
University of Crete

Computer Science Department

Parasitic Storage Systems:

Free, Reliable and Globally Accessible Gigabytes

Nikolaos Nikiforakis

Master’s Thesis

June 2009
Heraklion, Greece

University of Crete
Computer Science Department

Parasitic Storage Systems:

Free, Reliable and Globally Accessible Gigabytes

Thesis submitted by

Nikolaos Nikiforakis

in partial fullfilment of the requirements for the
Master of Science degree in Computer Science

THESIS APPROVAL

Author:
Nikolaos Nikiforakis

Committee approvals:
Evangelos P. Markatos
Professor, Thesis Supervisor

Sotiris Ioannidis
Associate Researcher at FORTH

Apostolos Traganitis
Professor

Departmental approval:
Panos Trahanias
Professor, Chairman of Graduate Studies

Heraklio, June 2009

Abstract

The commercialization of the Internet, the fast growth of its population and

our society’s increasing reliance on it as a means of information exchange,

triggered the design and implementation of big, fast and reliable web services

such as mail services, picture galleries and file hosting servers. Most of these

services are independent of each other, usable only through their custom web

interfaces and viewed as islands of functionality from their various users.

In this thesis we investigate an alternate view of these services. We

utilize them as connected components of a new storage service instead of

isolated entities. We design a system that acts as a storage parasite of the

various free online infrastructures and aggregates their functionality into a

new, free storage service. We implement an abstract API based on generic

put and get operations which transcend each service’s specific mechanisms

and web interfaces. We use our framework to create a user-level file sys-

tem, ParasiticFS, which can mount several distinct web services under a

single unified namespace. All files shown locally in the ParasiticFS are in

reality stored in various online services taking advantage of each service’s

unique functionality. ParasiticFS provides zero-cost storage that is globally

accessible and characterized by high reliability and availability. Moreover,

our system promotes a set of unique advantages such as NFS-like semantics,

disaster recovery mechanisms and instant recovery of deleted files.

The resulting system and its performance suggests that our storage par-

asite solution can be practically used as a free and efficient backup service,

a media filesystem or an all-purpose network storage solution.

iii

iv

Supervisor: Professor Evangelos Markatos

GR

v

vi

Per�lhyh

H emporeumatopo�hsh tou diadiktÔou, h ragda�a aÔxhsh twn qrhst¸n tou kai

h suneq¸
 auxanìmenh ex�rthsh th
 koinwn�a
 ma
 gia epikoinwn�a mèsw di-

adiktÔou apotèlesan thn kinht rio dÔnamh p�sw apì ton sqediasmì kai thn

ulopo�hsh meg�lwn, gr gorwn kai axiìpistwn uphresi¸n diadiktÔou ìpw

uphres�e
 hlektronikoÔ taqudrome�ou, sullogè
 fwtografi¸n kai uphres�e

apoj keush
 arqe�wn. Oi perissìtere
 apì autè
 ti
 diadiktuakè
 uphres�e

e�nai anex�rthte
 h m�a apì thn �llh, qrhsimopoioÔntai mìno mèsw twn dik¸n

tou
 parametropoihmènwn diepaf¸n kai antimetwp�zontai apì tou
 di�forou

qr ste
 w
 diakritè
 kai asÔndete
 mon�de
 leitourgikìthta
.

Se aut n thn ergas�a diereunoÔme mia enallaktik optik gwn�a gia ti

uphres�e
 diadiktÔou. Ant� na ti
 antimetwp�zoume w
 diakritè
 ontìthte
,

ti
 qrhsimopoioÔme w
 sundedemèna mèrh mia
 nèa
 uphres�a
 apoj keush
 de-

domènwn. Sqedi�zoume èna sÔsthma to opo�o sumperifèretai w
 èna par�sito

apoj keush
 dedomènwn ei
 b�ro
 twn diafìrwn dwre�n uphresi¸n diadiktÔou.

To sÔsthma autì sunajro�zei thn leitourgikìthta aut¸n twn uphresi¸n se m�a

nèa dwre�n uphres�a an�kthsh
 kai apoj keush
 dedomènwn. UlopoioÔme èna

afairetikì API basizìmeno se genikeumène
 put kai get leitourg�e
 oi opo�e

uperba�noun ti
 parametropoihmène
 diepafè
 k�je uphres�a
 diadiktÔou. Qrhsi-

mopoioÔme to programmatistikì ma
 pla�sio gia na dhmiourg soume èna sÔsthma

arqe�wn epipèdou-qr sth, ParasiticFS, to opo�o prosarmìzei xeqwristè
 uph-

res�e
 diktÔou k�tw apì ènan, enopoihmèno onomatoq¸ro. 'Ola ta arqe�a pou

parousi�zontai w
 topik� mèsw tou ParasiticFS e�nai sthn pragmatikìthta

apojhkeumèna se di�fore
 uphres�e
 diadiktÔou qrhsimopoi¸nta
 pleonektik�

vii

viii

ta qarakthristik� th
 k�je uphres�a
. To ParasiticFS prosfèrei dwre�n

apojhkeutikì q¸ro, o opo�o
 e�nai prosb�simo
 apì ìlo to diad�ktuo kai

qarakthr�zetai apì uyhl axiopist�a kai diajesimìthta. Ep�sh
, to sÔsthma

ma
 pro�gei èna sÔnolo monadik¸n proterhm�twn ìpw
 shmasiologik� stoiqe�a

parìmoia me aut� tou NFS, mhqanismoÔ
 epanafor�
 met� apì katastrof

kai stigmia�a an�kthsh diegrammènwn arqe�wn .

To prokÔpton sÔsthma kai oi metr sei
 tou, prote�noun thn praktik

qr sh tou parasitikoÔ sust mato
 ma
 w
 èna dwre�n kai axiìpisto sÔsthma

apoj keush
 efedrik¸n antigr�fwn, èna polumesikì sÔsthma arqe�wn mia

genik lÔsh gia thn apoj keush dedomènwn sto diad�ktuo.

Epìpth
: Eu�ggelo
 Mark�to
, Kajhght

Acknowledgments

I would like to thank my Supervisor, Professor Evangelos P. Markatos for

his valuable insights and continuous support in my work and studies. I feel

grateful to Elias Athanasopoulos who gave me the opportunity to work on

this subject and whose contribution was a key for writing this thesis. I also

feel grateful to Dr. Kostas Magoutis for sharing his expertise on the subject

and for providing me with great ideas.

I would like to thank Dr. Sotiris Ioannidis for his support and construc-

tive criticism over the last two years and all the current and past members of

the Distributed Computing Systems Group, Vasilis Pappas, Giorgos Vasil-

iadis, Spyros Ligouras, Alexandros Kapravelos, Antonis Papadogiannakis,

Andreas Makridakis, Demetres Antoniades, Iason Polakis, Michalis Poly-

chronakis, Spyros Antonatos, Eleni Gessiou, Vasilis Lekakis, Giorgos Kon-

daxis, Giannis Velegrakis, Manos Athanatos, Michalis Foukarakis, Christos

Papachristos and Manolis Stamatogiannakis for their support and friend-

ship.

