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Abstract

Over the last few years I/O subsystem performance issues have attracted sig-

nificant attention due to the increasing needs for storing and retrieving information.

Cost-effective, large-scale storage systems can enable novel online content delivery

services. In particular, rich media content is becoming increasingly popular due its

importance for entertainment, education, and other application domains.

However, retrieving sequential rich media content from modern commodity

disks is a challenging task. As disk capacity increases, there is a need to increase the

number of streams that are allocated to each disk. However, when multiple streams

are accessing a single disk, throughput is dramatically reduced because of disk head

seek overhead, resulting in higher requirements for disk numbers. Thus, there is a

tradeoff between how many streams should be allowed to access a disk and the total

throughput that can be achieved.

In this work we first examine this tradeoff using simulation. We use Disksim,

a detailed architectural simulator, to examine several aspects of an I/O subsystem

and we show the effect of various disk parameters on system performance under

multiple sequential streams. Then, we propose a solution that adjusts I/O request
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streams, based on host and I/O subsystem parameters. We implement our approach

in a real system and perform experiments with a small and a large disk configuration.

Our approach improves disk throughput up to a factor of 8 with a workload of 100

sequential streams, without requiring large amounts of memory on the storage node.

Moreover, it is able to adjust (statically) to different storage node configurations,

essentially making the I/O subsystem insensitive to the number of I/O streams used.

Thesis Supervisor: Angelos Bilas

ii



���������
	��������������������������������� �"!��$#%���'&(!��)��	��*�%+�	��,���'��-�./����	��
01���32�#4	���5
076
2�#4	���8����9.���8,:�;�	<��=>�?�@.�29#>����#
	BA3�C&����$=4	����$#
�D#
	�.�ED�4!��

F�GIH�JLKBMONPRQTSU�S�KBMWV�XZY[]\"P

^)GIX_S�`�XZa"b%M�S�[]ced�JLK%Sf�g�S

hji�c"i�Skd�`]MOf%XZc"i�\"P7lm`Non"NoKBMOf%XLH�U
QTS]UZGp`]MOfBXZcDiM?N�q7JZcDXZ\"P

rs�D=>�t;%��u'�

v�wyx_z|{Zz~}�x~wD��w������Z���?wy�"�%z��o�W�_�D�z�� �mx��D}�}����D�}L��xp�Z�Zwox~�o���,� �]�o���o}Z���'�_�D�_�D}������D}L�
�]}���Dz~�_xI�I���]z~�/���Z�ZwD�Ix��O�D�����_�D��L�"���,z���w"� x��WwD���D}L���?����x�������{Z�D�~�_w��Dw"��wD}L��wo���o��z��_��� wL¡
�owD� xp�Z�z����1�
�?wywo����¢]�L�"z�}L����"w"�>wo��£��Dxp�Z�����_z~���o�����_���o¤¦¥¦�?�D���_�D���O�"£
�>��z§�]£o{L�Z�T�o{����Zwo�DwD�
wo����¢]�L�"z�}�x��O�"£j�}L��xp�Z��w�x~wm�L���D�_�D¨L����wj��wD�_�~���D}L���"wD� �_�Lx_�o�Zz~�,���Wwo���O�DxI}Lwo�D�~�'}��Z�Z�_z~�]��z~�,��wL¡
���L�"�Z�(}�{��O�"�D¨"¤�©3}���"z|�"���?�Z�~��w�x��ª��z~���?z~���D�Zz~�_�«x|���3z~�L�Z{Z�D}�x_� ��Z�~�_�����Z�~�������
� ��z|x~w"�p��{Z�D����w
�"w"���D� ���_�Z�Z�D¬4�?{Z�~�«z~�_w"� x_��wo��xI�Z�@���o�o}L��wD�W�Lxp�Lx~wo�«x��D}�xp�®���?wD���"�~�_wD�����Zxp�Z�¦z��D��w"�W��z~}L���¦�Dw"�
x~�D}L�¦£�{L{Z�D}L�¯x��D�Zz�� �¦z~¬
wD���Z�������¤

° ¥¯�L�����±wo��£��Dxp�Z���k��z~���?z~���D�Z�~�_�D}kz��Z�Z{Z�o}�x�� �]�Z�~�I���k�Z�~�����kwo���±�]¨��]���_�Z���D}L�����O¡
��D�D}L� z~� ��wD�(�~��w�z~��wD�W�_z�x_�?�D£²wo��w"� xp�Lx_�O�"�sz|�]��z~���_�Z�Zw]¤ ° ¥¯��±�²�"���I�Lx��O�"�Lxp�Lx~w±x~�D}���� ���"�D}
wD}L��£o��z��t��xI�D��)�Zz|�]w�{L����z����²wD�_£���o����w�wD}L�I��¢4z~���±wD��� ¢4�Z�o� x����k�_�o���y��z~�_�D�Z�~�I���y���o}
�o�_�D����z�{ZwD¨L�_�D}L�¯����wm��� ��D�
¤ ° ¥¯�L���@�Zx�wD�¯����{L{Zwo�Z{Z�~�@���o�~�@�_z~���o�Z�~�_���«�o�_�D����z�{ZwD¨L�_�D}L�¯����w
��� ���"�x_�LxIz3�Two���D�_�D���¦x~�o}T�Zz��O����z�x�w"������wo�Zwox_�?�D£
��z~�_w"� x_��wo�3x����¦z��o� ³owD�_¨L���z����@���o}j���_�o�"¨_¡
��x��D}L�Two���Rxp�7�Zz�x~w���� �_�Z����xp�Z�¯�"z~¬
wo{L�Z�ªx��D}7��� ���"�o}"���Zz¯wo���LxI��{Zz~��Zw��_wR�o�_���]�D¨L�Zwo�xIz@�]z
�]}L�_z~�"���®wo}L��wo���D�Zz~�_z~�¦wo��wD� xp�Z�]z~� �®�
�Ww��Zz|�]wo{Z¨�xIz~�_��wD��� ¢4�Z�y��� ���o���o¤j©3}L�_z��Z���¢
w��o�_����z��
��w }���£D�_��z���"£��o�D� �D��}L��³D� ³owo�]�Z�o�®�Zz�x~wo��¨7x~�o}�wD��� ¢
���o¨1x|���7���o���T��x�� �m�o���"�Wz~�¯¢
w �o�_����z��
��w�z��o� xI��w���z��%��w �����o���z�{Zwo¨L���o}L�m�~��w���� ���"�
�
�"wD�>�xp���]}L�_��{��?�o� w��o�o���o��1�����o�D��w �L���D�_z��

iii



��w1z��o� xIz~}L�D¢
z���¤
©3z¯wo}�xI�Z�xp�Z�®���o}�{Zz��?£Rz~�_z�xI£D´_�D}L�Zz@wo}�xI�Rx~�Z�T�]}L��³D� ³owD��Z� ���_�Z�]�?�Z�o���"�O���_x�wD�¦�����Z¡

