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Abstract 

For the most part, air pollution is governed by emissions, but it can be affected 

by meteorological conditions as well. Due to the complex nature of the 

atmosphere, it is no easy task to decouple the effect of weather on measured 

concentrations of aerosols and thus uncover the true sources of pollution. In 

this study, the robust method of Deweathering (also referred to as 

Meteorological Normalization) will be used for the first time on concentrations 

measured at the Finokalia Monitoring Station, to examine the impact of 

meteorology in the area. The variables that will be considered are ground 

measurements from the station, elements of air mass back trajectories analysis, 

ERA5 reanalysis meteorological data as well as temporal variables. The 

pollutants of interest include the Total Particle Number concentration, the 

Aitken, Accumulation and Nucleation Particle Number concentrations, and 

finally Carbon Monoxide and Black Carbon concentrations. The deweathered 

values will be compared to the observations in order to draw conclusions 

about the sources of local pollution. Tracing the anthropogenic emission 

sources and investigating them separately from natural causes is crucial to 

evaluate environmental policies regarding the decrease of air pollution. An 

attempt will be made to examine the impact of the IMO2020 shipping fuel 

regulation. It is also discussed how the models appear to have difficulties in 

handling the dependencies of back trajectory clusters and signals of mixed 

sources. 
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1. Introduction and Objectives  

Air pollution greatly affects public and individual health at a global scale. 

According to the World Health Organization, poor ambient air quality is 

responsible of nearly four million deaths worldwide every year [17], while 

recent studies also show that it can harm the majority of organ systems in the 

human body.[18] Apart from health, emissions of pollutants lead to the 

increase of greenhouse gas concentrations. Thus, air pollution is closely linked 

to climate change as well.  

  To counter air pollution issues, various environmental policies have 

been imposed by governments and organizations. For example, the Beijing 

Municipal Government released a 5-year action plan (2013-2017) according to 

which the mean concentrations of PM2.5 should be reduced to less than 60 

μg/m3 by 2017. Evaluating the effectiveness of such policies can be 

challenging [8], mainly because apart from reduction in emissions, decrease in 

measured concentrations can be attributed to the effect of meteorology. 

Weather conditions can significantly affect air pollution and aerosol 

distribution. Strong wind on a windy d[y c[n cle[n [ city’s [tmosphere, while 

high humidity rates can worsen it. Also, intense sunshine and high 

temperatures can cause or contribute to chemical reactions. Finally, rainfall can 

normally result in less pollution, since it might lead to washout of particles.   

These meteorological effects, which can falsely reinforce or cloak atmospheric 

measurements, must be taken into consideration, in order to uncover the true 

efficiency of environmental policies.   

  A novel way to decouple the impact of weather is the Meteorological 

Normalization technique, also referred to as Deweathering. [4, 5, 8] It makes 

use of the Random Forest algorithm, one of the most powerful models that 

exist in the field of Machine Learning. The Random Forest model is trained on 

meteorological data of the study period, and consequently it is used to 

calculate meteorologically normalized values of aerosols and gas pollutants.  

 As of 1st January 2020, the International Maritime Organization has put 

into practice the IMO2020 global regulation, according to which the sulphur 

content of shipping fuels should not exceed the limit of 0.5%. This is a 3% 

difference compared to the 3.5% limit that existed before this policy was 

applied. Following the implementation of the new regulation, a decrease as 

high as 77% in SOx emissions is anticipated. [19]   

  As the Mediterranean Sea is one of the world’s busiest w[terw[ys, [nd 

given the fact that the sulphur content in aerosol concentrations is significant, 

changes in aerosol distribution should emerge in the area. The aim of this 

study is to use Meteorological Normalization to detect these changes by 

comparing deweathered values of aerosol size distributions of the year 2020 
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to previous years. This way, evaluation of the IMO2020 regulation can be 

performed as well, for the area of the Mediterranean.  The aerosol data that 

are analyzed were obtained from the Finokalia Monitoring Station, located in 

Northeast Crete and operated by the Environmental Chemical Processes 

Laboratory (ECPL) of the Department of Chemistry (University of Crete). The 

station has an altitude of 150m and it is located 70 km from Heraklion.   

  Aerosols in general are defined as tiny solid or liquid particles dispersed 

in a gas. Their diameters range from a few nanometers to tens of micrometers. 

There are different categories of aerosols resulting from their various 

characteristics. Depending on whether they are emitted directly or emerge as 

products of chemical processes in the atmosphere, they are characterized as 

primary and secondary aerosols accordingly. Their sources can be either 

anthropogenic (aviation, industrial activity, energy production, shipping etc.) or 

natural (sea salt, mineral dust, volcanic ash etc.). Apart from primary emissions, 

aerosols can be changed or formed from condensation of vapor, by 

coagulation with other particles or by taking part in chemical reactions. Their 

removal mechanisms include dry and wet deposition. Dry deposition occurs 

through direct transfer on the E[rth’s surf[ce, where[s wet deposition is the 

transfer through rain, snow or fog, in which cases aerosols are trapped within 

droplets and washed out with precipitation. Aerosols can also serve as cloud 

condensation nuclei at first and subsequently they can be swept away, again 

through precipitation. In general, aerosols also vary in size and they can be 

grouped based on their diameters. The two main categories are coarse 

particles (with D > 2.5 μm) and fine particles (with D < 2.5 μm). Fine particles 

are further classified into accumulation mode (D = 100 nm - 2.5 μm), 

nucleation mode (D < 25 nm) and Aitken mode (D = 25 – 100 nm).   

  Aerosols may have direct and indirect effects on global climate. The 

direct effects refer to the scattering of solar radiation that would otherwise 

re[ch the E[rth’s surf[ce. This decrease in the incoming solar radiation that 

eventually makes it on the surface results in its cooling. Aerosols can also 

absorb significant amounts of this incoming solar radiation, which in turn leads 

to temperature increase. On the other hand there is also a certain indirect 

effect that has to do with aerosols acting as cloud condensation nuclei and 

affecting cloud formation, along with their properties. All of these effects that 

aerosol have on climate is what makes them important and worth 

investigating. In this study we will focus separately on each of the three 

modes: the accumulation, the nucleation and the Aitken mode.   

  In order to examine the composition of atmospheric aerosols with 

regard to ship fossil fuel emissions we will investigate Black Carbon content 

(BC, also known as soot or elemental carbon). It is produced by the incomplete 

combustion of fossil fuels and biomass burning. It is dark in color (hence the 

term ‘bl[ck’ c[rbon) [nd it c[n strongly [bsorb sunlight entering the E[rth’s 



6 
 

atmosphere, resulting in its warming. BC also contributes to the melting of 

glaciers and snow, because it darkens their surfaces and lowers their albedo. 

So, instead of reflecting the sunlight, these cold surfaces absorb it and melt 

faster than usual. [21] However, even if BC can do great harm, it is a short-

lived pollutant with a lifetime of a few days to a few weeks. This is quite 

beneficial because any measures that might be taken to reduce BC 

concentration would lead to immediate and apparent results.  

  Another compound of interest for this study and the only in the gas 

phase that we will examine is Carbon Monoxide (CO). CO is a colorless and 

odorless gas that can be lethal when inhaled in large amounts, because it 

reduces the amount of oxygen transported to vital organs of the human body, 

like the heart and brain. It is considered a primary pollutant, its lifetime in the 

troposphere spans from 30-90 days and its effect on the environment includes 

the reaction with the hydroxyl radical OH, a process that produces CO2. Also, 

in an environment where NOx (NO+NO2) concentration is high, the rate of O3 

production increases linearly with CO concentration. That being said, the 

presence of CO may indirectly contribute to the concentrations of greenhouse 

gases, like CO2 and O3. CO is the product of CH4 oxidation, biomass burning 

and incomplete combustion of fossil fuels. It is estimated that 60% of CO 

concentrations stem from anthropogenic activities [15], and thus CO is a 

pollutant of great interest for this study, since it could be closely linked to 

shipping emissions.  
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2. Methodology 

2.1. Machine Learning 

  Machine Learning is a field of Artificial Intelligence that focuses on 

enabling computers to learn from data without being explicitly programmed. 