Finally, I would like to thank my parents, Theodoros and Aikaterini, and

my aunt Dorothy for their support, patience and encouragement during all

these years.

ix

Contents

1 Introduction 1

1.1 Thesis Organization . 4

2 Background 7

2.1 Candidate Web Services . 7

2.1.1 Static Data Location 9

2.1.2 Implicit File Permissions 10

2.2 Web Service Usage Policies 10

2.2.1 Policy study # 1 . 11

2.2.2 Policy study # 2 . 11

2.2.3 Policy study # 3 . 12

2.3 Overriding Restrictive Policies 12

2.3.1 Steganography . 13

2.3.2 Cumulative File Transfers 13

2.3.3 Replication . 14

2.3.4 Account and Address Change 14

2.4 Commercial Cloud Storage Solutions 15

2.4.1 Amazon S3 . 15

2.4.2 Ubuntu One . 15

2.4.3 Mandriva Click’n Backup 16

3 Motivation 17

3.1 Benefits of Parasitic Storage 17

xi

xii CONTENTS

3.2 Benefits of ParasiticFS . 18

4 Design 21

4.1 Remote Object Manager . 21

4.2 Parasitic Map . 22

4.3 Service Profiler . 23

4.4 ParasiticFS . 23

5 Implementation 25

5.0.1 Remote Object Manager 25

5.0.2 Parasitic Map . 27

5.0.3 ParasiticFS . 27

6 Evaluation 31

6.1 Bandwidth and Storage . 31

6.2 ParasiticFS Performance . 34

6.2.1 Read . 34

6.2.2 Write . 35

6.2.3 Object-store Availability 36

7 Limitations and Future Work 39

8 Related Work 41

9 Conclusion 45

List of Figures

1.1 High level architectural view of the Parasitic Storage System 4

4.1 Architecture of the Parasitic Storage System 22

6.1 Average upload rate for 60 uploads of 200Mbyte files on 3

different file-hosting services 32

6.2 Average download rate for 60 downloads of 200Mbyte files

from 3 different file-hosting services 33

6.3 Average upload/download rate for 20 files of 10 Mbytes each,

transfered to and from GMail 33

6.4 Comparison of seconds needed by md5sum to compute check-

sum for files of different filesizes 34

6.5 Comparison of seconds needed by cp to copy files of different

filesizes . 35

6.6 Object-Store Availability. 36

xiii

xiv LIST OF FIGURES

List of Tables

5.1 Information held in the Parasitic Map component 27

xv

xvi LIST OF TABLES

1
Introduction

The growth in the amount of personal digital content (photos, movies, mu-

sic) and our society’s increasing reliance on the Internet as a means of in-

formation exchange have fueled a plethora of Web services, offering users

free access to e-mail, pictures galleries, general files, and other persistent

content. To satisfy the need for storing ever more content, these services

compete to provide users with increasing amounts of storage. Often their

business model (e.g., income from advertising) is such that it allows them

to offer this storage at no charge.

In 2004 Google launched Gmail [31], a mailing service with an initial

storage capacity of 1 GB, much more than the 25 or 50 Megabytes available

in most mailing services at the time. Today Gmail offers more than 7 Giga-

bytes for email storage per user, much more than most of its users actually

use [27,28]. In 2005, Yahoo acquired the company that created flickr. Today,

1

2 CHAPTER 1. INTRODUCTION

flickr hosts more than 3 billion user images [30]. A last category of services

worth mentioning are file-hosting services. In 2006, Rapidshare was founded

in Germany and became a popular choice for people wanting to share large

files with other Internet users. In April 2008, Rapidshare reported that it

had a storage capacity of 5.4 Petabytes for their users. [32]

A user of the aforementioned services and all their variants has access

to a pool of tens to potentially hundreds of gigabytes of storage. However,

today users are utilizing these services independently of one another, as

islands of information and storage.

If a user wants to upload a set of pictures, she visits flickr and uses

their webpage or their API to upload and tag her pictures. If she wants to

upload and send large files to her friends she visits Rapidshare (or a similar

file-hosting service) and uses their interface for her needs. Finally, if a user

wants a large mailbox capable of holding all her emails and attachments

she registers an account on Gmail. While these services have common parts

(most of them use the HTTP protocol, they all have backends which can

provide ample storage) they are treated as if they don’t.

In this thesis we argue that an abstraction can be deduced that unifies the

use and management of storage underlying all of these web services. Looking

beyond each service’s specifics, we observe that each service provides an

upload/download mechanism through which users can store their data. This

observation leads us to design and implement a system that acts as a storage

parasite, taking advantage of the collective storage of all web services. We

term our file system parasitic because it takes favor of its hosts, often in

ways unintended by them, for access to their underlying storage resources

at zero cost.

Through this system, users no-longer worry where to upload their data

and if their format is compatible with a particular service. To achieve this we

design an abstract API based on generic put and get operations that hide

the complexity of communicating with each service from the programmer.

Based on this API we implement our user-level filesystem, ParasiticFS.

3

A user can mount ParasiticFS just like any standard filesystem and im-

mediately get access to files stored in all of the underlying web services

- Fig 1.1. Like standard filesystems, ParasiticFS supports add, rename,

delete, move files, creation of directories and management of remote files,

as if they were stored on a local disk. In addition, due to the familiar filesys-

tem semantics, applications that work with local files need no modification

to work with ParasiticFS. For example, a document editor can open and

edit a file remotely stored on Gmail or a video player can start playing a

movie that is hosted on Rapidshare.

ParasiticFS’s exploitation of persistent-content web services to provide

a large-capacity storage abstraction at no cost does not come without chal-

lenges. For one thing, web-based native storage services offering a block

storage interface to infrastructure applications such as file systems, exist

(e.g., Amazon S3) and are popular but are provided for a fee (both on GB-

month and Internet bandwidth-used basis). Also, persistent-content web

services often place limitations on how they are used, specifically to deter

unintended use. The approach of ParasiticFS is to not over-rely on any single

web service but rather to leverage the existence of several services, which is

a trend currently supported by market growth. In this manner, ParasiticFS

aims to attain service levels comparable with commercial Web-based storage

services, without the associated cost.

To summarize, the contributions of this thesis, are the following:

• We develop an abstract API that hides the complexity of communi-

cating with each particular service, by providing the programmer with

put and get operations.

• Using this API, we design and implement a fully functional user-level

prototype of ParasiticFS.

• Using the ParasiticFS prototype to access aggregated storage, we show

that major web services do not place limits on storing large amounts

of data in short periods of time, matching our desired requirements.

4 CHAPTER 1. INTRODUCTION

Figure 1.1: High level architectural view of the Parasitic Storage System

1.1 Thesis Organization

In the remainder of this thesis, we first present the various web services

available to a user today and how these services can be successfully used by

our storage parasite system. In Section 3 we present the reasons that mo-

tivated us to do research on a parasitic storage system. Section 4 includes

and a design overview of our system followed by implementation details of

a working prototype in Section 5. We evaluate our resulting system (Sec-

tion 6), list the inherent and temporary limitations of our storage parasite

1.1. THESIS ORGANIZATION 5

in Section 7 and in Section 8 we explore how our current work differs from

prior work in network storage and parasitic behavior systems. Finally, this

thesis concludes with a summary of its main characteristics.

6 CHAPTER 1. INTRODUCTION

2
Background

In this chapter we briefly describe the various web services that can be po-

tentially used by our storage parasite. We discuss their advantages, their

disadvantages, the policies that they use in order to protect their infrastruc-

tures from misuse and how these policies can be overridden. Finally we list

some commercial cloud storage solutions available today.

2.1 Candidate Web Services

Any service that can keep user data in any format can potentially be ex-

ploited by our storage parasite so that it stores data for our system.

