
Computer Science Department
University of Crete

DARC: Design and Evaluation of an I/O Controller
for Data Protection

Master’s Thesis

Markos Fountoulakis

May 2010

Heraklion, Greece

University of Crete
Computer Science Department

DARC : Design and Evaluation of an I/O Controller for Data
Protection

Thesis submitted by
Markos Fountoulakis

in partial fulfillment of the requirements for the
Master of Science degree in Computer Science

THESIS APPROVAL
Author:

Markos Fountoulakis
Committee approvals:

Angelos Bilas
Associate Professor, Thesis Supervisor

Kostas Magoutis
Researcher

Dimitris Nikolopoulos
Associate Professor

Departmental approval:

Panagiotis Trahanias
Professor, Director of Graduate Studies

Heraklion, May 2010

Abstract

Lately, with increasing disk capacities, there is increased concern about pro-
tection from data errors, beyond masking of device failures. In this thesis, we
present a prototype I/O stack for storage controllers that encompasses two data
protection features: (a) persistent checksums to protect data at-rest from silent
errors and (b) block-level versioning to allow protection from user errors. Al-
though these techniques have been previously used either at the device level
(checksums) or at the host (versioning), in this work we implement these fea-
tures in the storage controller, which allows us to use any type of storage devices
as well as any type of host I/O stack. The main challenge in our approach is to
deal with persistent metadata in the controller I/O path. Our main contribu-
tion is to show the implications of introducing metadata at this level and to deal
with the performance issues that arise. Overall, we find that data protection
features can be incorporated in the I/O path with a performance penalty in the
range of 12% to 25%, offering much stronger data protection guarantees than
today’s commodity storage servers.

Supervisor Professor: Angelos Bilas

i

Per�lhyh
Σχεδίαση και Αξιολόγηση ενός ελεγκτή Εισόδου Εξόδου για Προστασία Δεδομέ-
νων
Τον τελευταίο καιρό οι εφαρμογές απαιτούν περισσότερα χαρακτηριστικά προ-

στασίας δεδομένων, πέρα από την απόκρυψη αποτυχιών υλικού, ώστε να επιτύχουν
ακεραιότητα δεδομένων και να επαναφέρουν τυχόν λάθη χρήστη. Σε αυτή τη μετα-
πτυχιακή εργασία παρουσιάζουμε ένα πρωτότυπο στοίβας Εισόδου/Εξόδου (Ε/Ε)
με εκτεταμένα χαρακτηριστικά προστασίας δεδομένων: (α) μονίμως διατηρούμενα
ψηφία ελέγχου για την προστασία αποθηκευμένων δεδομένων από σιωπηλά λάθη,
και (β) τήρηση εκδόσεων σε επίπεδο μπλοκ για την προστασία από λάθη χρηστών.
Παρά το γεγονός ότι οι τεχνικές αυτές έχουν χρησιμοποιηθεί στο παρελθόν είτε
στο επίπεδο συσκευής (checksums) είτε στο επίπεδο του διακομιστή (versioning),
σε αυτή τη δουλειά υλοποιούμε αυτά τα χαρακτηριστικά στο επίπεδο ελεγκτή α-
ποθήκευσης, το οποίο μας επιτρέπει να χρησιμοποιήσουμε οποιουδήποτε τύπου
συσκευές αποθήκευσης καθώς και οποιαδήποτε στοίβα Ε/Ε. Η προσέγγισή μας
απαιτεί ο ελεγκτής να διαχειριστεί μόνιμα αποθηκευμένα μεταδεδομένα στο μονο-
πάτι Ε/Ε. Η κύρια συνεισφορά μας είναι η εξέταση των συνεπειών της εισαγωγής
μεταδεδομένων σε αυτό το επίπεδο και η αντιμετώπιση των θεμάτων επίδοσης που
ανακύπτουν. Βρίσκουμε ότι τα χαρακτηριστικά προστασίας δεδομένων μπορούν
να ενσωματωθούν στο μονοπάτι Ε/Ε με επιδείνωση επίδοσης στο εύρος 12% -
15%, προσφέροντας πολύ ισχυρότερες εγγυήσεις προστασίας δεδομένων από τους
σημερινούς εξυπηρετητές αποθήκευσης.

Επόπτης καθηγητής: ΄Αγγελος Μπίλας

ii

Acknowledgements

We thankfully acknowledge the support of the European Commission under the
6th and 7th Framework Programs through the STREAM (FP7-ICT-216181),
HiPEAC (NoE-004408), and HiPEAC2 (FP7-ICT-217068) projects.

I would like to thank my supervisor, Angelos Bilas and my colleauges, Mano-
lis Marazakis and Michail D. Flouris.

Markos Fountoulakis
Heraklion, May 2010

iii

Euqarist�e
Ευχαριστώ ιδιαιτέρως τον Απροσάρμοστο Μαραζάκη για την καταπίεση και τη
συγγραφή. Ευχαριστώ τον Ανυποψίαστο Φλουρή για τη θετική ενέργεια που εξέ-
πεμπε όταν δεν αναρωτιόταν τι κάνω. Ευχαριστώ τον Αχαΐρευτο Νικηφόρο για τη
γκρίνια και το Γιώργο Τζενάκη για τη συμβολή του στο χρονοπρογραμματισμό.
Ευχαριστώ τον ΄Ακυρο Κλονάτο και τον Αδιόρθωτο Μακατό για τον αποπροσανα-
τολισμό. Επίσης ευχαριστώ την Κρύστα και τη Ζίρα. Ευχαριστώ τον Ανυπόφορο
Πασσά για την απουσία του όταν έγραφα αυτήν την εργασία. Ευχαριστώ το Μι-
χάλη Αλβανό για τη διαπίστωση πως όλα τα προβλήματα έχουν μια προφανή λύση
που αγνοώ. Ευχαριστώ τη Ζωή Σεμπέπου και τον ΄Ασφαιρο Τσαλιαγκό για την
πανηγυρική ατμόσφαιρα. Ευχαριστώ τον Αμόρφωτο Χασάπη για το χαμόγελο της
Κρεστ. Ευχαριστώ το Γιάννη Μανουσάκη και του εύχομαι ευτυχισμένο αρραβώνα.
Ευχαριστώ την οικογένεια μου που με αντέχουν ακόμα. Ευχαριστώ τους φίλους
μου και τη Μαρία.

Μάρκος Φουντουλάκης
Ηράκλειο, Μάιος 2010

iv

Contents

1 Introduction 1

2 Related Work 4

3 System Design and Architecture 6
3.1 Preliminaries . 6
3.2 Embedded System Platform . 6
3.3 Host System Software Platform 7
3.4 Host-controller I/O Path . 8
3.5 Buffer Management . 11
3.6 Context Scheduling . 12
3.7 Error Detection and Correction 13
3.8 Storage Virtualization . 15
3.9 On-Board Cache Considerations 15
3.10 Summary of Design Choices . 15
3.11 Platform-specific implementation details 16

4 Experimental Evaluation 18
4.1 Base Performance . 18
4.2 DMA and PIO Performance . 18

4.2.1 Synthetic I/O Patterns 19
4.3 Impact of Allocator and DMA Segments 21
4.4 Server Workloads . 22
4.5 Impact of Data Protection Mechanisms 23
4.6 Cost of Data Recovery . 25

5 Conclusions 27
5.1 Future Work . 28

v

List of Figures

3.1 Data path in DARC . 7
3.2 Windows I/O stack. 8
3.3 Windows framework characteristics. 9
3.4 DARC I/O stack. 10
3.5 I/O issue and completion path in DARC without CRC support. 11
3.6 I/O issue and completion path in DARC with CRC support. . . 12
3.7 Error correction procedure in the controller I/O path (Figure 3.6). 14

4.1 I/O throughput for sequential 64KB reads and writes with 8 disks
in RAID-0. 20

4.2 I/O throughput for sequential 64KB reads and writes with 8 disks
in RAID-10. 21

4.3 IOPS performance for OLTP, FS, and WEB access patterns with
8 disks in RAID-0. 22

4.4 IOPS performance for OLTP, FS, and WEB access patterns with
8 disks in RAID-10. 23

4.5 Impact of buffer allocator and DMA segment sizes: Sequential
I/O Throughput with 8 disks in RAID-0. 24

4.6 Impact of data protection on TPC-H. 25

vi

List of Tables

3.1 Design choices in DARC . 16

4.1 IOP348 Microbenchmarks. 19
4.2 Server workload parameters. 22
4.3 JetStress results (IOPS). 25
4.4 Recovery costs (operations). 26

vii

Chapter 1

Introduction

In the last three decades there has been a dramatic increase of storage density
in magnetic and optical media, which has led to significantly lower cost per
capacity unit. Today, most I/O stacks already encompass RAID features for
protecting from device failures. However, recent studies of large magnetic disk
populations indicate that there is also a significant failure rate of hardware
and software components in the I/O path, many of which are silent until data
are used by applications [26, 34, 28, 4, 19]. Dealing with silent data errors
on storage devices becomes critical as more and more data are stored on-line,
on low-cost disks. In addition, storage snapshots and versions have been an
important technique for dealing with various types of failures, including human
errors. As the amount of information maintained in storage systems increases,
both silent and human errors become more pressing problems. With current
technology trends, it is important to examine cost-effective solutions to those
problems that are applicable to commodity systems.

