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Abstract 

  Task-based programming models are becoming the most efficient 

mechanism to achieve performance and programmability on parallel 

applications. However, the construction of parallel pipelined applications 

with the use of the state of the art task dataflow programming models still 

remains hard.  

  In this thesis we designed and implemented hyperqueues, a 

programming abstraction of queues that allows different pipeline stages of a 

parallel application to exchange data with flexibility. Hyperqueues are types 

of Cilk++ hyperobjects that allow different code paths in a multi-threaded 

program to maintain coherent local views of the same shared variable. Our 

design enables shared concurrent views among threads and guarantees the 

correct execution path by labeling the access type of each thread. We define 

the semantics of this programming abstraction and describe its 

implementation on a work stealing Cilk-like scheduler. The main 

contribution of hyperqueues is the abstraction they offer in the construction 

of parallel irregular pipelines. We performed an experimental evaluation on 

the PARSEC benchmarks that can be expressed with pipeline parallelism 

and we find that hyperqueues overcome the programmability limitations of 

the state-of-the-art task dataflow models while they achieve performance 

better than POSIX threads, by a factor of 1.85×, and same as Intel’s 

Threading Building Blocks, with 50% and 10% less code effort (lines of 

code) respectively. The improvement of hyperqueues on Swan scheduler is 

demonstrated by a factor of 2.02× over the baseline. 
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Περίληψη 

  Τα προγραμματιστικά μοντέλα δημιουργίας εργασιών τείνουν να είναι 

ο αποδοτικότερος μηχανισμός για την καλή επίδοση καθώς και για την 

προγραμματιστική ευκολία των εφαρμογών. Παρ’όλα αυτά, η κατασκευή 

παράλληλων εφαρμογών με ομοχειρία, χρησιμοποιώντας προγραμματιστικά 

μοντέλα δημιουργίας εργασιών, παραμένει μια δύσκολη διαδικασία. 

  Σε αυτή την εργασία σχεδιάσαμε και υλοποιήσαμε τα hyperqueues, 

έναν αφηρημένο προγραμματιστικό μηχανισμό, που επιτρέπει στα διαφορετικά 

στάδια της εφαρμογής να ανταλλάσουν μεταξύ τους δεδομένα με ευκολία. Τα 

hyperqueues είναι τύποι Cilk++ hyperobjects τα οποία επιτρέπουν σε 

διαφορετικά κομμάτια κώδικα ενός παράλληλου πρόγραμματος να 

διαχειρίζονται τοπικά τις κοινόχρηστές τους μεταβλητές. Ο σχεδιασμός μας, 

ενεργοποιεί κοινά, συνεπή και τοπικά δείγματα μεταξύ των νημάτων και 

εγκυάται τη σωστή σειρά εκτέλεσης του προγράμματος χρησιμοποιώντας 

ανάθεση ετικετών ανάλογα με τον τύπο πρόσβασης του κάθε νήματος. 

Ορίζουμε τη σημασιολογία αυτού του αφηρημένου μοντέλου και 

περιγράφουμε την υλοποίησή του σε ένα προγραμματιστικό μοντέλο τύπου 

Cilk++. Η κύρια συνεισφορά των hyperqueues είναι η αφηρημένη διεπαφή 

που προσφέρουν στην κατασκευή παράλληλων εφαρμογών με ομοχειρία. Η 

πειραματική αξιολόγηση έγινε στο υποσύνολο των προγραμμάτων από την 

σουίτα εφαρμογών PARSEC τα οποία μπορούν να εκφραστούν με παράλληλη 

ομοχειρία. Τα αποτελέσματα δείχουν ότι τα hyperqueues λύνουν τους 

προγραμματιστικούς περιορισμούς των εξελισσόμενων προγραμματιστικών 

μοντέλων δημιουργίας εργασιών και επιτυγχάνουν επίδοση καλύτερη από αυτή 

των POSIX threads κατά συντελεστή 1.85×, και ίδια με αυτή του 

προγραμματιστικού μοντέλου ΤΒΒ με 50% και 10% λιγότερη προσπάθεια (σε 

γραμμές κώδικα) αντίστοιχα. Η βελτιωση στο προγραμματιστικό μοντέλο 

Swan με την προσθήκη των hyperqueues εκφράζεται κατά συντελεστή 2.02×. 
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Chapter 1  

Introduction 

  This thesis focuses on pipeline parallelism, which is one type of task 

parallelism. In this parallel programming pattern the application is divided 

into stages where each stage is a code region that contains a subset of the 

application’s computations. Each stage may contain other kinds of parallel-

ism, e.g. data, task parallelism or nested pipeline parallelism. Pipeline paral-

lelism exploits both data and task parallelism and is prevalent in many 

emerging applications; for instance image processing applications, data 

compression etc. Using parallel pipelining is beneficial both for parallelism 

and program order. On the other hand, applications parallelized using the 

pipeline model are very sensitive to load balancing: for best efficiency pipe-

lines must prevent resources from being idle, thus all stages must be pro-

cessing at all times. To achieve this, the programmer must either partition 

the work into perfectly balanced work items that flow through the pipeline 

(using Pthreads) or use a programming model such as Cilk++ [12], [13], 

TBB [14], or StarPU [11] that dynamically shifts the busiest pipeline stages 

to the idle processors, through work stealing. Due to the structure of a pipe-

lined application, shown in Figure 1, the parallelization of such a program 

introduces many data dependencies between stages. Thus, the dependency 

tracking mechanism of programming models is very important in pipeline 

parallelism. Swan programming model [7] is a new task dataflow model with 

work stealing that will be studied in this work, able to track dependencies 

and easy to use. 
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Figure 1: Structure of pipelined parallelism. 

 

 The typical way to parallelize pipelined applications is by using the 

low-level structures of a threading library like Pthreads. This could have bad 

consequences on understanding and maintain the code as well as on achiev-

ing efficiency in terms of load balancing. It is commonly accepted that pro-

gramming with pthreads is a tedious chore and error prone. With pthreads, 

the programmer is responsible for detecting the data races, critical sections, 

dependencies between tasks, and concurrency of the program which makes 

it a very hazardous way of parallelization. Moreover, load balancing would 

be very hard to achieve as long as pthreads do not provide a work stealing 

mechanism so the threads executing the heavier-weight stages would be 

more loaded than the threads executing the lighter weight stages of the 

pipeline. Technically, it is almost impossible for most applications to create 

perfectly loaded pipeline stages that could be balanced through the pipeline 

without the need of work stealing. 

 Providing a high-level pipeline abstraction as in Intel’s Threading 

Building Blocks (TBB) [14] programming model can assist programmers to 

safely develop parallel pipelines. TBB is a parallel programming library de-

veloped by Intel Corporation. It offers an abstract set of parallel primitives 

to parallelize the application by taking advantage of the available hardware 

resources. TBB supports the task based parallelism to parallelize applica-
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tions; it replaces the low level threading libraries (pthreads), and simultane-

ously hides the implementation of the threading mechanisms for perfor-

mance and scalability. Moreover, TBB maintains pipeline parallelism by 

providing a special pipeline class which the programmer has to use in order 

to create a parallel pipeline. Each stage of the pipeline has to be rewritten as 

a C++ class and then all stages are joined and the pipeline runs automatical-

ly. However, this indicates again a significant amount of effort from the 

programmer, compared to the way that Swan introduces pipeline parallel-

ism. With TBB it is hard to express irregular pipelines or pipelines with var-

iable input-output rates per stage. It is not applicable to bypass a pipeline 

stage with TBB and it can be hard to express nested pipelines in order to 

construct an irregular parallel pipeline. Another observed limitation of TBB 

is that it cannot support the construction of a recursive pipeline stage; each 

stage has to return one data item for the next stage in the pipeline. 

  Swan is a new task based programming model that also simplifies 

the development of parallel programs by using its dependency tracking 

mechanisms that dynamically detect and enforce dependencies between 

tasks. Swan offers a simplified API that allows programmer to freely select 

the appropriate programming pattern for parallelizing an application. Swan 

also provides easy ways to implement software of parallel pipelines. It intro-

duces objects, a special data type of Swan that can handle dependencies be-

tween tasks. This data type is used as task argument, when an argument is 

dependent on a prior task or if it is the input of a future task. Objects sup-

port versions of themselves, meaning that they can keep all the data modifi-

cations and release the correct version to the next task when they are ready. 

The programmer has to define access mode labels (in, out, inout) for each 

argument of the pipeline stages in order to track their dependencies. 

1.1  Thesis contributions 

  Swan and TBB programming models may have some limitations on 

the construction of irregular and variable rate parallel pipelines. For example 

there are cases where particular stages are not executed for each data item of 
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the pipeline but their execution may be under conditions, or in an irregular 

order. Second, there exists a serious limitation on having a stage that may 

produce more than one data per call in a recursive or iterative way. In 

Swan’s pipeline, that uses versioned object special data structures, each 

spawned stage returns only one piece of data. Some of the above limitations 

could be bypassed in Swan and TBB implementations; nonetheless, we ad-

dress these problems, and create a new special data structure for Swan, that 

can replace objects under certain circumstances, able to solve all of the 

above. 

  In this thesis we present the implementation of a new Swan’s fea-

ture called hyperqueue. Hyperqueues are used like objects and they also 

keep versions of their stored data. One benefit from this feature is that pro-

grammer can define a pipeline with even higher abstraction and can be able 

to use special queues that are concurrent and can track dependencies be-

tween tasks. Moreover, hyperqueues are flexible when the application’s 

pipeline is not regular as long as, the programmer can add as many elements 

as needed in each queue. This way data items can easily bypass a specific 

pipeline stage. Finally, hyperqueues can be used with recursive functions, 

where each function call produces one element in the queue. Queues also 

have access mode labels (push, pop) for each argument they appear (such as 

objects), which are defined by the programmer in order to define dependen-

cies. The following sections analyze thoroughly how hyperqueues are im-

plemented and the ways they can be used by the programmer with specific 

examples. 

  The next part of this work consists of the implementation of three 

of the PARSEC benchmarks [1], bodytrack, ferret and dedup, using Swan 

programming model and their experimental evaluation. These benchmarks 

are examples of applications that can use pipeline parallelism. The bodytrack 

computer vision application recognizes the pose of a human body from an 

image sequence of multiple cameras. This is a two-stage pipelined bench-

mark, where each stage contains multiple tasks from multiple parallelized 
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loops. Ferret is used for content-based similarity search in a set of images. 

Ferret consists of a six-stage fine grained pipeline with multiple dependen-

cies. We parallelize ferret using objects and hyperqueues, and present how 

the new Swan feature can solve limitations on ferret benchmark. Finally 

dedup kernel compresses a data stream with a combination of global com-

pression and local compression in order to achieve high compression ratios. 

Dedup is implemented using pthreads in a five-stage pipeline. In the trans-

formation of these benchmarks, Swan’s special data types were used in or-

der to track dependencies. 

  The evaluation of the above implementations is performed on a 32-

core AMD Opteron processor. Swan implementations are compared against 

the PARSEC built-in pthreads implementations for all benchmarks, as well 

as built-in TBB implementation for bodytrack and, ferret and Dedup, TBB 

implementations from [3]. 

1.2  Thesis Organization 

  The rest of this thesis is organized as follows: Chapter 2 refers to re-

lated work. Chapter 3 presents the background that this work is based on 

and includes a description of task based programming models, Swan pro-

gramming model and how programmer can use it, and an Intel’s Threading 

Building Blocks description. Chapter 4 presents the hyperqueue feature in-

troduced in Swan, how it is implemented and its related mechanisms as well 

as example programs using hyperqueues. Chapter 5 contains detailed expla-

nations of the applications that we parallelize with Swan, the parallelization 

strategies that we follow and their experimental evaluation in comparison 

with TBB and pthreads versions of the benchmarks. Finally, Chapter 6 

summarizes the work of this thesis and draws conclusions and future work.  
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Chapter 2  

Related Work 

  The work of this master thesis covers an amount of two topics in 

HPC. These contain software parallel pipelining and task dataflow parallel 

programming models. PARSEC Benchmark Suite is used for the 

experimental evaluation. Significant amount of research has been made on 

these fields. 