Over the years, the area of Machine Learning has grown significantly as many 

of its applications are taking part in our everyday lives. Image and Speech 

recognition, Spam filters for e-mails, Plagiarism Detectors for school 

assignments and Smart Personal Assistants are only a few examples. Apart 

from this usage, Machine Learning algorithms can prove to be valuable tools 

for scientific research as well since they are very efficient in data modeling and 

prediction.     

  A key procedure in Machine Learning is the training process, where the 

Machine Learning algorithm receives data to learn from. Although Machine 

Learning methods can be categorized in many ways, perhaps the most 

fundamental is the classification based on the supervision they receive during 

the training process. The main categories are Supervised Learning, 

Unsupervised Learning and Reinforcement Learning.     

  In Supervised Learning, the model receives training data which contains 

inputs and their corresponding outputs. For example, in the spam filter 

algorithm the model receives a training set of e-mails along with their class 

(spam or ham), from which it will learn to categorize new input e-mails that do 

not belong in the initial training set (Fig. 2.1). This is a classification task, the 

first variation of Supervised Learning problems. The second variation is the 

regression tasks, where the model needs to predict target values of a variable, 

for example the daily temperature of a certain period, given parameters like 

the month, the daily humidity and the year. In both of these variations there 

are two very important attributes: the features, which are measurable 

quantities that are fed to the model during training, and the labels, which are 

the desired outputs during the model’s prediction stage (but note that they are 

also included in the training set along with their corresponding features). In the 

spam filter example, the features are the e-mails that will be used for training, 

while the labels are the two possible classes (spam or ham). In the temperature 

forecasting example, the features are the month, the daily humidity and the 

year, while the label is the target value of the temperature. The most common 

Supervised Learning models are Support Vector Machines, Decision Trees and 

Random Forests. 
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Figure 2.1: Supervised Learning – Spam Filter example [3] 

  

In Unsupervised Learning, the training data is unlabeled, meaning it 

contains only inputs, and the model needs to uncover patterns of this input on 

its own. A typical Unsupervised Learning task is Clustering (Fig. 2.2) where the 

model processes the training data and tries to split it to matching groups.  

 

(a) 

 

(b) 

Figure 2.2 : a) Unsupervised Learning dataset, b)Clustering  [3] 

 

  In Reinforcement Learning, the Machine Learning model observes an 

environment, within which a goal must be achieved, for example a car 

controlled by the model must climb a hill.  In this case, the car is called agent, 

and it performs certain actions that result in rewards or penalties, depending 

on whether these actions contributed to the completion of the task assigned 

to the agent. The model needs to identify the best approach (called policy) in 

order to reach the initial goal, based on the feedback it receives. Another 

example of this concept, pictured in Fig. 2.3, is that of a robot making use of 

Reinforcement Learning in order to learn how to walk.  
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Figure 2.3: Reinforcement Learning with a robot as agent [3] 

 

   As data is the bedrock of Machine Learning, it must be thoroughly 

studied and prepared before given as input to a model. This strategy includes 

various methodologies like Feature Importance investigation (during which 

features irrelevant to the problem are dropped, since they are not helpful for 

making predictions) or outlier and missing values detection. Outliers in general 

are out-of-range numeric values. Another useful method for data 

preprocessing is Feature Scaling, according to which features that have very 

different scales are transformed to obtain values belonging to a certain range 

(e.g. 0-1). In some cases there is a huge number of instances for the same 

feature, which significantly slows down training and induces undesired 

complexity to the problem. To address this issue it is best to apply 

Dimensionality Reduction, a process that, as the name implies, lowers the 

dimension (and thus the number) of features. PCA (Principal Component 

Analysis), one of the most widely used Dimensionality Reduction techniques, 

finds the plane that is closest to a set of features, and projects the data onto it 

(Fig. 2.4). 

 

 

 

Figure 2.4 : Data projection and Dimensionality Reduction [3] 
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  After the preprocessing stage is done, the data must be split to training 

and test set, usually with a percentage ratio 80% to 20% or 70% to 30%. The 

model will learn from the data that is part of the training set, while the test set 

will be used to see whether the model is able to adapt to new data and make 

accurate predictions. Sometimes a third set is utilized as well, called validation 

set, to ev[lu[te the model’s perform[nce before it st[rts m[king predictions on 

the test set. The validation set is a subset of the training set, usually at a 

percentage of 10-20%.    

  The data split is followed by the model selection, depending on the 

problem’s category (Supervised, Unsupervised, or Reinforcement Learning). 

For the Supervised Learning case it must be further specified whether we are 

dealing with a Classification or Regression problem. Then the training data 

must be fed to the model, which processes it and makes a prediction. The 

difference between a predicted and a true value of the dataset is measured by 

a cost function. So during training, the model attempts to minimize the cost 

function, indicating that its predictions approach the true values. Examples of 

cost functions include the Mean Squared Error, the Root Mean Squared Error 

and the Mean Average Error:  

𝑀𝑆𝐸 =  
1

𝑚
 (𝑦  𝑖 − 𝑦 𝑖 )2

𝑚

𝑖=1

 
 

(Equation 2.1) 

𝑅𝑀𝑆𝐸 =   
1

𝑚
 (𝑦  𝑖 − 𝑦 𝑖 )2

𝑚

𝑖=1

 

 

(Equation 2.2) 

𝑀𝐴𝐸 =  
1

𝑚
 |𝑦  𝑖 − 𝑦(𝑖)|

𝑚

𝑖=1

 
 

(Equation 2.3) 

In these equations, m is the number of instances in the dataset, i is the index of 

the instances,  𝑦 
 𝑖 

 is the predicted value, and 𝑦(𝑖)  is the true value.  

 After training is complete, the next step is to use the model to make 

predictions on the test set, and evaluate its performance. Common metrics for 

this procedure are the following (where P: Predicted value and O: Observed 

value):  

 FAC2, represents the percentage of predictions distanced within a 

factor of 2 from the true values: 0.5 ≤
𝑃

𝑂
≤ 2.0 

 Mean Bias error: 𝑀𝐵 =
1

𝑛
 (𝑃𝑖 − 𝑂𝑖)

𝑛
𝑖=1   

 Mean Absolute error: 𝑀𝐴𝐸 =
1

𝑛
 |𝑃𝑖 − 𝑂𝑖|

𝑛
𝑖=1  
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 Normalized Mean Bias: 𝑁𝑀𝐵 =
 𝑃𝑖−𝑂𝑖

𝑛
𝑖=1

 𝑂𝑖
𝑛
𝑖=1

  

 Normalized Mean Gross Error: 𝑁𝑀𝐺𝐸 =
 |𝑃𝑖−𝑂𝑖|

𝑛
𝑖=1

 𝑂𝑖
𝑛
𝑖=1

 

 Root Mean Squared Error: 𝑅𝑀𝑆𝐸 =  
1

𝑚
 (𝑃𝑖 − 𝑂𝑖)2𝑚

𝑖=1   

 Pearson correlation coefficient r, represents the strength of the linear 

relationships between two variables, the closer it is to 1 or -1, the more 

linear the relationship is, while if it is 0, the relationship is in no way 

linear  

 Coefficient of Efficiency, describes the model’s [bility to m[ke 

predictions close to the observed mean. A perfect model has COE=1, 

while COE= 0 indicates that the closer the prediction can get to the 

actual observed value is the observed mean, and not further than that:  

𝐶𝑂𝐸 = 1 −
1

𝑛
 |𝑃𝑖−𝑂𝑖|

𝑛
𝑖=1

 |𝑂𝑖 
𝑛
𝑖=1 −𝑂 |

 

 Index of Agreement IOA, which ranges from -1 to +1 (with +1 

corresponding to a perfect model). It describes the relationship between 

the sum of the error-magnitudes with regards to the sum of the 

observed-deviation magnitudes. An IOA of 0.5, for example, indicates 

that the sum of the error-magnitudes is one half of the sum of the 

observed-deviation magnitudes. When IOA = 0.0, it signifies that the 

sum of the magnitudes of the errors and the sum of the observed-

deviation magnitudes are equivalent. 

