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Abstract 

 Virtual Reality (VR) hardware and software solutions are rapidly evolving, providing developers 

with innovative technologies and tools to build applications, in the form of educational virtual experiences. 

In addition, the popularity of learning and training through such realistic and low-cost VR simulations is 

growing. Correspondingly, computer graphics and developers utilize the existing VR tools in combination 

with 3D game engines to create VR immersive experiences tailored around education. However, the current 

platforms for 3D interactive environments focus on producing mostly embedded gamification tools that 

serve the entertaining capabilities of VR technology.   

 Task performance assessment is a vital part of the learning process, and by providing valuable 

feedback it guides the learner towards improvement. In this thesis we addressed this issue, by developing a 

platform and algorithms that enable developers to accurately, rapidly and systematically author the 

automatic task performance assessment process of VR training scenarios. We introduce three generalized 

components, non-dependent to the context of the VR simulation, a) the VR analytics assessment framework, 

b) a Machine Learning (ML) algorithm capable of VR assessment and c) the VR Session Logger. In more 

detail, our analytics assessment framework utilizes user analytics for computing the user’s score through 

an authoring tool for defining performance evaluation rules, whereas by employing supervised ML, our 

agent is capable of learning these rules directly from a subject matter expert’s (SME) VR data. Furthermore, 

we present our novel algorithm for logging accurately VR sessions by recording the user’s movement and 

tracking the resulting effects. 

 

 

 

 

 

 

 

 

 

 

 



Ένας αλγόριθμος αναλυτικών στοιχείων για αξιολόγηση της 

απόδοσης εκμάθησης στην εικονική πραγματικότητα 

Περίληψη 

 Τόσο το λογισμικό όσο και το υλισμικό που απευθύνεται στην εικονική πραγματικότητα (ΕΠ) εξελίσσεται 

με ραγδαίους ρυθμούς, παρέχοντας στους προγραμματιστές καινοτόμα εργαλεία για να αναπτύξουν εφαρμογές, 

όπως εκπαιδευτικές εικονικές εμπειρίες. Επιπροσθέτως, η δημοτικότητα της εκμάθησης και της εκπαίδευσης μέσα 

από ΕΠ προσομοιώσεις υψηλού ρεαλισμού και παράλληλα χαμηλού κόστους αυξάνεται. Έτσι, προγραμματιστές των 

γραφικών υπολογιστών αξιοποιούν τα υπάρχοντα εργαλεία ΕΠ σε συνδυασμό με τις μηχανές παιχνιδιών για 

τρισδιάστατα γραφικά, για να δημιουργήσουν εμβυθιστικές εφαρμογές εξατομικευμένες στην εκπαίδευση. Εντούτοις, 

οι σημερινές πλατφόρμες για κατασκευή τρισδιάστατων περιβαλλόντων, εστιάζουν κυρίως στην παραγωγή 

ενσωματωμένων εργαλείων  παιχνιδοποιήσης για την υποστήριξη των ψυχαγωγικών δυνατοτήτων της τεχνολογίας 

ΕΠ. 

 Η εμπεριστατωμένη αξιολόγηση της απόδοσης είναι ένα αναγκαίο κομμάτι στην διαδικασία της μάθησης, 

το οποίο παρέχοντας εποικοδομητική κριτική οδηγεί τους μαθητευόμενους στην βελτίωση. Σε αυτήν την διατριβή 

απευθυνθήκαμε σε αυτό το πρόβλημα, κατασκευάζοντας μία πλατφόρμα και αλγορίθμους που παρέχουν την 

δυνατότητα στους προγραμματιστές να ορίσουν την αυτοματοποιημένη αξιολόγηση της απόδοσης σε εκπαιδευτικές 

εφαρμογές ΕΠ, με ακρίβεια, ταχύτητα και συστηματικότητα. Παρουσιάζουμε τρία γενικευμένα δομικά στοιχεία, μη-

εξαρτόμενα από το περιεχόμενο της προσομοίωσης ΕΠ, α) το σχεδιαστικό πρότυπο αναλυτικών στοιχείων για 

αξιολόγηση σε ΕΠ, β) έναν αλγόριθμο μηχανικής μάθησης (ΜΜ) ικανό για αξιολόγηση εργασιών σε ΕΠ και γ) τον 

καταγραφέα συνεδρίας ΕΠ. Πιο συγκεκριμένα, το σχεδιαστικό πρότυπο αναλυτικών στοιχείων αξιοποιεί δεδομένα 

ανάλυσης για να υπολογίσει την βαθμολογία του χρήστη, ορισμένα μέσω ενός συγγραφικού εργαλείου στην μορφή 

κανόνων αξιολόγησης, ενώ αξιοποιώντας επιβλεπόμενη μάθηση, ο αλγόριθμός μας μας είναι ικανός να μάθει τους 

κανόνες απευθείας μέσα από τα δεδομένα ΕΠ. Επιπλέον, παρουσιάζουμε έναν καινοτόμο αλγόριθμο για ακριβή 

καταγραφή συνεδριών ΕΠ, καταγράφοντας τις κινήσεις των χρηστών και ιχνηλατώντας τα αποτελέσματα τους. 
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1 Introduction 

 

1.1 Background and Context 

At all levels of the educational system and even later in our workplaces we get accustomed to the process 

of completing assignments and expecting feedback for our performance. Throughout the years, this process 

has been studied and refined numerous times and with the adoption of computer science in our everyday 

lives, multiple parts of it are becoming digitized and automated. Among the many examples are, online 

multiple choice quizzes that are immediately graded; athletes that log their training sessions and expect to 

receive immediate feedback on their performance; supervisors that generate reports for their employees’ 

work. All these applications share a common requirement, a clear and well-defined system for assessment.  

Evaluation systems have become mandatory in all environments where individuals learn under the guidance 

of others. In academia, students expect their teachers and professors to rate their work with accuracy and 

vice versa, while also providing some form of feedback. Educators often follow systematic approaches for 

this procedure in order to enforce high integrity in their assessment. Once an evaluation method is defined, 

generating feedback for the student becomes a straightforward process. Since students can understand the 

reasoning behind their grade, recognizing their mistakes is sequential. In addition, by employing a 

structured approach, meaningful insights can be generated for the improvement of future exams, and the 

educational process in general, e.g. ranking on the most common wrong answers.  

Nowadays, it is increasingly common for managers to establish scoring rules in their workplaces in order 

to systematically assess their team members’ performance. Even though these systems are not 

comprehensive when compared with previous data they can provide useful insights. Agile tools, such as 

Jira1, provide interfaces for defining the importance and the complexity of each task, and can produce 

insights for an individual’s (or the team’s) performance. Implementing accurate grading rules that fit all 

tasks in a workplace can be a challenging procedure, due to their variance. For this reason, scoring systems, 

are not fully autonomous or structured and the supervisors are in charge of deciding and altering the 

structure based on their experience. Research has been done on how we can employ ML to intelligently and 

automatically detect user activity by collecting analytics data from their everyday tasks [34] and provide 

insights to increase productivity [21].  

Computer graphics applications are becoming more and more prevalent each day. Programmers and 

developers utilize them for a variety of purposes, entertainment [4], learning [16], training [17] and even 

research [38]. Traditional 3D serious games have been the long-standing favored approach for developing 

                                                        
1 https://www.atlassian.com/software/jira 

https://www.atlassian.com/software/jira


experiences targeting the education of students or the training of employees. Since the rapid advancement 

of Cross Reality (XR) technologies, this preference is shifting towards immersive simulations, that can 

provide a virtual experience close to reality. Every passing year, increasingly more applications are 

developed for virtual and augmented reality that opt to enrich the educational process in a specific field. 

Human performance in Virtual Reality training environments highly depends on the degree of presence that 

the user experiences, hence in order for an application to provide accurate and objective scoring, the 

experience of being in a virtual environment, even when one is situated in another, must be vividly present 

in the users. In addition, virtual reality technology can produce high immersive environments with countless 

options for developers to shape the virtual training scenario to best fit the trainee’s needs. Finally, the 

interaction freedom that VR offers makes it applicable in multiple fields. 

Consequently, the need for swift, accurate and high-fidelity XR content creation has emerged. Most of the 

3D Game Engines have adapted their framework to support these technologies, focus on providing tools 

for creating games. Although, some of these features are shared in VR applications scoping to train their 

users, modules such as task authoring, assessment authoring and collaboration are not yet established. The 

absence of these features on the pre-established frameworks brings rise to the need for a software 

development kit concentrating on education and training. One of the most important attributes of such an 

SDK is the ability to provide a generic, systematic and accurate method for scoring the user’s performance 

in scenarios across different educational fields.  

1.2  Scope and Objectives 

The main goal of this thesis is to provide a re-usable task assessment process for VR training scenarios. The 

objective of this project is the implementation of two approaches: a) utilizing user analytics and computing 

the user’s score through a structured framework, b) by employing supervised machine learning, for learning 

directly from the expert’s input. Both of these methods opt to be generalized and non-dependent to the 

context of the VR simulation. In addition, these two solutions will be compared on the functionality they 

provide to assess the user’s actions with accuracy. Furthermore, we developed authoring tools to provide 

rapid generation of the assessment content, while also improving the developer’s experience. Finally, due 

to the rapid growth of the VR field, our system should be scalable and flexible to accommodate new features 

regarding recording the user’s interaction with the environment and the resulting assessment. 

1.3  Achievements 

In this project we achieved to design and implement a formalized, generic assessment system that can be 

used for recording analytics derived from interaction events common in all VR applications, rendering it 

independent of the content of the VR training scenario. By employing a structured module, we were able 

to produce an authoring tool that rapidly reduces the developer time needed for defining the evaluation 



rules. Additionally, by exploiting the vast capabilities of the Unity Editor we managed to integrate our editor 

on top of Unity’s, reducing the required knowledge from the developer, to that of being familiar with the 

Unity’s interface. This way non-programmer’s, such as artists, can contribute to this process without the 

need of learning a new platform or VR programming.  

Usually, the VR programmer that develops the simulation is not a specialist in the field that the VR training 

is referring to, thus guidance from an expert is mandatory, especially for the integrity and the accuracy of 

the scoring system. For this reason, we provide a solution to this issue by employing supervised machine 

learning algorithms, specifically convolutional neural networks that learn from images captured directly 

from inside the virtual environment. By enabling users to define assessment rules from inside the Virtual 

environment, we can delegate the problem of accurately scoring the user to experts of the field that the 

training simulation is referring to. In addition, ML algorithms allow for straightforward authoring, where 

all the parameters are learned directly from the user’s virtual movement, and not from user interfaces which, 

when abused, tend to have negative impact in the user’s immersion.  

Finally, a generic implementation for recording the user’s session was achieved. Our VR logger is capable 

of tracking and storing users’ movements and their interactions, as well as the resulting events. In addition, 

a method for reconstructing the session was implemented in order to assess our logger’s accuracy. 

 

1.4  Overview of Dissertation 

This dissertation will start by presenting the existing state of the art for the areas of, authoring tools, 

performance assessment in 3D virtual environments, tools editing VR content directly from the Virtual 

environment and logging the user’s session 3D environments. On chapter 3, the implementation of our rule-

based assessment system will be explained, more specifically the underlying structure, the types of analytics 

data we observe and how the authoring process is sped up using our authoring tool. Continuing on chapter 

4, we will present our implementation of the intelligent agent that utilizes convolution neural networks to 

learn from an expert’s data and evaluates of the user’s actions. Additionally, our novel implementation for 

logging a VR session will be presented in chapter 4. Moving on to chapter 5, we will explain and present 

the demos that we developed in order to showcase our work, which consist of the Cardboard Box 

Preservation training scenario, a virtual playground that records the user’s interactions and offers playback 

features and finally a virtual environment where our pre-trained ML agent is evaluating the user’s placement 

of an object. Furthermore, we will provide performance metrics for our VR Logger and for optimizing the 

training and accuracy of our ML agent, as well as user-based qualitative evaluation on the assessment 

accuracy of each evaluation method. Finally, we will conclude with our planned future work for this project. 



2 State of the Art  

In this chapter, previous work regarding assessment in virtual environments, both VR and 3D graphics, is 

presented. Additionally, projects regarding assessment through machine learning and analytics insights are 

brought up. 

2.1  Training in virtual environments 

The VR technological space has seen rapid growth the last decade, both in terms of hardware and software. 

