
Computer Science Department

University of Crete

LEMP: A Peer-to-Peer Video Streaming Protocol

Konstantinos Katertzis

Thesis Submitted to the faculty of the

University of Crete in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE

In

Computer Science

Heraklion, June 2009

ii

iii

ΠΑΝΕΠΙ΢ΣΗΜΙΟ ΚΡΗΣΗ΢
ΣΜΗΜΑ ΕΠΙ΢ΣΗΜΗ΢ ΤΠΟΛΟΓΙ΢ΣΩΝ

LEMP: A Peer-to-Peer Video Streaming Protocol

Εξγαζία πνπ ππνβιήζεθε από ηνλ
Κσλζηαληίλν Καηεξηδή

σο κεξηθή εθπιήξσζε ησλ απαηηήζεσλ γηα ηελ απόθηεζε

ΜΕΣΑΠΣΤΥΙΑΚΟΤ ΔΙΠΛΩΜΑΣΟ΢ ΕΙΔΙΚΕΤ΢Η΢

΢πγγξαθέαο :

Κσλζηαληίλνο Καηεξηδήο

Σκήκα Επηζηήκεο Τπνινγηζηώλ

Παλεπηζηήκην Κξήηεο

Εηζεγεηηθή Επηηξνπή:

Επάγγεινο Μαξθάηνο

Καζεγεηήο, Επόπηεο

Μέκα Ρνπζζνπνύινπ

Επίθνπξνο Καζεγήηξηα, Μέινο

Αζαλάζηνο Μνπρηάξεο

Επίθνπξνο Καζεγεηήο, Μέινο

Δεθηή :

Πάλνο Σξαραληάο, Καζεγεηήο
Δηεπζπληήο Μεηαπηπρηαθώλ ΢πνπδώλ ζην Σκήκα Επηζηήκεο Τπνινγηζηώλ

ηνπ Παλεπηζηεκίνπ Κξήηεο

Ηξάθιεην, Ινύληνο 2009

iv

1

Abstract - In this work we propose LEMP, a new scalable application-layer protocol, specifically designed for

video streaming applications with large client sets. LEMP is a pull-based protocol in which peers act both as

clients and partial servers. The novelty of our p rotocol is its use of a semi-h ierarchical overlay which, in a sense,

“brings back to life” the traditional tree-based approach but this time from a specific only point of view. We

emphasize four salient features of LEMP design and implementation: 1) fault-tolerance and self-recovery so as

to successfully adapt to high churn environments, 2) minimum simultaneous video server channels , 3)

manageable network traffic per client and 4) minimum control overhead. We present a detailed design

justification, implementation and evaluation of our prototype on real-world PlanetLab testbed and large-scale

emulation on the Emulab testbed. Our comparat ive analysis with an existing widely deployed commercial

system shows that LEMP preserves high QoS and min imum control overhead.

Πεξίιεςε – ΢ηελ παξνύζα εξγαζία παξνπζηάδνπκε ην LEMP, έλα λέν θιηκαθνύκελν πξσηόθνιιν επηπέδνπ

εθαξκνγήο, ην νπνίν είλαη ζρεδηαζκέλν εηδηθά γηα video streaming εθαξκνγέο κε κεγάιν αξηζκό πειαηώλ. Σν

LEMP είλαη έλα pull-based πξσηόθνιιν ζην νπνίν νη κεηέρνληεο ιεηηνπξγνύλ ζαλ πειάηεο θαη κεξηθώο ζαλ

δηαθνκηζηέο. Η πξσηνπνξία ηνπ πξσηνθόιινπ καο είλαη ε ρξήζε ηεο εκη-ηεξαξρηθήο ηνπ ηνπνινγίαο ε νπνία

θαηά θάπνην ηξόπν επαλαθέξεη ζην πξνζθήλην ηελ παξαδνζηαθή δελδξνεηδή πξνζέγγηζε, αιιά κόλν από κία

ζπγθεθξηκέλε νπηηθή γσλία απηή ηελ θνξά. Σνλίδνπκε ηέζζεξα βαζηθά ραξαθηεξηζηηθά ηεο ζρεδίαζεο θαη

πινπνίεζεο ηνπ LEMP : 1) επξσζηία θαη απηό -αλάξξσζε έηζη ώζηε λα πξνζαξκόδεηαη επηηπρώο ζε ηδηαηηέξσο

δπλακηθά πεξηβάιινληα, 2) ειαρηζηνπνίεζε ηνπ απαηηνύκελνπ εύξνπο δώλεο από ηνλ δηαθνκηζηή, 3) αλεθηή

δηθηπαθή θίλεζε αλά πειάηε θαη 4) ειαρηζηνπνίεζε ηνπ θόξηνπ ηεο ηεξαξρίαο ειέγρνπ. Παξνπζηάδνπκε κία

ιεπηνκεξή αηηηνιόγεζε ηνπ ζρεδηαζκνύ, πινπνίεζε θαη αμηνιόγεζε ηνπ πξσηνηύπνπ καο ζην PlanetLab

testbed θαζώο θαη εμνκνίσζε κεγάιεο θιίκαθαο ζην Emulab testbed. Η ζπγθξηηηθή καο αλάιπζε κε έλα ήδε

ππάξρνλ θαη επξέσο δηαδεδνκέλν αληίζηνηρν εκπνξηθό ζύζηεκα δείρλεη όηη ην LEMP δηαηεξεί πςειή πνηόηεηα

ππεξεζηώλ θαη πεξηνξηζκέλν θόζηνο ειέγρνπ.

2

Acknowledgements

I would like to thank my supervisor, Prof. Mema Roussopoulos, for her feedback and her useful

comments on the text. I also thank Vassilis Lekakis for his time, patience and ideas on improving the

protocol as well as for his help regarding the PlanetLab testbed experiments.

I would like to thank some friends from Heraklion who gave me strength when the “battery was

running low”. Gabriel, Natasa, Panagioti, George (and family), Katerina and James thank you all for

your company.

Finally, profound thanks to my parents, my sister and my brothers for always being there.

3

Table of Contents
Abstract .. i

Acknowledgements .. 2

1. Introduction.. 4

2. Problem Formulation... 5

3. Proposed Solution ... 6

3.1 LEMP Hierarchy ... 6

3.2 Protocol Operations ... 6

3.2.1 Join Phase .. 7

3.2.2 Work Phase .. 7

3.2.3 Leave Phase ... 7

4. Protocol Enhancements ... 7

4.1 On the fly service ... 8

4.2 Client Arrangement.. 8

4.3 Step_LRs instead of BLR.. 8

4.4 Partial Control Independence of LR ... 9

4.5 Absence of OJoin messages .. 9

4.6 Improved failure inspection .. 9

4.7 Non-propagating failures.. 10

4.8 Live video streaming .. 10

4.9 Different heuristic for LR selection .. 10

4.10 Heuristic for step_LR selection ... 10

4.11 A fair heuristic for parent selection ... 10

4.12 Different handling of orphans ... 10

5. Planet-Based Performance Evaluation .. 11

5.1 Experiment Setup .. 11

5.2 Metrics.. 11

5.3 Experimental Results.. 12

5.3.1 Startup Delay ... 12

5.3.2 Video Loss Percentage .. 12

5.3.3 Percentage of video received directly from server .. 13

5.3.4 Total & Data Outgoing Rate... 13

5.3.5 Control Outgoing Rate .. 13

5.3.6 LRs and non-LRs.. 14

5.3.7 Increased Unexpected Failures .. 14

5.3.8 Comparative Analysis.. 15

6. Emulation ... 16

6.1 Emulation Methodology ... 16

6.2 Emulation Results .. 17

7. Related Work .. 19

8. Conclusion and Future Work .. 20

References ... 21

4

LEMP: A Peer-to-Peer Video Streaming Protocol

Katertzis Kostas

Department of Computer Science

University of Crete

Heraklion, Crete, Greece

kater@csd.uoc.gr

Abstract - In this work we propose LEMP, a new

scalable application-layer protocol, specifically

designed for video streaming applications with

large client sets. LEMP is a pull-based protocol in

which peers act both as clients and partial servers.

