
Computer Science Department 

University of Crete  

 

 

 

 

LEMP: A Peer-to-Peer Video Streaming Protocol 

 

 

Konstantinos Katertzis  
 
 

 
Thesis Submitted to the faculty of the 

University of Crete in partial fulfillment 

of the requirements for the degree of 

MASTER OF SCIENCE  

In 

Computer Science 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 

Heraklion, June 2009 



ii 

 

  



iii 

 

ΠΑΝΕΠΙ΢ΣΗΜΙΟ ΚΡΗΣΗ΢  
ΣΜΗΜΑ ΕΠΙ΢ΣΗΜΗ΢ ΤΠΟΛΟΓΙ΢ΣΩΝ 

 

 

 

 

LEMP: A Peer-to-Peer Video Streaming Protocol 

Εξγαζία πνπ ππνβιήζεθε από ηνλ  
Κσλζηαληίλν Καηεξηδή  

σο κεξηθή εθπιήξσζε ησλ απαηηήζεσλ γηα ηελ απόθηεζε  

ΜΕΣΑΠΣΤΥΙΑΚΟΤ ΔΙΠΛΩΜΑΣΟ΢ ΕΙΔΙΚΕΤ΢Η΢ 
 

 
 
 

΢πγγξαθέαο :  
___________________________________ 

Κσλζηαληίλνο Καηεξηδήο 

Σκήκα Επηζηήκεο Τπνινγηζηώλ  

Παλεπηζηήκην Κξήηεο  
 

Εηζεγεηηθή Επηηξνπή: 
___________________________________ 

Επάγγεινο Μαξθάηνο 

Καζεγεηήο, Επόπηεο 

 

 ___________________________________ 

Μέκα Ρνπζζνπνύινπ  

Επίθνπξνο Καζεγήηξηα, Μέινο  
 

___________________________________ 

Αζαλάζηνο Μνπρηάξεο 

Επίθνπξνο Καζεγεηήο, Μέινο  
 

Δεθηή :  
___________________________________ 

Πάλνο Σξαραληάο, Καζεγεηήο  
Δηεπζπληήο Μεηαπηπρηαθώλ ΢πνπδώλ ζην Σκήκα Επηζηήκεο Τπνινγηζηώλ  

ηνπ Παλεπηζηεκίνπ Κξήηεο 

 

Ηξάθιεην, Ινύληνο 2009 

  



iv 

 

 

  



1 

 

 
Abstract - In this work we propose LEMP, a new scalable application-layer protocol, specifically designed for 

video streaming applications with large client sets. LEMP is a pull-based protocol in which peers act both as 

clients and partial servers. The novelty of our p rotocol is its use of a semi-h ierarchical overlay which, in a sense, 

“brings back to life” the traditional tree-based approach but this time from a specific only point of view. We 

emphasize four salient features of LEMP design and implementation: 1) fault-tolerance and self-recovery so as 

to successfully adapt to high churn environments, 2) minimum simultaneous video server channels , 3) 

manageable network traffic per client and 4) minimum control overhead. We present a detailed design 

justification, implementation and evaluation of our prototype on real-world PlanetLab testbed and large-scale 

emulation on the Emulab testbed. Our comparat ive analysis with an existing widely deployed commercial 

system shows that LEMP preserves high QoS and min imum control overhead. 

Πεξίιεςε – ΢ηελ παξνύζα εξγαζία παξνπζηάδνπκε ην LEMP, έλα λέν θιηκαθνύκελν πξσηόθνιιν επηπέδνπ 

εθαξκνγήο, ην νπνίν είλαη ζρεδηαζκέλν  εηδηθά γηα video streaming εθαξκνγέο κε κεγάιν αξηζκό πειαηώλ. Σν  

LEMP είλαη έλα pull-based πξσηόθνιιν ζην νπνίν νη κεηέρνληεο ιεηηνπξγνύλ ζαλ πειάηεο θαη κεξηθώο ζαλ 

δηαθνκηζηέο. Η πξσηνπνξία ηνπ πξσηνθόιινπ καο είλαη ε ρξήζε ηεο εκη-ηεξαξρηθήο ηνπ ηνπνινγίαο ε νπνία 

θαηά θάπνην ηξόπν επαλαθέξεη ζην πξνζθήλην ηελ παξαδνζηαθή δελδξνεηδή πξνζέγγηζε, αιιά κόλν από κία 

ζπγθεθξηκέλε νπηηθή γσλία απηή ηελ θνξά. Σνλίδνπκε ηέζζεξα βαζηθά ραξαθηεξηζηηθά ηεο ζρεδίαζεο θαη 

πινπνίεζεο ηνπ LEMP : 1) επξσζηία θαη απηό -αλάξξσζε έηζη ώζηε λα πξνζαξκόδεηαη επηηπρώο ζε ηδηαηηέξσο 

δπλακηθά πεξηβάιινληα, 2) ειαρηζηνπνίεζε ηνπ απαηηνύκελνπ εύξνπο δώλεο από ηνλ δηαθνκηζηή, 3) αλεθηή 

δηθηπαθή θίλεζε αλά πειάηε θαη 4) ειαρηζηνπνίεζε ηνπ θόξηνπ ηεο ηεξαξρίαο ειέγρνπ. Παξνπζηάδνπκε κία 

ιεπηνκεξή αηηηνιόγεζε ηνπ ζρεδηαζκνύ, πινπνίεζε θαη αμηνιόγεζε ηνπ πξσηνηύπνπ καο ζην PlanetLab  

testbed θαζώο θαη εμνκνίσζε κεγάιεο θιίκαθαο ζην Emulab testbed. Η ζπγθξηηηθή καο αλάιπζε κε έλα ήδε 

ππάξρνλ θαη επξέσο δηαδεδνκέλν αληίζηνηρν εκπνξηθό ζύζηεκα δείρλεη όηη ην  LEMP δηαηεξεί πςειή πνηόηεηα 

ππεξεζηώλ θαη πεξηνξηζκέλν θόζηνο ειέγρνπ.  
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Abstract - In this work we propose LEMP, a new 

scalable application-layer protocol, specifically 

designed for video streaming applications with 

large client sets. LEMP is a pull-based protocol in 

which peers act both as clients and partial servers. 

The novelty of our protocol is its use of a semi-

hierarchical overlay which, in a sense, “brings back 

to life” the traditional tree-based approach but this 

time from a specific only point of view. We 

emphasize four salient features of LEMP design 

and implementation: 1) fault-tolerance and self-

recovery so as to successfully adapt to high churn 

environments, 2) min imum simultaneous video 

server channels, 3) manageable network traffic per 

client and 4) minimum control overhead. We 

present a detailed design justification, 

implementation and evaluation of our prototype on 

real-world PlanetLab testbed and large-scale 

emulation on the Emulab testbed. Our comparat ive 

analysis with an existing widely deployed 

commercial system shows that LEMP preserves 

high QoS and minimum control overhead.  

1. Introduction  

Over the past few years, streaming technology has 

become one of the leading edges in worldwide 

network communications. The last added corner 

stone in this trend is video streaming, which gains 

momentum not only due to the penetration of 

broadband Internet access into households but also 

because it seems to perfectly fit the mult imedia 

social framework of our days. In July 2006, more 

than 100 million videos were being watched every 

day and this number continues to increase [23]. On 

the other side of this coin, the traditional client-

server architecture, where each client is allocated a 

dedicated stream from the server, is both costly 

(e.g., YouTube’s bandwidth costs are estimated to 

1 million a day) and has difficu lty scaling to large 

client sets. 

