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Abstract 

Recent trends in modern CPU architectures lead to multi-core designs with ever 

increasing numbers of cores. Furthermore architectures have emerged with heterogeneity 

and explicit memory hierarchies. The CELL [1] processor is a prime example of a powerful 

heterogeneous processor with explicitly managed local memories. A major challenge for 

such multi-core systems is the extraction of adequate parallelism and its exploitation with 

low runtime overhead and reasonable programming effort.  

A suitable programming model for such architectures is the task-based model [2] [3] 

[4]. Task-based programming provides a high abstraction for the programmer while 

maintaining a significant amount of useful information. However the task-based model in far 

from panacea, since it requires explicit synchronization, which can be a limiting factor.  

The dynamic data-flow execution model can overcome the bottleneck of explicit 

synchronization in task-based parallel programming, while at the same time simplifying the 

requirements from the programmer. Earlier research, such as the CELLSS [2] programming 

framework, proves that it is possible to implement the dynamic dataflow model over a task-

based model via runtime dependence analysis.  CELLSS [2] however performs expensive 

dependence analysis on memory objects by maintaining a task-graph at runtime. We 

propose an alternative method of implementing the data-flow model of execution over task-

based models, where instead of a task graph we use a data dependency graph, and a novel 

mechanism for identifying dependencies with O(1) complexity. Furthermore our mechanism 

has the ability to track dependences due to partially overlapping data regions accessed by 

different tasks.  

We design and implement ADAM, a runtime system that employees our proposals. 

ADAM stands for “Accelerated Dependence Analysis for Multi-cores”. We evaluate the 

scalability of ADAM on the CELL [1] processor and compare its performance with the (i)TPC 

[3] runtime, the (ii) CELLSS [2] runtime and (iii) a runtime with manual dependence analysis.  

ADAMs performance compared to the CELLSS [2] runtime is 2,77 better for the Cholesky 

benchmark  and  2,27 times better for the Jacobi benchmark. In comparison with the TPC [3] 

runtime ADAM manages to efficiently parallelize applications that the TPC [3] fails to.  
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1 

 

1 Introduction 

 With the introduction of the power-wall, CPU architectures shifted towards the 

multi-core paradigm. In addition new heterogeneous architectures have emerged.  Although 

the theoretical peak performance is constantly increasing, current programming models and 

tools are unable to utilize it, and as the number of cores increases they become more and 

more inadequate. Active research in the field of parallel computing has produced numerous 

proposals for programming models and new programming languages.  One of the most 

promising, easy to use and efficient programming models is the task-based parallel 

programming model. From the programmer’s perspective the task-based model abstracts 

the underline system thus allowing the programmer to express parallelism at the application 

level. From the systems perspective it provides the required information for the efficient 

parallel execution and communication of applications. Furthermore the constant increase of 

cores and the addition of small local-memories, reduce task-management cost and therefore 

favor the use of fine-grain tasks. Fine-grain tasks  allow programmers to express parallelism 

easier and more efficiently. 

 An interesting architectural trend in modern multi-core processors is Heterogeneity. 

Heterogeneity can offer better performance and power efficiency but on the other hand it 

increases complexity, because it requires, tailoring program parts for each core type. 

Another architectural trend of particular interest is explicitly managed local memories. 

Explicitly managed local memories can improve performance significantly especially in the 

case of streaming applications, but delegating the responsibility of the transfers to the 

programmer makes them harder to program for. Task-based programming models help 

abstract the challenges in the programmability of such architectures.    

 The CELL [1] processor is a prime example of a powerful heterogeneous processor 

with explicitly managed local memories. The CELL [1] processor consists of nine cores, one 

dual-threaded 64-bit PowerPC called PPE(Power Processing Element)  and eight 128-bit 

SIMD processors called SPEs(Synergistic Processor Element). Each SPE has a 256KB local 

storage for data and code that is not implicitly coherent with the main memory. The 

programmer is responsible for fetching and writing-back the appropriate data and code via 

DMA commands. Although the peak performance of this processor is highly promising, the 
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heterogeneity and the explicit coherency among cores make it extremely hard to program 

for.  

 The task programming model proves to be a good abstraction for the CELL [1] 

processor and can greatly simplify the development process, because it can abstract 

heterogeneity to a certain degree and it can implicitly express data transfers. The PPE is 

defined as the task arbitrator and the SPEs as the task executors. The CELL [1] processor’s 

architecture favors a centralized model with one master and multiple workers and over the 

years several runtime systems and languages have been proposed that employ this model or 

some variation of it [2] [3] [4]. Tasks implemented over the CELL [1] architecture are  defined 

as self contained remote and asynchronous functions consisting of both code and data.  

 Although the task programming looks sufficient it does present certain issues. The 

programmer is responsible for the synchronization among tasks, which in certain situations 

is not trivial, unless the programmer is willing to sacrifice performance. Furthermore 

synchronization often impedes scalability, and in certain cases the task-model, as is, cannot 

properly express parallelism in applications. Let us  consider the following case. An iterative 

application where each iteration consists of three phases, init, calculate and complete. Each 

phase is sufficiently parallel but every task in the calculate phase depends at least on one 

task of the init phase and every task in the complete phase depends at least on one task of 

the calculate phase. The dependencies among tasks are a result of the current state of the 

application and  so there are no guaranties that two iterations will exhibit the same 

dependencies. In order to use the task programming model we would introduce 

synchronization after each phase of each iteration. There is however additional parallelism 

we do not exploit. Task executions could be pipelined among the three stages of each 

iteration, as well as across iterations.  

 These issues grow in importance as the number of cores increases. CPU designs have 

already emerged with as many as 48 cores [5], and synchronizing among 48-cores is bound 

to impact performance. Furthermore multi-core designs, are now becoming the mainstream, 

which means that the target group for these CPUs in longer just the experts of the high-

performance community but rather the average programmer. In addition it is not 

uncommon for software intended for the average user, to be dynamically parallel, like video-

games for instance. An application is considered dynamically parallel when the amount of 

parallelism cannot be statically identified a priori.  
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 A solution to the issues above would be a dynamic dataflow-model of execution, 

because this model does not require any explicit synchronization from the programmer and 

it inherently expresses parallelism. The data-flow model [6] dictates that an operation 

should proceed only when, all the values it depends on are updated. Dependencies among 

operations in the data-flow model are expressed by a directed acyclic graph [6].  Figure 1—1 

shows an example derived from [7] of a dataflow graph that corresponds to a small 

program. 

+

*

/

+

x

x

y

ab

Input a,b

         y=(a+b)/x;

                   x=(a*(a+b))+b;

            Output y,x

 

Figure 1—1 Dataflow example from [7]. 

The CELLSS [2] [8]runtime proved that it is possible to use the data-flow execution 

model over a task-based model, using tasks as the operations and the data-transfer 

directions as access descriptors (Read, Write or both). Because CELLSS [2] is a runtime 

system, the directed acyclic graph of tasks, representing dependencies, is created and 

respected dynamically, at runtime. Although this promotes parallelism, in order to create 

the task graph the runtime for every newly created task has to search within the set of 

resources used by other tasks in order to find dependencies. Therefore the management of 

the task graph introduces overhead typically in the order of thousands of core cycles  [8]. 
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We propose an alternative method of implementing the dynamic data-flow model of 

execution over task-based models.  Our method presents a significantly lower overhead 

compared to task-graph solutions. Since dependencies concern data and operations on data, 

instead of a task graph we use a data dependency graph. In this graph the edges are 

operations on data and the arcs are tasks (execution paths). Because the dependencies that 

emerge among data operations are not all true dependencies, we can rename the data thus 

resolving them. Data renaming is a technique used in resolving register dependencies within 

CPUS, and is also used by the CELLSS [2] runtime. In our solution we consider that the 

runtime always resolves all but the true dependencies. This allows us to simplify our data-

dependency graph since we only need to express Read-after-Write dependencies. It is 

sufficient in order to represent Read-after-Write dependencies to have only write operations 

represented as edges in our graph. So our graph is a data-dependency graph with write 

operations on data as edges and tasks as the arcs connecting the edges. This graph is usually 

less complex than the equivalent task-graph and easier to manage. Furthermore because 

our dependency graph is a data-dependency graph and not a task graph, the renaming 

process does not require additional address translations. Two write operations on the same 

data will be represented as two distinct nodes in the graph, therefore once dependence 

analysis takes place, we do not have to perform additional look-ups to accommodate 

renaming with the correct versions of the data.  

We present a new algorithm for detecting dependencies with O(1) cost and  the 

ability to track dependences due to partially overlapping data regions accessed by different 

tasks. We view the entire memory as a matrix of aligned blocks, the size of which is a 

configurable parameter.  From the perspective of dependencies we consider that all the 

operations occur on units of memory blocks. This induction allows us to detect 

dependencies among overlapping data regions.  Whenever a new write operation is issued 

we translated it into memory blocks and use the first few bytes of each block to store a 

unique-id that uniquely identifies a corresponding node in the graph. In order to detect 

dependencies, for a specific block we just look at the beginning of the block for a valid id.   

We implement and present the design of a runtime system called ADAM. ADAM 

stands for Accelerated Dependence Analysis for Multi-cores. ADAM was primarily intended 

for the CELL [1] processor, therefore the design of the runtime is driven from the 

architecture of the CELL [1] processor. The starting point for the development of ADAM was 

the TPC [3] runtime system and because of this, ADAM is compatible with the TPC [3]. TPC 
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[3] is a task-based low-overhead runtime system for the CELL [1] processor. Although the 

target architecture for ADAM is the CELL [1] processor, we have also implemented an SMP 

version for x86 multi-core processors, we describe the design differences of the SMP version 

in a separate sub-section within the design section.  

We evaluate the performance of ADAM in a series of application from the SPLASH-2 

benchmark suite, the CELLSS [2] runtime and the sequoia runtime. We also compare the 

performance of ADAM with the (i)TPC [3] runtime, the (ii) CELLSS [2] runtime and (iii) a 

runtime with manual dependence analysis. ADAM exhibits good scalability in cases where 

the tasks are large enough to outweigh the introduced overhead. In the cases where ADAM 

exhibits good scaling, ADAM’s performance is always better than that of the TPC [3], and in 

all of our evaluation cases ADAM outperforms  the CELLSS [2] runtime. ADAM is 2,77 times 

faster for the Cholesky benchmark with 13x13 dataset and 2,27 times faster for the Jacobi  

benchmark, from CELLSS [2] in runs with 6 SPEs. Compared to the TPC [3]  runtime ADAM is 

2,43 times faster for the Jacobi benchmark and 5,99 for the Matmul benchmark. 
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2 Design 

ADAM uses the model of a single master and multiple workers, driven from the 

architecture of the CELL [1] processor, with the master and the workers each with its own 

address space. The master issues tasks to the workers and performs  dependence analysis, 

while the workers only execute tasks. Each worker has its own queue visible only to him and 

the master. The master pushes tasks to the worker’s queue and workers execute them. The 

worker is responsible for fetching and writing-back the data necessary for each task.  TPC, 

which ADAM uses as a back-end allows for the data transfers of one task to overlap with the 

execution of another. 

We consider tasks a set of self-contained remote asynchronous functions.  Tasks 

may call other functions and allocate/de-allocate data but all interaction with shared data 

among other tasks and the main thread must be stated upon task creation. The programmer 

must pass the shared data as arguments to that task and denote whether this task intends to 

read, write or both read and write on each argument separately. We will refer to the intent 

of this denotation as an “operation” from now on. Tasks are also not allowed to create new 

tasks. Tasks are asynchronous since their execution can commence at any point in time after 

their dependencies are satisfied.  

