

Computer Science Department

University of Crete

Exploiting Pipelined Parallelism with Task Dataflow

Programming Models

Master’s Thesis

Kallia Chronaki

June 2013

Heraklion, Greece

i

University of Crete

Computer Science Department

Exploiting Pipelined Parallelism with

Task Dataflow Programming Models

Thesis submitted by

Kallia Chronaki

in partial fulfillment of the requirements for the
Master of Science degree in Computer Science

Author:

 Kallia Chronaki

 THESIS APPROVAL

Committee approvals:

 Angelos Bilas
Professor, Thesis Supervisor

 Dimitrios S. Nikolopoulos

Professor, Queen’s University of Belfast

 Manolis G.H. Katevenis

Professor

 Hans Vandierendonck

Professor, Queen’s University of Belfast

Department approval:

 Angelos Bilas
Professor, Director of Graduate Studies

Heraklion, June 2013

iii

Abstract

 Task-based programming models are becoming the most efficient

mechanism to achieve performance and programmability on parallel

applications. However, the construction of parallel pipelined applications

with the use of the state of the art task dataflow programming models still

remains hard.

 In this thesis we designed and implemented hyperqueues, a

programming abstraction of queues that allows different pipeline stages of a

parallel application to exchange data with flexibility. Hyperqueues are types

of Cilk++ hyperobjects that allow different code paths in a multi-threaded

program to maintain coherent local views of the same shared variable. Our

design enables shared concurrent views among threads and guarantees the

correct execution path by labeling the access type of each thread. We define

the semantics of this programming abstraction and describe its

implementation on a work stealing Cilk-like scheduler. The main

contribution of hyperqueues is the abstraction they offer in the construction

of parallel irregular pipelines. We performed an experimental evaluation on

the PARSEC benchmarks that can be expressed with pipeline parallelism

and we find that hyperqueues overcome the programmability limitations of

the state-of-the-art task dataflow models while they achieve performance

better than POSIX threads, by a factor of 1.85×, and same as Intel’s

Threading Building Blocks, with 50% and 10% less code effort (lines of

code) respectively. The improvement of hyperqueues on Swan scheduler is

demonstrated by a factor of 2.02× over the baseline.

Supervisor professor: Angelos Bilas

v

Περίληψη

 Τα προγραμματιστικά μοντέλα δημιουργίας εργασιών τείνουν να είναι

ο αποδοτικότερος μηχανισμός για την καλή επίδοση καθώς και για την

προγραμματιστική ευκολία των εφαρμογών. Παρ’όλα αυτά, η κατασκευή

παράλληλων εφαρμογών με ομοχειρία, χρησιμοποιώντας προγραμματιστικά

μοντέλα δημιουργίας εργασιών, παραμένει μια δύσκολη διαδικασία.

 Σε αυτή την εργασία σχεδιάσαμε και υλοποιήσαμε τα hyperqueues,

έναν αφηρημένο προγραμματιστικό μηχανισμό, που επιτρέπει στα διαφορετικά

στάδια της εφαρμογής να ανταλλάσουν μεταξύ τους δεδομένα με ευκολία. Τα

hyperqueues είναι τύποι Cilk++ hyperobjects τα οποία επιτρέπουν σε

διαφορετικά κομμάτια κώδικα ενός παράλληλου πρόγραμματος να

διαχειρίζονται τοπικά τις κοινόχρηστές τους μεταβλητές. Ο σχεδιασμός μας,

ενεργοποιεί κοινά, συνεπή και τοπικά δείγματα μεταξύ των νημάτων και

εγκυάται τη σωστή σειρά εκτέλεσης του προγράμματος χρησιμοποιώντας

ανάθεση ετικετών ανάλογα με τον τύπο πρόσβασης του κάθε νήματος.

Ορίζουμε τη σημασιολογία αυτού του αφηρημένου μοντέλου και

περιγράφουμε την υλοποίησή του σε ένα προγραμματιστικό μοντέλο τύπου

Cilk++. Η κύρια συνεισφορά των hyperqueues είναι η αφηρημένη διεπαφή

που προσφέρουν στην κατασκευή παράλληλων εφαρμογών με ομοχειρία. Η

πειραματική αξιολόγηση έγινε στο υποσύνολο των προγραμμάτων από την

σουίτα εφαρμογών PARSEC τα οποία μπορούν να εκφραστούν με παράλληλη

ομοχειρία. Τα αποτελέσματα δείχουν ότι τα hyperqueues λύνουν τους

προγραμματιστικούς περιορισμούς των εξελισσόμενων προγραμματιστικών

μοντέλων δημιουργίας εργασιών και επιτυγχάνουν επίδοση καλύτερη από αυτή

των POSIX threads κατά συντελεστή 1.85×, και ίδια με αυτή του

προγραμματιστικού μοντέλου ΤΒΒ με 50% και 10% λιγότερη προσπάθεια (σε

γραμμές κώδικα) αντίστοιχα. Η βελτιωση στο προγραμματιστικό μοντέλο

Swan με την προσθήκη των hyperqueues εκφράζεται κατά συντελεστή 2.02×.

 Επόπτης καθηγητής: Άγγελος Μπίλας

vii

Acknowledgements

 First and foremost I would like to thank my advisor Dimitris

Nikolopoulos and co-advisor Hans Vandierendonck for their patient

guidance throughout this work. Their valuable insights and willingness to

help made this work possible even from a long distance.

 I would like to express my warmest thanks to the CARV Laboratory

of the ICS-FORTH and all its members that made this work a great

experience: Polyvios Pratikakis, Chrysti Symeonidoy, Apostolis Glenis,

Alexandros Labrineas, Maria Chalkiadaki, Ioannis Manousakis, Michail

Alvanos, Markos Fountoulakis, Vassilis Papaefstathiou and many more. I

feel grateful to my friends Iraklis, Olga, Galateia, Amalia, Argiro, Viola for

their support and to Giorgos for his patience and encouragement during the

endless skype calls.

 Last but not least, I wish to thank my family, my parents Ioanna and

David and my sister Deppy for their support and strength they provided me

with.

 This work was carried with the financial and technical support from

ICS-FORTH and the European Commission in the context of the TEXT

project (FP7-261580).

ix

Contents

Chapter 1 Introduction ... 1

1.1 Thesis contributions... 3

1.2 Thesis Organization ... 5

Chapter 2 Related Work ... 7

Chapter 3 Background .. 11

3.1 Task dataflow programming models ... 11

3.2 Threading Building Blocks .. 12

3.2.1 Runtime... 12

3.2.2 Programming Model and Pipeline Parallelism.. 14

3.3 Swan Programming Model ... 14

3.3.1 Runtime... 14

3.3.2 Programming Model ... 15

3.3.3 Pipeline Parallelism ... 16

Chapter 4 Hyperqueue Extension for Irregular Pipeline Parallelism 21

4.1 Motivation ... 21

4.2 Design .. 24

4.2.1 Interface .. 25

4.2.2 Internal data structures ... 26

4.2.3 Use of the internal data structures .. 27

4.2.4 Versioning .. 32

4.2.5 Dependence Analysis .. 33

Chapter 5 Experimental Evaluation .. 35

5.1 Bodytrack ... 36

5.1.1 Parallelization ... 37

5.1.2 Evaluation... 38

5.2 Ferret .. 40

5.2.1 Parallelization ... 42

5.2.2 Evaluation... 48

5.3 Dedup ... 53

5.3.1 Parallelization ... 54

5.3.2 Evaluation... 64

Chapter 6 Conclusions ... 71

6.1 Summary .. 71

6.2 Future Work .. 72

xi

List of Figures

1. Structure of pipelined parallelism. .. 2

2. TBB pipeline construction .. 13

3. Square matrix multiplication in Swan with enforcement of task dependencies. 16

4. Pipelined program with 3 stages in Swan .. 17

5. Pipelined program with a producer stage. .. 18

6. Pipelined program with a conditional executed stage. .. 19

7. Pipeline structure with one producer task. ... 22

8. Pipeline structure with one conditional stage (Task2). ... 22

9. Single producer - single consumer example with queues. .. 24

10. Internal hyperqueue structure design. Shapes numbered 1, 2, 3 and 4 are queue segments

containing one fix sized queue each. ... 26

11. Use cases of hyperqueues, assuming one queue_t in use. .. 27

12. Use case of hyperqueues with one recursive producer ... 29

13. Example - code of one recursive and one normal producer with one consumer 31

14. Two unrolled recursions of the code in Figure 13 and how this works in queue structure. 31

15. Queue arguments recognition and effect on Swan scheduler ... 38

16. Output of the bodytrack benchmark. .. 36

17. Iterations of two pipeline stages of bodytrack ... 36

18. Bodytrack stages. Arrows show dependencies. .. 36

19. Execution time of bodytrack, TBB, pthreads and Swan implementations. 37

20. Speedup of Swan, TBB and POSIX for bodytrack. Specific core counts. 38

21. Speedup of Swan TBB and POSIX. .. 38

22. Task-graph for POSIX ferret implementation. Arrows show dependencies. Gray dots

indicate the number of sw threads that execute each stage. .. 39

23. Stage breakdown of ferret ... 43

24. Ferret 5-stage pipeline. Omitting input stage. Arrows show dependencies. 42

25. Code for ferret 5-stage pipeline with Swan .. 43

26. Taskgraph of 2-stage pipeline of ferret ... 43

27. Code for ferret 2-stage pipeline .. 44

28. Implementation of Ferret using hyperqueues. ... 45

29. Dashed arrow: hyperqueue; solid arrows: dependencies tracked with objects. 45

30. Ferret POSIX execution time with multiple numbers of threads per pool. 46

31. Ferret execution time of Swan, TBB and POSIX implementations. 47

32. Ferret speedup of Swan, TBB and POSIX implementations. ... 48

33. Execution times of Swan vs TBB vs POSIX. Specific core counts. .. 48

34. Load balance comparison between TBB and Swan with objects for Ferret benchmark 52

35. Ferret execution time of Swan implementations (objects only or with hyperqueues),

TBB and POSIX. .. 52

36. Speedup comparison Swan vs TBB vs POSIX vs Swan with queues 53

37. Dedup task-graph of pthreads implementation. Gray dots are threads per pool. Arrows

show dependence/data exchange. ... 52

38. Dedup graph for stage breakdown in seconds .. 55

39. Task graph for Dedup simple 5-stage pipeline. Dashed arrows indicate dependency

on list-objects .. 56

40. Code of dedup simple 5 stage pipeline. .. 56

41. (a): Outer dedup pipeline: same number of iterations as the number of chunks after

Fragment (336 iterations). (b): Nested pipeline: number of iterations equals to the

number of chunks that FragmentRefine produces (473 – 65537 iterations). 58

42. Code for dedup nested pipeline implementation. ... 59

43. Task-graph of dedup 4-stage coarse-grained implementation... 60

44. Code for dedup 4-stage coarse-grained implementation. ... 60

45. 2-stage nested Dedup pipeline. (a): Outer pipeline, first stage includes Fragment,

FragmentRefine, and Deduplicate stages merged in one. Second is the nested pipeline

shown in b. (b): Nested 2-stage pipeline with Compress and Out stages. 61

46. Code for Dedup 2-stage nested pipeline implementation ... 62

47. Dedup POSIX execution time with multiple number of threads per pool............................. 63

48. Execution time of Swan implementations of Dedup. C.G. is the coarse grained

implementation. .. 64

49. Dependency tracking CPU cycles vs computation CPU cycles breakdown 65

50. Comparison of execution time for the best approaches of POSIX and Swan, and

TBB implementation .. 66

51. Speedup comparison of Swan coarse grained POSIX and TBB versions. 66

52.Speedup comparison between implementations of same granularity 67

xiii

List of Tables

1. Bodytrack number of iterations and stages time breakdown... 35

2. The challenge faced in Ferret's parallelization was the recursive pipeline stage. 40

3. Ferret number of iterations and stages time breakdown. ... 41

4. Comparison of Swan, POSIX and TBB execution times in seconds. Last two

columns show the relative overhead of Swan (in seconds) compared to the

 other models. .. 49

5. Challenges faced in dedup, their solutions, and the implementations each solution

appears .. 53

6. Dedup number of iterations and stages time breakdown. N depends on each

of the 336 coarse-grained chunks and varies between 473 and 65537. Compress

is called 168364 times in total and, Deduplicate and Output, 369950 times. 54

1

Chapter 1

Introduction

 This thesis focuses on pipeline parallelism, which is one type of task

parallelism. In this parallel programming pattern the application is divided

into stages where each stage is a code region that contains a subset of the

application’s computations. Each stage may contain other kinds of parallel-

ism, e.g. data, task parallelism or nested pipeline parallelism. Pipeline paral-

lelism exploits both data and task parallelism and is prevalent in many

emerging applications; for instance image processing applications, data

compression etc. Using parallel pipelining is beneficial both for parallelism

and program order. On the other hand, applications parallelized using the

pipeline model are very sensitive to load balancing: for best efficiency pipe-

lines must prevent resources from being idle, thus all stages must be pro-

cessing at all times. To achieve this, the programmer must either partition

the work into perfectly balanced work items that flow through the pipeline

(using Pthreads) or use a programming model such as Cilk++ [12], [13],

TBB [14], or StarPU [11] that dynamically shifts the busiest pipeline stages

to the idle processors, through work stealing. Due to the structure of a pipe-

lined application, shown in Figure 1, the parallelization of such a program

introduces many data dependencies between stages. Thus, the dependency

tracking mechanism of programming models is very important in pipeline

parallelism. Swan programming model [7] is a new task dataflow model with

work stealing that will be studied in this work, able to track dependencies

and easy to use.

2 Chapter 1. Introduction

Task1 Task2 TaskN…
Input i Output i

Task1 Task2 TaskN…
Input i+1 Output i+1

Task1 Task2 TaskN…
Input i+2 Output i+2

Ti
m

e
 s

e
q

u
e

n
ce

Data
dependency

Data
dependency

Data
dependency

Self dependency Self dependency

Self dependency Self dependency

...

