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IHepiinyn

H Ocswpia [Taryviov eival o Topéag TV epopUOCUEVOV LOONUATIKOV 0 0T010G
OOYOAEITOL LLE TNV GTPATNYIKY] OKEYN GE KATAGTACELS GLYKPOVCEWMV KOl GUVEPYUGING.
Méypt topa n Oeopio [oryviov eiye va kdvel pe Bempieg 10oppomidv, OT®G TNV
ooppomio. tov Nash kot didgopec mapairayéc tovg. Oumg, oVTEG Ol 10OPPOTIES,
YVOOTEG 6 OAOVE TOVG TOKTES, elval oo o vVtodelEn e Oewpiag [Maryviov otovg
moikteg yia 10 TL B Tpémetl va maiovv € €va Tolyvio. TNV TPOYHATIKOTNTO OUMG
OAeG aVTEG 01 Bempieg Oev LTOPOVV VO TOVV GTOVG TOIKTES TL Oa TPETEL VO TEPIUEVOLY
og évo maiyvio og mpaypotikd meptPaiiov. ‘Etol, to 2008 o Robert Aumann kat o
Jacques Dreze siofjyayav tnv évvola tov Rational Expectations ota maiyvia katd thv
omoia ot maikteg mailovv To Talyvio KAT® amd pio KOTAoTOo Totyviov (Tpayratiko
mepIBailov) — memoldnoewV Yo TIC TPAEES TV GAAOV  (OlO0TVTOUEVOV e
mhavobempntikovg 6povg). Kabe maiktng €xel v dkn tov mAnpoeopio (ektipnon
TOOVOTT®V) Kot TPooTadel va BEATIGTOTOINGEL TO AVOUEVOUEVO KEPSOG TOV. AVTO
LG 00NYNoE Vo SOVUE VTG TIG KOTAGTAGELS TTalyvimv amd TV okomid g Ocwpiog
[TAnpopopidv kol vo mpoomadnocovpe vo PBpovpe TL Umopodv vo. TEPUEVOLV Ol

TO{KTEG 0€ SLPOPETIKA TTEPIPAALOVTO TAT|pOPOPTIOC.






Abstract

Game theory is the branch of applied mathematics which deals with the
strategic thinking in conflict and cooperation situations. So far, Game theory deals
with equilibrium theories such as Nash Equilibrium and different refinements of them.
However, these equilibriums, which are known to every player, are like a
recommendation of the Game theory to the players what they should play in a game.
Actually, none of these theories can tell to the players what they can expect in a game
with a real life context. So, in 2008 Robert Aumann and Jacques Dreze introduced the
concept of Rational Expectations in Games in which the players play a game under a
game situation (the real life context) — beliefs about the actions of the others. Every
player has his information and tries to optimize his expectation. This led us to see
these game situations from an Information — theoretic point of view and try to find

what the players will expect in different Information environments.






Evyoaprotieg

[Ipwta amd 6Aa Ba MBela va gvyopiomom tov Kabnynty pov Andstoro
Tpayavitn yo v vroot)pin Kot TV TGTN TOV 6€ UEva oTa YPOVIO TOV CTOVIMV

LoV, a1oBavopal TuyEPOS TOL YVMPLGO OVTOV TOV AVOPMTO Kol ETIGTILLOVA.

Ymv ovvéyew Ba MBeha va guyoplotHo® TOLG Yyoveic pov [dvvn ko
EvayyeAio kot v adepen pov ZtéAla yuo v otpin Toug 6 O ta Prjpato g

Cong pov, ympig avtotg oe Ba fprokdpovy oto onueio va ypdem avtd To Keipevo.

Téhog Ba NBeda va dDow £va peydAio evyaplot® oty Aiva yua to ypdvia Tov

elvarl ocvuveymg dimha Lov.
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Introduction

The Game theory and the Shannon Information theory are two important
scientific disciplines with a deep impact in many scientific, financial and social

activities of mankind in the last 60 years.

The scope of the Game theory is to analyse situations of conflict and
cooperation in which many players with different preferences try to optimize their
payoffs. Thus, the contributions of game theory are in many scientific fields such as in
economics, in psychology, in philosophy, in engineering, in computer science, in
political science, in management, in biology etc. On the other hand, the main
contributions of Information theory are in communication networks, in signal
processing, in cryptography in applications such as coding, data compression etc.,
giving us for instance the maximum capacity of communication or the best rate of

compression.

During the years, there were many contributors to the modern Game theory
development. The first was John von Neumann who published the minimax theorem
in [V028] in his attempt to analyse the real life bluffs. According to this theorem, in
every two — person zero — sum game (see text for definition) there is a mixed strategy

for every player which can guarantee a specific minimum payoff.
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In [Na51], John F. Nash gave the equilibrium concept in every finite game, a
stable point from which none has any incentive to deviate, known as the Nash
Equilibrium. For this work, Nash was awarded with the Nobel Prize in economics in

1994.