Virtual Reality content creation tools allow the developers to bring to life immersive experiences with new 

opportunities for interacting with the virtual environment that traditional 3D graphic applications lack. This 

led to the altering of popular belief that VR applications are meant only for entertainment purposes, but 

they can also serve as rich learning environments. In addition, VR applications tools provide new 

opportunities for collaborative learning [27] through entertaining environments, making training more 

meaningful for the trainee [1]. However, current state of the art VR collaborative platforms such as 

Facebook Spaces and VRChat, focus on social aspects and portray themselves as VR social media 

applications, neglecting their potential for collaborative education and learning. In addition, the larger part 

of VR simulations overlooks the importance of meaningful evaluation metrics in improving the trainee’s 

skills, as highlighted in [9] (chapter “Metrics and Feedback”).  

The main advantages that VR simulations offer, compared to traditional 3D graphics applications, are the 

principles of immersion and embodiment [33]. VR simulations are capable of immersing the users through 

high fidelity and high-realism environments, enabling the trainee to perform his tasks as he would in a real-

world scenario. To achieve this level of immersion, visual 3D graphics, audio feedback and accurate 

methods of interacting with the 3D world are equally important. By providing physics-based interactions, 

the simulation has the potential to empower the user with multiple options on how to perform his tasks, 

utilizing his skills in a natural approach and not being restricted by a predefined implementation. VR 

applications can provide almost the same level of interaction fidelity as the real world, providing a 

psychomotor training simulation, and due to its digitized form, it can be easily populated with modules that 

output immediate feedback to the user. Embodiment is an equally important VR principle which describes 

the feeling of being inside the virtual environment. The feeling of presence allows the user to transfer the 

sensations and physical movements from this virtual body to his biological one and, as a result, increase his 

comprehension of the training material [22]. Hence, embodiment is crucial in virtual psychomotor training 

scenarios since it has a high impact on the muscle memory and skill transfer from the virtual to the real 

world [6]. 



VR training has already started getting exposure in various industry fields. Big retailers, such as Walmart, 

are using it to train their employees in scenarios that are hard to replicate, e.g. accurately reacting to fire 

emergencies and soft-skills for handling dissatisfied customers. BMW trains its mechanical engineers 

through immersive simulations focusing on safety in the workplace. In the medical field, multiple institutes 

are training their surgeons and their nurses in complex psychomotor operations in virtual operating rooms 

in order to continuously grow their muscle memory but also memorize long procedures through cognitive 

training [19], [39]. Finally, VR training simulations have also been adopted by the army both for training, 

and PTSD therapy. As an example, the US army is utilizing the VR training to create various virtual combat 

fields, for training in multiple branches such as navy, medicine, air force and infantry. In addition, 

application such as Virtual Afghanistan Village, aim in treating PTSD syndromes through exposure therapy 

to familiar environments from the safety of their workplace [30].  

  

2.2  Analytics assessment in 3D Environments 

Due to the complexity and diversity of virtual environments monitoring and evaluating the user’s actions 

within the environment proves challenging. Even in non-VR 3D graphics environments, where the input of 

the user is limited through the keyboard and mouse, each keystroke can lead to sequential events that are 

hard to predict, thus hard to evaluate through a structured assessment platform. 

 

Figure 1. Graph taken from [24]. Portraying the importance of the assessment component in Serious Games. 

 Serious games are being explored [14] as a tool for learning and assessment for their potential to 

provide more valid evaluation methods compared to traditional approaches, through interactive, immersive 

and “fun” environments [25]. As mentioned in [24], and depicted in figure 1, an analytics assessment 

component is necessary for any serious game opting for improvements in skill and training. Microsoft’s 

Flight simulator was one of the earliest serious games with multiple iterations since the first version (1982). 



It provides real-time metrics for most variables of the pilot controls and developers can access them by 

developing a plugin using Microsoft’s SimConnect SDK, shown in figure 2, to the game’s engine. 

 

Figure 2. Real-time monitoring of aircrafts inside the Microsoft Flight Simulation. 

 Providing a platform capable of all-around, accurate evaluation that captures the diverse range of 

data that are generated from serious games, and also analyzes these data into feedback metrics effective in 

boosting the training of the player, proves to be an extremely challenging task. As described in [5] 

evaluating the assessment methods of each serious game is not a trivial task, but it is feasible to appraise a 

holistic platform that is applicable in different games. Multiple tools focusing on developing serious games 

for learning and training have been developed and reviewed [35], [7]. The Realizing on Applied Gaming 

Eco-System (RAGE), which architecture is show in figure 3, was developed with the goal of creating 

modular components specifically for serious games, focusing mostly on learning-analytics tools that can be 

integrated in different types of 3D games.   

 

Figure 3. Logical Architecture of RAGE. A generic learning analytics system for serious games. 

 E-Sports stands for electronic sports and consists competitive computer games. Even though the 

standing of E-Sports as sports is controversial [15] the rapid growth of their popularity has attracted many 

investors expanding their influence [13]. This led to the need of analyzing the players’ and the team’s game 

sessions, both for competitive reasons but also for personal improvement. Although, to the best of our 



knowledge, an assessment platform applicable to different type of e-sports, has not been developed, 

multiple performance analytics applications have been created, each targeting a specific e-sport game. Due 

to the big amount of these sites and the diversity of the 3D games, various types of methods for accessing 

the raw data have been developed. In all cases, the 3D game is responsible for providing the raw data and 

the two most reused methods are through an API or through options inside the game to record logs of all 

user’s inputs and the resulting events in the 3D environment. In figure 4, the user interface of the 

mobalytics2 application is presented. 

 

Figure 4. Performance insights from mobalytics.com, which uses the API provided from the game League of Legends, to get raw 
data of a player's session, analyze it and give feedback to the user in a meaningful way. 

 At first sight, it might seem that capturing and providing analytics metrics from VR environments 

is a procedure with similar level of difficulty compared to traditional 3D environments. But due to the 

increased level of freedom for physically interacting with the environments, a plethora of different events 

can be generated, rendering the process of capturing and analyzing these VR raw data challenging. Startups 

such as cognitive3D 3 and VADR 4 aim to provide a solution by creating SDK’s integrated in game engines 

that log raw data from the VR hardware, e.g. user gaze, movement analysis and object engagement. These 

solutions focus mostly on tracking and visualizing the user’s performance and the assessment process is 

carried out by a subject matter expert (SME). Even though these SDK’s are generalized and can be 

seamlessly applied to different kinds of simulations by not providing assessment in-game, they exhibit two 

flaws; a) they need the review of a person which can lead to inconsistencies in the evaluation process when 
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multiple reviewers are involved and b) they do not provide immediate contextual feedback to the performer, 

thus not providing him the necessary knowledge to correct them straight away.  

As mentioned in section 2.1, VR applications intend to provide high-realism environments, combined with 

its adaptation in fields such as medicine, where mistakes have substantial impact, research for scoring 

complex tasks with valid and context specific multi-metric scoring methods has emerged. The VR 

Heidelberg score [31] is an example of such method, where a VR scoring system was implemented for the 

sole purpose of evaluating a laparoscopic operation task. Another similar example is [32] where they used 

similar assessment methods for a hysteroscopy operation task. It is important to mention that in both of 

these scenarios high-priced equipment was used, adding to the difficulty of generalizing such problems. So, 

if the target of a VR evaluation platform is to be able to track and assess all the possible actions done by 

the performer in the virtual world, how can we design and implement it? Our answer is, by monitoring 

general VR metrics, common in every VR environment, and providing the SME or developer with tools to 

contextualize them depending on the simulation. 

2.3  Authoring tools in training and learning 

 Authoring tools that are tailored for educational purposes have been used for some time now. 

Platforms such as elucidate5, adobe captivate6, gomo7 and others provide teachers and trainers tools for 

creating digital content scoping to transfer knowledge. Two principal features have attracted the attention 

of researchers and software developers: reducing development cost, and allowing the subject matter experts 

to be involved in the creation process. Combined with their potential interoperability, reusability and 

portability they prove to be essential components of any type of content creation platform.  

 Although, authoring tools for 2D content creation are well established in academia, development 

frameworks for 3D serious games are still undergoing research and innovation. 3D Game Engines such as 

Unity and UE4 focus mostly on providing tools for game developers targeting entertainment, also these 

engines have a steep learning curve and require some programming background proving difficult for 

teachers to create content using them [29]. Besides these limitations, existing tools that mostly focus on 3D 

entertainment games lack suitable analytics logging, which is an essential component both for the performer 

but also the trainee and it can also be used for evaluating research on the actual effects of the application. 

In recent years, toolkits and design methodologies for developing such learning content creation platforms 

have emerged. Emergo [35] is both a methodology, shown in figure 5, and a toolkit that focuses mostly on 

cognitive skills acquired from observing and taking notes while answering questions and deciding the 
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narrative of the serious game. Multiple evaluations have been made on this platform which have marked it 

at least “adequate” [35], [36]. SCORM and xAPI (experience API) are two generic analytics gathering tools. 

The SCORM API provides straightforward functions for tracking variables and storing the results online. 

The xAPI is a more complex solution which provides tools for recording events in a scenario and storing 

the results in JSON files which associate actors (mails, social media accounts) with activities (RESTFUL 

API functions that return a result). Even though, these analytics platforms do not provide an immediate 

solution to our problem studying them and applying part of their solutions in virtual reality simulations 

could bring forth positive results. 

 

 

Figure 5. The Emergo methodology for serious game case development. Taken from [35]. 

  

 An important tool of 3D content creation, arguably the most important, are the 3D game engines. 

Even though, programming knowledge is a valuable asset for game development, engines such as Unity 

3D8 and Unreal Engine 49 have made it possible, although hard, for non-programmers to contribute to the 

development process. By providing a highly configurable environment that software engineers can augment 

by developing add-ons plugins, tools that target non-programmers have been developed [40]. Additionally, 

they provide visual scripting capabilities, (UE4 Blueprints) which has a much easier learning curve than 

object oriented programming through C++. Even though, these visual scripting tools can be used without 

any programming knowledge, they are designed for a generic usage, revolving around rendering, 3D object 

management, 3D movement and many more; which leads to developers (programmers and non-

programmers) having to implement their own features that scope in assessing the user’s performance in the 

training simulation. 

 Editing from inside the VR environment has been the “holy grail” of VR development for a few 

years now. Both, Unity3D and Unreal Engine have showcased prototypes of this feature, which are in 

experimental states. In an optimal VR editor, developers from a variety of fields, 3D designers, sound artists 

etc., can collaborate on the same project without having to grasp the complex skill of game programming. 

Consequently, the SME can also directly contribute on the content creation process providing his expertise, 
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in a straightforward manner. This collaboration, can speed up considerably the VR creation process, since 

all the experts can immediately correct flaws, without the tedious process of explaining them to the 

developers. Apart from the advantages of such a tool in collaboration across a variety of expertise, by 

enabling the user to author the behavioral tasks, the assistant assets (UIs, holograms, etc.) and the evaluation 

method from the same environment they will be eventually displayed, a coherent overview of the simulation 

is created, which reduces the complexity of the content procedure while also providing effortless 

maintenance, compared to editing through a medium that displays the outcome in different visualizations. 

2.4  Supervised Machine Learning for Evaluation 

 In cognitive training, evaluation usually takes place in the form of multiple choice quizzes; these 

methods are particularly easy to assess since they restrict the possible answers the trainee can use. But how 

do we evaluate a scenario where freedom in the completion of the task is mandatory for learning? There is 

high interest in automatically predicting performance by exploiting the effectiveness of supervised machine 

learning in multimodal simulations or environments that the user can perform complex tasks in multiple 

correct ways [11], [37]. Even though the effectiveness and integrity of such systems used for automatic 

evaluation over an experienced human teacher is highly debatable [3], automation is particularly useful for 

provisioning adaptive support and immediate feedback to learners, while also reducing the cost.  

 

Figure 6. Usage of the FOCUS system, where recommendations are presented on top of the learning material (book). 

 

 Apart from evaluating, by analyzing and learning from such data, intelligent agents can augment 

the training experience of such applications through assisting and guiding the trainee towards completion. 

Personalization of learning has been a hot-topic in academia for some years now, by meeting the learning 

pace and the optimal instructional approach the trainee needs, learning activities become relevant to learners 

and drive their interests. There is research both on how to automatically personalize content using pre-

defined rules [8] but also how personalization can be achieved through novel machine learning algorithms 



[23]. Multimodal machine learning solutions have not only been tested in training environments but also 

for evaluating the learning process through methods such as neuro-feedback. FOCUS is a personalized BCI 

learning assistant which improves the reading capabilities of the learner by identifying “focused” time 

windows for starting the reading process, while also enhancing the learner process through virtual social 

rewards such as, praise (text/audio) [18]. In figure 6, the individual components of the FOCUS system are 

presented as well as the user interacting with it. 