...

...

Figure 1: Structure of pipelined parallelism.

 The typical way to parallelize pipelined applications is by using the

low-level structures of a threading library like Pthreads. This could have bad

consequences on understanding and maintain the code as well as on achiev-

ing efficiency in terms of load balancing. It is commonly accepted that pro-

gramming with pthreads is a tedious chore and error prone. With pthreads,

the programmer is responsible for detecting the data races, critical sections,

dependencies between tasks, and concurrency of the program which makes

it a very hazardous way of parallelization. Moreover, load balancing would

be very hard to achieve as long as pthreads do not provide a work stealing

mechanism so the threads executing the heavier-weight stages would be

more loaded than the threads executing the lighter weight stages of the

pipeline. Technically, it is almost impossible for most applications to create

perfectly loaded pipeline stages that could be balanced through the pipeline

without the need of work stealing.

 Providing a high-level pipeline abstraction as in Intel’s Threading

Building Blocks (TBB) [14] programming model can assist programmers to

safely develop parallel pipelines. TBB is a parallel programming library de-

veloped by Intel Corporation. It offers an abstract set of parallel primitives

to parallelize the application by taking advantage of the available hardware

resources. TBB supports the task based parallelism to parallelize applica-

 3

tions; it replaces the low level threading libraries (pthreads), and simultane-

ously hides the implementation of the threading mechanisms for perfor-

mance and scalability. Moreover, TBB maintains pipeline parallelism by

providing a special pipeline class which the programmer has to use in order

to create a parallel pipeline. Each stage of the pipeline has to be rewritten as

a C++ class and then all stages are joined and the pipeline runs automatical-

ly. However, this indicates again a significant amount of effort from the

programmer, compared to the way that Swan introduces pipeline parallel-

ism. With TBB it is hard to express irregular pipelines or pipelines with var-

iable input-output rates per stage. It is not applicable to bypass a pipeline

stage with TBB and it can be hard to express nested pipelines in order to

construct an irregular parallel pipeline. Another observed limitation of TBB

is that it cannot support the construction of a recursive pipeline stage; each

stage has to return one data item for the next stage in the pipeline.

 Swan is a new task based programming model that also simplifies

the development of parallel programs by using its dependency tracking

mechanisms that dynamically detect and enforce dependencies between

tasks. Swan offers a simplified API that allows programmer to freely select

the appropriate programming pattern for parallelizing an application. Swan

also provides easy ways to implement software of parallel pipelines. It intro-

duces objects, a special data type of Swan that can handle dependencies be-

tween tasks. This data type is used as task argument, when an argument is

dependent on a prior task or if it is the input of a future task. Objects sup-

port versions of themselves, meaning that they can keep all the data modifi-

cations and release the correct version to the next task when they are ready.

The programmer has to define access mode labels (in, out, inout) for each

argument of the pipeline stages in order to track their dependencies.

1.1 Thesis contributions

 Swan and TBB programming models may have some limitations on

the construction of irregular and variable rate parallel pipelines. For example

there are cases where particular stages are not executed for each data item of

4 Chapter 1. Introduction

the pipeline but their execution may be under conditions, or in an irregular

order. Second, there exists a serious limitation on having a stage that may

produce more than one data per call in a recursive or iterative way. In

Swan’s pipeline, that uses versioned object special data structures, each

spawned stage returns only one piece of data. Some of the above limitations

could be bypassed in Swan and TBB implementations; nonetheless, we ad-

dress these problems, and create a new special data structure for Swan, that

can replace objects under certain circumstances, able to solve all of the

above.

 In this thesis we present the implementation of a new Swan’s fea-

ture called hyperqueue. Hyperqueues are used like objects and they also

keep versions of their stored data. One benefit from this feature is that pro-

grammer can define a pipeline with even higher abstraction and can be able

to use special queues that are concurrent and can track dependencies be-

tween tasks. Moreover, hyperqueues are flexible when the application’s

pipeline is not regular as long as, the programmer can add as many elements

as needed in each queue. This way data items can easily bypass a specific

pipeline stage. Finally, hyperqueues can be used with recursive functions,

where each function call produces one element in the queue. Queues also

have access mode labels (push, pop) for each argument they appear (such as

objects), which are defined by the programmer in order to define dependen-

cies. The following sections analyze thoroughly how hyperqueues are im-

plemented and the ways they can be used by the programmer with specific

examples.

 The next part of this work consists of the implementation of three

of the PARSEC benchmarks [1], bodytrack, ferret and dedup, using Swan

programming model and their experimental evaluation. These benchmarks

are examples of applications that can use pipeline parallelism. The bodytrack

computer vision application recognizes the pose of a human body from an

image sequence of multiple cameras. This is a two-stage pipelined bench-

mark, where each stage contains multiple tasks from multiple parallelized

 5

loops. Ferret is used for content-based similarity search in a set of images.

Ferret consists of a six-stage fine grained pipeline with multiple dependen-

cies. We parallelize ferret using objects and hyperqueues, and present how

the new Swan feature can solve limitations on ferret benchmark. Finally

dedup kernel compresses a data stream with a combination of global com-

pression and local compression in order to achieve high compression ratios.

Dedup is implemented using pthreads in a five-stage pipeline. In the trans-

formation of these benchmarks, Swan’s special data types were used in or-

der to track dependencies.

 The evaluation of the above implementations is performed on a 32-

core AMD Opteron processor. Swan implementations are compared against

the PARSEC built-in pthreads implementations for all benchmarks, as well

as built-in TBB implementation for bodytrack and, ferret and Dedup, TBB

implementations from [3].

1.2 Thesis Organization

 The rest of this thesis is organized as follows: Chapter 2 refers to re-

lated work. Chapter 3 presents the background that this work is based on

and includes a description of task based programming models, Swan pro-

gramming model and how programmer can use it, and an Intel’s Threading

Building Blocks description. Chapter 4 presents the hyperqueue feature in-

troduced in Swan, how it is implemented and its related mechanisms as well

as example programs using hyperqueues. Chapter 5 contains detailed expla-

nations of the applications that we parallelize with Swan, the parallelization

strategies that we follow and their experimental evaluation in comparison

with TBB and pthreads versions of the benchmarks. Finally, Chapter 6

summarizes the work of this thesis and draws conclusions and future work.

6

7

Chapter 2

Related Work

 The work of this master thesis covers an amount of two topics in

HPC. These contain software parallel pipelining and task dataflow parallel

programming models. PARSEC Benchmark Suite is used for the

experimental evaluation. Significant amount of research has been made on

these fields.

 Pipeline Parallelism: Pipelining is a parallel programming pattern

that allows a program to execute in a decomposed fashion. A pipelined

application splits its work into units of code (pipeline stages) and executes

them concurrently on multiprocessors or multiple CPU cores. Each pipeline

stage takes input from its prior pipeline stage, and produces data for the next

pipeline stage.

 The PARSEC pipelined benchmarks used in this work were first

characterized by Bienia and Li [1], where they proposed bodytrack, ferret,

dedup and x264 workloads and analyzed them in a matter of software

pipelining.

 Thies et al. [4] was the first that proposed an annotation-based

method for automatically detecting and parallelizing pipeline parallelism in C

programs. Rul et al. [5] improved Thies et al. [4] work by removing the

annotations. Both tools are extremely time and memory consuming even on

small programs. Their characteristic is to detect templates of pipeline

parallelism based on data access. It is hard to examine the parallelized

program because the transformed program is in binary format. Despite their

drawbacks these tools are very useful starting points in order to detect the

pipeline parallelism.

8 Chapter 2. Related Work

 Parallel-Stage Decoupled Software Pipelining (PS-DSP) technique

was exploited by Raman et al. [19]. This technique relies on identifying with

the help of some small programmer interventions, the pipeline stages, and

also on partitioning the threads between the different parallel stages. The

thread binding in stages is static. The drawback of both approaches is that

they suffer from load imbalance, making the scalability of the application

poor.

 Stream program characterization in terms of pipeline parallelism was

also studied by Thies et al. [18]. Barriers to parallelization, scheduling

characteristics and programming styles are the three main aspects that

addresses in this work. Even though the language used is the StreamIt

language the findings derived by this work have future importance on

designing new languages and libraries.

 Navarro et al. [2] also used the PARSEC suite and especially ferret

and dedup in order to exploit their pipeline parallelism. This work has as

main subject to model the performance differences of two dominant

programming models, the Pthreads and TBB, by creating analytical models

of parallel pipelines based on queuing theory. Furthermore, Reed et al. [3]

used TBB to transform ferret, dedup and x264.

 Parallel Programming models: Swan [7] is a task based language

that detects inter-task dependencies and an extension to the Cilk scheduler.

Other languages and schedulers that have been described in the literature are

Supermatrix [12], StarPU, SMPSS [16] and CellSS. These languages are able

to detect dependencies between tasks dynamically by tracking the memory

accesses that each task makes. OpenCL and StarPU allow name based

dependency tracking. By that, programmer is allowed to define dependencies

between tasks and not care about their memory side-effects.

 SMPSS stores object metadata in a hash table that is indexed with

the address of the object. This results to an abstract way of metadata lookup

and renaming but comes at a cost of additional overhead. Unlike this,

programmer has to register the objects used in dependency tracking for

StarPU. StarPU runtime system creates a descriptor with the object

 9

metadata, which benefits in comparison to SMPSS approach because the

hash table lookup overhead is removed. In Swan each object and its

metadata are linked in one data structure retrieving the benefits of StarPU in

a better abstraction. Neither SMPSS nor StarPU provide interface for

irregular and variable rate pipeline parallelism.

 SMPSS stores object metadata in a hash table that is indexed with

the address of the object. This results to an abstract way of metadata lookup

and renaming but comes at a cost of additional overhead. Unlike this,

programmer has to register the objects used in dependency tracking for

StarPU. StarPU runtime system creates a descriptor with the object

metadata, which benefits in comparison to SMPSS approach because the

hash table lookup overhead is removed. In Swan each object and its

metadata are linked in one data structure retrieving the benefits of StarPU in

a better abstraction. Neither SMPSS nor StarPU provide interface for

irregular and variable rate pipeline parallelism.

 Benchmark Suite: PARSEC [1] benchmark suite against other

workloads are contains pipelined applications. There have been numerous

benchmark suites developed, but none of them included parallel pipelined

implementations.

 SPLASH-2 is a suite composed for multi-threaded applications and

hence seems to be an ideal candidate to measure performance of Chip

Multiprocessors. However, its program collection is skewed towards HPC

and graphics programs. It thus does not include parallelization models such

as the pipeline model which are used in other application areas.

SPEC CPU2006 and SPEC OMP2001 are two of the largest and most

significant collections of benchmarks. They provide a snapshot of current

scientific and engineering applications. Computer architecture research,

however, commonly focuses on the near future and should thus also

consider emerging applications. Workloads such as systems programs and

parallelization models which employ the producer-consumer model are not

included. SPEC CPU2006 is furthermore a suite of serial programs that is

not intended for studies of parallel machines.

10

11

Chapter 3

Background

3.1 Task dataflow programming models

 In this thesis we investigate how task dataflow programming models

enable accessible and efficient parallelization of applications with mixed pipe-

line and task/data parallelism. Task based languages facilitate the construction

of parallel programs by offering a flexible interface that lets the programmer to

freely define code regions as tasks that will execute in parallel. Moreover, task

based languages develop a runtime scheduler that is aware of dependencies be-

tween tasks. The way this is handled, is by labeling each argument with a

memory access mode that describes the side-effects of the present task in its

arguments (input, output or input/output labels). Input access mode label indi-

cates a read-only argument, output is for the write-only arguments and in-

put/output is used for read and write access. The scheduler, according to the

access mode labels, then can track dependencies between tasks and also change

the execution order of the tasks by respecting program order and their de-

pendencies.

 The dynamic dependence analysis mechanism that task dataflow lan-

guages provide, in combination with the renaming of memory objects can in-

crease parallelism. State of the art task dataflow languages are investigated

mostly in the area of high performance computing. Task dataflow languages

are beneficial for benchmarks that have irregular parallelism such as Cholesky

decomposition or applications with many iterative dependencies such as h264,

ferret and dedup that can be parallelized using the pipeline model.

 On the other hand, task dataflow languages often exploit a single level

12 Chapter 4. Hyperqueue Extension

of parallelism meaning that the master thread spawns tasks but the generated

tasks cannot set up the execution of new tasks. As a result, these task dataflow

languages are not compatible with Cilk-like languages that support recursive

fork/join. However the efficient parallelization of many algorithms is well

known and in such an algorithm, dependency tracking would be pure over-

head.

3.2 Threading Building Blocks

 A recently introduced parallelization library is the Intel Threading

Building Blocks (TBB) runtime library [14], [17]. TBB is a task dataflow

parallel language based on the C++ language and provides an API for

expressing parallelism in an abstract way. TBB uses work stealing which

helps on improving load balance between cores, thus improving

performance scalability. Parallel runtime libraries like TBB make it easier for

the programmer to produce parallel software but, on the other hand, they

introduce overheads from the dynamic management of parallelism [17].

These parallelization overheads are often implied by the instructions’

increment and by the memory latency costs. With the increasing

improvement of CMPs’ resources, their efficient utilization becomes more

and more challenging. In most cases this can be addressed by fine-grained

parallelism which takes advantage of higher amounts of resources. However,

fine-grained parallelism may introduce higher parallelization overheads.