In [Au74], Robert Aumann introduced another solution concept of the games,
the Correlated Equilibrium, which is a generalization of the Nash Equilibrium and

describes an equilibrium over a probability distribution.

All these theories deal with equilibriums, known to every player, resembling
recommendations of the Game theory about what they should play in a game.
However, none of these theories can tell to the players what they can expect in a game
in a real life situation. So, in [Au08], Robert Aumann and Jacques Dreze presented
the rational expectations approach of the games in which the players have beliefs
about the behavior of the other players and try to optimize their choices based on
these beliefs (estimation of the probabilities of the actions of the other players). These
beliefs and the game constitute a game situation in which every player has his
information (expressed by these probabilities) and tries to optimize his expectation.
However, the players must learn their beliefs (estimate their probabilities), so they
must read some form of information about them. It seems that the game situation
inserts information on the games, so this led us to search the role of the Information
Theory in the rational expectations of the players, that is to look the Game Theory

from an Information Theoretic point of view.
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Outlining the thesis, in the second chapter we give an introduction of the
Game theory giving the basic topics of this theory. In the third chapter, we describe
the Rational Expectations approach of Robert Aumann and Jacques Dreze. In the
fourth chapter we give some elementary topics in Shannon Information theory and in
the fifth chapter give an Information theoretic aspect of Game theory, giving our basic
results four theorems in which we determine the rational expectations of the players in

different Information environments. Finally, we give some conclusions for our thesis.
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The Mathematical Theory of Games

The Game theory is the mathematical approach to describe and analyse a
conflict or a cooperation situation — a game. In this way, we can give answers about
the best choice in situations in which rational players choose their strategies to
optimize their preferences taking into account the strategies of the other players. For
example, questions like “What is the best strategy in a poker game?”, “How can one
optimally bid in an auction?”, “How must one drive on a crossroad?”, “How can one
allocate the bandwidth fairly?” are just a small sample of the questions which the

Game theory can answer.

Strategic form of a game

The strategic form of a game is the formal description of a static game in
which the players act simultaneously without any knowledge of the strategies that are

being chosen by the other players (one — shot game).

The elements which describe a strategic game are the players, the strategies

and the utilities. Formally, we define a strategic game as the triplet <N 'S, ui> , Where

l. N is the set of the players N ={1,..,n}

Il. S, is the set of player i strategies

18



N
1. u,:S — R is the utility function of player i, where S zl_ISi is the

i=1

total strategy profile

N
Also, the total strategy profile of all players other than player i is S, = HS ;-
j=1

J#i
Every rational player tries to optimize his utility function, so we say that a player

prefers the strategy s, more than the strategy s; when ui(si,s_i)zui(si',s_i) for

Vs, €S ;.

Example

The Chicken Game

In a cross — road there are two drivers N :{1, 2}, every driver i has two
strategies S, = {Stop,Go} and the utilities of the driver i for every strategy profile are
u; (Stop, Stop) =6, u,(Stop,Go)=2, u;(Go,Stop)=7 and u,(Go,Go)=0. Every

driver wants to cross the road but he must consider what the other driver is going to
do. On the one hand, if the other player will stop, it is better for the driver to go and
on the other hand if the other player will go it is better for the driver to stop. All these
decisions are made simultaneously. The matrix below describes this static game and

we can see that in every strategy profile the payoffs of the two players are depicted,

for example in the (Stop,Go) profile the 2 is the payoff of the row player and the 7

the payoff of the column player. This game in bibliography is called as “the Chicken

Game”.
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Stop Go

Stop | 6,6 2,7

Go | 72 00

The Chicken Game

Zero — sum games

There is a specific class of 2 — player games which are named zero — sum
games or constant — sum games. The characteristic of these games is that the sum of
the payoffs of the players is zero or constant in every strategy profile, so the profit of

the one player is the loss for the other.

Example
The Penalty Game
A classical zero — sum game is the penalty game in which there are two
players the penalty kicker and the goal keeper N = {1, 2}. The penalty kicker is the

row player and the goal keeper is the column player. The players play the game

simultaneously, the penalty kicker tries to score a goal and the goal keeper tries to

save the goal. Every player has two choices — strategies S, = {Left, Right} , the kicker

can shoot left or right and the goal keeper can move left or right. If the kicker shoots
in the same direction with the keeper then the kicker loses 1 point and the keeper wins

one point, else the kicker wins 1 and the keeper loses 1.
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Left Right

Left [ -1,1 1,1

Right | 1,-1  -1,1

The Penalty Game

Dominant strategy

A strategy k of a player i is dominant to another strategy k' if
u; (k,s)>u;(k's;) for Vs €S In other words, the strategy k is a better choice
than the strategy k' in any case. Furthermore, a strategy k is strictly dominant to

another strategy k' if u; (k,s_;)>u;(k's;;) for Vs eS_,.

Example

If we change the payoffs of the row player in the Chicken game we can easily

see that the Stop strategy is a dominant strategy for this player.