Bearing in mind the above, several proposals have 

been made to adapt the advantages of peer-to-peer 

(P2P) architecture to video streaming technology. 

P2P approaches have already been successfully 

applied to file transfer systems and now developers 

are focusing on the more demanding area (in terms 

of delay, churn and real-time constraints) of video 

streaming. Roughly speaking, the bas ic approach of 

these proposals is as follows: each peer 

participating in the system has the dual role of 

receiving and serving the video as well. Some of 

the differentiating aspects of these systems are 

whether or not there is a central server that 

facilitates the distribution amongst peers , whether 

the video is a live feed or a stored video, the 

architecture of the overlay (e.g. tree, mesh, cell, 

unstructured, etc.), whether video parts are buffered 

temporarily (sliding window buffering) or they are 

locally stored for the longterm, whether a push-

based or a pull-based method is preferred, whether 

the system is intended for a controlled environment 

or not and whether multip le downloads are 

supported (e.g. video segmentation). Each of the 

proposals that have been made thus far exhibits a 

set of tradeoffs. 

The main tradeoff that has to be dealt with is that 

between control overhead and delay, while 

achieving the goal of video continuity and smooth 

playback. In most systems (specifically those 

involving video segmentation over a pull-based 

method), each peer has to immediately inform its 

neighbors of a packet reception (buffer maps 

exchange) and the neighbors , interested in this 

packet, should make a straight-forward request for 

the packet. In this way, the delay is minimized but 

a noticeable control overhead is added to the 

system. For the overhead to be reduced, a peer 

might resort to less frequent buffer maps exchanges 

(e.g. after dozens of new packets have been 

received) but this can lead to extended delays and 

possible video interruptions.  
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Although P2P models based on file segmentation 

have already been successfully implemented in a 

large scale (e.g. BitTorrent), this is not still the case 

for (live) video streaming. The main d ifference is 

that, in P2P video streaming systems, peers are 

more interested in low delays (in itial buffering 

delay and playback delay) and v ideo continuity 

rather than in maximizing the aggregated download 

throughput of their link. Moreover, peers in 

existing proposals often have to carry the triple 

burden of serving other peers (which incurs 

bandwidth), storing video parts for long periods of 

time (as in the case of push and static local store 

methods) and reconstructing received video parts 

for playback (which incurs computational effort). 

Thus, the demands of this relatively new area are 

more challenging than in tradit ional P2P systems. 

The new challenges become more d ifficu lt due to 

strict timing and bandwidth requirements, peers’ 

unpredictable behavior and extremely large flash 

crowds. 

In this thesis, we propose LEMP a new scalable 

application-layer protocol, specifically designed for 

video streaming applications with large client sets. 

A preliminary version of the protocol was proposed 

in previous work but had limited evaluation and a 

number of limitations [24].  We thus present a 

complete rehaul of the LEMP protocol along with a 

detailed design justificat ion, implementation and 

evaluation of the protocol on real-world PlanetLab 

testbed and large-scale emulation on the Emulab 

testbed. 

We believe our protocol to be the key for 

minimizing overall video server network 

bandwidth, while simultaneously maintaining the 

latency of service to client requests at a min imum. 

We assume that client bandwidth is slightly larger 

than the playback rate for incoming traffic, that 

clients may be characterized by heterogeneity 

(computing power, buffer size) and that clients may 

join or leave the P2P overlay at any time either by 

choice or due to network failures.  

Our protocol is a pull-based protocol in which 

peers act both as clients (receiving the video) and 

partial servers (serving the video). The novelty of 

our protocol is its use of a semi-h ierarchical 

overlay which, in a sense, “brings back to life” the 

traditional tree-based approach but this time from a 

specific only point of view. Furthermore, we 

emphasize on the mechanism for the join and 

departure of clients, building it so as to be fault-

tolerant, self-recoverable while keeping the control 

overhead to minimum levels. A full description of 

the LEMP protocol in its initial stages is available 

in [24].  In this work, we provide a high-level 

description of its salient features and then focus on 

a number of design improvements we added to the 

protocol as we built a new implementation 

prototype.   

The rest of the document is organized as follows. In 

Section 2 we formulate the problem.  In Section 3 

we present the original LEMP protocol.  In Section 

4 we present the enhancements applied on the 

original protocol.  In Sections 5 and 6 we present 

an evaluation of our revised LEMP protocol using 

detailed measurements of an implementation on the 

PlanetLab and Emulab testbeds  respectively.  

Finally, in Section 7 we provide a summary 

regarding related work and in Sect ion 8 we 

conclude. 

2. Problem Formulation 

For simplicity we assume one video server S, 

containing a set of videos, with D the duration of 

each video. C is the set of all clients, with Cm the 

set of clients requesting the same video m up to a 

certain time point. The cardinality of these sets is nc 

and ncm, respectively. The buffer size available at 

each client, expressed in playing time, is d < D. 

There is no limit to the number of clients which can 

make requests, except that only one request per 

client may be outstanding or served at any moment. 

Client requests for video m are denoted by rjm, 

where 1 < j ≤ ncm and may arrive at any time. The 

server tries to serve them at discrete successive 

time points, ti, ti+1,…, so that ti+1 - ti ≤ tw. The latter 

(tw) is a constant that depends on the amount of 

time a client is willing to wait for service, before it 

decides to withdraw its request.  

The goal is to leverage as much as possible the 

available memory and bandwidth of the clients that 

are already being served by the server. Therefore, if 

at least one client receives the same video at 

successive time points with time difference tw < d, 

it is possible to form a “chain” of successive video 

streams that serve all client requests up to the 

present time. Thus, at some time point ti, there are 

ncm clients requesting the same video grouped in i 
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levels, namely L1, …, Li. The server is always at 

level L0 and broadcasts to the clients of level L1.  

Each client has only one channel for video 

reception and b channels for video broadcasting at 

slightly larger than the playback rate. These are the 

data or video channels.  

All clients use unicasting to broadcast video; hence, 

b is a positive integer, depending on the upper limit 

of video channels per client. It is possible for 

clients to fail, withdraw or operate in a lossy 

network environment.  

Consequently, such pipelines would break and the 

system should try to remedy the situation. 

Therefore, a solution must satisfy the following 

characteristics: 

 Be simple and fast to adapt quickly to the 

changing circumstances 

 Minimize simultaneous video server channels 

for the same v ideo 

 Ensure that no client waits longer than tw for 

service 

 Ensure manageable network t raffic per client 

 Provide speedy recovery for client or network 

failures 

 Have minimal requirements regarding client  

computing power 

 

3. Proposed Solution 

3.1 LEMP Hierarchy 

The LEMP protocol arranges clients into a 

hierarchy of i levels, where   0 < i ≤ D/ twThe 

main goal of the protocol is to create and maintain 

this hierarchy effectively.  

Contrary to other proposals [1, 8, 11], the data and 

control paths are different: The data path follows a 

tree-like arrangement where a client at level Li 

provides a set of up to b unicast streams to a group 

of clients at level Li+1. These streams do not have to 

be synchronized; they may be transmitting different 

parts of the buffer content.  