Today, solutions for silent errors appear in high-end disks that provide ad-
ditional block space for storing checksum information, e.g 520-byte sectors to
store 512 bytes of user-accessible data [1], and may perform data checks during
transfers. Such features are not available in commodity disks and I/O controllers
widely used today in most storage systems. Integrity checking introduces two
challenges. First, computing the checksum needs to occur at a point in the
I/O path that minimizes the impact on I/O throughput. Second, it requires
maintaining checksums per data block in a persistent manner, and performing
the checksum retrieval and comparison with minimum impact on response time.
Supporting additional data protection features, such as versioning of storage vol-
umes, also necessitates keeping persistent data structures with sizes that grow
with the capacity of the original volumes. The key challenge is to sustain high
I/O rates for versioned volumes, while verifying the integrity of the accessed
data blocks. State information needs to be computed, stored, and updated
in-line with I/O processing.

In this thesis we design and implement a high-performance storage controller
that provides silent transparent silent error detection and data versioning. There
are studies of virtualized storage systems or storage controllers supporting such
functionality [22, 9, 20]. To our knowledge, no currently available commodity
controller deals with these issues at high I/O rates. In addition, although data
protection features such as checksums are supported by enterprise-grade stor-

1

2 CHAPTER 1. INTRODUCTION

age systems, there is no detailed full-system design and evaluation study in the
open literature. With high-throughput connectivity to hosts, controllers exhibit
challenging performance and failure-mode characteristics. To achieve high per-
formance, the controller has to stage transfers of data between the host and
the storage devices. For this reason it needs to provide an efficient data-path.
High I/O rates put pressure on the controller’s hardware resources, including
its CPU, internal memory, and DMA engines. Considering current trends in
system interconnects (e.g. PCI-Express v.2), as well as in storage device tech-
nology, e.g. solid-state drives, we expect I/O controllers to become the main
bottleneck in overall system performance for I/O intensive workloads.

Our system, DARC (DAta pRotection Controller) is able to deliver high
I/O performance, both in terms of throughput and IOPS (I/O operations per
second), while transparently and comprehensively offering protection from three
major types of data storage hazards:

1. Data integrity for data-at-rest by employing a combination of two mecha-
nisms: (i) error detection through the computation and persistent storage
of data checksums per block, and (ii) error correction using existing data
redundancy schemes.

2. Human errors through transparent online versioning at the block level.
Frequent storage versions reduce the risk for data lost due to human er-
rors and allow users to easily recover accidentally deleted or modified data
by accessing a previously captured version [12, 33]. Block-level version-
ing can also achieve recovery from data corruption, due to buggy OS or
filesystem software or a malicious attack compromising the system. In
such situations, versioning allows users to recover the system to a safe and
operating state with the minimum possible downtime [38, 39, 6].

3. Storage device failures are masked, and data availability is provided, by
employing traditional RAID techniques that provide availability.

DARC does not provide high-availability features for the system itself, such
as redundancy in the I/O path, memory mirroring to a second controller, and
fail-over in the event of controller failure that are typical for high-end, enterprise
storage. These features are outside the scope of this work. We focus on data
protection features that we believe will become increasingly important for all
storage systems.

Data protection features can be offered at various levels in the I/O stack. We
provide error detection/correction and versioning at the storage controller level
to achieve transparency both to the host file-system as well as the block devices
used. In addition to transparency, this approach allows us to perform expensive
bit operations during data transfers and using controller DMA support.

We discuss the challenges of implementing a full system and identify limita-
tions. We present a detailed evaluation of our system and its data protection
features, contrasting it to a commercially available controller with comparable
hardware resources. We contribute to the discussion of whether storage systems
will be a deciding factor in overall system performance.

The rest of this thesis is organized as follows. Chapter 2 discusses related
work. In Chapter 3 we present the key considerations, and our corresponding
design decisions, in building a high performance I/O controller with data pro-
tection features, based on a specific embedded system platform. In Chapter 4

3

we present experimental results, comparing our prototype with a commercially-
available controller based on the same hardware platform. Finally, Chapter 5
summarizes our conclusions.

Chapter 2

Related Work

Modern high-end storage systems incorporate increasingly advanced features at
the block level, such as thin provisioning, snapshots, volume management, data
deduplication [35], and block remapping. AutoRAID [42] implements a two-level
managed storage hierarchy within the storage array controller. Implementing
such features requires storing substantial block-level metadata, however, only
for transparently re-mapping individual blocks. We use similar mappings to
implement versioning, but also store checksum values per block, to be used
in transparent integrity checks upon access. The need to maintain metadata
persistent affects the design and performance of the I/O path, as I/O processing
becomes more stateful than in the case of a simpler RAID controller.

CERN has published a study of data corruption risks [26], providing esti-
mates of the probability of various errors leading to data corruption. The error
rates are estimated at the 10−7 level, considerably higher than the 10−14 or
10−15 level expected from SATA or SAS/FC disk drives. This study considers
the entire chain of components from disks to host CPUs and back, including
network data transfers. A main conclusion is that mitigating data corruption
risks, via checksum checks, “will lead to a doubling of the original required
I/O performance on the disk servers” and “an increase of the available CPU
capacity on the disk servers”. This conclusion is based on the premise that ap-
plications will read files twice, first for a checksum verification and then again
for processing. We believe that providing checksum checking at the block-level
in commodity systems offers a more efficient alternative.

Recent studies of large magnetic disk populations indicate that there is a
significant failure rate of hardware and/or software components in the I/O path,
many of which are silent until the data are accessed [34, 28, 4, 19]. Studies of I/O
software components, especially filesystems, have shown that they are complex,
buggy, and hard to scale, debug, and tune for specific application domains [29,
44, 30, 17]. We believe that these argue for increased data protection features
at the block level.

Storage versioning has been previously examined mostly at the filesystem
level with Elephant [33], Plan 9 [27], ZFS [5] and other filesystems [25, 31, 38].
Filesystem-dependent versioning at the block level has also been implemented
in commercial products, such as NetApp’s WAFL [12]. In this work, instead of
implementing versioning at the host side, we argue that versioning functionality
can be transparently implemented within storage controllers. Pushing different

4

5

types of advanced functionality closer to the disk has been previously been
proposed [2, 8, 10]. Self-securing storage [39] and CVFS [38] also operate at
the filesystem level, but they are not intended for long-term data protection,
retaining versions only during a detection window.

Transparent block-level versioning was first proposed in Petal [21], which
supports a copy-on-write algorithm. DARC is based on the remap-on-write ap-
proach of [6]. HP Olive [3] and Timeline [24] also use versioning at the block
level. However, they operate within the host OS, not at the I/O controller level,
and they are targeted towards scalable distributed storage. Olive, implemented
within the FAB clustered block-level storage system [32], offers the ability to
create writable storage branches, while maintaining high-availability. Timeline
supports versioning for a persistent object store distributed over a wide area
network. Systems such as VDisk [43] have focused on “secure” versioning at
the block level, where versioning is protected within a virtual machine. The ad-
vantage of VDisk is that storage data and metadata are additionally protected
from operating system bugs that may cause corruption. We consider this func-
tionality to be complementary to what our system offers. On the other hand,
VDisk uses expensive metadata management techniques which result in 50%
performance penalty on block writes. Laden et al [20] propose 4 storage archi-
tectures for CDP support in storage controllers. They categorize our approach
as similar to the logging architecture, but with more efficient access to newer
versions.

The Panasas tiered parity [18] scheme recognizes the need for comprehensive
data protection, with three levels of parity-based data integrity checks: across
devices (by RAID controllers), within each device, and finally at the client-side.
In our work, we embed data integrity checks within the I/O controller, with a
focus on commodity-grade systems and with the explicit goal to evaluate the
performance impact.

Parity layouts across disks have been studied in [13], aiming to improve
recovery time and user-perceived throughput during RAID array reconstruction.
In our work, we have opted for a simple mapping of checksums to dedicated
metadata space on the storage devices, and have so far not addressed the issue of
array reconstruction time. Since even users of commodity-grade storage systems
increasingly require continuous operation, for rapidly increasing volumes of data,
this issue will require further investigation.

Data integrity assurance techniques are explored in [37]. Type-safe disks [36]
are aware of the pointer relationships between disk blocks and higher layers,
and can be extended to incorporate data integrity assurance techniques with
low overhead [41], at the disk, rather than the storage controller level. Data
integrity and high performance is also discussed in [11], where the notion of
the I/O shepherd is introduced. The I/O shepherd exports an interface to the
file-system so that it can implement diverse reliability policies via block-level
interposition.

