
COMPUTER SCIENCE DEPARTMENT
UNIVERSITY OF CRETE

Dynamic Dependence Analysis on
Multi-core Processors

A.D.A.M.
(Accelerated Dependence Analysis for Multi-cores)

Master’s Thesis

John Kesapides

(Ιωάννης Κεσαπίδης)

March, 2011

Heraklion, Greece

University of Crete

Computer Science Department

Dynamic Dependence Analysis on Multi-core Processors

A.D.A.M. (Accelerated Dependence Analysis for Multi-cores)

Thesis submitted by

John Kesapidis

In partial fulfillment of the requirements for the

Master of Science degree in Computer Science

THESIS APPROVAL

Author:

Committee approvals:

Departmental Approval:

John Kesapidis

Dimitrios S. Nikolopoulos
Associate Professor, Thesis Supervisor

Angelos Bilas
Associate Professor

Manolis G.H. Katevenis
Professor

Angelos Bilas
Associate Professor
Director of Graduate Studies

This work was performed at the Foundation for Research and Technology Hellas (FORTH),
Institute of Computer Science (ICS), 100 N. Plastira Av., Vassilika Vouton, Heraklion, GR-
70013, Greece.

The work is partially supported by the 7th European Commission Framework Programme
through the ENCORE (FP7-STREP-248647), HiPEAC (FP7-NoE-004408), and HiPEAC2
(FP7-ICT-217068) projects.

Abstract

Recent trends in modern CPU architectures lead to multi-core designs with ever

increasing numbers of cores. Furthermore architectures have emerged with heterogeneity

and explicit memory hierarchies. The CELL [1] processor is a prime example of a powerful

heterogeneous processor with explicitly managed local memories. A major challenge for

such multi-core systems is the extraction of adequate parallelism and its exploitation with

low runtime overhead and reasonable programming effort.

A suitable programming model for such architectures is the task-based model [2] [3]

[4]. Task-based programming provides a high abstraction for the programmer while

maintaining a significant amount of useful information. However the task-based model in far

from panacea, since it requires explicit synchronization, which can be a limiting factor.

The dynamic data-flow execution model can overcome the bottleneck of explicit

synchronization in task-based parallel programming, while at the same time simplifying the

requirements from the programmer. Earlier research, such as the CELLSS [2] programming

framework, proves that it is possible to implement the dynamic dataflow model over a task-

based model via runtime dependence analysis. CELLSS [2] however performs expensive

dependence analysis on memory objects by maintaining a task-graph at runtime. We

propose an alternative method of implementing the data-flow model of execution over task-

based models, where instead of a task graph we use a data dependency graph, and a novel

mechanism for identifying dependencies with O(1) complexity. Furthermore our mechanism

has the ability to track dependences due to partially overlapping data regions accessed by

different tasks.

We design and implement ADAM, a runtime system that employees our proposals.

ADAM stands for “Accelerated Dependence Analysis for Multi-cores”. We evaluate the

scalability of ADAM on the CELL [1] processor and compare its performance with the (i)TPC

[3] runtime, the (ii) CELLSS [2] runtime and (iii) a runtime with manual dependence analysis.

ADAMs performance compared to the CELLSS [2] runtime is 2,77 better for the Cholesky

benchmark and 2,27 times better for the Jacobi benchmark. In comparison with the TPC [3]

runtime ADAM manages to efficiently parallelize applications that the TPC [3] fails to.

Acknowledgements

I would first of all to express my appreciation to my supervisor, professor Dimitris S.

Nikolopoulos, and to professor Angelos Bilas, for their valuable guidance and patience. Their

advise over the course of my Master’s degree, were a major contribution to my evolvement

as a researcher.

I would also like to thank the CARV laboratory of ICS-FORTH, for providing the

necessary equipment, the research environment and stimuli. I am also grateful towards

CARV laboratory, for the provided student scholarship, over the last two years. Also a special

thanks to all the researchers, past and current, at CARV laboratory, especially to post-doc

researcher Polyvios Pratikakis.

Finally a very special thanks to my family, my parents Panayiotis and Eleni, my

brother Harry, and Fani for their support throughout my graduate and undergraduate

studies.

Contents

1 INTRODUCTION ... 1

2 DESIGN .. 6

2.1 DETECTION/REGISTRATION .. 6

2.2 DEPENDENCY MODEL ... 8

2.3 TASK MANAGEMENT .. 9

2.4 TIMING MODEL ... 11

2.5 RENAMING ... 12

2.6 META-DATA MANAGEMENT ... 13

2.7 SCHEDULING ... 14

2.8 CONSISTENCY .. 16

2.9 ADAM-SMP ... 17

3 EVALUATION ... 20

3.1 APPLICATIONS ... 21

3.1.1 LU .. 21

3.1.2 FFT .. 28

3.1.3 Sequoia [4] Kernels ... 31

3.1.4 Cholesky .. 33

3.1.5 Matmul ... 35

3.1.6 Jacobi .. 39

3.2 PARAMETERS AND FEATURES.. 41

3.3 EVALUATING AGAINST CELLSS [2] .. 48

3.3.1 Cholesky .. 48

3.3.2 Matmul ... 49

3.3.3 Jacobi .. 50

3.4 EVALUATING AGAINST TPC [3] ... 52

3.4.1 LU .. 52

3.4.2 FFT .. 59

3.4.3 Sequoia [4] Kernels ... 61

3.4.4 Cholesky .. 63

3.4.5 Matmul ... 64

3.4.6 Jacobi .. 65

3.5 EVALUATING AGAINST MANUAL DEPENDENCE ANALYSIS .. 67

3.5.1 LU .. 68

3.5.2 Sequoia [4] kernels .. 71

3.5.3 Cholesky .. 73

3.5.4 Matmul ... 74

3.5.5 Jacobi .. 75

4 RELATED WORK ... 78

5 CONCLUSIONS AND FUTURE WORK ... 80

APPENDIX .. 82

A. MANUAL DEPENDENCE ANALYSIS .. 82

6 REFERENCES .. 85

List of Figures

Figure 1—1 Dataflow example from [7]. .. 3

Figure 2.1—1 Dependence Analysis Register. Example of the Register operation for a specific block.7

Figure 2.2—1 Data dependency Graph. Example of a data dependency graph along with the task

issues that correspond to this example. .. 9

Figure 2.4—1 Timing Model ... 11

Figure 2.7—1 Task life cycle. The path of a task along the execution of an application 14

Figure 2.7—2 Runtime component Architecture. This figure depicts the main components of the

runtime, and the interactions among them. .. 15

Figure 2.9—1 ADAM Grids. Allocation Example with the usage of Grids .. 18

Figure 2.9—2 ADAM SMP Dependence detection. Example of the dependence detection operation

using Grids. .. 19

Figure 3.1.1—1 LU 512x512(8x8). LU execution Breakdown for the PPE and the SPEs for runs with

1,2,3,4,5,6 SPEs, for an array size of 512x512 with application block size 8x8. 23

Figure 3.1.1—2 LU 512x512(16x16).LU execution Breakdown for the PPE and the SPEs for runs with

1,2,3,4,5,6 SPEs, for an array size of 512x512 with application block size 16x16. 23

Figure 3.1.1—3 LU 512x512(32x32).LU execution Breakdown for the PPE and the SPEs for runs with

1,2,3,4,5,6 SPEs, for an array size of 512x512 with application block size 32x32. 24

Figure 3.1.1—4 LU 4096x4096(8x8). LU execution Breakdown for the PPE and the SPEs for runs with

1,2,3,4,5,6 SPEs, for an array size of 4096x4096 with application block size 8x8. 24

Figure 3.1.1—5 LU 4096x4096(16x16).LU execution Breakdown for the PPE and the SPEs for runs

with 1,2,3,4,5,6 SPEs, for an array size of 4096x4096 with application block size 16x16. 25

Figure 3.1.1—6 LU 4096x4096(32x32).LU execution Breakdown for the PPE and the SPEs for runs

with 1,2,3,4,5,6 SPEs, for an array size of 4096x4096 with application block size 32x32. 25

Figure 3.1.1—7 LUsp 512x512(8x8). LU with single precision, execution Breakdown for the PPE and

the SPEs for runs with 1,2,3,4,5,6 SPEs, for an array size of 512x512 with application block size

8x8... 26

Figure 3.1.1—8 LUsp 512x512(16x16). LU with single precision, execution Breakdown for the PPE

and the SPEs for runs with 1,2,3,4,5,6 SPEs, for an array size of 512x512 with application block

size 16x16. ... 26

Figure 3.1.1—9 LUsp 512x512(32x32). LU with single precision, execution Breakdown for the PPE

and the SPEs for runs with 1,2,3,4,5,6 SPEs, for an array size of 512x512 with application block

size 32x32. ... 27

Figure 3.1.1—10 LUsp 4096x4096(8x8). LU with single precision, execution Breakdown for the PPE

and the SPEs for runs with 1,2,3,4,5,6 SPEs, for an array size of 4096x4096 with application

block size 8x8. .. 27

Figure 3.1.1—11 LUsp 4096x4096(16x16). LU with single precision, execution Breakdown for the

PPE and the SPEs for runs with 1,2,3,4,5,6 SPEs, for an array size of 4096x4096 with application

block size 16x16. .. 28

Figure 3.1.1—12 LUsp 4096x4096(32x32). LU with single precision, execution Breakdown for the

PPE and the SPEs for runs with 1,2,3,4,5,6 SPEs, for an array size of 4096x4096 with application

block size 32x32. .. 28

Figure 3.1.2—1 FFT 64k. FFT execution Breakdown for the PPE and the SPEs for runs with 1,2,3,4,5,6

SPEs, for 16384 Complex Double elements. ... 29

Figure 3.1.2—2 FFT 4M. FFT execution Breakdown for the PPE and the SPEs for runs with 1,2,3,4,5,6

SPEs, for 4194304 Complex Double elements. ... 30

Figure 3.1.2—3 FFTsp 64k. FFT with single precision, execution Breakdown for the PPE and the SPEs

for runs with 1,2,3,4,5,6 SPEs, for 16384 Complex Float elements. .. 30

Figure 3.1.2—4 FFTsp 4M. FFT with single precision numbers, execution Breakdown for the PPE and

the SPEs for runs with 1,2,3,4,5,6 SPEs, for 4194304 Complex Float elements. 31

Figure 3.1.3—1 SAXPY. Saxpy execution Breakdown for the PPE and the SPEs for runs with

1,2,3,4,5,6 SPEs. ... 32

Figure 3.1.3—2 SGEMV N4. Sgemv execution Breakdown for the PPE and the SPEs for runs with

1,2,3,4,5,6 SPEs and N=4. ... 33

Figure 3.1.3—3 SGEMV N8. Sgemv execution Breakdown for the PPE and the SPEs for runs with

1,2,3,4,5,6 SPEs and N=8. ... 33

Figure 3.1.4—1 Cholesky 13x13. Cholesky execution Breakdown for the PPE and the SPEs for runs

with 1,2,3,4,5,6 SPEs and for a 13x13 matrix of 64x64 blocks(Cholesky blocks) of single

precision numbers. .. 34

Figure 3.1.4—2 Cholesky 20x20. Cholesky execution Breakdown for the PPE and the SPEs for runs

with 1,2,3,4,5,6 SPEs and for a 20x20 matrix of 64x64 blocks(Cholesky blocks) of single

precision numbers. .. 35

Figure 3.1.5—1 Task re-ordering. Ordering of the 120 tasks of a matmul 13x13 run. X-axis is

execution order while y-axis is the issue order. ... 36

Figure 3.1.5—2 Task re-ordering. Ordering of all(2145) of the tasks of a matmul 13x13 run. X-axis is

execution order while y-axis is the issue order. ... 37

Figure 3.1.5—3 Matmul 13x13. Matmul execution Breakdown for the PPE and the SPEs for runs

with 1,2,3,4,5,6 SPEs and for a 13x13 matrix of 64x64 blocks(Matmul blocks) of single precision

numbers. ... 38

Figure 3.1.5—4 Matmul 20x20. Matmul execution Breakdown for the PPE and the SPEs for runs

with 1,2,3,4,5,6 SPEs and for a 20x20 matrix of 64x64 blocks(Matmul blocks) of single precision

numbers. ... 38

Figure 3.1.6—1 Jacobi 13. Jacobi execution Breakdown for the PPE and the SPEs for runs with

1,2,3,4,5,6 SPEs and for 13 iterations on a 32x32 matrix of 32x32 blocks(Matmul blocks) of

single precision numbers. .. 40

Figure 3.1.6—2 Jacobi 20. Jacobi execution Breakdown for the PPE and the SPEs for runs with

1,2,3,4,5,6 SPEs and for 20 iterations on a 32x32 matrix of 32x32 blocks(Matmul blocks) of

single precision numbers. .. 40

Figure 3.2—1 Sample Dependency graph for the LU application(N256x256,b16x16). 41

Figure 3.2—2 Task window. The effect of the size of the task window on the number of

Dependencies, Blocking Dependencies and Writebacks. ... 42

Figure 3.2—3 Task Instantiate vs. Task Window. The Effect of the Task Window size on the task

instantiate overhead. .. 43

Figure 3.2—4 PPE tasks(LU N512x512,b16x16) . The impact in scalability of the use of PPE tasks. ... 44

Figure 3.2—5 ADAM block size. The impact of the block size of ADAM in the number of

Dependencies and the number of Blocking Dependencies... 45

Figure 3.2—6 The impact of ADAM’s Block size in scalability (LU N512x512b16x16). Comparison of

the PPE breakdown for ADAM block sizes 2048 and 1024 with 1,2,3,4,5,6 SPEs. 46

Figure 3.2—7 The impact of ADAM’s Block size in scalability (LU N512x512b16x16). Comparison of

the SPE breakdown for ADAM block sizes 2048 and 1024 with 1,2,3,4,5,6 SPEs. 46

Figure 3.2—8 The impact of ADAM’s Block size in scalability (LU N512x512b16x16). Comparison of

the PPE breakdown for ADAM block sizes 2048 and 512 with 1,2,3,4,5,6 SPEs. 47

Figure 3.2—9 The impact of ADAM’s Block size in scalability (LU N512x512b16x16). Comparison of

the SPE breakdown for ADAM block sizes 2048 and 512 with 1,2,3,4,5,6 SPEs. 47

Figure 3.3.1—1 Cholesky 13x13 ADAM vs. CELLSS. Cholesky for runs with 1,2,3,4,5,6 SPEs and for a

13x13 matrix of 64x64 blocks(Cholesky blocks) of single precision numbers. 48

Figure 3.3.1—2 Cholesky 20x20 ADAM vs. CELLSS. Cholesky for runs with 1,2,3,4,5,6 SPEs and for a

20x20 matrix of 64x64 blocks(Cholesky blocks) of single precision numbers. 49

Figure 3.3.2—1 Matmul 13x13 ADAM vs. CELLSS. Matmul for runs with 1,2,3,4,5,6 SPEs and for a

13x13 matrix of 64x64 blocks(Matmul blocks) of single precision numbers. 49

Figure 3.3.2—2 Matmul 20x20 ADAM vs. CELLSS. Matmul for runs with 1,2,3,4,5,6 SPEs and for a

20x20 matrix of 64x64 blocks(Matmul blocks) of single precision numbers. 50

Figure 3.3.3—1 Jacobi 13 ADAM vs. CELLSS. Jacobi for runs with 1,2,3,4,5,6 SPEs and for 13

iterations over a 32x32 matrix of 32x32 blocks(jacobi blocks) of single precision numbers. 51

Figure 3.3.3—2 Jacobi 20 ADAM vs. CELLSS. Jacobi for runs with 1,2,3,4,5,6 SPEs and for 20

iterations over a 32x32 matrix of 32x32 blocks(jacobi blocks) of single precision numbers. 51

Figure 3.4.1—1 ADAM vs. TPC LU 512x512(8x8). LU execution Breakdown for the PPE and the SPEs

for runs with 6 SPEs, for an array size of 512x512 with application block size 8x8. 53

Figure 3.4.1—2 ADAM vs. TPC LU 512x512(16x16). LU execution Breakdown for the PPE and the

SPEs for runs with 6 SPEs, for an array size of 512x512 with application block size 16x16. 54

Figure 3.4.1—3 ADAM vs. TPC LU 512x512(32x32). LU execution Breakdown for the PPE and the

SPEs for runs with 6 SPEs, for an array size of 512x512 with application block size 32x32. 54

Figure 3.4.1—4 ADAM vs. TPC LU 4096x4096(8x8). LU execution Breakdown for the PPE and the

SPEs for runs with 6 SPEs, for an array size of 4096x4096 with application block size 8x8. 55

Figure 3.4.1—5 ADAM vs. TPC LU 4096x4096(16x16). LU execution Breakdown for the PPE and the

SPEs for runs with 6 SPEs, for an array size of 4096x4096 with application block size 16x16. .. 55

Figure 3.4.1—6 ADAM vs. TPC LU 4096x4096(32x32). LU execution Breakdown for the PPE and the

SPEs for runs with 6 SPEs, for an array size of 4096x4096 with application block size 32x32. .. 56

Figure 3.4.1—7 ADAM vs. TPC LUsp 512x512(8x8). LU with single precision numbers execution

Breakdown for the PPE and the SPEs for runs with 6 SPEs, for an array size of 512x512 with

application block size 8x8. ... 56

Figure 3.4.1—8 ADAM vs. TPC LUsp 512x512(16x16). LU with single precision numbers execution

Breakdown for the PPE and the SPEs for runs with 6 SPEs, for an array size of 512x512 with

application block size 16x16. ... 57

Figure 3.4.1—9 ADAM vs. TPC LUsp 512x512(32x32). LU with single precision numbers execution