  It is not unusual for a model to perform extremely well on the training 

set, and then fail to make accurate predictions on the test set. That being said, 

the good scores the model achieves on the training set can be misleading. This 

is called Overfitting and it is one of the main problems Machine Learning 

algorithms face. The model learns the training set ‘too well’ [nd it is not [ble to 

generalize on new data. Overfitting is generally confronted with regularization: 

the model is constrained and its structure becomes less complex. The amount 

of regularization applied is controlled by the hyperparameters, model 

parameters that are set before training starts and remain constant until it is 

finished. Since they are a convenient way of editing the learning process of the 

model, hyperparameter tuning is a really crucial stage. The perfect balance 

must be found between keeping the model simple enough and acquiring the 

best prediction accuracy possible. 
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         (a) 

 
         (b) 

Figure 2.5: a) Overfitting the training data  with a Polynomial Regression(degree=60), 
b) Linear Regression, which is more trustworthy regarding predictions in this case 

  

2.2. Decision Trees 

  Decision Trees are among the most important Machine Learning 

algorithms. They are also known as the CART algorithm (Classification and 

Regression Tree) and they consist of repetitive binary splits of the dataset, 

according to certain conditions at each split. To put it simply, the algorithm 

asks questions and answers them based on the data, and the procedure 

continues until a prediction is reached.  

 
Figure 2.6: Classification using Decision Trees [3] 

 

  A Classification task is depicted in Fig. 2.6. The first condition, placed in 

the root node, is whether the v[lue of [ fe[ture, in this c[se the ‘pet[l length’, 

is smaller than 2.45 cm. The algorithm then divides the data in two subsets, 

according to the condition’s outcome. The True outcome results in only one 

final child node (called leaf node). On the other hand, the False outcome 

results in a child node that is then split once again, with a different question 

asked (Is the petal width smaller than 1.75 cm?) and then the two final leaf 
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nodes are reached. Apart from the conditions placed, on each node there are 

more v[lues depicted [s well. The ‘gini’ (or ‘entropy’ in some c[ses) is a 

me[sure of [ node’s impurity. A pure node h[s [ ‘gini’ value of 0 and all 

instances that it encloses belong to the same class, as it can be seen from the 

or[nge node in Fig.2.6. The ‘s[mples’ [ttribute corresponds to that dataset 

inst[nces for which the node’s condition is True. The ‘v[lue’ [ttribute 

expresses the cl[ss distribution of the node’s ‘s[mples’. Fin[lly, the ‘cl[ss’ 

attribute is the predicted class of the Decision Tree.   

  Decision Trees can also be used for Regression tasks. Again, the 

splitting method is applied according to the outcome of each node’s condition. 

This time, however, the Decision Tree predicts a mean value, not a class, and 

this mean value is matched to a certain number of samples. For example, in 

Fig. 2.7a), in the far left leaf node, 20 samples have been matched to a mean 

value of 0.854. Mean Squared Error is used for evaluation of the predictions. 

In Fig. 2.7b) the analogy of the mean values and the number of samples can 

clearly be observed: the plot represents the results of the 4 leaf nodes. 

 
 

(a) 

 
 

                       (b) 

Figure 2.7: a)Regression using Decision Trees, b)Visualization of results [3]  

   Decision Trees, as all Machine Learning algorithms, are prone to 

Overfitting. If left unconstrained, they will fit the training data too closely 

(Fig.2.8), a problem that can be resolved by applying regularization. The most 

important hyperparameters that can be tuned are: min_samples_split 

(minimum number of samples before a node can split), min_samples_leaf 

(minimum number of samples within a leaf node), max_leaf_nodes 

(maximum number of leaf nodes) and max_features (maximum number of 

features that are evaluated before a node splits), and max_depth (depth of 

the tree). 
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Figure 2.8: The difference of fitting between a) a Decision Tree that is left unconstrained 
(heavy overfitting occurs), and b) a Decision Tree with the min_samples_leaf 

hyperparameter regularized [3] 

 

2.3. Random Forests 

  In Machine Learning the process of grouping together models in order 

to obtain a computationally better one is called Ensemble Learning. A Random 

Forest is an Ensemble method composed of many Decision Trees, trained on 

different subsets of data. When these subsets are selected with replacement, 

the process is called bagging (or bootstrap aggregating). If replacement does 

not occur, the process is called pasting. Random Forests usually work with 

bagging, and each Decision Tree is trained on a different bootstrapped dataset. 

This is exactly why Random Forests are a very powerful Machine Learning 

model: they are simultaneously trained on different parts of the original 

dataset, enabling variety in the learning process. When used on Classification, 

the predictions are made based on which class has been predicted more 

frequently from the Decision Trees. On the other hand, a prediction in a 

Regression task is the mean value of all the predictions made by the Decision 

Trees of the Random Forest.  

 

Figure 2.9: Visualization of a Random Forest with only 3 Decision Trees (n_estimators=3, 

max_leaf_nodes=3)  
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  The creation of a bootstrapped dataset, using a small part of the IRIS 

dataset (containing 3 iris flower classes, 50 instances of each class), is depicted 

in Fig. 2.9. Bootstrap aggregating enables some training instances to be 

selected multiple times (pink row) while others may not be selected at all (blue 

row). The latter are called Out-Of-Bag instances and typically they exist in a 

percentage of 30% of the original data. They often serve as a validation 

dataset. The most significant hyperparameters of a Random Forest are the 

aforementioned Decision Tree hyperparameters, along with n_estimators 

(number of Trees in the Forest), max_samples (maximum number of samples 

included in the subsets of data), and bootstrap (boolean, if it is False then 

the whole dataset is used by each tree and there are no subsets). 

 

 

  

2.4. Meteorological Normalization  

  Meteorological Normalization is a technique aimed at decoupling the 

impact of meteorology on atmospheric time series and it uses the Random 

Forest algorithm to do so. The Random Forest is able to predict concentrations 

for a given timestamp but with randomly selected weather conditions, hence 

the term ‘Norm[liz[tion’. [5]  

  The original dataset contains both meteorological and temporal 

variables, which serve as the features. There is also the target variable (the 

label of the problem), which is usu[lly [n [erosol’s concentr[tion. This whole 

initial dataset is split into a training and a test set, with the training set being 

randomly resampled, following the bootstrap aggregating method (mentioned 

in Section 2.3). Then a certain number of Decision Trees is prepared, while 

each tree is trained on a different bootstrapped dataset. The combination of 

the Decision Trees results in a Random Forest which, after the training is done, 

is evaluated on the test set and is also used to conduct the Meteorological 

Normalization (Fig. 2.10).  