Chapter 3

System Design and
Architecture

The key challenges in building a high-performance storage controller for data
protection are:

1. High-rate and low-latency data transfers between the host and the con-
troller.

2. Efficient buffer management.

3. Efficient context and event scheduling.

4. Low overhead usage of data-block checksums.

5. Integration of persistent metadata management.

We address these challenges, taking into consideration the characteristics of a
specific embedded system platform.

3.1 Preliminaries

In the host-controller I/O path there exist the notions of I/O commands, I/O
completions and control information in general.

I/O commands are descriptors of user generated I/O requests. They are
usually accompanied by scatter-gather lists of host memory physical addresses.
Additional control information can be transferred alongside I/O commands such
as custom commands for the storage virtualization layers (e.g. take a snapshot,
mark a segment as the start of a CRC chain etc). This kind of information,
that is passed from the host to the controller, is part of the I/O issue path.

I/O completions are references to user generated I/O requests along with
status code (e.g. success, failure etc). This kind of information is generated
at the controller side and reaches the host side, travelling through the I/O
completion path.

3.2 Embedded System Platform
We have developed the DARC prototype using a development board from In-
tel, based on the 81348 SoC [14]. This board offers two non-coherent XScale

6

3.3. HOST SYSTEM SOFTWARE PLATFORM 7

(programmable)
Application DMA (x3)

SRAM
(128 KBytes)

Transport
DMA (x2)

SAS PHY−7

......

......

SAS PHY−1

SAS PHY−0

[Transport Firmware]
Intel XScale (1.2GHz)

PCIe
(x8)

DDRII SDRAM
(1 GByte)[Host Interface] Bridge

ATU
South Internal Bus (128−bit, 400 MHz)

Intel XScale (1.2GHz)
[Application] interrupts

Inter−core

North Internal Bus (128−bit, 400 MHz)

Figure 3.1: Data path in DARC .

cores, running at 1.2GHz, an 8-port SAS controller, three programmable DMA
engines, and 8-lane PCI-Express (v. 1.1) host connectivity. The run-time envi-
ronment on this board is based on the Linux kernel, v.2.6.24, augmented with
the Intel XScale IOP patches [15]. Figure 3.1 shows a simplified view of the
internal organization of the Intel 81348 SoC board [14]. The board has two 128-
bit buses, running at 400 MHz. The XScale cores and the 1GB DDR-II SDRAM
are connected by the North Bus, while three programmable Application DMA
(ADMA) channels are on the South Bus, and are connected to the memory
controller. ADMA channels support chaining of DMA descriptors, can provide
information about the current transfer taking place, and are able to interrupt
the application CPU when one or more transfers have finished. ADMA chan-
nels can perform XOR calculations and compute a CRC32-C checksum while
performing data transfers to/from the host. The host communicates with the
board through the Messaging Unit of the Address Translation Unit (ATU). The
Transport core runs the SAS transport firmware exclusively, while the Appli-
cation core runs Linux. The transport firmware sends SCSI commands to the
drives, and is accessed by a Linux SCSI driver (isc813xx, part of Intel’s XScale
IOP patches) running on the Application core. Our modules run entirely on the
Application core, and access disk drives by issuing block-level commands. The
block-level commands are translated, via the Linux SCSI driver framework to
SCSI command for the isc813xx driver.

3.3 Host System Software Platform

We use Microsoft Windows as our host operating system. Microsoft Windows
give two choices for programming SCSI devices, such as our storage controller,
inside the operating system kernel. The SCSIport framework and the more re-
cent STORport framework (as of Windows kernel version 5.2). We can see in
Figure 3.2 the Windows kernel I/O stack for both SCSIport and STORport.
We notice that both frameworks are placed at the same place in the host sys-
tem I/O path. However, there are significant differences in their performance
characteristics.

We can see in Figure 3.3 the most important differences between SCSIport

8 CHAPTER 3. SYSTEM DESIGN AND ARCHITECTURE

Kernel Space

User Space

Host Based
Adapter

Windows User
Application

I/O Subsystem

File System

Partition

SCSIAdapter
Class

Scsiport

Scsiport
Miniport

Hardware

Driver
Hardware

(a) SCSI-port

Kernel Space

User Space

Host Based
Adapter

Windows User
Application

I/O Subsystem

File System

Partition

SCSIAdapter
Class

Storport

Storport
Miniport

Hardware

Driver
Hardware

(b) STOR-port

Figure 3.2: Windows I/O stack.

and STORport. First of all, SCSIport has a practical limitation of 254 maximum
outstanding I/O requests per adapter (storage controller), whereas STORport
is limited per LUN (Logical Unit Number, usually characterises a disk device).
Moreover, SCSIport acquires an interrupt lock for all I/O processing in the I/O
issue path and the I/O completion path. Microsoft calls this half-duplex mode,
because I/O commands can not be processed at the same time as the I/O com-
pletions. In STORport, issue path processing can be parallelized in the build
I/O routines, and completion processing can be scheduled at bottom half con-
text, resulting in what is called the full-duplex mode. In our implementation we
use the STORport framework to take advantage of all the performance benefits
it provides.

3.4 Host-controller I/O Path

In Figure 3.4 we can see the full system I/O stack of our design. Application
generated I/O requests traverse the host operating system I/O stack until they
are ultimately translated into SCSI I/O commands. These are propagated to the
controller using suitable data structures, usually some kind of command queues,
through an I/O device bus. The SCSI commands are then translated into linux
block requests inside the controller. These block requests are processed in the
virtualization layers of the controller side I/O stack, and are finally completed.
When they are completed, suitable completion messages are generated to be sent
to the host SCSI layer. These messages pass through the completion queues to
reach the host, across the I/O bus. Finally, the host level SCSI commands are
marked as completed, and the host application is notified of the original I/O
request completion.

I/O commands and control information need to be transferred from the host
to the controller, and I/O completions or other information from the controller
memory must be able to reach the host memory. User data are transferred
in both directions. Two mechanisms can be used to perform these transfers:
Programmed I/O (PIO) and Direct Memory Access (DMA). PIO occurs as a
result of host processor loads and stores targeted at the controller’s exported
address space, whereas DMA is performed by specialized hardware units of the

3.4. HOST-CONTROLLER I/O PATH 9

ISSUE
PATH PATH

COMPLETION

HOST BASED ADAPTER

Start I/O
Function

Process
Completions

Interrupt Lock
acquires

Interrupt Lock
acquires

up to 254 per Adapter

Enqueue
SCSI

Commands Interrupt Context

IO
CompletionsRequests

IO

...

M
IN

IP
O

R
T

SCSIPORT

...

(a) SCSI-port

Deferred
Procedure

Call

Deferred
Procedure

Call

Build I/O
Function

Build I/O
Function

ISSUE
PATH PATH

Work
Deferred
Schedule

COMPLETION

HOST BASED ADAPTER

Function
Start I/O

up to 254 per LUN

Enqueue
SCSI

Commands Interrupt Context

IO
CompletionsRequests

IO

...

...

...

M
IN

IP
O

R
T

STORPORT

...

(b) STOR-port

Figure 3.3: Windows framework characteristics.

controller. DMA is best suited for large transfers, supports high rates, but
suffers from set-up time latency. PIO offers very low response times, but its
throughput potential is at least an order of magnitude lower than DMA and
costs host CPU cycles. Data buffers are typically transferred via DMA.

In the controller-to-host direction, one can insert completion information in
the data-buffer traffic of the DMA engines, or even piggy-back this completion
information along with its corresponding data buffers. In the latter case, there
is no need to check separately for the completion of the data transfer: when the
I/O completion arrives at the host, the corresponding data will have arrived as
well, in the case of read I/O requests.

In the host-to-controller direction, DMA is not the best option. The main
problem with DMA transfers of I/O commands is that they can only be initiated
by the controller itself. This means that the controller must frequently suspend
its processing of I/O commands and completions in order to query the host
for new I/O commands and then initiate a DMA transfer for these commands.
There is a risk of completing the processing in the controller side and only
then initiating the transfer of new commands, which results in not exploiting
the natural overlap of hardware resource usage, and suffering the full extent of
DMA latency. To make matters worse, even if the controller manages to initiate
a DMA for the commands at the exact moment they are available, if there are
only a few outstanding I/O requests we will still suffer relatively long response
times due to the DMA overhead. Host-initiated PIO does not suffer from any
of these drawbacks, so the only concerns are the low throughput and host CPU
utilization.

10 CHAPTER 3. SYSTEM DESIGN AND ARCHITECTURE

Disks

B
lo

ck
 I/

O

C
on

tr
ol

le
r

H
os

t

Li
nu

x
K

er
ne

l

Virtualization Modules

SCSI to Block Translation

Volume Mgmt & RAID10

DMA−based Queues

DMA−based Queues

SCSI Lower Layer

SCSI Disk Drivers

Versioning

Error Correction (EDC)

Application

H
os

t O
S

Figure 3.4: DARC I/O stack.