The first, most obvious, candidate are file-hosting web services. At the

time of this writing there are more than 100 different web services providing

file hosting [7]. The business models behind these web services generally

provide two kinds of service: a paid service and a free one. The free service

7

8 CHAPTER 2. BACKGROUND

usually restricts the available capacity for each “free” user and limits the

upload / download bandwidth. In addition that, some paid services also

restrict API access to the free users. APIs of file-hosting services enable the

user to take advantage of their storage services without the hassle of visiting

their website and using their custom HTML interface. These services are

good candidates because they are designed to store files, and that is exactly

what our parasitic storage system is trying to do. There is no need to

transcode the data from one format to another or break the file abstraction

by storing data in other formats. The aggregated available storage provided

by a handful of these services can easily provide a free user with tens of

Gigabytes for storing her files. The hassle is that the user will have to keep

a list of her uploaded files and use each website’s custom interface when she

needs to upload new data or download existing files.

Another type of service that is utilized by users today, is electronic mail.

Lots of companies create their own email services and provide them to In-

ternet users for free. Instead of providing free and paid versions of their

services, as file-hosting services do, they make profit by placing ads on the

webpages that a subscriber of their service uses. Some services, such as

Gmail, use the information of each email received or sent by the user in

order to show more personalized and targeted advertisments. A storage

parasite can use these services to store files as attachments to emails or even

as mail text.

The third and last type of web services that we describe in this section

are online picture galleries. Online picture galleries are free services where

users can subscribe and upload pictures. These pictures can then be shared

with the user’s friends or they can be declared as public and shared with

the rest of the world. Most companies providing this type of service pro-

vide it both as free and as paid with the latter having more benefits (upload

space, fully functional API) than the former. In addition, their websites and

APIs are focused on serving specific types of files (image files) which enables

them to provide a richer and more functional API. For example, flickr pro-

2.1. CANDIDATE WEB SERVICES 9

vides functions which return the thumbnails of the requested images, their

resolution, tags etc.

Two important properties that mailing services and picture galleries have

but file-hosting services have not, are: static data location and implicit file

permissions.

2.1.1 Static Data Location

When a user uploads a file to an existing file-hosting service, the service

generates a unique identifier which is the user’s pointer to his file. According

to the various web services FAQ section, this prevents other users from

guessing URLs and downloading files that do not belong to them. This is

a privacy-by-obscurity technique that works fairly well when the generated

identifier is of sufficient length that it cannot be easily brute-forced and

when the user keeps the URL private. These unique URLs do not follow

any publicly-known algorithm and thus the user cannot know in advance

the id that will be appointed to his file. We call this random-id mechanism,

Random Data Location (RDL). This RDL can be a good system property for

a user that values his privacy but at the same time it adds to the complexity

of keeping track where a user’s files are. The user cannot reconstruct the

pointer to his remote file if he loses the id appointed to him.

On the other hand, mailing services provide Static Data Location (SDL)

since a user can always search through her inbox to find the email containing

the attachment of interest to her. As described later in the ParasiticFS at

least one file, the file containing the mappings between local and remote

files must always be statically locateable by the storage parasite. Thus, we

choose to save it on a service providing Static Data Location so that various

installations of the storage parasite can always look at the same place and

always find the file containing the mappings.

10 CHAPTER 2. BACKGROUND

2.1.2 Implicit File Permissions

All modern file systems have methods of administering permissions and ac-

cess rights to specific users and groups of users. This enables a file system

to be multi-user and protect each user’s privacy at the same time, by not

allowing users (other than the intendent ones) to access a specific user’s

files. We can simulate such permissions on our parasitic storage system,

by adding files to web services which need to authorize a user before giv-

ing access to her files instead of file-hosting services, which give away the

file to anyone knowing or guessing the correct pointer. Mail services are a

prime example of this service since they allow a user to view her INBOX

only after she proves that she owns that mailbox (through the use of the

correct credentials). This way, a user who is concerned about the privacy of

her documents can place her files as attachments on her mailbox instead of

uploading them to a file-hosting service.

2.2 Web Service Usage Policies

Nearly all web services impose limitations on their use so that users will

not be able to exploit or overuse their service. In this section we describe

the policies of three different file-hosting services, Rapidshare, DepositFiles

and Sendspace [6,22,32]. File-hosting services go to great lengths to enforce

policies on their usage because they are the easiest kind of service to misuse.

Most file-hosting services provide accounts to members that pay a subscrip-

tion fee and no accounts to free users. The websites can be used without

user accounts which means that if they didn’t limit their account-less use,

a flash crowd [3] consisting of a few thousands free users could bring their

services to a halt. Their policies generally fall under two categories: inactive

file deletion and time-wait penalty between consecutive downloads.

2.2. WEB SERVICE USAGE POLICIES 11

2.2.1 Policy study # 1

Rapidshare is probably the most common service utilized by Internet users

when they want to exchange large files. Their policy and limitations evolve

over time but the basis of their limiting mechanisms remains the same. In

Rapidshare, all users (paying and non-paying) are equal when it comes to

uploading. Everyone can upload as many files as she likes without any

restrictions, other than the bandwidth provided by Rapidshare for upload

at the time of the transfer. However, once a file is stored on their servers

and a user wants to download it, a different process is initiated based on

whether the user trying to download a particular file is a subscribed user

or a free user. If the user is subscribed and has an active session cookie,

the download immediately starts as would happen with downloads from all

servers on the Internet. If the user is not subscribed then instead of a direct

download link, she is presented a page where she has to state that she is a

“free user” and then she has to wait a variable number of seconds for the

download link to appear. Once the file is downloaded, the free user cannot

download anything else from the service until an, also variable, time-wait

penalty expires. What’s interesting, is the fact that the time penalty doesn’t

change based on the filesize of the previous download. A text file consisting

of a few Kbytes and a media file consisting of hundreds of megabytes impose

similar time-wait penalties.

The last policy of Rapidshare is that files that have not been accessed for

a predefined number of days are deleted to relieve the system of forgotten

and not needed content. This means that any reliable storage system work-

ing over Rapidshare has to keep timers for each inactive file and download

it before the inactivity period expires so that the file isn’t deleted by the

system.

2.2.2 Policy study # 2

Depositfiles is a clone of the previously described Rapidshare service. While

the layout of their website is very similar to Rapidshare’s and they use

12 CHAPTER 2. BACKGROUND

the same mechanism for uploading files they differentiate themselves in file

downloads. More specifically, they have country-specific download slots

where all free users are placed. According to their FAQ section they use

geographical IP address databases for finding out the country from which a

user requests a download. When all slots for a specific country are filled, the

user is instructed to try again later. They also use an inactive file-removal

policy but their predefined inactivity period is shorter than Rapidshare’s.

The existance of download-slots mechanism, their “fast” removal policy and

their low upload / download rates (see Evaluation section) suggest that De-

positfiles has an inferior storage infrastructure compared to the Rapidshare

infrastructure.

2.2.3 Policy study # 3

Lastly we take a look at the Sendspace file hosting service. Sendspace pro-

vides a better upload/download rate than both Rapidshare and Depositfiles

and it is at the same time the least restrictive when it comes to free users.

Free users can upload and download files without any time penalty between

consecutive downloads. They use Javascript to ensure that a requested

download originated from a browser, however their logic is flawed enabling

automated downloads. They too have a removal policy for inactive files and

they provide an upload API for free users. In the later sections of this thesis,

we tend to use Sendspace as our web service of choice because of its high

performance and lack of restrictions.

2.3 Overriding Restrictive Policies

In this section we describe some methods which can be used to override

restrictive usage policies set by web services.