Stop Go
Stop | 8,6 2,7
Go [ 72 0,0

An alternative Chicken Game
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Strictly dominated strategy

A strategy k of a player 1 is strictly dominated by another strategy k' if

u; (k,s;)<u;(k',s;). In other words, the strategy k is worse choice than the strategy

k' in any case.

Example

In the previous example, we can easily see that the Go strategy is strictly

dominated by the Stop strategy.

Stop Go
Stop | 8,6 2,7
Go [ 72 0,0

An alternative Chicken Game

Weakly dominated strategy

A strategy k of a player i is weakly dominated by another strategy k' if

u; (k,s;)<u;(k's;) forall s and u;(k,s;)<u,(k's_) for some s .

Example

If we change the payoffs of the row player in the Chicken game we can easily
see that the Go strategy is weakly dominated strategy by the Stop strategy for this

player.
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Stop Go

Stop | 7,6 2,7

Go | 72 00

An alternative Chicken Game

Solution concepts

The Game theory attempts to predict the result of the game when the players
are rational and they have the total knowledge of the game. Some solution concepts
are the pure Nash Equilibriums, the mixed Nash Equilibriums and the Correlated

Equilibriums.

Pure Nash Equilibriums

In the total strategy profile, there may be some interesting points, the pure
Nash Equilibriums, which can be characterized as a prediction of the game. A pure
Nash Equilibrium is a strategic profile in which no one has any incentive to deviate

from this. In other words, this point is preferable from everyone and everyone is

happy in this point. So, a strategy profile (slszsn) is a pure NE if and only if for

every player i
u (s,s5)zu(s)s5)

for Vs. €3S,
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Example of pure NE
Prisoners’ dilemma

The story is that two prisoners are arrested by the police for a crime. The
police have insufficient evidence for a conviction and separate both prisoners into
different cells to make them a deal. The deal is that if someone confesses and the
other does not, then the first will be free and the other will receive a full 20 — year
sentence. If both confess, then they will receive a 10 — year sentence. Finally, if no
one confesses, then they will be sentenced to only one year in jail for a minor charge.
Every choice is secret before the end of the investigation. How should the prisoners

act?

No Confess Confess

No Confess 11 20,0

Confess 0,20 10,10

The Prisoners’ dilemma

Every prisoner selfishly tries to minimize the years in the jail. We can see that
the Confess strategy is the best correspondence for every choice of the other prisoner.

This strategy is a dominant strategy. So, the (Confess, Confess) point is a pure NE.
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No Confess Confess

No Confess 1,1 20,0

Confess 0,20 10,10

Pure NE point of the Prisoners’ dilemma

A very interesting point in the prisoners’ dilemma game is that the best
strategy profile for both players is the (No Confess, No Confess) point but every
player does not know the choice of the other player so they selfishly try to minimize

their payoff and they go to the (Confess, Confess) point.

Example of pure NE
Pure NEs of the Chicken Game

We can see that if the one player plays Stop then the other player prefers to Go
and if the one player plays Go then the other player prefers to Stop. So, the Chicken

Game has two pure NEs the (Stop, Go) and (Go, Stop) strategy profiles.

Stop Go

Stop | 6,6 27

Go | 72 00

Pure NEs of the Chicken Game
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Mixed Nash Equilibriums

Sometimes the players independently draw a dice and take decisions about

their strategies. This is called mixed strategy because they mix their choices according

to a dice. If we symbolize as Z all distributions of player i over S,, then a mixed

strategy is symbolized as o ez , this is the probability mass of the pure strategies.

We can see that the mixed strategies are a generalization of the pure strategies. In this

case, every rational player i tries to optimize the utility

o ()-2[TTo(3) a9

seS \  j=1

, Where j is the other players.

Thus, the profile of the mixed strategies (aj,a;,...,a:) is a mixed NE if and only if

for every player i
u; (of,aii ) > U, (ai',aii )

for VO‘i. €X..

The main property of a mixed strategy is that it creates indifference between the pure
strategies which belong to the support of this distribution. A pure strategy belongs to

the support of a mixed strategy if the probability of this pure strategy is non — zero,

o,(s;)>0.
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Example of mixed NE

We try to find the mixed NE of the chicken game.

Stop Go
Stop | 6,6 2,7
Go [ 72 0,0

The Chicken Game

Assume that p, is the probability of the row player to play the Stop strategy
and the probability of the column player is p,. If the column player plays the mixed
NE, then the row player is indifferent between his strategies. If p, is the mixed NE
strategy of column player then his payoffs are

Stop: 6p, +2(1-p,)=4p, +2

Go:7p,

The two payoffs are equal if and only if p, =2/3. So, the (2/3,2/3) pointisa

mixed NE because of the game symmetry.

Example of mixed NE in zero — sum games
The Jamming Game

In a wireless network, a transmitter wants to send a packet to a receiver. There

are two channels and the transmitter must choose only one of them to send the data.
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However, a malicious jammer wants to disrupt the transmission. If we consider that

this is a zero — sum game, what is the best strategy for every node?