2.1 Detection/Registration 

For every issued task, ADAM needs to perform dependence analysis for it. ADAM 

handles each argument separately, translates it into its corresponding memory blocks and 

performs dependence analysis for each block. The size of the blocks is a parameter defined 

by the programmer at the initialization of the runtime and represents the granularity of the 

dependence analysis. The programmer can also flag a specific argument as “safe”, in which 

case no dependence analysis is performed for this argument nor is it divided into blocks. For 

stride-arguments each stride element is treated as a separate argument. The translation of 

arguments to blocks allows us, to detect dependencies among partially overlapping 

arguments since the overlapping ranges will translate to the same blocks.   

Detection of dependencies consists of keeping track of addresses with incomplete 

operations and searching whether each newly issued address belongs to these addresses. 

Therefore we need low-cost search within our data-structures as well as low cost insert. A 

common alternative is the use of hash tables, but address-based hashing will present 
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collisions for every dependence. In ADAM we alleviate the search operation using the 

following method.  

To detect dependencies we use the first two bytes (2byte-ID) of the block and the 

address of the block and create the tuple {2byte-ID,address}. The runtime preserves 

metadata per operation in an array. Each metadata element in this array has a field that 

contains the address it is associated to.  We use the first element (2byte-ID) of the tuple as 

an index for this array and compare the second element of this tuple (address) with the 

address this metadata element is associated to. If the two addresses match then we have 

found a dependence. The reason that we also need to compare the addresses is that the 

first two bytes of the block may be user data and not a 2byte-ID placed by ADAM and we 

need a way to exclude these cases as false detections.   

10 0xFF

Address 

0xFFFFDAAD

Argument

Struct Meta data element{

Void *Address;

uint16_t coherency_buffer;

};

10nth position

Meta Data Array ‘M’

Step 1 

M[10]->Address=0xFFFFDAAD

0x14 0x12 0xFA 0xDA

Step 2 

M[10]->coherency_buffer={0x14,0x12}

00 10

Step 3 

Copy unique-id to A

 
Figure 2.1—1 Dependence Analysis Register. Example of the Register operation for a specific block.   

In order to register(Figure 2.1—1) an operation to a block by a task we do the 

following: First we reserve a new slot in the metadata array and a new meta-data element. 

We then set the field of the metadata element’s associated address to the address of the 

block we are registering. Finally, we buffer the first two bytes into a field in the meta 
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element called coherency_buffer and overwrite them with our index (2byte-ID).   For each 

block we perform dependence analysis, we always first detect and then register. If a block is 

already registered then instead of placing the first two bytes of the block in the coherency 

buffer we simply copy the coherency buffer of the already registered meta-data element. 

The rest of the process remains the same. Multiple elements in the metadata array are 

allowed to be associated with the same address but detection guarantees the return of the 

one that was issued last because the first two bytes of the block will always be the index of 

the last one.  It suffices to only register write operations on blocks because only Read-After-

Write dependencies are true dependencies and have to be respected by the runtime, the 

rest can be resolved using renaming. Therefore for read operations on blocks we only detect 

not register.  

2.2 Dependency Model 

The runtime handles Data-dependencies among tasks. These dependencies can 

expressed by a slightly modified Bernstein Condition:  

 [I(Ti) ∩ O(Tj)] ∪ [O(Ti) ∩ I(Tj)] ∪ [O(Ti) ∩ O(Tj)] ≠ Ø 

Where:  

 i and j  express the issue order of the tasks and i<j 

 I(Tx) is the set of blocks read by task Tx   

 O(Ty) is set of blocks written by task Ty. 

 There is a valid run-time execution path from Ti to Tj 

 No explicit synchronization exists among the two. 

 j-i<Task_Window. Task window is the maximum number of allowed issued 

tasks in the runtime at any single point in time.  

These dependencies are divided into three categories: 

a. True Dependencies formally expressed O(Ti) ∩ I (Tj) with the above preconditions  

b. Anti-Dependencies formally expressed I(Ti) ∩ O(Tj) with the above preconditions  

c. Output Dependencies formally expressed as O(Ti) ∩ O(Tj) with the above 

preconditions. 

In order to keep track of dependencies ADAM does not maintain a task graph but 

rather a data-dependency graph. In this graph data operations on addresses are the nodes 

of the graph while tasks are treated as arcs. As mentioned above though the runtime system  

respects only true dependencies and therefore only registers write operations. The data-
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dependency graph allows us to handle only true dependencies as opposed to a task graph. 

Furthermore, because, dependence detection takes place over data we reduce the control 

path required to associate detected dependencies with the corresponding tasks. A data 

dependency graph can also be used for the purposes of renaming thus reducing the control 

path even more.  In addition task management is greatly simplified due to the fact that a 

dependency graph disassociates the dependence management from tasks.  

1. Task t1(Read(a),Write(b))

2. Task t2(Read(a),Write(c))

3. Task t3(Read(b),Read(c),Write(e))

 
Figure 2.2—1 Data dependency Graph. Example of a data dependency graph along with the task issues that 
correspond to this example.   

Writes are the nodes of the graph and tasks are directed arcs connecting them. A task 

(arc) connects two writes if and only if the task reads the value of the source write (edge at 

the beginning of the arc) and performs the destination write (edge at the end of the arc).  

Since the same task may present itself as more than one arcs, we consider each task an arc-

class and the arcs for that task as instances of that class.  The default behavior of the 

runtime system is to treat class-instances as a unity (all these paths will be created together 

and progressed together), the dependency model however allows you to treat them 

separately (progress a path earlier/later) and to add/drop class-instances dynamically as 

long as the arc-class is alive. An arc-class is considered alive for as long as it has one or more 

instances.(Current implementations of the runtime impose the default behavior though). 

2.3 Task Management 

 Tasks that have dependencies need to be blocked from executing until their 

dependencies are resolved. Because a task is an arc in our dependency model we need only 
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to keep track the number of pending dependencies. The task has no information about 

which dependencies are pending but only how many dependencies are pending. When the 

number of pending dependencies reaches zero then the task is eligible for execution. For 

each Write operation on a block we preserve a meta-data element. Each element has its 

own stack of references to tasks that depend on it. When we create a task if the analysis 

detects a block registered then this means that the task must block until the registered 

operation completes. Therefore we push a reference to the task we are currently issuing to 

the stack of the meta-data element of this operation and increment the pending 

dependencies for the task by one. The meta-data for the tasks also include a full description 

of the task. These include a function-id, which identifies the function to be called, and for 

each block an input address, an output address, the size of the block, an offset within the 

block, and a flag denoting whether we read, write of both to the block, and whether this is 

the first block of the original argument. 

 For every task that completes execution we need to update the data-dependency 

graph. For each meta-data element, that the completed task registered, we pop empty the 

stack of dependent tasks. For every task that we pop, we decrement its pending 

dependencies counter by one. If for any of the popped tasks this counter reaches zero then 

this task is considered eligible for execution.  We will describe later how we link meta-data 

elements with the tasks that created them(2.4 Timing Model), as well as what happens to a 

task when it is eligible for execution(2.7 Scheduling).  
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2.4 Timing Model 

Meta Data Array ‘M’

WRITE(A) WRITE(C) READ(A)

t0

t1

WRITE(B)

t2

 

Figure 2.4—1 Timing Model 

The timing model is used to imposed relative ordering in the system. In our design 

we are required to have knowledge of the oldest issued write (2.6 Meta-data Management), 

and precedence among writes in various implementation corner cases. The system 

maintains a single centralized logical clock [9] called “Epoch”. Events that signify time 

progression in our system are considered write operations. Tasks and meta-data elements 

get time stamped with the current clock value when they are issued. Since “Epoch” is a 

monotonically increasing value and registered meta-data elements represent writes each 

registered element has a unique clock value. We use this clock value as the index to the 

meta-data array and subsequently as the 2byte-ID used for detection/registration.  The 

meta-data array can now be viewed as the applications timeline. The value of the clock may 

exceed the size of the array so it is normalized to fit in it, which means that, as logical time 

progresses we cycle through the array. Tasks get time-stamped prior to the analysis of their 

arguments. The logical clock value for the task is the time base for its registered elements, so 

if a task has logical clock value T then its registered elements will have logical clock values 

T+1, T+2, …,T+N for N registered elements by this task. This means that the registered 

elements of this task will reside on the normalized range [T+1, T+N ] of the array. For each 

task we issue, we have a dedicated field on its meta-data that counts the number of issued 

writes (the number of registered elements) and a dedicated field for the task’s time-stamp. 

When a task is completed we use these two fields to deduce which meta-data elements 
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were issued by the task and update them. Time relations among tasks are not respected by 

the runtime, because the dependency model ensures correctness in execution. Enforcing 

happened before in the execution order of tasks would restrict severely the parallelism of 

the application. 

2.5 Renaming 

 ADAM performs renaming to resolve Write-After-Write and Write-After-Read 

dependencies. ADAM has a policy of always renaming and uses a set of pre-allocated buffers 

of block-size for renaming. This policy simplifies the dependency graph since only true 

dependencies are respected. Renaming consists of simply changing the target of a write 

operation for a task. Write operations are represented by meta-data elements. These meta-

data elements contain a field that points to the renamed buffer for this write.  When a task 

is issued and dependencies are detected we change the task’s reads and writes to the 

renamed buffers if necessary. If we are issuing a read to a block then if it is registered we 

change the read address to the renamed buffer associated with the registered meta-data 

element, otherwise it remains unchanged. If we are issuing a write then we change the write 

address to the renamed buffer associated to the meta-data element we are registering. If we 

issue a read/write to a block then we treat it first as a read and then as a separate write.  

Renamed buffers are written back lazily. When multiple writes are issued to a block only the 

last one is eventually written back. Whenever a write is issued to a block then if this block is 

already registered then we add a link to from the new meta-data element to the previous 

meta-data element. We keep linked lists between meta-data elements associated to the 

same block. Only the renamed buffer of the head of this list is eventually written back the 

rest are considered intermediate values. To avoid violating resolved Write-After-Read 

dependencies writing back is restricted to the oldest issued write in the system at a time, 

because the oldest issued operation by definition cannot be preceded by an unfinished read 

operation.  

Because the meta-data elements are used for the purposes of renaming they have 

to follow the lifetime of their associated renamed buffers. This means that meta-data 

elements may stay registered after a task has completed. We define two distinct phases for 

meta-data elements called “Active” and “Inactive” accordingly. A meta-data element starts 

as “Inactive” and when a task is completed and the stack of the meta-data elements 

dependent tasks is popped empty the meta-data element is set to its “Active” state. For 
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each block that we detect dependencies for, we also check the state, of the registered 

element if any. If a registered element is Active then we do not push the task into the 

element’s stack and we do not change the tasks pending dependencies counter, we simply 

redirect our issued task’s block read or write to the renamed buffer. If it is in its “Inactive” 

state we proceed as normal (as described earlier). 