Figure 3.6 illustrates the flow of I/O issue and completion from the host
to the controller, and back, in our design. Commands are transferred from
the host to the controller, using PIO, in a circular FIFO queue. As shown
in Section 4.2, PIO throughput is more than enough to transfer commands,
whose related data are many orders of magnitude larger and the theoretical
maximum data throughput exceeds the natural limits of the host-controller
interconnects. Information about the scatter-gather lists of DMA segments is
transferred along with the commands. As DMA segments become larger, they
require less processing on the controller side (impact shown in Section 4.3). In
order to use CRC32-C checksums per storage block, it is convenient to “chop”
the scatter-gather list to 4KB segments, at the host side (usage is described in
Section 3.7).

I/O completions are transferred back to the host via a FIFO queue that
is mirrored between the controller and the host (shown in Figure 3.6). Com-
pletions are transferred to host memory via DMA transfers. They cannot be
piggy-backed with the actual data transfer when using integrity checks, because
the ADMA engines write back the checksums upon completion of the trans-
fers. We must wait for transfers to finish to perform the integrity checks, and
then complete the associated I/O operation (or deal with data corruption).
Completions can also be transferred via controller initiated PIO. However, this
demands a lot of controller CPU cycles, which proves to be a scarce resource in
our platform.

The FIFO queues are statically allocated, and consist of fixed-size elements.
Completions, commands and related control information may consume multiple
consecutive queue elements of the FIFO queues.

3.5. BUFFER MANAGEMENT 11

Processing
Completion
Schedule

Data

Block
I/O Write

PATH

Write Completion
Thread

COMPLETION
PATH

PCI−E

Thread
Write DMA

Thread
Issue

Data Buffers

DMA

DMA

ISSUE

DMA

Enqueue

Completions

SCSI−to−Block

PHYSICAL STORAGE

Commands
SCSI

Dequeue

Command Fifo

HOST CPU
HOST MEMORY

Completion Fifo

 I/O

Complete I/O

Translation

Completion Fifo

I/O Read
Thread Thread

Block

Virtualized Storage Services Interrupt Context

PIO

Thread
& Completion

Read DMA

Figure 3.5: I/O issue and completion path in DARC without CRC support.

3.5 Buffer Management

Data buffers and associated information must remain resident in the controller
memory until the I/O operation has been handled by the controller software. At
high data rates the number of these buffers increases and so does the overhead of
allocation or deallocation operations. Our experience has shown that it becomes
important to guarantee constant overheads for buffer allocation and dealloca-
tion. This motivates the use of a memory pool with pre-allocated buffers. We
also use an ”offsetting” technique to associate many objects with only a few
allocations, reducing the memory allocation overhead. Thus we can coalesce
related pieces of information using a record-like layout in only one buffer.

The buffers allocated for the I/O commands and their completions are dif-
ferent in one important respect from other buffers used by the controller: Com-
mand buffers are allocated on the controller, but are filled in by the host. Like-
wise, completion buffers are allocated on the host, but they are filled in by the
controller. The entity that needs to fill in these buffers has to rely on point-to-
point communication to find out their addresses. To reduce communication to
a minimum, we use circular FIFO queues to hold commands and completions,
because just sending the head and tail pointers is adequate. This data structure
also guarantees constant overhead for allocations and deallocations. We avoid
the need to transmit the tail pointers alltogether, by using the last bit of each
FIFO element as a validity flag. This way, the controller or the host can poll
its local memory to find out if there are any new commands or completions
respectively.

In our design the information of SCSI or block-layer I/O descriptors re-
mains in controller memory. The life-cycle of this information is the same as

12 CHAPTER 3. SYSTEM DESIGN AND ARCHITECTURE

Processing
Completion
Schedule

CRC Generation

Thread
Write DMA

Thread
Issue

Data Buffers

DMA

DMA

ISSUE

DMA

Enqueue

Completions

SCSI−to−Block

PHYSICAL STORAGE

Commands
SCSI

Dequeue

Command Fifo

HOST CPU
HOST MEMORY

Completion Fifo

 I/O

Complete I/O

Translation

Completion Fifo

I/O Read
Thread Thread

BlockBlock
I/O Write

PATH

Write Completion
Thread

COMPLETION
PATH

Data

PCI−E

Error Detection
& Correction

Read Completion
Thread

Interrupt ContextVirtualized Storage Services

PIO

Thread
Read DMA

Figure 3.6: I/O issue and completion path in DARC with CRC support.

that of data buffers, which also need to be allocated efficiently. We have used
a buffer allocator that maintains a pool of pre-allocated fixed-size objects. In-
dividual pieces of information are positioned in these buffers at data-dependent
offsets. Buffers can be deallocated either lazily or immediately when there is
memory pressure. We show the impact of common allocators versus fixed-size
pre-allocated buffers in Section 4.3. We use circular FIFO queues for both the
SCSI commands and their completions (Figure 3.6).

3.6 Context Scheduling

To achieve high performance in a controller system, we must ensure that every
hardware resource is given useful work to perform with minimal delay, along the
issue and completion paths of I/O request processing (Figure 3.6). One must
identify all the points in time, along both paths, where waits may occur, and
eliminate them. Two specific examples are when the host is issuing a write in
the issue path, and when the controller is completing a read in the completion
path. When a write command is processed in the issue path, the controller
initiates a DMA operation to transfer, from the host, the data to be written to
the storage devices. Before the controller can issue the I/O operation, it must
wait for the completion of this DMA transfer. Likewise, when the controller has
to complete a read command, it must first make sure that the data have been
transferred from its local memory to the host.

To deal with such issues we break the paths into stages, which can be states
in a Finite State Machine (FSM), or threads in the operating system. FSMs are
hard to maintain as functionality is added to the design, so we choose a thread-
based design. This is more flexible as far as scheduling is concerned and provides

3.7. ERROR DETECTION AND CORRECTION 13

a natural way to map processing onto multiple CPU cores. Having identified
points where there is potential for waits, we break the I/O issue and completion
paths into stages. If there are available CPU cores to spare, each stage can be
assigned to a core. If, however, the stages are more than the cores, whenever
it becomes necessary to wait while executing a stage, we suspend this stage
and perform useful work in other stages or paths. An important issue is that
interrupt contexts cannot be preempted. Therefore, it is necessary to schedule
work out of interrupt-context as soon as possible, so that the interrupt context
does not trigger any waiting periods. This leads to a design that maximizes the
overlap of stages for multiple concurrent I/O requests.

In our design we perform all I/O processing operations in kernel-thread con-
text, as opposed to interrupt context. We explicitly arrange the order of execu-
tion of stages whenever we identify a wait, because there is only one Application
core in our platform. Threads in DARC , besides context switching when block-
ing on Linux events, voluntarily ”yield” to one another at explicitly-managed
blocking conditions, e.g host DMA completions. This improves performance sig-
nificantly compared to the default non-preemptive Linux kernel thread schedul-
ing. Context switch cost (on the order of 1.1 microseconds) between stages is
mitigated by batching at various levels.

We evaluated a non-preemptive priority-based scheduling policy (SCHED FIFO,
directly supported by the Linux kernel), motivated by the observation that this
policy fits our design, where threads voluntarily yield the CPU to one another.
This policy leads to a noticeably lower context-switch cost (on the order of 0.4
microseconds). Preliminary results indicate that with RAID-0 we can achieve
the maximum I/O throughput level for 8 SAS drives, as opposed to 85% with
the default fair scheduling policy (see Section 4.2.1), but IOPS performance is
not significantly improved. However, with RAID-10 we have seen no significant
performance gains. Based on these observations, in this thesis we present results
using the default fair-scheduler.

3.7 Error Detection and Correction

Our approach for correcting errors is based on a combination of two mechanisms:
(i) error detection through the computation of data checksums, which are per-
sistently stored and checked on every read, and (ii) error correction through
data reconstruction using available data redundancy schemes.

Error detection and correction (EDC) in DARC operates through the use of
redundancy schemes (e.g. RAID-1), where the corrupted data are reconstructed
using the redundant data block copies or parity. Redundancy schemes, such as
RAID-1, 5, or 6, are commonly used for availability and reliability purposes in
all installed storage systems that need to tolerate disk failures. Our system uses
the same redundant data blocks to correct silent data errors, based on the as-
sumption that the probability of data corruption on both mirrored copies of one
disk block are very small. A similar assumption is made for other redundancy
schemes, such as RAID-5/6, but the probability of a valid data reconstruction
increases with the amount of redundancy maintained. The probability of a sec-
ond data error occurring within the same stripe group (typically, 4-5 data blocks
and 1-2 parity blocks) in RAID-5/6 is higher than for the two data block copies
in RAID-10.