 

2.5  Our publications and previous work related to this thesis 

 In this section past projects and publications will be presented and their relation to this work will 

be described. 

 

 

 M.A.G.E.S. 3.0: Tying the knot of medical VR [28] 

 M.A.G.E.S. is a novel Virtual Reality authoring SDK scoping in accelerating the creation process 

of surgical training and assessment virtual scenarios. It is built on top of Unity 3D game engine and it 

provides the following features in an easy manner for developers: 

o Multiplayer: collaborative networking layer that utilizes Geometric Algebra interpolation for 

bandwidth optimization. 

o Assessment: real-time performer assessment both with supervised machine learning and 

predefined rule-based analytics. 

o Deformations: GA-enabled deformable cutting and tearing, as well as configurable soft body 

simulations. 

o Curriculum: Tools for defining an educational curriculum enriched with visual guidance, 

gamified elements and objectives to enhance transfer of knowledge and skills. 

o Prototyped surgical techniques: Implementation of commonly used surgical techniques that can 

be customized in order to populate new content in a rapid manner. 



  

Figure 7. In the left image the collaboration capabilities of M.A.G.E.S. are showcased in a Resuscitative Endovascular Balloon 
Occlusion of the Aorta VR training scenario. On the right image the nasal swab test conducted for testing people with possible 

COVID-19 is depicted.  

 A True AR Authoring Tool for Interactive Virtual Museums [10] 

In this publication we utilized the innovative method of spatial computing, True Augmented 

Reality, for cultural heritage preservation. True AR promotes high realism visualization of 3D 

objects that at first glance are not easily distinguishable from real objects. By exploiting True AR 

3D models of various exhibits can be reconstructed and presented in a realistic and innovative way. 

A playground demo highlighting the components and tools for creating True AR interactive Virtual 

Museum applications is also presented. 

Even though in this work we did not address the problem of assessment in the virtual environment, 

by employing similar implementations for interacting with the objects both in VR and AR, we are 

planning to migrate our work concerning performance assessment to the AR field. 

 

 

 

 

 

 

  

 

Figure 8. Interaction using the pinch gesture; the user can 

move a 3D object around the environment. 

Figure 9. The overview of the application which focuses on the 
restoration of Knossos (right hologram) or Sponza (left 

hologram). 



 Virtual Reality Rehabilitation based on Neurologic Music Therapy: A qualitative 

preliminary clinical study [2] 

In this work we developed a virtual reality environment combining Presence Positive Technologies 

for Well-being, Neurologic Music therapy techniques and hand tracking. Our main objective was 

to provide a training platform capable of sensory stimulus for motor control retaining to survivors 

of neurological disorders. In the virtual environment a 3D avatar was added which guided the 

patients through the multiple hand exercises. Spatial computing rules were defined in order to 

evaluate the patient’s performance which was used as feedback providing motivational 

enhancement and social reward. 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 10. (Left) The instructor avatar we created for guiding the patients through the hand motor exercises.  

(Right) A patient performing the exercises in the virtual environment. 



3 Analytics System for VR training scenarios 

 Performance assessment is a vital part of the learning process, since it provides valuable feedback 

to the trainee, guiding him towards improvement. In order for this feedback to be fruitful, an accurate and 

well explained assessment method is needed. Apart from the final reported score, explanation on its 

computation is also essential. Furthermore, we opted for a method that is reusable in different kind of 

scenarios, an assessment method that was addressing the VR interactions of the user with the environment, 

for instance placing an object at a specific location. Finally, due to the rapid growth of the VR field, a 

systematic approach that can later be expanded and modified with ease was required. 

 A significant advantage that virtual training scenarios hold over non-virtual training scenarios is 

the convincing replay-ability options that they offer. The trainee is able to re-try again and again with no 

added costs, learning from his mistakes, while reproducing such scenarios in the physical lab, most of the 

times, is extremely costly. Immediate assessment and feedback of the user’s session is vital for this cycle 

of continuous improvement. Enabling the learner to immediately correct his mistakes, instead of waiting 

feedback from his supervisor is a great feature of this project. 

 Breaking down the training scenario to clear, sequential, independent steps was a requisite part of 

our project. Apart from the added value in the training scenario, where the user is able to build a mental 

map of each task, both for the developer and the trainee. By utilizing a step-by-step structure, the 

development process becomes straightforward, rapid and the resulting simulation is scalable, since new 

independent steps can be added, and easily modified. Additionally, in enables the trainee to focus on the 

steps that he performed the poorest by redoing only those specific tasks. For the above reasons, we decided 

that our analytics system should be implemented focusing on augmenting a curriculum structure. Our design 

was heavily influence by the flexible Scenegraph data structure which is a core module in the M.A.G.E.S. 

SDK [28]. 

3.1  Overview of the analytics system 

 In this section we will describe the overall pipeline of the analytics assessment platform and in the 

following sections we will explain each component in detail.  

 After programming the behavioral rules of each task, the need for developing how to assess them 

arises. To achieve this, the developer has to define which VR elements and interactions contribute to 

accurately grading each task. These setting are stored in JSON files and are loaded at the start of each 

session. We preferred JSON files for the ease of maintenance that they provide. However, creating and 

editing multiple JSON files, one for each task, is time consuming and prone to errors. These were the 



reasons that pushed us in developing an authoring tool, explained in section 3.3, that speeds up the process 

of defining and producing these files. 

 After specifying the assessment elements and storing them in files a component to handle them was 

required. For this reason, an assessment manager was implemented which is responsible for loading the 

predefined scoring settings from the JSON files and storing the results of each task. Additionally, this 

manager is in charge of constructing, destroying and initializing the components which are responsible for 

scoring the trainee, the scoring factors. Finally, at the end of each scenario it calculates the user’s final score 

from all the individual scores of each task. The overview of this workflow is depicted in figure 11. 

 

 

Figure 11. Workflow pipeline overview of our analytics platform 

. 

  

The final part of this overview is how we calculate the score of each task. As mentioned before in this 

chapter, our goal was to create a generic assessment solution for various VR training scenarios, thus a 

modular and easily scalable approach was needed. To address this issue we introduce the scoring factors 

components, explained in section 3.2. Each task contains a list of scoring factors and each type of scoring 

factor is responsible for scoring a certain behavior of the user. A task can contain multiple instances of the 

same type of scoring factor, each referring to different objects in the environment or having different 

importance. 



3.2  Assessment 

 Each task the user is required to perform in order to successfully complete the scenario is 

accompanied by its aggregate data. These data are: 

 Score: Final score that the user achieved in this task, calculated by the scoring factors. This score 

is always in the range of [0, 100]. 

 Time: Time it took the user to complete the task. 

 Error messages: List of error messages or remarks. 

 Weight: How important/challenging is this task compared to the rest. 

 At the end of the training scenario the trainee’s total score is calculated as the mean of all individual 

tasks scores. For calculating the final score, the weighted arithmetic mean was used: 

𝑠𝑐𝑜𝑟𝑒𝑓𝑖𝑛𝑎𝑙 =  
𝑖=1 

𝑛
𝑤𝑖 ∗ 𝑠𝑖

 𝑖=1
𝑛

 𝑤𝑖

 

where n equals the count of all tasks, w(i) the weight of task i and s(i) the achieved score at task i.  

 

 

 

 

 

Figure 12. Algorithm of performance score calculation for each task. 



3.2.1 Assessment Manager  

A training scenario is composed by sequential tasks. For supervising each individual task, we concluded 

that the implementation of a manager was mandatory. In detail, the assessment manager is responsible for 

storing and tracking the user’s performance at run time while also offering the option to retry each task. For 

these reasons, we concluded that the implementation of a manager was necessary. 

 At the start of each session the assessment manager loads all the JSON files and stores their contents 

in memory creating instances for all scoring factors that are defined. Additionally, it also loads all resources 

assets that are referenced by these scoring factors in order to avoid the overhead of loading them at the start 

of each task. For utilizing the rich functionalities provided by the Unity Engine these scoring factors need 

to be added as components in the virtual scene, which also takes place at the start of each session. Finally, 

at the start of each task he is responsible of calls the initializing its scoring factor and at the end finalize 

them, clearing the virtual environment of any unnecessary assets, spawned by the scoring factors, and 

preparing it for the next task. Furthermore, he gets the results of each scoring factor, which consists of 

remark messages and the score the user achieved in that specific aspect of the task. From the multiple 

scoring factors in each task, multiple scores are produced, thus the assessment manager is in charge of 

computing the final score. For calculating the final aggregated score, the weighted arithmetic mean statistic 

was used, applying the importance field of each scoring factor as the weight. 

Figure 13. Scoring factor usage example. In this diagram we describe how multiple scoring factors can be combined to achieve 

accurate evolution of user performance in each task. 



 As mentioned at the start of this thesis, the option of retrying holds a principal role in training and 

learning. For this reason, we chose to also implement the option of resetting a specific task. This provides 

the trainee the promptness to apply the feedback he got from his previous performance, immediately, 

without the hassle of closing and reopening the application. In order to implement this, the assessment 

manager calls the undo function of all current scoring factors and initializes the preceding ones. 

 Finally, when the simulation has ended the manager sends the trainee’s analytics to the analytics 

exporter, which is tasked with saving them into tsv files for post-session review. In total, 5 types of files are 

created at the end of each session. 

 TotalData: In this file the sum of all analytics from each individual task are stored. 

Specifically, these data are total time of session, final score and total number of errors 

 Time: In this file the completion time (seconds) is stored for each task. 

 Score: This file contains the achieved score for each task. 

 Errors: In this file the total amount of errors and remarks performed in each task is 

written. 

 ScoringFactorsFile: For each task one scoring factor file is created, named after the task 

description name. These files contain all the data describing the multiple scoring factors 

that were set for each task. 

 

3.2.2 Scoring Factors Design 

 Up to this point the scoring factor component has been mentioned a few times. The main purpose 

of this component is to accurately assess a specific aspect attribute or interaction event from the virtual 

environment. They were designed around four principal goals, maintainability, reusability, modularity and 

accuracy. By breaking down the assessment process of a complex task to simple components, each 

responsible for a specific part of the assessment, we achieved modularity but also maintainability, since a 

methodical design enables the developer to change/add/remove a specific factor without altering any other 

part of this project. Additionally, since each type of scoring factor is addressing a generic aspect of the 

user’s interaction with the VR environment, they are reusable in different fields of training scenarios. 

Finally, by evaluating the accuracy of each scoring factor we can procure an evaluation for the whole 

system, which, is a less complex procedure than evaluating the accuracy of the simulation.  

 Our platform provides the developers with an interface which needs to be implemented to link the 

scoring factor with the rest of the components. By introducing this interface, an abstraction is achieved, 

which enables the expansion of our system while also rendering the process of creating custom scoring 



factors, contextualized to the training material, is straightforward. Finally, once this interface is understood 

and the usage of each function is grasped, the process of adding a scoring factor to the rest of this project 

can be replicated in a short amount of time. The IScoringFactor interface requires the developer to 

implement four functions. 

 Initialize: This method is responsible for spawning all necessary assets for this scoring 

factor in the environment and apply the settings stored in the JSON files. 

 Perform: This method cleans the environment of any assets that have been spawned by 

this scoring factor, while also computing the resulting score based on their settings. 

 Undo: This method behaves similarly as the perform function but instead of calculating 

score it resets all variables to their default values. 

 GetResults: This method returns the assessment data generated from this scoring factor in 

the form of an SFData struct (described in the appendix section). 

 Every scoring factor generates a common data structure where it stores its results in an explainable 

format. This data structure is used for exporting the scoring factors to the output files, while also providing 

feedback to the user, by presenting him his individual mistakes. We chose to express all scoring factors in 

the same type of structure, in order to automate the process of describing them.  

 Furthermore, we developed the ScoringFactor abstract base class, which is responsible for linking 

our Interface with the Unity Game Engine. This is achieved by extending the MonoBehaviour and adding 

each scoring factor as a different component in the virtual scene. This enables the developer to fully focus 

on developing the assessment mechanic and not its integration with the Unity Engine. 



 

Figure 14. Architecture diagram of Scoring Factors Components 

 

Finally, for consistency between different scenarios and convenience for the trainee we decided to that the 

final score needs to be mapped to the range of [0, 100]. This rule is enforced by the assessment manager 

when calculating the aggregate score of each task, but for better clarity towards the user it is advised that 

the output score of each factor is already mapped in that range. 