2.3. OVERRIDING RESTRICTIVE POLICIES 13

2.3.1 Steganography

Steganography is the method of writing hidden messages in such a way

that no-one, apart from the sender and intended recipient, suspects the

existence of the message. It includes the concealment of information within

computer files. In digital steganography, electronic communications may

include steganographic coding inside of a transport layer, such as a document

file, image file, program or protocol.

For our purposes, we can use steganography to store binary data in

web services that only allow image hosting. While researching the subject

we stumbled across a unique property of the Graphics Interchange Format

(GIF) and the Bitmap (BMP) image types [2,10]. These image types, have

a relatively simple byte arranging and the image’s complete headers are

on the top of the file. All data from a point on, are perceived as image-

rendering data used by an image viewers to correctly render the image.

After experimentation we found out that binary files could be added in

images just by concatenating the new data at the end of the image and

changing the size value of the images header. The images could still be read

by image viewers, but they can also be used as vessels containing other files.

When we started uploading this kind of files, we noticed that all popular

image galleries, converted our BMP formats to more compact JPG formats

which effectively trashed our binary data. GIFs however are perceived as

low-resolution files so no service tried to convert them. This handling of the

GIF image type, enables a user (or in our case a parasitic storage system) to

hide documents, music and all sorts of binary files in images and use online

image galleries to store them. In addition to that, gif images are typically

very small in size (a few Kilobytes) which means that there is very little

wasted storage for each concealed binary file.

2.3.2 Cumulative File Transfers

Cumulative file transfers can be used when web services impose a time-wait

penalty between successive downloads from their service. Using cumulative

14 CHAPTER 2. BACKGROUND

file transfers, the system can store and retrieve many files aggregated in one

package instead of transferring each file atomically. This acts as a type of

data prefetching, hiding the time-wait penalty from the user of the parasitic

storage system. The downside of this method is that the system will have

to re-upload the whole package of files every time a single file in it is edited.

This overhead can be mitigated by: (a) lazily uploading the altered package,

hoping that one upload can encapsulate more than one changes and (b)

keeping the original file and uploading a separate diff file which will only

contain the changes done to the original file.

2.3.3 Replication

Replication of files can also be helpful in combating the time-wait penalty

policies. Instead of having a copy of a file on a single web service, the system

can keep multiple copies of each file on different web services and access them

in a round-robin fashion. This way, the system can switch between web

services while it waits for the time-wait penalties to expire. The additional

copies of each file can also be used in a disaster recovery scheme where one

service deletes a file and the system restores it by accessing it through an

alternate web service.

2.3.4 Account and Address Change

Most of the restrictive file policies use a combination of user accounts and

IP address monitoring to enforce their limitations on available bandwidth

and storage space. Both characteristics can be fooled by a determined user

or system. More specifically, if a web service enforces a restrictive pol-

icy per account, the system can use multiple accounts and switch between

them as needed. In addition to that, since most home Internet connections

have dynamically assigned IP addresses, a simple router reboot can cause

the assignment of a new IP address. Using this IP address, the parasitic

storage system can commence a new download from a previously-restrictive

2.4. COMMERCIAL CLOUD STORAGE SOLUTIONS 15

web service, since the service assumes that a new user trying to access its

resources.

2.4 Commercial Cloud Storage Solutions

In this section we briefly describe three commercial cloud storage solutions.

We should point out that using a large pool of web services and data repli-

cation, our parasitic storage system can potentially provide service levels

comparable to the following services, at zero cost for its users.

2.4.1 Amazon S3

Amazon S3 (Simple Storage Service) is an online storage web service offered

by Amazon Web Services. Amazon S3 provides a web services interface

that can be used to store and retrieve any amount of data, at any time,

from anywhere on the web. Data are stored in buckets and retrieved via

a unique, developer-assigned key. Amazon charges its users based on the

amount of storage their objects use, the bandwidth they consume through

the upload and download process and the requests made to their system. At

the time of this writing, Amazon charges $0.15 per Gigabyte of storage, $0.17

per Gigabyte transfered and $0.01 per one thousand put,copy,post,list

requests.

2.4.2 Ubuntu One

Ubuntu One is a proprietary storage application and service operated by

Canonical Ltd and currently in private beta. It enables users to store and

sync files online and between computers. Ubuntu One has a client applica-

tion that only runs on the latest version of Ubuntu, version 9.04. At the

time of this writing, a free Ubuntu One account offers 2 Gigabytes of stor-

age. A paid service is also available, which provides users with 10 Gigabytes

of storage in exchange for a monthly fee of $10.

16 CHAPTER 2. BACKGROUND

2.4.3 Mandriva Click’n Backup

Mandriva Click’n Backup is a storage application which, as Ubuntu One, is

designed to be integrated with linux distributions. Mandriva Click’n Backup

doesn’t offer a free account and its 20 Gigabyte storage plan costs $7.77.

3
Motivation

In this chapter we introduce the motives that lead us to this work, by high-

lighting the benefits of a complete parasitic storage solution.

3.1 Benefits of Parasitic Storage

The following benefits derive from the general concept of a parasitic storage

system.

Zero Cost. The target of the parasitic storage system is to provide a

service for free by taking advantage of the various online web services. Using

free services, (such as Gmail, Picassa, Flickr, Rapidshare, etc.), a parasitic

storage system can deliver tens of Gigabytes to an end user for zero cost.

Globally Accessible Storage. By default, web services can be ac-

cessed from any part of the Internet. This flexibility combined with our

storage parasite provides globally accessible storage. A file that is stored

17

18 CHAPTER 3. MOTIVATION

under a remote web service through the parasitic storage system can be

accessed by any host, anywhere in the world.

High Availability and Reliability. Existing web infrastructures go

to great lengths in order to provide high availability and reliability of their

services. Our storage parasite piggybacks on their effort and provides highly

available and reliable storage to its users.

Filetype policies. Since parasitic storage relies on many online web

services with unique characteristics and not on a local disk with uniform

properties, the parasitic storage system can store each file on a service that

provides the most flexibility for a particular filetype. For example, it can

store a user’s pictures on flickr because of the picture-driven API that flickr

provides, or store a user’s documents on Gmail to take advantage of the

authorization step in Gmail; only the user providing the correct credentials

to access the Gmail account, can in turn download her documents.

3.2 Benefits of ParasiticFS

The following benefits derive from the design choices and the resulting ar-

chitecture of our parasitic storage system (explained in detail in the Design

Section).

User-friendly File Namespace. Using ParasiticFS, a user can create

as many directories as she likes, put files in the directory-depth of her own

choosing, move around the files and generally be as flexible as she would be

with a standard file system. All these operations are virtual, since the files

are located on remote servers. Each time a user moves a file from directory

A to directory B, all that is done, is moving the pointer to the particular

remote file from directory A to directory B.

NFS-like semantics. Users can access their remote files as if the files

were local similarly to other traditional technologies, like NFS. Moreover,

using the services’ global access, the user can manage her ParasiticFS files

from anywhere in the world.

3.2. BENEFITS OF PARASITICFS 19

Disaster Recovery - While a user’s data are stored on remote servers,

the metadata of her files have to be accessed localy. ParasiticFS handles

metadata consistency through the combined use of logging and checkpoint-

ing, both stored in a local disk device and periodically flushed to remote

storage. The local disk copy of the log protects file system integrity against

loss of volatile memory state while the remote log protects against more se-

rious failures such as disk failures or site disasters. The frequency of flushing

determines the recovery point in time.