Existing controller designs have considered non-persistent checksum compu-

14 CHAPTER 3. SYSTEM DESIGN AND ARCHITECTURE

Read

Block−R
Block−L and

Compute
CRC−L and
CRC−R

Read completion
Schedule

Check CRC of
Virtual Block N

Physical Block
Update Erroneous

Re−issue
Read Request

Left Block of RAID−1 Pair
Right Block of RAID−1 Pair
CRC of Block−L
CRC of Block−R

CRC of Virtual Block NCRC−N
Block−L
Block−R
CRC−L
CRC−R

Update
CRC−N

CRC−R != CRC−N
and

CRC−L != CRC−R

Find RAID−1 PairMap Virtual Block N

Block
to Physical RAID−10

No CRC Error

CRC−L != CRC−N

T
R

U
E

CRC Error

I/O
 E

rr
or

N
o

E
rr

or

CRC−L == CRC−R
FALS

E

No Error

ERROR DETECTION
AND CORRECTION

Figure 3.7: Error correction procedure in the controller I/O path (Figure 3.6).

tation for detecting errors caused by faulty controller hardware (e.g. corruption
due to faulty memory), or through faulty software, as the data pass through the
I/O path. In such cases the checksum computation and check needs to be per-
formed when the data are transferred to/from the host to the controller. Thus,
current controller architectures have placed hardware resources for high-speed
checksum (CRC) computation in the DMA engines of I/O controllers. Detecting
and correcting data errors occurring in the storage devices themselves requires
the low-overhead computation and management of checksums in the controller’s
memory. However, the checksum capabilities of DMA engines in our platform in-
cur negligible overhead only when used during the DMA data transfers to/from
the host. Thus, we have used checksums to protect host-accessible data blocks
only. To maintain high performance we have not used EDC for metadata and
data generated on the controller itself, such as versioning metadata, or RAID
superblocks. More efficient hardware designs that allow for high-speed check-
sum computation in the controller’s memory would minimize overheads for all
data and metadata stored on the disks.

An advantage of only protecting host-accessible data blocks is that, RAID
reconstruction, in the event of device failure, is unaware of the existence of
persistent checksums. Therefore, RAID reconstruction need not be modified.
Moreover, the RAID reconstruction procedure could take advantage of the data
structure storing the checksums to determine which blocks can be safely skipped,
as they have not been written so far. This would reduce the RAID reconstruction
time.

For the evaluation reported in this thesis we have built a module stack that
combines RAID-10, versioning, and CRC-checking functionality. Figure 3.6
shows the I/O path. CRC computations are performed by the ADMA channels,
while transferring data to/from the host. The EDC layer persistently stores

3.8. STORAGE VIRTUALIZATION 15

a 32-bit checksum for each 4KB block written to the storage volumes of the
controller. The computed checksums are stored along with the corresponding
block addresses on the disks as persistent metadata, and they are retrieved for
checking when completing read I/O requests. The checksums are stored within
a dedicated metadata block range that is striped across all the available storage
devices. If there is a checksum mismatch, the error correcting module uses
the replicas of the RAID-10 layer and the stored checksum to determine which
block contains the correct data value. If both RAID-10 blocks are identical,
then both blocks are assumed valid, the stored checksum is assumed erroneous,
and is updated. In the case of one corrupted data block, the EDC module
corrects the error on the disk by issuing a synchronous write, and also returns
the correct data to the host, by re-issuing the I/O read operation. The error
correction algorithm is shown in Figure 3.7, and the associated overheads in
Section 4.6.

3.8 Storage Virtualization

DARC uses an existing kernel-level, virtualization framework, Violin [7], that
augments the current Linux block-level I/O stack. Violin allows for (i) easy de-
velopment of extension modules implementing new virtualization mechanisms
(e.g. versioning or EDC) and (ii) combining of these modules to create modu-
lar hierarchies with advanced functionality. The combined modules essentially
create a stack of virtual devices, each of which has full access to both the re-
quest and completion paths of I/Os. Violin supports asynchronous I/O, which is
important for performance reasons, but also raises significant challenges when
implemented in real systems. Also, the framework deals with metadata per-
sistence for the full storage hierarchy, off-loading the related complexity from
individual virtualization modules. As shown in Figure 3.4, Violin is located right
above the SCSI drivers in the controller. Violin already provides versioning [6]
and RAID modules.

In this work we design one new virtualization module within Violin, EDC,
that offers persistent CRC32-C checksums per 4KB block. We also examine the
implications of using versioning at the controller level as opposed to the host.
Finally our EDC module requires modifications to RAID modules, to support
recovery after a failed CRC check.

3.9 On-Board Cache Considerations

Typically, I/O controllers dedicate most of their on-board memory to caching
and pre-fetching purposes. Caching of data blocks improves performance for I/O
patterns that exhibit locality. Write-caching in particular is also beneficial in the
implementation of RAID-5/6 volumes, since it hides the costs of the extra reads
and writes that are incurred as a result of write requests with sizes smaller than
the RAID chunk size. Pre-fetching aims to improve performance for sequential
I/O patterns. DARC currently lacks these caching mechanisms, leaving all the
on-board memory available for use by our custom buffer allocators, and for
storing metadata objects of the block-level virtualization modules.

3.10 Summary of Design Choices

Table 3.1 summarizes our design choices for DARC .

16 CHAPTER 3. SYSTEM DESIGN AND ARCHITECTURE

Table 3.1: Design choices in DARC .

Challenge Decision

Host-controller PIO for commands,
I/O path DMA for data and completions

Buffer Fixed-size pre-allocated
Management buffer pools,

lazy de-allocation,
static circular FIFO queues
for commands and completions
with fixed-size elements

Context Map I/O path stages to threads,
Scheduling explicit scheduling,

no processing in IRQ context

Error Detection CRC32-C checksums computed by
& Correction DMA engines for 4KB blocks,

persistently stored on
dedicated meta-data space

Storage Violin block-level
Virtualization virtualization framework:

supports RAID-10 volume management
versioning and EDC modules

Data-block cache On-board cache omitted in DARC

3.11 Platform-specific implementation details

The platform iop348 supports hardware assisted programmable FIFO queues.
However, the queue element size is 4 bytes, which increases the management
overheads considerably due to the fact that our elements need to be at least 50
bytes each. For this reason, we have implemented our FIFO queues entirely in
software, and have mapped the queues’ space directly onto the controller and
host memory for the command FIFO and the completion FIFO respectively.

The DMA engines of iop348 (Figure 3.1) use memory resident DMA descrip-
tors, that can be chained statically or dynamically. They engines can also be
queried whether they are idle or running, and what the last/current DMA de-
scriptor was/is. Finally, they are able to generate interrupts per completion of
transfer. However, this amount of information is not enough to provide a simple
implementation where one could examine whether a transfer has finished at any
given time.

For this reason, we have designed a ring buffer of custom DMA transfer
descriptors. Each custom descriptor is a concatenation of the transfer descriptor
index in the ring buffer with an epoch number. Every time the ring buffer wraps
around the epoch number is incremented by 1. This way, given any custom
descriptor we can deduce whether the respective transfer has finished or not,
without the need to allocate additional space for old transfers.

The real DMA engine descriptors are placed in uncacheable but bufferable
memory pages, because we need to write them fast in a consistent manner
with respect to the DMA hardware. The completion FIFO queue resides in
uncacheable but bufferable memory pages for the same reason. All the controller
registers, and controller generated PIO reside in uncacheable and unbufferable

3.11. PLATFORM-SPECIFIC IMPLEMENTATION DETAILS 17

memory ranges. The registers cannot be mapped in any other type of memory,
to evade the sideffects of caching and buffering. However, controller PIO would
benefit from being placed in bufferable memory space, but this is not supported
by the specified Linux kernel. The command FIFO queue is placed in cacheable
memory, and we issue explicit invalidations and write-backs to synchronize with
the ATU and DMA hardware. The reason is that we need fast read and write
access, and this can only be provided by the CPU cache.

Chapter 4

Experimental Evaluation

We center our evaluation around achieving high I/O performance, the impact of
the data protection mechanisms and the effort required to recover from faults.

4.1 Base Performance

We present evaluation results for a storage system built using the following com-
ponents: 8 SAS disk drives (Seagate Cheetah 15K.5 ST374355SS, 15K RPM,
73.4 GBytes), the DARC controller, and a Tyan S5397 motherboard with two
4-core Intel Xeon 5400 processors running at 2GHz, and 4Gbytes of DDR-II
DRAM. The host OS is Microsoft Windows Server 2003 R2 Standard Edition
(32-bit). We compare our prototype with a commercially available I/O con-
troller based on the same hardware components: an Areca ARC-1680D-IX-12
SAS controller based on the Intel 81348 SoC, running at 1.2 GHz, with 1 GByte
of on-board DRAM, and an 8-lane PCI-Express host connection. The 8 disks are
configured either as RAID-0 (only for the synthetic I/O patterns) or as a RAID-
10, with a chunk size of 64KB. Each disk is capable of up to 250 small-sized
random IOPS, and up to 125 MB/sec read transfers (115 MB/sec for writes).

