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Abstract

Pyramidal neurons form the substrate of elaborate, high-order cognitive functions of humans.
Thus, our ability to understand how these neurons operate is crucial for deciphering brain functions, but
it  is  constrained by technological barriers,  especially in the microscale level.  The use of modeling
approaches has been proven very useful in studying neuronal mechanisms and elucidating the key
parameters that govern them, when our experiments fail  to do so. In this  study, I  have modeled a
pyramidal neuron dendrite, as well as its soma, under the assumption that they their inputs can be
described by binary values. The inputs are weighted and integrated resulting in binary outputs, enabling
me to describe the input-output function of the dendrite or the neuron in terms of Boolean Algebra and
truth tables. I have investigated how the computational capacity of a single dendrite -and hence the
neuron- is affected by the characteristics of the dendritic input-output function.  I show that a non-
monotone function provides access to the whole range of computations that can be assigned to a given
number of inputs. Moreover, I reveal that the these computations are state-dependent. This analysis,
therefore, provides insights into how human pyramidal neurons may be able to perform complicated
calculations like non-linearly separable classifications.

keywords: abstract  neuron  models,  dendritic  spikes,  dendritic  calcium-mediated  action  potential
(dCaAP),  dendritic  computations,  Boolean  Algebra,  dendrites,  pyramidal  neuron,  anti-coincidence
detection, non-monotone activation function



Περίληψη

Οι πυραμιδικοί νευρώνες συνθέτουν το υπόστρωμα των περίπλοκων, ανώτερων ανθρώπινων
γνωστικών λειτουργιών.  Η ικανότητά μας,  συνεπώς,  να κατανοήσουμε τον τρόπο λειτουργίας  των
νευρώνων αυτών είναι κρίσιμη για τη διαλεύκανση των εγκεφαλικών λειτουργιών, περιορίζεται, όμως,
από τεχνολογικούς φραγμούς ειδικά στο μικροσκοπικό επίπεδο. Η χρήση μεθόδων μοντελοποίησης
έχει αποδειχτεί ιδιαιτέρως χρήσιμη στη μελέτη των νευρωνικών μηχανισμών και την αναγνώριση των
κρίσιμων  παραγόντων  που  τους  διέπουν  σε  περιπτώσεις  που  οι  πειραματικές  διαδικασίες
αποτυγχάνουν να το επιτύχουν. Στην παρούσα μελέτη έχω μοντελοποιήσει έναν πυραμιδικό νευρώνα
αποτελούμενο  από σώμα και  δενδρίτες,  υποθέτοντας  ότι  τα  συγκλίνοντα  προς  αυτόν  σήματα από
άλλους νευρώνες μπορούν να περιγραφούν από δυαδικές τιμές. Τα σήματα αυτά “ζυγίζονται” και εν
συνεχεία  ολοκληρώνονται  σε  δυαδικά  αποκλίνοντα  σήματα,  επιτρέποντάς  μου  να  περιγράψω  τη
συνάρτηση που χαρακτηρίζει τα συγκλίνοντα και αποκλίνοντα σήματα του πυραμιδικού δενδρίτη και
νευρώνα με όρους άλγεβρας Boole. Έχω μελετήσει τον τρόπο με τον οποίο το εύρος των δυνατών
υπολογισμών ενός δενδρίτη -και κατ’ επέκταση ενός νευρώνα- επηρεάζεται από τα χαρακτηριστικά της
προαναφερθείσας  συνάρτησης.  Τα  αποτελέσματα  καταδεικνύουν  ότι  μία  μη-μονότονη  συνάρτηση
παρέχει πρόσβαση στο πλήρες εύρος υπολογισμών που δύναται να αποδοθούν σε ένα δεδομένο αριθμό
από συγκλίνοντα  σήματα.  Επιπλέον,  αποκαλύπτεται  ότι  αυτοί  οι  υπολογισμοί  εξαρτώνται  από τον
βαθμό εκπόλωσης της κυτταρικής μεμβράνης. Συνεπώς, η παρούσα ανάλυση παρέχει πρόσβαση σε
στοιχεία  του  τρόπου  με  τον  οποίο  οι  πυραμιδικοί  νευρώνες  μπορεί  να  καθίστανται  ικανοί  να
πραγματοποιούν πολύπλοκους υπολογισμούς όπως για παράδειγμα μη-γραμμικές ταξινομήσεις.



1. Introduction

1.1. Pyramidal neurons

1.1.1. Morphology

Pyramidal neurons constitute the most common type of excitatory cell across all mammalian
forebrain structures. Their abundance in structures such as the neocortex, the hippocampus, and the
amygdala, stresses the fact they are of imperative importance for the realization of high-order cognitive
functions. Therefore, understanding these neurons forms the basis for understanding these sophisticated
functions. Depending on the species of origin, the brain area, and the cortical layer, pyramidal neurons
exhibit  diversity  in  shapes  and  sizes.  Nonetheless,  in  all  of  them  a  characteristic  morphology  is
maintained (Spruston, 2008); they are made up of a soma, a single axon, apical and basal dendrites.

The soma of the neurons plays a crucial role in controlling the metabolic procedures of the cell.
The dendrites  and the  axon can be  conceived as  the input  and output  structures  of  the pyramidal
neurons, conveying information from-and-to neurons respectively. The axon stems from the soma of
the neurons, and more precisely from what is  termed the axon hillock,  a structure involved in the
generation of the most prominent electrical activity of the neurons, the action potential (AP). Axons
form synapses mainly with the dendrites of other neurons, and in a lesser extent with other neurons’
somata  or  axons.  An  AP  travels  through  the  axon  and  reaches  the  synapses,  where  it  causes
neurotransmitters  to  be  released;  the  neurotransmitters  bind  to  post-synaptic  receptors  of  a  target
neuron,  thus  propagating  the  electrical  activity  to  the  post-synaptic  neuron  via  an  electrochemical
transformation of energy (see section 1.1.2).

The dendritic trees comprise the basal and the apical dendrites. Although differences occur, in
the majority of the pyramidal neurons a single main apical trunk sprouts from the soma which lies in
cortical layers (cortical L) 2/3, 4, 5, or 6 and may extend up to the cortical surface (cortical L1). The
trunk gives rise to the apical tuft, a collection of relatively short dendrites with a few branches each,
while, also, some oblique dendrites may stem from the trunk. On the other hand, basal dendrites tend to
have greater lengths and branch more extensively compared to the apical tuft.  This morphology is
especially maintained in the pyramidal neurons found in the layers 2 and 3 of the cortex  (Spruston,
2008; Mohan et al., 2015).

This bauplan has been derived from numerous anatomical studies of either human postmortem
fixated brain tissue, or mainly from laboratory animals, especially rodents. With the development of
new,  better  protocols  for  tissue  fixation,  and  strict  criteria  for  selecting  intact  neurons  to  be
reconstructed though, we now have a better  understanding of the morphologies encountered in the
human brain. As in rodents, human pyramidal neurons exhibit a variability in shape depending on the
cortical depth, which is mainly attributable to variation of the dendritic trees, that is the total dendritic
length (TDL) and the number of branch points per dendrite, but also due to axonal shape differences
(Mohan et al., 2015).
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Yet, dendritic trees of human pyramidal neurons also differ significantly from those of other
species (Eyal et al., 2018). The human dendritic tree has a TDL approximately three times larger than
that of the mouse and the M. mulatta  (Mohan et  al.,  2015),  and receives  approximately twice the
synapses that its rodent counterpart does  (DeFelipe, 2011).  This is of significant importance, as  it is
known  that  there  exists  a  great  interdependence  between  the  dendritic  morphology  and  the
computational capabilities of the pyramidal neurons (Segev and Rall, 1998; Eyal et al., 2014). Three
questions naturally arise. What is the functional role of each of the two dendritic domains? Does the
distinct morphology of the human dendritic trees reflect upon different functional roles? And if so, do
human neurons  also possess separate dendritic mechanisms that enable them to do so?

1.1.2. Functional role of dendrites

Dendrites can be considered as the main input structure of a neuron, receiving information from
other neurons. One aspect of the role of the dendrites pertains to the integration of information and its
propagation  to  the  soma.  While  the  soma  and  the  axon  receive  mainly  inhibitory  inputs  via  γ-
aminobutyric acid (GABA) -ergic synapses,  the dendritic tree is  the dominant locus of convergent
excitatory α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor- (AMPAR), and N-methyl-
D-aspartate receptors- (NMDAR) mediated inputs, and inhibitory inputs (Beaulieu and Somogyi, 1990;
Somogyi et al., 1998) also mediated by GABA (Pérez-Garci et al., 2006).

At any given synapse, the binding of the neurotransmitters, released by the pre-synaptic neuron,
and their corresponding receptors induces a current from the influx and efflux of ions, thus leading to a
change in the net membrane voltage locally, what is termed as a postsynaptic potential (PSP). If the net
gain of charge is positive the membrane depolarizes; this is referred to as an excitatory postsynaptic
potential (EPSP) and is the result of an increase in membrane permeability to sodium (Na+) ions. On
the  contrary,  if  the  net  gain  is  negative  the  membrane  hyperpolarizes,  what  is  referred  to  as  an
inhibitory postsynaptic potential (IPSP), and which results from an increase in membrane permeability
to potassium (K+) and chloride (Cl-) ions. Because EPSPs drive the membrane potential towards values
closer to the firing threshold of the neurons, whereas IPSPs drive the membrane potential towards the
opposite direction, the standard conception is that EPSPs enable neuronal firing, while IPSPs inhibit it.

The electrical signals need to propagate from the dendrites to the axon hillock for any PSP to
modulate the action potential generation of a neuron, and dendrites exhibit passive and active electrical
properties that enable them to accomplish this. As far as passive mechanisms are concerned, it has long
been established that current generated in the synapses of the dendrites is propagated to the soma, in a
way analogous to the current flow in cable line; during this process dendrites are leaky, in the sense that
the current attenuates as it traverses them (Rall, 1964). In order for the somatic membrane potential to
surpass  the  firing  threshold,  EPSPs  should  add  up  in  the  dendrites  and  form  a  large  amplitude
depolarizing potential (spatial summation), or else numerous EPSPs should roughly coincide in time
when arriving at  the soma (temporal summation). These are two observations that have effectively
revealed the dendritic filtering function; passive dendrites operate as low-pass filters, as not only do
they decrease the amplitude of the membrane potential, but also delay the signal propagation as input
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location distance from the soma increases, thereby making high-frequency, transient signals ineffective
for AP generation (Magee, 2000).

Additionally, passive dendrites can be conceived as both facilitating and shunting structures for
inputs.  When  two  or  more  EPSPs  arrive  at  close  locations  it  is  theoretically  expected  that  their
interaction is sublinear, because the depolarization of the membrane by one of the two reduces the
driving force for the other. In this scenario, the existence of a highly branched dendritic tree proves
advantageous in preventing this kind of interaction. When IPSPs are also considered, the dendritic tree
proves  again to  be advantageous but now for the opposite  reasons; inhibitory pathways can shunt
specific excitatory inputs rather than the whole set of EPSPs, given that they form synapses targeting
specific branches,  or domains  (London and Häusser,  2005).  Considering all  the above, it  becomes
evident that the presence of the dendritic trees can have a serious impact in the integration of input
information, even in the case that only passive membrane properties are considered. Even more, active
mechanisms in dendrites produce more current than what is to be expected from the passive properties.
This process of electrogenesis involves the activation of certain types of ionic channels when a voltage
threshold is surpassed. A major mechanism of this process is the generation of the dendritic spikes (see
section 1.2).

Another  aspect  of  the  functional  role  of  the  dendrites  relates  to  the  induction  of  synaptic
plasticity, and more specifically long-term potentiation (LTP) or depression (LTD). LTP is a form of
learning that  takes  place at  the  level  of  synapses  in  variant  fashions.  Its  early  phase involves  the
insertion of AMPA receptors in the post-synaptic membrane surface from an intracellular reservoir -a
process triggered by EPSP-induced depolarization of the post-synaptic membrane-, insertion of calcium
(Ca++)  ions  through  activated  NMDA receptors,  and  a  cascade  of  activation  of  several  signaling
pathways.  The  insertion  of  the  AMPA  receptors  in  the  membrane  of  the  synapses  effectively
strengthens them, as EPSP generation is facilitated. Hence, even in the case that EPSPs produced by
converging  excitatory  signals  fail  to  propagate  to  the  soma due to  attenuation,  modulation  of  the
coupling between the pre- and post-synaptic neurons can take place at the dendrites, and eventually
produce EPSPs with amplitudes that can overcome the attenuation.

