries

to other collaborating entities. This user-side info allows (i) the synchronizing entities to

learn more userIDs through a single synchronization request, and (ii) adap.tv to re-spawn

any deleted or expired cookies of the participating domains at any time, just by launching

another CSync.

4.4.4 Sharing sensitive information together with userIDs

As mentioned earlier, the websites a user browses can easily leak through the referrer field

during a CSync. Moving beyond this type of basic leak, in our dataset we find several

cases of privacy-sensitive information passed to the syncing entity regarding the particular

user with the particular synced ID. By deploying a simple string matching script, we find

straightforward leaks of personal data of users to third parties:

• 13 synchronizations leaking the user’s exact location at city level

• 2 synchronizations leaking the user’s registered phone number

• 10 synchronizations leaking the user’s gender

• 9 synchronizations leaking the exact user’s age

• 3 synchronizations leaking the user’s full birth date

• 2 synchronizations leaking the user’s first and last name

50 Chapter 4. Common User Identification

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Advertising(301)

Analytics(25)

Social(4)
Content(13)

Other(1294)

P
o

rt
io

n
 o

f
to

ta
l
s
y
n

c
e

d
 u

s
e

rI
D

s

Content category (number of companies)

Figure 4.13:
Portion of synced userIDs per content
category. As expected, the vast majority
regards ad-related companies.

0%
10%
20%
30%
40%
50%
60%

ru
b
ico

n
p
ro

je
ct.co

m

3
6
0
yie

ld
.co

m
o
p
e
n
x.n

e
t

ca
sa

le
m

e
d
ia

.co
m

sm
a
rta

d
se

rve
r.co

m

n
e
xa

c.co
m

a
d
n
xs.co

m
lijit.co

m
tu

rn
.co

m
co

n
te

xtw
e
b
.co

m

sp
o
txch

a
n
g
e
.co

m

a
d
a
p
.tv

a
d
sca

le
.d

e
a
d
te

ch
.d

e
a
te

m
d
a
.co

m
stickya

d
stv.co

m

live
ra

il.co
m

fa
ce

b
o
o
k.co

m
a
d
ve

rtisin
g
.co

m

e
xe

la
to

r.co
m

b
lu

e
ka

i.co
m

P
o

rt
io

n
 o

f
to

ta
l

s
y
n

c
e

d
 u

s
e

rI
D

s

Top syncing companies

Figure 4.14:
Portion of synced userIDs learned per entity
over HTTP: 3 companies learn more than 30% of
the total userIDs in our dataset; 14 companies
learn more than 20% each.

• 16 synchronizations leaking the user’s email address

• 4 synchronizations leaking the user’s full login credentials: username and password

Apparently, the above information constitutes not only a severe privacy threat for the user,

but can also enable potential impersonation attacks.

4.4.5 Who are the dominant CSync players?

In order to assess the content that CSync entities provide, we extract all domains involved

in CSync, and using EasyList, EasyPrivacy [72] and the blacklist of the popular Disconnect

browser extension [55] (enriched with our additions after manual inspection), we categorize

them according to the content they deliver. This way, we create five categories of entities

related with: (i) Advertising, (ii) Analytics, (iii) Social, (iv) Third party content (e.g., CDNs,

widgets, etc.), and (v) Other.

As we saw in Figure 4.11, the median userID gets shared with more than one entities.

We find that ad-related entities participate in more than 75% of the overall syn-

chronizations through the year. Consequently, as we can also observe in Figure 4.13,

ad-related entities have learned as much as 90% of all userIDs that got synced,

with Social and Analytics -related entities following with 24% and 20% respectively. In

Figure 4.14, we plot the top 20 companies4 that learned the biggest portion of the total

userIDs through CSyncs in our dataset. Evidently, no more than 3 companies (i.e., rubi-

conproject.com, 360yield.com and openx.net) learned more than 30% of all userIDs in our

4In a dataset with both HTTP and HTTPS traffic, market shares may differ since there are companies
operating over SSL only (e.g., DoubleClick)

4.4. Privacy Analysis 51

example.com

Snooping ISP

tracker1.com tracker2.com

HTTPS
HTTP-CSync

Browsing
sessions

(1)

(2)

(3) (4)

Figure 4.15: High level overview of the TLS session leak. A privacy-aware user (1)
visits a webpage (example.com) over TLS and VPN. (2) It sends track-
ing information to tracker1.com, and receives its cookie over TLS. (3,4) It
takes only a HTTP-based Cookie Synchronization (among tracker1.com and
tracker2.com) in order to spill user unique identifiers and visited website.
Then, a snooping ISP can re-identify the user just by monitoring the synced
cookies, even if their real IP address is hidden.

dataset each. There is also a significant number (14) of companies that learn more than 20%

of userIDs.

4.4.6 Spilling userIDs from Secure Sessions

It is well known, that the basic principle of TLS channels is the confidentiality of the transmit-

ted information, which guarantees the privacy and security of the communication. However,

TLS does not guarantee these principles in a plug-and-play manner. There are several guide-

lines [62] warning about the harmful practice of mixing encrypted and non-encrypted content

in TLS sessions. Yet, there is still a significant portion of publishers that fail to maintain

adequately the security of their TLS channels [179].

In this study, we demonstrate the massive privacy threat that HTTP-based Cookie Syn-

chronization can impose to the user’s TLS sessions. A possible scenario for this leak, as

depicted in Figure 4.15, is the following: Let’s assume a privacy-aware user, who conducts

multiple browsing sessions from their PC, and uses a secure VPN to hide their true IP

address. At some point, they visit https://example.com: a trustworthy reputable website,

52 Chapter 4. Common User Identification

which requires a secure TLS channel establishment (Step 1). The website is ad-supported

and thereby it includes ad- and analytic- related third parties that deliver effective person-

alized advertisements to the visitors. However, as we noted, https://example.com is a well

reputable website and therefore it includes only TLS supporting third parties.

One of these third parties is https://tracker1.com. This third party securely sets a cookie

with a user unique identifier (userID) ID = user123 on the user’s side, in order to re-identify

this user in case of a next visit to a site that this third party is similarly included (Step 2).

Immediately after, it performs a Cookie Synchronization in order to share the set userID

with a remote collaborating domain http://tracker2.com (Step 3). Technically, tracker1.com

redirects an HTTPS request coming from the user’s browser to http://tracker2.com (Step 4),

while it loads the location URL with its userID:

3xx Redirect request Headers

Location: tracker2.com?syncID=user123&partner=tracker1

Referrer:{example.com}

Response Headers

Set-Cookie: {cookie ID=userABC}

This Redirect request allows tracker2.com to (i) learn the syncedID (i.e. the userID of

tracker1.com), and (ii) respond back with a Set-Cookie, thus setting its own cookie in the

user’s browser (Note: Prior to Cookie Synchronization, tracker2.com was not included in any

way in example.com and thus it had no reach to the user).

A careful reader may have already detect the severe privacy leaks in this scenario:

1. Common userID leak: The HTTP redirection exposes the TLS cookie to both the

synced remote party and the snooping ISP. By allowing tracker2.com to set its own cookie

on the user’s browser in plaintext, the ISP is allowed to learn user123 == userABC. In

this way, the ISP can re-identify the user in the web from now on, by leveraging the requests

of tracker2.com. Specifically, whenever it captures HTTP requests to tracker2.com with

cookie ID = userABC, it can identify who the user is, even if they use VPN or mixnets

to hide their real IP address. Obviously, the more third party entities participate in the

Cookie Synchronization the easier it is for the ISP to capture HTTP requests loaded with

these synced cookies and, thus, re-identify the user.

2. Browsing history leak: There are specific directives (Section 14.36 in RFC 2616 [137])

instructing web entities to either blanking or replacing with inaccurate data the referrer

field of HTTP GET requests (referrer hiding), if it refers to a parent HTTPS page. This

way, possible exposure of the visited website is fully prevented. Yet, there is an absence

of similar directives for the case or HTTP Redirect requests as discussed by the web

4.4. Privacy Analysis 53

Role Domain

- Visited website https://example.com

- Cookie setter https://tracker1.com
- SetCookie ade87e60-5336-4dd9-9a2a-763e85516f6d-tuct150ff6a

- Cookie syncer http://idsync.tracker2.com/389.gif?partner uid=
ade87e60-5336-4dd9-9a2a-763e85516f6d-tuct150ff6a&redirect=1
referrer: example.com
Get-cookie: {VwkBRjV8XjsYsUgWqL4jEl4=}

- Cookie syncer http://pixel.tracker3.com/idsync?partner id=
227&partner user id= ade87e60-5336-4dd9-9a2a-763e85516f6d-tuct150ff6a
referrer: example.com
Get-cookie: {c57bd1f-8e2ac1hb0242ac-110005}

Table 4.6: Example of leak in our dataset. Our crawler visited over TLS
the https://example.com. 2 Cookie Synchronizations appear, where
https://tracker1.com advertiser shares with tracker2.com and tracker3.com
the ID it assigned to the user. By doing that over plain HTTP, the vis-
ited website is leaked through the referrer field to a monitoring ISP or other
entity.

community. 5 A consequence of this aspect, is that unstripped referrer fields of redirections

from HTTPS domains to HTTP domains harm the confidentiality of the secure session,

by leaking the TLS-visited website to any monitoring body. Although, at first glance, this

leak seems generic and not directly connected with Cookie Synchronization redirections, a

careful reader may have observed that in our above scenario, the exposed synced userID of

the Cookie Synchronization is the actual identifier that makes this referrer leak persistent.

Specifically, Cookie Synchronization amplifies the traditional referrer leak by allowing the

snooping ISP to bind the leaked visited website with a persistent ID, which will identify

the user even after an IP address or Tor circuit change.

Given that our proxy is monitoring only HTTP traffic, one would expect that no infor-

mation from secure TLS sessions would be captured. To our surprise, in our dataset we

see userIDs originated from TLS sessions getting leaked to unsecured HTTP third parties

requests, and as a result, anybody could monitor them6.

After a deeper inspection, we see that this ID-spilling was caused by CSync redirections

appearing in TLS protected websites that synced a userID from a set (over TLS) cookie

with non-TLS third parties. An example of such leak is depicted in Table 4.6. In this

example, a user visited over TLS the page https://example.com. In this website, 2 CSyncs

are performed, where https://tracker1.com advertiser shares with http://tracker2.com and

http:// tracker3.com the ID it assigned to the user. This way, the two tracking entities sync

5https://stackoverflow.com/questions/2158283/will-a-302-redirect-maintain-the-referer-
string/5441932#5441932

6As soon as we verified this leak, we notified our volunteering users updating the consent they had signed.

54 Chapter 4. Common User Identification

0%

20%

40%

60%

80%

100%

 1 10 100

C
D

F
 o

f
a

ff
e

c
te

d
 u

s
e

rs

of leaked SSL URLs

Figure 4.16: Distribution of the leaked TLS URLs per affected user. The median of those
users has 70 TLS URLs leaked through Cookie Synchronization, when the
90th percentile has up to 226 TLS URLs leaked.

their set-cookies with the one of https://example.com. However, by doing that over plain

HTTP, the visited website gets leaked through the referrer field to a possible monitoring

entity (e.g., ISP). In addition, this snooping entity from now on can skip the privacy provided

by TLS and re-identify the user in the web just by monitoring the cookies of the HTTP traffic

of http://tracker2.com and http://tracker3.com, even if the user browses through proxies.

We measured such cases in our dataset and found 44 users (5%) affected by the

ID-spilling of Cookie Synchronization. The majority of the leaked domains regard top

content providers, where an eavesdropper from the referrer field, apart from the domain, can

also see sensitive information like the user’s search queries. As can be seen in Figure 4.16,

the median of those users has 70 TLS URLs leaked through Cookie Synchronization, when

the 90th percentile has up to 226 TLS URLs leaked.

4.5 Measuring ID-Spilling in the wild

To assess the feasibility of the leak we described earlier, we collected and analyzed a dataset

from the most popular websites worldwide during December 2017. By using Selenium, we

deployed a headless Chrome browser and crawled the landing pages of the top 12K Alexa

websites, through the secure VPN of our institution (FORTH). In this process, we fetch each

website once, and after each probe, we erase the state of our browser. The overall volume of

our dataset includes 440K HTTP(S) requests.

4.5. Measuring ID-Spilling in the wild 55

Type Amount

- Websites crawled 12000
- HTTP(S) requests 440000
- Websites with CSync 3878
- Total CSync redirections 89479
- Total unique synced IDs 17171
- Total unique 3rd party CSync domains 773
- SSL Syncing companies 475/733 (64.2%)
- non-SSL Syncing companies 258/733 (35.2%)

- TLS websites 8398/12000
- TLS websites with CSync 2317/8398
- TLS CSync redirections 58831
- Unique synced IDs in TLS websites 9045

- Non-TLS syncings in TLS websites 2879
- Unique UserIDs leaked 609/9045
- Leaking TLS-protected websites 174/2317

Table 4.7: Summary of results

4.5.1 Data analysis

We examine our dataset by building an analyzer which implements our Cookie Synchroniza-

tion detection technique. We detect 89479 HTTP/HTTPS syncing requests that appear in

3878 websites (32% of the overall crawled websites) and synchronize with 733 different third-

party domains, a number of 17171 unique identifiers (UserIDs). From these 733 third parties,

35.2% does not support HTTPS. Table 4.7 summarizes our findings in this dataset.

We note the following caveats in our data collection process: First, the top Alexa list in-

cludes domains from supporting web services, such as CDNs, DDoS protection, or comment

hosting services, etc. These are sites the user indirectly visits, while visiting the website

they are actually interested in. Thus, it is highly unlikely that a real user in their everyday

browsing behavior will visit such web services directly as 1st party websites. Second, due

to the automated nature of our data collection, we had a few cases where the fetched do-

mains denied to serve our crawler due to their anti-bot policy. Third, there are cases where

third parties may avoid to perform ad-auctions [185] and Cookie Synchronizations whenever

they detect requests from a headless browser, as the ad-ecosystem is not interested in serv-

ing targeted ads to bots. Considering all the aforementioned, our findings in this dataset

are a lower bound of the problem. In fact, we believe that the portion of affected websites

a user may face this privacy leakage while browsing the web, can be higher than reported here.

Cookie Synchronization vs. Websites: Given that in this study, we investigate leaks

from TLS-protected websites, we extract a subset of these websites which included 8398 dis-

tinct domains. From these domains, 2317 (27.5%) have at least one Cookie Synchronization.

In total, the Cookie Synchronizations we detected in these TLS-protected websites is 58831

and 9045 unique userIDs, as reported in Table 7.1. In Figure 4.17, we plot the distribution

56 Chapter 4. Common User Identification

 0.01

 0.1

 1

0% 20% 40% 60% 80% 100%

C
D

F
 o

f
w

e
b

s
it
e

s
 w

it
h

 C
S

y
n

c

Portion of CSyncs over TLS

TLS
noTLS

Figure 4.17:
Distribution of the portion of TLS-based
synchronizations per website for both TLS and
non-TLS websites. As we see, the median non
TLS website has around 27% of its Cookie
Synchronizations over TLS when, most of the
TLS-protected websites have 92% of their
synchronizations over TLS.

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 20 40 60 80 100 120

C
D

F
 o

f
T

L
S

 w
e

b
s
it
e

s
w

it
h

 C
S

y
n

c

Non-TLS CSyncs to unique third-parties

Figure 4.18:
Distribution of non-TLS synchronizations
per TLS website. Few websites (1 in 13)
include quite a lot (up to 100!) of plain-HTTP
CSync redirections.

of the portion of TLS-based synchronizations per website for TLS and non-TLS websites. As

we see, the vast majority (92%) of the Cookie Synchronizations of TLS supported websites

happen over TLS. However, we see a quite respectable 7.6% of synchronizations initiated

over plain HTTP, risking the confidentiality of the entire browsing session.

TLS browsing session leak: To examine further the TLS websites that use non-TLS syn-

chronizations, we plot the distribution of the plain-HTTP synchronizations per TLS website.

As we see in Figure 4.18, some of these websites include synchronizations of userIDs over

plain HTTP with up to 100 different third parties. In fact, 1 in 13 TLS-supported websites

perform Cookie Synchronization via plain HTTP. This means that a snooping ISP has 100

times more chances to find, in the future, a HTTP request to one of these synced third parties

and re-identify the user.

Next, we examine the referrer fields of the syncing redirections from TLS websites, and

check if the domain in the referrer field matches with the visited Alexa website. This check

enables us to filter-out cases where the Cookie Synchronization was triggered by an embedded

iframe of the website. In this case, the referrer field links to the iframe’s domain.

We find 174 cases of websites, where referrer fields from HTTP Cookie Synchronizations

leak the visited webpage along with full URL parameters. Besides that, through the same

synchronizations, 610 unique userID were exposed to a monitoring ISP. Using this user infor-

4.5. Measuring ID-Spilling in the wild 57

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

C
D

F
 o

f
le

a
k
e

d
 u

s
e

rI
D

s

Non-TLS CSyncs to unique third-parties

Figure 4.19: Distribution of the non-TLS synchronizations per leaked userID. There is a
10% of IDs that gets synced with more than 17 third parties.

mation, the ISP can re-identify the user in the web and through the referrer-leaked webpages

it can reconstruct the browsing history of the user. In Figure 4.19 we plot the distribution

of the leaking synchronizations for each of these 610 userIDs. As we see, the median userID

gets leaked by synchronizations with 2 different third parties. However, there is a 10% of

user IDs that gets synced, and thus leaked, with more than 17 different third parties.

Countermeasures: Nowadays, a lot of users deploy ad-blockers [169] to remove the annoy-

ing or resource consuming [183] ads. Indeed, ad-blockers can eliminate the privacy leak we

present here by killing all third party domains. However, they would also kill the funding

model of contemporary web, making content providers block ad-blocking visitors [159]. In

addition, according to Englehardt et al. [67], less than half of the third parties (46%) in top

websites use HTTPS, thus, impeding the overall adoption of HTTPS and generating lots of

cases of mixed content in TLS supporting websites.

In effect, the most important countermeasure against this leak is to increase the adoption

of HTTPS (in both web and mobile apps [179]), as major Non-Profit Organizations and

Internet stakeholders promote [78]. This way, every single connection the user establishes with

the remote servers to fetch a component in a mashup, will be secured. Of course, supporting

HTTPS does not come cheaply. Despite of its huge advantages, one may argue that there are

specific latency and maintenance overheads, such as key and certificate maintenance, trust

revocation handling, etc. [33,34,168]. Therefore, tracking entities may lack the incentives to

deploy and deal with such overheads.

For this reason, we believe that it is the browser vendors that must (i) force the use of

TLS by everyone and forbid any susceptible use of mixed content, and (ii) during request

58 Chapter 4. Common User Identification

Feature subset Features TP rate FP rate Precision Recall F-Measure AUCROC

NoOfParams* 1 0.639 0.639 0.408 0.639 0.498 0.500
WhereFound+ 1 0.643 0.610 0.612 0.643 0.535 0.602
StatusCode*+ 1 0.648 0.619 0.723 0.648 0.523 0.633

TypeOfEntity*+ 1 0.735 0.432 0.752 0.735 0.701 0.661
Browser*+ 1 0.700 0.492 0.710 0.700 0.651 0.628

ParamName+ 1 0.815 0.295 0.828 0.815 0.803 0.834
EntityName*+ 1 0.803 0.295 0.806 0.803 0.793 0.854

{no id-related}* 5 0.840 0.242 0.845 0.840 0.834 0.887
{high importance}+ 6 0.870 0.206 0.877 0.870 0.865 0.919

ALL 9 0.900 0.144 0.901 0.900 0.898 0.946

Table 4.8: Performance of decision tree model trained on different subsets of features
available at runtime for classification, given already identified id-sharing en-
tries, and 10 cross-fold validation.

marshaling, strip any information (the referrer field in our case) may link together different

type of traffic (HTTPS and HTTP). In fact, some privacy-sensitive browsers have already

started providing such alternatives [25, 39]. By applying the above, not only the privacy of

the users will be preserved, but the content providers will be fortified against visitor data

and revenue loss [16].

Future Work: We plan to investigate further the characteristics of the TLS protected

websites that are more prone to expose the privacy of the users. Specifically, by crawling

a larger dataset of websites, we will conduct a deeper analysis of the content category and

top-level domains of these websites. In addition, we plan to investigate to what extend the

phenomenon appears in websites with lower popularity, considering that these websites may

draw more ‘sloppy’ trackers that do not care about supporting TLS, and explore if there is

an association with the popularity of such trackers.

4.6 Evaluation of Cookie-less Detection

In this section, we explore two different scenarios outlined in Section 4.2.2 regarding the

detection of CSync via ID sharing, while such IDs may be obfuscated to remove the possibility

of matching them with past IDs shared between entities. First, we explore the scenario

where IDs have been shared, detected by the heuristic-based approach, but have not yet

been confirmed as CSync events. That is, we consider an already identified set of id-sharings,

which are candidate CSync events, but cannot be validated as CSyncs because of the cookie

ID being encrypted or unavailable (Section 4.6.1). Second, we take a step back and consider

the more general case where various HTTP connections are ingested by the method, and

4.6. Evaluation of Cookie-less Detection 59

Feature subset Features TP rate FP rate Precision Recall F-Measure AUCROC

NoOfParams* 1 0.541 0.314 0.584 0.541 0.495 0.706
StatusCode*+ 1 0.666 0.229 0.673 0.666 0.598 0.764

TypeOfEntity*+ 1 0.760 0.162 0.724 0.760 0.695 0.834
EntityName*+ 1 0.865 0.075 0.863 0.865 0.860 0.962
ParamName+ 1 0.870 0.083 0.878 0.870 0.859 0.953

{no id-related}* 4 0.904 0.057 0.904 0.904 0.898 0.973
{high importance}+ 4 0.919 0.051 0.923 0.919 0.914 0.978

ALL 5 0.920 0.051 0.925 0.920 0.916 0.978

Unbalanced test-set 5 0.981 0.004 0.989 0.981 0.984 0.999

Table 4.9: Performance of decision tree model trained on different subsets of features
available at runtime for classification, given a pre-filter for ID-looking strings.
All results besides the last row are with balanced dataset across the three
classes, and 10-cross fold validation. The last row’s results are computed
given an unseen, and unbalanced test set, maintaining the original ratio of
classes.

it needs to decide at run-time which are CSync events and which are not based on given

features (Section 4.6.2).

Towards this end, we train and test the classifier in these two experiments. We remind the

reader of the assumption made earlier, that the distributions of the features describing the

CSync events with unencrypted IDs have the same variability in the cases of encrypted IDs,

and therefore can be used for the detection of such cases. This assumption allows us to handle

the problem as an out-of-sample estimation, leaving as future work the final validation with

a set of ground-truth data of encrypted IDs that we also know their unencrypted versions.

Data and Features: Based on the ground truth data presented earlier with the heuristic-

based technique, we have a total of 412.8k id-sharing events, from which 263.6k are confirmed

CSync, and 149.2k are identified as non-CSync. The features available for these events can

be various as already explained in 4.2.2. The ones we use are features available at run time,

and during the user’s browsing to websites.

Algorithms: The final machine learning classifier used is decision tree-based. Others like

Random Forest, Support Vector Machines and Naive Bayes were tested, but the decision tree

algorithm outperformed them, with significantly less computation and memory overhead.

Metrics: To evaluate the performance of the classifier on the different classes and available

features, standard machine learning metrics were used such as Precision, Recall, F-measure,

True Positive rate (TP), False Positive rate (FP), and area under the receiver operating curve

(AUCROC).

60 Chapter 4. Common User Identification

TP Rate FP Rate Precision Recall F-Measure AUCROC Class

0.988 0.014 0.534 0.988 0.693 0.998 Csync
0.603 0.005 0.458 0.603 0.521 0.990 id-sharing but non-CSync
0.984 0.004 1.000 0.984 0.992 0.999 other

0.981 0.004 0.989 0.981 0.984 0.999 weighted average

Table 4.10: Detailed performance of decision tree model trained on different subsets of
features in a balanced dataset, and tested on an unseen, and unbalanced test
set, which maintains the original ratio of classes (last row of Table 4.9.

4.6.1 Detecting CSync in ID-sharing HTTP

In this experiment, we assume there is already in place an existing technique for analysis of

the HTTP traffic of the user, similar to the method outlined in Figure 4.3. However, there

are candidate CSync events that cannot be confirmed, as the IDs cannot be matched with

SET cookie IDs, either because these actions are not available to the method, or because the

IDs are encrypted.

In this case, a machine learning classifier can be trained to detect if an id-sharing HTTP

request is a true CSync event, by matching its pattern to past verified CSync events. For

this experiment, we use two classes: the CSync events and the id-sharing but non-CSync

events, to train and test a decision tree classifier under different subsets of features. The

training and testing was performed using 10 cross-fold validation process. The results are

shown in Table 4.8. We observe that independently, each of the features considered have

some predictive power, except from the NoOfParams feature. When the most important7

features are combined, a weighted AUC of 0.919 is achieved. Furthermore, when we select

features that are non-ID related, a respectable weighted AUC=0.887 is achieved. When all

features are used, the classifier can reach a weighted AUC=0.946.

4.6.2 Detecting CSync in HTTP with ID looking strings

In this experiment, we assume there is a simple HTTP pre-filter, which keeps connections

with ID looking strings for further investigation. This is a necessary step to reduce the

run-time workload of the classifier, as connections relevant to the task are only ∼ 20% of

the overall HTTP workload. Then, the classifier has to decide which of the following classes

match for each one of the selected HTTP requests: 1) CSync, 2) id-sharing but non-CSync,

and 3) other. In this case, other refers to HTTP entries that contain an ID-looking string,

but are not id-sharing.

We perform two rounds of tests on one month’s worth of data: 1) train and test the

7using information gain as metric

4.7. Discussion 61

algorithm using balanced data from the three classes, in a 10 cross-fold validation process.

2) train the algorithm on balanced data from the three classes (as in (1)), but test it on an

unseen and unbalanced dataset which maintains the ratio of the three classes: CSync: 1.6%,

id-sharing but non-CSync: 0.73% other: 97.67%.

As seen from the classification results (Table 4.9), the company name and parameter used

are among the most important features, and number of parameters is the worst. Beyond

that, non-ID related features allow the classifier to reach weighted AUC = 0.973, with a high

weighted Precision and Recall across all classes. When all features are used, a weighted AUC

= 0.978 is reached, similarly to the high importance feature set that disregards the number of

parameters. Interestingly, when the classifier is trained on the balanced dataset, and tested

on the unbalanced test set (last row of Table 4.9), the classifier can distinguish very well the

three classes, with low error rates across all three classes, even though there is high imbalance

in the classes. These results are further validated by the breakdown of performance per class,

demonstrated in Table 4.10, which show high TP rate and low FP rate for all three classes

independently.

Overall, the results show that it is possible to understand and model the patterns of

CSync, as they are driven by particular types of companies, using specific parameters, etc.

Therefore, an online classifier could be trained to provide insights as to what each HTTP

connection is and how likely it is to be performing CSync, without the need to match the

IDs to SET cookie actions.

4.7 Discussion

User data have become a precious asset of web entities, which invest a lot in elaborate

tracking mechanisms. These mechanisms, by monitoring the users’ actions, collect behavioral

patterns, interests and preferences, PII data, geolocation, age, etc. These data are then sold

to advertisers in data markets, typically for the purpose of delivering highly targeted ads to

their owners, based on online (and offline) preferences. However, each tracker uses a different

ID for the same user, and in order for all these data to matter, a universal identification must

be applied. The most popular such technique is Cookie Synchronization, with which different

entities can synchronize the userIDs they use for a specific user and merge their databases on

the background. Syncing the set of userIDs of a given user, increases the user identifiability

while browsing, thus reducing their overall anonymity on the web.

In effect, such data collection and sharing activities, done without users’ explicit consent,

are illegal and punishable with hefty penalties imposed to the companies performing these

activities. This is especially true since May 2018, with the introduction of new EU regulations

for the protection of user personal data and online privacy (GDPR and e-Privacy). Therefore,

it is important for the design and development of practical, web transparency tools, which

will be readily available to privacy researchers, regulators and end-users. Both advanced

62 Chapter 4. Common User Identification

or tech-savvy users, as well as average users, should be able to utilize these tools for the

investigation of personal data leakage and anonymity loss they experience while browsing

the web, due to third parties’ activities such as Cookie Synchronization.

In this chapter, we build CONRAD: a holistic system to detect events of Cookie Syn-

chronization, either when the synced IDs are available in plaintext, or even when they are

obfuscated (i.e., hashed, encrypted). Using our detection mechanism, we are the first to

explore Cookie Synchronization in the mobile ecosystem and the first to analyze it in depth,

using a year-long dataset of real mobile users. CONRAD is able to capture 3.771% more

cases of Cookie Synchronization than related work.

4.7.1 Lessons Learned

Our results in this chapter can be summarized as follows:

• 97% of the users are exposed to CSync at least once. The median user experiences at

least one CSync within the first week of browsing.

• Ad-related entities participate in more than 75% of the overall synchronizations through

the year, learning as much as 90% of all synced userIDs.

• No more than 3 companies learn more than 30% of the all userIDs each.

• The median userID gets leaked, on average, to 3.5 different entities.

• The average user receives around 1 synchronization per 68 GET requests, and gets up

to 6.5 of their userIDs synced.

• The number entities that learn about the median user after Cookie Synchronizations

grows by a factor of 6.7x.

• We find 63 cases, where domains set cookies on the users’ browsers with userIDs previ-

ously set by other domains. This universal identification model enables collaborating

entities to share data without background database merges.

• We find 131 cases of domains storing in cookies their Cookie Synchronizations results

forming ID Summaries.

• 5% of the users suffer from ID-spilling in their secure TLS connections. Together with

the userID, the visited website gets also leaked.

• There are cases where several privacy-sensitive information is passed to the syncing

entity along with the userID like gender, birth dates, email addresses, etc.