Breakdown for the PPE and the SPEs for runs with 6 SPEs, for an array size of 512x512 with

application block size 32x32. ... 57

Figure 3.4.1—10 ADAM vs. TPC LUsp 4096x4096(8x8). LU with single precision numbers execution

Breakdown for the PPE and the SPEs for runs with 6 SPEs, for an array size of 4096x4096 with

application block size 8x8. ... 58

Figure 3.4.1—11 ADAM vs. TPC LUsp 4096x4096(16x16). LU with single precision numbers execution

Breakdown for the PPE and the SPEs for runs with 6 SPEs, for an array size of 4096x4096 with

application block size 16x16. ... 58

Figure 3.4.1—12 ADAM vs. TPC LUsp 4096x4096(32x32). LU with single precision numbers execution

Breakdown for the PPE and the SPEs for runs with 6 SPEs, for an array size of 4096x4096 with

application block size 32x32. ... 59

Figure 3.4.2—1 ADAM vs. TPC FFT 64k. FFT, execution Breakdown for the PPE and the SPEs for runs

with 6 SPEs, for 16384 Complex Double elements. .. 60

Figure 3.4.2—2 ADAM vs. TPC FFT 4M. FFT execution Breakdown for the PPE and the SPEs for runs

with 6 SPEs, for 4194304 Complex Double elements. .. 60

Figure 3.4.2—3 ADAM vs. TPC FFTsp 64k. FFT with single precision, execution Breakdown for the

PPE and the SPEs for runs with 6 SPEs, for 16384 Complex Float elements. 61

Figure 3.4.2—4 ADAM vs. TPC FFTsp 4M. FFT with single precision, execution Breakdown for the

PPE and the SPEs for runs with 6 SPEs, for 4194304Complex Float elements. 61

Figure 3.4.3—1 ADAM vs. TPC SAXPY. Saxpy execution Breakdown for the PPE and the SPEs for runs

with 6 SPEs. ... 62

Figure 3.4.3—2 ADAM vs. TPC SGEMV N4. Saxpy execution Breakdown for the PPE and the SPEs

with N=4 for runs with 6 SPEs. ... 62

Figure 3.4.3—3 ADAM vs. TPC SGEMV N8. Saxpy execution Breakdown for the PPE and the SPEs

with N=8 for runs with 6 SPEs. ... 63

Figure 3.4.4—1 ADAM vs. TPC Cholesky 13x13. Cholesky execution Breakdown for the PPE and the

SPEs for runs with 6 SPEs and for a 13x13 matrix of 64x64 blocks(Cholesky blocks) of single

precision numbers. .. 64

Figure 3.4.4—2 ADAM vs. TPC Cholesky 20x20. Cholesky execution Breakdown for the PPE and the

SPEs for runs with 6 SPEs and for a 20x20 matrix of 64x64 blocks(Cholesky blocks) of single

precision numbers. .. 64

Figure 3.4.5—1 ADAM vs. TPC Matmul 13x13. Matmul execution Breakdown for the PPE and the

SPEs for runs with 6 SPEs and for a 13x13 matrix of 64x64 blocks(Matmul blocks) of single

precision numbers. .. 65

Figure 3.4.5—2 ADAM vs. TPC Matmul 20x20. Matmul execution Breakdown for the PPE and the

SPEs for runs with 6 SPEs and for a 20x20 matrix of 64x64 blocks(Matmul blocks) of single

precision numbers. .. 65

Figure 3.4.6—1 ADAM vs. TPC Jacobi 13. Jacobi execution Breakdown for the PPE and the SPEs for

runs with 6 SPEs and for 13 iterations on a 32x32 matrix of 32x32 blocks(Matmul blocks) of

single precision numbers. .. 66

Figure 3.4.6—2 ADAM vs. TPC Jacobi 20. Jacobi execution Breakdown for the PPE and the SPEs for

runs with 6 SPEs and for 20 iterations on a 32x32 matrix of 32x32 blocks(Matmul blocks) of

single precision numbers. .. 66

Figure 3.5.1—1 ADAM vs. Manual Dependence Analysis LU 512x512(8x8). LU execution Breakdown

for the PPE and the SPEs for runs with 6 SPEs, for an array size of 512x512 with application

block size 8x8. .. 68

Figure 3.5.1—2 ADAM vs. Manual Dependence Analysis LU 512x512(16x16). LU execution

Breakdown for the PPE and the SPEs for runs with 6 SPEs, for an array size of 512x512 with

application block size 16x16. ... 69

Figure 3.5.1—3 ADAM vs. Manual Dependence Analysis LU 512x512(8x8). LU execution Breakdown

for the PPE and the SPEs for runs with 6 SPEs, for an array size of 512x512 with application

block size 32x32. .. 69

Figure 3.5.1—4 ADAM vs. Manual Dependence Analysis LU 4096x4096(8x8). LU execution

Breakdown for the PPE and the SPEs for runs with 6 SPEs, for an array size of 4096x4096 with

application block size 8x8. ... 70

Figure 3.5.1—5 ADAM vs. Manual Dependence Analysis LU 4096x4096(16x16). LU execution

Breakdown for the PPE and the SPEs for runs with 6 SPEs, for an array size of 4096x4096 with

application block size 16x16. ... 70

Figure 3.5.1—6 ADAM vs. Manual Dependence Analysis LU 4096x4096(32x32). LU execution

Breakdown for the PPE and the SPEs for runs with 6 SPEs, for an array size of 4096x4096 with

application block size 32x32. ... 71

Figure 3.5.2—1 ADAM vs. Manual Dependence Analysis SAXPY. Saxpy execution Breakdown for the

PPE and the SPEs for runs with 6 SPEs. .. 72

Figure 3.5.2—2 ADAM vs. Manual Dependence Analysis SGEMV N4. Saxpy execution Breakdown for

the PPE and the SPEs with N=4 for runs with 6 SPEs. ... 72

Figure 3.5.2—3 ADAM vs. Manual Dependence Analysis SGEMV N8. Saxpy execution Breakdown for

the PPE and the SPEs with N=8 for runs with 6 SPEs. ... 73

Figure 3.5.3—1 ADAM vs. Manual Dependence Analysis Cholesky 13x13. Cholesky execution

Breakdown for the PPE and the SPEs for runs with 6 SPEs and for a 13x13 matrix of 64x64

blocks(Cholesky blocks) of single precision numbers. .. 74

Figure 3.5.3—2 ADAM vs. Manual Dependence Analysis Cholesky 20x20. Cholesky execution

Breakdown for the PPE and the SPEs for runs with 6 SPEs and for a 20x20 matrix of 64x64

blocks(Cholesky blocks) of single precision numbers. .. 74

Figure 3.5.4—1 ADAM vs. Manual Dependence Analysis Matmul 13x13. Matmul execution

Breakdown for the PPE and the SPEs for runs with 6 SPEs and for a 13x13 matrix of 64x64

blocks(Matmul blocks) of single precision numbers. ... 75

Figure 3.5.4—2 ADAM vs. Manual Dependence Analysis Matmul 20x20. Matmul execution

Breakdown for the PPE and the SPEs for runs with 6 SPEs and for a 20x20 matrix of 64x64

blocks(Matmul blocks) of single precision numbers. ... 75

Figure 3.5.5—1 ADAM vs. Manual Dependence Analysis Jacobi 13. Jacobi execution Breakdown for

the PPE and the SPEs for runs with 6 SPEs and for 13 iterations on a 32x32 matrix of 32x32

blocks(Matmul blocks) of single precision numbers. ... 76

Figure 3.5.5—2 ADAM vs. Manual Dependence Analysis Jacobi 20. Jacobi execution Breakdown for

the PPE and the SPEs for runs with 6 SPEs and for 20 iterations on a 32x32 matrix of 32x32

blocks(Matmul blocks) of single precision numbers. ... 76

List of Tables

Table 3.1.1—I Number of tasks for the LU application ... 22

Table 3.1.2—I Number of tasks for the FFT application .. 29

Table 3.1.3—I Number of tasks for the Saxpy benchmark .. 31

Table 3.1.3—II Number of tasks for the Sgemv benchmark .. 32

Table 3.1.4—I Number of tasks for the Cholesky benchmark ... 34

Table 3.1.5—I Number of tasks for the Matmul benchmark... 35

Table 3.1.6—I Number of tasks for the Jacobi benchmark ... 39

Table 3.2—I The distribution of Tasks among the PPE and the SPEs ... 44

1

1 Introduction

 With the introduction of the power-wall, CPU architectures shifted towards the

multi-core paradigm. In addition new heterogeneous architectures have emerged. Although

the theoretical peak performance is constantly increasing, current programming models and

tools are unable to utilize it, and as the number of cores increases they become more and

more inadequate. Active research in the field of parallel computing has produced numerous

proposals for programming models and new programming languages. One of the most

promising, easy to use and efficient programming models is the task-based parallel

programming model. From the programmer’s perspective the task-based model abstracts

the underline system thus allowing the programmer to express parallelism at the application

level. From the systems perspective it provides the required information for the efficient

parallel execution and communication of applications. Furthermore the constant increase of

cores and the addition of small local-memories, reduce task-management cost and therefore

favor the use of fine-grain tasks. Fine-grain tasks allow programmers to express parallelism

easier and more efficiently.

 An interesting architectural trend in modern multi-core processors is Heterogeneity.

Heterogeneity can offer better performance and power efficiency but on the other hand it

increases complexity, because it requires, tailoring program parts for each core type.

Another architectural trend of particular interest is explicitly managed local memories.

Explicitly managed local memories can improve performance significantly especially in the

case of streaming applications, but delegating the responsibility of the transfers to the

programmer makes them harder to program for. Task-based programming models help

abstract the challenges in the programmability of such architectures.

 The CELL [1] processor is a prime example of a powerful heterogeneous processor

with explicitly managed local memories. The CELL [1] processor consists of nine cores, one

dual-threaded 64-bit PowerPC called PPE(Power Processing Element) and eight 128-bit

SIMD processors called SPEs(Synergistic Processor Element). Each SPE has a 256KB local

storage for data and code that is not implicitly coherent with the main memory. The

programmer is responsible for fetching and writing-back the appropriate data and code via

DMA commands. Although the peak performance of this processor is highly promising, the

2

heterogeneity and the explicit coherency among cores make it extremely hard to program

for.

 The task programming model proves to be a good abstraction for the CELL [1]

processor and can greatly simplify the development process, because it can abstract

heterogeneity to a certain degree and it can implicitly express data transfers. The PPE is

defined as the task arbitrator and the SPEs as the task executors. The CELL [1] processor’s

architecture favors a centralized model with one master and multiple workers and over the

years several runtime systems and languages have been proposed that employ this model or

some variation of it [2] [3] [4]. Tasks implemented over the CELL [1] architecture are defined

as self contained remote and asynchronous functions consisting of both code and data.

 Although the task programming looks sufficient it does present certain issues. The

programmer is responsible for the synchronization among tasks, which in certain situations

is not trivial, unless the programmer is willing to sacrifice performance. Furthermore

synchronization often impedes scalability, and in certain cases the task-model, as is, cannot

properly express parallelism in applications. Let us consider the following case. An iterative

application where each iteration consists of three phases, init, calculate and complete. Each

phase is sufficiently parallel but every task in the calculate phase depends at least on one

task of the init phase and every task in the complete phase depends at least on one task of

the calculate phase. The dependencies among tasks are a result of the current state of the

application and so there are no guaranties that two iterations will exhibit the same

dependencies. In order to use the task programming model we would introduce

synchronization after each phase of each iteration. There is however additional parallelism

we do not exploit. Task executions could be pipelined among the three stages of each

iteration, as well as across iterations.

 These issues grow in importance as the number of cores increases. CPU designs have

already emerged with as many as 48 cores [5], and synchronizing among 48-cores is bound

to impact performance. Furthermore multi-core designs, are now becoming the mainstream,

which means that the target group for these CPUs in longer just the experts of the high-

performance community but rather the average programmer. In addition it is not

uncommon for software intended for the average user, to be dynamically parallel, like video-

games for instance. An application is considered dynamically parallel when the amount of

parallelism cannot be statically identified a priori.

3

 A solution to the issues above would be a dynamic dataflow-model of execution,

because this model does not require any explicit synchronization from the programmer and

it inherently expresses parallelism. The data-flow model [6] dictates that an operation

should proceed only when, all the values it depends on are updated. Dependencies among

operations in the data-flow model are expressed by a directed acyclic graph [6]. Figure 1—1

shows an example derived from [7] of a dataflow graph that corresponds to a small

program.

+

*

/

+

x

x

y

ab

Input a,b

 y=(a+b)/x;

 x=(a*(a+b))+b;

 Output y,x

Figure 1—1 Dataflow example from [7].

The CELLSS [2] [8]runtime proved that it is possible to use the data-flow execution

model over a task-based model, using tasks as the operations and the data-transfer

directions as access descriptors (Read, Write or both). Because CELLSS [2] is a runtime

system, the directed acyclic graph of tasks, representing dependencies, is created and

respected dynamically, at runtime. Although this promotes parallelism, in order to create

the task graph the runtime for every newly created task has to search within the set of

resources used by other tasks in order to find dependencies. Therefore the management of

the task graph introduces overhead typically in the order of thousands of core cycles [8].

4

We propose an alternative method of implementing the dynamic data-flow model of

execution over task-based models. Our method presents a significantly lower overhead

compared to task-graph solutions. Since dependencies concern data and operations on data,

instead of a task graph we use a data dependency graph. In this graph the edges are

operations on data and the arcs are tasks (execution paths). Because the dependencies that

emerge among data operations are not all true dependencies, we can rename the data thus

resolving them. Data renaming is a technique used in resolving register dependencies within

CPUS, and is also used by the CELLSS [2] runtime. In our solution we consider that the

runtime always resolves all but the true dependencies. This allows us to simplify our data-

dependency graph since we only need to express Read-after-Write dependencies. It is

sufficient in order to represent Read-after-Write dependencies to have only write operations

represented as edges in our graph. So our graph is a data-dependency graph with write

operations on data as edges and tasks as the arcs connecting the edges. This graph is usually

less complex than the equivalent task-graph and easier to manage. Furthermore because

our dependency graph is a data-dependency graph and not a task graph, the renaming

process does not require additional address translations. Two write operations on the same

data will be represented as two distinct nodes in the graph, therefore once dependence

analysis takes place, we do not have to perform additional look-ups to accommodate

renaming with the correct versions of the data.

We present a new algorithm for detecting dependencies with O(1) cost and the

ability to track dependences due to partially overlapping data regions accessed by different

tasks. We view the entire memory as a matrix of aligned blocks, the size of which is a

configurable parameter. From the perspective of dependencies we consider that all the

operations occur on units of memory blocks. This induction allows us to detect

dependencies among overlapping data regions. Whenever a new write operation is issued

we translated it into memory blocks and use the first few bytes of each block to store a

unique-id that uniquely identifies a corresponding node in the graph. In order to detect

dependencies, for a specific block we just look at the beginning of the block for a valid id.

We implement and present the design of a runtime system called ADAM. ADAM

stands for Accelerated Dependence Analysis for Multi-cores. ADAM was primarily intended

for the CELL [1] processor, therefore the design of the runtime is driven from the

architecture of the CELL [1] processor. The starting point for the development of ADAM was

the TPC [3] runtime system and because of this, ADAM is compatible with the TPC [3]. TPC

5

[3] is a task-based low-overhead runtime system for the CELL [1] processor. Although the

target architecture for ADAM is the CELL [1] processor, we have also implemented an SMP

version for x86 multi-core processors, we describe the design differences of the SMP version

in a separate sub-section within the design section.

We evaluate the performance of ADAM in a series of application from the SPLASH-2

benchmark suite, the CELLSS [2] runtime and the sequoia runtime. We also compare the

performance of ADAM with the (i)TPC [3] runtime, the (ii) CELLSS [2] runtime and (iii) a

runtime with manual dependence analysis. ADAM exhibits good scalability in cases where

the tasks are large enough to outweigh the introduced overhead. In the cases where ADAM

exhibits good scaling, ADAM’s performance is always better than that of the TPC [3], and in

all of our evaluation cases ADAM outperforms the CELLSS [2] runtime. ADAM is 2,77 times

faster for the Cholesky benchmark with 13x13 dataset and 2,27 times faster for the Jacobi

benchmark, from CELLSS [2] in runs with 6 SPEs. Compared to the TPC [3] runtime ADAM is

2,43 times faster for the Jacobi benchmark and 5,99 for the Matmul benchmark.

6

2 Design

ADAM uses the model of a single master and multiple workers, driven from the

architecture of the CELL [1] processor, with the master and the workers each with its own

address space. The master issues tasks to the workers and performs dependence analysis,

while the workers only execute tasks. Each worker has its own queue visible only to him and

the master. The master pushes tasks to the worker’s queue and workers execute them. The

worker is responsible for fetching and writing-back the data necessary for each task. TPC,

which ADAM uses as a back-end allows for the data transfers of one task to overlap with the

execution of another.

We consider tasks a set of self-contained remote asynchronous functions. Tasks

may call other functions and allocate/de-allocate data but all interaction with shared data

among other tasks and the main thread must be stated upon task creation. The programmer

must pass the shared data as arguments to that task and denote whether this task intends to

read, write or both read and write on each argument separately. We will refer to the intent

of this denotation as an “operation” from now on. Tasks are also not allowed to create new

tasks. Tasks are asynchronous since their execution can commence at any point in time after

their dependencies are satisfied.