2.6 Meta-data management 

The meta-data elements, the rename-buffers and the size of the meta-data array are 

pre-allocated and finite in count, therefore throughout the execution of an application we 

collect and reuse them.  In order to collect a meta-data element and the rename buffer 

associated with it, we first need to make sure that all readers to this write operation are 

completed. For this purpose each meta-data element has a counter called 

data_beggers_counter.  While the meta-data element is in “inactive” state this counter is 

not used.  During the meta-data elements “Active” state each pending reader increments 

this counter and each completed reader decrements it.  As previously described when a task 

completes then for each of its meta-data elements, it pops their stacks empty. Each of these 

meta-data elements is then set to its “Active” state. At this point it also initializes the 

data_beggers_counter to the number of tasks popped from the stack, also for every read, 

issued to a registered element, that is in its “Active” state we increment that element’s 

data_beggers_counter by one. Each task maintains a small vector with the indexes of the 

registered elements that it issued a read operation to. When a task completes it uses the 

indexes from this vector to revisit these meta-data elements and decrements their 

data_beggers_counter by one.  If a registered element is in “Active” state and its 

data_begger_counter equals zero then it is eligible for collection.  

There are two distinct methods of collection within the runtime denoted as soft 

collection and hard collection. Soft collection takes place every time the dependence 

detection finds a registered element. Registered elements that are associated with the same 

block are linked via a linked-list, with the head of the list being the last issued element and 

the rest being intermediate values. Intermediate values do not require write-back to the 

original address, so soft collection iterates through the elements of this list. Starting from 

the second element, it checks each element if it is eligible for collection and acts accordingly.   

Registered elements are placed on an array according to a logical clock(epoch). The 

array is bound in size whereas the clock not, and hence at some point we will collide with a 
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reserved array slot. Because the clock increases monotonically the element we will collide 

will be the oldest issued write at that time. Hard collection ensures forced collection of this 

element in order to place the new element at its place. If this element is no yet “active” then 

hard collection blocks and calls the scheduler, until it becomes “active”. If it was “active” or 

after it becomes “active”, it checks whether this element is an intermediate value. if it is an 

intermediate value it simply collects it otherwise it writes the renamed buffer back to the 

original and then collects it.  

2.7 Scheduling 

The scheduling policy is configurable depending on the specific needs of the running 

application. The first configurable parameter is the Task Window. The Task Window is the 

maximum number of issued and uncompleted tasks at a time. A larger window allows the 

runtime to potentially explore more parallelism by increasing the distance of tasks it can 

reorder. The Task Window Threshold is the number of tasks the runtime has to execute and 

complete in the event that the Task Window becomes full. Another parameter is the 

Multiplier. The Task Window times the Multiplier defines the number of meta-data elements 

that are allowed in the runtime as well as the size of the meta-data array.  The Multiplier 

represents the lifetime of the renaming in units of Task windows. The default value for this 

parameter is one but a larger value can potentially improve performance by avoiding 

writing-backs.  
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Figure 2.7—1 Task life cycle. The path of a task along the execution of an application  
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Tasks that are eligible for execution are pushed into a ready queue. The ready queue 

can be configured as an actual queue or a stack, which corresponds to breadth-first 

execution and depth-first execution accordingly. The scheduler component of the runtime 

de-queues tasks from the ready queue and assigns them to the workers. The master 

contains a completion queue for each worker, where the worker signifies task completions. 

The scheduler polls the worker’s completion queues for an available worker in a round robin 

fashion.  The worker that is available probably completed one or more tasks, if at this point 

the ready queue is empty we release any completed tasks of this worker. This lazy release 

policy reduces the scheduler lags thus yielding better scheduling efficiency.  If the ready 

queue has at least one task we send a task to this worker, and release the task that 

previously resided on the now completed slot unless this task has already been released. 

Because the Master and the  workers have different address spaces and the meta-data 

reside on the Master, the master keeps a two dimensional array called spe_map that maps 

task meta-data to tasks residing on the workers queue. This way when a task at specific 

queue slot of a worker finishes the master can look up the spe_map for the completed task’s 

meta-data. 
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Figure 2.7—2 Runtime component Architecture. This figure depicts the main components of the runtime, and 
the interactions among them. 

The scheduler is executed by the master synchronously at two points, before issuing 

a task and at barriers. At a barrier the scheduler executes until every issued task is executed 

and released. Before issuing a task the scheduler checks whether the Task window is full, if it 

is then it executes and releases tasks until it reaches the Task Window Threshold. The 
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default value for this threshold is the number of workers multiplied by the number of their 

queue size. The queue size of the workers is also a user defined parameter. If the task 

window is not full then scheduler executes tasks for as long as there are tasks in the ready 

queue and no stall is detected. While the scheduler polls the worker queues in a round robin 

fashion, if after one round no worker is free we consider that a stall is detected.   At the 

scheduler invocations that stall detection is not a blocking precondition, the scheduler looks 

if the next task in the ready queue has an equivalent task, defined for the master. If there is 

an equivalent the master executes the task, releases it and re-polls the worker queues.    

2.8  Consistency 

ADAM breaks arguments into blocks and overwrites the first two bytes of each 

block.  This operation however is abstracted from the programmer. The tasks need not take 

into account the blocking or the id-placing. The worker is responsible for re-constructing the 

arguments, before the execution of the tasks. When an argument is broken into blocks by 

the master, the master flags the first block as the start-block. The worker places the blocks in 

his local memory in the sequence they were issued and considers the local addresses of the 

start blocks as the local task arguments.   

Prior to sending a task to a worker for execution, for every read block-address 

associated with the task we detect whether a meta-data element is registered to this block. 

If a meta-data element is registered then we get the two overwritten bytes from the meta-

data element and pass them to the worker, who in turn after fetching the data for a task and 

prior to executing it places these two bytes at the beginning of the local copy of the block.  

In certain cases the Master needs to use data that are written or read by tasks. This 

introduces two issues:  (i) Synchronization in order to avoid races with tasks and (ii) cohesion 

in case the data have been renamed. For this purpose these accesses are performed through 

the runtime with the use of a special macro that given a specific address ensures that tasks 

associated with the block containing this address have completed. The macro also ensures 

that if this block is renamed the correct buffer will be used. The latter is particularly useful 

because the default behavior of the buffer ensures only the execution of all issued tasks and 

not the coherence of the memory. Coherency is guaranteed from the use of the macro. 

There is a special barrier that ensures memory coherency called Mem_sync that writes back 

all the renamed buffers and alleviates the need for the use of the macro after the barrier but 

it is less efficient than the default barrier. 
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2.9 ADAM-SMP 

The dependency model of ADAM is architecture independent, the entire runtime 

design however is tailored for the CELL [1] processor. The greatest challenge in SMPs 

architectures regarding ADAMs design is coherency. Because the workers and the master 

share a single address space we cannot register and then reconstruct the data, without 

damaging either the consistency of the dependency graph either  the consistency of the user 

data.  Therefore we detach the dependency detection and registration form the user data 

while still maintain the good property of O(1) dependence analysis. 

The SMP version of ADAM divides the memory into segments called grids. Grids are of 

the same size and alignment (like pages) and each of them is further divided into blocks. A 

grid can be thought of as an one-dimension array of blocks. The size of grids and blocks is an 

application-specific parameter, which can be tuned to trade dependence analysis overhead 

for additional false positive dependencies. All users allocations are encapsulated through a 

custom allocator (Figure 2.9—1). The allocator internally has at least one Grid allocated. 

Starting from the end of the Grid the allocator translates the user request into units of 

ADAM blocks, and serves the user’s request with memory  in a stack like manner. The 

allocator also considers that starting at the beginning of the Grid there is an implicitly 

defined integer matrix with as many elements as the number of allocated blocks within the 

Grid. This integer matrix and the user’s allocations compete for the same space(like heap 

and stack), therefore whenever the allocator detects and imminent collision, it allocates a 

new Grid and serves the subsequent requests in the same manner from the new Grid.    
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Block 3 Block 2 Block 1 Block 0

Grid End

Grid Start

User request( 4 blocks memory)

IDs for user Request

0 1 2 3

User Memory 

Requests

ID Dependencies 

Matrix

Start End

 

Figure 2.9—1 ADAM Grids. Allocation Example with the usage of Grids 

 Grids are aligned, therefore, for any given address in a grid we can identify the 

beginning and the end of the grid using fast bit masking operations. A grid is viewed as a 

matrix of user data blocks from end to start or as a matrix of unique task IDs from start to 

end. We use a custom memory allocator that allocates memory for user data in units of 

blocks from the end to the start of a grid. The relation between a block and a unique ID is 

the following: For a given block, we start from the end of the grid and measure the distance 

in blocks (e.g. the 3th block from the end). Starting from the beginning of the grid we index 

the grid as an integer matrix to the aforementioned distance for the desired task-ID(Figure 

2.9—2) (e.g. ((int *)G)[2] ).  



 

 

19 

 

Block 3 Block 2 Block 1 Block 0

Grid End

Grid Start

( 4 blocks memory)

IDs for user Request

0 1 2 3

User Memory 

Requests

ID Dependencies 

Matrix

Start End

Argument

Struct Meta data element{

Void 

*Address=0xFFFFDAAD

};

Unique-id

10nth position

Meta Data Array ‘M’

GOD detect engine

Step c

Compare 

Address==M[10]->Address

Step a

Step a

Step b

Address 

0xFFFFDAAD

0010

 
Figure 2.9—2 ADAM SMP Dependence detection. Example of the dependence detection operation using Grids.  

Furthermore n the SMP version of ADAM because the workers and the Master share 

the address space it is possible to delegate part of the dependence analysis to the workers. 

The release of each executed task is performed by the workers in parallel with each other 

and with the master’s issue.  
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3 Evaluation 

We evaluate ADAM on a Playstation3 system equipped with 256MBs of RAM and a Cell 

Broadband Engine processor running at 3,192 GHz.  Playstation3 systems allow for the use 

of, at most, 6 out of the 8 SPEs, therefore our experiments include a range of 1 to 6 workers 

and 1 Master.   

In all measurements regarding ADAM, we include the following breakdowns for the 

Master and Worker.   

PPE Breakdown 

 Instantiate 

Instantiate is the time dedicated to creating a task. This time includes the overhead 

of the Dependence analysis required for each argument of the task.  

 Complete 

Complete is the time required to update the dependency graph for each completed 

task.  

 Issue 

Issue is the time required for the master to send the task descriptions to the 

workers. The task descriptor is send via remote stores.    

 Stalled 

This is the time portion in which the Master has tasks eligible for execution and polls 

the worker queues for an available slot. 

 Wait 

This is the measured time of the Master blocking until workers complete all issued 

tasks. This corresponds to the barrier synchronization time. ADAM requires only one 

barrier at the end of the application. 

 Writeback 

Writeback is the measured time of the Master for copying renamed buffers back to 

the original addresses 

 PPC tasks time 

This is the time the Master spends executing Tasks  

 Application 

This is the time dedicated to the running application excluding the aforementioned 

overheads and initialization. 

SPE Breakdown 

 Task Ticks 

Task is the portion of time the SPE spends executing task code.   

 Lib Ticks 
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Lib is the portion of time the SPE spends executing library code. 

 Idle Ticks 

Idle is the time spent by an SPE when it has no pending or executing tasks. 

 

For the evaluation of ADAM we use the following series of task-based benchmarks that 

originate from the SPLASH-2 benchmark suite, the CELLSS [2] runtime, and the Sequoia 

runtime [4]. The task window size in all the runs is set to 2048, and for all the evaluated 

applications we present  runs that exceed the task window. The size of the worker queues is 

set to 2.  Fine-tuning these parameters for each application can potentially yield better 

performance. 

3.1 Applications 

Each graph in this section represents runs that range from 1 to 6 workers. Each run 

allocates two bars in the graph, one with the PPE Breakdown of the master and one with the 

SPE breakdown of the average of all workers. The Y-axis is time in μ-seconds and the X-axis is 

number of SPEs. 

