
A Versatile Federated Machine Learning
Strategy with Applications to XGBoost, GMM

and DBSCAN

Ioanna Vasilopoulou

Thesis submitted in partial fulfillment of the requirements for the

Masters’ of Science degree in Bioinformatics

University of Crete
School of Medicine

Voutes University Campus, 700 13 Heraklion, Crete, Greece

Thesis Advisors:
Dr. George Potamias,

Dr. Alexandros Kanterakis

This work has been performed at the University of Crete, School of Medicine.
The work has been supported by the Foundation for Research and Technology - Hellas

(FORTH), Institute of Computer Science (ICS).

University of Crete
School of Medicine

A Versatile Federated Machine Learning Strategy with Applications to
XGBoost, GMM and DBSCAN

Thesis submitted by
Ioanna Vasilopoulou

in partial fulfillment of the requirements for the
Masters’ of Science degree in Bioinformatics

Author: Ioanna Vasilopoulou

Three member committee: George Potamias
Thesis Supervisor

Alexandros Kanterakis
Committee Member

Pavlos Pavlidhs
Committee Member

Heraklion, February 2023

A Versatile Federated Machine Learning Strategy with
Applications to XGBoost, GMM and DBSCAN

Abstract

Latest algorithmic, hardware and programming advancements have brought
Machine Learning (ML) closer to the solution of increasingly more complex problems.
However, most of these solutions are only applicable to centralized approaches,
where the complete set of training data and the analysis software are located on
the same computational entity. For privacy critical applications like biomedical
informatics and user data analytics this can be an important issue. Simply, very
strict and active legislations on privacy and security, forbid the transfer of any
personal information outside of a well defined data sylo (i.e. hospital, mobile device).

Federated Machine Learning (FML) comes to address this issue by offering a
different learning approach. Through an iterative process, partial models are trained
in each data-sylo and then transferred into a server and aggregated into a single
model without exchanging user data. One of the most known frameworks for FML
is Flower which deals with all trivial tasks like client-server communication with
consistency and security. Flower offers many strategies with which ML methods can
coordinate through the process of local training and model aggregation. Existing
strategies focus mainly on simple ML methods mainly in the area of statistical
learning (i.e. regression) and deep neural networks where model aggregation is
straight forward. For more advanced ML methods like tree-based for classification,
and distance-based for clustering, not only there is no Flower strategy, but even
the concept of “federalization” is an active field of research.

Here we first create a new “Federalized” implementation of the well known
tree-based XGBoost algorithm for classification. Then we introduce “FIN”, a novel
Flower strategy that allows the inclusion of more sophisticated ML methods and
we demonstrate how it can be used in our XGBoost implementation. Finally
we implement a novel Federated data clustering method based on the synergy of
DBSCAN and Gaussian Mixture Models. For all our implementations we perform
an extensive set of tests in real and in simulated data and we demonstrate how these
federated implementations have the same efficiency as their “classic” counterparts.

Acknowledgements

First of all, I would like to thank my supervisor, Dr. Potamias, for his valuable
guidance. I also want to express my deepest gratitude to my advisor, Dr. Alexandros
Kanterakis, for his wise advice, support, and encouragement throughout the entire
research process. His advice have greatly improved the quality and clarity of my
work that contributed to my academic and technical growth. I would also like to
thank Alexander Shevtsov for his helpful discussions and suggestions. Finally, I
would like to thank my family and friends for their love, support, and encouragement
throughout this journey. This work would not have been possible without their
unwavering belief in me.

Contents

1 Introduction 1
1.1 Federated Learning . 1
1.2 Federated Frameworks . 2
1.3 Federated Machine Learning algorithms 3
1.4 Purpose of the study . 5

2 Datasets 6

3 Federated XGBoost 9
3.1 Preliminaries of XGBoost . 9
3.2 XGBoost on a Federated Learning setting 11
3.3 Implementation . 12
3.4 Experiments . 18

3.4.1 Scalability measurements 18
3.4.2 Impact of class imbalance 19

3.5 Results . 20

4 FIN Strategy 24
4.1 Implementation of FIN . 24

5 GMM and DBSCAN on a Federated Learning setting 28
5.1 Federated GMM . 28

5.1.1 Experiments . 30
5.1.2 Results . 31

5.2 Federated DBSCAN based on GMM data description 32
5.2.1 DBSCAN on federated setting 33
5.2.2 Implementation . 34
5.2.3 Experiments . 35
5.2.4 Results . 36

6 Discussion 38

Bibliography 40

ii

List of Tables

2.1 Binary classification datasets selected for XGBoost model. 7

3.1 Data in each client (example). 13
3.2 The order of the paths with which the clients are instructed to send

their best splits in our example. Not all clients have nodes in all
paths (denoted with -). 14

3.3 Measurements on Breast Cancer dataset with respect to the number
of clients. 20

3.4 Measurements on Diabetes dataset with respect to the number of
clients. 21

3.5 Measurements on Heart Disease dataset with respect to the number
of clients. 22

3.6 Measurements on smoking dataset with respect to the number of
clients. 23

3.7 Measurements on smoking balanced/unbalanced dataset (test set). 23

5.1 Silhouette score of federated and non-federated GMM on each dataset. 32
5.2 An example of the new data points created on the server. 35

iii

List of Figures

1.1 Flower Strategy. 4

3.1 Server sends the best split to the clients (Target<8.5) and they split
their data into two different groups. ‘Left‘ from a node contains all
data points that have lower feature values than the optimal split
and ‘right‘, contains all data points that have values greater than
the optimal split. 14

3.2 Server sends the next best split to the selected clients (Target <
4.5) and they split their data, again, into two different groups. . . 15

3.3 Pipeline of XGBoost experiments. 19

4.1 Sequence diagram of FIN communication. 27

5.1 Non-federated GMM on the left sub-figures and federated GMM
clustering on the right sub-figures. 31

5.2 Random samples from GMM. 34
5.3 Non-federated DBSCAN on the left sub-figures and Federated DB-

SCAN clustering on the right sub-figures. 36

iv

Chapter 1

Introduction

1.1 Federated Learning

Organizations are typically hesitant to release or share their data due to privacy and
legal requirements like the General Data Protection Regulation (GDPR). This is the
main reason why the healthcare industry does not share their data. Medical data is
extremely sensitive and its usage is strictly controlled. In such cases, trivial privacy
preserving techniques, like hiding basic information of a patient, is insufficient [34].
Also, in real world scenarios many data owners do not have sufficient amount of
data to create accurate models. For these reasons, data sharing, without privacy
leakage, between various data owners has the potential to dramatically increase the
performance of machine learning tasks with no additional cost for data maintenance.

Federated Learning (FL) has developed a solution to this issue that does not
require data sharing to produce a single model that is trained over multiple data-sets.
In other words, FL is a setup for machine learning (ML) in which numerous clients
work together to jointly train a model while the training data is kept decentralized
[17]. More specifically, decentralized devices or organizations (also known as clients)
train their data locally and then send the model parameters back to the central
server. On the server side, the model updates are aggregated to create a new,
improved global model. This process is repeated until the global model reaches a
satisfactory level of accuracy. It was first created for use cases involving mobile
and edge devices, among other fields, but it has recently acquired popularity for
healthcare applications [19]. FL is often divided into three categories [20]: horizontal
FL, vertical FL and federated transfer learning. In the case of horizontal FL, data-
sets have the same feature space across all clients. In the vertical FL, feature space
is not the same but the data-sets have overlap on samples. In some cases, the data
does not share either the sample space or feature space, making it impossible to
use the horizontal and vertical categories of federated learning. In such scenarios
only the federated transfer learning provides the solution. In this research we are
concentrated only on the case of horizontal FL.

Federated Learning represents a promising approach for enabling the training

1

CHAPTER 1. INTRODUCTION 2

of high-quality machine learning models on decentralized data sources. It has been
applied to a variety of use cases, including natural language processing, computer
vision, and speech recognition, and is expected to continue to be an active area of
research and development in the field of machine learning.

1.2 Federated Frameworks

As mentioned earlier, federated learning is a very popular and important research
topic, since it provides a solution in cases where traditional machine learning models
are not possible to apply due to data sharing policy or restrictions. For this reason,
several open-source FL frameworks have been proposed by the research community
where each of them provides a unique functionality. For example, FedML [14] is
an open source library that reduces the complexity of the FL model development.
This framework supports diverse computation paradigms (distributed, standalone
and on-device) with a wide range of implemented models and strategies which are
accessible via API. Unfortunately, FedML does not include API documentation
that enables users to quickly set up various FL scenarios [23]. Another example
is Federated AI Technology Enabler (FATE) [24] which is an industrial-oriented
federated framework that focuses on real-life applications. Unfortunately, it is not
user-friendly for beginners and academics due to their difficult environment setup and
heavy system architecture. The most known framework is TensorFlow Federated
(TFF) [1], an open-source framework that provides a diversity of implemented
models and enables the users to apply FL without the need for implementing FL
algorithms. As a limitation this solution can be executed only on a single machine,
although it facilitates the simulation of the distributed training of FL models.

In our case, we selected the Flower framework that offers a reliable machine
learning implementation of the core components of a FL system [2]. Moreover,
with heterogeneous computation, memory, and network resources, Flower supports
extending FL implementations to mobile and wireless clients. A huge convenience of
Flower is that can be used with any machine learning framework, for example, Ten-
sorFlow, MXNet, scikit-learn, Pandas, or even raw NumPy for federated analytics.
Furthermore, selected framework supports many learning schemes mainly for deep
learning and tensor based algorithms but it does not support a huge collection of
popular tree based algorithms: Decision Trees, Gradient Descent Trees, XGBoost.

Presented FL frameworks apply different strategies during the federated training.
A strategy is the main FL algorithm that is executed on the server side. Strategy
describes the configuration procedure and sampling of clients that participate in
training. Also, it is responsible for aggregation of the updates and model evaluation.
Currently there are several proposed strategies in federated ML implementations that
are available on Flower. Federated Averaging (FedAvg) is the most popular strategy,
which was initially proposed by [27] and provides high performance improvement
according to communication cost. In particular strategy, the server randomly selects
a subset of clients and forward the initial parameters. Each client updates those

CHAPTER 1. INTRODUCTION 3

parameters via training on local data and provides the updated parameters to
the server. Finally, server aggregates the new parameters via weighted average
computation and spreads the updated weights to all clients [15]. FedAvg, one of the
standard federated optimization techniques, is frequently challenging to adjust and
has undesirable convergence behavior. For this reason many researchers proposed
other federated strategies. One of them is FedProx [35], where authors manage to
develop an updated strategy that improves generalization and re-parameterization
of FedAvg. Such an approach allows extending FL in heterogeneous network
conditions. During the past years, the research community presented a range of
different strategies such as FedAdagrad, FedYogi and FedAdam [32]. Fortunately,
all the above strategies are available on Flower framework but still the users have
the potential to create a new strategy.