Dendrites seem to be the ideal loci for the realization of LTP in terms of Hebbian learning rules.
Put in simple terms, Hebbian learning postulates that when an excitatory input persistently drives a
target  neuron  to  fire  APs  the  synapses  that  realize  the  connection  between  the  two  neurons  are
strengthened. The Hebbian rules are cooperativity, associativity and synapse specificity, referring to the
fact that for LTP to take place a) simultaneous activation of numerous afferent axons is required, b) that
the temporal and spatial pairing of a weak and a strong synaptic input can induce LTP, and c) that only
active synapses can undergo LTP, respectively. In this context, the existence of dendritic domains, each
of them having a complex morphology, endows the neurons with the flexibility to modulate inputs, and
therefore their output, in a precise manner, dependent on specific connections even at the level of single
branches.

Interestingly, in a different conceptual approach, synaptic plasticity has also been expressed in
terms  of  correlation  of  pre-synaptic  activity  and  post-synaptic  somatodendritic  prediction  error
(Urbanczik  and  Senn,  2014).  Plasticity  in  dendritic  synapses  can  be  thought  of  as  a  process  of
predictive coding that drives the dendritic membrane potential towards that of the soma. As stronger
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dendritic depolarization should in principle increase the likelihood of AP generation, the absence of
neuronal output despite the dendritic depolarization results in depression of the synapses that caused
the  depolarization,  whereas  the  presence  of  APs  when the  dendritic  membrane is  near  the  resting
potential strengthens the synapses.

A final aspect of the role the dendrites play is the distinction of input sources. Usually, the basal
dendrites  receive  feed-forward  information  from  the  same  or  adjacent  areas,  whereas  the  apical
dendrites receive feedback information from distant cortical areas or secondary nuclei of the thalamus.
In  this  schema,  the  anatomical  segregation  of  the  dendritic  tree  in  these  two  domains,  and  the
morphological distinction of these domains, reflects upon the different connections that a pyramidal
neuron forms, the distinct sources of information flow, and therefore the disparate functional role of
each domain.  In rodents and humans,  cortical  L2/3 pyramidal  neurons interact principally forming
synapses located on the basal and oblique dendrites (Eyal et al., 2018), while the distal tuft dendrites
are  involved  in  long-range  corticocortical  and  thalamocotrical  connections  (Larkum,  2009).
Functionally,  this  may translate  to  selectivity  preference  being mediated  by the  basal  dendrites  in
sensory areas (Jia et al., 2010), whereas the apical dendrites contribute in the fine-tuning of the neurons
(Smith et al., 2013; although see Park et al., 2019).

1.2. Dendritic spikes

1.2.1. Classic dendritic spiking mechanisms

Dendrites do not only possess passive membrane properties; various active properties have been
identified  over  the  years.  As  far  as  post-synaptic  currents  are  concerned,  the  most  prominent
mechanism involves the hyperpolarization-activated current (Ih). Ih is an inward current generated by
the hyperpolarization-activated cyclic nucleotide-gated (HCN) cation channels present in the distal tuft,
which acts to diminish signals propagating from the distal tuft toward the Ca++ spike dendritic initiation
zone (Larkum, 2009).

Moreover,  dendrites  exhibit  action  potential  generation  capabilities.  Backpropagating  action
potentials  (bAPs)  and dendritic  spikes  constitute  the  two major  active  mechanisms that  affect  the
dendritic membrane potential. bAPs are action potentials that propagate antidromically from the soma,
or  axon  initial  segment  to  the  dendrites.  Active  mechanisms  play  an  essential  role  in  synaptic
integration and plasticity, particularly when their interaction with the dendritic spikes is considered.
Since the focus of this research is on dendritic spikes, bAPs will be hereafter considered to the extent
they are pertinent.

Dendritic  spikes,  like  somatic  action  potentials,  are  non-linear  events  of  electrogenesis
attributable to the activation of voltage-gated channels in the dendrites. They are characterized by a
threshold of generation, active, regenerative propagation, and can even exhibit a refractory period much
like  their  somatic  counterparts.  Although  they  demonstrate  mixed  characteristics,  they  can  be
categorized in three major types; Na+, Ca++ and NMDA spikes (Major et al., 2013). This distinction is
based on the  principal  mechanism that  evokes  the  spike,  as  Na+ and  NMDA spikes  are  typically
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associated with Ca++ influx as well. Each type represents not only activation of different ionic channels,
but  importantly  distinct  kinetics,  and spatial  segregation.  The briefest  of  dendritic  spikes,  the  Na+

spikes, have been recorded from both apical and basal dendrites. On the other hand, Ca++ spikes are
generally considered to be broader, and have been recorded from the apical trunk (Spruston, 2008).

The NMDA spikes constitute a somewhat separate class of spikes. Although originally believed
to be typical of basal dendrites, more recent works taking advantage of better experimental setups and
advanced  tools  attributed  them  to  all  thin  dendritic  branches  (Larkum,  2009) instead,  as  it  had
previously been challenging to record from thin apical dendrites. NMDA spikes are ligand dependent
(the receptors need to bind glutamate and D-serine);  this inherent characteristic differentiates them
form other types of spikes,  since their  propagation is not dependent solely on membrane potential
gradients, but also on the presence of these neurotransmitters across the dendritic tree. Consequently,
NMDA spikes, unlike Na+ or Ca++ spikes, are constrained to the thin dendritic branches of the apical
and basal domains, and govern strictly local integrative procedures, since these are the loci of such
types of synapses. Furthermore, NMDA receptors present an additional distinguishing characteristic.
The  ionic  channel  is  blocked  by  a  Mg++ and  this  blockage  is  relieved  only  when  a  specific
depolarization  threshold  is  reached.  Typically,  NMDA spikes  are  encountered  as  parts  of  Na+ and
NMDA spikes complexes known as plateau potentials. Plateau potentials are characterized by an initial
spikelet (Na+ spike), followed by a plateau phase and an abrupt drop, attributable to the NMDA spike.
Their actual waveform can be revealed only after the blockage of calcium and sodium channels, and
resembles that of Ca++ spikes.

1.2.2. The role of dendritic spikes

As previously  stressed,  the active properties  of  the  dendrites  and especially  the spikes  can
augment the integrative capabilities of pyramidal neurons. Large-amplitude spikes allow the current to
propagate effectively to the soma and evoke an action potential. However, spikes generated in distal
dendritic branches are less likely to reach the soma without substantial attenuation. Therefore, such
dendritic spikes need to cluster in time or space, or coincide with other types of depolarizing currents in
order to affect the neuronal output (Poleg-Polsky, 2015). This fact suggests that a prominent function of
the dendritic spikes is coincidence detection.

In its  simplest  form, coincide detection implies concurrence of sufficiently large number of
depolarizing inputs at the soma, in order to reach the threshold for an AP generation. In this scenario,
coincidence detection can be realized even in the absence of the active dendritic mechanisms, however
given the existence of active mechanisms it should become much easier for depolarizing currents to
achieve this. Nonetheless, dendritic electogenesis introduces other possibilities too, like the concur-
rence of spikes in numerous branches, or different dendritic domains (Spruston, 2008).

Another  possibility  relates  to  the  interaction  of  EPSPs  in  the  distal  tuft  and  bAPs.  bAPs,
originating from activation of proximal to the soma synapses, can reach distal branches and sum with
EPSPs. In effect this lowers the threshold for triggering a large-amplitude Ca++ spike, what is known as
backpropagation-activated Ca++ spike (BAC spike). The BAC spike can in turn affect the soma and
induce a burst of APs (Häusser and Mel, 2003). This mechanism provides the means for a neuron to
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bind inputs arriving from varying cortical or subcortical areas, like specific thalamic inputs in cortical
L4 and non-specific thalamic inputs  (Larkum et al.,  1999) or other cortical inputs in cortical L1/2,
implicating spikes in the network-level computations too (Branco and Häusser, 2010).

When  taking  into  consideration  IPSPs,  the  interaction  of  EPSPs  and  bAPs  becomes  more
elaborate.  Inhibition can target specific branches thus completely disabling the coupling of a distal
branch to the proximal zone. More interestingly, it can reduce the strength of this coupling by either
partially shunting the EPSPs or the bAP, depending on the distribution of the inhibitory synapses on the
dendritic tree, hence giving rise to alternate neuronal outputs (Wilmes et al., 2016). These complicated
interactions of the inputs endow pyramidal neurons with the ability to modulate their output according
to the synchronous activation of synapses arriving at different regions of the dendritic tree, indicating
that dendritic morphology and dendritic current propagation mechanisms are innately intermingled and
their distinct description is nothing more than a heuristic.

bAPs can also interact with NMDA receptors inducing NMDA spikes, and as a result take part
in the induction of LTP. In the aforementioned terms of Hebbian learning, associativity is the key
process here; a weak input such as a small EPSP, when paired with a strong input (that which generates
the bAP) can lead to the generation of NMDA spikes as the Mg++ block of the receptors is relieved,
when the two inputs arrive at the neuron within a short period of time. Nonetheless, it has also been
suggested that LTP induction can be achieved in the absence of bAPs too, in the case of EPSPs and
dendritic spikes generated by spatially confined inputs (Hardie and Spruston, 2009).

1.2.3. The dendritic calcium-mediated action potential

Up to  this  point  we  have  made  a  brief  overview about  pyramidal  neurons,  their  dendritic
domains, as well the properties and the role of the dendrites. The reader with a keen eye will have,
however, noticed that the references to data coming from human studies are limited. In fact, as already
mentioned it is true that the majority of this knowledge stems from experiments on animals -rodents for
the  most  part-,  besides  computer-generated  modeling  of  human neurons.  Whether  active  dendritic
mechanisms and their impact on information processing is the same for human pyramidal neurons in
vivo remains an open field for research.

The morphological differences of human pyramidal neurons compared to other species have
already been considered. Recordings from human pyramidal neurons have generally been confined to
the soma and large diameter basal and apical dendrites, but have confirmed the existence of passive and
active  mechanisms  (Beaulieu-Laroche  et  al.,  2018;  Eyal  et  al.,  2018),  thus  allowing  detailed
compartmental models to corroborate that processes like synaptic plasticity and dendritic integration of
inputs at the level of individual thin dendritic branches are indeed properties of the human pyramidal
neurons too. Still, very little is actually known about the processes that are realized in thin apical tuft
dendrites.

In two recent studies cortical L2/3 and cortical L5 human pyramidal neurons were reported to
exhibit disparate dendritic excitability in comparison to their homolog neurons in rodents. On one hand,
cortical L5 pyramidal neurons were shown to have distal dendrites more electrically remote from the
soma and with stronger attenuation of inputs, thus limiting the influence that distal synaptic integration
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can exert on somatic output in human neurons (Beaulieu-Laroche et al., 2018). On the contrary, cortical
L2/3 pyramidal neurons were found to be profoundly more excitable  (Gidon et al., 2020). The most
interesting findings from this study, though, concern a new type of dendritic spiking mechanism termed
dendritic Ca++ AP (dCaAP).

The dCaAPs are Ca++ APs that  have not  been described in  any other  mammal.  They were
recorded  ex  vivo  from human  cortical  L2/3  pyramidal  neurons  of  healthy  tissue  obtained  during
epilepsy and tumor excision. The recordings were obtained intracellularly from the apical trunk. Along
with the dCaAPs, bAPs where recorded too; whether the presence of this novel spiking mechanism can
be  accompanied  by  other  classical  mechanisms  in  the  same  dendritic  subdomain  remains  to  be
elucidated. It is noteworthy that despite the fact that the majority of tissue samples originated from the
temporal  lobe,  recordings were obtained from pyramidal  neurons of other  areas too,  including the
frontal lobes, insula and temporomesial region, indicating that this spiking mechanism is probably a
universal mechanism across human pyramidal neurons.

