
UNIVERSITY OF CRETE
DEPARTMENT OF COMPUTER SCIENCE

Techniques for Enhancing Parallelism in
Mechanisms that Automatically Execute

Sequential Code in Concurrent
Environments

Dissertation Submitted by

Eleftherios Kosmas

in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

Heraklion, February 2015

Acknowledgements

This work is a result of the continuous support provided by my supervisor Panagiota Fa-

tourou.

I would like to thank the co-authors of my results, Faith Ellen, Alessia Milani, Corentin

Travers, Shlomi Dolev, Hillel Avni, Mykhailo Iaremko, Eleni Kanellou, and M. Forhad

Rabbi. I am grateful for meeting and working with them, not only because our discussions

inspired most of the work in this thesis, but most importantly because they significantly

helped me enjoy this long journey.

Also, I would like to thank the members of my advisory committee Angelo Bila and

Dimitrio S. Nikolopoulo for their helpful suggestions, and the rest members of my examina-

tion committee Polyvio Pratikaki, Vassilio D. Dimakopoulo, Faith Ellen, and Paolo Romano

for carefully reading my thesis and providing useful comments.

This work was supported by the project "IRAKLITOS II - University of Crete" of the

Operational Programme for Education and Lifelong Learning 2007 - 2013 (E.P.E.D.V.M.)

of the NSRF (2007 - 2013), which is co-funded by the European Union (European Social

Fund) and National Resources. Moreover, I would like to acknowledge the support of the

Institute of Computer Science of the Foundation of Research and Technology (FORTH-ICS)

and especially the DCS and CARV research laboratories.

i

Abstract

Two well-known mechanisms for automatically executing sequential code segments in a

concurrent environment are universal constructions and software transactional memory.

They both have the same goal of simplifying the task of parallel programming. A uni-

versal construction is a mechanism which takes as input the sequential code and executes it

in a concurrent environment. Software transactional memory (STM) employs transactions

to avoid conflicting accesses to common data (known as data items or transactional vari-

ables). A transaction may either commit, in which case it appears as if it has been executed

at a single point in time, or abort, in which case it appears as if it is never executed. Notice

that if a transaction commits, then its updates to data items become visible, otherwise, if it

aborts, all its changes are discarded.

In this thesis, we study how to achieve increased concurrency while designing such

mechanisms, without sacrificing correctness and progress. One well-studied technique for

enhancing concurrency is ensuring a property called disjoint-access parallelism. Roughly

speaking, disjoint-access parallelism guarantees that processes operating on different parts

of an implemented object do not interfere with each other. Thus, disjoint-access parallel

implementations allow for increased parallelism.

Wait-freedom is a well-known progress property which ensures that each process com-

pletes its execution, even when other processes run at arbitrary speeds or crash. Wait-

freedom is highly desirable because implementations ensuring this property are highly fault-

tolerant and usually ensure bounds on the number of steps executed before an implemented

operation responds.

In this thesis, we prove that it is not possible for a universal construction to achieve

both disjoint-access parallelism and wait-freedom; this impossibility result holds for STM

as well. Specifically, we identify a natural property of universal constructions and prove

that there is no universal construction (with this property) that ensures both disjoint-access

iii

parallelism and wait-freedom. Our impossibility proof is obtained by considering a dynamic

data structure that can grow arbitrarily large during an execution. This impossibility result

can be beaten if we focus on data structures that have a bound on the number of pieces

of data accessed by each operation they support. For this setting, we present a universal

construction that ensures both wait-freedom and disjoint-access parallelism.

We further introduce and study weaker versions of disjoint-access parallelism, which

still however allow for increased parallelism. Motivated be the way current STM algorithm

work, we introduce timestamp-ignoring disjoint-access parallelism, which allows opera-

tions operating on different parts of an implemented data structure to proceed in parallel,

except for accesses to a timestamp object. A timestamp object allows a process to know the

“time” at which it accesses the object, relative to accesses by other processes (on the same

timestamp object); specifically, a process is able to determine whether it accessed the object

before or after some other process accessed it. We present a universal construction that en-

sures wait-freedom and timestamp-ignoring disjoint-access parallelism, for certain classes

of data structures.

We next concentrate on important issues in achieving enhanced parallelism in STM

computing. Most STM algorithms employ an optimistic approach, where transactions are

executed speculatively, as if they will never read inconsistent data. When a conflict occurs,

STM algorithms usually abort one of the transactions to ensure correctness; two concur-

rent transactions conflict if they both access the same data item and at least one of them

attempts to modify it. The work performed by a transaction that aborts is discarded and it

is later re-executed as a new transaction; this incurs a performance penalty. Moreover, for

read-intensive workloads, it is really important to ensure that transactions that never update

a data item (which are called read-only transactions) never abort and are wait-free; i.e. they

always commit within a finite number of steps. For these reasons, the literature also contains

pessimistic STM algorithms, which never abort transactions and support wait-freedom for

read-only transactions. However, most of them achieve this by “pessimistically” requiring

transactions that update data items (called update transactions) to be executed sequentially.

This significantly restricts parallelism in many cases and therefore it also leads to perfor-

mance degradation.

As a first step towards achieving enhanced parallelism, we introduce WFR-TM, an STM

algorithm which attempts to combine some of the advantages of pessimistic and optimistic

STM. In WFR-TM, as in pessimistic STMs, read-only transactions never abort and are

iv

wait-free. WFR-TM additionally ensures that read-only transactions never execute expen-

sive synchronization instructions. In contrast to pessimistic STMs, these properties are

achieved without sacrificing all parallelism between update transactions. More specifically,

update transactions use a pessimistic approach to synchronize with concurrently executed

read-only transactions: they wait for read-only transactions to complete. However, they use

an optimistic approach to synchronize with each other: they are executed concurrently in

a speculative way, and they commit if they have not encountered any conflict with other

update transactions during their execution. Thus, WFR-TM achieves more parallelism than

pessimistic STMs.

Finally, we introduce SemanticTM, an STM algorithm in which parallelism is achieved

at the level of transactional instructions; i.e. not only the transactions themselves but also

the instructions of each transaction may be executed concurrently. With compiler support,

SemanticTM guarantees that simple transactions are wait-free, by ensuring that no trans-

actions conflict. We remark that STM algorithms that never abort transactions are highly

desirable since they additionally support transactions that perform irrevocable operations,

e.g. I/O operations.

keywords: Asynchronous System, Shared-Memory, Concurrent Programming, Universal

Construction, Software Transactional Memory (STM), Optimistic STM, Pessimistic STM,

Disjoint-Access Parallelism, Wait-Freedom, Impossibility, Timestamps, Read-only Trans-

actions, Abort-Free Transactions, Fine-Grained Parallelism

v

Περίληψη

Μέχρι πρόσφατα, η αύξηση της συχνότητας του επεξεργαστή αποτελούσε την κυρίαρ-

χη τεχνική για τη βελτίωση της απόδοσής του. Ωστόσο, τα τελευταία χρόνια, φυσικοί

περιορισμοί μικροηλεκτρονικής φύσης δεν επιτρέπουν την περαιτέρω αύξηση της συ-

χνότητας του επεξεργαστή. Η συνεχόμενη ανάγκη των σύγχρονων εφαρμογών για αυ-

ξημένη επεξεργαστική ισχύ οδήγησε τους μεγαλύτερους κατασκευαστές επεξεργαστών

στη σχεδίαση πολυπύρηνων αρχιτεκτονικών, όπου πολλαπλές επεξεργαστικές μονάδες ή

πυρήνες εμπεριέχονται στον ίδιο επεξεργαστή.

Σε επίπεδο λογισμικού, χρησιμοποιούμε τον όρο διεργασία για να αναφερθούμε στη

συνάρτηση που εκτελείται σε κάποιο πυρήνα και αναλαμβάνει να εκτελέσει την ακολουθία

εντολών που καταφθάνουν σε αυτόν τον πυρήνα. Οι διεργασίες αυτές μοιράζονται μία

κοινή ή διαμοιραζόμενη μνήμη, στην οποία διατηρούνται τα δεδομένα της εκάστοτε

εφαρμογής. Επίσης, οι διεργασίες ενδέχεται να σφάλλουν, δηλαδή να σταματήσουν να

λειτουργούν οποιαδήποτε χρονική στιγμή.

Οι εφαρμογές μπορούν να ευεργετηθούν από τις πολυπύρηνες αρχιτεκτονικές εάν ο

κώδικας τους γραφτεί με τέτοιο τρόπο ώστε τμήματά τους να εκτελούνται παράλληλα

από διαφορετικές διεργασίες. Ιδανικά η αύξηση της απόδοσης της εφαρμογής θα ήταν

γραμμική ως προς το πλήθος των πυρήνων. Ωστόσο, αυτή η αύξηση επιτυγχάνεται

μόνο σε εξαιρετικές περιπτώσεις εφαρμογών. Συνήθως τα διαφορετικά τμήματα μιας

εφαρμογής αλληλοεξαρτώνται, επιβάλλοντας έτσι την ανάγκη επίτευξης συγχρονισμού

μεταξύ των διεργασιών κατά την προσπέλαση διαμοιραζόμενων δεδομένων. ΄Ομως είναι

κοινά αποδεκτό ότι η ανάπτυξη παράλληλων προγραμμάτων επιτυγχάνοντας ταυτόχρονα

συγχρονισμό και υψηλή απόδοση, είναι μια δύσκολη διαδικασία, η οποία γίνεται κυρίως

από έμπειρους προγραμματιστές.

΄Εχοντας ως κύριο στόχο την απλοποίηση της διαδικασίας παράλληλου προγραμματι-

σμού, στην παρούσα διατριβή μελετούμε δύο γενικούς μηχανισμούς που αυτοματοποιο-

vii

ύν τη διαδικασία ανάπτυξης παράλληλων προγραμμάτων, υποστηρίζοντας την εκτέλεση

οποιουδήποτε σειριακού κώδικα σε ένα πολυπύρηνο επεξεργαστή. Συγκεκριμένα μελε-

τούμε τα καθολικά αντικείμενα (universal constructions ή UC) και την τεχνική συγ-

χρονισμού διεργασιών μέσω δοσοληψιών (software transactional memory ή STM).

΄Ενα UC σύστημα αναλαμβάνει να εφαρμόσει ατομικά έναν σειριακό κώδικα στα

δεδομένα της εφαρμογής που διατηρούνται στη διαμοιραζόμενη μνήμη. Από την άλλη, ένα

STM σύστημα επιχειρεί να εκτελέσει ατομικά έναν σειριακό κώδικα ως μία δοσοληψία, η

οποία μπορεί να καταλήξει είτε ως επιτυχής, καθιστώντας όλες τις αλλαγές που εφάρμοσε

στη διαμοιραζόμενη μνήμη ορατές στις υπόλοιπες δοσοληψίες, είτε ως μη-επιτυχής,

οπότε οι αλλαγές της αγνοούνται. Αυτή είναι και η βασική διαφορά των δύο αυτών

τεχνικών.

Μια εξαιρετικά επιθυμητή ιδιότητα για τη βελτίωση του παραλληλισμού είναι η παραλ-

ληλία αποσπασματικής προσπέλασης (disjoint access parallelism, ή DAP). Διαισθητι-

κά, η ιδιότητα DAP απαιτεί από διαφορετικές διεργασίες που προσπελάζουν διαφορετικά

τμήματα της διαμοιραζόμενης μνήμης να μην προκαλούν παρεμβολές η μία στην άλλη,

έτσι ώστε να μπορούν να εκτελεστούν ταυτόχρονα. Μία ακόμη εξαιρετικά επιθυμητή ιδι-

ότητα είναι η ιδιότητα προόδου ελευθερία-αναμονής, καθώς παρέχει πεπερασμένη χρονική

πολυπλοκότητα και μέγιστη ανοχή σφαλμάτων. Συγκεκριμένα κάθε διεργασία εφαρμόζει

τον σειριακό κώδικα που εκτελεί σε πεπερασμένο χρονικό διάστημα, ανεξάρτητα από τις

αποτυχίες ή την ταχύτητα των υπόλοιπων διεργασιών.

Ωστόσο, αποδεικνύουμε με αυστηρό τρόπο ότι είναι αδύνατο να σχεδιασθεί ένας

UC ή STM αλγόριθμος που ικανοποιεί ταυτόχρονα τις ιδιότητες ελευθερία-αναμονής

και DAP για οποιαδήποτε εφαρμογή. Η απόδειξή μας βασίζεται σε μία δομή δεδομένων

το πλήθος των στοιχείων της οποίας μπορεί να μεγαλώσει αυθαίρετα κατά τη διάρκεια

μιας εκτέλεσης. Σε αντίθεση, παρουσιάζουμε έναν UC αλγόριθμο που ικανοποιεί τις

ιδιότητες ελευθερία-αναμονής και DAP για εφαρμογές που έχουν κάποιο άνω όριο στο

πλήθος των δεδομένων που κάθε σειριακός κώδικάς τους μπορεί να προσπελάσει, σε

οποιαδήποτε εκτέλεση.

Για να ξεπεράσουμε αυτό το αρνητικό αποτέλεσμα, προτείνουμε μία ασθενέστερη

έκδοση της ιδιότητας DAP, η οποία επιτρέπει σε δύο διεργασίες να προσπελάζουν το

ίδιο αντικείμενο απόδοσης χρονοσφραγίδων, ακόμη και εάν προσπελάζουν διαφορετι-

κά τμήματα της διαμοιραζόμενης μνήμης. Επομένως, ενώ καταστρατηγεί μερικώς την

ιδιότητα DAP, και η έκδοση αυτή βελτιώνει τον παραλληλισμό. Στη συνέχεια, παρου-

viii

σιάζουμε έναν UC αλγόριθμο που ικανοποιεί αυτή την έκδοση της ιδιότητας DAP και

την ιδιότητα ελευθερία-αναμονής.

Ακόμη, για την επίτευξη προόδου και τη βελτίωση του παραλληλισμού οι περισσότε-

ροι αλγόριθμοι STM ακολουθούν μία αισιόδοξη τεχνική, όπου οι δοσοληψίες εκτελο-

ύνται χρησιμοποιώντας τιμές διαμοιραζόμενων δεδομένων που δεν είναι απαραίτητα συνε-

πής. Σε περιπτώσεις συνωστισμού κατά την προσπέλαση συγκεκριμένων τμημάτων της

διαμοιραζόμενης μνήμης, ενδέχεται κάποιες ή και όλες οι δοσοληψίςε να αποτυγχάνουν,

μειώνοντας έτσι την απόδοση της εφαρμογής. Από την άλλη, σε έναν απαισιόδοξο STM

αλγόριθμο όλες οι δοσοληψίες εκτελούνται επιτυχώς. Ωστόσο, οι δοσοληψίες που τρο-

ποποιούν δεδομένα της διαμοιραζόμενης μνήμης, ή αλλιώς δοσοληψίες ενημέρωσης, ε-

κτελούνται σειριακά η μία μετά την άλλη. Αυτό μειώνει σημαντικά τον παραλληλισμό σε

πολλές περιπτώσεις και οδηγεί σε μείωση της απόδοσης.