 

3.2.3 Scoring Factors Prototypes 

 In the previous section the design and the method of implementing scoring factors was explained. 

For the completion and testing of this platform several prototypes of scoring factors were implemented. In 

table 1 their usage is explained. 

 The implementation of the time and question scoring factors proved to be straightforward. For the 

time scoring factor a script counting the elapsed time since the start of the task was developed and at the 

end of the task its value is compared with the final one. Continuing with the question scoring factor a Unity 

UI prefab, which can be seen in figure 15, was constructed serving as a template where the developer can 

optionally set images and descriptive text for each answer, while also specifying which is the correct answer. 



 

Figure 15. UI template for the question scoring factor. 

 The placement scoring factor proved to be the most challenging. Our goal was to assess the 

rotational placement of an object. Since the correct position is usually defined as the means for the 

completion of the task, we concluded that only the assessment of the orientation was contributive. For 

providing the perfect rotation the user needs to save it in a prefab through the unity editor, which we are 

calling the finalPrefab. This prefab is spawned in the scene at the initialization of the scoring factor and 

when it overlaps with the interactable object the rotational difference is calculated. The first obstacle that 

we encountered was the, always present, small offset from the perfect angle, due to being close to 

impossible to place an object with machine level accuracy. This led us to adding a down limit angle 

difference parameter that marks the start of the assessment computation. This also enables the developer to 

accurately assess tasks where the placement of an object is not fully restricted to a correct rotation. In 

addition, defining the upper limit of the angle difference was necessary, in order to be able to accurately 

define the angle range that was scored. As a result, this scoring factor computes the range [down_limit, 

upper_limit] which is mapped to the range [100 , 0] outputting the user’s score. Finally, due to many objects 

providing symmetries in specific axis, the reset angle parameter was added. This parameter maps the user’s 

final rotational input to the range [0, reset_angle]. 

 For the implementation of the avoid objects scoring factor, the developers need to define the 

position of colliders in the 3D environment through the Unity Editor and save them as prefabs, while also 

specifying the interactable object(s) that needs to avoid them. These colliders are spawned at the 



initialization stage of the corresponding task. Each collision reduces the user’s score in this action based on 

the defined importance of this scoring factor. Finally, due to the behavior of Unity’s collision system, 

multiple events get triggered while the two objects continuously collide. This results to the collision error 

getting logged multiple times, inaccurately. For this reason, we implemented a reset timer functionality, 

where for a couple of seconds this scoring factor stops checking for collisions.  

 On the other hand, the hit objects scoring factor behaves in the opposite way. The developer needs 

to define colliders in the 3D environment where the user needs to hit with an interactable object in order to 

achieve maximum score. The number of colliders that need to be triggered is again mapped to the [0, 100] 

range. 

 The enforce interaction scoring factor requires two interactable items to be referenced with the 

corresponding hand. The main interactable object is defined as the one the user needs to use in order to 

complete the task while the secondary is the one he needs to interact in order to complete it correctly. If the 

user interacts with the main interactable without interacting with the secondary object he loses points 

depending on the importance of the scoring factor. In order to punish continuous false activity, a timer 

functionality was implemented punishing the user every few seconds. Since these interactable objects are 

part of the rules for the completion of the task they are not spawned by our platform but are expected to be 

spawned from another module. 

 Finally, the velocity factor is used for assessing the movement speed of an object. In many 

occasions in VR training scenarios, objects need to be moved with care, due to being fragile or especially 

important. For this scoring factor the maximum velocity that this object can reach is set. At each frame the 

velocity of the object is calculated and if it surpasses the maximum allowed velocity it results to zero score. 

  

Scoring Factor Description 

 

Time 

 

Used in tasks where completion time is important. The user has X seconds to 

complete it and for each extra second that passes he has 10% penalty. 
 

 

 

Placement 

 

Used in tasks where the user needs to place an object at a position. An angle 

difference range is defined [down_limit, upper_limit] which is then mapped to 
[100, 0] score.  

 

 

 

Avoid Objects 

 

Used in tasks where the user needs to avoid touching an object with an 

interactable. Error colliders around the object need to be set and also the 
interactable item needs to be set as parameter. 

 



 

 
Hit Objects 

 

Used in tasks where the user needs to touch an object with an interactable. 
Similarly, with the above, the colliders that must be hit need to be set and also the 

interactable item. 
 

 

Enforce Interaction 

 

The trainee needs to interact with an object while interacting with another object. 
The two interactable items need to be set. 

 

 

Question 

 

A specific type of UI needs to be defined which is spawned at the initialization of 
the task. The user is evaluated based on his answer. 

 

 

 

Velocity 

 

The user needs to move an interactable object with care. The velocity of that 

interactable item is monitored. In case it surpasses the maximum velocity it results 
in zero score. The interactable and the maximum velocity need to be set. 

 
Table 1. Description of the potential usage of each scoring factor, as well as their needed parameters. 

   

 Even though these are only seven scoring factors they cover a great deal of assessments events in 

a task. Due to targeting principle interactions the user has with the environment, the developer can be 

creative about their usage for a more accurate training scenario; e.g. for the task of “Hammering a nail on 

the wall” the <must stay collider> scoring factor could be used to evaluate if the user is holding the nail 

with his one hand while hitting the nail with the hammer and avoid the implementation of a scoring method 

specifically for this interaction. 

 

3.3  Setting up Scoring Factors 

 Up to this point, we explained the overview of the system and the assessment method, but even 

though these scoring factors have been implemented the developer’s preferences need to be set and saved. 

To achieve this our authoring tool can be utilized.  

 At the start of this project we were manually creating and filling the JSON files that hold the scoring 

factors settings. We quickly noticed that as the complexity of the task grew so did the time it took to write 

the corresponding JSON file. In order to speed up this process and also provide easier maintenance for the 

developers we decided to create an authoring tool. In this section the features of this tool are explained as 

well as the structure of the JSON files. 

 



3.3.1 JSON Files 

 Each JSON file describes all scoring factors settings for a task. Figure 11 illustrates an example of 

a JSON file containing all the parameters needed for the assessment of a task. Below there is an explanation 

of some important fields. 

 Multiplier: The weight of this task’s score. This is used by the assessment manager to calculate 

the final score of a session. 

 enforceInteractionData: This field contains the settings of the respective, Enforce Interaction 

scoring factor. 

 ErrorMsg: In case of performing poorly the error message that will be shown to the user. 

 Importance: The weight of the specific scoring factor. This is used by the assessment manager to 

calculate the weighted score of each task. Predefined-weights are mapped to  

 

 We decided that in case the developer removed a scoring factor, it should be marked as disabled 

and not deleted from file, this way in case the developer re-enables it, the scoring factor will already have 

the previous settings saved. However, this small feature combined with the capability for constant 

expansion of scoring factors led to large and hard to read JSON files, since it required to include all the 

disabled settings as well. Thus, we resolved in creating an authoring tool for VR training assessment. 

"multiplier": 1, 

"errorsData": [], 

"errorsStayData": [ 

  { 

    "errorMsg": "You must hold the box while cleaning the stains on it.", 

    "remainingActions": 0, 

    "errorToolsColliders": [ 

      "Assets/Resources/Actions/Action1/InteractCollider.prefab" 

    ], 

    "errorGO": [ 

      "Assets/Resources/Actions/Action1/Cardboard_boxDirty.prefab" 

    ], 

    "collidersParents": [ 

      "Assets/Resources/Actions/Action1/LeftHand.prefab" 

    ], 

    "startInteractionGameObjects": [ 

      "Assets/Resources/Actions/Action1/Cloth.prefab" 

    ], 

    "errorType": 0, 

    "showErrorUI": true, 

    "importance": 2 

  } 

], 

"errorsHitPerformData": [ 

  { 

    "errorMsg": "You missed a lot of spots that needed cleaning.", 

    "remainingActions": 0, 

    "errorToolsColliders": [ 

      "Assets/Resources/Actions/Action1/Analytics/MustHitCollider.prefab", 



      "Assets/Resources/Actions/Action1/Analytics/MustHitCollider2.prefab", 

      "Assets/Resources/Actions/Action1/Analytics/MustHitCollider3.prefab", 

      "Assets/Resources/Actions/Action1/Analytics/MustHitCollider4.prefab", 

      "Assets/Resources/Actions/Action1/Analytics/MustHitCollider5.prefab", 

      "Assets/Resources/Actions/Action1/Analytics/MustHitCollider6.prefab" 

 ],  

"errorGO": "Assets/Resources/Actions/Action1/Cloth.prefab", 

"collidersParents": [ 

  "Assets/Resources/Actions/Action1/Cardboard_boxDirty.prefab", 

 ], 

 

Figure 16. JSON example analytics file that stores all user defined parameters. 

3.3.1 Assessment Authoring Tool 

 Since, this project was developed on top of the Unity Game Engine developing our authoring tool 

by expanding the Unity Editor seemed straightforward. As a result, our authoring tool provides multiple 

functionalities such as referencing unity prefabs effortlessly by drag and drop, enforcing type checking for 

Unity’s built-in classes and forthright development capabilities since it is in the same framework with the 

rest of the project. Additionally, by visualizing the settings of each scoring factor in an all-inclusive, easy 

to read panel, an overview of the assessment method is provided to the developer, rendering the creation 

and maintenance of this task an effortless process.  

 In figure 15, the panel of an example task is presented. On the left side the default template is 

shown, presenting the available scoring factors. The ones selected fill their needed parameters indented, 

which the developer must set. These parameters are identical to the ones set in the JSON files, presented in 

a more user friendly form. A great feature of our tool is the support for referencing unity assets directly 

from the editor.  This allows us to specify the type of objects that will be referenced to each parameter 

eliminating developer errors, while also allowing the user to quickly set the assets through drag and drop 

and access it through double click. 



 

  

 

 

 

 

 

 

 

 

 

 

Figure 17. On the left the uninitialized analytics editor panel is shown of a specific task. On the right the filled panel is 

presented with the developer’s set parameters and the references to the needed assets. 



4 Supervised Learning based VR assessment 

In chapter 3, we presented how we simplified the process of authoring the assessment method of a VR 

training scenario to simple pre-defined steps that a programmer can master in a short amount of time. 

However, by assigning the execution of this process to the developer, errors regarding the accuracy and 

integrity of the system may occur, due to the need for communication between the SME and the developer. 

Driven by the opinion that our evaluation platform has a steep learning curve for non-programmers, since 

using the editor of a game engine (Unity) can be a complex procedure especially for someone not familiar 

with computer science terminology, we opted for a solution where the SME would be able to contribute to 

the VR content creation process from inside the virtual environment. Our first idea was to incorporate our 

analytics platform in a VR environment by utilizing 3D user interfaces, but we rejected this idea in the 

designing phase due to two flaws that we identified: a) our assessment platform was built around the 

principle of continuous expandability to meet the needs of the current scenario, thus the 3D VR interface 

would need constant upgrade to keep up with the rest of the platform, b) there would still be a learning 

curve, although shorter, for the SMEs since they would have to become accustomed to our UI and possibly 

to VR terminology.  

 In addition, in order to take advantage of the embodiment capabilities [22], [33] that virtual reality 

provides we needed an authoring tool that enables the expert to author while performing the behavioral 

physical movement he is accustomed from the real world. Such a solution would also rapidly speed up the 

content creation process, while making it slightly cheaper since one person can fulfill two roles. Finally, as 

VR technology advances the expert trainers become more demanding of simulations close to reality. This 

demand has produced a need for, among others, constant growth of new, more complex VR interactions 

methods and psychomotor tasks that can be completed in multiple correct ways [20]. These two 

requirements force the creation of new scoring factors that can catch up to expectations of providing 

accurate assessment but also the increased complexity of having multiple correct answers. We concluded 

that a solution employing supervised machine learning algorithms could potentially solve all these problems 

while also providing a sensible method for scaling along the other components of VR training. 

 In this chapter’s following sections our work on how we employed supervised machine learning to 

assess the user’s placement of an object in VR will be explained. Moreover, a novel VR session logging 

algorithm and its purpose will be presented and described. 

 



4.1  Machine Learning for VR assessment 

 At the beginning of designing this module, we had to research whether the available machine 

learning algorithms where sufficient or if a new algorithm was needed. We concluded that we could achieve 

our by employing a methodology derived from the computer vision field, in which supervised ML has 

robust and tested solutions such as Convolutional Neural Networks (CNN). In order to avoid reinventing 

the wheel we chose to use an existing ML library instead of creating our own version. Since, our project 

was built on top of Unity Game Engine, we needed an ML framework that could be integrated with the 

engine. The available options were few, unfortunately, the well-integrated Unity ML Agents does not 

provide functionalities for supervised ML, especially for image-based algorithms. Thus, we turned our 

attention to google’s Tensorflow and its integration with Unity through the TensorflowSharp (TFSharp) 

plugin. 