  Pipeline Parallelism: Pipelining is a parallel programming pattern 

that allows a program to execute in a decomposed fashion. A pipelined 

application splits its work into units of code (pipeline stages) and executes 

them concurrently on multiprocessors or multiple CPU cores. Each pipeline 

stage takes input from its prior pipeline stage, and produces data for the next 

pipeline stage. 

  The PARSEC pipelined benchmarks used in this work were first 

characterized by Bienia and Li [1], where they proposed bodytrack, ferret, 

dedup and x264 workloads and analyzed them in a matter of software 

pipelining. 

  Thies et al. [4] was the first that proposed an annotation-based 

method for automatically detecting and parallelizing pipeline parallelism in C 

programs. Rul et al. [5] improved Thies et al. [4] work by removing the 

annotations. Both tools are extremely time and memory consuming even on 

small programs. Their characteristic is to detect templates of pipeline 

parallelism based on data access. It is hard to examine the parallelized 

program because the transformed program is in binary format. Despite their 

drawbacks these tools are very useful starting points in order to detect the 

pipeline parallelism. 
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  Parallel-Stage Decoupled Software Pipelining (PS-DSP) technique 

was exploited by Raman et al. [19]. This technique relies on identifying with 

the help of some small programmer interventions, the pipeline stages, and 

also on partitioning the threads between the different parallel stages. The 

thread binding in stages is static. The drawback of both approaches is that 

they suffer from load imbalance, making the scalability of the application 

poor. 

  Stream program characterization in terms of pipeline parallelism was 

also studied by Thies et al. [18]. Barriers to parallelization, scheduling 

characteristics and programming styles are the three main aspects that 

addresses in this work. Even though the language used is the StreamIt 

language the findings derived by this work have future importance on 

designing new languages and libraries. 

  Navarro et al. [2] also used the PARSEC suite and especially ferret 

and dedup in order to exploit their pipeline parallelism. This work has as 

main subject to model the performance differences of two dominant 

programming models, the Pthreads and TBB, by creating analytical models 

of parallel pipelines based on queuing theory. Furthermore, Reed et al. [3] 

used TBB to transform ferret, dedup and x264. 

  Parallel Programming models: Swan [7] is a task based language 

that detects inter-task dependencies and an extension to the Cilk scheduler. 

Other languages and schedulers that have been described in the literature are 

Supermatrix [12], StarPU, SMPSS [16] and CellSS. These languages are able 

to detect dependencies between tasks dynamically by tracking the memory 

accesses that each task makes. OpenCL and StarPU allow name based 

dependency tracking. By that, programmer is allowed to define dependencies 

between tasks and not care about their memory side-effects. 

  SMPSS stores object metadata in a hash table that is indexed with 

the address of the object. This results to an abstract way of metadata lookup 

and renaming but comes at a cost of additional overhead. Unlike this, 

programmer has to register the objects used in dependency tracking for 

StarPU. StarPU runtime system creates a descriptor with the object 
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metadata, which benefits in comparison to SMPSS approach because the 

hash table lookup overhead is removed. In Swan each object and its 

metadata are linked in one data structure retrieving the benefits of StarPU in 

a better abstraction. Neither SMPSS nor StarPU provide interface for 

irregular and variable rate pipeline parallelism. 

  SMPSS stores object metadata in a hash table that is indexed with 

the address of the object. This results to an abstract way of metadata lookup 

and renaming but comes at a cost of additional overhead. Unlike this, 

programmer has to register the objects used in dependency tracking for 

StarPU. StarPU runtime system creates a descriptor with the object 

metadata, which benefits in comparison to SMPSS approach because the 

hash table lookup overhead is removed. In Swan each object and its 

metadata are linked in one data structure retrieving the benefits of StarPU in 

a better abstraction. Neither SMPSS nor StarPU provide interface for 

irregular and variable rate pipeline parallelism. 

  Benchmark Suite: PARSEC [1] benchmark suite against other 

workloads are contains pipelined applications. There have been numerous 

benchmark suites developed, but none of them included parallel pipelined 

implementations.  

  SPLASH-2 is a suite composed for multi-threaded applications and 

hence seems to be an ideal candidate to measure performance of Chip 

Multiprocessors. However, its program collection is skewed towards HPC 

and graphics programs. It thus does not include parallelization models such 

as the pipeline model which are used in other application areas.  

SPEC CPU2006 and SPEC OMP2001 are two of the largest and most 

significant collections of benchmarks. They provide a snapshot of current 

scientific and engineering applications. Computer architecture research, 

however, commonly focuses on the near future and should thus also 

consider emerging applications. Workloads such as systems programs and 

parallelization models which employ the producer-consumer model are not 

included. SPEC CPU2006 is furthermore a suite of serial programs that is 

not intended for studies of parallel machines.  



10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



11 

 

 

Chapter 3  

Background 

3.1  Task dataflow programming models 

  In this thesis we investigate how task dataflow programming models 

enable accessible and efficient parallelization of applications with mixed pipe-

line and task/data parallelism. Task based languages facilitate the construction 

of parallel programs by offering a flexible interface that lets the programmer to 

freely define code regions as tasks that will execute in parallel. Moreover, task 

based languages develop a runtime scheduler that is aware of dependencies be-

tween tasks. The way this is handled, is by labeling each argument with a 

memory access mode that describes the side-effects of the present task in its 

arguments (input, output or input/output labels). Input access mode label indi-

cates a read-only argument, output is for the write-only arguments and in-

put/output is used for read and write access. The scheduler, according to the 

access mode labels, then can track dependencies between tasks and also change 

the execution order of the tasks by respecting program order and their de-

pendencies. 

  The dynamic dependence analysis mechanism that task dataflow lan-

guages provide, in combination with the renaming of memory objects can in-

crease parallelism. State of the art task dataflow languages are investigated 

mostly in the area of high performance computing. Task dataflow languages 

are beneficial for benchmarks that have irregular parallelism such as Cholesky 

decomposition or applications with many iterative dependencies such as h264, 

ferret and dedup that can be parallelized using the pipeline model. 

  On the other hand, task dataflow languages often exploit a single level 



12        Chapter 4.  Hyperqueue Extension 

 

 

of parallelism meaning that the master thread spawns tasks but the generated 

tasks cannot set up the execution of new tasks. As a result, these task dataflow 

languages are not compatible with Cilk-like languages that support recursive 

fork/join. However the efficient parallelization of many algorithms is well 

known and in such an algorithm, dependency tracking would be pure over-

head. 

3.2  Threading Building Blocks 

  A recently introduced parallelization library is the Intel Threading 

Building Blocks (TBB) runtime library [14], [17]. TBB is a task dataflow 

parallel language based on the C++ language and provides an API for 

expressing parallelism in an abstract way. TBB uses work stealing which 

helps on improving load balance between cores, thus improving 

performance scalability. Parallel runtime libraries like TBB make it easier for 

the programmer to produce parallel software but, on the other hand, they 

introduce overheads from the dynamic management of parallelism [17]. 

These parallelization overheads are often implied by the instructions’ 

increment and by the memory latency costs. With the increasing 

improvement of CMPs’ resources, their efficient utilization becomes more 

and more challenging. In most cases this can be addressed by fine-grained 

parallelism which takes advantage of higher amounts of resources. However, 

fine-grained parallelism may introduce higher parallelization overheads. 

3.2.1  Runtime 

  Being a task based library, TBB benefits from the use of tasks for 

two reasons: first is that the creation and destruction of the tasks is easier 

than threads, thus tasks can have shorter execution bodies, and second is 

that tasks reduce load imbalance by being dynamically assigned to the 

available resources. In applications written with the use of TBB tasks are 

declared through C++ classes that inherit the attributes of the tbb:task 

class. The special tbb:task class provides the virtual method execute(), 

which the programmer has to overload with the body of the task. Inside 

TBB runtime the declared task is ready to be launched for execution. The 
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common way for spawning a task in TBB is by using the method spawn(task 

*t) and provide as argument the new task to be launched. The runtime 

library schedules the task and executes it by calling the corresponding 

execute() method of the task. Each created task is allowed to create and 

spawn new tasks being aware of the hierarchical dependencies that may 

occur.  

 

 

class stage1 : public tbb::filter { 

    public: 

    void* operator() (void* a) const { 

        if(i<N)     return (void*)&a; 

        else        return NULL; 

    } 

} 

class stage2 : public tbb::filter { 

    public:  

    void* operator() (void* a) const {  

        int b = (int(float)a); 

        return (void*)b; 

    } 

} 

class stage3 : public tbb::filter { 

    public:  

    void* operator() (void* c) const {   

        int* temp = (int*)c; 

        *temp++; 

        *c = *temp; 

        return (void*)c; 

    } 

} 

void pipeline() { 

    stage1 s1; 

    stage2 s2; 

    stage3 s3; 

    tbb::pipeline run_pipe; 

    run_pipe.add_filter(s1); 

    run_pipe.add_filter(s2); 

    run_pipe.add_filter(s3); 

    run_pipe.run(); 

    run_pipe.clear(); 

} 

Figure 2: TBB pipeline construction 
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3.2.2  Programming Model and Pipeline Parallelism 

  Using TBB, the programmer is allowed to generate complex 

execution task graphs that support their mutual dependencies. The 

definition and management of dependencies can become a tedious process, 

and for that reason TBB provides an API through C++ template classes 

that describe a set of common parallel patterns such as parallel loops and 

reductions. Such template classes are the tbb:pipeline and tbb:filter 

templates that offer to the programmer the ability to construct parallel 

pipelines. By defining a class that inherits from the tbb:filter template 

class and overloading the operator() programmer can declare one pipeline 

stage. The method tbb:pipeline:add_filter() adds the stage to the 

pipeline, and by executing pipeline.run() the parallel pipeline runs while 

the scheduler is aware of dependencies between the pipeline stages. Figure 2 

shows an example of a parallel pipeline with three pipeline stages, executing 

in N iterations using TBB. Pipeline stops execution at the time that one of 

the stages returns a NULL token. 

3.3  Swan Programming Model 

  Swan [7] is a parallel Cilk-like programming language that supports 

task dependency tracking and recursive fork/join. Using Swan the 

programmer can easily express parallelism using the appropriate 

parallelization pattern, depending on the algorithm of the application. 

Furthermore, Swan supports parallel pipeline construction, a programming 

pattern that is present in many emerging workloads [1] and is studied in this 

thesis. Cilk partially supports parallel pipelines construction, while TBB 

offers the programmer an API for easiness in parallel pipelines. 

3.3.1  Runtime 

  Swan’s scheduling policy performs work-first scheduling and also sup-

ports dependency tracking. The provably-good properties of the Cilk scheduler 

are violated in Swan’s scheduler. Despite this, Swan mimics the good behavior 

of Cilk scheduler for algorithms with independent tasks or for serial execution 

of tasks [7]. 
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  Versioned object (object_t) is a special Swan data structure, which is 

a type of hyperobject [9], and is used from Swan to track dependencies be-

tween tasks. Versioned objects keep track of the necessary meta-data in order 

to investigate if dependencies are met. Moreover, versioned objects are being 

renamed so that WAW and WAR hazards are being resolved and as a result 

parallelism is increased. Finally, versioned objects can allow versioning and en-

able dependency tracking of every possible user-defined data structure. 

  The mechanism used in versioned objects for checking the readiness of 

data uses tickets. The idea is similar to ticket locks. The so called ticket metada-

ta are able to enforce the program order of the serial version of the application. 

  Performance of Swan has been investigated in [7] where is proven that 

Swan is as efficient as Cilk and more efficient than SMPSs [16]. In this thesis 

Swan will be compared to TBB. 

3.3.2  Programming Model 

  Swan contains parallel control statements as in Cilk: run initializes 

the scheduler and starts the parallel execution; spawn statement allows a 

procedure call to proceed in parallel with the caller. Statement ssync stalls 

the execution of a procedure until the completion of all spawned procedures 

[7]. Statements call and leaf_call express that a procedure call proceeds 

sequentially with the caller, making a simple function call. The difference 

between these two statements is that when using leaf_call the scheduler 

considers this function call as a leaf function call so it stops tracking the 

program, thus inside a leaf function the programmer cannot use spawn, call 

or other Swan features. Otherwise, inside a call-ed function, programmer 

can spawn, call, leaf_call, use dependency tracking etc. Figure 3 

illustrates programming in Swan.  