Ως πρώτο βήμα για την επίτευξη τόσο προόδου όσο και παραλληλισμού στην τεχνική

STM, προτείνουμε τον STM αλγόριθμο WFR-TM ο οποίος συνδυάζει πλεονεκτήμα-

τα τόσο από τους αισιόδοξους όσο και από τους απαισιόδοξους STM αλγορίθμους. Ο

αλγόριθμος WFR-TM εγγυάται την ιδιότητα προόδου ελευθερίας-αναμονής για όσες

δοσοληψίες δεν τροποποιούν δεδομένα της διαμοιραζόμενης μνήμης, ή αλλιώς δοσολη-

ψίες ανάγνωσης, αποφεύγοντας τη σειριακή εκτέλεση των δοσοληψιών ενημέρωσης. Οι

δοσοληψίες ενημέρωσης χρησιμοποιούν μία απαισιόδοξη τεχνική για να συγχρονιστούν

με τις δοσοληψίες ανάγνωσης. Συγκεκριμένα, περιμένουν τις δοσοληψίες ανάγνωσης

να ολοκληρωθούν. Επίσης, οι δοσοληψίες ενημέρωσης χρησιμοποιούν μία αισιόδοξη

τεχνική για να συγχρονιστούν μεταξύ τους. Συγκεκριμένα, εκτελούνται ταυτόχρονα

και μία δοσοληψία ενημέρωσης ολοκληρώνεται επιτυχώς μόνο εάν καμία άλλη δοσολη-

ψία ενημέρωσης δεν προσπελάζει ταυτόχρονα το τμήμα της διαμοιραζόμενης μνήμης στο

οποίο εργάζεται. Αξίζει να σημειωθεί ότι ο αλγόριθμος WFR-TM εγγυάται ότι κάθε

δοσοληψία ενημέρωσης περιμένει ένα πεπερασμένο πλήθος από δοσοληψίες ανάγνωσης.

Επίσης, με δεδομένο πως καμία διεργασία δε σφάλει, ο αλγόριθμος WFR-TM εγγυάται

ότι σε κάθε σημείο της εκτέλεσης υπάρχει μία δοσοληψία ενημέρωσης που μπορεί να

εκτελεστεί επιτυχώς σε πεπερασμένο χρονικό διάστημα.

Τέλος, προτείνουμε τον STM αλγόριθμο Semantic-TM ο οποίος εγγυάται πως όλες

οι δοσοληψίες υποστηρίζουν την ιδιότητα προόδου ελευθερία-αναμονής. Ο αλγόριθμος

Semantic-TM επιτυγχάνει ‘λεπτόκοκκο’ παραλληλισμό στο επίπεδο των εντολών των

δοσοληψιών, το οποίο επιτρέπει τόσο την ταυτόχρονη εκτέλεση δοσοληψιών όσο και την

ix

ταυτόχρονη εκτέλεση ανεξάρτητων μεταξύ τους εντολών της ίδιας δοσοληψίας.

Λέξεις κλειδιά: Ασύγχρονο Σύστημα, Διαμοιραζόμενη Μνήμη, Παράλληλος Προ-

γραμματισμός, Καθολικά Αντικείμενα, Συγχρονισμός Διεργασιών Μέσω Δοσοληψιών,

Παραλληλία Αποσπασματικής Προσπέλασης, Ελευθερία-Αναμονής, Αρνητικό Αποτέλε-

σμα, Αντικείμενο Χρονο-Σφραγίδων, Αισιόδοξος, Απαισιόδοξος Συγχρονισμός Διεργα-

σιών Μέσω Δοσοληψιών, Δοσοληψίες-Ανάγνωσης, Δοσοληψίες Ελεύθερες Αποτυχιών,

Λεπτόκοκκος Παραλληλισμός

x

Contents

Acknowledgements i

Abstract iii

Extended Abstract in Greek vii

Table of Contents xi

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Motivation . 2
1.2 Focus . 3
1.3 Contribution . 5

1.3.1 Disjoint-Access Parallelism in Shared-Memory Computing 5
1.3.2 New Software Transactional Memory Algorithms 7

1.4 Roadmap . 9

2 Model 11
2.1 Abstract Data Types . 12
2.2 Sequential Data Structures . 12
2.3 Model of Computation . 14
2.4 Concurrent Data Structures . 15
2.5 Transforming a Sequential Data Structure to a Concurrent Data Structure . 16

2.5.1 Universal Constructions . 16
2.5.2 Software Transactional Memory 16
2.5.3 Common Definitions . 18

2.6 Correctness . 18
2.7 Progress . 20
2.8 Data Set of an Operation . 22

xi

Contents

2.9 Disjoint-Access Parallelism . 22

3 Related Work 25
3.1 Disjoint-Access Parallelism Definitions 26
3.2 Impossibilities for Disjoint-Access Parallelism in Shared-Memory Computing 27
3.3 Disjoint-Access Parallel or Wait-Free Implementations 29
3.4 Wait-Free or Never Aborting Read-Only Transactions 31
3.5 Contention Managers, Scheduling, Dependence-Aware Systems 32
3.6 Speculation . 34

4 Disjoint-Access Parallelism in Shared-Memory Computing 37
4.1 General . 38
4.2 Impossibility Result . 38
4.3 The DAP-UC Universal Construction . 43
4.4 Proof of the DAP-UC Algorithm . 48

4.4.1 Preliminaries . 48
4.4.2 Linearizability . 49
4.4.3 Wait-Freedom . 64
4.4.4 Disjoint-Access Parallelism . 68

4.5 The TI-DAP-UC Universal Construction 75

5 The WFR-TM Software Transactional Memory Algorithm 81
5.1 General . 82
5.2 Main Ideas . 82
5.3 Type Definitions . 84
5.4 The Code of the WFR-TM Algorithm . 86
5.5 Proof of the WFR-TM Algorithm . 91

5.5.1 Preliminaries . 91
5.5.2 Correctness . 99
5.5.3 Progress . 102

6 The SemanticTM Software Transactional Memory Algorithm 107
6.1 General . 108
6.2 Main Ideas . 108

6.2.1 Dependencies . 109
6.2.2 Conditionals . 111
6.2.3 Loops . 112
6.2.4 Nesting of Conditional Statements 114
6.2.5 Worker Processes . 115

6.3 Pseudocode Description . 116
6.3.1 Type Definitions . 116
6.3.2 The Code of the SemanticTM Algorithm 120

xii Contents

Contents

6.4 Proof of the SemanticTM algorithm . 129
6.4.1 Definitions . 129
6.4.2 Preliminaries . 132
6.4.3 Correctness . 136

6.5 Experimental Evaluation . 163
6.5.1 The system . 163
6.5.2 Tested Workload . 163
6.5.3 Results . 170

7 Conclusion and Future Research 171
7.1 Synopsis of Contribution . 172
7.2 Directions for Future Work and Research 173

Author’s Publications 175

Bibliography 179

Contents xiii

List of Figures

2.1 Sequential Implementation of a Singly-Linked List Supporting APPEND and
SEARCH . 13

3.1 A Comparison of Different Definitions of Disjoint Access Parallelism . . . 27

4.1 The Execution α with Solo Executions of SEARCH(L, 0) Starting from Var-
ious Configurations . 39

4.2 An Infinite Execution α′ with a Non-terminating SEARCH Operation 40
4.3 The Execution Obtained from α by Replacing APPEND(L, i) by APPEND(L, 0) 41
4.4 Type Definitions of DAP-UC . 43
4.5 The Code of PERFORM of DAP-UC . 44
4.6 The Code of HELP of DAP-UC . 45
4.7 The Code of ANNOUNCE and CONCURRENTACCESSES of DAP-UC . . . 46
4.8 Type Definitions and the Code of PERFORM of TI-DAP-UC 77
4.9 The Code of HELP of TI-DAP-UC . 78
4.10 The Code of ANNOUNCE and CONCURRENTACCESSES of TI-DAP-UC . . 79

5.1 Data structures of WFR-TM. 85
5.2 Pseudocode for BEGINTX, CHECKIFPERFORMED, CREATEDI, READDI,

and VALIDATE of WFR-TM . 87
5.3 Pseudocode for WRITEDI, COMMITTX, LOCKDATASET, and WAITREAD-

ERS of WFR-TM . 88

6.1 Main Components of SemanticTM. Extraction of Transactional Instruc-
tions and Their Placement Into di-lists . 109

6.2 Transactions . 110
6.3 Type Definitions of SemanticTM . 117
6.4 The Code of APPLYINSTRUCTIONS of SemanticTM 120
6.5 The Code of GETACTIVEINS of SemanticTM 121
6.6 The Code of PARTICIPATESINLOOP, READITERATIONS, UPDATELOOP-

CONDS, and CHECKINNERCD of SemanticTM 122
6.7 The Code of CHECKDD and EXECUTEINS of SemanticTM 123

xv

List of Figures

6.8 The Code of UPDATEDI, RESOLVEDD, INITIALIZEDEPENDENTCONDS,
and RESOLVECDINVALID of SemanticTM 124

6.9 Control Dependencies in SemanticTM 131
6.10 Type Definitions, and the Code of APPLYINSTRUCTIONS and RETURND-

DVALUES of the Simplified Version of SemanticTM 164
6.11 The Code of Transaction Ti, 1 ≤ i ≤ 4, Executed by process k, 1 ≤ k ≤ N 165
6.12 Transactions With Long and Short Wait Time, to Demonstrate the Impact of

Different Amounts of Local Work, for T1 166
6.13 Transactions With Long and Short Wait Time, to Demonstrate the Impact of

Different Amounts of Local Work, for T2 167
6.14 Transactions With Long and Short Wait Time, to Demonstrate the Impact of

Different Amounts of Local Work, for T3 168
6.15 Transactions With Long and Short Wait Time, to Demonstrate the Impact of

Different Amounts of Local Work, for T4 169

xvi List of Figures

List of Tables

5.1 Useful Notation for the Proof of Correctness 93

6.1 Data Dependencies Between Transactional Instructions 112

xvii

Chapter 1

Introduction

Page 1 of 187

Motivation

1.1 Motivation

Up until recently, increasing CPU speed was the dominant approach for improving computer

performance. However, the last few years, due to physical constraints the size of electronic

circuits cannot become smaller; so CPU speed is no longer rising. The continuous demand

for more efficient computing has led hardware designers to move towards multi-core archi-

tectures.

To take advantage of the increased computational power of multi-core machines, con-

currency should be employed. Introducing as much concurrency as possible into software

applications has become urgent. Remarkably, most of the current applications are sequen-

tial. To execute such an application concurrently its code segments that can be executed in

parallel should first be identified. Then, concurrent algorithms should be provided to allow

each processes to execute any of these segments concurrently with (and ideally, indepen-

dently of) the other processes.

Ideally, the speed-up from parallelization would be linear in the number of cores.

However, this speed-up is rarely achieved due to dependencies that exist and synchroniza-

tion that is needed between the different code segments. Because of these complications, it

is commonly accepted that writing concurrent programs is extremely hard work, currently

undertaken only by experts. The difficulty is inherent in achieving communication and syn-

chronization between processes that run concurrently. Despite the difficulty of concurrent

programming, all modern applications must employ concurrency in order to achieve high

performance.

To simplify concurrent programming we need mechanisms to automatically execute

sequential code segments in a concurrent environment. Two well-established such mecha-

nisms are universal constructions and software transactional memory. They both have the

same goal of simplifying concurrent programming by providing mechanisms to efficiently

execute sequential code in a concurrent environment.

A universal construction [1, 2] provides a concurrent implementation of any sequential

data structure. Pieces of sequential code can be thought of as operations of a data structure.

Thus, universal constructions can be used to execute any piece of sequential code (which

may require synchronization) in a concurrent environment. Software transactional memory

(STM) [3, 4] is a mechanism that allows a programmer of a sequential program to identify

as transactions those pieces of the sequential code that require synchronization. Thus, a

Page 2 of 187

Focus

transaction includes a sequence of instructions on pieces of the simulated state, known as

data items. When the transaction is being executed in a concurrent environment, data items

can be accessed by several processes simultaneously. Thus, synchronization is needed when

accessing data items. If the transaction commits, all its changes take effect as if they all

are applied sequentially at a given point in time during the execution of the transaction.

Otherwise, the transaction aborts and none of its changes take effect.

In STM, when a transaction is aborted, the STM algorithm can choose whether or

not to re-execute the transaction. A call to a universal construction returns only when the

simulated code has been successfully applied to the simulated data structure. This is the

main difference between these two paradigms.

A universal construction or STM system is implemented by an expert programmer

who addresses all problems encountered when concurrency is employed. The resulting algo-

rithms are guaranteed to be correct, and have specific progress and performance properties.

The naive programmer simply provides sequential code and it is the universal construction

or the STM system that undertakes the task to execute it concurrently. Thus, if universal

constructions or STMs achieve enhanced parallelism, and therefore gain performance, they

do so at no cost to the naive programmer.

1.2 Focus

In this thesis, we study universal constructions and STMs from the perspective of achieving

increased concurrency, without sacrificing correctness and progress. Specifically, the cor-

rectness property we consider for universal constructions is linearizability [5] and for STM

systems it is opacity [6]. Roughly speaking, linearizability says that every completed oper-

ation (and some of the non-completed ones) appears as if it has been executed sequentially

at some point within its execution interval. In addition to guaranteeing this condition for

committed (and some commit-pending) transactions, opacity ensures that even transactions

that do not commit see “consistent” simulated states.

To ensure fault-tolerance, we study implementations that ensure strong progress guar-

antees, namely wait-freedom and local progress. A universal construction implementation

is wait-free if, in every execution, each (non-faulty) process completes its operation within

a finite number of steps, even if other processes may fail (by crashing) or are very slow. We

remark that it is common behavior of an STM algorithm to restart an aborted transaction

Page 3 of 187

Focus

until it eventually commits. A meaningful progress condition [7, 8] in STM requires that the

number of times each transaction aborts is finite. This property, known as local progress [7],

is similar to wait-freedom.

We focus on established techniques to enhance parallelism; i.e. techniques that have

received attention in previous research. One such technique is to ensure that an algorithm

satisfies a property known as disjoint-access parallelism. Roughly speaking, disjoint-access

parallelism guarantees that if two processes operate on disjoint parts of the simulated state,

they do not access any common shared objects, so they do not interfere with one another.