Table 2.1: Creating a bootstrapped dataset. Pink indicates instances selected multiple times, 
while blue indicates the out-of-bag instance 

Petal 
Length 

(cm) 

Petal 
Width 
(cm) 

Iris Flower 
Species 

 Petal 
Length 

(cm) 

Petal 
Width 
(cm) 

Iris Flower 
Species 

1.4 0.2 Setosa 1.4 0.2 Setosa 

5.9 2.1 Virginica 2.7 4.6 Versicolor 

2.8 4.6 Versicolor 3.2 1.3 Setosa 

2.7 4.6 Versicolor 3.2 1.3 Setosa 

3.2 1.3 Setosa 5.9 2.1 Virginica 
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Figure 2.10: Random Forest construction 

 

  The next step is to use the Random Forest model to calculate the 

weather normalized (or deweathered) concentrations. Weather conditions are 

assigned randomly to a particular timestamp (e.g. 24/8/2019, at 14:00:00)  

and the model makes predictions for the concentration. This process is 

repeated 1000 times, with different meteorology each time, acquired from the 

whole study period. This results in 1000 predictions for this exact timestamp, 

which are then averaged into one, the meteorologically normalized (or 

deweathered) value (Table 2.2). The same process is repeated for all the 

timestamps and the normalized dataset is obtained. Note that sometimes 

during the normalization step, apart from the meteorological conditions, the 

temporal (time) variables are randomly resampled as well. This process 

normalizes both seasonal and meteorological impact, and it is inadequate when 

the aim of the study is to investigate short-term changes in concentrations or 

even compare seasonal variations with changes in emissions, because the 

normalization removes the impact of both the weather and seasonality [8, 9]. 
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Table 2.2: Exact implementation of Meteorological Normalization, for a single timestamp. The 

Random Forest receives randomly selected meteorology and makes predictions that are then 

averaged to provide the final normalized concentration. 

Wind speed 

(m/s) 

Temperature 

(
o
C) 

Pressure 

(Pa)  

Predicted 

Concentration 

(cm
-3

) 

Average 

Normalized 

Concentration 

(cm
-3

) 

9.62 9.88 98389.56 32.63 
 

 

        21.18  

10.47 11.25 99209.72 29.90 

8.93 14.6 99357.87 20.45 

8.86 14.55 100775.20 12.81 

4.50 15.25 100669.10 10.09 

 

 

  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Random 

Forest 
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3. Modeling with R 

3.1. Data Sources and Preprocessing  

  As mentioned above, the main focus area is the station of Finokalia. The 

data used were meteorological measurements as well as time variables of the 

study period 1/1/2015 – 21/10/2020. These included the exact date-time 

stamp of the measurement, the number of seconds passed since the UNIX 

epoch (1/1/1970 at 00:00:00), the yearly number of the week (1-52), the 

number of weekday (1-7), the hour value (0-23) and the day of the year (1-

365).  

  Hourly ground measurements from the station were used, specifically 

for the quantities: Temperature, Wind Speed, Wind Direction and Humidity. 

The missing values that this dataset contained (174 for Wind Speed and Wind 

Direction, 175 for Temperature and 10866 for Humidity) were replaced using 

lineal interpolation in Python.   

  ERA5 (ECMWF Reanalysis, 5th Generation) is a product released by the 

European Centre for Medium-Range Weather Forecasting (ECMWF), which  

provides reanalysis data. Reanalysis is a method that combines observations 

with model measurements, in order to obtain complete datasets that 

accurately describe global climate in hourly resolution. We acquired the 

following gridded data from ERA5: boundary layer height (determines the 

depth of air with regards to the E[rth’s surf[ce which is most [ffected by 

resistance to transfer of momentum, heat or moisture across the surface), 

surface net solar radiation (solar radiation that reaches a horizontal plane at 

the surface of the Earth minus the amount reflected by the E[rth’s surf[ce), 

surface pressure, total cloud cover and total precipitation.  

 Apart from ground measurements and the ERA5 data, the cluster of 

backward trajectories, indicative of air mass history, is needed as well. To 

obtain this variable we first acquired the data of 72-hour backward trajectories 

using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) 

model, at an hourly resolution and by setting the receptor height at 1000m. 

The HYSPLIT model is able to simulate air mass trajectories (either forward or 

backward), as well as transport, dispersion, deposition and chemical 

transformation events. The most widely used application, utilized in this 

project as well, is back trajectory analysis, where HYSPLIT is run to determine 

the origin (previous longitude, latitude and height) of different air parcels 

arriving at the area of interest at a given time.  

   The clustering process in the hourly trajectories was impossible to 

complete due to lack of computational memory, so we used a 4-hour 

resolution instead. The back trajectories were then clustered in 12 clusters. [9] 

Each cluster represents common air masses that the location of Finokalia is 
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exposed to. The clustering was done using the TrajCluster() function of 

the openair R package, which groups clusters according to the Euclidean 

distance method. [2] A visualization of the 12 clusters is depicted in Fig. 3.1, 

for clusters computed in 2017. 

 

Figure 3.1: The twelve clusters of back trajectories, visualized using the openair package. The 
percentages indicate the frequency of occurrence. 

 

  Lastly, we acquired number concentration data from a Scanning 

Mobility Particle Sizer (SMPS) instrument, located at Finokalia Station. The 

particle diameters considered were 25-100nm (Aitken mode), 100-850nm 

(Accumulation mode), and 8-25nm (Nucleation mode). CO (measured with a 

Picarro) and Black Carbon (measured with an Aethalometer AE33) 

concentrations were also chosen as pollutants of interest. The Black Carbon 

was investigated both as an individual quantity, and also separately regarding 

contribution to total concentrations from fossil fuel combustion and wood 

burning. This led to a dataset consisting of 8 target values in total.  

  After the collection of data, preprocessing was done in order to prepare 

the final dataset for the Deweathering stage. This preparation was conducted 

in R and it included filtering all the available data to achieve a 4-hour 

resolution, in order to match the trajectory cluster variable.  

 

3.2. Random Forest model and Meteorological Normalization 

  The data preprocessing stage results in a dataset which consists of the 

time variables (date, UNIX time, Julian day, weekday, hour), the meteorological 

variables (wind speed, wind direction, temperature, pressure, relative humidity, 

cluster of back trajectory, boundary layer height, surface net solar radiation, 
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total cloud cover, total precipitation, surface pressure), Particle Number and 

CO concentration data. Next, the implementation of the Random Forest and 

the Meteorological Normalization is conducted, using the rmweather package 

in R. [5] Two periods were investigated, October 2018 – March 2019 and 

October 2019 – March 2020.  

 The first rmweather function required is the rmw_prepare_data() 

which prepares the dataset for the Random Forest modeling and splits the 

available data into a training and a test set, at a percentage of 70% and 30% 

accordingly. The next step is to use the rmw_do_all() function to build and 

train the Random Forest model and immediately perform the Meteorological 

Normalization afterwards. Following previous works on the subject ([5], [9]), 

the hyperparameters for the Random Forest were set to n_trees=300 and 

min_node_size=3. The 300 Decision Trees that made up the Random 

Forest were trained using the bagging algorithm (resampling with 

replacement). All the available features were used for training, whereas the 

normalization was conducted using only the weather variables, excluding the 

time variables. As mentioned in the previous chapter, this was done to enable 

investigation of the seasonality of weather normalized data.   

  Evaluation of the Random Forest was conducted with the 

rmw_predict_the_test_set() function. The predictions made on the test 

set were compared with the real ones to calculate various performance 

metrics, using the modStats function of the openair package. The rmweather 

package also offers functions which plot various quantities and are useful for 

assessing our methodology. The rmw_plot_test_prediction() function 

returns a plot, where the y-axis represents the values predicted by the 

Random Forest model and the x-axis represents the true values of the label. 

This scatter plot is a very convenient way to visualize the model’s prediction 

accuracy. The codes for this section are presented in the Appendix. 
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4. Results and Discussion 

4.1. October 2019 – March 2020 

  The dates of the first run were 1/10/19 – 1/4/20. Training was 

conducted using 70% of the original dataset, and the remaining 30% which 

corresponded to the test set was used to calculate metrics and help evaluate 

the RF models.  Table 4.1 presents all of the metrics, where n denotes the 

number of the test set instances for each target value, BCff denotes the Black 

Carbon percentage coming from fossil fuel combustion, while BCwb denotes 

the percentage from wood burning. In general the scores are high: the Pearson 

Coefficient of all the models remains constantly above 0.5 and in some cases it 

even approaches 1, which is the ideal value and indicates linear relationships 

between the variables. FAC2 metric is also calculated and it is over 0.7 in all 

cases, indicating agreement between the observed and the predicted values. 