  The special Swan data types indep, outdep and inoutdep enable 

dependency tracking on tasks. Tasks that take arguments of these types are 

forced to wait for their preceding tasks to finish or start execution if their 

dependencies are met. The inner structure of these types contains the 
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aforementioned versioned objects and gives them the appropriate memory 

access mode label (in, out, in/out). These types are only allowed as task 

arguments. 

 

typedef float (*block_t)[16];   //16x16 tile 

typedef object_t<floag[16][16]> object_block_t; 

typedef indep<float[16][16]> in_block_t; 

typedef inoutdep<float[16][16]> inout_block_t; 

 

void mul_add(in_block_t A, in_block_t B, inout_block_t C) { 

    block_t a = (block_t)A;   // Recover pointers 

    block_t b = (block_t)B;   // to the raw data 

    block_t c = (block_t)C;   // from the versioned objects 

    // ... serial implementation on a 16x16 tile ... 

} 

void matmul(object_block_t * A, object_block_t * B,  

            object_block_t * C, unsigned n) { 

    for( unsigned i = 0; i<n; ++i ) { 

        for( unsigned j = 0; j<n ++j ) { 

            for( unsigned k = 0; k<n; ++k ) { 

                spawn( mul_add, (in_block_t)A[i*n+j],  

                                (in_block_t)B[j*n+k], 

                                (inout_block_t)C[i*n+k] ); 

            } 

        } 

    } 

    ssync(); 

} 

Figure 3: Square matrix multiplication in Swan with enforcement of task dependencies. 

 

  In a task spawn, Swan’s scheduler recognizes the task dependencies 

by the arguments with a memory access mode label. If no such label is 

defined, scheduler spawns the task unconditionally; otherwise it postpones 

the execution of tasks that have arguments with input mode and forces the 

execution of tasks that have arguments with output mode. The postponed 

tasks are stored in a queue with pending tasks. Swan’s ssync statement 

mimics the behavior of Cilk’s sync, meaning that the execution of the 

procedure is postponed until all prior tasks have finished execution. 

3.3.3  Pipeline Parallelism 

  The use of Swan programming language can facilitate the 

construction of a parallel pipelined benchmark. A pipelined benchmark can 

easily be expressed with Swan’s statements and data types. Programmer has 

to consider the tasks of the workload, what each task produces and what each 

task consumes, and accordingly define the proper access mode labels. Then 
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dependencies between tasks are automatically identified by the runtime 

system. After this step, the parallelization of a simple pipelined benchmark is 

a straightforward procedure with Swan.  

void stage1(int i, outdep<float> a) { 

    a = (float)i; 

} 

void stage2(indep<float> a, outdep<int> b) { 

    b = (int(float)a); 

} 

void stage3(inoutdep<int> c) { 

    int temp = (int)c; 

    temp++; 

    c = temp; 

} 

void pipeline() {    

    object_t<float> a; 

    object_t<int> b; 

    for(int i = 0; i<N; i++) { 

        spawn(stage1, i, (outdep<float>)a); 

        spawn(stage2, (indep<float>)a, 

                      (outdep<int>)b); 

        spawn(stage3, (inoutdep<int>)b); 

    } 

    ssync(); 

}  

Figure 4: Pipelined program with 3 stages in Swan 

 

  Figure 4 demonstrates a simple example of a pipelined program 

parallelized with Swan that has 3 pipeline stages, indicating how pipeline 

stages are spawned with Swan. stage1 in Figure 3 has an out dependency 

for object a while stage2 has an input dependency of the same object. This 

means that stage2 will postpone until variable a has been processed by the 

first stage. The same happens for variable b which has output dependency 

for stage2 and input/output dependency for stage3. stage3 will be 

postponed as well until variable b is produced from stage2. The program in 

Figure 2 is a simplified pipeline with light-weight stages but, depending on 

the algorithm, each stage may contain heavy computations on input or 

output data. 

  The code format of Swan’s pipeline parallelism is generic and 

flexible compared to TBB’s code format which requires the declaration of 

template classes that override TBB classes. However, both approaches lack 

in flexibility in terms of data exchange and stage execution. Figure 5 shows 
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the same example as in Figure 4 slightly transformed so that it contains one 

producer stage (stage1) which, in one function call, is generating all its data. 

In this example instead of repeatedly spawning this stage, there is a for-loop  

void stage1(int i, outdep<float> a) { 

    for(int i = 0; i<N; i++) { 

       a = (float)i; 

    } 

} 

void stage2(indep<float> a, outdep<int> b) { 

    b = (int(float)a); 

} 

void stage3(inoutdep<int> c) { 

    int temp = (int)c; 

    temp++; 

    c = temp; 

} 

void pipeline() {    

    object_t<float> a; 

    object_t<int> b; 

    spawn(stage1, i, (outdep<float>)a); 

    for(int i = 0; i<N; i++) {         

        spawn(stage2, (indep<float>)a, 

                      (outdep<int>)b); 

        spawn(stage3, (inoutdep<int>)b); 

    } 

    ssync(); 

}  

Figure 5: Pipelined program with a producer stage. 

 

inside the stage which controls the number of data items of production. This 

example is not applicable in Swan and will not have the desired results. The 

outdep will not keep the versions of the data that will be written in it during 

the execution of stage1, but instead, only one value will be returned as 

input for stage2, and this will be the last value. This problem can appear 

also in the case where stage1 is a recursive function; a recursive function 

would change the content of the Swan object and when stage1 finishes, the 

last value will be kept in the outdep object. 
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void stage1(int i, outdep<float> a) { 

    a = (float)i; 

} 

void stage2(indep<float> a, outdep<int> b) { 

    b = (int(float)a); 

} 

void stage3(inoutdep<int> c) { 

    int temp = (int)c; 

    temp++; 

    c = temp; 

} 

void pipeline() {    

    object_t<float> a; 

    object_t<int> b; 

    for(int i = 0; i<N; i++) { 

        spawn(stage1, i, (outdep<float>)a); 

        if(i!=5) 

   spawn(stage2, (indep<float>)a, 

                        (outdep<int>)b); 

        spawn(stage3, (inoutdep<int>)b); 

    } 

    ssync(); 

}  

Figure 6: Pipelined program with a conditional executed stage. 

 

  Figure 6 shows the same pipeline of Figure 4 with a condition in the 

execution of one pipeline stage. This is also not applicable in Swan, because 

in the case that stage2 is not executed due to the condition, the 

dependencies will be harmed. stage3 will not start execution at that point 

as long as the dependency on variable b will not be fulfilled. 
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Chapter 4   

Hyperqueue Extension for  

Irregular Pipeline Parallelism 

4.1  Motivation 

  Swan is a viable approach for parallelizing pipelined workloads like 

PARSEC [1], however it has limitations when the workloads need variable 

rate or irregular pipeline parallelism. The use of Swan’s objects for 

dependency tracking requires the spawning of the tasks inside a loop, where 

each task can produce or consume object data. Figure 2 is an example of the 

loop that spawns the pipeline stages using objects. Each spawn in this loop 

can produce or consume as many data items, as the number of object 

arguments of this stage. For example if there is one outdep declared, then 

the spawn of this stage, produces one data unit for this outdep; if there is 

one indep, then the corresponding stage consumes one data unit. Inside the 

loop, there is plurality of this mechanism. Through this usage, one stage 

cannot produce many data units. Under certain circumstances in an irregular 

pipeline a stage may need to produce many data units instead of only one. 

This is the first limitation that objects insert to the parallelization of pipelines. 

A recursive pipeline stage that reads a directory (which is a procedure that 

cannot be split through iterative function calls) will never end up to be a 

Swan’s pipeline stage with object-dependencies. In general a stage that 

produces or consumes data inside a loop cannot be a part of a pipeline with 

objects. All stages have to contain code that affects or prepares one data unit 

instead of contain a loop that can affect many data units. Figure 7 shows the 
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described situation. In this example the first stage (Task1) is producing all the 

data need to be processed and can be either iterative producer or recursive 

producer. Then all tasks that are executing the second stage of the pipeline 

(Task2) are retrieving information from the producer stage. By producing one 

data item per call this structure is not possible. 

Task1 Task2 TaskN…
Input Output i

Task2 TaskN…
Output i+1

Task2 TaskN…
Output i+2

Ti
m

e 
se

q
u

en
ce

...

...
Input i

Input i+1

Input i+2

 

Figure 7: Pipeline structure with one producer task. 

 

  This programmability issue by extension can affect the pipeline 

structure; the computations of a specific pipeline stage may need to be 

performed in a subset of the entire pipeline’s data. This could not be possible 

if the programmer had to define a loop like Figure 2 demonstrates; within 

this loop every stage is spawned as many times as the remaining stages. It is 

not possible to have a condition for the spawning of a stage, because this 

would harm dependency tracking definitions (outdep/inoutdep/indep 

would not match). Figure 8 shows the structure of the pipeline that contains 

one conditional stage. This structure would ideally be expressed with code 

like in Figure 6; this is not possible for Swan objects, as the dependencies 

would be harmed and introduced a runtime error that would freeze execution 

of the program. 
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Task2 TaskNTask1 …
Input i Output i

Input i+1 Output i+1

Input i+2 Output i+2

Ti
m
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se

q
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en
ce

...

...

...

else

if(…) Task3 …

Task2 TaskNTask1

else

if(…) Task3 …

Task2 TaskNTask1

else

if(…) Task3 …

...

Figure 8: Pipeline structure with one conditional stage (Task2). 

 

  The addressing of the aforementioned limitations of Swan’s objects 

led to the implementation of a collection of data where dependencies could 

apply to one item at a time. FIFO queue is an appropriate data structure for 

this usage as long as it can assist on preserving the program order in the 

parallelized program. The idea mainly came from PARSEC built in 

implementations [1] that use POSIX threads co-operating through blocking 

queues in data exchange between stages. The main problem is to address all 

possible consumer-producer cases that a program may contain and how a 

parallel data-collection should behave in order to be concurrent and coherent.  

  Hyperqueue is a special Swan data structure that behaves like a queue 

and can retain all the benefits of the aforementioned versioned-object data 

structure in plurality. Considering the difficulties faced by the use of Swan 

programming model we decided to address Swan’s pipeline programmability 

issues and create a unique structure that can handle them. Hyperqueues 

provide an N-N relationship between producers and consumers. One 

consumer is able to have as input as many data units as needed and can 

produce a different amount of data units, on another hyperqueue, for the 

next consumer. Also, inner task dependencies can be formulated a more 

flexible way than just any collection of tasks. The task producing the 

collection does not have to finish execution for the consuming task to start 

executing. Moreover, by using hyperqueues, scheduler can track dependencies 
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to higher levels of calling procedures. The pipeline can contain stages that use 

hyperqueues through nested function calls while in these calls the hyperqueue 

is updated. Hence, we can benefit from dependence analysis at multiple 

levels.  

  Hyperqueues are advantageous by providing: 

 Nested or Recursive calling of tasks: Swan objects were restricted 

as they can return just one resulting data unit to the caller level. 

Hyperqueues are a collection of data where new items can be 

produced and consumed at will, including at multiple levels of 

nesting. 

 Collaborative produce and consume: The hyperqueue’s data 

structure does not contain a fixed number of data items. Each 

producer can decide the amount of data that the next stage will need, 

so the programmer does not need to know the number of times that 

a stage has to be spawned; one is enough to produce the appropriate 

amount of data. Moreover, a producer-stage can generate data for 

two or more consumer-stages. 

 Increased concurrency and reduced scheduler overhead: 

Consumer tasks do not postpone in the case of using hyperqueues; 

they are immediately spawned and when data is ready can be 

consumed. Moreover, a program can have multiple producers 

performing on the same data for increasing the speed of production. 

 Retaining program order: Dependency resolution between 

producer and consumer tasks guarantees that data is produced and 

consumed in program order without requiring additional effort from 

the programmer. 

 

4.2  Design 

  This section presents a detailed description of the design of the 

hyperqueue mechanism. Choices made and decisions taken about the 
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programming interface, the implementation of the hyperqueue storage 

structure, the dependence analysis and the data versioning are presented and 

discussed.  