3.1.1 LU 

LU performs LU factorization on a non-contiguous matrix of blocks and it originates from 

the SPLASH-2 Benchmark suite. We created tasks that correspond to the following already 

defined kernels “bdiv”, “bmodd”, “bmod” and “lu0”, based on the LU port for the TPC 

runtime. We use two versions of this benchmark one with single precision numbers (labeled 

LUsp) and the original with double precision numbers (labeled LU). Each run is configured by 

two parameters, the size of the array, and the size of the blocks (this stands for application 

block size, not ADAM’s block size).  The size of the array is the application dataset and allows 

us to control the number of produced tasks. We use two values for this parameter, either 

the default, 512, or 4096, which is the maximum dataset that fits into our memory. The size 

of the LU block affects the size of the task in terms of both data and execution as well as the 

number of tasks. The LU block size is configured with the following values 8,16,32. The 

number of produced tasks for each configuration can be seen in Table 3.1.1—I:  

Runs Number of tasks 

512x512(8x8) 89.440 
512x512(16x16) 11.440 
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512x512(32x32) 1.496 
4096x4096(8x8) 44.870.400 
4096x4096(16x16) 5.625.216 
4096x4096(32x32) 707.264 
Table 3.1.1—I Number of tasks for the LU application  

The complexity of the dependencies  for the LU benchmark remains unaffected by the 

number of tasks. The number of tasks affects only the size of the dependencies graph.  The 

number of tasks in this application does not affect ADAMs behavior in terms of scalability, an 

argument validated when examining runs with the same block size but different array sizes. 

The key aspect that affects scalability is the size of the tasks. As we increase the application’s 

block size ADAMs scalability improves. Furthermore by comparing runs with the same 

configuration but with different precision numbers (LU to LUsp), we see that runs with 

double precision always scale better.  Due to the fact that ADAM is a runtime system, ADAM 

introduces overhead to each run. When the overhead exceeds the SPE task time plus the 

SPE lib time then ADAM’s overhead becomes the bottleneck that limits scalability.  For each 

run the following condition should be respected: 

 

Respecting this condition will ensure that ADAM will not impair the applications 

scalability but it does not guarantee that the running application will scale. Task and Lib 

correspond to the average of all the participating workers.     

In the runs displayed in Figure 3.1.1—1 and Figure 3.1.1—4 ADAM fails to scale with 

runs with more than 2 SPEs, due to the introduced overhead. While these two sets of runs 

are for different datasets the task size remains the same. The task size in these two  sets of 

runs corresponds for 8x8 blocks(Application blocks). Scalability improves as the task size 

increases(Figure 3.1.1—2 and Figure 3.1.1—3) for the 512x512 dataset as well as for the 

4096x4096 dataset(Figure 3.1.1—5 and Figure 3.1.1—6). 

In the runs concerning the single precision version of LU, the runs are equivalent to the 

double precision runs in terms of dependencies. The size of the tasks however is smaller 

both in terms of data and execution. ADAM fails to scale due to overhead in Figure 3.1.1—7 

and Figure 3.1.1—10 where the block size is 8x8(Application block). ADAMs also fails to scale 

due to overhead in the runs with 16x16 block size(Application block) in Figure 3.1.1—8 and 

Figure 3.1.1—11 although the introduced overhead is identical to the double precision runs 

  Instantiate + Complete + Issue + Writeback  ≤ Task + Lib 
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in Figure 3.1.1—2 and Figure 3.1.1—5. The reason is that the task-size in the two single 

precision LU sets of runs is smaller than the corresponding double precision runs.  

The absence of excessive writeback overhead despite the fact that the number of 

tasks(Table 3.1.1—I) exceeds the size of the task in all the runs is because ADAM successfully 

identifies intermediate values. Furthermore it indicates that the size of the Task window 

does not impact scalability in a negative way in any of these runs. 

 
Figure 3.1.1—1 LU 512x512(8x8). LU execution Breakdown for the PPE and the SPEs for runs with 1,2,3,4,5,6 
SPEs, for an array size of 512x512 with application block size 8x8.   

 

Figure 3.1.1—2 LU 512x512(16x16).LU execution Breakdown for the PPE and the SPEs for runs with 1,2,3,4,5,6 
SPEs, for an array size of 512x512 with application block size 16x16. 
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Figure 3.1.1—3 LU 512x512(32x32).LU execution Breakdown for the PPE and the SPEs for runs with 1,2,3,4,5,6 
SPEs, for an array size of 512x512 with application block size 32x32. 

 

Figure 3.1.1—4 LU 4096x4096(8x8). LU execution Breakdown for the PPE and the SPEs for runs with 1,2,3,4,5,6 
SPEs, for an array size of 4096x4096 with application block size 8x8. 
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Figure 3.1.1—5 LU 4096x4096(16x16).LU execution Breakdown for the PPE and the SPEs for runs with 
1,2,3,4,5,6 SPEs, for an array size of 4096x4096 with application block size 16x16. 

 

Figure 3.1.1—6 LU 4096x4096(32x32).LU execution Breakdown for the PPE and the SPEs for runs with 
1,2,3,4,5,6 SPEs, for an array size of 4096x4096 with application block size 32x32. 
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Figure 3.1.1—7 LUsp 512x512(8x8). LU with single precision, execution Breakdown for the PPE and the SPEs for 
runs with 1,2,3,4,5,6 SPEs, for an array size of 512x512 with application block size 8x8. 

 

Figure 3.1.1—8 LUsp 512x512(16x16). LU with single precision, execution Breakdown for the PPE and the SPEs 
for runs with 1,2,3,4,5,6 SPEs, for an array size of 512x512 with application block size 16x16. 
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Figure 3.1.1—9 LUsp 512x512(32x32). LU with single precision, execution Breakdown for the PPE and the SPEs 
for runs with 1,2,3,4,5,6 SPEs, for an array size of 512x512 with application block size 32x32. 

 

Figure 3.1.1—10 LUsp 4096x4096(8x8). LU with single precision, execution Breakdown for the PPE and the SPEs 
for runs with 1,2,3,4,5,6 SPEs, for an array size of 4096x4096 with application block size 8x8. 
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Figure 3.1.1—11 LUsp 4096x4096(16x16). LU with single precision, execution Breakdown for the PPE and the 
SPEs for runs with 1,2,3,4,5,6 SPEs, for an array size of 4096x4096 with application block size 16x16. 

 

Figure 3.1.1—12 LUsp 4096x4096(32x32). LU with single precision, execution Breakdown for the PPE and the 
SPEs for runs with 1,2,3,4,5,6 SPEs, for an array size of 4096x4096 with application block size 32x32. 
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64 thousand elements and one with 4 million elements. Table 3.1.2—I shows the number of 

tasks produced for each configuration. 

Runs Number of tasks 

FFT(64k) 572 
FFT(4M) 20.672 
Table 3.1.2—I Number of tasks for the FFT application 

This application performs blocked transposition delegated to the workers via tasks. In 

order to express blocks as task arguments we use strided arguments. Each element of a 

strided argument is translated to an argument internally and treated as such, independently 

by ADAM. For the case of the FFT when a task is issued with 3 strided arguments of 32 

elements each, ADAM treats it as a task with 96 arguments. Although the amount of analysis 

required is disproportionally large in relation to the number of tasks the application scales 

well in the case of double precision numbers. In runs with single precision the overheads 

dominate the execution time. We also observed a fair amount of writeback time introduced. 

The writeback overhead relates to the excessive number of total meta-data elements 

required to handle all these arguments compared to the size of the task window, and if we 

compare single to double precision runs we see that it remains constant regardless the size 

of the tasks.   

 

Figure 3.1.2—1 FFT 64k. FFT execution Breakdown for the PPE and the SPEs for runs with 1,2,3,4,5,6 SPEs, for 
16384 Complex Double elements. 
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Figure 3.1.2—2 FFT 4M. FFT execution Breakdown for the PPE and the SPEs for runs with 1,2,3,4,5,6 SPEs, for 
4194304 Complex Double elements. 

 

Figure 3.1.2—3 FFTsp 64k. FFT with single precision, execution Breakdown for the PPE and the SPEs for runs 
with 1,2,3,4,5,6 SPEs, for 16384 Complex Float elements. 

 

0

2000

4000

6000

8000

10000

12000

Task Ticks

Lib Ticks

Idle Ticks

PPC tasks time

Writeback

Stalled

Instantiate

Issue

Complete

Application

0

1

2

3

4

5

6

7

8

Task Ticks

Lib Ticks

Idle Ticks

PPC tasks time

Writeback

Stalled

Instantiate

Issue

Complete

Application



 

 

31 

 

 

Figure 3.1.2—4 FFTsp 4M. FFT with single precision numbers, execution Breakdown for the PPE and the SPEs 
for runs with 1,2,3,4,5,6 SPEs, for 4194304 Complex Float elements. 

3.1.3 Sequoia [4] Kernels 

We use two Sequoia [4]  kernels originally ported for the TPC runtime called saxpy 

and sgemv. Saxpy and sgemv are both communication bound. Saxpy contains of one kernel 

that consists of a vectorized multiply and add between a block and an alpha value(y= y + 

alpha*x). Sgemv is a vectorized MxN matrix multiplication and add between two blocks, an 

alpha value and a beta value (y= beta*y + alpha*A*x). These kernels consist of tasks that are 

independent with each other. For statistical validity each experiment is internally executed 

100 times and blocked by a barrier after each iteration. In ADAM we remove this barrier and 

allow for the 100 iterations of the experiment to occur as one unified experiment. This 

creates dependencies among tasks because each iteration of the experiment uses the same 

data. The task window size is to 2048 and because it is large enough for ADAM to contain 

tasks from 2 consecutive iterations, writeback overhead is minimal. Table 3.1.3—I shows the 

number of produced tasks for the saxpy benchmark. The saxpy block size is 1024. The 

behavior of the runtime remains the same in saxpy regardless the block size, and thus we 

only include runs with 1024 block size in our evaluation.  

Runs Number of tasks 

Saxpy 102.400 
Table 3.1.3—I Number of tasks for the Saxpy benchmark 

ADAM does not scale well for the Saxpy becnhmark, because the runtime-

introduced overheads dominate the execution time. Although Saxpy does not scale anyway 
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in Figure 3.1.3—1 this does not occur due to the fact that the application is communication 

bound but rather because the duration of the tasks(Lib+Task) is less than the introduced 

overheads.  

 

Figure 3.1.3—1 SAXPY. Saxpy execution Breakdown for the PPE and the SPEs for runs with 1,2,3,4,5,6 SPEs. 

Sgemv is a computation bound benchmark. We perform two runs for this application 

with the N parameter set as 4 and 8 respectively. In (y= beta*y + alpha*A*x) x and y are of 

size M where M is set to 1024 while A is of size Mx(N*1024). The N parameter affects the 

size of the task in terms of both data transfer size and execution. Table 3.1.3—II displays the 

number of produced tasks for each run: 

Runs Number of tasks 

SGEMV N4 10.240 
SGEMV N8 10.240 
Table 3.1.3—II Number of tasks for the Sgemv benchmark  

In figures Figure 3.1.3—2 and Figure 3.1.1—3 we see that as the task size increases from 

the run with N4 to the run with N8, scalability improves. Although SGEMV does not scale 

anyway, like in the case of saxpy the cause here is the overhead introduced by ADAM and 

not the application. 
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Figure 3.1.3—2 SGEMV N4. Sgemv execution Breakdown for the PPE and the SPEs for runs with 1,2,3,4,5,6 SPEs 
and N=4. 