Instant File Recovery - Since the files shown to the user, are in reality

stored in remote servers all over the Internet, there is no overhead whatso-

ever in deleting a file. When a user chooses to delete a file, the storage

parasite system hides the pointer to that file. Using the same mechanism, if

a user deletes a file by accident, the system can recover the file in an instant,

just by showing the ,previously hidden, link back to the user.

20 CHAPTER 3. MOTIVATION

4
Design

In this chapter we describe our parasite’s architecture and then we present

in detail its main three components: the Remote Object Manager which

uploads/downloads files from remote web services, the Parasitic Map which

holds the bindings from local to remote files and the ParasiticFS, a user-level

filesystem interacting with various web services through the Remote Object

Manager.

4.1 Remote Object Manager

The Remote Object Manager (ROM) is the component which takes care of

uploading and downloading the requested files to and from the various online

web services. In our framework we view each web service as an object store

which is responsible for storing and retrieving data. In Fig. 4.1 we depict

Rapidshare and Gmail as two potential object stores. Each object store has

21

22 CHAPTER 4. DESIGN

Figure 4.1: Architecture of the Parasitic Storage System

its own user-driven dialogues usually accessed through a web interface. Some

object stores provide an API to the users who pay a subscription and no API

to the free users, others provide an API with less functions to the free users

and the rest provide no API at all. When an object upload or download

is requested, ROM chooses the appropriate communication method (based

on the object store requested) and handles the specifics of the transfer.

Most object stores communicate over HTTP in which case ROM crafts the

appropriate requests and orchestrates the upload/download process. When

an object store provides an API, ROM uses its specifications to generate the

requests. Alternatively, when an object store can only be used through the

service’s website, that is no free API provided, ROM simulates a browser

visiting that website. The simulation is done by utilizing a valid User-Agent

Header and following the steps (hyperlinks) that a real user would follow.

ROM’s modular architecture permits the addition of drivers for new object

stores.

4.2 Parasitic Map

The Parasitic Map is the component which holds the translation from local

files to remote files stored under each object store. This information is stored

4.3. SERVICE PROFILER 23

as records, where each record holds information about: (a) the file’s local

name, (b) file size, (c) the local path on the ParasiticFS, (d) the actual web

service where it is stored and (e) various information on how to retrieve

it (URLs, item identifiers, etc). This component is queried and updated

by the ParasiticFS when a user interacts with the various remote files. In

addition, the Parasitic Map is uploaded to an object store every time a

user unmounts a ParasiticFS directory. This way, the various changes are

populated to multiple mounting places. For example, a user can mount the

filesystem at work, add some files, unmount it and mount it again later at

her home. The ParasiticFS operating at her home will fetch the Parasitic

Map from the specific object store and show the files that were added to the

filesystem from another location (the user’s workplace).

4.3 Service Profiler

The Service Profiler is responsible for maintaining the characteristics and

constraints of the underlying object stores. It is used by the object allocator

(when an object is created or a new version created through modification)

to decide which stores can fulfill the put request. Similarly, the Profiler

provides advice as to which store should be used to ensure a successful

access at time t in the future. The problem of deciding where to allocate

an object replica, or which store to retrieve a replica from, depends on the

dimension (space, throughput, regulated bandwidth) one wants to optimize

on.

4.4 ParasiticFS

The ParasiticFS component is a user-level file system which takes advantage

of the storage parasite, by storing all of its files on object stores. It interacts

with them through the Remote Object Manager and uses the Parasitic Map

to translate local names and paths to remote web services and objects. More

precisely, when a user mounts the ParasiticFS, an initialization script runs

24 CHAPTER 4. DESIGN

which reads the Parasitic Map and transform its records into filesystem

nodes, directories and files. Every time a new file is added, an existing

file is deleted, moved or renamed in the ParasiticFS the Parasitic Map is

updated. Thus, the next time the user mounts the filesystem, her previous

file operations are visible.

ParasiticFS works by wrapping all the filesystem-related system calls

with its own implementation, interacting with remote object stores instead

of the local storage medium. When a file is created or edited, the ParasiticFS

uploads it to a remote object store using the ROM component. When a user

requests access to a file, ROM uses information from the Parasitic Map to

retrieve it from the proper object store. Once the file is downloaded, it is

placed in a directory in the user’s default filesystem. This directory acts as

a disk cache, which serves requests to previously accessed files.

All of these actions are transparent to the user or an application access-

ing the filesystem. It is important to point out that no data is exchanged

with remote object stores, when a file is copied, moved, renamed or deleted

in the local ParasiticFS. The above actions are completed instantly, giving

the illusion that the files are actually on the user’s local disk yet they do not

consume any storage space. It also provides the familiar directory abstrac-

tion in which the user can create directories and group her files together in

some meaningful way (music/ , pictures/ , videos/ etc.). These directories

are ”virtual” and they exist only while the ParasiticFS is running.

Disk Cache. A disk cache is used in the ParasiticFS to speedup file

accessing. The disk cache is a directory in the user’s default filesystem in

which files that were previously downloaded or uploaded by the ParasiticFS,

exist. While this cache could be limited by the actual disk capacity of the

user’s hard drive, ParasiticFS considers it a limited-size cache (practically

a few Gigabytes) and periodically frees up space consumed by the least

recently used files stored under it.

5
Implementation

In this chapter we discuss the implementation details of our prototype. Us-

ing Python [16] as our language of choice we managed to write a compact

implementation of our system’s prototype: the Remote Object Manager,

the Parasitic Map and the ParasiticFS source code combined are 700 lines

long.

5.0.1 Remote Object Manager

Recall from Section 4 that ROM is the component responsible for the up-

loads / downloads to and from the various web services. We have cur-

rently implemented drivers supporting data transfers on four different object

stores, namely Rapidshare, Sendspace, DepositFiles and GMail [6,11,22,32].

Rapidshare, Sendspace and Depositfiles are designed to support free file

hosting while GMail supports mailing operations. We chose these services

25

26 CHAPTER 5. IMPLEMENTATION

because they have a large user base, implying high reliability and availabil-

ity. Rapidshare and Depositfiles can only be used through their web pages

while Sendspace and GMail provide an API [12,23]. Using Python and the

libcurl [15] library for sending and manipulating HTTP requests we fetch

the appropriate pages and fill the various forms in order to simulate the

actions done by a user.

The following code excerpt is from the upload functionality of the Sendspace

object store driver.