Flower [2] offers a very pragmatic abstraction for performing a wide range of
actions that are typically involved in a federated learning task. On top of this
abstraction lies the strategy abstract class which can be implemented in order to
define how the server will coordinate with the clients. A detailed description of this
abstraction is presented in the official documentation of flower 1. Briefly, in each
round of FL, two procedures are taking place: Train and Evaluation. During Train,
clients fit the model on their local data and return the updates to the server and
during Evaluation clients evaluate the performance of their models. In Flower’s
terms (Figure: 1.1), the server sends Fit Instructions to a predefined set of
clients and each client returns a Fit Response. After all clients have returned a
Fit Response, the server aggregates all responses and builds or adjusts the central
model. The next part is the Evaluation where the server sends a set of Evaluation
Instructions to each client that took part in the Fit procedure and receives a
Evaluation Response. Finally, the server aggregates all Evaluation Responses
and assesses the overall evaluation of the model. The server then proceeds to the
next round of the federated learning process . It is important to note that the total
number of rounds is a predefined parameter that has to be set at the beginning.
Overall, Flower offers a rather rigid server-client communication schema that can
be used without any changes if we want to use models like Logistic Regression,
Support Vector Machines (SVM) or Gaussian Mixture Models (GMM).

1.3 Federated Machine Learning algorithms

There are various machine learning algorithms that can be used for federated learning,
depending on the specific requirements and constraints of the federated learning
scenarios, as well as the type and quality of the available data. In machine learning
there are two main categories of learning, supervised and unsupervised. Each
category represents a set of algorithms that can be adjusted to federated learning.
Some of the models are challenging to modify for federated setting but algorithms

1Flower - Implementing Strategies https://flower.dev/docs/implementing-strategies.ht
ml.

https://flower.dev/docs/implementing-strategies.html
https://flower.dev/docs/implementing-strategies.html

CHAPTER 1. INTRODUCTION 4

Figure 1.1: Flower Strategy.

like logistic regression and Neural Networks(NN) it’s simple to implement because
the structure of the model’s parameters is predefined. Since the server and clients,
for these models, share a set of parameters that don’t reveal any characteristics of
the raw data distribution. Most of the existing federated learning frameworks have
already implemented these models, such as FATE and FedMl that presented in the
previous section. These frameworks also include NN models but other frameworks,
like TFF, specialized in NN and Deep Learning federated algorithms. The majority
of the existing federated frameworks or federated algorithms deal with NN due to
the popularity of them and the success in centralized scenarios. As a result, less
research has focused on tree based models or even in clustering models.

Compared to the other models, implementing tree-based models within a Feder-
ated Learning environment required researchers to overcome a number of unique
fundamental problems. These difficulties include developing models, in contrast to
neural networks where the model structures are predetermined, where the underly-
ing structures are not initially defined [29]. Also, researchers deal with the kind of
secure information that is required to be exchanged between each of the contributing
clients and the server in order to aggregate diverse tree based model structures
(with no-information leakage). One of the key issues in training a gradient boosted
decision tree is to find the best feature and value to split using the computed gain
score. FATE framework [24] is the first framework that provides implementations
of Gradient Boosted Trees (GBT) mainly on vertically partitioned data (Vertical
FL) and even supports clustering algorithms like K-Means.

Flower framework, as we mentioned earlier, provides a variety of federated
implementations based on NN and Deep learning models. On the set of supervised
algorithms, only the Logistic Regression model is implemented on a particular

CHAPTER 1. INTRODUCTION 5

framework and there is no implementation of tree based models. Furthermore, on
unsupervised approach, Flower lacks clustering algorithms like K-Means, GMM or
density based algorithms like DBSCAN. Based on that, our goal is to integrate an
unsupervised model (GMM, DBSCAN) and a tree based model, more specifically
XGBoost, into the Flower framework. The federated implementation of the GMM
model makes the easy part of this study with the exchange of model weights between
client and server. On the other hand, the federated XGBoost or DBSCAN was
more challenging. At this point, we implemented a new federated server strategy in
Flower in order to succeed this challenge.

1.4 Purpose of the study

The purpose of this study is to investigate the potential of “federalized” machine
learning algorithms in solving the problem of data privacy and security in distributed
and decentralized systems. First of all, we provide a novel, federated, implementation
of the XGBoost algorithm. The proposed implementation should have the same
architecture as the traditional XGBoost algorithm and also satisfy the typical
FL restrictions, such as: multiple clients, a server that orchestrates the learning
process, and the server has no access to individual data points and cannot infer
the training data. Additionally, the proposed implementation should be as efficient
as possible compared to traditional "un-federalized" XGBoost implementations.
Also, we need to provide a programmatic framework that will allow programmers to
"federalize" any machine learning algorithm. The proposed framework should: be
easy to adopt, offer a simple abstraction, and imply minimal requirements on the
ML implementation. Finally, we provide a novel federalized clustering algorithm.
The algorithm is a combination of two well-known data clustering methods, namely
DBSCAN and GMM. DBSCAN is a very efficient distance-based clustering algorithm
which does not generate a transferable model and thus cannot be used without
revealing information of at least some of the training data samples. On the other
hand, GMM is a clustering method of mediocre efficiency which generates an easily
transferable model that does not reveal details about the training data samples.
The proposed clustering method should combine the advantages of these methods
without being hindered by their disadvantages.

Chapter 2

Datasets

We have selected a diverse set of datasets that cover a wide range of domains and
characteristics, in order to ensure that the proposed algorithms are thoroughly tested
and evaluated. These data sets include both real-world and synthetic data, and
have been chosen based on their relevance and suitability for the algorithms under
investigation. We used the real-world datasets on federated XGBoost classification
and the synthetic datasets on the clustering algorithms (GMM and DBSCAN).

More specifically, in order to evaluate the performance of federated XGBoost, we
used four standard binary classification datasets (Table: 2.1). The Wisconsin breast
cancer dataset is a collection of clinical measurements from breast cancer tumors,
which is publicly available from the UCI Machine Learning Repository [11]. It
contains information about the size, shape, and other characteristics of the tumors.
The dataset includes information on more than 500 patients, where each patient is
represented by a record containing 30 clinical measurements. The measurements
include characteristics of the tumor, such as its radius, texture, smoothness, and
perimeter. The dataset, also, includes a binary outcome variable indicating whether
the patient’s tumor was benign or malignant with 212 or 357 number of patients
respectively. Overall, the Wisconsin breast cancer data-set is a valuable resource
for researchers studying breast cancer and developing machine learning algorithms
for predicting tumor characteristics and outcomes.

The heart disease dataset [21] is a collection of clinical data related to heart
health. It typically includes information on patients’ medical histories and mea-
surements taken from medical tests, such as electrocardiograms (ECGs) and blood
tests. The dataset also includes information on the patients’ demographics and
the category of the chance to have a heart attack. On this dataset we have 303
samples (165 and 138 samples on each class) and 13 features, like the number of
major vessels, the presence of chest pain or the absence, the highest heart rate that
was recorded and others.

The Pima Indians Diabetes Database [11] contains clinical data of female patients
from the Pima Indian tribe. The dataset includes demographic information for
each patient and clinical measurements, such as their blood pressure, body mass

6

CHAPTER 2. DATASETS 7

Samples Features Positive samples Negative samples

Breast Cancer 569 30 357 212
Heart disease 303 13 165 138
Smoking 55.692 26 20.455 35.237
Diabetes 768 8 268 500

Table 2.1: Binary classification datasets selected for XGBoost model.

index (BMI), and skin thickness. The dataset also includes a binary outcome
variable indicating whether the patient developed diabetes or not. Totally, we have
700 patients, with each patient represented by a record containing eight clinical
measurements. Also, this dataset has unbalanced in the target class with 500
non-diabetic patients and 268 that developed diabetes.

The last dataset is a collection of basic health biological signal data of smoking
[16]. Includes information for the age, height and gender for each patient and other
clinical measurements, such as blood pressure, dental caries, etc. In total, we have
26 measurements for each of the 55.692 patients and the goal is to use bio-signals to
assess whether smoking is present on the patients or not. Is an unbalanced dataset
with a massive number of samples in both categories (non-smoking and smoking
patients with 35.237 and 20.455 samples respectively).

In addition to these datasets, we will also use several synthetic datasets which
will be generated to evaluate the performance of the proposed clustering algorithms
in different scenarios. These synthetic datasets will be designed to mimic different
“interesting” types of real-world datasets and will be useful in evaluating the
robustness and scalability of the GMM and DBSCAN algorithm. We created six
datasets from [30] with 2 dimensions to check the clustering algorithms.

The first dataset is one that we can create from scikit-learn with the use of
make_circles function that creates a circular-shaped binary dataset. The samples
are generated in such a way that they are arranged in two concentric circles with the
samples in the inner circle belong to one class and the samples in the outer circle
belong to the other class. The second dataset has the structure of two interleaving
half-circles (make_moons) where samples are arranged in two half-circles, one on top
and one on bottom. Also, we used the function make_blobs, a dataset generator in
scikit-learn that creates a multi-class dataset. It takes in several parameters such as
n_samples, centers, and cluster_std, which can be used to control the number
of samples, number of centers, and standard deviation, respectively. The samples
are generated randomly around the centers provided with a Gaussian distribution
and each center corresponds to a different class. From the same library, we derived
one more dataset with different standard deviation of each cluster by providing an
array of variances as an argument. When you specify varied variances, it means
that the clusters will have different standard deviations or spread of data points
around the center. The fifth dataset is anisotropically distributed data, which refers

CHAPTER 2. DATASETS 8

to data that is not evenly distributed across all dimensions. It is characterized by
a non-uniform distribution of samples along different axes or features. This type
of data distribution can be caused by several factors, such as natural phenomena,
measurement errors, or experimental design. For example, in a 2-dimensional space,
an isotropic distribution would be a circular distribution around the center, while
an anisotropic distribution could take the form of an elongated ellipse, where the
data is more concentrated along one axis than the other. In higher-dimensional
spaces, the anisotropy can take more complex forms. Finally, the last dataset is
a random dataset without structure, derived from the random_rand function in
python. All of the datasets described above have 1000 samples and 2 features.

The presented datasets is often used in machine learning and data mining
research, as they provides a relatively large and well-organized collection of data for
testing and developing predictive models. These includes a wide range of information
that can be used to study the presence or absence of a disease based on clinical
measurements. The results of the algorithms performance on these data sets will be
presented and analyzed in later sections, providing a comprehensive evaluation of
the proposed algorithms and their capabilities. This will help us to understand the
strengths and limitations of the proposed algorithms and identify areas for future
work.