The novelty of our protocol is its use of a semi-

hierarchical overlay which, in a sense, “brings back

to life” the traditional tree-based approach but this

time from a specific only point of view. We

emphasize four salient features of LEMP design

and implementation: 1) fault-tolerance and self-

recovery so as to successfully adapt to high churn

environments, 2) min imum simultaneous video

server channels, 3) manageable network traffic per

client and 4) minimum control overhead. We

present a detailed design justification,

implementation and evaluation of our prototype on

real-world PlanetLab testbed and large-scale

emulation on the Emulab testbed. Our comparat ive

analysis with an existing widely deployed

commercial system shows that LEMP preserves

high QoS and minimum control overhead.

1. Introduction

Over the past few years, streaming technology has

become one of the leading edges in worldwide

network communications. The last added corner

stone in this trend is video streaming, which gains

momentum not only due to the penetration of

broadband Internet access into households but also

because it seems to perfectly fit the mult imedia

social framework of our days. In July 2006, more

than 100 million videos were being watched every

day and this number continues to increase [23]. On

the other side of this coin, the traditional client-

server architecture, where each client is allocated a

dedicated stream from the server, is both costly

(e.g., YouTube’s bandwidth costs are estimated to

1 million a day) and has difficu lty scaling to large

client sets.

Bearing in mind the above, several proposals have

been made to adapt the advantages of peer-to-peer

(P2P) architecture to video streaming technology.

P2P approaches have already been successfully

applied to file transfer systems and now developers

are focusing on the more demanding area (in terms

of delay, churn and real-time constraints) of video

streaming. Roughly speaking, the bas ic approach of

these proposals is as follows: each peer

participating in the system has the dual role of

receiving and serving the video as well. Some of

the differentiating aspects of these systems are

whether or not there is a central server that

facilitates the distribution amongst peers , whether

the video is a live feed or a stored video, the

architecture of the overlay (e.g. tree, mesh, cell,

unstructured, etc.), whether video parts are buffered

temporarily (sliding window buffering) or they are

locally stored for the longterm, whether a push-

based or a pull-based method is preferred, whether

the system is intended for a controlled environment

or not and whether multip le downloads are

supported (e.g. video segmentation). Each of the

proposals that have been made thus far exhibits a

set of tradeoffs.

The main tradeoff that has to be dealt with is that

between control overhead and delay, while

achieving the goal of video continuity and smooth

playback. In most systems (specifically those

involving video segmentation over a pull-based

method), each peer has to immediately inform its

neighbors of a packet reception (buffer maps

exchange) and the neighbors , interested in this

packet, should make a straight-forward request for

the packet. In this way, the delay is minimized but

a noticeable control overhead is added to the

system. For the overhead to be reduced, a peer

might resort to less frequent buffer maps exchanges

(e.g. after dozens of new packets have been

received) but this can lead to extended delays and

possible video interruptions.

5

Although P2P models based on file segmentation

have already been successfully implemented in a

large scale (e.g. BitTorrent), this is not still the case

for (live) video streaming. The main d ifference is

that, in P2P video streaming systems, peers are

more interested in low delays (in itial buffering

delay and playback delay) and v ideo continuity

rather than in maximizing the aggregated download

throughput of their link. Moreover, peers in

existing proposals often have to carry the triple

burden of serving other peers (which incurs

bandwidth), storing video parts for long periods of

time (as in the case of push and static local store

methods) and reconstructing received video parts

for playback (which incurs computational effort).

Thus, the demands of this relatively new area are

more challenging than in tradit ional P2P systems.

The new challenges become more d ifficu lt due to

strict timing and bandwidth requirements, peers’

unpredictable behavior and extremely large flash

crowds.

In this thesis, we propose LEMP a new scalable

application-layer protocol, specifically designed for

video streaming applications with large client sets.

A preliminary version of the protocol was proposed

in previous work but had limited evaluation and a

number of limitations [24]. We thus present a

complete rehaul of the LEMP protocol along with a

detailed design justificat ion, implementation and

evaluation of the protocol on real-world PlanetLab

testbed and large-scale emulation on the Emulab

testbed.

We believe our protocol to be the key for

minimizing overall video server network

bandwidth, while simultaneously maintaining the

latency of service to client requests at a min imum.

We assume that client bandwidth is slightly larger

than the playback rate for incoming traffic, that

clients may be characterized by heterogeneity

(computing power, buffer size) and that clients may

join or leave the P2P overlay at any time either by

choice or due to network failures.

Our protocol is a pull-based protocol in which

peers act both as clients (receiving the video) and

partial servers (serving the video). The novelty of

our protocol is its use of a semi-h ierarchical

overlay which, in a sense, “brings back to life” the

traditional tree-based approach but this time from a

specific only point of view. Furthermore, we

emphasize on the mechanism for the join and

departure of clients, building it so as to be fault-

tolerant, self-recoverable while keeping the control

overhead to minimum levels. A full description of

the LEMP protocol in its initial stages is available

in [24]. In this work, we provide a high-level

description of its salient features and then focus on

a number of design improvements we added to the

protocol as we built a new implementation

prototype.

The rest of the document is organized as follows. In

Section 2 we formulate the problem. In Section 3

we present the original LEMP protocol. In Section

4 we present the enhancements applied on the

original protocol. In Sections 5 and 6 we present

an evaluation of our revised LEMP protocol using

detailed measurements of an implementation on the

PlanetLab and Emulab testbeds respectively.

Finally, in Section 7 we provide a summary

regarding related work and in Sect ion 8 we

conclude.

2. Problem Formulation

For simplicity we assume one video server S,

containing a set of videos, with D the duration of

each video. C is the set of all clients, with Cm the

set of clients requesting the same video m up to a

certain time point. The cardinality of these sets is nc

and ncm, respectively. The buffer size available at

each client, expressed in playing time, is d < D.

There is no limit to the number of clients which can

make requests, except that only one request per

client may be outstanding or served at any moment.

Client requests for video m are denoted by rjm,

where 1 < j ≤ ncm and may arrive at any time. The

server tries to serve them at discrete successive

time points, ti, ti+1,…, so that ti+1 - ti ≤ tw. The latter

(tw) is a constant that depends on the amount of

time a client is willing to wait for service, before it

decides to withdraw its request.

The goal is to leverage as much as possible the

available memory and bandwidth of the clients that

are already being served by the server. Therefore, if

at least one client receives the same video at

successive time points with time difference tw < d,

it is possible to form a “chain” of successive video

streams that serve all client requests up to the

present time. Thus, at some time point ti, there are

ncm clients requesting the same video grouped in i

6

levels, namely L1, …, Li. The server is always at

level L0 and broadcasts to the clients of level L1.

Each client has only one channel for video

reception and b channels for video broadcasting at

slightly larger than the playback rate. These are the

data or video channels.

All clients use unicasting to broadcast video; hence,

b is a positive integer, depending on the upper limit

of video channels per client. It is possible for

clients to fail, withdraw or operate in a lossy

network environment.

Consequently, such pipelines would break and the

system should try to remedy the situation.

Therefore, a solution must satisfy the following

characteristics:

 Be simple and fast to adapt quickly to the

changing circumstances

 Minimize simultaneous video server channels

for the same v ideo

 Ensure that no client waits longer than tw for

service

 Ensure manageable network t raffic per client

 Provide speedy recovery for client or network

failures

 Have minimal requirements regarding client

computing power

3. Proposed Solution

3.1 LEMP Hierarchy

The LEMP protocol arranges clients into a

hierarchy of i levels, where 0 < i ≤ D/ twThe

main goal of the protocol is to create and maintain

this hierarchy effectively.

Contrary to other proposals [1, 8, 11], the data and

control paths are different: The data path follows a

tree-like arrangement where a client at level Li

provides a set of up to b unicast streams to a group

of clients at level Li+1. These streams do not have to

be synchronized; they may be transmitting different

parts of the buffer content.