 

Figure 3.1.3—3 SGEMV N8. Sgemv execution Breakdown for the PPE and the SPEs for runs with 1,2,3,4,5,6 SPEs 
and N=8. 

3.1.4 Cholesky 

This is a benchmark from the CELLSS [2] runtime. It performs Cholesky factorization on a 

sparse matrix of blocks. We run this benchmark with two datasets one that consists of a 

13x13 matrix of blocks and one that consists of a 20x20 matrix of blocks. Each block is a 
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the complexity of the dependency graph, the application exhibits good scalability as seen in 

Figure 3.1.4—1 and Figure 3.1.4—2.  Cholesky is an application that exhibits a lot of 

dependencies compared to the number of produced tasks and therefore requires either a lot 

of synchronization either a lot of dependence analysis. Because ADAM provides the benefits 

of dependence analysis at a relatively low cost, Cholesky scales well.   

Runs Number of tasks 

cholesky (13x13) 455 
cholesky(20x20) 1540 
Table 3.1.4—I Number of tasks for the Cholesky benchmark 

 

 

Figure 3.1.4—1 Cholesky 13x13. Cholesky execution Breakdown for the PPE and the SPEs for runs with 
1,2,3,4,5,6 SPEs and for a 13x13 matrix of 64x64 blocks(Cholesky blocks) of single precision numbers. 
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Figure 3.1.4—2 Cholesky 20x20. Cholesky execution Breakdown for the PPE and the SPEs for runs with 
1,2,3,4,5,6 SPEs and for a 20x20 matrix of 64x64 blocks(Cholesky blocks) of single precision numbers. 

 

3.1.5 Matmul 

This is a matrix multiplication benchmark from the CELLSS [2] runtime.  The Tasks in this 

benchmark are created through 3 nested loops with each task of innermost loop dependent 

on the preceding task, while each task is independent from tasks from different iterations of 

the two outermost loops. For our evaluation purposes we use the non-vectorized version of 

this benchmark. We run this benchmark for two datasets one that consists of a 13x13 matrix 

of blocks and one that consists of a 20x20 matrix of blocks. Each block is a 64x64 matrix of 

floats. Table 3.1.5—I shows the number of produced tasks for each run: 

Runs Number of tasks 

Matmul 13x13 2.197 
Matmul 20x20 8.000 
Table 3.1.5—I Number of tasks for the Matmul benchmark 

This benchmark is an example of how ADAM can export parallelization from seemingly 

sequential applications. Since each task of the innermost loop is dependent on the one 

previously issued, tasks of the same iteration should execute in sequence.  Tasks from 

different iterations, of the two outermost loops, however can execute in parallel. ADAM 

through dependence analysis reorders tasks and takes advantage of this parallelism. The 

reordering of tasks can been seen in Figure 3.1.5—1.  
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Figure 3.1.5—1 Task re-ordering. Ordering of the 120 tasks of a matmul 13x13 run. X-axis is execution order 
while y-axis is the issue order. 

This graph represents the order of the first 120 tasks of a 13x13 Matmul execution. The 

innermost loop in this run consists of 13 iterations.  Each task in this graph is represented by 

an (x,y) point where x is an id representing the order that ADAM executes tasks(more 

precisely assigns them to workers) and y is an id representing the order, this task was issued 

to ADAM (program order).  The red line represents the sequential execution of the program 

where for each task, the issue order would coincide with the execute order, hence x=y. Tasks 

above the red line are tasks  executing ahead of time (future tasks) while tasks below the red 

line are tasks executing late(past tasks). Figure 3.1.5—2 shows the reordering of the tasks 

for the entire run. 

0

50

100

150

200

250

0 20 40 60 80 100 120



 

 

37 

 

 

Figure 3.1.5—2 Task re-ordering. Ordering of all(2145) of  the tasks of a matmul 13x13 run. X-axis is execution 
order while y-axis is the issue order. 

We see in Figure 3.1.5—3 and Figure 3.1.5—4 that this application scales well due to the 

exported parallelism from ADAM and the large size of the tasks in terms of computation.  

0

500

1000

1500

2000

2500

1

6
8

1
3

5

2
0

2

2
6

9

3
3

6

4
0

3

4
7

0

5
3

7

6
0

4

6
7

1

7
3

8

8
0

5

8
7

2

9
3

9

1
0

0
6

1
0

7
3

1
1

4
0

1
2

0
7

1
2

7
4

1
3

4
1

1
4

0
8

1
4

7
5

1
5

4
2

1
6

0
9

1
6

7
6

1
7

4
3

1
8

1
0

1
8

7
7

1
9

4
4

2
0

1
1

2
0

7
8

2
1

4
5



 

38 

 

 

Figure 3.1.5—3 Matmul 13x13. Matmul execution Breakdown for the PPE and the SPEs for runs with 1,2,3,4,5,6 
SPEs and for a 13x13 matrix of 64x64 blocks(Matmul blocks) of single precision numbers. 

 

 

 

Figure 3.1.5—4 Matmul 20x20. Matmul execution Breakdown for the PPE and the SPEs for runs with 1,2,3,4,5,6 
SPEs and for a 20x20 matrix of 64x64 blocks(Matmul blocks) of single precision numbers. 
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3.1.6 Jacobi 

Jacobi is also a benchmark from the CELLSS [2] runtime. The dataset of this benchmark 

consists of a 32x32 matrix of blocks with each block consisting of 32x32 floats. We run this 

benchmark for two configurations one for 13 iterations of the Jacobi calculation and one for 

20. We iterate a sparse matrix and perform the Jacobi method for each block using its 

neighboring blocks. The neighboring blocks are copied via tasks into four blocks called 

lefthalo, righthalo, bottomhalo and tophalo, which are subsequently used for the calculation 

of each block.  Because for each block of the matrix we use the same four blocks to store the 

neighboring blocks and we copy the desired blocks on them, the calculation for each 

iterated block is dependent on the calculation of the previous iteration. Table 3.1.6—I 

contains the number of produced tasks for each run:     

Runs Number of tasks 

Jacobi 13 66.560 
Jacobi 20 102.400 
Table 3.1.6—I Number of tasks for the Jacobi benchmark 

This benchmark is a prime example of the effectiveness of data-renaming. For the Jacobi 

calculation of each block we use the same variables to store the neighboring blocks, 

therefore each calculation is dependent on the previous one. Expressed this way this 

program is seemingly sequential. Renaming however resolves the dependencies regarding 

these variables, exporting parallelism among the calculations of the blocks. The reason this 

benchmark does not scale is because the tasks are small and extremely unbalanced, since 

for every 5 issued tasks we have 4 small tasks that fill the 4 aforementioned variables with 

the neighboring blocks.   

As we can see in Figure 3.1.6—1 and Figure 3.1.6—2 Jacobi fails to scale due to the 

introduced overhead. The task sizes are extremely small compared to the introduced 

overhead. The dominant overhead is the instantiate part, which increases, as the number of 

workers increases. This is because the number of Blocking Dependencies(3.2 Parameters 

and Features) increases as the number of workers increases.  The reason for this is that 

ADAM with more workers stalls less and therefore can create more tasks, hence therefore 

more blocking dependencies appear.   
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Figure 3.1.6—1 Jacobi 13. Jacobi execution Breakdown for the PPE and the SPEs for runs with 1,2,3,4,5,6 SPEs 
and for 13 iterations on a 32x32 matrix of 32x32 blocks(Matmul blocks) of single precision numbers. 

 

 

 

Figure 3.1.6—2 Jacobi 20. Jacobi execution Breakdown for the PPE and the SPEs for runs with 1,2,3,4,5,6 SPEs 
and for 20 iterations on a 32x32 matrix of 32x32 blocks(Matmul blocks) of single precision numbers. 
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3.2 Parameters and Features 

ADAMs as previously described has a set of parameters and features that affect 

performance. In this section we examine their individual impact on ADAMs behavior. The 

parameters we will examine are the Task window, the dependency block size and the 

feature of running tasks on the PPE in addition to running tasks on the SPEs of the Cell 

processor. As a test case we use the double precision LU benchmark configured with data 

set size 512x512 and application block size 16x16. The total number of tasks produced in this 

configuration is 11440. Below we show an example dependency graph for the LU 

application. For reasons of readability this graph is actually from a smaller run with 204 

tasks. Each task in the graph is labeled with its program order.   

 

Figure 3.2—1 Sample Dependency graph for the LU application(N256x256,b16x16).  

The first parameter we examine is the effect of the task window. In the graph below 

the x-axis represents the size of the task window ranging from 32 to 16384, while the y axis 

represents a numerical value. We plot the total number of dependencies labeled 

“Dependencies”, the number of “Blocking Dependencies” which stand for the number of 

Dependencies that cause a task to block and the “writebacks” which is the number of 

writebacks ADAM performed.  “Dependencies” as a numerical value include “Blocking 

Dependencies”.  
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ADAM performs dependence analysis among the tasks within the task window 

therefore as the size of the task window increases so does the number of dependencies. 

Beyond the size of 1024 the number of dependencies remain constant because ADAM has 

detected all the dependencies in the current run. On the other hand, the writebacks 

decrease as the size of the task window increases. Beyond the task window size of 1024 

because ADAM has identified all the dependencies, ADAM has also identified all the 

intermediate values, thus avoiding most of the writebacks 

 
Figure 3.2—2 Task window. The effect of the size of the task window on the number of Dependencies, Blocking 
Dependencies and Writebacks. 

Fewer dependencies translate to less analysis overhead as demonstrated in Figure 

3.2—3, since the number of dependencies affects the instantiate overhead. While reducing 

the Task window reduces the number of dependencies and therefore the overhead of the 

instantiate part, it also increases the overhead due to writebacks. It is up to the programmer 

to select the appropriate task window that trades-off between these overheads.   

The task window size should be high enough so as to enable ADAM to track all 

dependencies. This high-mark is presented when the number of dependencies becomes 

stable. In Figure 3.2—2 this high-mark is 1024. At this high-mark ADAM has tracked all the 

dependencies of the application and all the intermediate values. Therefore setting the task 

window at a higher value would not benefit the parallelism or the writeback overhead, it 

would simply enlarge the runtime’s Memory Image.   

In certain cases though where the introduced overhead from ADAM is limiting 

scalability, and the dominant part of the overhead is the instantiate part, it is best to reduce 
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the task window. Reducing the task window reduces the amount of dependencies detected 

by ADAM and therefore the instantiate overhead as seen in Figure 3.2—3, but it also 

increases the writeback overhead. In applications that iterate over a working data-set the 

task-window should be large enough to contain the tasks of one iteration plus one task. 

 
Figure 3.2—3 Task Instantiate vs. Task Window. The Effect of the Task Window size on the task instantiate 
overhead.  

ADAM has the ability to delegate tasks to the Master for execution. In Figure 3.2—4 

we compare the performance of ADAM with the utilization of the Master and without, with 

the left bar representing ADAM without PPE tasks and the right bar with PPE tasks. The PPE 

executes tasks whenever ADAM detects a stall. As we can see in the graph the PPE time 

essentially replaces the stall time and thus the improvement, from PPE tasks, depends on 

the amount of stall time in the application. Table 3.2—I shows the amount of tasks executed 

by the Master.  

 PPE tasks are always beneficial for the application. When using PPE tasks we 

essentially add one more worker to the runtime. Assuming that the application exhibits 

enough parallelism to utilize an additional worker, the benefit of the PPE tasks depends on 

the amount of stall time in the application. As we can see in Figure 3.2—4 in runs with 1 SPE 

where stall time dominates, the use of PPE tasks yields a speedup of  2,19x. The reason for 

the super-linear speedup is that PPE-tasks do not require any communication overhead. 