Assuming there are ni-1, ni and ni+1 clients at levels 

Li-1, Li and Li+1 respectively, the server divides the 

clients at level Li in ni-1 same-sized groups, if 

possible, assigning each group to a client at level  

Li-1. This forms a tree structure, used for video 

streams. 

The control path on the other hand is twofold: all 

the clients at level Li are organized in a star-like 

structure. One of the clients at each level Li is the 

Local Representative (LRi). This client together 

with other LRs from the rest of the levels 

communicates with the video server forming a 

control topology of a star, keeping overall 

communicat ion minimal. The rest of the clients at 

level Li maintain and exchange control information 

with their respective LRi. This arrangement allows 

quick response in the event of client failures.  

As for the arrangement of clients, from t ime ti to 

ti+tw the server receives client requests for the same 

video, which it groups into the level Li. The 

arrangement is not random; the end-to-end latency 

of the path between a client and the server is used 

as criterion to select the Local Representative for 

this level (LRi) and the second closest client is 

selected as the BackupLocal Representative (BLRi). 

This happens because LRi is the only client for 

level Li communicating with the server under 

normal conditions; hence, an effort is made to 

select the one closest to the server in terms of end-

to-end latency. Similarly, the BLR is selected in 

order to replace quickly a failed LR . This hierarchy 

is presented in Fig. 1, for the first two levels of 

clients. 

 

Figure 1. LEMP Control and Data Hierarchy 

3.2 Protocol Operations 

Under LEMP there are three phases for any client: 

Join, Work and Leave. 
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3.2.1 Join Phase 

Under Join, a peer v requests a video from the 

server. This request, as well as all other requests 

made by other clients within a specific t ime period 

(ti-1, ti-1 + tw), are gathered from the server who 

creates an ascending sorted list of  clients, based on 

the end-to-end latency between each client and 

itself. 

Next, the server determines whether there is 

already a broadcast to at least one client, currently 

receiving the first part of the video (level Li-1). If 

none exists, a new broadcast is scheduled by the 

server; otherwise, the new level Li and identity of 

LRi and BLRi are determined. 

This information is sent to the LRi and BLRi of 

level Li. Each client vi only receives the identity of 

LRi, BLRi LRi-1, BLRi-1 and its parent. Thus, the size 

of these messages is constant. 

Finally, the server divides the clients at the new 

level Li into ni-1 groups so as to ensure that they are 

equally distributed to the parents of the previous 

level. This information is sent to each parent at 

level Li-1, and its child at level Li, such that each 

client at level Li-1 knows its children at level Li. 

Thus, a forest of trees is formed, augmenting the 

data path. If possible, LRi and BLRi are not assigned 

any children due to their additional administrative 

load. 

3.2.2 Work Phase 

During this phase, the clients at level Li-1 broadcast 

the video in their buffers to their respective 

children at level Li. Apart from data, control 

informat ion is exchanged in order to detect any 

possible problems. 

First, all clients send periodically an Alive message 

to their respective LR. If no such message arrives to 

LR from any client v within a certain t ime interval 

tδ, then v is considered to have failed. Each of these 

Alive messages includes the client’s identity and 

load. Thus, a list of potential parents is formed, 

sorted according to their load, in case of regular 

parents fail. 

Finally, LRi periodically exchanges a special 

LRAlive message with the BLRi and the video 

server, containing all in formation updates regarding 

the state of clients at the particular level. Th is is 

sent so that the server or BLRi can detect potential 

failure of its peer and synchronize control 

informat ion. 

3.2.3 Leave Phase 

A client v may leave the overlay either by choice, 

in which case it sends a Quit message to LRi and 

also to its parent p and children, or unexpectedly 

(e.g. due to network failure ) so it no longer serves 

its children and does not send Alive messages to its 

LR. 

In both cases, p removes v from the list of its 

children. Furthermore, p stops broadcasting video 

to v. The LR updates its information, accordingly.  

 Orphans and Recovery 

The departure of a peer at level Li has the result 

that some peers at level Li+1 are now orphans. 

Since they know LRi, they send an OJoin 

(Orphan Join) message to LRi. LRi determines 

potential parents and replies by sending 

ODirect (Orphan Direct) messages, directing 

them to the appropriate new parents. If LRi has 

failed, the orphans try the same process with 

BLRi. 

If no new parent is found or both LRi and BLRi 

have failed at  the same t ime, the orphans 

contact the server, which schedules a new 

broadcast to them. 

 Uncertainty of Client Failu res  

The control communication pattern is fairly 

distributed and unreliable. It is possible that no 

Alive message by v reaches its respective LR 

within the time interval tδ/2. This is a partial 

failure; one or more network links have failed 

to deliver the Alive message, but client v 

operates properly. 

In this case the LR simply deletes v from its list 

of potential parents, although it keeps waiting 

for Alive messages for another time interval 

tδ/2 (a total of tδ). It is, thus, hoped that the link 

with v will operate again soon, in which case v 

is re-instated as a potential parent by the LR; 

otherwise, v is permanently deleted from its list 

4. Protocol Enhancements  

Thus far we have described the salient features of 

the original LEMP protocol.  In this section, we 
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describe features that we have added to the basic 

protocol as part of our newly implemented 

prototype.  

An under the hood analysis  was the main reason 

that lead us to the recently applied enhancements 

on the original protocol. This insightful analysis 

consisted of a detailed practical revision of the 

protocol and a complete re-implementation of it. 

The improvements made on the basic version of 

our new protocol (rehauled LEMP) are summarized 

below: 

 “On the fly” service of client requests 

 Client arrangement assigned to both server and 

LRs 

 Absence of BLR; step_LR role introduced  

 LRs’ control partial independence from server 

 Absence of OJoin messages 

 Improved failure inspection 

 Non-propagating failures 

 Support for live video 

 

We refer to the basic LEMP  protocol plus these 

improvements as “LEMP on the fly”. 

Further refining enhancements  applied to the 

rehauled LEMP protocol result in the latest version 

of our protocol (“LEMP heuristic”).  These 

improvements include: 

 Different heuristic for LR selection  

 An actual heuristic for step_LR selection 

 A fair heuristic for parent selection 

 Different handling of orphans 

4.1 On the fly service 

In the basic LEMP design described in Section 3, 

the server gathers all client requests made during a 

time period (ti-1, ti-1 + tw) and then tries to serve 

them. It is, thus, possible for a client to have to wait 

up to tw before being served (e.g. if his request was 

made at the beginning of the period). Although tw is 

not numerically set (or at least proposed) in LEMP, 

we envision a protocol with min imum startup delay 

and this potential wait  of tw must be reduced. 

In our revised protocol, we propose and implement 

an “on the fly” service of clients. That is, the 

moment the server receives a client request at level 

Li, it decides whether to serve it directly (e.g. when 

no peers exist at level Li-1) or, most importantly, it 

can immediately forward it to LRi-1. Once such a 

forwarding is made, the LRi-1 will immediately find 

a parent for the new client (see paragraph 4.2) 

leading to a min imum startup delay experienced by 

the client. This procedure depends on the 

improvements described below for its functionality. 

4.2 Client Arrangement 

As it is probably already suspected, contrary to 

LEMP, the arrangement of clients is not a server 

only responsibility.  