 The pipeline for creating a Deep Learning agent capable of VR assessment is depicted in figure 18. 

In our implementation, the developer or SME generates data samples from the VR authoring unity 

application which are saved as images. Then we run a python script which loads these images and utilizes 

the ML capabilities of TensorFlow and keras to train and export a CNN model. Finally, we load the model 

in Unity and when the user performs the placement task we capture new images, passing them as input in 

the CNN model which predicts the assessment result. 

 

 

Figure 18. Diagram describing our VR ML training architecture. 

 

 

 

 



4.1.1 Data Collection 

 The first step of every ML solution is the accumulation of data. Since, we decided to examine the 

problem by employing solutions derived from the computer vision field, our data would be 2D images of 

the VR environment. For assessing the placement of an object we did not need to capture the events that 

occurred in the whole environment just at specific areas of interest where the object should be placed. A 

unity prefab was created which was composed of 4 virtual cameras placed in specific spots in order to 

capture the SME’s actions from different angles. In addition, an event box was added which triggered the 

capturing of images from all cameras, once the expert finished interacting with the object. For each area of 

interest, a different CNN model is trained by using the recorded image data of that specific area.  

 A common problem of computer vision applications is the occlusion of the objects of interest and 

their separation from the background. In our case, since the environment is virtual, we can meddle with 

what each camera records by utilizing layer masks and defining a solid color background to all cameras. 

Each area of interest is accompanied by a layer tag and the cameras around it only record 3D objects tagged 

with that specific layer.  

 After capturing the raw data, a way for the SME to classify them was needed. We implemented a 

VR environment where the SME was able to freely interact with the objects around him and at the end of 

each interaction he was presented with the option through a spatial UI of classifying the generated data with 

“perfect, pass, wrong”. Restarting the interaction with the object discards the generated data and destroys 

the spawned UI. In order to easily load these data on the TensorFlow module, each area of interest stores 

the recorded images in a separate folder, which is further split based on the classifiers (in our case “perfect, 

pass, wrong”). 

         

  

Figure 19. The UI used for classifying each generated position. 

       



 

4.1.2 Training CNN models 

 As mentioned at the start of this chapter we chose to use Tensorflow and Keras for training our ML 

model, which pointed us to python. The model creation process is split into four parts, a) load dataset, 

b) build model, c) train model, d) export model to a file format supported by Unity. 

 In order to train our model the images recorded from unity need to be associated with their labels 

in a format that is supported from Keras. We chose the most common method of creating two data 

structures X, Y where X is a 4D array storing the information of images with the following shape 

[number_of_images, imageX_size, imageY_size, 3] and Y is a 1D array that holds the labels of each 

image and its size is equal to the number of images. This process is repeated for each camera. For 

loading and processing images the openCV python package was used. In addition, in order to avoid 

memory overflow during training images were downsized to 64x64 resolution; in case an input image 

has lower size it is discarded. 

 For building our models two methods were examined, multiple CNNs and multi view. In the former, 

we exploited the layer capabilities provided by the Keras library by building a sequential model. The 

model’s structure is depicted in figure 18. We are using three convolution layers each accompanied by 

its respective pooling layer. Continuing, we are passing our input through a flatten layer, a dense layer 

with relu activation, a dropout layer and finally a dense layer with softmax activation. Our choice of 

layers and their parameters was heavily influenced by [12] and from our post-evaluation. By calculating 

and plotting the accuracy and loss at each epoch we concluded that our models stop learning at ~45 

epochs. 

 

 

Figure 20. Our sequential convolutional model structure with the output dimensions on each layer. 



 For training our models the stochastic gradient descent (SGD) method was used. Since assessing 

the correct placement of the images is formed as a classification problem, the loss function used is the 

cross-entropy one. Cross-entropy is the most common loss function in artificial neural network settings. 

It represents the difference between the true and the predicted labels of the data. The neural network’s 

job is to minimize that difference, and this is achieved by a stochastic gradient descent method. 

Additionally, the labels are provided in a one-hot representation, and therefore the categorical version 

of the function is used. As stated above, the loss function is minimized by a stochastic gradient descent 

method. The method used in this setting is the Adadelta optimization, because it adapts the learning 

rate by using a moving window of gradient updates, instead of accumulating all past gradients. This is 

crucial since as the training is close to its end the gradients become smaller and the big gradients at the 

beginning of the session should not be taken into consideration. By adapting the learning rate this way, 

the neural network manages to converge to the local minimum of the loss function, instead of bouncing 

up and down optimal value. 

 Our training dataset consists of 88 images from each 3D camera. Even though we could generate 

more samples through our VR Editor application, our goal was to create a rapid process that the 

developer or subject matter expert could easily replicate. Due to the small datasets we chose a small 

batch size for training as well. While testing different training configurations we quickly noticed that 

producing a CNN model with high accuracy was heavily influence by the random seed parameter of 

tensorflow. Even though, trying different seeds until a satisfactory model is produced is possible, since 

we had four models this process could take a large amount of time. Thus we turned our attention to the 

multi-view methodology in order to produce a single CNN capable of assessing all four images.  

 For our multi-view model Keras Functional API was utilized. The procedure for building the four 

CNN models is similar with the multiple CNNs methodology with the exception that a label needs to 

be defined in order to access them, when fitting our training dataset. The main difference is that before 

adding the flatten layer we concatenate them into one model. Its structure is shown in figure X. Even 

though now we only need to tune our parameters around one agent’s accuracy, our DL learning 

capabilities are still dependent to the random seed of Tensorflow. 



 

 

 

  Figure 21. Structure of multi-view model. The four CNNs are created similarly as shown in figure 17. 

How our models learn with different configurations and optimization algorithms is described in chapter 

6. Finally, our python script exports the trained model. Unity’s plugin TensorflowSharp is compatible 

only with specific binary files which was the reason we needed to convert our saved graph of “.chkp” 

format to “.bytes”. For this conversion the Tensorflow freeze-graph library was used.  

 

 

4.1.3 Predicting at runtime 

 As mentioned before the Unity package TensorFlowSharp was used for importing the saved graph 

in Unity. Importing a model is straightforward and the detailed code can be found in the appendix, two 

important details need to be taken into account: a) the first(input) and last(output) nodes of the graph need 

to be defined, b) the input images, that our model will assess, needs to be the same size as the images used 

in training. 

 For capturing images during an assessment session, we are using the same Unity prefabs used in 

authoring containing the areas of interest and the cameras. Once, the user ends interacting with the 3D 

object all cameras capture an image and input them to their respective CNN model in case the multiple-cnn 

method is selected or to the multi-view CNN model, which predicts the result. Since this process can be 



computational heavy, Unity’s coroutines are utilized to avoid a drop in rendered frames per second, 

although this leads to a small delay (approximately one second) in the computation of the trainee’s results, 

it was regarded as trivial compared to an occasional “freeze” that could destroy the user’s immersion. 

Finally, each graph outputs their prediction class “perfect”, “pass” “good”. In the case of multiple CNNs 

the output labels are mapped to 2,1,0 accordingly. The final assessment of the user is then computed as the 

average of the four outputs.  

 

 

Figure 22. Algorithm of prediction at runtime 

 



 Even though this solution worked great in tasks where the required data could be captured in one 

frame, for example placing an object, it does not cover tasks that entail continuous movement or added 

parameters such as force and eye movement. In addition, the lack of high amount of samples for training 

and low resolution of images, forced us to search for data of higher accuracy. Instead of continuing using 

methodologies derived from the computer vision field we believed that by training our models with data 

logged directly from the virtual environment a general and automated process for training ML with small 

amounts of datasets is feasible.  

 

     

 

4.2  VR Session Logging 

 To the best of our knowledge, accurate recording of a VR session can be achieved through two 

methods, either logging all the inputs of the user and on second stage replicate all the induced events in 

order to compute the desired information, or logging the effects that these inputs had. As VR advances, the 

“reality” of the environments expands as well; trivial interactions such as ripping a plastic case to grab a 

tool or removing the cap from a bottle, have turned to mandatory tasks that greatly add up to the immersive 

experience. This exponential content expansion is hindering the development of the latter logging method; 

therefore, we conclude that a VR logger that records raw user input suits the current growth direction of 

virtual reality environments. 

 

4.2.1 Logging Data 

 

 User input in VR applications happens through the VR controllers and the HMD. Currently, there 

is a variety of HMD types and each company offers its own proprietary feature such as eye tracking, bio 

monitoring, haptics etc., but for our solution we only examined the common input capabilities that can be 

found in all VR headsets that support six degrees of freedom. These data are composed of: 

Figure 23. On the left showing the 
result of a correct orientation and on 
the right a wrong one. 

 



 Left/Right Hand Translation (Vector3): Consists of 6 floats (3 for each hand) describing 

the position of each hand in the virtual environments 

 Left/Right Hand Rotation (Vector3): Consists of 6 floats (3 for each hand) describing the 

rotation of each hand in the virtual environments 

 Camera Translation (Vector3): Consists of 3 floats describing the position of the user’s 

head in the VR environment 

 Camera Rotation (Vector3): Consists of 3 floats describing the rotation of the user’s head 

in the VR environment 

 Start Interaction (Event): The user has started interacting with an object. Consists of the 

name of the interacted object (string), and the hand the user used (string).  

 End Interaction (Event): The user has ended interacting with an object. Consists of the 

name of the interacted object (string), the hand the user used (string) and the amount 

of time the user was interacting with the object (float). 

 Special Use (float): Some 3D objects provide an extra functionality while holding them, 

such as pressing the button for activating a drill. This input is stored as a float which 

represents the strength that the use button is pressed; from 0 to 1. 

 Time (float): The time that has passed since the start of the session, in seconds. 

 For each session we are creating three files corresponding to the input devices the user has, right 

controller, left controller and HMD. Each of these files logs the transformation data per frame while also 

recoding events in the corresponding frame that they occur. As a result, each line corresponds to a frame 

and we also have indirectly access to information about the time that each event occurred. These files can 

get up to 10MB for a 30-minute session. 

 

4.2.2 Non-Deterministic Physics  

 We believed, that by recording accurately the user’s movement then we could reproduce all the 

consecutive events, such as grabbing an object and placing it in a container. Unfortunately, we did not take 

into account the non-determinism physic engine of the Unity platform. 

 Nowadays, interaction based on physical rules is considered essential in every high fidelity VR 

environment. In the case of VR training scenarios, gamified non-natural interactions impact negatively on 

psychomotor learning, but even worse semi-natural interaction techniques can lead to unusable and non-

immersive applications [26]. Game engines, enrich their physics modules with randomization 

functionalities in order to provide a more gamified experience. Additionally, for optimization reasons, they 

do not store the 3D objects in the same specified order in each “run”, which results to, physic based events 

(e.g. collision) that occur in the same frame, being calculated in different order between different 

playthroughs even if the user’s input was exactly the same. These variables can lead to inconsistencies when 

attempting to accurately record data from physical VR interactions, such as dropping a tool on the table and 



re-grabbing it later on.  This issue was obstructing our advancement with the VR Supervised Machine 

Learning solutions, since we could not apply a generic implementation to accurately log different VR 

sessions and consequently extrapolate any kinds of event data needed for training a VR assessment agent. 

 

4.2.3 Propagated Logging 

 Logging the movements of all interactable VR objects using a brute force algorithm is currently 

close to impossible in most environments due to their sheer number. A premature design was to log all the 

objects that showed some kind of movement, which could be identified from their change in transformation. 

But that also meant that we would log unnecessary information such as predefined animations and moving 

UIs. An implementation was needed that was able to identify and log only the moving objects which the 

user initiated. For the above reasons we implemented our own innovative method that logs multiple objects 

at the same time.  

 We designed our solution around the user’s input, the virtual hands. All VR interactions start from 

the user’s hands. Through the virtual non-physical hands, the user has the options to grab or trigger a 3D 

object. In case of virtual physical hands, he can also push them. Our idea was to create an algorithm that 

could “follow” the propagating consequences cause by the user’s interactions. 