Chapter 3

Federated XGBoost

3.1 Preliminaries of XGBoost

Ensemble learning is an interesting meta-learning strategy where a large number of
relatively weak simple models are combined in order to obtain a stronger ensemble
prediction [31]. The most prominent examples of such machine-learning ensemble
techniques are random forests [5] that use the “Bagging” technique (sampling with
replacement from the data set and averaging of the sub-models) and have gained a lot
of popularity in recent years. Instead of the simple model averaging technique that
Random forests use, the so called “boosting” technique and the AdaBoost algorithm
in ensemble learning [36] follows an iterative, “stage-wise” additive approach where
a new model is added and trained based on the errors of the whole ensemble in
the current iteration. A statistical view of the boosting techniques led to the
introduction of the gradient boosting machines [12, 13] and gradient tree boosting
when decision trees are used as the “weak” learners. Under this statistical framework,
the new base-learners are selected according to their correlation with the negative
gradient of the loss function, associated with the whole ensemble. Here, we are
going to quickly present XGBoost which is one of most famous examples of gradient
tree boosting algorithms [7].

In the Gradient Boosting Decision Trees (GBDT) setting a sequence of decision
trees are trained. Formally, given a loss function l and a data set with n instances
and d features D = {(xi, yi)}, where |D| = n, xi ∈ Rd, and yi ∈ R, GBDT minimizes
the following objective function [7]:

L̃ =
∑
i

l (ŷi, yi) +
∑
k

Ω (fk)

where Ω(f) = γTl +
1
2λ|w|

2 is a regularization term to penalize the complexity of
the model. Here γ and λ are hyper-parameters, Tl is the number of leaves and w
is the leaf weight. Each fk corresponds to a decision tree. Training the model in
an additive manner, GBDT minimizes the following objective function at the t-th
iteration.

9

CHAPTER 3. FEDERATED XGBOOST 10

L̃(t) =
n∑

i=1

[
gift (xi) +

1

2
hif

2
t (xi)

]
+Ω(ft)

where gi = ∂ŷ(t−1) l
(
yi, ŷ

(t−1)
)

and hi = ∂2
ŷ(t−1) l

(
yi, ŷ

(t−1)
)

are first and second
order gradient statistics on the loss function. The decision tree is built from the
root until reaching the restrictions such as the maximum depth. If IL and IR are
the instance sets of left and right nodes after the split and letting I = IL ∪ IR, then
the “gain” of the split is given by

Lsplit =
1

2

(∑

i∈IL gi

)2∑
i∈IL hi + λ

+

(∑
i∈IR gi

)2∑
i∈IR hi + λ

−
(∑

i∈I gi
)2∑

i∈I hi + λ

− γ (3.1)

Now if we assume that the loss function is “log-loss”, one of the most common
functions for binary classification:

l(ŷi, yi) = − [yi log(ŷi) + (1− yi) log(1− ŷi)]

then the first and second order gradients of this loss faction are gi = ŷi − yi , or
else the residuals and hi = ŷi(1− ŷi). If we substitute these values in Lsplit then
the optimal split is the one that maximizes the expression:

Lsplit = SimilarityScoreleft + SimilarityScoreright − SimilarityScoreroot

where the SimilarityScore for a collection of samples is:

SimilarityScore =
(
∑n

i=1 gi)
2∑n

i=1 hi + λ

or else:

SimilarityScore =
(
∑n

i=1 residuali)
2∑n

i=1 ŷi ∗ (1− ŷi) + λ
(3.2)

Then, when the maximum depth of the tree reached, we calculate the output
values of the leaves, or the weights w∗

j of the leaf j. According to the XGBoost
publication this value is equal to:

w∗
j =

∑
i∈Ij gi∑

i∈Ij hj + λ

The computation of the output value happens after the optimal tree has been
constructed. Given the same loss function l and substituting gi and hi in the
formula above we have:

w∗
j =

∑n
i=1 residuali∑n

i=1 ŷi(1− ŷi) + λ

CHAPTER 3. FEDERATED XGBOOST 11

3.2 XGBoost on a Federated Learning setting

As described previously, during the process of construction of a tree, XGBoost (and
other Gradient Boost algorithms) deal with the problem of locating an optimal
split for the residuals of the data set. In XGBoost splitting is applied by locating a
threshold that maximizes the equation (3.1), which simplifies to the following since
γ is constant:

Lsplit =
1

2

(∑

i∈IL gi

)2∑
i∈IL hi + λ

+

(∑
i∈IR gi

)2∑
i∈IR hi + λ

−
(∑

i∈I gi
)2∑

i∈I hi + λ

Where IL, IR are the instances (i.e. samples) of the data on the left and the

right nodes respectively after the split, and I are all the instances before the split.
Also, gi and hi are the first and second order gradient statistics of the loss function:
l(ŷi, yi). In this function ŷi is the predicted probability of sample i and yi is the
target of sample i. Finally, λ is a regularization parameter (λ > 0), the greater the
λ the more pruning is applied from the algorithm.

In order to locate the optimal split of a leaf in the tree, we just need to find: (i)
sums of the residuals (for gi) and (ii) the sum of the likelihoods of the predictions
(for hi) based on the equation 3.2. XGBoost locates this optimal split through an
exact Greedy algorithm. Ultimately this means that it just applies all possible splits.
A large part of the optimizations that are described in the XGBoost algorithm
are dealing with substituting the greedy algorithm with heuristics that limit the
number of possible splits. Here we present a split finding algorithm that is suitable
for federated learning.

An ideal solution would be for all federated clients to transmit all gi and hi
values for each split to the master node server and then the server locates the
optimal split as suggested in [39]. This method has the disadvantage of revealing
too much information regarding the data in each client. For example in the first
iteration the server would get the residuals (gi) for every instance for every client.
Assuming an initial prediction probability of 0.5, it could simply check if the sample
belongs to the positive or negative class by just checking if the residual is positive
or negative. Furthermore, this requires a lot of communication with the central
orchestrating node that will negatively affect the training time.

Here we suggest the following approach. Each client computes the S different
splits that yield the top S Lsplit values, where S is a configuration hyperparameter.
For example if S = 10 then each client computes the splits that produce the top
10 Lsplit values. Then each client returns to the server three types of data: (i) the
splits, (ii) their corresponding values of Lsplit and (iii) the number of samples that
belong to the root node of this split for this client. Assume that SPs is the s-th
split, C is the number of federated clients, Ls,p is the Lsplit value returned from the
p-th client when it applies the s-th split. Also assume that Np is the number of
samples that the root node contains in the p-th client (this is before the split, so it

CHAPTER 3. FEDERATED XGBOOST 12

is irrelevant to the split). After receiving this data the server computes the split
that maximized the following expression:

argmax
SPs

C∑

p=1

NpLs,p

 (3.3)

Or else it locates the split that contains a high number of samples over many
nodes (Np) and also high values of Lsplit. After obtaining the optimal split the
server transmits that to the clients so that they can continue building the tree.
Again some information about the distribution of the data can be deduced, but
important information like class values is not leaked.

In contrast to the optimal split, the computation of weight w∗
j of a leaf j haven’t

got any “search” that needs to take place. We notice that the output value of a
leaf can be computed from the sum of the residuals and, also, from the sum of the
likelihoods of the predicted probabilities that this leaf contains. Therefore after
a split, each client can just transmit these two sums to the server. The server
adds all sums and can compute the w∗

j for all leaves which transmits back to the
clients. It is important to note that during this federated process all clients ‘work’
on constructing the same set of trees.

3.3 Implementation

In this section, we describe in details our federated XGBoost implementation. On
purpose, we will omit the description of the technical aspects of server and client
communication. We will explore in details the communication in Chapter:4. At the
beginning server and clients exchange a set of parameters. Particularly, server sends
the parameter S to all clients and the clients sends to the server the number of
samples on their dataset, the initial probabilities and the learning rate. The initial
probabilities (Prinit) computed by the formula:

Prinit =
P

P +N

where P is the positive and N the negative number of samples. Since each client
has a different number of positive and negative samples, the server computes the
weighted average of Prinit over all clients. Similarly each client may have different
fit parameters. For example the learning rate can be set with different values in
each client. These parameters are transmitted back to the server and the server
aggregates them into a single value. By default the aggregating function is the
weighted average. After the exchange of these parameters, the iterative process
of the gradient descent begins. In each iteration a new binary tree is generated
that fits the data to the current residuals. The challenge here is to synchronize all
clients so that a single tree is generated. If we had a single client (unfederated),
then we would have a depth-first recursive process where in each node we would

CHAPTER 3. FEDERATED XGBOOST 13

Data

Client 1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
Client 2 1, 2, 3, 4, 9, 10, 11, 12
Client 3 9, 10, 11, 12, 13, 14, 15, 16

Table 3.1: Data in each client (example).

compute the optimal split. Then we would split all data to two groups: these data
points for which the target feature is greater than the optimal split and these data
points for which the target feature is less than the optimal split. Therefore, we
would continue with the process recursively until a stopping criterion is met. In
our case, each client has different data points and all clients are building the same
tree. Subsequently, given a path Path from the root to a node, a client might have
data points in this node, whereas another client might not have data points (or
even nodes) on this specific path. For example, assume that we have three clients
with the data presented on table 3.1. At the beginning we ask all clients to send
the top S best splits. A split is in the form target < midpoint where target is
the value of the target feature and midpoint is the average of two adjacent values
of the target feature. For example a split might be: target < 10.5. The server
receives S splits from each client and chooses the best based on the information
that each client provides. As we shown, this information includes the midpoints,
the gain of the split Lsplit (formula 3.1) and the number of residuals for each feature
that are necessary for the server in order to apply the formula in 3.3. After this
computation, the server finds the feature and the midpoint with highest value and
sends this information back to clients. Based on the described procedure, each
client will receive the same splitting criterion according to global information. Back
to our example, let’s assume that this split is: target < 8.5. The clients split
their data in two groups, lower and higher than the midpoint of the selected split.
This generates the following trees in each client, shown in Figure: 3.1.

For each split that the client transmits to the server, the client stores the
following information that is kept private:

1. The predicted probabilities. As we mentioned earlier, making a first prediction
is the first stage in fitting XGBoost to training data. When the first tree
is complete, we are ready to make new predictions, by starting with the
initial probabilities/predictions. The new predicted probabilities for each
observation is equal to the initial_probabilities plus the output_value scaled
by the learning_rate. That is:

new_predictions = initial_predictions+ Learning_Rate ∗Output_value

2. The residuals (gi = ŷi− yi) or else the difference between the target class and
the prediction for each sample i from the previous iteration.