Chl Ch2

ch1|-11 1-1

Ch2|1-1 -11

The Jamming Game

We can see that if one of the nodes chooses only one channel, then the other
will have a deterministic choice, so the first player will lose the game. Therefore, we
conclude that the players must randomize their strategies between the channels.

However, which is the best frequency of randomization?

The mutual best frequencies of randomization are the frequencies of the mixed
NE strategies, playing these strategies both players are happy. We will use the

indifference property of the mixed NE to find them. The probability of player 1 to

choose the channel 1 is p, and for player 2 is p,. If player 2 plays the mixed NE,

then player 1 is indifferent between the channels. If p, is the mixed NE strategy of

player 2 then the payoffs of player 1 are
Ch :1-2p,

Ch,:2p,-1
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The two payoffs are equal if and only if p, =1/2. So, the (1/ 2,1/ 2) point is a mixed

NE because of the game symmetry.

Mixed NE of the zero — sum games as a maxminimizer linear program

An interesting point here is that the mixed NE of the zero — sum games is the

solution of a maxminimizer linear program. We can see again the Jamming Game.

Chl Ch2

ch1|-11 1-1

Ch2 |1-1 -11

The Jamming Game

If the probability of the row player to choose the Ch, is p then his expected payoff

when the other player chooses Ch, is

Exp(p.ch)=—p+1-p=-2p+1

and when the other player chooses Ch,

Exp(p,ch,)=p-1+p=2p-1

29



Row player
payoff
Mixed
NE
1 _ch2 l 1
0
1/2 p->1
chl
1 -1

fig. 1. Maxminimizer

We can see that, if the column player randomizes his strategy between the two

channels the expected payoff of the row player is in the interval [-1,1]. However,

there is a strategy p=1/2 that can guarantee a minimum payoff and in this strategy

he is indifferent about the strategy of the other player. This strategy is called minimax
strategy and if both players play this strategy, this is a mixed NE. The payoff is called

the value of the zero — sum or constant sum game, in this example this value is zero.

Correlated Equilibriums

In [Au74], Robert Aumann introduced the Correlated Equilibrium concept.
This solution concept is a generalization of the NE, so every NE is a CE. The
difference is that a NE is only produced by a product distribution. So, a CE which is
based on a product distribution is a NE. The idea is that the players decide about their
actions according to a trusty signal. This information source chooses a strategy profile

from a probability distribution and secretly informs every player his strategy from
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which no one has any incentive to deviate. For example, in a cross — road a traffic

light recommends every driver what to do according to a public distribution.

Stop Go
Stop | 6,6 2,7
Go | 7,2 00

The Chicken Game

Stop Go

Stop | 1/3 1/3

Go [ 113 O

The traffic light distribution

If one player will be informed to stop, then he knows that the other player will
uniformly play one of the strategies and his expected payoff is %6+%2:4. If he

deviates, his expected payoff is 3,5. So, he has no incentive to deviate. On the other
hand, if the player will be informed to go, he knows that the other player will surely
stop and the best strategy for him is to go. This probability distribution is called CE.
Every CE can be characterized as a specific number of linear inequalities depending
on the number of the strategies. These linear inequalities create the polytope of the

CE.
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Formal description of a Correlated Equilibrium

A CE is a probability distribution {ps} over the strategy profiles of a game.

For every strategy k of a player i the expected payoff playing this strategy is no

smaller than every other strategy k'.

D (u;(k,s)—u; (k's))p =0

seS_;

So, every player has no incentive to deviate from every recommendation which is

based on a CE.
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Rational Expectations in Games

In [Au08], Robert Aumann and Jacques Dreze introduced the Rational
Expectations approach in games. In this approach, every player has beliefs about the
other player and chooses a strategy in order to maximize his expectation based on
these beliefs and on the abstract formulation of the game (the strategic form of the

game).

The main reason for following this approach is that if one knows only the
abstract formulation of a game, it is not sure that the players will play a NE. So, one
cannot reasonably expect a NE payoff, even in the case in which there is only one
NE. This is because in real life there are many parameters which can affect the result
of the game besides the abstract formulation of the game (the players, the strategies
and the payoffs). So, the real life context creates different situations in the same game.
For example, we can imagine a road with two lanes and two players with two
different directions. The same game will be played differently in Greece and in UK
because the traffic regulations about the directions in the lanes are different in these
two countries. So, the real life context creates two different situations in the same

game.

We can understand that the abstract formulation is poor to lead the players into
a reasonable expectation. Someone must also take into account the “game situation”

(the real life context) in which the game will be played.
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Every game situation is the beliefs of the players, the belief hierarchy of each
player, what a player believes about the actions of the other player, about what the
other player believes that he will play, about what the other player believes about that

and so on. This belief hierarchy creates a tree of beliefs see fig. 2.