 First of all, the virtual hands and the camera, mapping the input from user’s headset, are logged per 

frame through a Unity script we called InteractionLogger. Once the user grabs an object we record the 

interaction item, the hand-side that added the interaction and we add a component script called 

PropagatedLogging on it which logs the transformation of that object. In addition, the triggering of an 

object’s functionality is also recorded by capturing the user’s press on the trigger button. On each collision 

between an object that is logged and an interactable item the PropagatedLogging component is added to the 

latter. Finally, when the object stops moving a Unity Coroutine is started from the same script component 

which after a short amount of time destroys the component. On each frame all logging objects send their 

transformation to the LoggerManager entity responsible for writing to the respective output file. We decided 

that instead of having multiple files for each object that were currently tracked we needed only three files 

one for the camera and two for each hand. In each frame the LoggerManager stored the transformation of 

all the logging objects to the corresponding file. We chose this method for two reasons, firstly we don’t 

need to open and close files for writing each time an object starts being tracked, secondly by writing all 

changes in transformations on the same file the frame that we recorded corresponds to the respective line. 



 

 

 

 

 

 

 

 

 

 

Frame Hand Pos XYZ Hand Rot XYZ Time O1 Pos XYZ O1 Rot XYZ O2 Pos XYZ … 

X (3.2 , 4.1 , 3.6) (38 , 70 , 186) 3.1784 (2.1, 6.4, 7.2) (41 , 89 , 95) (4.1 , 8.9 , 9.5) … 

X+1 (3.1 , 4.8 , 3.7) (24 , 36 , 122) 3.1852 (2.2, 6.5, 7.8) (45 , 88 , 96) (4.3 , 7.9 , 8.5) … 
Table 2. Example of the format logged data are stored in file for a specific virtual hand. 

Figure 24. Algorithmic explanation of propagated logging. 



 For testing our implementation, we created a visualization effect. Each time the PropagatedLogging 

script is added to an object it changes the material color to green and on deletion it reverts it to the original. 

Even though we implemented this small feature for testing and debugging purposes it can also be used for 

showcasing how our implementation works. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 25. On the left only the transformations of the user’s hands and camera are logged. On the middle image the user has 
grabbed the object adding to it the component responsible for logging. On the right image the object is thrown propagating the 

logging component to the rest of the cubes. 



5  Demos 

 To showcase how this work can be applied, three VR demo scenarios were developed, using the 

Unity Engine, each focused on a different part of this thesis. The first demo consists of a small VR training 

scenario that assesses the user’s actions by utilizing the scoring factors, described in chapter 3; the second 

demo is focused on ML based assessment, and the third one on logging the user’s data in a VR session and 

recreating the session from them. For tracking the VR hardware as well as handling its input the SteamVR 

SDK was used and for interacting with the virtual environment we chose the NewtonVR Unity Asset. 

5.1 VR Analytics based Assessment 

 Before employing the analytics system to assess the user, a method to define and control the flow 

of the tasks was needed. For this purpose, we created two entities the ActionBase interface and the 

ActionsController. The controller is responsible for managing the flow of the scenario by keeping track of 

the current task and calling the necessary functions for initializing it and cleaning it. The ActionBase 

interface’s purpose is to provide an easy way for initializing a task by spawning the 3D objects with the 

needed functionality, as well as cleaning each task by deleting the objects and reset any non-permanent 

changes done to the environment. The ActionBase interface provides similar functions with the scoring 

factor interface (the initialize, perform, undo functions); this is a design choice for easier integration with 

the analytics platform and not a requirement for utilizing our analytics. 

 For the training scenario a simple theme was chosen, cleaning and preserving a cardboard box. This 

scenario is composed by three tasks: 

 Deciding over the most appropriate tool for cleaning the box. 

 Cleaning the dust and dirt spots from the box. 

 Carefully placing the box on the shelf. 

 For each task defining its scoring factors was needed. Below you can find the scoring factor that 

were used to accurately assess the user: 

1. Question Factor and Time factor. The decision for which tool to use is done in the form of a 

multiple choice question. We want the user to answer based on his existing knowledge and 

not by researching a website; thus we used the time factor. 

 

2. Hit Colliders Factor and Interact Object Factor. Since the user needs to clean all the spots 

from the box, we set up all the dirt spots colliders in the hit colliders factor and we defined 



the interactable object to be the cloth. Additionally, the user needs to hold the box while 

cleaning it, for this we are using the interact object factor. 

 

3. Placement Factor, Velocity Factor and Error Hit Factor. Since the user needs to carefully 

place the box on the shelf we are using the velocity factor to make sure he is moving it slow 

and steady. For measuring the accuracy of placement we are using the placement factor and 

finally, since there are other boxes on the shelf the error hit factor is used in case the user 

hits the fragile box with them. 

 

 In addition, two user interfaces were created the options panel and the details panel. The options 

panel contains two buttons perform and undo. The trainee uses these to traverse through the training 

simulation. The perform button completes the current task, calculates the user’s score and initializes the 

next task. The undo button clears all objects of the current task, resets the user’s score in the previous task 

and initializes it. The details panel presents the results of the previous completed task and their explanation. 

The user has the option of clicking on the task_name field, which opens a new UI panel containing the 

details of each scoring factor. These panels output the following values to the user:  

 Score: the final score of the previous task.  

 Errors: the amount of errors the user conducted in his previous task. 

 Time: the time it took the user to finish the previous task. 

 Multiplier: the weight corresponding to the importance of the previous task. 

 Task_Name: the name of the previous task. 

 ScoringFactor/Name: the descriptive name of this scoring factor. 

Figure 26.  
First task (left) the user needs to answer the question.  

 Second task (middle) the user needs to clean the dust spots on the cube.  
Third task (right) the user needs to place the box on the shelf. 



 ScoringFactor/Score: the resulting score of this scoring factor. 

 ScoringFactor/Importance: the weight of this scoring factor. 

 ScoringFactor/Performance: the specific output of this scoring factor, e.g. in the time factor, the 

completion time of the user for this task. 

 ScoringFactor/MaxTarget (situational): the maximum output of this scoring factor, e.g. in the 

time factor, the maximum completion time the user has in his disposal. 

 ScoringFactor/ErrorMessage: the error message shown to the user in case he performs poorly. 

  

 Finally, for this demo two types of notification UIs were created, one for errors and one for 

information. Error UIs are spawned when the user performs poorly in a specific task and contain the 

corresponding message that has been defined by the developer on the corresponding scoring factor. 

Notification UIs are constructed at the start of each task and contain guidelines on how to perform it 

correctly. 

     

 

Figure 27.  
On the left the buttons for performing and undoing a task are shown. 

On the middle the panel showing the results of the previous task.  

On the right the panel for presenting the results of each scoring factor is shown. 

Figure 28. Right: The UI used for feeding information to the user. 

   Left: The UI spawned when user performs an error. 



5.2 Machine Learning Assessment 

 For the second  demo, the user was tasked to place a 3D object on a specific location, with a 

specific orientation. Instead of using the placement scoring factor for assessing the user’s actions; our 

methodology involving convolutional neural networks was utilized in this demo. The first step of this demo 

was asserting what kind of 3D objects to use. We chose a Buddha statue that was characterized by its 

asymmetrical features.  

 For our object an area of interest was defined and the image data needed for training our models 

were generated by following the method explained in chapter 4.2.1. These data were used for training one 

CNN model, utilizing our multi-view methodology. At runtime, the placement area, a static copy of each 

object with the correct orientation and an interactable copy are spawned for the user. Once the user places 

the statue inside the placement area each virtual camera records an image, passes it through its layer masks, 

removing any unnecessary artists. The four images are then fed to our CNN model which predicts the 

assessment output, out of the three predefined labels, wrong, pass, perfect. Finally, the prediction is 

presented to the user.   

 

 

 

 

 

 

 

 

Figure 29. Our demo showcasing our ML implementation.  
The green cube serves as the area of interest with the four cameras around it for generating images of the statue’s position. 

5.3 Logging VR Sessions 

 For showcasing our session logger, a VR playground environment was created. The demo allows 

the user to record his own session and then watch it through an NPC replicating his movements. We position 

the user in a room filled with interactable items. Our goal was to create a small playground where the user 

could create a variety type of events, in order to showcase the reusability and interoperability of our logger 

in different kind of scenarios and different physics interactions. The following items are placed in the scene:  

 Tower of cubes. This serves as the most representative example of our module. The user can hit the 

tower with an interactable breaking it, thus triggering multiple components of the physics system 



(collisions, gravity, friction). Since, our logger accurately records their transform, when the user 

decides to replay this session the cubes will fall at the exact same location. 

 Lever. For implementing the physical interaction of a lever a Unity Hinge Joint was used. The user 

can pull the lever, and after a short amount of time it will return to its original position. We chose 

this object to showcase that our logger works robustly across different physical restrictions. 

 Drawer. For implementing the physical interaction of a drawer a Unity Configurable Joint was 

used. The user can open the drawer, place objects inside them and after a short amount of time the 

drawer will automatically close. Since our logger also records objects that are not directly rendered 

on the camera, in the playback the object will result in the exact same position.  

 Buddha Statue. A simple example of an interactable. The user can grab it, move it and place it. 

  

 

Figure 30. VR playground for showcasing the capabilities of our VR Logger. 

 Although, there is still a long way to go in order to be able to accurately map input from VR users 

of diverse height and arm length to any type of realistic rigged human or humanoid character, we can map 

our input to playful avatars with similar body parts as the user. For directly mapping the user’s movements 

to the NPC the same 3D model for visualizing the virtual hands was used, which was the Oculus Controllers 

while for the head a 3D model was designed promoting gamified robot-like features. While the NPC is 

replaying a session, it is not able to adapt to any kind of change; the smallest of modification in the 

environment will make it impossible to complete. For the purpose of avoiding this the user is placed in the 

VR room with the role of an observer, being able to move and inspect the virtual space but being unable to 

interact with any virtual items. 



 Even though, our goal for creating this module was to generate accurate VR data for machine 

learning while developing this demo new ideas rose for how to utilize it. Since, we can replace the user 

with an avatar, by expanding our module to log microphone input, a tool can be developed which enabled 

the teacher to create educational VR “videos” on how to correctly complete the training scenario. 

Considering the recording is not just a video, the user can move around the virtual room and observe the 

teacher’s actions from any point of view. In addition, by creating a tool that visualizes on unity’s editor and 

provides functionality for editing these sessions data, we can create small VR playbacks providing guidance 

as he completes his tasks.  

   

 

Figure 31. Image from our playback demo, where the instructor is shown opening a drawer. 

 

 

 

 

 

 

 

 

 

 



6 Evaluation 

 

6.1 Self-assessment 

6.1.1 Analytics Based Assessment 

 Our analytics system was designed around structuring and consolidating the development process 

of the assessment method of a VR training scenario. By requiring all members of a team to follow an 

organized methodology for creating such systems leads to reduced errors, straightforward communication 

and easier maintenance, since it will be simple for any developer to understand and alter previous work 

done by colleagues. In addition, by utilizing this structure, visualization and explanation of the assessment 

results, can be generalized providing a consistent report among tasks and training scenarios. Furthermore, 

by introducing the scoring factor entity we componentize this system, allowing for reusability and variety 

of combinations that the developer can choose from to achieve the desired result. Finally, arranging a 

formulated scoring methodology through different training scenarios can contribute to easier 

comprehension from users on how they were assessed, since they need to understand one scoring method 

for all possible simulations. 

 The analytics authoring tool serves as an all-inclusive editor for the developer to define the 

assessment method of each task. It was designed around the policy that this process will take place 

exclusively through its user interface. This approach was chosen in order to have all the assessment material 

and assets concentrated in one development environment, eliminating the tedious process of searching 

through all the scripts and assets that are needed for other components of the simulation, thus providing 

easier maintenance and debugging while also controlling the integrity of the resulting score. The downside 

of this practice is that it obliges the developer to constantly upgrade the editor for every new assessment 

method, even though sometimes scoring factors are purposed for a one-time use thus developing using C# 

code being a faster approach. Additionally, it was built on top of Unity Editor’s framework that grants direct 

integration with all its assets and file formats while also allowing the user to work in a single framework, 

eliminating the need of switching between different editors.  

 In order to use our authoring tool, familiarity with terminology of interactive 3D graphics is needed, 

such as colliders, interactable objects and spawning, as well as basic understanding of the functionalities 

provided by the Unity Editor. Even though, this knowledge is easily learned from an unexperienced VR 

programmer or 3D artist, it is not simplified to the extent that an SME from another field can easily grasp 

it and develop with it. 