4.2.1  Interface    

  Figure 9 shows a simple producer-consumer example using 

hyperqueues. First comes the definition of the hyperqueue (queue_t type), 

where the data element type is a template parameter to queue_t. The 

hyperqueue special variable is then passed to the tasks using the appropriate 

access mode labels. Access mode labels in the case of hyperqueues are 

pushdep, for write only memory access and popdep for read only. Tasks 

that contain pushdep arguments are considered as producer tasks while 

tasks with popdep arguments are considered consumer tasks. In the example 

above, the queue_t structure is transformed to pushdep, and passed to the 

producer, while it is transformed to a popdep to be passed to the consumer. 

There is only one consumer in this example, so it consumes all the data from 

the queue. The program may have multiple consumers for one hyperqueue 

instance or multiple producers. The restriction is, that in order to retain 

program order, the second consumer will block its execution until the first 

one has finished. In the case of multiple consumers the programmer is res- 

 

void producer(pushdep<int> q) { 

    for (int i = 0; i<N; i++) { 

        q.push(i); 

    }    

} 

void consumer(popdep<int> q) { 

    int j; 

    while(!q.empty()) { 

        j = q.pop(); 

        output[j] = j; 

    } 

} 

void caller() { 

    queue_t<int> q; 

    spawn(producer, (pushdep<int>)q); 

    spawn(consumer, (popdep<int>)q); 

    ssync(); 

} 

  

Figure 9: Single producer - single consumer example with queues. 
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ponsible for the amount of data units that each consumer will consume. The 

following sections contain examples of every possible usage of hyperqueues. 

4.2.2  Internal data structures 

  Figure 10 demonstrates an abstract organization of one queue_t 

instance’s storage structure. This structure consists of an ordered list that is 

organized by queue segments in order to create a high degree of 

concurrency with little synchronization overhead. A task declaration that 

contains a popdep in its argument list is a consumer task, while a task that 

contains a pushdep in its argument list is a producer task. A consumer task 

pops data only from the head of the ordered list while each producer (each 

pushdep) is assigned one of the queue segments and pushes data exclusively 

on its private queue segment. This supports the concurrent execution of 

multiple producers, as it allows each producer to write data in a different 

queue and doesn’t get influenced from the remaining producing tasks.  

  The queue segment structures contain fixed size queues for easier 

allocation/deallocation as well as for performance reasons. A queue segment 

can be empty, full or busy. When a fixed size queue is full, the producer that 

owns this queue is responsible to allocate a new queue. Then inserts the new 

queue right after the one that was full, (list-manipulation) and continues 

pushing to his new queue. For instance, in Figure 10 the producer that is 

pushing data on queue segment number 4 has already filled his previous 

queue (number 3), and has inserted the last segment right after the full one. 

Also, the queue segment number 1 from which consumer pops data belongs 

to a producer task that has finished execution and that explains why the 

producing task is not present in the figure. A busy queue segment means 

that this queue segment is currently in progress of data production. Before a 

producer task starts pushing data in its queue segment, it marks this queue 

segment as busy, so that possible next producers will allocate a new queue 

segment for pushing their data. In Figure 10, the queue segment number 1 is 

not busy, because the producer task that was pushing at this queue segment 

has finished pushing in this segment so has marked the queue segment as  
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Figure 10: Internal hyperqueue structure design. Shapes numbered 1, 2, 3 and 4 are queue 

segments containing one fix sized queue each.  

 

not-busy. In accordance, queue segment number 2 is busy because it 

currently has one active producer task.  

4.2.3  Use of the internal data structures   

  Figure 11 addresses four simple possible use cases and explains how 

program order is retained; 11(a) is the simple example that Figure 9 shows. 

In this case, the hyperqueue structure behaves like a simple concurrent 

queue where one producer writes data and one consumer reads and pops 

them from the queue. Concurrent non-blocking queues were used so that 

writing and reading can be performed simultaneously with the added con-

straint that the consumer should block when it catches up with the produc-

er. To achieve simultaneous reads and writes in the lower level concurrent 

queue, readers read only from the head of the queue while writers write only 

in the tail of the queue. The head and tail of the queue are in different cache 

lines to avoid conflicts. If the queue is empty, the read fails and in the next 

queue-level the reader attempts to read again. This is repeated until the read 

is successful. If the queue is full, the producer task allocates a new fixed-size 

concurrent queue thus write never fails. 
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void caller() { 

    queue_t<int> q; 

    spawn(producer, (pushdep<int>)q); 

    spawn(consumer, (popdep<int>)q); 

    ssync(); 

} 

 

(a) One producer and one  

consumer: behavior is like a 

concurrent queue; one producer 

writes data and one consumer 

reads and pops them. 

void caller() { 

    queue_t<int> q; 

    for( int i = 0; i<NUM_PRODUCERS; i++ ) { 

        spawn(producer,(pushdep<int>)q); 

    } 

    spawn(consumer, (popdep<int>)q); 

    ssync(); 

} 

 

 

(b) Multiple producers and 

one consumer: producers 

execute in parallel; each 

producer task pushes in its own 

privatized queue segment. The 

consumer checks the queue 

segments one at a time as they 

are produced; if a queue 

segment contains data, the 

consumer reads and pops the 

data. 

void caller() { 

    queue_t<int> q; 

    spawn(producer, (pushdep<int>)q); 

    for( int i = 0; i<NUM_CONSUMERS; i++ ){ 

        spawn(consumer, (popdep<int>)q); 

    } 

    ssync(); 

} 
 

(c) One producer and 

multiple consumers:  

structure will contain one queue 

segment; block the new 

consumers’ tasks until their elder 

have finished reading; only one 

consumer reads each time. 

Figure 11: Use cases of hyperqueues, assuming one queue_t in use. 

 

  The program in Figure 11(b) spawns many producer tasks and has 

only one task to consume the data. The problem here is how to retain the 

correct order of the data, so that producers enqueue their data in the right 

order and consumer reads them in the same order they were written. All 

producers will execute in parallel hyperqueues have to obtain the correct 

order in writes in the queue. The runtime system was extended to achieve 

this conceptual serialization of producers without executing them serially. 

This is possible by utilizing the data structure presented above and by as-
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signing a new private segment of the queue to each producer. Before each 

producer task starts executing in parallel, it is privatizing one queue segment 

from the queue. Each producer privatizes one segment at the tail of the or-

dered list and makes it its own queue segment. Then the producer task up-

dates the tail of the list and marks his private queue segment as busy, mean-

ing that this queue segment is currently in use by a producer task so a new 

producer task is now allowed to perform writes in this segment. The next 

producer task will check if the tail of the list is busy, and if this is true, it 

adds a new queue segment at the tail of the list. These actions are per-

formed before parallel execution starts from inside the runtime’s mecha-

nisms for recognizing queues as Swan’s special objects. All the above result 

to a structure as the one of Figure 10 where each producer task adds ele-

ments in its private queue segment, which is placed in the correct position 

in the list, so that data are in order.  

  During the pop operation the consumer is not aware of the number 

of queue segments in the list or the number of producers. Data sent to the 

consumer comes from the oldest producer and are always indicated by the 

first queue segment in the list. The head of this queue segment is the data 

returned to the consumer. If the first queue segment is empty, but it is 

marked as busy, the consumer waits for the producer owning this segment 

to add more data. Otherwise, if the queue segment on the head is empty 

and is marked as non-busy, the consumer removes the queue segment from 

the list, and tries reading from the next segment with the same procedure. 

  Code in Figure 11(c) indicates one producer and multiple consum-

ers. In this example, the queue structure will contain one queue segment (ex-

cept if the producer needs to add more data than one queue segment can 

store) and the consumers will all try to read from the same queue segment. 

The consumers are forced to execute serially. The motivation for the seriali-

zation of consumers is that the runtime is not aware of how many items each 

will consume. It is thus impossible to let the consumers execute in parallel 

and enforce that they consume data in logical program order. This ensures 
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that all the pop operations are serialized and each consumer reads the data in 

order. This is the only case of inter-task dependence on queues that prohibits 

the task from starting execution immediately at the point of spawn. This solu-

tion indicates flexibility on the reads but the programmer should be careful 

on how many data items tasks will pop. 

  Figure 12 illustrates an example of a recursive producer and one 

consumer. The scenario in Figure 12 is the allocation of multiple queues each 

one containing one data item. First the spawning of rec_producer will pri-

vatize one segment and push in this segment the first value which is 0. After 

that, rec_producer will call itself to push the incremented value (1) and by 

this call a new queue segment will be created and inserted after the existing 

queue segment of the caller (rec_producer). This case differs from the de-

fault segment privatization, as long as segment is not allocated every time at 

the tail of the list, but it is allocated in the position right after the caller’s 

(rec_producer) queue segment. The reason for this is to preserve program 

order even if the program spawns more than one producer tasks. 

void rec_producer(pushdep<int> q, int i) { 

    if(i<N) { 

        q.push(i); 

        call(rec_producer, (pushdep<int>)q, pos, ++i); 

    }    

    return; 

} 

void caller() { 

    queue_t<int> q; 

    spawn(rec_producer, (pushdep<int>)q, 0); 

    spawn(consumer, (popdep<int>)q); 

    ssync(); 

} 

Figure 12: Use case of hyperqueues with one recursive producer 

 

  Figure 13 shows the code for one recursive and one normal pro-

ducer and one consumer while Figure 14 illustrates how queue structure will 

be transformed when this code executes. First, two segments will be privat-

ized, the first one will be segment number 1 from Figure 14 and the second 

will be segment number 4. Segment 1 is the segment where rec_producer 

will push its first item. When the first item is pushed, rec_producer will call 

itself, and by that a new queue segment, segment number 2, will be created 
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and inserted right after segment number 1. rec_producer will call itself 

again and the same will happen, creating segment number 3 after segment 

number 2. Segment number 4 remains to the correct position, as it was pri-

vatized in the tail of the list. This mechanism results to data ordering in the 

queue structure so it is assured that consumer will read them in order.  

void rec_producer(pushdep<int> q, int i) { 

    if(i<3) { 

        q.push(i); 

        call(rec_producer, (pushdep<int>)q, pos, ++i); 

    }    

    return; 

} 

void caller() { 

    queue_t<int> q; 

    spawn(rec_producer, (pushdep<int>)q, 0); 

    spawn(producer, (pushdep<int>)q, 0); 

    spawn(consumer, (popdep<int>)q); 

    ssync(); 

} 

 

Figure 13: Example - code of one recursive and one normal producer with one consumer 
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Figure 14: Two unrolled recursions of the code in Figure 13 and how this works in queue 

structure.  
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4.2.4  Versioning 

  Hyperqueues are also versioned objects like Swan objects.  Those 

are types of hyperobjects which allow different code paths in a multi-

threaded program to maintain coherent local views of the same shared 

variable [9]. The corresponding shared variable in the case of hyperqueues is 

the hyperqueue structure described above and the local view of this is the 

private queue segment that each producer holds for pushing data. 

Hyperqueues are Swan data structures, so they are recognized by the 

scheduler when they appear in the argument list of spawn and call. This is 

forcing the scheduler to control their dependencies, spawn them if they are 

ready or postpone the task and issue it when all its hyperqueue arguments 

are ready to use. 

  Each time a producer task is spawned (indicated by the pushdep 

argument) a new queue version is allocated. This queue version contains: 

a. Pointer to the segmented queue structure 

b. One private queue segment 

c. Ticket metadata for this version 

d. One reference counter 

Consumer uses the pointer to the segmented queue structure in order to 

retrieve data from it. On the other hand, producer needs a new private 

queue segment along with the segmented queue pointer. Each producer task 

needs a queue version in order to keep the pointer of its private queue 

segment and to be up to date regarding the segmented queue. When a new 

queue version is created, the caller procedure (the parent of the producer 

task) is accessing the same queue version as the producer task. This is 

necessary so that this version is visible when a consumer is spawned in the 

parent procedure and needs to consume data from the producer spawned 

earlier. This renaming mechanism allows all tasks operating in a queue to be 

up to date. Ticket metadata are used for dependence analysis. The reference 

counter helps on the effective deallocation of the queue structures; all queue 

structures are reference counted and automatically deallocated when the last 

reference to it is dropped. 
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4.2.5  Dependence Analysis 

  The way queues perform dependency tracking is by using Swan’s 

ticket metadata. Each allocated queue version contains its metadata. The 

metadata structure holds the number of readers and the number of writers 

that the instance of the queue it belongs has. In the case of hyperqueues, the 

number of writers is needless because a producer or a consumer can be 

issued regardless of the fact of having a writer or not. What is used is the 

number of readers because if the program has multiple consumers, the 

younger consumers need to be postponed. Every time a queue argument is 

issued, if it is a reader, the number of readers in the metadata structure is 

increased. Then, before scheduler issues the next consumer argument, 

checks if its metadata contains prior readers. If it has, argument is not 

issued; hence scheduler postpones the whole task from execution.  