2.1 Detection/Registration

For every issued task, ADAM needs to perform dependence analysis for it. ADAM

handles each argument separately, translates it into its corresponding memory blocks and

performs dependence analysis for each block. The size of the blocks is a parameter defined

by the programmer at the initialization of the runtime and represents the granularity of the

dependence analysis. The programmer can also flag a specific argument as “safe”, in which

case no dependence analysis is performed for this argument nor is it divided into blocks. For

stride-arguments each stride element is treated as a separate argument. The translation of

arguments to blocks allows us, to detect dependencies among partially overlapping

arguments since the overlapping ranges will translate to the same blocks.

Detection of dependencies consists of keeping track of addresses with incomplete

operations and searching whether each newly issued address belongs to these addresses.

Therefore we need low-cost search within our data-structures as well as low cost insert. A

common alternative is the use of hash tables, but address-based hashing will present

7

collisions for every dependence. In ADAM we alleviate the search operation using the

following method.

To detect dependencies we use the first two bytes (2byte-ID) of the block and the

address of the block and create the tuple {2byte-ID,address}. The runtime preserves

metadata per operation in an array. Each metadata element in this array has a field that

contains the address it is associated to. We use the first element (2byte-ID) of the tuple as

an index for this array and compare the second element of this tuple (address) with the

address this metadata element is associated to. If the two addresses match then we have

found a dependence. The reason that we also need to compare the addresses is that the

first two bytes of the block may be user data and not a 2byte-ID placed by ADAM and we

need a way to exclude these cases as false detections.

10 0xFF

Address

0xFFFFDAAD

Argument

Struct Meta data element{

Void *Address;

uint16_t coherency_buffer;

};

10nth position

Meta Data Array ‘M’

Step 1

M[10]->Address=0xFFFFDAAD

0x14 0x12 0xFA 0xDA

Step 2

M[10]->coherency_buffer={0x14,0x12}

00 10

Step 3

Copy unique-id to A

Figure 2.1—1 Dependence Analysis Register. Example of the Register operation for a specific block.

In order to register(Figure 2.1—1) an operation to a block by a task we do the

following: First we reserve a new slot in the metadata array and a new meta-data element.

We then set the field of the metadata element’s associated address to the address of the

block we are registering. Finally, we buffer the first two bytes into a field in the meta

8

element called coherency_buffer and overwrite them with our index (2byte-ID). For each

block we perform dependence analysis, we always first detect and then register. If a block is

already registered then instead of placing the first two bytes of the block in the coherency

buffer we simply copy the coherency buffer of the already registered meta-data element.

The rest of the process remains the same. Multiple elements in the metadata array are

allowed to be associated with the same address but detection guarantees the return of the

one that was issued last because the first two bytes of the block will always be the index of

the last one. It suffices to only register write operations on blocks because only Read-After-

Write dependencies are true dependencies and have to be respected by the runtime, the

rest can be resolved using renaming. Therefore for read operations on blocks we only detect

not register.

2.2 Dependency Model

The runtime handles Data-dependencies among tasks. These dependencies can

expressed by a slightly modified Bernstein Condition:

 [I(Ti) ∩ O(Tj)] ∪ [O(Ti) ∩ I(Tj)] ∪ [O(Ti) ∩ O(Tj)] ≠ Ø

Where:

 i and j express the issue order of the tasks and i<j

 I(Tx) is the set of blocks read by task Tx

 O(Ty) is set of blocks written by task Ty.

 There is a valid run-time execution path from Ti to Tj

 No explicit synchronization exists among the two.

 j-i<Task_Window. Task window is the maximum number of allowed issued

tasks in the runtime at any single point in time.

These dependencies are divided into three categories:

a. True Dependencies formally expressed O(Ti) ∩ I (Tj) with the above preconditions

b. Anti-Dependencies formally expressed I(Ti) ∩ O(Tj) with the above preconditions

c. Output Dependencies formally expressed as O(Ti) ∩ O(Tj) with the above

preconditions.

In order to keep track of dependencies ADAM does not maintain a task graph but

rather a data-dependency graph. In this graph data operations on addresses are the nodes

of the graph while tasks are treated as arcs. As mentioned above though the runtime system

respects only true dependencies and therefore only registers write operations. The data-

9

dependency graph allows us to handle only true dependencies as opposed to a task graph.

Furthermore, because, dependence detection takes place over data we reduce the control

path required to associate detected dependencies with the corresponding tasks. A data

dependency graph can also be used for the purposes of renaming thus reducing the control

path even more. In addition task management is greatly simplified due to the fact that a

dependency graph disassociates the dependence management from tasks.

1. Task t1(Read(a),Write(b))

2. Task t2(Read(a),Write(c))

3. Task t3(Read(b),Read(c),Write(e))

Figure 2.2—1 Data dependency Graph. Example of a data dependency graph along with the task issues that
correspond to this example.

Writes are the nodes of the graph and tasks are directed arcs connecting them. A task

(arc) connects two writes if and only if the task reads the value of the source write (edge at

the beginning of the arc) and performs the destination write (edge at the end of the arc).

Since the same task may present itself as more than one arcs, we consider each task an arc-

class and the arcs for that task as instances of that class. The default behavior of the

runtime system is to treat class-instances as a unity (all these paths will be created together

and progressed together), the dependency model however allows you to treat them

separately (progress a path earlier/later) and to add/drop class-instances dynamically as

long as the arc-class is alive. An arc-class is considered alive for as long as it has one or more

instances.(Current implementations of the runtime impose the default behavior though).

2.3 Task Management

 Tasks that have dependencies need to be blocked from executing until their

dependencies are resolved. Because a task is an arc in our dependency model we need only

10

to keep track the number of pending dependencies. The task has no information about

which dependencies are pending but only how many dependencies are pending. When the

number of pending dependencies reaches zero then the task is eligible for execution. For

each Write operation on a block we preserve a meta-data element. Each element has its

own stack of references to tasks that depend on it. When we create a task if the analysis

detects a block registered then this means that the task must block until the registered

operation completes. Therefore we push a reference to the task we are currently issuing to

the stack of the meta-data element of this operation and increment the pending

dependencies for the task by one. The meta-data for the tasks also include a full description

of the task. These include a function-id, which identifies the function to be called, and for

each block an input address, an output address, the size of the block, an offset within the

block, and a flag denoting whether we read, write of both to the block, and whether this is

the first block of the original argument.

 For every task that completes execution we need to update the data-dependency

graph. For each meta-data element, that the completed task registered, we pop empty the

stack of dependent tasks. For every task that we pop, we decrement its pending

dependencies counter by one. If for any of the popped tasks this counter reaches zero then

this task is considered eligible for execution. We will describe later how we link meta-data

elements with the tasks that created them(2.4 Timing Model), as well as what happens to a

task when it is eligible for execution(2.7 Scheduling).

11

2.4 Timing Model

Meta Data Array ‘M’

WRITE(A) WRITE(C) READ(A)

t0

t1

WRITE(B)

t2

Figure 2.4—1 Timing Model

The timing model is used to imposed relative ordering in the system. In our design

we are required to have knowledge of the oldest issued write (2.6 Meta-data Management),

and precedence among writes in various implementation corner cases. The system

maintains a single centralized logical clock [9] called “Epoch”. Events that signify time

progression in our system are considered write operations. Tasks and meta-data elements

get time stamped with the current clock value when they are issued. Since “Epoch” is a

monotonically increasing value and registered meta-data elements represent writes each

registered element has a unique clock value. We use this clock value as the index to the

meta-data array and subsequently as the 2byte-ID used for detection/registration. The

meta-data array can now be viewed as the applications timeline. The value of the clock may

exceed the size of the array so it is normalized to fit in it, which means that, as logical time

progresses we cycle through the array. Tasks get time-stamped prior to the analysis of their

arguments. The logical clock value for the task is the time base for its registered elements, so

if a task has logical clock value T then its registered elements will have logical clock values

T+1, T+2, …,T+N for N registered elements by this task. This means that the registered

elements of this task will reside on the normalized range [T+1, T+N] of the array. For each

task we issue, we have a dedicated field on its meta-data that counts the number of issued

writes (the number of registered elements) and a dedicated field for the task’s time-stamp.

When a task is completed we use these two fields to deduce which meta-data elements

12

were issued by the task and update them. Time relations among tasks are not respected by

the runtime, because the dependency model ensures correctness in execution. Enforcing

happened before in the execution order of tasks would restrict severely the parallelism of

the application.

2.5 Renaming

 ADAM performs renaming to resolve Write-After-Write and Write-After-Read

dependencies. ADAM has a policy of always renaming and uses a set of pre-allocated buffers

of block-size for renaming. This policy simplifies the dependency graph since only true

dependencies are respected. Renaming consists of simply changing the target of a write

operation for a task. Write operations are represented by meta-data elements. These meta-

data elements contain a field that points to the renamed buffer for this write. When a task

is issued and dependencies are detected we change the task’s reads and writes to the

renamed buffers if necessary. If we are issuing a read to a block then if it is registered we

change the read address to the renamed buffer associated with the registered meta-data

element, otherwise it remains unchanged. If we are issuing a write then we change the write

address to the renamed buffer associated to the meta-data element we are registering. If we

issue a read/write to a block then we treat it first as a read and then as a separate write.

Renamed buffers are written back lazily. When multiple writes are issued to a block only the

last one is eventually written back. Whenever a write is issued to a block then if this block is

already registered then we add a link to from the new meta-data element to the previous

meta-data element. We keep linked lists between meta-data elements associated to the

same block. Only the renamed buffer of the head of this list is eventually written back the

rest are considered intermediate values. To avoid violating resolved Write-After-Read

dependencies writing back is restricted to the oldest issued write in the system at a time,

because the oldest issued operation by definition cannot be preceded by an unfinished read

operation.

Because the meta-data elements are used for the purposes of renaming they have

to follow the lifetime of their associated renamed buffers. This means that meta-data

elements may stay registered after a task has completed. We define two distinct phases for

meta-data elements called “Active” and “Inactive” accordingly. A meta-data element starts

as “Inactive” and when a task is completed and the stack of the meta-data elements

dependent tasks is popped empty the meta-data element is set to its “Active” state. For

13

each block that we detect dependencies for, we also check the state, of the registered

element if any. If a registered element is Active then we do not push the task into the

element’s stack and we do not change the tasks pending dependencies counter, we simply

redirect our issued task’s block read or write to the renamed buffer. If it is in its “Inactive”

state we proceed as normal (as described earlier).

2.6 Meta-data management

The meta-data elements, the rename-buffers and the size of the meta-data array are

pre-allocated and finite in count, therefore throughout the execution of an application we

collect and reuse them. In order to collect a meta-data element and the rename buffer

associated with it, we first need to make sure that all readers to this write operation are

completed. For this purpose each meta-data element has a counter called

data_beggers_counter. While the meta-data element is in “inactive” state this counter is

not used. During the meta-data elements “Active” state each pending reader increments

this counter and each completed reader decrements it. As previously described when a task

completes then for each of its meta-data elements, it pops their stacks empty. Each of these

meta-data elements is then set to its “Active” state. At this point it also initializes the

data_beggers_counter to the number of tasks popped from the stack, also for every read,

issued to a registered element, that is in its “Active” state we increment that element’s

data_beggers_counter by one. Each task maintains a small vector with the indexes of the

registered elements that it issued a read operation to. When a task completes it uses the

indexes from this vector to revisit these meta-data elements and decrements their

data_beggers_counter by one. If a registered element is in “Active” state and its

data_begger_counter equals zero then it is eligible for collection.

There are two distinct methods of collection within the runtime denoted as soft

collection and hard collection. Soft collection takes place every time the dependence

detection finds a registered element. Registered elements that are associated with the same

block are linked via a linked-list, with the head of the list being the last issued element and

the rest being intermediate values. Intermediate values do not require write-back to the

original address, so soft collection iterates through the elements of this list. Starting from

the second element, it checks each element if it is eligible for collection and acts accordingly.

Registered elements are placed on an array according to a logical clock(epoch). The

array is bound in size whereas the clock not, and hence at some point we will collide with a

14

reserved array slot. Because the clock increases monotonically the element we will collide

will be the oldest issued write at that time. Hard collection ensures forced collection of this

element in order to place the new element at its place. If this element is no yet “active” then

hard collection blocks and calls the scheduler, until it becomes “active”. If it was “active” or

after it becomes “active”, it checks whether this element is an intermediate value. if it is an

intermediate value it simply collects it otherwise it writes the renamed buffer back to the

original and then collects it.

2.7 Scheduling

The scheduling policy is configurable depending on the specific needs of the running

application. The first configurable parameter is the Task Window. The Task Window is the

maximum number of issued and uncompleted tasks at a time. A larger window allows the

runtime to potentially explore more parallelism by increasing the distance of tasks it can

reorder. The Task Window Threshold is the number of tasks the runtime has to execute and

complete in the event that the Task Window becomes full. Another parameter is the

Multiplier. The Task Window times the Multiplier defines the number of meta-data elements

that are allowed in the runtime as well as the size of the meta-data array. The Multiplier

represents the lifetime of the renaming in units of Task windows. The default value for this

parameter is one but a larger value can potentially improve performance by avoiding

writing-backs.

Dependency Graph

2

PPE SPE

SPE Task library
Transfers data to LS

Reconstructs Arguments

Executes Tasks

4

5

C
h

ip
 In

te
rc

o
n

n
e

c
t

Task Life-cycle

Completion Queue

Ready Queue3

1

TPC_Call

Complete/Resolve

Instantiate

Schedule

Issue

Task Completed

Figure 2.7—1 Task life cycle. The path of a task along the execution of an application

15

Tasks that are eligible for execution are pushed into a ready queue. The ready queue

can be configured as an actual queue or a stack, which corresponds to breadth-first

execution and depth-first execution accordingly. The scheduler component of the runtime

de-queues tasks from the ready queue and assigns them to the workers. The master

contains a completion queue for each worker, where the worker signifies task completions.

The scheduler polls the worker’s completion queues for an available worker in a round robin

fashion. The worker that is available probably completed one or more tasks, if at this point

the ready queue is empty we release any completed tasks of this worker. This lazy release

policy reduces the scheduler lags thus yielding better scheduling efficiency. If the ready

queue has at least one task we send a task to this worker, and release the task that

previously resided on the now completed slot unless this task has already been released.

Because the Master and the workers have different address spaces and the meta-data

reside on the Master, the master keeps a two dimensional array called spe_map that maps

task meta-data to tasks residing on the workers queue. This way when a task at specific

queue slot of a worker finishes the master can look up the spe_map for the completed task’s

meta-data.

Task Instantiate
Dependence Detection

Argument Renaming

Argument break to blocks

PPE SPE

Scheduler

Chooses SPE

Task Complete
Release Dependencies of

Completed Tasks

Task Issue

Send Tasks to SPEs

SPE Task library
Transfers data to LS

Reconstructs Arguments

Executes Tasks

C
h

ip
 In

te
rc

o
n

n
e

c
t

RUNTIME ARCHITECTURE

Figure 2.7—2 Runtime component Architecture. This figure depicts the main components of the runtime, and
the interactions among them.

The scheduler is executed by the master synchronously at two points, before issuing

a task and at barriers. At a barrier the scheduler executes until every issued task is executed

and released. Before issuing a task the scheduler checks whether the Task window is full, if it

is then it executes and releases tasks until it reaches the Task Window Threshold. The

16

default value for this threshold is the number of workers multiplied by the number of their

queue size. The queue size of the workers is also a user defined parameter. If the task

window is not full then scheduler executes tasks for as long as there are tasks in the ready

queue and no stall is detected. While the scheduler polls the worker queues in a round robin

fashion, if after one round no worker is free we consider that a stall is detected. At the

scheduler invocations that stall detection is not a blocking precondition, the scheduler looks

if the next task in the ready queue has an equivalent task, defined for the master. If there is

an equivalent the master executes the task, releases it and re-polls the worker queues.

2.8 Consistency

ADAM breaks arguments into blocks and overwrites the first two bytes of each

block. This operation however is abstracted from the programmer. The tasks need not take

into account the blocking or the id-placing. The worker is responsible for re-constructing the

arguments, before the execution of the tasks. When an argument is broken into blocks by

the master, the master flags the first block as the start-block. The worker places the blocks in

his local memory in the sequence they were issued and considers the local addresses of the

start blocks as the local task arguments.

Prior to sending a task to a worker for execution, for every read block-address

associated with the task we detect whether a meta-data element is registered to this block.

If a meta-data element is registered then we get the two overwritten bytes from the meta-

data element and pass them to the worker, who in turn after fetching the data for a task and

prior to executing it places these two bytes at the beginning of the local copy of the block.

In certain cases the Master needs to use data that are written or read by tasks. This

introduces two issues: (i) Synchronization in order to avoid races with tasks and (ii) cohesion

in case the data have been renamed. For this purpose these accesses are performed through

the runtime with the use of a special macro that given a specific address ensures that tasks

associated with the block containing this address have completed. The macro also ensures

that if this block is renamed the correct buffer will be used. The latter is particularly useful

because the default behavior of the buffer ensures only the execution of all issued tasks and

not the coherence of the memory. Coherency is guaranteed from the use of the macro.

There is a special barrier that ensures memory coherency called Mem_sync that writes back

all the renamed buffers and alleviates the need for the use of the macro after the barrier but

it is less efficient than the default barrier.

17

2.9 ADAM-SMP

The dependency model of ADAM is architecture independent, the entire runtime

design however is tailored for the CELL [1] processor. The greatest challenge in SMPs

architectures regarding ADAMs design is coherency. Because the workers and the master

share a single address space we cannot register and then reconstruct the data, without

damaging either the consistency of the dependency graph either the consistency of the user

data. Therefore we detach the dependency detection and registration form the user data

while still maintain the good property of O(1) dependence analysis.