1 def uploadSSpace(self, filename):
2 print "Sendspace Upload: \n"
3

4 #Regular expression used to find the correct token credential
5 page = self.getURL("http://api.sendspace.com/rest/?method=
6 auth.createtoken&api_key=WOFZIWYF9C&
7 api_version=1.0&response_format=xml
8 &app_version=0.1")
9 p1 = re.compile("<token>(.*)<\/token>")

10 m = re.search(p1,page)
11

12 [..]
13

14 tokened_passwd = md5.new(token + passMd5).hexdigest().lower()
15

16 #Get session id
17 page = self.getURL("http://api.sendspace.com/rest/?method=auth.
18 login&token=" + token + "&user_name="
19 + username + "&tokened_password=" +
20 tokened_passwd);
21 [..]
22

23 #Get upload info
24 page = self.getURL("http://api.sendspace.com/rest/?method=
25 upload.getinfo&session_key=" +
26 session_key +"&speed_limit=0");
27

28 #Initiate the upload using the correct credentials extracted
29 #from previous steps
30

31 c = pycurl.Curl()
32

33 pf = [(’MAX_FILE_SIZE’, ’314572800’),
34 (’UPLOAD_IDENTIFIER’, upid),
35 (’extra_info’, exinfo),
36 (’userfile’, (c.FORM_FILE, filename))
37]
38

39 c.setopt(c.URL, formURL)
40 c.setopt(c.USERAGENT,"Mozilla/5.0 (Windows; U; Windows NT
41 5.1; en-US; rv:1.8.1.1) Gecko/20061204
42 Firefox/2.0.0.1")
43 [..]
44

27

45

46 #Return the download link and remove link to the caller
47 return [dLink,rLink]

5.0.2 Parasitic Map

Recall from section Section 4 that the Parasitic Map is the component which

holds the mappings from local files to remote files on web services. We chose

to implement this component as an ASCII text file, holding information in

the form of records. Our choice was mainly driven in favor of rapid proto-

typing. However, it is trivial to implement the Parasitic Map component

using more appropriate technologies like SQLite and MySQL [18, 24]. In

Table 5.1 we list the first few lines of our working prototype’s Parasitic

Map. In favor of clarity, we have ommitted the last accessed, last changed

timestamps, and the delete-file hyperlink provided by the file hosting object

stores.

Path Filename Size Timestamp Download URL

/ foo.txt 460 1241262894 www.sendspace.com/file/lgxcjg

/ wafl.pdf 72451 1241254109 www.sendspace.com/file/zsmqqv

/ dog1.jpg 1567246 1243508778 www.sendspace.com/file/gd8blv

/ 50m 52428800 1242903879 www.sendspace.com/file/oof4ua

Table 5.1: Information held in the Parasitic Map component

5.0.3 ParasiticFS

Recall from section Section 4 that the ParasiticFS is an implementation of

a user-level filesystem which enables users and applications to interact with

remote files as if they were stored locally. We chose to implement ParasiticFS

using the FUSE library [8, 29]. For each filesystem-related system call we

provide our own functions.

For example, when a user creates or copies a new file in the ParasiticFS,

create() is called. Inside create() we have placed code to mark the file as

28 CHAPTER 5. IMPLEMENTATION

new. When in turn, release() is invoked for that particular file, ROM is

used to upload the file to the appropriate object store. In addition, the local

Parasitic Map is updated to include metadata for the new file. In a similar

fashion, when write() is invoked for an existing file, ParasiticFS marks the

file as modified and re-uploads it upon a release() operation in-order to be

consistent. Finally when open() is invoked, the ParasiticFS checks its local

disk cache for presense of the requested file. If the file is not found, a request

is forwarded to ROM for that particular file. The file is fetched in the local

disk cache and any subsequent reads to that file are served by the disk cache.

The following two code excerpts are taken from the implementation of the

open() and release() system calls, demonstrating the communication of

ParasiticFS with the Remote Object Manager component.

1 def open(self, path, flags):
2 self.fd += 1
3

4 #Find the download url associated with the file being accessed
5 durl = self.filedict[path]["durl"]
6

7 [...]
8

9 #Start download if the file isn’t in the disk cache
10 if not os.path.exists(cache_dir + path):
11 self.timecost[path]["net_start"] = time()
12 self.parasitic.download(object_store, durl,cache_dir
13 + path)
14 self.timecost[path]["net_end"] = time()
15

16 self.openfiles[path] = os.open(cache_dir + path, os.O_RDWR)
17 return self.fd

1 def release(self, path, fh):
2

3 #Upload file if it is new or modified
4 if (path in self.newfiles) or (path in self.mod_files):
5

6 #Upload the requested file
7 data = self.parasitic.upload(object_store, cache_dir + path)
8

9 #Extract correct folder information
10 new_folder = path.rpartition("/")
11 if new_folder[0] == "":
12 folder = "/"
13 else:
14 folder = new_folder[0]
15

29

16 #Add record to Parasitic Map structure
17 self.filedict[path] = ({"folder":folder, "fname":new_folder[2],
18 "fsize":self.files[path][’st_size’],
19 "ctime":int(time()), "mtime":int(time()),
20 "atime":int(time()), "durl":data[0],
21 "rurl":data[1]})
22

23 [..]
24 if path in self.newfiles:
25 os.close(self.newfiles[path]);
26 del(self.newfiles[path])
27 [..]
28

29 #File is not new and it is not modified
30 else:
31 os.close(self.openfiles[path])
32 del(self.openfiles[path])
33 return 0

30 CHAPTER 5. IMPLEMENTATION

6
Evaluation

In this chapter we explore the performance of our resulting parasitic storage

system and the availability of remote object stores. We distinguish the per-

formance of our system in network performance and local performance. In

network performance we measure the available upload and download band-

width of four services in a period of a day and the total aggregated storage

that we managed to access. In local performance, we are more interested

in measuring the overhead of ParasiticFS compared to a native Ext3FS by

comparing the read and write speeds of our system.

6.1 Bandwidth and Storage

In the first experiment we uploaded and downloaded 12 Gigabytes, splitted

as 60 files of 200 Mbytes each to three different file-hosting services using

ParasiticFS. We use a round-robin access policy to avoid access-frequency

31

32 CHAPTER 6. EVALUATION

Upload Attempt
1 3 5 7 9 11 13 15 17 19

K
by

te
s/

se
c

0

2000

4000

6000

8000

10000

Rapidshare

Sendspace

Depositfiles

Figure 6.1: Average upload rate for 60 uploads of 200Mbyte files on 3

different file-hosting services

limits put in place by two of the object stores (Rapidshare, Depositfiles).

By measuring the average upload and download speed for each transfer -

Fig. 6.1,6.2 - we found out that (a) web-services are willing to accept a

large load of data in a short amount of time (b) the average download and

upload speed of each transfer is greater or at least equal to the maximum

download / upload rate of an average home user’s Internet connection and

(c) object-stores (web services) favor creation of new content over access to

existing data (i.e., uploads are faster than downloads).

In addition to the 12 Gigabytes uploaded in three file-hosting services, we

also transfered and measured 20 files of 10 Mbytes each to a GMail account,

Fig. 6.3. GMail allows a maximum attachment size of 10 Mbytes which is

not very convinient for storing large files, however the Static Data Location

and Implicit File Permissions properties that it has (see Section 2), make

it a great target for our system.

6.2. PARASITICFS PERFORMANCE 33

Download Attempt
1 3 5 7 9 11 13 15 17 19

K
by

te
s/

se
c

0

200

400

600

800

1000

1200

1400

1600

1800

Rapidshare

Sendspace

Depositfiles

Figure 6.2: Average download rate for 60 downloads of 200Mbyte files

from 3 different file-hosting services

Transfer Attempt
1 3 5 7 9 11 13 15 17 19

K
by

te
s/

se
c

0

1000

2000

3000

4000

5000

6000

7000

GMail Download

GMail Upload

Figure 6.3: Average upload/download rate for 20 files of 10 Mbytes each,

transfered to and from GMail

34 CHAPTER 6. EVALUATION

File size
10m 50m 100m

S
ec

on
ds

0

0.5

1

1.5

2

2.5

3

ext3 ParasiticFS

Figure 6.4: Comparison of seconds needed by md5sum to compute check-

sum for files of different filesizes

6.2 ParasiticFS Performance

6.2.1 Read

In the third experiment we quantify the ParasiticFS read speed compared

to a native Ext3FS. We measure the time needed by the md5sum application

to compute a checksum for 3 files of different filesizes when the file is stored

in an Ext3FS partition and when it is stored in the ParasiticFS partition and

present in the filesystem’s disk cache - Fig. 6.4. While the overhead of the

ParasiticFS writes, ranges between 25-35 % we should note that this delay is

caused by the implementation of our prototype rather than the concept of a

parasitic filesystem. Our prototype intercepts each system call in user-space

and if necessary forwards it to kernel-space. In this experiment, all reads are

forwarded to kernel-space reads since the files are present in the disk cache.