Assuming there are ni-1, ni and ni+1 clients at levels

Li-1, Li and Li+1 respectively, the server divides the

clients at level Li in ni-1 same-sized groups, if

possible, assigning each group to a client at level

Li-1. This forms a tree structure, used for video

streams.

The control path on the other hand is twofold: all

the clients at level Li are organized in a star-like

structure. One of the clients at each level Li is the

Local Representative (LRi). This client together

with other LRs from the rest of the levels

communicates with the video server forming a

control topology of a star, keeping overall

communicat ion minimal. The rest of the clients at

level Li maintain and exchange control information

with their respective LRi. This arrangement allows

quick response in the event of client failures.

As for the arrangement of clients, from t ime ti to

ti+tw the server receives client requests for the same

video, which it groups into the level Li. The

arrangement is not random; the end-to-end latency

of the path between a client and the server is used

as criterion to select the Local Representative for

this level (LRi) and the second closest client is

selected as the BackupLocal Representative (BLRi).

This happens because LRi is the only client for

level Li communicating with the server under

normal conditions; hence, an effort is made to

select the one closest to the server in terms of end-

to-end latency. Similarly, the BLR is selected in

order to replace quickly a failed LR . This hierarchy

is presented in Fig. 1, for the first two levels of

clients.

Figure 1. LEMP Control and Data Hierarchy

3.2 Protocol Operations

Under LEMP there are three phases for any client:

Join, Work and Leave.

7

3.2.1 Join Phase

Under Join, a peer v requests a video from the

server. This request, as well as all other requests

made by other clients within a specific t ime period

(ti-1, ti-1 + tw), are gathered from the server who

creates an ascending sorted list of clients, based on

the end-to-end latency between each client and

itself.

Next, the server determines whether there is

already a broadcast to at least one client, currently

receiving the first part of the video (level Li-1). If

none exists, a new broadcast is scheduled by the

server; otherwise, the new level Li and identity of

LRi and BLRi are determined.

This information is sent to the LRi and BLRi of

level Li. Each client vi only receives the identity of

LRi, BLRi LRi-1, BLRi-1 and its parent. Thus, the size

of these messages is constant.

Finally, the server divides the clients at the new

level Li into ni-1 groups so as to ensure that they are

equally distributed to the parents of the previous

level. This information is sent to each parent at

level Li-1, and its child at level Li, such that each

client at level Li-1 knows its children at level Li.

Thus, a forest of trees is formed, augmenting the

data path. If possible, LRi and BLRi are not assigned

any children due to their additional administrative

load.

3.2.2 Work Phase

During this phase, the clients at level Li-1 broadcast

the video in their buffers to their respective

children at level Li. Apart from data, control

informat ion is exchanged in order to detect any

possible problems.

First, all clients send periodically an Alive message

to their respective LR. If no such message arrives to

LR from any client v within a certain t ime interval

tδ, then v is considered to have failed. Each of these

Alive messages includes the client’s identity and

load. Thus, a list of potential parents is formed,

sorted according to their load, in case of regular

parents fail.

Finally, LRi periodically exchanges a special

LRAlive message with the BLRi and the video

server, containing all in formation updates regarding

the state of clients at the particular level. Th is is

sent so that the server or BLRi can detect potential

failure of its peer and synchronize control

informat ion.

3.2.3 Leave Phase

A client v may leave the overlay either by choice,

in which case it sends a Quit message to LRi and

also to its parent p and children, or unexpectedly

(e.g. due to network failure) so it no longer serves

its children and does not send Alive messages to its

LR.

In both cases, p removes v from the list of its

children. Furthermore, p stops broadcasting video

to v. The LR updates its information, accordingly.

 Orphans and Recovery

The departure of a peer at level Li has the result

that some peers at level Li+1 are now orphans.

Since they know LRi, they send an OJoin

(Orphan Join) message to LRi. LRi determines

potential parents and replies by sending

ODirect (Orphan Direct) messages, directing

them to the appropriate new parents. If LRi has

failed, the orphans try the same process with

BLRi.

If no new parent is found or both LRi and BLRi

have failed at the same t ime, the orphans

contact the server, which schedules a new

broadcast to them.

 Uncertainty of Client Failu res

The control communication pattern is fairly

distributed and unreliable. It is possible that no

Alive message by v reaches its respective LR

within the time interval tδ/2. This is a partial

failure; one or more network links have failed

to deliver the Alive message, but client v

operates properly.

In this case the LR simply deletes v from its list

of potential parents, although it keeps waiting

for Alive messages for another time interval

tδ/2 (a total of tδ). It is, thus, hoped that the link

with v will operate again soon, in which case v

is re-instated as a potential parent by the LR;

otherwise, v is permanently deleted from its list

4. Protocol Enhancements

Thus far we have described the salient features of

the original LEMP protocol. In this section, we

8

describe features that we have added to the basic

protocol as part of our newly implemented

prototype.

An under the hood analysis was the main reason

that lead us to the recently applied enhancements

on the original protocol. This insightful analysis

consisted of a detailed practical revision of the

protocol and a complete re-implementation of it.

The improvements made on the basic version of

our new protocol (rehauled LEMP) are summarized

below:

 “On the fly” service of client requests

 Client arrangement assigned to both server and

LRs

 Absence of BLR; step_LR role introduced

 LRs’ control partial independence from server

 Absence of OJoin messages

 Improved failure inspection

 Non-propagating failures

 Support for live video

We refer to the basic LEMP protocol plus these

improvements as “LEMP on the fly”.

Further refining enhancements applied to the

rehauled LEMP protocol result in the latest version

of our protocol (“LEMP heuristic”). These

improvements include:

 Different heuristic for LR selection

 An actual heuristic for step_LR selection

 A fair heuristic for parent selection

 Different handling of orphans

4.1 On the fly service

In the basic LEMP design described in Section 3,

the server gathers all client requests made during a

time period (ti-1, ti-1 + tw) and then tries to serve

them. It is, thus, possible for a client to have to wait

up to tw before being served (e.g. if his request was

made at the beginning of the period). Although tw is

not numerically set (or at least proposed) in LEMP,

we envision a protocol with min imum startup delay

and this potential wait of tw must be reduced.

In our revised protocol, we propose and implement

an “on the fly” service of clients. That is, the

moment the server receives a client request at level

Li, it decides whether to serve it directly (e.g. when

no peers exist at level Li-1) or, most importantly, it

can immediately forward it to LRi-1. Once such a

forwarding is made, the LRi-1 will immediately find

a parent for the new client (see paragraph 4.2)

leading to a min imum startup delay experienced by

the client. This procedure depends on the

improvements described below for its functionality.

4.2 Client Arrangement

As it is probably already suspected, contrary to

LEMP, the arrangement of clients is not a server

only responsibility.

Specifically, client arrangement is now performed

in two steps; each step is performed by a different

protocol component. The server is still responsible

for “nominating” the role of peers, regarding their

hierarchical position, that is if they are LRs or

normal peers. The second arrangement step, on the

other hand, is the responsibility of the LRs. LRs are

now those who assign children (peers at level Li) to

parents (peers at level Li-1) and thus decide on

peers’ functional role into the protocol. The new

procedure is as follows: let us assume that all

requests made within the period (ti-1, ti-1 + tw) are

successfully served and that the server moves to the

next period, waiting for new requests. At this point

the server has already created the ascending sorted

list of peers (based on latency) at level Li-1 and has

also chosen the LRi-1, which it informs of its role.

We assume that a peer v requests the video (from

the server) with in the time period (ti, ti + tw). After

the hierarchical role (LRs or not) of peers at level

Li-1 was set by the server, is now time for the LRi-1

to set their functional role. The server simply

forwards the request of peer v to LRi-1 and the

responsibility of parent-to-child assignment is now

in its hands. Likewise to LEMP, LRs try to be fair

and preserve streaming load balance among

parents.

In this way, not only is the startup delay min imized

but a workload balance is also achieved, since the

server shares its “burden” with LRs.