What really differentiates the dCaAPs from other dendritic spikes are their properties. Unlike
other spikes which grow in amplitude, reach a maximum plateau as the input increases, and retain their
peak amplitude thereafter,  this spike has maximum amplitude when the threshold for generation is
reached, but from that point on the amplitude decays exponentially with further increase of the input
strength. As a result, the experiments revealed that increased dendritic input could lead to decreased
somatic firing, a finding that comes in direct conflict with the standard conception of the relationship
between dendritic spikes and AP generation. Furthermore, modeling of this novel mechanism points to
a  novel  function  realized  by  the  dendrites,  that  of  anti-coincidence  detection,  which  means  that
activation of only a specific subset of inputs will drive the neuron to fire. Not surprisingly, the same
simulations attributed an important role to inhibitory pathways for regulating the excitatory input and
enhancing the probability of spike generation.

1.3. Abstract models of pyramidal neurons

1.3.1. Pyramidal neurons as 2- and 3-layer neural networks

Since  the  formulation  of  the  differential  equations  that  describe  the  kinetics  of  the  ionic
channels, and of the generation of an action potential by Hodgkin and Huxley, our conception about
how neurons operate has changed drastically. This fact is directly reflected in the various mathematical
models of neurons that have been proposed over the years;  from point neuron models to complex
biophysical models with thousands of compartments, one can now study the neurons’ activity at any
level of detail.

Models and computer simulations offer the advantage that any particular phenomenon can be
studied  with  absolute  control  over  all  the  known  variables  to  affect  it,  thus  eliminating  a  major
drawback  of  all  experimental  procedures  involving  either  living  animals  or  tissue  samples.
Computational methods serve the role of making correct interpretations of the data acquired through
these experiments, thus providing hints into the functional role that certain systems serve. Moreover,
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they try to make predictions about the mechanisms underlying the observed processes, which in turn
can guide further experiments towards particular directions, while they, also, help us gain insight into
key biophysical parameters, thereby enabling us to compactly describe complex phenomena.

In this  context,  the simplification  of  the description  of  neuronal  processes  through abstract
models proves to be valuable in deciphering the principal integrative properties of neurons. Detailed,
compartmental biophysical models governed by systems of numerous nonlinear differential equations
are inherently complicated and, because of the complexity of the interactions among the parameters
that describe their  function,  their  use is  preferable when the goal is  to study specific aspects of a
mechanism under question. On the contrary, reduced, abstract models are governed just by the minimal
set of parameters needed to describe a phenomenon and equations that can be solved analytically. As
such, they form a tractable mean of studying a neuronal mechanism under a more general framework,
making the behavior of neurons and networks much simpler to interpret  (Segev and Rall, 1998) and
computationally realizable (Spruston and Kath, 2004).

Particularly,  as  far  as  pyramidal  neurons  are  concerned,  it  has  been  proven  that  they  can
accurately be described as neural networks consisting of two or three layers (Häusser and Mel, 2003;
Poirazi et al., 2003a), more precisely a somatic layer and one, or two dendritic layers. Neural networks
can  describe  either  biological  circuits  of  neurons,  or  artificial  neural  networks  (ANNs)  that  are
designed  to  solve  mathematical  problems.  ANNs  originate  from  the  conception  of  neurons  as
integrators  of  information.  They  incorporate  nodes,  that  is  distinct  computational  units  much  like
biological neurons, that are organized in layers. Information is presented to the nodes of the first layer
as input (input layer). Then, the nodes of each layer propagate the information to those of the next layer
after performing a non-linear processing (see section 1.3.2), through connections of various strengths
termed weights, so that ultimately the nodes of the final layer can output a transformed representation
of the original information (output layer). Via this procedure sets of numerous inputs converge and
result in a specific output, much like the way that integration of information takes place in a single
neuron, or a circuit of neurons.

In this framework that captures the essential processing capabilities of pyramidal neurons, the
dendrites and the soma are modeled as two different layers of an ANN. Usually there exists an input
layer  representing the distal  apical  dendrites,  and an output  layer  representing the soma,  the basal
dendrites and the axon. This distinction is based on the fact that the apical trees are stereotyped in
morphology, and receive separate inputs from the basal dendrites and the soma, as already stressed.
More elaborate models are based on the inclusion of a third layer that represents the basal dendrites
separately from the soma  (Häusser and Mel, 2003). In these models, the two dendritic sub-trees are
connected in parallel with the somatic layer, allowing for a more detailed processing of the distinct
sources of information. Still, two-layer models prove to be remarkable representations of pyramidal
neurons and recapitulate their computational properties, as they can achieve up to 94% accuracy in
predicting the output of detailed, compartmental models (Poirazi et al., 2003a).

Nevertheless, two-layer models only operate under the assumption that the dendritic nodes are
functionally independent. If another non-linear integration takes place between the integration of the
dendritic nodes output and the soma -three non-linear integrations in series-, then these models are
incapable for describing the relationship between inputs and outputs of biological neurons. This is for
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example the case for apical tuft dendrites, because of the presence of the calcium spike initiation zone
at  the  apical  trunk  (Eberhardt  et  al.,  2019).  Also,  interactions  among  dendritic  nodes  via  local
connections is another possibility that these models fail to capture. A workaround would be to treat
each input node as a set of nearby, interacting dendrites, rather than distinct branches. Finally, these
simplifications also abolish the ability to model bidirectional propagation of information in neurons, as
they ignore bAPs.

An interesting approach to study dendritic and neuronal computations through reduced models,
is to use binary models. The archetype of binary models is the point neuron, proposed by McCulloch
and Pitts  (McCulloch and Pitts,  1943).  As its  name reveals,  this  simplistic  model  treats  the whole
neuron as a single node, where excitatory and inhibitory synapses converge. Synapses are assigned a
value of  0  or  1 ,  corresponding to  inactive or active states respectively,  and are multiplied by a
positive or negative weight which represents the strength and the type (excitatory or inhibitory) of the
synapses. The weighted sum of inputs is compared to a threshold, and then if it is greater than the
threshold the neuron returns an output of 1  -indicating an AP generation in biological neurons-, or else
the output is assigned the value of 0 .

These paradigms can naturally be transferred in the framework of two-layer neural network
models  of  neurons.  In  the  input  layer  dendritic  nodes  act  as  independent  nodes  that  integrate  the
weighted sum of binary inputs through the specific input-output function that has been assigned to
them (see section 1.3.2). Then the dendritic outputs are propagated to the soma via the next set of
weights. The somatic node integrates anew these outputs and by comparing the result with a threshold
produces the overall output.

1.3.2. Input – output functions of pyramidal neurons dendrites

The decoding of information by single neurons still remains a not well-understood process. The
dominant hypothesis is that neuronal computations are dependent on the nonlinear dendritic integration
properties.  Integration  can  be  described  quantitatively  by  direct  comparison  of  the  recorded
depolarization in a dendritic branch and the expected arithmetic sum of the EPSPs arriving at it, since
the relationship between the inputs arriving at a dendritic branch and the signal that propagates from
there towards the soma is  principally determined by the amplitude of the current generated in the
synapses.

When considering dendrites with active mechanisms, if the induced EPSPs are small and the
currents fail to pass the threshold for spike generation, recordings have revealed that they sum in linear
or  sublinear  fashion.  With  increasing  of  the  input  intensity,  electrogenesis  becomes  the  prominent
process; in this regime the summation of the inputs is supra-linear. Despite that, further increase in the
input  eventually  leads  to  a  saturation  of  the  active  mechanisms range,  thus  resulting in  sub-linear
summation of the inputs. This formulaic sequence of events constitutes the input-output function of
spiking dendrites, and is excellently captured by a sigmoidal activation function (Poirazi et al., 2003b).
The encapsulation of the input-output function of dendritic branches in a sigmoidal function can, also,
account for phenomena that involve numerous branches in the context of a two-layer ANN whose
somatic layer sums the outputs of the dendritic nodes; sigmoidal activation functions result in linear
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summation  of  inputs  arriving  to  different  dendritic  branches,  modeling spatially  segregated  inputs.
Contrarily,  dendrites  with  passive  mechanisms  allow  only  sub-linear  summation  of  their  input,  a
property that can be captured by a rectifier function that reaches a plateau.

The advantage of analytical, reduced models incorporating such mathematical abstractions, is
that they allow us to estimate the type and number of computations that a neuron performs (Tran-Van-
Minh et al., 2015). An interesting framework for performing this kind of modeling studies is to use
binary neurons. Binary inputs are propagated to dendrites with specific weights, become integrated in
the dendritic and somatic nodes, and a binary output is generated (Cazé et al., 2013). Thus, the input-
output function of  dendrites and neurons can be studied using Boolean Algebra, and can be described
by truth tables relating to specific Boolean functions (see section 1.4.1 for definitions), in a context
where dendrites and neurons solve binary classification problems.

1.4. Boolean functions

1.4.1. Basic definitions

Boolean Algebra is a branch of algebra in which the variables consist of sets of the truth values
(true  and  false),  and  thereby  describes  logical  operations  on  these  variables.  The  variables  are
commonly  assigned numerical  values  -especially  the  set  {0,1 }  as  originally  proposed by George
Boole-,  because  it  is  more  convenient  to  perform  arithmetic  operations  on  these  elements  with
algebraic expressions. The main operations of Boolean Algebra are conjunction ∧  (and), disjunction
∨  (or), and negation ¬  (not). The binary operations are defined by the following rules:

0∧0=0 , 0∨0=0
0∧1=0 , 0∨1=1
1∧0=0 , 1∨0=1
1∧1=1 , 1∨1=1
¬0=1 , ¬1=0

A Boolean function f  of n  variables is a function that maps the subset V n  to V , where V  is

the binary set {0,1 } , n  is a positive integer and V n  is the n-fold Cartesian product of V  with itself.

A point X*  is a true point of the Boolean function f  if f (X*)=1 , and is respectively a false point if

f (X*)=0 . The set of true points of f  is denoted as T ( f ) , and the set of false points is denoted as

F( f )  (Crama  and  Hammer,  2011).  Boolean  functions  are  sometimes  also  referred  to  as  logical

operations, although this term is preferentially used in the context of programming, bit-wise functions.
The most basic definition of Boolean functions can be achieved by using truth tables. The truth

table of a Boolean function f  on V n  is a complete list of all the points X*  that belong in V n , along
with the value of the function  f  at each of these points. For a given number  n  of distinct binary

variables X i , there exist 2n  combinations of points X*=(X1 , X2 ,... , Xn) , and therefore 2n  values of
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the function  f . Consequently, the number of functions that can be defined for any given number of

binary variables equals 2(2n) , as each point X*  can independently be assigned with the value of 0  or
1 .

For example, in the most familiar setting of two-element Boolean Algebra where n=2 , there

exist  22=4  points  X* , which are the combinations of the binary variables  (X1 , X2) , and the total

number of Boolean functions f  is 222

=24=16 . The function f  is said to be of arity 2 , as it takes two

inputs  as arguments,  while  the point  X*  is  said to have a  cardinality  2 ,  because it  contains two

elements. The complete truth table of functions f  in V n  is depicted in Table 1.1.
In this setting T ( f )=F15  and F( f )=F0 . Other well-known functions include the AND (F1)

and its negation NAND (F14), the OR (F7) and its negation NOR (F8), and the functions XOR (F6)
and its negation XNOR (F9).

1.4.2. Representative functions

A Boolean function f  of a subset of functions G  is representative of this subset, if the values
of f  are the same with those of all other functions g∈G , when the variables X i  are permuted.

In Table 1.1 there exist 4  subsets Gk , k={1,2,3,4 }  of 2  functions, for which either function
can  be  considered  as  representative.  These  subsets  are  {F 2 , F4 }, {F3 , F5 },{F 10 ,F12 }  and
{F11 , F13 } . For example, in the subset {F2 , F4 }  each function is assigned the value of 1  only in

the case X i∧¬X j . Function F4  is representative as its values [0;1 ;0 ;0]  would equal the values of

F2 , if the variables X i  were permuted, such that X1=X2  and X2=X1 . As a counter example that

clarifies things, consider the subset of functions {F1 , F 4 } . Permutations of the variables X i  cannot

result in the same values for  F1  and  F4 , because the values of  F1  after the permutation would
continue to be [0;0 ;0 ;1] . All the remaining functions can be conceived as representative of subsets
that include exclusively themselves.