Player2
Playgzo
Player2 0

<

Player <:

fig. 2. An example of belief hierarchy

Belief hierarchy and belief system

We define formally the belief hierarchy of the game <N,Si,ui>. A belief

hierarchy is described by a belief system B which consists of

I AsetT ={t,..t.} which is the set of player i’s types
Il.  Forevery type t. of player i there is

1. A pure strategy s (t) in the game which maximizes his

expected payoff
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2. A probability distribution on the types of other players which is

called the theory of this type

These belief hierarchies are symbolized as a Common Prior, a distribution

over the players’ types T, x...xT_ ~(known to everyone) and the theory of every type

t. is the conditional probability of this distribution for this type. So, according to this

approach every player secretly knows his type (his information) and chooses a

strategy to maximize his expected payoff based on this theory.

An expectation is rational, if it is based on a Common Prior (CP) and if there
is Common Knowledge of Rationality (CKR), everyone is rational, everyone knows

it and everyone knows that and so on.

This expectation is expressed as a conditional CE payoff of a game close to

the initial game. In particular, in order to find the REs based on a CP we use a CE
distribution of a game G very close to the initial game G . The only difference in

both games is that there are the same strategies but the game G has the same number
of the copies of the strategies as the number of the player’s types in the CP which
correspond to a strategy. We change the game because we want a CE distribution
which corresponds to the CP types and the CE payoffs of the games are different in
the two cases. In the RE approach we consider only pure strategies and we look for

the payoff which a player can expect when he chooses a pure strategy.
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Example

We consider a situation of the Chicken Game and we try to discover the REs
in this situation. We know that according to the abstract formulation of the game this
game has two pure NEs (Stop, Go), (Go, Stop) strategic profiles and one mixed NE
(2/3 Stop, 2/3 Stop). However, if there is a CP distribution such as in our example
below it is not sure that the players will play a pure NE. The players have their private
type — information and try to optimize their choice according to this information. We
can see that the CP distribution is a CE over the game (every strategy corresponds to

only one type).

Stop Go Stop Go Stop Go Stop Go

Stop | 6,6 2,7 Stop | 1/3 1/3 Stop| 1/2 1/2 Stop|1/2 | 1

Go | 7,2 0,0 Go | 1/3 O Go 1 0 Go |1/2 | 0O

The Chicken Game A Common Prior Row Player beliefs Column Player

beliefs

If the row player’s type is Stop then he believes that the column player is %Stop and

%Go and he believes that if the column player is Stop then column player believes

that the row player is %Stop and %Go and so on. This is the belief hierarchy which

is described by the CP.
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If the row player’s type is Stop then the strategy which maximizes his payoff is to stop

and his expectation is %6+%2:4. If the column player is of type Stop then the

mutual REs are (4,4). However, if the column player 2 is of type Go then we see that

the mutual REs are (4, 7), this payoff profile is out of the feasible payoff area. So, we

realise that the REs may be mutually inconsistent because of the different

information.

Example

We consider a particular situation of the Chicken Game again and we try to

discover the REs in this situation. In this case, we assume that there are more types

Go in the CP which correspond to the same strategy Go.

Stop Go Stop Go Stop Go Stop Go

Stop | 6,6 2,7 Stop| 1/3 1/3 Stop | 1/2 1/2 Stop | 8/15 | 8/9
Go | 7,2 0,0 Gol | 1/6 0 Gol| 1 0 Gol | 4/15| 0

Go | 72 0,0 Go2 | 1/8 1/24 Go2 | 3/4 1/4 Go2 | 3/15 | 1/9

The Chicken Game

G

A Common Prior

Row Player beliefs

Column Player

beliefs

In order to find the REs we just duplicate the Go strategy and take the game G

because we can see that in CP we have two types Gol and Go2 which correspond to

the same strategy.
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Example of zero — sum game
We consider a situation of the Jamming Game and we try to discover the REs
in this situation. However, the Jamming Game is a zero — sum game and the only

feasible CE — CP is the product distribution of a Mixed NE.

Chl Ch2 Chl Ch2 Chl Ch2 Chl Ch2

Chi|-11 11 Chl|1/4 1/4 Chi|1/2 1/2 Chl|1/2|1/2

Ch2| 1-1 -11 Ch2|1/4 1/4 Ch2|1/2 1/2 Ch2|1/2|1/2

The Jamming Game A Common Prior Row Player beliefs Column Player

beliefs

We can see that the only RE in this example is the zero which is the value of this zero

— sum game.

The main theorems of the RE approach are

I.  The RE of any two — person zero — sum game situation with CKR and CP

is the value of the game.

Il.  The REs in a game G are the conditional CE payoffs in the game 2G.
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The first theorem tells us that the only reasonable expectation in a zero — sum
game is the value of the game because the only feasible game situation CE is the
product distribution of the mixed NE. It is a very reasonable result because we can
think that in every zero — sum game the profit of one player is the loss for the other
and every player has a guarantee minimax strategy which is the mixed NE. So, it is

only rational that the players will expect the value of the game.