The SMP version of ADAM divides the memory into segments called grids. Grids are of

the same size and alignment (like pages) and each of them is further divided into blocks. A

grid can be thought of as an one-dimension array of blocks. The size of grids and blocks is an

application-specific parameter, which can be tuned to trade dependence analysis overhead

for additional false positive dependencies. All users allocations are encapsulated through a

custom allocator (Figure 2.9—1). The allocator internally has at least one Grid allocated.

Starting from the end of the Grid the allocator translates the user request into units of

ADAM blocks, and serves the user’s request with memory in a stack like manner. The

allocator also considers that starting at the beginning of the Grid there is an implicitly

defined integer matrix with as many elements as the number of allocated blocks within the

Grid. This integer matrix and the user’s allocations compete for the same space(like heap

and stack), therefore whenever the allocator detects and imminent collision, it allocates a

new Grid and serves the subsequent requests in the same manner from the new Grid.

18

Block 3 Block 2 Block 1 Block 0

Grid End

Grid Start

User request(4 blocks memory)

IDs for user Request

0 1 2 3

User Memory

Requests

ID Dependencies

Matrix

Start End

Figure 2.9—1 ADAM Grids. Allocation Example with the usage of Grids

 Grids are aligned, therefore, for any given address in a grid we can identify the

beginning and the end of the grid using fast bit masking operations. A grid is viewed as a

matrix of user data blocks from end to start or as a matrix of unique task IDs from start to

end. We use a custom memory allocator that allocates memory for user data in units of

blocks from the end to the start of a grid. The relation between a block and a unique ID is

the following: For a given block, we start from the end of the grid and measure the distance

in blocks (e.g. the 3th block from the end). Starting from the beginning of the grid we index

the grid as an integer matrix to the aforementioned distance for the desired task-ID(Figure

2.9—2) (e.g. ((int *)G)[2]).

19

Block 3 Block 2 Block 1 Block 0

Grid End

Grid Start

(4 blocks memory)

IDs for user Request

0 1 2 3

User Memory

Requests

ID Dependencies

Matrix

Start End

Argument

Struct Meta data element{

Void

*Address=0xFFFFDAAD

};

Unique-id

10nth position

Meta Data Array ‘M’

GOD detect engine

Step c

Compare

Address==M[10]->Address

Step a

Step a

Step b

Address

0xFFFFDAAD

0010

Figure 2.9—2 ADAM SMP Dependence detection. Example of the dependence detection operation using Grids.

Furthermore n the SMP version of ADAM because the workers and the Master share

the address space it is possible to delegate part of the dependence analysis to the workers.

The release of each executed task is performed by the workers in parallel with each other

and with the master’s issue.

20

3 Evaluation

We evaluate ADAM on a Playstation3 system equipped with 256MBs of RAM and a Cell

Broadband Engine processor running at 3,192 GHz. Playstation3 systems allow for the use

of, at most, 6 out of the 8 SPEs, therefore our experiments include a range of 1 to 6 workers

and 1 Master.

In all measurements regarding ADAM, we include the following breakdowns for the

Master and Worker.

PPE Breakdown

 Instantiate

Instantiate is the time dedicated to creating a task. This time includes the overhead

of the Dependence analysis required for each argument of the task.

 Complete

Complete is the time required to update the dependency graph for each completed

task.

 Issue

Issue is the time required for the master to send the task descriptions to the

workers. The task descriptor is send via remote stores.

 Stalled

This is the time portion in which the Master has tasks eligible for execution and polls

the worker queues for an available slot.

 Wait

This is the measured time of the Master blocking until workers complete all issued

tasks. This corresponds to the barrier synchronization time. ADAM requires only one

barrier at the end of the application.

 Writeback

Writeback is the measured time of the Master for copying renamed buffers back to

the original addresses

 PPC tasks time

This is the time the Master spends executing Tasks

 Application

This is the time dedicated to the running application excluding the aforementioned

overheads and initialization.

SPE Breakdown

 Task Ticks

Task is the portion of time the SPE spends executing task code.

 Lib Ticks

21

Lib is the portion of time the SPE spends executing library code.

 Idle Ticks

Idle is the time spent by an SPE when it has no pending or executing tasks.

For the evaluation of ADAM we use the following series of task-based benchmarks that

originate from the SPLASH-2 benchmark suite, the CELLSS [2] runtime, and the Sequoia

runtime [4]. The task window size in all the runs is set to 2048, and for all the evaluated

applications we present runs that exceed the task window. The size of the worker queues is

set to 2. Fine-tuning these parameters for each application can potentially yield better

performance.

3.1 Applications

Each graph in this section represents runs that range from 1 to 6 workers. Each run

allocates two bars in the graph, one with the PPE Breakdown of the master and one with the

SPE breakdown of the average of all workers. The Y-axis is time in μ-seconds and the X-axis is

number of SPEs.

3.1.1 LU

LU performs LU factorization on a non-contiguous matrix of blocks and it originates from

the SPLASH-2 Benchmark suite. We created tasks that correspond to the following already

defined kernels “bdiv”, “bmodd”, “bmod” and “lu0”, based on the LU port for the TPC

runtime. We use two versions of this benchmark one with single precision numbers (labeled

LUsp) and the original with double precision numbers (labeled LU). Each run is configured by

two parameters, the size of the array, and the size of the blocks (this stands for application

block size, not ADAM’s block size). The size of the array is the application dataset and allows

us to control the number of produced tasks. We use two values for this parameter, either

the default, 512, or 4096, which is the maximum dataset that fits into our memory. The size

of the LU block affects the size of the task in terms of both data and execution as well as the

number of tasks. The LU block size is configured with the following values 8,16,32. The

number of produced tasks for each configuration can be seen in Table 3.1.1—I:

Runs Number of tasks

512x512(8x8) 89.440
512x512(16x16) 11.440

22

512x512(32x32) 1.496
4096x4096(8x8) 44.870.400
4096x4096(16x16) 5.625.216
4096x4096(32x32) 707.264
Table 3.1.1—I Number of tasks for the LU application

The complexity of the dependencies for the LU benchmark remains unaffected by the

number of tasks. The number of tasks affects only the size of the dependencies graph. The

number of tasks in this application does not affect ADAMs behavior in terms of scalability, an

argument validated when examining runs with the same block size but different array sizes.

The key aspect that affects scalability is the size of the tasks. As we increase the application’s

block size ADAMs scalability improves. Furthermore by comparing runs with the same

configuration but with different precision numbers (LU to LUsp), we see that runs with

double precision always scale better. Due to the fact that ADAM is a runtime system, ADAM

introduces overhead to each run. When the overhead exceeds the SPE task time plus the

SPE lib time then ADAM’s overhead becomes the bottleneck that limits scalability. For each

run the following condition should be respected:

Respecting this condition will ensure that ADAM will not impair the applications

scalability but it does not guarantee that the running application will scale. Task and Lib

correspond to the average of all the participating workers.

In the runs displayed in Figure 3.1.1—1 and Figure 3.1.1—4 ADAM fails to scale with

runs with more than 2 SPEs, due to the introduced overhead. While these two sets of runs

are for different datasets the task size remains the same. The task size in these two sets of

runs corresponds for 8x8 blocks(Application blocks). Scalability improves as the task size

increases(Figure 3.1.1—2 and Figure 3.1.1—3) for the 512x512 dataset as well as for the

4096x4096 dataset(Figure 3.1.1—5 and Figure 3.1.1—6).

In the runs concerning the single precision version of LU, the runs are equivalent to the

double precision runs in terms of dependencies. The size of the tasks however is smaller

both in terms of data and execution. ADAM fails to scale due to overhead in Figure 3.1.1—7

and Figure 3.1.1—10 where the block size is 8x8(Application block). ADAMs also fails to scale

due to overhead in the runs with 16x16 block size(Application block) in Figure 3.1.1—8 and

Figure 3.1.1—11 although the introduced overhead is identical to the double precision runs

 Instantiate + Complete + Issue + Writeback ≤ Task + Lib

23

in Figure 3.1.1—2 and Figure 3.1.1—5. The reason is that the task-size in the two single

precision LU sets of runs is smaller than the corresponding double precision runs.

The absence of excessive writeback overhead despite the fact that the number of

tasks(Table 3.1.1—I) exceeds the size of the task in all the runs is because ADAM successfully

identifies intermediate values. Furthermore it indicates that the size of the Task window

does not impact scalability in a negative way in any of these runs.

Figure 3.1.1—1 LU 512x512(8x8). LU execution Breakdown for the PPE and the SPEs for runs with 1,2,3,4,5,6
SPEs, for an array size of 512x512 with application block size 8x8.

Figure 3.1.1—2 LU 512x512(16x16).LU execution Breakdown for the PPE and the SPEs for runs with 1,2,3,4,5,6
SPEs, for an array size of 512x512 with application block size 16x16.

0

50

100

150

200

250

300

350

400

450

500

Task Ticks

Lib Ticks

Idle Ticks

PPC tasks time

Writeback

Stalled

Instantiate

Issue

Complete

Application

0

50

100

150

200

250

300

350

Task Ticks

Lib Ticks

Idle Ticks

PPC tasks time

Writeback

Stalled

Instantiate

Issue

Complete

Application

24

Figure 3.1.1—3 LU 512x512(32x32).LU execution Breakdown for the PPE and the SPEs for runs with 1,2,3,4,5,6
SPEs, for an array size of 512x512 with application block size 32x32.

Figure 3.1.1—4 LU 4096x4096(8x8). LU execution Breakdown for the PPE and the SPEs for runs with 1,2,3,4,5,6
SPEs, for an array size of 4096x4096 with application block size 8x8.

0

50

100

150

200

250

300

350

Task Ticks

Lib Ticks

Idle Ticks

PPC tasks time

Writeback

Stalled

Instantiate

Issue

Complete

Application

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

Task Ticks

Lib Ticks

Idle Ticks

PPC tasks time

Writeback

Stalled

Instantiate

Issue

Complete

Application

25

Figure 3.1.1—5 LU 4096x4096(16x16).LU execution Breakdown for the PPE and the SPEs for runs with
1,2,3,4,5,6 SPEs, for an array size of 4096x4096 with application block size 16x16.

Figure 3.1.1—6 LU 4096x4096(32x32).LU execution Breakdown for the PPE and the SPEs for runs with
1,2,3,4,5,6 SPEs, for an array size of 4096x4096 with application block size 32x32.

0

20000

40000

60000

80000

100000

120000

Task Ticks

Lib Ticks

Idle Ticks

PPC tasks time

Writeback

Stalled

Instantiate

Issue

Complete

Application

0

20000

40000

60000

80000

100000

120000

Task Ticks

Lib Ticks

Idle Ticks

PPC tasks time

Writeback

Stalled

Instantiate

Issue

Complete

Application

26

Figure 3.1.1—7 LUsp 512x512(8x8). LU with single precision, execution Breakdown for the PPE and the SPEs for
runs with 1,2,3,4,5,6 SPEs, for an array size of 512x512 with application block size 8x8.

Figure 3.1.1—8 LUsp 512x512(16x16). LU with single precision, execution Breakdown for the PPE and the SPEs
for runs with 1,2,3,4,5,6 SPEs, for an array size of 512x512 with application block size 16x16.

0

50

100

150

200

250

Task Ticks

Lib Ticks

Idle Ticks

PPC tasks time

Writeback

Stalled

Instantiate

Issue

Complete

Application

0

10

20

30

40

50

60

70

80

90

100

Task Ticks

Lib Ticks

Idle Ticks

PPC tasks time

Writeback

Stalled

Instantiate

Issue

Complete

Application

27

Figure 3.1.1—9 LUsp 512x512(32x32). LU with single precision, execution Breakdown for the PPE and the SPEs
for runs with 1,2,3,4,5,6 SPEs, for an array size of 512x512 with application block size 32x32.

Figure 3.1.1—10 LUsp 4096x4096(8x8). LU with single precision, execution Breakdown for the PPE and the SPEs
for runs with 1,2,3,4,5,6 SPEs, for an array size of 4096x4096 with application block size 8x8.

0

10

20

30

40

50

60

70

Task Ticks

Lib Ticks

Idle Ticks

PPC tasks time

Writeback

Stalled

Instantiate

Issue

Complete

Application

0

20000

40000

60000

80000

100000

120000

Task Ticks

Lib Ticks

Idle Ticks

PPC tasks time

Writeback

Stalled

Instantiate

Issue

Complete

Application

28

Figure 3.1.1—11 LUsp 4096x4096(16x16). LU with single precision, execution Breakdown for the PPE and the
SPEs for runs with 1,2,3,4,5,6 SPEs, for an array size of 4096x4096 with application block size 16x16.

Figure 3.1.1—12 LUsp 4096x4096(32x32). LU with single precision, execution Breakdown for the PPE and the
SPEs for runs with 1,2,3,4,5,6 SPEs, for an array size of 4096x4096 with application block size 32x32.

3.1.2 FFT

FFT performs a two dimensional Fast Fourier Transformation and originates also from

the SPLASH-2 Benchmark suite. We use the task-based version originally created for the TPC

runtime that offloads the FFT steps and the matrix transposition to the workers. Similar to

LU we used two versions of this benchmark, one with single precision numbers and the

original with double precision numbers. We perform two runs with each version, one with

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Task Ticks

Lib Ticks

Idle Ticks

PPC tasks time

Writeback

Stalled

Instantiate

Issue

Complete

Application

0

5000

10000

15000

20000

25000

30000

Task Ticks

Lib Ticks

Idle Ticks

PPC tasks time

Writeback

Stalled

Instantiate

Issue

Complete

Application

29

64 thousand elements and one with 4 million elements. Table 3.1.2—I shows the number of

tasks produced for each configuration.

Runs Number of tasks

FFT(64k) 572
FFT(4M) 20.672
Table 3.1.2—I Number of tasks for the FFT application

This application performs blocked transposition delegated to the workers via tasks. In

order to express blocks as task arguments we use strided arguments. Each element of a

strided argument is translated to an argument internally and treated as such, independently

by ADAM. For the case of the FFT when a task is issued with 3 strided arguments of 32

elements each, ADAM treats it as a task with 96 arguments. Although the amount of analysis

required is disproportionally large in relation to the number of tasks the application scales

well in the case of double precision numbers. In runs with single precision the overheads

dominate the execution time. We also observed a fair amount of writeback time introduced.

The writeback overhead relates to the excessive number of total meta-data elements

required to handle all these arguments compared to the size of the task window, and if we

compare single to double precision runs we see that it remains constant regardless the size

of the tasks.

Figure 3.1.2—1 FFT 64k. FFT execution Breakdown for the PPE and the SPEs for runs with 1,2,3,4,5,6 SPEs, for
16384 Complex Double elements.

0

5

10

15

20

25

30

35

40

Task Ticks

Lib Ticks

Idle Ticks

PPC tasks time

Writeback

Stalled

Instantiate

Issue

Complete

Application

30

Figure 3.1.2—2 FFT 4M. FFT execution Breakdown for the PPE and the SPEs for runs with 1,2,3,4,5,6 SPEs, for
4194304 Complex Double elements.

Figure 3.1.2—3 FFTsp 64k. FFT with single precision, execution Breakdown for the PPE and the SPEs for runs
with 1,2,3,4,5,6 SPEs, for 16384 Complex Float elements.

0

2000

4000

6000

8000

10000

12000

Task Ticks

Lib Ticks

Idle Ticks

PPC tasks time

Writeback

Stalled

Instantiate

Issue

Complete

Application

0

1

2

3

4

5

6

7

8

Task Ticks

Lib Ticks

Idle Ticks

PPC tasks time

Writeback

Stalled

Instantiate

Issue

Complete

Application

31

Figure 3.1.2—4 FFTsp 4M. FFT with single precision numbers, execution Breakdown for the PPE and the SPEs
for runs with 1,2,3,4,5,6 SPEs, for 4194304 Complex Float elements.

3.1.3 Sequoia [4] Kernels

We use two Sequoia [4] kernels originally ported for the TPC runtime called saxpy

and sgemv. Saxpy and sgemv are both communication bound. Saxpy contains of one kernel

that consists of a vectorized multiply and add between a block and an alpha value(y= y +

alpha*x). Sgemv is a vectorized MxN matrix multiplication and add between two blocks, an

alpha value and a beta value (y= beta*y + alpha*A*x). These kernels consist of tasks that are

independent with each other. For statistical validity each experiment is internally executed

100 times and blocked by a barrier after each iteration. In ADAM we remove this barrier and

allow for the 100 iterations of the experiment to occur as one unified experiment. This

creates dependencies among tasks because each iteration of the experiment uses the same

data. The task window size is to 2048 and because it is large enough for ADAM to contain

tasks from 2 consecutive iterations, writeback overhead is minimal. Table 3.1.3—I shows the

number of produced tasks for the saxpy benchmark. The saxpy block size is 1024. The

behavior of the runtime remains the same in saxpy regardless the block size, and thus we

only include runs with 1024 block size in our evaluation.

Runs Number of tasks

Saxpy 102.400
Table 3.1.3—I Number of tasks for the Saxpy benchmark

ADAM does not scale well for the Saxpy becnhmark, because the runtime-

introduced overheads dominate the execution time. Although Saxpy does not scale anyway

0

500

1000

1500

2000

2500

3000

Task Ticks

Lib Ticks

Idle Ticks

PPC tasks time

Writeback

Stalled

Instantiate

Issue

Complete

Application

32

in Figure 3.1.3—1 this does not occur due to the fact that the application is communication

bound but rather because the duration of the tasks(Lib+Task) is less than the introduced

overheads.

Figure 3.1.3—1 SAXPY. Saxpy execution Breakdown for the PPE and the SPEs for runs with 1,2,3,4,5,6 SPEs.