IOA is also satisfying, achieving scores close to 0.5, with 1 being the ideal case. 

Nearly half of the models exhibit negative COE values. Generally, a negative 

COE value indicates that the mean of the observations is a better predictor 

than the model. However, as the rest of the metrics exhibit good accuracy of 

the models, the values of COE would not be significant to take into account. 

There is great difference between the RMSE, MGE, MB scores of the models 

and this is understandable since these metrics are scale dependent, and each 

target value has various scales. For example, the Total Particle Number ranges 

from 2000-12000 cm-3 while Black Carbon concentrations coming from fossil 

fuel combustion range from 0.1 – 0.6 μg m-3.   

  To further investigate the accuracy of the models, plots of True and 

Predicted values are produced (Fig. 4.1). The density of the values near the y=x 

line is high and this shows that the majority of the predicted values are the 

same (or close) to the observed (true) ones. This argument further justifies the 

conclusion that our models are good. In some plots there are some outliers, as 

in the Aitken mode or in the Accumulation mode, but these are all isolated 

special cases.  In general, the model has difficulties predicting values of bigger 

ranges, and this is exactly why in the pollutant concentrations (CO, BC, BCff 

and Bwb) the scores and accuracy are higher.   
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Table 4.1: Metrics used for the evaluation of the model, for the period 1/10/19 – 1/4/20 
Target Value n FAC2 MB MGE NMB NMGE RMSE r COE IOA 

Total (cm
-3

)  315 0.89 -10 779 -0.004 0.340 1251 0.65 -0.319 0.340 

Aitken (cm
-3

)  315 0.81 -37 460 -0.031 0.390 773 0.60 -0.329 0.335 

Accumulation 

(cm
-3

)  315 0.88 -18 208 -0.024 0.284 278 0.83 0.157 0.578 

Nucleation 

(cm
-3

)  315 0.44 30 317 0.074 0.804 731 0.6 -0.582 0.209 

CO (ppb)  318 1 -0.37 7.052 -0.004 0.07 9.217 0.89 0.551 0.775 

BC (μg/m
3

)
 

 318 0.84 -0.003 0.057 -0.018 0.303 0.080 0.80 0.192 0.596 

BCff (μg/m
3

)  318 0.83  -0.0009 0.049 -0.006 0.316 0.073 0.82 0.238 0.619 

BCwb(μg/m
3

)  318 0.70 -0.002 0.014 -0.047 0.450 0.02 0.61 -0.303 0.348 
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Fig. 4.1: True vs. Predicted values (1/10/19 – 1/4/20) 

 

  By taking into account scores and metrics reported in previous works 

[4, 9] we conclude that the scores of our models are very satisfying. 

Unfortunately, since this is a first study of Deweathering at Finokalia, we are 

unable to compare our scores to studies conducted in this particular area, in 

the past. It should be noted however that our scores are by no means low and 

were achieved while having few data in our disposal, compared to other 

studies.    

  Having completed training and evaluation of the Random Forest model, 

the next step is to perform the Meteorological Normalization. In order to 

examine its effect, we plot the observed and deweathered quantities in the 

same figures (Fig 4.2). The difference in magnitude of the two quantities is 

remarkable. To better interpret the results, average means of the study period 

of each target value were calculated (Table 4.2). 
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Fig. 4.2 : Observed and Deweathered values of all the target variables (1/10/19 – 1/4/20) 
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Table 4.2.: Comparison of observed and deweathered values (1/10/19 – 1/4/20) 

Target Value Average Deweathered Average Observed |Dew-Obs| 

Total (cm
-3

)  2255 2203 52 

Aitken (cm
-3

)  1178 1114 64 

Accumulation (cm
-3

)  706 700 6 

Nucleation (cm
-3

)  412 388 24 

CO (ppb)  101.4172435 101.1070489 0.310194598 

BC (μg/m
3

)
 

 0.182718211 0.181461494 0.001256718 

BCff (μg/m
3

)  0.15005908 0.149857711 0.000201369 

BCwb(μg/m
3

)  0.033868827 0.031252399 0.002616428 

 

  The deweathered patterns that emerge are plotted separately to be 

thoroughly investig[ted (Fig. 4.3). They represent the ‘true’ v[lues of P[rticle 

Number and pollutant concentrations, produced solely by emissions and 

chemical processes in the atmosphere (the weather effect is excluded through 

deweathering). We observe small fluctuations in all of the graphs, which 

correspond to weekly or even daily variations. Patterns that may be similar 

between the target values indicate common sources or sinks.  

  The Total PN pattern is governed mostly by the Aitken and 

Accumulation particles, as reported in previous studies [11, 20]. The 

Nucleation PN does not exhibit patterns as significant as the rest of the 

quantities, and it does not seem to contribute much to the Total PN compared 

to the Aitken and Accumulation concentrations. There is an increase in the 

Aitken particle number at the end of March 2020, and due to its non-recurring 

nature, this behavior could be attributed to new particle formation.   

  By investigating the deweathered quantities of CO and BC a common 

increase around the mid-end of March can be noted, followed by a smooth 

decrease in all cases. That pattern is also seen in the particle number 

concentration plots. It could be associated with the lockdown, as similar 

patterns regarding lockdowns in other locations have been reported. [9] The 

concentrations of these pollutants during a lockdown would be expected to 

decrease, due to less frequent use of vehicles. The fact that in Finokalia this 

decrease is not very sharp could be attributed to the area not being urban, but 

rather positioned a long way from the big cities of Crete.   

  A common pattern in both the pollutant concentrations and the particle 

number concentration graphs is a sharp increase in January of 2020. A 

possible explanation for that is the olive branch burning that takes place in the 

area after the olive harvest in November and December each year. Only the 

CO and BCwb concentrations differ in that aspect, as CO increases one week 

earlier, while BCwb increases one week after January 2020. This deviation 

cannot be explained, but it is not significant, as it may have to do with other 
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sources in the area, like heating and fireplace emissions.   

  Another universal characteristic that was observed was low values 

during November, which remained low until the occurrence of the sharp 

increase in January. In November and December every year there are great 

amounts of rain compared to the rest of the months, so the drop in 

concentrations could be associated with wet deposition. This scenario, 

however, is ambiguous as precipitation as a meteorological variable was used 

during the normalization step, so its effect should have been removed. 

Nevertheless, rainfalls in southern Greece during that period as a regional 

pattern may result to such a decrease, despite the rain occurrence at Finokalia 

or not.  

  Some of the values, namely the Accumulation mode, the CO, and the 

BC concentrations, display increases in October. This may stem from the fact 

that October comes after summer, which is a dry period in Crete with very 

little rainfall. Due to the lack of rain during that time, particles tend to build up 

(‘[ccumul[te’) until they [re sc[venged or deposited, so th[t could expl[in the 

high values that emerge in October. Also, the absence of rain is conducive to 

the occurrence of transport phenomena, meaning that pollutants from large 

cities like Heraklion or Athens could reach Finokalia and contribute to the 

concentrations measured there. [20, 23] It seems, however, that the Random 

Forest model has limited capacity regarding the deciphering of transport which 

is strongly correlated with the air mass backward trajectories. It is not clear 

whether it is able to normalize the impact of transports, even though the back-

trajectory cluster variable was included in the training process. This limitation 

has been reported in a previous study as well [9]. It may originate from the fact 

that the model does not have enough training instances to learn from, given 

the fact that the study period is relatively short (October to April, 7 months) 

and there are 12 clusters of back trajectories in total. This complication could 

be resolved if less clusters were used, or if a longer study period was 

investigated.  
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Fig. 4.3 : Deweathered values of all the target variables (1/10/19 – 1/4/20) 
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4.2. October 2018 – March 2019 

  The second run was for the dates 1/10/18 – 1/4/19. The metrics used 

were the same as in the previous run and they are presented in Table 4.3. 