In the REs approach, the players don’t have a guaranteed payoff, they just
expect something rational, the RE payoff. The difference between this approach and
equilibrium theories is that the equilibriums are like a recommendation of the Game
theory which is known to everyone. However, in the REs approach every player has
private information and tries to play optimally according to this information.
However, how can a player learn his type? How can a player learn what he believes?
It seems that the game situation inserts Information on the game which every player
must read in order to learn his type. We try to discover the role of this Information in

these game theoretic situations from an Information theoretic angle.
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Information Theory

In [Sh48], Claude Shannon gave answers about the maximum capacity of a
communication channel and the optimum data compression. Claude Shannon defined
the quantity of the Information which is contained in a random event as the average
uncertainty of this event. For instance, if an unexpected event happens, it will give us

more Information than an expected event because we did not expect it!

The Shannon Information theory has many applications in almost all scientific
fields. For example, in communications, in statistics, in portfolio theory, in
mathematics of gambling, in computer science, in mechanics etc. In this chapter, we

give the basic elements of the Shannon Information theory.

Shannon Entropy

The main concept of the Shannon Information theory is the entropy. Entropy
is the average uncertainty of a random variable. Entropy tells us how many units of
Information are carried by a random variable. If we consider a discrete random

variable with an alphabet X and a probability mass function

p(x)=Pr[X =x],xe X, then the entropy is

=->" p(x)log p(x

xeX

If the log is to the base 2, then the unit of entropy is the bit (binary unit).
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Example

In a coin flip with a fair coin, the entropy of the result X

H(X):—%Iogzé—%logzézl bit (binary unit) we need 1 bit (binary digit) to
describe the result. If the probability mass function is p(head):%, then
3 3 1 1 o :
H(X)=--=log,——=log, —=0.8113 bits (binary units).
(X) == l09, = l0g, 5 (binary units)

Joint Entropy

If we have a pair of random variables (X,Y) with a joint distribution p(x,y)

, then the entropy of this distribution is called joint entropy. This entropy is defined as

H(X,Y)==2> > p(x y)log, p(x.y)

xeX yeY

Example

We consider the joint distribution p(x, y) and we try to find the joint entropy.

Y1 Y,
X, 0 1/2
X, 1/2 0

Joint distribution p(X, y)
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H (X.Y) = log, (2)+>log, (2) ~1bit

We need only 1 bit of Information in order to describe the result of the experiment.

Conditional Entropy

The condition entropy H (Y / X)) is described as

H(Y/X)==>.> p(x y)log, p(y/x)

xeX yeY

Example
We consider the joint distribution p(x, y) and we try to find the conditional

entropy H (Y /X).

i Y
x |1/4 1/4
X, | 1/4 1/4

Joint distribution p(X, y)
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i Y.

X, 1/2 1/2

X, 1/2 1/2

Conditional distribution p(y/x)

H(YX)=ZH (Y1 X =)+ 2H(Y 1X =X) = 2+ =1 bit

This means that if we know the X we want on average 1 bit more in order to find the

Y.

Mutual Information

When we have two random variables, we can measure the amount of

Information which one variable gives about other. This can be calculated by the

mutual Information I(X;Y). Intuitively, the mutual Information is the distance

(Kullback distance) between the joint distribution and the product distribution.

I(X;Y>=;y§p<x’y>"’9%
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Example

We consider the joint distribution p(x, y) and we try to find the mutual

Information.

Y1 Y,
X, 0 1/2
X, 1/2 0

Joint distribution p(X, y)

I(X;Y):x;yzev: p(x, y)log%:1 bit

This means that when we know something about the value of X distribution
then we know the value of Y. In this particular case, we can tell that both
distributions are fully correlated and we just want only one bit to describe the total

result because with only one bit we can describe one of the distributions.

The relationship between the entropy, the joint entropy, the conditional entropy and

the mutual Information is depicted on the figure 3.
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H(X,Y)
o\

H(TX) H(Y)

fig. 3. The decomposition of the total average Information
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An Information — theoretic view
of Games

How can a player learn his type in a game situation? How can a player learn
what he believes? It seems that the game situation inserts information into the game
(in the form of probability distributions) which every player must read in order to

learn his type.

Thus, a game situation is characterized by an amount of information on the
game. In the following we will look at this from an Information theoretic point of
view and will try to determine the role of the Shannon Information Theory on the

Rational Expectations of the games.

The total average Information of a game situation equals with the minimum
number of bits of Information which are needed to describe the result of the game.
When we try to find the RES, we use a CE of the types of players. This CE is a joint
probability distribution of the types of both players. So, the total Information of the
game situation is the joint entropy of the joint distribution of the types of the players,

the entropy of CE.

If X isthe random variable of player 1’s types and Y is the random variable
of player 2’s types then the total Information of the game situation is the entropy of

the CE
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H(X,Y)==2> > p(x y)log, p(x.y)

xeX yeY

The minimum number of bits which player 1 needs to learn his type is
H(X)=H(X/Y)+1(X;Y)

, Where H (X /Y) is the private Information, the average extra bits which player 1

knows when player 2 is of a specific type and | (X ;Y) is the public information.