Specifically, client arrangement is now performed 

in two steps; each step is performed by a different 

protocol component. The server is still responsible 

for “nominating” the role of peers, regarding their 

hierarchical position, that is if they are LRs or 

normal peers. The second arrangement step, on the 

other hand, is the responsibility of the LRs.  LRs are 

now those who assign children (peers at level Li) to 

parents (peers at level Li-1) and thus decide on 

peers’ functional role into the protocol. The new 

procedure is as follows: let us assume that all 

requests made within the period (ti-1, ti-1 + tw) are 

successfully served and that the server moves to the 

next period, waiting for new requests. At this point 

the server has already created the ascending sorted 

list of peers (based on latency) at level Li-1 and has 

also chosen the LRi-1, which it informs of its role.  

We assume that a peer v requests the video (from 

the server) with in the time period (ti, ti + tw). After 

the hierarchical role (LRs or not) of peers at level 

Li-1 was set by the server, is now time for the LRi-1 

to set their functional role. The server simply 

forwards the request of peer v to LRi-1 and the 

responsibility of parent-to-child assignment is now 

in its hands. Likewise to LEMP, LRs try to be fair 

and preserve streaming load balance among 

parents. 

In this way, not only is the startup delay min imized 

but a workload balance is also achieved, since the 

server shares its “burden” with LRs.  

4.3 Step_LRs instead of BLR 

In the original p rotocol, there is supposed to be a 

Local Representative (LR) and a Backup Local 

Representative (BLR) at each level. Our first, 

though a bit rough, implementation revealed that 

setting tw to a medium value, renders the presence 

of BLR almost unnecessary, as far as successful 
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query forwarding to the LR is concerned. Such a tw 

value however, keeps number of peers at each level 

respectively low and furthermore creates a more 

flexib le hierarchy in terms of level maintenance. 

Moreover, the cost of keeping BLR updated didn’t 

seem to pay back as often as initially believed, 

since the (only one) BLR itself had equal chances to 

undergo a failure/ departure. Hence, we preferred a 

more sophisticated approach which further 

increases protocol robustness while minimizing 

control overhead.  

The newly introduced role is that of step_LRs. 

Instead of having a single one backup LR which is 

continuously updated by the original LR, we choose 

to have a plethora of possible step LRs, one of 

which will be informed of its new role upon LR’s 

departure. More specifically, when LRi is about to 

leave, it will nominate an “alive” peer o f its level as 

new LR (step_LR), by informing h im of their level 

status. The same “hot potato” procedure will take 

place upon the departure of the step_LR, such that a 

LR is always present and up to date.   

Note that step_LR implementation requires  no 

special synchronization between the LR and the 

step_LR, while control overhead is kept to 

minimum levels. 

4.4 Partial Control Independence of LR 

As described in LEMP, LRi periodically exchanges 

a special LRAlive message with the video server, 

containing all information updates regarding the 

state of clients at the particular level.  

However, our analysis showed that this information 

is rather useless on the server side, after the before 

mentioned improvements have been applied. To be 

more p recise, under all c ircumstances, the 

maintenance of level Li is now under LRi’s control. 

That means that the server is no longer responsible 

for changes or failu res at the different levels.  

Still, there is a catch regarding LRi’s control 

informat ion at the server side. The server needs to 

be actually informed about LRi status, up till the 

point LRi waits for forwarded requests from the 

server; that is during the period (ti+1, ti+1 + tw). If 

LRi is up, then the server keeps on forwarding client 

requests (of level Li+1) normally; if not, the server 

is held responsible for incoming requests and 

accordingly serves them directly. In this way, we 

achieve, even as a side effect, an even lighter 

control hierarchy. 

4.5 Absence of OJoin messages 

Under the departure of a peer at level Li, orphans of 

level Li+1 send an OJoin message to LRi, according 

to the original LEMP protocol. However, this is not 

the case in our enhanced new protocol. Instead, the 

recover procedure takes place automatically and no 

extra messages are required. 

The departure of a peer at level Li, will be noticed 

by LRi after the absence of alive messages within 

the tδ interval (case of an unexpected departure) or 

by an explicit Quit message sent by the leaving 

peer (case of normal departure). LRi will then find a 

new parent for the orphan. This choice is currently 

made based on the number of children each parent 

has; more precisely, the parent with the fewest 

children is chosen from LRi as the step-parent of 

the orphan. 

We believe that OJoin and Alive messages serve 

the exact same purpose, in the case of an 

unexpected departure, so we totally removed OJoin 

messages from our new protocol. 

4.6 Improved failure inspection  

In the first protocol approach, unexpected failures 

are inspected only by the absence of Alive 

messages. Not much is mentioned nor specified for 

the special case of orphans under the absence of 

LRi (and BLRi in the original protocol). 

In the revised approach, we propose a 2-tier 

mechanis m against failures (e.g. broken link). We 

believe that this part of our system is vital for the 

overall system robustness and self-recovery, under 

challenging and unexpected situations. 

We have already elaborated on the first tier, which 

is consisted of the Alive messages. These messages 

are sent periodically by peers at level Li to their 

LRi. If no Alive messages are received by LRi, that 

is within the time interval tδ, the corresponding peer 

is assumed to be “dead” and the recover procedure 

takes place. Note that a peer failure is no longer 

indicated by the absence of two successive Alive 

messages, since our control hierarchy is now built 

atop the TCP protocol, meaning no packets are lost, 

and possible high delays are dealt by setting an 

elastic timeout on the respective socket.  
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However, it is possible that the LRi itself might 

leave the overlay, before video ends. In this case, 

there has to be a backup procedure running in all 

peers, such that they are able of self-detecting a 

failure at the level above (Li-1). In light of this, each 

peer has a timeout, regarding newly received 

buffers. If no packets are received before the 

expirat ion of this timeout, the peer considers  itself 

as an orphan and requests the video directly from 

the server. 

For this mechanism to be functional, the “buffer 

timeout” is set slightly larger than the value of tδ, 

such that its expirat ion certainly indicates a LR 

failure. 

4.7 Non-propagating failures 

One problem that came to surface, while  testing our 

first implementation, was propagating failures. 

Consider a peer A  at level i, who is facing 

bandwidth problems but is able to keep up with 

control message traffic. In other words, consider a 

node which is normally responding to LRi’s alive 

messages but for some reason, it is unable of 

serving the video to his children at level i+1. Since, 

peer A appears to be alive, no recovery procedure 

will begin until the “buffer timeout” at A’s children 

has exp ired. However, this “buffer timeout” will be 

propagated to all peers downstream peer A. In all, a 

single failure/ error might be propagated down to 

the leaves of the data tree, leading to a large 

number of orphans and rendering the protocol 

unstable. 

For this weakness to be dealt, while a peer 

undergoes an error or a “buffer timeout” instead of 

normally rep lying to the LR’s “alive” message, it 

replies with a “temp_off” message to inform the LR  

of the temporary problem. LR, consequently, will 

temporarily remove this peer from the list of 

parents and will red irect any possible orphans to 

step-parents of its level. In  this way, errors are not 

propagated to successive levels.  

4.8 Live video streaming 

The original protocol was theoretically designed for 

VoD services only. However, the advance of 

broadband connections has changed the 

perspectives of video streaming. A decade ago, 

IPTV or live broadcasting of a special event (e.g. 

football match, rare physical phenomena) to a large 

number of simultaneous peers seemed to be too 

ambitious. Nowadays, the ground for such systems 

is definitely more solid and able to hold the burden 

of their demands. 