Therefore, disjoint-access parallelism allows unrelated operations to progress in parallel.

This property has been extensively studied in the literature in the context of both universal

constructions [9, 10] and STM [7, 11, 12, 13, 14, 15, 16, 17, 18].

Speculation is the main technique for achieving enhanced concurrency in the STM

context. Specifically, processes optimistically execute instructions, using values that are

not guaranteed to be consistent and taking corrective actions whenever they discover that

these values are inconsistent. In cases where such corrective actions are rarely needed, e.g.

under low contention, such a strategy may offer significant performance gains. The potential

disadvantage of having processes perform unnecessary tasks is usually greatly outweighed

by the enhanced concurrency it allows.

Most STM algorithms are optimistic: they execute transactions speculatively and they

may proactively abort transactions if they “suspect" that their execution may jeopardize cor-

rectness. Specifically, when a conflict between two transactions occurs, STM algorithms

usually abort one of the transactions to ensure consistency. Two concurrent transactions

conflict if they both access the same data item and at least one of them attempts to modify

it. Unfortunately, this proactive behavior often leads to a big number of spurious aborts, i.e.

transactions are aborted even in cases where they could commit without violating consis-

tency. Research on STM has given special attention to this issue [12, 19, 20, 21, 22, 23], as

it degrades performance. The work performed by a transaction that aborts is discarded and

it is later re-executed as a new transaction; this incurs a performance penalty. So, the nature

of STM is optimistic: if transactions never abort then no work is ever discarded.

It is highly desirable that all transactions eventually commit. However, this property

is not ensured by the currently available STM systems, which in their majority lead to

many transaction aborts. STM algorithms that never abort transactions are highly desirable

since they additionally support transactions that perform irrevocable operations, e.g. I/O

Page 4 of 187

Contribution

operations. Ideally, we would like to have STM systems in which all transactions terminate

successfully within a finite number of steps, i.e. ensure local progress. However, Bushkov

et al. [7] proved that no opaque STM algorithm can achieve this property.

In terms of achieving good performance, the system should additionally guarantee that

parallelism is achieved. So, transactions should not be executed sequentially. A pessimistic

STM algorithm [24, 25] never aborts any transaction. However, the way most existing

pessimistic STM algorithms achieve this is by “pessimistically” imposing a sequential order

in the execution of all update transactions, i.e. all those transactions that update data items.

This significantly restricts parallelism in many cases and therefore it leads to performance

degradation.

1.3 Contribution

In this thesis, we prove a collection of results about disjoint-access parallel universal con-

structions, including two new definitions for disjoint-access parallelism, an impossibility

result, and two algorithms. We also present two new STM algorithms, namely WFR-TM
and SemanticTM, with the goal of improving concurrency, while not sacrificing correctness

and progress.

1.3.1 Disjoint-Access Parallelism in Shared-Memory Computing

We prove a collection of positive and negative results. On the negative side, we prove that

linearizable universal constructions which ensure both disjoint access parallelism and wait-

freedom are not possible; this impossibility result applies to STM algorithms that satisfy

local progress. We prove this impossibility result by considering a dynamic data structure

that can grow arbitrarily large during an execution. The proof considers a singly-linked un-

sorted list of integers which supports an operation that appends an element to the end of the

list and an operation that searches the list starting from its beginning. It shows that, in any

disjoint-access parallel implementation resulting from the application of a universal con-

struction to this data structure, there is an execution of a search that never terminates. For

the proof of the impossibility result, we introduce feeble disjoint-access parallelism, which

is weaker than all existing disjoint-access parallelism definitions. Thus, the impossibility

result still holds if we replace the disjoint-access parallelism definition with any existing

definition of disjoint-access parallelism. This result relies on a natural assumption about

Page 5 of 187

Contribution

universal construction, which roughly says that the operations of a concurrent implementa-

tion resulting from applying a universal construction to a sequential data structure should

simulate its operations.

For data structures of bounded size we present a universal construction, called DAP-
UC, that achieves both disjoint-access parallelism and wait-freedom. Specifically, the uni-

versal construction is the first that provably ensures both wait-freedom and disjoint-access

parallelism for dynamic data structures in which each operation accesses a bounded num-

ber of data items. For other dynamic data structures, the universal construction still ensures

linearizability and disjoint-access parallelism, but a weaker progress property, know as lock-

freedom. Lock-freedom guarantees that, in an infinite execution, some (non-faulty) process

completes infinitely many operations, even if other processes may fail (by crashing) or are

very slow.

Disjoint-access parallelism [27] and the variants of it [11, 9, 26] presented in the lit-

erature were originally formalized in the context of fixed size data structures, or when the

data items that each operation accesses are known when the operation starts its execution.

Dealing with these cases is much simpler than considering an arbitrary dynamic data struc-

ture where the set of data items accessed by an operation may depend on the operations that

have been previously executed and on the operations that are performed concurrently.

In this thesis, we also study reasonable relaxations of the definition of disjoint-

access parallelism. Specifically, we define a variant of disjoint-access parallelism, called

timestamp-ignoring disjoint-access parallelism, which is similar to classical disjoint-access

parallelism [11] but allows multiple operations to access a timestamp object, even though

they operate on disjoint parts of the simulated state. A wait-free timestamp object can

be easily implemented with a fetch&increment object or a shared global clock. If the

getTimestamp() operation never attempts to modify the timestamp object, for exam-

ple, when it is implemented from a shared global clock that increments automatically, then

timestamp-ignoring disjoint-access parallelism is (in many cases, depending on the formal

definition of disjoint-access parallelism) the same as disjoint-access parallelism.

Several examples of algorithms that ensure timestamp-ignoring disjoint-access par-

allelism can be found in the literature. For instance, several well-known STM algo-

rithms [29, 30, 31] assign timestamps to transactions. Each transaction may then use its

timestamp (as well as the timestamps of other transactions) to resolve conflicts and/or deter-

mine whether the data items it has read are consistent. If the access to the global timestamp

Page 6 of 187 Disjoint-Access Parallelism in Shared-Memory Computing

Contribution

object is not taken into consideration, some of these algorithms are disjoint access parallel

(e.g. [29], [30] and [32]). However, none of these algorithms are wait-free. The defini-

tion of timestamp-ignoring disjoint-access parallelism can be motivated by the existence of

these algorithms. This definition allows operations operating on different parts of the sim-

ulated data structure to proceed in parallel without any interference, except for accesses to

the timestamp object.

Finally, we present a new universal construction, called TI-DAP-UC, that ensures

wait-freedom and timestamp-ignoring disjoint-access parallelism when applied to any se-

quential data structure that has a bounded number of entry points; an entry point to a data

structure is any data item passed as input to an operation on the data structure. For instance,

in the linked-list example, the entry points are the pointer to the (first) node from which

search starts and the pointer to the (last) node on which append is applied.

1.3.2 New Software Transactional Memory Algorithms

1.3.2.1 WFR-TM

For read-intensive workloads it is really important to ensure that transactions that never up-

date a data item (which are called read-only transactions) never abort and are wait-free;

i.e. they always commit within a finite number of steps. As a first step towards achiev-

ing enhanced parallelism in the STM context, we introduce WFR-TM, an STM algorithm

which aims at combining some of the advantages from both optimistic and pessimistic STM,

while trying to avoid their drawbacks. Specifically, in WFR-TM read-only transactions are

wait-free, and they perform only two writes to shared memory and these writes are to single-

writer registers. Additionally, WFR-TM allows multiple update transactions (that are not

read-only) to execute in parallel. Specifically, update transactions use a pessimistic approach

to synchronize with concurrently executed read-only transactions: they wait for such trans-

actions to complete. However, they use an optimistic approach to synchronize with each

other: they are executed concurrently in a speculative way, and they commit if they have not

encountered any conflict with other update transactions during their execution. Thus, WFR-
TM, in contrast to pessimistic STM algorithms, imposes less restrictions on parallelism.

Briefly, in WFR-TM, a read-only transaction Tr starts by announcing itself. An update

transaction Tw that wants to update a data item x after Tr is announced (and thus probably

after Tr has read x), does so only after Tr has committed. So, before Tw completes, it waits

New Software Transactional Memory Algorithms Page 7 of 187

Contribution

for all read-only transactions that have been initiated and not yet completed at some point of

Tw’s execution (before Tw began its waiting phase), to commit. Notice that Tw may wait a

read-only transaction with which it does not conflict. Also, notice that an update transaction

waits only for a finite number of read-only transactions. We remark that it is not necessary

to know in advance whether a transaction is read-only; any transaction is read-only when

it begins and becomes an update transaction the first time it accesses a data item for write.

Update transactions in WFR-TM employ fine-grained locking for accessing data items, so

that those that do not conflict can commit in parallel. We remark that, in WFR-TM, read-

only transactions are able to read a consistent value even for a locked data item, without

having to wait for its owner to unlock it. Thus, wait-freedom of read-only transactions is not

violated in case an update transaction fails while holding a lock on some data item.

1.3.2.2 SemanticTM

Finally, we introduce SemanticTM, an STM algorithm which achieves fine-grain paral-

lelism at the transactional instruction level. This means that in addition to instructions of

different transactions, instructions of the same transaction that do not depend on each other

can be executed concurrently. Additionally, for simple transactions and assuming compiler

support, SemanticTM ensures that all transactions (both read-only and update) complete

within a finite number of steps and never abort, by ensuring that no transactions conflict.

Since SemanticTM ensures local-progress, it naturally supports irrevocable operations.

Briefly, SemanticTM employs a list for each data item. The instructions of each trans-

action are placed in the appropriate lists in FIFO order; specifically, since each instruction

is executed on a single data item, it is placed in the list of the data item that it accesses. A

set of worker processes execute instructions from the lists, in order. The algorithm is highly

fault-tolerant; even if some worker processes fail by crashing, all transactions whose in-

structions have been placed in the lists will be executed. In this thesis we focus on relatively

simple transactions that access a known set of data items, and their codes contain read and

write instructions on them, conditionals (i.e. if, else if, and else), loops (i.e. for,

while, etc.), and function calls. For such transactions, the work of placing the instructions

of the transaction together with their dependencies in lists can be done at compile time (so

there is no need to employ a scheduling component for doing so). Despite this fact, for

simplicity, we refer to a scheduling process (sometimes called scheduler) which undertakes

this task. We briefly discuss, in Section 7.2, how to extend SemanticTM to cope with more

Page 8 of 187 New Software Transactional Memory Algorithms

Roadmap

complicated transactional codes.

We remark that several dependencies may exist among the instructions of a single

transaction; specifically, a single instruction may have several dependencies. SemanticTM
requires these dependencies to be predicted statically. By using compiler support, these

dependencies become known before the beginning of the execution of the transactions. Se-
manticTM stores information about them together with the corresponding instruction in the

appropriate list. In Section 6.2.1, we describe the dependencies expected by SemanticTM
in order to guarantee the correct execution of the corresponding transactions. It is worth

mentioning that in this work, we do not focus on how these dependencies are extracted.

SemanticTM can make use of any existing or future work on dataflow analysis. After its

placement in the appropriate list, each transactional instruction is executed as soon as its

data are available. Thus, SemanticTM can be thought of as a dataflow algorithm in the

sense that it mimics, in software, a dataflow architecture.

In Section 6.5, we present some experimental results where a simplified version of

SemanticTM executes simple static transactions testing different conflict patterns among

them. In the experiments, SemanticTM exhibits good performance; specifically, in all

these experiments, SemanticTM performs better than GccSTM [33] which is an industry

software transactional memory standard.

The current version of SemanticTM does not support dynamic transactions. A dis-

cussion on how this limitation could be overcomed is provided in Section 7.2. Since Se-
manticTM ensures that all transactions will commit, it does not provide any support for

explicitly aborting transactions.

1.4 Roadmap

In Chapter 2, we present the model of computation, provide several useful definitions for

universal constructions and STM algorithms, describe correctness and progress properties,

and some variants of disjoint-access parallelism, including the two new definitions intro-

duced. In Chapter 3, we provide a discussion of the related work.

In Chapter 4, we present the results on disjoint-access parallelism. Specifically, the

impossibility result is presented in Section 4.2. Then, in Section 4.3, the new universal

construction called DAP-UC is presented and in Section 4.4, we formally prove that (for

certain classes of data structures) the concurrent data structures that DAP-UC produces are

Page 9 of 187

Roadmap

linearizable, wait-free, and disjoint-access parallel. Finally, in Section 4.5, we present an

extension of DAP-UC which (for certain classes of data structures) produces linearizable,

wait-free, and timestamp-ignoring disjoint-access parallel concurrent data structures.

In Chapter 5, we present WFR-TM and prove that it ensures opacity, wait-freedom

for read-only transactions, and deadlock-freedom for update transactions. In Chapter 6, we

present SemanticTM. Finally, in Chapter 7, we describe possible extensions of the work

performed in this thesis and open research problems.

Page 10 of 187

Chapter 2

Model

Page 11 of 187

Sequential Data Structures

2.1 Abstract Data Types

An abstract data type specifies a set of objects and a set of functions that can be computed

on these objects. As an example, consider an abstract data type whose objects are integers

and finite sets of integers. Then, answering the question “v ∈ S” where v is an integer and S

is a finite set of integers is one of the operations of the abstract data type. Another example

is add, which adds the element v to the set S.

We remark that several abstract data types can be combined into a single one that

supports all their functions. Each function has a set of parameters that are determined each

time the function is invoked, and a set of possible responses. Then, an instance of the

function is a pair consisting of an invocation and a response. The sequential specification of

an abstract data type is a set of sequences of function instances. The sequences that belong

to the sequential specification are called legal.

2.2 Sequential Data Structures

A sequential data structure is a sequential implementation of an abstract data type. In par-

ticular, it provides a representation for each of the data objects specified by the abstract

data type and sequential code for each of the functions it supports. This sequential code

constitutes the operations of the sequential data structure. An instance of an operation of

a sequential data structure begins with the call of the code, which is called its invocation,

and ends with the return of this code, which is called its response. A sequence of operation

instances of a sequential data structure is legal if it belongs to the sequential specification of

the corresponding abstract data type. A sequential data structure is correct if each of the se-

quences of operation instances it produces is legal. Throughout this thesis, we consider only

correct sequential data structures. We remark that given a finite set of pieces of sequential

code, we treat each of them as a single operation of the same sequential data structure.

A data item is a piece of the representation of an object implemented by the sequen-

tial data structure. For clarity, the data items in the sequential code are accessed via the

instructions CREATEDI, READDI, and WRITEDI, which create a new data item and return

a pointer to it, read the data item and return its value, and write to the data item and return

acknowledgement, respectively.