  The above metadata checks are performed through functions that 

control the dependencies of task arguments. Functions like these were 

implemented for objects as well but with different mechanisms. Scheduler 

sees an abstraction of these functions as long as they are overloaded. When 

a task is created in Swan, the runtime initializes the argument and 

immediately checks if it is ready by checking its metadata. If it’s not, at a 

later time, scheduler performs the check of the metadata readiness again. 

When it is proved to the scheduler that the argument is ready, the runtime 

updates the argument’s metadata and then it depends on the remaining task 

arguments if the task is going to be postponed or if it is ready to execute. 

Finally, at the end of a task execution, scheduler updates the metadata 

(decrease readers) so that other possible blocked arguments and tasks can be 

issued. Figure 15 represents how the above checks work when a queue 

argument is encountered.  

Producer/ 
Consumer?

Yes

No

New version, privatize a 
segment

Issue arg/ Increase 
writers 

Issue arg/ Increase 
readers 

Assign current 
version

Other 
readers?

Arg not 
ready

Consumer

Producer

Postpone task

All args 
ready?

Task ready 

Swan scheduler

Queue 
argument

Figure 15: Queue arguments recognition and effect on Swan scheduler 
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Chapter 5  

Experimental Evaluation 

  This chapter describes how Swan is used in order to parallelize 

pipelined benchmarks. We parallelize bodytrack, ferret and dedup from the 

PARSEC benchmark suite [1] which are characterized of their pipelined 

parallelism. Through these experiments Swan programming model can be 

evaluated regarding its correctness, ease of use and performance. We 

compare Swan with TBB and pthreads implementations of these 

benchmarks.  We compiled all versions of benchmarks using g++ 4.6.3 on 

Ubuntu 12.04 operating system. The experimentation machine was a dual-

socket AMD Opteron processor (6272) with 8 cores (2GHz) with 2 

hardware threads per core in each socket, counting in total 32 threads. The 

threads in each socket share a 16MB L3 cache. Speedups are computed 

relative to the serial elision of the benchmarks, which we compile using gcc 

4.6.3. In each case the optimization level is set to –O4. For POSIX 

implementations, where the number of software threads being created 

overcomes the number of cores, we use the command numactl to specify 

the number of cores that the application will use. Moreover, this command 

is used for all the experiments for specifying the most efficient core binding 

in terms of socket and cache usage. AMD CodeAnalyst is used for the 

profiling of the load balance between cores. 
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5.1  Bodytrack 

  The bodytrack application from PARSEC benchmark suite [1], [20]

 is an Intel RMS computer vision workload that recognizes the pose of a 

human body from an image sequence of multiple cameras. The tracking of 

the human body is performed through an annealed particle filter that tracks 

the pose by using edges and the foreground silhouette as image features. 

The input given to bodytrack application consists of sets of frames from 

different placed cameras, where each set contains the same number of dis-

tinct time frames. Bodytrack tracks the human body for each distinct frame 

in all frame-sets. The output of the application is a set of images with high-

lighted parts of the body. Figure 16 shows the output of one input frame; 

body parts are highlighted in each camera’s frame with the same color ac-

cording to each specific body part. The application uses parallel pipelines to 

perform I/O asynchronously. The bodytrack parallelization exploits mostly 

data-parallelism because its computationally intensive parts use at most par-

allel loops rather than parallel pipelines. 

Figure 16: Output of the bodytrack benchmark. 
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Bodytrack is parallelized using pthreads by implementing a persistent thread 

pool. Images from different cameras are loaded asynchronously from the 

disk in order to overlap with the computational part. One main thread sends 

tasks to the thread pool when it reaches a parallel region of the code. When 

the main thread receives the result from the worker threads in the thread 

pool, it resumes the execution of the program [20].  

5.1.1  Parallelization 

  Our implementation uses TBB version as a starting point following 

the same pipeline stages and parallel loops. The implementation has two 

major stages which have been implemented using the pipeline model of 

Swan runtime. Table 1 shows the time breakdown of the two bodytrack 

pipeline stages; both stages are executed in the same number of iterations, 

once for each input frame. 

Bodytrack Num iterations Time (sec)   Time % 

Tracking Model 261 20.196 7 

Particle Filter 261 267.233 93 

Table 1: Bodytrack number of iterations and stages time breakdown 

 

1st stage: TrackingModel – Edge detection and Edge smoothing: In 

this stage bodytrack employs a gradient based edge detection mask to find 

edges. After the edge detection bodytrack performs edge smoothing by 

using a Gaussian filter of size 7 x 7. The edge smoothing result is then used 

to produce a map of pixels flagged with 0 or 1 each. The value of each pixel 

is relative to its distance from the edge. Those steps are executed in parallel 

for each distinct camera frame using the Swan parallel_for, and also 

constitute a pipeline stage. 

2nd stage: ParticleFilter: This stage computes weights for the particles by 

evaluating the foreground silhouette and the image edges produced in 

stage1. This is the most computationally intensive part of the application 
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void stage1(TrackingModel *model, inoutdep<ImageSetToken*> token,  

            int currFrame); 

 

void stage2(ParticleFilter<TrackingModel>* pf,  

            indep<ImageSetToken*> token,  

            string *output,  

            int currFrame); 
 

for(int i = 0; i < frames; i++) {    

spawn(stage1, &model, (inoutdep<ImageSetToken*>) token, i); 

spawn(stage2, &pf, (indep<ImageSetToken*>) token, &output, i); 

} 

ssync(); 
Figure 17: Iterations of two pipeline stages of bodytrack 

 

while it computes the weights once for every annealing layer of each time 

step. Furthermore, this stage resamples particles and creates a new set of 

particles. At this point Swan’s parallel_for was used in order to distribute 

the work though cores. Also, the next step of this stage is fully loop 

parallelized, through the number of particles. After the particle resampling is 

completed, the task that was assigned to execute this pipeline stage writes 

the result of the above computations to the output file output.txt and 

produces the corresponding to this time step output image.  

 

Figure 18: Bodytrack stages. Arrows show dependencies. 

 

Figure 17 shows the code for the spawning of the above two stages of 

bodytrack. Figure 18 shows the task-graph for this code; there is one input 

token in both stages which is updated and used in all iterations. This is 

flagged by the inoutdep and indep in stage1 and stage2 respectively. 

 

5.1.2  Evaluation 

  Figure 19 illustrates the execution time for Swan, TBB and POSIX 

bodytrack implementations. The difference in the execution times of the 
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three programming models is not significant. Swan has an additional 

overhead than the other two implementations which is approximately 3 

seconds. We attribute this to the need of the compilation flag -fno-omit-

leaf-frame-pointer for Swan. This flag, as experiments confirm, imports 

overhead to the execution time. Multiple experiments of the same code 

could verify this statement. The original serial bodytrack version compiled 

without  -fno-omit-leaf-frame-pointer takes 283 seconds, 

while the same version compiled using -fno-omit-leaf-frame-pointer 

takes 287 seconds. This flag is blocking some optimizations that the -O4 

introduces. It is a mandatory flag for Swan compilation because of the way 

that Swan calls (spawns) functions; by using this flag, it is easier to spawn 

because the rbp register is used to point to the function stack pointer. If it 

doesn't, then the compiler knows how to compute it from rsp (stack 

pointer), but Swan cannot be aware of this in library code. 

 

 

Figure 19: Execution time of bodytrack, TBB, pthreads and Swan implementations. 

 

  Figures 20 and 21 represent the speedup of the above execution 

times. Because of the limitation of the compilation flag mentioned before, 

Swan is slightly less efficient.  
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Figure 20: Speedup of Swan, TBB and POSIX for bodytrack. Specific core counts. 

 

 

 

    

Figure 21: Speedup of Swan TBB and POSIX. 

5.2  Ferret 

  Ferret is a content-based similarity search application based on the 

Ferret toolkit. In PARSEC benchmark suite ferret compares a set of images 

and returns which images contain the same kind of object. The pipeline 
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implementation of this benchmark contains six stages of processing. First 

and last stages are input (load stage) and output (out stage) of the 

algorithm. The middle four stages implement image segmentation (seg 

stage), feature extraction (extr stage), indexing of candidate sets (vec stage) 

and ranking (rank stage). Segmentation is a process whereby an image is 

divided into smaller areas that display different objects. A high or low weight 

of interest is assigned in each such area. An image segment that belongs to 

the background of the image usually has a low weight of interest, while a 

segment that belongs to the foreground has the highest weight of interest. 

After this computation stage, extract stage, creates a feature vector, which is 

a multi-dimensional mathematical description of the segment contents that 

encodes the fundamental image properties (color, shape, area). Thereafter, 

the vec stage queries the image database to obtain a candidate set of images. 

The rank stage then determines a rank for each image and sorts the images 

in descending order according to their calculated rank. 

  The PARSEC pthreads implementation of ferret is a six-stage 

pipeline with all the aforementioned stages, where input and output stages 

are executed by one thread each. The remaining middle stages use 

oversubscription: specifying the program to run with x threads would create 

x threads for each of these stages. Blocking queues configured for a 

maximum of 20 items were used to pass tokens between stages.  

  Figure 22 illustrates the task-graph of ferret. Each stage 

communicates with the next one through blocking synchronization queues. 

The out stage writes out the results of the whole benchmark in the output 

file.  

load seg extr vec rank out  

Figure 22: Task-graph for POSIX ferret implementation. Arrows show dependencies. Gray 

dots indicate the number of sw threads that execute each stage. 
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5.2.1  Parallelization 

  Ferret introduces an important challenge in Swan’s parallelization: 

the presence of a recursive producer pipeline stage. Table 2 shows how this 

issue was skipped in order to implement a working parallelization using 

Swan programming model. The recursive stage was kept serial outside the 

parallel pipeline in the two parallel versions of ferret using Swan. There is an 

important constraint in Swan programming model: the pipeline of a 

benchmark cannot contain a stage that is a producer of multiple data items. 

Each call of a stage produces only one item, so the program needs to iterate 

through the number of data items that the stages have to produce. Ferret 

benchmark contains a producer-stage that is parsing a directory. This 

operation is not possible with multiple calls to this stage, because the 

function needs to be aware of the current position inside the directory. TBB 

programming model also cannot support the presence of a recursive 

producer pipeline stage. The TBB implementation of ferret uses a stack for 

storing the current position in the directory for each stage call so that the 

next task that loads data retrieves the correct copy of the directory pointer. 

Swan is intended to implement pipelined parallel applications with low effort 

and the minimum modifications necessary to the algorithm. Table 3 shows 

the time breakdown of each pipeline stage in addition to the number of 

iterations that each stage is executed.  

 

 

 

Challenge Solutions Appears in 

 Recursive  

pipeline stage 

 Serialize stage 

 

 Ferret 5-stage,  

Ferret 2-stage 

Table 2: The challenge faced in Ferret's parallelization was the recursive pipeline stage. 
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Ferret Num  

iterations 

Time 

(sec) 

Time % 

Input (load) 1 34.000 4.480 

Segmentation (seg) 3500 26.800 3.570 

Extraction (extr) 3500 2.773 0.350 

Vectorizing (vec) 3500 133.939 16.200 

Ranking (rank) 3500 603.286 75.300 

Output (out) 3500 2.000 0.100 

Table 3: Ferret number of iterations and stages time breakdown. 