4.8. Countermeasures 63

In addition to the classic, heuristics-based method applied to collect the above findings,

in this work, we proposed a novel, Cookie Synchronization detection mechanism that is able

to detect at real time Cookie Synchronization events, even if the synced IDs are obfuscated.

In particular, this online, machine learning classifier can be trained to provide insights as to

what each HTTP connection is, and how likely it is to be performing CSync, without the

need to match the IDs to SET cookie actions. We use the set of detected Cookie Synchroniza-

tions from the heuristics-based method as ground truth, to train our machine learning-based,

cookie-less detection algorithm. We were able to achieve high accuracy (84%-90%) and high

AUC (0.89 - 0.97), when non-ID related features were used.

4.8 Countermeasures

Nowadays, the most popular defense mechanism of Cookie Synchronization is the use of the

traditional ad-blockers. Indeed, since the vast majority (75%) of CSync takes place among

ad-related domains (see Figure 4.13), it is easy to anticipate that by blocking ad-related

requests, one can eliminate a large portion of the privacy leak that Cookie Synchroniza-

tion causes. However, the all-out approach of ad-blockers causes significant harm on the

publishers’ content monetization models, forcing some of them to deploy anti-adblocking

mechanisms [115,161,162,173] and deny serving ad-blocking users [159,216,223].

Consequently, we believe that mitigating mechanisms against Cookie Synchronization

require a more targeted blocking strategy, that would not harm the current ad-ecosystem

blindly. Instead, by applying detection techniques such as CONRAD, and blocking the spe-

cific traffic which has been found to facilitate CSync, we believe that the harmful privacy

leakage and loss of anonymity of users due to CSync can be avoided, and without the dire

consequences on publishers’ business models. Also, by applying such detection techniques, in-

stead of general ad-blocking, CSync that is initiated beyond advertising and tracking domains

can also be stopped.

Indeed, blocking CSync may have consequences on the effectiveness of ads, since fewer

highly targeted ads will be matched to users and, therefore, delivered to them. However, we

believe it is imperative for a balance to be found between the need for highly targeted ads,

which are primarily depended on aggressive user personal data collection, and the utility

these ads offer to the users, to the hosting publishers and the advertisers involved, while

taking into consideration the user privacy and anonymity lost during this data collection.

64

Chapter 5

The Impact of User Data on Ad-pricing

dynamics

In the previous chapters, we explored the techniques used for user tracking by web entities

in an attempt to collect as much detailed user information possible. It is apparent, that

digital advertising is the most important means of monetizing such collected data. It grew

to $194.6 billion in 2016 [218] of which $108 billion were due to mobile advertising. In fact,

more and more companies rush to participate in this rapidly growing advertising business ei-

ther as advertisers, ad-exchanges (ADXs), demand-side platforms (DSPs), data management

platforms (DMPs), or all of the above. For these companies to increase their market share,

they need to deliver more effective and highly targeted advertisements. A way to achieve

this is through programmatic instantaneous auctions. An important enabler for this kind

of auctions is the Real-Time Bidding (RTB) protocol for transacting digital display ads in

real time. RTB has been growing with an annual rate of 128% [243], and currently accounts

for 74% of programmatically purchased advertising. In US alone it created a revenue of $8.7

billion in 2016 [19].

Besides the obvious privacy implications the aggressive user tracking mechanisms we

presented may cause, still, there is an outstanding question that remains unaddressed by the

related work in the area. This question concerns transparency and is the following: Based

on the exposed user personal data, how much do advertisers pay to reach an individual?

Despite the importance of this question, it is surprising how little is known about it. There

exist several reports about the average revenue per user (ARPU) from online advertising [43,

99,188], but ARPU, as its name suggests, is just an average. It can be calculated by dividing

the total revenue of a company by the number of its monthly active users. Computing the

revenue per individual user is a completely different matter for which very limited work is

available.

In particular, the FDVT [48] browser extension can estimate the value of an individ-

ual user for Facebook, by tapping on the platform’s ad-planner. Another important prior

work [176] leverages similarly the RTB protocol and specifically its final stage, where the

65

66 Chapter 5. The Impact of User Data on Ad-pricing dynamics

winning bidder (advertiser) gets notified about the auction’s charge price per delivered im-

pression. These charge prices were initially transmitted in cleartext and focused solely on

them. However, more and more advertising companies use encryption to reduce the risk of

tampering, falsification or monitoring from competitors. This trend renders that method in-

applicable for the current and future ad ecosystem, whose majority of companies will deploy

charge price encryption. In contrast to these works, our present method takes into account

all the web activity of a user (not only on Facebook), and all RTB traffic, i.e., both cleartext

and encrypted prices.

In this chapter, our motivation is to enhance transparency in digital advertising and shed

light on pricing dynamics in its personal data-driven ecosystem. Therefore, we develop and

evaluate a first of its kind methodology for enabling end-users to estimate in real time their

actual cost for advertisers, even when the latter encrypt the prices they pay. Designed as a

browser extension, our method can tally winning bids for ads shown to a user and display

the resulting amount as she moves from site to site in real time.

In summary, in this chapter we propose the first to our knowledge holistic methodology

to calculate the overall cost of a user for the RTB ad ecosystem, using both encrypted

and cleartext price notifications from RTB-based auctions. We study the feasibility and

efficiency of our proposed method by analyzing a year-long weblog of 1600 real mobile users.

Additionally, we design and perform an affordable (a few hundred dollars cost) 2-phase real

world ad-campaign targeting ad-exchanges delivering cleartext and encrypted prices in order

to enhance the real-users’ extracted prices. We show that even with a handful of features

extracted from the ad-campaign, our methodology achieves an accuracy> 82%. The resulting

ARPU is ∼55% higher than that computed based on cleartext RTB prices alone. Our findings

challenge the related work’s basic assumption [176] that encrypted and plain text prices are

similar (we found encrypted prices to be ∼1.7× higher). Finally, we validate our methodology

by comparing our average estimated user cost with the reported per user revenue of major

advertising companies. Using lessons from this study, we implemented a prototype of our

approach, where the users, by using our Chrome browser extension, can estimate in real-time,

in a privacy-preserving fashion on the client side, the overall cost of their exposed private

information for the advertisers. In addition, they can also contribute anonymously their

impression charge prices to a centralized platform for further research.

5.1 Technical Challenges

5.1.1 Encrypted vs. cleartext prices

Although in the early years of RTB, all charge prices in nURLs were in cleartext, we see that

nowadays more and more companies deliver charge prices in encrypted form (see examples

in Table 2.1). While cleartext prices captured at the user’s browser can be easily tallied

5.1. Technical Challenges 67

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12

A
D

X
-D

S
P

 p
a

ir
s

 Month of the year
encrypted cleartext

Figure 5.1:
Portion of encrypted and cleartext pairs
of ADX-DSP over time (2015).

0%

20%

40%

60%

80%

100%

33.55%
10.74%
9.42%
6.91%
6.46%
4.45%
4.14%
3.87%
3.54%
2.93%
2.52%
2.40%
2.36%
2.00%
1.97%
1.68%
1.06%

C
u

m
u

la
ti
v
e

 p
o

rt
io

n
o

f
c
le

a
rt

e
x
t

p
ri
c
e

s

RTB share of top ad-entities

Figure 5.2:
Cumulative portion of cleartext prices
vs. ad-entities’ portion of RTB.

to estimate the total cleartext cost, the same does not apply for the encrypted prices. The

popular 28-byte encryption scheme companies use cannot be easily broken [90].

Previous studies [176] assumed that encrypted prices follow the same distribution as

cleartext ones. Indeed, one may argue that the price encryption is just to avoid tampering

of reported prices, so encrypted prices probably follow the cleartext price distribution. How-

ever, encryption provides also confidentiality to the bidding strategy. Thus, possible use of

encryption in charge prices may be also a sign of a higher value that the bidder wants to hide:

aggressive re-targeting because of user’s previous incomplete purchases, targeting users with

higher spending habits, or users with specialized needs (e.g., sensitive products, expensive

drugs, etc.). Hence, a bidder (e.g. a DSP) may choose encryption to reduce transparency

over its bidding strategies, or possible special knowledge it may have about a specific user,

thus preventing an external observer or competitor from assessing its bidding methods and

ad-campaigns.

We should note that encryption is not a feature that comes for free. There are significant

costs for the participating parties such as more computation and storage overhead, energy

consumption and higher imposed latency. Therefore, these costs alone could be a reason for

an ADX to charge more for providing the benefits of encryption to a DSP. Considering all

the aforementioned, in our study, we remove the need for making any assumptions regarding

encrypted prices and allows us to account for any potential differences between cleartext and

encrypted prices.

68 Chapter 5. The Impact of User Data on Ad-pricing dynamics

Notation Definition
Vu Total cost of user u
Cu, Eu Sum of cleartext, encrypted prices of user u
SCu,
SEu

Set of cleartext, encrypted price nURLs of user u

Fi Vector of features for a price nURL i
Si ⊆ Fi Core features selected to represent nURL i
ESe(Si) Estimated encrypted price based on vector

of features S of price nURL i

Table 5.1: Summary of notations.

5.1.2 Encrypted prices on the rise

Encryption is a regular practice in desktop RTB ads (∼68% as reported in [175] with major

supporters being DoubleClick, RubiconProject and OpenX). By analyzing a weblog of 1600

real mobile users (see Section 7.2), we detected a smaller portion in mobile RTB ads (∼26%).

However, we found that the percentage of ADX-DSP pairs using encrypted price nURLs

was steadily increasing through time (Figure 5.1), which means that more and more mobile

advertising entities have started using nURLs with encrypted prices.

In fact, we found that the mobile advertising entities with the larger RTB shares deliver

the highest portion of cleartext prices as well (Figure 5.2). For example, MoPub and Ad-

nxs, the two leading ad-entities in our dataset, are responsible for 33.55% and 10.74% of the

overall RTB ads detected, respectively (x-axis). They are also responsible for 45.40% and

5.45% for the cleartext prices detected, respectively (cumulatively in y-axis). If these two (or

more) companies flipped their strategy from cleartext to encrypted, it would dramatically im-

pact the RTB-ecosystem’s transparency and hinder price information exposed to an external

auditor or the involved user.

Given these trends in mobile and desktop, we expect that in the near future RTB auctions

will dominate, and many of the ad-entities will use encryption to deliver their charge prices.

Our methodology anticipates these trends and promotes better transparency in online ad-

vertising and usage of user personal data. This methodology allows end-users to accurately

estimate on their browser, at real-time, their average ad-related cumulative cost, even when

the charge prices are encrypted.

5.2 Methodology

In this section, we describe our proposed methodology, with which a user u can estimate

in real-time the accumulated cost Vu for the ads she was delivered while browsing the web

(§ 5.2.1) (notations used are summarized in Table 5.1). Following this methodology, we design

our system based on two main components: (i) a remote Price Modeling Engine (§ 5.2.2)

5.2. Methodology 69

Dataset	from	ad-campaigns	&	contributions
with	cleartext &	encrypted prices

RTB	charge	price	
notification	filtering	
&	metadata	collection	

Ad-campaign,	configuration	
setups,	ADXs	with	cleartext
&	encrypted prices,	regular	
intervals

User

Modeling	encrypted prices

!" encrypted prices

#"	cleartext	prices
%(') =*#" +*,-!"

�

�

�

�

/(-)
,-!"(-)

Anonymously	contribute	
metadata	encountered	in	

cleartext &	encrypted prices

Cumulative	value	of	user	u	
for	time	period	T

Dimensionality
reduction
- ⊆ 1

Web	Browser	+	YourAdValue

Price	Modeling	Engine

M(S)

Figure 5.3: High level overview of our method. The user deploys YourAdValue on her
device, which calculates in real-time the total cost paid for her by advertisers.
In case of encrypted prices, it applies a decision tree model derived from the
PME.

and (ii) a user-side tool, namely YourAdValue (§ 5.2.3). Figure 5.3 presents an overview of

our proposed methodology.

5.2.1 Overall cost of the user’s data

The overall ad-cost of the user for time period T is the sum of charge prices the advertisers

have paid after evaluating her personal data they have collected and delivering ads to her

device. Specifically, this overall value is the sum of both her cleartext Cu(T) and encrypted

Eu(T) prices and can be stated as:

Vu(T) = Cu(T) + Eu(T) (5.1)

The cleartext prices of a user can be aggregated in a straightforward fashion, thus producing

the ad-cost for user u over such prices:

Cu(T) =
∑
i

ci, where i ∈ SCu(T) (5.2)

On the other hand, the calculation of the aggregated Eu(T) of the encrypted prices for

70 Chapter 5. The Impact of User Data on Ad-pricing dynamics

the same user is not easy. The actual price values ei are hidden and therefore need to be

estimated. To achieve that, we leverage the metadata of each charge price in the user’s set

SEu(T) of encrypted price notifications. Such metadata may include: time of day, day of

week, size of ad, DSP/ADX involved, location, type of device, associated IAB, type of OS,

user’s interests, etc. All these metadata are collected in a feature vector Fi that captures the

context of a specific charge price ei in nURLi.

In order to estimate each encrypted notification price i, we built a machine learning

model, which receives as input the feature vector Fi (or a subset Si ⊆ Fi), extracted from

the nURLi, and estimates a charge price ESe(Si) for the encrypted price ei. This permits us

then to aggregate the estimated encrypted prices for user u as we have done for the cleartext

ones:

Eu(T) =
∑
i

ESe(Si), where i ∈ SEu(T) (5.3)

5.2.2 Price Modeling Engine

The core element of our solution, the Price Modeling Engine (PME), is a centralized reposi-

tory responsible for the estimation of encrypted prices. To achieve this, the PME requires a

sample of charge price data and associated features to train a machine learning model. This

component is designed to incorporate data such as offline weblogs (see Section 7.2), or online

anonymous contributions (anonymized features and charge prices) from participating users,

similarly to other systems that depend on crowd-sourcing (e.g., Floodwatch [77]). Using

such data, the PME can re-train the computed model at any time. To assess the difference

between cleartext and encrypted price distributions in the wild and fine-tune the training

model, the PME runs small “probing ad-campaigns” to collect ground truth of real charge

prices from both encrypted and cleartext formats.

Feeding the PME with all possible metadata available, i.e. auctions’ metadata and users’

personal data, is clearly not practical. There exist hundreds of data points per individual

price. Passing all of them to the modeling engine would make the computational cost ex-

cessive. Additionally, if all data points were to be used in the probing ad-campaigns, they

would render such campaigns too expensive for their purpose. In order to run effective and

efficient ad-campaigns, and allow the training of a price model without high computation

overhead, the PME performs careful dimensionality reduction on the extracted metadata (F)

to derive a subset S ⊆ F of core features capable to capture the value of an impression.

This dimensionality reduction makes the probing ad-campaigns feasible by reducing by many

orders of magnitude the needed features of each testing setup, and effectively the number of

setups to be tested (see Section 5.4).

Using the collected ground truth of encrypted prices from ad-campaigns, the PME trains

a machine learning model M to infer encrypted prices based on their associated subset of

features S. Then, each user can apply the model M (in the form of a decision tree) locally on

5.2. Methodology 71

their device to estimate each of her encrypted charge prices based on the matching metadata

S.

In case the availability of cleartext prices is limited, the reduction step to identify impor-

tant features could be hindered, but not obstructed. To mitigate this, the PME can run more

probing ad-campaigns to cover extra features found in users’ anonymous contributions, or

that are available in professional ad-campaign planners (as in FDVT [48]). Then, the most

important features can be selected based on their contribution to model the encrypted prices

extracted from these campaigns.

5.2.3 YourAdValue

YourAdValue is a user-side tool responsible for monitoring the user’s nURLs and calculating

locally the cumulative cost paid for her in real-time. To achieve this, it filters nURLs from

her network traffic and extracts (i) the RTB auction’s charge prices (both encrypted and

cleartext), and (ii) metadata from each specific auction (e.g. time of day, day of week, size

of ad, involved DSP and ADX, etc.) along with the personal data the user leaks while using

online services (e.g. location, type of device and browser, type of OS, browsing history, etc.).

As we mentioned earlier, cleartext prices can be aggregated directly, but encrypted prices

must be estimated. Therefore, YourAdValue retrieves from the PME a model M(Si) that

(i) includes the features Si that need to be extracted from the collected metadata, and (ii)

provides a decision tree for the estimation of an encrypted price based on these features.

Using this model, YourAdValue can estimate locally on the client side, the value ESe(Si)

of the encrypted charge prices based on the features Si of the given nURL. After estimating

each encrypted price, YourAdValue presents to the user the calculated sums Cu(T) and

Eu(T) along with relevant statistics and the total amount Vu(T) paid by advertisers (see

Section 6.2).

YourAdValue can be implemented in the same manner, either as a browser extension for

desktops or as a module for mobile devices. In the latter case, YourAdValue can monitor

traffic of both browsers and apps similar to existing approaches [179]. For simplicity, in this

work we design YourAdValue as a browser extension; its mobile counterpart is part of our

future work.

Our tool, built as an extension for Chrome browser, monitors both HTTP and HTTPS

traffic of the user and detects the RTB nURLs. Additionally, it stores in the browser’s local

storage the filtered charge prices, the personal and auctions metadata and the estimation of

the encrypted prices. The extension, through toolbar notifications, informs the user about

newly detected RTB charge prices. Upon request, it reports the cumulative cost along with

the previous individual charge prices. Finally, the extension periodically issues requests to

PME to check for new versions of the model.

72 Chapter 5. The Impact of User Data on Ad-pricing dynamics

Metric D A1 A2
Time period 12 months 13 days 8 days
Impressions 78560 632667 318964
RTB publishers ∼5.6k/month ∼0.2k ∼0.3k
IAB categories 18 16 7
Users 1594 - -

Table 5.2: Summary of dataset and ad-campaigns.

5.3 Bootstrapping PME

We assess the feasibility and effectiveness of our methodology by bootstrapping the PME to

train our model on real data by collecting a year long dataset containing weblogs from 1594

volunteering mobile users from the same country. Our users agreed to use a server of our

control as a proxy, allowing us to monitor their outgoing HTTP traffic.1 As a result, we were

able to collect a large dataset D of 373M HTTP requests spanning the entire year of 2015.

Note that though our dataset consists of HTTP-only traffic, in principle our approach works

with HTTPS as well, using as input the users’ contributed data as can be seen in Figure 5.3.

Table 5.2 presents a summary of our dataset D. Next, we present the data collection and

analysis to extract features used in the price modeling and ad-campaign planning.

5.3.1 Dataset analysis

Weblog Ads Analyzer. To process our dataset, we implemented a weblog advertisements

analyzer, capable of detecting and extracting RTB-related ad traffic. First, the analyzer uses

a traffic classification module to categorize HTTP requests based on an integrated blacklist of

the popular browser adblocker Disconnect [55].2 Using this blacklist, the analyzer categorizes

domains in 5 groups based on the content they deliver: (i) Advertising, (ii) Analytics, (iii)

Social, (iv) 3rd party content, (v) Rest. It consequently applies a second-level filtering on the

advertising traffic by parsing each URL for any RTB-related parameters (like nURL). The

analyzer detects nURLs by applying pattern matching against a list of macros we collected

after (i) manual inspection and past papers [146, 176], and (ii) studying the existing RTB

APIs [58,109,157,177,193] used by the current dominant advertising companies. From these

detected nURLs, it extracts the charge prices which we assume in this study that are in US

dollars3 paid by the winning bidders, after filtering out any bidding prices that may co-exist

in each nURL. It also extracts additional ad-related parameters such as ad impression ID,

bidder’s name, ad campaign ID, auction’s ad-slot size, carrier, etc.

1Data were treated anonymously although users signed a consent form allowing us to collect and analyze
their data.

2Our analyzer can also integrate more than one blacklists (e.g., Adblock Plus’ Easylist, Ghostery’s blacklist,
etc.)

3Given that the majority of ADXs are located in US and following previous works [176], we assume every
charge price to be in US Dollars (so 1CPM =1/1000 impressions).

5.3. Bootstrapping PME 73

Type Feature

Geo-temporal
Time of day, Day of week
Location of user based on IP, # of unique locations of the user,
location history

User

Interest categories of the user, Type of mobile device, # of total
web beacons detected for the user, # of cookie syncs detected of
the user up to now, # of publishers visited by the user, # of total
bytes consumed by the user,
Avg. number of reqs per user for the advertiser, # of HTTP reqs
of the user, Avg. number of bytes per req of user, Total duration
of reqs of the user, Avg. duration per req of the user

Ad

Size of ad, ADX of nURL, DSP of nURL, IAB category of the
publisher, popularity of particular ad-campaign,
of total HTTP reqs of the advertiser, # of bytes of HTTP req,
Avg. duration of the reqs for the advertiser, # of URL parameters,
Number of total bytes delivered for the advertiser

Table 5.3: Features extracted by summarizing data from parameters embedded in each
price notification detected in the dataset for users and advertisers.

Other operations carried out by our analyzer include: (i) user localization based on re-

verse IP geo-coding, (ii) separation of mobile web browser and application originated traffic

based on the user-agent field of each HTTP request, (iii) extraction of device-related at-

tributes from the user-agent field (type of device, screen size, OS etc.), (iv) identification of

cooperating ADXs - DSPs pairs, leveraging the nURL used by the ADX to inform the bidder

(i.e. DSP) about its auction win, (v) user interest profile based on web browsing history.

Feature extraction. DSPs use different machine learning algorithms for their decision en-

gines, taking various features as input, each affecting differently the bidding price and, conse-

quently, the charge price of an ad-slot. To identify such important parameters, we extracted

several features from the nURLs of our dataset such as user mobility patterns, temporal

features, user interests, device characteristics, ad-slot sizes, cookie synchronizations [2], pub-

lisher ranking, etc. Next, we present the analysis of the most interesting features (Table 5.3

presents a summary). We group them into 3 categories: geo-temporal state of the auction

(§ 5.3.2), user’s characteristics (§ 5.3.3), and ad-related (§ 5.3.4).

5.3.2 Geo-temporal features

An important parameter that affects the price of an RTB ad is the user’s current location [100],

information which is broadly available to publishers and trackers. Thus, in our dataset we

extract user IP address and using the publicly accessible MaxMind geoIP database [151], we

map each IP to its city level. In Figure 5.4, which presents the 5th, 10th, 50th, 90th and

95th percentile of the charge prices, we see that although the median values are relatively

lower in large cities, the fluctuation of their price values is higher.

74 Chapter 5. The Impact of User Data on Ad-pricing dynamics

 0.01

 0.1

 1

 10

 100

Madrid

Barcelona

Sevilla

Valencia

Malaga

Zaragoza

Villaviciosa de Odon

Priego de Cordoba

Dos Hermanas

Torello

C
h
a
rg

e
 p

ri
c
e
 (

C
P

M
)

Locations

Figure 5.4:
Distribution of charge prices per city
(sorted by city size).

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

00:00-03:00

04:00-07:00

08:00-11:00

12:00-15:00

16:00-19:00

20:00-23:00

C
h

a
rg

e
 p

ri
c
e

 (
C

P
M

)

Time of day

Figure 5.5:
Distribution of charge prices for different
times of day.

Another important feature is time, and specifically the time of day and day of week.

This is important due to the different level of attention a user may give to an ad impression

and the amount of time she has to purchase an advertised product (e.g., working hours vs.

afternoon’s free time, or weekdays vs. weekends). In Figure 5.5, although the median charge

prices are of similar range, we see that the early morning hours until noon tend to have more

charge prices with increased values. In Figure 5.6, we see a periodic phenomenon, where

although in median values the charge prices are quite close, during weekdays the max prices

are relatively higher than on weekends.4

5.3.3 User-related features

Device type. By parsing the user-agent (UA) header information, our analyzer classifies

traffic and inspects the different fingerprints the UA leaks (specifications of process virtual

machine (e.g., Dalvik or ART) or kernel (e.g., Darwin), operating system, browser vendor

etc.) Thus, we are able to identify the type of device (PC or mobile), the different types of

mobile operating systems (Android, iOS, Windows) and if the traffic was generated from a

mobile app or a mobile web browser.

In Figure 5.7, we see the percentage of RTB traffic for the different OSes over time. As

expected, Android and iOS dominate, owning the larger portions of the market through the

entire year, with Android-based devices appearing in 2x times more RTB auctions. However,

when normalizing this RTB share per mobile OS (Figure 5.8), we find that Android and iOS

4For time-of-day and day-of-week distributions, which visually appear to be similar, we confirmed that
they are, in fact, statistically different with non-parametric, two-sample Kolmorogov-Smirnoff tests at p-value
levels of ptod<0.0002 and pdow<0.002.

5.3. Bootstrapping PME 75

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

Sunday

Monday

Tuesday

W
ednesday

Thursday

Friday

Saturday

C
h

a
rg

e
 p

ri
c
e

 (
C

P
M

)

Day of week

Figure 5.6:
Distribution of charge prices for different
days of week.

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12

R
T

B
 s

h
a

re

Month of the year

Android
iOS

Windows Mob
Other

Figure 5.7:
Portion of RTB traffic for top mobile OSes.

0%
0.2%
0.4%
0.6%
0.8%

1%
1.2%
1.4%
1.6%
1.8%

1 2 3 4 5 6 7 8 9 101112

R
T

B
 s

h
a

re
 p

e
r

O
S

Month of the year
Android iOS

Figure 5.8:
Portion of RTB traffic normalized by OS.

 0.01

 0.1

 1

 10

 100

Android iOS

C
h

a
rg

e
 p

ri
c
e

 (
C

P
M

)

Mobile Device OS

Figure 5.9:
Distribution of charge prices per mobile OS.

devices are delivered mostly equal RTB impressions, with some months Android surpassing

iOS and vice-versa. Then, we extract the traffic originated from the most popular ad-entity,

MoPub [158], and analyze the charge prices of the impressions rendered in the different OSes.

Surprisingly, although Android-based devices are more popular, we see in Figure 5.9 that

iOS-based devices tend to receive higher RTB prices, in median values.

Inference of the user’s interest. The browsing history of a user is used by the advertising

ecosystem as a proxy of her interests. By monitoring the websites a user visits through

time, a tracker can infer her interests, political or sexual preferences, hobbies, etc., quite

accurately [18]. To enrich our set of features with the users’ interests, we collect all the

76 Chapter 5. The Impact of User Data on Ad-pricing dynamics

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

 0.01 0.1 1 10 100

C
D

F

Charge price (CPM)

IAB1
IAB2
IAB3
IAB5
IAB9

IAB12
IAB15
IAB17
IAB19
IAB22

Figure 5.10:
CDF of the generated cost per IAB category.

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12

R
T

B
 s

h
a
re

Month of the year

Ad-slot sizes:
300x50
320x50
468x60

200x200
316x150

728x90
280x250
120x600
300x250
336x280
160x600
800x130
400x300
320x480
480x320
300x600
350x600

Figure 5.11:
Ad-slot size popularity through time
(sorted by area size).

websites each user visits across her whole network activity. Such information is available to

the RTB ecosystem as well, by using cookie synchronization [2] or web beacons [106]. To

extract the interests from the visited websites, similar to existing approaches [10], we retrieve

the associated categories of content for each website according to Google AdWords [92]. Then,

we aggregate across groups of categories for each user and get the final weighted group of

interests for each user in the form of IAB categories [231]. Figure 5.10 presents for the top

mobile ADX (MoPub) a distribution of the generated ad revenue for the different IAB content

categories in a 2 month subset of our dataset. As expected, not all IAB categories cost the

same. Indeed, there are categories that are associated with products which attract higher

bid prices in auctions, like IAB-3 (Business & Marketing), with an average charge price of up

to 5 CPM for the 50% of the cases. Alternatively, there are categories like IAB-15 (Science),

which are unable to draw prices higher than 0.2 CPM for the 50% of the cases.

5.3.4 Ad-related features

Web Vs. Apps Advertisers bid for ad-space in both webpages and mobile apps. After

studying the cost per ad in both counterparts in our dataset, we see that apps draw on

average 2.6× higher prices (0.712 CPM vs. 0.273 CPM). This is expected; studies have

shown that more advertising budget is spent on mobile application ads instead of mobile

web, driving higher prices per ad [167]: (i) Users pay more attention to app ads as they

typically occupy fixed places in the screen, with no opportunity to scroll them out of sight

5.3. Bootstrapping PME 77

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

320x50
468x60

728x90
120x600

300x250

160x600

300x600

C
h

a
rg

e
 p

ri
c
e

 (
C

P
M

)

Ad-slot sizes

Figure 5.12:
Distribution of the charge prices per ad-slot
size (sorted by area size).

0.1%

1%

10%

100%

320x50
468x60

728x90
120x600

300x250

160x600

300x600

T
o

ta
l
re

v
e

n
u

e
 (

C
P

M
)

Ad-slot sizes

Figure 5.13:
Accumulated revenue per ad-slot size
(sorted by area size).

as in web ads. In addition, (ii) studies [179] have shown that apps leak more personal data

to advertisers, enabling them to deliver more targeted ads.

Ad-slot sizes. Some ad-entities carry in their nURLs a parameter with the size of the auc-

tioned ad-slot. In Figure 5.11 we plot the popularity of each of the ad-slot sizes through time.

It’s interesting to see that 300x250 ad-slots (known as “MPUs” or “Medium Rectangles”)

dominate the dataset from May’15 on, taking the place of 320x50 ad-slots (known as “large

mobile banners”). In fact, 300x250 ad-slots have more ad content available from advertisers,

so they can increase earnings when both text and image ads are enabled. In addition, we see

that the 728x90 ad-slot (“leaderboard” or “banner”) is also popular. This ad-slot, usually

placed at the top of a page, is seen by users immediately upon page load.

It is easy to anticipate, that the more space an ad-slot covers in the user’s display, the

higher the price will be. To verify this intuition, we isolated the traffic of an ad-entity (i.e.

Turn [63]), which carries the ad-slot size in its nURLs along with the associated charge prices.