4.3 Step_LRs instead of BLR

In the original p rotocol, there is supposed to be a

Local Representative (LR) and a Backup Local

Representative (BLR) at each level. Our first,

though a bit rough, implementation revealed that

setting tw to a medium value, renders the presence

of BLR almost unnecessary, as far as successful

9

query forwarding to the LR is concerned. Such a tw

value however, keeps number of peers at each level

respectively low and furthermore creates a more

flexib le hierarchy in terms of level maintenance.

Moreover, the cost of keeping BLR updated didn’t

seem to pay back as often as initially believed,

since the (only one) BLR itself had equal chances to

undergo a failure/ departure. Hence, we preferred a

more sophisticated approach which further

increases protocol robustness while minimizing

control overhead.

The newly introduced role is that of step_LRs.

Instead of having a single one backup LR which is

continuously updated by the original LR, we choose

to have a plethora of possible step LRs, one of

which will be informed of its new role upon LR’s

departure. More specifically, when LRi is about to

leave, it will nominate an “alive” peer o f its level as

new LR (step_LR), by informing h im of their level

status. The same “hot potato” procedure will take

place upon the departure of the step_LR, such that a

LR is always present and up to date.

Note that step_LR implementation requires no

special synchronization between the LR and the

step_LR, while control overhead is kept to

minimum levels.

4.4 Partial Control Independence of LR

As described in LEMP, LRi periodically exchanges

a special LRAlive message with the video server,

containing all information updates regarding the

state of clients at the particular level.

However, our analysis showed that this information

is rather useless on the server side, after the before

mentioned improvements have been applied. To be

more p recise, under all c ircumstances, the

maintenance of level Li is now under LRi’s control.

That means that the server is no longer responsible

for changes or failu res at the different levels.

Still, there is a catch regarding LRi’s control

informat ion at the server side. The server needs to

be actually informed about LRi status, up till the

point LRi waits for forwarded requests from the

server; that is during the period (ti+1, ti+1 + tw). If

LRi is up, then the server keeps on forwarding client

requests (of level Li+1) normally; if not, the server

is held responsible for incoming requests and

accordingly serves them directly. In this way, we

achieve, even as a side effect, an even lighter

control hierarchy.

4.5 Absence of OJoin messages

Under the departure of a peer at level Li, orphans of

level Li+1 send an OJoin message to LRi, according

to the original LEMP protocol. However, this is not

the case in our enhanced new protocol. Instead, the

recover procedure takes place automatically and no

extra messages are required.

The departure of a peer at level Li, will be noticed

by LRi after the absence of alive messages within

the tδ interval (case of an unexpected departure) or

by an explicit Quit message sent by the leaving

peer (case of normal departure). LRi will then find a

new parent for the orphan. This choice is currently

made based on the number of children each parent

has; more precisely, the parent with the fewest

children is chosen from LRi as the step-parent of

the orphan.

We believe that OJoin and Alive messages serve

the exact same purpose, in the case of an

unexpected departure, so we totally removed OJoin

messages from our new protocol.

4.6 Improved failure inspection

In the first protocol approach, unexpected failures

are inspected only by the absence of Alive

messages. Not much is mentioned nor specified for

the special case of orphans under the absence of

LRi (and BLRi in the original protocol).

In the revised approach, we propose a 2-tier

mechanis m against failures (e.g. broken link). We

believe that this part of our system is vital for the

overall system robustness and self-recovery, under

challenging and unexpected situations.

We have already elaborated on the first tier, which

is consisted of the Alive messages. These messages

are sent periodically by peers at level Li to their

LRi. If no Alive messages are received by LRi, that

is within the time interval tδ, the corresponding peer

is assumed to be “dead” and the recover procedure

takes place. Note that a peer failure is no longer

indicated by the absence of two successive Alive

messages, since our control hierarchy is now built

atop the TCP protocol, meaning no packets are lost,

and possible high delays are dealt by setting an

elastic timeout on the respective socket.

10

However, it is possible that the LRi itself might

leave the overlay, before video ends. In this case,

there has to be a backup procedure running in all

peers, such that they are able of self-detecting a

failure at the level above (Li-1). In light of this, each

peer has a timeout, regarding newly received

buffers. If no packets are received before the

expirat ion of this timeout, the peer considers itself

as an orphan and requests the video directly from

the server.

For this mechanism to be functional, the “buffer

timeout” is set slightly larger than the value of tδ,

such that its expirat ion certainly indicates a LR

failure.

4.7 Non-propagating failures

One problem that came to surface, while testing our

first implementation, was propagating failures.

Consider a peer A at level i, who is facing

bandwidth problems but is able to keep up with

control message traffic. In other words, consider a

node which is normally responding to LRi’s alive

messages but for some reason, it is unable of

serving the video to his children at level i+1. Since,

peer A appears to be alive, no recovery procedure

will begin until the “buffer timeout” at A’s children

has exp ired. However, this “buffer timeout” will be

propagated to all peers downstream peer A. In all, a

single failure/ error might be propagated down to

the leaves of the data tree, leading to a large

number of orphans and rendering the protocol

unstable.

For this weakness to be dealt, while a peer

undergoes an error or a “buffer timeout” instead of

normally rep lying to the LR’s “alive” message, it

replies with a “temp_off” message to inform the LR

of the temporary problem. LR, consequently, will

temporarily remove this peer from the list of

parents and will red irect any possible orphans to

step-parents of its level. In this way, errors are not

propagated to successive levels.

4.8 Live video streaming

The original protocol was theoretically designed for

VoD services only. However, the advance of

broadband connections has changed the

perspectives of video streaming. A decade ago,

IPTV or live broadcasting of a special event (e.g.

football match, rare physical phenomena) to a large

number of simultaneous peers seemed to be too

ambitious. Nowadays, the ground for such systems

is definitely more solid and able to hold the burden

of their demands.

We have, thus, focused our implementation on live

video streaming. We use the term live to refer to

the simultaneous distribution of the same content to

all clients. The content itself might be a live feed

(e.g. live webcam or recording camera) or a

playback. Consequently, each peer unicasts the

exact content to all his children, contrary to the

original protocol.

4.9 Different heuristic for LR selection

In the original protocol, LR selection was strictly

based on minimum RTT. However, the LR is

responsible for maintain ing the control hierarchy

which normally involves higher cpu usage

demands. Thus, a more sophisticated heuristic

based on a weighted average of RTT and peer’s cpu

usage percentage was chosen.

4.10 Heuristic for step_LR selection

The “hot potato” scheme engaged in “LEMP on the

fly” was quite arbitrary, as far as the step_LR

selection is regarded. Trying to keep things fair, we

introduce an actual heuristic for step_LR selection

based on a weighted average of peers’ current cpu

usage and cpu usage history.

4.11 A fair heuristic for parent selection

A key aspect of our protocol’s feasibility and

fairness is definitely parent selection, which was

initially based on a very simple algorithm; children

were equally distributed among parents without

taking into account any bandwidth limitat ions. To

provide a more effect ive approach for parent

selection, children assignment to parents is now

performed based on parents’ available bandwidth

(exported with Iperf) and the number of already

assigned children to them.

4.12 Different handling of orphans

In the original protocol, upon the reception of an

orphan message, the server sent the video directly

to the peer that issued the orphan request. With this

enhancement, each client that undergoes a buffer

control timeout (not handled by the LR of its level)

will issue a first-orphan message to the server and

will be redirected to the current (latest) level LR to

11

receive the video again. If the peer undergoes a

second buffer control timeout during his lifetime,

he will request and receive the video directly from

the server. Note that, this handling concerns only

buffer control timeout orphan requests and not

orphan requests issued upon the reception of an

explicit parent_out message (these orphans still

receive the video directly from the server). We find

that with this solution server stress is improved

without heavily worsening video loss percentage.

5. Planet-Based Performance Evaluation

Our first prototype (LEMP) was implemented in

the Java language, using the Java Media

Framework (JMF) API. However, the nature of

Java renders it a relatively heavy tool for such

demanding applicat ions. Moreover, JMF after its

first release, received little attention, despite the

promises and initial envision of Sun for a new

powerful API for mult imedia applications. Its last

update was made available in 2004 and since then

the API is untypically considered as obsolete. Still,

this first implementation armed us with significant

experience and knowledge, while at the same time

revealed problems and disadvantages of the initial

protocol.