For player 2
H(Y)=H(Y/X)+1(X;Y)

, Where H (Y / X) is the private and 1 (X;Y) is the public information.

We know that H(X,Y)=H(X/Y)+I(X;Y)+H(Y/X), this means that if one

wants to know the result of the game then he must know the private Information of

each player and the public Information of the game.
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fig. 4. The total average Information of the game situation

Example

We can consider again the situation of the Chicken Game and we try to

discover the total Information in this game. The CE which we use to find the REs is

the same as the CP because every strategy corresponds to only one type.

Stop Go Stop Go Stop Go Stop Go
Stop | 6,6 2,7 Stop | 1/3 1/3 Stop| 1/2 1/2 Stop | 1/2 | 1
Go | 7,2 0,0 Go |1/3 O Go 1 0 Go |1/2| 0

The Chicken Game A Common Prior Player 1 beliefs

The total average Information of this game is

H(X,Y)=log(3) bits
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, this means that we need log(3) bits in order to describe the result of the game.

According to the CP, the distribution of player 1’s types is [Stop,Go]=[2/3,1/3].

So, player 1 needs H (X ) bits to learn his strategy.

H (X )=0.9183 bits

Similarly, the distribution of player 2’s types is [Stop,Go]=[2/3,1/3]. He needs on

average H (Y) bits to learn his strategy.

H (Y)=0.9183 bits

In our example, the private Information of each player is zero.
H(X/Y)=2/3 bits
H(Y/X)=2/3 bits

The public Information is

1 (X;Y)=0.253 bits

Based on these observations we can formulate and prove our four Theorems.
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THEOREM A:

In a game situation with Common Prior and Common Knowledge of Rationality and

with no total Information the players play a pure NE.

Proof.

In this case, the players don’t need Information to learn their types. Everyone knows

everything and the players choose the strategies which maximize their payoffs. This is

a pure NE. The result of the game is deterministic.

Example

In the Chicken Game we consider a situation in which it is sure that the players will

play one only strategy profile.

Stop Go Stop Go Stop Go Stop Go
Stop| 6,6 2,7 Stop| O 1 Stop| O 1 Stop| O 1
Go | 7,2 0,0 Go 0 0 Go 0 0 Go 0 0

The Chicken Game

A Common Prior

Player 1 beliefs

The total average Information of this game is

H(X,Y)=0 bits

The result of the game is deterministic.
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According to the CP, the distribution of player 1’s types is [Stop,Go]=[1,0]. So,

player 1 needs H (X) bits to learn his strategy.

H(X)=0 bits

Similarly, the distribution of player 2’s types is [Stop,Go]=[0,1]. He needs on

average H (Y) bits to learn his strategy.

H (Y )=0 bits

In our example, the private Information of each player is zero.
H(X/Y)=0 bits
H(Y/X)=0 bits

The public Information is
1 (X;Y)=0 bits

We see that the players play a pure NE.

THEOREM B:

In a game situation with CP and CKR in which there is only public Information, the

players play a pure NE.
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Proof.

In this case, there is no private Information, everyone knows the same public

Information. So, if a player learns his type then he learns the type of other player.

Furthermore, we know that both players play strategies which maximize their

expected payoff according to their types, so these strategies constitute a pure NE.

Example

In the Chicken Game we consider a situation in which there is only public

Information.

Stop Go Stop Go Stop Go Stop Go
Stop | 6,6 2,7 Stop| 0 1/2 Stop| O 1 Stop| O 1
Go | 7,2 0,0 Go |1/2 O Go 1 0 Go 1 0

The Chicken Game A Common Prior

The total average Information of this game is

H(X,Y)=1 bit

Player 1 beliefs

Player 2 beliefs

According to the CP, the distribution of player 1's types is [Stop,Go]=[1/2,1/2].

So, player 1 needs H (X ) bits to learn his strategy.

H(X)=1 bit



Similarly, the distribution of player 2’s types is [Stop,Go]=[1/2,1/2]. He needs on

average H (Y) bits to learn his strategy.

H(Y)=1bit

In our example, the private Information of each player is zero.

H(X/Y)=0

H(Y/X)=0

The public Information is
I (X ;Y)=1 bit

We see that the players reach a pure NE.

THEOREM C:

In a game situation with CP and CKR and with only private Information the players

expect a mixed NE payoff.

Proof.

In a game situation where the public Information is zero the mutual Information

I(X;Y) is zero. When the mutual Information is zero, the types’ distributions are
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independent, but a CE which is a product distribution it is a mixed Nash Equilibrium.

So, in these situations players expect a mixed NE payoff.

Example

In the Chicken Game we consider a situation in which there is no public Information.

Stop Go Stop Go Stop Go Stop Go
Stop | 6,6 2,7 Stop| 4/9 2/9 Stop | 2/3 1/3 Stop | 2/3 | 2/3
Go | 7,2 0,0 Go | 2/9 1/9 Go | 2/3 1/3 Go | 1/3 | 1/3

The Chicken Game

A Common Prior

Player 1 beliefs

The total average Information of this game is

H(X,Y)=1.8366 bits

Player 2 beliefs

According to the CP, the distribution of player 1’s types is [Stop,Go]=[2/3,1/3].