Surprisingly, in Figure 5.12, we see that this intuition is wrong since the most expensive ad-

slots for an advertiser are in fact, not the largest ones. In our dataset, we see that the

two most expensive ad-slots are the MPU (300x250) and Monster MPU (300x600), with

median prices of 0.47 and 0.39 CPM, respectively. However, from Figure 5.13, the increased

popularity of MPU and Leaderboard ad-slots, allows them to accumulate 64.3% and 20.6%

of the total RTB revenue of Turn in our dataset, respectively. Finally, it is worth to note

that our results verify past resources [59,88] regarding the more expensive ad-slots.

78 Chapter 5. The Impact of User Data on Ad-pricing dynamics

5.3.5 Summary

In summary, by analyzing the features extracted from our offline dataset, we find that a user’s

location (at city level) affects the median price that advertisers pay as well as its variability.

However, such price differences are expected to be more evident at the country-level, as shown

in [176]. In addition, the days and hours that a user may not be busy (Sundays), or may

offer more attention (e.g., early mornings, Mondays) lead to higher charge prices. The type

of user’s device also affects the charge prices but in a rather contradicting fashion: though

there are more Android devices, iOS-based devices draw higher median prices. As expected,

the total revenue per category of user interest (through IABs) varies a lot, with some IABs

being more costly than others. Finally, the display’s real-estate occupied by an ad-slot does

not correlate well with price. In fact, larger ad-slot sizes do not mean higher prices. As

shown in the next section, these extracted features are used to plan effective ad-campaigns

and model encrypted charge prices.

5.4 Charge Price Estimation

In order to create a model that estimates the encrypted prices detected on the user’s browser

and computes the total cost advertisers pay for her personal data, we need to have ground

truth on charge encrypted prices. However, such dataset is not easy to acquire. One way

to obtain this information is to collaborate directly with an ADX that sends such encrypted

prices.5 We assume this to be the rare case, since ADXs are generally unwilling to share such

kind of data that may reveal bidding strategies and revenues.

In order to collect ground-truth data on encrypted prices, our system conducts small

probing ad-campaigns on ADX(s)-DSP pairs that encrypt the winning prices. Such ad-

campaigns can be designed and executed with the help of a single or few DSPs, with little

overhead and a small budget of a few hundred dollars. In addition, they can be optimized

by using a specific set of experimental setups, which cover all possible scenarios from the

small parameter vector S to be kept short, efficient and cheap. Given that the prices do not

change drastically over time, these campaigns can be executed every few months to collect

probing data for time-shift correction and increased coverage of more ADXs. Besides, they

can be automated and re-launched as frequently as needed, e.g., every few months or when

the detected cleartext prices deviate from historical data. Having such campaigns launched

from a specific location allows for more accurate and cost efficient price modeling that can

be shared across all participating platform users in the same area or country.

We envision that such campaigns can be crowd-funded (like Tor Project [226], Wikipedia,

WiGLE [23], etc.), thus, contributing to an independent and sustainable platform that can

5We considered top ADXs for encrypted prices (DoubleClick, OpenX, RubiconProject, PulsePoint), and
ADXs for cleartext prices like MoPub (top mobile ADX).

5.4. Charge Price Estimation 79

scale better across users, countries, and ADXs covered. One may argue that these probing

campaigns could pollute users’ browsing with non-useful ad impressions. Thus, they need to

comply with the current standards, and if possible, consider an actual product or service. Of

course, ADXs could in principle fight back and try to identify and block such campaigns, but

their huge clientele combined with the low volume of such campaigns makes the detection

very difficult. Next, we describe the effort to select a subset of core features important for

price modeling (§ 5.4.1) and how they allow us to design efficient and effective ad-campaigns

(§ 5.4.2). Then, we provide an analysis of the data collected by two such campaigns (§ 5.4.3)

and we describe the model that estimates encrypted prices, which can be used by end-users

(§ 5.4.4).

5.4.1 Dimensionality reduction of features

The cost of testing all possible combinations of parameters and their values from the available

feature set F (with one probing ad-campaign each), would constitute the budget for the

ad-campaigns impossible (1000s of setups x 10s Euros/setup). Therefore, to perform ad-

campaigns that are both effective and cost efficient, we need to select a subset of features

S ⊆ F that best describe the RTB prices found in weblogs such as the historic dataset

D. This subset of features should explain as much of the variability of prices as possible.

Assuming both encrypted and cleartext prices are affected by the same set of important

features, this set should be small. The fewer features we select as important, the smaller the

cost of running ad-campaigns to collect representative RTB prices using these features (e.g.,

10s-100s of setups).

To achieve this selection, we performed dimensionality reduction using all the available

features (288) described in Section 7.2 and Table 5.3, using the cleartext prices as the target

variable for optimization. Some of these features are dense, i.e., they have an actual value in

each price (e.g., time of day, day of week, size of ad, etc.) and others are sparse (e.g., interest

categories of the user through time, publishers visited by user through time, etc.). First, for

normalization, we applied a log transformation on the extracted cleartext prices found in D.

Then, we applied a clustering of the prices into 4 classes, using an unsupervised equidistance

model that finds the optimal splits between given prices using a method of leave-one-out

estimate of the entropy of values in each class. Next, we filtered out features that did not

vary at all (i.e., constants) or had very high variance (99%) (i.e., likely to be noise).

As a final step, dimensionality reduction (or feature selection) techniques such as PCA

or Random Forests (RF) can be used [126]. We chose the RF model6 because it takes into

account the target variable (cleartext price), it can be trained quickly on large datasets,

it maintains interpretability of features and generally does not overfit the given data. In

case the availability of cleartext prices is limited, the reduction step to identify important

6An ensemble of decision trees built using a random subset from the available features.

80 Chapter 5. The Impact of User Data on Ad-pricing dynamics

features to be used in ad-campaigns could be hindered. To mitigate this, the PME can use

intermediate techniques such as high correlation filters that do not require a target variable,

to eliminate features carrying similar information.

We trained various RF models using subsets of semantically related features from the

available feature set and the best features from each subset were selected based on their

power to describe the cleartext price distribution. In summary, we grouped features in

the following sets: A) time, B) http-related, C) advertisement-related, D) DSP-related, E)

publisher/host interests, F) user http statistics (historical), G) user interests (historical), and

H) user locations (historical). We also tried selecting representative features out of each set

to create minimal combinations covering all aspects of the http-available information.

In total, we tried tens of feature subsets and combinations and evaluated them using

standard machine learning metrics such as precision, recall, weighted area under the receiver

operating characteristic curve (AUCROC) and out-of-bag error. Dimensionality reduction

could, in principle, lead to loss of accuracy in the effort to explain price classes. However, our

experimentation lead to a small subset of features with minimal loss of precision (< 2%) and

recall (< 6%). In fact, we conclude that an optimal subset that performs very well and is

small enough to allow cost efficient ad-campaigns is a set that combines features from different

groups. In particular, also confirmed with an ad-campaign expert, we select the following fea-

tures to be used for the probing ad-campaigns described next: S={application/web-browsing,

device type, user location, time of day, day of week, ad format (size), type of website, ad-

exchange}.

5.4.2 Ad-campaigns setup

Using the most important parameters extracted in set S, we construct various experimental

setups s ∈ S ⊆ F that can be used to deploy such ad-campaigns over a short period of time

T ′ in selected ADXs to match top ADXs found in D. These setups combine different values of

control variables that are important for an ad-campaign:<user location, web-interaction type,

time of day, day of week, device type, OS, ad-size, ADX>. For example, an experimental

setup could be this: <Madrid, app, 12am-9am, weekday, smartphone, iOS, 320x50, MoPub>

(144 setups, Table 5.4). Clearly, using more features would increase coverage of different types

of ads, but also the campaigns’ cost. Instead, by running controlled ad-campaigns with a

small feature set, we can receive ground truth data about encrypted prices, thereby allowing

us to train a model for such prices, in a reasonable ad-campaign cost.

Campaigns with ADXs that deliver cleartext prices also allow us to compare prices in

different times and compute shifts in the price distribution due to time passed between

the collection of dataset D and present time. To compensate for the loss of information

from cleartext prices becoming less abundant, additional features available in professional

ad-campaign planners (as in FDVT [48]) could be used in the future to enhance the setups

5.4. Charge Price Estimation 81

Filter name Range of values (type)

Cities Madrid, Barcelona, Valencia, Seville
Type of interaction Mobile in-app, Mobile web
Time of day 12am-9am, 9am-6pm, 6pm-12am
Day of week Weekday, Weekend
Type of device Smartphone, Tablet
Type of OS iOS, Android
Ad-format (smart-
phone)

320x50, 300x250, 320x480 or 480x320

Ad-format (tablet) 728x90, 300x250, 768x1024 or 1024x768
Ad-exchange MoPub, OpenX, Rubicon, DoubleClick, PulsePoint
Categories of tar-
geting

all IABs possible

Table 5.4: Basic filters used in controlled ad-campaigns in Spain. In total, 144 experi-
mental setups were attempted.

tested. With the results of these campaigns (in essence, charge prices for RTB ads that fulfil

a given setup s), the PME can train a model to estimate the cost of new ads with a given

setup s′ close, or equal, to one tested, i.e. s′ ∼ s ∈ S.

Number of required ad-campaigns. An important decision in running probing campaigns

is how many of them to launch, and with how many impressions in each one, in order to obtain

a good approximation of the underlying distribution of prices. For this, we analyzed the ad-

campaigns found for MoPub in D. We identified 280 such campaigns in 2015, with mean and

standard deviation of charge price of m = 1.84 and std = 2.15 CPM, respectively. We use the

process described in [116] and the next formulation to compute d, the expected error on the

mean, assuming a suggested number of setups n, and ignoring the finite population correction

adjustment (thus assuming a more conservative approximation of n) d =
Zα/2×std√

n
, where Z

is the z-score of normal distribution. Using the 144 setups proposed, we can approximate to

more than 95% CI (i.e., α=0.05) the mean price of campaigns observed in the wild, assuming

a margin of error 0.35 CPM. Also, considering the distribution of prices within the largest

of ad-campaigns detected for MoPub with 1.8k impressions, we can approximate to 95% CI

the mean price of a campaign, assuming an error 0.1 CPM and minimum of 185 impressions

per campaign.

5.4.3 Ad-campaigns analysis

Using the above as guideline, we executed two different ad-campaigns to collect data on

prices (Table 5.2). Our ad-campaigns advertised a real non-for-profit NGO in the area of

data transparency, in an attempt to avoid polluting users with meaningless impressions, and

trying to do something useful with the allocated budget.

82 Chapter 5. The Impact of User Data on Ad-pricing dynamics

10
-2

10
-1

10
0

10
1

10
2

IAB1 IAB12 IAB13 IAB17 IAB19 IAB20

C
h

a
rg

e
 p

ri
c
e

 (
C

P
M

)

IAB categories

dataset (2m - Mopub)
ad-campaign (clr)

ad-campaign (enc)

Figure 5.14: Comparison of CPM costs for the different IAB categories in our dataset
and the 2 probing ad-campaigns.

Dataset collected. The first round (A1) was executed for 2 weeks in May 2016 and utilized

the 4 ADXs mentioned earlier (also found in D) that encrypt price notifications and targeted

publishers of many IAB categories. The second round (A2) was executed with the same

experimental setups as A1 during June 2016, but in this case the DSP was instructed to

use only MoPub, while still targeting similar IAB categories of publishers. These constraints

allowed us to directly compare encrypted with cleartext prices in the same period, and time-

shift all prices detected in D from 2015 to 2016.

In both campaigns, the DSP was given an upper bound on the bidding CPM price to

safeguard that the allocated budget will not be consumed quickly. Because studying the

effects of retargeting is beyond the scope of this study, we did not ask the DSP to perform

such campaigns. However, the DSP was instructed to bid in a dynamic manner, as low or high

as needed to get the minimum of impressions delivered for the various experimental setups we

requested. We plan to investigate the effects of retargeting in a separate and dedicated future

study. Overall, we managed to receive across all setups, over 600k impressions displayed

with encrypted price notifications to more than 200 publishers, and over 300k impressions

with cleartext price notifications to more than 300 publishers, reaching audiences of 6 IAB

categories common to both notification types.

Cost paid vs. IAB category. In Figure 5.14, we compare the overlapping IAB categories

of the RTB impressions we took from (i) the set of encrypted prices from the ad-campaign

on four ADXs in A1, (ii) the set of cleartext prices from the ad-campaign on MoPub (A2),

(iii) the 2 months MoPub subset of D. Note that in some cases, the results from D vary

more than in the ad-campaigns. This is to be expected, as the dataset includes prices from

5.4. Charge Price Estimation 83

numerous DSP-ADX pairs for many ad-campaigns running in parallel in the duration of a

year, whereas our two ad-campaigns are more targeted to specific DSP-ADX pairs.

Regarding the cleartext prices of different IAB categories, although the median prices

are usually in the same order of magnitude, they are higher in the case of the recent ad-

campaign contrary to the 2 month dataset. We believe that this difference is due to the

time shift between the dataset collected in 2015 and the ad campaigns performed in 2016.

In addition, we see that the median price is always higher in case of encrypted prices (A1),

compared to the cleartext prices of the second ad-campaign (A2) and dataset D.

5.4.4 Encrypted price modeling

Using the ground truth data collected from the first round of ad-campaigns (encrypted prices)

with various parameters within the subset of features S, we trained a machine learning clas-

sifier to predict values of encrypted prices. We note that given the problem of modeling real

values, we first applied regression models with different combinations of dependent variables

(S). However, the high variability of charge prices lead to low performance (high error) of the

regression models. Therefore, we proceeded to split the prices into groups for classification.

As a first step, we performed similar preprocessing for the encrypted prices as we did earlier

for the cleartext prices (normalization and clustering to 4 classes of well balanced groups).

Next, we trained a RF model to predict the class of an encrypted price, based on the available

parameters S. For the training and testing, we applied 10-fold cross validation, and averaged

results over 10 runs. Using features such as city of user, day of week and the time the ad was

delivered, ad size, mobile OS of the user’s device, IAB category of the publisher, ADX used

and device type, our classifier can achieve a very good performance: TP=82.9%, FP=6.8%,

Precision=83.5%, Recall=82.9%, 0.964 AUCROC. These scores are weighted averages across

all classes, with no class performing worse than 5% from the average. We repeated this

process with more price classes (i.e., 5-10 groups) for higher granularity of price prediction,

but the results with 4 classes outperformed them.

When the exact publisher used is also taken into account in the model, the performance

of the classifier increases to 95% accuracy, and 0.99 AUCROC. However, this is classic over-

fitting and we should caution that the publishers used in the ad-campaigns are just a subset

of the thousands of possible publishers that can be found in real weblogs. Therefore, we

chose to use the model with the IAB category but without the exact publisher as part of

its input features. Next, this model was used for the estimation of the encrypted prices of

nURLs found in the weblogs of each user in D, given the matching parameter values from

S ⊆ F .

84 Chapter 5. The Impact of User Data on Ad-pricing dynamics

0%

20%

40%

60%

80%

100%

 0.01 0.1 1 10 100

C
D

F

Charge price (CPM)

A1-encrypted’16
A2-mopub’16
D-cleartext’15

D-mopub’15
D-cleartext’15(2m)

D-mopub’15(2m)

Figure 5.15: Comparison of price distributions between cleartext and encrypted, for dif-
ferent time periods and datasets (D vs. A1 and A2).

5.5 User Cost for Advertisers

The previous sections allowed us to: (1) bootstrap our price modeling engine from exist-

ing user weblogs, so that we find the important features describing well the observed RTB

cleartext prices, (2) using these important features, run probing ad-campaigns with ADXs

that send encrypted price notifications, so that we collect ground truth on such prices from

performance reports delivered to us, (3) using such ground truth, train a machine learning

model to estimate the price of new RTB notifications sent in encrypted form. We are now

ready to study the overall cost advertisers paid for each of the users in our dataset D, who

received cleartext and/or encrypted prices in nURLs of delivered ads.

5.5.1 Encrypted vs. cleartext price distributions

The work in [176] assumed that encrypted prices follow the same distribution with cleart-

ext prices. To examine the validity of such assumption, we plot the distributions of both

encrypted and cleartext charge prices we got from the two ad-campaigns we performed. In-

terestingly, from Figure 5.15, the distribution of encrypted prices in A1 is distinctly different

and of higher median value (∼1.7×) than cleartext prices of A2.

In addition, we study the distributions between different time periods and ADXs to

extract important lessons. First, we see that the cleartext price distribution of MoPub (2015)

is similar to all ADXs sending cleartext prices, either when considering a 2 month period or

a full year. Hence, we can study MoPub as a representative example and extrapolate lessons

5.5. User Cost for Advertisers 85

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

C
D

F

Cumulative user cost (CPM)

cleartext
cleartext (time corr.)

est. encrypted
total

Figure 5.16: Cumulative CPM paid per user in our year long dataset.

for the rest of the ADXs that send cleartext prices. Second, the distribution of cleartext

prices from A2 (MoPub) are of higher median value and can be used to establish the price

shift due to time difference between the time T the dataset was collected, and T ′ when the

campaigns were executed. In reality, this price shift can be detected evenly across multiple

probing ad-campaigns (e.g., once per quarter of year).

5.5.2 How much do advertisers pay to reach a user?

Equipped with our presented methodology for estimating encrypted prices, we are now ready

to respond to our motivating question. Specifically, we utilize our method and compute

the overall cost advertisers paid for each user in the dataset D, i.e., across a whole year of

mobile web transactions. We also apply a time-correction coefficient on the cleartext prices

using the prices from the second round of ad-campaigns. This allows us to consider the

increase in cleartext prices due to time difference from the weblog collection (2015) and the

ad-campaigns execution (2016).

Figure 5.16 presents these cumulative costs in the form of CDFs of the price distributions.

As expected, we observe that the cumulative cost due to encrypted prices is still not surpassing

the cleartext, since the latter is still the dominant price delivery mechanism in mobile RTB.

We also note that some users are more costly than others. Specifically, the median user costs

∼25 CPM, and up to 73% of the users cost < 100 CPM through the year for the mobile

ad ecosystem in the given dataset. This means that the ad-ecosystem reaches the average

user very cheaply and multiple times below what users estimate this cost to be (e.g.,10s of

dollars [31]).

86 Chapter 5. The Impact of User Data on Ad-pricing dynamics

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

T
o

ta
l
e

n
c
ry

p
te

d
 c

o
s
t

(C
P

M
)

Total cleartext cost (CPM)

 0

 20

 40

 60

 80

 100

 120

Figure 5.17:
Total cleartext vs. total estimated encrypted
cost of each user in D (color indicates nu-
mber of users).

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

A
v
g

 e
n

c
ry

p
te

d
 p

ri
c
e

 (
C

P
M

)

Avg cleartext price (CPM)

 0

 50

 100

 150

 200

 250

Figure 5.18:
Average cleartext vs. average estimated
encrypted price per impression of each user
in D.

On the other hand, for ∼ 2% of users, the advertising ecosystem spent 1000-10000 CPM

for the same time period. Finally, about 60% of users had an increased average cumulative

cost of ∼ 55% on top of their cleartext cost, due to the estimated encrypted prices. These

users had a median of 14.3 CPM added to their total cost, with some extreme cases of

1000-5000 CPM.

In the previous result, we compared the distributions of encrypted and cleartext prices,

while disregarding the targeted user. In order to identify if the cost paid through encrypted

prices is the same with cleartext for a specific user, we compare for each user the total costs in

Figure 5.17 and average cost per impression in Figure 5.18, for each type of price. We observe

that a significant portion of users (∼20-25%) cost similarly for ads embedded with encrypted

or cleartext prices. As expected, due to the current majority of cleartext prices in the mobile

ad market, a large portion of users (∼75%) have higher cumulative cost from cleartext than

encrypted prices. However, a small portion (∼2%) costs more (2-32×) in encrypted than

in cleartext form, because they were delivered mostly ads with encrypted prices. When we

normalize the cumulative ad cost of user per impression delivered (Figure 5.18), we find

that for small prices of ≤3 CPM/impression, cleartext is more dominant across users. We

also find a small portion (∼2%) of users who cost up to 5× more CPM/impression for the

delivered ads in encrypted than in cleartext form. We anticipate this portion to increase as

the encrypted notification becomes the dominant delivery of RTB prices in mobile.

5.6. Discussion 87

5.5.3 Summary

By studying the overall RTB advertising cost for users in our dataset, and distinguishing the

encrypted from the cleartext prices, we found that the basic assumption of related work [176]

that encrypted and cleartext prices are similar, is not valid (encrypted prices are around

1.7× higher). Furthermore, advertisers, based on users’ personal data, paid ∼25 CPM for

delivering ads to an average user, and less than ∼100 CPM for delivering ads to 3/4 of users

during a year. We also identified a small portion of outlier users (∼2%) who cost 10-100×
more to the ad-ecosystem than the average user, and a similar portion that costs up to 32×
more in encrypted than cleartext prices, even though encrypted prices are only a quarter of

the mobile RTB ecosystem.

Validation. As an effort to validate our methodology, we can extrapolate how much users

cost for the ad-ecosystem and if this estimation compares with current market numbers. For

this extrapolation, we make some assumptions on how our dataset represents the overall

ecosystem of users and advertisers. In particular, we assume that our average mobile user,

whose annual ad-cost is in the 8-102 CPM range (25th-75th perc.), has: (1) performed 2.65

hours online daily, which is∼83% of the average daily mobile internet usage, when considering

average tablet and other mobile device usage [138], (2) performed internet activity from both

mobile and laptop/desktop devices, the former traffic type being ∼51% of total internet

time [246], (3) received ads in a similar fashion in both HTTP and HTTPS, the former being

∼40% of the total traffic delivered to a user [66, 207], (4) received ads over RTB, which has

an overhead management and intermediaries cost of ∼55% [192], and (5) received ads in

a similar fashion over RTB and traditional and other online advertising, the former being

∼20% of the total online advertising [111]. Considering these factors, the overall average

user ad-cost (25th-75th perc.) would be in the range of $0.54-6.85, which is in the order of

magnitude reported by major online advertising platforms such as Twitter (owner of MoPub,

ARPU: $7-8 [99]) and Facebook (ARPU: $14-17 [43]) during the period 2015-2016.

5.6 Discussion

5.6.1 Limitations

Our approach, through YourAdValue plugin (a screenshot of which can be seen in Fig-

ure 5.19), monitors the charge prices for each auctioned ad-slot. However, there are several

cost models in digital ad-buying. For example, Cost-Per-Impression is where the advertiser

pays when an impression is rendered, and Cost-Per-Click is where the advertiser pays only if

the impression is rendered and clicked, etc. Given that our study is based on passive measure-

ments, we currently unable to determine the cost model of each auctioned ad-slot. Therefore,

we assume all charge prices are under the Cost-Per-Impression model, thus computing the

maximum cost advertisers pay for a user.

88 Chapter 5. The Impact of User Data on Ad-pricing dynamics

Figure 5.19: Preliminary implementation of YourAdValue Chrome extension in use.

5.6.2 Computing The financial worth of individuals

Via our methodology, users can estimate, at real time, the cost advertisers pay to reach

them. However, this work’s important technical contribution, i.e., how to compute the fi-

nancial worth of individuals with a passive measurement method has several applications.

Our methodology could provide more transparency on what each type of the users’ personal

data is worth, and allow users to take advantage of, and (re)negotiate their online value with

data hub companies who are interested in investing and innovating in the area of targeted

advertising. Also, such companies can use our methodology to assess the costs implied in

this area, how to allocated appropriate resources and, even, estimating bidding strategies of

competitors. In addition, regulators and policy makers could provide guidelines and laws to

users and companies for containing the leakage of users’ personal data. Finally, tax auditors

could estimate ad-companies’ revenues, and detect discrepancies from their tax declarations

in an independent and transparent way.

Chapter 6

Costs of Advertising on Users and

Advertisers

The vast majority of the content providers nowadays offer their websites or their sophisti-

cated services free-of-charge (e.g. Google Docs, Facebook, Twitter, Gmail) in exchange for

allowing third parties to access and display advertisements to their users. As presented in

this dissertation, in this model, advertisers buy available ad-slots in the user’s display in an

automated fashion based on how well the advertised product matches the profile of the user.

As a consequence, when a user visits a website, each of the available ad-slots is auctioned,

and advertisers decide if they will bid and how much, based on the information (interests,

income, gender etc.) they have about the current user. Following this process, a careful

reader identifies 3 key role players: (i) the website provider who earns money from advertis-

ers through the auctions, (ii) the advertisers that pay to promote, and eventually sell their

products by delivering effective advertisements to the proper eyeballs, and (iii) the user that

receives from the website the content of his interest, for free. Seemingly, everyone benefits

from this model. But are the users indeed receiving the content they want free of charge?

Contrary to the traditional advertising (i.e. in newspapers, TV, radio), in the digital

world, it is not only the advertiser that pays the cost of advertisement delivery, but the user

as well! Indeed, it is the user’s data plan that is being charged to download the additional

ad-related KBytes. To make matters worse, there are several other bytes the user downloads

regarding analytics and user tracking, totally unassociated with the actual content of the

visited website. Of course, the cost is not only monetary, since the privacy loss of the above

operation has proven significant [132].

In this chapter, we examine the hidden costs of mobile advertising for both the transmitter

(advertiser), and the receiver (user) of the advertisments. In fact, we compare them for the

same user profiles and investigate how fairly they are shared among the two sides. Our

motivation is to enhance transparency regarding the overall costs of online advertising, and

increase awareness of users regarding hidden costs they pay while using ad-supported online

services.

89

90 Chapter 6. Costs of Advertising on Users and Advertisers

Past works in the area already attempted to reveal the hidden costs of advertising in

the mobile ecosystem. For example, Gui et al. [103] analyze free and paid version of apps

to compare the advertising costs from the developers’ side. They actively analyzed mobile

apps to measure costs related to memory, power consumption and CPU usage. Similar to

the study of Gao et al. [80], they compared these costs with the users’ feedback from app

reviews.

This work is the first to our knowledge that measures the hidden cost of advertising when

mobile users browse the web. Contrary to the above inspiring approaches, our more user-

centric study attempts to examine these costs, not from a developer perspective but from

the side of the end-user. Towards this goal, we design a methodology and we implement it

in OpenDAMP: a tool to estimate the costs of advertising for both advertisers and users, by

passively analyzing a dataset of user HTTP traffic. We collected a dataset consisting of mobile

traffic from 1270 volunteering users that spans over an entire year, and use OpenDAMP to

analyze it. Finally, we compare the costs of both sides to assess how fair they are shared

across the two ends.

In this chapter, we design a methodology to measure the costs a user pays when receiv-

ing ad-related traffic. These costs may be either directly quantifiable (e.g., requests, bytes,

energy), or qualitative such as loss of privacy. In addition, and building on our previous

Chapter [?], our methodology estimates the costs advertisers pay to display each of the ad-

vertisements a user receives through the contemporary programmatic RTB auctions [53]. We

implement our methodology in OpenDAMP (open Digital Advertising Measurement Plat-

form): a framework for passive weblog analysis oriented to digital advertising. OpenDAMP

can analyze user HTTP traffic and detect ID sharing incidents among third parties (known as

Cookie Synchronizations). In addition, by incorporating information from external resources

and blacklists, OpenDAMP can classify the traffic based on the content the domains deliver,

and extract metadata and charge prices from RTB ad-auctions. To assess the effectiveness

of our methodology, we collected a year-long dataset with mobile browsing traffic from 1270

volunteering users. Our analysis shows that the costs advertisers and users pay are largely

unbalanced, In fact, users pay ∼3 times more through their data plan to download ads, than

what the advertisers pay to deliver them to these users. Furthermore, the majority of users

sustains a significant loss of privacy to receive these personalized advertisements.

6.1 Cost Analysis with OpenDAMP

In this study, we measure the hidden costs of advertising for users, by passively monitoring

their browsing traffic, while taking into account the advertisers’ view. For our analysis, as

previously, we use the same year-long dataset with weblogs from volunteering users.

6.1. Cost Analysis with OpenDAMP 91

(2) Web beacon

(1) Visit(4) Visit

eshop.comawesomesite.com

(8) Bid Request for Acookie789

Ad Exchange

(5) Web beacon

(6) Set Cookie
Acookie789

(3) Set Cookie
RPcookie123

(9) Bid in auction

Retargeting Platform

(7b) Cookie Syncing
(Acookie789==RPcookie123)

(7a) Read Cookie
RPcookie123

User

Figure 6.1: An example use of CSync in programmatic advertising. Advertisers can
track and re-identify users while they surf the web.

6.1.1 Quantitative & Qualitative User Costs

Besides the quantitative costs a user may pay to receive advertisements, such as the addi-

tional network usage, there is also an important, qualitative cost for the user: the loss of

privacy. It is well known that companies comprising the online advertising ecosystem collect

several types of user data: location, behavior, preferences, interests, etc. Such data are used

by these companies to deliver more personalized advertisements to online users.

Cookie Synchronization: In order for all this abundance of user data to be useful for

the companies, there must be a matching process of all the userIDs that the third parties

have assigned to the same user. Thus, it is easy to anticipate, that the synchronized userIDs

of Cookie Synchronization is of paramount importance for tracking entities in order to (a)

re-identify users across the different websites they browse, but also (b) participate in user

data auctions and marketplaces [6], thus increasing the wealth and detail of the information

they know about each user. Thereby, in this study, we use CSync as a proxy for privacy loss.

In fact, assuming 1 CSync leaks 1 userID, we use performed CSyncs as a metric to quantify

and compare users’ privacy and anonymity loss in mobile web.