3.2.1 Runtime

 Being a task based library, TBB benefits from the use of tasks for

two reasons: first is that the creation and destruction of the tasks is easier

than threads, thus tasks can have shorter execution bodies, and second is

that tasks reduce load imbalance by being dynamically assigned to the

available resources. In applications written with the use of TBB tasks are

declared through C++ classes that inherit the attributes of the tbb:task

class. The special tbb:task class provides the virtual method execute(),

which the programmer has to overload with the body of the task. Inside

TBB runtime the declared task is ready to be launched for execution. The

13

common way for spawning a task in TBB is by using the method spawn(task

*t) and provide as argument the new task to be launched. The runtime

library schedules the task and executes it by calling the corresponding

execute() method of the task. Each created task is allowed to create and

spawn new tasks being aware of the hierarchical dependencies that may

occur.

class stage1 : public tbb::filter {

 public:

 void* operator() (void* a) const {

 if(i<N) return (void*)&a;

 else return NULL;

 }

}

class stage2 : public tbb::filter {

 public:

 void* operator() (void* a) const {

 int b = (int(float)a);

 return (void*)b;

 }

}

class stage3 : public tbb::filter {

 public:

 void* operator() (void* c) const {

 int* temp = (int*)c;

 *temp++;

 *c = *temp;

 return (void*)c;

 }

}

void pipeline() {

 stage1 s1;

 stage2 s2;

 stage3 s3;

 tbb::pipeline run_pipe;

 run_pipe.add_filter(s1);

 run_pipe.add_filter(s2);

 run_pipe.add_filter(s3);

 run_pipe.run();

 run_pipe.clear();

}

Figure 2: TBB pipeline construction

14 Chapter 4. Hyperqueue Extension

3.2.2 Programming Model and Pipeline Parallelism

 Using TBB, the programmer is allowed to generate complex

execution task graphs that support their mutual dependencies. The

definition and management of dependencies can become a tedious process,

and for that reason TBB provides an API through C++ template classes

that describe a set of common parallel patterns such as parallel loops and

reductions. Such template classes are the tbb:pipeline and tbb:filter

templates that offer to the programmer the ability to construct parallel

pipelines. By defining a class that inherits from the tbb:filter template

class and overloading the operator() programmer can declare one pipeline

stage. The method tbb:pipeline:add_filter() adds the stage to the

pipeline, and by executing pipeline.run() the parallel pipeline runs while

the scheduler is aware of dependencies between the pipeline stages. Figure 2

shows an example of a parallel pipeline with three pipeline stages, executing

in N iterations using TBB. Pipeline stops execution at the time that one of

the stages returns a NULL token.

3.3 Swan Programming Model

 Swan [7] is a parallel Cilk-like programming language that supports

task dependency tracking and recursive fork/join. Using Swan the

programmer can easily express parallelism using the appropriate

parallelization pattern, depending on the algorithm of the application.

Furthermore, Swan supports parallel pipeline construction, a programming

pattern that is present in many emerging workloads [1] and is studied in this

thesis. Cilk partially supports parallel pipelines construction, while TBB

offers the programmer an API for easiness in parallel pipelines.

3.3.1 Runtime

 Swan’s scheduling policy performs work-first scheduling and also sup-

ports dependency tracking. The provably-good properties of the Cilk scheduler

are violated in Swan’s scheduler. Despite this, Swan mimics the good behavior

of Cilk scheduler for algorithms with independent tasks or for serial execution

of tasks [7].

15

 Versioned object (object_t) is a special Swan data structure, which is

a type of hyperobject [9], and is used from Swan to track dependencies be-

tween tasks. Versioned objects keep track of the necessary meta-data in order

to investigate if dependencies are met. Moreover, versioned objects are being

renamed so that WAW and WAR hazards are being resolved and as a result

parallelism is increased. Finally, versioned objects can allow versioning and en-

able dependency tracking of every possible user-defined data structure.

 The mechanism used in versioned objects for checking the readiness of

data uses tickets. The idea is similar to ticket locks. The so called ticket metada-

ta are able to enforce the program order of the serial version of the application.

 Performance of Swan has been investigated in [7] where is proven that

Swan is as efficient as Cilk and more efficient than SMPSs [16]. In this thesis

Swan will be compared to TBB.

3.3.2 Programming Model

 Swan contains parallel control statements as in Cilk: run initializes

the scheduler and starts the parallel execution; spawn statement allows a

procedure call to proceed in parallel with the caller. Statement ssync stalls

the execution of a procedure until the completion of all spawned procedures

[7]. Statements call and leaf_call express that a procedure call proceeds

sequentially with the caller, making a simple function call. The difference

between these two statements is that when using leaf_call the scheduler

considers this function call as a leaf function call so it stops tracking the

program, thus inside a leaf function the programmer cannot use spawn, call

or other Swan features. Otherwise, inside a call-ed function, programmer

can spawn, call, leaf_call, use dependency tracking etc. Figure 3

illustrates programming in Swan.

 The special Swan data types indep, outdep and inoutdep enable

dependency tracking on tasks. Tasks that take arguments of these types are

forced to wait for their preceding tasks to finish or start execution if their

dependencies are met. The inner structure of these types contains the

16 Chapter 4. Hyperqueue Extension

aforementioned versioned objects and gives them the appropriate memory

access mode label (in, out, in/out). These types are only allowed as task

arguments.

typedef float (*block_t)[16]; //16x16 tile

typedef object_t<floag[16][16]> object_block_t;

typedef indep<float[16][16]> in_block_t;

typedef inoutdep<float[16][16]> inout_block_t;

void mul_add(in_block_t A, in_block_t B, inout_block_t C) {

 block_t a = (block_t)A; // Recover pointers

 block_t b = (block_t)B; // to the raw data

 block_t c = (block_t)C; // from the versioned objects

 // ... serial implementation on a 16x16 tile ...

}

void matmul(object_block_t * A, object_block_t * B,

 object_block_t * C, unsigned n) {

 for(unsigned i = 0; i<n; ++i) {

 for(unsigned j = 0; j<n ++j) {

 for(unsigned k = 0; k<n; ++k) {

 spawn(mul_add, (in_block_t)A[i*n+j],

 (in_block_t)B[j*n+k],

 (inout_block_t)C[i*n+k]);

 }

 }

 }

 ssync();

}

Figure 3: Square matrix multiplication in Swan with enforcement of task dependencies.

 In a task spawn, Swan’s scheduler recognizes the task dependencies

by the arguments with a memory access mode label. If no such label is

defined, scheduler spawns the task unconditionally; otherwise it postpones

the execution of tasks that have arguments with input mode and forces the

execution of tasks that have arguments with output mode. The postponed

tasks are stored in a queue with pending tasks. Swan’s ssync statement

mimics the behavior of Cilk’s sync, meaning that the execution of the

procedure is postponed until all prior tasks have finished execution.

3.3.3 Pipeline Parallelism

 The use of Swan programming language can facilitate the

construction of a parallel pipelined benchmark. A pipelined benchmark can

easily be expressed with Swan’s statements and data types. Programmer has

to consider the tasks of the workload, what each task produces and what each

task consumes, and accordingly define the proper access mode labels. Then

17

dependencies between tasks are automatically identified by the runtime

system. After this step, the parallelization of a simple pipelined benchmark is

a straightforward procedure with Swan.

void stage1(int i, outdep<float> a) {

 a = (float)i;

}

void stage2(indep<float> a, outdep<int> b) {

 b = (int(float)a);

}

void stage3(inoutdep<int> c) {

 int temp = (int)c;

 temp++;

 c = temp;

}

void pipeline() {

 object_t<float> a;

 object_t<int> b;

 for(int i = 0; i<N; i++) {

 spawn(stage1, i, (outdep<float>)a);

 spawn(stage2, (indep<float>)a,

 (outdep<int>)b);

 spawn(stage3, (inoutdep<int>)b);

 }

 ssync();

}

Figure 4: Pipelined program with 3 stages in Swan

 Figure 4 demonstrates a simple example of a pipelined program

parallelized with Swan that has 3 pipeline stages, indicating how pipeline

stages are spawned with Swan. stage1 in Figure 3 has an out dependency

for object a while stage2 has an input dependency of the same object. This

means that stage2 will postpone until variable a has been processed by the

first stage. The same happens for variable b which has output dependency

for stage2 and input/output dependency for stage3. stage3 will be

postponed as well until variable b is produced from stage2. The program in

Figure 2 is a simplified pipeline with light-weight stages but, depending on

the algorithm, each stage may contain heavy computations on input or

output data.

 The code format of Swan’s pipeline parallelism is generic and

flexible compared to TBB’s code format which requires the declaration of

template classes that override TBB classes. However, both approaches lack

in flexibility in terms of data exchange and stage execution. Figure 5 shows

18 Chapter 4. Hyperqueue Extension

the same example as in Figure 4 slightly transformed so that it contains one

producer stage (stage1) which, in one function call, is generating all its data.

In this example instead of repeatedly spawning this stage, there is a for-loop

void stage1(int i, outdep<float> a) {

 for(int i = 0; i<N; i++) {

 a = (float)i;

 }

}

void stage2(indep<float> a, outdep<int> b) {

 b = (int(float)a);

}

void stage3(inoutdep<int> c) {

 int temp = (int)c;

 temp++;

 c = temp;

}

void pipeline() {

 object_t<float> a;

 object_t<int> b;

 spawn(stage1, i, (outdep<float>)a);

 for(int i = 0; i<N; i++) {

 spawn(stage2, (indep<float>)a,

 (outdep<int>)b);

 spawn(stage3, (inoutdep<int>)b);

 }

 ssync();

}

Figure 5: Pipelined program with a producer stage.

inside the stage which controls the number of data items of production. This

example is not applicable in Swan and will not have the desired results. The

outdep will not keep the versions of the data that will be written in it during

the execution of stage1, but instead, only one value will be returned as

input for stage2, and this will be the last value. This problem can appear

also in the case where stage1 is a recursive function; a recursive function

would change the content of the Swan object and when stage1 finishes, the

last value will be kept in the outdep object.

19

void stage1(int i, outdep<float> a) {

 a = (float)i;

}

void stage2(indep<float> a, outdep<int> b) {

 b = (int(float)a);

}

void stage3(inoutdep<int> c) {

 int temp = (int)c;

 temp++;

 c = temp;

}

void pipeline() {

 object_t<float> a;

 object_t<int> b;

 for(int i = 0; i<N; i++) {

 spawn(stage1, i, (outdep<float>)a);

 if(i!=5)

 spawn(stage2, (indep<float>)a,

 (outdep<int>)b);

 spawn(stage3, (inoutdep<int>)b);

 }

 ssync();

}

Figure 6: Pipelined program with a conditional executed stage.

 Figure 6 shows the same pipeline of Figure 4 with a condition in the

execution of one pipeline stage. This is also not applicable in Swan, because

in the case that stage2 is not executed due to the condition, the

dependencies will be harmed. stage3 will not start execution at that point

as long as the dependency on variable b will not be fulfilled.

20

21

Chapter 4

Hyperqueue Extension for

Irregular Pipeline Parallelism

4.1 Motivation

 Swan is a viable approach for parallelizing pipelined workloads like

PARSEC [1], however it has limitations when the workloads need variable

rate or irregular pipeline parallelism. The use of Swan’s objects for

dependency tracking requires the spawning of the tasks inside a loop, where

each task can produce or consume object data. Figure 2 is an example of the

loop that spawns the pipeline stages using objects. Each spawn in this loop

can produce or consume as many data items, as the number of object

arguments of this stage. For example if there is one outdep declared, then

the spawn of this stage, produces one data unit for this outdep; if there is

one indep, then the corresponding stage consumes one data unit. Inside the

loop, there is plurality of this mechanism. Through this usage, one stage

cannot produce many data units. Under certain circumstances in an irregular

pipeline a stage may need to produce many data units instead of only one.

This is the first limitation that objects insert to the parallelization of pipelines.

A recursive pipeline stage that reads a directory (which is a procedure that

cannot be split through iterative function calls) will never end up to be a

Swan’s pipeline stage with object-dependencies. In general a stage that

produces or consumes data inside a loop cannot be a part of a pipeline with

objects. All stages have to contain code that affects or prepares one data unit

instead of contain a loop that can affect many data units. Figure 7 shows the

22 Chapter 4. Hyperqueue Extension

described situation. In this example the first stage (Task1) is producing all the

data need to be processed and can be either iterative producer or recursive

producer. Then all tasks that are executing the second stage of the pipeline

(Task2) are retrieving information from the producer stage. By producing one

data item per call this structure is not possible.

Task1 Task2 TaskN…
Input Output i

Task2 TaskN…
Output i+1

Task2 TaskN…
Output i+2

Ti
m

e
se

q
u

en
ce

...

...
Input i

Input i+1

Input i+2

Figure 7: Pipeline structure with one producer task.

 This programmability issue by extension can affect the pipeline

structure; the computations of a specific pipeline stage may need to be

performed in a subset of the entire pipeline’s data. This could not be possible

if the programmer had to define a loop like Figure 2 demonstrates; within

this loop every stage is spawned as many times as the remaining stages. It is

not possible to have a condition for the spawning of a stage, because this

would harm dependency tracking definitions (outdep/inoutdep/indep

would not match). Figure 8 shows the structure of the pipeline that contains

one conditional stage. This structure would ideally be expressed with code

like in Figure 6; this is not possible for Swan objects, as the dependencies

would be harmed and introduced a runtime error that would freeze execution

of the program.

23

Task2 TaskNTask1 …
Input i Output i

Input i+1 Output i+1

Input i+2 Output i+2

Ti
m

e
se

q
u

en
ce

...

...

...

else

if(…) Task3 …

Task2 TaskNTask1

else

if(…) Task3 …

Task2 TaskNTask1

else

if(…) Task3 …

...

Figure 8: Pipeline structure with one conditional stage (Task2).

 The addressing of the aforementioned limitations of Swan’s objects

led to the implementation of a collection of data where dependencies could

apply to one item at a time. FIFO queue is an appropriate data structure for

this usage as long as it can assist on preserving the program order in the

parallelized program. The idea mainly came from PARSEC built in

implementations [1] that use POSIX threads co-operating through blocking

queues in data exchange between stages. The main problem is to address all

possible consumer-producer cases that a program may contain and how a

parallel data-collection should behave in order to be concurrent and coherent.