CHAPTER 3. FEDERATED XGBOOST 14

Figure 3.1: Server sends the best split to the clients (Target<8.5) and they split
their data into two different groups. ‘Left‘ from a node contains all data points that
have lower feature values than the optimal split and ‘right‘, contains all data points
that have values greater than the optimal split.

Cl.1 L LL LLL LLR LR LRL LRR R RL RLL RLR RR RRL RRR
Cl.2 L LL LLL LLR - - - R RL RLL RLR - - -
Cl.3 - - - - - - - R RL RLL RLR RR RRL RRR

Table 3.2: The order of the paths with which the clients are instructed to send their
best splits in our example. Not all clients have nodes in all paths (denoted with -).

In the next step the server asks the clients to send the ‘next path‘ of their trees.
The next path is a depth-first enumeration of all the paths in the current trees
of the clients. In our example the first client responds with L, the second with L
and the third with R (Table 3.2). Notice that the third tree does not have any
nodes ‘left‘ from the root node, therefore its ‘next path‘ is R. After receiving all
‘next paths‘ from the clients, the server selects the minimum path according to
the lexicographic order (i.e all the following orderings are True: L < R, L < RR,
LR < LRL). In our case the minimum path is L. Since only clients 1 and 2 have
this path, only these clients take part in the next round. Therefore, the server
instructs only clients 1 and 2 to receive their next best S splits, that exist in the
L path. In our case this would generate the following trees as showed in Figure:
3.2. Once the L branch has finished for clients 1 and 2, then the next branch is R
for which all three clients have nodes. Here we notice that although each client
has different data, all clients contribute in constructing the same tree. After the
generation of a tree, each client measure the value of the log-loss function and
compare it with the value of the previous tree. This process stops until a minimum
criterion is met. For example if the log-loss differences between new and previous
tree is lower than 0.004. For the sake of simplicity we assume that the tree shown
in Figure:3.2 is the final. This could happen for example if we have set a maximum
tree depth of 2 as a convergence criterion. After convergence, fitting proceeds to the
next part of the algorithm which is the normalization of the trees from all clients.

CHAPTER 3. FEDERATED XGBOOST 15

Figure 3.2: Server sends the next best split to the selected clients (Target < 4.5)
and they split their data, again, into two different groups.

As described before, all clients have constructed trees with the same structure,
nevertheless each client has different data on the leaves of each tree, and for some
clients some branches might be missing (see Figure: 3.2). Also, each client has
multiple trees where each created during an ith iteration with a specific rule. For
this reason we can normalize only the trees that were created during the same ith
iteration. The function TREE_NORMALIZER (Algorithm 1) is responsible for collecting
ith trees across all clients. The normalization of these trees is implemented in the
function RECURSIVE_TREE_NORMALIZER (Algorithm 1). This function recursively
traverses all ith trees in parallel starting from the left branches to the right. At the
end of this procedure will generate a single ith tree where the output nodes contain
the summation of the individual tree residuals. The nodes rule stays the same since
the ith trees among all clients created based on the aggregated splits. After the
normalization of the trees on the server, we send a message to the flower server in
order to stop the federated rounds. When we have a single model on the server, we
have the ability to store the model and use it for further usage.

After normalization, the federated server, holds a unique set of decision trees as
if we had run a non-federated XGBoost implementation. Therefore, the part in FIN
strategy (see Chapter:4) that yields predictions of unseen data is exactly the same
as the original implementation. Briefly, to predict the sample target we traverse
the decision tree starting from the root node. Based on the node decision rule,
we follow the path of the tree until the output leaf is reached. This leaf contains
the summary of all residuals and covers based on the training data. At this point,
we compute the output value of the tree as shown in Algorithm 2, line 3. This
procedure is repeated for all the trees and finally, we compute the target probability
based on the summary of output values multiplied by learning rate.

CHAPTER 3. FEDERATED XGBOOST 16

Algorithm 1 Recursive tree normalization algorithm
1: function Recursive_Tree_Normalizer(nodes)
2: if nodes is empty then
3: return
4: end if
5: nodesL ← [] ▷ [] is an empty list
6: nodesR ← []
7: normalized_node.residuals← 0
8: for node in nodes do
9: if node is an output node then ▷ or else this is a leaf

10: normalized_node.residuals ← normalized_node.residuals +
node.residuals

11: else
12: nodesL.append(node.L) ▷ Add to nodesL the left branch of node
13: nodesR.append(node.R) ▷ Add to nodesR the right branch of node
14: normalized_node.rule← node.rule
15: end if
16: end for
17: normalized_node.L← Recursive_Tree_Normalizer(nodesL)
18: normalized_node.R← Recursive_Tree_Normalizer(nodesR)
19: return normalized_node
20: end function
21: function Tree_Normalizer(clients)
22: normalized_trees← []
23: N ← Maximum number of trees over all clients
24: for k ← 1 to N do
25: rootk ← []
26: for client in clients do
27: treek ← kth tree of client
28: rootk.append(treek.root)
29: end for
30: normalizedk ← Recursive_Tree_Normalizer(rootk)
31: normalized_trees.append(normalizedk)
32: end for
33: return normalized_trees
34: end function

CHAPTER 3. FEDERATED XGBOOST 17

Algorithm 2 Prediction
1: function Recursive_Tree_Output(X, node, SUMR, SUMC)
2: if node is an output node then ▷ or else this is a leaf
3: return SUMR+node.residuals

SUMC+node.cover
4: else
5: if noderule(X)→ go left then
6: R ← Recursive_Tree_Output(X, node.L, node.residuals,

node.cover)
7: else if noderule(X)→ go right then
8: R ← Recursive_Tree_Output(X, node.R, node.residuals,

node.cover)
9: end if

10: return R
11: end if
12: end function
13: function Predict(X, LR)
14: log_odds← initial_log_odds
15: for tree in normalized_trees do
16: output← Recursive_Tree_Output(X, tree.root, 0, 0)
17: log_odds← log_odds+ LR ∗ output
18: end for
19: prob← elog_odds

1+elog_odds

20: return prob ▷ Or transform to binary to use for classification:
sign(prob− 0.5)

21: end function

CHAPTER 3. FEDERATED XGBOOST 18

3.4 Experiments

In order to measure the effectiveness of the proposed federated XGBoost algorithm
we design experiments over selected classification datasets (presented in Table:
2.1). Furthermore, we are interested in comparing the performance of the proposed
method in comparison with traditional XGBoost implementation [8].

In order to proceed with the analysis, each dataset is separated in two portions,
train and test (also known as hold-out) set. The train portion will be used to
train both models (federated and unfederated XGBoost) during the K-fold Cross
Validation and the test set to assess the performance of each model. K-fold Cross
Validation is a data re-sampling method to assess the generalization ability of
predictive models and to prevent overfitting. During the K-fold Cross Validation,
data set partitioned into K disjoint subsets of equal size. The K-1 folds represents
the training set for both federated and unfederated XGBoost. In the case of
federated XGBoost, we split the K-1 folds (the training set) into N parts, where
N represents the number of clients. In our case the value of K is equal to 3. So,
classifiers trained on the 2 out of three folds and the performance measured on
the remaining K-th fold for federated and unfederated cases. More specifically
for federated XGBoost, when the server has the aggregated final model derived
from the clients, we measure the performance on validation sets for this model
(FedM_val). Then we train both methods on training data (80% of the entire
dataset) and the performance evaluated on the initial test set (20% of the data).
We describe the entire pipeline in Figure: 3.3. The train-test split and the splits for
K-fold Cross Validation are made by preserving the percentage of samples for each
class (stratified folds).

The performance metrics that was used to compare the performance of the
models/methods was the Area Under the Curve of Receiver Characteristic Operator
(ROC-AUC), sensitivity, specificity and accuracy. The ROC curve is an evaluation
metric for binary classification problems. Is a probability curve that plots the
True Positive Rate (TPR) against False Positive Rate (FPR) at various threshold
values. The Area Under the Curve (AUC) is the measure of the ability of a
classifier to distinguish between classes and is used as a summary of the ROC curve.
The higher the AUC, the better the performance of the model at distinguishing
between the two classes [3]. The Sensitivity (Sens) is the ratio of correctly predicted
positive observations to all observations in the actual class. Specificity (Spec) is
the ratio of true negative observations to all observations in the actual class. And
finally, accuracy (Acc) is the ratio of correctly predicted observation to the total
observations and it can be used correctly in the case of balanced data.

3.4.1 Scalability measurements

In this section, we investigate the scalability in terms of the number of clients. At
this experiment, we kept a fixed number of samples (n_samples) that are shared
between N clients and each client has n_samples/N samples. According to this

CHAPTER 3. FEDERATED XGBOOST 19

Figure 3.3: Pipeline of XGBoost experiments.

formula the increase of clients will reduce the number of training samples that each
client has. For this experiment we selected multiple dataset in order to reduce the
random effect of a selected dataset and show the generalization capability of the
presented approach. For each dataset, we proceed with the K-Fold Cross Validation
pipeline.

Furthermore, we investigate the effect of training samples volume on the final
model performance. For this purpose, we manage to implement an experiment
where a diverse range of samples are used during the model training. In this case we
require a dataset with a high volume of samples. For this purpose, we selected the
smoking dataset. As an experiment scenario, we selected samples of size 500, 2.000,
4.000, 8.000, 16.000 and 32.000 where the class ratio is maintained for a proper
model training. We measure the performance of both methods over identical samples
sized data in order to compare the accuracy of each model over the different sample
size. In the case of the federated approach we manage to perform experiments with
the use of 2 and 5 clients for comparison purposes.

3.4.2 Impact of class imbalance

In real world scenarios the datasets are mostly unbalanced. An unbalanced dataset
refers to a dataset where the number of samples in one class is significantly different
from the number of samples in another class. In other words, it is a dataset
where the distribution of classes is not equal or balanced. For example, a dataset
that is used to predict the presence or absence of a disease, where the majority
of the observations are healthy individuals and a small number of observations
are individuals with the disease, would be considered an unbalanced dataset. In
unbalanced datasets, the classifier tends to predict the majority class more often,
resulting in poor performance for the minority class. This can lead to a bias in the
model towards the majority class, resulting in a poor prediction of the minority
class.