Cookie Synchronization & Personalized Advertising: Besides user tracking, CSync,

is also a core component of personalized advertising, which allows advertisers to re-identify

92 Chapter 6. Costs of Advertising on Users and Advertisers

(or retarget) users as they browse the web, and deliver them the proper ad. An example,

as seen in Figure 6.1, is the following. Let’s assume a publisher, e.g., a shoes-selling e-shop

E, which collaborates with the Re-targeting Platform RP to improve the efficiency of its

marketing strategy. In addition, let’s also assume an Ad-Exchange A, with which RP is also

collaborating. RP needs to be aware of the users visiting E at any time, as well as their

movements: what other pages they visit, when and for how long. Therefore, RP asks E to

tag each page of its website by embedding a Web Beacon [106, 149] pointing to the RP in

each one of them: a 1-by-1 pixel image (also known as Pixel Tag or Web Bug). This way, the

user will send this web beacon every time she browses the page, allowing RP to know her

moves and also set a cookie (e.g. UID RP123) on her side. Now, let’s assume a user U who

adds a pair of shoes in her shopping cart in E, but never makes it to the checkout. E would

clearly want to re-target U and serve an ad, directing U back to E to try and finish the sale.

After a while, U surfs around the web, and lands on awesomesite.com, which is using A

to monetize their ad inventory. Using a similar web beacon, awesomesite.com allows A to (i)

learn about the visit of U and (ii) set a cookie UID A789. Before A calls an auction for the

available ad-slots of awesomesite.com, it trigger a Cookie Synchronization on U ’s browser to

share ID UID A789 with it’s associated bidders (including RP). After this synchronization,

RP can re-identify the user by matching the two aliases: UID A789 == UID RP123 and

will bid accordingly to place a retargeting ad about the shoes of E that U intended to buy.

6.1.2 The OpenDAMP framework

To analyze our traffic, we built OpenDAMP (open Digital Advertising Measurement Plat-

form): a framework for weblog analysis oriented to digital advertising. OpenDAMP parses

HTTP traffic and classifies it based on the content delivered by the domains. In addition, us-

ing metadata from public crowd-based resources1, it can further categorize advertisers based

on the products they provide (DMPs, ad platforms, DSPs, SSPs, etc.). Finally, leveraging

the User-Agent field of the HTTP requests, OpenDAMP can identify the operating system

of the device (iPhone, WindowsPhone, Android) based on the set hardware characteristics.

As we noted above, using OpenDAMP, we are able to classify the traffic into 5 cate-

gories (i) Advertising, (ii) Analytics, (iii) Social, which includes social widgets and plugins

and (iv) 3rd party Content, which includes content originated from 3rd party providers (for

example content from CDNs, embedded Instagram photos, Captchas, blog comment hosting

services like Disqus and many more) and (v) Other, which includes the rest of the content

that is the useful content the user is actually interested in. To do such classification, Open-

DAMP uses a popular browser adblock extension’s blacklist [55]. This blacklist groups the

different domains that belong to the same company (e.g. Google groups Doubleclick, AdMob

and Adscape). It includes:

1Business Software and Services reviews: g2crowd.com

6.2. The view of the User 93

10
0

10
1

10
2

10
3

10
4

10
5

Jan FebMar AprMayJun Jul AugSep Oct NovDec

H
T

T
P

 r
e

q
u

e
s
t

p
e

r
u

s
e

r

Month of the Year

Figure 6.2:
HTTP requests produced per user, across the
year. Users create a relatively stable HTTP
traffic, increased during holiday periods.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Jan FebMar AprMayJun Jul AugSep Oct NovDec

K
B

y
te

s
 c

o
n

s
u

m
e

d
 p

e
r

u
s
e

r

Month of the Year

Figure 6.3:
Volume of total consumed KBytes per user, across
the year. Users consume an average of 5.9 GBytes
per month.

1) Advertising: 770 companies resulting in 1395 domains

2) Analytics: 150 companies resulting in 239 domains

3) Content: 111 companies resulting in 522 domains

4) Social: 17 companies resulting in 58 domains

To detect Cookie Synchronization processes in our dataset, we implement in Open-

DAMPthe heuristics-based Cookie Synchronization detection algorithm as described earlier

in Section 4.2.

6.2 The view of the User

In this section, we analyze the costs that users sustain to receive advertisements while brows-

ing the web. In our dataset, we separate the web traffic of each user and we compose user

timelines that describe the traffic characteristics of each one of them. The timelines include

HTTP requests received, Bytes transferred, files received, impressions received etc.

All the above constitute quantifiable properties that we can measure to extract the final

cost a user paid. However, while browsing the web, users also leak information that is useful

for the advertising ecosystem and this is another cost of advertising. In this section, we also

attempt to quantify this cost besides its qualitative properties.

6.2.1 Network resources consumption

How many HTTP requests are due to ads?

First, we conduct a brief analysis to explore the contents of the collected dataset regarding the

94 Chapter 6. Costs of Advertising on Users and Advertisers

network traffic of the users. In Figure 6.2 and Figure 6.3, we see respectively the distribution

of the overall HTTP requests produced and the KBytes consumed per user through the year

in our dataset (percentiles: 10th, 25th, 50th, 75th, 90th). As we see, the median user has

a relatively steady production of network traffic, thus consuming per month around 5891

KBytes, on average. In addition, we see an expected monthly behavior, where there is an

increase of the produced web traffic during months that include long holidays (spring break,

summer holidays etc.). A diurnal behavior can be also seen when measuring the time of day

the traffic was produced. As shown in Figure 6.4, users produce web traffic in their mobile

devices mostly from morning till early afternoon, and this repeats throughout the week.

In Figure 6.5, we use OpenDAMP to classify the HTTP requests the average user fetches,

based on the content served by their domain, across the whole year. Considering that 3rd

party content is an essential (external) component of a website and its absence could break

the provided functionality and degrade the experience of the user, we consider it as part of

the actual content of the website. On the other hand, the Analytics category includes services

which aim to monitor performance and behaviorally track the audience of a website. Thus,

we see that the percentage of requests bringing to the user’s browser the actual content they

are interested in is steadily around 77% across the whole year, and the percentage of ad- and

analytics- related percentage is as high as 19%, on average.

Next, in Figure 6.6, we investigate what are the different resources a user retrieves for

these two content categories through the year. In this plot, we present the distribution of the

users (percentiles: 10th, 25th, 50th, 75th, 90th). For the median user, most of the advertising

HTTP requests are animated and static images and scripts, besides the expected volume of

HTML. Also, in analytics, the largest amount of requests are monitoring scripts.

How much of the downloaded volume is related to ads?

The cost for all of the above (additional) resources the user downloads is translated to con-

sumed Bytes. This is the most important metric that not only monetarily affects the user’s

data plan, but affects also the device’s battery by keeping its CPU and network card on, in

order to marshal the received content. From Figure 6.7, it is evident that the volume of bytes

for the downloaded static advertising images and scripts reaches around 700 KBytes and 850

KBytes, respectively; the 90th percentile peaks at almost 10 MByte for each one. It is easy

to observe in these two Figures (Figure 6.6 and Figure 6.7) the large amount and size of

the scripts that both Advertising and Analytics related domains instruct the user’s browser

to run. Note that these scripts, and the additional CPU cycles they require, are unrelated

with the actual content the user is interested in, and therefore constitute a clear additional

overhead for the user.

If we have a deeper look in the HTTP requests and the volume of bytes they deliver, in

Figure 6.8 we observe an increasing trend across the year, with the HTTP requests for ads

requiring to transfer double the volume, on average (from 4KB to 8KB). Taken in conjunction

6.2. The view of the User 95

0%

5%

10%

15%

20%

25%

00:00-03:00

04:00-07:00

08:00-11:00

12:00-15:00

16:00-19:00

20:00-23:00

P
o
rt

io
n
 o

f
H

T
T

P
 t
ra

ff
ic

Time of day

Figure 6.4:
Portion of HTTP requests produced across
the day. As expected, users produce web
traffic mostly from morning till early
afternoon.

0%

20%

40%

60%

80%

100%

JanFebMar AprMayJun Jul AugSepOctNovDec

P
o

rt
io

n
 o

f
re

q
u

e
s
ts

Month of the year
Adversiting

Analytics
Social

3rd Party Content
Other

Figure 6.5:
Portion of HTTP requests per content category
the average user fetches through the year. On
average, 77% of the HTTP requests is associated
with the content the user is actually interested in.

10
0

10
1

10
2

10
3

10
4

data
gif html

image
script

styling
text

video

N
u
m

b
e
r

o
f
H

T
T

P
 r

e
q
u
e
s
ts

Type of file

Advertising
Analytics

Figure 6.6:
HTTP requests received per user, per
different resource type.

10
0

10
1

10
2

10
3

10
4

10
5

data
gif html

image
script

styling
text

video

R
e
c
e
iv

e
d
 K

B
y
te

s

Type of file

Advertising
Analytics

Figure 6.7:
Bytes received per user, per different
resource type.

with Figure 6.5 which shows a steady portion of ad-related requests, delivering larger payloads

in the same number of requests, although it may require more memory from the device, it gives

the opportunity for the device to minimize the required latency to marshal/unmarshal each

ad-related requests. However, we also suspect that advertisers take advantage of better mobile

network speeds and device resources, as they become available through time. Consequently,

they force each mobile device to download an ever-increasing amount of data displayed in

the publishers’ pages, at the users’ expense.

96 Chapter 6. Costs of Advertising on Users and Advertisers

 0

 2

 4

 6

 8

 10

 12

JanFebMarAprMayJun Jul AugSepOctNovDecA
v
g
 K

B
y
te

s
/r

e
q
 p

e
r

u
s
e
r

Month of the year

Figure 6.8:
KBytes per ad-related HTTP request per
user, across the year.

0%
2%
4%
6%
8%

10%
12%
14%

JanFebMarAprMayJun Jul AugSepOctNovDecP
o
rt

io
n
 o

f
d
o
w

n
lo

a
d
e
d

v
o
lu

m
e
 p

e
r

u
s
e
r

Month of the Year

Adversiting
Analytics

Social

Figure 6.9:
Ad-related KBytes downloaded per user,
through the year.

Finally, we measure the portion of the total downloaded volume per user that is associated

to Advertising and Analytics. In Figure 6.9, we see that a user steadily downloads an average

8.2% of bytes (extra to the actual content they browse) across the year, which belongs solely

to Advertising (7.3%) and Analytics (0.8%) related content. We see a small increase in the

ad-related volume with previous studies (5 years ago) [234] measuring the same volume at

5.6%. If we also add the Social-related traffic, the total percentage of additional content the

user has to download reaches as high as 11%, on average.

Using the results from [102, 168, 252], we also provide an estimation of the power the

ad-related traffic consumes on the user side. Given the results in Figure 6.9, the network

component of a mobile device alone consumes 7.98% more, due to the additional ad-related

transmitted bytes, and 0.86% more, due to analytics-related bytes. This means that a mobile

device, whose battery can sustain 10 hours of ad-free browsing, will last 9.2 hours due to

the additional ad-related network volume received. In fact, and according to previous stud-

ies [103], if we also consider the energy consumption of the display, this cost may surpass 15%.

Unlimited data plans

Passively measuring the cost on the users’ data plans, of course, comes with some limitations.

First of all, there may be user devices connected to the Internet through WiFi. In addition,

some ISPs recently offered unlimited data plans, providing a large volume of data (usually

around 20 GB/month [107]) to their clients. Despite the current issues of such products

(i.e., throttling [209], high prices (70-90$/month) [107], expensive Internet roaming), it is

likely that in the future they will become cheap enough to become popular. Therefore,

the respective monetary cost for users with unlimited data plans will become practically

negligible. However, even in such cases, personalized advertisements do consume device

resources (battery, network traffic, CPU, etc.), and still incur a high cost on user privacy and

anonymity loss.

6.2. The view of the User 97

0%

20%

40%

60%

80%

100%

J
a
n

F
e
b

M
a
r

A
p
r

M
a
y

J
u
n

J
u
l

A
u
g

S
e
p

O
c
t

N
o
v

D
e
c

P
o
rt

io
n
 o

f
s
y
n
c
h
ro

n
iz

a
ti
o
n
s

Month of the year

Advertising-Advertising
Advertising-Analytics
Advertising-Content
Advertising-Other
Advertising-Social
Analytics-Analytics
Analytics-Other
Analytics-Social
Analytics-Content
Content-Other
Other-Other
Content-Content
Other-Social
Social-Social
Content-Social

Figure 6.10:
Portion of CSyncs per content category
pair, through the year.

10
-4

10
-3

10
-2

10
-1

Jan FebMar AprMayJun Jul AugSep Oct NovDec

S
y
n
c
h
ro

n
iz

a
ti
o
n
s
/r

e
q
 p

e
r

u
s
e
r

Month of the year

Figure 6.11:
Synchronizations per HTTP request users
receive through the year. The median user
is exposed to a steady number of CSyncs.

6.2.2 User privacy loss

What is the user’s exposure to Cookie Synchronization?

By using OpenDAMP, we detect CSyncs in our dataset and we see that for users with regular

activity on the web (> 10 HTTP requests per day), 97% of them were exposed to CSync at

least once. Next, we separate and classify the pairs of entities that conduct CSync in our

dataset through the year and in Figure 6.10 we show the portion of CSyncs performed by each

type of pair. The majority (∼85%) of the CSync takes place within the different advertising

entities, but there are also cases where advertising entities synchronize their userIDs with

Social or Analytics related entities.

Next, we investigate if the synchronizations the users are exposed to change over time.

Hence, we extract CSyncs per user, normalized by the user’s total number of requests. In

Figure 6.11, we plot these synchronizations across the year. The median user receives 1

synchronization per 140 HTTP requests, while the 90th percentile user is exposed to 1 syn-

chronization per 50 requests! Considering the different userIDs that tracking entities may

assign to a user, in Figure 6.12, we measure the number of unique userIDs that got synced

per user. Evidently, a median user gets up to 63 different userIDs synced (at least once)

through the year, and the 75th percentile user gets up to 195 of their userIDs synced.

How much do tracking entities know about a user?

Next, we measure the pervasiveness of the tracking entities. Specifically, in Figure 6.13, we

measure the portion of the overall userIDs each (ad- and analytics- related) entity learned

through CSync. Interestingly, ad and analytic entities follow similar distributions, and ap-

98 Chapter 6. Costs of Advertising on Users and Advertisers

0%

20%

40%

60%

80%

100%

10
0

10
1

10
2

10
3

10
4

D
is

tr
ib

u
ti
o
n

 o
f

u
s
e
rs

Number of unique userIDs per user

Figure 6.12:
Unique synced userIDs per user. The 50th
(75th) percentile user gets up to 63 (195)
unique IDs synced, at least once.

0%

20%

40%

60%

80%

100%

 0.01 0.1 1 10

C
D

F
 o

f
tr

a
c
k
in

g
 e

n
ti
ti
e

s

Portion of userIDs in our dataset (%)

Advertising
Analytics

Figure 6.13:
Portion of the total userIDs in our dataset
each tracking entity learned. Some entities
have learned more than 10% of all userIDs.

parently, such entities tend to learn significant portions of userIDs. Therefore, although a

median ad-related entity may learn around 0.03% of the overall userIDs, there is a portion of

5% of entities than learned more than 10%, and another 0.6% of entities that learned more

than 25% of the overall userIDs in our dataset.

As we described earlier, CSync is a mechanism for trackers to increase the identifiability

of a user in the web, by joining their assigned userIDs. In Figure 6.14, we plot the number of

entities that gained access to the user’s IDs. As we see, the median user loses up to 20% of

her anonymity to 22 tracking entities and up to 40% to 3 tracking entities. Such an important

leak enables a handful of entities to accurately re-identify the user on the web and construct

a rich user profile by merging their collected data on the backend.

6.3 The view of the Advertiser

It is of no doubt that digital advertising moves towards a more personalized ad-delivery

approach, where advertisements are matched to the interests of the individuals following

a programmatic ad-buying model. The most popular one is the model of programmatic

auctions of the Real-Time Bidding (RTB) [93], which has a five-year CAGR of 24% [243].

In RTB, ad-slots on the users’ displays are being sold in auctions where the higher bidder

delivers its impression.

More specifically, in RTB-based auctions, whenever a user visits a website with an avail-

able ad slot, an ad-request is sent to an Ad Exchange (ADX), which calls an auction and

sends bid requests (along with user info) to ad-buyers (bidders). These bidders in RTB are

usually Demand Side Platforms (DSPs), which are agencies that utilize sophisticated decision

6.3. The view of the Advertiser 99

0%

20%

40%

60%

80%

100%

10
0

10
1

10
2

10
3

C
D

F
 o

f
u

s
e

rs

Number of tracking entities

Portion of userIDs:
(0-20%]

(20-40%]
(40-60%]
(60-80%]

(80-100%]

Figure 6.14:
Number of entities having access to a portion
of a user’s IDs. The median user loses up to
20% of its anonymity to 22 tracking entities.

0 %

5 %

10 %

15 %

20 %

25 %

charge_price

bid_price
price
pp bp pr cp z wp bidPrice
ext_cost
priceFloor
computedPrice

winPrice
acp
ep cost
bidfloor
tt_bidprice
bdrct

Pe
rc

en
ta

ge
 o

f r
eq

s

prices-priceTag
Parameter names

P
or

tio
n

of
 R

TB
 p

ric
es

Figure 6.15:
Although there is an OpenRTB standard [110],
every company follows its very own protocol
with different parameter naming, making RTB
price filtering a challenging task.

engines and aim to assist advertisers to decide at real time if they will bid at an auction and

how much, based on the user info they receive and how close the advertised product is to

the user’s interests. The entire auction has a strict time constraint and usually takes 100 ms

from the time that the user will visit the site till the winning impression is finally delivered.

In this study, we leverage mobile RTB as previously to assess the cost that advertisers

pay, in order to deliver personalized ads to users. For this, we search for a specific step of

the RTB where the ADX notifies, through the user’s browser, the higher bidder about its

win. Typically, this notification URL is parametrized with a keyword agreed between the

two companies (ADX and DSP), and carries the RTB price to be paid by the winning DSP.

The price can be cleartext or encrypted, as shown in two examples in Table 2.1.

Although the RTB protocol is well standardized by OpenRTB [110] since 2010, in Fig-

ure 6.15 we observe a large heterogeneity of keywords used to define the charge price. In fact,

each ADX may use its very own parameter, making the RTB process less transparent, and

more difficult for an external observer to detect and study the RTB parameters and values

used.

In Figure 6.16, we present the RTB market share of each bidder in our dataset. As we

can see, from the market share segmentation there is only a handful of big players winning

the larger portion of auctions. Specifically, no more than 5 companies have won 67.7% of

the overall RTB auctions. In addition, we see only 14 of the total number of bidders in our

sample, winning a portion of auctions greater or equal to 1%.

100 Chapter 6. Costs of Advertising on Users and Advertisers

0.1%

1%

10%

100%

m
opub.com

adnxs.com

doubleclick.net

m
athtag.com

m
ediasm

art.es

casalem
edia.com

liverail.com

m
obfox.com

criteo.com
m

dotm
.com

ajillionm
ax.com

w
55c.net

rfihub.com
turn.com
get.it
taptapnetw

orks.com

R
est

R
T

B
 s

h
a

re

Bidding companies

Figure 6.16:
The RTB market share of the different
bidders in our dataset. As we see, the
market share is mainly divided to a dozen
of companies with the top 5 wining 67.7%
of the RTB auctions.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

C
D

F

RTB cost per user (CPM in Euros)

Total
Per Impression

Figure 6.17:
Cost per user for advertisers to display ads
across the year. The average cost per
impression for the median user is 0.9 CPM. The
total cost paid by advertisers for the median user
is ∼22 CPM.

In Figure 6.17, we show the CDF of the total cost paid by advertisers to deliver and

display ads to the mobile users of our dataset. These prices (in blue) represent what we have

detected and computed as the total cost across the year for each user in our dataset, and

expressed in CPM. As we can see, some users are orders of magnitude more costly to reach

than the average user: advertisers paid for the 75th percentile user up to 100 CPM for the

entire year, when they paid around 20 CPM for the median user.

In the same figure, we also plot the distribution of the costs per impression per user (in

red). We see that an impression for the median user costs 0.9 CPM, but it is interesting to

see that there are three classes of users: the users who are quite cheap to reach and are below

average (<1CPM), the average users that can be reached with around 1 CPM, and the more

expensive users (>1CPM) that advertisers paid up to 9 CPM per impression.

At this point, we must note that the above computed RTB charge prices regard only the

value that a bidder paid for the specific ad-slot in a specific user’s display. Commissions for

possible intermediate agencies and platforms may appear, thus, increasing the actual cost

that the advertised company may have paid.

6.4 Consolidating the two Views

Earlier, we showed how much advertisers paid to deliver ads to users, through various RTB ad-

campaigns and companies. In this section, we use this RTB cost as a proxy for the monetary

cost of the entire advertising process (e.g. user tracking, analytics and finally ad retrieval).

6.4. Consolidating the two Views 101

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

C
D

F

Average cost per impression (Euros)

RTB charge price
Advertising Bytes
Analytics Bytes
Ad+Analytics Bytes

Figure 6.18:
CDF of the average cost on the users’ data
plan, and cost paid by advertisers to deliver
personalized ads to the same users.

0%

20%

40%

60%

80%

100%

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

C
D

F

Cookie Synchronisations

Total
Per Impression

Figure 6.19:
CDF of the average CSyncs per impression
retrieved per user, across the year.

We compare it with an estimated cost paid by the users to download these corresponding

ads in their device. In particular, we use an estimation of the cost per byte that users paid

in their data plans for the total bytes downloaded for these ads. We also look at the privacy

cost of users via the CSync metric, and how that also compares with the advertisers’ RTB

cost.

6.4.1 Cost on data plan vs. Cost of RTB

For this comparison, we use currently available prices [9, 73], for various data plans in the

country the users were located, while the dataset was collected. Using prices for 20 different

data plans from 6 different ISPs and subsidiaries, we computed an average cost of Euros per

Byte. Historically, the data plan prices have been dropping, thus, our estimation of the Byte

cost can be considered a lower bound of the actual cost users paid during the data collection.

In Figure 6.18, we plot the CDF of average cost per impression paid by the two parties

considered: (i) the end-users for Bytes consumed by their phones for downloading advertising

and analytics requests, and (ii) the advertisers for ads they delivered to these devices through

the RTB mechanism. These average scores reflect the traffic across the year. We make the

following observations. Surprisingly, the cost on advertising bytes for the majority (about

80%) of users is higher than the RTB cost paid by the advertisers. Specifically, we see that

the median user paid an average cost of 0.0022 Euros per ad for advertising and analytics

bytes, whereas the median advertiser paid 0.00071 Euros per ad. This means that for each

delivered ad impression, users are charged 3 times more than advertisers who benefit

from the ad delivery!

102 Chapter 6. Costs of Advertising on Users and Advertisers
1e

−
04

1e
−

02

1e−04 1e−02
Avg. RTB cost per impression (Euro)

A
vg

. c
os

t o
f a

d−
re

la
te

d
by

te
s

pe
r

im
pr

es
si

on
 (

E
ur

o)

5

10

15
count

(a) Cost on data plan vs. Cost of RTB

1e
−

02
1e

+
00

1e
+

02
1e−04 1e−03 1e−02

Avg. RTB cost per impression (Euro)
A

vg
. C

oo
ki

e
S

yn
cr

on
iz

at
io

ns
 p

er
 im

pr
es

si
on

2

4

6

8
count

(b) Cost of CSync vs. Cost of RTB

Figure 6.20: Heatmaps of (a) average cost per impression for Bytes consumed by users
in advertising requests, (b) average Cookie Synchronizations per impression,
both compared against the average cost paid by advertisers to deliver RTB
ads to the same users (1-1 mapping), across the year.

Furthermore, we look at the average cost users pay for being delivered ads vs. the

corresponding average cost advertisers paid for the exact same ads, for each user via a

heatmap in Figure 6.20(a). We observe that the counts are skewed towards the upper left

triangle for many of the users. In total, 67.4% of users paid more in bytes than what the

advertisers paid for the same ads to be delivered. This means that the majority of mobile

users pay more in data plan cost to download each impression (or even in total through the

year), than the corresponding cost that advertisers pay to send the given ads displayed.

6.4.2 Cost of Privacy vs. Cost of RTB

In section 6.2.2, we analyzed the cost of privacy for mobile users given the CSyncs performed

by the advertising ecosystem. We measured how prevalent this practice is across users and

through time. Here, we compare this privacy loss with the cost paid by advertisers in RTB

ads delivered to users during the same time period.

In Figure 6.19 we show the CDF of the average CSyncs per impression (total CSyncs

through the year in Figure 6.19 (line in blue)) that were performed through each user’s

device. We notice that the median user had about 3.4 synchronizations per impression, and

6.5. Discussion 103

101 in total through the year. As explained earlier, this leads to loss of privacy to multiple

third party companies.

We compare this cost on user privacy to the cost paid by advertisers with a heatmap in

Figure 6.20(b). We notice that the main mass of the distribution of users cluster between 1

and 100 synchronizations per impression delivered (as also evident from Figure 6.19 (line in

red)) and cost for the advertisers between 0.0005 and 0.001 Euros, per impression delivered.

Also, in totals across the year, users have been exposed to 10-1000 synchronizations for all

the ads they received, and these delivered ads cost between 0.005 and 0.05 Euros to the

advertisers.

6.5 Discussion

6.5.1 Learnings

Unlike traditional advertising, in online mediums advertising imposes costs not only to the

one who wants its message to be spread (the advertiser), but also to the one that receives

it (the user). To make matters worse, the growth of personalized advertisement, where the

advertisements are matched to the interests of the individuals, impose an additional cost for

the users: the cost on their privacy and loss of anonymity.

In this study, we compare the costs on digital advertising for the advertiser and the user, in

an attempt to identify how equal, or even comparable these costs are. Surprisingly, our results

show that these costs are unbalanced, with the majority of users sustaining a significant loss

of privacy, when the monetary cost they pay is, on average, 3 times more than what the

advertisers are charged to deliver the given ads. Our findings can be summarized as follows:

• Ad- and analytics- related traffic is 19% of the total requests, and 8.2% of data plan

volume of an average mobile user.

• Ad-related volume has been steadily increasing through the year, doubling from 4

KBytes to 8 KBytes per ad-request.

• Ad- and analytics- related traffic can potentially consume up to 9% of the phone’s

power, considering only the additional network overhead.

• 97% of regular mobile users are exposed to Cookie Synchronization at least once in a

year.

• The 50th (75th) percentile user is exposed to one CSync every 140 (50) traffic requests,

or every 3-4(1-2) website visits.

• The 50th (75th) percentile user gets up to 63 (195) of their unique user IDs synced in

a year, at least once.

104 Chapter 6. Costs of Advertising on Users and Advertisers

• Top 5% (0.6%) of ad-companies learn more than 10% (25%) of all user IDs, through

the year.

• The median user loses up to 20% of their anonymity to 22 tracking entities, and up to

40% to 3 tracking entities.

• The top 5 ad-companies dominate 68% of RTB auctions.

• Mobile users are exposed to 10-1000 synchronizations for ads received through the year,

which cost to the advertisers 0.005-0.05 Euros.

• The median advertiser paid 0.00071 Euro per delivered ad, but the median user paid

0.0022 Euro per ad in downloaded bytes.

6.5.2 Impact of Advertising Cost

Our results showed that in aggregate, and monetarily, over 2/3rds of users pay more through

their data plan for downloading bytes related to ads and analytics, than the advertisers who

sent the ads in the first place. In addition, given that: 1) the median user loses up to 20%

of its anonymity to 22 tracking entities, 2) the top 5 ad-companies win the great majority of

RTB auctions, and 3) these companies can sell the acquired data to 4th party companies in a

non-transparent and backend fashion [135,189], the loss of privacy experienced by an average

user can be multiple times higher than that conservatively measured so far. Unfortunately,

this pervasive user tracking effort to deliver more targeted impressions, fails to increase the

effectiveness of the delivered ads. In fact, and according to [205], the average person is served

over 1700 ads per month, but only half of them are ever viewed, and click rates for display

ad campaigns reach 0.1% on average (i.e., one in a thousand impressions in a campaign

is ever clicked). Furthermore, Budak et al. in [28] show that retailers attract only 3% of

their customers through digital ads. Therefore, even though someone could argue that the

user receives value from free access to the websites supported by advertisers, the amount of

ineffective ads delivered to user devices is currently extreme, and costly for the end-user.

Considering all the above, the cost on the user’s side with respect to 1) device resources

spent for processing and displaying ads, 2) bytes downloaded and paid to the user’s data

plan, 3) loss of privacy experienced by the average user, all significantly outweigh both the

efficiency of the received ads, and the cost paid by the ad ecosystem to deliver them to the

user’s device. Thus, it remains unclear whom the current advertising model benefits, apart

from the ad-delivery and targeting companies.

6.5. Discussion 105

6.5.3 Reducing or rebalancing the costs

Evidently, the annoyance, the inefficiency and the increased cost of advertisements have

made users take measures to reduce the unbalanced costs they pay. The most popular of

such actions is the use of mobile [56, 179] or desktop based [29, 55] ad-blockers. However,

there are concerns [30, 112] that such all-out approaches are non-vital for the free Internet,

as they significantly reduce the income of the ad-supported content providers, making them

stop serving ad-blocking users [61,159].

Approaches able to strike a vital middle-ground and rebalance the costs between advertis-

ers and users, include Personal Information Management Systems (PIMS) [35, 130, 131, 160].

In PIMS, the user controls the privacy they expose to the online world, in return for a free

service. A different approach is third-party ad-replacement systems [26] such as the Brave

Browser [25], where the user gets compensated for each ad they receive. In addition, there

is the CAMEO middleware [121], which aims to pre-fetch context-sensitive advertisement by

predicting user context and pro-actively identifying relevant advertising content. This way,

it can opportunistically use inexpensive wireless networks (e.g., WiFi) to predictively cache

advertisement content on the mobile device.

The contribution of our work is to shed light upon the actual costs of ad-supported web.

This way, we enhance the awareness of users regarding costs that they can easily measure

(e.g., on their data plan), or cannot measure (e.g., privacy loss), in an attempt to help them

choose between a seemingly free, ad-supported website and its paid ad-free counterpart [256].