We have, thus, focused our implementation on live 

video streaming. We use the term live to refer to 

the simultaneous distribution of the same content to 

all clients. The content itself might be a live feed 

(e.g. live webcam or recording camera) or a 

playback. Consequently, each peer unicasts the 

exact content to all his children, contrary to the 

original protocol. 

4.9 Different heuristic for LR selection 

In the original protocol, LR selection was strictly 

based on minimum RTT. However, the LR is 

responsible for maintain ing the control hierarchy 

which normally involves higher cpu usage 

demands. Thus, a more sophisticated heuristic 

based on a weighted average of RTT and peer’s cpu 

usage percentage was chosen. 

 

4.10 Heuristic for step_LR  selection 

The “hot potato” scheme engaged in “LEMP on the 

fly” was quite arbitrary, as far as the step_LR 

selection is regarded. Trying to keep things fair, we 

introduce an actual heuristic for step_LR selection 

based on a weighted average of peers’ current cpu 

usage and cpu usage history. 

4.11 A fair heuristic for parent selection 

A key aspect of our protocol’s feasibility and 

fairness is definitely parent selection, which was 

initially based on a very simple algorithm; children 

were equally distributed among parents without 

taking into account any bandwidth limitat ions. To 

provide a more effect ive approach for parent 

selection, children assignment to parents is now 

performed based on parents’ available bandwidth 

(exported with Iperf) and the number of already 

assigned children to them. 

 

4.12 Different handling of orphans 

In the original protocol, upon the reception of an 

orphan message, the server sent the video directly 

to the peer that issued the orphan request. With this 

enhancement, each client that undergoes a buffer 

control timeout (not handled by the LR of its level) 

will issue a first-orphan message to the server and 

will be redirected to the current (latest) level LR to 



11 

 

receive the video again. If the peer undergoes a 

second buffer control timeout during his lifetime, 

he will request and receive the video directly from 

the server. Note that, this handling concerns only 

buffer control timeout orphan requests and not 

orphan requests issued upon the reception of an 

explicit parent_out message (these orphans still 

receive the video directly from the server). We find 

that with this solution server stress is improved 

without heavily worsening video loss percentage.  

5. Planet-Based Performance Evaluation 

Our first prototype (LEMP) was implemented in 

the Java language, using the Java Media 

Framework  (JMF) API. However, the nature of 

Java renders it a relatively heavy tool for such 

demanding applicat ions. Moreover, JMF after its 

first release, received little attention, despite the 

promises and initial envision of Sun for a new 

powerful API for mult imedia applications. Its last 

update was made available in 2004 and since then 

the API is untypically considered as obsolete. Still, 

this first implementation armed us with significant 

experience and knowledge, while at the same time 

revealed problems and disadvantages of the initial 

protocol.  

After applying the new design changes to the basic 

LEMP protocol, we implemented in full a new 

prototype (LEMP-heuristic). Our new prototype is 

implemented in the Python language in conjunction 

with the GStreamer Python bindings. Our 

experience has shown that these new tools are 

lightweight, flexib le and reliable in terms of video 

streaming and network communication. 

5.1 Experiment Setup 

We conducted an experiment on PlanetLab to 

evaluate the performance of our new protocol. The 

total number of participating PlanetLab nodes  is 

390, which is almost the largest scale of nodes 

available on PlanetLab, and all results are extracted 

from one PlanetLab run. The v ideo stream is 3000 

seconds long and the streaming rate is 150 kpbs, 

unless stated otherwise. 

According to [21], when it comes to live media 

streaming, the nature of interactions between users 

and objects is fundamentally different from stored 

media streaming. The greatest diffe rence is that 

access to stored objects is user driven (since the 

media is “always there” and is only up to client’s  

Table 1. PlanetLab Experiment (Default) Parameters 

Parameter Value 

Total Number of Clients 390 

Streaming Bitrate 150 Kbps 

Video Length 3000 seconds 

Client Arrangement 

Interval (tw) 
60 seconds 

Alive Message Interval 

(tδ) 
3 seconds 

Client Interarrival Time Pareto α = 2.52, b = 1.55  

Client Lifetime Lognormal κ = 5.19, ζ = 1.44 

Unexpected Failures  5% 

 

will when he will access it), while access to live 

objects is object driven (since the timely 

constrained availability of the content drives user 

behavior). In light of this, our workload was strictly 

based on the model for live media workload 

generation, provided by [21], with peers inter-

arrival time following a pareto distribution (α = 

2.52, b = 1.55) and peers lifet ime modeled by a 

lognormal (κ = 5.19, ζ = 1.44).  

Note that, since our experiments are conducted in a 

real network, unexpected failures due to link 

congestion/break are present by definition. 

Furthermore, no special choice over PlanetLab 

nodes was performed, that is nodes might be 

heavily loaded both in terms of bandwidth 

consumption and cpu usage. In light of these, 

artificially injected failure probability was set to 

5% in all experiments, unless stated otherwise.  

5.2 Metrics 

We evaluated our prototype under the following 

metrics: 

 Startup Delay: time period elapsed between 

the time the video request is issued and the 

time packets start flowing in our p ipeline.  

 Video Loss Percentage (Discontinuity 

Index): this metric concerns the maintenance 

of continuous playback. We define as video 

discontinuity the percentage of time that no 

new data is flowing in the buffer to the total 

time the peer is supposed to watch the video 

(“lifet ime” – “startup delay”). In other words, 

it is a time estimator of the number of 

segments that arrive (if at all) after playback 

deadlines over the total number of segments. 
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Figure 2. Startup delay in seconds 

 

 Percentage of video received directly from 

server: we have each peer tracking down the 

time periods that, either due to problems (i.e. 

orphan client) or due to the nature of our 

protocol (i.e . clients at level 1), it receives the 

video directly from the server. This metric is 

an indicator of server stress in terms of time. 

As above, this metric is the ratio of the time 

the peer was served directly from the server to 

the total time the peer was watching the video 

(“lifet ime” – “startup delay”)  

 

 Total Outgoing Rate: Each peer runs an 

instance of Iptraf to monitor its bandwidth 

usage. This metric concerns the total (data and 

control) uploading rate of each peer.  

 

 Data Outgoing Rate: A second instance of 

Iptraf, providing more detailed information 

(i.e . port numbers), runs on every peer. This 

metric represents the data (video) uploading 

rate of each peer. 
 

 Control Outgoing Rate: Similarly to above, 

this metric depicts the control overhead of each 

peer in terms of upload bandwidth 

consumption. 

 

 Server Stress Saving Percentage: This metric 

refers to the protocol’s server bandwidth that is 

saved compared to the traditional client-server 

model. 

 

 
               Figure 3. Video loss percentage 

5.3 Experimental Results  

Unless stated otherwise, the results presented 

below refer to our latest protocol version, namely 

“LEMP heuristic”. 

 

5.3.1 Startup Delay 

Startup delay (Figure 2) is clearly kept in low 

levels for the majority of population. More 

specifically, 50% of peers received the video in less 

than 4 seconds and 90% of them in no more than 9 

seconds. Note that only 1% of the population 

received the video after 15 seconds or more. 

 

5.3.2 Video Loss Percentage 

Ideally, we would expect our protocol to achieve 

zero v ideo loss percentage for almost all clients. 

That is, despite the undergoing operations 

(departure, failure, rejoin, etc.) we envision the 

majority of peers observe no video discontinuity. 