This user-level mediator-behavior needs an extra memory copy for every

read() which in turn causes the delay. If our prototype was implemented

directly in kernel-level, the extra memory copy wouldn’t be needed thus the

performance of cache-hits would be comparable to native filesystems.

6.2. PARASITICFS PERFORMANCE 35

File size
1GB 2GB 5GB

S
ec

on
ds

0

50

100

150

200

250

300

350

400

ext3 ParasiticFS

Figure 6.5: Comparison of seconds needed by cp to copy files of different

filesizes

6.2.2 Write

In the fourth experiment we quantify the ParasiticFS write speed com-

pared to a native Ext3FS. We measure the time needed by the copy system

command in order to copy three different files, each with a different file

size. More precisely, we measure the time needed for a file copy from an

Ext3FS partition to an Ext3FS partition and from an Ext3FS partition to

a ParasiticFS partition. While the copy application needs a read() for ev-

ery write(), the total number of reads and the source filesystem are the

same in both cases, thus the comparison between Ext3FS and ParasiticFS

write() system call is valid. In Fig. 6.5 we can see that the overhead of the

ParasiticFS reads is about 10 % which is really small compared to the read

overhead, measured in the previous experiment. Tha ParasiticFS implemen-

tation still acts as a user-level mediator for the write() system call but in

this case, no data have to be returned back to the user, thus no extra memory

copy occurs. This experiment clearly shows that the (write) performance of

ParasiticFS is comparable to the performance of native filesystems.

36 CHAPTER 6. EVALUATION

 0

 5

 10

 15

 20

Depositfiles Rapidshare Sendspace GMail

D
ow

nl
oa

d
A

tte
m

pt

Object Stores

60 s. interval
20 s. interval

Figure 6.6: Object-Store Availability.

6.2.3 Object-store Availability

In this experiment we replace our round-robin access policy by a policy

of successive accesses to each service. Our observed metric (in the y-axis

of Figure 6.6) is the success or failure of each individual download in a

sequence of 20 attempts to download a 10MB file. We run the experiment

with two different inter-access delays: 60s and 20s (left and right column for

each object store in Figure 6.6). Each data point in Figure 6.6 signifies a

successful download attempt.

A key observation is that file-hosting services have a download-frequency

limit for non-paying users (15min for Rapidshare, 10min for Depositfiles)

which prohibits them from downloading content until the inter-access time

limit expires (uploads are unregulated). This indicates that parasitic storage

systems cannot rely solely on any single such system for general use but must

multiplex several file-hosting services and combine them with other types of

persistent-content services. Figure 6.6 shows that GMail and Sendspace

are more lenient and do not impose significant frequent-access limitations

(at least none observable at the time scales used in this study). Sendspace

however, seems to activate a bandwidth-restriction mechanism after the 11th

successive download, which vastly limits download bandwidth for subsequent

6.2. PARASITICFS PERFORMANCE 37

transfers. It is important to note that our reluctance to try more frequent

access patterns on GMail and Sendspace for fear of being shut out of service

during this study highlights the fine balance a parasitic storage system must

walk.

38 CHAPTER 6. EVALUATION

7
Limitations and Future Work

So far we have explored the need for network storage, the commercial solu-

tions storing data in the cloud and how a storage parasite taking advantage

of the aggregated free storage space of existing web services can provide

cloud storage for zero-cost. We understand that the key limitation of our

storage parasite system is the limitation all network storage solutions have.

All un-cached file operations will have a maximum throughput equal to the

user’s network throughput. While home network throughput can be as low

as a few hundred Kbits in developed countries, it is widely accepted that

networks are becoming faster each year [4]. Thus, we argue that the users

who may not be able to access quickly enough their remote files today, will

probably be able to do so in a year from now.

Although most of the well-known web services have high availability and

reliability, our storage parasite currently provides no guarantees that data

39

40 CHAPTER 7. LIMITATIONS AND FUTURE WORK

stored in the various remote web services will not be lost since none of

the utilized services make such promises. We have explored the solution

of replicating data on distinct web services and we are considering the use

of selective file replication in-order to ensure that sensitive files such as

documents, source code files and images will not be lost if a single service

fails. We want to avoid replicating each and every file since the user could

store downloaded movies and games in the parasitic storage system which

are both large in size yet easily recovered in case of a data loss.

While we have implemented drivers for four different object stores (Rapid-

share, Sendspace, Gmail, Depositfiles), our parasitic storage system only

uses the Sendspace driver for uploading and downloading files. Sendspace is

used because it has the least limitations and better performance compared

to the other object stores. A seperate component is needed, which will bal-

ance the use of all available object stores and keep track of all their usage

and their limitations.

On the filesystem part of our work, we realize that some core-parts of a

complete network filesystem are missing. ParasiticFS does not implement

a locking service and it is currently a single user file system since we don’t

support any cache coherence mechanism between simultaneous mounts of

the same filesystem. We are currently investigating several centralized and

distributed approaches to the above problems and we are confident that we

will be able to present complete and novel solutions to them in the near

future.

8
Related Work

The term “parasitic computing” first appeared in Nature Magazine in 2001

[1] where the authors forced Internet servers to solve a piece of a complex

computational problem, namely an NP-complete problem, by engaging them

in standard protocol communication. The checksum function of the TCP

packets was used to perform the desired computations while target servers

where unaware that they participated in such a scheme.

Kiselyov presented HTTPFS [14] in 1999. HTTPFS is a user-space

filesystem that can access and modify remote files over HTTP. The main

difference from our work, is the fact that HTTPFS needs remote storage

servers to run a specific perl cgi-script. This means that the user must be in

control of at least one remote server, whereas our system uses existing web

services parasitically eliminating the need for control of a remote storage

41

42 CHAPTER 8. RELATED WORK

server. In addition, parasitic storage presents file-data from multiple web

services in a uniform namespace instead of data from just one remote server.

In 2006, Traeger et al. [25] used search-engine caches and mail services for

backing up their files. The authors used scripts which executed when they

wanted to backup or recover specific files. While we too use mail services

as one type of service that can be used for parasitic storage, we use a file-

system approach where all remote web services are “mounted” on a user’s

operating system, providing transparent download/upload functions instead

of user-executing scripts. This approach enables the use of parasitic storage

as a media filesystem, or an NFS-like service in addition to a backup service.

In [20,21] the authors used the idea of delayed communication channels

to store parasitic data on the wire, by constantly exchanging it with remote

hosts. They did that by sending and constantly replaying data packets

using the ICMP echo service and presenting this data using a uniform user

interface. While this is an attractive idea for sensitive files that a user doesn’t

want to store on a disk medium (in fear of recovery after their deletion), it

is inpractical for stable storage since the moment that a user stops juggling

his data - e.g. the user’s computer shutting down - that moment all data

are lost. The user cannot use her data from any other host and considering

that the average home user has a limited upload bandwidth, the maximum

capacity of the data being successfully stored on the wire are much less

than the potential storage provided through the parasitic use of remote web

services.