�]�o�Z�"�W������¤�µ¦�I�Z�]�W�Z�o���D� �D¨L�Zz�x~�Z�
Disksim

�~��wo��{Zz��Zx~�o�Zz~�_�������D��o���D�?�(xp��wD�_�� xIz��Dx������ ¡
�D���o���
�?wª�_w@z~�_z�xI£D��D}L�Zz�x�� �/���Wwo¬4�o��z�x_�O�"�~����{Zz�}L���~�(z~�_�D��}����o�]}L��xp�Z�Zwox��D�(�'� ��D���o}Z���/���D�_�D}"�
�"w"����z�� ���_�D}L�Zzmx_� ��z|�D�?���_£D�z�� �����D}y�������"wo{Z�o¨L�R�D�����?£D¬
�D�_z~�m��wD��£o�Zz�xI���"�Bx~�o}���� ��D�D}���x_� �
z��o�W�_�D�z�� �,x��D}@�]}L��xp�Z�Zwox��D����}����jxp�Z����wD�_�D}L�]��wª����{L{Zw���{L���«�������3��z����D�Z�~�I���o¤ ° ����z�� x~w�����Z¡
x_z~� ���o}L�Zz'���?wT{Z¨L���¯���D}¦�_}�¢4���W´�z���x����«wD��� ¢
���x����«�������«�_z~���o�Z�~�_���3�'� ��D�_�D}Z���/���o���o}«³owD�]� ¡
´��D�Zz~�I���z¯}�{Z�o���D�O�Z������x�� �"�����7x~�o}����_�Z��xp�1�Dw"����x_� �¦�owo��wo���|x_�_�D}L�ªx��D}�}����D�}L��xp�Z�Zwox~�o�
�,� �]�o���o}Z���'�_�D�_�D}"¤��/¬4wo���Z�D´_�D}L�Zzªxp�Z�®�����o�]�§���
� ��� �ZwD��z����w�����wZ�]�Zwox_�?�D� �¨L��xI�Z�Zw �Dw"�
�o�_w��]�Zwox��o���"� �D¨L�Zz���z��W�_£D�Zwox�w¯�Zz��o�O�"�_�~�(�"wD�_�Zz|�]wo{Z¨�xIz~�_z~�(���?woxI£o��z�� ����� ��o���o¤B¶s�����o��|���
� ���
��wo�jz��o� xI}��]��£D��z~��³oz�{Lx_�W�����1z����¦�"wD�]·7¬
�D���������Zz¦�~��wR¬4�D�Ix~�Rz~�I�]wo�
�WwD�¯w����ZxIz�{Z�o¨L�Zz~���1wo���
¸p¹L¹ �]z~�W���Ww��"�~�m�_�D�~���B�"����� ����w�wo��w"� x_z~���Zz|�]£�{L���o�o��Zxp�Lx�we�Z�_�Z�L�Z��¤����o�?�Z{Z�~�Z��z~� ��wD�B�?�DwD�_�
��w������o�wD���Z�o´�z�x�w"�Bº»�x�wox_�O�4¼?w"½«�z¦���?wD¬4�o��z�x_�O�"�~�¦wo���� xIz��ox~�Z���O�"���w�����¢]�L�"z~}�x_�O�D���®�D�D��³����o�
�"£D�_�Z�_x~wo�ª�Zz¯wo}�x_�7x~�Z�x_�_�o���7x~���¨L��xp�Z�Zw wD�p¢4z|�Dx_�?�D�7�x��Z�®wD��� ¢
���1x����m�_�o���j��z����D�Z�~�I���
�o�o}����_�Z�]�?�������"� �o¨L�_x~wD��¤
¾ª¿>À>¿
Á�Â>Ã�ÄÆÅ�ÁZÇ>¿4ÁoÈ4É(ÊCÇ>Ë4Ì>Ã ÅLÍDÎ�Ç%Ï/Ð�Ç%Ã�Ñ ° Ò ���]z�{Z�o�ªÓe�o�W{Zwo�

iv



Acknowledgments

First of all I would like to thank my supervisor, Angelos Bilas who kept an eye on

the progress of my work and was always available when I needed his advice. The

extensive discussions about my work and his wide knowledge and logical way of

thinking have been of a great value for me.

I also wish to thank Michail D. Flouris for providing a lot of assistance

especially with the equipment I used in my work. I have also benefited from many

discussions and constructive comments that helped me with the development of my

thesis.

I am also very grateful to my colleagues, who helped me with my work,

through discussion and the routine mutual aid, which was indispensable. Special

thanks to G. Kotsis and K. Xinidis for their encouragement and assistance and of

course to G. Passas, K. Kapelonis, S. Passas, and D. Xinidis.

Last and most important I would like to thank my family for supporting my

dreams and aspirations, while being a constant source of support and encouragement

for me.

Georgios Panagiotakis

v



vi



Contents

Acknowledgments v

List of Tables ix

List of Figures xi

Chapter 1 Introduction 1

1.1 Thesis Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2 Background 7

2.1 I/O Path Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Queues and Caches on I/O path . . . . . . . . . . . . . . . . 8

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Chapter 3 Disksim Analysis 15

3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 System Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Effect of prefetching . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Xdd Measurements - Validation . . . . . . . . . . . . . . . . . . . . . 23

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

vii



Chapter 4 System Design and Implementation 25

4.1 Request classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Dispatching requests to disks . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Staging prefetched data to memory . . . . . . . . . . . . . . . . . . . 29

4.4 Implementation issues . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Chapter 5 Experimental Results 31

5.1 Read-ahead (R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2 Memory size (M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3 Multiple Disks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.4 Dissacociating dispatching and staging . . . . . . . . . . . . . . . . . 35

5.5 Impact on response time . . . . . . . . . . . . . . . . . . . . . . . . . 37

Chapter 6 Conclusions 39

Appendix A Appendix 41

A.1 Modern Disks Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

A.1.1 Disk performance . . . . . . . . . . . . . . . . . . . . . . . . . 42

Bibliography 46

viii



List of Tables

3.1 Parameters of a Generator. . . . . . . . . . . . . . . . . . . . . . . . 17

5.1 Disk characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

ix



x



List of Figures

1.1 Throughput of multiple sequential streams for configurations with 8

and 60 disks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 A high level view of how a media server works. . . . . . . . . . . . . 8

2.2 Overview of I/O path . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Sample configuration (2cntls - 8 disks) . . . . . . . . . . . . . . . . . 16

3.2 Effect of controller maximum queue size. . . . . . . . . . . . . . . . . 18

3.3 Impact of request size on throughput. . . . . . . . . . . . . . . . . . 20

3.4 Effect of segment size . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 Effect of readahead on throughput . . . . . . . . . . . . . . . . . . . 21

3.6 Prefetching on controller. . . . . . . . . . . . . . . . . . . . . . . . . 22

3.7 Xdd throughput with a single disk. . . . . . . . . . . . . . . . . . . . 23

4.1 Path for processing I/O requests. . . . . . . . . . . . . . . . . . . . . 26

5.1 Effect of readahead . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Effect of storage memory size . . . . . . . . . . . . . . . . . . . . . . 34

5.3 Throughput for multiple disks . . . . . . . . . . . . . . . . . . . . . . 35

5.4 Comparing throughput under different implementations (multiple disks) 36

5.5 Comparing throughput under different implementations (single disk) 36

xi



5.6 Average stream response . . . . . . . . . . . . . . . . . . . . . . . . . 37

A.1 Disk Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

xii



Chapter 1

Introduction

Over the years technology constantly advances to keep pace with the enduringly

increasing user requirements more efficiently, so that its benefits will be available

to all sectors of society and individuals who may wish to use it. Nowadays, a

new world of virtually limitless data is craving for higher performance computer

systems and storage platforms. In particular, in recent times rich media content is

becoming increasingly popular and it is deployed in a wide spectrum of application

domains, varying from educational, medical, informational purposes to just plain

entertainment.