Indeed, our prototype (Figure 3  “LEMP 

heuristic”) presents 0% video loss for 91% of the 

population, while 98% of peers lost no more than 

1.7% of the video. In order to clarify the impact of 

the different handling of orphans on video loss, we 

also choose to present video loss percentage for 

“LEMP on the fly”. As Figure 3 (“LEMP on the 

fly”) indicates, 95% of peers underwent 0% video 

loss and 98% of peers lost no more than 3% of the 

video. This comparison reveals the effectiveness of 

our protocol in terms of video continuity since 

video loss percentage remains at low levels, even 

under the new and more demanding handling of 

orphans. 
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Figure 4. Video percentage received directly from server 

 
       Figure 6. Average Outgoing Data Rate 

 

5.3.3 Percentage of video received directly 

from server 

As for server stress in terms of direct video service 

percentage, a remarkable improvement is achieved 

since a portion of the orphans population is now 

handled by other peers and not by the server. 

Figure 4 (“LEMP heuristic”) shows that not only is 

there an increase in the number of clients  receiving 

the video exclusively from other peers (81% in 

contrast to the 77% of “LEMP on the fly”), but 

more importantly, 90% of the peers received less 

than or equal to 40% of the video directly from the 

server, while in “LEMP on the fly” the same 

percentage of total population received less or 

equal to 65% of the video directly from the server. 

Moreover, only 5% of peers received the video 

directly from the server, right from the beginning. 

One should note that these percentages are over 

client’s lifetime, which varies among clients . These 

results show the protocol’s ability to relieve server 

stress effectively. 

 

 
   Figure 5. Average Outgoing Total Rate 

 
Figure 7. Average Outgoing Control Rate 

 
 

5.3.4 Total & Data Outgoing Rate 

To demonstrate the protocol’s feasibility, Figure 5 

shows the upload bandwidth consumption of 

participating peers.  We see that 60% of peers 

contributed less than 85kb/s on average and 90% of 

peer contributed less or equal to 190kb/s.  

Moreover, 99% of the population had outgoing 

total rate less or equal to 500kb/s while only 4 

peers experienced higher outgoing rate values. As 

expected, data outgoing rate (Figure 6) is almost 

identical to the total rate, since control rate is kept 

to min imum levels. Bearing in mind the worldwide 

invasion of broadband internet connections in 

households, we expect the majority of home users 

to successfully carry the burden of such uplink 

demands and only a small percentage of peers 

remain ing on dial-up modem connections having 

their upload bandwidth stressed. 

 

5.3.5 Control Outgoing Rate 

An important aspect of our protocol’s 

implementation is control overhead. Figure 7 

shows that 90% of peers experienced control 
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overhead of less than 1.4kb/s, while the biggest 

value was only 6.77kb/s. Figure 8 provides an 

illustration of total, data and control average 

outgoing rate, so as to better depict the magnitude 

difference between control and data outgoing rates. 

Moreover, since each node mainly interacts with 

the LR of its level (v ia alive and parent/child 

messages) and every control message has a fixed 

size, the average control overhead of each node 

does not grow with the overlay size or with the 

streaming bitrate. 

 

5.3.6 LRs and non-LRs 

To compare the stress placed on both LRs and non-

LRs, Figures 9 and 10 present the average outgoing 

data and control rate    for   LRs   and    simple  

(non-LR)  peers respectively.   Figure   9 

demonstrates the fairness of our protocol, since 

server stress appears to be equally distributed 

among LRs and normal peers. Note that this 

performance was achieved only after the parent 

selection heuristic was applied on our protocol and 

that in our protocol’s previous version (“LEMP on 

the fly”) LRs were clearly more stressed than non-       

 
         Figure 8. Average outgoing total/data/control rate 

 
Figure 10. Average Outgoing Control Rate for LRs and non-

LRs 

LR peers.  When it comes to control overhead, we 

expected LRs to be more loaded than normal peers, 

since it’s their responsibility to handle their level. 

Indeed, according to Figure 10, LRs  spend more 

bandwidth than non-LRs but still the fluctuations 

are modest. Most importantly, the knee of non-LRs 

demonstrates that the protocol places a bounded 

amount of control overhead on non-LR peers.  

5.3.7 Increased Unexpected Failures 

To evaluate the protocol under worst-case 

scenarios, we conducted experiments with peers 

failing unexpectedly with various (increasing) 

probabilit ies (5%, 10%, 15%, 20%). We would like 

to highlight once more that since all experiments 

take place on PlanetLab, unexpected failures due to 

link congestion/break are present by definition. The 

following three experiments, thus, push the 

protocol to its limits so as to further examine its 

robustness and performance.  

Figures 11, 12 and 13 present a comparison of the 

differentiating metrics of these experiments, so as 

to better present and compare the protocol’s 

performance under the different setups . 

 
Figure 9. Average Outgoing Data Rate for LRs and non-LRs 

 
Figure 11. Video percentage received directly from server 

under different percentages of unexpected failures  
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Figure 12. Video loss percentage 

5.3.7.1 Percentage of video received 

directly from server (unexpected 

failures) 

It is normal to expect that as unexpected failures 

increase, the server will have to carry some extra 

burden, regarding peers’ service; especially in the 

case of unexpected LR failures. Our concern was 

the extent to which the protocol preserves a high 

performance under such demanding circumstances. 

According to Figure 11, the protocol’s performance 

degrades as unexpected failures increase but still 

the majority of peers is served in an efficient p2p 

way. Even with 20% unexpected failures, 73% of 

peers receives the video exclusively from other 

peers. Moreover the number of peers that receive 

the video right from the beginning of their session 

directly from the server is analogous to the 

percentage of unexpected failures , which is the best 

possible scenario. 

5.3.7.2 Server Stress Saving Percentage 

The extra server burden, which is described above, 

is clearly depicted in Figure 13. The plot presents 

bandwidth savings at the server side in comparison 

to the traditional client-server model and clarifies 

the consequences of the increased unexpected 

failures. With 5% unexpected failures, the server 

saves 77% of the bandwidth that would had spent 

under the client-server model, while under 20% 

unexpected failures, server savings are reduced to 

64%. We choose to present percentages of server 

savings in terms of bandwidth demands, rather than 

absolute values of server stress, since these values 

are closely related to the overlay size and the 

streaming rate which varies among applications. 

 

 

Figure 13. Server Stress Saving Percentage 

5.3.7.3 Video Loss Percentage 

(unexpected failures) 

As for video loss percentage (Figure 12), though 

there is a degradation, 84-91% of peers experience 

no video losses, while for all cases 96% of peers 

loses no more than 5% of the video.  

5.3.8 Comparative Analysis 

To better evaluate our protocol’s performance, we 

also provide a comparison with one of the most 

widely deployed and commercially available P2P 

live-v ideo streaming systems, namely 

CoolStreaming [22]. Since the source code is not 

publicly availab le and as several technical 

informat ion and parameters are absent for an 

implementation of this system to be feasible by a 

third party, we choose to evaluate our protocol 

using the same parametric conditions  and 

experimental environment (PlanetLab) used in their 

evaluation so as to achieve a fair comparison. 

Specifically, the client set is  consisted of 200 

PlanetLab nodes and the default video bitrate is 500 

Kbps.  In the dynamic environment, peer lifet ime is 

exponentially distributed with an average of T 

seconds while unexpected failu res are set to 5%. 