4.2 DMA and PIO Performance

DARC is capable of transferring data to and from the host via DMA at rates
exceeding 1 GByte/sec, for transfer sizes of 4KB (1 page) and higher. This
is shown in Figure 4.1, with the curves marked “DMA”. These measurements
are obtained by initiating a sequence of transfers by one of the Application
DMA channels, using the same API used by our firmware. I/O write operations
originating from the host entail DMA transfers of one or more pages from the
host’s memory to the controller, where the maximum DMA throughput is 1.4
GBytes/sec. I/O read operations entail DMA transfers from the controller to
the host’s memory, where the maximum DMA throughput is 1.6 GBytes/sec.

In terms of programmed-I/O (PIO) operations, the DARC board is capable
of sustaining on the order of 10 million 32-bit transfers per second (host-to-
board). This measurement justifies our design decision to use PIO for transfer-
ring I/O command descriptors: With the descriptor’s size equal to 64 bytes, PIO
transfer allows up to 625K descriptors per second. One descriptor corresponds
to a 4KB I/O request. Descriptors can be chained, in the case of larger I/O
request sizes; for 64KB I/O requests, we need 6 descriptors to be transferred,

18

4.2. DMA AND PIO PERFORMANCE 19

Table 4.1: IOP348 Microbenchmarks.
IOP348 clock cycle 0.833 nsec (1.2 GHz)
Interrupt delay, Context Switch 837 nsec 1004.8 cycles
Memory store 99 nsec 118 cycles
Local-bus store 30 nsec 36 cycles
Outbound store (PIO write, to host) 114 nsec 136 cycles
Outbound load (PIO read, from host) 674 nsec 809 cycles
Outbound load with DMA transfers 3390 nsec 4069.6 cycles
Outbound load with DMA transfers 5970 7166.8
and inbound PIO-Writes from host nsec cycles

therefore PIO allows issuing over 100K such I/O requests per second.
However, host issued PIO has significant impact on the controller DMA

performance. When the controller performs 8KB DMA transfers without PIO
interference, the rate achieved is about 1.3 GBytes/sec for the host to controller
direction, 1.62 GBytes/sec for the controller to host direction and 2 GBytes/sec
for both directions at the same time. On the other hand, when the host inter-
feres with consecutive PIO stores, these numbers drop to 780 MBytes/sec, 1.59
GBytes/sec and 1 GByte/sec respectively.

In more detail, the host clock cycle is 0.5 nsec (2.0 GHz), and the host-
initiated PIO write takes 100 nsec (200 cycles) to complete. The controller side
microbenchmarks can be seen in Table 4.1. We notice that the store and load
performance is also affected by DMA transfer activity.

4.2.1 Synthetic I/O Patterns

We use the iometer workload generator [16], with five I/O pattern specifica-
tions:

• WS - Write Stream: sequential 64KB writes.

• RS - Read Stream: sequential 64KB reads.

• OLTP - Online Transaction Processing: random
4KB reads and writes, and a 33% write frequency.

• FS - File Server: random reads and writes, with a 20% write frequency
and varying sizes: 80% of requests up to 4KB, 2% of requests for 8KB, 4%
of requests for 16KB, 4% of requests for 32KB, 10% of requests for 64KB.

• WEB - Web Server: random reads, with varying sizes: 68% of requests up
to 4KB, 15% of requests for 8KB, 2% of requests for 16KB, 6% of requests
for 32KB, 7% of requests for 64KB, 1% of requests are 128KB, and 1% of
requests for 512KB.

We obtain seven data-points for each of these I/O patterns, corresponding to
issuing 1, 2, 4, 8, 16, 32, and 64 concurrent I/O requests. We first present results
with a RAID-0 (striped, non-redundant) disk array, to illustrate the performance
potential of the experimental platform. The RAID-0 results for the throughput-
intensive and the IOPS-intensive access patterns are shown in Figures 4.1 and
4.3, respectively. To put the results in Figure 4.1 in perspective, the maximum
read I/O throughput obtainable from the 8 attached disks is 1 GByte/sec (8
x 125 MB/sec), while the maximum obtainable write I/O throughput is 920

20 CHAPTER 4. EXPERIMENTAL EVALUATION

(a) WS

(b) RS

Figure 4.1: I/O throughput for sequential 64KB reads and writes with 8 disks
in RAID-0.

MB/sec (8 x 115 MB/sec). DMA throughput is well above these device-imposed
limits. The corresponding results with a RAID-10 (striped, redundant) disk
array are shown in Figures 4.2 and 4.4, respectively. Each data-point comes
from a 5-minute run, after a 1-minute warm-up interval. The WS and RS I/O
patterns serve to characterize the throughput potential of the storage systems
that we measure. The OLTP, FS and WEB I/O patterns serve to characterize
the IOPS capability of the storage systems that we measure. The OLTP pattern
stresses the capability for serving small-sized random I/O requests with latency
constraints. The FS and WEB patterns include large-sized I/O requests as well,
pressing the storage systems even further to keep up with multiple concurrent
I/O requests. The OLTP, FS and WEB I/O patterns exhibit no locality, therefore
we expect that the ARC-1680 controller will not obtain significant performance
gains from caching data in its on-board memory. However, for the RS and WS I/O
patterns, we expect ARC-1680 to obtain performance gains due to read-ahead
and write-caching, respectively.

In terms of sequential I/O throughput, we observe that the ARC-1680 con-
troller is able to reach the maximum I/O throughput of the attached 8 disks,
in the RAID-0 experiments: 1 GByte/sec for the RS access pattern, and 885
MB/sec for the WS pattern. The DARC controller achieves 85% of this per-
formance level, with several outstanding I/O requests. In the RAID-10 experi-
ments, we again observe better read I/O throughput for the ARC-1680 controller
(794 Mb/sec), as compared to the DARC prototype (549 MB/sec). However,
the DARC prototype outperforms the ARC-1680 controller for RAID-10 se-

4.3. IMPACT OF ALLOCATOR AND DMA SEGMENTS 21

(a) WS

(b) RS

Figure 4.2: I/O throughput for sequential 64KB reads and writes with 8 disks
in RAID-10.

quential write throughput, achieving 385 MB/sec, as opposed to 290 MB/sec.
We believe that this points to a possible problem in the ARC-1680 controller’s
firmware. In terms of IOPS performance, the DARC prototype consistently out-
performs the ARC-1680 for all the tested I/O access patterns and queue-depths,
for both RAID-0 and RAID-10. The ARC-1680 controller delivers around 67%
of the IOPS performance of DARC (only 50% in the case of the OLTP and FS

access patterns with RAID-0). Therefore, we conclude that our I/O path is
indeed capable of low-latency operation.

4.3 Impact of Allocator and DMA Segments

We use iometer with the WS and RS access patterns, for a RAID-0 disk array, to
illustrate the performance impact of buffer allocation. As shown in Figure 4.5,
with the curves marked DFLT-ALLOC, the default memory allocator results in
throughput collapse for large numbers of concurrent read I/O requests (up to
64%). Performance for write I/O requests remains unchanged. We see the need
for comprehensive tuning in the I/O path, as the seemingly simple change of the
buffer allocator results in a 177% throughput improvement at high I/O rates
(queue-depth higher than 16).

We also explore the impact of the DMA segment sizes generated by the host.
Having observed that the host generates predominantly 4KB DMA segments,
we have built a version of the host driver that allocates 64KB DMA segments
for I/O requests. This means that for the WS access pattern only one DMA
segment is transferred to/from the host, instead of 16 4KB segments as is the

22 CHAPTER 4. EXPERIMENTAL EVALUATION

(a) OLTP (b) FS

(c) WEB

Figure 4.3: IOPS performance for OLTP, FS, and WEB access patterns with
8 disks in RAID-0.

Table 4.2: Server workload parameters.
TPC-H Dataset size: 4 GBytes (≈ 6.5 GBytes on disk)
JetStress 1000 mailboxes of 100 MBytes each,

1.0 IOPS per mailbox
Operation Mix:

25% insert, 10% delete, 50% replace, 15% read.

normal case. As shown in Figure 4.5, with the curves marked LARGE-SG, with
large DMA segments the DARC matches the read I/O throughput of ARC-
1680, even though it lacks the read-ahead capability of ARC-1680. Large DMA
segments also lead to performance gains for write I/O requests.

4.4 Server Workloads

We quantify the impact of the data protection mechanisms using results from
the TPC-H database benchmark [40]. We expect the ARC-1680 controller to
be able to serve several read I/O requests from its on-board cache, as well as to
absorb small writes in its write-back cache. Our DARC controller has no data-
block cache, so all I/O requests are served from the attached disks. We also
present results from running the JetStress benchmark (v. 08.01.0177), which
emulates the I/O patterns generated by the Microsoft Exchange Server [23]. All
the results in this section were obtained with the storage system described in
the previous section, with the 8-disk RAID-10 configuration.

The key parameters of each of the benchmarks are summarized in Table 4.2.
For the TPC-H experiments, we execute a sequence consisting of ten queries:

4.5. IMPACT OF DATA PROTECTION MECHANISMS 23

(a) OLTP (b) FS

(c) WEB

Figure 4.4: IOPS performance for OLTP, FS, and WEB access patterns with
8 disks in RAID-10.