 Hyperqueue is a special Swan data structure that behaves like a queue

and can retain all the benefits of the aforementioned versioned-object data

structure in plurality. Considering the difficulties faced by the use of Swan

programming model we decided to address Swan’s pipeline programmability

issues and create a unique structure that can handle them. Hyperqueues

provide an N-N relationship between producers and consumers. One

consumer is able to have as input as many data units as needed and can

produce a different amount of data units, on another hyperqueue, for the

next consumer. Also, inner task dependencies can be formulated a more

flexible way than just any collection of tasks. The task producing the

collection does not have to finish execution for the consuming task to start

executing. Moreover, by using hyperqueues, scheduler can track dependencies

24 Chapter 4. Hyperqueue Extension

to higher levels of calling procedures. The pipeline can contain stages that use

hyperqueues through nested function calls while in these calls the hyperqueue

is updated. Hence, we can benefit from dependence analysis at multiple

levels.

 Hyperqueues are advantageous by providing:

 Nested or Recursive calling of tasks: Swan objects were restricted

as they can return just one resulting data unit to the caller level.

Hyperqueues are a collection of data where new items can be

produced and consumed at will, including at multiple levels of

nesting.

 Collaborative produce and consume: The hyperqueue’s data

structure does not contain a fixed number of data items. Each

producer can decide the amount of data that the next stage will need,

so the programmer does not need to know the number of times that

a stage has to be spawned; one is enough to produce the appropriate

amount of data. Moreover, a producer-stage can generate data for

two or more consumer-stages.

 Increased concurrency and reduced scheduler overhead:

Consumer tasks do not postpone in the case of using hyperqueues;

they are immediately spawned and when data is ready can be

consumed. Moreover, a program can have multiple producers

performing on the same data for increasing the speed of production.

 Retaining program order: Dependency resolution between

producer and consumer tasks guarantees that data is produced and

consumed in program order without requiring additional effort from

the programmer.

4.2 Design

 This section presents a detailed description of the design of the

hyperqueue mechanism. Choices made and decisions taken about the

25

programming interface, the implementation of the hyperqueue storage

structure, the dependence analysis and the data versioning are presented and

discussed.

4.2.1 Interface

 Figure 9 shows a simple producer-consumer example using

hyperqueues. First comes the definition of the hyperqueue (queue_t type),

where the data element type is a template parameter to queue_t. The

hyperqueue special variable is then passed to the tasks using the appropriate

access mode labels. Access mode labels in the case of hyperqueues are

pushdep, for write only memory access and popdep for read only. Tasks

that contain pushdep arguments are considered as producer tasks while

tasks with popdep arguments are considered consumer tasks. In the example

above, the queue_t structure is transformed to pushdep, and passed to the

producer, while it is transformed to a popdep to be passed to the consumer.

There is only one consumer in this example, so it consumes all the data from

the queue. The program may have multiple consumers for one hyperqueue

instance or multiple producers. The restriction is, that in order to retain

program order, the second consumer will block its execution until the first

one has finished. In the case of multiple consumers the programmer is res-

void producer(pushdep<int> q) {

 for (int i = 0; i<N; i++) {

 q.push(i);

 }

}

void consumer(popdep<int> q) {

 int j;

 while(!q.empty()) {

 j = q.pop();

 output[j] = j;

 }

}

void caller() {

 queue_t<int> q;

 spawn(producer, (pushdep<int>)q);

 spawn(consumer, (popdep<int>)q);

 ssync();

}

Figure 9: Single producer - single consumer example with queues.

26 Chapter 4. Hyperqueue Extension

ponsible for the amount of data units that each consumer will consume. The

following sections contain examples of every possible usage of hyperqueues.

4.2.2 Internal data structures

 Figure 10 demonstrates an abstract organization of one queue_t

instance’s storage structure. This structure consists of an ordered list that is

organized by queue segments in order to create a high degree of

concurrency with little synchronization overhead. A task declaration that

contains a popdep in its argument list is a consumer task, while a task that

contains a pushdep in its argument list is a producer task. A consumer task

pops data only from the head of the ordered list while each producer (each

pushdep) is assigned one of the queue segments and pushes data exclusively

on its private queue segment. This supports the concurrent execution of

multiple producers, as it allows each producer to write data in a different

queue and doesn’t get influenced from the remaining producing tasks.

 The queue segment structures contain fixed size queues for easier

allocation/deallocation as well as for performance reasons. A queue segment

can be empty, full or busy. When a fixed size queue is full, the producer that

owns this queue is responsible to allocate a new queue. Then inserts the new

queue right after the one that was full, (list-manipulation) and continues

pushing to his new queue. For instance, in Figure 10 the producer that is

pushing data on queue segment number 4 has already filled his previous

queue (number 3), and has inserted the last segment right after the full one.

Also, the queue segment number 1 from which consumer pops data belongs

to a producer task that has finished execution and that explains why the

producing task is not present in the figure. A busy queue segment means

that this queue segment is currently in progress of data production. Before a

producer task starts pushing data in its queue segment, it marks this queue

segment as busy, so that possible next producers will allocate a new queue

segment for pushing their data. In Figure 10, the queue segment number 1 is

not busy, because the producer task that was pushing at this queue segment

has finished pushing in this segment so has marked the queue segment as

27

pop

Consumer
task

Producer
task

Producer
task

push

1

Busy = 0
Empty = 0
Full = 0

push

2

Busy = 1
Empty = 0
Full = 0

3

Busy = 0
Empty = 0
Full = 1

4

Busy = 1
Empty = 0
Full = 0

Figure 10: Internal hyperqueue structure design. Shapes numbered 1, 2, 3 and 4 are queue

segments containing one fix sized queue each.

not-busy. In accordance, queue segment number 2 is busy because it

currently has one active producer task.

4.2.3 Use of the internal data structures

 Figure 11 addresses four simple possible use cases and explains how

program order is retained; 11(a) is the simple example that Figure 9 shows.

In this case, the hyperqueue structure behaves like a simple concurrent

queue where one producer writes data and one consumer reads and pops

them from the queue. Concurrent non-blocking queues were used so that

writing and reading can be performed simultaneously with the added con-

straint that the consumer should block when it catches up with the produc-

er. To achieve simultaneous reads and writes in the lower level concurrent

queue, readers read only from the head of the queue while writers write only

in the tail of the queue. The head and tail of the queue are in different cache

lines to avoid conflicts. If the queue is empty, the read fails and in the next

queue-level the reader attempts to read again. This is repeated until the read

is successful. If the queue is full, the producer task allocates a new fixed-size

concurrent queue thus write never fails.

28 Chapter 4. Hyperqueue Extension

void caller() {

 queue_t<int> q;

 spawn(producer, (pushdep<int>)q);

 spawn(consumer, (popdep<int>)q);

 ssync();

}

(a) One producer and one

consumer: behavior is like a

concurrent queue; one producer

writes data and one consumer

reads and pops them.

void caller() {

 queue_t<int> q;

 for(int i = 0; i<NUM_PRODUCERS; i++) {

 spawn(producer,(pushdep<int>)q);

 }

 spawn(consumer, (popdep<int>)q);

 ssync();

}

(b) Multiple producers and

one consumer: producers

execute in parallel; each

producer task pushes in its own

privatized queue segment. The

consumer checks the queue

segments one at a time as they

are produced; if a queue

segment contains data, the

consumer reads and pops the

data.

void caller() {

 queue_t<int> q;

 spawn(producer, (pushdep<int>)q);

 for(int i = 0; i<NUM_CONSUMERS; i++){

 spawn(consumer, (popdep<int>)q);

 }

 ssync();

}

(c) One producer and

multiple consumers:

structure will contain one queue

segment; block the new

consumers’ tasks until their elder

have finished reading; only one

consumer reads each time.

Figure 11: Use cases of hyperqueues, assuming one queue_t in use.

 The program in Figure 11(b) spawns many producer tasks and has

only one task to consume the data. The problem here is how to retain the

correct order of the data, so that producers enqueue their data in the right

order and consumer reads them in the same order they were written. All

producers will execute in parallel hyperqueues have to obtain the correct

order in writes in the queue. The runtime system was extended to achieve

this conceptual serialization of producers without executing them serially.

This is possible by utilizing the data structure presented above and by as-

29

signing a new private segment of the queue to each producer. Before each

producer task starts executing in parallel, it is privatizing one queue segment

from the queue. Each producer privatizes one segment at the tail of the or-

dered list and makes it its own queue segment. Then the producer task up-

dates the tail of the list and marks his private queue segment as busy, mean-

ing that this queue segment is currently in use by a producer task so a new

producer task is now allowed to perform writes in this segment. The next

producer task will check if the tail of the list is busy, and if this is true, it

adds a new queue segment at the tail of the list. These actions are per-

formed before parallel execution starts from inside the runtime’s mecha-

nisms for recognizing queues as Swan’s special objects. All the above result

to a structure as the one of Figure 10 where each producer task adds ele-

ments in its private queue segment, which is placed in the correct position

in the list, so that data are in order.

 During the pop operation the consumer is not aware of the number

of queue segments in the list or the number of producers. Data sent to the

consumer comes from the oldest producer and are always indicated by the

first queue segment in the list. The head of this queue segment is the data

returned to the consumer. If the first queue segment is empty, but it is

marked as busy, the consumer waits for the producer owning this segment

to add more data. Otherwise, if the queue segment on the head is empty

and is marked as non-busy, the consumer removes the queue segment from

the list, and tries reading from the next segment with the same procedure.

 Code in Figure 11(c) indicates one producer and multiple consum-

ers. In this example, the queue structure will contain one queue segment (ex-

cept if the producer needs to add more data than one queue segment can

store) and the consumers will all try to read from the same queue segment.

The consumers are forced to execute serially. The motivation for the seriali-

zation of consumers is that the runtime is not aware of how many items each

will consume. It is thus impossible to let the consumers execute in parallel

and enforce that they consume data in logical program order. This ensures

30 Chapter 4. Hyperqueue Extension

that all the pop operations are serialized and each consumer reads the data in

order. This is the only case of inter-task dependence on queues that prohibits

the task from starting execution immediately at the point of spawn. This solu-

tion indicates flexibility on the reads but the programmer should be careful

on how many data items tasks will pop.

 Figure 12 illustrates an example of a recursive producer and one

consumer. The scenario in Figure 12 is the allocation of multiple queues each

one containing one data item. First the spawning of rec_producer will pri-

vatize one segment and push in this segment the first value which is 0. After

that, rec_producer will call itself to push the incremented value (1) and by

this call a new queue segment will be created and inserted after the existing

queue segment of the caller (rec_producer). This case differs from the de-

fault segment privatization, as long as segment is not allocated every time at

the tail of the list, but it is allocated in the position right after the caller’s

(rec_producer) queue segment. The reason for this is to preserve program

order even if the program spawns more than one producer tasks.

void rec_producer(pushdep<int> q, int i) {

 if(i<N) {

 q.push(i);

 call(rec_producer, (pushdep<int>)q, pos, ++i);

 }

 return;

}

void caller() {

 queue_t<int> q;

 spawn(rec_producer, (pushdep<int>)q, 0);

 spawn(consumer, (popdep<int>)q);

 ssync();

}

Figure 12: Use case of hyperqueues with one recursive producer

 Figure 13 shows the code for one recursive and one normal pro-

ducer and one consumer while Figure 14 illustrates how queue structure will

be transformed when this code executes. First, two segments will be privat-

ized, the first one will be segment number 1 from Figure 14 and the second

will be segment number 4. Segment 1 is the segment where rec_producer

will push its first item. When the first item is pushed, rec_producer will call

itself, and by that a new queue segment, segment number 2, will be created

31

and inserted right after segment number 1. rec_producer will call itself

again and the same will happen, creating segment number 3 after segment

number 2. Segment number 4 remains to the correct position, as it was pri-

vatized in the tail of the list. This mechanism results to data ordering in the

queue structure so it is assured that consumer will read them in order.

void rec_producer(pushdep<int> q, int i) {

 if(i<3) {

 q.push(i);

 call(rec_producer, (pushdep<int>)q, pos, ++i);

 }

 return;

}

void caller() {

 queue_t<int> q;

 spawn(rec_producer, (pushdep<int>)q, 0);

 spawn(producer, (pushdep<int>)q, 0);

 spawn(consumer, (popdep<int>)q);

 ssync();

}

Figure 13: Example - code of one recursive and one normal producer with one consumer

pop

Consumer
task

Recursive
producer

Producer
task

push

push

1 2 3 4

Recursive
producer

call

push

Create queue
segment at the

creation of pushdep
and insert it after
caller’s segment

Privatize a segment
at the creation of
the pushdep and

add it to the tail of
the list

Figure 14: Two unrolled recursions of the code in Figure 13 and how this works in queue

structure.

32 Chapter 4. Hyperqueue Extension

4.2.4 Versioning

 Hyperqueues are also versioned objects like Swan objects. Those

are types of hyperobjects which allow different code paths in a multi-

threaded program to maintain coherent local views of the same shared

variable [9]. The corresponding shared variable in the case of hyperqueues is

the hyperqueue structure described above and the local view of this is the

private queue segment that each producer holds for pushing data.

Hyperqueues are Swan data structures, so they are recognized by the

scheduler when they appear in the argument list of spawn and call. This is

forcing the scheduler to control their dependencies, spawn them if they are

ready or postpone the task and issue it when all its hyperqueue arguments

are ready to use.

 Each time a producer task is spawned (indicated by the pushdep

argument) a new queue version is allocated. This queue version contains:

a. Pointer to the segmented queue structure

b. One private queue segment

c. Ticket metadata for this version

d. One reference counter

Consumer uses the pointer to the segmented queue structure in order to

retrieve data from it. On the other hand, producer needs a new private

queue segment along with the segmented queue pointer. Each producer task

needs a queue version in order to keep the pointer of its private queue

segment and to be up to date regarding the segmented queue. When a new

queue version is created, the caller procedure (the parent of the producer

task) is accessing the same queue version as the producer task. This is

necessary so that this version is visible when a consumer is spawned in the

parent procedure and needs to consume data from the producer spawned

earlier. This renaming mechanism allows all tasks operating in a queue to be

up to date. Ticket metadata are used for dependence analysis. The reference

counter helps on the effective deallocation of the queue structures; all queue

structures are reference counted and automatically deallocated when the last

reference to it is dropped.