After applying the new design changes to the basic

LEMP protocol, we implemented in full a new

prototype (LEMP-heuristic). Our new prototype is

implemented in the Python language in conjunction

with the GStreamer Python bindings. Our

experience has shown that these new tools are

lightweight, flexib le and reliable in terms of video

streaming and network communication.

5.1 Experiment Setup

We conducted an experiment on PlanetLab to

evaluate the performance of our new protocol. The

total number of participating PlanetLab nodes is

390, which is almost the largest scale of nodes

available on PlanetLab, and all results are extracted

from one PlanetLab run. The v ideo stream is 3000

seconds long and the streaming rate is 150 kpbs,

unless stated otherwise.

According to [21], when it comes to live media

streaming, the nature of interactions between users

and objects is fundamentally different from stored

media streaming. The greatest diffe rence is that

access to stored objects is user driven (since the

media is “always there” and is only up to client’s

Table 1. PlanetLab Experiment (Default) Parameters

Parameter Value

Total Number of Clients 390

Streaming Bitrate 150 Kbps

Video Length 3000 seconds

Client Arrangement

Interval (tw)
60 seconds

Alive Message Interval

(tδ)
3 seconds

Client Interarrival Time Pareto α = 2.52, b = 1.55

Client Lifetime Lognormal κ = 5.19, ζ = 1.44

Unexpected Failures 5%

will when he will access it), while access to live

objects is object driven (since the timely

constrained availability of the content drives user

behavior). In light of this, our workload was strictly

based on the model for live media workload

generation, provided by [21], with peers inter-

arrival time following a pareto distribution (α =

2.52, b = 1.55) and peers lifet ime modeled by a

lognormal (κ = 5.19, ζ = 1.44).

Note that, since our experiments are conducted in a

real network, unexpected failures due to link

congestion/break are present by definition.

Furthermore, no special choice over PlanetLab

nodes was performed, that is nodes might be

heavily loaded both in terms of bandwidth

consumption and cpu usage. In light of these,

artificially injected failure probability was set to

5% in all experiments, unless stated otherwise.

5.2 Metrics

We evaluated our prototype under the following

metrics:

 Startup Delay: time period elapsed between

the time the video request is issued and the

time packets start flowing in our p ipeline.

 Video Loss Percentage (Discontinuity

Index): this metric concerns the maintenance

of continuous playback. We define as video

discontinuity the percentage of time that no

new data is flowing in the buffer to the total

time the peer is supposed to watch the video

(“lifet ime” – “startup delay”). In other words,

it is a time estimator of the number of

segments that arrive (if at all) after playback

deadlines over the total number of segments.

12

Figure 2. Startup delay in seconds

 Percentage of video received directly from

server: we have each peer tracking down the

time periods that, either due to problems (i.e.

orphan client) or due to the nature of our

protocol (i.e . clients at level 1), it receives the

video directly from the server. This metric is

an indicator of server stress in terms of time.

As above, this metric is the ratio of the time

the peer was served directly from the server to

the total time the peer was watching the video

(“lifet ime” – “startup delay”)

 Total Outgoing Rate: Each peer runs an

instance of Iptraf to monitor its bandwidth

usage. This metric concerns the total (data and

control) uploading rate of each peer.

 Data Outgoing Rate: A second instance of

Iptraf, providing more detailed information

(i.e . port numbers), runs on every peer. This

metric represents the data (video) uploading

rate of each peer.

 Control Outgoing Rate: Similarly to above,

this metric depicts the control overhead of each

peer in terms of upload bandwidth

consumption.

 Server Stress Saving Percentage: This metric

refers to the protocol’s server bandwidth that is

saved compared to the traditional client-server

model.

 Figure 3. Video loss percentage

5.3 Experimental Results

Unless stated otherwise, the results presented

below refer to our latest protocol version, namely

“LEMP heuristic”.

5.3.1 Startup Delay

Startup delay (Figure 2) is clearly kept in low

levels for the majority of population. More

specifically, 50% of peers received the video in less

than 4 seconds and 90% of them in no more than 9

seconds. Note that only 1% of the population

received the video after 15 seconds or more.

5.3.2 Video Loss Percentage

Ideally, we would expect our protocol to achieve

zero v ideo loss percentage for almost all clients.

That is, despite the undergoing operations

(departure, failure, rejoin, etc.) we envision the

majority of peers observe no video discontinuity.

Indeed, our prototype (Figure 3 “LEMP

heuristic”) presents 0% video loss for 91% of the

population, while 98% of peers lost no more than

1.7% of the video. In order to clarify the impact of

the different handling of orphans on video loss, we

also choose to present video loss percentage for

“LEMP on the fly”. As Figure 3 (“LEMP on the

fly”) indicates, 95% of peers underwent 0% video

loss and 98% of peers lost no more than 3% of the

video. This comparison reveals the effectiveness of

our protocol in terms of video continuity since

video loss percentage remains at low levels, even

under the new and more demanding handling of

orphans.

13

Figure 4. Video percentage received directly from server

 Figure 6. Average Outgoing Data Rate

5.3.3 Percentage of video received directly

from server

As for server stress in terms of direct video service

percentage, a remarkable improvement is achieved

since a portion of the orphans population is now

handled by other peers and not by the server.

Figure 4 (“LEMP heuristic”) shows that not only is

there an increase in the number of clients receiving

the video exclusively from other peers (81% in

contrast to the 77% of “LEMP on the fly”), but

more importantly, 90% of the peers received less

than or equal to 40% of the video directly from the

server, while in “LEMP on the fly” the same

percentage of total population received less or

equal to 65% of the video directly from the server.

Moreover, only 5% of peers received the video

directly from the server, right from the beginning.

One should note that these percentages are over

client’s lifetime, which varies among clients . These

results show the protocol’s ability to relieve server

stress effectively.

 Figure 5. Average Outgoing Total Rate

Figure 7. Average Outgoing Control Rate

5.3.4 Total & Data Outgoing Rate

To demonstrate the protocol’s feasibility, Figure 5

shows the upload bandwidth consumption of

participating peers. We see that 60% of peers

contributed less than 85kb/s on average and 90% of

peer contributed less or equal to 190kb/s.

Moreover, 99% of the population had outgoing

total rate less or equal to 500kb/s while only 4

peers experienced higher outgoing rate values. As

expected, data outgoing rate (Figure 6) is almost

identical to the total rate, since control rate is kept

to min imum levels. Bearing in mind the worldwide

invasion of broadband internet connections in

households, we expect the majority of home users

to successfully carry the burden of such uplink

demands and only a small percentage of peers

remain ing on dial-up modem connections having

their upload bandwidth stressed.

5.3.5 Control Outgoing Rate

An important aspect of our protocol’s

implementation is control overhead. Figure 7

shows that 90% of peers experienced control

14

overhead of less than 1.4kb/s, while the biggest

value was only 6.77kb/s. Figure 8 provides an

illustration of total, data and control average

outgoing rate, so as to better depict the magnitude

difference between control and data outgoing rates.

Moreover, since each node mainly interacts with

the LR of its level (v ia alive and parent/child

messages) and every control message has a fixed

size, the average control overhead of each node

does not grow with the overlay size or with the

streaming bitrate.

5.3.6 LRs and non-LRs

To compare the stress placed on both LRs and non-

LRs, Figures 9 and 10 present the average outgoing

data and control rate for LRs and simple

(non-LR) peers respectively. Figure 9

demonstrates the fairness of our protocol, since

server stress appears to be equally distributed

among LRs and normal peers. Note that this

performance was achieved only after the parent

selection heuristic was applied on our protocol and

that in our protocol’s previous version (“LEMP on

the fly”) LRs were clearly more stressed than non-

 Figure 8. Average outgoing total/data/control rate

Figure 10. Average Outgoing Control Rate for LRs and non-

LRs

LR peers. When it comes to control overhead, we

expected LRs to be more loaded than normal peers,

since it’s their responsibility to handle their level.