As an example of a sequential implementation of the abstract data type presented in

Page 12 of 187

Sequential Data Structures

Section 2.1, we will consider an unsorted singly-linked list of integers that supports two

operations: APPEND(L, v), which appends the element v to the end of the list L, and

SEARCH(L, v), which searches the list L for v starting from the first element of the list.

The data items are the nodes of the singly-linked list and the pointers L.start and L.end

that point to the first and the last element of the list, respectively. Notice that both APPEND

and SEARCH take as input the two data items L.start and L.end, as well as a value param-

eter v. Figure 2.1 presents the pseudo-code of this data structure, where the first parameter

of READDI and WRITEDI is a pointer to the data item read or written, respectively.

1 type node
2 int key
3 ptr to node next

4 type list
5 ptr to node start
6 ptr to node end

7 APPEND(list L, int v)
8 new := CREATEDI(node)
9 WRITEDI(new, 〈v,null〉)

10 e := READDI(&L.end)
11 if (e 6= null) then
12 〈k,−〉 := READDI(e)
13 WRITEDI(e, 〈k, new〉)
14 else WRITEDI(&L.start, new)

15 WRITEDI(&L.end, new)

16 boolean SEARCH(list L, int v)
17 s := READDI(&L.start)
18 if (s = null) then return false

19 〈k, s〉 := READDI(s)
20 while (k 6= v and s 6= null)
21 〈k, s〉 := READDI(s)
22 if (k = v) then return true
23 else return false

Figure 2.1: Sequential Implementation of a Singly-Linked List Supporting APPEND and
SEARCH

The state of a sequential data structure consists of the collection of data items and a set

of values, one for each of the data items. A static data item is a data item that exists in the

initial state. In our example, the pointers L.start and L.end are static data items. When the

sequential data structure is dynamic, the data items accessed by (an instance of) an operation

(in a sequential execution) may depend on the operations that have been performed before

Page 13 of 187

Model of Computation

it. In our example, the set of nodes accessed by an instance of SEARCH depends on the

sequence of nodes that have been previously appended to the list.

An entry point to a sequential data structure is any data item passed as input to an

instance of an operation of this data structure. In our example, the entry points of SEARCH

and APPEND are L.start and L.end. In general, different instances of the same operation

can have different entry points. For example, an operation of some sequential data structure

may return one of the data items it accesses (or creates). Then, this data item can be passed

as an input parameter to subsequent operation instances.

An operation of a data structure is value oblivious if the set of data items accessed by

any instance of that operation in any (sequential) execution, does not depend on the values

of its value input parameters. In our example, the data items accessed by APPEND do not

depend on the value of the parameter v. Thus, APPEND is a value oblivious operation.

Notice that this is not the case for SEARCH.

2.3 Model of Computation

We consider an asynchronous shared-memory system with n processes p1, . . . , pn that com-

municate by accessing shared base objects; these are simple objects usually provided by the

hardware. In an asynchronous system there are no restrictions on the computation speed of

processes. Each of the base objects we consider in this thesis has a value and supports a set

of atomic primitives to access and modify its value.

The simplest base object is a read-write (R/W) object O that stores a value from

some set and supports primitives read and write; read(O) returns the value of O, and

write(O, v) sets the value of O to v and returns an acknowledgement. We also consider

CAS and LL/SC base objects. A CAS object O stores a value from some set and supports

additionally to read, the primitive CAS. When applying CAS(O, u, v) a process checks

whether the value of O is u and, if so, it sets the value of O to v. If the update occurs, true

is returned and we say that the CAS is successful; otherwise, the value of O does not change

and false is returned. An LL/SC object O stores a value from some set and supports the

primitives LL, VL, and SC. LL(O) returns the current value of O. By applying SC(O, v),

a process p attempts to set the value of O to v. This update occurs only if no process has

set the value of O since p last applied LL(O). If the update occurs, true is returned and

we say that the SC is successful; otherwise, the value of O does not change and false is

Page 14 of 187

Concurrent Data Structures

returned. By applying VL(O), a process p checks whether any process has set the value ofO

since p last applied LL(O). If so, false is returned and we say that the VL is unsuccessful.

If not, true is returned and we say that the VL is successful. Note that LL, VL, and SC can

be implemented from CAS, read, and write, so that each primitive has O(1) worst case

step complexity [34].

A primitive is non-trivial if it may change the value of a base object; otherwise, the

primitive is trivial. For instance, the primitive write of a read-write object is non-trivial,

whereas its read primitive is trivial.

A (static) timestamp object supports one primitive: getTimestamp(), which returns

a timestamp from a universe U with a binary relation < such that t < t′ if an instance of

getTimestamp() that returned t was executed before an instance of getTimestamp()

that returned t′.

2.4 Concurrent Data Structures

A concurrent data structure is an implementation of an abstract data type in an asynchronous

shared memory system. In particular, it provides a representation from base objects for each

of the objects specified by the abstract data type and an algorithm, for each process, to

perform each of the functions supported by the abstract data type.

A configuration provides a global view of the system at some point in time. In an

initial configuration, each process is in an initial state and each base object has an initial

value. A step consists of a primitive applied to a base object by a process and may also

contain local computation by that process. An execution interval is a (finite or infinite)

sequence Ci, φi, Ci+1, φi+1, . . . , φj−1, Cj of alternating configurations and steps, where the

application of step φk to configuration Ck results in configuration Ck+1, for each i ≤ k < j.

An execution is an execution interval starting from an initial configuration. An execution

(interval) α is indistinguishable from another execution (interval) α′ for some processes, if

each of these processes takes the same steps in α and α′, and each of these steps has the

same response in α and α′. An execution (interval) is solo if all the steps in it are taken

by the same process. Processes may crash during an execution, in which case they take no

more steps.

In case some configuration C occurs before some other configuration C ′ (or step φ) in

α, we say that C precedes C ′ (or φ) in α and we denote this by C < C ′ (or C < φ). We

Page 15 of 187

Transforming a Sequential Data Structure to a Concurrent Data Structure

define what it means for a step φ to precede a configurationC or a step φ′ (denoted by φ < C

or φ < φ′) in a similar way. We also define similarly what it means for a configuration or

a step to follow another configuration or step, denoted by > (instead of <). We say that an

execution interval a precedes an execution interval a′ and we denote this by a < a′, if the

last configuration of a either precedes or it is the same with the first configuration of a′; also

we say that a′ follows a and we denote this by a′ > a.

2.5 Transforming a Sequential Data Structure to a Concurrent
Data Structure

We consider below two general mechanisms to produce a concurrent data structure based on

its sequential implementation. Recall that this gives a mechanism to automatically execute

pieces of sequential code in an asynchronous shared-memory system.

2.5.1 Universal Constructions

A universal construction provides a single method, called PERFORM, which takes as param-

eters an operation and a list of input arguments for it, executes an instance of this operation,

and responds with a list of return values. The list of return values of PERFORM is considered

to be the response of the corresponding operation instance. The algorithm that implements

PERFORM applies a sequence of primitives on shared base objects. Given an execution α,

the execution interval of an operation instance that responds in α starts with the configu-

ration preceding the first step of the corresponding call to PERFORM and terminates with

the configuration following its last step. If an operation instance does not respond in α,

then its execution interval is the suffix of α that starts with the configuration preceding the

first step of the corresponding call to PERFORM. An operation instance is completed if the

corresponding call of PERFORM returns; otherwise, it is active.

2.5.2 Software Transactional Memory

A software transactional memory (STM) algorithm supports the execution of transactions.

A transaction is an attempt of the STM to execute an operation instance in an asynchronous

shared-memory system; this attempt may fail due to synchronization problems with other

transactions that are concurrently executed. To execute the instructions (i.e. accesses on

Page 16 of 187

Transforming a Sequential Data Structure to a Concurrent Data Structure

data items) of some operation instance, STM supports methods CREATEDI, READDI, and

WRITEDI. Additionally, it provides methods BEGINTX and COMMITTX, used to identify

the beginning of a transaction and request its termination as committed, respectively. In

this thesis, we call these routines t-methods. If the call to COMMITTX for some transaction

responds with true, then all the changes to data items performed by the transaction take

effect, and we say that the transaction commits, or this attempt succeeds. Otherwise, if

any call to READDI, WRITEDI, or COMMITTX for some transaction responds with some

special value indicating that the method was not completed successfully, then none of its

intended updates are realized and we say that the transaction aborts, or this attempt fails.

An STM system operates as an interpreter of the code of each operation by invoking

the t-methods included in the code and receiving their responses.

A transaction is a single attempt to apply some operation instance. This attempt may

fail. On the other hand, in a universal construction a call to PERFORM returns only after

the operation instance is successfully applied. This is the main difference between the two

paradigms. An aborted transaction is usually restarted until it eventually commits. Through-

out this thesis, we assume that this is the case. So, in any execution of an STM, an operation

instance is related to at most one committed transaction and possibly with several aborted

transactions.

To implement each t-method, the algorithm applies a sequence of primitives on shared

base objects. We assume that the implementation of each t-method does not contain in-

vocations of other t-methods. Consider an execution α. A transaction that either commits

or aborts in α is completed; otherwise, it is live in α. A live transaction that called COM-

MITTX is called commit-pending. The execution interval of a completed transaction in α

starts with the configuration preceding the first step of the corresponding call to BEGINTX

and it terminates with the configuration following the last step of the last t-method executed

for this transaction. If a transaction does not complete in α, then its execution interval is

the suffix of α that starts with the configuration preceding the first step of the corresponding

call to BEGINTX. If the execution interval of some transaction T ′ ends before the execution

interval of some transaction T starts, then T ′ precedes T . The read-set (write-set) of a trans-

action contains the data items accessed through READDI (WRITEDI) during its execution

interval. A transaction with an empty write-set is called read-only; otherwise, it is an update

transaction. When the read-set and the write-set of a transaction are known a priori before

its initiation, we say that the transaction is static; otherwise, the transaction is dynamic. The

execution interval of an operation instance that completed in α starts with the configuration

Software Transactional Memory Page 17 of 187

Correctness

preceding the first step of the call to BEGINTX from the first transaction associated with this

operation instance and ends when the execution interval of the last transaction associated

with this operation instance ends. If an operation instance does not complete in α, then its

execution interval is the suffix of α that starts with the configuration preceding the first step

of the call to BEGINTX from the first transaction associated with this operation instance.

An operation instance is completed in α if the last transaction associated with this operation

is committed in α; otherwise, it is active. If an operation instance op completes, then the

return values for op is considered to be the response of op.

2.5.3 Common Definitions

Consider a concurrent data structure which results from either a universal construction or an

STM applied on some sequential data structure and let α be any execution of this concurrent

data structure. From this point on, for simplicity, we use the term operation to refer to an

instance of an operation executed by some process in α. A process is executing an operation

op in α while it is executing PERFORM for op (in case of a universal construction) or after

it has invoked the first t-method in the code of op and until the last invoked t-method in this

code returns (in case of an STM), in α. Consider an operation op that is executed by some

process p in α; we say that op is contained in α. When p applies a primitive to some base

object while executing op in α, we sometimes say that op applies the primitive to this base

object in α.

Two execution intervals in α overlap if there is a configuration that is contained in both

intervals. Two operations (or transactions) overlap or they are concurrent, if their execution

intervals overlap. An operation op is executed solo in its execution interval is solo. A process

can have at most one active operation. A configuration is quiescent if no operation is active

in that configuration.

Two concurrent operations conflict if they both access the same data item and at least

one of them writes it.

2.6 Correctness

Definition 1. (Linearizability [5]). An execution α of a concurrent data structure is

linearizable if its completed operations and possibly some of its uncompleted operations

Page 18 of 187 Common Definitions

Correctness

each has a linearization point within its execution interval such that the response returned

by each of these operations is the same as the response it would return if all these operations

were executed sequentially in the order of their linearization points. The sequence of these

linearization points is called a linearization of α.

A concurrent data structure is linearizable if all its executions are linearizable. A universal

construction or an STM is linearizable if all concurrent data structures resulting from it are

linearizable.

Notice that linearizability (Definition 1) can also be applied to STM. A transaction is

not necessarily an attempt to execute a single operation but it may be an attempt to execute

a composite operation containing a sequence of several operations. Then, linearizability for

STM is stated as follows.

Definition 2. (Linearizability for STM). An execution α of an STM is linearizable if its

completed composite operations and possibly some of its uncompleted composite operations

each has a linearization point within its execution interval such that, for any data structure

D, the response returned by each of the operations of D executed during these composite

operations, is the same as the response it would return if all these operations were exe-

cuted sequentially in the order of the linearization points of the corresponding composite

operations (containing each of them).

We remark that, if transactions are restricted to execute only one operation, Defini-

tion 2 is the same as Definition 1. Moreover, if we concentrate on the transactions executed

during a composite operation, then linearizability, which is then called strict serializability,

is stated as follows.

Definition 3. (Strict Serializability). An execution α of an STM is strictly serializable if

its committed transactions and possibly some of its commit-pending transactions each has

a serialization point within its execution interval such that, for any data structure D, the

response returned by each of the operations of D executed during these transactions, is the

same as the response it would return if all these operations were executed sequentially in

the order of the serialization points of the corresponding transactions (containing each of

them).

We remark that strict serializability introduced for executions of database transac-

tions [35], is similar to Definition 3, but it restricts only to committed transactions. Addition-

ally, in strict serializability [35], transactions may apply operations from multiple instances

Page 19 of 187

Progress

of a single sequential data structure, which provides functionality similar with a read-write

object.

Notice that Definitions 3 and strict serializability do not impose any restrictions on

live transactions. We remark that a live transaction may cause an exception or enter into an

infinite loop after reading inconsistent values of different data items. In order to avoid such

undesirable situations, a well known correctness property for STM, called opacity, has been

proposed in [6].

Definition 4. (Opacity). An execution α of an STM is opaque if it is strictly serializable

and the following holds. For each live or aborted transaction T , let T ′ be a transaction

such that among all transactions that precede T in α and exist in the serialization order

T ′ is the one that comes last in the serialization order. Consider all the serialized transac-

tions up to T ′. Then, the responses returned by the operations of D executed during these

transactions, followed by the responses of operations ofD applied by T , are the same as the

responses they would return if all these operations were executed sequentially in the order

of the serialization points of the corresponding transactions (containing each of them).

It is worth pointing out that, considering an STM system that ensures either Defini-

tion 2 or strict-serializability, exceptions (and similar errors) can be avoided if we assume

that an exception is a response of the corresponding composite operation. Then, such an

STM system will never produce exceptions. Moreover, undesired situations where a trans-

action enters an infinite loop will not appear in STM systems that ensure standard progress

properties like obstruction-freedom or deadlock-freedom, as defined in Section 2.7.