1, 3, 5, 6, 7, 8, 11, 12, 14, and 19. The database management system used is
MySQL Server, v.5.1 running on top of an NTFS filesystem. Running on top
of a filesystem, we observe a number of additional I/O requests, both reads and
writes, that are not directly generated by the benchmark codes; however, this
additional I/O load is a very small percentage of the total I/O traffic.

The configuration marked “DARC , NO-EDC” corresponds to our controller
with the 8 disks configured as a RAID-10 array. The configuration marked
“DARC , EDC” adds the error detection and correction layer, with CRC32-C
values computed and checked for all I/O accesses, but no versions captured
automatically. Finally, the configuration marked “DARC , EDC, VERSION”
extends the previous configuration by capturing volume versions automatically
every 60 seconds. In this last configuration the version garbage collector is also
running, purging previous versions. Our configurations are compared with the
ARC-1680 controller. Unless otherwise indicated, all ARC-1680 results are with
the read-ahead and write-back features enabled.

4.5 Impact of Data Protection Mechanisms

Figure 4.6 summarizes results from executing the TPC-H benchmark. The
reported metric is the total execution time for the 10-query sequence. This
workload only issues read I/O requests, but since it runs on top of a filesystem
we also see a number of small write I/O requests. Taking the execution time
with the ARC-1680 as the baseline, the figure shows the relative change in the
response time. Even without an on-board cache, DARC matches the perfor-
mance of ARC-1680. With EDC checking enabled, we observe an increase of

24 CHAPTER 4. EXPERIMENTAL EVALUATION

(a) WS

(b) RS

Figure 4.5: Impact of buffer allocator and DMA segment sizes: Sequential
I/O Throughput with 8 disks in RAID-0.

the overall execution time by around 12%. Periodic version capture and purg-
ing add an additional 2.5% overhead for this workload. Note that in TPC-H
successive volume versions are very small, as the 10-query sequence executed
does not result in database updates.

Table 4.3 summarizes the results from JetStress. JetStress reports the I/O
rate (IOPS) for the data and log volumes it uses. We observe that the DARC
configurations achieve much fewer concurrent I/O operations on the log vol-
ume, as compared to the ARC-1680 configuration. The average size of a write
request to the log volume is 2.9KB, and without an on-board write-back cache
we cannot batch these requests, despite them being mostly sequential. To ver-
ify this, we repeat the JetStress experiment for ARC-1680, with the write-back
feature disabled. We find that the number of IOPS on the log volume drops
dramatically.

Focusing on READ IOPS for the data volume, the overhead induced by the
data protection mechanisms is around 20% for EDC checks, and an additional
5% for the periodic version capture and purge. The higher overhead for EDC
checks, as compared with previous results, is due to the much higher number of

4.6. COST OF DATA RECOVERY 25

Figure 4.6: Impact of data protection
on TPC-H.

Table 4.3: JetStress results (IOPS).
Configuration IOPS IOPS

data-volume log-volume
READ WRITE

DARC , NO-EDC 679.32 556.79 70.32
DARC , EDC 544.41 456.17 54.2
DARC , EDC, VERSION 516.43 434.65 53.95
ARC-1680, write-back 774.94 703.1 626.4
ARC-1680, write-through 505.32 425.93 39.99

concurrent read I/O requests. Volume versions in these experiments are quite
large, as JetStress generates a large number of write requests. The parameters
in the JetStress experiments set a performance goal of at least 1000 IOPS for
the data volume. As seen by summing the READ and WRITE IOPS columns
in Table 4.3, the base DARC configuration achieves this performance goal, with
1236 IOPS, as opposed to 1478 IOPS for the ARC-1680 configuration with write-
back (but only 931 with write-through). With EDC checks enabled, we barely
achieve 1000 IOPS for the data volume, whereas with periodic version capture
and purge the performance goal is missed, with a score of 951 IOPS.

4.6 Cost of Data Recovery

Next, we quantify the cost of the data recovery procedure described in Sec-
tion 3.7. This data recovery procedure involves the execution of a number of
synchronous I/O accesses to determine if the data corruption fault is isolated
to one of the disks in the RAID-10 array, and if so, to restore a consistent state
(data blocks that match the stored checksum). If this is achieved, then the
original read I/O request is re-issued (expecting the resulting data to pass the
CRC32-C check). Table 4.4 summarizes the operations involved in each of the
cases shown in Figure 3.7. Checksum checks in the controller’s I/O path are
able to detect data corruption faults and under certain conditions recover from
them, without the host being affected. The cost of the recovery procedure is
the time to execute three I/O operations and two CRC computations, all for
4KB data blocks. These operations need to be synchronous to maintain the

26 CHAPTER 4. EXPERIMENTAL EVALUATION

Table 4.4: Recovery costs (operations).
Case data CRC CRCs Outcome

I/Os I/Os calc’ed
RAID-1 pair
data differ, 3 0 2 Data Recovered,
CRC matches Re-Issue
one block
RAID-1 pair
data same, 2 1 2 CRC Recovered
CRC does
not match
RAID-1 pair
data differ, 2 0 2 Data Error,
CRC does Alert Host
not match

storage volume and its associated checksums in a consistent state; therefore, in
the event of a data corruption fault the host will suffer a noticeable performance
penalty. If recovery is not possible, the data corruption fault is propagated to
the host. In this event, there is the option to initiate rollback of the affected
storage volume to a previously captured version.

Chapter 5

Conclusions

In this thesis we address the question of how to incorporate data protection
features in a commodity I/O controller, in particular integrity protection using
persistent checksums and versioning of storage volumes at the data-block level.
We identify the key challenges in implementing an efficient I/O path between
the host machine and the controller, and present a prototype implementation
using real hardware. The performance of our prototype is competitive to the
performance of a commercially available I/O controller based on comparable
hardware components, while offering substantial support for data protection.

Using the performance of the base DARC configuration as the point of ref-
erence, both in terms of I/O throughput and IOPS, we find the performance
overhead of EDC checking to be between 12% and 20%, depending on the num-
ber of concurrent I/O requests. This overhead is affected by the decision to keep
checksum at the granularity of 4KB data blocks. Version capture and purging
add an additional performance penalty between 2.5% and 5%, depending on the
number and total size of I/O write requests between versions. We expect this
overhead to become much less noticeable if the capture period is increased, and,
more importantly, if versions are purged less frequently.

Overall, our work shows that I/O controllers are not so much limited from
host connectivity capabilities, but from internal resources and their allocation
and management policies. More specifically, we believe:

• CPU capacity is the most important limitation in I/O controllers at high
I/O rates. Even worse, although the main design assumption is that the
I/O controller’s CPU does not “touch” the data, we expect this to change
as more advanced data I/O features are incorporated in the I/O path.
For this reason it makes sense to offload work from the controller CPU on
every opportunity. We believe there will be a growing need for acceleration
of operations on data in-flight.

• Understanding data-path intricacies is essential to achieve high I/O rates.
I/O controllers offer specialized data-paths and special-purpose hardware
units, such as DMA engines, messaging and address translation units that
need to be carefully co-ordinated for efficient I/O processing. It is essential
to overlap transfers as efficiently as possible, not only to/from the host
but also to/from the attached storage devices.

27

28 CHAPTER 5. CONCLUSIONS

• I/O controllers will need to handle increasing volumes of persistent meta-
data, to be used along the I/O path. Handling such metadata will consume
even more of the controller’s CPU and memory.

Finally, through the evolution of our prototype, we have come to realize that
under high I/O rates subtle design decisions have substantial impact. Although
certain design details may at first seem rather obvious, we find they play a
significant role in the overall system performance. We believe that the anal-
ysis we provide of their combined impact on end-to-end application-perceived
performance using common server workloads, is not only useful today, but also
valuable for designing future storage controller architectures.

5.1 Future Work

We are now working on integrating a user I/O cache in the I/O path. There
are many choices one can make. It can:

• be either direct-mapped or set associative.

• be a block cache or have larger than block cache lines.

• perform read-ahead and access pattern prediction.

• be write-allocate or write-no-allocate.

• write-back or write-through.

• have various replacement policies.

Preliminary results of a direct mapped, write-back, block I/O cache show
that maximum DMA performance is matched for 100% hit-ratio.

Bibliography

[1] T10 DIF (Data Integrity Field) standard. http://www.t10.org.

[2] A. Acharya, M. Uysal, and J. Saltz. Active disks: programming model, algo-
rithms and evaluation. In Proceedings of the 8th ASPLOS, pages 81–91, San
Jose, California, Oct. 1998.

[3] M. K. Aguilera, S. Spence, and A. Veitch. Olive: Distributed point-in-time
branching storage for real systems. In In Proc. Third NSDI, pages 367–380,
2006.

[4] L. N. Bairavasundaram, G. R. Goodson, B. Schroeder, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau. An analysis of data corruption in the storage stack.
In Proc. of the 6th USENIX Conf. on File and Storage Technologies (FAST’08),
pages 223–238, 2008.