 

Figure 23: Stage breakdown of ferret 

 

 Ferret 5-stage pipeline with Swan 

  In the first parallel version of ferret using Swan programming 

model, the pipeline stages are kept the same as POSIX implementation. The 

main challenge is the first stage, (input stage) which loads the input data into 
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data structures. This is a recursive pipeline stage, and that fact restricts Swan 

to analyze dependencies. Hence, this stage is removed from the parallel 

pipeline (Figure 24) for this implementation, fact that reduces parallelism. 

Also this gives an important increase in memory consumption and degrades 

memory locality as all data have to be stored at the same time, which would 

not happen in the pthreads/TBB implementations. Another difference 

between Swan and POSIX implementations is that with Swan last stage is 

executed by multiple threads whereby each thread outputs a subset of the 

data in the right order. To achieve the serial output of results, an inout 

dependence (self-dependence) was added in the out stage. With this 

dependence, each out task that is spawned has to wait for the previous out 

task to finish execution in order to start. The queues used in POSIX 

implementation (except for the one that sends the data from load stage to 

seg stage) have been replaced by the versioned objects that Swan 

programming model offers, for activating dependence analysis between 

pipelined tasks. 

  Figure 25 shows the code for this implementation. Tasks are de-

fined as functions that have as arguments indep/outdep/inoutdep ob-

jects. Then, by the time they are spawned, dependence analysis is turned on 

for these tasks. 

 

seg extr vec rank out
Figure 24: Ferret 5-stage pipeline. Omitting input stage. Arrows show dependencies. 
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void load(load_t *load_array); 

void seg(load_t load_data, outdep<seg_t> seg_data); 

void extr(indep<seg_t> seg_data, out-dep<extr_t>extr_data); 

void vec(indep<extr_t>extr_data, out-dep<vec_t>vec_data); 

void rank(indep<vec_t>vec_data, out-dep<rank_t>rank_data); 

void out(indep<rank_t>rank_data, inoutdep<int>wait); 

 

int main(){ 

    int array_size = leaf_call(load, load_array); 

    for(int i = 0; i<array_size; i++){ 

      spawn(seg, load_array[i], (outdep)seg_data); 

      spawn(extr, (indep)seg_data, (outdep)extr_data); 

      spawn(vec, (indep)extr_data, (outdep)vec_data); 

      spawn(rank, (indep)vec_data, (outdep)rank_data); 

      spawn(out, (indep)rank_data, (inoutdep)wait); 

  } 

} 

 

Figure 25: Code for ferret 5-stage pipeline with Swan 

 

 Ferret 2-stage pipeline with Swan 

  A second approach to ferret parallelization was to merge four of the 

stages into one single stage. This could be beneficial because, as Table 3 in-

dicates, stages seg, extr and vec have minimal overhead, comparing to 

stages rank and out. With this pipeline these two overhead-adding stages 

could be better overlapped. We develop a new task function in order to se-

rialize the four merged tasks. The output function remains unchanged with 

the same dependencies. However, in this implementation input is provided 

from the new task function. Figure 26 shows the task-graph of this imple-

mentation. load stage remains serial, outside the pipeline as before. out 

stage is aligned by using a self-dependence for writing the file in the right 

order. Figure 27 shows the code for what is described here.  

 

seg

out

extr
vec
rank

merged
 

Figure 26: Taskgraph of 2-stage pipeline of ferret 
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void load(load_t *load_array); 

void seg(load_t load_data, seg_t seg_data); 

void extr(seg_t seg_data, extr_t extr_data); 

void vec(extr_t extr_data, vec_t vec_data); 

void rank(vec_t vec_data, rank_t rank_data); 

void merged(outdep<rank_t> rank_data); 

void out(indep<rank_t>rank_data,  

         inoutdep<int>wait); 

 

void merged(outdep<rank_t> rank_data_out){ 

    call(seg, load_data, seg_data); 

    call(extr, seg_data, extr_data); 

    call(vec, extr_data, vec_data); 

    call(rank, vec_data, rank_data); 

    rank_data_out = rank_data; 

} 

int main(){ 

  int array_size = leaf_call(load, load_array); 

    for(int i = 0; i<array_size; i++){ 

     spawn(merged, (outdep<rank_t>)rank_data); 

     spawn(out, (indep<rank_t>)rank_data, 

                (inoutdep)wait); 

  } 

  ssync(); 

} 

 

Figure 27: Code for ferret 2-stage pipeline 

 

 Ferret 6-stage pipeline with Swan using hyperqueues 

 By introducing the hyperqueue in Swan we could solve the main 

challenge of the ferret implementation. Using hyperqueues in combination 

with objects can assist Swan to handle the parallelization of the first stage, 

which introduces overhead of 34 seconds, along with the remaining paral-

lel pipeline stages. Figure 23 shows the ferret stages time breakdown. We 

overlap the first 34 seconds of its execution time by spawning the first 

stage and inserting the load data in the queue. 

 The second stage of ferret is now able to start immediately right af-

ter load stage produces the first data unit to consume. This overhead is 

marginal keeping in mind that the production of 3500 data items is done 

in 34 seconds. This way we can achieve better load balancing of cores and 

also overlap the first 34 seconds overhead of the serialization of the first 

stage.   
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void load(pushdep<load_t>load_queue); 

void seg(popdep<load_t>load_queue, outdep<seg_t> seg_data); 

void extr(indep<seg_t> seg_data, outdep<extr_t>extr_data); 

void vec(indep<extr_t>extr_data, outdep<vec_t>vec_data); 

void rank(indep<vec_t>vec_data, outdep<rank_t>rank_data); 

void out(indep<rank_t>rank_data, inoutdep<int>wait); 

 

void pipeline() { 

 

    queue_t<load_t> load_queue; 

    spawn(t_load, (pushdep)load_queue); 

 

    for(int i = 0; i<array_size; i++){ 

 

         spawn(seg, (popdep)load_queue, (outdep)seg_data); 

         spawn(extr, (indep)seg_data, (outdep)extr_data); 

         spawn(vec, (indep)extr_data, (outdep)vec_data); 

         spawn(rank, (indep)vec_data, (outdep)rank_data); 

         spawn(out, (indep)rank_data, (inoutdep)wait); 

    } 

    ssync(); 

} 

Figure 28: Implementation of Ferret using hyperqueues. 

 

  Figure 28 shows the implementation of ferret with queues. The first 

stage is spawned and executed by one core, simultaneously with the 

remaining stages. In this case the program has one producer and multiple 

consumers so we know that tasks of seg stage will be postponed in a way 

that one seg task runs each time, as long as there will be more than one 

readers of the queue.   

  Figure 29 shows the task-graph of this implementation. Stages seg, 

extr, vec, rank and out iterate through the number of queries, while stage 

load is spawned only once. This is indicated in the figure by the dashed 

arrow showing that this dependence exists for queue objects and not for 

objects inside the loop of spawning pipeline stages.  

seg extr vec rank out

load

Figure 29: Dashed arrow: hyperqueue; solid arrows: dependencies tracked with objects. 
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5.2.2  Evaluation 

  The ferret benchmark contains a built in PARSEC implementation 

of POSIX threads that uses cores in a different way than the other 

programming models. It uses multiple light-loaded software threads per 

pipeline stage so software threads in use can overcome the number of 

hardware threads of the CPU, contrary to Swan and TBB that use as many 

software threads as are the hardware threads. Figure 30 demonstrates the 

execution time of Ferret with multiple software threads per pool, on 

multiple core counts. 10 threads per pool for the POSIX implementation of 

ferret means 2+10*4 = 42 concurrent software threads. Number of cores on 

x axis, indicates the number of cores those software threads are running 

onto, with the help of numactl. Speedup is obtained while the number of 

cores increases and there are available software threads to take advantage of 

those resources. We compare the best POSIX configuration, which uses 10 

threads per pool as Figure 30 implies with Swan and TBB implementations. 

The TBB implementation we use is from [3]. It should be reported that 

POSIX configurations that use more than 10 threads per pool introduce 

overheads that lower performance. 

 

 

Figure 30: Ferret POSIX execution time with multiple numbers of threads per pool.  
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For Swan, two implementations using objects were described: Swan 2-stage 

pipeline and Swan 5-stage pipeline. Those two implementations have very 

close execution times, and indicate the same speedup in ferret. We will refer 

to them both as Swan implementation or as Swan – object implementation, 

as long as their graphs completely overlap. Figures 31 and 32 show the 

execution time and speedup respectively, of Swan, TBB and POSIX ferret 

implementations. Swan’s performance falls short due to the additional 

overhead that the serialized load stage introduces, which is approximately 

34 seconds for each execution, regardless the number of cores it is running 

onto.  

 

 

 

Figure 31: Ferret execution time of Swan, TBB and POSIX implementations. 

 

 

 

  Figure 33 shows the execution time for 1, 2, 4, 8, 16 and 32 core 

counts. Comparing the execution times from Figure 33 leads to the 

conclusion that TBB performs better than Swan because of the load stage 

serialization while POSIX performs better than Swan for the same reason.  
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Figure 32: Ferret speedup of Swan, TBB and POSIX implementations. 

 

 

 

Figure 33: Execution times of Swan vs TBB vs POSIX. Specific core counts. 

 

 

 

 

 

0

5

10

15

20

25

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Sp
ee

d
u

p
 

Number of Cores 

Ferret 

Swan

TBB

POSIX - 10

1 2 4 8 16 24 32

Swan 802 427 232 135 84 77 69

TBB 785 393 198 104 54 42 34

POSIX - 10 791 396 199 104 64 64 63

0
100
200
300
400
500
600
700
800
900

Ex
e

cu
ti

o
n

 T
im

e 
(s

e
c)

 

Number of Cores 

Ferret 

Swan

TBB

POSIX - 10



    51 

  

 

 

Num 
Cores 

Swan 
(sec) 

TBB 
(sec) 

POSIX 
(sec) 

Swan-TBB 
(sec) 

Swan-
POSIX (sec) 

1 802 785 791 17 11 

2 427 393 396 34 31 

4 232 198 199 34 33 

8 135 104 104 31 31 

16 84 54 64 30 20 

24 77 42 64 35 13 

32 69 34 63 35 6 

Table 4: Comparison of Swan, POSIX and TBB execution times in seconds. Last two 

columns show the relative overhead of Swan (in seconds) compared to the other models. 

  

  In a more detailed examination of the execution time between the 

implementations, it is observed that for core counts greater than 1 the 

difference between Swan and TBB in execution time is approximately 30-35 

seconds, while the difference between Swan and POSIX is reducing while 

core count increases. Table 4 shows this comparison for each core count. 

POSIX implementation is less scalable than TBB and this is due to the 

blocking queues that is using for the data transfers between stages which 

prevents the parallel use of the data. Moreover, core to core communication 

increases as the number of cores increases while the number of software 

threads remains stable (42 software threads). Unlike this, TBB gains 

scalability and the overhead of Swan over TBB is the serialization of the 

load stage.  

  Figure 34 shows the load balance comparison between Swan and 

TBB implementations. The performance loss observed in Swan is a result of 

the serialization of the load stage. Core 1 is the most loaded one due to the 

fact that it is executing the first stage that loads the input data. 
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Figure 34: Load balance comparison between TBB and Swan with objects for Ferret 

benchmark 

 

 

Figure 35: Ferret execution time of Swan implementations (objects only or with 

hyperqueues), TBB and POSIX. 
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substantiates that the previously observed overhead was due to the 

serialization of first stage. The addition of the load stage in the pipeline 

could overlap approximately 34 seconds of the benchmark resulting in 

better performance. Swan’s performance is very close to TBB while it now 

has overcome POSIX implementation’s performance which adds multiple 

overheads by using blocking queues. For 1 core, the overhead of the Swan-

hyperqueues is clear, but running on many cores it is entirely overlapped.  

 

 

Figure 36: Speedup comparison Swan vs TBB vs POSIX vs Swan with queues 

 

Figure 36 shows the speedup comparison between Swan, TBB and POSIX 

ferret versions. The implementation of ferret using POSIX threads consists 

of 955 lines of code (including queues for communication between stages 

and thread pool implementation). TBB implementation reduced the lines of 

code to 512, and Swan implementation to 445.  

 

5.3  Dedup 
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computation time. The type of this compression is called ‘deduplication’. 