1.4.3. Monotone and linearly separable functions

A Boolean  function  f  on  V n  is  characterized  as  positive  or  negative,  if  it  holds  that
f | x i=0≤f | x i=1  or f | x i=0≥f | x i=1 , respectively. The function f  is monotone in X i  if it is either positive or

negative in X i . It follows that f  is monotone in X*  if it is monotone in all the variables of X* , that

is if the condition X0
*≤X*  holds, then f (X0

*)≤f (X*) . Using, again, the F4  function from Table 1.1

it is evident that this is not a monotone function, since (0,1) < (1,1)  but f (0,1)=1 > f (1,1)=0 .

 A  Boolean  function  f  on  V n  is  linearly  separable  if  there  exists  a  set  of  weights

W n={w1 ,.. ,wn ∣ n∈R }  and a threshold Θ∈R , such that for all X*=(X1 , X2 ,... , Xn)∈V
n :
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f (X*)=1 if and only if ∑
i=1

n

wi X i>Θ

If no such W n  and Θ  exist, then f  is a  linearly non-separable function on V n . Again returning to
Table 1.1,  all  functions except  for the XOR and XNOR are linearly separable.  Linear separability
signifies the simplest case of binary classification. A line can be drawn that separates a subset of points
in a hyperplane from another subset, thus allowing the distinct categorization of the whole set of points
in two classes (Supplementary Figure 1).

X* Complete set of Boolean functions f  in V n

X1 X2 F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Table 1.1. Complete set  of  arity  2  Boolean functions.  The two left-most  columns (gray) represent  the  4
possible cardinality  2  inputs that can be formed by combining inputs  X1  and  X2 . The rest of the columns

describe the corresponding output of each Boolean function for the 4  inputs. The functions F2  and F4  (green)

form a subset, for which either function can be considered as representative; the permutations of the labels of
X1  and X2  will result in the other function. The functions F6  (XOR) and F9  (XNOR) (blue) are the only

linearly non-separable.
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2. Motivation

Motivated  by  the  additional  computational  capabilities  the  dCaAP  input-output  dendritic
function could equip with the human pyramidal neurons, this thesis aims to provide insight into the
dCaAP’s advantages over classic dendritic spiking mechanisms. The methodological approach involves
the  development  of  an  abstract  model  of  a  human  cortical  L2/3  apical  tuft  dendrite,  and,  also,  a
pyramidal neuron. The following topics are considered:

1. Does a single apical dendrite have the same computational capacity as dendrites characterized
by other spiking mechanisms, and if not is the capacity increased? (section 4.1)

2. How is the computational capacity of the dendrite and the neuron as a whole affected by the
membrane  potential  state?  Specifically,  how many  and  which  computations  are  achievable
under different states? (section 4.2)

3. Are  the  same computations  performed with the  same mechanisms when different  dendritic
spiking mechanisms are considered? (section 4.3)

4. How does  the  somatic  integration  affect  the  overall  neuronal  output  given that  the  dCaAP
implements  the  integration  of  inputs  at  the  dendrite?  Does  it  expand  in  any  way  the
computations performed? (section 4.4)
All in all, this study intends to be of use as a rudimentary approach  towards understanding what

the dCaAP or more generally the class of non-monotone input-output functions offer, poses a set of
questions regarding the extent to which the results are biologically plausible, and may serve as a guide
of more detailed and/or larger-scale modeling studies and experiments to come.
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3. Materials and Methods

3.1. Model

For  the  purposes  of  this  analysis,  I  have  created  an  abstract,  binary  human  cortical  L2/3
pyramidal neuron model that is composed of two layers (Figure 1A). The dendritic layer serves to
model  an  apical  dendrite  implementing  either  the  dCaAP  activation  function,  or  the  sigmoidal
activation function. The somatic layer comprises an abstraction of the soma and the basal dendrites of a
pyramidal neuron. It aims to capture the essential input-output relationship for any input not delivered
to the apical dendrite by applying another sigmoidal activation function.

Either of the two binary inputs can take on the value of 0  for simulating an inactive pathway,
or 1  for simulating an active pathway. Continuous-valued weights of the inputs W=(w11 ,w12)  serve

the role of the strength and the type of each pathway. To elaborate, the weights’ type is determined by
the values that they can take (positive or negative), creating an analogy with the biological types of
synapses  (excitatory  or  inhibitory  respectively).  This  method  provides  the  means  to  evaluate  in  a
simplified, abstract manner the integration of information at pyramidal neurons’ dendrites with regard
to  the  computable  two-element  Boolean  functions.  It,  therefore,  has  implications  for  the  set  of
accomplishable computations when multiple input pathways are considered.

Furthermore,  because  it  is  biologically  unrealistic  to  expect  only  two inputs  to  arrive  at  a
neuron, I also introduced a continuous-valued bias term B  that distinctly models the activity of the rest
of the synaptic pathways converging either to the same apical dendrite, B=(b1) , or additionally to the

soma and the basal dendrites B=(b1 , b2) .

It  should be noted that,  although the addition of the bias changes the arity of the dendritic
activation function from 2  to 3 , the analysis remains basically the same and can still be described in
terms of two-element Boolean Algebra. This is because the bias term essentially describes the state of
the  apical  dendrite  when the  two inputs  arrive,  and can  therefore  be translated  into a  shift  to  the
centering of the dendritic activation function. One can consider that when a neuron is in an Up state or
equivalently  depolarized,  excitatory  inputs  more  easily  reach  the  threshold  for  somatic  spiking
compared to the case when the membrane potential lies in the vicinity of the resting potential. This can
be modeled in two ways: the first is to alter the activation function so that its center reflects the smaller
distance that an input needs to cover in order to generate a spike (Supplementary Figure 2A). The
second is to add a bias term that facilitates the input to reach the threshold (Supplementary Figure 2B).
In either case the result is the same and the analysis can be described fully in terms of two-element
Boolean Algebra. The opposite holds in the case of Down states.

This modeling approach offered three advantages for the analysis that was conducted. Firstly, it
allowed me to examine the computational capacity of a single dendrite implementing the dCaAP (see
section 3.1.1), or the sigmoidal activation function dissociated from the soma. Consequently, it also
provided a  formal way to examine the differing integration of inputs that the dCaAP realizes compared
to the sigmoidal, at the level of the apical dendrite both in quantitative terms, meaning the number of
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implementable Boolean functions, and qualitative, that is the combinations of input parameters that
realize each function (see section 3.2). Finally, the addition of the second layer served to extend this
analysis in both directions, by addressing how the computations of an apical dendrite implementing the
dCaAP affect the integration of information on the neuronal level.

Figure 1. Representation of a cortical L2/3 pyramidal neuron. An apical trunk extends from the soma to cortical
L1 and branches into multiple dendrites that constitute the apical tuft. The basal dendrites and the axon (not
shown) stem from the base of the soma (A). Based on the distinct sources of connections the neuron can be
subdivided into two compartments; the apical trunk and tuft, where the dCaAP mechanism was recorded from
(B), and the soma with the basal dendrites (C). The model of the neuron considers only the case of a single
branch implementing the dCaAP mechanism (inset). The two input pathways X1  and X2  that converge to the

same branch along with the bias b1  are summed and integrated producing the dendritic output A1  (D). When

the whole neuron is modeled, the dendritic output is summed with the input that arrives at the soma and basal

dendrites b2 , and is then integrated to give the neuronal output A2  (E).

3.1.1. The dCaAP activation function

The  dCaAP’s  experimental  properties,  as  previously  discussed,  can  be  modeled  by  a  non-
monotone activation function, with an almost instantaneous rise phase when the input to the dendrite
surpasses a certain threshold, and a slow decay phase as the input keeps incrementing. In principle, this
behavior could be achieved using a heaviside step function multiplied by an exponentially decaying
function. Nonetheless, because I opted for the backpropagation algorithm as the learning rule of the
model (see section 3.2), the activation function should have been differentiable at all points. As such, I
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modeled  these  properties  using  a  difference  of  exponentials.  The mathematical  formulation  of  the
dCaAP activation function, defined as h(x )  (Figure 2A) is:

h(x )=e
x+ c
0.3 −e−210(x−0.47)

and the formula for the derivative of the dCaAP activation function (Figure 2B) is:

h ' (x )=210 e−210(x−0.47)−10
3

e
x+c
0.3

with the variable  c  referring to the centering point of the activation function and  x  denoting an
arbitrary input.

The dCaAP activation function’s formulation creates a smooth function with a maximum output
of approximately 1  when the weighted inputs’ sum equals 0.5 . The function is arbitrarily centered on
the point  c=0.5  on the x-axis, rather than the origin of the Cartesian coordinates plane, because a
main characteristic of the dCaAP input-output relationship as dictated by the experimental results, is
that its amplitude should be zero for subthreshold inputs (Gidon et al., 2020) (Figure 2A); therefore, it
intuitively makes sense to adjust the activation function so that in the absence of any input no output is
generated.

3.1.2. Model of apical dendrites

As I explored the Boolean functions of  n=2  inputs, the apical dendrite can be conceptually
thought  of  as  having  one  branch  where  the  inputs  converge,  and  a  main  apical  trunk where  the
integration takes place (Figure 1B,D). The integration can be either of the form of the dCaAP, or a
sigmoidal activation function. This particular choice of dendritic modeling primarily aims to tackle the
uncertainty that exists  about the exact location in the apical dendritic domain where the dCaAP is
generated, and whether it interacts with other types of dendritic spikes. Accordingly, it serves as the
simplest case scenario.

The sigmoidal was used in order to capture the non-linear behavior of a dendrite elicited by an
NMDA spike (Cazé et al., 2013). It is centered on the point c=0.6  on the x-axis and has a steep slope,
so as to reflect experimental findings that have estimated the NMDA spikes’ characteristics (Eyal et al.,
2018). The formulation of the dendritic sigmoidal activation function, defined as s (x) , is:

s (x)= 1

1+e25(−x+c)

with the symbols c  and x  following the conventions as defined for the dCaAP activation function.
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Figure 2. The dCaAP input-output function and its derivative. The dCaAP is characterized by a fast-rise part, is

maximal  when the sum of  weighted inputs  defined as  Z1=w11 X1+w12X 2+b1  is  Z1=0.5  and then decays

exponentially with further increase of the input (A). The formulation of the dCaAP makes it differentiable at all

points; its derivative is maximal for input  Z1=0.47 , and negative in the subset that correspond to inputs just
past that value (B). Note the different scales on the ordinate.

3.1.3. Model of pyramidal neuron

With the addition of the second layer to the model representing the soma and basal dendrites, a
new integration takes  place.  The bias  term now also accounts for the inputs arriving to  this  layer
B=(b1 , b2) ,  modeling  in  this  case  also  inputs  either  from the  basal  dendrites  or  directly  through

axosomatic synapses. The first and the second layer are connected with a constant weight w21=0.21

that is of the order of the coupling (length constant) between the apical subtree and the soma (Figure
1C,E) (Gidon et al., 2020).

The somatic activation function is a sigmoidal that is centered on the point cs=0.1  on the x-
axis. The choice of this specific point was adjusted in order to allow the weighted output of the first
layer to generate an output in the second layer in the absence of any bias and given the fixed weight
w21 . The somatic sigmoidal activation function, defined as g(x) , is formulated as:

g(x)= 1

1+e25(−x+0.1 )

The activation functions of each node and their possible combinations are summarized in Table 3.1.
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One-layer
model

Two-layer
model

Activation
functions

h(x ) h(x )  + g(x)

s (x) -

Table 3.1.  Combinations of dendritic and somatic activation functions used in the single-node and two-nodes
model. The functions’ symbolism follows the conventions of the text.

3.2. Model training

3.2.1. Supervised learning

The model is trained to implement each Boolean function separately. Either in the case of a
single dendritic node, or a two-layer network, a 4-tuple with arity 2  input X  and the corresponding
bias B  is presented to the model through the dendritic node as input. The weighted sum of the inputs

and the bias Z i  is integrated and results in a (4 x1)  output A i , where the superscript i  signifies the

layer of the model.