Faster processors, memories, and even networks all contribute on boosting

the performance of large-scale storage systems used to store and retrieve media con-

tent. However the fact remains that disk drive performance is improving at a slower

rate than the other computer components. For instance, processors performance

grows at a rate of 50% per year while disks drive performance achieves a 10% im-

provement per year. This increasing speed mismatch between system components

has a great impact on both computers performance and at the end user experience.

Also, given this heavy reliance on disk drives that exists nowadays, I/O subsystems

can become even more restrictive on overall systems performance, unless disk drives
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may be used intelligently.

The increasing requirements of many application domains in I/O capacity

and performance has resulted in new tradeoffs and challenges in the design of I/O

subsystems. In particular, with the increasing popularity of media content applica-

tions and services, there is a need to design cost-effective disk I/O subsystems that

will be able to scale to large numbers of I/O streams.

One of the main types of access that media content requires is sequential

access for storing and retrieving (large) streams. Although media applications and

services may require other, more demanding types of accesses as well, sequential

access is almost always important, especially for read-only and write-once type ap-

plications.

Sequential access is considered the simplest and most efficient type of access

for traditional disk subsystems, due to the fact that it results in minimum head

movement and thus, seek overhead. Disks, usually achieve their maximum through-

put with request sizes of 64-128 KBytes and above. However, modern disk I/O

subsystems that are required to scale to large numbers of I/O streams present new

challenges.

As disk capacities increase, building cost-effective disk subsystems requires

servicing multiple sequential streams from the same disk. For instance, disk ca-

pacities are currently approaching 1 TByte for a single spindle. Such a disk could

store hundreds or thousands of media streams. Moreover, disk throughput has not

been increasing at the same rate, limiting maximum disk throughput to less than

100 MBytes/s. While building a storage system that is required to service large

numbers of I/O streams, there is a tradeoff on how many streams should be ser-

viced by each disk to sustain the required stream throughput and the number of

disks in the subsystem to limit system cost. For instance, if an application requires

streams of 1 MByte/s then, although a disk of let’s say maximum throughput of 50

2
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Figure 1.1: Throughput of multiple sequential streams for configurations with 8 and
60 disks. (Disksim simulations)

MBytes/s could sustain 50 streams, in practice a much smaller number of streams

can be serviced by a disk, requiring more disks to service the workload. Figure 1.1

shows how disk throughput degrades in a system when multiple sequential streams

are serviced by the same disk. Figure 1.1 shows that throughput scales with the

number of disks. However, as the number of streams increases, throughput drops

dramatically, by a factor of 2-5.

Moreover, this problem is exacerbated by the fact that it is difficult to address

the problem through static data placement. Streams are generally short-lived com-

pared to the time it takes to reorganize data on a disk. Thus, optimizing data place-
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ment for a given workload to reduce head movement is not practical. Finally, given

the diversity of commodity disks and I/O subsystems, it usually is difficult to tune

an application or service for different subsystems, requiring a system-independent

approach to addressing this problem.

Current trends in technology present new opportunities for addressing this

problem in a transparent manner. Storage is becoming increasingly networked for

scalability, performance, and management reasons. In such setups, disks are at-

tached to network controllers that are similar to today’s PCs. Each storage con-

troller is equipped with a number of disks (usually 4 to 32), a controller and memory

similar to the host CPU and memory, and one or more network interfaces. All ap-

plication I/O requests are received and completed through the network interfaces.

Such systems, are (or can be) equipped with fairly large amounts of volatile memory

(regular DRAM). Thus, they present the opportunity to using the available CPU

cycles and memory capacity for improving disk accesses.

1.1 Thesis Layout

In this work we first examine the various I/O parameters that affect system behavior

for multiple sequential workloads. We use DiskSim [3], a detailed architectural

simulator, to examine the impact of each parameter on disk throughput for various

disk and workload configurations. We find that, although some parameters are able

to address this issue, these are usually out of the control of the host operating

system and the application. Moreover, due to the diversity required at the storage

subsystem, it is unlikely that these parameters will be tuned solely for sequential

workloads.

Next, we propose an extension to the I/O protocol stack, that sees all I/O

requests at the host level and adjusts request size and order, to improve disk through-

put and thus, disk utilization. Our approach relies on (1) identifying and separating

4



sequential stream access to disks, (2) using host memory as intermediate buffers

for effectively coalescing small user requests to larger disk requests, and (3) using a

notion similar to the working set when servicing multiple I/O streams to mitigate

the impact on I/O request latency.

We implement our solution at the user-level and experiment with both low-

and high- disk throughput configurations. We use a single host attached to com-

modity SATA disks through two SATA controllers. We show that our approach

makes the system insensitive to the number of sequential streams used, achieving

an improvement of up to 8 times with 100 sequential streams. We also examine

the impact of the available host memory and we find that even small amounts of

host-level buffering can be very effective in improving disk utilization significantly.

Finally, we find that the number of streams employed has the most significant impact

on response time, with read-ahead size being of secondary importance.

1.2 Organization of Thesis

The rest of this thesis is organized as follows. First, Chapter 2 presents the necessary

background. Then Chapter 3 presents a detailed analysis of the problem showing

our simulation results. Next, Chapter 4 discusses our proposed solution and our

implementation and Chapter 5 shows our experimental results. Finally, Chapter 6

draws our conclusions.
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Chapter 2

Background

This chapter discuss the foundational material that is necessary for the reader to

understand the concepts related on storage systems focusing on the stages of I/O

path that are important for our work.

2.1 I/O Path Overview

Nowadays a whole spectrum of applications demand timely delivery of data to end

users. A media server offers access to large quantities of audio, video, and other

time-based data elements. Media servers retrieve data from large storage systems

and deliver them to the end users, via a high speed network (Figure 2.1).

Data retrieval is accomplished via the I/O path. Figure 2.2 shows the main

stages of the I/O request path. An I/O operation starts when an application decides

to issue a request to the disk subsystem. This I/O request is passed to the system

kernel, in which device driver are executed. The device driver is the part of an

operating system that is used to handle device-specific interactions. The device

driver knows what the device hardware is capable of, and thus, it is the part of

the host that interacts with the controller of the device, exchanging information,
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Figure 2.1: A high level view of how a media server works.

sending commands, and even receiving data.

The controller usually resides on the system bus and its job is to act as

the gateway between the host and the storage devices it manages. In particular,

it handles the communication protocol, through which it sends and responds to

commands and controls the activity of several storage devices. The next step is

to forward the request over the interface cable (such as SCSI,IDE,SATA) to the

internal disk controller, which will in turn handle the retrieval of the requested data

from the hard disks platters.

2.1.1 Queues and Caches on I/O path

In this work we are mainly interested in stages that involve queuing and caching. In

most storage systems today, an I/O request is generated by an application, enters

the kernel, is issued to the disk controller, and finally is sent to the disk itself.

I/O Queues

Queues are present in multiple stages of the I/O path, and are used to contain the

list of pending requests for a particular device. Their main target is to decrease

the mean response time for the requests issued, by exploiting spatial locality on

disk platters. In order to achieve this, queues employ several scheduling algorithms
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Figure 2.2: This Figure describes the overall path of an I/O request, and the com-
ponents involved for the completion of a request.

that attempt to improve response time by reordering the requests. Queues can also

group requests for adjacent blocks into larger ones or even merge multiple requests

for the same data to a single request. The longer the queues are, the greater the

possibility for throughput optimization. However as the maximum queue depth

length increases, the average response time may rise.