There is not great difference when compared to the scores of the first run. The 

test instances (n variable) of the Particle Number are less in this case, but it 

does not [ffect the model’s perform[nce signific[ntly. Ag[in we observe the 

scale dependency of the RMSE, MB and MGE scores, and how their values 

change depending on range of the target values. The rest of the metrics 

remain fine. There is no increase or decrease compared to the previous 

section. Again, the True vs. Predicted plots are presented (Fig.4.4) to better 

justify the model’s ev[lu[tion results.  The majority of values is close to the 

y=x line, indicating that the models are accurate to the same level as before. 

 

Table 4.3 : Metrics used for the evaluation of the model, for the period 10/18 – 03/19 

Target Value n FAC2 MB MGE NMB NMGE RMSE r COE IOA 

Total (cm
-3

)  261 0.854 4 947 0.001 0.365 1790 0.663 -0.173 0.413 

Aitken (cm
-3

)  261 0.808 19 529 0.015 0.423 1040 0.675 -0.265 0.367 

Accumulation 

(cm
-3

)  261 0.919 10 191 0.012 0.228 268 0.866 0.423 0.711 

Nucleation  

(cm
-3

)  261 0.325 -47 445 -0.095 0.880 1131 0.529 -0.303 0.348 

CO (ppb)  313 1 0.643 9.9618 0.005 0.089 13.8 0.745 -0.023 0.488 

BC (μg/m
3

)
 

 324 0.892 -0.007 0.0428 -0.033 0.213 0.0616 0.878 0.390 0.695 

BCff (μg/m
3

)  324 0.879 -0.007 0.0357 -0.04 0.216 0.0525 0.884 0.428 0.714 

BCwb(μg/m
3

)  324 0.756 -0.0006 0.0127 -0.017 0.366 0.0202 0.624 -0.197 0.401 
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Fig. 4.4 : True vs. Predicted values (1/10/18 – 1/4/19) 

 

  The next step is to plot once again the observed and deweathered 

quantities to examine the effect of Meteorological Normalization (Fig. 4.5). 

These plots, unlike the ones that depict only deweathered quantities, can be 

used to detect missing values in the dataset. For example, in the BC 

measurements it can be seen from the plots that in the period January 2019 – 
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February 2019 the measurements are scarce. Again, there are plenty of times 

where there is great difference in magnitude between the observed and 

deweathered values. The average values are presented in Table 4.4. 

 
 

  

  

  

 
Fig. 4.5 : Observed and Deweathered values of all the target variables (1/10/18 – 1/4/19) 
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Table 4.4.: Comparison of observed and deweathered values (1/10/18 – 1/4/19) 

Target Value Average Deweathered Average Observed |Dew-Obs| 

Total (cm
-3

)  2547 2489 58 

Aitken (cm
-3

)  1209 1183 26 

Accumulation (cm
-3

)  767 807 40 

Nucleation (cm
-3

)  567 478 89 
CO (ppb)  112.6322891 112.7073428 0.075053742 

BC (μg/m
3

)
 

 0.193048636 0.194802951 0.001754315 

BCff (μg/m
3

)  0.156932436 0.159559502 0.002627066 

BCwb(μg/m
3

)  0.034745937 0.033752477 0.00099346 

 

  In the deweathered plots that follow, we can observe the patterns and 

the impact of the Meteorological Normalization, and compare the plots with 

the year before. Like in the previous case, the daily and weekly variations can 

be observed and the Total particle number is governed mostly by the Aitken 

and the Accumulation modes. On the other hand, there is a peak in the 

Nucleation mode in January which is present only for a few days, something 

that was not observed in the year before. The particle number drops 

immediately and returns to the level before the peak. This event could be 

attributed to new particle formation. Also at the start of November there is a 

sudden increase in the Total Particle Number (associated with increases in 

Aitken and Accumulation, but not with Nucleation) and peaks around that 

period appear in the concentrations of CO and BC as well. As discussed in the 

previous section, this behavior could be attributed to particle accumulation 

due to lack of rain, right before the wet season which starts around November 

each year. Then during and after November, some values exhibit a constant 

decrease (in BC, Accumulation and Total particle number the drop is more 

visible), most likely due to precipitation.   

  At the end of March we observe once again an increase and then a 

smooth decrease, which in the previous section was identified as probable 

COVID-19 lockdown effects. However, in 2019 there was no lockdown so 

that conclusion is most likely false. It could be associated with dust events, but 

as explained above, it is unclear how the model handles these events.  

  In the period around January 2019, a lot of peaks are observed in all the 

values which is a different case compared to the previous section, where only 

one sharp increase was present in January 2020 for the majority of the values. 

Again, the source of these increases would be the olive branch burning after 

the harvest period. Harvesting may vary over the years, but it should occur in 

the months between November and February.  The increase in BC from fossil 

fuels is particularly interesting, and it could perhaps result from region wide 

extended use of fossil fuels for household heating.  
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  The problem of the model not being able to decouple the transport 

events remains, and it is not clear whether pollution events (i.e. peaks in 

concentrations) have local sources or not.   

 
 

  

  

  
 

Fig. 4.6 : Deweathered values of all the target variables (1/10/18 – 1/4/19) 
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4.3. Evaluation of the IMO2020 regulation 

  The focus of this work so far was the periods October 2019 – March 

2020 and October 2018 – March 2019, in order to study the deweathering 

effects in Finokalia, an approach that has not been done before for this area. A 

second aim is to evaluate the IMO2020 regulation, as Finokalia is located in a 

key position with regards to shipping pathways. In order to reach conclusions 

about whether the limitations were followed, we will investigate changes in 

the deweathered patterns of the pollutants. As mentioned above, in theory the 

Deweathering should extract values that are dependent only on emissions and 

chemical production.   

  By looking at the plots of the previous two sections, no notable 

decrease trend can be seen as of 1/1/20 in any of the target values. To better 

support this argument, we will compare directly the average deweathered 

values of the two study periods. As it can be noted from Table 4.5 

concentrations in January 2019 – March 2019 are greater than January 2020 

– March 2020. However, as it was analyzed in the previous sections, the 

sources of the decreases (or increases) are not completely clear. The model has 

difficulties decoupling transport which would normally affect the shipping 

emissions measured in the station. Also, it might take a few months for the 

imposed limitations to actually take effect, so when available, data from longer 

periods should be taken into account as well. 

Table 4.5: Comparison of deweathered values of the two periods of interest 

Target Value 
Average Deweathered 

(1/1/20-1/4/20) 
Average Deweathered 

(1/1/19-1/4/19) |Dew2020 – Dew2019| 

Total PN 2357 2701 344 

Aitken PN 1255 1261 6 

Accumulation PN 724 772 48 

Nucleation PN 423 655 232 

CO 113 112 1 

BC 0.193145194 0.198981881 0.005836687 

BCff 0.155714228 0.160004023 0.004289795 

BCwb 0.04027432 0.035653465 0.004620855 
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4.4. Conclusions and Future Perspectives 

  The purpose of this thesis was to apply the Machine Learning – based 

method of Deweathering to investigate the effects of meteorology on 

pollutant measurements conducted at Finokalia Monitoring station. The data 

used were meteorological variables collected at the station, as well as ERA5 

reanalysis data and time variables. Random Forest models were built and each 

model corresponded to one of the following target values: Total Particle 

Number, Aitken, Accumulation and Nucleation Particle Number, Carbon 

Monoxide concentrations, Black Carbon Concentration, Black Carbon 

originating from fossil fuel and finally Black Carbon produced by biomass 

burning. The study periods were the 6 month period ranging from October to 

March, for the years 2019 and 2020. All the Random Forest models that were 

trained exhibited fine performance and were subsequently used to conduct 

the Meteorological Normalization. The plots that resulted from the 

deweathering of the target values would be used to reach conclusions 

regarding the emissions and probable sources of pollution in the area. 