In more detail, the input corresponds to all possible cardinality 2  input points X*=(X1 , X2) ,

and is of the (4 x2)  matrix form:

X=[(0,0)
(0,1)
(1,0)
(1,1) ]

When modeling the dendritic node with the dCaAP activation function the algorithm yields:

Z1=w11 X1+w12X 2+b1

A1=e
Z1+c
0.3 −e−210(Z1−0.47)

while in the case of the two-layer network it further yields:

Z2=w21 A
1+b2

A2=
1

1+e25(−Z2+0.1)

where Z1 , A1  and Z2 , A2  are the sum of the weighted inputs and the integration result of the first 
and second nodes respectively.

The algorithm described above comprises the feed-forward phase of the training procedure. It is

clear that given two binary inputs X*=(X1 , X2)  and the bias term, fixed weights values will result in a

fixed  integration  output  A i  that  corresponds  to  a  specific  Boolean  function.  However,  different
combinations of the inputs’ weights will in principle result in implementations of different Boolean
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functions. Therefore, there exist two ways to explore how the change of the weights’ values affects the
integration. One could either try to systematically alter the weights and bias values, and discover which
combinations implement  each function.  The method I  choose was to assign to a  machine learning
pipeline the task of determining the combinations that implement each Boolean function.

In order to achieve this, the corresponding 4-tuple target output Y  is presented to the model,
along with the inputs, as defined by the truth table of each function in Table 1 (see section 1.3.1).

Depending on the configuration, A1  or A2  is piece-wise compared to Y  and an error is estimated by
averaging over the piece-wise computed errors for the four inputs. The error signifies how “far” the
output of the model lies compared to the target output. This is achieved using the cross entropy (log
loss) function:

l(Y , A i)=−Y logA i−(1−Y ) log(1−A i)

The cross  entropy’s  range is  the subset  [0 ,+∞] .  When the target  output  Y ,  for example,

equals 0  and the actual output A i  is also 0  then l(Y , A i)=0 , whereas when Y=0  and A i=1 , then

the loss l(Y , A i) → +∞ . On the contrary, when Y=1  and A i=0  the loss l(Y , A i) → +∞ , and when

Y=1  and A i=1  then l(Y , A i)=0 . More generally, if |Y−A i|→ 0  the same is true for the computed

loss: l(Y , A i) → 0 ; if |Y−A i|→ 1  then it holds for the computed loss that l(Y , A i) → +∞ . Since Y

is binary and the values of A i  are bounded in the range of the activation functions, which is [0,1]  for

both the dCaAP and the sigmoidals, the value  A i=0.5  is critical,  in the sense that it  signifies the

convergence or divergence between Y  and A i .
The  aforementioned  argument  implies  that  the  subset  of  the  domain  of  the  corresponding

activation function that results in  A i≥0.5  should be mapped to Y=1 , and the subset that results in

A i<0.5  should be mapped to Y=0 . In the case of the sigmoidal activation function, it is clear that if

it holds that the sun of weighted inputs Z i≥c , then it is mapped to Y=1 , or else to Y=0 , a direct
consequence of the monotonicity of the function (Supplementary Figure 3A). However, the dCaAP

activation  function  is  non-monotone.  The  weighted  inputs’  sum  Z i  that  is  mapped  to  Y=1
corresponds  to  a  subset  of  the  domain  approximate  to  the  variable  c ,  specifically  the  subset
U=[0.473 , 0.7]  (Supplementary Figure 3B).

3.2.2. The backpropagation algorithm

Following the feed-forward phase, the backpropagation algorithm (Bryson and Denham, 1960;
Kelley, 1960) is used in order to train the model. The gradient of the error with respect to each weight
w ij  and bias bi  value -where the subscripts i  and j  signify the layer of the model and the connection

to the corresponding input X1  or X2 - is calculated using the chain rule (Dreyfus, 1989). The values of
the weights and bias are updated by means of multiplication of their respective partial derivatives with
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a learning rate. The learning rate  η  is a user-specified hyper-parameter that controls the size of the
steps that the algorithm performs towards the optimization of the parameters according to the rule:

w ij=wij−η
∂ l

∂wij

bi=bi−η
∂ l
∂b i

By iterating over this process for many epochs, eventually the values of the weights and the bias
adjust so that the error decreases significantly and, consequently, the output closely resembles the target
output. Specifically, again considering the single, dendritic node implementing the dCaAP activation
function (Figure 1B,D) the backpropagation of  the error  results  in  the following gradients  for  the
integrated inputs, using the chain rule:

∂ l
∂A1

=− Y

A1
+ 1−Y

1−A1

∂ l
∂Z1 =

∂ l
∂ A1

∂ A1

∂Z1 =(− Y
A1 +

1−Y
1−A1 )h ' (Z

1)

and, accordingly, for the weights and bias:

∂ l
∂w11

= ∂ l
∂Z1

∂Z1

∂w11

=(− Y
A1 +

1−Y
1−A1 )h ' (Z

1)X1

∂ l
∂w12

= ∂ l
∂Z1

∂Z1

∂w12

=(− Y
A1 + 1−Y

1−A1 )h' (Z
1)X2

∂ l
∂b1

= ∂ l
∂Z1

∂Z1

∂ b1

=(− Y
A1 +

1−Y
1−A1 )h' (Z

1)

whereas  in  the case of the two-layer  network (Figure 1C,E) the gradients of  the second layer  are
computed as:

∂ l
∂A2

=− Y

A2
+ 1−Y

1−A2

∂ l
∂Z2 =

∂ l
∂ A2

∂ A2

∂Z2 =(− Y
A2 +

1−Y
1−A2 )g '(Z

2)

∂ l
∂b2

= ∂ l
∂Z2

∂Z2

∂ b1

=(− Y
A2 + 1−Y

1−A2 )g ' (Z
2)

leading to the following gradients for the input layer in terms of the integrated inputs:
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and the weights’ and bias’ gradients:
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The formulas that correspond to the case of training the single-node model with the sigmoidal dendritic
activation function s (x)  are omitted in both the feed-forward and backpropagation phases, as they are
well-known and can easily be found in the relevant literature (Rojas, 1996).

3.2.3. Training results evaluation

The training process utilizes the backpropagation algorithm in a repeating procedure. Initially
the input is presented to the input layer, along a 3- or 4-tuple of parameters depending on the number of
layers. It is important to clarify the distinction between the input of the model, namely  X , and the
input  parameters  W  and  B .  The  input  is  integrated  as  already  described  and  the  error  is
backpropagated. The procedure is repeated for a total of 10,000  epochs.

In the case of a single dendritic node, the data produced by this analysis comprise the values of
the  aforementioned  three  input  parameters  as  they  evolve  through  the  epochs,  namely  the  values
corresponding to the synaptic weights  W=(w11 ,w12)  and the bias  B=(b1) . In the case of the two-

layer model the data are described by 4-tuples containing, additionally, the value of the bias at the soma
B=(b1 , b2) .

Along  with  the  values  of  the  parameters  an  estimation  of  whether  the  training  process
accomplishes  the  implementation  of  the  specific  Boolean  function  that  has  been  selected  is  also
returned. The accuracy of the training algorithm is evaluated at each epoch using a simple heuristic. For

each Boolean function the actual output A i  is piece-wise compared to the target output Y . Using a

threshold of 0.55  for the A i  tuple’s values whose corresponding Y  values is 1 , and a threshold of
0.45  for those corresponding to Y  value of 0 , the accuracy is determined on a 5-values scale from
0%  to 100 % , reflecting the number of outputs that converge towards matching their corresponding
target values. I have considered as actual implementations of any given function only those that yielded
100 %  accuracy. Data that did not meet this criterion have been excluded from the current analysis and
are not presented.
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Because this training algorithm is not guaranteed to converge to a global minimum, the training
process  has  to  be  repeated  numerous  times  starting  with  different  initializations,  namely  different
combinations of the input parameters. I opted to systematically explore initializations of parameters’
values lying within the subspace [c−1 ,c+1]  for the dendritic layer, and within [cs−1, cs+1]  for the
value of the parameter b2 . This choice was made so that the range was relatively large, while at the

same time bearing in mind that values outside a reasonable range would inevitably suffer from either a
saturating or a vanishing gradient problem (Hochreiter and Schmidhuber, 1997).

Finally,  in  order  for  this  algorithmic  process  to  be  able  to  operate  some hyper-parameters
needed to be tuned, while others had to be selected in order to reflect experimental data. Table 3.2
summarizes the values of the hyper-parameters that were used during the training of the model.

Hyper-parameters of the model Value

dCaAP activation function center c  * 0.5

dendritic sigmoidal activation function center c  * 0.6

somatic sigmoidal activation function center cs  * 0.1

slope of sigmoidals * 25.0

initialization range of weights’ values [c−1 , c+1]

step for altering weights’ values initialization 0.1

initialization range of bias b1  values [c−1 , c+1]

initialization range of bias b2  values [cs−1, cs+1]

step for altering bias’ values initialization 0.2

epochs of training 10,000

learning rate η 0.001

Table 3.2. Hyper-parameters of the model training algorithm. The hyper-parameters noted by an asterisk (*) are
evaluated according to experimental findings.
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4. Results

4.1. The dCaAP enables a single dendrite to implement all the representative Boolean 

functions

The main goal of this project was the identification of the computational advantages the dCaAP
mechanism endows upon pyramidal  neurons.  When considering  alternate  dendritic  spiking mecha-
nisms, it has been established that a single non-linear dendritic sub-unit on its own cannot increase a
biophysical model’s capacity (Poirazi and Mel, 2001; also see Cazé et al., 2013). If a single dendritic
branch with the dCaAP mechanism could be proven to have a greater computational capacity than a
single branch with any other known spiking mechanism, then this would be an innovative finding. To
address  this,  I  simplified  my approach  and  sought  to  identify  the  type  of  representative  Boolean
functions (see section 1.4.2) a single dendritic branch with this mechanism can perform, based on
previous work of Cazé (Cazé et al., 2013) and Tran-Van-Minh (Tran-Van-Minh et al., 2015).

For  each  of  the  representative  Boolean  functions,  I  investigated  the  parameter  space
[c−1 , c+1] ,  c  being the  point  of  centering a  particular  activation function,  and focused on the
combinations of the parameters W=(w1 ,w2)  and B  (i.e., excitatory vs. inhibitory, defined as “Input

Type Combinations, ITC”) that allowed for the implementation of the respective function. The dCaAP
activation function was able to implement all twelve functions (Supplementary Figure 4), whereas, as
expected, the sigmoidal transfer function only realized the ten linearly separable ones (Supplementary
Figure  5).  Importantly,  considering  only  the  subset  of  Boolean  functions  implemented  by  both
activation functions, the dCaAP yields different solutions to the same problems (see section 4.3).

I shall first focus my attention on the two linearly non-separable functions, namely the XOR
(F6) and the XNOR (F9).

4.1.1. Implementation of the linearly non-separable Boolean functions

When the single-node model is trained for implementing the XOR function, its target output Y
corresponds to 1  only when one of two input pathways (X1 , X2)  to the dendrite is active (Table 1.1).

It has previously been shown that the XOR operation can be solved with two excitatory inputs in a
biophysical model of the cortical L2/3 human pyramidal neurons (Gidon et al., 2020) a fact confirmed
by my analysis (Figure 3A). This is the case when the bias in the dendritic layer B=(b1)  has a value

less than the range U=[0.473 , 0.7]  within which the dCaAP outputs  1 , allowing either of the two
inputs, when they are scaled with positive weights of similar values -or equivalently the same strength-,

to perform the XOR operation by generating an output A1≥0.5 . Still, their sum does not exceed the
threshold value (Figure 3B).

Yet,  my analysis  predicts  that  two active  inhibitory  input  pathways could  in  principle  also
perform this operation. Conceptually, this corresponds to the case where, given a bias B=(b1)  with a
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value  greater  than  U ,  each  negative  weight  re-centers  its  corresponding  integration  result
approximately to the peak of the dCaAP activation function (Figure 3B). This amounts to one more
counterintuitive set of parameters not previously been considered: two inputs with negative weights,
that is inhibitory inputs, can also implement the XOR (Figure 3B).

The two ITC that implement the XOR function exhibit a symmetry; the signs of the weights are
opposite, and the relation of the bias to the activation function’s center changes from b1

*<U  to b1>U .