To measure how our model is affected by such class imbalance we developed
a set of experiments where we manipulate the class imbalance. For this purpose

CHAPTER 3. FEDERATED XGBOOST 20

Validation Test

Acc AUC Sens Spec Acc AUC Sens Spec

2 clients 0.927 0.984 0.954 0.924 0.929 0.990 0.930 0.886
3 clients 0.934 0.981 0.947 0.917 0.973 0.994 0.986 0.975
5 clients 0.903 0.976 0.943 0.916 0.921 0.987 0.930 0.883
7 clients 0.898 0.960 0.905 0.870 0.903 0.985 0.888 0.829
10 clients 0.863 0.972 0.863 0.817 0.912 0.986 0.902 0.847

Original 0.951 0.989 0.964 0.944 0.956 0.994 0.944 0.911

Table 3.3: Measurements on Breast Cancer dataset with respect to the number of
clients.

we selected a dataset with large volume of samples that is capable for diverse
range of imbalance manipulation. At this point, we choose the largest dataset
that we have, the Smoking dataset. As we shown, the smoking dataset has 20.455
patients/samples on the positive class (smokers) and 35.237 patients on the negative
samples (non-smokers). To create balanced dataset, we decrease the number of
samples on the negative class by choosing randomly 35.237 - 20.455 = 14.782 sample
to throw from the entire dataset. So we used the new balanced data to test our
implementation. Also, we create 4 unbalanced datasets from the original smoking
dataset, where we sample randomly, 60%, 70%, 80% and 90% of samples that
belongs to negative class and the remaining portion belongs to the positive class.
These analysis follow the K-Fold Cross Validation pipeline describe at the beginning
of this chapter.

3.5 Results

As described in previous sections we managed to develop multiple experiments
for multiple scenarios. Initially, we measured the ability of our model to scale
over a diverse number of clients with the use of breast cancer, diabetes and heart
disease datasets. For the breast cancer dataset, the given Table: 3.3 compare the
performance of federated XGBoost with respect to the number of clients and we
report the performance of the original unfederated XGBoost. The table has two
sets of columns: "Validation" and "Test". The validation columns show the average
performance of the model on the validation datasets, and the test columns show
the performance of the model on the test dataset. To measure the performance we
used various metrics that are shown in the table and include accuracy (Acc), AUC
(area under the curve), sensitivity, and specificity. Also, for the federated setting, in
the left column we provide the number of clients used in each round. The final row
in the table, "Original", shows the performance of the unfederated XGBoost. As
you can see, when we increase the number of clients, the performance of federated
XGBoost decreases. For example, on the validation data, when we have 2 clients,

CHAPTER 3. FEDERATED XGBOOST 21

Validation Test

Acc AUC Sens Spec Acc AUC Sens Spec

2 clients 0.744 0.807 0.560 0.782 0.805 0.862 0.629 0.818
3 clients 0.742 0.807 0.542 0.776 0.785 0.862 0.611 0.807
5 clients 0.684 0.764 0.448 0.733 0.824 0.882 0.703 0.847
7 clients 0.682 0.741 0.406 0.722 0.785 0.875 0.648 0.819
10 clients 0.700 0.767 0.420 0.734 0.746 0.808 0.629 0.801

Original 0.701 0.775 0.537 0.762 0.818 0.877 0.666 0.833

Table 3.4: Measurements on Diabetes dataset with respect to the number of clients.

the AUC score is 0.984 higher than the AUC score on 10 clients (0.972). The same
trend we observe also on the other metrics and on the test data. In addition, the
performance on unfederated XGBoost (”Original”) is slightly better than federated
XGBoost. For instance, on the test set, the AUC on the federated XGBoost in 2
clients is equal to 0.990 and the AUC of the original XGBoost is equal to 0.994.
Overall, it appears that the model performs well on the validation and test datasets,
with high accuracy and AUC values. The sensitivity and specificity values are also
generally high, indicating that the model is able to accurately classify positive and
negative cases. However, the performance of the model does seem to vary somewhat
depending on the number of clients used in the data set.

Similarly, on the Diabetes dataset, we present the Table: 3.4 with the same
information as before. With this data, federated XGBoost (with two clients) achieved
a better performance, for all metrics, in validation measurements in comparison
with the original XGBoost. Nevertheless, on test data the original XGBoost has
better performance. For example, the specificity of federated method on 2 clients
are equal to 0.782 on validation data and 0.818 on test data in comparison with
the specificity on ”original” XGBoost which is equal to 0.762 and 0.833 respectively.
The same trend is observed in the Heart disease dataset (see Table: 3.5). The
performance metrics of federated XGBoost, are higher from unfederated XGBoost
on validation set, but on test set we have only better specificity and sensitivity
(0.909 and 0.808 vs 0.878 and 0.846).

Beside the scalability in terms of clients we measure the scalability according to
the volume of the training data that the model (and each client) has. As mentioned
in Section: 3.4.1 we selected the smoking dataset for this purpose where we randomly
selected a portion of samples. The rows of the Table: 3.6 represent different numbers
of samples that we use, ranging from 500 to 32.000. The columns of the table show
different metrics of the algorithm’s performance, including the AUC, sensitivity
and specificity. Additionally, we provide the results for different numbers of clients
compared with the performance of the "original" model. According to our results,
all of the implemented methods provide very similar results with small performance
differences (in some cases our implementation has better performance, in other cases

CHAPTER 3. FEDERATED XGBOOST 22

Validation Test

Acc AUC Sens Spec Acc AUC Sens Spec

2 clients 0.789 0.865 0.818 0.780 0.852 0.918 0.909 0.880
3 clients 0.793 0.897 0.856 0.806 0.819 0.884 0.848 0.814
5 clients 0.752 0.847 0.787 0.746 0.885 0.933 0.939 0.920
7 clients 0.822 0.891 0.901 0.867 0.868 0.922 0.939 0.916
10 clients 0.801 0.870 0.840 0.800 0.819 0.901 0.939 0.904

Original 0.764 0.860 0.803 0.759 0.836 0.927 0.878 0.846

Table 3.5: Measurements on Heart Disease dataset with respect to the number of
clients.

the ”original” one). Generally, both methods increase their performances while the
number of samples are increased, with the highest AUC values being achieved on the
maximum number of samples. However, the sensitivity and specificity values for the
models trained on different numbers of clients are relatively similar, indicating that
the performance of these metrics is relatively consistent across different numbers of
clients.

As mentioned in Section: 3.4.2 we are also investigating the impact of class
imbalance over final model performance. In the designed experiment we randomly
create 5 dataset with variety of class ratio : 50-50, 60-40, 70-30, 80-20 and 90-10
(Table: 3.7). Relatively to the previous results, the columns of the table show
different metrics of the algorithm’s performance (AUC, sensitivity and specificity)
with respect to the number of clients. For example, in the first row under the
"50-50" ratio, we see an AUC of 0.847 which corresponds to 2 clients. On the same
dataset the original XGBoost succeeded a higher performance not only in AUC
(0.856) but also in the other measurements. In addition, original and federated
XGBoost has lower performance when we have extremely unbalanced data (”90-10”),
in comparison to an unbalanced dataset of 60% on one class and 40% on another
class. Based on the provided results we identify that both methods are affected
similarly by class imbalance and provided federated implementation manage to
compete the original XGBoost with slightly lower performance (around of 1%).

CHAPTER 3. FEDERATED XGBOOST 23

Samples

500 2000 4000 8000 16000 32000

AUC 0.796 0.803 0.817 0.826 0.830 0.848
2 clients Sens 0.533 0.654 0.638 0.659 0.649 0.666

Spec 0.753 0.793 0.790 0.801 0.798 0.809

AUC 0.797 0.803 0.811 0.824 0.829 0.842
5 clients Sens 0.514 0.629 0.672 0.656 0.658 0.684

Spec 0.745 0.785 0.805 0.799 0.802 0.814

AUC 0.782 0.794 0.812 0.822 0.834 0.854
Original Sens 0.549 0.635 0.634 0.643 0.682 0.692

Spec 0.754 0.783 0.788 0.793 0.812 0.820

Table 3.6: Measurements on smoking dataset with respect to the number of clients.

Portion of classes

50-50 60-40 70-30 80-20 90-10

AUC 0.847 0.843 0.840 0.837 0.825
2 clients Sens 0.843 0.720 0.553 0.307 0.06

Spec 0.816 0.737 0.661 0.578 0.513

AUC 0.837 0.835 0.834 0.834 0.824
5 clients Sens 0.839 0.731 0.520 0.277 0.02

Spec 0.807 0.741 0.647 0.569 0.504

AUC 0.856 0.853 0.846 0.841 0.835
Original Sens 0.847 0.740 0.579 0.362 0.127

Spec 0.824 0.752 0.673 0.596 0.528

Table 3.7: Measurements on smoking balanced/unbalanced dataset (test set).

Chapter 4

FIN Strategy

As we showed earlier, Flower provides a basic server-client communication schema
that makes easy the addition of machine learning models in this framework. Indica-
tively, during a single round, the server can communicate only twice with the clients.
This schema is suitable for federated learning algorithms and strategies that do not
require any server-client communication during the Train procedure. Nevertheless,
federated learning, as a generic machine learning method, does not preclude the
communication between server and client during training. As mentioned in [17],
“the separation of the client computation, aggregation, and model update phases
is not a strict requirement of federated learning”. One example is split learning
[37] where certain layers of deep neural networks are communicated to the server
from the clients prior to the completion of the training procedure. Therefore the
main predicament here is to implement a Flower strategy that allows for any com-
munication between the server and the clients during the Train procedure and
this is what the FIN strategy is. The main purpose of FIN is to allow for more
complex ML algorithms to be “federalized” through the Flower framework. Or more
precisely, as we will show, the FIN strategy allows for any federated ML algorithm
that handles the server-client communication through two different functions (i.e.
ML_SERVER, ML_CLIENT) to run through Flower. Since Flower is a widely known
and supported FL framework, this can help the standardization, benchmarking and
easier deployment of more FL algorithms.

4.1 Implementation of FIN

In order for any federated machine learning algorithm to be implemented in FIN,
it needs to follow three design principles. The first is that the algorithm should
be separated in two parts: the server, referred to as ML_SERVER (Algorithm 3),
and the client, referred as ML_CLIENT (Algorithm 4). There is only one instance
of ML_SERVER running whereas there are multiple instances of ML_CLIENT running,
each for every client. The second assumption is that the server orchestrates the
complete learning process through a single function called send_receive_cycle.

24

CHAPTER 4. FIN STRATEGY 25

Whenever the server wants to communicate with a client with a given ID, it calls
the send_receive_cycle function with two arguments: the ID and the data that
it wants to send to that client. The function sends the data to the client and
returns its response. The third design principle is that the client is implemented
as a coroutine. Namely, whenever the client expects instructions or data from the
server, it performs an await until the data is received and yields an appropriate
response. The data types and instruction semantics are left to the specifics of the
ML algorithm.

Once a ML algorithm follows these design principles it can be included in Flower
through the FIN strategy with minimal programming effort. The FIN strategy is
separated in two parts according to Flower specifications: The FIN_SERVER part
which implements the abstract class server and the FIN_CLIENT which implements
the abstract class client. Both server and client are provided by Flower.