33

4.2.5 Dependence Analysis

 The way queues perform dependency tracking is by using Swan’s

ticket metadata. Each allocated queue version contains its metadata. The

metadata structure holds the number of readers and the number of writers

that the instance of the queue it belongs has. In the case of hyperqueues, the

number of writers is needless because a producer or a consumer can be

issued regardless of the fact of having a writer or not. What is used is the

number of readers because if the program has multiple consumers, the

younger consumers need to be postponed. Every time a queue argument is

issued, if it is a reader, the number of readers in the metadata structure is

increased. Then, before scheduler issues the next consumer argument,

checks if its metadata contains prior readers. If it has, argument is not

issued; hence scheduler postpones the whole task from execution.

 The above metadata checks are performed through functions that

control the dependencies of task arguments. Functions like these were

implemented for objects as well but with different mechanisms. Scheduler

sees an abstraction of these functions as long as they are overloaded. When

a task is created in Swan, the runtime initializes the argument and

immediately checks if it is ready by checking its metadata. If it’s not, at a

later time, scheduler performs the check of the metadata readiness again.

When it is proved to the scheduler that the argument is ready, the runtime

updates the argument’s metadata and then it depends on the remaining task

arguments if the task is going to be postponed or if it is ready to execute.

Finally, at the end of a task execution, scheduler updates the metadata

(decrease readers) so that other possible blocked arguments and tasks can be

issued. Figure 15 represents how the above checks work when a queue

argument is encountered.

Producer/
Consumer?

Yes

No

New version, privatize a
segment

Issue arg/ Increase
writers

Issue arg/ Increase
readers

Assign current
version

Other
readers?

Arg not
ready

Consumer

Producer

Postpone task

All args
ready?

Task ready

Swan scheduler

Queue
argument

Figure 15: Queue arguments recognition and effect on Swan scheduler

34

35

Chapter 5

Experimental Evaluation

 This chapter describes how Swan is used in order to parallelize

pipelined benchmarks. We parallelize bodytrack, ferret and dedup from the

PARSEC benchmark suite [1] which are characterized of their pipelined

parallelism. Through these experiments Swan programming model can be

evaluated regarding its correctness, ease of use and performance. We

compare Swan with TBB and pthreads implementations of these

benchmarks. We compiled all versions of benchmarks using g++ 4.6.3 on

Ubuntu 12.04 operating system. The experimentation machine was a dual-

socket AMD Opteron processor (6272) with 8 cores (2GHz) with 2

hardware threads per core in each socket, counting in total 32 threads. The

threads in each socket share a 16MB L3 cache. Speedups are computed

relative to the serial elision of the benchmarks, which we compile using gcc

4.6.3. In each case the optimization level is set to –O4. For POSIX

implementations, where the number of software threads being created

overcomes the number of cores, we use the command numactl to specify

the number of cores that the application will use. Moreover, this command

is used for all the experiments for specifying the most efficient core binding

in terms of socket and cache usage. AMD CodeAnalyst is used for the

profiling of the load balance between cores.

36 Chapter 5. Experimental Evaluation

5.1 Bodytrack

 The bodytrack application from PARSEC benchmark suite [1], [20]

 is an Intel RMS computer vision workload that recognizes the pose of a

human body from an image sequence of multiple cameras. The tracking of

the human body is performed through an annealed particle filter that tracks

the pose by using edges and the foreground silhouette as image features.

The input given to bodytrack application consists of sets of frames from

different placed cameras, where each set contains the same number of dis-

tinct time frames. Bodytrack tracks the human body for each distinct frame

in all frame-sets. The output of the application is a set of images with high-

lighted parts of the body. Figure 16 shows the output of one input frame;

body parts are highlighted in each camera’s frame with the same color ac-

cording to each specific body part. The application uses parallel pipelines to

perform I/O asynchronously. The bodytrack parallelization exploits mostly

data-parallelism because its computationally intensive parts use at most par-

allel loops rather than parallel pipelines.

Figure 16: Output of the bodytrack benchmark.

 37

Bodytrack is parallelized using pthreads by implementing a persistent thread

pool. Images from different cameras are loaded asynchronously from the

disk in order to overlap with the computational part. One main thread sends

tasks to the thread pool when it reaches a parallel region of the code. When

the main thread receives the result from the worker threads in the thread

pool, it resumes the execution of the program [20].

5.1.1 Parallelization

 Our implementation uses TBB version as a starting point following

the same pipeline stages and parallel loops. The implementation has two

major stages which have been implemented using the pipeline model of

Swan runtime. Table 1 shows the time breakdown of the two bodytrack

pipeline stages; both stages are executed in the same number of iterations,

once for each input frame.

Bodytrack Num iterations Time (sec) Time %

Tracking Model 261 20.196 7

Particle Filter 261 267.233 93

Table 1: Bodytrack number of iterations and stages time breakdown

1st stage: TrackingModel – Edge detection and Edge smoothing: In

this stage bodytrack employs a gradient based edge detection mask to find

edges. After the edge detection bodytrack performs edge smoothing by

using a Gaussian filter of size 7 x 7. The edge smoothing result is then used

to produce a map of pixels flagged with 0 or 1 each. The value of each pixel

is relative to its distance from the edge. Those steps are executed in parallel

for each distinct camera frame using the Swan parallel_for, and also

constitute a pipeline stage.

2nd stage: ParticleFilter: This stage computes weights for the particles by

evaluating the foreground silhouette and the image edges produced in

stage1. This is the most computationally intensive part of the application

38 Chapter 5. Experimental Evaluation

void stage1(TrackingModel *model, inoutdep<ImageSetToken*> token,

 int currFrame);

void stage2(ParticleFilter<TrackingModel>* pf,

 indep<ImageSetToken*> token,

 string *output,

 int currFrame);

for(int i = 0; i < frames; i++) {

spawn(stage1, &model, (inoutdep<ImageSetToken*>) token, i);

spawn(stage2, &pf, (indep<ImageSetToken*>) token, &output, i);

}

ssync();
Figure 17: Iterations of two pipeline stages of bodytrack

while it computes the weights once for every annealing layer of each time

step. Furthermore, this stage resamples particles and creates a new set of

particles. At this point Swan’s parallel_for was used in order to distribute

the work though cores. Also, the next step of this stage is fully loop

parallelized, through the number of particles. After the particle resampling is

completed, the task that was assigned to execute this pipeline stage writes

the result of the above computations to the output file output.txt and

produces the corresponding to this time step output image.

Figure 18: Bodytrack stages. Arrows show dependencies.

Figure 17 shows the code for the spawning of the above two stages of

bodytrack. Figure 18 shows the task-graph for this code; there is one input

token in both stages which is updated and used in all iterations. This is

flagged by the inoutdep and indep in stage1 and stage2 respectively.

5.1.2 Evaluation

 Figure 19 illustrates the execution time for Swan, TBB and POSIX

bodytrack implementations. The difference in the execution times of the

 39

three programming models is not significant. Swan has an additional

overhead than the other two implementations which is approximately 3

seconds. We attribute this to the need of the compilation flag -fno-omit-

leaf-frame-pointer for Swan. This flag, as experiments confirm, imports

overhead to the execution time. Multiple experiments of the same code

could verify this statement. The original serial bodytrack version compiled

without -fno-omit-leaf-frame-pointer takes 283 seconds,

while the same version compiled using -fno-omit-leaf-frame-pointer

takes 287 seconds. This flag is blocking some optimizations that the -O4

introduces. It is a mandatory flag for Swan compilation because of the way

that Swan calls (spawns) functions; by using this flag, it is easier to spawn

because the rbp register is used to point to the function stack pointer. If it

doesn't, then the compiler knows how to compute it from rsp (stack

pointer), but Swan cannot be aware of this in library code.

Figure 19: Execution time of bodytrack, TBB, pthreads and Swan implementations.

 Figures 20 and 21 represent the speedup of the above execution

times. Because of the limitation of the compilation flag mentioned before,

Swan is slightly less efficient.

1 2 4 8 16 24 32

Swan 287 151 83 50 33 32 29

TBB 285 150 82 49 33 29 26

POSIX 284 152 84 50 33 29 27

0
50

100
150
200
250
300
350

Ex
e

cu
ti

o
n

 T
im

e

Number of Cores

Bodytrack

Swan

TBB

POSIX

40 Chapter 5. Experimental Evaluation

Figure 20: Speedup of Swan, TBB and POSIX for bodytrack. Specific core counts.

Figure 21: Speedup of Swan TBB and POSIX.

5.2 Ferret

 Ferret is a content-based similarity search application based on the

Ferret toolkit. In PARSEC benchmark suite ferret compares a set of images

and returns which images contain the same kind of object. The pipeline

1 2 4 8 16 24 32

Swan 0,99 1,88 3,41 5,67 8,48 8,99 9,80

TBB 0,99 1,89 3,44 5,73 8,68 9,67 10,85

POSIX 1,00 1,87 3,37 5,65 8,63 9,64 10,69

0,00

2,00

4,00

6,00

8,00

10,00

12,00

Sp
ee

d
u

p

Number of Cores

Bodytrack

Swan

TBB

POSIX

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Sp
ee

d
u

p

Number of cores

Bodytrack

Swan

TBB

POSIX

 41

implementation of this benchmark contains six stages of processing. First

and last stages are input (load stage) and output (out stage) of the

algorithm. The middle four stages implement image segmentation (seg

stage), feature extraction (extr stage), indexing of candidate sets (vec stage)

and ranking (rank stage). Segmentation is a process whereby an image is

divided into smaller areas that display different objects. A high or low weight

of interest is assigned in each such area. An image segment that belongs to

the background of the image usually has a low weight of interest, while a

segment that belongs to the foreground has the highest weight of interest.

After this computation stage, extract stage, creates a feature vector, which is

a multi-dimensional mathematical description of the segment contents that

encodes the fundamental image properties (color, shape, area). Thereafter,

the vec stage queries the image database to obtain a candidate set of images.

The rank stage then determines a rank for each image and sorts the images

in descending order according to their calculated rank.

 The PARSEC pthreads implementation of ferret is a six-stage

pipeline with all the aforementioned stages, where input and output stages

are executed by one thread each. The remaining middle stages use

oversubscription: specifying the program to run with x threads would create

x threads for each of these stages. Blocking queues configured for a

maximum of 20 items were used to pass tokens between stages.

 Figure 22 illustrates the task-graph of ferret. Each stage

communicates with the next one through blocking synchronization queues.

The out stage writes out the results of the whole benchmark in the output

file.

load seg extr vec rank out

Figure 22: Task-graph for POSIX ferret implementation. Arrows show dependencies. Gray

dots indicate the number of sw threads that execute each stage.

42 Chapter 5. Experimental Evaluation

5.2.1 Parallelization

 Ferret introduces an important challenge in Swan’s parallelization:

the presence of a recursive producer pipeline stage. Table 2 shows how this

issue was skipped in order to implement a working parallelization using

Swan programming model. The recursive stage was kept serial outside the

parallel pipeline in the two parallel versions of ferret using Swan. There is an

important constraint in Swan programming model: the pipeline of a

benchmark cannot contain a stage that is a producer of multiple data items.

Each call of a stage produces only one item, so the program needs to iterate

through the number of data items that the stages have to produce. Ferret

benchmark contains a producer-stage that is parsing a directory. This

operation is not possible with multiple calls to this stage, because the

function needs to be aware of the current position inside the directory. TBB

programming model also cannot support the presence of a recursive

producer pipeline stage. The TBB implementation of ferret uses a stack for

storing the current position in the directory for each stage call so that the

next task that loads data retrieves the correct copy of the directory pointer.

Swan is intended to implement pipelined parallel applications with low effort

and the minimum modifications necessary to the algorithm. Table 3 shows

the time breakdown of each pipeline stage in addition to the number of

iterations that each stage is executed.

Challenge Solutions Appears in

 Recursive

pipeline stage

 Serialize stage

 Ferret 5-stage,

Ferret 2-stage

Table 2: The challenge faced in Ferret's parallelization was the recursive pipeline stage.

 43

Ferret Num

iterations

Time

(sec)

Time %

Input (load) 1 34.000 4.480

Segmentation (seg) 3500 26.800 3.570

Extraction (extr) 3500 2.773 0.350

Vectorizing (vec) 3500 133.939 16.200

Ranking (rank) 3500 603.286 75.300

Output (out) 3500 2.000 0.100

Table 3: Ferret number of iterations and stages time breakdown.

Figure 23: Stage breakdown of ferret

 Ferret 5-stage pipeline with Swan

 In the first parallel version of ferret using Swan programming

model, the pipeline stages are kept the same as POSIX implementation. The

main challenge is the first stage, (input stage) which loads the input data into

0 200 400 600 800

Execution Time (sec)

Serial execution

load 34

seg 26,8

extr 2,773

vec 133,939

rank 603,286

out 2

Ferret Stage Breakdown

load

seg

extr

vec

rank

out

44 Chapter 5. Experimental Evaluation

data structures. This is a recursive pipeline stage, and that fact restricts Swan

to analyze dependencies. Hence, this stage is removed from the parallel

pipeline (Figure 24) for this implementation, fact that reduces parallelism.

Also this gives an important increase in memory consumption and degrades

memory locality as all data have to be stored at the same time, which would

not happen in the pthreads/TBB implementations. Another difference

between Swan and POSIX implementations is that with Swan last stage is

executed by multiple threads whereby each thread outputs a subset of the

data in the right order. To achieve the serial output of results, an inout

dependence (self-dependence) was added in the out stage. With this

dependence, each out task that is spawned has to wait for the previous out

task to finish execution in order to start. The queues used in POSIX

implementation (except for the one that sends the data from load stage to

seg stage) have been replaced by the versioned objects that Swan

programming model offers, for activating dependence analysis between

pipelined tasks.