Depending on the location of the queues different scheduling algorithms are

usually employed, since every component of the I/O system has a partial knowledge

of the disk drive mechanisms. For instance, the host only knows roughly the location

of the last I/O it issued, while the drive, on the other hand, knows the actual

geometry of the data, and the actual position of the heads.

Currently Linux 2.6 supports four different types of I/O schedulers for its

queues. The default I/O scheduler is the ”Anticipatory” but there are also ”CFQ”

(Complete Fairness Queuing), ”Deadline”(for time critical applications), and Noop

( stands for no operation).

The disk drives may implement a number of scheduling algorithms, based
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on various criteria. The most common are FCFS , SCAN [9] and its variations

(CSCAN [12], VSCAN [23]), LOOK [13] (CLOOK [13]) ,SSTF [13] based on seek

time, SPTF [16, 24] and its variations, GSTF (Grouped Shortest Time First) [24]

,WSTF (Weighted Shortest Time First) [24] based on rotational latency, and algo-

rithms that target real time applications such as EDF (Earlier Deadline First) or

P-SCAN (Priority SCAN).

I/O Caches

I/O caches are divided into cache lines where data are stored. A cache segment is a

group of cache lines used to store sequential data. The number of segments as well

as the cache size are crucial for system overall performance. Usually, sequential I/O

requests will be serviced by a single segment. Essentially, each segment functions as

a small, private cache for a sequential stream. Therefore the number of segments is

important for I/O performance.

Of equal importance is the size of segments. Segments need to be large

enough to accommodate large portions of frequently used data. But since there

is a fixed cache size, increasing the number of segments results in smaller size for

each segment. To mitigate this side effect modern disk drives use adaptive seg-

mented caches, namely caches that adapt the size and number of their segments in

proportion with the number of I/O streams.

Data are fetched into segments when they are requested, or as a result of

prefetching (readahead). Prefetching of data is based on the spatial and tempo-

ral locality of requests and may be very effective, if future requests are predicted

correctly. On the contrary, if prefetching fails, it will induce several significant over-

heads. Prefetched data could congest the I/O system and at the same time pollute

the cache with unused data.

Since readahead has the potential to increase I/O efficiency, several caches
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implement nowadays prefetching based on their I/O access pattern. However,

prefetching strategies differ, depending on caches location over the I/O path. Most

caches avoid aggressive prefetching and they usually function based on two pre-

defined values about readahead; minimum readahead and maximum readahead.

Minimum readahead is usually employed when caches perform readahead on cache

misses. On the other hand maximum readahead is employed when sequentiality has

been detected. Maximum readahead ahead value is usually slightly smaller than the

segment size used.

I/O path stages

The I/O stack in the operating system kernel usually queues I/O requests in device

queues and is also able to cache I/O requests in a system-wide cache, called the

buffer cache in the Linux kernel. Disk controllers and disks have their own queues

and caches. The system kernel can have practically unlimited queue sizes and a

fairly large system cache1. This is especially true today, with dropping memory cost

and the ability to attach large amounts of memory to commodity systems.

Multi-device disk controllers also employ queuing of requests, but unlike

device drivers, where the queue length can be considered unbounded, the queues

in the devices controllers have a finite maximum size. However, controllers have

a better knowledge about the disk mechanisms they host and therefore they may

provide better scheduling decisions. Also, modern controllers are establishing the

use of cache which is about one order of magnitude larger than the corresponding

caches on disks, and is usually shared among all disks.

Commodity disk controllers have small amounts of caches, in the order of 8-16

MBytes. The main components of a disk are the magnetic medium and a controller

attached to it. The controller usually includes a queue for scheduling purposes. The

1The OS kernel usually employees multiple I/O queues, however, for the purpose of our work
we can view these as a single queue.
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disk’s internal controller has detailed information about the internals of the device,

such as zone boundaries, LBN to PBN translation, defective sectors, that allows

more sophisticated and accurate policies on queuing. Commodity disks have small

queue sizes in the order of a few entries. Disk caches usually consist of a single

memory chip to reduce system components and thus, mean time to failure of the

whole disk. Thus, it has limited size, which does not exceed a few MBytes.

The disk cache is used for three purposes: as a speed-matching buffer for stag-

ing data and balancing speeds between the mechanical components (platters/heads)

and the digital disk interface, as a readahead buffer for prefetching data to increase

disk efficiency by reducing head seek time, and (possibly) as a cache to reduce ac-

cesses to disk. The disk cache is usually divided in a number of cache segments,

which are memory chunks used to hold contiguous data, similar to cache lines in

traditional caches. Nowadays disk cache capacity is usually a small fraction (0.1% -

0.3%) of the overall disk drive capacity.

2.2 Related Work

Previous work for improving the performance of disks can be categorized in (a)

modeling disk systems and (b) disk optimizations.

Activity in (a) has focused on taking into account detailed features of modern

disk drives and producing models and simulators for workload driven evaluation [16,

22, 26, 11]. The authors in [21] provide detailed information about disk access

patterns on Unix-based systems. Finally, [28] discusses how disk parameters can be

extracted using high-level experiments.

In (b), research efforts include either new scheduling algorithms and methods

or new techniques devised to improve several aspects of I/O performance [15, 2, 25].

The authors in [14] provide an evaluation of I/O optimization techniques, such as

caching, prefetching, write buffering, and scheduling. They use various workloads
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and system configurations and quantify the impact of each optimization. In our

work we focus on large numbers of sequential streams and provide a solution based

on prefetching that is able to adapt to the amount of memory available in storage

nodes. The authors in [4] propose a disk-level optimization to improving system

throughput. The proposed method requires modifications to the actual disks.

Closer to our research is [27], where the authors describe how I/O perfor-

mance is affected by sequential read requests. Similarly, [31] uses Disksim to ex-

plore if large disk caches can improve system performance. Both papers also explore

the effect of read-ahead and segmented caches on I/O performance. However, our

work also proposes and examines through implementation on a real system the ef-

fectiveness of host-level solutions that are motivated by changing storage system

architectures.

The authors in [10, 18] examine various parameters that affect sequential I/O

performance in the Windows operating system. They find that achieving high per-

formance requires using large requests, asynchronous and direct I/O, and multiple

outstanding requests. In our work, we use similar parameters in our base system

and propose a technique that further improves performance in the presence of large

number of sequential streams.

Work in storage caches [29, 6, 30, 17] aims at improving the performance of

workloads that do not have sequential access patterns by minimizing disk accesses.

In our work we reduce disk seek overheads for a specific, but important type of

workloads.

Previous work has examined issues related to the performance of I/O sub-

systems for multimedia applications [20, 5, 8, 19]. Unlike our work, the focus is on

directly attache storage systems and on techniques related to the storage disks and

controllers themselves. The authors in [7] examine how caching and buffering in a

Video server can improve response time and system cost for video streams. They
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also propose an inter-stream caching method. In contrast, our work we examine how

prefetching and buffering can provide adaptive solution to improving disk utilization

and system throughput with dedicated CPU and memory resources (in the form of

storage nodes).
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Chapter 3

Disksim Analysis

In this section we present a detailed analysis of the problem using architectural

simulation exploring possible solutions.

Figures 1.1 show how I/O throughput degrades when multiple sequential

streams are serviced by a single disk head, due to the increased seek overheads.