More specifically (Figure: 4.1), when FIN_SERVER is initiated it starts a thread
which runs the ML_SERVER. The ML_SERVER thread and FIN_SERVER share two thread-
safe queues with which they can communicate. These queues are send_queue
for sending data to the clients and receive_queue for receiving data from the
clients. After that, the FIN_SERVER and the ML_SERVER run in parallel. When the
configure_fit function of the strategy is called, FIN_SERVER waits for data to be
added in send_queue from ML_SERVER. When ML_SERVER wants to communicate
with a client it calls the send_receive_cycle function and passes the ID of the client
and the data that wants to receive. The send_receive_cycle adds both ID and
the data to send_queue and waits for the receive_queue to get the response from
the client. Once the data is added to send_queue, the FIN_SERVER thread awakes
and reads the data from this queue. This data contains the client with which the
ML_SERVER wants to communicate along with the data that it wants to send to this
client. The configure_fit returns a fit_instructions object that contains this
information. By having a proper fit_instructions object, the Flower framework
can communicate with the corresponding FIN_CLIENT. The FIN_CLIENT that is
reached, calls its fit function which contains all data that are sent from the server.
This function yields the data to the ML_CLIENT and receives a response that is
addressed to the server. Then the fit function, returns a fit_response object that
contains this data. The Flower framework, communicates the fit_response to the
FIN_SERVER which in turn calls the aggregate_fit function. In the aggregate_fit
function, the data from the client are put to the receive_queue. This awakes
the ML_SERVER thread that reads the data from the receive_queue and returns
with this data from the send_receive_cycle function. This completes the cycle
of server-client communication. After the last step, the ML_SERVER thread runs
until the send_receive_cycle function is called again which sends data to the
send_queue and waits until there are data to read from receive_queue. On the
other hand the FIN_SERVER thread calls again the configure_fit function which
waits for data to be added in the send_queue.

CHAPTER 4. FIN STRATEGY 26

Algorithm 3 FIN Server
1: class FIN_SERVER
2: send_queue ← Queue ▷ Server sends in this queue
3: receive_queue ← Queue ▷ Server receives in this queue
4: thread ← ML_SERVER.FIT
5: function configure_fit()
6: client_id, data ← send_queue.get()
7: return fit_instructions(client_id, data)
8: end function
9: function aggregate_fit(fit_response)

10: receive_queue.put(fit_response.data) ▷ Return data to the server
11: end function
12: end class
13: class ML_SERVER
14: function send_receive_cycle(client_id, data)
15: send_queue.put(client_id, data)
16: return receive_queue.get()
17: end function
18: function FIT()
19: while not finished do
20: computations...
21: # Send data to client client_id and store the response in r
22: r ← send_receive_cycle(client_id, data)
23: computations...
24: end while
25: end function
26: end class

CHAPTER 4. FIN STRATEGY 27

Sequence Diagram of a single Server/Client communication in FIN Strategy

FIN_SERVER configure_fit send_queue.get ML_SERVER.fit send_receive_cycle send_queue.put FIN_CLIENT.fit ML_CLIENT.fit aggregate_fit receive_queue

called from Flower

Wait for thread
to put data in
send_queue

sends client_id, data

Puts clients_id,data
in send_queue

Wait until
receive_queue
has data

Stop Waiting
Get client_id, data

Pass client_id, data
to Flower

called from Flower, sends data to client: client_id

send data to coroutine

yield response

get response to Flower

called from Flower, sends response

add response
to receive_queue

Stop Waiting, get response from receive_queue

Store response to
variable r. Continue fit

aggregate_fit finished. Gives control to
FIN_SERVER which starts a new round.

Figure 4.1: Sequence diagram of FIN communication.

Algorithm 4 FIN Client
1: class FIN_CLIENT
2: client ← ML_CLIENT.FIT() ▷ ML_CLIENT.FIT is a co-routine
3: function fit(fit_instructions)
4: response ← client.send(fit_instructions.data) ▷ Send data to co-routine
5: return fit_response(response)
6: end function
7: end class
8: class ML_CLIENT
9: coroutine FIT()

10: while not finished do
11: computations...
12: data_from_server ← yield data_to_server
13: computations...
14: end while
15: end coroutine
16: end class

Chapter 5

GMM and DBSCAN on a
Federated Learning setting

5.1 Federated GMM

The Gaussian Mixture Models (GMM)[33] is a widely used model for clustering.
GMM are useful for understanding and modeling complex data distributions, and
they have a wide range of applications. Is a probabilistic model that assumes that
the data is generated from a mixture of several different Gaussian distributions. In
the GMM algorithm, each cluster is represented by a Gaussian distribution, which
is defined by its mean µk and covariance σk. The model estimates the parameters
of these distributions based on the data points in the dataset, and assigns each data
point to the cluster with the closest matching distribution [4].

GMM is a parametric probability density function which is represented as a
weighted sum of K Gaussian component densities [6], as given from the equation
5.1.

p(x) =
K∑
k=1

πkN(x|µk, σk) (5.1)

where 0 ≤ πk ≤ 1 ∀k = 1, ...,K,
∑K

k=1 πk = 1 and N(x|µk, σk) describes the
multivariate Gaussian with:

N(xi|µk, σk) =
1

(2π)
n
2 |σk|

1
2

exp(−1

2
(xi − µk)

Tσ−1
k (xi − µk))

where n is the number of dimensions of the data and |σk| is the determinant of
the covariance matrix of k-th Gaussian. As we mentioned earlier, each distribution
parameterized by a mean µk that is a n × 1 vector and a n × n covariance σk
matrix.

Finding the model parameters that maximize the probability of the GMM, given
the training data, is the goal of maximum likelihood estimation. Unfortunately,

28

CHAPTER 5. GMM AND DBSCAN ON A FEDERATED LEARNING SETTING29

direct maximization is not feasible because we are dealing with multiple Gaussians
rather than just one. The expectation-maximization (EM) approach, however, has
a specific instance that can be used to iteratively acquire the maximum likelihood
parameter estimates [33]. More specifically, in the GMM algorithm, each cluster
is represented by a Gaussian distribution, and the data points are assumed to be
generated from a mixture of these distributions. The probability that a data point
xn belongs to a cluster with parameters µk and σk is given by:

p(k|xn) =
Probability that xn belongs to class k

Probability of xn belongs to all classes.
=

πkN(xn|µk, σk)∑K
j=1 πjN(xn|µj , σj)

where πk is the mixing coefficient for the k-th cluster, which represents the
proportion of data points that belong to that cluster, and K is the total number of
clusters. In essence, this probability (or the responsibilities) indicate which Gaussian
each data point is most likely to originate from. For example, if we have three
Gaussians and a data point x1 and the calculated responsibilities are {0.1, 0.2, 0.7},
then we have 70% chance the data point x1 belongs to the third Gaussian, 10%
belongs to the first and 20% belongs to the second Gaussian.

To estimate the parameters of the clusters (the mean µk, covariance σk and
responsibilities πk), the GMM algorithm uses the Expectation-Maximization (EM)
algorithm [9], which is an iterative process that alternates between two steps. The
expectation step where the algorithm calculates the posterior probability p(k|xn)
for each data point xn based on the current estimates of the cluster parameters and
the maximization step where we update the estimates of the cluster parameters
based on the probabilities calculated in the expectation step. The calculation of
the new parameters derives from the following formulas:

µk =
1

Nk

N∑
n=1

p(k|xn)xn

σk =
1

Nk

N∑
n=1

rnk(xn − µk)(xn − µk)
T

πk =
Nk

N
,where

Nk =
N∑

n=1

p(k|xn)

is the total responsibility of the k-th component.
Iteratively repeat the Expectation and Maximization step until the log-likelihood

function converges. It is also possible to specify a maximum number of iterations
for the GMM cluster to run, and consider the model to have converged when the
maximum number of iterations has been reached.

CHAPTER 5. GMM AND DBSCAN ON A FEDERATED LEARNING SETTING30

In the context of federated learning, GMM can be used for clustering into the
Flower. To perform GMM clustering in a federated learning setting, each client
trains a local GMM model using its own data, and then shares the parameters
(µk, σk, πk) of the GMM in a central server. The server aggregates the parameters
from all the clients and updates the global GMM model. The server, then, sends the
new global model back to clients and this process is repeated until the maximum
number of federated rounds is reached. This is a basic implementation that can
be, very easily, integrated into the Flower framework. For this purpose, we used
the already implemented GMM model from scikit-learn [30] and we integrate this
model into Flower. Flower provides the abstract structure of a server and client in
order to integrate a new model into this framework. With this structure we created
a server that asks from a random client to receive the first global parameters with
a specific number of Gaussians distributions (i.e n_components = 2). The random
client sends to the server the parameters by fitting the GMM model on the data
that is at his disposal and then the server sends these parameters to all clients.
When all clients return the new parameters, the server aggregates them with the
FedAvg strategy that is already implemented in Flower. Every time that a client
receives the updated parameters from the server, evaluates these parameters with
their available data.

5.1.1 Experiments

In order to measure the performance of created federated GMM model we use several
synthetic datasets from scikit-learn: make_circles, half-circles (make_moons),
make_blobs (original and with the variances), anisotropically distributed data
and a random dataset without structure (all of them described in Chapter: 2).
Explained datasets contain samples in two dimensional space, since we compare the
results of unfederated GMM from scikit-learn [30] and federated implementation
via visualization of detected clusters and silhouette score.

Initially, data is partitioned into N portions, where N is the number of clients.
Each client normalizes its own data and trains the GMM model with the parameter
n_components equal to 2. After the training step each client predicts the outcome
class (0 or 1) of each sample. In order to properly compare federated and unfederated
approaches we train both methods on identical train data portions. Such approaches
promise equality in comparison, avoiding any randomness in results. To evaluate the
performance of this algorithm, to determine if it is working well we use visualization
and evaluation metrics like silhouette score. The simplest way to evaluate the
performance of a clustering algorithm is to visualize the data and the clusters
produced by the algorithm. This can help to identify any obvious patterns or
structure in the data and to assess whether the clusters produced by the algorithm
reflect these patterns. Next, there are a number of internal evaluation metrics that
can be used to assess the quality of the clusters produced by a clustering algorithm.
These metrics measure the compactness and separation of the clusters, and include
measures such as the silhouette score and the Davies-Bouldin index. In our case, we

CHAPTER 5. GMM AND DBSCAN ON A FEDERATED LEARNING SETTING31

(a) Noisy circles (b) Noisy moons

(c) Varied (d) Aniso

(e) Blobs (f) No structure

Figure 5.1: Non-federated GMM on the left sub-figures and federated GMM
clustering on the right sub-figures.

used the silhouette score [30]. Silhouette score, also known as silhouette coefficient,
returns a value between -1 and 1. The value of 1, or close to 1, means clusters are
obviously distinct from one another and separated significantly apart. The opposite
value, -1, means that clusters are assigned incorrectly and the values close to zero
means that the separation between the clusters is not significant.