 Figure 25 shows the code for this implementation. Tasks are de-

fined as functions that have as arguments indep/outdep/inoutdep ob-

jects. Then, by the time they are spawned, dependence analysis is turned on

for these tasks.

seg extr vec rank out
Figure 24: Ferret 5-stage pipeline. Omitting input stage. Arrows show dependencies.

 45

void load(load_t *load_array);

void seg(load_t load_data, outdep<seg_t> seg_data);

void extr(indep<seg_t> seg_data, out-dep<extr_t>extr_data);

void vec(indep<extr_t>extr_data, out-dep<vec_t>vec_data);

void rank(indep<vec_t>vec_data, out-dep<rank_t>rank_data);

void out(indep<rank_t>rank_data, inoutdep<int>wait);

int main(){

 int array_size = leaf_call(load, load_array);

 for(int i = 0; i<array_size; i++){

 spawn(seg, load_array[i], (outdep)seg_data);

 spawn(extr, (indep)seg_data, (outdep)extr_data);

 spawn(vec, (indep)extr_data, (outdep)vec_data);

 spawn(rank, (indep)vec_data, (outdep)rank_data);

 spawn(out, (indep)rank_data, (inoutdep)wait);

 }

}

Figure 25: Code for ferret 5-stage pipeline with Swan

 Ferret 2-stage pipeline with Swan

 A second approach to ferret parallelization was to merge four of the

stages into one single stage. This could be beneficial because, as Table 3 in-

dicates, stages seg, extr and vec have minimal overhead, comparing to

stages rank and out. With this pipeline these two overhead-adding stages

could be better overlapped. We develop a new task function in order to se-

rialize the four merged tasks. The output function remains unchanged with

the same dependencies. However, in this implementation input is provided

from the new task function. Figure 26 shows the task-graph of this imple-

mentation. load stage remains serial, outside the pipeline as before. out

stage is aligned by using a self-dependence for writing the file in the right

order. Figure 27 shows the code for what is described here.

seg

out

extr
vec
rank

merged

Figure 26: Taskgraph of 2-stage pipeline of ferret

46 Chapter 5. Experimental Evaluation

void load(load_t *load_array);

void seg(load_t load_data, seg_t seg_data);

void extr(seg_t seg_data, extr_t extr_data);

void vec(extr_t extr_data, vec_t vec_data);

void rank(vec_t vec_data, rank_t rank_data);

void merged(outdep<rank_t> rank_data);

void out(indep<rank_t>rank_data,

 inoutdep<int>wait);

void merged(outdep<rank_t> rank_data_out){

 call(seg, load_data, seg_data);

 call(extr, seg_data, extr_data);

 call(vec, extr_data, vec_data);

 call(rank, vec_data, rank_data);

 rank_data_out = rank_data;

}

int main(){

 int array_size = leaf_call(load, load_array);

 for(int i = 0; i<array_size; i++){

 spawn(merged, (outdep<rank_t>)rank_data);

 spawn(out, (indep<rank_t>)rank_data,

 (inoutdep)wait);

 }

 ssync();

}

Figure 27: Code for ferret 2-stage pipeline

 Ferret 6-stage pipeline with Swan using hyperqueues

 By introducing the hyperqueue in Swan we could solve the main

challenge of the ferret implementation. Using hyperqueues in combination

with objects can assist Swan to handle the parallelization of the first stage,

which introduces overhead of 34 seconds, along with the remaining paral-

lel pipeline stages. Figure 23 shows the ferret stages time breakdown. We

overlap the first 34 seconds of its execution time by spawning the first

stage and inserting the load data in the queue.

 The second stage of ferret is now able to start immediately right af-

ter load stage produces the first data unit to consume. This overhead is

marginal keeping in mind that the production of 3500 data items is done

in 34 seconds. This way we can achieve better load balancing of cores and

also overlap the first 34 seconds overhead of the serialization of the first

stage.

 47

void load(pushdep<load_t>load_queue);

void seg(popdep<load_t>load_queue, outdep<seg_t> seg_data);

void extr(indep<seg_t> seg_data, outdep<extr_t>extr_data);

void vec(indep<extr_t>extr_data, outdep<vec_t>vec_data);

void rank(indep<vec_t>vec_data, outdep<rank_t>rank_data);

void out(indep<rank_t>rank_data, inoutdep<int>wait);

void pipeline() {

 queue_t<load_t> load_queue;

 spawn(t_load, (pushdep)load_queue);

 for(int i = 0; i<array_size; i++){

 spawn(seg, (popdep)load_queue, (outdep)seg_data);

 spawn(extr, (indep)seg_data, (outdep)extr_data);

 spawn(vec, (indep)extr_data, (outdep)vec_data);

 spawn(rank, (indep)vec_data, (outdep)rank_data);

 spawn(out, (indep)rank_data, (inoutdep)wait);

 }

 ssync();

}

Figure 28: Implementation of Ferret using hyperqueues.

 Figure 28 shows the implementation of ferret with queues. The first

stage is spawned and executed by one core, simultaneously with the

remaining stages. In this case the program has one producer and multiple

consumers so we know that tasks of seg stage will be postponed in a way

that one seg task runs each time, as long as there will be more than one

readers of the queue.

 Figure 29 shows the task-graph of this implementation. Stages seg,

extr, vec, rank and out iterate through the number of queries, while stage

load is spawned only once. This is indicated in the figure by the dashed

arrow showing that this dependence exists for queue objects and not for

objects inside the loop of spawning pipeline stages.

seg extr vec rank out

load

Figure 29: Dashed arrow: hyperqueue; solid arrows: dependencies tracked with objects.

48 Chapter 5. Experimental Evaluation

5.2.2 Evaluation

 The ferret benchmark contains a built in PARSEC implementation

of POSIX threads that uses cores in a different way than the other

programming models. It uses multiple light-loaded software threads per

pipeline stage so software threads in use can overcome the number of

hardware threads of the CPU, contrary to Swan and TBB that use as many

software threads as are the hardware threads. Figure 30 demonstrates the

execution time of Ferret with multiple software threads per pool, on

multiple core counts. 10 threads per pool for the POSIX implementation of

ferret means 2+10*4 = 42 concurrent software threads. Number of cores on

x axis, indicates the number of cores those software threads are running

onto, with the help of numactl. Speedup is obtained while the number of

cores increases and there are available software threads to take advantage of

those resources. We compare the best POSIX configuration, which uses 10

threads per pool as Figure 30 implies with Swan and TBB implementations.

The TBB implementation we use is from [3]. It should be reported that

POSIX configurations that use more than 10 threads per pool introduce

overheads that lower performance.

Figure 30: Ferret POSIX execution time with multiple numbers of threads per pool.

0

100

200

300

400

500

600

700

800

900

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Ex
e

cu
ti

o
n

 T
im

e
(s

e
c)

Number of Cores

Ferret POSIX

1

2

4

8

10

 49

For Swan, two implementations using objects were described: Swan 2-stage

pipeline and Swan 5-stage pipeline. Those two implementations have very

close execution times, and indicate the same speedup in ferret. We will refer

to them both as Swan implementation or as Swan – object implementation,

as long as their graphs completely overlap. Figures 31 and 32 show the

execution time and speedup respectively, of Swan, TBB and POSIX ferret

implementations. Swan’s performance falls short due to the additional

overhead that the serialized load stage introduces, which is approximately

34 seconds for each execution, regardless the number of cores it is running

onto.

Figure 31: Ferret execution time of Swan, TBB and POSIX implementations.

 Figure 33 shows the execution time for 1, 2, 4, 8, 16 and 32 core

counts. Comparing the execution times from Figure 33 leads to the

conclusion that TBB performs better than Swan because of the load stage

serialization while POSIX performs better than Swan for the same reason.

0

100

200

300

400

500

600

700

800

900

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Ex
e

cu
ti

o
n

 T
im

e

Number of Cores

Ferret

Swan

TBB

POSIX - 10

50 Chapter 5. Experimental Evaluation

Figure 32: Ferret speedup of Swan, TBB and POSIX implementations.

Figure 33: Execution times of Swan vs TBB vs POSIX. Specific core counts.

0

5

10

15

20

25

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Sp
ee

d
u

p

Number of Cores

Ferret

Swan

TBB

POSIX - 10

1 2 4 8 16 24 32

Swan 802 427 232 135 84 77 69

TBB 785 393 198 104 54 42 34

POSIX - 10 791 396 199 104 64 64 63

0
100
200
300
400
500
600
700
800
900

Ex
e

cu
ti

o
n

 T
im

e
(s

e
c)

Number of Cores

Ferret

Swan

TBB

POSIX - 10

 51

Num
Cores

Swan
(sec)

TBB
(sec)

POSIX
(sec)

Swan-TBB
(sec)

Swan-
POSIX (sec)

1 802 785 791 17 11

2 427 393 396 34 31

4 232 198 199 34 33

8 135 104 104 31 31

16 84 54 64 30 20

24 77 42 64 35 13

32 69 34 63 35 6

Table 4: Comparison of Swan, POSIX and TBB execution times in seconds. Last two

columns show the relative overhead of Swan (in seconds) compared to the other models.

 In a more detailed examination of the execution time between the

implementations, it is observed that for core counts greater than 1 the

difference between Swan and TBB in execution time is approximately 30-35

seconds, while the difference between Swan and POSIX is reducing while

core count increases. Table 4 shows this comparison for each core count.

POSIX implementation is less scalable than TBB and this is due to the

blocking queues that is using for the data transfers between stages which

prevents the parallel use of the data. Moreover, core to core communication

increases as the number of cores increases while the number of software

threads remains stable (42 software threads). Unlike this, TBB gains

scalability and the overhead of Swan over TBB is the serialization of the

load stage.

 Figure 34 shows the load balance comparison between Swan and

TBB implementations. The performance loss observed in Swan is a result of

the serialization of the load stage. Core 1 is the most loaded one due to the

fact that it is executing the first stage that loads the input data.

52 Chapter 5. Experimental Evaluation

Figure 34: Load balance comparison between TBB and Swan with objects for Ferret

benchmark

Figure 35: Ferret execution time of Swan implementations (objects only or with

hyperqueues), TBB and POSIX.

 We present the evaluation of ferret parallelized with Swan using

hyperqueues. Figure 35 illustrates the execution times of TBB and POSIX

implementations presented before in comparison with ferret Swan

implementation using hyperqueues. Comparing Swan with TBB now

20

40

60

80

100

120

0 5 10 15 20 25 30

C
P

U
 C

yc
le

s
(x

1
00

0)

Core ID

Load Balance

Swan

TBB

1 2 4 8 16 24 32

Swan 802 427 232 135 84 77 69

TBB 785 393 198 104 54 42 34

POSIX - 10 791 396 199 104 64 64 63

Swan - queues 813 410 206 107 55 43 34

0
100
200
300
400
500
600
700
800
900

Ex
e

cu
ti

o
n

 T
im

e
 (

se
c)

Number of Cores

Ferret

Swan

TBB

POSIX - 10

Swan - queues

 53

substantiates that the previously observed overhead was due to the

serialization of first stage. The addition of the load stage in the pipeline

could overlap approximately 34 seconds of the benchmark resulting in

better performance. Swan’s performance is very close to TBB while it now

has overcome POSIX implementation’s performance which adds multiple

overheads by using blocking queues. For 1 core, the overhead of the Swan-

hyperqueues is clear, but running on many cores it is entirely overlapped.

Figure 36: Speedup comparison Swan vs TBB vs POSIX vs Swan with queues

Figure 36 shows the speedup comparison between Swan, TBB and POSIX

ferret versions. The implementation of ferret using POSIX threads consists

of 955 lines of code (including queues for communication between stages

and thread pool implementation). TBB implementation reduced the lines of

code to 512, and Swan implementation to 445.

5.3 Dedup

 The dedup kernel was developed by Princeton University. Dedup is

a file compression algorithm that uses a combination of global compression

and local compression for achieving high compression ratios in less

0

5

10

15

20

25

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Sp
ee

d
u

p

Number of Cores

Ferret

Swan

TBB

POSIX - 10

Swan - queues

54 Chapter 5. Experimental Evaluation

computation time. The type of this compression is called ‘deduplication’.

 Dedup consists of five pipeline stages: Fragment stage segments

the data stream into smaller data segments; FragmentRefine splits the data

segments into smaller data chunks; The Deduplicate stage looks up a hash

table for each chunk and determines if the chunk is new chunk of if it is a

duplicate of a previous one; if the chunk is not a duplicate, it is passed to the

Compress stage where it is compressed. Otherwise, compression is skipped

and the compressed data of the original chunk are used for the compression

of the duplicate chunk. Finally, the Output stage reorders the data chunks

into the original order, if necessary, and writes the compressed stream creat-

ing the compressed file.

 Figure 37 shows the pipeline structure used in pthreads implementa-

tion of PARSEC. FragmentRefine stage generates work, which means that

it has a single input and produces multiple outputs, which are inputs to the

next stage. Moreover, Deduplicate stage performs stage bypassing; Com-

press stage is executed in certain circumstances as described above. Each

one of the three intermediate stages is executed by multiple threads, similar

to ferret implementation, and the first and last stages by a single thread each.

Fragment Fragment
Refine

Deduplicate Compress Out

Figure 37: Dedup task-graph of pthreads implementation. Gray dots are threads per pool.

Arrows show dependence/data exchange.

5.3.1 Parallelization

 The task graph of Figure 37, visualizes a number of challenges in the

parallelization of this benchmark. This workload’s pipeline structure is not

as straightforward as the structure presented in ferret. This pipeline’s

parallelization is challenging for Swan, but in the same time, easier than

 55

POSIX implementation. The first challenge was the stage bypassing of

Compress stage (see Figure 37). Second, and most important, was the

FragmentRefine stage behavior, that produces multiple outputs from one

input. Another challenge was the requirement to enforce ordering of tasks

that execute the Deduplicate stage. In this stage, chunks are determined to

be duplicates of another prior chunk or not. If a chunk that should be

considered as duplicate of a prior chunk, reaches this stage first, then it is

not marked as duplicate and decompression of the file fails; the reason is

that Compress stage recognizes the original chunk as duplicate and thus

cannot find the appropriate data to decompress it. We provide a number of

solutions that address the aforementioned challenges.