5.3.8.1 Stable Environment 

We first evaluate continuous playback and control 

overhead in a stable environment; that is peers join 

the overlay and stay on until the end of the video 

stream. Regarding video playback continuity under 

different streaming rates  (Figure 14), our protocol 

outperforms CoolStreaming mainly due to two 

reasons. First, our protocol’s data hierarchy 

construction distributes children to parents based 
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Figure 14. Continuity index vs. streaming rates in stable 

environment 

 
Figure 16. Continuity index under dynamic environment – 

Streaming Bitrate 500 Kbps 

 

on their throughtput and the number of already 

assigned children to them such that bandwidth 

outages are min imized. Second, peers are normally 

bound to undergo no more than two video 

discontinuity malfunctions, since after the second 

one they will request the video directly from the 

server. This limit was set so as to both decrease 

server stress and keep video loss percentages at low 

levels. 

Control overhead (Figure 15) concerns less than 

0.8% of v ideo traffic volume and falls between the 

respective CoolStreaming overhead for 2 and 3 

partners. 

5.3.8.2 Dynamic Environment 

We then conduct experiments under the dynamic 

environment described in [10]. According to this 

setup, peers may leave (or fail) and jo in freely and 

their lifet ime is exponentially distributed with an 

average of T seconds. As Figure 16 indicates, our 

protocol presents higher continuity index than 

CoolStreaming mainly because most departures/ 

failures are caught by the LR before discontinuity 

malfunctions occur at lower levels. Furthermore, in 

the  absence  of  LR ,  a  leaving  peer  will  directly  

 
       Figure 15. Control Overhead – Streaming Bitrate 500Kbps 

 

inform h is children and they will consequently 

request the video from the server without 

undergoing any video loss.  

 

6. Emulation 

Since scalability is a key issue to the success of 

P2P video streaming systems, we also evaluate 

LEMP rehauled under an extensive emulation 

performed on the Emulab testbed.  

6.1 Emulation Methodology 

To allow experiments with a very large number of 

nodes, Emulab provides a multiplexed virtual node 

implementation (hereafter known as just "virtual 

nodes").  

Virtual nodes fall between simulated nodes and 

real, dedicated machines in terms of accuracy of 

modeling the real world. A virtual node is just a 

lightweight virtual machine running on top of a 

regular operating system. In particular, virtual 

nodes are based on the FreeBSD jail mechanism, 

that allows groups of processes to be isolated from 

each other while running on the same physical 

machine. Emulab virtual nodes provide isolation of 

the filesystem, process, network, and account 

namespaces. That is to say, each virtual node has 

its own private filesystem, process hierarchy, 

network interfaces and IP addresses, and set of 

users and groups. This level of virtualizat ion allows 

unmodified applications to run as though they were 

on a real machine. Virtual network interfaces are 

used to form an arbitrary  number of v irtual network 

links. These links may be individually shaped and 

may be multip lexed over physical links or used to 

connect virtual nodes within a single physical node. 
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Once the vnodes implementation was made clear, 

there were several other issues to be solved for the 

Emulab experiments to be feasible. These issues 

had main ly to do with restrictions associated with 

the hosting OS for FreeBSD jails, namely 

FreeBSD4.10. In particular, due to some 

limitat ions, gstreamer could not be installed so we 

had to simulate the media stream using a dummy 

data generation module of our own. Moreover, 

iptraf is strictly designed for Linux architecture and 

cannot be installed on FreeBSD. For this, the iptraf 

bandwidth monitoring was replaced by a more 

primitive approach based on the netstat utility. 

Note however that several medium-scale Emulab 

experiments were performed so as to ensure that 

the before mentioned changes don’t affect our 

protocol’s behavior and performance.  

Our transit-stub topologies of 1000 and 1800 nodes 

were generated using the GT-ITM generator. Link 

delays were automatically assigned using the 

sgb2ns tool and are proportional to the distance 

between nodes with their values ranging from 2-

187 ms. Peers inter-arrival time and lifetime follow 

the same pareto and lognormal distributions 

mentioned in paragraph 5.1. The v ideo stream is 

6000 seconds long and the streaming rate is 150 

kbps. Finally, all experiments were performed with 

the latest protocol version (“LEMP heuristic”) and 

unexpected failures were set to 5%, unless stated 

otherwise. 

6.2 Emulation Results  

Startup delay measurements do not show 

significant differences with the PlanetLab results, 

with 90% of peers receiving the video in no more 

than 10 seconds and only 4% of the population 

having to wait for more than 16 seconds to receive 

the video. This observation indicates that startup 

delay is independent of the total number of peers. 

 
 Figure 17. Emulab Startup delay in seconds  

Video loss percentage remains at very low levels 

with 95-96% of the population experiencing no 

video loss and 99% of the clients losing less or 

equal to 6% of the v ideo during their lifetime.  

Stress stress (as measured by the number of peers 

receiving the video directly from the server) is 

displayed in Figure 19.  We see that server stress  is 

slightly improved compared with previous 

experiments with 88% of peers receiv ing the video 

exclusively from other peers and 90-91% of the 

total population receiving less than or equal to 30% 

of the video directly from the server.  

Similarly to previous experiments, only a small 

percentage of peers (4%) received the video 

directly from the server. Figure 19 thus, 

demonstrates once again the scalability of the 

protocol. 

Average outgoing total, data and control rates 

present no significant differences from the previous 

experiments. This observation leads us to the 

conclusion that peers’ stress is stable and has 

nothing to do with the overall peer population, 

 
Figure 18. Emulab Video Loss Percentage 

 Figure 19. Emulab server stress savings as measured from 

video    percentage served directly from the server for each peer 
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       Figure 20. Emulab Average Outgoing Total Rate 

 
       Figure 22. Emulab Average Outgoing Control Rate 

since the protocol organizes clients into levels, with 

each peer (pi) being associated only with its own 

level (Li) and the next one (Li+1). 

An issue that required attention was whether the 

achieved fairness of the protocol (“LEMP 

heuristic”) will be sustained for larger scale 

experiments. According to Figure 23, the protocol 

appears to be strictly fair as far as LRs’ and normal 

peers’ stress is concerned, with the two 

distributions being almost identical.  

Since the control hierarchy remains unchanged, it is 

normal to expect that the average outgoing control 

rate among LRs and normal peers (Figure 24) will 

present the observed variations, with normal peers 

experiencing a pretty stable control overhead 

(around 0.55kb/s) and LRs being clearly more 

stressed. Still, the average control outgoing rate 

remains at low levels similarly to previous 

experiments. 

Being interested in evaluating our protocol’s 

robustness under abnormal condit ions, we present 

plots of the two metrics likely to be affected under 

 
         Figure 21. Emulab Average Outgoing Data Rate 

 
Figure 23. Emulab Average Outgoing Data Rate for LRs and 

non-LRs 

increased unexpected failures, namely video loss 

and server stress in terms of direct v ideo service.  

As Figure 25 depicts, increased unexpected failures 

have an impact on video loss percentage but still 

the high majority of peers receives the video with 

minimum video discontinuities. Even under heavy 

unexpected failu res (20%), 90% of total population 

loses no more than 2% of the video and 96% of 

peers loses less or equal to 5% of the video. Higher 

percentages may be considered as outliers since all 

video loss percentages are over peers’ lifet ime, 

meaning several clients might have lost just a few 

segments of the video but their lifet ime was too 

short. In order to prove our claim we have plotted 

video loss percentages and peers lifetime for all 

four unexpected failure scenarios. Figure 26 shows 

that the vast majority of high video loss 

percentages (i.e. more than 10%) main ly concern 

peers with short lifet ime.  