Traditionally, scheduling and caching have been used in the various stages of the

I/O hierarchy to improve data access patterns and thus, reduce seek overhead. Next

we examine how various parameters of the I/O hierarchy affect I/O throughput for

large numbers of sequential streams.

3.1 Methodology

This section describes the methods and the tools used to conduct our experiments

and to collect the results. The approach we adopt is to use a detailed simulator such

as Disksim. Disksim is a highly parameterized disk simulator which is capable of

modelling a large number of storage system configurations, including buses, interme-

diate controllers, queues and caches. But despite the fact that Disksim comes with

many disk models, unfortunately these disk models are obsolete. For this reason,
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Figure 3.1: A sample configuration consisting of a main controller hosting two more
controllers with four disks attached to each of them.

we make several changes to the parameters used for modelling the disks, to better

model modern disks.

We examine three I/O hierarchies, a base configuration with a single con-

troller and disk drive, a medium one with two controllers and eight disks, and

a larger-scale configuration with sixteen controllers, hosting up to four disks con-

troller, all attached to a single host. Figure 3.1 shows one of these configurations

and the queues and caches we assume at each system component.

To generate the required workloads we use a set of request generators. Each

generator issues I/O requests for a single, sequential stream with the parameters

shown in Table 3.1. Each generator essentially issues synchronous, sequential reads

and can be considered as a different stream originating from a different client

(thread) that executes sequential reads on different disk areas. In our experiments

we vary the number of generators (streams) and the request size.

3.2 System Parameters

In this work we are interested in examining system parameters that when tuned

in commodity disks they can have a significant impact on I/O performance. Given

that we are concerned with multiple sequential streams system throughput may be
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Parameter Value

Storage capacity per device 156301488

devices target disk

Blocking factor 8

Probability of sequential access 1.0

Probability of local access 0.0

Probability of read access 1.0

Probability of time-critical request 1.0

Probability of time-limited request 0.0

Time-limited think times [ normal, 0.0, 0.0 ]

General inter-arrival times [ normal , 0.0, 0.0 ]

Sequential inter-arrival times [ normal , 0.0, 0.0 ]

Local inter-arrival times [ normal, 0.0, 0.0 ]

Local distances [ normal, 0.0, 40000.0 ]

Sizes [ uniform, req size, req size]

Table 3.1: Parameters of a Generator.

affected by caching and prefetching. The system parameters that are associated

with caching and prefetching are:

• Controller cache size, cache line size, and maximum queue size

• Disk number and size of segments and maximum queue size

The maximum queue length on the controller has little effect on I/O through-

put for the workloads under consideration. To determine this we examine two sce-

narios, based on the number of segments of the disk cache.

First, we examine the effects of the maximum controller queue length when

the number of segments in the disk cache is larger than the number of streams.

Figure 3.2 shows that when maximum queue length is smaller than the number

of streams, the throughput is slightly affected. This is because not all streams

issue the same number of requests, and as the maximum queue length increases,

it creates a slight unbalanced. On the other hand when the maximum queue size
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Figure 3.2: Effect of controller maximum queue size.

exceeds the number of streams then we have a sharp increase in throughput. This

is due to scheduling decisions, that give preference to requests of a single sequential

stream, while other streams possibly suffer from starvation; Immediately after the

disk scheduler has served a request from a particular stream, the same stream is able

to issue its next request, which due to the sequential access pattern in each stream,

gets serviced by the scheduling algorithm (CYCLE-LBN) before other requests from

different streams.

Second, similar conclusions can be reached for the effect of the maximum

queue length in the controller when the number of streams is greater than the

number of segments (Figure 3.2). When the maximum queue length is greater than

the number of (#streams - #segments) no major fluctuations of throughput are

noticed. But this not the case when the maximum queue length starts to exceed

the number of (#streams - #segments). This does occur, because a number of

streams equal to the number of segments issues a disproportional number of requests

compared to other streams, and since these requests are handled by the disk cache,

throughput increases. When maximum queue length exceeds the number of streams,
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results are similar as above, due to disk scheduling effects.

Thus, the only effect of the controller queue size is at border conditions, when

it results in giving preference to requests from a single stream and there is no effect

on system throughput when all streams are serviced concurrently.

Similarly, we have examined the impact of disk queue size on system through-

put and we have found that it has no effect on system throughput for large number

of streams. In the rest of our experiments we set the controller maximum queue

length to the number of streams. Next we examine the impact of the rest of the

parameters under consideration, all related to disks, to I/O throughput.

3.2.1 Effect of prefetching

As shown in Figure 1.1 system throughput reduces significantly when the number of

sequential streams increases, due to increased seek overheads. Increasing workload

request size can address this issue. Figure 3.3 shows that throughput generally

improves, as workload request size increases and there is enough buffer space (cache)

to service all available streams. We use a disk cache size of 8 MBytes and tune

segment size and readahead for the disk cache to be equal to the request size.

This ensures that no prefetching takes place and our measurements depend only

on request size. To keep disk cache size fixed to 8 MBytes we adjust (reduce) the

number of segments as segment size increases. However, when the number of streams

and the request size increase and the total available disk cache is not able to service

concurrent requests from all streams, throughput degrades dramatically.

Although in many applications request size is fixed, employing prefetching

and caching in the storage subsystem can have a similar effect and have been used

traditionally in storage subsystems to reduce such overheads. When using sequential

access patterns, prefetching can effectively increase the transfer size and thus, reduce

seek overheads. On the other hand, caching has no real impact, since each block
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Figure 3.3: Impact of request size on throughput.

of data is used only once. However, prefetching in the disk subsystem is performed

using memory available for caching (as opposed to separate buffers) and thus, the

ability to prefetch is related to disk and controller cache configuration. In this

section we examine the impact of the related parameters.

Figure 3.4 shows the effect of disk prefetching on overall throughput, in a

configuration with 30 sequential streams on a single disk. In this experiment we vary

the size of the disk segment keeping the total number of segments fixed to 32. As a

result, disk cache size increases as well. We see that as segment size increases, disk

throughput improves dramatically from about 8 MBytes/s for 32 KBytes segment

size to about 40 MBytes/s for 2 MBytes segment size.

Next we examine the effect of prefetching when keeping the disk cache size

fixed. We increase the size of disk segments, reducing at the same time the number

of segments to maintain the total cache size fixed to 8 MBytes. Figure 3.5 shows that

as disk segment size increases, throughput improves when the number of segments

is greater than the number of streams. However, when the number of streams is

greater than the number of segments, throughput drops dramatically. Moreover, in

this case, large prefetch size has an undesirable effect; The disk starts reclaiming
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Figure 3.4: Effect of prefetching on throughput with increasing disk segment size.
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Figure 3.5: Effect of readahead on throughput. Disk cache size is 8 MBytes.
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Figure 3.6: Prefetching on controller.

segments that were allocated to other streams, even though the full amount of data

that have been prefetched into each segments has not been used by the corresponding

stream. This results in worse throughput, even compared to when no (or little)

prefetching is used.

Finally, we examine the impact of prefetching at the controller level. Fig-

ure 3.6 shows that prefetching at the controller helps improve throughput signif-

icantly. First, with one stream throughput is constant at about 35-40 MBytes/s

regardless of controller readahead size. At 10 streams, even small readahead sizes

increase throughput from about 10 to about 40 MBytes/s. Similarly at higher stream

numbers, readahead has a significant impact, and for 60 streams a readahead of 1

MByte results in almost maximum disk throughput. However, when readahead in-

creases and the controller does not have enough memory for all streams performance

drops dramatically. For instance, at 4 MBytes readahead, throughput for 60 and 100

streams drops almost to 0 MBytes/s. Thus, prefetching at the controller level can

help, however, would require large amounts of memory for large numbers of streams.