2.7 Progress

A concurrent data structure is called blocking if it produces executions in which processes

may block. A process blocks if in order to make progress it requires that other processes

take steps. If in an execution of a blocking data structure some process crashes, we remark

that it is possible all other (non-crashed) processes to block in this execution. To enhance

fault tolerance, ensuring a non-blocking property [2, 36] is desirable. The most well known

such properties are wait-freedom [2], lock-freedom [2], and obstruction-freedom [36].

A concurrent data structure is wait-free if, in every execution, each process that does

not crash completes each operation it performs within a finite number of its own steps. It

Page 20 of 187

Progress

is lock-free if, in every execution α, starting from any configuration C of α some process

that does not crash completes the operation it is executing at C (or a newly initiated oper-

ation after C, if it is executing no operation at C) within a finite number of steps. Notice

that in every infinite execution of a lock-free concurrent data structure, some process com-

pletes infinitely many operations. A concurrent data structure is obstruction-free if, in every

execution α, each process that does not crash and executes solo from any configuration,

completes its operation (or a newly initiated operation) within a finite number of steps. We

remark that a wait-free concurrent data structure ensures the strongest progress property.

More specifically, a wait-free concurrent data structure is also lock-free and a lock-free con-

current data structure is also obstruction-free. Consider an execution α of some concurrent

data structure. If this concurrent data structure is not wait-free, some process may not com-

plete its operation within a finite number of steps, i.e. it may experience starvation, in α. If

a concurrent data structure is neither wait-free nor lock-free, all processes may experience

starvation, i.e. they may experience a livelock, in α.

Consider now an execution α of a blocking concurrent data structure. We say that a

set of processes experiences deadlock in α, if there is a configuration C in α in which each

of these processes has an active operation in α, yet all of these processes are blocked in

α. A blocking concurrent data structure satisfies deadlock-freedom if, in every execution in

which no process crashes, not all processes experience deadlock. Notice that if a concurrent

data structure is deadlock-free then in the absence of crashes it is lock-free. Moreover, a

concurrent data structure satisfies starvation-freedom, if in the absence of crashes, it satisfies

wait-freedom.

A universal construction or an STM is blocking, if at least one concurrent data struc-

ture resulting from it is blocking. A universal construction or an STM satisfies a progress

property if all concurrent data structures resulting from it satisfy this property.

Meaningful progress conditions [7, 8] in STM require that the number of attempts

before each operation completes, is finite. This property, which is called local progress [7],

is similar to wait-freedom. In [7], a property similar to lock-freedom, called global progress,

is defined for STM. Global progress requires that in an infinite execution infinitely many

attempts succeed. Also, a property similar to the obstruction-freedom, called solo progress,

is defined for STM in [7]. Solo progress requires that any operation that is executed solo1

1In [7] an STM model similar to the one of [6] is used and a process is considered to run solo when it is not
executed concurrently with commit-pending transactions; notice that in [7], a process runs solo not only when
it is executed concurrently with no other processes, but also when it is executed concurrently with live but not

Page 21 of 187

Disjoint-Access Parallelism

completes within a finite number of attempts.

2.8 Data Set of an Operation

For any operation instance op and any state S of the sequential data structure, letDS(op, S),

the data set of op starting from state S, be the set of all data items accessed during the

sequential execution of op starting from S, i.e. to which CREATEDI, READDI, or WRITEDI

is applied.

Consider any linearizable execution α of a concurrent data structure and fix some

linearization op1, op2, . . . of it. Let S0 denote the initial state of the sequential data structure

and, for i ≥ 1, let Si = S0op1 · · · opi denote the state of the sequential data structure that

results from applying the first i operations linearized in α sequentially, in order, starting from

S0. For any configuration C of α, let SC denote the state of the sequential data structure

that results from applying each operation linearized in α prior to C sequentially, in order,

starting from S0. In other words, if there are i operations linearized before C, then SC = Si.

If opi is concurrent with no other operations, then the data set of opi in α is

DS(opi, α) = DS(opi, Si−1). However, if opi is concurrent with other operations, it

may have had some failed attempts and the definition of DS(opi, α) should also include

data items accessed in those attempts. So, let j be the largest index of any operation that

finished in α before opi began, or 0, if no operation finished in α before opi began. Define

DS(opi, α) =
⋃i−1
k=j DS(opi, Sk). ThenDS(opi, α) is the union of the sets of all data items

accessed during the sequential executions of opi starting from Sk, for j ≤ k < i.

2.9 Disjoint-Access Parallelism

Informally, a concurrent data structure is disjoint-access parallel if operations on different

parts of the data structure do not interfere with one another. A universal construction or an

STM is disjoint-access parallel if all concurrent data structures resulting from it are disjoint-

access parallel. There are many different ways to make the definition of disjoint-access

parallelism more precise, but they depend on the following concepts.

commit-pending transactions.

Page 22 of 187

Disjoint-Access Parallelism

Consider any linearizable execution α of a concurrent data structure and fix some lin-

earization L of it. The shared-access graph2 of an execution interval I of α for L is an undi-

rected graph, where vertices represent operations whose execution intervals overlap with I

and an edge connects two operations op and op′ if and only if DS(op, α)∩DS(op′, α) 6= ∅.

Two operations contend on a base object b in α if they both apply a primitive to b and

at least one of these primitives is non-trivial. They concurrently contend if there is some

configuration in which the next steps of both operations access the same base object and at

least one of these steps applies a non-trivial primitive to this base object.

We present three versions of disjoint-access parallelism. The first, feeble disjoint-

access parallelism, is extremely weak. In fact, it is satisfied by any concurrent data structure

that satisfies any of the existing definitions of disjoint-access parallelism [27, 11, 26, 37].

Thus, our impossibility result also holds for those definitions. We employ this weak version

of disjoint-access parallelism to prove our impossibility result. This makes the impossibility

result stronger.

Definition 5. (Feeble Disjoint-Access Parallelism). A concurrent data structure is feebly

disjoint-access parallel if, for every reachable quiescent configuration C and every two solo

execution intervals, α1 and α2, of operations, op1 and op2, starting from C that contend

on some base object, there is a data item accessed by both op1 starting from SC and op2
starting from SC , i.e. DS(op1, SC) ∩DS(op2, SC)) 6= φ.

We continue to present a much stronger version of disjoint-access parallelism which

is satisfied by our universal construction presented in Section 4.3.

Definition 6. (Disjoint-Access Parallelism). A concurrent data structure is disjoint-access

parallel if, for every execution α containing two operations op1 and op2 that contend on

some base object, there exists a linearization of α such that there is a path between op1 and

op2 in the shared-access graph of the minimal execution interval containing op1 and op2 for

this linearization.

Finally, in order to overcome our impossibility result, we introduce timestamp-

ignoring disjoint-access parallelism. It is similar to disjoint-access parallelism (Definition

6), but allows multiple operations to access a static timestamp object, even though the sets

of data items that the operations access do not intersect.
2In the literature this graph is also called conflict graph. To avoid confusion with the definition of conflicting

transactions we use the term shared-access graph, instead.

Page 23 of 187

Disjoint-Access Parallelism

Definition 7. (Timestamp-Ignoring Disjoint-Access Parallelism). A concurrent data

structure is timestamp-ignoring disjoint-access parallel if, for every execution α containing

two operations op1 and op2 that contend on some base object, other than the timestamp

object, there exists a linearization of α such that there is a path between op1 and op2 in

the shared-access graph of the minimal execution interval containing op1 and op2 for this

linearization.

We remark that a concurrent data structure that satisfies Definition 6 also satisfies

timestamp-ignoring disjoint-access parallelism. Notice also that if the getTimestamp()

operation never attempts to modify the timestamp object, for example, when it is imple-

mented from a shared global clock that increments automatically, then a concurrent data

structure that satisfies timestamp-ignoring disjoint-access parallelism also satisfies Defini-

tion 6.

Page 24 of 187

Chapter 3

Related Work

Page 25 of 187

Disjoint-Access Parallelism Definitions

3.1 Disjoint-Access Parallelism Definitions

In this section, we present definitions of disjoint-access parallelism that have already ap-

peared in the literature.

Since the publication of the original definition of disjoint-access parallelism [27],

many variants of disjoint-access parallelism have been proposed [11, 9, 26]. The origi-

nal definition of disjoint-access parallelism in [27] requires every two operations that both

access some base object to have a path between them in the shared-access graph of the mini-

mal execution interval that contains them. Weak disjoint-access parallelism, defined in [11],

requires two operations that concurrently contend on a base object to have a path between

them in the shared-access graph of the minimal execution interval that contains them. Thus,

a concurrent data structure that satisfies the definition of disjoint-access parallelism in [27],

it also satisfies Definition 6 and, if a concurrent data structure satisfies Definition 6, it also

satisfies the definition in [11].

Strict disjoint-access parallelism [26] requires every two operations that contend on a

base object to have data sets that intersect. In other words, such operations have an edge be-

tween them in the shared-access graph of the minimal execution interval that contains them

(or the entire execution). Note that a concurrent data structure that satisfies this definition of

disjoint-access parallelism also satisfies Definition 6.

In d-local contention [9, 37, 38], two operations can access the same base object,

provided they are connected by a path of length at most d in the shared-access graph of the

entire execution. For d > 1, a concurrent data structure with (d − 1)-local contention also

has d-local contention.

A concurrent data structure that satisfies strict disjoint-access parallelism also satis-

fies 1-local contention. Moreover, a concurrent data structure with 1-local contention also

satisfies the definition of disjoint-access parallelism in [27]. However, d-local contention,

for d ≥ 1, is incomparable to the definitions of disjoint-access parallelism in [11, 27] and

Definition 6.

Page 26 of 187

Impossibilities for Disjoint-Access Parallelism in Shared-Memory Computing

Definition base objects execution
Definition 6 contend path interval
original [27] access path interval
weak [11] concurrently contend path interval
strict [26] contend edge interval or entire
d-local contention access path of length ≤ d entire

Figure 3.1: A Comparison of Different Definitions of Disjoint Access Parallelism

3.2 Impossibilities for Disjoint-Access Parallelism in Shared-
Memory Computing

In this section, we present impossibility results concerning disjoint-access parallelism that

appear in the literature.

In [26], Guerraoui and Kapalka proved that no obstruction-free STM can be strictly

disjoint access parallel; specifically, in [26] an STM algorithm is obstruction-free if a trans-

action can be aborted only when its execution interval is not solo. Obstruction-freedom is

a weaker progress property than wait-freedom, so their impossibility result also applies to

wait-free implementations (or implementations that ensure local progress). However, it only

applies to this strict variant of disjoint-access parallelism, whereas feeble disjoint-access

parallelism (Definition 5), which we consider in our impossibility result, is much weaker. It

is worth-pointing out that several obstruction-free STM algorithms [15, 16, 17, 18] satisfy

a weaker version of disjoint-access parallelism than this strict variant. It is unclear whether

helping, which is the major technique for achieving strong progress guarantees, can be (eas-

ily) achieved assuming strict disjoint-access parallelism. For instance, consider a scenario

where transaction T1 accesses data items x and y, transaction T2 accesses x, and T3 accesses

y. Since T2 and T3 access disjoint data items, strict disjoint-access parallelism says that they

cannot contend on any common shared objects. In particular, this limits the help that each

of them can provide to T1.

Bushkov et al. [7] prove that no STM algorithm (whether or not it is disjoint-access

parallel) can ensure both local progress and opacity. However, they prove this impossibility

result under the assumption that the STM algorithm does not have access to the code of

each transaction. As mentioned in their concluding remarks, their impossibility result does

not apply to universal constructions, in which the code is provided for each operation to be

simulated. In their model, the STM algorithm allows the “external environment” (i.e. the

Page 27 of 187

Impossibilities for Disjoint-Access Parallelism in Shared-Memory Computing

user) to invoke actions for reading a data item, writing a data item, starting a transaction,

and trying to commit or abort it. The STM algorithm is only aware of the sequence of

invocations of the actions that have been performed and their responses. Thus, a transaction

can be helped only after the STM algorithm knows the entire set of data items that the

transaction should modify.

Proving impossibility results in a model in which the STM algorithm does not have

access to the code of transactions is usually [7, 11, 26] done by considering certain high-

level histories that contain only invocations and responses of high-level operations on data

items (and not on the base objects that are used to implement these data items in a concurrent

environment). Our model gives the universal construction access to the code of an invoked

operation. Consequently, to prove our impossibility result we had to work with low-level

histories, containing steps on base objects, which is technically more difficult.

Attiya et al. [11] proved that there is no disjoint-access parallel STM algorithm where

read-only transactions are wait-free and invisible. A read-only transaction is invisible, if it

does not apply non-trivial primitives to shared objects. This impossibility result is proved for

the variant of disjoint-access parallelism where processes executing two operations (trans-

actions) concurrently contend on a shared object only if there is a path between the two

operations (transactions) in the shared-access graph. We prove our impossibility result for

a weaker definition of disjoint-access parallelism and it applies even for implementations

with visible reads. We remark that the impossibility result in [11] does not contradict our

algorithms, since our implementations employ visible reads.

In [23], the concept of MV-permissiveness is introduced. An STM algorithm satisfies

MV-permissiveness if a transaction aborts only when it is an update transaction that conflicts

with another update transaction. The paper [23] proved that no transactional memory algo-

rithm satisfies both disjoint access parallelism (specifically, the variant of disjoint-access

parallelism presented in [11]) and MV-permissiveness. However, the paper assumes that

the STM algorithm does not have access to the code of transactions and is based on the

requirement that the code for creating, reading, or writing data items terminates within a fi-

nite number of steps. This impossibility result can be beaten if this requirement is violated.

Attiya and Hillel [39] presented a strict disjoint-access parallel lock-based STM algorithm

that satisfies MV-permissiveness.

Page 28 of 187

Disjoint-Access Parallel or Wait-Free Implementations

3.3 Disjoint-Access Parallel or Wait-Free Implementations

We continue by presenting universal constructions, STM algorithms, and other implemen-

tations that satisfy either disjoint-access parallelism or wait-freedom, from previous work.

More constrained versions of disjoint-access parallelism are used when designing uni-

versal constructions or concurrent data structures [37, 38, 27]. Recall that in implementa-

tions that ensure d-local contention two operations are allowed to access the same shared ob-

ject if they are connected by a path of length at most d in the shared-access graph [9, 37, 38].

Afek et al. [37, 9] presented a wait-free, disjoint-access parallel universal construction that

has O(k + log∗ n)-local contention, provided that each operation accesses at most k pre-

determined data items. It relies heavily on knowledge of k. This work extends the work of

Attiya and Dagan [37], who considered operations on pairs of locations, i.e. where k = 2.