I  shall,  hereafter,  use  the  term  “symmetric”  ITC,  in  order  to  refer  to  a  set  of  parameters

S0
*=(w11

* ,w12
* , b1

*)  with  weights’ signs  opposite  to  another  set  S0=(w11 ,w12 , b1)  and  the  biases

following  the  above  relation,  but  yielding  the  same  result  in  terms  of  accomplishable  Boolean
functions.

Figure 3. Implementation of  the  XOR Boolean function by  the  dCaAP.  Parameter  space  of  the  scaled (as
described in Sup. Figure 4) weights and bias values that correspond to two conceptually distinct implementations
of the function (A). When b1<U  two positive input pathways weighted by approximately the sane amount can

realize  the  function (lower  subset  in A;  note  that  the two weights are positive,  corresponding to  excitatory
inputs); either active weighted input pathway X1  (blue arrow) or  X2  (magenta arrow) when the other input

pathway is inactive has an amplitude that allows Z1  to be mapped to A1=1  (B; pink-shaded area). When the
membrane potential lies in the vicinity of the resting potential and no input pathway is active (beginning point of

arrows), or both of them are active (purple arrow) the input is mapped to  A1=0  (B; lower set of arrows).

Conversely, when b1>U , only one active inhibitory input can result in A1=1 , but two active or inactive input

pathways are mapped to  A1=0  (A,B; upper sets);  this corresponds to a “symmetric” set.  Excitatory inputs
correspond to arrows pointing rightward, and inhibitory to arrows pointing leftward.

Interestingly, the dCaAP can also implement the second linearly non-separable function, the
XNOR (Figure 4A), for which the target output is 1  when neither, or both input pathways are active
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(Table 1.1). I identified a unique conceptual parameters’ ITC for realizing the XNOR operation. This
amounted to, given a bias B=(b1)  with a value within the range U , the integration of each weighted

inputs’ sum  Z1  is  evaluated outside this  range,  whereas the sum of both canceled each other out

(Figure 4B), thereby allowing the integration’s result to retain values A1≥0.5 , much like as if no input
pathway was active.

Figure 4. Implementation of the XNOR Boolean function by the dCaAP. The function can be implemented when
the membrane is relatively depolarized, or equivalently b1∈U  (A). When only one input pathway is active then,

if its weight is sufficiently strong, the output is mapped to A1=0 . When a second input pathway of the opposite
type but equivalent amplitude is added, the concurrence of the two input pathways results in outputs mapped to

A1=1  (B). Conventions as described in Figure 3.

4.1.2. Implementation of the linearly separable Boolean functions

Apart  from the  XOR and  XNOR,  the  dCaAP implemented  all  the  representative,  linearly
separable functions (Supplementary Figure 4). I selectively focus, here, on the solutions of the AND
(F1), OR (F7), NAND (F14) and NOR (F8) functions that have been extensively studied.

The AND function can be accomplished by a total of four conceptually different ITC, two of
which are characterized by a bias values  b1<U , and their symmetric sets for  b1>U  (Figure 5A).

When b1<U  the AND function can be implemented with a combination of two equally contributing

positive  weights,  in  which  case  only  the  integration  of  both  inputs  can  output  A1≥0.5 ,  or  a
combination of a strong positive and a weak negative weight, neither of which can alone result in

A1≥0.5  (Figure 5B). Accordingly, when b1>U  the combinations correspond to two negative weights,

or a weak positive and a strong negative weight (not shown in Figure 5B).
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On  the  contrary,  the  parameters’  sets  that  realize  the  NAND  function  (Figure  5C)  are
characterized by a bias value b1∈U  along with two weak, either positive or negative weights (Figure

5D). In this case, when no input arrives in the dendritic layer the bias alone is capable of generating an

output  A1≥0.5 .  With the addition of  one weakly active input  pathway the integration  result  still
surpasses  this  threshold;  however,  when  the  second  pathway  is  also  active,  provided  that  it  is

characterized by the same weight type, the integration result changes to A1<0.5 .

Figure 5. Implementation of the AND and NAND Boolean functions by the dCaAP. The AND function
can  be  implemented  when  either  b1<U  or  b1>U  (A).  In  the  first  case  of  a  relatively  hyperpolarized

membrane, either both inputs can be positive (center-lower subset) and their weights relatively small, or one
input  pathway  positive  and the  other  negative  (right-  or  left-lower  subset)  with  the  positive  one  having  a
considerably greater-amplitude weight than the inhibitory (B); note that the label of the input pathway does not
matter and as such the two cases “collapse” in one. The “symmetric” sets that correspond to b1>U  are omitted.

The  NAND function is  realizable  only if  b1∈U  (C).  Two smaller-amplitude inputs  of  the  same type can

implement the function if the sum of their weighted inputs Z1∉ U  (D). Conventions as described in Figure 3.
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The OR function is implemented with a bias  b1<U  only accompanied by two positive, but

weak weights, or with a bias b1>U  and two weak, negative weights (Figure 6A). This is because the 

Figure 6. Implementation of the OR and NOR Boolean functions by the dCaAP. The OR function
requires a b1<U  or b1>U , and a small subset of weights (A). In the former, the membrane potential has to be

relatively depolarized, that is the bias value has to approximate the lower bound of the subset U , and then the

inputs must be multiplied by smaller-amplitude positive weights yielding Z1∈ U  (B); the reverse holds for the
symmetric set (not shown). The NOR function requires b1∈U , but the combinations of weights cover almost

the entire plane (C).  Any combination of weighted inputs and bias that  results  in  Z1∉ U  can realized the
function; only three possible ITC are depicted for clarity (D). Conventions as described in Figure 3.
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output A1  of the dendritic node should equal 1  both in the case that there exists one, or two non-zero

inputs (Figure 6B); the bias value alone is not sufficient to result in Z1∈ U , but the presence of the

weakly active input is able to yield a sum of weighted inputs Z1∈ U .
Contrarily, the NOR function is implemented when b1∈U  and either weighted input, or their

arithmetic sum has a value large enough to drive the sum Z1  outside this range (Figure 6C); as such,

the  output  corresponds  to  values  A1≥0.5  solely  in  the  presence  of  the  bias,  thereby  practically
rendering the function accomplishable (Figure 6D).

4.2. The computational processing of the human pyramidal dendrites is state-dependent

Following, I reversed my perspective and associated the number, as well as the type of Boolean
functions that are implemented given a) a type of bias (less than, within, or greater than the subset U )
and b)  a  type  of  weights’ combinations  (that  is,  negative-negative,  negative-positive  and positive-
positive). This is biologically relevant, since for a given input type each weight can be adjusted either
on-line, e.g. when a presynaptic neuron connected to the synapse (‘weight’) fires at higher or lower
frequencies,  or  through  plasticity  mechanisms  (LTP/LTD),  but  the  neurotransmitter  type  does  not
change, meaning that a certain input pathway is bound to remain either excitatory or inhibitory. The
underlying membrane potential depends on the state of the animal, as it has been shown extensively in
mice  (Destexhe et  al.,  2003) and human  (Taghia  et  al.,  2018) studies.  Thus,  this  approach would
indicate the dynamic, the state-dependent computational processing of the human dendrites.

In order to perform the aforementioned analysis, I grouped the results according to the three
bias ranges as already described. Then, I grouped the parameters’ sets combinations with respect to the
type of the weights, and subsequently I identified the number of Boolean functions realized for all the
different combinations of input pathways (Figure 7).

Looking  at  the  analysis’ results  from this  perspective,  it  is  clear  that  the  type  of  Boolean
function  that  can  be  performed  by a  pyramidal  neuron  dendrite  implementing  the  dCaAP heavily
depends upon the bias value. Half of the representative functions can be implemented when the bias is
evaluated within the subset U . Additionally, for those Boolean functions that can be implemented with
a bias value outside of U , symmetric parameters’ sets can always be identified; this is, also, the only
systematic relationship that underlies the type of weights combinations. More interestingly, there exists
no function that can be implemented both with a bias value within and outside  U ; for any of the
functions  that  are  implementable  when  b1∉ U ,  my  analysis  reveals  that  its  negation  is  rendered

accomplishable only when b1∈ U .

4.3. Integration differences between the dCaAP and the sigmoidal activation functions

The  most  noticeable  property  that  the  dCaAP activation  function  bears  compared  to  the
sigmoidal is the ability to implement the linearly non-separable Boolean functions. Nevertheless, the
implementation of the ten remaining representative functions demonstrates also significant differences
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among the two activation functions. What foster these contrasting integration results are the disparate
properties of the two activation functions: a) the dCaAP, unlike the sigmoidal, is non-monotone, and 

Figure  7. Genetic  representation  of  the  state-dependent  nature  of  the  representative  Boolean  functions’
implementation by the dCaAP activation function. Given a bias value that falls below, within, or above U (that is
membrane  potential  in  the  vicinity  of  the  resting  potential,  relatively  depolarized,  or  highly-depolarized
respectively), the parameter space can be further subdivided according to the type of the weights. There exist
four possible ITC of positive-positive, positive-negative, negative-positive and negative-negative combinations
of the inputs’ weights w11  (semicircle above or below abscissa) and w12  (outer or inner circle) respectively (A).

Each Boolean function is color-coded as in the diagrams A of Figures 3-6 and Sup. Figures 4-5; a certain type of
parameters combination may be able to implement some functions, but some of them are not accomplishable
(gray) by certain combinations (B). When it holds that b1<U  the dCaAP function realizes half of the functions,

especially when both inputs’ weights are positive (C; left diagram, upper semicircle). The same functions can,
also, be realized when b1>U , albeit with the opposite type of weights (C; right diagram). The negation of these

functions is realizable when  b1∈U  (C; center diagram). No function can be implemented both if  b1∈U  or

b1∉U . For example, when b1∈U  and w11≤0 ,  w12>0  the dCaAP can realize the functions XNOR, NOR,

TRUE,  F12  and  F13  (D),  with  each  function  requiring  distinct  relationships  between the  values  of  these

parameters as already shown.
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b) the subset  U  of  the domain,  that results in dCaAP outputs  A1≥0.5 ,  is  proportionally smaller
compared  to  the  corresponding  subset  of  the  sigmoidal’s  domain  (Sup.  Figure  3).  Thus,  when
considering the sets of parameters  S0=(w11 ,w12 , b1)  that implement the linearly separable Boolean

functions, the integrative properties of the two activation functions differ both in terms of the number
of distinct combinations -pertaining to the varying types of weights and bias (ITC)-, and in terms of the
range of the values that each parameter can take (defined as “Input Range Combinations, IRC”).

Figure  8. Genetic  representation  of  the  state-dependent  nature  of  the  representative  Boolean  functions’
implementation by the sigmoidal activation function. Conventions of the depicted diagrams (A,B) as in Figure 7.
The sigmoidal activation function, also, reveals that computations at the dendrites are state-dependent. From the
set of linearly separable, representative functions half are realizable when the bias value is  b1<c , while the

remaining, and in particular their negations, when b1≥c  Note that, again, no function can be implemented in

both regimes as is the case for the dCaAP. However, the sigmoidal has no “symmetric” sets.

More specifically, the dCaAP enables the dendrite to implement any representative, linearly
separable function with a greater number of ITC than the sigmoidal. For example, in the case of the
AND  function  my  analysis  predicts  that  six  different  combinations  of  the  parameters
S0=(w11 ,w12 , b1)  can realize the operation; note, however,  that under the assumption that the two

pathways are interchangeable these combinations are conceptually reduced to four (Figure 5B; Figure
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7). On the other hand, the same function is realizable with just one combination in the case of the
sigmoidal activation function (Figure 8). In general, the dCaAP proves to expand the range of ITC that
accomplish Boolean functions (Figures 7 and 8).

Nevertheless,  the fact  that  the  sigmoidal  cannot  implement  these  Boolean functions  with a
variety of different types of weights and bias values, does not necessarily imply that it is inferior to the
dCaAP in terms of IRC. For instance, the NAND and OR functions are both rendered accomplishable
with two distinct sets in the case of the dCaAP, and one in the case of the sigmoidal. However, it is
evident  that  when the  dCaAP implements  these operations  the  values  of  the  weights  and the  bias
require to be especially fine-tuned (Figure 5C; Figure 6C), while the sigmoidal exhibits a significantly
wider range of values that allows the realization of the operation (Figure 9). The key point here is that
all  the  representative,  linearly  separable  Boolean  functions  that  are  implementable  by  the  dCaAP
activation function when  b1∈ U  require  that  all  three parameters  S0=(w11 ,w12 , b1)  are  evaluated

within a small subset; the converse does not necessarily hold.