When it comes to video percentage received 

directly from the server, our system appears to be 

robust and stable despite the demanding scenarios 
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Figure 24. Emulab Average Outgoing Control Rate for LRs and 

non-LRs 

 
Figure 26. Emulab Video Loss and Peers’ Lifetime for all 

unexpected failures scenarios 

of increased unexpected failures. According to 

Figure 27, unexpected failures up to 10% don’t 

seem to affect server stress while higher 

percentages of failures (15% and 20%) have only a 

moderate impact on server bandwidth demands 

with 84% of peers receiving the video exclusively 

from other peers and 90% of the population 

receiving no more than 44% of the video direct ly 

from server. Still the percentage of peers receiving 

the whole video directly from the server remains 

low (4%) and quite unchanged. 

7. Related Work 

Adapting the advantages of peer to peer 

architecture on (video) streaming technology is a 

relatively unexplored research field which however 

has already attracted some attention. Several 

proposals [1, 2, 3, 4, 5, 12, 13, 20] focus on VoD 

media while other approaches [6, 7, 8, 9, 10, 11] 

deal with live video streaming.  

 

 
Figure 25. Emulab Video Loss under increased unexpected 

failures 

 
Figure 27. Emulab server stress in terms of direct video 

service under increased unexpected failures  

In most proposed approaches, peers are organized 

in an application layer multicast tree. In [1, 2, 6, 7, 

9, 11, 13] such a multicast tree is used as the 

building block for the  peers’ coordination. The 

main difference with our protocol is that in these 

systems, data and control hierarchy are unified; 

LEMP however, uses a tree-like hierarchy for data 

flow and a dual star-like architecture for control 

messages. Other differences concern client 

arrangement, as in [1], [2], [7] and [11] where  

control management and maintenance are 

performed totally by the server and no “special” 

roles are assigned to peers (e.g. LRs in LEMP). 

Moreover, some proposals ([2], [7]) first exhaust 

the server and then reside to the P2P approach 

while at the same time they deal with service 

interruptions only theoretically, unlike LEMP . [11] 

and [13] use techniques such as patching and 

shifted stream forwarding in order to handle 

disruptions while Venkata N. Padmanabhan et al. 

[9] use mult iple diverse distribution trees (and thus 

reassure redundancy in network paths) as well as 

Multiple Description Coding (meaning redundancy 

in data).   Similarly to LEMP , the authors of [6], 

propose the partitioning of clients to clusters with 

each cluster having a head and an associate-head 
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responsible for monitoring the membership of the 

cluster and transmitting the content to cluster 

members respectively. However, over a new client 

request the server has to run an algorithm so as to 

forward the request to another peer, while in our 

system this is done immediately, since the request 

is straightly forwarded to the LR of the previous 

level, who is already known.  
 

Having explored the tree-based approaches, we’ll 

now look into p2p video streaming approaches 

which are based on different building blocks (e.g. 

cell, mesh, unstructured overlays). 

An inspired proposal is the one made in [3], in 

which the authors insert the cell definition in order 

to deal with two challenges; namely how can a host 

find enough video pieces to assemble a complete 

video and what part of a video a host should cache, 

given a limited buffer size. A cell is a cluster of 

hosts which together can supply a complete video. 

Peers’ discovery is made easier and data 

redundancy is clearly supported. Still, only 

simulation results are presented while vital metrics 

such as delays and server stress are not addressed. 

A proposal based on the JXTA project (which 

hides/ tackles all streaming routing and storage re-

allocation details) and RSVP is presented in [4], 

which however only provides simulat ion results 

and does not address scalability. In contrast to 

LEMP, Alok Nandan et al. [5] and Mohamed 

Hefeeda et al. [12] propose prototypes which are 

independent of the underlying p2p substrate and 

may be deployed over other overlays (e.g. Pastry, 

Chord, Can ). The latter in fers and explo its 

properties of the underlying network (topology and 

performance), resulting in higher system 

performance. Systems based on mesh overlays are 

presented in [10] and [18]. In the first case, an 

inter-overlay scheme (based on multiple t ree 

structures) is used and parallel downloads are 

supported via the use of a buffer manager. In the 

second case the mesh-based approach is used in 

conjunction with other DHT systems, such as 

Chord or Pastry, while peers adopt static local 

storage of data (and not a “cache and relay” 

scheme as in LEMP).  

Mea Wang et al. [14] and Meng Zhang et al [15] 

propose a random packet scheduling strategy for 

their protocols. Specifically, in [14], a simple and 

probabilistic scheme (“perfect collaboration”) is 

combined with video segmentation under a pure 

push-based approach, unlike our pull-based 

protocol. In this way, exp licit requests are 

eliminated, control overhead is minimized and 

there is shorter initial buffering delay (10-20 

seconds).. In [15], both a pure pull-based and a 

pull-push hybrid protocol are examined, using the 

metric of peer bandwidth utilizat ion and system 

throughput. However, we believe that in such time-

constrained systems, metrics such as delay and 

video continuity should also be taken into account.  

Two proposals applicable to controlled 

environments are presented in [17] and [19], while 

our protocol is mainly intended for a wider 

deployment. The first one uses a push-pull based 

method and video segmentation while the latter 

focuses on IPTV over FTTN/xDSL networks. 

Another protocol based on a pull-push approach is 

the one presented in [8]. Their GridMedia 

prototype is built over an unstructured overlay 

(unlike LEMP) where each peer starts with the pull 

method (and delivers a packet only when there is 

an explicit request) and then turns to push method 

(that is relay packets to its neighbors for predefined 

time intervals). 

Stefan Birrer et al. [16] present a comparison of 

resilient overlay multicast approaches and 

specifically examine three d ifferent techniques: 

cross-link, in-tree and mult iple t ree redundancy. 

The paper mentions the advantages of each method 

and concludes (via both simulation and real-

experiments on PlanetLab) that the combination of 

in-tree and multip le-tree redundancy achieves 

highest delivery ratio under different failure 

scenarios; this is something that will be taken into 

account in our future work. Finally, Yan Huang et 

al. present challenges and architectural design 

issues of a large scale P2P VoD system, based on 

real experiments on their PPLive system. 

Segmentation, replication, content discovery, piece 

selection, transmission strategy and NAT/ firewall 

issues are taken into consideration. The authors 

only focus on VoD but their work includes 

extensive theoretical analysis as well as  

experimental results and thus provided a guideline 

for our research as well.   

8. Conclusion and Future Work 

In this thesis, we presented the design of LEMP 

with emphasis on a set of improvements that 

resulted in a complete rehaul of the original 

protocol. These improvements aim to a fast, light-
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weighted, fault-tolerant and self-recoverable 

application-layer P2P protocol for live video 

streaming.  

We extensively evaluated the performance of 

LEMP rehauled on the PlanetLab and Emulab 

testbeds, over a number of metrics  and the results 

demonstrated that our protocol is effective in terms 

of startup delay, video continuity, control overhead 

and server stress savings. Moreover, our 

comparative analysis  showed that LEMP rehauled 

outperforms CoolStreaming as continuity index and 

control overhead are concerned. 

For our future work, we are exploring parallel 

download support approaches to achieve higher 

utilizat ion without heavily interfering continuous 

playback and control overhead. 
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