Indeed, according to Figure 10, LRs spend more

bandwidth than non-LRs but still the fluctuations

are modest. Most importantly, the knee of non-LRs

demonstrates that the protocol places a bounded

amount of control overhead on non-LR peers.

5.3.7 Increased Unexpected Failures

To evaluate the protocol under worst-case

scenarios, we conducted experiments with peers

failing unexpectedly with various (increasing)

probabilit ies (5%, 10%, 15%, 20%). We would like

to highlight once more that since all experiments

take place on PlanetLab, unexpected failures due to

link congestion/break are present by definition. The

following three experiments, thus, push the

protocol to its limits so as to further examine its

robustness and performance.

Figures 11, 12 and 13 present a comparison of the

differentiating metrics of these experiments, so as

to better present and compare the protocol’s

performance under the different setups .

Figure 9. Average Outgoing Data Rate for LRs and non-LRs

Figure 11. Video percentage received directly from server

under different percentages of unexpected failures

15

Figure 12. Video loss percentage

5.3.7.1 Percentage of video received

directly from server (unexpected

failures)

It is normal to expect that as unexpected failures

increase, the server will have to carry some extra

burden, regarding peers’ service; especially in the

case of unexpected LR failures. Our concern was

the extent to which the protocol preserves a high

performance under such demanding circumstances.

According to Figure 11, the protocol’s performance

degrades as unexpected failures increase but still

the majority of peers is served in an efficient p2p

way. Even with 20% unexpected failures, 73% of

peers receives the video exclusively from other

peers. Moreover the number of peers that receive

the video right from the beginning of their session

directly from the server is analogous to the

percentage of unexpected failures , which is the best

possible scenario.

5.3.7.2 Server Stress Saving Percentage

The extra server burden, which is described above,

is clearly depicted in Figure 13. The plot presents

bandwidth savings at the server side in comparison

to the traditional client-server model and clarifies

the consequences of the increased unexpected

failures. With 5% unexpected failures, the server

saves 77% of the bandwidth that would had spent

under the client-server model, while under 20%

unexpected failures, server savings are reduced to

64%. We choose to present percentages of server

savings in terms of bandwidth demands, rather than

absolute values of server stress, since these values

are closely related to the overlay size and the

streaming rate which varies among applications.

Figure 13. Server Stress Saving Percentage

5.3.7.3 Video Loss Percentage

(unexpected failures)

As for video loss percentage (Figure 12), though

there is a degradation, 84-91% of peers experience

no video losses, while for all cases 96% of peers

loses no more than 5% of the video.

5.3.8 Comparative Analysis

To better evaluate our protocol’s performance, we

also provide a comparison with one of the most

widely deployed and commercially available P2P

live-v ideo streaming systems, namely

CoolStreaming [22]. Since the source code is not

publicly availab le and as several technical

informat ion and parameters are absent for an

implementation of this system to be feasible by a

third party, we choose to evaluate our protocol

using the same parametric conditions and

experimental environment (PlanetLab) used in their

evaluation so as to achieve a fair comparison.

Specifically, the client set is consisted of 200

PlanetLab nodes and the default video bitrate is 500

Kbps. In the dynamic environment, peer lifet ime is

exponentially distributed with an average of T

seconds while unexpected failu res are set to 5%.

5.3.8.1 Stable Environment

We first evaluate continuous playback and control

overhead in a stable environment; that is peers join

the overlay and stay on until the end of the video

stream. Regarding video playback continuity under

different streaming rates (Figure 14), our protocol

outperforms CoolStreaming mainly due to two

reasons. First, our protocol’s data hierarchy

construction distributes children to parents based

0

0,2

0,4

0,6

0,8

5% 10% 15% 20%

Sa
vi

ng
 P

er
ce

n
ta

ge

Unexpected Failures Percentage

16

Figure 14. Continuity index vs. streaming rates in stable

environment

Figure 16. Continuity index under dynamic environment –

Streaming Bitrate 500 Kbps

on their throughtput and the number of already

assigned children to them such that bandwidth

outages are min imized. Second, peers are normally

bound to undergo no more than two video

discontinuity malfunctions, since after the second

one they will request the video directly from the

server. This limit was set so as to both decrease

server stress and keep video loss percentages at low

levels.

Control overhead (Figure 15) concerns less than

0.8% of v ideo traffic volume and falls between the

respective CoolStreaming overhead for 2 and 3

partners.

5.3.8.2 Dynamic Environment

We then conduct experiments under the dynamic

environment described in [10]. According to this

setup, peers may leave (or fail) and jo in freely and

their lifet ime is exponentially distributed with an

average of T seconds. As Figure 16 indicates, our

protocol presents higher continuity index than

CoolStreaming mainly because most departures/

failures are caught by the LR before discontinuity

malfunctions occur at lower levels. Furthermore, in

the absence of LR , a leaving peer will directly

 Figure 15. Control Overhead – Streaming Bitrate 500Kbps

inform h is children and they will consequently

request the video from the server without

undergoing any video loss.

6. Emulation

Since scalability is a key issue to the success of

P2P video streaming systems, we also evaluate

LEMP rehauled under an extensive emulation

performed on the Emulab testbed.

6.1 Emulation Methodology

To allow experiments with a very large number of

nodes, Emulab provides a multiplexed virtual node

implementation (hereafter known as just "virtual

nodes").

Virtual nodes fall between simulated nodes and

real, dedicated machines in terms of accuracy of

modeling the real world. A virtual node is just a

lightweight virtual machine running on top of a

regular operating system. In particular, virtual

nodes are based on the FreeBSD jail mechanism,

that allows groups of processes to be isolated from

each other while running on the same physical

machine. Emulab virtual nodes provide isolation of

the filesystem, process, network, and account

namespaces. That is to say, each virtual node has

its own private filesystem, process hierarchy,

network interfaces and IP addresses, and set of

users and groups. This level of virtualizat ion allows

unmodified applications to run as though they were

on a real machine. Virtual network interfaces are

used to form an arbitrary number of v irtual network

links. These links may be individually shaped and

may be multip lexed over physical links or used to

connect virtual nodes within a single physical node.

17

Once the vnodes implementation was made clear,

there were several other issues to be solved for the

Emulab experiments to be feasible. These issues

had main ly to do with restrictions associated with

the hosting OS for FreeBSD jails, namely

FreeBSD4.10. In particular, due to some

limitat ions, gstreamer could not be installed so we

had to simulate the media stream using a dummy

data generation module of our own. Moreover,

iptraf is strictly designed for Linux architecture and

cannot be installed on FreeBSD. For this, the iptraf

bandwidth monitoring was replaced by a more

primitive approach based on the netstat utility.

Note however that several medium-scale Emulab

experiments were performed so as to ensure that

the before mentioned changes don’t affect our

protocol’s behavior and performance.

Our transit-stub topologies of 1000 and 1800 nodes

were generated using the GT-ITM generator. Link

delays were automatically assigned using the

sgb2ns tool and are proportional to the distance

between nodes with their values ranging from 2-

187 ms. Peers inter-arrival time and lifetime follow

the same pareto and lognormal distributions

mentioned in paragraph 5.1. The v ideo stream is

6000 seconds long and the streaming rate is 150

kbps. Finally, all experiments were performed with

the latest protocol version (“LEMP heuristic”) and

unexpected failures were set to 5%, unless stated

otherwise.

6.2 Emulation Results

Startup delay measurements do not show

significant differences with the PlanetLab results,

with 90% of peers receiving the video in no more

than 10 seconds and only 4% of the population

having to wait for more than 16 seconds to receive

the video. This observation indicates that startup

delay is independent of the total number of peers.

 Figure 17. Emulab Startup delay in seconds

Video loss percentage remains at very low levels

with 95-96% of the population experiencing no

video loss and 99% of the clients losing less or

equal to 6% of the v ideo during their lifetime.