This is particularly problematic if we consider that a commodity controller is usually

able to host 4-16 disks, thus, requiring readahead buffers for thousands of streams.
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Figure 3.7: Xdd throughput with a single disk.

3.3 Xdd Measurements - Validation

To verify that our simulation results are close to realistic systems, we conduct an ex-

periment on a real setup. We use the xdd microbenchmark [1] on a system equipped

with one SATA controller and one disk, and running Linux Fedora core 3, with kernel

version 2.6.11. We examine throughput for different request sizes (8 - 256KBytes)

for a variable number of streams (1 - 50)1. Streams access the disk at 1 GByte

intervals. We see (Figure 3.7) that throughput deteriorates as the number of se-

quential streams increases, similar to our simulation results in Figure 3.3. Note that

for small requests with xdd we achieve a relatively high throughput, compared to

Figure 3.3. The explanation for this fact may reside on the disks cache readahead

policy. This effect seems to degenerate as the number of streams increases and the

disk cache (and segments) cannot accommodate data from all streams.

1We perform these measurements with direct I/O to bypass the system buffer cache.
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3.4 Summary

In summary, we see that increasing prefetch size at the disk or controller level

and ensuring that all streams can be serviced by the available memory, results

in significant improvements in system throughput. However, this approach is not

practical, because disks subsystems are designed for multiple workloads and not

tailored to the specific workload we examine in this work. Thus, we examine next

how we can address this issue at the storage node level, and independent of the

types of disks and controllers used.
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Chapter 4

System Design and

Implementation

In this section we present a more practical host-level solution that supports ef-

ficiently large numbers of sequential streams. Our design automatically detects

sequential streams, separates them from other I/O operations, and schedules them

appropriately to the disks to maximize disk utilization without significantly hurting

I/O response time. We also examine how our scheduler can automatically adjust to

disk and storage node characteristics making it possible to support storage nodes of

varying technologies.

Figure 4.1 shows the overall system architecture. Each storage node runs a

server that receives requests from multiple streams and manages all requests issued

to local disks. When a request arrives at the storage node, it is forwarded to the

classifier module, which is responsible for detecting sequential streams. Sequential

streams are handled by our scheduler, which is responsible for issuing I/O requests

to the disks. Sequential streams that have been handled by the scheduler and have

prefetched data in memory, are placed in a buffered set, until their buffers are empty

and can be deallocated. Next, we describe in detail the following three aspects of

25



Reqs

Disks
N

Policy (RR)

Lookup
Set

Completion
Request

Buffered

(M)

C
la

ss
if

ie
r

Completion
Request

Server

Scheduler
(D,R,N)

Figure 4.1: Path for processing I/O requests.

our design:

• Classification of requests to sequential streams

• Dispatching requests to disks

• Staging prefetched data to memory

4.1 Request classification

The classifier categorizes requests in two categories: Requests that belong in sequen-

tial streams and are kept in separate queues (one per stream) and non-sequential

requests that are sent directly to the disk. To classify requests to sequential streams

we use a bitmap to identify requests to neighboring blocks. Bitmap represents a

consecutive set of blocks on the disk, with each bit referring to a single block.

However, given increasing disk capacities a single bitmap may require a large

amount of memory, when each bit refers to a single physical block. There are two

options to reducing the size of the bitmap. Either allow each bit to represent blocks

of larger sizes or allocate smaller bitmaps for disk regions dynamically, as requests

arrive at the storage node. Since representing large blocks with a single bit may
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have an impact on the precision of detecting sequential accesses we choose the second

approach.

When a request arrives, we examine its disk device number and block address.

We allocate a small bitmap that represents the blocks around the block accessed

by the request. For instance, if the request block number is B, the bitmap will

represent consecutive blocks in the range [B − offset,B + offset]. The value

of offset affects the size of the bitmaps and the memory they require. In our

experiments we find that a small value for offset, in the order of a few tens, is

adequate for the experiments we perform. This may become more important when

trying to cope with near-sequential streams, which however, is beyond the scope of

this work. For each subsequent request that arrives in the range represented by a

bitmap we set the corresponding bit. If the request size spans more than one blocks

then all bits will be set.

On arrival of a request, we examine its corresponding bitmap for other re-

quests that may have been issued to the the same range during the last time interval.

If the number of set bits exceeds a threshold, we conclude that we have detected

a sequential stream and we enable read-ahead allocating for this stream a private

request queue. If the number of distinct requests in the range under consideration

is not high enough, requests are issued directly to the disk. This mechanism ig-

nores out of order requests, multiple requests to the same block, and only takes into

account proximity in time.

4.2 Dispatching requests to disks

Once the classifier has created a queue for the requests that belong to a single

stream, this stream may be passed to the scheduler. The number of streams that

are handled by the scheduler at each point in time is called the dispatch set D, and

is a parameter that can be set explicitly. The maximum number of streams in the
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dispatch set is limited by the amount of memory M that is available for buffering in

the storage node (M can also be set explicitly).

When one stream is placed in the dispatch set, the system allocates I/O

buffers for this stream and uses it to generate disk requests. Each request gener-

ated is of size read-ahead R, which is independent of the actual request size in the

sequential stream. Thus, the size and maximum number of outstanding requests to

disks depends on the size of the dispatch set (values R and D respectively).

Since the number of sequential streams is usually higher than the desirable

size of the dispatch set, we use a policy to replace streams in the dispatch set. Each

stream remains in the dispatch set until it has issued N requests to the disk. Then

it is replaced from the next (round-robin) sequential stream. Although, other more

involved policies are possible, their benefits are not clear, given the fact that issued

requests usually have large sizes. However, in cases, where storage nodes do not

support large amounts of memory dedicated to buffers, and thus I/O buffers (and

readahead) may be smaller, different scheduling policies may result in increased

throughput. For instance, depending on the available buffering capacity of the

storage node, it may improve overall throughput if streams are placed in the dispatch

set based on their initial offset, trying to keep streams that access nearby areas of

the disk in the dispatch set.

The scheduler issues asynchronous requests to the disks, using direct I/O

to avoid (a) blocking on a single request when multiple disks are present on the

storage node and (b) additional I/O buffer management in the OS kernel. Direct

I/O bypasses the kernel buffering of data and reduces CPU overhead by moving data

directly between user space buffer and the device performing I/O without copying

through kernel space. When a disk request completes, the completion path of the

scheduler is invoked asynchronously. The scheduler completes all requests associated

with the I/O buffer and responds to the client.
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When the completion path of the scheduler examines which requests may be

completed by a full I/O buffer, it may potentially need to complete a large number of

requests. This is especially true if in between more disk requests complete, causing

completions of more client requests. However, during this process no new requests

are issued to the disks resulting possibly in disk under-utilization. For this reason,

the completion path of the scheduler gives priority to the issue path starting with

the classifier. Before completing a pending client request, the scheduler calls the

classifier that examines if new requests have arrived, if they are sequential, and if

they can be placed in a stream queue and issued to the disk.