However, some challenges emerged in explaining these deweathered plots and 

patterns. Biomass burning was confirmed as a source that contributed to the 

rise of pollutant concentrations but the models were found to have difficulties 

in deciphering the effect of the precipitation and backward trajectory cluster 

variable. As a result in the deweathered plots emerged patterns that were 

attributed to signals from mixed sources, for example biomass burning 

combined with transport events. Thus it was unclear to determine which 

increases and decreases stemmed from local emissions and which were the 

result of pollutants reaching the station from neighboring places with more 

dense population.  

  Many results presented in this work carry great uncertainty, since this 

method is used for the first time in Finokalia. Most of the previous studies 

used plain pollutant concentrations as the deweathering targets, not size 

distribution data, as we did. Further improvements can be made, especially 

with regards to the back trajectory cluster variable and how it is interpreted by 

the model. Polar plots of wind speed, wind direction and concentrations could 

be useful to decouple air mass effects on deweathered local pollution. Also, 

the partial dependencies information that Random Forest models provide 

could be used to explore the different correlations of the features used. 

Finally, there are two more focus areas that would complement our research: 

the use of other study periods, e.g. the summer months of the last 3 years, and 

the selection of more compounds as the target values, like CO2, CH4 or O3.  

  As a conclusion, it can be recognized that once the uncertainties 

regarding arguments made in this study are dealt with, the normalization step 

will bear more straightforward results and then the true potential of the 
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Deweathering method will be uncovered.  
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Appendix A: Codes and Methods 

A1. Trajectory Clustering 

1 startdata=read.csv("Finokalia_traj.csv",stringsAsFactors=FALSE) 
2 startdata$date=as.POSIXct(startdata$date) 
3 hours=strftime(startdata$date, format="%H") 
4 class(hours) 
5 hours=as.numeric(hours)  
6 end=cbind(startdata,hours)  
7 #per 4 wres 
8 end1=filter(end,hours==4 | hours==8 | hours==12 | hours==16 | 

hours==20 | hours== 0)  
9 str(end1) 
10 write.csv(end1,"Fin_trajper4.csv") 
11 #memory error 
12 end2=filter(end,hours==0 | hours==2 | hours==4 |hours==6| hours==8 

|hours==10| hours==12 |hours==14| hours==16 |hours==18|hours==20| 

hours==22 | hours== 0) 
13 str(end2) 
14 write.csv(end2,"Fin_trajper2.csv") 
15 df=read.csv("Fin_trajper4.csv",stringsAsFactors=FALSE) 
16 getwd() 
17 dfready=df[4:19] 
18 str(dfready) 
19 options() #check default variables for jupyter 
20 options(jupyter.plot_scale=1) #change default variables 
21 options(repr.plot.width = 7, repr.plot.height =4,repr.plot.res = 

120,repr.plot.pointsize=12) 
22 library(openair) 
23 library(lubridate) 
24 library(latticeExtra) 
25 library(ggplot2) 
26 require(devtools) 
27 #install_github('davidcarslaw/worldmet') 
28 library(worldmet)  ## download_met_data 
29 library(mapdata) 
30 #setwd("C:/Users/user/Documents/sxoli/ptyxiaki/trajclustering") 
31 dfready$date<-as.POSIXct(dfready$date,format="%Y-%m-%d 

%H:%M:%S",tz="GMT") 
32 ficluster=trajCluster(dfready, 

method="Euclid",n.cluster=12,lwd=2,npoints=NA) 
33 cdata=ficluster$data 
34 #trajPlot(selectByDate(dfready, start = "15/4/2015", end = 

"16/4/2015"), map.cols = openColours("hue", 10),col = "grey30") 
35 write.csv(cdata,"Finokalia_trajper4clustered12.csv") 
36 #for hourly clusters 
37 library(dplyr) 
38 dfc=read.csv('Finokalia_trajper4clustered12.csv') 
39 dfc[!duplicated(dfc$cluster), ] 
40 hourly=write.csv(dfc[!duplicated(dfc$date),],"per4hour.csv") 
41 trajPlot(selectByDate(dfready, start = "15/4/2015", end = 

"16/4/2015"), map.cols = openColours("hue", 10),col = 

"grey30",origin=FALSE) 
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A2. Final Preprocessing 

1 print(Sys.time()) 
2 Sys.timezone() 
3 df=read.csv('Finokalia_groundinter.csv',header=TRUE,stringsAsFacto

rs=FALSE) 
4 df$date=as.POSIXct(df$date, format="%m/%d/%Y %H:%M")  
5 str(df) 
6 library(lubridate) 
7 df$date=df$date +hours(3) 
8 str(df) 
9 write.csv(df,'Finokalia_local.csv') 
10 ### Time variables : date_unix,week,weekday,hour,month,day_julian 
11 date_unix=as.numeric(df$date) 
12 df1=cbind(df,date_unix) 
13 str(df1) 
14 week=strftime(df$date, format = "%V") 
15 df2=cbind(df1,week) 
16 dateonly=as.Date(df$date) 
17 weekday=as.numeric(strftime(dateonly, "%u")) 
18 head(weekday) 
19 df3=cbind(df2,weekday) 
20 #monday=1,sunday=7 
21 df3 
22 hour=strftime(df$date, format="%H") 
23 df4=cbind(df3,hour) 
24 month=strftime(df$date,format="%m") 
25 df5=cbind(df4,month) 
26 day_julian=yday(dateonly) 
27 df6=cbind(df5,day_julian) 
28 head(df6) 
29 write.csv(df6,'Finokalia_readyfordw.csv') 

 

1 import pandas as pd 
2 df=pd.read_csv('Finokalia_full.csv',header=0,index_col='date') 
3 df.head() 
4 ground=df[['temp','RH','ws','wd']] 
5 df1=df[['cluster','blh','tp','ssr','sp','tcc','Ntotal','Nnucleatio

n','Naitken','Naccumulation']] 
6 df2=ground.interpolate(method='linear') 
7 final=pd.concat([df2,df1],axis=1) 
8 final.isna().sum() 
9 final.to_csv('Finokalia_groundinter.csv') 

 

A3. Meteorological Normalization 

1 rm(list=ls(all=TRUE)) 
2 library(openair) 
3 library(plyr) 
4 library(dplyr) 
5 library(rmweather) 
6 library(ranger) 
7 library(readxl) 
8 library(randomForest) 
9 library(knitr) 

10 library(ggplot2) 
11 #please install the required (above) packages first 
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12 setwd("C:/Users/User/Documents/sxoli/ptyxiaki/DeweatherStuff/Fin

okalia") 
13 filename="Finokalia_cl_groundinterpolated_ERA_LOCALTIME_timevar_

co" #model inputs file 
14 polllist<-list("co") #run each pollutant one by one 
15 ncal=1 #ncal: modeling using different seeds and select a model 

with highest model performance 
16 #1/3/2015 4:00 
17 Dataraw1<-import(paste(filename,".csv",sep=''), date="date", 

date.format = "%Y-%m-%d %H:%M")                                                                       
18 #Dataraw1: all dataset 
19 setwd("C:/Users/User/Documents/sxoli/ptyxiaki/DeweatherStuff/Fin

okalia/1_10_19-1_4_20") 
20 Dataraw1$cluster<-as.factor(Dataraw1$cluster) #set back 

trajectory as category 
21 Dataraw1$weekday<-as.factor(Dataraw1$weekday) #set weekday as 

category 
22 Dataraw1 <- Dataraw1 %>% filter(!is.na(cluster)) 
23 Dataraw <-  Dataraw1 %>% filter(date>="2019-10-01"& date <= 