Our system treats remote web services such as GMail or Rapidshare, as

object stores which only export a put and get interface. The complexity of

efficiently storing and accessing data is left to each service’s internal infras-

tructure. This approach is similar to the “Network Attached Secure Disks”

(NASD) [9] approach were commodity storage components encapsulate ad-

ditional functionalities such as storage self-management and cryptographic

support.

43

Filesystems that take advantage of a specific web service, such as GmailFS

[13], TwatFS [5] and Graffiti Networks [19], have emerged the last couple

of years. GMailFS stores files as emails on specific gmail accounts, TwatFS

stores files as text in Tweeter [26] and Graffiti Networks encodes binary

data as text and stores it in MediaWiki pages [17]. All of these filesystems

act “parasitically” and store binary data in web services that where not

designed for file storage but at the same time they are service specific. On

the other hand, our system works collectively by aggregating multiple dis-

tinct web services under a new storage service. Instead of having multiple

service-specific filesystems, we use web-service specific drivers and a single

filesystem where each file can be stored on a different web service.

44 CHAPTER 8. RELATED WORK

9
Conclusion

A key finding of our study is the diversity of behavior among persistent-

content Web services. The four services we evaluated can be roughly cat-

egorized into those that provide limited storage capacity (typically a few

GBs per user), high bandwidth, lenient access-policies, and reliable storage

of user content (we refer to this class as first-class storage); and those that

provide abundant storage capacity but limited access bandwidth, severely

limited access-policies, and reduced user-data reliability (second-class stor-

age). GMail, Rapidshare, and Depositfiles seem to fit this categorization.

Sendspace on the other hand seems to fall somewhere in between. We expect

this diversity and complexity in behavior to increase in the future.

It is vitally important for any parasitic storage system to maintain ac-

curate profiles for the underlying services (e.g. using benchmarks such as

those used in our experiments) and best utilize them according to their

45

46 CHAPTER 9. CONCLUSION

distinct characteristics, policies and limitations to meet application needs.

A parasitic storage system should combine first- and second-class storage

(as well as other classes that will undoubtedly form as services evolve), as

appropriate for different types of user data.

In this thesis we presented a new storage system called Parasitic Storage.

Parasitic Storage is a storage parasite which uses the free online disk capacity

provided by online web services in order to create a new free storage service.

Instead of viewing online web services as isolated entities providing certain

functionalities, Parasitic Storage treats them as connected components of its

storage service. Observing the details of each web service we were able to see

past their individual behavior (custom web interfaces, different steps needed

to perform a common functionality) and deduce a common upload/download

functionality in all services used. Through this observation we implemented

a generic API that transcended each service’s specific mechanisms. Using

that API we implemented a user-level filesystem called ParasiticFS.

ParasiticFS, is a file system which presents all remote files as files stored

on a local storage medium by mounting distinct web services under a uni-

fied namespace. Users are able to create files, copy them, move them and

organize them in directories as they would do with a regular filesystem while

their actions are transparently mapped to local and remote operations. In

addition, due to the familiar filesystem semantics, applications that work

with local files need no modification to work with ParasiticFS.

Using our ParasiticFS prototype to access aggregated storage we showed

that major web services do not place limits on storing large amounts of data

in short periods of time, matching our desired requirements and enabling the

use of ParasiticFS as a backup, media or all-purpose network storage filesys-

tem. We are currently working on extending our analysis and demonstrating

the viability of parasitic storage and its trade-offs for real applications.

Bibliography

[1] A.-L. Barabasi, V. W. Freeh, H. Jeong, and J. B. Brockman. Parasitic

computing. NATURE, 412:894–897, August 2001.

[2] Rfc797 - format for bitmap files. http://www.faqs.org/rfcs/rfc797.

html.

[3] I. A. Bo, B. Hong, E. L. Miller, S. A. Brandt, and D. D. E. Long.

Managing flash crowds on the internet. In In 11th Modeling, Anal. &

Simulation of Comput. & Telecomm. Syst, pages 246–249, 2003.

[4] P. Chanclou, Z. Belfqih, and B. C. et al. Access network evolution:

optical fibre to the subscribers and impact on the metropolitan and

home networks. Comptes Rendus Physique, 9(9-10):935 – 946, 2008.

Recent advances in optical telecommunications.

[5] CP, Adam, Frank2̂, and Vyrus. Twatfs: A surly abuse of social net-

working. In LayerOne, 2009.

[6] Deposit files. http://www.depositfiles.com/.

[7] Biggest list of free file hosting services updated

monthly. http://www.110mb.com/forum/general-chat/

biggest-list-of-free-file-hosting-sites-updated-monthly-t1428.

0.html.

[8] Fuse:filesystem in userspace. http://fuse.sourceforge.net/.

47

48 BIBLIOGRAPHY

[9] G. A. Gibson, D. F. Naglet, K. Amirit, J. Butler, F. W. Chang, H. Go-

bioff, C. Hardint, E. Riedelf, D. Rochberg, and J. Zelenka. A cost-

effective, high-bandwidth storage architecture. In In Proceedings of the

8th International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), pages 92–103, 1998.

[10] Gif graphics interchange format, version 89a. http://www.

digitalpreservation.gov/formats/fdd/fdd000133.shtml.

[11] Gmail: Email from google. http://mail.google.com/.

[12] libgmail - python binding for google’s gmail service. http://libgmail.

sourceforge.net/.

[13] R. Jones. Gmail filesystem - gmailfs. http://richard.jones.name/

google-hacks/gmail-filesystem/gmail-filesystem.html.

[14] O. Kiselyov. A network file system over http: remote access and mod-

ification of files and files, 1999.

[15] curl and libcurl. http://curl.haxx.se/.

[16] M. Lutz. Programming Python. O’Reilly Media, Inc., 2006.

[17] Mediawiki. http://www.mediawiki.org.

[18] Mysql. http://www.mysql.com/.

[19] A. Pavlo. Graffiti networks project: A subversive, internet-scale file

sharing model. http://graffiti.cs.brown.edu/.

[20] W. Purczynski and M. Zalewski. Juggling with packets: float-

ing data storage. http://lcamtuf.coredump.cx/juggling_with_

packets.txt.

[21] K. Rosenfeld, H. Sencar, and N. Memon. Volleystore: A parasitic

storage framework. In Information Assurance and Security Workshop,

2007. IAW ’07. IEEE SMC, pages 67–75, June 2007.

BIBLIOGRAPHY 49

[22] Sendspace: Send files the easy way. http://www.sendspace.com/.

[23] Sendspace.com: Api how to. http://www.sendspace.com/dev_howto.

html.

[24] Sqlite. http://www.sqlite.org/.

[25] A. Traeger, N. Joukov, J. Sipek, and E. Zadok. Using free web storage

for data backup. In StorageSS ’06: Proceedings of the second ACM

workshop on Storage security and survivability, pages 73–78, New York,

NY, USA, 2006. ACM.

[26] Twitter: What are you doing? http://twitter.com/.

[27] How much space do you use with gmail? http://forums.macrumors.

com/archive/index.php/t-588324.html.

[28] Gmail users: How much space are you using? http://www.answerbag.

com/q_view/930394.

[29] G. Verigakis. fusepy: Python bindings for fuse with ctypes. http:

//code.google.com/p/fusepy/.

[30] 3 billion! flickr blog. http://blog.flickr.net/en/2008/11/03/

3-billion/.

[31] Wikipedia: Gmail. http://en.wikipedia.org/wiki/Gmail.

[32] Rapidshare: Easy file hosting. http://rapidshare.com/wiruberuns.

html.