4.3 Staging prefetched data to memory

When a stream is removed from the dispatch set, it is staged in memory (in the

buffered set) until its prefetched data are either used by subsequent requests or a

timeout expires. This staging aims at reducing impact of the scheduler on individual

request response time. The size of the buffered set defines the overall system re-

quirements in memory (M). Thus, in all configurations and during system operation,

M ≥ D ∗ R ∗ N.

When a new request arrives, the classifier examines if it can be serviced im-

mediately by a stream in the buffered set. If this is the last request that corresponds

to an I/O buffer in the buffered set, the stream is removed from the buffered set.

In essence, the dispatch and buffered sets are used to coalesce stream requests

to longer disk requests, so that disk seek overhead is reduced. However, there is no

guarantee that all requests mapped to a single I/O buffer will actually be part of a

stream. Thus, a buffer may remain allocated to the buffered set, waiting for certain

requests to arrive and read the data that it contains. To avoid such cases, we use

a periodic thread that garbage collects I/O buffers allocated to streams that are

inactive as well as hash entries and stream queues that although were classified as
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sequential, they have not received a large number of sequential requests and thus,

remain allocated.

4.4 Implementation issues

In our implementation we choose to use asynchronous I/O as opposed to multiple

threads, since asynchronous I/O is a more lightweight mechanism, especially as the

number of disks increases. Disk request completion is detected using a kernel signal

that causes the storage server process to exit a select system call. After exiting the

select system call, the server detects if it should execute the issue or completion

path, based on the select return value. This mechanism allows the server to check

all conditions with a single select system call.
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Chapter 5

Experimental Results

In our experiments we use a storage node equipped with two CPUs (AMD Opteron

242) and 1 GByte of memory. The system has two PCI-X buses. We attach to each

one of the PCI-X buses a SATA controller. The controller (Broadcom’s BC4810

RAID) is an eight channel entry level Serial ATA (SATA) RAID controller that can

achieve high performance up to 450 MBytes/sec, and therefore can host up to eight

disks. Table 5.1 shows the characteristics of the disks we use. The operating system

we use is Linux Fedora core 3 with Kernel version 2.6.11.

WD Caviar SE WD800JD Serial ATA

Capacity 80 GB

Rotational Speed 7,200 RPM

Seek Time (Average) 8.90 ms

Buffer Cache 8 MB

Buffer to Host(SATA) 150 MBytes/s(Max)

Buffer to Disk 748 Mbits/sec (Max)

Table 5.1: Disk characteristics.

We emulate streams in our system by using multiple, separate client systems.

Each client can emulate a large number of sequential streams issuing requests to a

single storage node. The parameters of each stream are the destination disk and
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offset, the number of requests, the size of requests, and the number of outstanding

requests. Each client issues requests from all streams it emulates as soon as it

receives a response, never exceeding the maximum number of outstanding I/Os.

For each issued request, the client maintains a handle in a pending list. When the

request completes all related structures are deallocated.

Finally, we measure throughput and response time for each stream of re-

quests. To be as close as possible to the throughput seen by real applications, we

calculate the throughput delivered from a disk by summing the throughput of all

individual streams serviced by the disk. In our setup, clients communicate with

storage nodes over 1 GBit/s Ethernet using TCP/IP. To ensure that the network

we use is not a bottleneck, responses to and from storage nodes do not include the

data of read/write requests.

To simplify exploration of parameters, we first examine the case where all

streams staged in memory are also used to dispatch requests to disk (M = D * R

* N) and then we allow the system to use a smaller set of streams for dispatching

requests. In addition to M,R,D,N, we use S to denote the number of input streams.

In our experiments we set the number of outstanding requests to 1 for each stream

and we distribute the available streams equally on the full disk, thus each stream is

placed disksize/#streams blocks away from the previous one.

5.1 Read-ahead (R)

First we examine the effect of readahead on disk throughput when the system has

adequate memory to stage all input streams, thus in this experiment M = S ∗R∗N

and S = D. When increasing readahead, depending on the number of streams that

need to be serviced, the amount of memory required on the storage node may be

substantial. For instance, if we use 100 sequential streams and the readahead is

800 MBytes, then the storage node needs 800 MBytes of buffer space to service all
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Figure 5.1: Effect of readahead. The storage node is configured with adequate
memory to place all streams in the active set.

streams.

Figure 5.1 summarizes our results. We notice that readahead has a signifi-

cant impact. Throughput increases significantly (about 20%) even when readahead

increases from 2 to 8 MBytes for all numbers of streams. Moreover, with a reada-

head of about 8 MBytes, the low-cost SATA disks reach almost maximum utilization

with a throughput of about 50 MBytes/s out of the maximum 55 MBytes/s we have

measured in our experiments.

5.2 Memory size (M)

Next, we examine the effect of memory size on disk throughput. We are especially

interested in the case where the number of streams is large and the available memory

is not enough to accommodate the readahead data for all the streams. In this case

only a subset of the streams will be staged in memory and will be used for dispatching

at the same time, as limited by the available memory (M). Thus, we vary S, R, M

whereas D is limited by (and always set to) M/(R ∗ N).
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Figure 5.2: Effect of storage memory size on throughput. In each case, readahead
is set to the indicated values (in MBytes).

Figure 5.2 shows our results. First, we notice that readahead does not have

an effect when a single stream is used. Next, if we examine the curves for a fixed

readahead, we see that increasing the number of streams results in lower throughput,

almost independently of the amount of memory, when not all streams can be placed

in the active set. For instance, with readahead of 8 MBytes, when the storage node

has 16 MBytes of memory devoted to I/O buffering for sequential streams, only

2 streams can be placed in the active set. However, when increasing the number

of streams from 10 to 100, system throughput reduces from about 50 MBytes/s to

about 45 MBytes/s, a reduction of about 10%. This is due to the fact that now our

streams cover a larger percent of the disk surface, and seek times are aggravated.

Next, we notice that increasing readahead is more important than increasing

the number of streams that can be placed in the active set. Even when available

memory is able to accommodate 1 stream with 8-MByte readahead, system through-

put is higher (about 40 MBytes/s) than if we place all 100 streams streams in the

active set with a readahead of 256 KBytes (about 14 MBytes/s).
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Figure 5.3: Throughput for an eight disk configuration.

5.3 Multiple Disks

Figure 5.3 shows how throughput scales as the number of disks in the system in-

creases to eight. We note that throughput reduces significantly regardless of the

readahead value. The reason is that with a large number of streams used for dis-

patching requests to disks, a single controller that hosts all eight disks needs to

handle a large number of large I/O requests. Thus, although disk seek time is re-

duced due to the increased readahead, I/O throughput is significantly lower than

the maximum possible of about 450 MBytes/s. Next, we examine how this can be

addressed by disassociating the dispatched from the staged streams.

5.4 Dissacociating dispatching and staging

Reducing the number of streams that are used for dispatching requests to disks has

the potential of significantly lowering memory overhead and buffer management in

the I/O path.

Figure 5.4 shows system throughput with eight disks when the dispatch set is

smaller than the number of staged streams. This results in much better behavior and
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Figure 5.4: Figure compares throughput of our new implementation with the best
case scenario (8MBytes readahead) of our previous implementation for a configura-
tion of eight disks.

in an overall throughput of about 80% of the maximum available I/O throughput.