So, player 1 needs H (X ) bits to learn his strategy.

H(X)=

0.9183 bits

Similarly, the distribution of player 2’s types is [Stop, Go]=[2/3,1/3].
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He also needs on average H (Y) bits to learn his strategy.

H (Y)=0.9183 bits

In our example, the private Information of each player is
H(X/Y)=H(X)
H(Y/X)=H(Y)
The public Information is
1 (X;Y)=0 bits

We see that the players expect a mixed NE.

THEOREM D:

In any two — player zero — sum game with CP and CKR, the only possible “game

situation” has private Information.

Proof.

In any two — player zero — sum game the only possible game situation is a game
situation with only private Information. The reason is that the only CE distribution
over a two — player zero — sum game is the distribution of a mixed NE. Intuitively, in
a two — player zero — sum game every player wins the loss of the other player,
therefore it is reasonable in these games for a player to not know anything about the

type of the other player. So, the only possible Information environment is a situation
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with only private Information. This theorem is almost the same as the theorem A in
[Au08] because if there is only private Information then the only RE is the value of
the game. But in our approach our interest lies with the Information environment of

these games.

A simple 2 - player Poker Game

The poker game is a fundamental situation of conflict and we realise that the
Information theory plays a crucial role in the game because in every decision making
the players must take into account the bits of Information on the table. So, we present

a simple poker situation from an Information theoretic point of view of game theory.

We consider a 2 — player poker Game, the two players read Information from
the table (the public hands, the movements of the players) and they understand if they
have the best hand or not. In every movement they must think if they have the best
hand or not in order to play as they have it or not. So, we construct a very simple
game in which every player chooses if he has the best hand or not. If both players
simultaneously choose that they have the best hand or the worst then the payoff for
everyone is 0 in these cases none has any advantage in the poker game. If someone
chooses that he has the best hand and the other the worst then the first takes 2 points
and the second 1 point because the player with the best hand has advantage in the

game for example he can bluff easier than the other player.
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Best hand Worst hand

Best hand 0,0 2,1

Worst hand 1,2 0,0

Best or worse hand Game

This game has two pure NE the (Worst, Best) and the (Best, Worst) and one mixed
NE the (2/3 Best, 2/3 Best) in which they randomize their strategies with a probability

2/3 best hand.

Case 1

If we assume that the total Information of the game is zero, the result of the game is

deterministic everyone knows that the column player has the best hand on the table.

Best Bad Best Bad Best Bad Best Bad

Best | 0,0 2,1 Best 0 1 Best 0 1 Best 0 1

Bad | 1,2 0,0 Bad 0 0 Bad 0 0 Bad 0 0

The best — bad hand A Common Prior Player 1 beliefs Player 2 beliefs

Game
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Case 2

If there is only mutual Information then everyone knows the same Information so the

result of the game will be one of the two pure NE.

Best Bad Best Bad Best Bad Best Bad

Best| 0,0 21 Best| 0 1/2 Best| 0 1 Best| 0 1

Bad | 1,2 0,0 Bad | 1/2 0 Bad 1 0 Bad 1 0

The best — bad hand A Common Prior Player 1 beliefs Player 2 beliefs

Game

Case 3

If there is only private Information then they must expect only a mixed NE payoff.

Best Bad Best Bad Best Bad Best Bad

Best | 0,0 2,1 Best | 4/9 2/9 Best | 2/3 1/3 Best | 2/3 | 2/3

Bad | 1,2 0,0 Bad | 2/9 1/9 Bad | 2/3 1/3 Bad | 1/3 | 1/3

The best — bad hand A Common Prior Player 1 beliefs Player 2 beliefs

Game

We can see that the information has a crucial role in decision making when
someone knows only his private Information the only rational result is a mixed NE.
On the other hand, if everything are known as the two first cases the players know

everything in the table so they will reach a pure NE.
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Conclusions

In our Theorems, we give four cases of feasible information environments

which result in a NE.

The result of the first theorem is not surprising because if everyone knows the
action of the other player the rational players will play a NE. This is the main point of

the Nash equilibrium theory.

The result of the second theorem is like a generalization of the first theorem
because if there is only public information in the game situation this means that in
every case when a player reads information about his type then automatically knows
what type the other player is. So, if everyone knows what the other play will play then

the result will be a pure NE.

The result of the third theorem tells us that in every Information environment
in which every player knows the private bits for his type the only rational expectations
of the players is a mixed NE payoff. So, when a player does not know anything about

the type of the other player then the players will expect a payoff of a mixed NE.

Finally, the last theorem is a specific case of the third in the meaning that in
the zero — sum games the only Information environment is with only private
information. Each player does not have any information about the type of the other

player(s), so the only rational expectation in this case is the mixed NE payoff.
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