  Dedup consists of five pipeline stages: Fragment stage segments 

the data stream into smaller data segments; FragmentRefine splits the data 

segments into smaller data chunks; The Deduplicate stage looks up a hash 

table for each chunk and determines if the chunk is new chunk of if it is a 

duplicate of a previous one; if the chunk is not a duplicate, it is passed to the 

Compress stage where it is compressed. Otherwise, compression is skipped 

and the compressed data of the original chunk are used for the compression 

of the duplicate chunk. Finally, the Output stage reorders the data chunks 

into the original order, if necessary, and writes the compressed stream creat-

ing the compressed file. 

  Figure 37 shows the pipeline structure used in pthreads implementa-

tion of PARSEC. FragmentRefine stage generates work, which means that 

it has a single input and produces multiple outputs, which are inputs to the 

next stage. Moreover, Deduplicate stage performs stage bypassing; Com-

press stage is executed in certain circumstances as described above. Each 

one of the three intermediate stages is executed by multiple threads, similar 

to ferret implementation, and the first and last stages by a single thread each. 

Fragment Fragment
Refine

Deduplicate Compress Out

 

Figure 37: Dedup task-graph of pthreads implementation. Gray dots are threads per pool. 

Arrows show dependence/data exchange. 

 

5.3.1  Parallelization 

  The task graph of Figure 37, visualizes a number of challenges in the 

parallelization of this benchmark. This workload’s pipeline structure is not 

as straightforward as the structure presented in ferret. This pipeline’s 

parallelization is challenging for Swan, but in the same time, easier than 
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POSIX implementation. The first challenge was the stage bypassing of 

Compress stage (see Figure 37). Second, and most important, was the 

FragmentRefine stage behavior, that produces multiple outputs from one 

input. Another challenge was the requirement to enforce ordering of tasks 

that execute the Deduplicate stage. In this stage, chunks are determined to 

be duplicates of another prior chunk or not. If a chunk that should be 

considered as duplicate of a prior chunk, reaches this stage first, then it is 

not marked as duplicate and decompression of the file fails; the reason is 

that Compress stage recognizes the original chunk as duplicate and thus 

cannot find the appropriate data to decompress it. We provide a number of 

solutions that address the aforementioned challenges.  

 

 

 

 

Challenge Solutions Appears in 

 Single input,  
multiple outputs 

 

 Nested pipelines  Nested Pipeline 3-
stage, nested 
pipeline 2-stage 

 Remove stage  
Fragment Refine 

 Coarse-grained  
4-stage      

 Add to lists the 
multiple outputs 

 Simple 5-stage, 
nested pipeline 3-
stage, nested 
pipeline 2-stage 

 Serialize until 
multiple outputs 
are produced 

 Nested pipeline 2-
stage 

 Stage bypassing 

 

 Call stage and 
return 

 All 

 Deduplicate align-
ment 

 Additional in-
outdep  
dependence 

 All 

Table 5: Challenges faced in dedup, their solutions, and the implementations each solution 

appears 

 



56        Chapter 5.  Experimental Evaluation 

 

 

  Table 5 summarizes the above challenges and their solutions in 

specific implementations. The TBB implementation used in this work is the 

one in [3]. This version of dedup uses nested pipelines in order to solve the 

challenge that the FragmentRefine stage introduces. The outer pipeline has 

to make the appropriate number of calls to the nested pipeline, which is 

determined by the number of coarse chunks that Fragment stage produced. 

This means that for each call of FragmentRefine, there is a nested pipeline 

that calls its stages as many times as are the data items that 

FragmentRefine produced. Swan can handle this and parallelize dedup in 

the same way. Regarding the stage-bypassing challenge, neither Swan nor 

TBB can skip the execution of a pipeline stage, so both approaches are 

spawning the task to call this stage, and if data do not need to be 

compressed, stage immediately returns.  

 

 

 

Dedup Num  

iterations 

Time (sec) Time % 

Fragment 336 1.85 3.5 

Fragment Refine 336 3.45 6.5 

Deduplicate 336×N 4.08 7.7 

Compress 336×N 39.13 73.7 

Output 336×N 4.56 8.6 

Table 6: Dedup number of iterations and stages time breakdown. N depends on each of 

the 336 coarse-grained chunks and varies between 473 and 65537. Compress is called 

168364 times in total and, Deduplicate and Output, 369950 times. 
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Figure 38: Dedup graph for stage breakdown in seconds 

 

 Dedup 5 stage pipeline with lists 

  In this implementation we provide a 5-stage pipeline with the same 

stages as in POSIX implementation. What constraints Swan implementation 

is that each stage has to be spawned as many times as the data items that it 

has to process are. This is how objects in Swan work, and for that reason 

FragmentRefine stage that takes one input and produces multiple outputs 

was a significant challenge on the parallelization. The way to handle this is-

sue is to generate a list of the data that have been produced. This list can be 

marked with Swan’s access mode labels in order to be passed to the next 

stages. The task-graph on Figure 39 shows the dependencies between stages. 

When FragmentRefine has finished the production of one list, then the 

next stage, Deduplicate, starts consuming this list and reproduces it with 

the appropriate changes to Compress stage. The number of lists that are 

created during this procedure are equal to the number of chunks that Frag-

ment stage produces. In each iteration there is one list, produced by Frag-

ment, passed through all the stages and is consumed and/or updated.  

  Moreover, as listed in the challenges of this benchmark, Deduplicate 

stage has to be sequential, meaning that only one task of this stage is execut- 
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Deduplicate Compress OutFragment Fragment
Refine

Figure 39: Task graph for Dedup simple 5-stage pipeline. Dashed arrows indicate 

dependency on list-objects  

 

ing at each period of time. Swan could offer an easy and not time consum-

ing solution to this problem by inserting a self-dependence on that stage, 

which serializes the calls of it.  

  Regarding stage bypassing, Swan is not properly applicable to irregu-

lar pipelines, so we need to spawn this stage and for each element of the list, 

the stage either performed compression, or skipped the element. The same 

solution is applied in the TBB implementation. 

  This solution introduced parallelization between stages for 336 itera-

tions, (for native input) which is the number of chunks that the first stage 

creates. This is a coarse-grained parallelization, as long as each stage gener- 

int Fragment (outdep<chunk_t> chunk); 

void FragmentRefine(indep<chunk_t> chunk,  

                    inoutdep<u32int> self_data, 

                    outdep<std::list<chunk_t>> chunkslist,); 

void Deduplicate(inoudep<list<chunk_t>> chunklist,  

                 inoutdep<int> wait); 

void Compress(inoudep<list<chunk_t>> chunklist); 

void Out(inoudep<list<chunk_t>> chunklist, inoutdep<int>wait); 

 
int main(){ 

  read_done = 0; 

  while(!read_done){ 

     read_done = call(Fragment, (outdep<chunk_t>) chunk);  

     spawn(FragmentRefine, (indep<chunk_t>)chunk,  

                           (inoutdep<u32int>)self_data, 

                           (outdep<list<chunk_t>>)chunklist); 

 
     spawn(Deduplicate, (inoutdep<list<chunk_t>>)chunklist,  

                        (inoutdep<int>)wait); 

 

     spawn(Compress, (inoutdep<list<chunk_t>>)chunklist); 

     spawn(Out, (indep<list<chunk_t>>)chunklist,    

                (inoutdep<int>)wait2); 

   } 

} 

 

Figure 40: Code of dedup simple 5 stage pipeline. 
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ates only 336 tasks that iterate over a list instead of as many as the number 

of outputs that FragmentRefine stage produces (fine-grained chunks). 

Figure 40 shows the code for this implementation; note that the entire lists 

are the arguments with analyzed dependencies. 

 

 Dedup 3-stage nested pipeline  

  We tried to provide a better solution than the above to the Dedup 

parallelization. In [3], Reed et.al, present the implementation of dedup using 

nested pipelines, with the use of TBB programming model. We borrow this 

structure to parallelize dedup with Swan. Figure 41 illustrates the task-

graphs of the two pipelines used. Outer pipeline (Figure 41a) contains the 

stages of Fragment, FragmentRefine and NestedPipeline. First, Frag-

ment is called (not spawned) and FragmentRefine waits for Fragment to 

finish in order to get the first-level-split chunk so that it can split it more. 

When FragmentRefine divides a chunk, it creates a list for this chunk, and 

adds in this list the smaller chunks produced, as discussed in the simple 5-

stage pipeline parallelization above. This list is the input of the Nest-

edPipeline stage. In this stage, (Figure 41b) we have Deduplicate, Com-

press and Out stages which are spawned for every chunk in the list. As dis-

cussed before, Compress stage is executed under conditions. Swan cannot 

handle this due to the static definition of the dependencies. In Swan ap-

proach, Compress stage is spawned for all chunks and, if the condition is 

met, chunk gets compressed; otherwise Compress stage takes no action. In 

order to solve the Deduplicate stage’s serialization of tasks, we insert an 

inout (self) dependence to this stage, so that it waits every time for itself to 

finish the execution of the previous iteration. Figure 42 shows the pseudo 

code for this implementation, omitting the dependencies described in the 

task-graph.  

  This implementation can be characterized by its fine-grained, tasks 

opposite to the previous one which was coarse-grained. It is consisted of 

336 iterations spawning three stages and the one of these stages generates 

tasks inside a loop that executes for a very large number of iterations (be- 
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Fragment
Refine

Deduplicate Compress Out

Fragment Nested
Pipeline

 

Figure 41: (a): Outer dedup pipeline: same number of iterations as the number of chunks 

after Fragment (336 iterations). (b): Nested pipeline: number of iterations equals to the 

number of chunks that FragmentRefine produces (473 – 65537 iterations).  

 

tween 473 and 65537 iterations). This is the most fine-grained solution that 

we develop in Dedup. 

(a) 

 

(b) 
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int Fragment (outdep<chunk_t> chunk); 

void FragmentRefine(indep<chunk_t> chunk,  

                    outdep<list<chunk_t>> chunkslist); 

void NestedPipline(indep<list<chunk_t>chunkslist,  

                   inoutdep<int>align); 

void Deduplicate(inoutdep<chunk_t> chunk,  

                 inoutdep<int> wait); 

void Compress(inoutdep<chunk_t> chunk); 

void Out(indep<chunk_t> chunk,  

         inoutdep<int> wait); 

 

void NestedPipeline(indep<list<chunk_t>chunkslist,  

                    inoutdep<int>align)             

{ 

 

   iterator iter = chunklist.iterator(); 

   while(!chunklist.empty()) {  

 

      object_t<chunk_t> chunk = iter.next(); 

      object_t<int> wait; 

 

      spawn(Deduplicate, (inoutdep<chunk_t>)chunk,  

                         (inoutdep<int>)wait ); 

      spawn(Compress, (inoutdep<chunk_t>)chunk); 

      spawn(Out, (inoutdep<chunk_t>)chunk,  

                 (inoutdep<int>)wait); 

   } 

} 

ssync(); 

int main() { 

 

  read_done = 0; 

  object_t<int> wait; 

  while(!read_done) { 

 

     object_t<chunk_t> chunk; 

     read_done = call(Fragment, (outdep<chunk_t>)chunk);  

 

     spawn(FragmentRefine, (indep<chunk_t>)chunk,  

                           (outdep<list<chunk_t>>)chunkslist); 

     spawn(NestedPipeline, (indep<list<chunk_t>>)chunkslist,    

                           (inoutdep<int>)wait); 

   } 

   ssync(); 

} 

Figure 42: Code for dedup nested pipeline implementation. 

 

 Dedup coarse-grained 4-stage pipeline 

 FragmentRefine stage exists in order to create smaller chunks for 

more fine grained parallelism. This results to finer granularity of tasks after 

the execution of FragmentRefine. Considering all the effort needed to 

solve the problem with the work generation of FragmentRefine, we 

thought that skipping this stage would, give better results. Compression 

remains the same as long as the same data are compressed. This imple- 
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Deduplicate Compress OutFragment
 

Figure 43: Task-graph of dedup 4-stage coarse-grained implementation. 