Sgemv is a computation bound benchmark. We perform two runs for this application

with the N parameter set as 4 and 8 respectively. In (y= beta*y + alpha*A*x) x and y are of

size M where M is set to 1024 while A is of size Mx(N*1024). The N parameter affects the

size of the task in terms of both data transfer size and execution. Table 3.1.3—II displays the

number of produced tasks for each run:

Runs Number of tasks

SGEMV N4 10.240
SGEMV N8 10.240
Table 3.1.3—II Number of tasks for the Sgemv benchmark

In figures Figure 3.1.3—2 and Figure 3.1.1—3 we see that as the task size increases from

the run with N4 to the run with N8, scalability improves. Although SGEMV does not scale

anyway, like in the case of saxpy the cause here is the overhead introduced by ADAM and

not the application.

0

50

100

150

200

250

Task Ticks

Lib Ticks

Idle Ticks

PPC tasks time

Writeback

Stalled

Instantiate

Issue

Complete

Application

33

Figure 3.1.3—2 SGEMV N4. Sgemv execution Breakdown for the PPE and the SPEs for runs with 1,2,3,4,5,6 SPEs
and N=4.

Figure 3.1.3—3 SGEMV N8. Sgemv execution Breakdown for the PPE and the SPEs for runs with 1,2,3,4,5,6 SPEs
and N=8.

3.1.4 Cholesky

This is a benchmark from the CELLSS [2] runtime. It performs Cholesky factorization on a

sparse matrix of blocks. We run this benchmark with two datasets one that consists of a

13x13 matrix of blocks and one that consists of a 20x20 matrix of blocks. Each block is a

64x64 matrix of floats. Table 3.1.4—I shows the number of produced tasks for each run.

Cholesky is a computation bound benchmark with a highly complex dependency graph.

Because the introduced overhead is low compared to the application task time, and despite

0

10

20

30

40

50

60

70

80

90

Task Ticks

Lib Ticks

Idle Ticks

PPC tasks time

Writeback

Stalled

Instantiate

Issue

Complete

Application

0

20

40

60

80

100

120

Task Ticks

Lib Ticks

Idle Ticks

PPC tasks time

Writeback

Stalled

Instantiate

Issue

Complete

Application

34

the complexity of the dependency graph, the application exhibits good scalability as seen in

Figure 3.1.4—1 and Figure 3.1.4—2. Cholesky is an application that exhibits a lot of

dependencies compared to the number of produced tasks and therefore requires either a lot

of synchronization either a lot of dependence analysis. Because ADAM provides the benefits

of dependence analysis at a relatively low cost, Cholesky scales well.

Runs Number of tasks

cholesky (13x13) 455
cholesky(20x20) 1540
Table 3.1.4—I Number of tasks for the Cholesky benchmark

Figure 3.1.4—1 Cholesky 13x13. Cholesky execution Breakdown for the PPE and the SPEs for runs with
1,2,3,4,5,6 SPEs and for a 13x13 matrix of 64x64 blocks(Cholesky blocks) of single precision numbers.

0

2

4

6

8

10

12

14

16

Task Ticks

Lib Ticks

Idle Ticks

PPC tasks time

Writeback

Stalled

Instantiate

Issue

Complete

Application

35

Figure 3.1.4—2 Cholesky 20x20. Cholesky execution Breakdown for the PPE and the SPEs for runs with
1,2,3,4,5,6 SPEs and for a 20x20 matrix of 64x64 blocks(Cholesky blocks) of single precision numbers.

3.1.5 Matmul

This is a matrix multiplication benchmark from the CELLSS [2] runtime. The Tasks in this

benchmark are created through 3 nested loops with each task of innermost loop dependent

on the preceding task, while each task is independent from tasks from different iterations of

the two outermost loops. For our evaluation purposes we use the non-vectorized version of

this benchmark. We run this benchmark for two datasets one that consists of a 13x13 matrix

of blocks and one that consists of a 20x20 matrix of blocks. Each block is a 64x64 matrix of

floats. Table 3.1.5—I shows the number of produced tasks for each run:

Runs Number of tasks

Matmul 13x13 2.197
Matmul 20x20 8.000
Table 3.1.5—I Number of tasks for the Matmul benchmark

This benchmark is an example of how ADAM can export parallelization from seemingly

sequential applications. Since each task of the innermost loop is dependent on the one

previously issued, tasks of the same iteration should execute in sequence. Tasks from

different iterations, of the two outermost loops, however can execute in parallel. ADAM

through dependence analysis reorders tasks and takes advantage of this parallelism. The

reordering of tasks can been seen in Figure 3.1.5—1.

0

5

10

15

20

25

30

35

40

45

50

Task Ticks

Lib Ticks

Idle Ticks

PPC tasks time

Writeback

Stalled

Instantiate

Issue

Complete

Application

36

Figure 3.1.5—1 Task re-ordering. Ordering of the 120 tasks of a matmul 13x13 run. X-axis is execution order
while y-axis is the issue order.

This graph represents the order of the first 120 tasks of a 13x13 Matmul execution. The

innermost loop in this run consists of 13 iterations. Each task in this graph is represented by

an (x,y) point where x is an id representing the order that ADAM executes tasks(more

precisely assigns them to workers) and y is an id representing the order, this task was issued

to ADAM (program order). The red line represents the sequential execution of the program

where for each task, the issue order would coincide with the execute order, hence x=y. Tasks

above the red line are tasks executing ahead of time (future tasks) while tasks below the red

line are tasks executing late(past tasks). Figure 3.1.5—2 shows the reordering of the tasks

for the entire run.

0

50

100

150

200

250

0 20 40 60 80 100 120

37

Figure 3.1.5—2 Task re-ordering. Ordering of all(2145) of the tasks of a matmul 13x13 run. X-axis is execution
order while y-axis is the issue order.

We see in Figure 3.1.5—3 and Figure 3.1.5—4 that this application scales well due to the

exported parallelism from ADAM and the large size of the tasks in terms of computation.

0

500

1000

1500

2000

2500

1

6
8

1
3

5

2
0

2

2
6

9

3
3

6

4
0

3

4
7

0

5
3

7

6
0

4

6
7

1

7
3

8

8
0

5

8
7

2

9
3

9

1
0

0
6

1
0

7
3

1
1

4
0

1
2

0
7

1
2

7
4

1
3

4
1

1
4

0
8

1
4

7
5

1
5

4
2

1
6

0
9

1
6

7
6

1
7

4
3

1
8

1
0

1
8

7
7

1
9

4
4

2
0

1
1

2
0

7
8

2
1

4
5

38

Figure 3.1.5—3 Matmul 13x13. Matmul execution Breakdown for the PPE and the SPEs for runs with 1,2,3,4,5,6
SPEs and for a 13x13 matrix of 64x64 blocks(Matmul blocks) of single precision numbers.

Figure 3.1.5—4 Matmul 20x20. Matmul execution Breakdown for the PPE and the SPEs for runs with 1,2,3,4,5,6
SPEs and for a 20x20 matrix of 64x64 blocks(Matmul blocks) of single precision numbers.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Task Ticks

Lib Ticks

Idle Ticks

PPC tasks time

Writeback

Stalled

Instantiate

Issue

Complete

Application

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Task Ticks

Lib Ticks

Idle Ticks

PPC tasks time

Writeback

Stalled

Instantiate

Issue

Complete

Application

39

3.1.6 Jacobi

Jacobi is also a benchmark from the CELLSS [2] runtime. The dataset of this benchmark

consists of a 32x32 matrix of blocks with each block consisting of 32x32 floats. We run this

benchmark for two configurations one for 13 iterations of the Jacobi calculation and one for

20. We iterate a sparse matrix and perform the Jacobi method for each block using its

neighboring blocks. The neighboring blocks are copied via tasks into four blocks called

lefthalo, righthalo, bottomhalo and tophalo, which are subsequently used for the calculation

of each block. Because for each block of the matrix we use the same four blocks to store the

neighboring blocks and we copy the desired blocks on them, the calculation for each

iterated block is dependent on the calculation of the previous iteration. Table 3.1.6—I

contains the number of produced tasks for each run:

Runs Number of tasks

Jacobi 13 66.560
Jacobi 20 102.400
Table 3.1.6—I Number of tasks for the Jacobi benchmark

This benchmark is a prime example of the effectiveness of data-renaming. For the Jacobi

calculation of each block we use the same variables to store the neighboring blocks,

therefore each calculation is dependent on the previous one. Expressed this way this

program is seemingly sequential. Renaming however resolves the dependencies regarding

these variables, exporting parallelism among the calculations of the blocks. The reason this

benchmark does not scale is because the tasks are small and extremely unbalanced, since

for every 5 issued tasks we have 4 small tasks that fill the 4 aforementioned variables with

the neighboring blocks.

As we can see in Figure 3.1.6—1 and Figure 3.1.6—2 Jacobi fails to scale due to the

introduced overhead. The task sizes are extremely small compared to the introduced

overhead. The dominant overhead is the instantiate part, which increases, as the number of

workers increases. This is because the number of Blocking Dependencies(3.2 Parameters

and Features) increases as the number of workers increases. The reason for this is that

ADAM with more workers stalls less and therefore can create more tasks, hence therefore

more blocking dependencies appear.

40

Figure 3.1.6—1 Jacobi 13. Jacobi execution Breakdown for the PPE and the SPEs for runs with 1,2,3,4,5,6 SPEs
and for 13 iterations on a 32x32 matrix of 32x32 blocks(Matmul blocks) of single precision numbers.

Figure 3.1.6—2 Jacobi 20. Jacobi execution Breakdown for the PPE and the SPEs for runs with 1,2,3,4,5,6 SPEs
and for 20 iterations on a 32x32 matrix of 32x32 blocks(Matmul blocks) of single precision numbers.

0

100

200

300

400

500

600

Task Ticks

Lib Ticks

Idle Ticks

PPC tasks time

Writeback

Stalled

Instantiate

Issue

Complete

Application

0

100

200

300

400

500

600

700

800

900

Task Ticks

Lib Ticks

Idle Ticks

PPC tasks time

Writeback

Stalled

Instantiate

Issue

Complete

Application

41

3.2 Parameters and Features

ADAMs as previously described has a set of parameters and features that affect

performance. In this section we examine their individual impact on ADAMs behavior. The

parameters we will examine are the Task window, the dependency block size and the

feature of running tasks on the PPE in addition to running tasks on the SPEs of the Cell

processor. As a test case we use the double precision LU benchmark configured with data

set size 512x512 and application block size 16x16. The total number of tasks produced in this

configuration is 11440. Below we show an example dependency graph for the LU

application. For reasons of readability this graph is actually from a smaller run with 204

tasks. Each task in the graph is labeled with its program order.

Figure 3.2—1 Sample Dependency graph for the LU application(N256x256,b16x16).

The first parameter we examine is the effect of the task window. In the graph below

the x-axis represents the size of the task window ranging from 32 to 16384, while the y axis

represents a numerical value. We plot the total number of dependencies labeled

“Dependencies”, the number of “Blocking Dependencies” which stand for the number of

Dependencies that cause a task to block and the “writebacks” which is the number of

writebacks ADAM performed. “Dependencies” as a numerical value include “Blocking

Dependencies”.

42

ADAM performs dependence analysis among the tasks within the task window

therefore as the size of the task window increases so does the number of dependencies.

Beyond the size of 1024 the number of dependencies remain constant because ADAM has

detected all the dependencies in the current run. On the other hand, the writebacks

decrease as the size of the task window increases. Beyond the task window size of 1024

because ADAM has identified all the dependencies, ADAM has also identified all the

intermediate values, thus avoiding most of the writebacks

Figure 3.2—2 Task window. The effect of the size of the task window on the number of Dependencies, Blocking
Dependencies and Writebacks.

Fewer dependencies translate to less analysis overhead as demonstrated in Figure

3.2—3, since the number of dependencies affects the instantiate overhead. While reducing

the Task window reduces the number of dependencies and therefore the overhead of the

instantiate part, it also increases the overhead due to writebacks. It is up to the programmer

to select the appropriate task window that trades-off between these overheads.

The task window size should be high enough so as to enable ADAM to track all

dependencies. This high-mark is presented when the number of dependencies becomes

stable. In Figure 3.2—2 this high-mark is 1024. At this high-mark ADAM has tracked all the

dependencies of the application and all the intermediate values. Therefore setting the task

window at a higher value would not benefit the parallelism or the writeback overhead, it

would simply enlarge the runtime’s Memory Image.

In certain cases though where the introduced overhead from ADAM is limiting

scalability, and the dominant part of the overhead is the instantiate part, it is best to reduce

0

5000

10000

15000

20000

25000

30000

35000

Task window size

Dependencies

Blocking Dependencies

Writebacks

43

the task window. Reducing the task window reduces the amount of dependencies detected

by ADAM and therefore the instantiate overhead as seen in Figure 3.2—3, but it also

increases the writeback overhead. In applications that iterate over a working data-set the

task-window should be large enough to contain the tasks of one iteration plus one task.

Figure 3.2—3 Task Instantiate vs. Task Window. The Effect of the Task Window size on the task instantiate
overhead.

ADAM has the ability to delegate tasks to the Master for execution. In Figure 3.2—4

we compare the performance of ADAM with the utilization of the Master and without, with

the left bar representing ADAM without PPE tasks and the right bar with PPE tasks. The PPE

executes tasks whenever ADAM detects a stall. As we can see in the graph the PPE time

essentially replaces the stall time and thus the improvement, from PPE tasks, depends on

the amount of stall time in the application. Table 3.2—I shows the amount of tasks executed

by the Master.

 PPE tasks are always beneficial for the application. When using PPE tasks we

essentially add one more worker to the runtime. Assuming that the application exhibits

enough parallelism to utilize an additional worker, the benefit of the PPE tasks depends on

the amount of stall time in the application. As we can see in Figure 3.2—4 in runs with 1 SPE

where stall time dominates, the use of PPE tasks yields a speedup of 2,19x. The reason for

the super-linear speedup is that PPE-tasks do not require any communication overhead.

Because ADAM uses PPE tasks only in cases where it detects stalls, PPE tasks rarely have a

negative effect on the application. In fact the only case where an application may not benefit

from PPE tasks is if the tasks are large enough to cause lags between scheduler invocations.

0

100000

200000

300000

400000

500000

600000

700000

800000

P
ro

ce
ss

o
r

Ti
ck

s

Task Window

Total Task Instantiate Overhead

Task Instantiate

44

Finally because the PPE and the SPEs are of different architectures a task is likely to perform

better on one architecture than the other. This can affect the gain from PPE tasks, both in a

negative and in a positive manner.

Figure 3.2—4 PPE tasks(LU N512x512,b16x16) . The impact in scalability of the use of PPE tasks.

Runs Number of PPE tasks Number of SPE tasks

1SPE +PPE 5345 6095
2SPE +PPE 3417 8023
3SPE +PPE 2397 9043
4SPE +PPE 1779 9661
5SPE +PPE 1383 10057
6SPE +PPE 1050 10390
Table 3.2—I The distribution of Tasks among the PPE and the SPEs

Another parameter that affects the behavior of ADAM is the analysis blocks size.

Smaller block sizes increase the granularity of the analysis. In this application the default

granularity is 2048 bytes and exports all the available parallelism. We present results with

1024 and 512-byte block size and compare with the default 2048. The graph in Figure 3.2—5

displays the affect of the block size(x-axis) to the “Dependencies” and the “Blocking

Dependencies”

0

50

100

150

200

250

300

350

PPC tasks time

Writeback

Stalled

Instantiate

Issue

Complete

Application

45

Figure 3.2—5 ADAM block size. The impact of the block size of ADAM in the number of Dependencies and the
number of Blocking Dependencies.

The Analysis Block size is a very important parameter and should be chosen with

caution. ADAM’s minimum supported block size is 16-bytes. Smaller block size usually yields

better analysis and ADAM exports more parallelism, however because ADAM is required to

process more blocks the overhead is increased. On the other hand large block sizes reduce

overhead but may introduce false dependencies, thus limiting parallelism. The block size

should match the average argument size of the application, unless the application’s

scalability is limited by synchronization (stall and wait time). In that case the block size

should be reduced allowing ADAM to extract more parallelism if possible. In any case the

analysis block size should never be less than the smallest write argument in the application.

Below that limit only overhead is introduced.

In the LU application since ADAM performs per block analysis reducing the analysis

block in half (1024), doubles the blocks we analyze and therefore duplicates the instantiate

and complete overhead.

0

500

1000

1500

2000

2500

3000

3500

0

20000

40000

60000

80000

100000

120000

140000

2048 1024 512

B
lo

ck
in

g
D

e
p

e
n

d
e

n
ci

e
s

D
e

p
e

n
d

e
n

ci
e

s

ADAM block size(bytes)

Dependencies

Blocking Dependencies

46

Figure 3.2—6 The impact of ADAM’s Block size in scalability (LU N512x512b16x16). Comparison of the PPE
breakdown for ADAM block sizes 2048 and 1024 with 1,2,3,4,5,6 SPEs.

Figure 3.2—7 The impact of ADAM’s Block size in scalability (LU N512x512b16x16). Comparison of the SPE
breakdown for ADAM block sizes 2048 and 1024 with 1,2,3,4,5,6 SPEs.

0

50

100

150

200

250

300

350

PPC tasks time

Writeback

Stalled

Instantiate

Issue

Complete

Application

0

50

100

150

200

250

300

350

Task Ticks

Lib Ticks

Idle Ticks

47

Figure 3.2—8 The impact of ADAM’s Block size in scalability (LU N512x512b16x16). Comparison of the PPE
breakdown for ADAM block sizes 2048 and 512 with 1,2,3,4,5,6 SPEs.