Our future steps include active analysis of the user devices in order to measure additional

hidden costs of advertising, that appear in power consumption, main memory, CPU. We will

also study the impact advertising has on user experience by measuring the imposed latency

due to the rendering time of digital ad impressions. In addition, active analysis on crafted

user personas will allow us to determine the user data that get leaked together with the

userIDs and if this is compliant with COPPA [74] rules and DAA’s AdChoices [54] program.

106

Chapter 7

Web-Mining as an Alternative Mon-

etization Model

It is of no doubt that digital advertising is the dominant monetization model of the free

Internet. It constitutes the driving force of the web, leading to the provision and support

of new web services and applications [83, 234]. However, in the recent years, either due to

the roaring privacy implications of targeted advertising [32, 195, 235] or the irritation dodgy

ads may cause [85], a growing number of users (615 million devices – 30% growth since

last year [46]) decided to abdicate from receiving ads by adopting all-out approaches (like

deploying ad-blocking mechanisms [38, 179, 245] or ad-stripping browsers [25, 39, 75]). This

increasing ad-blocking trend made some major web publishers, after seeing their income

significantly shrinking (total losses of $22 billion [162]), to deploy ad-blocker detection tech-

niques [115, 161, 173] and deny serving content to ad-blocking users [42, 159, 216, 223]. Such

aggressive actions from both sides escalated an inevitable arms race between the ad-ecosystem

on the one side, and the ad-blockers and privacy advocates on the other side [20,163,173].

In such a dispute, evidently, publishers were trapped in the crossfire being unable to

effectively monetize their services. To that end, it did not take long for some of them to

look for effective and reliable alternative schemes to support their websites. Some of these

schemes include paid website versions, user compensation (e.g., Basic Attention Token [12])

and cryptomining. Especially the latter, given its privacy protecting nature (no user tracking

and personal data collection required, thus making cryptocurrency mining GDPR compliant)

and the frenetic increase of the market value of cryprocoins, gains an ever increasing popu-

larity.

Of course, in-browser based mining is not a new idea. The compatibility of Javascript

miners with all modern browsers gave motivation for web mining attempts since the very early

days of Bitcoin, back in 2011 [165]. To that end, web miners “borrow” spare CPU cycles

of the visiting users’ devices for performing their Proof-of-Work (PoW) computations [222]

for as long as the user is browsing the website’s content. However, the increased mining

difficulty of Bitcoin was the primary factor that led such approaches to failure. Yet, the

107

108 Chapter 7. Web-Mining as an Alternative Monetization Model

rapid growth of Bitcoin lured several initiatives to construct their own derivatives (more

than 1638 nowadays [114]) providing specific extra features e.g., transaction speed, proof-of-

stake. One of the provided features: mining speed, became the growth factor for some coins

(Monero [41, 203] grew from 13$ to 300$ within 2017 [84]) and was the catalyst a for the

incarnation of web cryptomining [143].

Indeed, since the release of the first JavaScript miner (i.e., September 2017) by Coin-

hive [40], we observe a rapidly increasing [5, 52, 69] number of content providers deploying

web-based cryptomining libraries in their websites, monetizing their content either by using

both ads and web-mining or by fully replacing ads (e.g. PirateBay [51]). So the important

question that arises at this point is the following: Can web-mining become the next business

model of the post ad-supported era of Internet?

There are numerous opinions about this subject [21, 136, 208], but it is apparent that

in order to accurately respond to such a question we first need to investigate all aspects of

both advertising and web-mining. These aspects include, first of all, the profitability that

cryptominers provide to publishers and also the costs that users have to sustain from the

utilization of their resources: let us not forget that the unsustainable costs [103, 183] of

advertising made ad-blocking popular.

In this study, we aim to address exactly that; we conduct the first full-scale analysis of the

profitability and costs of web-mining, in an attempt to shed light in the newly emerged tech-

nology of in-browser cryptomining and explore if it can replace ads on the web. Specifically,

in this study we estimate the possible revenues for the different monetization strategies: ad-

vertising and web-mining, aiming to determine under what circumstances a miner-supported

website can surpass the profits from digital advertising.

Additionally, we collect a large dataset of miner- and ad- supported websites and by

designing and developing WebTestbench, a sensor-based testbed, we measure the resource

utilization of both models in an attempt to compare their imposed user-side costs. In par-

ticular, WebTestbench is capable of measuring (i) the utilization of mining regarding system

resources such as CPU and main memory, (ii) the degradation of the user experience due

to the increased mining workload, (iii) the energy consumption and how this affects battery-

operated devices (e.g., laptops, tablets, smartphones), (iv) system temperature and how

overheating affects the user’s device and (v) network and how this can affect a possible

mobile dataplan.

To summarize, in this chapter we conduct the first study on the profitability of web-based

cryptocurrency mining, questioning the ability of mining to become a reliable monetization

method for future web services. Our results show that for the average duration of a website

visit, ads are 5.5x more profitable than cryptomining. However, a miner-supported website

can produce higher revenues if the visitor remains in the website for longer than 5.3 min-

utes. We design a methodology to assess the resource utilization patterns of ad- and miner-

supported websites on the visitor’s device. We implement our approach in WebTestbench

7.1. Background 109

framework and we investigate what costs these utilization patterns impose on the visitor’s

side with regards to the user experience, the system’s temperature, and energy consumption

and battery autonomy. We collect a large dataset of around 200K ad- and miner-supported

websites that include different web-mining libraries and cryprocurrencies. We use this dataset

as input for the WebTestbench framework and we compare the resource utilization and costs

of the two web monetization models. Our results show that while browsing a miner-supported

website, the visitor’s CPU gets utilized 59 times more than while visiting an ad-supported

website, thus increasing the temperature (52.8%) and power consumption (2x) of her device.

7.1 Background

7.1.1 Web-based cryptocurrency mining

Web-based mining is a method of cryptocurrency mining that happens inside a browser,

using a script delivered through a website. Additionally, the rise of alternative cryptocoins

that provide distributed mining, increased mining speed and ASIC (Application-Specific

Integrated Circuit) resistance, made distributed CPU (i.e, x86, x86-64, ARM) based mining

very effective [1], even when using commodity hardware. This way, all these new coins e.g.,

Electroneum, Bytecoin and Monero opened new funding avenues for web publishers.

The motivation behind this new business model is simple: users visit a website and pay

for the received content indirectly by mining cryptocurrency coins, without being polluted

with (possibly annoying [85]) ads. Furthermore, publishers do not have to bother collecting

behavioral data to get higher prices (as seen in Chapter 5) for their ad-slots. As a consequence,

users get a cleaner, faster, and potentially less risky website.

7.1.2 How does web mining work?

The large growth of web-mining started with the release of Coinhive’s JavaScript implementa-

tion of a Monero miner in September 2017 [40]. This JavaScript-based miner, which computes

hashes as a Proof-of-Work, could be easily included in any website for enabling publishers to

utilize visiting users’ CPUs as a way to monetize the visits to their websites.

Upon visiting a miner-supported website, the user receives a mining library along with

the website’s content. Usually these libraries are provided by third parties, which we will

refer to as Mining Service Providers (MSP), who are responsible for maintaining the source

code, controlling the synchronization of computations, collecting the computed hashes and

sharing the profits with the publishers. Upon rendering, a miner establishes a persistent

connection with the MSP (e.g., coinhive.com) to communicate with the service/mining pool.

Through this channel the miner receives periodically PoW tasks and reports the successfully

computed hashes.

110 Chapter 7. Web-Mining as an Alternative Monetization Model

0%

1%

10%

100%

coinhive.com

jsecoin.com

coinpot.co

crypto-loot.com

coin-have.com

hashing.win

webm
ine.pro

ppoi.org

coinim
p.com

adless.io

Rest

P
e
rc

e
n
ta

g
e
 o

f
w

e
b
s
it
e
s

Mining third-party domains

Figure 7.1: Cryptomining market share per third party library in our dataset. Coinhive
owns the dominant share (69%) when JSEcoin follows with 13%.

7.1.3 Cryptojacking

The increasing growth of web-based miners does not create opportunities only for legitimate

publishers, but cyber-attackers as well. Soon after the release of the first mining library by

Coinhive, numerous incidents have been reported [164] of attackers injecting mining code

snippets in websites with increased audience. This so-called Drive-by Mining, or crypto-

jacking, takes place either by compromising embedded third party libraries or by delivering

malicious mining code through the ad ecosystem [86]. For example, the compromisation of

a single screen reader third party (i.e., Browsealoud [178]) resulted in infecting more than

4000 websites that were using it. Victims of cryptojacking have been popular and prestigious

websites [79,97,144,145,153].

Of course, the notion of cryptojacking does not only include compromised websites but

also websites that use mining as a method for monetization but abstain from informing the

users about the existence of cryptominers. Indeed, contrary to digital advertising were the

visitors can identify the ad-impressions, in web mining it is not easy for the visitors to perceive

the existence of an included miner. To that end, cryptojacking is a malicious action that

abuses the user’s processing power, and includes any web-mining attempt without the user’s

consent irrespectively whether the mining code has been deployed by the website’s publisher

or an attacker that hijacked the website.

7.2. Data collection and analysis 111

Type Amount

Blacklist entries 3610
Miner-supported websites 107511
Ad-supported websites 100000
Unique third-party miners 27
Crypto-coins Monero, JSEcoin

Table 7.1: Summary of our dataset

7.2 Data collection and analysis

To gather the necessary data for our study we collect several coin-blocking blacklists1 includ-

ing the ones used by the 5 most popular mine-blocking browser plugins.2 By merging these

blacklists we compose a list of 3610 unique entries of mining libraries and keywords. Then,

we use these entries to query PublicWWW,3 and we identify a total of 107511 mine-including

domains. It should be noted that the domains we collected are ranked in the range from 1353

to 960540 in the Alexa rank of popular websites, and that the majority of them are based in

the USA, Russia and Brazil.

The mining websites we collected, include more than 27 different third party miners, such

as Coinhive, CryptoLoot and CoinHave. In Figure 7.1, we present the portion of websites in

our dataset that use each one of these libraries. As seen, besides the large variety of mining

libraries, there is a monopolistic phenomenon in the market of cryptominers, with Coinhive

owning the dominant share (69%), when from the rest of its competitors only JSEcoin miner

surpasses 10%.

Apart from these miner-supported websites, we also collected an equal number of ad-

supported ones, which are among the same popularity ranking range. We process each of

these domains and by using the blacklist of Ghostery open-source adblocker, we enumerated

all the ad-slots in the landing page. The average number of ad-slots per website was 3.4.

Finally, Table 7.1 summarizes the contents of our dataset.

7.2.1 WebTestbench framework for utilization analysis

To measure the costs each domain in our dataset imposes on the user, we designed and devel-

oped WebTestbench: a web measuring testbed. A high-level overview of the architecture of

WebTestbench is presented in Figure 7.2. The WebTestbench framework follows an extensible

modular design, and consists of several measuring components that work in a plug-and-play

manner. Each such component is able to monitor usage patterns in different system resources

(memory, CPU etc.). The main components of our platform currently include:

1https://zerodot1.gitlab.io/CoinBlockerListsWeb/index.html
2Coin-Blocker, No Mining, MinerBlock, noMiner and CoinBlock
3https://publicwww.com/

112 Chapter 7. Web-Mining as an Alternative Monetization Model

Results Monitoring platform

n
et

w
o

rk

in
te

rf
e

re
n

ce

Controler Crawler

List of
domains

te
m

p
e

ra
tu

re

p
o

w
e

r

m
em

or
y

C
PU

Figure 7.2: High level overview of our measurement testbed. A Chrome-based platform
fetches each website for a specific time and its different components measure
the resources.

A. crawler component, which runs the browser (i.e., Google Chrome) in a headless mode.

The crawling is responsible of stopping and purging any state after a website probe

(e.g., set cookies, cache, local storage, registered service workers, etc.), and listening to

the commands of the main controller (i.e., next visiting website, time interval, etc.).

B. main controller, which takes as input a list of domains and the visiting time per

website. It is responsible for scheduling the execution of the monitoring components.

C. monitoring platform, which is responsible for the per time interval execution of the

monitoring modules. This platform was build in order to be easily expandable in case

of future additional modules.

For the scope of this analysis, we developed 6 different modules to measure the utilization

that miners perform in 6 different system resources:

1. memory activity (physical and virtual), by using the psrecord utility [200] and attaching

to the crawling browser tab’s pid.

2. CPU utilization per core, by using the dedicated linux tool process status (ps [225]).

7.3. Analysis 113

3. system temperature (overall and per core), by leveraging the Linux monitoring sensors

(lm sensors [201]).

4. network traffic, by capturing (i) the network packets through tcpdump and (ii) the HTTP

requests in the application layer along with their metadata (e.g., timing, initiator,

transferred bytes, type, status code).

5. process interference, to infer the degradation of user experience caused by the heavy

CPU utilization of mining processes. Specifically, this module consists of a CPU inten-

sive benchmarking that includes multi-threaded MD5 hash calculations.

6. energy consumption, by installing in our machine an external Phidget21 power sensing

package [190]. Phidget enables us to accurately measure the energy consumption of the

3 ATX power-supply lines (+12.0a, +12.0b +5.0, +3.3 Volts). The 12.0 Va line powers

the processor, the 5.0V line powers the memory, and the 3.3V line powers the rest of

the peripherals on the motherboard.

Methodology: In order to explore the different resource utilization patterns for miner-

and ad- supported websites, we load our domain dataset in WebTestbench and we fetch each

landing page for a certain amount of time. During this period the network monitoring module

captures all outgoing HTTP(S) requests of the analyzed website. Additionally, the modules

responsible for measuring the energy consumption, the CPU and memory utilization and the

temperature report the sensor values in a per second interval. By the end of this first phase,

WebTestbench erases any existing browser state and re-fetches the same website. This time,

the only simultaneously running process is the interference measuring module which reports

its progress at the end of the second phase.

7.3 Analysis

In this section, we aim to explore the profitability of the cryptomining web monetization

model for the publishers, and to compare it with the current dominant monetization model of

the web: digital advertising. Towards that direction, we assess the costs imposed on the user

in an attempt to determine the overheads a website’s visitor sustains while visiting a miner-

supported website. For the following experiments, we use a Linux desktop equipped with a

Hyper-Threading Quad-core Intel I7-3770 operating at 3.90 GHz, with 8 MB SmartCache, 8

GB RAM and an Intel 82567 1GbE network interface.

7.3.1 Profitability of publishers

In the first set of experiments, we set out to explore the profitability of cryptominers and

compare it to the current digital advertising model. Thereby, in the first experiment we

114 Chapter 7. Web-Mining as an Alternative Monetization Model

 1

 10

 100

 1000

50H/s
100H/s

200H/s

300H/s

Ads

M
o

n
th

ly
 r

e
v
e

n
u

e
 (

U
S

D
)

Monetization method

Figure 7.3:
Estimation of monthly profit for the different
monetization methods for a website with
100K visitors and average visit duration of 1
minute. Even for visitors with powerful
devices (300Hashes/sec), a publisher gains
5.5× more revenue by including 3 ads in its
website.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0 10 20 30 40 50 60

R
e

v
e
n

u
e

 p
e
r

v
is

it
o
r

(U
S

D
)

Time (minutes)

50Hash/sec
100Hash/sec
200Hash/sec
300Hash/sec

Ads

Figure 7.4:
Revenue per visitor for a website running in a
background tab. In order for a publisher to gain
higher profit from mining than using ads (3 ad-
slots), a visitor must keep his tab open for
duration > 5.3 minutes (depending on the their
device).

simulate the monthly profit of the two strategies for a website of moderate popularity: 100,000

visitors per month. Studies have measured the average duration of a website visit being

around 1 minute [170]. For this experiment, we use the popular Monero mining library of

Coinhive, which currently provides a rate of 0.0001468/1M hashes. This means that the

publisher gets 0.0001468 Monero (XMR) (at the time of the experiment: 1 Monero=205

USD) per 1 million calculated hashes. Apart from the visit duration, the amount of total

calculated hashes of a publisher depends on the computation power of the visitors’ devices.

Thus, in this experiment, in order to cover a wider range of CPU hashrate capabilities [47],

we use 4 different levels of computation rates: the rate of iPhone7: 50 Hash/sec, iPhoneX:

100 Hash/sec, 4-core PC: 200 Hash/sec and 8-core PC: 300 Hash/sec).

Apart from the profit from cryptomining, in this experiment we also compute the monthly

revenue of the same website in the case of following the traditional advertising model. The

most popular medium for personalized ad-buying nowadays [64, 229] is the programmatic

instantaneous auctions. In this model, advertisers bid in real time auctions for each available

ad-slot of a publisher’s inventory based on how well the visitor’s interests match their adver-

tised product. As described in Section 7.2, the average number of ad-slots in an ad-supported

website is 3 and the median charge price per ad impression as measured in previous Chap-

ter [?] is 1 CPM. As can be seen in Figure 7.3, for the average duration of a user’s visit, the

publisher when achieving an average computation rate from visitors of as high as 300Hash/sec,

7.3. Analysis 115

gains 5.5x more revenue when using ads instead of cryptomining4. In addition, we see that

as the visitor’s hardware improves, the distance between these two monetization methods

becomes smaller. This means that in the near future web mining can be capable of providing

comparable profits for the publishers.

It is apparent that for a miner-supported website time matters. Indeed, recent studies [5]

show that the majority of miner-supported websites provide content that can keep the visitor

on the website for a long time. Such content includes TV, video or movie streaming, flash

games, etc. Of course in cryptomining, the user does not need to interact with the website’s

content per se. As a consequence, numerous deceiving methods (e.g., pop-unders [230]) are

currently used, aiming to allow the embedded miner to work in the background for as long

as possible.

In the next experiment, we set out to identify the minimum time the publisher’s website

needs to remain open inside a tab of a visitor’s browser in order to gain profit higher than

when using ads. In Figure 7.4 we simulate the revenue per visitor for a website running

in the background and we use the same hash-rate levels as above. As shown, the miner-

using publisher, in order to produce revenues higher than when ads are delivered, must keep

its website open in the user’s browser for a duration longer than 5.53 minutes. When on

background, the website do not receive fresh ads so publishers do not have more revenue. So

we see that on the left of the break-even point using ads is more profitable but when moving

on the right of break-even point, web-mining generate higher income.

To mitigate the above issues, we propose a Hybrid model to combine both. Specifically,

as shown in Figure 7.5, publishers utilize ads to get a basic revenue from the landed visitor

and move to web-mining when the visitor switches to different browser tab (e.g., after 1

minute). This way, publishers can continue gaining profit when their websites become idle.

So a publisher’s revenue when using ads is given by RA (1), when using web-mining by RM

(2), and when using the Hybrid model by RH (3), where t0 is the average duration of a visit.

for t ∈ (0, t0) : RA(t) = C1 (7.1)

for t ∈ [t0, oo) : RM (t) = C2 ∗ t (7.2)

RH(t) = C1 + C2 ∗ (t− t0) (7.3)

As we can see in Figure 7.5, the revenue produced by our Hybrid approach either before or

after the break-even point, is always higher or equal to both ads and web-mining.

7.3.2 Costs imposed on the user side

After estimating the revenues of a publisher for the different monetization methods, it is time

to measure the costs each of this method imposes on the user.

4Our simulation results are verified by the real world experiments [44]

116 Chapter 7. Web-Mining as an Alternative Monetization Model

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0 5 10 15 20

A
v
e
ra

g
e
 v

is
it
 d

u
ra

ti
o
n

B
re

a
k
-e

v
e
n
 p

o
in

t

R
e
v
e
n
u
e
 p

e
r

v
is

it
o
r

(U
S

D
)

Time (minutes)

Mining
Ads

Hybrid

Figure 7.5: Revenue per visitor. In our Hybrid approach the revenue is bounded either
before or after the break-even point, to be always higher or equal to both
ads and web-mining

CPU and Memory Utilization

In the first set of experiments, we explore the average CPU and memory utilization by mining-

supported websites. Note at this point, that the intense of mining is tunable. The majority

of mining libraries allow the publishers to fine tune the number of threads and the throttling

of their miner. In this experiment we fetch each website in our two subsets for 3 minutes

using WebTestbench and we extract the distribution of its CPU utilization through time. In

Table 7.2 we report the average values for the median, the 10th and 90th percentiles. As we

see, the median miner-supported website utilizes the visitor’s CPU up to 59 times more than

an ad-supported website.

In the same way, we measure the utilization of the visitors main memory and in Figure 7.6

we plot the average values for both real and virtual memory activity. As expected, miners

Type 10th Perc. Median 90th Perc.

Advertising 3.33% 9.71% 17.19%
Mining 560.11% 574.01% 580.71%

Table 7.2: Distribution of the average CPU Utilization for the different monetization
methods. The median miner-supported website utilizes 59x more the user’s
CPU than the median ad-supported website.

7.3. Analysis 117

 0

 60

 120

 180

 240

 300

Mining Ads

A
v
e
ra

g
e
 r

e
a
l
m

e
m

o
ry

u
s
a
g
e
 (

M
B

)

Mining Ads
 0

 1000

 2000

 3000

 4000

 5000

A
v
e
ra

g
e
 v

ir
tu

a
l
m

e
m

o
ry

u
s
a
g
e
 (

M
B

)

Figure 7.6: Distribution of average real and virtual memory utilization through time.
Miner-supported websites although reserve (3.59x) larger chunks of virtual
memory, require 1.7x more MBytes of real memory than ad-supported web-
sites.

do not utilize memory as heavy as CPU. In particular, we see that on average the miner-

supported websites require 1.7x more space in real memory than the ad-supported websites.

Network Activity

Next, we measure the network utilization of the average mining-supported website. As dis-

cussed in Section 7.1, a mining library needs to periodically communicate with a remote

third party server (i.e., the MSP’s server) in order to report the calculated hashes but also

to obtain the next PoW. This communication in the vast majority of the libraries in our

dataset takes place through a special persistent channel that allows bidirectional communi-

cation. To assess the network activity of web miners, we use the network capturing module

of WebTestbench and we monitor the traffic of each (ad- and miner-supported) website for 3

minutes.

Based on the detected third-party mining library, we isolate the web socket communica-

tion between its in-browser mining module and the remote MSP server. In order to com-

pare this PoW-related communication of miners with the corresponding ad-related traffic of

ad-supported websites, we utilize the open-source blacklist of the Disconnect browser exten-

sionto isolate all advertising related content. In Figure 7.7, we plot the distribution of the

total transmitted volume of bytes per website for the visit duration of 3 minutes. Although

the web socket communication of miners consists of small packets of 186 Bytes on average,

we see that in total the median PoW-related communication of miner-supported websites

transmitted 22.8 KBytes, when the median ad-traffic volume of ad-supported websites was

118 Chapter 7. Web-Mining as an Alternative Monetization Model

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

10
0

10
1

10
2

10
3

C
D

F
 o

f
w

e
b

s
it
e

s

Total KBytes transferred

Mining
Ads

Figure 7.7:
Distribution of the total transmitted volume
of bytes per website for a visit duration of 3
minutes. The median miner-generated traffic
volume is 3.4x larger than the median
ad-generated. In 20% of the websites the
difference reduces significantly (less than 2x).

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

 0.1 1 10 100

C
D

F
 o

f
w

e
b

s
it
e

s

Average Kbits per second

Figure 7.8:
Distribution of the transmitted bit rate
per miner-supported website in our dataset.
The median in-browser miner communicates
with its remote MSP by transmitting 1.17 Kbits
per second.

6.7 KBytes. This means that the median miner-generated traffic volume is 3.4x larger than

the median ad-generated. In this experiment, we see that the network utilization patterns

depend not only on the throttling of the miner but also on the different implementations.

For example, while using the same portion of CPU, the miner of coinhive.com transmits on

average 0.6 packets/sec, webmine.cz: 2.2 packets/sec, cryptoloot.com: 4.7 packets/sec and

jsecoin.com: 1.3 packets/sec.

In Figure 7.8 we plot the distribution of the average data transfer rate per miner-supported

website in our dataset. As shown, the median communication between the miner and the MSP

has a transfer rate of 1 Kbit per second (or 146 Bytes/sec). As in the previous experiment,

the rate highly depends on the mining library, with some of them reaching up to 14 Kbit per

second. At this point, recall that the PoW-related communication between the miner and

the MSP holds for as long as the miner is running, and as shown in Figure 7.4, a miner must

run for longer than 5.53 minutes to produce revenues higher than ads. This means that for

the median case, the total volume of bytes transferred will exceed 46 KBytes.

In the case of a user that browses through a cellular (4G) network,5 the monetary cost

imposed is 0.000219$ per minute on average when browsing a miner-supported website. On

the other hand, a publisher including a coinhive miner in its website earns 0.000409$ per

minute from that user (considering that the user provides a hash rate of 227 Hash/sec as

5Considering the average prices per byte in USA and Europe [9, 73,242]

7.3. Analysis 119

Component Type 10th Percentile Median 90th Percentile

CPU & Network adapter
Advertising 31.88 Watt 32.39 Watt 34.17 Watt

Mining 63.35 Watt 67.60 Watt 71.22 Watt

Main Memory
Advertising 4.37 Watt 4.46 Watt 5.35 Watt

Mining 4.76 Watt 4.99 Watt 5.67 Watt

Table 7.3: Distribution of the average consumption of power for the different monetiza-
tion methods. The median miner-supported website forces the user’s device
to consume more power than the median ad-supported website: 2.08x and
1.14x more power for the CPU and the memory component, respectively.

in [44]). Hence, we see that cellular users, among other costs while visiting miner-related

websites, pay a monetization cost that is only 53% less than the revenue of the publisher.

Power Efficiency

Of course the intensive resource utilization of cryptominers affects also the power consumption

of the visitor’s device, which has a direct impact on its battery autonomy. In the next

experiment, we measure the power consumed by (i) main memory and (ii) CPU and network

adapter components of the user’s device while visiting miner- and ad- supported websites for

a 3 minute duration. In Table 7.3, we report the average median, 10th and 90th percentile

values for all websites in our dataset. As shown, there is a slightly increased (1.14x more than

ad-supported websites) consumption of the memory component in miner-supported websites.

However, we see that the heavy computation load of cryptominers significantly increases the

CPUs and network adapters consumption, making miner-supported websites consume 2.08x

more energy than ad-supported websites! This means that a laptop able to support 7 hours of

consecutive traditional ad supported browsing, would support 3.36 hours of mining-supported

browsing.

System Temperature

The increased electricity powering of the visitor’s system results to an increased thermal

radiation. During the above experiment, we measure the distribution of the per-core tem-

peratures while visiting each website in our dataset for 3 minutes. In Figure 7.9, we present

the average results for the percentiles: 10th, 25th, 50th, 75th, 90th. As we can observe, the

core temperatures for miner-supported websites are constantly above the optimal range of

45−60◦ Celsius [150,191]. In particular, the visitor’s system operates for most of the time in

the range of 43− 50◦ Celsius while visiting ad-supported websites. When the visited website

includes a miner, the average temperature of the cores reaches up to 52.8% higher, in the

range of 73− 77◦ Celsius, when in 10% of the cases it may reach higher than 84◦ Celsius.

To that end, with regards to the costs imposed to the user, high temperatures may lead to

120 Chapter 7. Web-Mining as an Alternative Monetization Model

 30

 40

 50

 60

 70

 80

 90

Package

Core0
Core1

Core2
Core3

A
v
e
ra

g
e
 t
e
m

p
e
ra

tu
re

 (
°
C

)

Mining
Ads

Figure 7.9: Distribution of average temperatures per system’s core. When the visited
website includes miner, the average temperature of the cores may reach up
to 52.8% higher (73− 77◦ Celsius) than when with ads.

degraded system performance and poor user experience. Apart from that, constantly running

a commodity device (e.g., mobile phone, laptop or desktop PC) at high temperatures, without

a proper cooling mechanism, may significantly decrease the hardware’s lifespan in the long

term or even cause physical damage by thermal expansion.

Effects on Parallel Running Applications

It is apparent that the heavy utilization of the visitor’s CPU is capable of affecting the

overall user’s experience not only in the visited website, but in parallel processes and browser

tabs, too. Indeed, for as long as the browser tab of a mining-supported website is open, the

multi-threaded computations of the miner leaves limited processing power for the rest of the

running applications. To make matters worse, as part of a PC’s own cooling system, the

motherboard in case of increased temperatures may instruct the CPU component to slow

down, or even force the system to turn off without warning [13].

To assess how these factors may affect parallel running processes in the visitor’s device,

we use the interference measuring module of WebTestbench and we measure the performance

overhead caused by background running miners. This module, introduces computation work-

loads to the system to emulate a parallel running process of the user. Specifically, WebTest-

bench fetches each website in our dataset for the average visit duration (i.e., 1 minute), in

parallel conducts multi-threaded MD5 hash calculations, and in the end reports the number

of calculated hashes. In order to test the performance of the user’s parallel process in differ-

ent computation intensity levels, we visit each website using 3 setups for the MD5 process,

7.3. Analysis 121

0%

20%

40%

60%

80%

100%

30% 40% 50% 60% 70% 80% 90%100%

C
D

F
 o

f
w

e
b

s
it
e

s

Portion of completed computations

Ads (1 core)
Ads (2 cores)
Ads (4 cores)

Mining (1 core)
Mining (2 cores)
Mining (4 cores)

Figure 7.10: Impact of background running miner- and ad-supported websites to a user’s
process. When the majority of ad-supported websites have negligible effect
in other processes, the median embedded miner in our dataset through its
heavy CPU utilization may cause a performance degradation of higher than
46% to a parallel running process.

utilizing in parallel 1, 2, and 4 cores of the CPU. In addition, we run the MD5 process alone

for 1 minute to measure the maximum completed operations.

In Figure 7.10, we plot the distribution of completed operations per website. As expected,

when there is a miner-supported website running in the user’s browser, the performance of the

user’s processes that run in parallel is severely affected. In particular, we see that the median

miner-supported website forces the parallel process (depending on its computation intensity)

to run in 54%, 50% or even 43% of its optimal performance, thus causing an performance

degradation that ranges from 46% to 57%! Additionally, we see a 39% of miners greedily

utilizing all the system’s CPU resources causing a performance reduction of 67% to the

parallel process.