 

mentation’s task-graph is shown in Figure 43. First, Fragment is called and 

produces the first-level split chunks, which are then passed to 

Deduplicate, in-order, later in Compress, where if the condition is met, 

data get compressed and finally are written in the output file. This 

implementation can eliminate parallelization overheads from the reduced 

task creation but can have drawbacks regarding the load balance, as long as 

synchronized threads should wait longer for a larger task to finish. This 

implementation has the same task granularity as the one with the simple 5-

stage pipeline. The difference is that it is skipping the computations of the 

FragmentRefine stage, as long as they don’t introduce more parallelism in 

the 5-stage pipeline implementation. This results to a 4-stage pipeline 

iterating for 336 times for native input. 

 

 

int Fragment (outdep<chunk_t> chunk); 

void Deduplicate(inoutdep<chunk_t> chunk, inoutdep<int> wait); 

void Compress(inoutdep<chunk_t> chunk); 

void Out(indep<chunk_t> chunk, inoutdep<int>wait); 

 

int main(){ 

  read_done = 0; 

  object_t<int> wait1; 

  object_t<int> wait2; 

  while(!read_done){ 

     object_t<chunk_t> chunk; 

     read_done = call(Fragment, (outdep<chunk_t>)chunk);  

     spawn(Deduplicate, (inoutdep<chunk_t>)chunk,  

                        (inoutdep<int>) wait1); 

     spawn(Compress, (inoutdep<chunk_t>)chunk); 

     spawn(Out, (indep<chunk_t>)chunk,  

                (inoutdep<int>)wait2); 

   } 

   ssync(); 

} 

 

Figure 44: Code for dedup 4-stage coarse-grained implementation. 
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 Dedup 2-stage nested pipeline 

  Table 6 and Figure 38 show the time breakdown of the dedup 

pipeline stages; it is observed that the most time-consuming stages are 

Compress and Out stages. For that reason it would be beneficial if the light-

weight stages (Fragment, FragmentRefine, Deduplicate) were merged 

into one stage and gain parallelism from the two heavy-weight stages 

(Compress, Out). This was the motivation for the 2-stage nested pipeline 

implementation, whose task-graph is shown in Figure 45. 

  This implementation introduces fine-grained parallelism, but in less 

amount than the one of the 3-stage nested pipeline. Task creation is reduced 

by merging three of Dedup’s stages into one. Figure 46 shows how this 

solution can be implemented with Swan. 

 

 

FragmentRefine-
Deduplicate

Compress Out

Nested
Pipeline

 

Figure 45: 2-stage nested Dedup pipeline. (a): Outer pipeline, first stage includes Fragment, 

FragmentRefine, and Deduplicate stages merged in one. Second is the nested pipeline 

shown in b. (b): Nested 2-stage pipeline with Compress and Out stages.  

 

  

(a) 

(b) 
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void FragmentRefine_Deduplicate(outdep<list<chunk_t>> chunkslist); 

void NestedPipline(indep<list<chunk_t*>chunkslist, inoutdep<int>align); 

void Compress(inoutdep<chunk_t> chunk); 

void Out(indep<chunk_t> chunk, inoutdep<int> wait); 

 

 

void FragmentRefine_Deduplicate(outdep<list<chunk_t>> chunkslist) { 

    call(Fragment); 

    call(FragmentRefine, chunkslist); 

    call(Deduplicate, chunkslist); 

} 

void NestedPipeline(indep<list<chunk_t*>chunkslist, inoutdep<int>align) { 

 

   iterator iter = chunklist.iterator(); 

   while(!chunklist.empty()) {  

 

      object_t<chunk_t> chunk = iter.next(); 

      object_t<int> wait; 

 

      spawn(Compress, (inoutdep<chunk_t>)chunk); 

      spawn(Out, (inoutdep<chunk_t>)chunk,  

                 (inoutdep<int>)wait); 

   } 

   ssync(); 

} 

int main() { 

  read_done = 0; 

  while(!read_done) { 

     read_done = call(FragmentRefine_Deduplicate,  

 (outdep<list<chunk_t>>)chunkslist);  

     spawn(NestedPipeline, (indep<list<chunk_t*>)chunkslist,  

(inoutdep<int>)align);  

   } 

   ssync(); 

} 

Figure 46: Code for Dedup 2-stage nested pipeline implementation 

 

5.3.2  Evaluation 

  As in ferret, dedup’s POSIX implementation can be configured with 

various multitudes of threads per pool. The total number of software 

threads running is indicated by the equation:  

software_threads = threads_per_pool × 3 + 2 

The first and last stages are executed by one thread each and the remaining 

three middle stages by threads_per_pool threads. Figure 47 demonstrates 

the execution time for POSIX dedup implementation, with different 

amounts of threads per pool showing the best option that is 8 threads per 

pool. Using 8 threads per pool, the total number of software threads is, 

according to the above equation, 28. This is the best configuration for dedup 

running with POSIX implementation because for more software threads 
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Figure 47: Dedup POSIX execution time with multiple number of threads per pool. 

 

I/O bottleneck is reached on the output stage. We compare the rest 

implementations with the POSIX using 8 threads per pool. 

  Figure 48 presents the execution times for the explained Swan im-

plementations. Using the coarse grained implementation of dedup delivers 

the best performance. In that implementation, FragmentRefine stage was 

skipped, in order to have coarse grained tasks and also skip the procedure of 

the nested pipelines that increases task creation as well as data dependencies. 

Coarse grained implementation is beneficial for Swan, as long as there are 

fewer dependencies to be analyzed, fewer tasks, and contains the execution 

of a simple 4-stage pipeline. The next best performance from those imple-

mentations is the one with the simple 5-stage pipeline using lists. As ex-

plained before, this implementation has the same dependencies as the 

coarse-grained one. The difference is that instead of having a coarse chunk 

to process and compress, dedup has a list of split chunks that all of them 

together form one coarse chunk. The overhead of this implementation, 

compared to the coarse-grained one, results from the list creation and the it-

erations on the list.  

  The remaining two implementations consist of nested pipelines. 
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This mechanism creates finer-grained tasks, while the outer pipeline is per-

forming 336 iterations and for each of these iterations another pipeline is 

executing which performs a number of iterations between 473 and 65537. 

As a result the total number of tasks for the 3-stage nested pipeline imple-

mentation, if N is the number of the nested pipeline’s iterations, would be: 

  336     ( outer_pipeline_num_stages + inner_pipeline_num_stages × N ) =  

336 × ( 3  +  3 × N ) 

For the 2-stage nested pipeline implementation the number of tasks would 

accordingly be: 

336     (  outer_pipeline_num_stages + inner_pipeline_num_stages   N ) =  

336   ( 2 + 2   N ) 

This is because in the second implementation we have 2 stages in the outer 

pipeline, as well as two stages in the inner pipeline.  

 

Figure 48: Execution time of Swan implementations of Dedup. C.G. is the coarse grained 

implementation. 

  These computations imply that the implementation of the nested 

pipeline that contains two stages instead of three has less task creation so 

the time consumption for dependency tracking is less.  
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Figure 49: Dependency tracking CPU cycles vs computation CPU cycles breakdown 

 

  Figure 49 shows the computation-dependency tracking CPU cycles 

breakdown for 8, 16 and 32 cores, measured for the dedup 2-stage nested 

pipeline implementation (approximately same behavior as the 3-stage pipe-

line implementation). It is observed that as the core count increases the time 

spent in dependency tracking increases. This explains the saturation in per-

formance. In contrast, for the coarse grained implementation, saturation 

point is reached in higher number of cores as long as the elimination of de-

pendencies improves the efficiency of the parallelization. 

  Figure 50 shows the execution time of the best approaches of Swan 

and POSIX, and the TBB version of dedup. TBB lacks performance be-

cause of the nested pipeline that is using, which adds more overhead. 

POSIX pipeline is a simple 5-stage pipeline, which creates fine grained 

chunks of data but even this implementation cannot run efficiently with 

more than 28 concurrent threads on 32 cores. TBB implementation is the 

one with the highest number of tasks, and as we can see this can also be a 

bottleneck comparing to the coarse grained implementation.  

  Figure 51 shows the speedup occurred from the above 

implementations. Swan coarse grained implementation is very sensitive to 
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Figure 50: Comparison of execution time for the best approaches of POSIX and Swan, 

and TBB implementation 

load balance as long as the tasks are coarse grained resulting longer time for 

synchronization or wait conditions between threads. Nevertheless, tasks 

have been reduced so Swan can obtain better performance. Moreover 

performance saturation reaches higher number of cores because of the less 

dependency tracking overhead of this implementation. 

 

Figure 51: Speedup comparison of Swan coarse grained POSIX and TBB versions. 
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  Swan coarse grained implementation achieves the best performance 

compared to the rest versions but the difference between the implementa-

tions is important. Skipping one stage of the benchmark can lead to an un-

fair comparison as long as tasks are of different granularity and computa-

tions are reduced by one pipeline stage. Still this comparison can lead to the 

conclusion that dedup performs better without FragmentRefine stage for 

the native PARSEC input. This behavior may be input dependent or the 

splitting of the chunks does not help parallelism as long as it introduces 

large synchronization overheads from the runtime.  

  Figure 52 shows the speedup occurred from POSIX, TBB and Swan 

2-stage nested pipeline implementations. This implementation of Swan has 

been chosen for comparison because it is similar to the TBB implementation 

and through this graph TBB and Swan can be compared fairly. Swan 

performs as well as TBB, while both saturate for larger than 16 core counts. 

This is due to the fact of the additional overhead of both runtimes for 

dependency tracking as has been illustrated previously. POSIX 

implementation also saturates for higher core counts but performs better as 

long as the irregular pipeline can be handled through queues in a more 

flexible way. Compress stage is called only for the chunks that need to be  

 

Figure 52: Speedup comparison between implementations of same granularity 
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compressed despite of TBB and Swan where the program cannot have a 

conditional pipeline stage. Moreover, there are less synchronization 

overheads due to the fact that in POSIX implementation a nested pipeline is 

not used as FragmentRefine producer stage can be handled with queues. 

  Dedup implementation using POSIX threads is written in 2032 lines 

of code (including the queue and tree implementations for communication 

and reordering of chunks). TBB version has a reduced number of lines of 

code to 1264 lines and Swan implementations need approximately 900 lines 

of code for dedup. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



71 

 

 

Chapter 6  

Conclusions 

6.1  Summary 

  In this thesis we studied how task-dataflow models exploit 

parallelism in pipelined applications. We showed that fine-grained 

parallelism is not always the best option; however it is very important for 

load balancing. In addition, we were confronted to many parallelization 

overheads such as dependence analysis overhead when the program has 

many dependent tasks and we tuned the performance through different 

implementations and parallelization strategies. Through this study we 

concluded that state of the art task dataflow models do not provide the 

appropriate flexibility for parallelizing irregular pipelined workloads. We 

addressed the limitations in programming flexibility and we implemented 

hyperqueues, a programming abstraction of queues. 

  The hyperqueue programming abstraction overcomes the limitations 

of the state of the art task dataflow programming models. Such limitations 

are the presence of a recursive pipeline stage or the presence of a conditional 

pipeline stage. A pipelined application can be implemented with the simple 

interface that hyperqueues provide which assures concurrency and prevents 

common errors that programming with pthreads can cause. Furthermore, 

hyperqueues indicate potential optimization as long as fewer tasks are 

postponed by the use of queues. Hyperqueues can be used as the only 

dependency tracking mechanism in a pipelined application, or better, with 

the coordination of special object data structure. We presented the results of 

this effort in ferret, a benchmark with irregular pipeline parallelism. 
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6.2  Future Work 

  Hyperqueues help the programmer overcome many limitations that 

current programming models have in the construction of irregular pipeline 

parallel applications. One limitation of hyperqueues is that they are not 

applicable through nested parallelism. Although hyperqueues are 

implemented for working in plurality, the task that uses them is spawned 

once and inside its body it cannot fetch new tasks that use a mutual 

hyperqueue. This results to reduced parallelism and load imbalance; as so, 

hyperqueues are better used in combination with objects. Hyperqueues 

abstraction aims to be extended in order to be applicable with nested 

parallelism. 

  Moreover, hyperqueues postpone the execution of new consumer 

tasks which leads to serialization of the consumers of the same queue. We 

aim to revise this and extend the semantics of the hyperqueue to allow the 

concurrent execution of consumers of the same queue without harming the 

correctness of consumption order. 
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