Figure 3.2—9 The impact of ADAM’s Block size in scalability (LU N512x512b16x16). Comparison of the SPE
breakdown for ADAM block sizes 2048 and 512 with 1,2,3,4,5,6 SPEs.

0

50

100

150

200

250

300

350

PPC tasks time

Writeback

Stalled

Instantiate

Issue

Complete

Application

0

50

100

150

200

250

300

350

Task Ticks

Lib Ticks

Idle Ticks

48

3.3 Evaluating against CELLSS [2]

We Compare ADAM with CELLSS [2] using the benchmarks that originate from the

CELLSS [2] runtime. These include Cholesky, Matmul and Jacobi and for each of these we use

the same configurations as in the first section of the evaluation. Because the CELLSS runtime

does not produce execution breakdowns we only compare total execution times excluding

initialization times.

3.3.1 Cholesky

In the Cholesky benchmark, ADAM outperforms CELLSS [2] and yields speedups of

2,77 times faster for the 13x13 dataset and 6 SPEs, and 1,83 times faster for the 20x20 than

the corresponding CELLSS runs. ADAM performs better in Cholesky due to lower analysis

overheads. Because this is a computation intensive benchmark the significance of the

analysis overheads is related to the data-set size. As the data-set grows the overheads

become less apparent on the overall execution time and therefore the difference between

the two runtimes decreases. As the data-set shrinks however, ADAM’s speedup over CELLSS

[2] increases.

Figure 3.3.1—1 Cholesky 13x13 ADAM vs. CELLSS. Cholesky for runs with 1,2,3,4,5,6 SPEs and for a 13x13
matrix of 64x64 blocks(Cholesky blocks) of single precision numbers.

0

5000

10000

15000

20000

25000

SPE 1 SPE 2 SPE 3 SPE 4 SPE 5 SPE 6

Ti
m

e
 w

it
h

o
u

t
in

it
ia

liz
at

io
n

 (
u

se
co

n
d

s)
 Cholesky 13x13

CELLSS

ADAM

49

Figure 3.3.1—2 Cholesky 20x20 ADAM vs. CELLSS. Cholesky for runs with 1,2,3,4,5,6 SPEs and for a 20x20
matrix of 64x64 blocks(Cholesky blocks) of single precision numbers.

3.3.2 Matmul

Matmul is also a computation intensive benchmark. The dependency graph of this

application is less complicated than Cholesky, which translates to lower overheads for both

runtimes. ADAM however in both Figure 3.3.2—1 and Figure 3.3.2—2 maintains a steady

advantage.

Figure 3.3.2—1 Matmul 13x13 ADAM vs. CELLSS. Matmul for runs with 1,2,3,4,5,6 SPEs and for a 13x13 matrix
of 64x64 blocks(Matmul blocks) of single precision numbers.

0

10000

20000

30000

40000

50000

60000

SPE 1 SPE 2 SPE 3 SPE 4 SPE 5 SPE 6

Ti
m

e
 w

it
h

o
u

t
in

it
ia

liz
at

io
n

 (
u

se
co

n
d

s) Cholesky 20x20

CELLSS

ADAM

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

SPE 1 SPE 2 SPE 3 SPE 4 SPE 5 SPE 6

Ti
m

e
 w

it
h

o
u

t
in

it
ia

liz
at

io
n

 (
u

se
co

n
d

s) Matmul 13x13

CELLSS

ADAM

50

Figure 3.3.2—2 Matmul 20x20 ADAM vs. CELLSS. Matmul for runs with 1,2,3,4,5,6 SPEs and for a 20x20 matrix
of 64x64 blocks(Matmul blocks) of single precision numbers.

3.3.3 Jacobi

Jacobi is a communication intensive benchmark that benefits from data renaming.

ADAM has lower overheads for dependence analysis and for renaming than CELLSS [2].

Furthermore ADAM has an aggressive policy of always renaming. ADAM outperforms the

CELLSS [2] runtime although ADAM is not able to scale well for the Jacobi application. The

speedup of ADAM over the CELLSS [2] runtime is 2,27 for 13 iterations with 6 workers and

2,14 for 20 iterations with 6 workers.

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

SPE 1 SPE 2 SPE 3 SPE 4 SPE 5 SPE 6

Ti
m

e
 w

it
h

o
u

t
in

it
ia

liz
at

io
n

 (
u

se
co

n
d

s) Matmul 20x20

CELLSS

ADAM

51

Figure 3.3.3—1 Jacobi 13 ADAM vs. CELLSS. Jacobi for runs with 1,2,3,4,5,6 SPEs and for 13 iterations over a
32x32 matrix of 32x32 blocks(jacobi blocks) of single precision numbers.

Figure 3.3.3—2 Jacobi 20 ADAM vs. CELLSS. Jacobi for runs with 1,2,3,4,5,6 SPEs and for 20 iterations over a
32x32 matrix of 32x32 blocks(jacobi blocks) of single precision numbers.

0

500000

1000000

1500000

2000000

2500000

3000000

SPE 1 SPE 2 SPE 3 SPE 4 SPE 5 SPE 6

Ti
m

e
 w

it
h

o
u

t
in

it
ia

liz
at

io
n

 (
u

se
co

n
d

s) Jacobi 13

CELLSS

ADAM

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

SPE 1 SPE 2 SPE 3 SPE 4 SPE 5 SPE 6

Ti
m

e
 w

it
h

o
u

t
in

it
ia

liz
at

io
n

 (
u

se
co

n
d

s) Jacobi 20

CELLSS

ADAM

52

3.4 Evaluating against TPC [3]

In this section we compare the performance of ADAM against that of TPC [3]. For each

application that we evaluate, we present runs that correspond to 6 workers(SPEs) and

compare the PPE breakdown(left) to the SPE breakdown(right). The breakdown for the TPC

[3] corresponds to the following:

TPC PPE Breakdown

 Issue

Issue is the time required for the master to send the task descriptions to the

workers. The task description is send via remote stores.

 Stalled

This is the portion of time in which the Master has tasks eligible for execution and

polls the worker queues for an available slot.

 Wait

This is the measured time of the Master blocking until workers complete all issued

tasks. This time corresponds to barrier synchronization time in TPC. ADAM requires

only one barrier at the end of the application.

 Application

This is the time dedicated to the running application excluding the aforementioned

overheads and initialization.

TPC SPE Breakdown

 Task Ticks

Task is the portion of time the SPE spends executing task code.

 Lib Ticks

Lib is the portion of time the SPE spends executing library code.

 Idle Ticks

Idle is the time spent by an SPE when it has no pending or executing tasks.

In the cases where the evaluated application’s scalability limiting factor is ADAM’s

overhead, TPC [3] performs better than ADAM. In any other case ADAM either performs

better or at least matches the performance of the TPC [3] runtime.

3.4.1 LU

In the double precision version of LU, ADAM’s performance compared to TPC [3] is

analogous to the LU block size. In runs with 8x8 blocks(Figure 3.4.1—1,Figure 3.4.1—4) TPC

[3] is significantly faster. In theses runs ADAMs introduced overhead(instantiate +

53

Complete) supersedes task communication and computation time(Lib + task). In the runs

with block size 16x16(Figure 3.4.1—2, Figure 3.4.1—5) where the task size compensates for

the introduced overhead ADAM’s performance is slightly better than the TPC [3]. ADAM’s

performance gain against the TPC [3] runtime is attributed to the elimination of th

synchronization time(wait) and SPE idle time on runs with TPC [3]. In runs with larger block

sizes (Figure 3.4.1—3,Figure 3.4.1—6), for the 512x512 dataset(Figure 3.4.1—3) ADAM’s

performance gain increases because the synchronization(wait) and SPE idle time in the TPC

[3] runs are increased. Furthermore in these runs we observe that ADAM saturates the

workers while converting the uncompensated synchronization time(wait) to stall time. This

is an indication that ADAM has extracted more parallelism, and thus could scale to a greater

number of workers. For the 4096x4096 dataset Figure 3.4.1—6 ADAM’s performance

matches the performance of the TPC [3] because the impact of the synchronization time in

the TPC [3] runs is so minimal that the workers appear saturated. In the single precision

runs of LU where the size of the tasks is smaller ADAM is outperformed in runs with

8x8(Figure 3.4.1—7,Figure 3.4.1—10) and 16x16(Figure 3.4.1—8,Figure 3.4.1—11) LU block

sizes. In these runs the ADAM’s introduced overheads exceed the corresponding task and

communication times(Lib + Task).In the run with 32x32(Figure 3.4.1—9,Figure 3.4.1—12)

ADAM’s behavior is analogous to the corresponding double precision runs (Figure 3.4.1—

3,Figure 3.4.1—6) and therefore the same observations are valid.

Figure 3.4.1—1 ADAM vs. TPC LU 512x512(8x8). LU execution Breakdown for the PPE and the SPEs for runs
with 6 SPEs, for an array size of 512x512 with application block size 8x8.

0

50

100

150

200

250

0

50

100

150

200

250

ADAM PPE TPC PPE ADAM SPE TPC SPE

LU 512x512 8x8 PPC tasks time

Writeback

Stalled

Instantiate

Issue

Wait

Complete

Application

Task Ticks

Lib Ticks

Idle Ticks

54

Figure 3.4.1—2 ADAM vs. TPC LU 512x512(16x16). LU execution Breakdown for the PPE and the SPEs for runs
with 6 SPEs, for an array size of 512x512 with application block size 16x16.

Figure 3.4.1—3 ADAM vs. TPC LU 512x512(32x32). LU execution Breakdown for the PPE and the SPEs for runs
with 6 SPEs, for an array size of 512x512 with application block size 32x32.

0

10

20

30

40

50

60

70

0

10

20

30

40

50

60

70

ADAM PPE TPC PPE ADAM SPE TPC SPE

LU 512x512 16x16 PPC tasks time

Writeback

Stalled

Instantiate

Issue

Wait

Complete

Application

Task Ticks

Lib Ticks

Idle Ticks

0

10

20

30

40

50

60

70

0

10

20

30

40

50

60

70

ADAM PPE TPC PPE ADAM SPE TPC SPE

LU 512x512 32x32 PPC tasks time

Writeback

Stalled

Instantiate

Issue

Wait

Complete

Application

Task Ticks

Lib Ticks

Idle Ticks

55

Figure 3.4.1—4 ADAM vs. TPC LU 4096x4096(8x8). LU execution Breakdown for the PPE and the SPEs for runs
with 6 SPEs, for an array size of 4096x4096 with application block size 8x8.

Figure 3.4.1—5 ADAM vs. TPC LU 4096x4096(16x16). LU execution Breakdown for the PPE and the SPEs for
runs with 6 SPEs, for an array size of 4096x4096 with application block size 16x16.

0

20000

40000

60000

80000

100000

120000

0

20000

40000

60000

80000

100000

120000

ADAM PPE TPC PPE ADAM SPE TPC SPE

LU 4096x4096 8x8 PPC tasks time

Writeback

Stalled

Instantiate

Issue

Wait

Complete

Application

Task Ticks

Lib Ticks

Idle Ticks

0

5000

10000

15000

20000

25000

0

5000

10000

15000

20000

25000

ADAM PPE TPC PPE ADAM SPE TPC SPE

LU 4096x4096 16x16 PPC tasks time

Writeback

Stalled

Instantiate

Issue

Wait

Complete

Application

Task Ticks

Lib Ticks

Idle Ticks

56

Figure 3.4.1—6 ADAM vs. TPC LU 4096x4096(32x32). LU execution Breakdown for the PPE and the SPEs for
runs with 6 SPEs, for an array size of 4096x4096 with application block size 32x32.

Figure 3.4.1—7 ADAM vs. TPC LUsp 512x512(8x8). LU with single precision numbers execution Breakdown for
the PPE and the SPEs for runs with 6 SPEs, for an array size of 512x512 with application block size 8x8.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

ADAM PPE TPC PPE ADAM SPE TPC SPE

LU 4096x4096 32x32
PPC tasks time

Writeback

Stalled

Instantiate

Issue

Wait

Complete

Application

Task Ticks

Lib Ticks

Idle Ticks

0

20

40

60

80

100

120

140

160

180

200

0

20

40

60

80

100

120

140

160

180

200

ADAM PPE TPC PPE ADAM SPE TPC SPE

LUsp 512x512 8x8
PPC tasks time

Writeback

Stalled

Instantiate

Issue

Wait

Complete

Application

Task Ticks

Lib Ticks

Idle Ticks

57

Figure 3.4.1—8 ADAM vs. TPC LUsp 512x512(16x16). LU with single precision numbers execution Breakdown
for the PPE and the SPEs for runs with 6 SPEs, for an array size of 512x512 with application block size 16x16.

Figure 3.4.1—9 ADAM vs. TPC LUsp 512x512(32x32). LU with single precision numbers execution Breakdown
for the PPE and the SPEs for runs with 6 SPEs, for an array size of 512x512 with application block size 32x32.

0

5

10

15

20

25

0

5

10

15

20

25

ADAM PPE TPC PPE ADAM SPE TPC SPE

LUsp 512x512 16x16 PPC tasks time

Writeback

Stalled

Instantiate

Issue

Wait

Complete

Application

Task Ticks

Lib Ticks

Idle Ticks

0

2

4

6

8

10

12

14

16

0

2

4

6

8

10

12

14

16

ADAM PPE TPC PPE ADAM SPE TPC SPE

LUsp 512x512 32x32 PPC tasks time

Writeback

Stalled

Instantiate

Issue

Wait

Complete

Application

Task Ticks

Lib Ticks

Idle Ticks

58

Figure 3.4.1—10 ADAM vs. TPC LUsp 4096x4096(8x8). LU with single precision numbers execution Breakdown
for the PPE and the SPEs for runs with 6 SPEs, for an array size of 4096x4096 with application block size 8x8.

Figure 3.4.1—11 ADAM vs. TPC LUsp 4096x4096(16x16). LU with single precision numbers execution
Breakdown for the PPE and the SPEs for runs with 6 SPEs, for an array size of 4096x4096 with application block
size 16x16.

0

20000

40000

60000

80000

100000

120000

0

20000

40000

60000

80000

100000

120000

ADAM PPE TPC PPE ADAM SPE TPC SPE

LUsp 4096x4096 8x8 PPC tasks time

Writeback

Stalled

Instantiate

Issue

Wait

Complete

Application

Task Ticks

Lib Ticks

Idle Ticks

0

2000

4000

6000

8000

10000

12000

14000

16000

0

2000

4000

6000

8000

10000

12000

14000

16000

ADAM PPE TPC PPE ADAM SPE TPC SPE

LUsp 4096x4096 16x16
PPC tasks time

Writeback

Stalled

Instantiate

Issue

Wait

Complete

Application

Task Ticks

Lib Ticks

Idle Ticks

59

Figure 3.4.1—12 ADAM vs. TPC LUsp 4096x4096(32x32). LU with single precision numbers execution
Breakdown for the PPE and the SPEs for runs with 6 SPEs, for an array size of 4096x4096 with application block
size 32x32.

3.4.2 FFT

For the FFT benchmark TPC [3] achieves better performance than ADAM in both the

double precision runs(Figure 3.4.2—1,Figure 3.4.2—2) and the single precision runs(Figure

3.4.2—3,Figure 3.4.2—4). In the double precision FFT runs with 64k and 4M (Figure 3.4.2—

1, Figure 3.4.2—2) although the introduced aggregated overhead is less than the aggregated

task communication and computation time, ADAM introduces Idle time to the SPEs. This is

because the tasks used for the transposition phase have strided arguments. ADAM analyzes

each element as a separate argument, which explains why the issue time is higher compared

to the TPC [3]. For the tasks with strided arguments the introduced overhead supersedes

task times thus resulting in SPE Idle time. In the single precision runs (Figure 3.4.2—3,Figure

3.4.2—4) ADAM’s introduced overheads dominate the execution times.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

ADAM PPE TPC PPE ADAM SPE TPC SPE

LUsp 4096x4096 32x32
PPC tasks time

Writeback

Stalled

Instantiate

Issue

Wait

Complete

Application

Task Ticks

Lib Ticks

Idle Ticks

60

Figure 3.4.2—1 ADAM vs. TPC FFT 64k. FFT, execution Breakdown for the PPE and the SPEs for runs with 6
SPEs, for 16384 Complex Double elements.

Figure 3.4.2—2 ADAM vs. TPC FFT 4M. FFT execution Breakdown for the PPE and the SPEs for runs with 6 SPEs,
for 4194304 Complex Double elements.

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

ADAM PPE TPC PPE ADAM SPE TPC SPE

FFT 64k PPC tasks time

Writeback

Stalled

Instantiate

Issue

Wait

Complete

Application

Task Ticks

Lib Ticks

Idle Ticks

0

500

1000

1500

2000

2500

3000

0

500

1000

1500

2000

2500

3000

ADAM PPE TPC PPE ADAM SPE TPC SPE

FFT 4M PPC tasks time

Writeback

Stalled

Instantiate

Issue

Wait

Complete

Application

Task Ticks

Lib Ticks

Idle Ticks

61

Figure 3.4.2—3 ADAM vs. TPC FFTsp 64k. FFT with single precision, execution Breakdown for the PPE and the
SPEs for runs with 6 SPEs, for 16384 Complex Float elements.

Figure 3.4.2—4 ADAM vs. TPC FFTsp 4M. FFT with single precision, execution Breakdown for the PPE and the
SPEs for runs with 6 SPEs, for 4194304Complex Float elements.

3.4.3 Sequoia [4] Kernels

For the sequioa [4] micro-benchmarks ADAM performs significantly lower than the

TPC runitme [3]. The task size in these benchmarks is extremely low, while the number of

tasks excessively large, which causes the overheads to dominate. The low execution time

compared to the number of tasks causes small differences in same label overheads to

scale-up.