 



6.1.2 Machine Learning Assessment 

 By employing ML techniques, we improved the capabilities of this project in accurately assessing 

the performance of tasks that are time-consuming to define when using traditional coding techniques. Our 

implementation is capable of learning the variables needed to assess the virtual placement of an object from 

a generic type of input, images. This procedure can prove a challenge to author it precisely from a 3D editor 

environment partially due to symmetrical objects that lead to multiple correct answers but also due to the 

degree of freedom in completing arbitrary tasks, such as placing an object on the table. Even though the 

desired result can be achieved by both technologies, the simplification of authoring the evaluation of 

complex tasks leads to decrease of development time and errors. Additionally, by utilizing our methodology 

we simplify the usage of a VR editor tailored for editing the assessment method. The process of defining 

all the parameters needed for the evaluation of a task is altered into labeling the users actions and 

automatically and learning the needed variables from the generated data. As a result, the user is able to 

author the scenario with the minimal negative impact on the immersion provided from the VR simulation. 

 By simplifying the procedure of constructing the evaluation to one that requires knowledge only 

on the field of the training scenario, the simulation can be authored directly from an SME. This eliminates 

potential errors risen from the communication of the SME with the developer, while also ensuring the 

integrity of the evaluation. The main problem that occurred in this project is the lack of real-time feedback 

on the progress of the accuracy of the CNN model. Since, the SME lacks the information of how many 

sample data are needed he might finish the authoring process prematurely. This can lead to the tedious cycle 

of restarting the VR simulation to generate extra data and checking the accuracy of the ML model on each 

iteration. Therefore, to reduce this time overhead a VR ML training module will be developed providing 

the SME to train ML algorithms by pressing a specific button on the VR controller. 

6.1.3 VR Logger 

 In this project, the VR logger module was introduced. This module allows us to log the user’s 

sessions within the virtual environment in the form of positions, rotations and interactions resulting to 

improved accuracy without compromising generalization. Our main goal for developing it was to produce 

more descriptive data than images, that can express the location of an object in the 3D environment with 

precise accuracy, resulting to a reduce of the amount of poses required to train supervised ML agents and 

accordingly, further reduce the time spent by the SME or the developer authoring the simulation.  

 In addition, the accurate output recorded from our VR logger allowed us to develop the playback 

feature. Our primary objective for building this feature was to test and prove the accuracy of our logged 

data but we also showcased how it can be applied for creating high fidelity VR recordings that guide the 

trainee through his tasks. Documenting the user’s session in this form leads to a variety of features that can 



enhance VR applications and their development. Replaying the session of a user can prove especially useful 

for visualization purposes, where humans can directly annotate these data for training ML agents but also 

evaluate the trainee’s performance. Trainees can also benefit from the playback feature personally, 

observing and studying their previous actions can serve as a form of feedback. A drawback of this 

implementation is its inability to adapt to new updates of the training scenario. Updating the starting 

position of a 3D object or its interaction method invalidates all previous recorded sessions. Logging spawn 

events accompanied by the initial position and rotation of the object and altering the VR Logger to record 

relative data from the initial transform might serve as a solution. 

6.2  Qualitative Evaluation 

 We conducted a qualitative evaluation in order to provide quantified metrics on our VR assessment 

platform. In more detail, we wanted to examine if our analytics system was capable of producing the 

assessment metrics of a VR training scenario, in a short amount of time, without compromising accuracy, 

fairness or the overall VR experience. Additionally, our machine learning implementation was compared 

with the above system, in order to determine if there was a positive impact by employing ML in the 

assessment pipeline of a training scenario. In this experiment 10 users participated, which were asked prior 

to this study their familiarity with VR applications on the scale of one to seven, one for not having any 

experience with the technology seven for having VR development experience for more than 3 years. We 

classified these participants into two categories; users that reported above 5 were branded as VR Experts 

(6) while below, as VR Beginners (4). Six where branded as Experts while four as Beginners. We believe 

this distinction was necessary due to the excitement that VR brings forth to new users, thus implicating 

their impartiality on the answers. 

 This evaluation was split into two parts. In the first study users were tasked with completing the 

Cardboard Box Preservation training scenario and fill a survey on the accuracy of the assessment. 

Continuing, they were tasked with comparing the assessment accuracy of placement scoring factors and 

our ML implementation. A small demo was created that put both of these methods side by side and the users 

reported on the accuracy of each implementation. The purpose of this session was to determine if our DL 

agent was as accurate as our rule-based implementation or better.  

 Prior to the start of the first study users were introduced to the VR controls, what to expect from 

each UI panel, as well as the type of training scenario they will need to complete, without explaining any 

of the underlying technologies. The Cardboard Box Preservation training scenario was chosen due to its 

simple content; no particular expertise is needed to accurately complete it. At the end of each task the users 

studied their results from the UI panels and filled a survey concerning the accuracy of their assessment and 

whether the feedback was well-explained and satisfactory; both of these answers were in the range 1 to 7. 



 In addition, we asked for their comments regarding the metrics used and if in their opinion there 

are other contributive factors that we should include to further improve the accuracy of our system. 

 

 From the survey results of task 1 a substantial drop on both metrics between experts and beginners 

is noticed. As they commented, this was due to the short amount of the amount of time they had to answer 

the question, as well as the lack of explanation that time was a factor on this particular task.  

      

Figure 32 Evaluation of task 1 of the Cardboard Box Preservation scenario. 



   

  

 The second task of the scenario consists of psychomotor skills, since users have to hold the box 

with one virtual hand while cleaning it with the other. A few beginners had trouble performing accurately 

due to their inexperience with using the VR controllers. As a result, they commented that the assessment of 

their performance was harsh. 

  

 

 

 

 

 

 

Figure 33. Evaluation of task 2 of the Cardboard Box Preservation scenario. 



 

 In the third task, we do not notice a substantial difference between beginners and experts and they 

did not have particular comments for this task. 

 Overall, most of users criticized the lack of content specific explanation of why each scoring factor 

was important for the current task. Even though, they did not have a hard time understanding how each 

scoring factor was grading them, they also expected an explanation on why this was important. Since, this 

feature is currently not supported, we plan on adding it in the future. In addition, they stated that time should 

be a contributive factor in all tasks, even if trivial, since it showcases the familiarity of the trainee with the 

environment. 

 In our second evaluation demo users were asked to insert the Buddha statues in their respective 

placement boxes. Static objects representing the perfect orientation were added in the scene. In order to 

accurately compare our ML implementation with the placement factor we mapped the output score of the 

Figure 34. Evaluation of task 3 of the Cardboard Box Preservation scenario. 



placement factor to wrong, pass, perfect. In detail, users with score above 80 got the perfect mark, users 

with score above 50 got pass, and the rest wrong. In addition, to see how much our evaluation methods 

matched the innate understanding of the users, they were tasked to achieve all three results with both 

performance assessment implementations with the least amount of tries. Furthermore, they graded the 

performance assessment for each example similarly as the first part of this study. Finally, to avoid any kind 

of bias we split our evaluators into two groups. The one group started with the scoring factor implementation 

and then continued to evaluate our AI, while the rest evaluated them in the opposite order. 

 

 

Figure 35. The evaluation demo comparing the neural network with the scoring factor.  
The left statue and placement box uses our ML implementation while the right use the placement factor. 

 



 

Figure 36. Users evaluation on the assessment accuracy of each implementation. 

 

 As we deduce from figures 30 and 31, both implementations provide similar results. From the users’ 

feedback as well as our observation during the demo we noticed that they could not easily achieve the 

perfect result in the ML placement example. We believe this was due to labeling only the ideal orientation 

images as perfect, during the ML training, thus making it difficult for the users to achieve this result. 



 

Figure 37. Average attempted tries for each placement. 

 

 

6.3  Metrics 

 In this chapter we present the metrics and graphs that influenced us in the implementation and 

optimization of our VR assessment agent. In addition, performance metrics on our VR logger module are 

presented both in usual scenarios as well as under heavy stress testing.  

6.3.1 Machine Learning Optimization 

 Throughout the development process we noticed that three hyper-parameters had a noticeable 

impact on the accuracy of our ML agent, a) batch size during training, b) number of epochs, c) different 

optimizers. The number of sample images also had a heavy influence in the training of our ML for VR but 

due to our goal of creating a rapid and repeatable process for training different models, a small dataset was 

enforced. For the following graphs 88 poses were used of the Buddha 3D model. They were split at 70% 

(61) for training, 15% (13) for validation and 15% (13) for testing. 

 We started with choosing the right amount of epochs for training our CNN models. Since, multiple 

runs are needed to find a random seed that produces appropriate results, training our models with excessive 



epochs can lead to big computational times. In addition, in the future we aim to trigger the process of 

training directly through the virtual environment, giving feedback to the developer about its results in a 

sensible amount of time. Thus, minimizing the epochs needed for training was important. Through our 

testing we concluded that the optimal number of epochs is 50. From the graphs shown in figure 18 and 19 

we can see that our ML stops increasing its accuracy at the range of [30, 45], thus an epoch of 20 might 

lead to inadequate learning while 70 to unnecessary learning and overfitting. 

 

 

 

 

 

 

 

Figure 39. The confusion matrices for the above training runs, showcasing how each model behaves to new data (testing 
dataset). On the left the confusion matrix for 20 epochs is depicted, on the middle for 50 and on the right for 70.  

 

Figure 38. On the left the accuracy graph for 20 epochs is depicted, on the middle for 50 and on the right for 70.  

These graphs depict the training process with different random seeds. 



 Batch size is the number of training examples used in each forward/backward pass. Due to our 

small dataset we concluded to use small batch sizes, specifically 2, 6 and 10. From our optimization runs 

we concluded that the results for batch size of 2 and 6 were similar. Due to smaller batch sizes producing 

more passes at each epoch thus more computational time, the latter option was more preferable. Even 

though batch sizes equal to 10 behaved similarly on most runs, we noticed that for specific random seeds 

produced less accurate result than when choosing a smaller batch size. Thus we concluded that the optimal 

batch size for training our CNN model was 6. 

   

 

Figure 40 Confusion matrices graphs for Batch_size=10 on left and Batch_size=6 on the right.  
Both produced from the same random seed and dataset. 

Finally, we wanted to examine how the neural network was learning when different optimizers of keras 

were utilized. We compared keras Adadelta optimizer with the SGD optimizer. The most noteworthy 

difference was the increase in epochs needed from the SGD optimizer to achieve similar results as the 

Adadelta optimizer. 



 

 

Figure 41. CNN accuracy on each epoch.  
The SGD optimizer was used for the left graph while the Adadelta optimizer was used for the right. 

 

As mentioned above the computation time for training was crucial to this project. Thus, the Adadelta 

optimizer was preferred over SGD for our implementation. 

 

6.3.2 VR Logger Performance Metrics 

Our VR logger module was designed around its usability in different virtual environments. This led us to 

examining its impact on the computed frames per second (FPS) in different scenarios. We conducted two 

evaluations, one in our virtual playground described in section 5.3 and one in a new environment designed 

for stress testing our implementation. For each evaluation we recorded the framerate in two runs, once with 

logging enabled and once with logging disabled. In order to provide accurate results in both tests that we 

run in our playground, similar events were triggered. Our results are reported in table 3. 

Metric Logging Disabled (FPS) Logging Enabled (FPS) Difference 

Average 89.56 85.13 4.43 

Minimum 76.56 68.78 7.78 

Maximum 93.29 92.57 0.72 
Table 3. Performance metrics for VR Logger Module in our VR playground environment. 

From table 3 we can discern that our VR logger is not affecting negatively the maximum framerate, which 

was expected due to this framerate being achieved when not a lot of physical events are computed, and 

accordingly not being logged. Continuing, with the average difference we can identify that our module has 

a noticeable impact on the application but not to the extent where it greatly impacts the user’s experience. 



Finally, the drop in the minimum metric was expected, since it is produced when the most physical events 

are calculated, which in turn need to be logged. 

For our second evaluation VR logger module we added 500 3D cubes in the scene, and once a keyboard 

button was pressed, indicating the commencing of the simulation, a significant amount of force was added 

to them. We modified our algorithm to log the objects transformation data once they started moving. This 

was necessary due to the force originating from the press of a keyboard button and not from the user’s 

hands. We wanted to examine if the computational tax from our logger had a significant impact on the 

framerate compared to other computational heavy processes such as lighting, physics, rendering. 

As reported in table 4, the average framerate had a significant difference. Due to logging all cubes in most 

frames the difference between the two framerates was close to the one reported on the minimum metric. An 

important observation is the minimum and average framerates in both runs are significantly low for a VR 

application which targets 70-90 fps. This leads us to the conclusion that even though our solution has a 

noteworthy impact on framerate, it will not directly affect the development process, due to the effectual 

scenarios being optimized or discarded for other technological reasons, such as many physical events or 

rendering a plethora of objects. 