"2020-04-01") #Dataraw: selected dataset for model training and 

weather normalisation 
24 for (poll in polllist){ 
25 r.min <- 0.1 
26 perform<-matrix(data=NA,ncol=11,nrow=1) 
27 colnames(perform)<-c("default","n", "FAC2","MB", "MGE", "NMB", 

"NMGE", "RMSE", "r","COE", "IOA") 
28 for (i in as.numeric(1:ncal)){ 
29 set.seed(i)  
30 data_prepared <- Dataraw %>%  
31   filter(!is.na(ws)) %>%  
32   dplyr::rename(value = poll) %>%  
33   rmw_prepare_data(na.rm = FALSE,fraction = 0.7) 
34 set.seed(i)  
35 RF_model <- rmw_do_all( 
36   data_prepared, 
37   variables = c( 
38     "date_unix","day_julian", "weekday","hour", "temp",  "rh", 

"wd", "ws","sp","cluster","tp","blh","tcc","ssr"), #factors for 

random forest modeling 
39     variables_sample=c("temp",  "rh", "wd", 

"ws","sp","cluster","tp","blh","tcc","ssr"), #factors for 

weather replacement 
40   n_trees = 300, 
41   min_node_size = 3, n_samples = 1000, 
42   verbose = TRUE 
43 ) 
44 str(data_prepared) 
45 testing_model <- rmw_predict_the_test_set(model = 

RF_model$model,df = RF_model$observations)  
46 model_performance<-modStats(testing_model, mod = "value", obs = 

"value_predict",  
47 statistic = c("n", "FAC2","MB", "MGE", "NMB", "NMGE", "RMSE", 

"r","COE", "IOA"), 
48                                           type = "default", 

rank.name = NULL)                                                           
49 perform<-rbind(perform,model_performance) 
50 if (model_performance$r > r.min){ 
51 r.min <- model_performance$r 
52 RF_modelo <- RF_model} 
53 }  
54 save.image(file= paste(filename,"_",poll,"_RW",".RData",sep="")) 
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55 write.table(perform, 

file=paste(filename,"_",poll,"_RWPerformance",".csv",sep=""), 

sep=",", row.names=FALSE) 
56 } 
57 } 
58 setwd("C:/Users/User/Documents/sxoli/ptyxiaki/DeweatherStuff/Fin

okalia/") 
59 filename="Finokalia_cl_groundinterpolated_ERA_LOCALTIME_timevar_

co"  
60 filenamelist<-

list('Finokalia_cl_groundinterpolated_ERA_LOCALTIME_timevar_co') 
61 setwd("C:/Users/User/Documents/sxoli/ptyxiaki/DeweatherStuff/Fin

okalia/1_10_19-1_4_20") 
62 for (filename in filenamelist){ 
63 polllist<-list('co')  
64 for (poll in polllist){ 
65 a=paste(filename,"_",poll,"_RW.RData",sep='') 
66 load(a) 
67 testing_model <- rmw_predict_the_test_set(model = 

RF_modelo$model,df = RF_modelo$observations) 
68 print(class(testing_model)) 
69 model_performance<-modStats(testing_model, mod = "value", obs = 

"value_predict",  
70 statistic = c("n", "FAC2","MB", "MGE", "NMB", "NMGE", "RMSE", 

"r","COE", "IOA"), 
71                                            type = "default", 

rank.name = NULL) 
72 normli<-cbind(RF_modelo$normalised,RF_modelo$observations$value) 
73 write.table(testing_model, 

file=paste(filename,"_",poll,"_testing_model.csv",sep=""), 

sep=",", row.names=FALSE) 
74 write.table(normli, 

file=paste(filename,"_",poll,"_normalised.csv",sep=""), sep=",", 

row.names=FALSE) 
75 } 
76 } 
77 # some scores 
78 scores=rmw_model_statistics(RF_modelo$model) 
79 scores$r_squared 
80  
81 # ----PLOTS---- 
82 date = as.Date(RF_modelo$normalised$date,format = "%Y-%m-%d 

%H:%M") 
83 value_predict=RF_modelo$normalised$value_predict 
84 value=RF_modelo$observations$value 
85 df=cbind(as.data.frame(date),value,value_predict) 
86 # both 
87 ggplot(df, aes(x = date)) + 
88   geom_line(aes(y = value, color = "value"), size = 0.7) + 
89   geom_line(aes(y = value_predict, color = "value_predict"), 

size = 0.8) + 
90   labs(x = "Date", 
91        y = "CO Concentration", 
92        color = "Legend") + 
93   scale_color_manual(labels = c("Observed", "Deweathered"), 

values = c("deepskyblue3", "deeppink3")) + 
94   theme(legend.title=element_blank())+ 
95   scale_x_date(date_labels = "%b %Y",date_breaks = '1 month')+ 
96   theme(axis.text.x=element_text(angle=60, hjust=1))+ 
97   theme(legend.position="bottom")+ 
98   theme(panel.grid.minor = element_line(colour = "white", size = 
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0.5))+ 
99   theme(panel.grid.major = element_line(colour = "cornsilk3", 

size = 0.5),panel.background = element_rect(fill = "white", 

colour="white")) 
100 #normalised values 
101 ggplot()+ 
102   geom_line(data =df, aes(x= date, 

y=value_predict),color='deeppink3',size=0.6)+ 
103   theme(axis.text.x=element_text(angle=60, hjust=1))+ 
104   theme(panel.grid.minor = element_line(colour = "grey", size = 

0.5))+ 
105   theme(panel.grid.major = element_line(colour = "grey", size = 

0.5),panel.background = element_rect(fill = "white", 

colour="white")) + 
106   theme(legend.title=element_blank())+ 
107   labs(x = "Date", 
108        y = "Deweathered CO Concentration")+ 
109   scale_x_date(date_labels = "%b %Y",date_breaks = '1 month')+ 
110   theme(axis.text.x=element_text(angle=60, hjust=1))+ 
111   theme(panel.grid.minor = element_line(colour = "cornsilk3", 

size = 0.5))+ 
112   theme(panel.grid.major = element_line(colour = "cornsilk3", 

size = 0.5),panel.background = element_rect(fill = "white", 

colour="white")) 
113  
114 # TRUE PRED 
115 rmw_plot_test_prediction <- function(df, bins = 30, coord_equal 

= TRUE) { 
116    
117   # Plot 
118   plot <- ggplot2::ggplot(df, ggplot2::aes(value, 

value_predict)) +  
119     ggplot2::geom_hex(bins = bins) + 
120     ggplot2::geom_abline(slope = 1, intercept = 0) +  
121     ggplot2::theme_minimal() + 
122     viridis::scale_fill_viridis( 
123       option = "inferno", 
124       begin = 0.3, 
125       end = 0.8 
126     ) +  
127     ggplot2::xlab("Observed CO Concentration") +  
128     ggplot2::ylab("Predicted CO Concentration") 
129   # Fix axes 
130   if (coord_equal) { 
131      
132     # Get axes limits 
133     min_values <- min(c(df$value, df$value_predict), na.rm = 

TRUE) 
134     max_values <- max(c(df$value, df$value_predict), na.rm = 

TRUE) 
135      
136     plot <- plot + 
137       ggplot2::ylim(min_values, max_values) +  
138       ggplot2::xlim(min_values, max_values) + 
139       ggplot2::coord_equal() 
140      
141   } 
142   return(plot)  
143 } 
144 rmw_predict_the_test_set( 
145   model = RF_modelo$model, 
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146   df = RF_modelo$observations 
147 ) %>%  
148   rmw_plot_test_prediction() 

 

 