0

0,5

1

1,5

2

2,5

3

3,5

4

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

ADAM PPE TPC PPE ADAM SPE TPC SPE

FFTsp 64k PPC tasks time

Writeback

Stalled

Instantiate

Issue

Wait

Complete

Application

Task Ticks

Lib Ticks

Idle Ticks

0

200

400

600

800

1000

1200

1400

1600

1800

0

200

400

600

800

1000

1200

1400

1600

1800

ADAM PPE TPC PPE ADAM SPE TPC SPE

FFTsp 4M PPC tasks time

Writeback

Stalled

Instantiate

Issue

Wait

Complete

Application

Task Ticks

Lib Ticks

Idle Ticks

62

Figure 3.4.3—1 ADAM vs. TPC SAXPY. Saxpy execution Breakdown for the PPE and the SPEs for runs with 6
SPEs.

Figure 3.4.3—2 ADAM vs. TPC SGEMV N4. Saxpy execution Breakdown for the PPE and the SPEs with N=4 for
runs with 6 SPEs.

0

50

100

150

200

250

0

50

100

150

200

250

ADAM PPE TPC PPE ADAM SPE TPC SPE

saxpy PPC tasks time

Writeback

Stalled

Instantiate

Issue

Wait

Complete

Application

Task Ticks

Lib Ticks

Idle Ticks

0

5

10

15

20

25

0

5

10

15

20

25

30

ADAM PPE TPC PPE ADAM SPE TPC SPE

SGEMV N4 PPC tasks time

Writeback

Stalled

Instantiate

Issue

Wait

Complete

Application

Task Ticks

Lib Ticks

Idle Ticks

63

Figure 3.4.3—3 ADAM vs. TPC SGEMV N8. Saxpy execution Breakdown for the PPE and the SPEs with N=8 for
runs with 6 SPEs.

3.4.4 Cholesky

In the Cholesky Benchmark ADAM performs significantly better than the TPC [3]

runtime for both the 13x13(Figure 3.4.4—1) and the 20x20(Figure 3.4.4—2) dataset. The

introduced overheads by ADAM do not affect the overall performance. Due to the

dependencies among tasks Cholesky requires a lot of synchronization in the TPC [3] runs

which in fact dominates the TPC [3] execution times, and creates SPE idle time. ADAM

through dependence analysis eliminates synchronization time and thus achieves better

performance.

0

5

10

15

20

25

30

0

5

10

15

20

25

30

ADAM PPE TPC PPE ADAM SPE TPC SPE

SGEMV N8 PPC tasks time

Writeback

Stalled

Instantiate

Issue

Wait

Complete

Application

Task Ticks

Lib Ticks

Idle Ticks

64

Figure 3.4.4—1 ADAM vs. TPC Cholesky 13x13. Cholesky execution Breakdown for the PPE and the SPEs for
runs with 6 SPEs and for a 13x13 matrix of 64x64 blocks(Cholesky blocks) of single precision numbers.

Figure 3.4.4—2 ADAM vs. TPC Cholesky 20x20. Cholesky execution Breakdown for the PPE and the SPEs for
runs with 6 SPEs and for a 20x20 matrix of 64x64 blocks(Cholesky blocks) of single precision numbers.

3.4.5 Matmul

ADAM yields great performance in the matmul benchmark compared to the TPC [3]

runtime, regardless of the dataset. This performance gain is due to the fact that

dependencies cause the TPC [3] runtime to execute this benchmark sequentially. Therefore

synchronization(wait) dominates in the execution time of the TPC [3] runs.

0

1

2

3

4

5

6

0

1

2

3

4

5

6

ADAM PPE TPC PPE ADAM SPE TPC SPE

cholesky 13 PPC tasks time

Writeback

Stalled

Instantiate

Issue

Wait

Complete

Application

Task Ticks

Lib Ticks

Idle Ticks

0

2

4

6

8

10

12

14

16

18

0

2

4

6

8

10

12

14

16

18

ADAM PPE TPC PPE ADAM SPE TPC SPE

cholesky 20 PPC tasks time

Writeback

Stalled

Instantiate

Issue

Wait

Complete

Application

Task Ticks

Lib Ticks

Idle Ticks

65

Figure 3.4.5—1 ADAM vs. TPC Matmul 13x13. Matmul execution Breakdown for the PPE and the SPEs for runs
with 6 SPEs and for a 13x13 matrix of 64x64 blocks(Matmul blocks) of single precision numbers.

Figure 3.4.5—2 ADAM vs. TPC Matmul 20x20. Matmul execution Breakdown for the PPE and the SPEs for runs
with 6 SPEs and for a 20x20 matrix of 64x64 blocks(Matmul blocks) of single precision numbers.

3.4.6 Jacobi

ADAM outperforms the TPC [3] in the Jacobi benchmark. The TPC [3] runtime cannot

scale in the case of the Jacobi runtime due to the dependencies between tasks, among

iterations for different blocks. ADAM outperforms the TPC [3] thanks to renaming, despite

the fact that ADAMs overheads dominate its execution times.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

ADAM PPE TPC PPE ADAM SPE TPC SPE

matmul 13 PPC tasks time

Writeback

Stalled

Instantiate

Issue

Wait

Complete

Application

Task Ticks

Lib Ticks

Idle Ticks

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

ADAM PPE TPC PPE ADAM SPE TPC SPE

matmul 20 PPC tasks time

Writeback

Stalled

Instantiate

Issue

Wait

Complete

Application

Task Ticks

Lib Ticks

Idle Ticks

66

Figure 3.4.6—1 ADAM vs. TPC Jacobi 13. Jacobi execution Breakdown for the PPE and the SPEs for runs with 6
SPEs and for 13 iterations on a 32x32 matrix of 32x32 blocks(Matmul blocks) of single precision numbers.

Figure 3.4.6—2 ADAM vs. TPC Jacobi 20. Jacobi execution Breakdown for the PPE and the SPEs for runs with 6
SPEs and for 20 iterations on a 32x32 matrix of 32x32 blocks(Matmul blocks) of single precision numbers.

0

100

200

300

400

500

600

0

100

200

300

400

500

600

ADAM PPE TPC PPE ADAM SPE TPC SPE

jacobi 13
PPC tasks time

Writeback

Stalled

Instantiate

Issue

Wait

Complete

Application

Task Ticks

Lib Ticks

Idle Ticks

0

100

200

300

400

500

600

700

800

900

1000

0

100

200

300

400

500

600

700

800

900

1000

ADAM PPE TPC PPE ADAM SPE TPC SPE

jacobi 20 PPC tasks time

Writeback

Stalled

Instantiate

Issue

Wait

Complete

Application

Task Ticks

Lib Ticks

Idle Ticks

3.5 Evaluating against Manual dependence Analysis

We now compare ADAM to a runtime in which the dependencies are explicitly

expressed by the programmer(Appendix A). The programmer annotates dependencies

among tasks using task-ids. In this runtime tasks follow the same scheduling path as in

ADAM. The runtime does not perform renaming and because the dependence analysis is

performed by the programmer the runtime overheads are lower than ADAM. In any case

where data-renaming is not a factor Manual dependence analysis should perform better. It

is, however, extremely strenuous for the programmer to properly and effectively express

dependencies in the manual dependencies runtime, because in order to match ADAMs

performance the programmer must express dependencies for every task instance and not

generically based on task definitions. Furthermore the programmer must manage the

dependence ids without introducing excessive overhead.

We compare the two runtimes in all of our benchmarks except for FFT because we

cannot express dependencies involving strided arguments. The following graphs compare

runs with 6 workers (SPEs). In the graphs the breakdowns for ADAM remain the same and

the Breakdowns for this runtime are the following:

Manual dependence analysis PPE Breakdown

 Instantiate

Instantiate is the time dedicated to creating a task. This time includes the overhead

of the dependence analysis required for each argument of the task.

 Complete

Complete is the time required to update the dependency graph for each completed

task.

 Issue

Issue is the time required for the master to send the task descriptors to the workers.

The task descriptor is sent via remote stores.

 Stalled

This is the portion of time in which the Master has tasks eligible for execution and

polls the worker queues for an available slot.

 Wait

This is the measured time of the Master blocking until workers complete their tasks.

This corresponds to the barrier synchronization time. ADAM requires only one

barrier at the end of the application.

 Writeback

Writeback is the measured time of the Master copying renamed buffers back to the

original addresses

 PPC tasks time

68

This is the time the Master spends executing Tasks

 Application

This is the time dedicated to the running application excluding the aforementioned

overheads and initialization.

Manual dependence analysis SPE Breakdown

 Task Ticks

Task is the portion of time the SPE spends executing task code.

 Lib Ticks

Lib is the portion of time the SPE spends executing library code.

 Idle Ticks

Idle is the time spent by an SPE when it has no pending or executing tasks.

3.5.1 LU

Manual dependence analysis yields better performance in the runs with 8x8 block

size(Figure 3.5.1—1,Figure 3.5.1—4). In the rest of the runs for the LU application, manual

dependence analysis matches ADAM’s performance. The introduced overheads by the

manual dependence analysis runtime are significantly lower compared to ADAM’s. This is

why in the 8x8 runs where ADAMs performance is hindered by its overheads the manual

dependence analysis outperforms ADAM.

Figure 3.5.1—1 ADAM vs. Manual Dependence Analysis LU 512x512(8x8). LU execution Breakdown for the PPE
and the SPEs for runs with 6 SPEs, for an array size of 512x512 with application block size 8x8.

0

50

100

150

200

250

0

50

100

150

200

250

ADAM PPE MANUAL PPE ADAM SPE MANUAL SPE

LU 512x512 8x8 PPC tasks time

Writeback

Stalled

Instantiate

Issue

Wait

Complete

Application

Task Ticks

Lib Ticks

Idle Ticks

69

Figure 3.5.1—2 ADAM vs. Manual Dependence Analysis LU 512x512(16x16). LU execution Breakdown for the
PPE and the SPEs for runs with 6 SPEs, for an array size of 512x512 with application block size 16x16.

Figure 3.5.1—3 ADAM vs. Manual Dependence Analysis LU 512x512(8x8). LU execution Breakdown for the PPE
and the SPEs for runs with 6 SPEs, for an array size of 512x512 with application block size 32x32.

0

10

20

30

40

50

60

0

10

20

30

40

50

60

ADAM PPE MANUAL PPE ADAM SPE MANUAL SPE

LU 512x512 16x16
PPC tasks time

Writeback

Stalled

Instantiate

Issue

Wait

Complete

Application

Task Ticks

Lib Ticks

Idle Ticks

0

10

20

30

40

50

60

0

10

20

30

40

50

60

ADAM PPE MANUAL PPE ADAM SPE MANUAL SPE

LU 512x512 32x32 PPC tasks time

Writeback

Stalled

Instantiate

Issue

Wait

Complete

Application

Task Ticks

Lib Ticks

Idle Ticks

70

Figure 3.5.1—4 ADAM vs. Manual Dependence Analysis LU 4096x4096(8x8). LU execution Breakdown for the
PPE and the SPEs for runs with 6 SPEs, for an array size of 4096x4096 with application block size 8x8.

Figure 3.5.1—5 ADAM vs. Manual Dependence Analysis LU 4096x4096(16x16). LU execution Breakdown for the
PPE and the SPEs for runs with 6 SPEs, for an array size of 4096x4096 with application block size 16x16.

0

20000

40000

60000

80000

100000

120000

0

20000

40000

60000

80000

100000

120000

ADAM PPE MANUAL PPE ADAM SPE MANUAL
SPE

LU 4096x4096 8x8 PPC tasks time

Writeback

Stalled

Instantiate

Issue

Wait

Complete

Application

Task Ticks

Lib Ticks

Idle Ticks

0

5000

10000

15000

20000

25000

0

5000

10000

15000

20000

25000

ADAM PPE MANUAL PPE ADAM SPE MANUAL SPE

LU 4096x4096 16x16 PPC tasks time

Writeback

Stalled

Instantiate

Issue

Wait

Complete

Application

Task Ticks

Lib Ticks

Idle Ticks

71

Figure 3.5.1—6 ADAM vs. Manual Dependence Analysis LU 4096x4096(32x32). LU execution Breakdown for the
PPE and the SPEs for runs with 6 SPEs, for an array size of 4096x4096 with application block size 32x32.

3.5.2 Sequoia [4] kernels

Manual dependence analysis outperforms ADAM in all the runs concerning the

Sequoia [4] micro-benchmarks. ADAMs performance in these benchmarks is bound by the

introduced overheads due to the small size of the tasks. Manual dependence analysis

however introduces extremely lower overheads and thus yields improved performance

compared to ADAM in all cases(Figure 3.5.2—1,Figure 3.5.2—2,Figure 3.5.2—3).

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

ADAM PPE MANUAL PPE ADAM SPE MANUAL SPE

LU 4096x4096 32x32 PPC tasks time

Writeback

Stalled

Instantiate

Issue

Wait

Complete

Application

Task Ticks

Lib Ticks

Idle Ticks

72

Figure 3.5.2—1 ADAM vs. Manual Dependence Analysis SAXPY. Saxpy execution Breakdown for the PPE and
the SPEs for runs with 6 SPEs.

Figure 3.5.2—2 ADAM vs. Manual Dependence Analysis SGEMV N4. Saxpy execution Breakdown for the PPE
and the SPEs with N=4 for runs with 6 SPEs.

0

50

100

150

200

250

0

50

100

150

200

250

ADAM PPE MANUAL PPE ADAM SPE MANUAL SPE

saxpy PPC tasks time

Writeback

Stalled

Instantiate

Issue

Wait

Complete

Application

Task Ticks

Lib Ticks

Idle Ticks

0

5

10

15

20

25

0

5

10

15

20

25

30

ADAM PPE MANUAl PPE ADAM SPE MANUAL SPE

SGEMV N4 PPC tasks time

Writeback

Stalled

Instantiate

Issue

Wait

Complete

Application

Task Ticks

Lib Ticks

Idle Ticks

73

Figure 3.5.2—3 ADAM vs. Manual Dependence Analysis SGEMV N8. Saxpy execution Breakdown for the PPE
and the SPEs with N=8 for runs with 6 SPEs.

3.5.3 Cholesky

Regarding the Cholesky benchmark the two runtimes achieve close performance.

Manual dependence analysis yields lower overheads but ADAM performs better analysis,

because the application presents a lot of dependencies and the user dependence analysis is

not as effective as ADAMs. Further tuning of the application would produce better results on

behalf of the manual dependence analysis runtime.

0

5

10

15

20

25

30

0

5

10

15

20

25

30

ADAM PPE MANUAL PPE ADAM SPE MANUAL SPE

SGEMV N8 PPC tasks time

Writeback

Stalled

Instantiate

Issue

Wait

Complete

Application

Task Ticks

Lib Ticks

Idle Ticks

74

Figure 3.5.3—1 ADAM vs. Manual Dependence Analysis Cholesky 13x13. Cholesky execution Breakdown for
the PPE and the SPEs for runs with 6 SPEs and for a 13x13 matrix of 64x64 blocks(Cholesky blocks) of single
precision numbers.

Figure 3.5.3—2 ADAM vs. Manual Dependence Analysis Cholesky 20x20. Cholesky execution Breakdown for
the PPE and the SPEs for runs with 6 SPEs and for a 20x20 matrix of 64x64 blocks(Cholesky blocks) of single
precision numbers.

3.5.4 Matmul

In case of the matmul benchmark both the runtimes perform identical. The

overheads in this benchmark account for a very small portion of the execution time,

therefore the manual dependence analysis lower overheads do not present any

performance gain.

0

0,5

1

1,5

2

2,5

3

0

0,5

1

1,5

2

2,5

3

3,5

ADAM PPE MANUAL PPE ADAM SPE MANUAL SPE

cholesky 13
PPC tasks time

Writeback

Stalled

Instantiate

Issue

Wait

Complete

Application

Task Ticks

Lib Ticks

Idle Ticks

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

10

ADAM PPE MANUAL PPE ADAM SPE MANUAL SPE

cholesky 20
PPC tasks time

Writeback

Stalled

Instantiate

Issue

Wait

Complete

Application

Task Ticks

Lib Ticks

Idle Ticks

75

Figure 3.5.4—1 ADAM vs. Manual Dependence Analysis Matmul 13x13. Matmul execution Breakdown for the
PPE and the SPEs for runs with 6 SPEs and for a 13x13 matrix of 64x64 blocks(Matmul blocks) of single
precision numbers.

Figure 3.5.4—2 ADAM vs. Manual Dependence Analysis Matmul 20x20. Matmul execution Breakdown for the
PPE and the SPEs for runs with 6 SPEs and for a 20x20 matrix of 64x64 blocks(Matmul blocks) of single
precision numbers.

3.5.5 Jacobi

For the Jacobi benchmark ADAM performs significantly better than the manual

dependence analysis runtime. Although ADAMs overheads are much larger than the manual

dependence analysis runtime, ADAM extracts more parallelism through data-renaming. The

0

100

200

300

400

500

600

700

800

0

100

200

300

400

500

600

700

800

ADAM PPE MANUAL PPE ADAM SPE MANUAL SPE

matmul 13 PPC tasks time

Writeback

Stalled

Instantiate

Issue

Wait

Complete

Application

Task Ticks

Lib Ticks

Idle Ticks

0

500

1000

1500

2000

2500

3000

0

500

1000

1500

2000

2500

3000

ADAM PPE MANUAL PPE ADAM SPE MANUAL SPE

matmul20 PPC tasks time

Writeback

Stalled

Instantiate

Issue

Wait

Complete

Application

Task Ticks

Lib Ticks

Idle Ticks

76

manual dependence analysis does not support data-renaming and therefore cannot export

any parallelism thus executing the Jacobi sequentially.