Moreover, in this figure we plot the interference that ad-supported websites impose to

a parallel process. As expected, the impact is minimal and practically only processes with

full CPU utilization are affected, facing a performance degradation of less than 10% for the

majority of such websites. This slight performance degradation is caused by the JavaScript

code responsible for ad serving, user tracking, analytics, etc.

Such severe performance degradation when the user is visiting a mining-supported website

can cause glitches, or even crushes in other, parallel, CPU utilizing applications (like movie

playback, video calling, video games, etc.), thus ravaging the user’s experience. Of course,

this performance degradation does not only affect parallel running applications but also

mining operations from other open browsing tabs.

122 Chapter 7. Web-Mining as an Alternative Monetization Model

Indeed, a miner can achieve full utilization when the user has visited the miner-supported

website1. However, when the user opens a second miner-supported website2 the maximum

utilization for both, as well as the revenues for publisher1 and publisher2, drop to a half.

It is easy thus to anticipate, that the scalability of cryptomining is limited since

the more websites rely on web-mining for funding, the less revenues will be for

their publishers. While this monetization model has that apparent drawback, in digital

advertising each ad-supported website is totally independent from any parallel open browser

tabs.

7.4 Discussion

7.4.1 User awareness

The lack of adequate policies and directives regarding the proper use of cryptomining has

raised a big controversy regarding the lack of transparency in miner-supported websites.

Many miner-supported websites do not inform the user about the existence of a miner, neither

ask for the visitor’s consent to utilize their system’s resources for cryptocurrency mining.

In one of the first law cases about web-based mining, the Attorney General John J.

Hoffman stated that “no website should tap into a person’s computer processing power with-

out clearly notifying the person and giving them the chance to opt out” [117]. As a result,

whenever a user visits a website and she is not aware about the background web-mining p,

irrespectively whether the mining code has been legitimately deployed by the publisher or a

malicious actor that hijacked the website, this is considered as a cryptojacking attempt.

7.4.2 Letting users choose

Since both digital advertising and web-mining impose a hidden cost on the user, each one

in a different way, a new paradigm could be to inform the user about these costs and give

them the option to choose which of the two monetization schemes is more suitable for them.

In the case of advertising the main cost to the user is related to the lack of privacy, while

the cost of web-mining is associated with higher energy consumption (and battery drainage,

overheating etc). It seems that a viable option for publishers would be to inform the users

about these costs, and provide two different versions of their website (i.e., one that serve ads

and one that uses cryptoming), thus allowing the user to choose between the two schemes.

7.4.3 Web-miner detection

The emergence of web-mining, and especially the many reported cases of cryptojacking,

pushed towards considering web-mining by default as a malicious operation. To that re-

gard, many major Antivirus vendors recently launched software products [236] for detecting

7.5. Summary 123

and blocking in-browser miners. The vast majority of these approaches are mainly based on

detecting outgoing requests to MSP and mining pools. Chrome removes from the Chrome

Web Store all extensions that perform mining [238] and implements a throttling mechanism

that will limit CPU utilization for JavaScript code running in the background [37].

However, even though these approaches currently seem reduce the extend of web-mining

and cryptojacking, they are not very robust against determined publishers/attackers, espe-

cially the ones based on the use of blacklists for detecting domains associated to miners.

Recently we have seen miners that try to avoid detection by only utilizing a percentage of

the users’ CPU processing power and by employing cloud-based proxy servers to handle all

communication with the MSP [210]. Also, in many cases the mining code is highly obfus-

cated [215] to prevent pattern matching tools from detecting snippets of such suspicious code.

7.5 Summary

In this chapter, we investigate the ability of web-mining to become a reliable alternative

monetization model for the web. Particularly, we estimate the monthly revenue a publisher

may gain by using cryptominers to monetize its content, and we compare our results with the

estimated revenue for the same publisher when using the traditional personalized advertising

model. We compute the duration threshold for a website visit, after which a publisher can

earn more revenue when using a cryptominer instead of ads. Additionaly, we propose a

Hybrid model, where publishers can gain a basic profit from landed visitors and continue

generating revenue by using web-mining when the browser tabs their websites reside become

idle.

Next, we measure the costs cryptominers impose on the user side by analyzing the uti-

lization patterns of miner-supported websites in the visitor’s system resources (like CPU,

memory, network). We study the impact of these utilization patterns (i) on the visitor’s

device by measuring the system’s power consumption and temperature, and also (ii) on the

visitor’s experience while running other applications in parallel.

7.5.1 Lessons Learned

The findings of our analysis can be summarized as follows:

• for the average duration of a website visit, a publisher gains 5.5x more revenue by

including 3 ad impressions in its website than by including a cryptominer.

• to produce higher revenues with a miner than with ads, the publisher must keep the

user’s browser tab open for a duration longer than 5.53 minutes or use a hybrid ap-

proach.

124 Chapter 7. Web-Mining as an Alternative Monetization Model

• the median miner-supported website utilizes up to 59x more of the visitor’s CPU and

require 1.7x more space in real memory than ad-supported websites.

• the transfer rate of the median miner-MSP communication is 1 Kbit/sec. For a user

with a mobile data-plan the monetary cost imposed is on average 0.000219$ per minute,

when the publisher from the same user earns 0.000409$ per minute.

• the median miner-generated traffic volume is 3.4x larger than the corresponding ad-

generated.

• a visit to a miner-supported website consumes on average 2.08x more energy than to

an ad-supported website.

• a visitor’s system operates in up to 52.8% higher temperatures when visiting a website

with miner than when with ads.

• web-miners severely affect parallel running processes. The median miner-supported

website when running in the background may degrade even 57% of the performance of

parallel running applications.

7.5.2 Can web-mining become the next web monetization model?

After completing our analysis, we see that web-mining can indeed constitute a reliable source

of income for specific categories of publishers. By using the Hybrid approach we propose,

publishers can even increase their profits by exploiting the time when their websites reside

in idle tabs. What is more, in these days, where EU regulators [174] aim to reform the way

user data are being collected and processed for targeted advertising, cryptomining provides

a privacy-preserving monetization model that requires zero data from the users. However,

this study shows that the intensive resource utilization of web-mining libraries imposes a

significant cost on the user’s device, accelerating the deterioration of its hardware. To make

matters worse, this utilization also limits the scalability of web-mining, since the more web-

sites adopting miners the less portion of resources each of them acquire from a user with

multiple open tabs. To conclude, cryptomining has indeed the potential to become a reliable

alternative for publishers, but it cannot replace the current ad-driven monetization model of

the web.

Chapter 8

Related Work

8.1 User tracking and Device Fingerprinting

There is a plethora of papers studying privacy loss and tracking techniques in the wild [2,60,

67, 132, 142, 172, 202]. There are also others proposing privacy preserving countermeasures

based on either (i) randomization-/obfuscation- based techniques [171,186], where the authors

aim to pollute the information trackers retrieve in order to hide the users’ data and interests,

or (ii) anti-tracking mechanisms [129], where requests to trackers are avoided or blocked. All

the above studies, highlight the voracity of web entities to collect data about the user and

her online behavior, and an arms race between the privacy-aware users and trackers.

Leontiadis et al. [140], analyze a large dataset of 250,000 Android apps and their results

reveal the ineffectiveness of current privacy protection mechanisms. Finally, they propose a

market-aware privacy protection framework aiming to achieve an equilibrium between the

developer’s revenue and the user’s privacy. Senevirante et al. [213] conduct a large-scale study

comparing the presence of tracking libraries in paid and free apps. Their key findings denote

that almost 60% of paid apps, contain trackers that collect sensitive information, compared

to 85%–95% found for free apps.

Han et al. [105], performed a real-world tracking study of mobile apps running on the

devices of 20 participants instrumented with dynamic taint tracking of specific sensitive

information. They found that 36% of the domains perform user tracking and that 37% of

them use persistent identifiers that allow cross-application and cross-site profiling of the user.

Demetriou et al. [50], explored the capabilities of various ad libraries and showed that ad

networks are prone to leak more of the user’s data than before. Therefore, they propose

Pluto, a mobile risk assesment framework to discover personal data leaks.

In [142], authors compare mobile apps and web browsers based on the amount of demo-

graphic information they leak. The authors manually examined a small group of 50 online

services and monitored the PII each of them shares. In our paper, we extend the investi-

gated privacy leaks to include device specific identifiers as well. Our results show that by

broadening the spectrum of leaks, web facilitates less leaks than apps.

There are also studies focusing solely on privacy preservation in the advertising ecosystem.

125

126 Chapter 8. Related Work

For example, Privad [101] is designed to conceal user activities from an ad-network, by inter-

posing an anonymizing proxy between the browser and the ad-network, allowing a trusted

client software to select relevant ads locally. Unfortunately, it requires broad adoption of

high-performance anonymizing proxies. Alternatively, Adnostic [227] is an architecture for

interest-targeted advertising without tracking. Like Privad, Adnostic uses client-based func-

tionality to perform ad selection, but eliminates anonymizing proxies at the cost of less precise

ad targeting. In [187], authors propose obfuscation of the user’s full identity while browsing

the web. This was achieved by introducing Web Identity Translator (WIT) in-between the

user’s client and the visited websites.

In [214], Shekar et al. present an extension that splits application’s functionality code and

ad code to run in separate processes, thus eliminating the ability of applications to request

extra permissions on behalf of their ad libraries.

Recon [198], is a VPN-based system capable of identifying PII leaks through the network.

By combining machine learning and network trace analysis, Recon is able to completely block

or add noise to PII leaking requests. Contrary to Recon, our implementation does not need

any trusted entity (e.g. VPN or Proxy), to monitor the users traffic. To make matters worse,

there are countries banning or blocking VPN-related traffic [134].

In [253], Yu et al. before proposing their own anti-tracking mechanism, conduct a large

scale study regarding the prevalence and reach of trackers, by analyzing over 21 million pages

of 350,000 unique sites. They show that 95% of the pages visited contain 3rd party requests

to potential trackers, and 78% attempt to transfer unsafe data. In addition, the authors

discuss how unsafe data can be transmitted through cookie values, something that happens

for the 58% of the tracking cases. Finally, they rank tracker organizations, showing that a

single organization can reach up to 42% of all page visits in Germany.

8.1.1 User ID Sharing

Cookie Synchronization is currently a commonplace on the web, with a number of sites

sharing IDs with each other, constituting a mechanism able to severely harm the user privacy.

However, cookie-based tracking is only the tip of the iceberg. One of the first academic works

that discussed this mechanism is the paper of Olejnik et al. [176], which studies programmatic

auctions from a privacy perspective and presents Cookie Synchronization (that they call

Cookie Matching) as an integral part of communication between the participating entities.

Their results indicate that over 100 cookie syncing events were found while crawling the top

100 sites. In our study, we extend their detection mechanism to detect CSync when cookieID

is piggybacked in either URL parameters or URL path.

Additionally, in Acar et al. [2], the authors conduct a CSync privacy analysis by studying

a small dataset of 3000 crawled sites. The authors study CSync in conjunction with re-

spawning cookies and how, together, they affect the reconstruction of the user’s browsing

8.2. User data and the Ad-Ecosystem 127

history by the trackers. They highlight the inadequacy of current anti-tracking policies.

Specifically, enabling Do Not Track in their crawling browser only reduced the number of

domains involved in synchronization by 2.9% and the number of synced IDs by 2.6%.

In a recent census by Englehardt et al. [67], authors measure CSync and its adoption in

a small subset of 100,000 crawled sites, before highlighting the need of further investigation

given its increased privacy implications. Their results show that 157 of top 200 (i.e. 78%)

third parties synchronize cookies with at least one other party. Contrary to these studies, we

aim to conduct a full scale study of CSync and its characteristics by using a large, year-long

dataset of real users.

Ghosh et al. [81] study the economics and the revenue implications of Cookie Synchroniza-

tion from the point of view of an informed seller of advertising space, uncovering a trade-off

between targeting and information leakage. Towards a similar direction, in [17], the authors

explore the role of data providers on the price and allocation of consumer-level information

and develop a simple model of data pricing that captures the key trade-offs involved in selling

information encoded in third-party cookies.

Falahrastegar et al. [71] investigate tracking groups that share user-specific identifiers in

a dataset they collected after recording the browsing history of 100 users for two weeks. In

this dataset, they detect 660 ID-sharing groups, in which they found domains with sensi-

tive content (such as health-related) that shared IDs with domains related to advertisement

trackers.

Englehardt et al. in [68] measure the information that can be inferred through web

traffic surveillance in conjunction with third-party tracking cookies. Results show that the

adversary can reconstruct 62-73% of a user’s browsing history. The authors also analyze

the effect of the geolocation of the wiretap, as well as legal restrictions. Using measurement

units in various geolocations (Asia, Europe, USA), they show that foreign users are more

vulnerable to NSA’s surveillance due to the concentration of third-party trackers in the U.S.

Bashir et al. in [11] aiming to enhance the transparency in ad ecosystem with regards to

information sharing, develop a content-agnostic methodology to detect client- and server-side

flows of information between ad exchanges by leveraging retargeted ads. By using crawled

data, authors collected 35448 ad impressions and identified four different kinds of information

sharing behavior between ad exchanges.

8.2 User data and the Ad-Ecosystem

The economics of private data have long been an interesting topic and attracted a consider-

able body of research either from the user’s perspective [4, 31, 199, 217], or the advertiser’s

perspective [48,65,83,176]. In [4] authors discuss the value of privacy after defining two con-

cepts (i) Willingness To Pay : the monetary amount users are willing to pay to protect their

privacy, and (ii) Willingness To Accept : the compensation that users are willing to accept

128 Chapter 8. Related Work

for their privacy loss. In two user-studies [31, 217] authors measure how much users value

their own offline and online personal data, and consequently how much they would sell them

to advertisers. In [199], the authors propose “transactional” privacy to allow users to decide

what personal information can be released and receive compensation from selling them.

In [176], the authors perform an analysis of cookie matching in association with the RTB

advertising. They leverage the RTB nURL to observe the charge prices and they conduct a

basic study to provide some insights into these prices, by analyzing different user profiles and

visiting contexts. Their results confirm that when the users’ browsing histories are leaked, the

charge prices tend to be increased. Similarly, in [175], the authors propose a transparency

enhancing tool showing to the users the RTB charge price every time a RTB auction is

performed. Furthermore, they collect profiled and un-profiled data from a browser extension

and a crawler respectively, and they compare the RTB prices, the bidding frequency and the

inter-relations among ADXs and DSPs.

In [83], authors use a dataset of users’ HTTP traces and provide rough estimates of the

relative value of users by leveraging the suggested bid amounts for the visited websites, based

on categories provided by the Google AdWords. FDTV [48] is a plugin to inform users in

real-time about the economic value of the personal information associated to their Facebook

activity. Although similar to ours, our approach works for all HTTP activity of mobile

users. Furthermore, journalists created an interactive calculator [65] to explore how valuable

specific pieces of user data are for the ad-companies. This calculator is based on the analysis

of industry pricing data from a range of sources in the US.

Finally, the rapid growth of RTB auctions has drawn the attention of the research com-

munity, which aims to explore the economics of the RTB ad ecosystem. In [254], the authors

provide an insight to pricing and an empirical analysis of the technologies involved. They use

internal data of an ADX and they study its bidding behaviors and strategies. In [249], the

authors propose a winning price predicting mechanism by leveraging machine learning and

statistical methods to train a model using the bidding history. Their predicting approach

aims to help DSPs fine-tune their bids accordingly. Though such studies help us understand

some internal mechanisms of ADXs and DSPs, they are not applicable to our setting as

we try to infer the cumulative ad-cost of each user based on user-related features that are

measurable from the user’s device over time.

8.2.1 Costs of Advertising

There are several studies aiming to measure different aspects and hidden costs of the adver-

tising ecosystem. Gui et al. in [103] measure the cost of mobile advertisements to the mobile

application developer by performing an empirical analysis of 21 apps. The authors consider

several types of costs: (i) app performance, (ii) energy consumption, (iii) network usage, (iv)

maintenance effort for ad-related code and (v) the user’ feedback from app reviews. Their

8.2. User data and the Ad-Ecosystem 129

results show that apps with ads consume, on average: 48% more CPU time, 16% more energy,

and 79% more network data. In addition, they found that the presence of ads in the apps

affected the users’ overall opinion leading to reduced ratings for the app.

Towards the same direction, Gao et al., propose IntelliAd [80], a tool to automatically

measure the ad costs based on the different ad integration schemes. Similar to the above

work, IntelliAd aims to provide developers with suggestions on how to better integrate ads

into apps based on the costs the users are concerned. To identify the opinion of the users,

the authors utilize several user reviews from 104 popular apps of Google Play. The types of

the ad costs the users were concerned more include: number of ads, memory/CPU overhead,

traffic usage, and battery consumption.

In [240] the authors quantify the network usage and system calls related to mobile ads,

based on specific rules, aiming to quantify the difference between free and paid versions. In

particular, they built a tool to profile apps at four different layers: (i) static, or app speci-

fication, (ii) user interaction, (iii) operating system, and (iv) network. They evaluate their

approach by analyzing 27 free and paid Android apps. Their results show discrepancies be-

tween the app specification and app execution, as well as cases were free versions of apps were

more costly than their paid counterparts due to their important increase in traffic. Finally,

they observe that most network traffic is not encrypted and, even worse, apps communicate

with many more sources than users might expect (as many as 13).

In [234], they analyze the characteristics of mobile ads by collecting a large volume of

traffic of a major European ISP with over 3 million subscribers. Their results show that ad-

related traffic is a significant portion of the overall traffic, and the associated market share

is dominated by no more than 3 big ad-networks. In addition, they evaluate the energy

consumption of three popular ad networks using a custom-built app with an ad slot at the

bottom of the screen. In [28], they analyze the browsing activity of a large sample of Internet

users aiming to assess the impact of ad-blockers and regulatory policies which limit the use

of third-party data for targeted advertising. Their results show that retailers attract only a

small percentage (3%) of their customers through display ads. Although many publishers use

ads as their main source of income, which makes them vulnerable to ad-blockers, browsing

patterns suggest that ad revenue can generally be replaced by a small fraction of loyal visitors

paying a modest subscription fee (e.g. $2 per month).

Apart from the academic studies, there is also an increased interest regarding the cost

of the advertising ecosystem from the side of journalists and major news sites. For example,

in [98] the editorial team conducted a small study measuring the estimated load time and

data usage before and after blocking ad-related content on 50 popular news websites. Their

results show that more than 50% of all data came from ads and other content.

Contrary to the above studies, our more user-centric approach provides a methodology

to measure the hidden costs of advertising through passive monitoring of the users’ traffic.

We compare the cost users sustain, with the cost the advertisers pay for the ad delivery.

130 Chapter 8. Related Work

Finally, we not only measure the monetary and network costs of digital advertising, but

also the implications in privacy and anonymity of the users on the Internet via Cookie

Synchronization.

8.3 Web-Mining and Monetization

Although recent, the technology of user-side cryptomining has drawn a lot of attention in

the research community. At the beginning, cryptomining was used mostly illegally as pay-

load of malwares. Indeed, Wyke [250], back in 2012, attempted to increase the awareness

regarding the possibility of existing malwares delivering cryptomining payloads to infected

user devices. Botnets are examples of such malwares, which adopted mining to directly mon-

etize the computational ability of a compromised computer. Huang et al. [108] conduct a

comprehensive study of existing Bitcoin mining malware, and present the infrastructure and

miner-bot orchestration mechanisms deployed in the wild.

The advances of JavaScript, which provide developers with parallel execution of their op-

erations, and the development of more lightweight altcoins like Monero and Litecoin, enabled

the browser-based miners to grow. As a consequence, content providers can deploy mining-

supported websites without affecting the user experience. Eskandari et al. [69], in one of the

first web mining related studies, analyze the existing in-browser mining approaches and their

profitability.

AdGuard Research which produces an ad-blocking software, in [5] analyze the Alexa top

100,000 websites for cryptocurrency mining scripts in an attempt to measure the adoption of

cryptominers in contemptorary web. The analysis revealed 220 of these websites using crypto-

mining scripts with their aggregated audience being around 500 million people. The content of

these hosting websites were usually movie/video/tv streaming (22.27%), file sharing (17.73%),

Adult (10%) and News & Media (7.73%) with the majority of them based in U.S., India,

Russia, and Brazil.

This rapid growth of web miners along with the frenzy increase of the cryptocurrency

values, caused a serious debate over the Internet regarding the ability of cryptomining to

become an alternative to the current ad-supported model of Internet [21,208]. In accordance

with this debate, in this study, we compare the profitability of ad and cryptomining supported

Internet services, and we also measure the cost of cryptomining for the visitors. Of course,

the advertising ecosystem also imposes costs on the user side.

Of course, the same advancements that allowed the growth of cryptomining for website

monetization, enabled also attackers to perform cryptojacking. Recent reports from cyberse-

curity agencies [70] aim to warn Internet users about the emerging threat of cryptojacking

and there are several incidents already reported, where websites [144, 153] got infected with

malware either by malvertising [224] or server compromisation that abused visitors’ devices.

8.3. Web-Mining and Monetization 131

Dorsey in [57] exploit the ad ecosystem to widely deliver malware which upon browser infec-

tion could perform computation on the user side like cryptomining.

132

Chapter 9

Conclusion

9.1 Synopsis of Contributions

In this dissertation, we explored the privacy violations of contemporary websites and apps in

an attempt to identify which harms the least the user’s privacy: mobile friendly websites or

apps? Specifically, we conducted an extensive study of a broad spectrum of privacy- related

leaks able to expose not only PII but also device specific identifiers (Chapter 3). These

identifiers allow third parties to deploy fingerprinting mechanisms, that (i) track the user

into the network (ii) link web with app session and (iii) correlate anonymous (such as Tor)

sessions with eponymous ones. Our study suggests that apps leak more information than

web browsers. To help users improve their privacy even when using a mobile app, we propose

antiTrackDroid: an anti-tracking mechanism for Android apps, similar to the state-of-the-art

ad-blockers of mobile browsers. Evaluation results show that our approach is able to reduce

the privacy leaks by 27.41%, when it imposes a negligible overhead of less than 1 millisecond

per request.

We then investigated how all these independent pieces of data get attributed to specific

user profiles. We explain how the technique of Cookie Synchronization achieves exactly that

(Chapter 4) and by bypassing same-origin policy form a universal user identification, which

enables collaborating entities to share data by performing background database merges. We

conduct the first in depth analysis of Cookie Synchronization using real year-long data from

a large number of volunteering web users. In addition, this study is the first to explore the

Cookie Synchronization in mobile devices. Based on the detection approaches of previous

works, we propose an enhanced methodology able to capture 3.771% more cases of Cookie

Synchronization. By applying this methodology, we collected a dataset of 263K requests

syncing 22K unique userIDs, which we analyzed thoroughly. Our results show that 97% of

the users are exposed to CSync at least once. The median user experiences at least one

CSync within the first week of browsing. The median userID gets leaked, on average, to

3.5 different entities. The number entities that learn about the median user after Cookie

Synchronizations grows by a factor of 6.7. In addition, we show that the tracking-related

mechanism of Cookie Synchronization, can break the secure TLS session and (i) spill user

133

134 Chapter 9. Conclusion

unique identifiers (userIDs) along with (ii) the full URL that the user has visited over TLS.

This way, a snooping ISP can re- identify the user in the web, even if they use VPN or Tor

circuits, as well as reconstruct their browsing history. To assess the feasibility of this threat

in the real world, we crawled the top 12K Alexa websites and after extracting the performed

Cookie Synchronizations, we found that 1 out of 13 TLS-protected websites expose the privacy

of their users.

After that, aiming to enhance transparency in the ad ecosystem, we proposed a method-

ology to estimate at real time how much do advertisers pay to reach a user and how the

above user’s collected data affect the pricing dynamics (Chapter 5). In particular, we devel-

oped a first of its kind methodology to compute the financial worth of individuals at real

time. Our methodology leverages the rapidly growing RTB protocol and the new advertis-

ing model of programmatic instantaneous auctions, where the advertisers evaluate the users’

collected data at real time and bid for an ad-slot in their display. Our study analyzes the

RTB price notifications sent to winning advertising bidders and focuses on the distinction

between cleartext and encrypted price notifications and how to estimate the latter. Towards

this end, we train a model using as ground truth prices obtained by running our own probing

ad-campaigns. We bootstrap and validate our methodology using a year long trace of real

user browsing data, as well as two real world ad-campaigns.

As a next step, in an attempt to shed light upon the actual costs of ad-supported web,

we compared the above monetary costs advertisers pay with the costs the users pay for the

same ad delivery (Chapter 6). These costs may be either directly quantifiable (e.g., requests,

bytes, energy), or qualitative such as loss of privacy. To estimate the latter, we measure

the anonymity loss caused by userIDs that get synced through ad-related Cookie Synchro-

nizations. Surprisingly, our results show that the costs imposed on advertisers and users

for the same ads are totally unbalanced, with the majority of users sustaining a significant

loss of privacy, when the monetary cost they pay is, on average, 3 times more than what

the advertisers are charged to deliver these ads. Specifically, mobile users are exposed to

10-1000 synchronizations for ads received through the year, which cost to the advertisers

0.005-0.05 Euros. Additionally, the median advertiser paid 0.00071 Euro per delivered ad,

but the median user paid 0.0022 Euro per ad in extra downloaded Bytes.

The above results motivated us to explore the possibility for publishers to use alternative

sources of content monetization, able to preserve the privacy of the users but at the same

time generate enough profit for the free Internet as we know it today. There is already such

an alternative gaining popularity on the web: user side in-browser cryptomining. Indeed,

binded with the whopping values of crypto-coins, web-based cryptomining enjoys nowadays

a steadily increasing adoption by service providers. But can cryptomining become a reliable

alternative for the next day of the free Internet? To respond to this exact question, we

estimated the monthly revenue a publisher may gain by using cryptominers to monetize its

content, and we compared our results with the estimated revenue for the same publisher

9.2. Lessons Learned 135

when using the traditional personalized advertising model (Chapter 7). After exploring the

profitability for the side of the publisher, we measured the costs cryptominers impose on the

side of the user. Specifically, we analyzed the utilization patterns of miner-supported websites

in the visitor’s system resources like CPU, main memory and network. Then, we studied the

impact of these utilization patterns (i) on the visitor’s device by measuring the system’s

power consumption and temperature, and also (ii) on the visitor’s experience while running

other applications in parallel. Our results show that cryptomining indeed has the potential

to become a reliable alternative for some content providers, but due to the scalability issues

and increased user-side cost (e.g., 2.08x more energy, 52.8% higher temperatures), it is not

capable of replacing the current ad-driven monetization model of the web.

9.2 Lessons Learned

After completing our analysis, we are now able to respond to the research questions we

pondered at the beginning (see Section 1) of this dissertation:

1. What kind of personal information gets leaked while using websites and apps on a mo-

bile phone?

Both web and apps leak important fingerprinting information about the user’s device.

This allows third parties to not only cross-channel track the users by linking web with

app sessions but also correlate eponymous with anonymous sessions. In addition, we

see apps leaking information (e.g. installed and running apps, nearby APs, etc.) that

allowing tracking domains to infer user interests, gender, age range, even behavioral

patterns.

2. Which of the two: browser accessed website or mobile app facilitates the most privacy

leaks considering the same online service?

Our results prove that both versions of the online service leak information that can be

used beyond the control of users (e.g., for targeted advertising). However, apps leak

significantly more both device-specific information and PII.

3. How trackers and advertisers synchronize the user IDs they have set for the same user

profiles before they participate in data markets?

To overcome restrictions like same-origin policy and also create unified identifiers for

each user, the ad-industry invented Cookie Synchronization: a mechanism that allows

web entities to share (synchronize) cookies, and match the different IDs they assign for

136 Chapter 9. Conclusion

the same user while they browse the web. The average user receives ∼1 synchronization

per 68 GET requests. Cookie Synchronization increases the number of entities that

track the user by a factor of 6.7.

4. In the era of personalized advertising how much do advertisers pay to reach an individ-

ual? And how the personal data affect the pricing dynamics in programmatic ad-buying?

Advertisers pay ∼25 CPM for delivering ads to an average user based on their personal

data, and less than ∼100 CPM for delivering ads to 3/4 of users during a year. A

small portion of outlier users (∼2%) cost 10-100x more to the ad-ecosystem than the

average user. Some advertisers use encryption to conceal the price they pay for an

ad-slot. Contrary to related work [176], we prove that encrypted and cleartext prices

do not follow the same distribution (encrypted prices are around 1.7x higher).

5. Are the users indeed receiving the content they want free of charge in the ad-supported

web? If not, what are the costs the median user has to sustain and how comparable

these costs are with the monetary cost advertisers pay to deliver them ads?

Users, when receiving free, ad-supported conten, have to sustain costs imposed by the

ad ecosystem. These costs may be either directly quantifiable (e.g., requests, bytes,

energy), or qualitative such as loss of privacy. Specifically, users may pay 3x more

money to receive ads than what advertisers pay to deliver them. In addition, the

median user may lose up to 20% of their anonymity to 22 tracking entities, and up to

40% to 3 tracking entities.

6. Are there alternatives to the data-centric model of digital advertising nowadays? Can

the resource-borrowing model of cryptomining constitute the next primary monetization

model for the post-advertising era of free Internet?

Web mining has the potential to become a reliable alternative for publishers, but it

cannot replace the current ad-driven model of web. To produce higher revenues with

a miner than with ads, the publisher must keep the user’s browser tab open for longer

than 5.53 minutes or use a hybrid approach that starts with ads rendering before

switching to mining and produce this way more revenue than both approaches.