Challenge Solutions Appears in

 Single input,
multiple outputs

 Nested pipelines  Nested Pipeline 3-
stage, nested
pipeline 2-stage

 Remove stage
Fragment Refine

 Coarse-grained
4-stage

 Add to lists the
multiple outputs

 Simple 5-stage,
nested pipeline 3-
stage, nested
pipeline 2-stage

 Serialize until
multiple outputs
are produced

 Nested pipeline 2-
stage

 Stage bypassing

 Call stage and
return

 All

 Deduplicate align-
ment

 Additional in-
outdep
dependence

 All

Table 5: Challenges faced in dedup, their solutions, and the implementations each solution

appears

56 Chapter 5. Experimental Evaluation

 Table 5 summarizes the above challenges and their solutions in

specific implementations. The TBB implementation used in this work is the

one in [3]. This version of dedup uses nested pipelines in order to solve the

challenge that the FragmentRefine stage introduces. The outer pipeline has

to make the appropriate number of calls to the nested pipeline, which is

determined by the number of coarse chunks that Fragment stage produced.

This means that for each call of FragmentRefine, there is a nested pipeline

that calls its stages as many times as are the data items that

FragmentRefine produced. Swan can handle this and parallelize dedup in

the same way. Regarding the stage-bypassing challenge, neither Swan nor

TBB can skip the execution of a pipeline stage, so both approaches are

spawning the task to call this stage, and if data do not need to be

compressed, stage immediately returns.

Dedup Num

iterations

Time (sec) Time %

Fragment 336 1.85 3.5

Fragment Refine 336 3.45 6.5

Deduplicate 336×N 4.08 7.7

Compress 336×N 39.13 73.7

Output 336×N 4.56 8.6

Table 6: Dedup number of iterations and stages time breakdown. N depends on each of

the 336 coarse-grained chunks and varies between 473 and 65537. Compress is called

168364 times in total and, Deduplicate and Output, 369950 times.

 57

Figure 38: Dedup graph for stage breakdown in seconds

 Dedup 5 stage pipeline with lists

 In this implementation we provide a 5-stage pipeline with the same

stages as in POSIX implementation. What constraints Swan implementation

is that each stage has to be spawned as many times as the data items that it

has to process are. This is how objects in Swan work, and for that reason

FragmentRefine stage that takes one input and produces multiple outputs

was a significant challenge on the parallelization. The way to handle this is-

sue is to generate a list of the data that have been produced. This list can be

marked with Swan’s access mode labels in order to be passed to the next

stages. The task-graph on Figure 39 shows the dependencies between stages.

When FragmentRefine has finished the production of one list, then the

next stage, Deduplicate, starts consuming this list and reproduces it with

the appropriate changes to Compress stage. The number of lists that are

created during this procedure are equal to the number of chunks that Frag-

ment stage produces. In each iteration there is one list, produced by Frag-

ment, passed through all the stages and is consumed and/or updated.

 Moreover, as listed in the challenges of this benchmark, Deduplicate

stage has to be sequential, meaning that only one task of this stage is execut-

0 10 20 30 40 50

Execution Time (sec)

1

Fragment 2

FragmentRefine 3

Deduplicate 4

Compress 39

Out 5

Dedup Stage Breakdown

Fragment

FragmentRefine

Deduplicate

Compress

Out

58 Chapter 5. Experimental Evaluation

Deduplicate Compress OutFragment Fragment
Refine

Figure 39: Task graph for Dedup simple 5-stage pipeline. Dashed arrows indicate

dependency on list-objects

ing at each period of time. Swan could offer an easy and not time consum-

ing solution to this problem by inserting a self-dependence on that stage,

which serializes the calls of it.

 Regarding stage bypassing, Swan is not properly applicable to irregu-

lar pipelines, so we need to spawn this stage and for each element of the list,

the stage either performed compression, or skipped the element. The same

solution is applied in the TBB implementation.

 This solution introduced parallelization between stages for 336 itera-

tions, (for native input) which is the number of chunks that the first stage

creates. This is a coarse-grained parallelization, as long as each stage gener-

int Fragment (outdep<chunk_t> chunk);

void FragmentRefine(indep<chunk_t> chunk,

 inoutdep<u32int> self_data,

 outdep<std::list<chunk_t>> chunkslist,);

void Deduplicate(inoudep<list<chunk_t>> chunklist,

 inoutdep<int> wait);

void Compress(inoudep<list<chunk_t>> chunklist);

void Out(inoudep<list<chunk_t>> chunklist, inoutdep<int>wait);

int main(){

 read_done = 0;

 while(!read_done){

 read_done = call(Fragment, (outdep<chunk_t>) chunk);

 spawn(FragmentRefine, (indep<chunk_t>)chunk,

 (inoutdep<u32int>)self_data,

 (outdep<list<chunk_t>>)chunklist);

 spawn(Deduplicate, (inoutdep<list<chunk_t>>)chunklist,

 (inoutdep<int>)wait);

 spawn(Compress, (inoutdep<list<chunk_t>>)chunklist);

 spawn(Out, (indep<list<chunk_t>>)chunklist,

 (inoutdep<int>)wait2);

 }

}

Figure 40: Code of dedup simple 5 stage pipeline.

 59

ates only 336 tasks that iterate over a list instead of as many as the number

of outputs that FragmentRefine stage produces (fine-grained chunks).

Figure 40 shows the code for this implementation; note that the entire lists

are the arguments with analyzed dependencies.

 Dedup 3-stage nested pipeline

 We tried to provide a better solution than the above to the Dedup

parallelization. In [3], Reed et.al, present the implementation of dedup using

nested pipelines, with the use of TBB programming model. We borrow this

structure to parallelize dedup with Swan. Figure 41 illustrates the task-

graphs of the two pipelines used. Outer pipeline (Figure 41a) contains the

stages of Fragment, FragmentRefine and NestedPipeline. First, Frag-

ment is called (not spawned) and FragmentRefine waits for Fragment to

finish in order to get the first-level-split chunk so that it can split it more.

When FragmentRefine divides a chunk, it creates a list for this chunk, and

adds in this list the smaller chunks produced, as discussed in the simple 5-

stage pipeline parallelization above. This list is the input of the Nest-

edPipeline stage. In this stage, (Figure 41b) we have Deduplicate, Com-

press and Out stages which are spawned for every chunk in the list. As dis-

cussed before, Compress stage is executed under conditions. Swan cannot

handle this due to the static definition of the dependencies. In Swan ap-

proach, Compress stage is spawned for all chunks and, if the condition is

met, chunk gets compressed; otherwise Compress stage takes no action. In

order to solve the Deduplicate stage’s serialization of tasks, we insert an

inout (self) dependence to this stage, so that it waits every time for itself to

finish the execution of the previous iteration. Figure 42 shows the pseudo

code for this implementation, omitting the dependencies described in the

task-graph.

 This implementation can be characterized by its fine-grained, tasks

opposite to the previous one which was coarse-grained. It is consisted of

336 iterations spawning three stages and the one of these stages generates

tasks inside a loop that executes for a very large number of iterations (be-

60 Chapter 5. Experimental Evaluation

Fragment
Refine

Deduplicate Compress Out

Fragment Nested
Pipeline

Figure 41: (a): Outer dedup pipeline: same number of iterations as the number of chunks

after Fragment (336 iterations). (b): Nested pipeline: number of iterations equals to the

number of chunks that FragmentRefine produces (473 – 65537 iterations).

tween 473 and 65537 iterations). This is the most fine-grained solution that

we develop in Dedup.

(a)

(b)

 61

int Fragment (outdep<chunk_t> chunk);

void FragmentRefine(indep<chunk_t> chunk,

 outdep<list<chunk_t>> chunkslist);

void NestedPipline(indep<list<chunk_t>chunkslist,

 inoutdep<int>align);

void Deduplicate(inoutdep<chunk_t> chunk,

 inoutdep<int> wait);

void Compress(inoutdep<chunk_t> chunk);

void Out(indep<chunk_t> chunk,

 inoutdep<int> wait);

void NestedPipeline(indep<list<chunk_t>chunkslist,

 inoutdep<int>align)

{

 iterator iter = chunklist.iterator();

 while(!chunklist.empty()) {

 object_t<chunk_t> chunk = iter.next();

 object_t<int> wait;

 spawn(Deduplicate, (inoutdep<chunk_t>)chunk,

 (inoutdep<int>)wait);

 spawn(Compress, (inoutdep<chunk_t>)chunk);

 spawn(Out, (inoutdep<chunk_t>)chunk,

 (inoutdep<int>)wait);

 }

}

ssync();

int main() {

 read_done = 0;

 object_t<int> wait;

 while(!read_done) {

 object_t<chunk_t> chunk;

 read_done = call(Fragment, (outdep<chunk_t>)chunk);

 spawn(FragmentRefine, (indep<chunk_t>)chunk,

 (outdep<list<chunk_t>>)chunkslist);

 spawn(NestedPipeline, (indep<list<chunk_t>>)chunkslist,

 (inoutdep<int>)wait);

 }

 ssync();

}

Figure 42: Code for dedup nested pipeline implementation.

 Dedup coarse-grained 4-stage pipeline

 FragmentRefine stage exists in order to create smaller chunks for

more fine grained parallelism. This results to finer granularity of tasks after

the execution of FragmentRefine. Considering all the effort needed to

solve the problem with the work generation of FragmentRefine, we

thought that skipping this stage would, give better results. Compression

remains the same as long as the same data are compressed. This imple-

62 Chapter 5. Experimental Evaluation

Deduplicate Compress OutFragment

Figure 43: Task-graph of dedup 4-stage coarse-grained implementation.

mentation’s task-graph is shown in Figure 43. First, Fragment is called and

produces the first-level split chunks, which are then passed to

Deduplicate, in-order, later in Compress, where if the condition is met,

data get compressed and finally are written in the output file. This

implementation can eliminate parallelization overheads from the reduced

task creation but can have drawbacks regarding the load balance, as long as

synchronized threads should wait longer for a larger task to finish. This

implementation has the same task granularity as the one with the simple 5-

stage pipeline. The difference is that it is skipping the computations of the

FragmentRefine stage, as long as they don’t introduce more parallelism in

the 5-stage pipeline implementation. This results to a 4-stage pipeline

iterating for 336 times for native input.

int Fragment (outdep<chunk_t> chunk);

void Deduplicate(inoutdep<chunk_t> chunk, inoutdep<int> wait);

void Compress(inoutdep<chunk_t> chunk);

void Out(indep<chunk_t> chunk, inoutdep<int>wait);

int main(){

 read_done = 0;

 object_t<int> wait1;

 object_t<int> wait2;

 while(!read_done){

 object_t<chunk_t> chunk;

 read_done = call(Fragment, (outdep<chunk_t>)chunk);

 spawn(Deduplicate, (inoutdep<chunk_t>)chunk,

 (inoutdep<int>) wait1);

 spawn(Compress, (inoutdep<chunk_t>)chunk);

 spawn(Out, (indep<chunk_t>)chunk,

 (inoutdep<int>)wait2);

 }

 ssync();

}

Figure 44: Code for dedup 4-stage coarse-grained implementation.

 63

 Dedup 2-stage nested pipeline

 Table 6 and Figure 38 show the time breakdown of the dedup

pipeline stages; it is observed that the most time-consuming stages are

Compress and Out stages. For that reason it would be beneficial if the light-

weight stages (Fragment, FragmentRefine, Deduplicate) were merged

into one stage and gain parallelism from the two heavy-weight stages

(Compress, Out). This was the motivation for the 2-stage nested pipeline

implementation, whose task-graph is shown in Figure 45.

 This implementation introduces fine-grained parallelism, but in less

amount than the one of the 3-stage nested pipeline. Task creation is reduced

by merging three of Dedup’s stages into one. Figure 46 shows how this

solution can be implemented with Swan.

FragmentRefine-
Deduplicate

Compress Out

Nested
Pipeline

Figure 45: 2-stage nested Dedup pipeline. (a): Outer pipeline, first stage includes Fragment,

FragmentRefine, and Deduplicate stages merged in one. Second is the nested pipeline

shown in b. (b): Nested 2-stage pipeline with Compress and Out stages.

(a)

(b)

64 Chapter 5. Experimental Evaluation

void FragmentRefine_Deduplicate(outdep<list<chunk_t>> chunkslist);

void NestedPipline(indep<list<chunk_t*>chunkslist, inoutdep<int>align);

void Compress(inoutdep<chunk_t> chunk);

void Out(indep<chunk_t> chunk, inoutdep<int> wait);

void FragmentRefine_Deduplicate(outdep<list<chunk_t>> chunkslist) {

 call(Fragment);

 call(FragmentRefine, chunkslist);

 call(Deduplicate, chunkslist);

}

void NestedPipeline(indep<list<chunk_t*>chunkslist, inoutdep<int>align) {

 iterator iter = chunklist.iterator();

 while(!chunklist.empty()) {

 object_t<chunk_t> chunk = iter.next();

 object_t<int> wait;

 spawn(Compress, (inoutdep<chunk_t>)chunk);

 spawn(Out, (inoutdep<chunk_t>)chunk,

 (inoutdep<int>)wait);

 }

 ssync();

}

int main() {

 read_done = 0;

 while(!read_done) {

 read_done = call(FragmentRefine_Deduplicate,

 (outdep<list<chunk_t>>)chunkslist);

 spawn(NestedPipeline, (indep<list<chunk_t*>)chunkslist,

(inoutdep<int>)align);

 }

 ssync();

}

Figure 46: Code for Dedup 2-stage nested pipeline implementation

5.3.2 Evaluation

 As in ferret, dedup’s POSIX implementation can be configured with

various multitudes of threads per pool. The total number of software

threads running is indicated by the equation:

software_threads = threads_per_pool × 3 + 2

The first and last stages are executed by one thread each and the remaining

three middle stages by threads_per_pool threads. Figure 47 demonstrates

the execution time for POSIX dedup implementation, with different

amounts of threads per pool showing the best option that is 8 threads per

pool. Using 8 threads per pool, the total number of software threads is,

according to the above equation, 28. This is the best configuration for dedup

running with POSIX implementation because for more software threads

 65

Figure 47: Dedup POSIX execution time with multiple number of threads per pool.