Afek et al. [9] leave as an open question the problem of finding highly concurrent wait-free

implementations of data structures that support operations with no bounds on the number of

data items they access. In this thesis, we prove that, in general, there are no solutions unless

we relax some of these properties.

Attiya and Hillel [40] provide a k-local lock-free implementation of k-read-modify-

write objects. The algorithm assumes that double-compare-and-swap (DCAS) primitives

are available. A DCAS atomically executes CAS on two memory words. Combining the

algorithm in [40] and the lock-free implementation of DCAS by Attiya and Dagan [37]

results in an O(k + log∗ n)-local lock-free implementation of a k-read-modify-write object

that only relies on single-word CAS primitives. Their algorithm can be adapted to work for

operations whose sets of accessed data items are defined on the fly, but it only ensures that

progress is lock-free.

A number of wait-free universal constructions [41, 42, 43, 1, 2] work by copying the

entire data structure locally, applying the active operations sequentially on their local copy,

and then changing a shared pointer to point to this copy. Since all operations try to change

the shared pointer, the resulting algorithms are not disjoint-access parallel.

Anderson and Moir [44] show how to implement a k-word atomic CAS using LL/SC.

To ensure wait-freedom, a process may help other processes after its operation has been

completed, as well as during its execution. They employ their k-word CAS implementa-

tion to get a universal construction that produces wait-free implementations of multi-object

operations. Both the k-word CAS implementation and the universal construction allow op-

erations on different data items to proceed in parallel. However, they are not disjoint-access

Page 29 of 187

Disjoint-Access Parallel or Wait-Free Implementations

parallel, because some operations contend on the same shared objects even if the sets of data

items they access do not (directly or transitively) intersect. The helping technique that is em-

ployed by our algorithms combines and extends the helping technique presented in [44] to

achieve both wait-freedom, and disjoint-access parallelism (or timestamp-ignoring disjoint-

access parallelism).

Anderson and Moir presented in [45] a universal construction that uses indirection to

avoid copying the entire data structure. They store the data structure in an array which is

divided into a set of consecutive data blocks. Those blocks are addressed by a set of pointers,

all stored in one LL/SC object. An adaptive version of this algorithm is presented in [42].

An algorithm is adaptive if its step complexity depends on the maximum number of active

processes at each point in time, rather than on the total number n of processes in the system.

Neither of these universal constructions is disjoint-access parallel.

Barnes [10] presented a disjoint-access parallel universal construction, but the algo-

rithms that result from this universal construction are only lock-free. In Barnes’ algorithm,

a process p executing an operation op first simulates the execution of op locally, using a local

dictionary where it stores the data items accessed during the simulation of op and their new

values. Once p completes the local simulation of op, it tries to lock the data items stored

in its dictionary. The data items are locked in a specific order to avoid deadlocks. Then,

p applies the modifications of op to shared memory and releases the locks. A process that

requires a lock which is not free, releases the locks it holds, helps the process that owns

the lock to finish the operation it executes, and then re-starts its execution. To enable this

helping mechanism, a process shares its dictionary immediately prior to its locking phase.

The lock-free TM algorithm presented in [15] works in a similar way.

As in Barnes’ algorithm, a process executing an operation op in our algorithms, locally

simulates op using a local dictionary, and then tries to apply the changes. However, in our

algorithms (DAP-UC and TI-DAP-UC), we detect operations’ accesses on the same data

item during the simulation phase, so helping occurs at an earlier stage of op’s execution. So,

more advanced helping techniques are required to ensure wait-freedom and disjoint-access

parallelism.

Chuong et al. [46] presented a wait-free version of Barnes’ algorithm that is not

disjoint-access parallel and applies operations to the data structure one at a time. Their

algorithm is transaction-friendly, i.e. it allows operations to be aborted. Helping in this al-

gorithm is simpler than in our algorithms. Moreover, the concurrent accesses detection and

Page 30 of 187

Wait-Free or Never Aborting Read-Only Transactions

resolution mechanisms employed by our algorithms are more advanced to ensure disjoint-

access parallelism.

The first software transactional memory algorithm [3] was disjoint-access parallel, but

it is only lock-free and is restricted to transactions that access a pre-determined set of data

items. There are other STM algorithms [13, 14, 15, 16, 17, 18] without this restriction that

are disjoint-access parallel. However, all of them satisfy weaker progress properties than

wait-freedom. TL [13] ensures strict disjoint access parallelism, but it is blocking.

3.4 Wait-Free or Never Aborting Read-Only Transactions

In this section, we present proposed STM algorithms in the literature, that either never abort

read-only transaction or guarantee wait-freedom for read-only transactions.

Pessimistic STM algorithms that never abort transactions have been presented in [24,

25]. They use ideas from [48] where an STM system is presented which supports the ex-

ecution of transactions that contain irrevocable instructions. In the algorithms of [24, 25],

read-only transactions are wait-free. However, these algorithms restrict parallelism since the

updaters use a single coarse-grain lock for accessing data items; so, update transactions are

executed sequentially. We remark that a read-only transaction can read the value of a locked

data item without having to wait until it is unlocked; thus, wait-freedom is not violated.

Recall that update transactions in WFR-TM employ fine-grained locking for accessing data

items, so that those of them that do not conflict can commit in parallel. Popular lock-based

STM implementations, which, like WFR-TM use fine-grained locking on each data item

that they update, include [29, 32, 49, 3]. There, however, read-only transactions are not

wait-free since they may be aborted spuriously.

In [50], a multi-version STM algorithm is introduced which supports wait-free read-

only transactions by keeping a list for each data item, where each value that it has had is

recorded; read-only transactions can find values for the data items that they read that are

mutually consistent. Recall that in [23], MV-permissiveness is introduced which guarantees

that read-only transactions never abort. Multi-version MV-permissive STM algorithms are

also presented in [51, 23] enhanced with efficient garbage collection for obsolete versions

of data items. WFR-TM ensures MV-permissiveness while being single-version, i.e. it does

not maintain multiple versions of data items. Thus, WFR-TM is more space efficient in

comparison to multi-version algorithms. We remark that in WFR-TM read-only transactions

Page 31 of 187

Contention Managers, Scheduling, Dependence-Aware Systems

not only never abort, but additionally, they always complete by committing.

Attiya and Hillel present in [12] PermiSTM, an STM algorithm that ensures MV-

permissiveness without actually maintaining multiple versions of data items. Instead, trans-

actions that read a data item announce their presence by incrementing a dedicated read-

counter linked to this data item; this is done by repeatedly executing CAS until it succeeds.

So, a read-only transaction that executes concurrently with update transactions that read the

same data item may repeatedly fail to increment the read-counter of the data item. Since

all read-only transactions may experience the same problem, it follows that read-only trans-

actions in [12] are obstruction-free; recall that obstruction-freedom does not ensure that a

transaction completes unless the thread executing it runs solo for a sufficient number of steps

after some point during the transaction’s execution. PermiSTM pays this cost in order to

ensure disjoint-access parallelism. It has been proved in [11] that in disjoint-access paral-

lel STM implementation with wait-free read-only transactions, a read-only transaction that

reads m data items has to perform non-trivial operations on at least m−1 shared objects. In

WFR-TM, read-only transactions perform only two non-trivial primitives on shared base ob-

jects and these base objects are R/W objects. So, WFR-TM does not perform any expensive

synchronization primitives at all. However, WFR-TM is not disjoint-access parallel.

Similarly to WFR-TM, PermiSTM supports parallelism among update transactions;

update transactions are executed speculatively and they may abort. In PermiSTM, a write-

transaction does not update the data items until all read-only transactions that are accessing

it are committed (after decrementing the read counter of the data item). Thus, update trans-

actions writing to a data item may face a read-counter whose value is never equal to zero,

leading them to run forever. This behavior is avoided in WFR-TM by having update trans-

actions waiting for the completion of only a limited number of read-only transactions.

3.5 Contention Managers, Scheduling, Dependence-Aware Sys-
tems

To enhance progress, a lot of research has been performed on designing efficient contention

managers and transactional schedulers. A contention manager [52, 53] is a component aim-

ing at ensuring progress by providing efficient conflict resolution policies. When two trans-

actions conflict, the contention manager is employed to decide whether simple techniques,

like back-off, would be sufficient, or which of the transactions should abort or be paused

Page 32 of 187

Contention Managers, Scheduling, Dependence-Aware Systems

to allow the other transaction to complete. SemanticTM prevents conflicts from occurring

thus making the use of a contention manager unnecessary.

Somewhat closer to SemanticTM, a transactional scheduler [54, 55, 56, 57, 58, 59,

60] is a more elaborated STM component which places transactions in a set of queues,

usually one for each thread; a set of working threads then execute transactions from these

queues. In addition to deciding which transaction to delay or abort when a conflict oc-

curs, and when to restart a delayed or aborted transaction, a scheduler also decides in

which scheduling queue the transaction will be placed once its execution will be resumed or

restarted. Some of the schedulers always abort one of the two transactions and place it in an

appropriate queue to guarantee that the transaction will be restarted only after the conflicting

transaction has finished its execution, i.e. they serialize the execution of the two transactions.

CarSTM [58], Adaptive Transaction Scheduling [60], and Steal-on-Abort [54] work in this

way. In [56], a scheduler was presented which alternates between reading epochs (where

priority is given to the execution of read-only transactions) and writing epochs (where the

opposite occurs). This technique behaves better for read-dominated [61] and bimodal [56]

workloads, for which schedulers like those presented in [54, 58, 60] may serialize more than

necessary. However, the working threads in the algorithm of [56] use locks; additionally,

aborts are not avoided. To evaluate a transactional scheduler, competitive analysis is often

employed [55, 56, 62, 52] where the total time needed to complete a set of transactions

(known as makespan) is compared to the makespan of a clairvoyant scheduler [59].

In [63], scheduling is done based on future prediction of the transactions’ sets of ac-

cessed data items on the basis of a short history of past transactions and the accesses that

they performed. If a transaction is predicted to conflict with a live transaction, it is seri-

alized. To avoid serializing more than necessary in cases of low contention, a heuristic is

used where prediction and serialization occur only if the completion rate of transactions falls

below a certain threshold.

In [64], a lock-based dependence-aware STM system is presented which dynamically

detects and resolves conflicts. Its implementation extends ideas from TL II [29] with support

of dependence detection and data forwarding. The algorithm serializes transactions that

conflict; in case of aborts, cascading aborts may occur. The current version of SemanticTM
copes only with transactions that their set of accessed data items are known. However,

SemanticTM ensures that all transactions will always commit within a bounded number of

steps.

Page 33 of 187

Speculation

In [65], a database transaction processing system similar to SemanticTM is proposed.

From the STM perspective, a database transaction can be thought of as a transaction whose

set of accessed data items is known. In this system consecutive transactional instructions

of a transaction are separated into groups, called actions, according to the set of data items

they access. Each worker thread is responsible to execute instructions for a disjoint group

of these sets, and each action is scheduled to the appropriate thread. Data dependencies be-

tween actions are maintained using extra metadata. Specifically, a shared object (additional

to database’s tables), called rendezvous point, is maintained for the dependencies of each

action of some transaction; a single action may have several data dependencies and each of

those dependencies will be resolved by the corresponding thread. Using these rendezvous

points the execution of a transaction is separated into phases, with each phase containing

independent actions. A thread initiating the execution of a transaction T , schedules the in-

dependent actions (of the first phase) to the appropriate worker threads. When a worker

thread resolves the last dependency of some rendezvous point, it initiates the next phase

of T ’s execution by scheduling the next independent actions of this transaction. However,

due to its execution scheme a transaction executed in this system may have to abort, since

its actions may conflict with other concurrently executing actions of different transactions.

Recall that in SemanticTM transactions never abort.

3.6 Speculation

A way of achieving speculative parallelism is through thread-level data speculation (TLDS)

[66], [67]. There, code segments are executed in parallel in an optimistic way. The execution

of such a code segment may roll back and restart in case inconsistencies are discovered.

TLDS can be implemented in software. However, dedicated hardware can facilitate the

detection of inconsistencies between different processes.

With goals similar to STM and closely related to SemanticTM, Thread Level Specu-

lation (TLS) [68, 69, 70] uses compiler support to split a program into several tasks which

are speculatively executed and each of them finishes by trying to commit. Whenever a con-

sistency violation is detected the conflicting tasks are appropriately aborted, like in STM.

In [71], an algorithm that incorporates TLS support on an STM algorithm has been pro-

posed, where each transaction of the STM program is split into several tasks. In this case,

consistency violations may arise as a result of either an intra-transaction conflict (i.e. a con-

flict between the instruction of the same transaction) or an inter-transaction conflict (i.e. a

Page 34 of 187

Speculation

conflict between instructions of different transactions). In both cases, an appropriate tasks’

abort policy ensures that no consistency violation occurs. However, in SemanticTM instead

of executing tasks, threads execute sets of instructions, each performed on a specific data

item (this set may contain instructions of several transactions); so, no conflict ever occurs.

Page 35 of 187

Chapter 4

Disjoint-Access Parallelism in
Shared-Memory Computing

Page 37 of 187

Impossibility Result

4.1 General

In this chapter, we prove a collection of positive and negative results for disjoint-access par-

allelism. We start by proving in Section 4.2 that linearizable universal constructions which

ensure both disjoint access parallelism and wait-freedom are not possible. Then, in Section

4.3, we present a universal construction, called DAP-UC, that achieves both disjoint-access

parallelism and wait-freedom, for dynamic data structures in which each operation accesses

a bounded number of data items. Also, in Section 4.4 we prove the correctness, progress,

and disjoint-access parallelism properties ensured by DAP-UC. Finally, in Section 4.5, we

present a new universal construction, called TI-DAP-UC, that ensures wait-freedom and

timestamp-ignoring disjoint-access parallelism when applied to any sequential data struc-

ture that has a bounded number of entry points.

4.2 Impossibility Result

To prove the impossibility of a wait-free universal construction with feeble disjoint-access

parallelism, we consider an implementation resulting from the application of an arbitrary

feebly disjoint-access parallel universal construction to the singly-linked list discussed in

Section 2.2. We show that there is an execution in which an instance of SEARCH does not

terminate. The idea is that, as the process p performing this instance proceeds through the

list, another process, q, is continually appending new elements with different values. If q

performs each instance of APPEND before p gets too close to the end of the list, disjoint-

access parallelism prevents q from helping p. This is because q’s knowledge is consistent

with the possibility that p’s instance of SEARCH could terminate successfully before it ac-

cesses a data item accessed by q’s current instance of APPEND. Also, process p cannot

determine which nodes were appended by process q after it started the SEARCH. The proof

relies on the following natural assumption about universal constructions. Roughly speak-

ing, it says that the operations of the concurrent implementation resulting from applying

a universal construction to a sequential data structure should simulate the behavior of the

operations of the sequential data structure.