9.3 Directions for Future Work and Research

There are several aspects for further work and research that this dissertation leaves open:

9.3. Directions for Future Work and Research 137

1. Sensitive User Groups and Interests. Several organizations and regulators pro-

mote directives such as COPPA [74] ruling and DAA’s AdChoices [54] regarding the

proper delivery of ads to individuals respecting sensitive groups (i.e., children). It is

important for the research community to investigate the adoption of such regulations by

the ad-ecosystem and in what extend advertisers respect the choices of users regarding

the category of advertisements they prefer to receive. In addition, further investigation

is needed to determine how collected user information considered as sensitive is being

used: e.g., health issues (e.g., when based tracked geolocation user visited a clinic spe-

cializing in AIDS or cancer), religious beliefs (e.g., when based on tracked geolocation

user visited a catholic church), political inclinations (e.g., when user attends a political

party’s rallies), etc.

2. Client Side Ad-Personalization. As shown in this dissertation, the current model

of personalized advertising imposes heavy costs on user’s privacy leading more users to

deploy client side ad-blocking mechanisms. A way to mitigate these issues is to promote

a client side ad personalization model. Specifically, users will retrieve a bundle of ad

creatives from the ad agency and the final decision about which of them will end up

on the device’s display will be taken locally based on the interests of the user. Apart

from the privacy preservation, this approach will exclude middlemen, data brokers and

trackers from digital advertising, thus preventing annoying ads, malvertising and fraud.

Some of the problems requiring careful research in this approach include the (i) ROI

counting : advertisers must be able to learn how many times their ad creatives were

rendered but without revealing in which users, (ii) publisher attribution: the rendered

creatives must be attributed to the visited publishers but without revealing the browsing

history of the user.

3. Digital Advertising and Spread of Fake News. Nowadays, we observe a massive

growth of fake news that pollute online social networks and microblogging services,

aiming to shape the public opinion or earn clicks. But what is the impact of the ad

ecosystem on the production of fake news? To respond to this question, it would be very

interesting to investigate in what extend the profitability of digital advertising can work

as motivation for a publisher to generate and spread fake news (as with click-baiting)

and what the advertisers pay to have their ad rendered in a website that delivers fake

or misleading news.

138

Bibliography

[1] Cpu coin list. http://cpucoinlist.com/.

[2] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juarez, Arvind Narayanan,

and Claudia Diaz. The web never forgets: Persistent tracking mechanisms in the wild.

In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communica-

tions Security, CCS ’14, 2014.

[3] Gunes Acar, Marc Juarez, Nick Nikiforakis, Claudia Diaz, Seda Gürses, Frank Piessens,

and Bart Preneel. Fpdetective: Dusting the web for fingerprinters. In Proceedings of

the 2013 ACM SIGSAC Conference on Computer & Communications Security, CCS

’13, pages 1129–1140, New York, NY, USA, 2013. ACM.

[4] Alessandro Acquisti, Leslie K John, and George Loewenstein. What is privacy worth?

The Journal of Legal Studies, 2013.

[5] AdGuard Research. Cryptocurrency mining affects over 500 million people. and they

have no idea it is happening. https://adguard.com/en/blog/crypto-mining-fever/,

2017.

[6] Adthink S.A. Big, the user data exchange. https://big.exchange/, 2018.

[7] Android Developers. Android Debug Bridge. http://developer.android.com/tools/help/

adb.html.

[8] Android Developers. Class Overview: BroadcastReceiver. http://developer.

android.com/reference/android/content/BroadcastReceiver.html.

[9] AT&T. Create your mobile share advantage plan.

https://www.att.com/shop/wireless/data-plans.html, 2018.

[10] Paul Barford, Igor Canadi, Darja Krushevskaja, Qiang Ma, and S. Muthukrishnan.

Adscape: Harvesting and analyzing online display ads. In Proceedings of the 23rd

International Conference on World Wide Web, WWW ’14, pages 597–608, New York,

NY, USA, 2014. ACM.

[11] Muhammad Ahmad Bashir, Sajjad Arshad, William Robertson, and Christo Wilson.

Tracing information flows between ad exchanges using retargeted ads. In 25th USENIX

139

http://developer.android.com/reference/android/content/BroadcastReceiver.html
http://developer.android.com/reference/android/content/BroadcastReceiver.html

140 Bibliography

Security Symposium (USENIX Security 16), pages 481–496, Austin, TX, August 2016.

USENIX Association.

[12] BAT team. Basic attention token. https://basicattentiontoken.org/.

[13] Philip Bates. How heat affects your computer, and should you be wor-

ried? https://www.makeuseof.com/tag/how-heat-affects-your-computer-and-should-

you-be-worried/.

[14] BDEX - Big Data Exchange. Dmp 2.0 - introduction of the dxp.

http://www.bigdataexchange.com/dmp-2-0-introduction-of-the-dxp/, 2015.

[15] Howard Beales. The value of behavioral targeting. Network Advertising Initiative, 2010.

[16] Ross Benes. ”we get audience data at virtually no cost” confessions of a program-

matic ad buyer. https://digiday.com/marketing/get-audience-data-virtually-no-cost-

confessions-programmatic-ad-buyer/, 2018.

[17] Dirk Bergemann and Alessandro Bonatti. Selling cookies. American Economic Journal:

Microeconomics, 7(3):259–294, 2015.

[18] Paul Bernal. Our web history reveals what we think and do. shouldn’t that remain

private? https://theconversation.com/our-web-history-reveals-what-we-think-and-do-

shouldnt-that-remain-private-50289, 2015.

[19] BI Intelligence. Programmatic advertising is under review.

http://www.businessinsider.com/programmatic-advertising-under-review-2017-1,

2017.

[20] Jason Bloomberg. Ad blocking battle drives disruptive innovation.

https://www.forbes.com/sites/jasonbloomberg/ 2017/02/18/ad-blocking-battle-

drives-disruptive-innovation/, 2017.

[21] Violet Blue. As online ads fail, sites mine cryptocurrency.

https://www.engadget.com/2017/12/15/as-online-ads-fail-sites-mine-cryptocurrency/,

2017.

[22] BlueKai. Data management platforms demystified. http://www.bluekai.com/files/

DMP_Demystified_Whitepaper_BlueKai.pdf, 2011.

[23] bobzilla, arkasha, uhtu. Wigle: Wireless network mapping. https://wigle.net/, 2001.

[24] Ciprian Borodescu. Web sites vs. web apps: What the experts think.

https://www.visionmobile.com/blog/2013/07/web-sites-vs-web-apps-what-the-

experts-think, 2013.

http://www.bluekai.com/files/DMP_Demystified_Whitepaper_BlueKai.pdf
http://www.bluekai.com/files/DMP_Demystified_Whitepaper_BlueKai.pdf

Bibliography 141

[25] Brave Software Inc. . Brave: A browser with your interests at heart. https://brave.com/,

2018.

[26] Brave Software Inc. What is brave ad replacement? https://www.brave.com/

about-ad-replacement/, 2016.

[27] Ira Brodsky. Deathmatch: The mobile web vs. mobile apps.

http://www.computerworld.com/article/3016736/mobile-wireless/the-mobile-web-

vs-mobile-app-death-match.

[28] CEREN BUDAK, SHARAD GOEL, JUSTIN RAO, and GEORGIOS ZERVAS. Un-

derstanding emerging threats to online advertising. 2016.

[29] David Cancel, Felix Shnir, Alexei Miagkov, and Jose Maria Signanini. Ghostery makes

the web cleaner, faster and safer! https://www.ghostery.com/, 2010.

[30] Sean Captain. This startup wants to end adblock plus ”raping and pillaging” of

online publishers. https://www.fastcompany.com/3055827/this-startup-wants-to-end-

adblocks-raping-and-pillaging-of-online-publishers, 2016.

[31] Juan Pablo Carrascal, Christopher Riederer, Vijay Erramilli, Mauro Cherubini, and

Rodrigo de Oliveira. Your browsing behavior for a big mac: Economics of personal

information online. In Proceedings of the 22nd international conference on World Wide

Web, WWW’13, 2013.

[32] Juan Miguel Carrascosa, Jakub Mikians, Ruben Cuevas, Vijay Erramilli, and Nikolaos

Laoutaris. I always feel like somebody’s watching me: measuring online behavioural

advertising. In Proceedings of the 11th ACM Conference on Emerging Networking

Experiments and Technologies, CoNEXT ’15, page 13. ACM, 2015.

[33] Antonios A Chariton, Eirini Degkleri, Panagiotis Papadopoulos, Panagiotis Ilia, and

Evangelos P Markatos. Dcsp: Performant certificate revocation a dns-based approach.

In Proceedings of the 9th European Workshop on System Security, EuroSec ’16, 2016.

[34] Antonios A Chariton, Eirini Degkleri, Panagiotis Papadopoulos, Panagiotis Ilia, and

Evangelos P Markatos. Ccsp: A compressed certificate status protocol. In INFOCOM

2017-IEEE Conference on Computer Communications, 2017.

[35] Amir Chaudhry, Jon Crowcroft, Heidi Howard, Anil Madhavapeddy, Richard Mortier,

Hamed Haddadi, and Derek McAuley. Personal data: thinking inside the box. In

Proceedings of The Fifth Decennial Aarhus Conference on Critical Alternatives, pages

29–32. Aarhus University Press, 2015.

https://www.brave.com/about-ad-replacement/
https://www.brave.com/about-ad-replacement/
https://www.ghostery.com/

142 Bibliography

[36] Tom Chavez. Data: Deja vu all over again? https://adexchanger.com/considering-

digital/tom-chavez/, 2010.

[37] Catalin Cimpanu. Tweak to chrome performance will indirectly stifle crypto-

jacking scripts. https://www.bleepingcomputer.com/news/security/ tweak-to-chrome-

performance-will-indirectly-stifle-cryptojacking-scripts/, 2018.

[38] Cliqz GmbH. Ghostery makes the web cleaner, faster and safer!

https://www.ghostery.com/blog/.

[39] Cliqz GmbH. Cliqz: The no-compromise browser. https://cliqz.com/en/, 2018.

[40] Coinhive. Monetize your business with your users’ cpu power.

https://coinhive.com/#javascript-api.

[41] CoinWarz. Monero network hashrate chart and graph.

https://www.coinwarz.com/network-hashrate-charts/monero-network-hashrate-chart.

[42] Devin Coldewey. Thousands of major sites are taking silent anti-ad-blocking mea-

sures. https://techcrunch.com/2017/12/27/thousands-of-major-sites-are-taking-silent-

anti-ad-blocking-measures/.

[43] Josh Constine. Facebook crushes q2 earnings, hits 1.71b users and record share price.

https://techcrunch.com/2016/07/27/facebook-earnings-q2-2016/, 2016.

[44] Maxence Cornet. Coinhive review: Embeddable javascript crypto miner - 3 days

in. https://medium.com/@MaxenceCornet/coinhive-review-embeddable-javascript-

crypto-miner-806f7024cde8, 2017.

[45] Aldo Cortesi. An interactive console program that allows traffic flows to be intercepted,

inspected, modified and replayed. https://mitmproxy.org/, 2015.

[46] Matthew Cortland. 2017 adblock report. https://pagefair.com/blog/2017/adblockreport/,

2017.

[47] CryptoMining24.net. Cpu for monero. https://cryptomining24.net/cpu-for-monero/,

2017.

[48] Angel Cuevas, Ruben Cuevas, Raquel Aparicio, and Jose Gonzalez. Fdvt: Data valu-

ation tool for facebook users. In Proceedings of the Conference on Human Factors in

Computing Systems, CHI ’17, 2017.

[49] CYREN. Cyren – Cloud-based Internet Security Solytions. http://commtouch.com/.

Bibliography 143

[50] Soteris Demetriou, Whitney Merrill, Wei Yang, Aston Zhang, and Carl A. Gunter. Free

for all! assessing user data exposure to advertising libraries on android. In Proceedings

of the 23rd Annual Network and Distributed System Security Symposium, NDSS’16,

2016.

[51] Ernesto Van der Sar. The pirate bay website runs a cryptocurrency miner (up-

dated). https://torrentfreak.com/the-pirate-bay-website-runs-a-cryptocurrency-miner-

170916/.

[52] Deepen Desai, Dhruval Gandhi, Mohd Sadique, and Manohar Ghule. Cryptomining is

here to stay in the enterprise. https://www.zscaler.com/blogs/research/ cryptomining-

here-stay-enterprise.

[53] Executive Digital. Programmatic & rtb. http://executive-digital.com/programmatic-

rtb/.

[54] Digital Advertising Alliance. Youradchoices gives you control.

http://youradchoices.com/, 2018.

[55] Disconnect. A faster, safer internet is one click away. https://disconnect.me/, 2011.

[56] Bruce Bujon Dominik Schurmann. Adaway open source ad blocker for android. https:

//adaway.org/, 2012.

[57] Brannon Dorsey. Browser as botnet, or the coming war on your web browser. Radical

Networks., 2018.

[58] DoubleClick. Rtb decrypt price confirmations. https://developers.google.com/ad-

exchange/rtb/response-guide/decrypt-price, 2016.

[59] Justin Driskill. Ad size guide. http://theonlineadvertisingguide.com/ad-size-

guide/300x250/, 2016.

[60] Peter Eckersley. How unique is your web browser? In Proceedings of the 10th Interna-

tional Symposium on Privacy Enhancing Technologies, PETs’ 10, 2010.

[61] Editors of Wired Magazine. How WIRED Is Going to Handle Ad Blocking. https:

//www.wired.com/how-wired-is-going-to-handle-ad-blocking/, 2016.

[62] Jo el van Bergen. Mixed content weakens https.

https://developers.google.com/web/fundamentals/security/prevent-mixed-

content/what-is-mixed-content, 2017.

https://adaway.org/
https://adaway.org/
https://www.wired.com/how-wired-is-going-to-handle-ad-blocking/
https://www.wired.com/how-wired-is-going-to-handle-ad-blocking/

144 Bibliography

[63] Hazem Elmeleegy, Yinan Li, Yan Qi, Peter Wilmot, Mingxi Wu, Santanu Kolay, Ali

Dasdan, and Songting Chen. Overview of turn data management platform for digital

advertising. Proc. VLDB Endow., 2013.

[64] eMarketer Podcast. emarketer releases new us programmatic ad spending figures.

https://www.emarketer.com/Article/eMarketer-Releases-New-US-Programmatic-Ad-

Spending-Figures/1016698, 2017.

[65] Emily Cadman Emily Steel, Callum Locke and Ben Freese. How much is

your personal data worth? http://www.ft.com/cms/s/2/927ca86e-d29b-11e2-88ed-

00144feab7de.html, 2013.

[66] Let’s Encrypt. Percentage of web pages loaded by firefox using https.

https://letsencrypt.org/stats/, 2017.

[67] Steven Englehardt and Arvind Narayanan. Online tracking: A 1-million-site measure-

ment and analysis. In Proceedings of the 2016 ACM SIGSAC Conference on Computer

and Communications Security, CCS ’16, pages 1388–1401, New York, NY, USA, 2016.

ACM.

[68] Steven Englehardt, Dillon Reisman, Christian Eubank, Peter Zimmerman, Jonathan

Mayer, Arvind Narayanan, and Edward W. Felten. Cookies that give you away: The

surveillance implications of web tracking. In Proceedings of the 24th International

Conference on World Wide Web, WWW’15, 2015.

[69] Shayan Eskandari, Andreas Leoutsarakos, Troy Mursch, and Jeremy Clark. A first

look at browser-based cryptojacking. In Proceedings of IEEE Security & Privacy on

the Blockchain, S&B 2018, 2018.

[70] European Union Agency for Network and Information Security (ENISA). Crypto-

jacking - cryptomining in the browser. https://www.enisa.europa.eu/publications/info-

notes/cryptojacking-cryptomining-in-the-browser, 2017.

[71] Marjan Falahrastegar, Hamed Haddadi, Steve Uhlig, and Richard Mortier. Tracking

Personal Identifiers Across the Web, pages 30–41. Springer International Publishing,

Cham, 2016.

[72] Famlam Fanboy, MonztA and Khrin. Easylist - overview. https://easylist.to/, 2018.

[73] FANDOM Lifestyle Community. Prepaid data sim card wiki - spain. http://prepaid-

data-sim-card.wikia.com/wiki/Spain, 2017.

[74] Federal Trade Commission. Children’s online privacy protection act

(coppa). https://www.ftc.gov/enforcement/rules/rulemaking-regulatory-reform-

proceedings/childrens-online-privacy-protection-rule, 2000.

Bibliography 145

[75] Klint Finley. Google’s new ad blocker changed the web before it even switched on.

https://www.wired.com/story/google-chrome-ad-blocker-change-web/.

[76] Rand Fishkin. Mobile web vs mobile apps: Where should you invest your marketing?

https://moz.com/blog/mobile-web-mobile-apps-invest-marketing-whiteboard-friday.

[77] The Office for Creative Research. Floodwatch. https://floodwatch.o-c-r.org/.

[78] Electronic Frontier Foundation. Https everywhere. https://www.eff.org/https-

everywhere, 2018.

[79] Brian Fung. Hackers have turned politifact’s website into a trap for your

pc. https://www.washingtonpost.com/news/the-switch/wp/2017/10/13/hackers-have-

turned-politifacts-website-into-a-trap-for-your-pc/, 2017.

[80] Cuiyun Gao, Hui Xu, Yichuan Man, Yangfan Zhou, and Michael R. Lyu. Intelliad

understanding in-app ad costs from users perspective. CoRR, abs/1607.03575, 2016.

[81] Arpita Ghosh, Mohammad Mahdian, R. Preston McAfee, and Sergei Vassilvitskii. To

match or not to match: Economics of cookie matching in online advertising. ACM

Trans. Econ. Comput. 2015, 2015.

[82] Arpita Ghosh and Aaron Roth. Selling privacy at auction. In Proceedings of the

12th ACM Conference on Electronic Commerce, pages 199–208, New York, USA, 2011.

ACM.

[83] Phillipa Gill, Vijay Erramilli, Augustin Chaintreau, Balachander Krishnamurthy, Kon-

stantina Papagiannaki, and Pablo Rodriguez. Follow the money: Understanding eco-

nomics of online aggregation and advertising. In Proceedings of the 2013 Conference

on Internet Measurement Conference, IMC ’13, pages 141–148, New York, NY, USA,

2013. ACM.

[84] Global Coin Report. Here’s how monero (xmr) gets to $1,000.

https://globalcoinreport.com/heres-monero-xmr-gets-1000/, 2018.

[85] Daniel G. Goldstein, R. Preston McAfee, and Siddharth Suri. The cost of annoying

ads. In Proceedings of the 22Nd International Conference on World Wide Web, WWW

’13, pages 459–470, New York, NY, USA, 2013. ACM.

[86] Dan Goodin. Ad network uses advanced malware technique to conceal cpu-draining min-

ing ads. https://arstechnica.com/information-technology/2018/02/ad-network-uses-

advanced-malware-technique-to-conceal-cpu-draining-mining-ads/.

[87] Google. Doubleclick for publishers ? small business.

https://www.google.com/doubleclick/publishers/small-business/, 2016.

146 Bibliography

[88] Google AdSense. Guide to ad sizes. https://support.google.com/adsense/answer/6002621,

2016.

[89] Google Developers. Real-time bidding protocol: Cookie matching.

https://developers.google.com/ad-exchange/rtb/cookie-guide, 2015.

[90] Google Developers. Rtb decrypt price confirmations. https://developers.google.com/ad-

exchange/rtb/response-guide/decrypt-price, 2016.

[91] Google Developers. Mixed content weakens https. https://developers.google.com/

web/fundamentals/security/prevent-mixed-content/what-is-mixed-content#

mixed_content_weakens_https, 2017.

[92] Google Inc. Google AdWords. https://www.google.com/adwords/.

[93] Google Inc. ”the arrival of real-time bidding and what it means for media buyers”.

https://static.googleusercontent.com/media/www.google.com/en//doubleclick/pdfs/Google-

White-Paper-The-Arrival-of-Real-Time-Bidding-July-2011.pdf, 2011.

[94] Google Inc. Doubleclick manager. https://www.doubleclickbygoogle.com/solutions/digital-

marketing/bid-manager/, 2016.

[95] Jay Graves. Ssl pinning for increased app security.

https://possiblemobile.com/2013/03/ssl-pinning-for-increased-app-security/, 2013.

[96] Annabelle Green. Customer data collection increased to improve customer experience,

research finds. http://business-reporter.co.uk/2016/07/20/customer-data-collection-

increased-improve-customer-experience-research-finds/, 2016.

[97] Patrick Greenfield. Government websites hit by cryptocurrency mining mal-

ware. https://www.theguardian.com/technology/2018/ feb/11/government-websites-

hit-by-cryptocurrency-mining-malware, 2018.

[98] WILSON ANDREWS GREGOR AISCH and JOSH KELLER. The cost of mobile ads

on 50 news websites. http://www.nytimes.com/interactive/2015/10/01/business/cost-

of-mobile-ads.html, 2015.

[99] Tren Griffin. Tren’s advice for twitter. https://25iq.com/2017/01/06/trens-advice-for-

twitter/, 2017.

[100] Saikat Guha, Bin Cheng, and Paul Francis. Challenges in measuring online adver-

tising systems. In Proceedings of the 10th ACM SIGCOMM Conference on Internet

Measurement, IMC ’10, pages 81–87, New York, NY, USA, 2010. ACM.

https://developers.google.com/web/fundamentals/security/prevent-mixed-content/what-is-mixed-content#mixed_content_weakens_https
https://developers.google.com/web/fundamentals/security/prevent-mixed-content/what-is-mixed-content#mixed_content_weakens_https
https://developers.google.com/web/fundamentals/security/prevent-mixed-content/what-is-mixed-content#mixed_content_weakens_https

Bibliography 147

[101] Saikat Guha, Bin Cheng, and Paul Francis. Privad: Practical privacy in online adver-

tising. In Proceedings of the 8th USENIX Conference on Networked Systems Design

and Implementation, NSDI’11, 2011.

[102] Jiaping Gui, Ding Li, Mian Wan, and William G. J. Halfond. Lightweight measurement

and estimation of mobile ad energy consumption. In Proceedings of the 5th International

Workshop on Green and Sustainable Software, GREENS ’16, pages 1–7, New York, NY,

USA, 2016. ACM.

[103] Jiaping Gui, Stuart Mcilroy, Meiyappan Nagappan, and William G. J. Halfond. Truth

in advertising: The hidden cost of mobile ads for software developers. In Proceedings

of the 37th International Conference on Software Engineering - Volume 1, ICSE ’15,

pages 100–110, Piscataway, NJ, USA, 2015. IEEE Press.

[104] Beau Hamilton. Google has quietly dropped ban on personally identifiable

web tracking. https://tech.slashdot.org/story/16/10/22/008216/google-has-quietly-

dropped-ban-on-personally-identifiable-web-tracking, 2016.

[105] Seungyeop Han, Jaeyeon Jung, and David Wetherall. A study of third-party tracking

by mobile apps in the wild, 2012.

[106] William T Harding, Anita J Reed, and Robert L Gray. Cookies and web bugs: What

they are and how they work together. 2001.

[107] Patrick Holland. Verizon, t-mobile, at&t and sprint unlimited plans compared.

https://www.cnet.com/news/how-does-verizon-unlimited-plan-stack-up-against-the-

others/, 2017.

[108] Danny Yuxing Huang, Hitesh Dharmdasani, Sarah Meiklejohn, Vacha Dave, Chris

Grier, Damon McCoy, Stefan Savage, Nicholas Weaver, Alex C Snoeren, and Kirill

Levchenko. Botcoin: Monetizing stolen cycles. In Proceedings of Annual Network and

Distributed System Security Symposium, NDSS’14, 2014.

[109] IAB. Openrtb api specification version 2.4. http://www.iab.com/wp-

content/uploads/2016/01/OpenRTB-API-Specification-Version-2-4-DRAFT.pdf,

2015.

[110] IAB Technology Laboratory. Openrtb (real-time bidding). https://www.iab.com/

guidelines/real-time-bidding-rtb-project/, 2017.

[111] IHS Technology. Paving the way: how online advertising enables the digital economy

of the future. https://www.iabeurope.eu/files/9614/4844/3542/IAB_IHS_Euro_

Ad_Macro_FINALpdf.pdf, 2015.

https://www.iab.com/guidelines/real-time-bidding-rtb-project/
https://www.iab.com/guidelines/real-time-bidding-rtb-project/
https://www.iabeurope.eu/files/9614/4844/3542/IAB_IHS_Euro_Ad_Macro_FINALpdf.pdf
https://www.iabeurope.eu/files/9614/4844/3542/IAB_IHS_Euro_Ad_Macro_FINALpdf.pdf

148 Bibliography

[112] Interactive Advertising Bureau (IAB). Rothenberg says ad blocking is a war against

diversity and freedom of expression. https://www.iab.com/news/rothenberg-says-ad-

blocking-is-a-war-against-diversity-and-freedom-of-expression/, 2016.

[113] InvestingAnswers. Cost Per Thousand (CPM).

http://www.investinganswers.com/financial-dictionary/businesses-corporations/cost-

thousand-cpm-2917.

[114] investing.com. All cryptocurrencies. https://www.investing.com/crypto/currencies,

2018.

[115] Umar Iqbal, Zubair Shafiq, and Zhiyun Qian. The ad wars: retrospective measurement

and analysis of anti-adblock filter lists. In Proceedings of the 2017 Internet Measurement

Conference, IMC ’17, pages 171–183. ACM, 2017.

[116] iSixSigma. How to determine sample size, determining sample size.

https://www.isixsigma.com/tools-templates/sampling-data/how-determine-sample-

size-determining-sample-size/, 2017.

[117] Steve C. Lee John Hoffman, Jeffrey S. Jacobson. New jersey division of con-

sumer affairs obtains settlement with developer of bitcoin-mining software found

to have accessed new jersey computers without users’ knowledge or consent.

http://nj.gov/oag/newsreleases15/ pr20150526b.html, 2015.

[118] Surya Mattu Julia Angwin, Terry Parris Jr. Facebook is quietly

buying information from data brokers about its users’ offline lives.

http://www.businessinsider.com/facebook-data-brokers-2016-12, 2016.

[119] Peter Kafka and Rani Molla. Recode - 2017 was the year digital ad spending finally beat

TV. https://www.recode.net/2017/12/4/16733460/ 2017-digital-ad-spend-advertising-

beat-tv, 2017.

[120] Kate Kaye. Nielsen in pact to use offline data for online ad target-

ing. https://www.clickz.com/nielsen-in-pact-to-use-offline-data-for-online-ad-

targeting/77948/, 2009.

[121] Azeem J. Khan, V. Subbaraju, Archan Misra, and Srinivasan Seshan. Mitigating the

true cost of advertisement-supported ”free” mobile applications. In Proceedings of the

Twelfth Workshop on Mobile Computing Systems & Applications, HotMobile ’12, pages

1:1–1:6, New York, NY, USA, 2012. ACM.

[122] Kicelo and Dominik Schuermann. Adaway default blocklist.

https://adaway.org/hosts.txt, 2016.

Bibliography 149

[123] Martin Kihn. Top 10 amazing secrets of dmps. http://blogs.gartner.com/martin-

kihn/top-10-amazing-secrets-of-dmps/, 2016.

[124] Jacob Kleinman. Stop using whatsapp if you care about your privacy.

https://lifehacker.com/stop-using-whatsapp-if-you-care-about-your-privacy-

1825719172, 2018.

[125] Ben Kneen. Ssp to dsp cookie syncing explained. http://www.adopsinsider.com/ad-

exchanges/cookie-syncing/, 2011.

[126] Knime. Seven techniques for dimensionality reduction.

https://www.knime.org/blog/seven-techniques-for-data-dimensionality-reduction,

2015.

[127] Know Online Advertising Inc. Data Management Platform - DMP.

http://www.knowonlineadvertising.com/programmatic-buying/data-management-

platform-dmp/, 2013.

[128] Know Online Advertising Inc. Definition of backfill. http://www.

knowonlineadvertising.com/advertisingdictionary/backfill/, 2013.

[129] Georgios Kontaxis, Michalis Polychronakis, Angelos D. Keromytis, and Evangelos P.

Markatos. Privacy-preserving social plugins. In Proceedings of the 21st USENIX Con-

ference on Security Symposium, SEC’12, 2012.

[130] Nicolas Kourtellis, Jeremy Blackburn, Cristian Borcea, and Adriana Iamnitchi. Special

issue on foundations of social computing: Enabling social applications via decentralized

social data management. ACM Transactions on Internet Technology, 15(1), 2015.

[131] Nicolas Kourtellis, Joshua Finnis, Paul Anderson, Jeremy Blackburn, Cristian Borcea,

and Adriana Iamnitchi. Prometheus: User-controlled p2p social data management for

socially-aware applications. In Proceedings of the ACM/IFIP/USENIX 11th Interna-

tional Conference on Middleware, pages 212–231, Berlin, Heidelberg, 2010. Springer-

Verlag.

[132] Balachander Krishnamurthy and Craig Wills. Privacy diffusion on the web: A longitu-

dinal perspective. In Proceedings of the 18th International Conference on World Wide

Web, WWW ’09, pages 541–550, New York, NY, USA, 2009. ACM.

[133] Steve Kroft. The data brokers: Selling your personal information.

http://www.cbsnews.com/news/the-data-brokers-selling-your-personal-information/,

2014.

http://www.knowonlineadvertising.com/advertisingdictionary/backfill/
http://www.knowonlineadvertising.com/advertisingdictionary/backfill/

150 Bibliography

[134] Mohit Kumar. Using VPN in the UAE? You’ll Be Fined Up To $545,000 If Get Caught!

http://thehackernews.com/2016/07/vpn-is-illegal-in-uae.html, 2016.

[135] Rainey Reitman Kurt Opsahl. The disconcerting details: How

facebook teams up with data brokers to show you targeted ads.

https://www.eff.org/deeplinks/2013/04/disconcerting-details-how-facebook-teams-

data-brokers-show-you-targeted-ads, 2013.

[136] Hon Lau. Browser-based cryptocurrency mining makes unexpected return

from the dead. https://www.symantec.com/blogs/threat-intelligence/browser-mining-

cryptocurrency.