5.1.2 Results

Based on the experiments described in the previous section we present the silhouette
coefficient for each of the 6 clustering datasets (Table: 5.1). As we mentioned
earlier, the silhouette score ranges from -1 to 1, where a score of 1 indicates
that the sample is very well matched to its assigned cluster, and a score of -1
indicates that the sample is poorly matched to its assigned cluster. The table
compares the two different approaches, the federated and unfederated clustering
with GMM. According to silhouette coefficients both methods provide very similar

CHAPTER 5. GMM AND DBSCAN ON A FEDERATED LEARNING SETTING32

Datasets Fed. GMM GMM

Noisy circles 0.352 0.350
Noisy moons 0.496 0.497
Varied 0.603 0.603
Aniso 0.462 0.463
Blobs 0.865 0.865
No structure 0.321 0.374

Table 5.1: Silhouette score of federated and non-federated GMM on each dataset.

results across all datasets. The differences between federated and unfederated
implementations vary in range of ±1% with the exception of no-structure dataset
where methods provide different results since the data do not have any particular
clusters. Furthermore, we can identify the similarity and differences between the
two approaches from the clustering results that presented in Figure: 5.1.

In general the values of the silhouette coefficient are low on the majority of the
datasets. These results refer to the weakness of the GMM algorithm to identify
the structure of the data on both models. Overall, the results suggest that the
federated approach has almost identical ability of learning generic patterns as an
non-federated clustering model.

5.2 Federated DBSCAN based on GMM data descrip-
tion

Due to the weakness of the GMM algorithm to identify the structure of the
aforementioned datasets, we decided to use a different algorithm, DBSCAN, that
can successfully cluster complex data. DBSCAN is a density-based clustering
algorithm that groups together points in a dataset that are closely packed together
(points with many nearby neighbors), marking as outliers points that lie alone in
low-density regions (whose nearest neighbors are too far away). The key idea of
the algorithm is that for each point of a cluster the neighborhood of a given radius
(Eps) has to contain at least a minimum number of points MinPts [18]. One of
the most important properties of DBSCAN is that it does not require specifying
the number of clusters (they are detected dynamically) and that it can handle and
identify noise points.

The algorithm starts by defining a neighborhood around each point, determined
by two parameters. The first one is the Eps that refers to the distance threshold
(euclidean distance in our case) that defines the radius of the neighborhood around
each point. The second one is the MinPts, that is the minimum number of points
required to form a dense region. Points in the dataset are then classified as core
points, non-core points, or noise points based on the number of points in their
neighborhood. A core point is a point that has at least MinPts points within a

CHAPTER 5. GMM AND DBSCAN ON A FEDERATED LEARNING SETTING33

distance of Eps. A non-core point is a point that has fewer than MinPts points
within a distance of Eps, but is within the Eps distance of a core point. Finally,
a noise point or an outlier is a point that does not belong to any of the previous
categories. At the beginning, the DBSCAN algorithm selects a random unvisited
sample A from the data. Initially we search in Eps region the number of neighbors
around this point. If the number of neighbors is at least MinPts within Eps circle,
we assign this point as a core point and these neighbors are part of a single cluster.
In this case we will proceed to use the same approach on all neighbors of A. If
the point A is a non-core point, we will ignore the neighbors and expansion of
the cluster. In cases where there are no more points to take into account for the
current cluster, we restart the process with new points and create a new cluster.
It is important to notice that the choice of the Eps and MinPts parameters can
greatly affect the results of the DBSCAN algorithm and that in practice, these
parameters are often chosen through trial and error or by using methods such as
the elbow method or the silhouette method.

At a more abstract level, DBSCAN algorithm groups together all the core points
that are directly or indirectly reachable from each other (i.e., all core points that
are in the same connected component) and forms a cluster. Non-core points are
assigned to the cluster of the nearest core point. Noise points are not assigned to
any cluster (DBSCAN labeling these points as -1).

5.2.1 DBSCAN on federated setting

As we mentioned earlier, DBSCAN calculates distances between data points and
based on specific parameters (Eps, MinPts) assigns these points on the same or
different clusters. That means that the DBSCAN algorithm requires the sharing
of data points and their distances in order to identify clusters. So, in a federated
setting, it is impossible to share the coordinates of the data from each client to the
server because we reveal sensitive information about the data such as individual
data points or the structure of the clusters themselves.

One of the proposed methods [26], is to partition the features space, on the
client’s side, with a fixed granularity. With this approach, clients send to the server
only the number of points within each cell of the grid, restricting the exchange
of raw data and protecting privacy. Then, the server aggregates the information
received from the clients about the cells and runs a standard DBSCAN based on
dense or non-dense cells.

In our case, we follow a different approach that focuses on how to use DBSCAN
and GMM models into FIN to share data without information leakage. The main
idea of this technique is the use of both clustering models for different functions.
The DBSCAN algorithm is used to cluster data on each client without the arbitrary
choice of the number of clusters. Based on these clusters, we use the GMM algorithm
to describe the data from each cluster. We used a fixed number of Gaussian’s
in each cluster to describe the data with 3 parameters: means, covariances and
weights. As we know, the number of Gaussian’s to use in order to describe a data

CHAPTER 5. GMM AND DBSCAN ON A FEDERATED LEARNING SETTING34

Figure 5.2: Random samples from GMM.

set depends on the complexity of the data itself and the objective of the analysis.
When the number of Gaussians increases, the model will be able to capture more
complex patterns in the data by dividing it into a larger number of clusters. This
can be beneficial if the data has a complex underlying structure (like the datasets
that will be used) that is not captured by a simpler model with fewer Gaussians. As
shown on Figure: 5.2, we choose a circle cluster from the noisy circles dataset that
will be used later and we tried to create random samples from the GMM model.
On the first plot we fit only two Gaussians (two components) on the GMM model
and the model can’t identify the structure of the data and as a consequence can’t
produce similar data points. With four Gaussians the results are more similar to
the original data (Figure: 5.2b) and finally on the third plot we can see how the
synthetic data from GMM follows the same structure as the original data. We
used 10 Gaussians max because increasing the number of Gaussians may lead to
overfitting, where the model becomes too flexible and fits the noise in the data,
resulting in revealing the original data structure.

5.2.2 Implementation

In this section, we describe with details our implementation. As mentioned earlier,
for any federated machine learning algorithm to be implemented in FIN, it needs to
be separated in two parts: the server, referred as ML_SERVER, and the client, referred
as ML_CLIENT that are called from the FIN_SERVER and FIN_CLIENT respectively.

At the beginning server and clients exchange a set of parameters. Particularly,
the server sends the parameters Eps, MinPts and n_components to all clients. After
all clients receive these parameters, they fit the DBSCAN model to identify the
clusters on their own, local, data. At the next step each client fits the GMM model
for each discovered cluster. By this procedure each detected cluster is described by
n_components Gaussians. As we mentioned earlier each Gaussian is described by 3
arrays: means, covariances and weights of each mixture component. Afterwards, all
clients share Gaussian attributes in combination with the number of samples per
DBSCAN cluster to the server. Since the server receives the GMM attributes from

CHAPTER 5. GMM AND DBSCAN ON A FEDERATED LEARNING SETTING35

Client 1 Client 2

Samples 140 100

DBSCAN clusters 2 1

GMM Clusters 4 * 2 4 * 1

GMM Clusters Size (50, 20, 5, 7) (80, 8, 7, 5)
(32, 18, 4, 4)

Server Samples 240

Table 5.2: An example of the new data points created on the server.

the clients, it manages to re-create the data according to GMM models. Those data
are utilized in server side in order to execute the DBSCAN clustering model (with
the same parameters that was initially used by clients). The result of the server
DBSCAN execution forms the final model.

Is important to mention that the number of samples that was created on the
server depends on the number of samples that each DBSCAN cluster has. For
example (Table: 5.2), suppose that we have two clients with 140 and 100 number
of samples respectively. The DBSCAN algorithm identifies two clusters in the first
client and one in the second client. When we fit the GMM on a cluster’s data with
the parameter n_components equal to 4, we create 4 Gaussians per each identified
cluster. Every spotted cluster has a different number of data points, so the server
will re-create a specific number of samples for each cluster. That is, from the first
client will create a total amount of 82 new samples that belong to 4 Gaussian’s, 50
samples for the first Gaussian, 20 for the second etc. The same approach follows
with the second client. FInally, on the server will be created 240 new data points.

5.2.3 Experiments

In order to evaluate the federated DBSCAN algorithm, we used the 6 different
clustering datasets, with ’interesting’ structures that are described in Chapter: 2.
Selected datasets provide a variety of complex structures that allow the bench-
marking of clustering methods. As in the previous experiments we utilize the
original (non-federated) implementation of clustering algorithm as a ground-truth
and compare the results with the proposed federated approach. As a configuration
of our model we predefined a number of federated clients equal to 2 and the number
of Gaussians that are used for DBSCAN cluster description (n_components) equal
to 10. In terms of the DBSCAN parameters (in both cases) we used identical
hyper-parameters values. We believe that such configuration will allow fair compar-
ison between federated and non-federated implementations. The simplest way to
evaluate the performance of these two clustering algorithms, is to visualize the data
and the clusters produced by the algorithm. This can help to identify any obvious

CHAPTER 5. GMM AND DBSCAN ON A FEDERATED LEARNING SETTING36

(a) Noisy circles (b) Noisy Moons

(c) Varied (d) Anisotropic

(e) Blobs (f) No-structure

Figure 5.3: Non-federated DBSCAN on the left sub-figures and Federated DBSCAN
clustering on the right sub-figures.

patterns or structure in the data.

5.2.4 Results

Based on the described experiments in the above section, we accomplish clustering
of 6 different datasets (see Figure: 5.3) and compare the performance between
unfederated (left sub-figure) and federated (right sub-figure) approaches. Initially, is
important to mention that the synthetic data that generated by proposed procedure
(GMM cluster description and sampling of a new data), generates slightly different
clusters. Such small difference, also known as noise, is important since it allows to
preserve the privacy of the original data points. Despite the fact of the noise, the
synthetic data points preserve the same structure as the original data.

As shown in Figure: 5.3, both methods can identify the clusters on the majority
of the cases. More specifically, on the moons, circles, blobs and anisotropic dataset
the results are almost identical. In the case of the varied and no structure dataset,

CHAPTER 5. GMM AND DBSCAN ON A FEDERATED LEARNING SETTING37

we observe that the unfederated approach succeeds a better clustering. Also, in the
case of the varied dataset (Figure: 5.3c), we observe differences between the number
of samples of the pink cluster. These results may be related with the splitting of
the data or the weakness of the GMM model to describe these data. Similarly, on
the last dataset (Figure: 5.3f) the unfederated model has the best performance,
since it succeeds in clustering the data into one cluster. On the other hand, the
federated model creates one cluster but also identifies noise points. The noise points
are presented as the black data points. Based on our results we can assume that in
some cases the unfederated approach has slightly better results but, overall, both
methods provide very similar results across all datasets.