Figure 9. Implementation of the AND, NAND, OR and NOR Boolean functions by the sigmoidal. The AND
function  is  realizable  only  with  positive  inputs  and  is,  as  such,  more  confined  in  the  parameter  space  as
compared to the corresponding implementation by dCaAP (A). The same is true for the NOR function (D). On
the contrary, the NAND (B) and OR (C) functions may indeed require only one type of weights (negative-
negative and positive-positive respectively),  but the IRC of the parameters is much greater  than that of  the
dCaAP’s implementations.
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4.4. The addition of the somatic layer expands the ability to implement the representative 

Boolean functions

It has been previously proven that adding a dendritic non-linearity to a somatic non-linearity
can increase the computational capacity of a neuron under specific assumptions concerning the loci of
the synapses formed between two neurons  (Cazé et al., 2013) (see also section 5.1.1). Still, this was
feasible only in the presence of  n=4  input variables.  As my analysis  established that the dCaAP
mechanism can  increase  the  computational  capacity  of  a  neuron  even  in  the  case  of  n=2  input
variables, I sought to examine how the addition of a somatic non-linearity posterior to the dendritic
layer can affect the integrative properties of a pyramidal neuron.

Since all the representative Boolean Functions of n=2  input variables can be implemented by
the first layer of the model, the addition of the second layer was expected to either expand the IRC
capable of performing a given function, or increase the ITC that realize a specific function; possibly,
both changes could also occur. I focus, here, on the two linearly non-separable functions XOR and
XNOR, and the four linearly separable -with the most interest in terms of logical gating- functions
AND, NAND, OR, and NOR.

My results confirm that, although the combinations of parameters that implement the functions
XOR, AND, and OR (Figures 10,11,12A) remain conceptually the same for the two-layer model, the
range of the parameters’ values  S0=(w11 ,w12 , b1)  is significantly expanded with the addition of the

somatic layer. This is attributable to the second integration that is now realized. The dendritic output

A1  is propagated to the somatic layer via weight w21=0.21  and is integrated along with the second

element of the bias term B=(b1 , b2) . The implementation of any given Boolean function is judged by

the comparison of A2  and the target output Y . Therefore, the inputs that arrive at the soma and basal
dendrites  can  enhance  the  efficacy  of  the  dendritic  integration.  More  interestingly,  a  conserved
relationship between the inputs arriving at the dendritic node and those arriving at the somatic node is
revealed;  the  combinations  of  the  single-node  model  with  b1<U  correspond  to  combinations

S1=(w11 ,w12 , b1 , b2) , for which it generally holds that either b1<b2 , or b1≃b2 . On the contrary, the

combinations, for which it holds that  b1>U , correspond to combinations where  b1>b2 . In fact, the

absolute  difference  between  the  bias’ elements  values  is  greater  in  the  second  case  for  all  these
functions (Figures 10,11,12A).

The  range  of  the  parameters’  combinations  is  expanded,  also,  for  the  negation  of  the
aforementioned  Boolean  functions,  namely  the  functions  XNOR,  NAND,  and  NOR  (Figures
10,11,12B).  However,  new  solutions  appear  too;  for  all  three  functions  there  now  exist  new
combinations  S1=(w11 ,w12 , b1 , b2) ,  that  correspond to  S0=(w11 ,w12 , b1)  with  b1>U ,  unlike what

was the case for the single-node model in which case it was necessary for  b1∈U . A characteristic

relationship  between  the  bias  values  is  observed  in  this  case  too.  For  those  combinations
S1=(w11 ,w12 , b1 , b2) ,  that correspond to some  S0=(w11 ,w12 , b1)  already found by the single-layer

model, there is a relatively small difference b1−b2 , whereas for the novel combinations the difference

is large in all cases. Moreover, in this case the bias values’ difference  b1−b2  is always positive, or
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equivalently it holds that b1>b2  in all cases. The integration is, again, revealed to be state-dependent;

the differing bias value at each layer determines the ability of the neuron to perform specific logical
operations.

Figure 10. Implementation of the XOR and XNOR Boolean functions by the dCaAP in the case of the two-layer
model. The XOR function is realizable, in principle, by the same set of parameters as those described only when
the dendritic node was considered, but in this case more weights’ values are allowed. As b1  takes more positive

values, meaning that the dendrite membrane depolarizes, the difference of the bias’ values at the two nodes
b1−b2  becomes greater; the dendrite needs to be more depolarized than the soma. However, when b1<U  either

the soma needs to be depolarized compared to the dendrite, or the two must have approximately equal membrane
potentials in order for the function to be implemented (A). When the somatic node is added the XNOR function
can be realized with dendritic bias values b1∉U . The dendritic membrane has to be depolarized compared to

the somatic membrane in order for this function to be implemented in all cases (B).
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Figure 11. Implementation of the AND and NAND Boolean functions by the dCaAP in the case of the two-layer
model. The AND function follows the paradigm described for the XOR function, rather the weights’ values are
not expanded as much (A), as a great IRC was already present in the single-node case (see Figure 5A). The
NAND function still requires fine-tuned combinations of the parameters, but much like the XNOR a new set of
ITC that implements the function arises (B).

Figure 12. Implementation of the OR and NOR Boolean functions by the dCaAP in the case of the two-layer
model. The OR function is more easy to implement when a somatic layer is also considered compared to the
single-layer model (A; see also Figure 6A). Its negation, the NOR, can now be realized also when b1>U ; the

dendrite needs to be depolarized compared to the soma, as is the case for the XNOR and NAND functions (B).
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5. Discussion

5.1. Implications in intrinsic computational capabilities of neurons

Our understanding of dendritic function is bounded by the technological barriers to study how
dendrites operate under normal, every-day behavior. However, the use of modeling approaches has
enabled us to transfer available knowledge in a framework in which manipulations become specific and
reversible  (Poirazi and Papoutsi, 2020), thus allowing us to identify the key parameters that govern
dendritic  computations.  Although detailed biophysical  models  are  indispensable in  determining the
physiological  mechanisms  that  facilitate  dendritic  integration  of  information,  and  have  provided
valuable insights into non-linear dendritic operations, they are less relevant when the goal of a study is
to delineate the set of feasible computations per se, because of their detailed nature that creates an
overwhelmingly large parameter space. On the other hand, abstract, analytical models prove their value
precisely in that context; using only a few critical parameters and describing the dendritic operations
via mathematical approximations we can estimate the number and type of computations a dendrite can
implement. Within this framework I have modeled a cortical L2/3 pyramidal neuron dendrite, as well
as an entire neuron, as having binary inputs. The inputs are weighted and integrated resulting in binary
outputs, describing the input-output function of the dendrite or the neuron in terms of Boolean Algebra
and truth tables.  Critically,  I  have also incorporated an extra parameter -the bias- in an attempt to
characterize the input-output relationship not only in terms of the branch inputs, but also in terms of the
current state of the dendrite or the neuron as a whole.

5.1.1. A non-monotone non-linearity expands the computational capacity of a neuron

It has long been known that dendrites are characterized by both linear and non-linear input-
output  functions.  Non-linear  functions  are  either  supra-  or  sub-linear,  with  supra-linear  functions
describing active dendritic integration and sub-linear functions describing mainly the passive dendritic
properties. Up until recently, the consensus was that supra-linear functions were followed by a plateau
that  reflected  the  saturation  of  the  active  dendritic  mechanisms  due  to  high-intensity  inputs.
Nevertheless, a recently published work (Gidon et al., 2020) described a novel supra-linear function,
the dCaAP, that is characterized not by a plateau but rather by a gradual decay of the output as the
efferent stimulus intensity keeps incrementing.

The results of these simulations highlight that such a non-monotone function  greatly enhances
the computational capabilities of an apical dendrite, and hence those of a pyramidal neuron. Previous
work,  using  biologically  plausible  assumptions,  has  established  that  monotone  functions  increase
neuronal computations so as to include solutions of linearly non-separable functions. This is achieved
under the assumption of large number of inputs that converge to distinct neuronal regions, namely to a
supra-linear dendritic compartment and to a linear somatic compartment (Cazé et al., 2013; Tran-Van-
Minh et al.,  2015). Contrariwise,  a single dendrite has been shown to implement the linearly non-
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separable XOR function, in a proof-of-concept modeling experiment that placed a “cold spot” of co-
localized Ca++ and inhibitory Ca++-dependent K+ channels at the junction of two apical dendrites (Zador
et al., 1992). Here, for the first time a formal analysis of the feasible computations by a biologically-
inspired, non-monotone, input-output function is presented. The unique characteristics of the dCaAP
activation function reveal that human cortical L2/3 pyramidal neurons are capable of such sophisticated
classifications; functions-like the XOR- that were previously in principle attributed to network-level
computations, or to individual neurons with numerous dendrites are now ascribed to the single dendrite.
The ability of a neuron to respond only in the presence of one of two possible inputs and not when both
of  these  inputs  are  present  has  been  conventionally  designated  to  a  relatively  simple  network
configuration, wherein the two inputs arrive at two nodes. The first node implements the OR function,
whereas the second node implements the NAND function. Both project to a third one that realizes the
AND  function,  thus  ultimately  resulting  in  a  composite  function  that  is  equivalent  to  the  XOR
(Supplementary  Figure  6).  In  biological  terms,  a  neuron  would  need  at  least  two  dendrites  that
implement different classification tasks, and an extra integration zone between these dendrites and the
soma,  so  that  the  XOR function  output  could  be  the  signal  transmitted  to  the  soma.  The dCaAP
mechanism provides the means to perform all set of functions with just one dendrite, thus making the
computations  faster  and more efficient,  as  only a  single  integration  step suffices.  This  experiment
provides further insight into the principal role of dendrites in information integration.

5.1.2. Anti-coincidence detection

The  XOR function  is  essentially  translated  as  the  ability  of  a  neuron  to  perform an  anti-
coincidence detection.  Unlike coincidence detection that  meaningfully binds  two concurrent  inputs
through mechanisms such as Hebbian learning, anti-coincidence detection allows the neuron to respond
only when one input is present; if the neuron receives information about the presence of two inputs that
should not coexist, then it ceases to respond.

For example, consider the case when we have limited access to the information regarding a
particular object in our visual scene. How can we make an assumption about what the object really is,
based solely on that information? If the available information can unequivocally indicate the nature of
the object then the problem is trivial. However, if the available information allude to clashing internal
representations then we most probably cannot make sense of what the object is, and we can at best try
to make an educated guess based on other information such as the context, or prior experience in a
Bayesian approach (DiCarlo et al., 2012). Translating this to the neuronal level, a neuron receiving a
top-down signal that specifically indicates one possible interpretation is biased towards it, as the signal
results in dendritic spiking. Nevertheless, when two equally relevant top-down signals arrive together
they impair the spiking capability of the dendrite, and the neuron remains practically unaffected by
those inputs. If the hypothesis that the two “competing”  top-down signals can be equally strong, apart
from equally weak, holds, then the dCaAP mechanism could provide the neuron with the information
that the two signals cannot resolve the ambiguity, and thus further information should be acquired.
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Moreover,  anti-coincidence detection is  crucial  in neuronal  computations  that  underlie  rule-
based behavior generation (Arbib and Bonaiuto, 2016). Models like attractor networks were the first to
be introduced for the explanation of abstract mental representations, but failed to capture the brain’s
ability  to  switch  between  dispositions.  Other  models,  like  networks  that  incorporate  randomly
connected neurons (RCNs) have been particularly successful in doing so, but can neither explain how
the appropriate connectivity patterns that allow rule-coding are learned, nor can they account for the
rapidity and effectiveness of the human brain to adapt to new rules. For instance, in the Wisconsin Card
Sorting Task (WCST) the subject is presented with two stimuli and is required to select the stimulus
that matches either a color or a shape cue; the catch is that the rule changes abruptly and the subject has
to detect this change. Suppose that a neuronal population creates a representation of the ongoing cue,
say color (Figure 13A). Also, consider that a neuron belonging to this set has feedback connections that
signal the gain e.g. whether the rule has changed and therefore the neuronal activity should switch, and
recurrent connections that inform the maintained state (Figure 13A). The state-transition from active to
silent for this particular neuron with respect to its recurrent and feedback connections then amounts to
the XOR function (Arbib and Bonaiuto, 2016). The neuron is required to switch its state exclusively if
it is silent but should be active ( 1 ),  e.g. when the maintained color representation was previously
salient but the feedback signal indicates that the ongoing rule has switched to the shape cue (Figure
13C), or the other way around, e.g. when the maintained color representation was previously not salient
but the feedback signal indicates that it now is (Figure 13D). On the contrary, the neuron should retain
its state ( 0 ) when there is no mismatch between the maintained representation and the feedback signal
(Figure 13B,E). It is possible that the dCaAP mechanism provides individual neurons the ability to
rapidly adapt to novel rules, and forms the yet missing substrate of the network-level computations that
guide our behavior in similar situations.