I/O bottleneck is reached on the output stage. We compare the rest

implementations with the POSIX using 8 threads per pool.

 Figure 48 presents the execution times for the explained Swan im-

plementations. Using the coarse grained implementation of dedup delivers

the best performance. In that implementation, FragmentRefine stage was

skipped, in order to have coarse grained tasks and also skip the procedure of

the nested pipelines that increases task creation as well as data dependencies.

Coarse grained implementation is beneficial for Swan, as long as there are

fewer dependencies to be analyzed, fewer tasks, and contains the execution

of a simple 4-stage pipeline. The next best performance from those imple-

mentations is the one with the simple 5-stage pipeline using lists. As ex-

plained before, this implementation has the same dependencies as the

coarse-grained one. The difference is that instead of having a coarse chunk

to process and compress, dedup has a list of split chunks that all of them

together form one coarse chunk. The overhead of this implementation,

compared to the coarse-grained one, results from the list creation and the it-

erations on the list.

 The remaining two implementations consist of nested pipelines.

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Ex
e

cu
ti

o
n

 T
im

e

Number of Cores

Dedup POSIX

1tpp

2tpp

4tpp

8tpp

66 Chapter 5. Experimental Evaluation

This mechanism creates finer-grained tasks, while the outer pipeline is per-

forming 336 iterations and for each of these iterations another pipeline is

executing which performs a number of iterations between 473 and 65537.

As a result the total number of tasks for the 3-stage nested pipeline imple-

mentation, if N is the number of the nested pipeline’s iterations, would be:

 336 (outer_pipeline_num_stages + inner_pipeline_num_stages × N) =

336 × (3 + 3 × N)

For the 2-stage nested pipeline implementation the number of tasks would

accordingly be:

336 (outer_pipeline_num_stages + inner_pipeline_num_stages N) =

336 (2 + 2 N)

This is because in the second implementation we have 2 stages in the outer

pipeline, as well as two stages in the inner pipeline.

Figure 48: Execution time of Swan implementations of Dedup. C.G. is the coarse grained

implementation.

 These computations imply that the implementation of the nested

pipeline that contains two stages instead of three has less task creation so

the time consumption for dependency tracking is less.

1 2 4 8 16 24 32

C.G. 54 25 15 8 7 6 6

Simple 5s 55 26 15 10 9 9 10

Nested 2s 54 27 18 13 12 14 13

Nested 3s 55 28 17 13 13 14 15

0

10

20

30

40

50

60

Ex
e

cu
ti

o
n

 T
im

e
(s

e
c)

Number of Cores

Swan

C.G.

Simple 5s

Nested 2s

Nested 3s

 67

Figure 49: Dependency tracking CPU cycles vs computation CPU cycles breakdown

 Figure 49 shows the computation-dependency tracking CPU cycles

breakdown for 8, 16 and 32 cores, measured for the dedup 2-stage nested

pipeline implementation (approximately same behavior as the 3-stage pipe-

line implementation). It is observed that as the core count increases the time

spent in dependency tracking increases. This explains the saturation in per-

formance. In contrast, for the coarse grained implementation, saturation

point is reached in higher number of cores as long as the elimination of de-

pendencies improves the efficiency of the parallelization.

 Figure 50 shows the execution time of the best approaches of Swan

and POSIX, and the TBB version of dedup. TBB lacks performance be-

cause of the nested pipeline that is using, which adds more overhead.

POSIX pipeline is a simple 5-stage pipeline, which creates fine grained

chunks of data but even this implementation cannot run efficiently with

more than 28 concurrent threads on 32 cores. TBB implementation is the

one with the highest number of tasks, and as we can see this can also be a

bottleneck comparing to the coarse grained implementation.

 Figure 51 shows the speedup occurred from the above

implementations. Swan coarse grained implementation is very sensitive to

10%
25%

40%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

8 16 32

C
P

U
 C

yc
le

s%

Number of Cores

Computations Dependency tracking

68 Chapter 5. Experimental Evaluation

Figure 50: Comparison of execution time for the best approaches of POSIX and Swan,

and TBB implementation

load balance as long as the tasks are coarse grained resulting longer time for

synchronization or wait conditions between threads. Nevertheless, tasks

have been reduced so Swan can obtain better performance. Moreover

performance saturation reaches higher number of cores because of the less

dependency tracking overhead of this implementation.

Figure 51: Speedup comparison of Swan coarse grained POSIX and TBB versions.

1 2 4 8 16 24 32

Swan - C.G. 54 25 15 8 7 6 6

POSIX 46 26 16 11 8 8 8

TBB 54 27 16 13 12 11 12

0

10

20

30

40

50

60

Ex
e

cu
ti

o
n

 T
im

e
(s

e
c)

Number of Cores

Dedup

Swan - C.G.

POSIX

TBB

0

1

2

3

4

5

6

7

8

9

10

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Sp
ee

d
u

p

Number of Cores

Dedup

Swan C.G.

POSIX - 8

TBB

 69

 Swan coarse grained implementation achieves the best performance

compared to the rest versions but the difference between the implementa-

tions is important. Skipping one stage of the benchmark can lead to an un-

fair comparison as long as tasks are of different granularity and computa-

tions are reduced by one pipeline stage. Still this comparison can lead to the

conclusion that dedup performs better without FragmentRefine stage for

the native PARSEC input. This behavior may be input dependent or the

splitting of the chunks does not help parallelism as long as it introduces

large synchronization overheads from the runtime.

 Figure 52 shows the speedup occurred from POSIX, TBB and Swan

2-stage nested pipeline implementations. This implementation of Swan has

been chosen for comparison because it is similar to the TBB implementation

and through this graph TBB and Swan can be compared fairly. Swan

performs as well as TBB, while both saturate for larger than 16 core counts.

This is due to the fact of the additional overhead of both runtimes for

dependency tracking as has been illustrated previously. POSIX

implementation also saturates for higher core counts but performs better as

long as the irregular pipeline can be handled through queues in a more

flexible way. Compress stage is called only for the chunks that need to be

Figure 52: Speedup comparison between implementations of same granularity

0

1

2

3

4

5

6

7

8

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Sp
ee

d
u

p

Number of Cores

Dedup

POSIX - 8 TBB Swan Nested 2s

70 Chapter 5. Experimental Evaluation

compressed despite of TBB and Swan where the program cannot have a

conditional pipeline stage. Moreover, there are less synchronization

overheads due to the fact that in POSIX implementation a nested pipeline is

not used as FragmentRefine producer stage can be handled with queues.

 Dedup implementation using POSIX threads is written in 2032 lines

of code (including the queue and tree implementations for communication

and reordering of chunks). TBB version has a reduced number of lines of

code to 1264 lines and Swan implementations need approximately 900 lines

of code for dedup.

71

Chapter 6

Conclusions

6.1 Summary

 In this thesis we studied how task-dataflow models exploit

parallelism in pipelined applications. We showed that fine-grained

parallelism is not always the best option; however it is very important for

load balancing. In addition, we were confronted to many parallelization

overheads such as dependence analysis overhead when the program has

many dependent tasks and we tuned the performance through different

implementations and parallelization strategies. Through this study we

concluded that state of the art task dataflow models do not provide the

appropriate flexibility for parallelizing irregular pipelined workloads. We

addressed the limitations in programming flexibility and we implemented

hyperqueues, a programming abstraction of queues.

 The hyperqueue programming abstraction overcomes the limitations

of the state of the art task dataflow programming models. Such limitations

are the presence of a recursive pipeline stage or the presence of a conditional

pipeline stage. A pipelined application can be implemented with the simple

interface that hyperqueues provide which assures concurrency and prevents

common errors that programming with pthreads can cause. Furthermore,

hyperqueues indicate potential optimization as long as fewer tasks are

postponed by the use of queues. Hyperqueues can be used as the only

dependency tracking mechanism in a pipelined application, or better, with

the coordination of special object data structure. We presented the results of

this effort in ferret, a benchmark with irregular pipeline parallelism.

72 Chapter 6. Conclusions

6.2 Future Work

 Hyperqueues help the programmer overcome many limitations that

current programming models have in the construction of irregular pipeline

parallel applications. One limitation of hyperqueues is that they are not

applicable through nested parallelism. Although hyperqueues are

implemented for working in plurality, the task that uses them is spawned

once and inside its body it cannot fetch new tasks that use a mutual

hyperqueue. This results to reduced parallelism and load imbalance; as so,

hyperqueues are better used in combination with objects. Hyperqueues

abstraction aims to be extended in order to be applicable with nested

parallelism.

 Moreover, hyperqueues postpone the execution of new consumer

tasks which leads to serialization of the consumers of the same queue. We

aim to revise this and extend the semantics of the hyperqueue to allow the

concurrent execution of consumers of the same queue without harming the

correctness of consumption order.

73

Bibliography

[1] Christian Bienia and Kai Li. “Characteristics of Workloads Using the Pipeline

Programming Model”, in Proc of the 3rd Workshop on Emerging Applications

and Many-core Architecture, June 2010.

[2] Navarro, R. Asenjo, S. Tabik, and C. Cascaval. Analytical Modeling of Pipeline

Parallelism. In PACT ’09.

[3] Eric C. Reed, Nicholas Chen, Ralph E. Johnson. Expressing Pipeline Parallel-

ism Using TBB Constructs.

[4] W. Thies and S. Amarasinghe. An empirical characterization of stream pro-

grams and its implications for language and compiler design. In PACT ’10.

[5] S. Rul, H. Vandierendonck, and K. De Bosschere. A profile-based tool for

finding pipeline parallelism in sequential programs. Parallel Comput., 36:531–

551, September 2010.

[6] W. Thies, V. Chandrasekhar, and S. Amarasinghe. A Practical Approach to

Exploiting Coarse-Grained Pipeline Parallelism in C Programs. In MICRO ’07.

[7] Hans Vandierendonck, George Tzenakis and Dimitrios S. Nikolopoulos. A

Unified scheduler for Recursive and Task Dataflow Parallelism, in the pro-

ceedings of the Conference on Parallel Architectures and Compilation Tech-

niques, 2011, pp. 1-11.

[8] E. Chan, E. S. Quintana-Orti, G. Quintana-Orti, and R. van de Geijn, “Su-

permatrix out-of-order scheduling of matrix operations for SMP and multi-

core architectures”, in SPAA ’07, 2007, pp. 116-125.

[9] M. Frigo, P. Halpern, C. E. Leiserson and S. Lewin-Berlin, “Reducers and oth-

er Cilk++ hyperobjects”, in SPAA’09, 2009, pp. 79-90.

[10] P. Pratikakis, H. Vandierendonck, S. Lyberis, and D. S. Nikolopoulos, “A

programming model for deterministic task parallelism”, in Proc. Of the 2011

ACM SIGPLAN Workshop on Memory Systems Performance and Correct-

ness, 2011, pp. 7-12.

[11] “StarPU: a Runtime System of Scheduling Tasks over Accelerator-Based Mul-

74 Bibliography

ticore Machines”, INRIA, Research Report RR-7240, 03 2010. [Online]. Avail-

able: http://hal.inria.fr/docs/00/46/76/77/PDF/RR-7240.pdf

[12] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall,

and Y. Zhou, “Cilk: an efficient multithreaded runtime system”, in PPoPP’95,

pp. 207-216.

[13] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation of the

Cilk-5 multi-threaded language”, in PLDI’98, 1998, pp. 212-223.

[14] “Intel Threading Building Blocks (Intel TBB)” Available:

http://software.intel.com/en-us/intel-tbb

[15] OpenCL Specification, 1sted., Khronos OpenCL Working Group, Sep. 2010.

[16] J. M. Perez, R. M. Badia, and J. Labarta, “A dependency aware task-based

programming environment for multicore architectures”, in CLUSTER’08, Sep.

2008, pp. 142-151.

[17] G. Contreras, M. Martonosi “Characterizing and Improving the Performance

of Intel Threading Building Blocks”, in International Symposium on Work-

load Characterization, September 2008

[18] W. Thies and S. Amarasinghe. “An empricial characterization of stream pro-

grams and its implications for language and compiler design”, in PACT ’10.

[19] E. Raman, G. Ottoni, A. Raman, M. J. Bridges, and D. I. August. “Parallel-

stage decoupled software pipelining”, in CGO ’08: 6th Intl Symp on Code gen-

eration and optimization, 2008.

[20] C. Bienia “Benchmarking Modern Multiprocessors” A dissertation presented

to the Faculty of Princeton University in candidacy for the degree of Doctor

of Philosophy, January 2011

	Chapter 1 Introduction
	1.1 Thesis contributions
	1.2 Thesis Organization

	Chapter 2 Related Work
	Chapter 3 Background
	3.1 Task dataflow programming models
	3.2 Threading Building Blocks
	3.2.1 Runtime
	3.2.2 Programming Model and Pipeline Parallelism

	3.3 Swan Programming Model
	3.3.1 Runtime
	3.3.2 Programming Model
	3.3.3 Pipeline Parallelism

	Chapter 4 Hyperqueue Extension for Irregular Pipeline Parallelism
	4.1 Motivation
	4.2 Design
	4.2.1 Interface
	4.2.2 Internal data structures
	4.2.3 Use of the internal data structures
	4.2.4 Versioning
	4.2.5 Dependence Analysis

	Chapter 5 Experimental Evaluation
	5.1 Bodytrack
	5.1.1 Parallelization
	5.1.2 Evaluation

	5.2 Ferret
	5.2.1 Parallelization
	5.2.2 Evaluation

	5.3 Dedup
	5.3.1 Parallelization
	5.3.2 Evaluation

	Chapter 6 Conclusions
	6.1 Summary
	6.2 Future Work