Chapter 6

Discussion

In this thesis, we propose FIN, a novel federated learning strategy that is able
to support any machine learning in a federated setting. Based on the proposed
solution we manage to transfer the state-of-the-art XGBoost tree classification model
into a federated setting and compare performance on multiple datasets between
federated and unfederated implementations. According to achieved performance
we can assume that the federated implementation of XGBoost is able to provide
very similar performance with the original XGBoost implementation. Such results
show the suitability of federated solutions and their ability to capture generic
patterns of the data. Additionally, we manage to transfer the GMM clustering
model to a federated scenario with almost identical performance with non-federated
implementations. Due to the weakness of the original GMM model over complex
data we moved towards more sophisticated clustering methods such as DBSCAN. In
this thesis we developed a novel implementation of a federated DBSCAN clustering
model with a combination of GMM in order to describe the data. The combination
of these two clustering algorithms, succeeds to preserve the privacy of sensitive
data and at the same time to use a state-of-the-art density based algorithm that
identifies clusters on ’interesting’ 2 dimensions datasets.

It is important to mention, that these methods have been tested in medical
datasets, but they have not been tested in bioinformatics datasets. As we know,
the significant results that XGBoost and DBSCAN models have achieved in bioin-
formatics datasets are remarkable. These models have the potential to provide
valuable insights and improve our understanding of complex biological systems.
For example, XGBoost has been used to identify RNA modifications in various
species [22], determine the regulatory interactions between genes [25] and to predict
protein-protein interactions [10]. In case of DBSCAN model, it has been used
for clustering SNPs (Single Nucleotide Polymorphisms) [38] and T-cell receptor
sequences (TCR) [28]. Therefore, as a future work, we aim to compare our XGBoost
and DBSCAN/GMM implementation with the results that have been obtained
when their non-federalized counterparts are used in high profile publications.

38

CHAPTER 6. DISCUSSION 39

Furthermore, in order to improve our implementation we plan to address lim-
itations of the Flower framework, such as the predefined number of rounds, by
implementing dynamic iterations or early stopping when a model converges. More-
over, due to the extensive execution time that federated XGBoost requires to
produce a final global model, we plan to apply more sophisticated optimizations
techniques to reduce this time. Finally, the federated implementation of other
machine learning models with high impact in the bioinformatics field will contribute
significantly to the research community.

Bibliography

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. Software available from tensorflow.org.

[2] Daniel J Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Titouan Parcollet,
Pedro PB de Gusmão, and Nicholas D Lane. Flower: A friendly federated
learning research framework. arXiv preprint arXiv:2007.14390, 2020.

[3] Aniruddha Bhandari. Auc-roc curve in machine learning clearly explained.
https://www.analyticsvidhya.com/blog/2020/06/auc-roc-curve-machi
ne-learning/, June 2020.

[4] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and
machine learning, volume 4. Springer, 2006.

[5] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[6] Virendra Chauhan, Shobhana Dwivedi, Pooja Karale, and SM Potdar. Speech
to text converter using gaussian mixture model (gmm). International Research
Journal of Engineering and Technology (IRJET), 3(5):160–164, 2016.

[7] Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting
System. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 785–794, San Francisco California
USA, August 2016. ACM.

[8] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining, pages 785–794, 2016.

40

https://www.analyticsvidhya.com/blog/2020/06/auc-roc-curve-machine-learning/
https://www.analyticsvidhya.com/blog/2020/06/auc-roc-curve-machine-learning/

BIBLIOGRAPHY 41

[9] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood
from incomplete data via the em algorithm. Journal of the Royal Statistical
Society: Series B (Methodological), 39(1):1–22, 1977.

[10] Aijun Deng, Huan Zhang, Wenyan Wang, Jun Zhang, Dingdong Fan, Peng
Chen, and Bing Wang. Developing computational model to predict protein-
protein interaction sites based on the xgboost algorithm. International journal
of molecular sciences, 21(7):2274, 2020.

[11] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[12] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic
regression: a statistical view of boosting (with discussion and a rejoinder by
the authors). The annals of statistics, 28(2):337–407, 2000.

[13] Jerome H Friedman. Greedy function approximation: a gradient boosting
machine. Annals of statistics, pages 1189–1232, 2001.

[14] Chaoyang He, Songze Li, Jinhyun So, Xiao Zeng, Mi Zhang, Hongyi Wang,
Xiaoyang Wang, Praneeth Vepakomma, Abhishek Singh, Hang Qiu, et al.
Fedml: A research library and benchmark for federated machine learning.
arXiv preprint arXiv:2007.13518, 2020.

[15] Wei Huang, Tianrui Li, Dexian Wang, Shengdong Du, and Junbo Zhang.
Fairness and accuracy in federated learning. arXiv preprint arXiv:2012.10069,
2020.

[16] Kaggle. Body signal of smoking. https://www.kaggle.com/datasets/kuku
roo3/body-signal-of-smoking, 2022.

[17] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi
Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham
Cormode, Rachel Cummings, et al. Advances and open problems in federated
learning. Foundations and Trends® in Machine Learning, 14(1–2):1–210, 2021.

[18] Kamran Khan, Saif Ur Rehman, Kamran Aziz, Simon Fong, and Sababady
Sarasvady. Dbscan: Past, present and future. In The fifth international
conference on the applications of digital information and web technologies
(ICADIWT 2014), pages 232–238. IEEE, 2014.

[19] Junghye Lee, Jimeng Sun, Fei Wang, Shuang Wang, Chi-Hyuck Jun, Xiaoqian
Jiang, et al. Privacy-preserving patient similarity learning in a federated
environment: development and analysis. JMIR medical informatics, 6(2):e7744,
2018.

[20] Li Li, Yuxi Fan, Mike Tse, and Kuo-Yi Lin. A review of applications in
federated learning. Computers & Industrial Engineering, 149:106854, 2020.

https://www.kaggle.com/datasets/kukuroo3/body-signal-of-smoking
https://www.kaggle.com/datasets/kukuroo3/body-signal-of-smoking

BIBLIOGRAPHY 42

[21] M. Lichman. UCI machine learning repository, 2013.

[22] Kewei Liu and Wei Chen. imrm: a platform for simultaneously identifying
multiple kinds of rna modifications. Bioinformatics, 36(11):3336–3342, 2020.

[23] Xiaoyuan Liu, Tianneng Shi, Chulin Xie, Qinbin Li, Kangping Hu, Haoyu
Kim, Xiaojun Xu, Bo Li, and Dawn Song. Unifed: A benchmark for federated
learning frameworks. arXiv preprint arXiv:2207.10308, 2022.

[24] Yang Liu, Tao Fan, Tianjian Chen, Qian Xu, and Qiang Yang. Fate: An
industrial grade platform for collaborative learning with data protection. J.
Mach. Learn. Res., 22(226):1–6, 2021.

[25] Baoshan Ma, Mingkun Fang, and Xiangtian Jiao. Inference of gene regulatory
networks based on nonlinear ordinary differential equations. Bioinformatics,
36(19):4885–4893, 2020.

[26] Gabrielle Marino. Federated dbscan, 2021. MSc degree.

[27] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. Communication-efficient learning of deep networks from
decentralized data. In Artificial intelligence and statistics, pages 1273–1282.
PMLR, 2017.

[28] Pieter Meysman, Nicolas De Neuter, Sofie Gielis, Danh Bui Thi, Benson
Ogunjimi, and Kris Laukens. On the viability of unsupervised t-cell receptor
sequence clustering for epitope preference. Bioinformatics, 35(9):1461–1468,
2019.

[29] Yuya Jeremy Ong, Nathalie Baracaldo, and Yi Zhou. Tree-based models for
federated learning systems. In Federated Learning, pages 27–52. Springer, 2022.

[30] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–
2830, 2011.

[31] R. Polikar. Ensemble based systems in decision making. IEEE Circuits and
Systems Magazine, 6(3):21–45, 2006.

[32] Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush,
Jakub Konečnỳ, Sanjiv Kumar, and H Brendan McMahan. Adaptive federated
optimization. arXiv preprint arXiv:2003.00295, 2020.

[33] Douglas A Reynolds. Gaussian mixture models. Encyclopedia of biometrics,
741(659-663), 2009.

BIBLIOGRAPHY 43

[34] Nicola Rieke, Jonny Hancox, Wenqi Li, Fausto Milletari, Holger R Roth, Shadi
Albarqouni, Spyridon Bakas, Mathieu N Galtier, Bennett A Landman, Klaus
Maier-Hein, et al. The future of digital health with federated learning. NPJ
digital medicine, 3(1):1–7, 2020.

[35] Anit Kumar Sahu, Tian Li, Maziar Sanjabi, Manzil Zaheer, Ameet Talwalkar,
and Virginia Smith. On the convergence of federated optimization in heteroge-
neous networks. arXiv preprint arXiv:1812.06127, 3:3, 2018.

[36] Robert E Schapire. The boosting approach to machine learning: An overview.
Nonlinear estimation and classification, pages 149–171, 2003.

[37] Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar.
Split learning for health: Distributed deep learning without sharing raw patient
data. arXiv preprint arXiv:1812.00564, 2018.

[38] Shichen Wang, Debbie Wong, Kerrie Forrest, Alexandra Allen, Shiaoman
Chao, Bevan E Huang, Marco Maccaferri, Silvio Salvi, Sara G Milner, Luigi
Cattivelli, et al. Characterization of polyploid wheat genomic diversity using a
high-density 90 000 single nucleotide polymorphism array. Plant biotechnology
journal, 12(6):787–796, 2014.

[39] Mengwei Yang, Linqi Song, Jie Xu, Congduan Li, and Guozhen Tan. The
Tradeoff Between Privacy and Accuracy in Anomaly Detection Using Federated
XGBoost. arXiv:1907.07157 [cs, stat], October 2019. arXiv: 1907.07157.

	Introduction
	Federated Learning
	Federated Frameworks
	Federated Machine Learning algorithms
	Purpose of the study

	Datasets
	Federated XGBoost
	Preliminaries of XGBoost
	XGBoost on a Federated Learning setting
	Implementation
	Experiments
	Scalability measurements
	Impact of class imbalance

	Results

	FIN Strategy
	Implementation of FIN

	GMM and DBSCAN on a Federated Learning setting
	Federated GMM
	Experiments
	Results

	Federated DBSCAN based on GMM data description
	DBSCAN on federated setting
	Implementation
	Experiments
	Results

	Discussion
	Bibliography