Because ADAM uses PPE tasks only in cases where it detects stalls, PPE tasks rarely have a 

negative effect on the application. In fact the only case where an application may not benefit 

from PPE tasks is if the tasks are large enough to cause lags between scheduler invocations.  
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Finally because the PPE and the SPEs are of different architectures a task is likely to perform 

better on one architecture than the other. This can affect the gain from PPE tasks, both in a 

negative and in a positive manner.     

 
Figure 3.2—4 PPE tasks(LU N512x512,b16x16) . The impact in scalability of the use of PPE tasks.  

 

Runs Number of PPE tasks Number of SPE tasks 

1SPE +PPE 5345 6095 
2SPE +PPE 3417 8023 
3SPE +PPE 2397 9043 
4SPE +PPE 1779 9661 
5SPE +PPE 1383 10057 
6SPE +PPE 1050 10390 
Table 3.2—I The distribution of Tasks among the PPE and the SPEs 

Another parameter that affects the behavior of ADAM is the analysis blocks size. 

Smaller block sizes increase the granularity of the analysis. In this application the default 

granularity is 2048 bytes and exports all the available parallelism. We present results with 

1024 and 512-byte block size and compare with the default 2048. The graph in Figure 3.2—5 

displays the affect of the block size(x-axis) to the “Dependencies” and the “Blocking 

Dependencies”  
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Figure 3.2—5 ADAM block size. The impact of the block size of ADAM in the number of Dependencies and the 
number of Blocking Dependencies. 

The Analysis Block size is a very important parameter and should be chosen with 

caution. ADAM’s minimum supported block size is 16-bytes. Smaller block size usually yields 

better analysis and ADAM exports more parallelism, however because ADAM is required to 

process more blocks the overhead is increased. On the other hand large block sizes reduce 

overhead but may introduce false dependencies, thus limiting parallelism. The block size 

should match the average argument size of the application, unless the application’s 

scalability is limited by synchronization (stall and wait time). In that case the block size 

should be reduced allowing ADAM to extract more parallelism if possible. In any case the 

analysis block size should never be less than the smallest write argument in the application. 

Below that limit only overhead is introduced.  

In the LU application since ADAM performs per block analysis reducing the analysis 

block in half (1024), doubles the blocks we analyze and therefore duplicates the instantiate 

and complete overhead.  
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Figure 3.2—6 The impact of ADAM’s Block size in scalability (LU N512x512b16x16). Comparison of the PPE 
breakdown for ADAM block sizes 2048 and 1024 with 1,2,3,4,5,6 SPEs.  

 

Figure 3.2—7 The impact of ADAM’s Block size in scalability (LU N512x512b16x16). Comparison of the SPE 
breakdown for ADAM block sizes 2048 and 1024 with 1,2,3,4,5,6 SPEs. 
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Figure 3.2—8 The impact of ADAM’s Block size in scalability (LU N512x512b16x16). Comparison of the PPE 
breakdown for ADAM block sizes 2048 and 512 with 1,2,3,4,5,6 SPEs. 

 

Figure 3.2—9 The impact of ADAM’s Block size in scalability (LU N512x512b16x16). Comparison of the SPE 
breakdown for ADAM block sizes 2048 and 512 with 1,2,3,4,5,6 SPEs. 
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3.3 Evaluating against CELLSS [2] 

We Compare ADAM with CELLSS [2] using the benchmarks that originate from the 

CELLSS [2] runtime. These include Cholesky, Matmul and Jacobi and for each of these we use 

the same configurations as in the first section of the evaluation. Because the CELLSS runtime 

does not produce execution breakdowns we only compare total execution times excluding 

initialization times. 

3.3.1 Cholesky 

In the Cholesky benchmark, ADAM outperforms CELLSS [2] and yields speedups of 

2,77 times faster for the 13x13 dataset and 6 SPEs, and 1,83 times faster for the 20x20 than 

the corresponding CELLSS runs. ADAM performs better in Cholesky due to lower analysis 

overheads. Because this is a computation intensive benchmark the significance of the 

analysis overheads is related to the data-set size. As the data-set grows the overheads 

become less apparent on the overall execution time and therefore the difference between 

the two runtimes decreases. As the data-set shrinks however, ADAM’s speedup over CELLSS 

[2] increases. 

 

Figure 3.3.1—1 Cholesky 13x13 ADAM vs. CELLSS. Cholesky for runs with 1,2,3,4,5,6 SPEs and for a 13x13 
matrix of 64x64 blocks(Cholesky blocks) of single precision numbers. 
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Figure 3.3.1—2 Cholesky 20x20 ADAM vs. CELLSS. Cholesky for runs with 1,2,3,4,5,6 SPEs and for a 20x20 
matrix of 64x64 blocks(Cholesky blocks) of single precision numbers. 

3.3.2 Matmul 

Matmul is also a computation intensive benchmark. The dependency graph of this 

application is less complicated than Cholesky, which translates to lower overheads for both 

runtimes. ADAM however in both Figure 3.3.2—1 and Figure 3.3.2—2 maintains a steady 

advantage. 

 

Figure 3.3.2—1 Matmul 13x13 ADAM vs. CELLSS. Matmul for runs with 1,2,3,4,5,6 SPEs and for a 13x13 matrix 
of 64x64 blocks(Matmul blocks) of single precision numbers. 
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Figure 3.3.2—2 Matmul 20x20 ADAM vs. CELLSS. Matmul for runs with 1,2,3,4,5,6 SPEs and for a 20x20 matrix 
of 64x64 blocks(Matmul blocks) of single precision numbers. 

3.3.3 Jacobi 

Jacobi is a communication intensive benchmark that benefits from data renaming. 

ADAM has lower overheads for dependence analysis and for renaming than CELLSS [2]. 

Furthermore ADAM has an aggressive policy of always renaming. ADAM outperforms the 

CELLSS [2] runtime although ADAM is not able to scale well for the Jacobi application.  The 

speedup of ADAM over the CELLSS [2] runtime is 2,27 for 13 iterations with 6 workers and 

2,14 for 20 iterations with 6 workers. 
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Figure 3.3.3—1 Jacobi 13 ADAM vs. CELLSS. Jacobi for runs with 1,2,3,4,5,6 SPEs and for 13 iterations over a 
32x32 matrix of 32x32 blocks(jacobi blocks) of single precision numbers. 

 

Figure 3.3.3—2 Jacobi 20 ADAM vs. CELLSS. Jacobi for runs with 1,2,3,4,5,6 SPEs and for 20 iterations over a 
32x32 matrix of 32x32 blocks(jacobi blocks) of single precision numbers. 
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3.4 Evaluating against TPC [3] 

In this section we compare the performance of ADAM against that of TPC [3]. For each 

application that we evaluate, we present runs that correspond to 6 workers(SPEs) and 

compare the PPE breakdown(left) to the SPE breakdown(right). The breakdown for the TPC 

[3] corresponds to the following:  

TPC PPE Breakdown 

 Issue 

Issue is the time required for the master to send the task descriptions to the 

workers. The task description is send via remote stores.    

 Stalled 

This is the portion of time in which the Master has tasks eligible for execution and 

polls the worker queues for an available slot. 

 Wait 

This is the measured time of the Master blocking until workers complete all issued 

tasks. This time corresponds to barrier synchronization time in TPC. ADAM requires 

only one barrier at the end of the application. 

 Application 

This is the time dedicated to the running application excluding the aforementioned 

overheads and initialization. 

TPC SPE Breakdown 

 Task Ticks 

Task is the portion of time the SPE spends executing task code.   

 Lib Ticks 

Lib is the portion of time the SPE spends executing library code. 

 Idle Ticks 

Idle is the time spent by an SPE when it has no pending or executing tasks. 

In the cases where the evaluated application’s scalability limiting factor is ADAM’s 

overhead, TPC [3] performs better than ADAM. In any other case ADAM either performs 

better or at least matches the performance of the TPC [3] runtime. 

3.4.1 LU 

In the double precision version of LU, ADAM’s performance compared to TPC [3] is 

analogous to the LU block size. In runs with 8x8 blocks(Figure 3.4.1—1,Figure 3.4.1—4) TPC 

[3] is significantly faster.  In theses runs ADAMs introduced overhead(instantiate + 
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Complete) supersedes task communication and computation time(Lib + task).   In the runs 

with block size 16x16( Figure 3.4.1—2, Figure 3.4.1—5) where the task size compensates for 

the introduced overhead ADAM’s performance is slightly better than the TPC [3]. ADAM’s 

performance gain against the TPC [3] runtime is attributed to the elimination of th 

synchronization time(wait) and SPE idle time on runs with TPC [3]. In runs with larger block 

sizes (Figure 3.4.1—3,Figure 3.4.1—6), for the 512x512 dataset(Figure 3.4.1—3) ADAM’s 

performance gain increases because the synchronization(wait) and SPE idle time in the TPC 

[3] runs are increased. Furthermore in these runs we observe that ADAM saturates the 

workers while converting the uncompensated synchronization time(wait) to stall time. This 

is an indication that ADAM has extracted more parallelism, and thus could scale to a greater 

number of workers.  For the 4096x4096 dataset Figure 3.4.1—6 ADAM’s performance 

matches the performance of the TPC [3] because the impact of the synchronization time in 

the TPC [3] runs is so minimal that the workers appear saturated.  In the single precision 

runs of LU where the size of the tasks is smaller ADAM is outperformed in runs with 

8x8(Figure 3.4.1—7,Figure 3.4.1—10) and 16x16(Figure 3.4.1—8,Figure 3.4.1—11) LU block 

sizes. In these runs the ADAM’s introduced overheads exceed the corresponding task and 

communication times(Lib + Task).In the run with 32x32(Figure 3.4.1—9,Figure 3.4.1—12) 

ADAM’s behavior is analogous to the corresponding double precision runs (Figure 3.4.1—

3,Figure 3.4.1—6) and therefore the same observations are valid.   

 

Figure 3.4.1—1 ADAM vs. TPC LU 512x512(8x8). LU execution Breakdown for the PPE and the SPEs for runs 
with 6 SPEs, for an array size of 512x512 with application block size 8x8.   
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Figure 3.4.1—2 ADAM vs. TPC LU 512x512(16x16). LU execution Breakdown for the PPE and the SPEs for runs 
with 6 SPEs, for an array size of 512x512 with application block size 16x16. 

 

Figure 3.4.1—3 ADAM vs. TPC LU 512x512(32x32). LU execution Breakdown for the PPE and the SPEs for runs 
with 6 SPEs, for an array size of 512x512 with application block size 32x32. 
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Figure 3.4.1—4 ADAM vs. TPC LU 4096x4096(8x8). LU execution Breakdown for the PPE and the SPEs for runs 
with 6 SPEs, for an array size of 4096x4096 with application block size 8x8. 

 

Figure 3.4.1—5 ADAM vs. TPC LU 4096x4096(16x16). LU execution Breakdown for the PPE and the SPEs for 
runs with 6 SPEs, for an array size of 4096x4096 with application block size 16x16. 
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Figure 3.4.1—6 ADAM vs. TPC LU 4096x4096(32x32). LU execution Breakdown for the PPE and the SPEs for 
runs with 6 SPEs, for an array size of 4096x4096 with application block size 32x32. 

 

Figure 3.4.1—7 ADAM vs. TPC LUsp 512x512(8x8). LU with single precision numbers execution Breakdown for 
the PPE and the SPEs for runs with 6 SPEs, for an array size of 512x512 with application block size 8x8. 
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Figure 3.4.1—8  ADAM vs. TPC LUsp 512x512(16x16). LU with single precision numbers execution Breakdown 
for the PPE and the SPEs for runs with 6 SPEs, for an array size of 512x512 with application block size 16x16. 