[137] Paul J Leach, Tim Berners-Lee, Jeffrey C Mogul, Larry Masinter, Roy T Fielding, and

James Gettys. Encoding sensitive information in uri’s. https://tools.ietf.org/

html/rfc2616#section-15.1.3, 1999.

[138] Leading Edge Provider. Internet trends, stats & facts in the u.s. and world-

wide 2016. http://www.leadingedgeprovider.com/2016/12/internet-trends-stats-facts-

in-the-u-s-and-worldwide-2016/, 2016.

[139] Michael Learmonth. Online ad industry: Advertising is ’creepy’.

http://adage.com/article/digital/online-ad-industry-advertising-creepy/140840/,

2009.

[140] Ilias Leontiadis, Christos Efstratiou, Marco Picone, and Cecilia Mascolo. Don’t kill my

ads!: Balancing privacy in an ad-supported mobile application market. In Proceedings

of the Twelfth Workshop on Mobile Computing Systems & Applications, HotMobile’12,

2012.

[141] Christophe Leung, Jingjing Ren, David Choffnes, and Christo Wilson. App vs web.

https://recon.meddle.mobi/appvsweb/, 2016.

[142] Christophe Leung, Jingjing Ren, David Choffnes, and Christo Wilson. Should you use

the app for that?: Comparing the privacy implications of app- and web-based online

services. In Proceedings of the 2016 ACM on Internet Measurement Conference, IMC

’16, 2016.

[143] John Leyden. More and more websites are mining crypto-coins in your browser to pay

their bills, line pockets. https://www.theregister.co.uk/2017/10/13/ crypto mining/.

[144] John Leyden. Real mad-quid: Murky cryptojacking menace that smacked ronaldo site

grows. http://www.theregister.co.uk/2017/10/10/ cryptojacking/.

https://tools.ietf.org/html/rfc2616#section-15.1.3
https://tools.ietf.org/html/rfc2616#section-15.1.3

Bibliography 151

[145] Natasha Lomas. Cryptojacking attack hits 4,000 websites, including uk’s data watchdog.

https://techcrunch.com/2018/02/12/ico-snafu/, 2018.

[146] Lukasz Olejnik and Claude Castelluccia. To bid or not to bid? measuring the value of

privacy in rtb. http://lukaszolejnik.com/rtb2.pdf, 2015.

[147] Ziang Ma, Haoyu Wang, Yao Guo, and Xiangqun Chen. Libradar: Fast and accurate de-

tection of third-party libraries in android apps. In Proceedings of the 38th IEEE/ACM

38th International Conference on Software Engineering Companion, ICSE’16, 2016.

[148] Bernard Marr. Where can you buy big data? here are the biggest consumer data

brokers. https://www.forbes.com/sites/bernardmarr/2017/ 09/07/where-can-you-buy-

big-data-here-are-the-biggest-consumer-data-brokers/, 2017.

[149] David Martin, Hailin Wu, and Adil Alsaid. Hidden surveillance by web sites: Web bugs

in contemporary use. Commun. ACM, 46(12):258–264, December 2003.

[150] Jim Martin. What’s the best cpu temperature? https://www.techadvisor.co.uk/how-

to/desktop-pc/cpu-temp-3498564/, 2018.

[151] MaxMind Inc. Geoip databases & services: Industry leading ip intelligence.

https://www.maxmind.com/en/geoip2-services-and-databases.

[152] Jonathan Mayer. Tracking the trackers: Microsoft advertising. The Center for Internet

and Society, 2011.

[153] Kieren McCarthy. Cbs’s showtime caught mining crypto-coins in viewers’ web browsers.

http://www.theregister.co.uk/2017/09/25/ showtime hit with coinmining script/.

[154] Claire Cain Miller and Somini Sengupta. Advertisers find new ways to track

smartphone users. http://www.bostonglobe.com/news/nation/2013/10/05/

selling-secrets-phone-users-advertisers/ZSNNChJQvFuEcHJFsUJGUM/story.

html, 2013.

[155] Dan Mitchell. Online ads vs. privacy. http://www.nytimes.com/2007/05/12/

technology/12online.html, 2007.

[156] Prashanth Mohan, Suman Nath, and Oriana Riva. Prefetching mobile ads: Can ad-

vertising systems afford it? In Proceedings of the 8th ACM European Conference on

Computer Systems, EuroSys ’13, pages 267–280, New York, NY, USA, 2013. ACM.

[157] MoPub. Mopub openrtb 2.3 integration guide. https://dev.twitter.com/mopub-

demand/marketplace-integration/openrtb.

[158] MoPub Inc. Mopub platform. http://www.mopub.com/platform/.

http://www.bostonglobe.com/news/nation/2013/10/05/selling-secrets-phone-users-advertisers/ZSNNChJQvFuEcHJFsUJGUM/story.html
http://www.bostonglobe.com/news/nation/2013/10/05/selling-secrets-phone-users-advertisers/ZSNNChJQvFuEcHJFsUJGUM/story.html
http://www.bostonglobe.com/news/nation/2013/10/05/selling-secrets-phone-users-advertisers/ZSNNChJQvFuEcHJFsUJGUM/story.html
http://www.nytimes.com/2007/05/12/technology/12online.html
http://www.nytimes.com/2007/05/12/technology/12online.html

152 Bibliography

[159] Brian Morrissey. Forbes starts blocking ad-block users.

http://digiday.com/publishers/forbes-ad-blocking/, 2015.

[160] Richard Mortier, Jianxin Zhao, Jon Crowcroft, Liang Wang, Qi Li, Hamed Haddadi,

Yousef Amar, Andy Crabtree, James Colley, Tom Lodge, Tosh Brown, Derek McAuley,

and Chris Greenhalgh. Personal data management with the databox: What’s inside

the box? In Proceedings of the ACM Workshop on Cloud-Assisted Networking, pages

49–54, 2016.

[161] Muhammad Haris Mughees, Zhiyun Qian, and Zubair Shafiq. Detecting anti ad-

blockers in the wild. Proceedings on Privacy Enhancing Technologies, 2017(3):130–146,

2017.

[162] Muhammad Haris Mughees, Zhiyun Qian, Zubair Shafiq, Karishma Dash, and Pan Hui.

A first look at ad-block detection: A new arms race on the web. CoRR, abs/1605.05841,

2016.

[163] Anthony Muller. Ad-mageddon! ad blocking, its impact, and what comes

next. https://marketingland.com/ad-mageddon-perspectives-ad-blocking-impacts-

comes-next-227090, 2017.

[164] Troy Mursch. Cryptojacking: 2017 year-end review.

https://badpackets.net/cryptojacking-2017-year-end-review/, 2017.

[165] Donny Nadolny. Bitcoin plus miner. https://wordpress.org/plugins/bitcoin-plus-

miner/.

[166] Meiyappan Nagappan. Go ahead and add that extra ad library, but be careful about

which one you add. https://www.developereconomics.com/add-extra-ad-library-but-

be-careful-which-one, 2015.

[167] Natalie Lynn. Mobile web vs. mobile in-app advertising: Which is best for your cam-

paign? https://gimbal.com/mobile-web-vs-mobile-in-app-ads/, 2016.

[168] David Naylor, Alessandro Finamore, Ilias Leontiadis, Yan Grunenberger, Marco Mellia,

Maurizio Munafò, Konstantina Papagiannaki, and Peter Steenkiste. The cost of the ”s”

in https. In Proceedings of the 10th ACM International on Conference on Emerging

Networking Experiments and Technologies, CoNEXT ’14, pages 133–140, New York,

NY, USA, 2014. ACM.

[169] Netimperative. Ad-blocking soars 10 http://www.netimperative.com/2016/01/ad-

blocking-soars-10-in-just-3-months/.

Bibliography 153

[170] JAKOB NIELSEN. How long do users stay on web pages?

https://www.nngroup.com/articles/how-long-do-users-stay-on-web-pages/.

[171] Nick Nikiforakis, Wouter Joosen, and Benjamin Livshits. Privaricator: Deceiving fin-

gerprinters with little white lies. In Proceedings of the 24th International Conference

on World Wide Web, CCS’15, 2015.

[172] Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen, Christopher Kruegel, Frank

Piessens, and Giovanni Vigna. Cookieless monster: Exploring the ecosystem of web-

based device fingerprinting. In Proceedings of the 2013 IEEE Symposium on Security

and Privacy, S&P’13, 2013.

[173] Rishab Nithyanand, Sheharbano Khattak, Mobin Javed, Narseo Vallina-Rodriguez,

Marjan Falahrastegar, Julia E. Powles, Emiliano De Cristofaro, Hamed Haddadi, and

Steven J. Murdoch. Adblocking and counter blocking: A slice of the arms race. In

6th USENIX Workshop on Free and Open Communications on the Internet (FOCI 16),

Austin, TX, 2016. USENIX Association.

[174] Official Journal of the European Union. Directive 95/46/ec (gen-

eral data protection regulation). http://eur-lex.europa.eu/legal-

content/EN/TXT/PDF/?uri=CELEX:32016R0679.

[175] Lukasz Olejnik and Claude Castelluccia. To bid or not to bid? measuring the value of

privacy in rtb. https://lukaszolejnik.com/rtb2.pdf.

[176] Lukasz Olejnik, Minh-Dung Tran, and Claude Castelluccia. Selling off user privacy at

auction. In Proceedings of the 21st Annual Network and Distributed System Security

Symposium, NDSS’14, 2014.

[177] OpenX. Rtb macros. http://docs.openx.com/Content/demandpartners/rtb_

macros.html.

[178] Pierluigi Paganini. Thousands of websites worldwide hijacked by cryptocurrency min-

ing code due browsealoud plugin hack. https://securityaffairs.co/wordpress/68966/

hacking/browsealoud-plugin-hack.html, 2018.

[179] Elias P. Papadopoulos, Michalis Diamantaris, Panagiotis Papadopoulos, Thanasis Pet-

sas, Sotiris Ioannidis, and Evangelos P. Markatos. The long-standing privacy debate:

Mobile websites vs mobile apps. In Proceedings of the 26th International Conference

on World Wide Web, WWW ’17, pages 153–162, Republic and Canton of Geneva,

Switzerland, 2017. International World Wide Web Conferences Steering Committee.

http://docs.openx.com/Content/demandpartners/rtb_macros.html
http://docs.openx.com/Content/demandpartners/rtb_macros.html

154 Bibliography

[180] Panagiotis Papadopoulos, Antonios A. Chariton, Elias Athanasopoulos, and Evange-

los P. Markatos. Where’s wally?: How to privately discover your friends on the internet.

In Proceedings of the 2018 on Asia Conference on Computer and Communications Se-

curity, ASIACCS ’18, pages 425–430, New York, NY, USA, 2018. ACM.

[181] Panagiotis Papadopoulos, Panagiotis Ilia, and Evangelos P Markatos. Truth in web

mining: Measuring the profitability and cost of cryptominers as a web monetization

model. arXiv preprint arXiv:1806.01994, 2018.

[182] Panagiotis Papadopoulos, Nicolas Kourtellis, and Evangelos P. Markatos. Cookie syn-

chronization: Everything you always wanted to know but were afraid to ask. arXiv

preprint arXiv:1805.10505, 2018.

[183] Panagiotis Papadopoulos, Nicolas Kourtellis, and Evangelos P. Markatos. The cost of

digital advertisement: Comparing user and advertiser views. In Proceedings of the 27th

International Conference on World Wide Web, WWW’18, 2018.

[184] Panagiotis Papadopoulos, Nicolas Kourtellis, and Evangelos P. Markatos. Exclusive:

How the (synced) cookie monster breached my encrypted vpn session. In Proceedings

of the 11th European Workshop on Systems Security, EuroSec’18, pages 6:1–6:6, New

York, NY, USA, 2018. ACM.

[185] Panagiotis Papadopoulos, Nicolas Kourtellis, Pablo Rodriguez Rodriguez, and Nikolaos

Laoutaris. If you are not paying for it, you are the product: How much do advertisers

pay to reach you? In Proceedings of the 2017 ACM SIGCOMM Conference on Internet

Measurement Conference, IMC ’17, pages 142–156, New York, NY, USA, 2017. ACM.

[186] Panagiotis Papadopoulos, Antonis Papadogiannakis, Michalis Polychronakis, Apostolis

Zarras, Thorsten Holz, and Evangelos P. Markatos. K-subscription: Privacy-preserving

microblogging browsing through obfuscation. In Proceedings of the 29th Annual Com-

puter Security Applications Conference, ACSAC’13, 2013.

[187] Fotios Papaodyssefs, Costas Iordanou, Jeremy Blackburn, Nikolaos Laoutaris, and Kon-

stantina Papagiannaki. Web identity translator: Behavioral advertising and identity

privacy with wit. In Proceedings of the 14th ACM Workshop on Hot Topics in Networks,

2015.

[188] Patricia Gamer. Average revenue per user is an important growth driver.

http://marketrealist.com/2015/02/average-revenue-per-user-is-an-important-growth-

driver/, 2015.

[189] Andrea Peterson. Bankrupt radioshack wants to sell off user data. but the bigger

risk is if a facebook or google goes bust. https://www.washingtonpost.com/news/the-

Bibliography 155

switch/wp/2015/03/26/bankrupt-radioshack-wants-to-sell-off-user-data-but-the-

bigger-risk-is-if-a-facebook-or-google-goes-bust/, 2015.

[190] Phidgets Inc. What is a phidget? https://www.phidgets.com/docs21/

What is a Phidget, 2017.

[191] Melanie Pinola. How to test your computer’s cpu temperature.

https://www.lifewire.com/how-can-i-test-laptop-temperature-2377618, 2018.

[192] PricewaterhouseCoopers LLP,. Iab programmatic revenue report 2014 results. http:

//www.iab.net/media/file/PwC_IAB_Programmatic_Study.pdf, 2015.

[193] PulsePoint. Rtb implementation notes. http://docs.pulsepoint.com/display/BUYER/RTB+Implementation+Notes.

[194] Raspberry Pi Foundation. Raspberry Pi 2 Model B.

https://www.raspberrypi.org/products/raspberry-pi-2-model-b/.

[195] Abbas Razaghpanah, Rishab Nithyanand, Narseo Vallina-Rodriguez, Srikanth Sundare-

san, Mark Allman, Christian Kreibich, and Phillipa Gill. Apps, trackers, privacy, and

regulators: A global study of the mobile tracking ecosystem. 2018.

[196] redphx. Apk Downloader. https://chrome.google.com/webstore/detail/apk-

downloader/cgihflhdpokeobcfimliamffejfnmfii.

[197] Rainey Reitman. How to opt out of receiving facebook ads based on your real-life

shopping activity. https://www.eff.org/deeplinks/2013/02/howto-opt-out-databrokers-

showing-your-targeted-advertisements-facebook, 2013.

[198] Jingjing Ren, Ashwin Rao, Martina Lindorfer, Arnaud Legout, and David Choffnes.

Recon: Revealing and controlling pii leaks in mobile network traffic. In Proceedings of

the 14th Annual International Conference MobiSys, 2016.

[199] Christopher Riederer, Vijay Erramilli, Augustin Chaintreau, Balachander Krishna-

murthy, and Pablo Rodriguez. For sale : Your data: By : You. In Proceedings of

the 10th ACM Workshop on Hot Topics in Networks, HotNets-X, pages 13:1–13:6, New

York, NY, USA, 2011. ACM.

[200] Thomas Robitaille. psrecord: Record the cpu and memory activity of a process.

https://github.com/astrofrog/psrecord, 2017.

[201] Guenter Roeck. Overview of the lm-sensors package. https://github.com/groeck/lm-

sensors, 2015.

http://www.iab.net/media/file/PwC_IAB_Programmatic_Study.pdf
http://www.iab.net/media/file/PwC_IAB_Programmatic_Study.pdf

156 Bibliography

[202] Franziska Roesner, Tadayoshi Kohno, and David Wetherall. Detecting and defending

against third-party tracking on the web. In Proceedings of the 9th USENIX conference

on Networked Systems Design and Implementation, pages 12–12. USENIX Association,

2012.

[203] Ameer Rosic. What is monero? the ultimate beginners guide.

https://blockgeeks.com/guides/monero/.

[204] rovo89. Xposed Module Repository. http://repo.xposed.info/.

[205] Khalid Saleh. Effectiveness of online advertising - statistics and trends. https://www.

invespcro.com/blog/effectiveness-online-advertising/, 2016.

[206] samy.pl. evercookie - virtually irrevocable persistent cookies, 2014.

[207] Sandvine Incorporated. Sandvine: 70% of global internet traffic will be encrypted in

2016. https://www.sandvine.com/pr/2016/2/11/sandvine-70-of-global-internet-traffic-

will-be-encrypted-in-2016.html, 2016.

[208] Kai Sedgwick. Mining Crypto In a Browser Is a Complete Waste of

Time. https://news.bitcoin.com/mining-crypto-in-a-browser-is-a-complete-waste-of-

time/, 2018.

[209] Sascha Segan. Verizon, at&t may be choking unlimited data users.

https://www.pcmag.com/news/355963/verizon-at-t-may-be-choking-unlimited-data-

users, 2017.

[210] Jerome Segura. Malicious cryptomining and the blacklist conundrum.

https://blog.malwarebytes.com/threat-analysis/2018/03/malicious-cryptomining-

and-the-blacklist-conundrum/, 2018.

[211] Judy Selby. The impact of big data decisions on business valuations.

https://datafloq.com/read/impact-big-data-decisions-business-valuation, 2016.

[212] Selenium. Selenium – Web Browser Automation. http://www.seleniumhq.org/.

[213] Suranga Seneviratne, Harini Kolamunna, and Aruna Seneviratne. A measurement

study of tracking in paid mobile applications. In Proceedings of the 8th ACM Conference

on Security & Privacy in Wireless and Mobile Networks, WiSec ’15, 2015.

[214] Shashi Shekhar, Michael Dietz, and Dan S. Wallach. Adsplit: Separating smartphone

advertising from applications. In Proceedings of the 21st USENIX Security, 2012.

https://www.invespcro.com/blog/effectiveness-online-advertising/
https://www.invespcro.com/blog/effectiveness-online-advertising/

Bibliography 157

[215] Denis Sinegubko. Malicious website cryptominers from github.

https://blog.sucuri.net/2018/01/malicious-cryptominers-from-github-part-2.html,

2018.

[216] Nicola Smith. How publishers are turning up the heat in the ad-blocking

war. https://www.theguardian.com/media-network/2016/sep/02/publishers-ad-block-

users-hide-content, 2016.

[217] Jacopo Staiano, Nuria Oliver, Bruno Lepri, Rodrigo de Oliveira, Michele Caraviello,

and Nicu Sebe. Money walks: A human-centric study on the economics of personal

mobile data. In Proceedings of the ACM International Joint Conference on Pervasive

and Ubiquitous Computing, 2014.

[218] Statista Inc. Premium digital advertising spending worldwide from 2015 to 2020

(in billion u.s. dollars). https://www.statista.com/statistics/237974/online-advertising-

spending-worldwide/, 2016.

[219] Statista Inc. Percentage of all global web pages served to mobile phones from 2009 to

2018. https://www.statista.com/statistics/241462/global-mobile-phone-website-traffic-

share, 2018.

[220] Greg Sterling. Morgan stanley: No, apps aren’t winning. the mobile

browser is. http://marketingland.com/morgan-stanley-no-apps-arent-winning-the-

mobile-browser-is-144303.

[221] Jason Summerfield. Mobile website vs. mobile app: Which is best for your orga-

nization? https://www.hswsolutions.com/services/mobile-web-development/mobile-

website-vs-apps/.

[222] Andrew Tar. Proof-of-work, explained. https://cointelegraph.com/explained/proof-of-

work-explained, 2018.

[223] The Editors of Wired. How wired is going to handle ad blocking.

https://www.wired.com/how-wired-is-going-to-handle-ad-blocking/, 2016.

[224] The European Union Agency for Network and Information Security (ENISA). Malver-

tising. https://www.enisa.europa.eu/publications/info-notes/malvertising, 2016.

[225] The Linux Information Project. The ps command. http://www.linfo.org/ps.html, 2005.

[226] The Tor Project, Inc. Tor project: Anonymity online. https://www.torproject.org/,

2002.

158 Bibliography

[227] Vincent Toubiana, Arvind Narayanan, Dan Boneh, Helen Nissenbaum, and Solon Baro-

cas. Adnostic: Privacy preserving targeted advertising. In Proceedings of the 17th

Annual Network and Distributed System Security Symposium, NDSS ’10, 2010.

[228] TRUSTe Technology Blog. Mobile tracking: How it works and why it’s different.

http://www.truste.com/developer/?p=86, 2016.

[229] Kane Tse. Understanding programmatic advertising: A brief look at its his-

tory. https://medium.com/wired-mesh/understanding-programmatic-advertising-a-

brief-look-at-its-history-411dd5842304.

[230] Liam Tung. Windows: This sneaky cryptominer hides behind taskbar even after you

exit browser. https://www.zdnet.com/article/windows-this-sneaky-cryptominer-hides-

behind-taskbar-even-after-you-exit-browser/, 2017.

[231] Twitter Developers. Iab categorization with examples.

https://dev.twitter.com/mopub/marketplace/iab-categorization.

[232] Zacharias Tzermias, Vassilis Prevelakis, and Sotiris Ioannidis. Privacy risks from public

data sources. In Nora Cuppens-Boulahia, Frédéric Cuppens, Sushil Jajodia, Anas Abou

El Kalam, and Thierry Sans, editors, ICT Systems Security and Privacy Protection,

pages 156–168, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[233] UnhappyGhost Goldenstein. Fingerprinting defenses in the tor browser.

http://www.unhappyghost.com/2015/02/forensics-fingerprinting-defenses-in-tor-

browser.html.

[234] Narseo Vallina-Rodriguez, Jay Shah, Alessandro Finamore, Yan Grunenberger, Kon-

stantina Papagiannaki, Hamed Haddadi, and Jon Crowcroft. Breaking for commercials:

Characterizing mobile advertising. In Proceedings of the 2012 ACM Conference on In-

ternet Measurement Conference, IMC ’12, 2012.

[235] Narseo Vallina-Rodriguez, Srikanth Sundaresan, Abbas Razaghpanah, Rishab

Nithyanand, Mark Allman, Christian Kreibich, and Phillipa Gill. Tracking the trackers:

Towards understanding the mobile advertising and tracking ecosystem. arXiv preprint

arXiv:1609.07190, 2016.

[236] Adarsh Verma. 6 easy ways to block cryptocurrency mining in your web browser.

https://fossbytes.com/block-cryptocurrency-mining-in-browser/, 2018.

[237] William Vickrey. Counterspeculation, auctions, and competitive sealed tenders. The

Journal of finance, 1961.

Bibliography 159

[238] James Wagner. Protecting users from extension cryptojack-

ing. https://blog.chromium.org/2018/04/protecting-users-from-extension-

cryptojacking.html, 2018.

[239] Jeffrey Walton, JohnSteven, Jim Manico, Kevin Wall, and Ricardo Iramar. Certifi-

cate and Public Key Pinning. https://www.owasp.org/index.php/Certificate_

and_Public_Key_Pinning.

[240] Xuetao Wei, Lorenzo Gomez, Iulian Neamtiu, and Michalis Faloutsos. Profiledroid:

Multi-layer profiling of android applications. In Proceedings of the 18th Annual Interna-

tional Conference on Mobile Computing and Networking, Mobicom ’12, pages 137–148,

New York, NY, USA, 2012. ACM.

[241] Ryan Welton. Android SSL certificate pinning bypass.

https://github.com/Fuzion24/JustTrustMe.

[242] WhistleOut Inc. Compare the best cell phone plans.

https://www.whistleout.com/CellPhones, 2018.

[243] Sean Whitbeck. Rtb is growing like mad. is your mobile marketing keeping up?

http://liftoff.io/rtb-growing-like-mad-mobile-marketing-keeping/, 2015.

[244] Michael Whitener. Cookies are so yesterday; cross-device tracking is in-

some tips. https://iapp.org/news/a/cookies-are-so-yesterday-cross-device-tracking-is-

insome-tips/.

[245] Ben Williams. Adblock plus and (a little) more. https://adblockplus.org/blog/100-

million-users-100-million-thank-yous.

[246] Courtney Williams. Mobile vs desktop ad space: challenges and opportu-

nities. https://www.clearpivot.com/blog/mobile-vs-desktop-ad-space-challenges-and-

opportunities, 2016.

[247] World Wide Web Consortium (W3C). Same origin policy.

https://www.w3.org/Security/wiki/Same Origin Policy, 2010.

[248] Luke Wroblewski. Mobile web vs. native apps or why you want both.

http://www.lukew.com/ff/entry.asp?1954, 2016.

[249] Wush Chi-Hsuan Wu, Mi-Yen Yeh, and Ming-Syan Chen. Predicting winning price

in real time bidding with censored data. In Proceedings of the 21th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, 2015.

[250] James Wyke. The zeroaccess botnet: Mining and fraud for massive financial gain.

Sophos Technical Paper, 2012.

https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning
https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning

160 Bibliography

[251] Jun Yan, Ning Liu, Gang Wang, Wen Zhang, Yun Jiang, and Zheng Chen. How

much can behavioral targeting help online advertising? In Proceedings of the 18th

International Conference on World Wide Web, WWW’09, 2009.

[252] Chanmin Yoon, Dongwon Kim, Wonwoo Jung, Chulkoo Kang, and Hojung Cha. App-

scope: Application energy metering framework for android smartphone using kernel

activity monitoring. In Presented as part of the USENIX Annual Technical Conference,

ATC’12, pages 387–400, 2012.

[253] Zhonghao Yu, Sam Macbeth, Konark Modi, and Josep M. Pujol. Tracking the trackers.

In Proceedings of the 25th International Conference on World Wide Web, WWW ’16,

2016.

[254] Shuai Yuan, Jun Wang, and Xiaoxue Zhao. Real-time bidding for online advertising:

Measurement and analysis. In Proceedings of the Seventh International Workshop on

Data Mining for Online Advertising, ADKDD ’13, pages 3:1–3:8, New York, NY, USA,

2013. ACM.

[255] Jinyan Zang, Krysta Dummit, James Graves, Paul Lisker, and Latanya Sweeney. Who

knows what about me? a survey of behind the scenes personal data sharing to third

parties by mobile apps. http://techscience.org/a/2015103001, 2015.

[256] John Zorabedian. Wired to adblocker users: pay up for ad-free site or you get noth-

ing. https://nakedsecurity.sophos.com/2016/02/10/wired-to-ad-blocker-users-pay-up-

for-ad-free-site-or-you-get-nothing/, 2016.

	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Research Questions
	Contributions
	Outline of Dissertation
	Publications

	Background
	User Tracking
	Third party tracking in web sites
	Third party tracking in mobile apps

	Real Time Bidding
	The key players
	RTB price notification channel

	Personal Data Collection and User Tracking
	Our dataset
	Monitoring outgoing traffic
	Privacy leak Analysis
	Encrypted sessions
	Identifiers leaked
	Diffusion of privacy leaks
	Mobile browsers leak too
	Performance cost of user tracking
	Lessons Learned

	Fortifying Apps from Trackers
	Our approach: antiTrackDroid
	Implementation

	Evaluation
	Privacy performance
	Latency overhead
	Benefits from the use of antiTrackDroid

	Common User Identification
	Cookie Synchronization
	How does Cookie Synchronization work?
	Privacy implications for users
	Cookie Synchronization and Personalized Advertising

	Cookie Synchronization Detection
	Heuristics-based detection
	Cookie-less detection

	Dataset
	Users
	Cookies

	Privacy Analysis
	Initiation of Cookie Synchronization
	How are users exposed to CSync?
	Buy 1 - Get 4 for free: ID bundling and Universal IDs
	Sharing sensitive information together with userIDs
	Who are the dominant CSync players?
	Spilling userIDs from Secure Sessions

	Measuring ID-Spilling in the wild
	Data analysis

	Evaluation of Cookie-less Detection
	Detecting CSync in ID-sharing HTTP
	Detecting CSync in HTTP with ID looking strings

	Discussion
	Lessons Learned

	Countermeasures

	The Impact of User Data on Ad-pricing dynamics
	Technical Challenges
	Encrypted vs. cleartext prices
	Encrypted prices on the rise

	Methodology
	Overall cost of the user's data
	Price Modeling Engine
	 YourAdValue

	Bootstrapping PME
	Dataset analysis
	Geo-temporal features
	User-related features
	Ad-related features
	Summary

	Charge Price Estimation
	Dimensionality reduction of features
	Ad-campaigns setup
	Ad-campaigns analysis
	Encrypted price modeling

	User Cost for Advertisers
	Encrypted vs. cleartext price distributions
	How much do advertisers pay to reach a user?
	Summary

	Discussion
	Limitations
	Computing The financial worth of individuals

	Costs of Advertising on Users and Advertisers
	Cost Analysis with OpenDAMP
	Quantitative & Qualitative User Costs
	The OpenDAMP framework

	The view of the User
	Network resources consumption
	User privacy loss

	The view of the Advertiser
	Consolidating the two Views
	Cost on data plan vs. Cost of RTB
	Cost of Privacy vs. Cost of RTB

	Discussion
	Learnings
	Impact of Advertising Cost
	Reducing or rebalancing the costs

	Web-Mining as an Alternative Monetization Model
	Background
	Web-based cryptocurrency mining
	How does web mining work?
	Cryptojacking

	Data collection and analysis
	WebTestbench framework for utilization analysis

	Analysis
	Profitability of publishers
	Costs imposed on the user side

	Discussion
	User awareness
	Letting users choose
	Web-miner detection

	Summary
	Lessons Learned
	Can web-mining become the next web monetization model?

	Related Work
	User tracking and Device Fingerprinting
	User ID Sharing

	User data and the Ad-Ecosystem
	Costs of Advertising

	Web-Mining and Monetization

	Conclusion
	Synopsis of Contributions
	Lessons Learned
	Directions for Future Work and Research

	Bibliography