Examining the amount of memory used dynamically in this experiment, we find

that, although the number of staged streams is larger than the dispatched streams,

in practice this difference is small, and the overall memory used is in the order of

D ∗ R ∗ N.
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Figure 5.5: Single-disk throughput when dispatching a small number of streams.
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Figure 5.5 shows throughput for a single disk configuration when using a

small number of streams for dispatching. For this set of experiments we tune

R = 512 KBytes, D = #disks = 1, and N = 128. We see that compared to

our previous results (where all streams staged are used for dispatching as well),

there is a small improvement in performance, due to the lower buffer management

overhead in the I/O path. Thus, we are able to achieve high utilization in fixed I/O

system configurations by appropriately setting system parameters.

5.5 Impact on response time
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Figure 5.6: Average stream response time. Stream requests are 64 KBytes and each
stream has 1 outstanding request.

Finally, although we are primarily interested in improving I/O subsystem

utilization (throughput), we briefly examine the impact of various parameters on

I/O response time. Figure 5.6 shows the average response time for different numbers

of streams and readahead sizes, when we vary storage node memory. We should

note that response time is measured on the client side and thus, includes all costs

associated with the servicing a request and not only disk overhead. We see that

increasing the number of streams has a significant impact on response time. Next,

we observe that at a given number of streams, increasing readahead improves average
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response time.

By examining the response times of individual streams we also find that

average request response time for each stream does not differ significantly among

streams. This is mainly due to the round-robin policy we use in placing streams in

the active set. Within each stream, request response times can be divided in two

broad categories: Requests that require disk I/O and requests that may be serviced

directly from memory. When a large readahead is employed, most requests belong

to the second category, reducing the average response time.
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Chapter 6

Conclusions

In this work we discuss the impact of multiple sequential I/O streams on disk per-

formance. We examine the effect or related I/O subsystem parameters through disk

simulation and find that although certain parameters can significantly improve disk

throughput, they are not under OS or application control in commodity subsystems.

Next, we propose a solution at the host level that effectively coalesces sequential re-

quest patterns to large disk accesses and schedules them appropriately to maximize

disk utilization. We implement our approach on a real system and we perform ex-

periments with small- and medium- disk configurations. We find that our approach

is able to improve disk throughput up to 8 times with 100 sequential streams and

that it effectively makes the I/O subsystem insensitive to the number of I/O streams

used. We also find that small amounts of storage node memory are adequate for our

approach to work well and that request time is affected primarily by the number of

streams being serviced and secondarily by readahead size.

Finally we believe that as more and more content will be stored and accessed

online by an increasing number of applications and services, it is important to ex-

amine how the techniques we propose as well as similar techniques can be combined

with techniques that aim at providing quality of service guarantees in the I/O sub-
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system. Combining such techniques can result in significantly more cost-effective

I/O subsystems for broad application domains.
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Appendix A

Appendix

A.1 Modern Disks Drive

The disk mechanism consists of a number of platters that rotate around a spindle

mechanism. Each platter can be described as a flat disk, with its two surfaces covered

with a special media material used to store the data in the form of magnetic patterns.

Each surface of the platter has an attached head used for read or write data. All

hard disk read/write heads are attached to a single arm assembly (actuator) that

moves the heads together.

In order to enable the organized storage and retrieval of the data, platter

surfaces are divided into tracks, which are concentric circles with different diameters,

that extend from the inner to the outer part of the platters surface. In turn tracks are

divided into sectors. In most disk devices the size of sectors is 512 bytes, although

there are devices that use larger sectors. The sector is the smallest individually

addressable unit of information stored on a disk.

A cylinder comprises all the tracks that are located in the same position

on each platter. That means that when a head for one surface is on a track, the

heads for the other surfaces are also on the corresponding tracks that altogether
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Figure A.1: Disk Overview

form the cylinder. The number of surfaces (or heads), cylinders, and sectors on a

disk constitute the so called geometry of a hard disk.

In past the number of sectors was the same for all tracks, but nowadays

modern hard disks put more sectors in outer tracks. This is called zoned recording.

The reason is, that because the lengths of the tracks increase as you move from the

inside tracks to the outside tracks, there would be a huge amount of wasted space

between them if the longer tracks were limited to the same number of sectors as

the shortest (innermost) tracks. Consequently the disk surface is partitioned into

zones that spread over several cylinders and have a different number of sectors per

track. Note that within each zone, all tracks have the same number of sectors, and

that since the number of sectors increases as the radius of the cylinder increases,

the outermost cylinder will have the most sectors (data).

A.1.1 Disk performance

This section describes the most common performance characteristics of modern disk

drives, while providing some insight into how mechanical and electronic functions,

affect hard drives performance.

When a disk services a request, in order to read or write data on the disk
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surface it must position the read or write head to the proper place. The time needed

to position the head to the proper track of data is called the seek time, while the

further time needed to line up the right sector under the appropriate head is called

the rotational latency. Both of them plus the command overhead are combined to

produce the access time. Once the head is in the position to read or write, request is

executed and the data are transferred to their destination. The time needed for this

operation is called the transfer time. Access time and tranfer time are combined for

the service time. The latter combined with the queueing delays presented, produce

response time.

ServiceT ime = AccessT ime + TransferT ime

ResponseT ime = ServiceT ime + QueueDelays

where:

AccessT ime = SeekT ime + RotationalLatency + CommandOverhead

Seek Time

Seek time is normally expressed in milliseconds, and compromise most of the disk

access time, as it is dangled with mechanical limitations. Ruemmler and Wilkes

describe a seek as being composed of four phases.

”A speed up”, where the head is accelerated until it reaches half of the seek

distance or a fixed velocity.

”A coast for long seeks”, where the arm moves at its maximum velocity

”A slowdown”, where the arm is brought to a rest close to the desired track

”A settle” where the disk controller adjusts the head to access the desired

location
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Since a significant portion of request service time may be consumed on seek

time, the target is to minimize seek times by avoiding long seeks. Several techniques

have been proposed based on that idea. Most of them introduce seek-reducing

scheduling algorithms, while others focus on data placement techniques that favor

sequential access over random. The average seek times for most modern drives

today, is in the range of 8 to 10 ms, while a seek from the outermost cylinder to the

innermost (known as full stroke) typically requires a time around 20 ms.

Rotational Latency

The other mechanical delay is rotational latency. On average, rotational latency

will be half the time needed for a disk platter to complete a full rotation, and

as a corollary rotational latency is dependent on drive’s RPM. As before, several

algorithms and techniques have been proposed to alleviate this problem, and many

modern disk drives nowadays employ techniques such as head or cylinder skewing

in order to minimize rotational latency when switching between consecutive heads

or cylinders. The average rotational latency for modern drives, is in the range of

2 ms (for disks that are spinning with 15000RPM) to 4.2 ms (disks spinning with

7200RPM).

Command overhead

The command overhead refers to the time that elapses from when a command is

issued to the hard disk until the disk starts to fulfill the command. Command

overhead is generally very small and not highly variable between drive designs, it is

generally around 0.5 ms for pretty much all modern drives.
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Transfer Time

The transfer time is determined by the transfer rate.In turn the transfer rate is

specified by the internal transfer rate and the external transfer rate.

The internal transfer rate refers to the speed that the disk can read data

from its surface to its speed-matching buffer. Due to the zone recording the internal

transfer is not constant across the entire surface of the disk, and can be specified

as the amountofdatapertrack/timeperrotation. On the other hand the external

transfer rate is specified from the speed at which those data are moved between

the hard disk and the rest of the system. Nowadays the internal transfer rate is in

the range of 80 Mbytes/sec, while the external transfer rate is in the range of 150

Mbytes/sec.
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