Assumption 8 (Value-Obliviousness Assumption). If an operation of a data structure is

value oblivious, then, in any implementation resulting from the application of a universal

construction to this data structure, the set of base objects accessed by trivial primitives and

the set of base objects accessed by non-trivial primitives during any solo execution of a

Page 38 of 187

Impossibility Result

C0 Ci−3 Ci−2 Ci−1 Ci . . .
α1

APPEND(L,1)

αi−2

APPEND(L, i − 2)

αi−1

APPEND(L, i − 1)

αi

APPEND(L, i)

αi+1

APPEND(L, i + 1)

σi−2

S
E
A

R
C

H
(L

,
0
)

S
E
A

R
C

H
(L

,
0
)

βi−1

γi

S
E
A

R
C

H
(L

,
0
)

βi

Figure 4.1: The Execution α with Solo Executions of SEARCH(L, 0) Starting from Various
Configurations

sequence of consecutive instances of this operation starting from a quiescent configuration

do not depend on the values of the input parameters.

We consider executions of the implementation of a singly-linked list L in which pro-

cess p performs a single instance of SEARCH(L, 0) and process q performs instances of

APPEND(L, i), for i ≥ 1, and possibly one instance of APPEND(L, 0). The sequential code

of the singly-linked list is given in Figure 2.1. We may assume the implementation is de-

terministic: If it is randomized, we fix a sequence of coin tosses for each process and only

consider executions using these coin tosses.

Let C0 be the initial configuration in which L is empty. Let α denote the infinite solo

execution by q starting from C0 in which q performs APPEND(L, i) for all positive integers

i, in increasing order. For i ≥ 1, letCi be the quiescent configuration obtained when process

q performs APPEND(L, i) starting from configuration Ci−1. Let αi denote the sequence of

steps performed in this execution. Let B(i) denote the set of base objects accessed by non-

trivial primitives during αi and let A(i) denote the set of base objects not in B(i) accessed

during αi. Note that base objects in A(i) are only accessed by trivial primitives during αi.

In configuration Ci, the list L consists of i nodes, with values 1, . . . , i in increasing order.

In our proof, we build an infinite execution α′ which is indistinguishable from

α to process q and which contains an infinite number of steps of a single instance of

SEARCH(L, 0) by p. The steps taken by process p in α′ are chosen from the solo execu-

tions of SEARCH(L, 0) by p starting from Ci, for i ≥ 4. This is illustrated in Figure 4.1.

For any i ≥ 4, let α′′i = αiαi+1 · · · denote the suffix of α starting from Ci−1. The set⋃
{B(k) | k ≥ i} consists of all base objects to which q applies a non-trivial primitive in α′′i

Page 39 of 187

Impossibility Result

C0 C1 C3 C4 C5 C6
α1 α4

β4

α5

γ5

α6

γ6

β5 β6

Figure 4.2: An Infinite Execution α′ with a Non-terminating SEARCH Operation

and
⋃
{A(k) | k ≥ i} ∪

⋃
{B(k) | k ≥ i} is the set of all base objects accessed by q in α′′i .

Let σi be the steps of the solo execution of SEARCH(L, 0) by p starting from configuration

Ci. Let βi be the longest prefix of σi that does not contend with α′′i , i.e. in which p does not

access any base object in
⋃
{B(k) | k ≥ i} and does not apply non-trivial primitives to any

base object in
⋃
{A(k) | k ≥ i}.

Lemma 9. For 4 ≤ i ≤ j, βi is a prefix of βj .

Proof. Only base objects in
⋃
{B(k) | i < k ≤ j} can have different values in configura-

tions Ci and Cj . Since βi does not access any base objects in
⋃
{B(k) | k ≥ i}, it follows

that βi is also a prefix of σj . Since βi does not contend with α′′i and α′′j is a suffix of α′′i , βi
does not contend with α′′j . By definition of βj , it follows that βi is a prefix of βj .

For i ≥ 5, let γi be the (possibly empty) suffix of βi−1 such that βi−1γi = βi, as

illustrated in Figure 4.1. We show that α′ = α1α2α3α4β4α5γ5α6γ6 · · · is an infinite legal

execution starting from C0. The beginning of this execution appears in Figure 4.2.

Lemma 10. α′ is a legal execution starting from C0.

Proof. By definition, β4 does not apply non-trivial primitives to any base objects accessed

in α′′4 , and, for i ≥ 5, βi = βi−1γi (and, hence, γi) does not apply non-trivial primitives

to any base object accessed in α′′i . Therefore the executions arising from α and α′ starting

from C0 are indistinguishable to process q.

We prove by induction that, for all i ≥ 5, α1 · · ·α4β4α5γ5 · · ·αiγi and α1 · · ·αiβi
are indistinguishable to process p. First consider i = 5. Since β4 does access any base

Page 40 of 187

Impossibility Result

object to which α5 applies a nontrivial primitive, α1 · · ·α4β4α5γ5 and α1 · · ·α4α5β4γ5 =

α1 · · ·α4α5β5 are indistinguishable to process p.

Let i > 5 and assume the claim is true for i − 1. Then

α1 · · ·α4β4α5γ5 · · ·αi−1γi−1 and α1 · · ·αi−1βi−1 are indistinguishable to process p.

Hence, α1 · · ·α4β4α5γ5 · · ·αi−1γi−1αiγi and α1 · · ·αi−1βi−1αiγi are also indistinguish-

able to p. Since βi−1 does not access any base object to which αi applies a non-trivial

primitive, α1 · · ·αi−1βi−1αiγi and α1 · · ·αi−1αiβi−1γi = α1 · · ·αiβi are indistinguishable

to p. Therefore α1 · · ·α4β4α5γ5 · · ·αi−1γi−1αiγi and α1 · · ·αiβi are indistinguishable to

p.

It follows that α′ is a legal execution.

C0 Ci−1 Ci
i Ci

i+1 Ci
i+2 . . .

α1

APPEND(L,1)

αi
i

APPEND(L,0)

αi
i+1

APPEND(L, i + 1)

αi
i+2

APPEND(L, i + 2)

Figure 4.3: The Execution Obtained from α by Replacing APPEND(L, i) by APPEND(L, 0)

For 2 ≤ i ≤ j, let Cij be the quiescent configuration obtained from configuration C0

when process q performs the first j operations of execution α, except that the i’th operation,

APPEND(L, i), is replaced by APPEND(L, 0); namely, when q performs APPEND(L, 1), . . .,

APPEND(L, i − 1), APPEND(L, 0), APPEND(L, i + 1), . . . , APPEND(L, j). Let αii denote

the solo execution of APPEND(L, 0) by process q starting from configuration Ci−1 and,

for j > i, let αij denote the solo execution of APPEND(L, j) by process q starting from

configuration Cij−1 This is illustrated in Figure 4.3. Since APPEND is value oblivious, non-

trivial primitives are applied to the same set of base objects during the executions leading

to configurations Cj and Cij . Thus, only base objects in ∪{B(k) | i ≤ k ≤ j} can have

different values in Cj and Cij . Let σij be the solo execution by p of a SEARCH(L, 0) starting

from Cij .

Lemma 11. For i ≥ 4, βi is a proper prefix of σi.

Proof. By definition, βi is a prefix of σi. Since βi does not access any base object in B(i)

and these are the only objects that can have different values in Ci and Cii , it follows that βi is

a prefix of σii . Linearizability implies that SEARCH(L, 0) starting from Cii is successful, but

starting from Ci is unsuccessful. Thus, SEARCH(L, 0) is not completed after βi. Therefore

βi is a proper prefix of σi.

Page 41 of 187

Impossibility Result

Lemma 12. For i ≥ 5, σi−3i−1 and αi−3i do not contend.

Proof. Let S denote the state of the data structure in the quiescent configuration Ci−3i−1 .

In state S, the list has i − 1 ≥ 4 nodes and the third last node has value 0. Thus, the

set of data items accessed by SEARCH(L, 0) starting from state S consists of L.first and

the first i − 3 nodes of the list. This is disjoint from the set of data items accessed by

APPEND(L, i) starting from state S, which consists of L.last, the last node of the list, and

the newly appended node. Hence, by feeble disjoint access parallelism, σi−3i−1 and αi−3i do

not contend.

Next, for each i ≥ 4, we prove that there exists j > i such that γj is nonempty.

Lemma 13. For i ≥ 4, βi 6= βi+3.

Proof. To obtain a contradiction, suppose that βi = βi+3. By Lemma 11, βi is a proper

prefix of σi. Let b be the base object accessed in the first step following βi in σi. Then b is

also the base object accessed in the first step following βi+3 in σi+3. By definition of βi+3,

there is some ` ≥ i+ 3 such that this step is either an access to b ∈ B(`) or the application

of a non-trivial primitive to b ∈ A(`).

By the value obliviousness assumption, the set of base objects access by non-trivial

primitives during α`−3α`−2α`−1 and α`−3`−3α
`−3
`−2α

`−3
`−1 are the same, so only base objects in

B(`−3)∪B(`−2)∪B(`−1) can have different values in C`−1 and C`−3`−1 . Since `−3 ≥ i,
βi does not access any of these base objects, so βi is also a prefix of σ`−3`−1 . Furthermore, the

first step following βi in this execution is the same as the first step following βi in σi, i.e.

it is either an access to b ∈ B(`) or an application of a non-trivial primitive to b ∈ A(`).

By the value obliviousness assumption, B(`) is the set of base objects accessed by non-

trivial primitives during α`−3` andA(`) is the set of base objects not inB(`) accessed during

this execution. Thus, σ`−3`−1 and α`−3` contend on b. This contradicts Lemma 12. Hence,

βi 6= βi+3.

It follows that, for i ≥ 4, at least one of γi+1, γi+2, and γi+3 is nonempty. Hence γj is

nonempty for infinitely many integers j ≥ 5. Therefore, in the infinite execution α′, process

p never completes its operation SEARCH(L, 0) despite taking an infinite number of steps.

Hence, the implementation is not wait-free and we have proved the following result:

Theorem 14. No feebly disjoint-access parallel linearizable universal construction that

satisfies the value obliviousness assumption is wait-free.

Page 42 of 187

The DAP-UC Universal Construction

4.3 The DAP-UC Universal Construction

In this section, we present a universal construction that is linearizable, wait-free and disjoint-

access parallel (Definition 6) provided each operation of the sequential data structure to

which it is applied never access more than M data items, M is a constant.

To execute an operation op, a process p locally simulates the execution of op’s instruc-

tions without modifying the shared representation of the simulated state. This part of the

execution is the simulation phase of op. Specifically, each time p accesses a data item while

simulating op, it stores a copy in a local dictionary. All subsequent accesses by p to this data

item (during the same simulation phase of op) are performed on this local copy. Once all

instructions of op have been locally simulated, op enters its modifying phase. At that time,

one of the local dictionaries of the helpers of op becomes shared. All helpers of op then use

this dictionary and apply the modifications listed in it. In this way, all helpers of op apply

the same updates for op, and consistency is guaranteed.

1 type direc
2 value val
3 ptr to oprec A[1..n]

4 type statrec
5 {〈st : simulating〉,
6 〈st : restart, ptr to oprec restartedby〉,
7 〈st : modifying, ptr to dictionary of dictrec changes,value output〉
8 〈st : done〉}

9 type oprec
10 code program
11 process id owner
12 value input
13 value output
14 statrec status
15 ptr to oprec tohelp[1..n]

16 type dictrec
17 ptr to direc key
18 value newval

Figure 4.4: Type Definitions of DAP-UC

The algorithm maintains a record for each data item x. The first time op accesses x,

it makes an announcement by writing appropriate information in x’s record. It also detects

other operations that are concurrently accessing x by reading this record. So, concurrent

accesses on the same data item are detected without violating disjoint access parallelism.

Page 43 of 187

The DAP-UC Universal Construction

19 value PERFORM(prog, input) by process p:
20 opptr := pointer to a new oprec record

opptr → program := prog, opptr → input := input, opptr → output := ⊥
opptr → owner := p, opptr → status := 〈simulating〉,
opptr → tophelp[1..n] := [nil, . . . , nil]

21 HELP(opptr) /* p helps its own operation */

22 for q := 1 to n excluding p do /* p helps operations that have been restarted by its operation op */

23 if (opptr → tohelp[q] 6= nil) then HELP(opptr → tohelp[q])

24 return (opptr → output)

Figure 4.5: The Code of PERFORM of DAP-UC

The algorithm uses a simple priority scheme, based on the identifiers of the processes that

invoke the operations, to resolve situations where processes are concurrently accessing the

same data item. When an operation op determines that it concurrently accesses the same data

item with an operation op′ of higher priority, op helps op′ to complete before it continues

its execution. On the other hand, if op has higher priority than op′, op causes op′ to restart.

In this case, the owner of op will help op′ to complete once it finishes with the execution of

op, before it starts the execution of a new operation. The algorithm also ensures that before

op′ restarts its simulation phase, it will help op to complete. These actions guarantee that

processes never starve.

We continue with the details of the algorithm. The algorithm maintains a record of type

oprec (lines 9-15) that stores information for each initiated operation. When a process p

wants to execute an operation op, it starts by creating a new oprec for op and initializing

it appropriately (line 20). In particular, this record provides a pointer to the code of op, its

input parameters, its output, the status of op, and an array indicating whether p should help

other operations before starting a new operation. We call p the owner of op. To execute op,

p calls HELP (line 21). To ensure wait-freedom, before op returns, the owner of op helps

all other operations (with lower priority) listed in the tohelp array of the oprec record of

op (lines 22-23). These are operations that concurrently accessed the same data item with

op during the course of its execution, so disjoint-access parallelism is not violated. The

algorithm also maintains a record of type direc (lines 1-3) for each data item x. In the

code, we also denote by x a pointer to the direc corresponding to that data item. This

record contains a val field, which is an LL/SC object that stores the value of x, and an

array A of n LL/SC objects, indexed by process identifiers, which stores oprec records

of operations that are accessing x. This array is used by operations to announce that they

access x and to detect operations that are concurrently accessing x.