5.1.3. The role of the internal bias

This analysis has called attention to the critical role of the internal bias in the computations by
dendrites,  and  how  this  is  in  turn  affected  by  the  exact  input-output  function  that  the  dendrites
implement. The level of the depolarization of the dendritic membrane impacts both the feasible set of
computations, as well as the inputs’ needed relationship that can perform any given computation. The
dCaAP mechanism separates the input space into three subsets. Half of the computations are feasible
within a fine-tuned set of inputs, while the rest of the operations exhibit two “symmetric” regimes for
the inputs’ relationship. Accordingly, the sigmoidal activation function separates the input space into
two subsets, again rendering half of the computations implementable in every subset.

Looking at the results from this perspective we gain a better understanding of the modulation of
information integration that can be performed online. Since the input pathway type e.g. excitatory or
inhibitory is fixed, the adjustment of the overall area activity impacts the ability of the dendrite to
perform specific computations in predictable manner. For example, two excitatory inputs can perform a
total  of  six  computations  in  the  context  of  binary  Boolean Algebra  when the  membrane potential
approximates the resting potential in a dendrite implementing the dCaAP (Figure 7; when both inputs
are positive). The exact balance between the synaptic strengths specifies which of these functions is 
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Figure 13. In the Wisconsin Card Sorting Task (WCST) a neuronal population creates a representation of the
ongoing cue, while another encodes the salience of the maintained representation. The cue encoding population
forms recurrent connections ( X1 ) that inform the maintained state, and receives feedback connections ( X2 )

from the gain encoding population (A). In this specific example, the neuronal population encodes for the color

cue. Thus, X1  is inactive (takes values 0 ) when the used rule is “shape”, and active (value 1 ) when the used

rule is “color”. Regarding the feedback, X2=0  when the rule should be “shape”, and X2=1  when it should be

“color”. The apical dendrite implementing the dCaAP receives both inputs, and outputs a signal Y  that informs
the neuron about whether it  should retain or change its current activity state. When both recurrent  X1  and

feedback pathways X2  are inactive (B), e.g. the used rule was and should remain “shape” (star), or when both

are active (E), e.g. the used rule was and should remain “color” (green), the dendrite signals no state transition
Y=0 .  However,  when  the  feedback changes  abruptly  from “color”  (green)  to  “shape”  (star)  the  dendrite

propagates a state-transition signal Y=1 , to indicate that the neuron should update its activity (C). Similarly, if
the rule should be color ( X2=1 ) but it was implemented as shape ( X1=0 )  this will signal a state-transition

signal  Y=1 ,  to indicate that the neuron should update its activity (D). This operation amounts to the XOR
function.

realized each time; this conforms to the standard mode of on-line adjustment of the input affecting the
output. However, a background activity (i.e., the activity that the bias term  B  is modeled on) that
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depolarizes the membrane will result in a regime where four different computations are realizable by
the exact same input pathways, even with no modulation of their synaptic strengths. Finally, when the
membrane reaches a highly-depolarized state then the same inputs can result in only one outcome.

The same is true for any kind of inputs and bias combination, and I have showed how each
dendritic mechanism will affect the transition from a set of feasible computations to another when the
bias changes. We can, therefore, conclude, that knowledge of the activity of an area can inform us
unambiguously about the computational capacity of a neuron and the permissive input combinations
(both in Type and Range) that allow fully reaching this capacity, even if no explicit information about
the inputs to that neuron is available.

5.2. Implications in bio-inspired machine learning approaches and neuromorphic devices

A major challenge in the field of neuroscience is to bridge the gap between the data that are
acquired through experiments on different scales -from the microscale of molecular mechanisms to the
macroscale of clinical and cognitive neuroscience and psychology- with models that can accurately
describe these observations. At the same time, other scientific fields aim to tackle the same problems
that the brain solves, via the implementation of algorithms that do not necessarily follow the same steps
as our brains, yet critically manage to deliver the same end results. Over the past years increasing
consensus has been that algorithms and hardware configurations (Roy et al., 2014; Hussain et al., 2015)
that  take advantage of neuroscientific  findings  can yield better  results  in specific  problem solving
frameworks, while, also, they can shed light on how the brain performs specific tasks (Sacramento et
al., 2018), thus establishing a mutually beneficial dialog among scientific fields.

In this context, the results of these simulations could be proven useful not only in gaining a
better  understanding  of  how information  is  processed  in  neurons,  but  also  in  the  development  of
techniques  that  incorporate  complex,  biologically-inspired structures  like artificial  neural  networks,
deep neural  networks (DNN) and neuromorphic devices.  For  example,  the ability  of  a  network to
perform the XOR logical operation, or -more generally- non-linear classification tasks with minimal
requirements in terms of required nodes is crucial when computational resources are restricted and the
trade-off  between  computational  cost  and  classification  accuracy  favors  the  former.  A yet  to  be
published work has used a similar approach in modeling the dCaAP mechanism and has tested its
efficacy on benchmarks datasets, proving that it offers improvements for a variety of configurations
and tasks (Georgescu et al., 2020).

5.3. Model restrictions and future prospects

The abstraction level of the model that I developed for this experiment served particularly well
to make predictions regarding the result of the combination of varying inputs -in terms of strength and
type- in dendritic operations and how they in turn influence the neuronal output. However, this type of
modeling  suffers  from certain  drawbacks  that  need to  be  taken  into  consideration  when  trying  to
translate the results in either biological neurons, or biophysical, compartmental models.
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Specifically, in this type of modeling a major component that is crucial for determining the
information integration,  that  is  time,  is  not  taken into account.  Synaptic  integration has  long been
known to be dependent on the exact timing of synaptic inputs; inputs interact with different ways not
only  based  on  where  they  arrive  -whether  they  are  distributed  or  colocalized-,  but  also  their
synchronicity, and phenomena such as inputs’ shunting, LTP and LTD are a direct consequence of this
fact.  Nonetheless,  this  restriction  can  be  circumvented  by  considering  inputs  arriving  in  near-
simultaneous time windows.

Additionally,  this  model  does  not  consider  any  interactions  that  result  from  antidromic
information flow in biological neurons, namely how the bAPs can affect the integration in a dendrite
implementing the dCaAP mechanism. There is no reason to believe that the dCaAP-generated spikes
remain unaffected by such processes; in fact in some of the experimental recordings bAPs and dCaAPs
were characterized simultaneously at the same sites. Still, because the currently available information is
limited I opted to simplify my perspective and create a model that addresses the basic questions that the
observation of this kind of mechanism arises.

Moreover,  this  experiment  dictates  that  the  internal  bias  impacts  in  precise  manners  the
computational capacity and capability of the dendrites, yet it does not deal with the question of how
this bias is generated, nor whether it should meet specific criteria. To clarify things, the bias is modeled
as  a  non-specific  input  to  the  dendritic  node  and  is  considered  to  alter  the  membrane  potential,
therefore affecting the membrane conductance and the synaptic integration. However, for some bias
values the model produces an output in the absence of inputs. Could a background activity drive a
neuron to fire action potentials when no input is present, and would the presence of an input alter in one
way or another the outputs, e.g. in terms of firing rate? This is a question that the current analysis
cannot address. A biophysical model could resolve this matter.

Finally, an interesting prospect is to use this model as a basis for a more complex one, in which
multiple  types  of  synaptic  integration  functions  can  coincide  in  the  same  dendrite,  and  multiple
dendrites with different functions can integrate information flowing from common and distinct sources
in  parallel.  Such a  model  could give  us  access  to  more  intricate  and advanced computations,  and
perhaps could be able to provide answers to fascinating questions like the Feature Binding Problem.
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8. Supplementary Material

8.1. Supplementary figures

Sup.  Figure  1. Linear  separability  of  two-element,  binary Boolean functions.  The sum of  weighted inputs

defines a line in the Cartesian plane (red), that classifies the input points X*  as belonging to category 0  (black)
or 1  (blue). The OR function is linearly separable; the point (0,0 )  can be distinguished from the points (0,1) ,
(1,0)  and  (1,1)  (A). The AND function is,  also, linearly-separable (B). The XOR function is not linearly

separable; no single line in the plane can separate the points (0,1)  and (1,0)  from the points (0,0 )  and (1,1) ;

two lines are needed instead (C).

46



Sup. Figure 2. Relationship between the bias and the centering point of a function on the abscissa. An input
(blue vector) needs to be greater than the centering point of the input-output function (black) in order to produce
a non-zero output (the amplitude of the input is represented by the arrow’s length). Re-centering the function at a
lower value (orange) allows smaller-amplitude inputs to yield the same results (A). Alternatively, a bias value
can be introduced (dotted orange), so that again a smaller-amplitude input is facilitated; it produces the same
result as if no bias was present (dotted black) and the input amplitude was greater (B).
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Sup. Figure 3. Only a specific subset of the inputs can result in an output of  1 . For the sigmoidal activation

function any input Z1  for which Z1≥c  lands on the part of the function for which s(Z1)≥0.5  (pink), and is

therefore mapped to the output value A1=1  (A). For the dCaAP function only the subset U=[0.473 , 0.7]  of

inputs Z1  is mapped to output values A1=1  (B).
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Sup. Figure 4. The dCaAP activation function can implement all  12  representative Boolean functions. Each
function is uniquely represented by a subset of the inputs’ weights  w11  and  w12 ,  and a bias  b1  value, as

returned by performing numerous iterations of the training algorithm. All  parameters have been normalized
towards  the  maximum of  their  absolute  values  and are  therefore  evaluated  in  the  set  [−1.0 , 1.0] ;  this  is
particularly relevant  as it  allows the identification of the relationship among the parameters’ values of each
function,  but  also allows for an easy comparison between all  functions’ implementations. The subset  U  is
scaled accordingly.
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Sup.  Figure 5. The dendritic  sigmoidal  activation function can only implement the  10  linearly separable,
representative  Boolean  functions.  The  parameters’  combinations  that  implement  each  function  differ
significantly from those of the dCaAP function. Conventions as described in Sup. Figure 4.
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Sup. Figure 6. Two non-linear dendrites characterized by sigmoidal input-output functions can implement the
XOR. Schematic representation of two dendritic branches that integrate the two inputs differently and propagate
their respective results in a common integration zone located at a point further near the soma. Connections
between both input pathways and both dendritic branches are required (A). If one of the branches implements the
OR function and the other the NAND, and their outputs are integrated by another site that implements the AND
function, the composite result is equivalent to the XOR (B).
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8.2. Model development and illustrations software

All codes were developed using the Python 3 programming language. Care has been taken in
order to make the codes version-agnostic and the majority of them should run seamlessly using Python
2. All numerical analyses have been realized in a Rocks 6.1.1 (Sand Boa) computer cluster using the
Numpy package, version 1.18.1, but have also been tested on version 1.16.4 on a different machine.
The majority of the figures was created using the Python Matplotlib package, version 3.1.3, and the
Inkscape  software,  version  0.91.  Figures  7 and 8 were  created  with  the  Circos  software  package,
version  0.69-9,  and  the  Perl  programming  language,  version  5.22.1.  The  GIMP software,  version
2.8.16, was used in order to edit Supplementary Figures 4 and 5.

8.3. Code availability

All the codes that were used for conducting the presented analysis, and create the corresponding
figures,  are  currently  available  upon  request  under  the  GPL v.3.0  license  via  the  authors’ gitlab
repository.
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