Figure 3.5.5—1 ADAM vs. Manual Dependence Analysis Jacobi 13. Jacobi execution Breakdown for the PPE and
the SPEs for runs with 6 SPEs and for 13 iterations on a 32x32 matrix of 32x32 blocks(Matmul blocks) of single
precision numbers.

Figure 3.5.5—2 ADAM vs. Manual Dependence Analysis Jacobi 20. Jacobi execution Breakdown for the PPE and
the SPEs for runs with 6 SPEs and for 20 iterations on a 32x32 matrix of 32x32 blocks(Matmul blocks) of single
precision numbers.

0

100

200

300

400

500

600

0

100

200

300

400

500

600

ADAM PPE MANUAL PPE ADAM SPE MANUAL SPE

jacobi 13 PPC tasks time

Writeback

Stalled

Instantiate

Issue

Wait

Complete

Application

Task Ticks

Lib Ticks

Idle Ticks

0

100

200

300

400

500

600

700

800

900

0

100

200

300

400

500

600

700

800

900

ADAM PPE MANUAL PPE ADAM SPE MANUAL SPE

jacobi 20 PPC tasks time

Writeback

Stalled

Instantiate

Issue

Wait

Complete

Application

Task Ticks

Lib Ticks

Idle Ticks

77

78

4 Related Work

The introduction of new multi-core architectures that are limited from the existing

programming models and languages has spawned a series of research efforts that aim on

improving programmability and performance. In this section we briefly describe those

efforts that, we feel, are related to our work. These efforts fall in the fields of programming

models for the Cell [1] processor and software data-flow execution.

 StreamIT [10] is a programming language for the streaming application domain. As a

language it exposes streams as first-class objects thus allowing for compiler optimizations

and improving programmer productivity. StreamIT [10] also serves as a common machine

language for grid based architectures. The runtime model implemented in StreamIT [10] is

based primarily on dataflow-execution, like ADAM. In StreamIT [10] however the data-flow

model is produced from language expressions, while in ADAM the data-flow model is

produced from the runtime analysis of task arguments, thus simplifying programming.

Furthermore ADAM is not targeted to a specific application domain.

 Sequoia [4] is a programming language that allows for task-based programs to take

advantage of the memory-hierarchy. In order to do so, Sequoia [4] provides first-class

objects for the memory hierarchy model and an abstract memory hierarchy model, so as to

ensure portability. The mapping of tasks to the memory hierarchy is done explicitly by the

programmer. Compared to ADAM, Sequoia [4] strives for data locality, while ADAM is

locality unaware, but Sequoia [4] relies heavily on static program description and not on a

data-flow runtime model. The locality optimizations of Sequoia can be easily implemented

in ADAM using alternative task-to-core mapping schemes.

 TBLAS [11] is a task-based runtime library intended for blocked linear algebra

applications that performs dynamic task scheduling. TBLAS [11] is focused around improving

the scalability of blocked linear algebra applications on distributed memory machines. In

order to do so, TBLAS [11] proposes a decentralized runtime dependence analysis system

with reduced communication overhead. ADAM on the other hand is centralized, a design

influenced by heterogeneous processors that typically have one general-purpose core for

control-intensive code and many special-purpose cores for compute-intensive code, and

focuses on the efficiency of the runtime dependence analysis itself. Furthermore ADAM is

not application specific.

79

 OpenMP [12] is an API for shared memory parallel programming. OpenMP [13]

supports both task and data parallelism. Tasks in OpenMP [13] are treated as separate work

units of code without consideration for data-accesses. ADAM requires tasks to be treated as

a unison with their data. Furthermore the task runtime model of OpenMP [13] does not

support data-flow execution, instead it relies on programmer synchronization for proper

execution. Ongoing research explores extensions of OpenMP to express data access

attributes, similar to the in/out/inout attributes analyzed by ADAM, to implement dynamic

dataflow execution of OpenMP tasks [14].

 Cilk [15] is a programming language extension for the C programming language. Cilk

[15] relies on the programmer to explicitly identify all the potential parallelism. A runtime

system is responsible for exploiting all the annotated parallelism. Parallelism on Cilk [15] is

based on the spawn-sync model that favors recursive parallelism. Cilk [15] also employes

Work-stealing a technique that originates from Cilk [16] itself. In ADAM, the programmer

identifies the potential parallelism by specifying tasks and then the runtime system discovers

the actual parallelism. Furthermore ADAM is a pure-runtime solution with no language

extensions required. ADAM though does not support work-stealing nor recursive code

expression, although there is provision however for the support of these features in the SMP

version of ADAM. Recent work [17] extended Cilk to include dataflow annotations, in order

to express elegantly pipelined parallel computations. We plan to integrate this work with

ADAM to accelerate runtime dependence analysis of Cilk codes.

 CELLSS [2] is the originating runtime system for the STARSS runtime family [18].

CELLSS [2] uses the same task-based programming model as ADAM. It also employs runtime

dependence analysis to export more parallelism through data-renaming and task re-

ordering, and although in those aspects CELLSS [2] and ADAM are similar, the two runtimes

differ vastly. CELLSS [2] focuses mainly on programmer ease and relies on the exported

parallelism to compensate for the large runtime overheads. ADAM on the other hand

focuses on high-performance alone and is designed to minimize overheads as well as to

export as much parallelism as possible. ADAM and CELLSS [2] use different dependency

models with CELLSS relying in a task-centric model while ADAM relies on a novel data-centric

dependency model. On the scheduling part CELLSS [2] uses an additional thread called

“helper thread” while in ADAM we chose a completely centralized scheduling method. To

conclude, we believe that ADAM and CELLSS [2] are two very different solutions to the same

problem. ADAM as shown in the Evaluation section outperforms CELLSS [2].

80

5 Conclusions and future work

In this work we propose a new way to enforce the data-flow execution model on

task-based models. We also propose a new detection algorithm with O(1) cost per analyzed

item and the ability to detect overlapping dependencies. We design and implement

ADAM(Accelerated Dependence Analysis for Multi-cores), a runtime that adheres to our

proposal, for the CELL [1] processor and for SMP x86 architectures. We evaluate ADAM for

the CELL [1] processor and compared its performance to that of the TPC [3] runtime, of the

CELLSS [2] runtime and of a manual dependence analysis runtime we have developed.

ADAM yields better performance than the CELLSS [2] runtime due to much lower

overheads and a more aggressive renaming policy. ADAM is 2,77 times faster for the

Cholesky benchmark with 13x13 dataset, 2,27 times faster for the Jacobi benchmark with 13

iterations and 7% faster in case of the Matmul benchmark.

Compared to the TPC [3] runtime ADAMs performance is worse only in cases where

the task size do not compensate for the introduced overheads. There are also cases, like

Jacobi and Matmul, where the TPC [3] runtime cannot express parallelism in an application

because of the dependencies among tasks. In these cases ADAM outperforms the TPC

[3]runtime.

The manual dependence runtime introduces lower overheads but does not perform

data-renaming. Therefore whenever data-renaming does present a significant impact on

performance, manual Dependence analysis always performs better. In our evaluated cases

ADAM outperforms the manual dependence analysis only for the Jacobi benchmark. Manual

dependence analysis however is extremely strenuous for the programmer and performance

depends on programmer skills and the in-depth knowledge of the dependencies of the

running application.

 Furthermore ADAM’s overall performance can be tuned through the parameters,

analysis block size and task window size. Analysis block size is the granularity ADAM

performs analysis with. The task window size is the total number of tasks issued allowed at

any point time, and can trade between parallelism and analysis overhead. ADAM’s

performance can also be improved through the supported feature of PPE tasks, where

ADAM allows the master to execute tasks.

81

In future work we intend to combine ADAMs dynamic dependence analysis with

static dependence analysis. In later versions of ADAM the programmer will also be able to

define Analysis block sizes in 2 dimensions, in order to accommodate analysis for strided

arguments. Future work also includes exploring design alternatives for renaming that trade

off memory space, with execution time. We also intend to explore the use of ADAM as a

framework for the creation of parallel programming tools for other purposes, that may

include deterministic replay, deterministic execution of parallel programs, debugging and

feedback on locality and parallelism.

ADAM is a runtime system that successfully exports parallelism from applications.

ADAM’s major disadvantage is the introduced overhead. If the introduced overhead is

tolerable then ADAM should be used. Finally we believe that dependence analysis is an

important factor of application parallelization, and that its effect is always beneficial both in

programmability and performance. The main challenge in dependence analysis between

runtime and compile time dependence analysis is the trade-off of overhead versus

effectiveness, and between automatic and manual is the trade-off of overhead versus

programmability.

82

Appendix

A. Manual Dependence Analysis

In this section we describe the architecture of the manual dependence analysis

runtime we designed and implemented. This is the runtime we compare ADAM with, in the

evaluation section. The precondition, for this runtime system, is that all dependencies

should be explicitly expressed by the programmer. The starting point for this runtime was

ADAM and because of that the scheduler component and the workers are of the same

design. For the parts of this runtime, whose description is omitted consider them identical to

ADAM’s.

The desired behavior for this runtime is to be able to track dependencies based on

unique task-ids, provided by the programmer. This means that for every given id we must

assert that (i) the id is unique, that (ii) the id corresponds to a task issued within the current

task window, and that (iii) this task is not completed. The programmer cannot respect this

assertions when providing the dependence ids, because they are subject to runtime

conditions.

First of all we ensure uniqueness among task-ids. For every created task the runtime

returns a unique task-id to the user in the form of an integer number. The runtime maintains

internally a Lamport clock [9] called “epoch”, which is increment every time a new task is

created. The unique-id for every task is the current value of “epoch”. Therefore the unique-

id is actually a number representing the issue order of each task (i.e. Nth issued task will

have task-id N).

We also need to distinguish ids that belong to the current task window. For each

task the runtime maintains the full task description consisting of a function id and a triplet

{address, size, type} for each argument. In addition to this information the task maintains a

counter, named input_dependencies_counter, that holds the number of pending unresolved

dependencies for this task, a stack that holds all the tasks that depend on it and a field

called epoch that holds the task’s “epoch” value. Using the “epoch” value as an normailzed

index we place each task upon creation on an array called TimeLine. Let us assume first that

the TimeLine is of size that matches the task window. The TimeLine at any given point

contains the task’s within our Task window. For a given task-id say ‘I’ we index the TimeLine

83

and retrieve task ‘T’(T = TimeLine[I % TimeLineSize]). If the value of ‘I’ matches the value of

‘T’ ‘s epoch (T->epoch == I)then this ID is considered of the current task window. Because

the Task window is a sliding window with a slide step defined by the programmer(task

window threshold), a task with epoch N in its lifetime may co-exist with tasks from the

epoch range (N – “Task Window” , N + “Task Window”), therefore it is not sufficient for the

TimeLine to be of the same size as Task-window. To ensure correctness we always set the

TimeLine to the size of two Task Windows, although it can be refined to a smaller value

depending on the task window threshold.

We use the timing model described in the previous paragraph to also distinguish

between completed and alive tasks. We consider that the runtime systems internal Lamport

clock [9] called “Epoch” starts counting from the value “1” and not “0”. Because the

dependence analysis part of the runtime is indifferent of executed tasks, we consider that all

executed tasks occurred in the past, at time denoted “0”. Whenever a task is completed we

simply set its epoch value to “0”. This strengthens the timing model so that for a given task-

id say ‘I’, If the value of ‘I’ matches the value of ‘T’ ‘s (T = TimeLine[I % TimeLineSize]) epoch

(T->epoch == I)then this ID is considered both within the task-window and not completed.

For programming ease we also allow the programmer the use of the value “0” as a no-

dependencies id.

The dependence checking is described in the following pseudo code:

 Whenever a task a task is created, for every valid dependence we detect the

input_dependencies_counter is incremented by one and the current task is pushed onto the

stack of the task it depends on. If the input_dependencies_counter is equal to 0 after the

dependence detection step then this task is considered eligible for execution and it is

pushed to the ready_queue. Whenever a task has completed execution we pop the tasks

from its stack. For each task we pop we decrement the input_dependencies_counter by one.

//we check for task-id ID

//”This” is the currently created task

If(ID!=0){

T = TimeLine[ID % TimeLineSize];

If(T->epoch == ID){

 Push(T->stack, This);

 This->input_dependencies_counter++;

}

84

After the decrement if the input_dependencies _counter is equal to 0 then this task is

considered eligible for execution and it is pushed to the ready_queue.

85

6 References

[1] J. A. Kahle, et al., "Introduction to the Cell multiprocessor," IBM Journal of Research and

Development, vol. 49, no. 4, pp. 589-604, 2005.

[2] P. Bellens, J. M. Perez, R. M. Badia, and J. Labarta, "CellSs: a Programming Model for the

Cell BE Architecture," in Proceedings of the 2006 ACM/IEEE conference on

Supercomputing, 2006.

[3] G. Tzenakis, et al., "Tagged Procedure Calls (TPC): Efficient Runtime Support for Task-

Based Parallelism on the Cell Processor," in Proc. of the 2010 International conference

on High-Performance Embedded Architectures and Compilers (HiPEAC), vol. 5952, 2010,

pp. 307-321.

[4] K. Fatahalian, et al., "Sequoia: programming the memory hierarchy," in Proceedings of

the 2006 ACM/IEEE conference on Supercomputing, 2006.

[5] D. A. Ilitzky, J. D. Hoffman, A. Chun, and B. P. Esparza, "Architecture of the Scalable

Communications Core's Network on Chip," IEEE Micro, vol. 27, no. 5, pp. 62-74, Sep.

2007.

[6] R. M. Karp and R. E. Miller, "Properties of a Model for Parallel Computations:

Determinancy, Termination, Queueing," SIAM Journal on Applied Mathematics, vol. 14,

no. 6, pp. 1390-1411, Nov. 1966.

[7] J. B. Dennis and D. P. Misunas, "A preliminary architecture for a basic data-flow

processor," SIGARCH Comput. Archit. News, vol. 3, no. 4, pp. 126-132, Dec. 1974.

[8] A. Rico, A. Ramirez, and M. Valero, "Available task-level parallelism on the Cell BE," Sci.

Program., vol. 17, no. 1-2, pp. 59-76, Jan. 2009.

[9] L. Lamport, "Time, clocks, and the ordering of events in a distributed system,"

Communications of the ACM , vol. 21, no. 7, pp. 558-565, Jul. 1978.

[10] W. Thies, M. Karczmarek, and S. P. Amarasinghe, "StreamIt: A Language for Streaming

Applications," in Proceedings of the 11th International Conference on Compiler

Construction, 2002, pp. 179-196.

[11] F. Song, A. YarKhan, and J. Dongarra, "Dynamic task scheduling for linear algebra

algorithms on distributed-memory multicore systems," in Proceedings of the Conference

on High Performance Computing Networking, Storage and Analysis, 2009, pp. 19:1--

86

19:11.

[12] L. Dagum and R. Menon, "OpenMP: an industry standard API for shared-memory

programming," IEEE Computational Science & Engineering, vol. 5, no. 1, pp. 46-55, 1998.

[13] E. Ayguade, et al., "The Design of OpenMP Tasks," IEEE_J_PDS, vol. 20, no. 3, pp. 404-

418, 2009.

[14] ENCORE: ENabling technologies for a programmable many-CORE . [Online].

http://www.encore-project.eu/

[15] R. D. Blumofe, et al., "Cilk: an efficient multithreaded runtime system," in Proceedings

of the fifth ACM SIGPLAN symposium on Principles and practice of parallel

programming, 1995, pp. 207-216.

[16] M. Frigo, C. E. Leiserson, and K. H. Randall, "The implementation of the Cilk-5

multithreaded language," in Proceedings of the ACM SIGPLAN 1998 conference on

Programming language design and implementation, 1998, pp. 212-223.

[17] H. Vandierendonck, P. Pratikakis, and D. S. Nikolopoulos, "Parallel Programming of

General-Purpose Programs using Task-Based Programming Models.," in Proc. of the 3rd

USENIX Workshop on Hot Topics in Parallelism (HotPar), Berkeley, California, May 2011.

[18] J. labarta, "StarSs: A Programming Model for the Multicore Era," in PRACE Workshop

“New Languages & Future Technology Prototypes", Leibniz Supercomputing Centre in

Garching (Germany), March 2010.

http://www.encore-project.eu/

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Design
	2.1 Detection/Registration
	2.2 Dependency Model
	2.3 Task Management
	2.4 Timing Model
	2.5 Renaming
	2.6 Meta-data management
	2.7 Scheduling
	2.8 Consistency
	2.9 ADAM-SMP

	3 Evaluation
	3.1 Applications
	3.1.1 LU
	3.1.2 FFT
	3.1.3 Sequoia [4] Kernels
	3.1.4 Cholesky
	3.1.5 Matmul
	3.1.6 Jacobi

	3.2 Parameters and Features
	3.3 Evaluating against CELLSS [2]
	3.3.1 Cholesky
	3.3.2 Matmul
	3.3.3 Jacobi

	3.4 Evaluating against TPC [3]
	3.4.1 LU
	3.4.2 FFT
	3.4.3 Sequoia [4] Kernels
	3.4.4 Cholesky
	3.4.5 Matmul
	3.4.6 Jacobi

	3.5 Evaluating against Manual dependence Analysis
	3.5.1 LU
	3.5.2 Sequoia [4] kernels
	3.5.3 Cholesky
	3.5.4 Matmul
	3.5.5 Jacobi

	4 Related Work
	5 Conclusions and future work
	Appendix
	A. Manual Dependence Analysis

	6 References