Stress stress (as measured by the number of peers

receiving the video directly from the server) is

displayed in Figure 19. We see that server stress is

slightly improved compared with previous

experiments with 88% of peers receiv ing the video

exclusively from other peers and 90-91% of the

total population receiving less than or equal to 30%

of the video directly from the server.

Similarly to previous experiments, only a small

percentage of peers (4%) received the video

directly from the server. Figure 19 thus,

demonstrates once again the scalability of the

protocol.

Average outgoing total, data and control rates

present no significant differences from the previous

experiments. This observation leads us to the

conclusion that peers’ stress is stable and has

nothing to do with the overall peer population,

Figure 18. Emulab Video Loss Percentage

 Figure 19. Emulab server stress savings as measured from

video percentage served directly from the server for each peer

18

 Figure 20. Emulab Average Outgoing Total Rate

 Figure 22. Emulab Average Outgoing Control Rate

since the protocol organizes clients into levels, with

each peer (pi) being associated only with its own

level (Li) and the next one (Li+1).

An issue that required attention was whether the

achieved fairness of the protocol (“LEMP

heuristic”) will be sustained for larger scale

experiments. According to Figure 23, the protocol

appears to be strictly fair as far as LRs’ and normal

peers’ stress is concerned, with the two

distributions being almost identical.

Since the control hierarchy remains unchanged, it is

normal to expect that the average outgoing control

rate among LRs and normal peers (Figure 24) will

present the observed variations, with normal peers

experiencing a pretty stable control overhead

(around 0.55kb/s) and LRs being clearly more

stressed. Still, the average control outgoing rate

remains at low levels similarly to previous

experiments.

Being interested in evaluating our protocol’s

robustness under abnormal condit ions, we present

plots of the two metrics likely to be affected under

 Figure 21. Emulab Average Outgoing Data Rate

Figure 23. Emulab Average Outgoing Data Rate for LRs and

non-LRs

increased unexpected failures, namely video loss

and server stress in terms of direct v ideo service.

As Figure 25 depicts, increased unexpected failures

have an impact on video loss percentage but still

the high majority of peers receives the video with

minimum video discontinuities. Even under heavy

unexpected failu res (20%), 90% of total population

loses no more than 2% of the video and 96% of

peers loses less or equal to 5% of the video. Higher

percentages may be considered as outliers since all

video loss percentages are over peers’ lifet ime,

meaning several clients might have lost just a few

segments of the video but their lifet ime was too

short. In order to prove our claim we have plotted

video loss percentages and peers lifetime for all

four unexpected failure scenarios. Figure 26 shows

that the vast majority of high video loss

percentages (i.e. more than 10%) main ly concern

peers with short lifet ime.

When it comes to video percentage received

directly from the server, our system appears to be

robust and stable despite the demanding scenarios

19

Figure 24. Emulab Average Outgoing Control Rate for LRs and

non-LRs

Figure 26. Emulab Video Loss and Peers’ Lifetime for all

unexpected failures scenarios

of increased unexpected failures. According to

Figure 27, unexpected failures up to 10% don’t

seem to affect server stress while higher

percentages of failures (15% and 20%) have only a

moderate impact on server bandwidth demands

with 84% of peers receiving the video exclusively

from other peers and 90% of the population

receiving no more than 44% of the video direct ly

from server. Still the percentage of peers receiving

the whole video directly from the server remains

low (4%) and quite unchanged.

7. Related Work

Adapting the advantages of peer to peer

architecture on (video) streaming technology is a

relatively unexplored research field which however

has already attracted some attention. Several

proposals [1, 2, 3, 4, 5, 12, 13, 20] focus on VoD

media while other approaches [6, 7, 8, 9, 10, 11]

deal with live video streaming.

Figure 25. Emulab Video Loss under increased unexpected

failures

Figure 27. Emulab server stress in terms of direct video

service under increased unexpected failures

In most proposed approaches, peers are organized

in an application layer multicast tree. In [1, 2, 6, 7,

9, 11, 13] such a multicast tree is used as the

building block for the peers’ coordination. The

main difference with our protocol is that in these

systems, data and control hierarchy are unified;

LEMP however, uses a tree-like hierarchy for data

flow and a dual star-like architecture for control

messages. Other differences concern client

arrangement, as in [1], [2], [7] and [11] where

control management and maintenance are

performed totally by the server and no “special”

roles are assigned to peers (e.g. LRs in LEMP).

Moreover, some proposals ([2], [7]) first exhaust

the server and then reside to the P2P approach

while at the same time they deal with service

interruptions only theoretically, unlike LEMP . [11]

and [13] use techniques such as patching and

shifted stream forwarding in order to handle

disruptions while Venkata N. Padmanabhan et al.

[9] use mult iple diverse distribution trees (and thus

reassure redundancy in network paths) as well as

Multiple Description Coding (meaning redundancy

in data). Similarly to LEMP , the authors of [6],

propose the partitioning of clients to clusters with

each cluster having a head and an associate-head

20

responsible for monitoring the membership of the

cluster and transmitting the content to cluster

members respectively. However, over a new client

request the server has to run an algorithm so as to

forward the request to another peer, while in our

system this is done immediately, since the request

is straightly forwarded to the LR of the previous

level, who is already known.

Having explored the tree-based approaches, we’ll

now look into p2p video streaming approaches

which are based on different building blocks (e.g.

cell, mesh, unstructured overlays).

An inspired proposal is the one made in [3], in

which the authors insert the cell definition in order

to deal with two challenges; namely how can a host

find enough video pieces to assemble a complete

video and what part of a video a host should cache,

given a limited buffer size. A cell is a cluster of

hosts which together can supply a complete video.

Peers’ discovery is made easier and data

redundancy is clearly supported. Still, only

simulation results are presented while vital metrics

such as delays and server stress are not addressed.

A proposal based on the JXTA project (which

hides/ tackles all streaming routing and storage re-

allocation details) and RSVP is presented in [4],

which however only provides simulat ion results

and does not address scalability. In contrast to

LEMP, Alok Nandan et al. [5] and Mohamed

Hefeeda et al. [12] propose prototypes which are

independent of the underlying p2p substrate and

may be deployed over other overlays (e.g. Pastry,

Chord, Can). The latter in fers and explo its

properties of the underlying network (topology and

performance), resulting in higher system

performance. Systems based on mesh overlays are

presented in [10] and [18]. In the first case, an

inter-overlay scheme (based on multiple t ree

structures) is used and parallel downloads are

supported via the use of a buffer manager. In the

second case the mesh-based approach is used in

conjunction with other DHT systems, such as

Chord or Pastry, while peers adopt static local

storage of data (and not a “cache and relay”

scheme as in LEMP).

Mea Wang et al. [14] and Meng Zhang et al [15]

propose a random packet scheduling strategy for

their protocols. Specifically, in [14], a simple and

probabilistic scheme (“perfect collaboration”) is

combined with video segmentation under a pure

push-based approach, unlike our pull-based

protocol. In this way, exp licit requests are

eliminated, control overhead is minimized and

there is shorter initial buffering delay (10-20

seconds).. In [15], both a pure pull-based and a

pull-push hybrid protocol are examined, using the

metric of peer bandwidth utilizat ion and system

throughput. However, we believe that in such time-

constrained systems, metrics such as delay and

video continuity should also be taken into account.

Two proposals applicable to controlled

environments are presented in [17] and [19], while

our protocol is mainly intended for a wider

deployment. The first one uses a push-pull based

method and video segmentation while the latter

focuses on IPTV over FTTN/xDSL networks.

Another protocol based on a pull-push approach is

the one presented in [8]. Their GridMedia

prototype is built over an unstructured overlay

(unlike LEMP) where each peer starts with the pull

method (and delivers a packet only when there is

an explicit request) and then turns to push method

(that is relay packets to its neighbors for predefined

time intervals).

Stefan Birrer et al. [16] present a comparison of

resilient overlay multicast approaches and

specifically examine three d ifferent techniques:

cross-link, in-tree and mult iple t ree redundancy.