 

Figure 3.4.1—9 ADAM vs. TPC LUsp 512x512(32x32). LU with single precision numbers execution Breakdown 
for the PPE and the SPEs for runs with 6 SPEs, for an array size of 512x512 with application block size 32x32. 
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Figure 3.4.1—10 ADAM vs. TPC LUsp 4096x4096(8x8). LU with single precision numbers execution Breakdown 
for the PPE and the SPEs for runs with 6 SPEs, for an array size of 4096x4096 with application block size 8x8. 

 

Figure 3.4.1—11 ADAM vs. TPC LUsp 4096x4096(16x16). LU with single precision numbers execution 
Breakdown for the PPE and the SPEs for runs with 6 SPEs, for an array size of 4096x4096 with application block 
size 16x16. 
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Figure 3.4.1—12 ADAM vs. TPC LUsp 4096x4096(32x32). LU with single precision numbers execution 
Breakdown for the PPE and the SPEs for runs with 6 SPEs, for an array size of 4096x4096 with application block 
size 32x32. 

3.4.2 FFT 

For the FFT benchmark TPC [3] achieves better performance than ADAM in both the 
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3.4.2—3,Figure 3.4.2—4).  In the double precision FFT runs with 64k and 4M (Figure 3.4.2—

1, Figure 3.4.2—2) although the introduced aggregated overhead is less than the aggregated 

task communication and computation time, ADAM introduces Idle time to the SPEs. This is 
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Figure 3.4.2—1 ADAM vs. TPC FFT 64k. FFT, execution Breakdown for the PPE and the SPEs for runs with 6 
SPEs, for 16384 Complex Double elements. 

 

 

Figure 3.4.2—2 ADAM vs. TPC FFT 4M. FFT execution Breakdown for the PPE and the SPEs for runs with 6 SPEs, 
for 4194304 Complex Double elements. 
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Figure 3.4.2—3 ADAM vs. TPC FFTsp 64k. FFT with single precision, execution Breakdown for the PPE and the 
SPEs for runs with 6 SPEs, for 16384 Complex Float elements. 

 

 

Figure 3.4.2—4 ADAM vs. TPC FFTsp 4M. FFT with single precision, execution Breakdown for the PPE and the 
SPEs for runs with 6 SPEs, for 4194304Complex Float elements. 
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Figure 3.4.3—1 ADAM vs. TPC SAXPY. Saxpy execution Breakdown for the PPE and the SPEs for runs with 6 
SPEs. 

 

 

 

Figure 3.4.3—2 ADAM vs. TPC SGEMV N4. Saxpy execution Breakdown for the PPE and the SPEs with N=4 for 
runs with 6 SPEs. 
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Figure 3.4.3—3 ADAM vs. TPC SGEMV N8. Saxpy execution Breakdown for the PPE and the SPEs with N=8 for 
runs with 6 SPEs. 
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Figure 3.4.4—1 ADAM vs. TPC Cholesky 13x13. Cholesky execution Breakdown for the PPE and the SPEs for 
runs with 6 SPEs and for a 13x13 matrix of 64x64 blocks(Cholesky blocks) of single precision numbers. 

 

 

Figure 3.4.4—2 ADAM vs. TPC Cholesky 20x20. Cholesky execution Breakdown for the PPE and the SPEs for 
runs with 6 SPEs and for a 20x20 matrix of 64x64 blocks(Cholesky blocks) of single precision numbers. 
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Figure 3.4.5—1 ADAM vs. TPC Matmul 13x13. Matmul execution Breakdown for the PPE and the SPEs for runs 
with 6 SPEs and for a 13x13 matrix of 64x64 blocks(Matmul blocks) of single precision numbers. 

 

 

Figure 3.4.5—2 ADAM vs. TPC Matmul 20x20. Matmul execution Breakdown for the PPE and the SPEs for runs 
with 6 SPEs and for a 20x20 matrix of 64x64 blocks(Matmul blocks) of single precision numbers. 
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Figure 3.4.6—1 ADAM vs. TPC Jacobi 13. Jacobi execution Breakdown for the PPE and the SPEs for runs with 6 
SPEs and for 13 iterations on a 32x32 matrix of 32x32 blocks(Matmul blocks) of single precision numbers. 

 

 

Figure 3.4.6—2 ADAM vs. TPC Jacobi 20. Jacobi execution Breakdown for the PPE and the SPEs for runs with 6 
SPEs and for 20 iterations on a 32x32 matrix of 32x32 blocks(Matmul blocks) of single precision numbers. 
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3.5 Evaluating against Manual dependence Analysis   

We now compare ADAM to a runtime in which the dependencies are explicitly 

expressed by the programmer(Appendix A). The programmer annotates dependencies 

among tasks using task-ids. In this runtime tasks follow the same scheduling path as in 

ADAM. The runtime does not perform renaming and because the dependence analysis is 

performed by the programmer the runtime overheads are lower than ADAM. In any case 

where data-renaming is not a factor Manual dependence analysis should perform better. It 

is, however, extremely strenuous for the programmer to properly and effectively express 

dependencies in the manual dependencies runtime, because in order to match ADAMs 

performance the programmer must express dependencies for every task instance and not 

generically based on task definitions. Furthermore the programmer must manage the 

dependence ids without introducing excessive overhead.  

We compare the two runtimes in all of our benchmarks except for FFT because we 

cannot express dependencies involving strided arguments. The following graphs compare 

runs with 6 workers (SPEs). In the graphs the breakdowns for ADAM remain the same and 

the Breakdowns for this runtime are the following:  

Manual dependence analysis PPE Breakdown 

 Instantiate 

Instantiate is the time dedicated to creating a task. This time includes the overhead 

of the dependence analysis required for each argument of the task.  

 Complete 

Complete is the time required to update the dependency graph for each completed 

task.  

 Issue 

Issue is the time required for the master to send the task descriptors to the workers. 

The task descriptor is sent via remote stores.    

 Stalled 

This is the portion of time in which the Master has tasks eligible for execution and 

polls the worker queues for an available slot. 

 Wait 

This is the measured time of the Master blocking until workers complete their tasks. 

This corresponds to the barrier synchronization time. ADAM requires only one 

barrier at the end of the application. 

 Writeback 

Writeback is the measured time of the Master copying renamed buffers back to the 

original addresses 

 PPC tasks time 
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This is the time the Master spends executing Tasks  

 Application 

This is the time dedicated to the running application excluding the aforementioned 

overheads and initialization. 

Manual dependence analysis SPE Breakdown 

 Task Ticks 

Task is the portion of time the SPE spends executing task code.   

 Lib Ticks 

Lib is the portion of time the SPE spends executing library code. 

 Idle Ticks 

Idle is the time spent by an SPE when it has no pending or executing tasks. 

 

3.5.1 LU 

Manual dependence analysis yields better performance in the runs with 8x8 block 

size(Figure 3.5.1—1,Figure 3.5.1—4). In the rest of the runs for the LU application, manual 

dependence analysis matches ADAM’s performance. The introduced overheads by the 

manual dependence analysis runtime are significantly lower compared to ADAM’s. This is 

why in the 8x8 runs where ADAMs performance is hindered by its overheads the manual 

dependence analysis outperforms ADAM.     

 

Figure 3.5.1—1 ADAM vs. Manual Dependence Analysis LU 512x512(8x8). LU execution Breakdown for the PPE 
and the SPEs for runs with 6 SPEs, for an array size of 512x512 with application block size 8x8. 
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Figure 3.5.1—2 ADAM vs. Manual Dependence Analysis LU 512x512(16x16). LU execution Breakdown for the 
PPE and the SPEs for runs with 6 SPEs, for an array size of 512x512 with application block size 16x16. 

 

 

Figure 3.5.1—3 ADAM vs. Manual Dependence Analysis LU 512x512(8x8). LU execution Breakdown for the PPE 
and the SPEs for runs with 6 SPEs, for an array size of 512x512 with application block size 32x32. 
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Figure 3.5.1—4 ADAM vs. Manual Dependence Analysis LU 4096x4096(8x8). LU execution Breakdown for the 
PPE and the SPEs for runs with 6 SPEs, for an array size of 4096x4096 with application block size 8x8. 

 

 

Figure 3.5.1—5 ADAM vs. Manual Dependence Analysis LU 4096x4096(16x16). LU execution Breakdown for the 
PPE and the SPEs for runs with 6 SPEs, for an array size of 4096x4096 with application block size 16x16. 
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Figure 3.5.1—6 ADAM vs. Manual Dependence Analysis LU 4096x4096(32x32). LU execution Breakdown for the 
PPE and the SPEs for runs with 6 SPEs, for an array size of 4096x4096 with application block size 32x32. 
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Figure 3.5.2—1 ADAM vs. Manual Dependence Analysis SAXPY. Saxpy execution Breakdown for the PPE and 
the SPEs for runs with 6 SPEs. 

 

 

Figure 3.5.2—2 ADAM vs. Manual Dependence Analysis SGEMV N4. Saxpy execution Breakdown for the PPE 
and the SPEs with N=4 for runs with 6 SPEs. 
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Figure 3.5.2—3 ADAM vs. Manual Dependence Analysis SGEMV N8. Saxpy execution Breakdown for the PPE 
and the SPEs with N=8 for runs with 6 SPEs. 
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Figure 3.5.3—1 ADAM vs. Manual Dependence Analysis Cholesky 13x13. Cholesky execution Breakdown for 
the PPE and the SPEs for runs with 6 SPEs and for a 13x13 matrix of 64x64 blocks(Cholesky blocks) of single 
precision numbers. 

 

 

Figure 3.5.3—2 ADAM vs. Manual Dependence Analysis Cholesky 20x20. Cholesky execution Breakdown for 
the PPE and the SPEs for runs with 6 SPEs and for a 20x20 matrix of 64x64 blocks(Cholesky blocks) of single 
precision numbers. 
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Figure 3.5.4—1 ADAM vs. Manual Dependence Analysis Matmul 13x13. Matmul execution Breakdown for the 
PPE and the SPEs for runs with 6 SPEs and for a 13x13 matrix of 64x64 blocks(Matmul blocks) of single 
precision numbers. 

 

 

Figure 3.5.4—2 ADAM vs. Manual Dependence Analysis Matmul 20x20. Matmul execution Breakdown for the 
PPE and the SPEs for runs with 6 SPEs and for a 20x20 matrix of 64x64 blocks(Matmul blocks) of single 
precision numbers. 
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manual dependence analysis does not support data-renaming and therefore cannot export 

any parallelism thus executing the Jacobi sequentially. 

 

Figure 3.5.5—1 ADAM vs. Manual Dependence Analysis Jacobi 13. Jacobi execution Breakdown for the PPE and 
the SPEs for runs with 6 SPEs and for 13 iterations on a 32x32 matrix of 32x32 blocks(Matmul blocks) of single 
precision numbers. 

 

 

Figure 3.5.5—2 ADAM vs. Manual Dependence Analysis Jacobi 20. Jacobi execution Breakdown for the PPE and 
the SPEs for runs with 6 SPEs and for 20 iterations on a 32x32 matrix of 32x32 blocks(Matmul blocks) of single 
precision numbers. 
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4 Related Work 

The introduction of new multi-core architectures that are limited from the existing 

programming models and languages has spawned a series of research efforts that aim on 

improving programmability and performance. In this section we briefly describe those 

efforts that, we feel, are related to our work.  These efforts fall in the fields of programming 

models for the Cell [1] processor and software data-flow execution. 