[5] J. Bonwick and B. Moore. ZFS: the last word in file systems.
http://www.sun.com/software/solaris/zfs lc preso.pdf.

[6] M. D. Flouris and A. Bilas. Clotho: transparent data versioning at the block i/o
level. In Proceedings of 12th IEEE/NASA Goddard (MSST2004) Conference on
Mass Storage Systems and Technologies, pages 315–328, 2004.

[7] M. D. Flouris and A. Bilas. Violin: A framework for extensible block-level storage.
In Proceedings of 13th IEEE/NASA Goddard (MSST2005) Conference on Mass
Storage Systems and Technologies, pages 128–142, Monterey, CA, Apr. 2005.

[8] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W. Chang, H. Gobioff,
C. Hardin, E. Riedel, D. Rochberg, and J. Zelenka. A cost-effective, high-
bandwidth storage architecture. In Proc. of the 8th ASPLOS Conference. ACM
Press, Oct. 1998.

[9] J. S. Glider, C. F. Fuente, and W. J. Scales. The software architecture of a san
storage control system. IBM Syst. J., 42(2):232–249, 2003.

[10] J. Gray. What next? A few remaining problems in information technology (Turing
lecture). In ACM Federated Computer Research Conferences (FCRC), May 1999.

[11] H. S. Gunawi, V. Prabhakaran, S. Krishnan, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Improving file system reliability with I/O shepherding. In Pro-
ceedings of the 21st ACM Symposium on Operating Systems Principles (SOSP
’07), pages 283–296, Stevenson, Washington, October 2007.

[12] D. Hitz, J. Lau, and M. Malcolm. File system design for an nfs file server ap-
pliance. In Proceedings of the USENIX ’94 Winter Technical Conference, pages
19–19, Berkeley, CA, USA, 1994. USENIX Association.

[13] M. Holland and G. A. Gibson. Parity declustering for continuous operation in
redundant disk arrays. SIGPLAN Not., 27(9):23–35, 1992.

[14] Intel. Intel 81348 I/O Processor: Developer’s Manual.
http://www.intel.com/design/iio/docs/315036.htm.

1

2 BIBLIOGRAPHY

[15] Intel. Intel Xscale IOP Linux Kernel Patches.
http://sourceforge.net/projects/xscaleiop/files/.

[16] Intel. IoMeter. http://www.iometer.org.

[17] W. Jiang, C. Hu, Y. Zhou, and A. Kanevsky. Are disks the dominant contributor
for storage failures? A comprehensive study of storage subsystem failure char-
acteristics. In Proc. of the 6th USENIX Conf. on File and Storage Technologies
(FAST’08), pages 111–125, 2008.

[18] L. Jones, M. Reid, M. Unangst, and B. Welch. Panasas tiered parity architecture.
Panasas White Paper, 2008.

[19] A. Krioukov, L. N. Bairavasundaram, G. R. Goodson, K. Srinivasan, R. Thelen,
A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Parity lost and parity regained.
In Proc. of the 6th USENIX Conf. on File and Storage Technologies (FAST’08),
pages 127–141, 2008.

[20] G. Laden, P. Ta-Shma, E. Yaffe, M. Factor, and S. Fienblit. Architectures for
controller based cdp. In Proc. of the 5th USENIX Conf. on File and Storage
Technologies (FAST’07), pages 21–21, Berkeley, CA, USA, 2007. USENIX Asso-
ciation.

[21] E. K. Lee and C. A. Thekkath. Petal: distributed virtual disks. In Proceed-
ings of the Seventh International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS VII), pages 84–93. ACM
SIGARCH/SIGOPS/SIGPLAN, Oct. 1996.

[22] J. Menon and J. Cortney. The architecture of a fault-tolerant cached raid con-
troller. In ISCA ’93: Proceedings of the 20th annual international symposium on
Computer architecture, pages 76–87, New York, NY, USA, 1993. ACM.

[23] Microsoft. Optimizing Storage for Microsoft Exchange Server 2003.
http://technet.microsoft.com/en-us/exchange/default.aspx.

[24] C.-H. Moh and B. Liskov. Timeline: a high performance archive for a distributed
object store. In NSDI, pages 351–364, 2004.

[25] M. A. Olson. The design and implementation of the inversion file system. In
Proceedings of USENIX ’93 Winter Technical Conference, Jan. 1993.

[26] B. Panzer-Steindel. Data integrity. CERN/IT Internal Report,
http://tinyurl.com/yqxdou, Apr. 2007.

[27] R. Pike, D. Presotto, K. Thompson, and H. Trickey. Plan 9 from bell labs. In
Proceedings of the Summer 1990 UKUUG Conference, pages 1–9, 1990.

[28] E. Pinheiro, W.-D. Weber, and L. A. Barroso. Failure trends in a large disk drive
population. In Proc. of the 5th USENIX Conf. on File and Storage Technologies
(FAST’07), pages 2–2, Berkeley, CA, USA, 2007.

[29] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Analysis and
evolution of journaling file systems. In Proc. of the USENIX Annual Technical
Conference (USENIX ’05), pages 105–120, Anaheim, CA, April 2005.

[30] V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal, H. S. Gunawi, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau. IRON file systems. In Proc. of the 20th
ACM Symposium on Operating Systems Principles (SOSP ’05), pages 206–220,
Brighton, United Kingdom, October 2005.

[31] W. D. Roome. 3DFS: A time-oriented file server. In Proceedings of USENIX ’92
Winter Technical Conference, Jan. 1992.

[32] Y. Saito, S. Frølund, A. Veitch, A. Merchant, and S. Spence. Fab: building dis-
tributed enterprise disk arrays from commodity components. SIGARCH Comput.
Archit. News, 32(5):48–58, 2004.

BIBLIOGRAPHY 3

[33] D. S. Santry, M. J. Feeley, N. C. Hutchinson, A. C. Veitch, R. W. Carton, and
J. Ofir. Deciding when to forget in the elephant file system. SIGOPS Oper. Syst.
Rev., 33(5):110–123, 1999.

[34] B. Schroeder and G. A. Gibson. Disk failures in the real world: what does an
MTTF of 1,000,000 hours mean to you? In Proc. of the 5th USENIX Conf. on
File and Storage Technologies (FAST’07), pages 1–1, Berkeley, CA, USA, 2007.

[35] Sean Quinlan and Sean Dorward. Venti: a new approach to archival data storage.
In Proc. of the 1st USENIX Conf. on File and Storage Technologies (FAST’02),
pages 89–102. USENIX, Jan. 28–30 2002.

[36] G. Sivathanu, S. Sundararaman, and E. Zadok. Type-safe disks. In Proceedings
of the 7th Symposium on Operating Systems Design and Implementation (OSDI
2006), pages 15–28, Seattle, WA, November 2006. ACM SIGOPS.

[37] G. Sivathanu, C. P. Wright, and E. Zadok. Ensuring data integrity in stor-
age: techniques and applications. In Proceedings of the First ACM Workshop on
Storage Security and Survivability (StorageSS 2005), pages 26–36, FairFax, VA,
November 2005. ACM.

[38] C. A. N. Soules, G. R. Goodson, J. D. Strunk, and G. R. Ganger. Metadata
efficiency in versioning file systems. In Proc. of the 2nd USENIX Conf. on File
and Storage Technologies (FAST’03), pages 43–58, Berkeley, CA, USA, 2003.
USENIX Association.

[39] J. D. Strunk, G. R. Goodson, M. L. Scheinholtz, C. A. N. Soules, and G. R.
Ganger. Self-securing storage: protecting data in compromised systems. In Pro-
ceedings of the 4th Symposium on Operating Systems Design and Implementation
(OSDI-00), pages 165–180, Berkeley, CA, 2000.

[40] Transaction Processing Performance Council. TPC Benchmark H (TPC-H).
http://www.tpc.org/tpch/.

[41] K. Vijayasankar, G. Sivathanu, S. Sundararaman, and E. Zadok. Exploiting type-
awareness in a self-recovering disk. In Proceedings of the Third ACM Workshop
on Storage Security and Survivability (StorageSS 2007), pages 25–30, Alexandria,
VA, October 2007. ACM.

[42] J. Wilkes, R. A. Golding, C. Staelin, and T. Sullivan. The HP AutoRAID hierar-
chical storage system. ACM Transactions on Computer Systems, 14(1):108–136,
Feb. 1996.

[43] J. Wires and M. J. Feeley. Secure file system versioning at the block level. In Eu-
roSys ’07: Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference
on Computer Systems 2007, pages 203–215, New York, NY, USA, 2007. ACM.

[44] J. Yang, P. Twohey, D. R. Engler, and M. Musuvathi. Using model checking
to find serious file system errors. In Proc. of the 6th Symposium on Operating
System Design and Implementation (OSDI 2004), pages 273–288, December 6-8,
2004, San Francisco, California, USA. USENIX Association, 2004.