Metric Logging Disabled (FPS) Logging Enabled (FPS) Difference 

Average 66.1 55.74 10.36 

Minimum 23.88 13.59 10.29 

Maximum 78.31 77.60 0.71 
Table 4. Performance metrics for VR Logger Module in our VR stress test scenario. 

 

 

 

Figure 42. Images of the stress test scenario. On the left the cubes are in idle. On the right force was added to them. 



7 Conclusion 

In this chapter, we will explain how this project achieves its primary goal and also shortcomings and 

deviations from the original plan. Following, we will explain what is our planned future direction regarding 

augmenting this project with new features but also improving and optimizing the current implementation, 

in order to provide a universal process for VR training assessment.  

7.1 Achievement of Goal 

 The initial goal of this Master’s thesis was to provide a generic, cost-effective process to author the 

performance assessment part of a VR training scenario. Currently, the only available authoring tools and 

systems for assessment in 3D environments offer this functionality targeting Serious Games. Even though 

these could potentially be applied to VR applications, by specifying the problem only to the VR training 

space we are able to produce an accurate and friendly to use solution. 

 The analytics based assessment coupled with the VR scoring factors, provide a generic and 

systematic tool that can easily generate an evaluation process for a training scenario. By, employing a 

structured procedure, expanding our system becomes a trivial process, by defining new scoring factors, 

while also allowing us to create an authoring tool that can simplify and speed up the process of applying 

the SME’s guidelines. Furthermore, by utilizing invariant data for training machine learning agents from 

the virtual environment we are creating a new possibility of generalization for our system, since we 

eliminate the need for the development of new scoring factors. At the same time, we translate the authoring 

process to one that the SME is familiar with, performing the scenario, attaining forthrightness and accuracy 

integrity.  

 The VR Logger component enables us to capture the most common actions the user can perform 

in the virtual environment in a way that is constant among different training scenarios and fields. 

Unfortunately, we did not achieve our initial goal of training assessment ML agents that utilize these types 

of data to create a comprehensive assessment platform. 

7.2 Future Work 

 Machine Learning tailored around VR training is still in its infancy. By utilizing our system, a 

plethora of new technologies can be born that can rapidly advance the growth of this field. First of all, the 

use of raw VR data for training, both with supervised and reinforced learning, can produce agents that guide 

and assess the user’s actions. We aim to integrate the VR Logger component in our VR editor tool to record 

the raw data of a task performed by the SME and not only in predefined areas in order to create ML models 

that can assess the trainee by comparing his actions to the expert. Another ML feature that can enhance VR 

training is the smart automatic completion of tasks. Currently, either the user has to complete predefined 



events to move to the next task or explicitly inform the system that he has finished. The first option does 

not allow the user to neglect a step, which is one of the most common mistakes, while the latter diminishes 

the user’s experience and immersion by constantly distracting him from his training. We believe an agent 

can be trained to predict when the user has completed his task based on his movement and interactions, e.g. 

in some tasks adverting his field of view from the area of interest and leaving the tool on the table can be 

recognized as the event for moving to the next task. Additionally, by employing supervised or reinforcement 

machine learning in VR an adaptive training mode can be created, personalizing the training experience to 

each user. By utilizing the raw data and the assessment results in previous sessions the agent can learn 

which guiding entities (UIs, holograms, aid-lines, etc.) prove helpful to the user, and generate an 

environment tailored around the user’s strengths and weaknesses. Through challenging him on every step, 

while simultaneously supplying sufficient guidance the simulation can deliver a gradual learning curve. 

Finally, we plan to incorporate this thesis together with the aforementioned features and the work done in 

[40], to create an intelligent tool for authoring VR training scenarios as well as assisting the user in 

completing them. 

 Currently, when using our VR ML module for training ML agents, the user needs to exit the virtual 

environment and manually run the python script for training the CNN models. In order to avoid this tedious 

process, we plan to offer the user the option to trigger the training script directly through the VR 

environment, optimally giving feedback for its progress. This allows him to continue with the development 

of other tasks while the ML agent is being trained. 

 Even though our VR Logger can log the most common and descriptive types of VR data, there are 

still some data that can augment the agents learning, such as force applied to an interactable object or 

collisions with the static environment. Even though in most cases the information these types of data 

provide can be excavated from the resulting changes in transform, in specific cases of heavy objects and 

static objects with heavy friction this information is vital for producing an accurate ML model, and it can 

greatly reduce the amount of training data needed. 

 Continuing with the analytics platform, we plan to merge our scoring factors implementation with 

the VR Logger module in order to create a module that produces coherent insights for each session, such 

as preferred hand for each tool, most used interaction points on an object and metrics on the least interacted 

tools. Subsequently, these insights can be to the supervisor or the developer to effortlessly understand how 

the users interact with the virtual environment and adapt the simulation to fit their needs. 

 Finally, in our opinion each approach for VR assessment presented in this thesis is best suited for 

evaluating different types of tasks. Based on our intuition we suspect that the assessment of cognitive tasks, 

such as multiple choice questions, are established easier by exploiting the analytics based methodology, 



while psychomotor tasks by the ML implementation. A formal study proving or invalidating this assumption 

would prove particularly interesting since it could prove vital in pointing the future development of this 

work towards the correct direction. 
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Appendix 1 – Analytics Assessment 

Below the AnalyticsManager code is presented. This manager is responsible for initializing and finalizing 

the scoring factors, as well as storing their results. In addition, the feedback panels are managed by this 

class.  

 

 

 



 

 

 

 

 

 

 



Below the class base class of scoring factors is presented as well as the ScoringFactorData struct which 

serves as a generic descriptive struct for all scoring factors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix 2 – VR Session Logging 

Below is the code of the PropagateLogging script is shown. This script is attached to each object that is 

currently logged except the virtual hands and the camera. 

 
//Variable used only on the stress test demo. 
   public bool doNotDestroy; 
    
   //The depth level of this script. How many other objects did it pass before being 
   //attached to this one? 
   private int _level; 
   //Previous position and angle used for detecting if the object has stopped moving. 
   private Vector3 _prevPosition; 
   private Vector3 _prevAngles; 
   //Transformation difference tolerance for ending logging. 
   private const float EndTolerance = 0.01f; 
   //Used for the color change effect. 
   private Color oldColor; 
   //The originating hand. 
   private LoggerManager.TrackingTarget _target; 
   //Time counter used for computing when to stop logging the transformation of this object. 
   private float _destroyCounter; 
    
   //Init function for setting the depth level of this script as well as the original  
   //material. 
   public void SetLevel(int level,LoggerManager.TrackingTarget target) 
   { 
      _level = level; 
      var MR = GetComponent<MeshRenderer>(); 
      if (!MR) return; 
    
      var material = MR.material; 
      oldColor = material.color; 
      material.color = Color.green; 
      _target = target; 
   } 
 
   //Collision Detection function which adds the propagating script to the collided object. 
   public void OnCollisionStay(Collision other) 
   { 
      //Skip static objects. 
      if (other.gameObject.isStatic) 
      { 
         return; 
      } 
       
      LoggerManager.Instance.IncreaseLoggingCount(); 
      //Add it only if it doesn't already have it. 
      var target = other.transform.root.gameObject; 
      if(!target.GetComponent<PropagateLogging>()) 
         target.AddComponent<PropagateLogging>().SetLevel(_level+1,_target); 
   } 
   //Function called on every frame responsible for deleting the object. 
   public void Update() 
   { 
      //Objects which are directly held are logged through the InteractionLoggerImproved  
      //script. 
      if (_level == 0) return; 



      //Check transformation difference from last frame in case we need to delete this. 
      var transform1 = transform; 
      if (CompareVector3(_prevAngles,transform1.eulerAngles,EndTolerance) && 
          CompareVector3(_prevPosition,transform1.position,EndTolerance)) 
         { 
            _destroyCounter += Time.deltaTime; 
            if (_destroyCounter > 1 && doNotDestroy==false) 
            { 
               Destroy(this);  
            } 
         } 
         else 
         { 
            _destroyCounter = 0; 
         } 
      _prevPosition = transform1.position; 
      _prevAngles= transform1.eulerAngles; 
   } 
    
   //Function called on every frame AFTER the physics engine has finished its calculations. 
   //It's responsible for logging the object's transformation. 
   public void LateUpdate() 
   { 
      var transformRef = transform; 
      var trans = transformRef.position; 
      var rot = transformRef.rotation.eulerAngles; 
      var content = " "+gameObject.name + " "+ trans.x + " " + trans.y + " " + trans.z + " " + 
rot.x + " " + rot.y + " " + rot.z; 
       
      LoggerManager.Instance.WriteToFile(_target,content); 
   } 
 
   //Function comparing two vectors and returns true when the script must be destroyed. 
   private bool CompareVector3(Vector3 a, Vector3 b,float tolerance) 
   { 
      var dx = a.x - b.x; 
      var dy = a.y - b.y; 
      var dz = a.z - b.z; 
 
      if (Mathf.Abs(dx) > tolerance) return false; 
      if (Mathf.Abs(dy) > tolerance) return false; 
      if (Mathf.Abs(dz) > tolerance) return false; 
 
      return true; 
   } 
   //Function called when this script is destroyed. It restores the original material. 
   public void OnDestroy() 
   { 
      var MR = GetComponent<MeshRenderer>(); 
      if (!MR) return; 
      var material = MR.material; 
      material.color = oldColor; 
 
      MR.material = material; 
   } 
} 

 

 



Appendix 3 – Supervised ML Functions 

Below our functions for building our model and fitting it to our training data are presented. Only the multi-

view implementation is shown here. 

 
def submodel(x): 
    #Each camera model has 3 convolution layers each with its corresponding max pooling 
    #layer. 
    l1 = Conv2D(filters=64, kernel_size=(3, 3), padding='same', activation='relu')(x) 
    l2 = MaxPooling2D(pool_size=(2, 2), strides=2, padding='same')(l1) 
    l3 = Conv2D(filters=128, kernel_size=(3, 3), padding='same', activation='relu')(l2) 
    l4 = MaxPooling2D(pool_size=(2, 2), strides=2, padding='same')(l3) 
    l5 = Conv2D(filters=256, kernel_size=(3, 3), padding='same', activation='relu')(l4) 
    l6 = MaxPooling2D(pool_size=(2, 2), strides=2, padding='same')(l5) 
 
    return l2 
 
 
def build_model(): 
    #Defining input shape of model for each camera. 
    x0 = keras.Input(shape=(basewidth, basewidth, 3), name='cam0') 
    x1 = keras.Input(shape=(basewidth, basewidth, 3), name='cam1') 
    x2 = keras.Input(shape=(basewidth, basewidth, 3), name='cam2') 
    x3 = keras.Input(shape=(basewidth, basewidth, 3), name='cam3') 
     
    #Create models with all 3 convolutional layers for each camera. 
    m0 = submodel(x0) 
    m1 = submodel(x1) 
    m2 = submodel(x2) 
    m3 = submodel(x3) 
     
    #Concatenate the models to the final CNN. 
    x = keras.layers.concatenate([m0, m1, m2, m3]) 
 
    #Add sequentially flatten and dense layers. 
    l1 = Flatten()(x) 
    l2 = Dense(1024, activation='relu')(l1) 
    l3 = Dropout(0.5)(l2) 
    l4 = Dense(3, activation='softmax')(l3) 
 
    #Create the final model specifying inputs and outputs 
    model = keras.Model(inputs=[x0, x1, x2, x3], 
                        outputs=[l4]) 
    return model 
 
 
 
 
 
 
 
def train(model, x_train, y_train, x_test, y_test, x_val, y_val, i): 
    #Parameters epoch, batch_size and optimizer are global. 
    #Optimize our model using crossentropy and the corresponding optimizer. 
    if (optimizer == "Adadelta"): 



        model.compile(  loss=keras.losses.categorical_crossentropy, 
             optimizer=keras.optimizers.Adadelta(), 
                        metrics=['accuracy']) 
 
    if (optimizer == "SGD"): 
        model.compile(loss=keras.losses.categorical_crossentropy,   
       optimizer=keras.optimizers.sgd(), 
                      metrics=['accuracy']) 
 
    #Fiting the model to our training and validation data. 
    history = model.fit({'cam0': x0_train, 'cam1': x1_train,  
   'cam2': x2_train, 'cam3':  x3_train}, 
   y_train, 
   batch_size=batch_size,  
   epochs=epochs, verbose=True, 
                         validation_split=0.1) 
     
    #Testing our model on the test dataset. 
    result = model.evaluate(x_test, y_test) 
 