 StreamIT [10] is a programming language for the streaming application domain. As a 

language it exposes streams as first-class objects thus allowing for compiler optimizations 

and improving programmer productivity. StreamIT [10] also serves as a common machine 

language for grid based architectures. The runtime model implemented in StreamIT [10] is 

based primarily on dataflow-execution, like ADAM. In StreamIT [10] however the data-flow 

model is produced from language expressions, while in ADAM the data-flow model is 

produced from the runtime analysis of task arguments, thus simplifying programming. 

Furthermore ADAM is not targeted to a specific application domain.  

 Sequoia [4] is a programming language that allows for task-based programs to take 

advantage of the memory-hierarchy. In order to do so, Sequoia [4] provides first-class 

objects for the memory hierarchy model and an abstract memory hierarchy model, so as to 

ensure portability. The mapping of tasks to the memory hierarchy is done explicitly by the 

programmer. Compared to ADAM, Sequoia [4] strives for data locality, while ADAM is 

locality unaware, but Sequoia [4] relies heavily on static program description and not on a 

data-flow runtime model.   The locality optimizations of Sequoia can be easily implemented 

in ADAM using alternative task-to-core mapping schemes. 

 TBLAS [11] is a task-based runtime library intended for blocked linear algebra 

applications that performs dynamic task scheduling. TBLAS [11] is focused around improving 

the scalability of blocked linear algebra applications on distributed memory machines. In 

order to do so, TBLAS [11] proposes a decentralized runtime dependence analysis system 

with reduced communication overhead. ADAM on the other hand is centralized, a design 

influenced by heterogeneous processors that typically have one general-purpose core for 

control-intensive code and many special-purpose cores for compute-intensive code, and 

focuses on the efficiency of the runtime dependence analysis itself. Furthermore ADAM is 

not application specific.   
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 OpenMP [12] is an API for shared memory parallel programming. OpenMP [13] 

supports both task and data parallelism. Tasks in OpenMP [13] are treated as separate work 

units of code without consideration for data-accesses. ADAM requires tasks to be treated as 

a unison with their data. Furthermore the task runtime model of OpenMP [13]  does not 

support data-flow execution, instead it relies on programmer synchronization for proper 

execution. Ongoing research explores extensions of OpenMP to express data access 

attributes, similar to the in/out/inout attributes analyzed by ADAM, to implement dynamic 

dataflow execution of OpenMP tasks [14]. 

 Cilk [15] is a programming language extension for the C programming language. Cilk 

[15] relies on the programmer to explicitly identify all the potential parallelism. A runtime 

system is responsible for exploiting all the annotated parallelism. Parallelism on Cilk [15] is 

based on the spawn-sync model that favors recursive parallelism. Cilk [15] also employes 

Work-stealing a technique that originates from Cilk [16] itself. In ADAM, the programmer 

identifies the potential parallelism by specifying tasks and then the runtime system discovers 

the actual parallelism. Furthermore ADAM is a pure-runtime solution with no language 

extensions required.  ADAM though does not support work-stealing nor recursive code 

expression, although there is provision however for the support of these features in the SMP 

version of ADAM. Recent work [17] extended Cilk to include dataflow annotations, in order 

to express elegantly pipelined parallel computations. We plan to integrate this work with 

ADAM to accelerate runtime dependence analysis of Cilk codes. 

 CELLSS [2] is the originating runtime system for the STARSS runtime family [18]. 

CELLSS [2] uses the same task-based programming model as ADAM. It also employs runtime 

dependence analysis to export more parallelism through data-renaming and task re-

ordering, and although in those aspects CELLSS [2] and ADAM are similar, the two runtimes 

differ vastly. CELLSS [2] focuses mainly on programmer ease and relies on the exported 

parallelism to compensate for the large runtime overheads. ADAM on the other hand 

focuses on high-performance alone and is designed to minimize overheads as well as to 

export as much parallelism as possible. ADAM and CELLSS [2] use different dependency 

models with CELLSS relying in a task-centric model while ADAM relies on a novel data-centric  

dependency model. On the scheduling part CELLSS [2] uses an additional thread called 

“helper thread” while in ADAM we chose a completely centralized scheduling method. To 

conclude, we believe that ADAM and CELLSS [2] are two very different solutions to the same 

problem. ADAM as shown in the Evaluation section outperforms CELLSS [2].
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5 Conclusions and future work 

In this work we propose a new way to enforce the data-flow execution model on 

task-based models. We also propose a new detection algorithm with O(1) cost per analyzed 

item and the ability to detect overlapping dependencies.  We design and implement 

ADAM(Accelerated Dependence Analysis for Multi-cores), a runtime that adheres to our 

proposal, for the CELL [1] processor and for SMP x86 architectures. We evaluate ADAM for 

the CELL [1] processor and compared its performance to that of the TPC [3] runtime, of the 

CELLSS [2] runtime and of a manual dependence analysis runtime we have developed.  

ADAM yields better performance than the CELLSS [2] runtime due to much lower 

overheads and a more aggressive renaming policy. ADAM is 2,77 times faster for the 

Cholesky benchmark with 13x13 dataset, 2,27 times faster for the Jacobi  benchmark with 13 

iterations and 7% faster in case of the Matmul benchmark. 

Compared to the TPC [3] runtime ADAMs performance is worse only in cases where 

the task size do not compensate for the introduced overheads. There are also cases, like 

Jacobi and Matmul, where the TPC [3] runtime cannot express parallelism in an application 

because of the dependencies among tasks. In these cases ADAM outperforms the TPC 

[3]runtime. 

The manual dependence runtime introduces lower overheads but does not perform 

data-renaming. Therefore whenever data-renaming does present a significant impact on 

performance, manual Dependence analysis always performs better. In our evaluated cases 

ADAM outperforms the manual dependence analysis only for the Jacobi benchmark. Manual 

dependence analysis however is extremely strenuous for the programmer and performance 

depends on programmer skills and the in-depth knowledge of the dependencies of the 

running application.  

 Furthermore ADAM’s overall performance can be tuned through the parameters, 

analysis block size and task window size. Analysis block size is the granularity ADAM 

performs analysis with. The task window size is the total number of tasks issued allowed at 

any point time, and can trade between parallelism and analysis overhead. ADAM’s 

performance can also be improved through the supported feature of PPE tasks, where 

ADAM allows the master to execute tasks. 
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In future work we intend to combine ADAMs dynamic dependence analysis with 

static dependence analysis. In later versions of ADAM the programmer will also be able to 

define Analysis block sizes in 2 dimensions, in order to accommodate analysis for strided 

arguments.  Future work also includes exploring design alternatives for renaming that trade 

off memory space, with execution time. We also intend to explore the use of ADAM as a 

framework for the creation of parallel programming tools for other purposes, that may 

include deterministic replay, deterministic execution of parallel programs, debugging and 

feedback on locality and parallelism. 

ADAM is a runtime system that successfully exports parallelism from applications. 

ADAM’s major disadvantage is the introduced overhead. If the introduced overhead is 

tolerable then ADAM should be used. Finally we believe that dependence analysis is an 

important factor of application parallelization, and that its effect is always beneficial both in 

programmability and performance. The main challenge in dependence analysis between 

runtime and compile time dependence analysis is the trade-off of overhead versus 

effectiveness, and between automatic and manual  is the trade-off of overhead versus 

programmability. 
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Appendix 

A. Manual Dependence Analysis 

In this section we describe the architecture of the manual dependence analysis 

runtime we designed and implemented. This is the runtime we compare ADAM with, in the 

evaluation section. The precondition, for this runtime system, is that all dependencies 

should be explicitly expressed by the programmer. The starting point for this runtime was 

ADAM and because of that the scheduler component and the workers are of the same 

design. For the parts of this runtime, whose description is omitted consider them identical to 

ADAM’s.   

The desired behavior for this runtime is to be able to track dependencies based on 

unique task-ids, provided by the programmer. This means that for every given id we must 

assert that (i) the id is unique, that (ii) the id corresponds to a task issued within the current 

task window, and that (iii) this task is not completed. The programmer cannot respect this 

assertions when providing the dependence ids, because they are subject to runtime 

conditions.  

First of all we ensure uniqueness among task-ids. For every created task the runtime 

returns a unique task-id to the user in the form of an integer number. The runtime maintains 

internally a Lamport clock [9] called “epoch”, which is increment every time a new task is 

created. The unique-id for every task is the current value of “epoch”. Therefore the unique-

id is actually a number representing the issue order of each task (i.e. Nth issued task will 

have task-id N).      

We also need to distinguish ids that belong to the current task window. For each 

task the runtime maintains the full task description consisting of a function id and a triplet 

{address, size, type} for each argument. In addition to this information the task maintains a 

counter, named input_dependencies_counter, that holds the number of pending unresolved 

dependencies for this task, a stack that holds all the tasks that depend on it  and a field 

called epoch that holds the task’s “epoch” value.  Using the “epoch” value as an normailzed 

index we place each task upon creation on an array called TimeLine.  Let us assume first that 

the TimeLine is of size that matches the task window. The TimeLine at any given point 

contains the task’s within our Task window. For a given task-id say ‘I’ we index the TimeLine 
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and retrieve task ‘T’( T = TimeLine[I % TimeLineSize] ). If the value of ‘I’ matches the value of 

‘T’ ‘s epoch ( T->epoch == I )then this ID is considered of the current task window. Because 

the Task window is a sliding window with a slide step defined by the programmer(task 

window threshold), a task with epoch N in its lifetime may co-exist with tasks from the 

epoch range ( N – “Task Window” , N + “Task Window” ), therefore it is not sufficient for the 

TimeLine to be of the same size as Task-window. To ensure correctness we always set the 

TimeLine to the size of two Task Windows, although it can be refined to a smaller value 

depending on the task window threshold.   

We use the timing model described in the previous paragraph to also distinguish 

between completed and alive tasks. We consider that the runtime systems internal Lamport 

clock [9] called “Epoch” starts counting from the value “1” and not “0”. Because the 

dependence analysis part of the runtime is indifferent of executed tasks, we consider that all 

executed tasks occurred in the past, at time denoted “0”.  Whenever a task is completed we 

simply set its epoch value to “0”. This strengthens the timing model so that  for a given task-

id say ‘I’, If the value of ‘I’ matches the value of ‘T’ ‘s ( T = TimeLine[I % TimeLineSize] ) epoch 

( T->epoch == I )then this ID is considered both within the task-window and not completed.  

For programming ease we also allow the programmer the use of the value “0” as a no-

dependencies id.  

The dependence checking is described in the following pseudo code: 

 

 

 

 

 

 

                  Whenever a task a task is created, for  every valid dependence we detect the 

input_dependencies_counter is incremented by one and the current task is pushed onto the 

stack of the task it depends on. If the input_dependencies_counter is equal to 0 after the 

dependence detection step then this task is considered eligible for execution and it is 

pushed to the ready_queue. Whenever a task has completed execution we pop the tasks 

from its stack. For each task we pop we decrement the input_dependencies_counter by one. 

//we check for task-id ID 

//”This” is the currently created task 

 

If( ID!=0 ){ 

T = TimeLine[ID % TimeLineSize]; 

If( T->epoch == ID){ 

 Push(T->stack, This); 

 This->input_dependencies_counter++; 

}  
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After the decrement if the input_dependencies _counter is equal to 0 then this task is 

considered eligible for execution and it is pushed to the ready_queue.   
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