The paper mentions the advantages of each method

and concludes (via both simulation and real-

experiments on PlanetLab) that the combination of

in-tree and multip le-tree redundancy achieves

highest delivery ratio under different failure

scenarios; this is something that will be taken into

account in our future work. Finally, Yan Huang et

al. present challenges and architectural design

issues of a large scale P2P VoD system, based on

real experiments on their PPLive system.

Segmentation, replication, content discovery, piece

selection, transmission strategy and NAT/ firewall

issues are taken into consideration. The authors

only focus on VoD but their work includes

extensive theoretical analysis as well as

experimental results and thus provided a guideline

for our research as well.

8. Conclusion and Future Work

In this thesis, we presented the design of LEMP

with emphasis on a set of improvements that

resulted in a complete rehaul of the original

protocol. These improvements aim to a fast, light-

21

weighted, fault-tolerant and self-recoverable

application-layer P2P protocol for live video

streaming.

We extensively evaluated the performance of

LEMP rehauled on the PlanetLab and Emulab

testbeds, over a number of metrics and the results

demonstrated that our protocol is effective in terms

of startup delay, video continuity, control overhead

and server stress savings. Moreover, our

comparative analysis showed that LEMP rehauled

outperforms CoolStreaming as continuity index and

control overhead are concerned.

For our future work, we are exploring parallel

download support approaches to achieve higher

utilizat ion without heavily interfering continuous

playback and control overhead.

References

[1] Cheng Huang, Jin Li, and Keith Ross, “Peer

Assisted VoD: Making Internet Video

Distribution Cheap” IPTPS, Bellevue, WA,

Feb. 2007.

[2] Anwar Al Hamra, Ernst W. Biersack,

Guillaume Urvoy-Keller, “A Pull-Based

Approach for a VoD Serv ice in P2P Networks”

IEEE HSNMC, Toulouse, France, Jul. 2004.

[3] Ying Cai, Zhan Chen, Wallapak Tavanapong,

“Video Management in Peer-to-Peer Systems”

IEEE International Conference on Peer-to-Peer

Computing, Germany, 2005.

[4] Chris Loeser, Peter A ltenbernd, Michael Ditze,

Wolfgang Mueller, “Distributed Video on

Demand Serv ices on Peer to Peer Basis” In

Proceedings of the First International Workshop

on Real-Time LANs in the Internet Age

(RTLIA2002).

[5] Alok Nandan, Giovanni Pau, and Paola

Salomoni, “GhostShare – Reliable and

Anonymous P2P Video Distribution”

Global Telecommunications Conference

Workshops, 2004. GlobeCom Workshops 2004.

IEEE (2004)

[6] Duc A Tran, Kien A. Hua, Tai T. Do, “A Peer

to Peer Architecture for Media Streaming”

Selected Areas in Communicat ions, IEEE

Journal on, 2004

[7] H. Deshpande, M. Bawa, H. Garcia -Molina,

“Streaming Live Media over a Peer to Peer

Network” Stanford database group technical

report (2001-20), Aug. 2001

[8] Meng Zhang, Li Zhao, Yun Tang, Jian-Guang

Luo, and Shi-Qiang Yang, “Large-Scale Live

Media Streaming over Peer to Peer Networks

through Global Internet” P2PMMS’05,

November 11, 2005, Singapore.

[9] Venkata N. Padmanabhan, Helen J. Wang,

Philip A. Chou, “Resilient Peer to Peer

Streaming” Technical Report MSR-TR-2003-

11, Microsoft Research, Redmond, WA, March

2003.

[10] Xiaofei Liao, Hai Jin, Yunhao Liu, Lionel M.

Ni, and Dafu Deng, “AnySee: Peer to Peer

Live Streaming” INFOCOM 2006. 25th IEEE

International Conference on Computer

Communicat ions.

[11] Meng Guo, Mostafa H. Ammar, “Scalable

Live Video Streaming to Cooperative Clients

Using Time Shift ing and Video Patching” in

Proc. of IEEE INFOCOM, 2004.

[12] Mohamed Hefeeda, Ahsan Habib, Boyan

Botev, Dongyan Xu, Bharat Bhargava,

“PROMISE: Peer to Peer Media Streaming

Using CollectCast” ACM Multimedia 2003,

Berkeley, CA, 2003,

[13] Yang Guo, Kyoungwon Suh, Jim Kurose, and

Don Towsley, “P2Cast: Peer to Peer Patching

Scheme for VoD Service” Proceedings of the

12th international conference on World Wide

Web, Budapest Hungary , 2003

[14] Mea Wang, Baochun Li, “R
2
: Random Push

with Random Network Coding in Live Peer-

to-Peer Streaming” Selected Areas of

Communicat ions - Advances in Peer-to-Peer

Streaming Systems, IEEE Journal on,

December 2007

[15] Meng Zhang, Qian Zhang, Lifeng Sun,

Shiqiang Yang, “Understanding the Power of

Pull-based Streaming Protocol: Can We Do

Better?” Selected Areas of Communications -

Advances in Peer-to-Peer Streaming Systems,

IEEE Journal on, December 2007

22

[16] Stefan Birrer, Fabian E. Bustamante, “A

Comparison of Resilient Overlay Multicast

Approaches” Selected Areas of

Communicat ions - Advances in Peer-to-Peer

Streaming Systems, IEEE Journal on,

December 2007

[17] Kyoungwon Suh, Cristophe Diot, Jim Kurose,

Laurent Massoulié, Cristoph Neumann, Don

Towsley, Matteo Varvello, “Push-to-Peer

Video-on-Demand system: design and

evaluation” Selected Areas of

Communicat ions - Advances in Peer-to-Peer

Streaming Systems, IEEE Journal on,

December 2007

[18] W.-P. Ken Yiu , Xing Jin, S.-H Gary Chan,

“VMesh: Distributed Segment Storage for

Peer-to-Peer Interactive Video Streaming”

Selected Areas of Communications -

Advances in Peer-to-Peer Streaming Systems,

IEEE Journal on, December 2007

[19] Yennun Huang, Yih-Farn Chen, Rittwik Jana,

Hongbo Jiang, Michael Rabinovich, Amy

Reibman, Bin Wei, and Zhen Xiao, “Capacity

Analysis of MediaGrid: a P2P IPTV Platfo rm

for Fiber to the Node (FTTN) Networks”

Selected Areas of Communications - Peer-to-

Peer Communications and Applications, IEEE

Journal on, January 2007

[20] Yan Huang, Tom Z. J. Fu, Dah-Ming Chiu,

John C. S. Lui and Cheng Huang,

“Challenges, Design and Analysis of a Large-

scale P2P-VoD System” in Proc. of Sigcomm

2008.

[21] Eveline Veloso, Virgılio Almeida, Wagner

Meira, Azer Bestavros and Shudong Jin, “A

Hierarchical Characterizat ion of a Live

Streaming Media Workload”, In Proceedings

of ACM SIGCOMM Internet Measurement

Workshop (IMW), November 2002.

[22] X. Zhang, J. Liu, B. Li, and T. P. Yum,

"DONET: A Data-Driven Overlay Network

for Efficient Live Media Streaming", in

Proceedings of IEEE INFOCOM, 2005.

[23] " YouTube serves up 100 million videos a day

online". USA Today. 2006-07-16.

http://www.usatoday.com/tech/news/2006-07-

16-youtube-views_x.htm. Retrieved on 2008-

11-29.

[24] Panayotis Fouliras , Spiros Xanthos , Niko laos

Tsantalis , Athanasios Manitsaris, “LEMP:

Lightweight Efficient Multicast Protocol for

video on demand”, Proceedings of the 2004

ACM symposium on Applied computing,

March 14-17, 2004, Nicosia, Cyprus

http://en.wikipedia.org/wiki/USA_Today
http://www.usatoday.com/tech/news/2006-07-16-youtube-views_x.htm.%20Retrieved%20on%202008-11-29
http://www.usatoday.com/tech/news/2006-07-16-youtube-views_x.htm.%20Retrieved%20on%202008-11-29
http://www.usatoday.com/tech/news/2006-07-16-youtube-views_x.htm.%20Retrieved%20on%202008-11-29