Page 44 of 187

The DAP-UC Universal Construction

25 HELP(opptr) by process p:
26 opstatus := LL(opptr → status)
27 while (opstatus 6= 〈done〉)

28 if (opstatus = 〈restart, opptr′〉) then /* op′ has restarted op */

29 HELP(opptr′) /* first help op′ */

30 SC(opptr → status, 〈simulating〉) /* try to change the status of op back to 〈simulating〉 */

31 opstatus := LL(opptr → status)

32 if (opstatus = 〈simulating〉) then /* start a new simulation phase */

33 dict := pointer to a new empty dictionary of dictrec records
34 ins := first instruction in opptr → program
35 while ins is not a return do /* simulate instruction ins of op */

36 if ((ins is WRITEDI(x, v) or READDI(x)) and /* first access of x by

(there is no dictrec with key x in dict)) then this attempt of op */

37 ANNOUNCE(opptr, x) /* announce that op is accessing x */

38 CONCURRENTACCESSES(opptr, x) /* possibly, help or restart other operations accessing x */

39 if (ins = READDI(x)) then v := x→ val
40 add new dictrec 〈x, v〉 to dict /* create a local copy of x */

41 else if (ins is CREATEDI()) then
42 x := pointer to a new direc record
43 x→ A[1..n] := [nil, . . . , nil]
44 x→ A[opptr → owner] := opptr
45 add new dictrec 〈x, nil〉 to dict
46 else /* either ins is WRITEDI(x, v) or READDI(x) and there is a dictrec with

key xin dict,or ins is not a WRITEDI(), READDI() or CREATEDI() instruction */

execute ins, using/changing the value in the
appropriate entry of dict if necessary

47 if (¬VL(opptr → status) then break /* end of the simulation of ins */

48 ins := next instruction of opptr → program
/* end while */

49 if (ins is return (v)) then /* v may be empty */

/* try to change status of op to modifying; it is successful iff simulation is over and status of op unchanged

50 SC(opptr → status,〈modifying, dict, v〉) since beginning of simulation */

51 opstatus := LL(opptr → status)

52 if (opstatus = 〈modifying, changes, out〉) then
53 opptr → outputs := out
54 for each dictrec 〈x, v〉 in the dictionary pointed to by changes do

55 LL(x→ val) /* try to make writes visible */

56 if (¬VL(opptr → status)) then return /* op is completed */

57 SC(x→ val, v)

58 LL(x→ val)
59 if (¬VL(opptr → status)) then return /* op is completed */

60 SC(x→ val, v)

61 SC(opptr → status, 〈done〉)
62 opstatus := LL(opptr → status)

/* end while */

63 return

Figure 4.6: The Code of HELP of DAP-UC

Page 45 of 187

The DAP-UC Universal Construction

64 ANNOUNCE(opptr, x) by process p:
65 q := opptr → owner

66 LL(x→ A[q])
67 if (¬ VL(opptr → status)) then return
68 SC(x→ A[q], opptr)

69 LL(x→ A[q])
70 if (¬VL(opptr → status)) then return
71 SC(x→ A[q], opptr)

72 return

73 CONCURRENTACCESSES(opptr, x) by process p:
74 for q′ := 1 to n excluding opptr → owner do
75 opptr′ := LL(x→ A[q′])
76 if (opptr′ 6= nil) then /* op may concurrently access x with op′ */

77 opstatus′ := LL(oppptr′ → status)

78 if (¬VL(opptr → status)) then return

79 if (opstatus′ = 〈modifying,−,−〉) then HELP(opptr′)

80 else if (opstatus′ = 〈simulating〉) then
81 if (opptr → owner < q′) then /* op has higher priority than op′ , restart op′ */

82 opptr → tohelp[q′] := opptr′

83 if (¬VL(opptr → status)) then return
84 SC(opptr′ → status, 〈restart, opptr〉)

85 if (LL(oppptr′ → status) = 〈modifying,−,−〉) then HELP(opptr′)

86 else HELP(opptr′) /* op has lower priority that op′ , help op′ */

87 return

Figure 4.7: The Code of ANNOUNCE and CONCURRENTACCESSES of DAP-UC

The execution of op is done in a sequence of one or more simulation phases (lines 32-

51) followed by a modification phase (lines 52-60). In a simulation phase, the instructions of

op are read (lines 34, 35, and 48) and the execution of each one of them is simulated locally.

During each simulation phase, the first time a process q helping op (including its owner)

needs to access a data item (lines 36, 41), it creates a local copy of it in its (local) dictionary

(lines 40, 45). All subsequent accesses by q to this data item (during the current simulation

phase of op) are performed on this local copy (line 46). During the modification phase, q

makes the updates of op visible by applying them to the shared memory (lines 54-60).

The status field of op determines the execution phase of op. It contains a pointer to a

record of type statrec (lines 4-8) where the status of op is recorded. The status of op can

be either 〈simulating〉, indicating that op is in its simulation phase, 〈modifying,−,−〉, if

op is in its modifying phase, 〈done〉, if the execution of op has been completed (although op

Page 46 of 187

The DAP-UC Universal Construction

may not have yet returned), or 〈restart,−〉, if op has concurrently accessed some data item

with another operation (of higher priority) and should re-execute its simulation phase from

the beginning. Depending on which of these values status contains, it may additionally

store another pointer or a value.

Whenever process p accesses a data item x for the first time during a simulation phase,

p checks, before reading the value of x, whether op is concurrently accessing x with other

operations. This is done as follows: p announces op to x by storing a pointer opptr to op’s

oprec inA[q], where q = opptr → owner. This is performed by calling ANNOUNCE (line

37). ANNOUNCE first applies an LL on x → A[q] (line 66), where x is the direc for x.

Then, it checks if the status of op (line 67) remains 〈simulating〉 and, if this is so, it applies

a SC to store opptr in x → A[q] (line 68). These three instructions are then executed one

more time. This is needed because an obsolete helper of an operation, initiated by p before

op, may successfully execute an SC on x → A[q] that stores a pointer to this operation’s

oprec causing the SC by q (on line 68) to fail. However, we prove in Section 4.4 that this

can happen only once, so executing the instructions on lines 66-68 twice is enough.

After announcing op to x, p calls CONCURRENTACCESSES (line 38) to detect other

operations that are concurrently accessing x. In CONCURRENTACCESSES, p reads all the

elements of x → A except A[q] (lines 74-75). Whenever is detected that op concurrently

accesses some data item with some other operatiom op′ (i.e. the condition of the if state-

ment of line 76 evaluates to true), p first checks if op′ is in its modifying phase (line 79)

and, if so, it helps op′ to complete. In this way, it is ensured that, once an operation en-

ters its modification phase, it will complete its operation successfully. Therefore, once the

status of an operation becomes 〈modifying,−,−〉, it will next become 〈done〉, and then,

henceforth, never changes. If the status of op′ is 〈simulating〉, p determines which of op

or op′ has the higher priority (line 81). If op′ has higher priority (line 86), then p helps op′

by calling HELP(op′). Otherwise, p first adds a pointer opptr′ to the oprec of op′ into

opptr → tohelp (line 82), so that q, the owner of op, will help op′ to complete after op has

completed. Then p attempts to restart op′, using SC (line 84) to change the status of op′ to

〈restart, opptr〉, where opptr is a pointer to the oprec of op. When op′ restarts its sim-

ulation phase, it will help op to complete (lines 28-31), if op is still in its simulation phase,

before it continues with the re-execution of the simulation phase of op′. This guarantees that

opttr′ → status will not be set to 〈restart, opptr〉 again.

Recall that each helper p of opmaintains a local dictionary. This dictionary contains an

element of type dictrec (lines 16-18) for each data item that p accesses (while simulating

Page 47 of 187

Proof of the DAP-UC Algorithm

op). A dictionary element corresponding to data item x consists of two fields, key, which

is a pointer to the direc corresponding to x, and newval, which stores the value that op

currently knows for x. Notice that only one helper of op will succeed in executing the SC on

line 50, which changes the status of op to 〈modifying,−,−〉. This helper records a pointer

to the dictionary it maintains for op, as well as its output value, in op’s status, to make them

public. During the modification phase, each helper q of op traverses this dictionary, which

is recorded in the status of op (lines 52, 54). For each element in the dictionary, it tries to

write the new value into the direc of the corresponding data item (lines 55-57). This is

performed twice to avoid problems with obsolete helpers in a similar way as in ANNOUNCE.

Theorem 15. The DAP-UC universal construction (Figures 4.4, 4.5, 4.6, and 4.7) produces

disjoint-access parallel, wait-free, concurrent data structures when applied to sequential

data structures whose operations access a bounded number of data items in any sequential

execution.

4.4 Proof of the DAP-UC Algorithm

4.4.1 Preliminaries

The proof is divided in three parts, namely consistency (Section 4.4.2), wait-freedom (Sec-

tion 4.4.3) and disjoint-access parallelism (Section 4.4.4). The proof considers an execution

α of the universal construction applied to some sequential data structure. The configurations

referred to in the proof are implicitly defined in the context of this execution. We first intro-

duce a few definitions and establish some basic properties that follow from inspection of the

code.

Observe that an oprec is created only when a process begins PERFORM (on line 20).

Thus, we will not distinguish between an operation and its oprec.

Observation 16. The status of each oprec is initially simulating (line 20). It can only

change from simulating to modifying (lines 32, 50), from modifying to done (lines 52, 61),

from simulating to restart (lines 80, 84), and from restart to simulating (lines 28, 30).

Thus, once the status of an oprec becomes modifying, it can only change to done.

Observation 17. Let op be any operation and let opptr be the pointer to its oprec. When

a process returns from Help(opptr) (on line 56, 59 or 63), opptr → status = done.

Page 48 of 187

Proof of the DAP-UC Algorithm

This follows from the exit condition of the while loop (line 27) and the fact that, once the

status of an oprec becomes modifying, it can only change to done.

Observation 18. In every configuration, there is at most one oprec owned by each process

whose status is not done.

This follows from the fact that, when a process returns from PERFORM (on line 24), has

also returned from a call to HELP (on line 21), so the status of the oprec it created (on line

20) has status done, and the fact that a process does not call PERFORM recursively, either

directly or indirectly.

Observation 19. For every direc, A[i], 1 ≤ i ≤ n, is initially nil and is only changed to

point to oprecs with owner i.

This follows from the fact that A[i], 1 ≤ i ≤ n, is initialized to nil when the direc is

created (on line 42) and is updated only on lines 68 or 71.

4.4.2 Linearizability

An attempt is an endeavour by a process to simulate an operation. Formally, let op be

any operation initiated by process q in α and let opptr be the pointer to its oprec, i.e.

opptr → owner = q.

Definition 20. An attempt of op by a process p is the longest execution interval that begins

when p performs a LL on opptr → status on line 26, 31, or 51 that returns simulating

and during which opptr → status does not change.

The first step after the beginning of an attempt is to create an empty dictionary of dictrecs

(line 33). So, each dictionary is uniquely associated with an attempt. We say that an attempt

is active at each configuration C contained in the execution interval that defines the attempt.

Let p be a process executing an attempt att of op. If immediately after the completion

of att, p successfully changes opptr → status to 〈modifying, chgs, val〉 (by performing

a SC on opptr → status on line 50), then att is successful. Notice that, in this case, chgs

is a pointer to the dictionary associated with att.

By Observation 16, only one process executing an attempt of op can succeed in execut-

ing the SC that changes the status of op to 〈modifying, _, _〉 (on line 50). Next observation

then follows from the definition of a successful attempt:

Linearizability Page 49 of 187

Proof of the DAP-UC Algorithm

Observation 21. For each operation, there is at most one successful attempt.

In att, p simulates instructions on behalf of op (lines 32 - 50). The simulation of an

instruction ins starts when ins is fetched from op’s program (on lines 34 or 48) and ends

either just before the next instruction starts simulated, or just after the execution of the SC

on line 50 if ins is the last instruction of opptr → program.

When p simulates a CREATEDI() instruction, it allocates a new direc record x in its

own stripe of shared memory (line 42) and adds a pointer to it in the dictionary associated

with att (line 45); in this case, we also say that p simulates the creation of, or creates x.

Notice that x is initially private, as it is known only by p; it may later become public if att

is successful. Next definition captures precisely the notion of public direc.

We say that a direc x is referenced by operation op in some configuration C, if

opptr → status = 〈modifying, chgs, _〉, where chgs is a pointer to a dictionary that

contains a dictrec record whose first component, key, is a pointer to x.

Definition 22. A direc x is public in configuration C if and only if it is static or there

exists an operation that references x in C or in some configuration that precedes it.

We say that p simulates an access of (or access) some direc x by (for) op, if it either

simulates an ins ∈ {READDI(x),WRITEDI(x, _)}, or creates x. Observe that if x is public

in configuration C, it is also public in every configuration that follows. Also, before it is

made public, x cannot be accessed by a process that has not created it.

Observation 23. If, in att, p starts the simulation of an instruction ins ∈
{WriteDI(x, _),ReadDI(x)} at some configuration C, then either x is created by p in att

beforeC, or there exists a configuration preceding the simulation of ins in which x is public.

Notice that each time p accesses for the first time a direc x during att, a new

dictrec record is added for x to the dictionary associated with att (on lines 40 or 45).

From this and by inspecting the code lines 36, 40, 41 and 45 follows the observation below.

Observation 24. If a direc x is accessed by p during att for op, then the first time that it

accesses x, the following hold:

1. p executes either lines 36 to 40 or lines 41 to 45 exactly once for x,

2. p inserts a dictrec record for x in the dictionary associated with att exactly once,

i.e. this record is unique.

Page 50 of 187 Linearizability

Proof of the DAP-UC Algorithm

We say that p announces op on a direc x during att, if it successfully executes an SC

of line 68 or line 71 on x.A[q] (recall that opptr → owner = q) with value opptr, during

a call of ANNOUNCE(opptr, x) (on line 37). Distinct processes may perform attempts of

the same operation op. However, once an operation has been announced to a direc, it can

only be replaced by a more recent operation owned by the same process (i.e. one initiated

by q after op’s response), as shown by the next lemma.

Lemma 25. Assume that p calls Announce(opptr, x) in att. Suppose that in the con-

figuration CA immediately after p returns from that call, att is active. Then, in config-

uration CA and every configuration that follows in which oppptr → status 6= done,

(x.A[opptr → owner]) = opptr.

Proof. Since att is active when p returns from ANNOUNCE(opptr, x), the tests performed

on lines 67 and 70 are successful. So, p performed LL(x→ A[q], opptr) on lines 66 and 69

respectively. Let CLL1 and CLL2 be the configurations immediately after p performed line

66 and 69, respectively.

Let C be a configuration after p has returned from the call of ANNOUNCE(opptr, x)

in which opptr → status 6= done. Assume, by contradiction, that (x.A[q]) = opptr′ in C,

where opptr′ is a pointer to an operation op′ 6= op. Let p′ be the last process that changes the

value of x.A[q] to opptr′ before C. Therefore p′ performed a successful SC(x.A[q], opptr′)

on line 68 or line 71. This SC is preceded by a VL(opptr′ → status) (on line 67 or line 70),

which is itself preceded by a LL(x → A[q]) (on line 66 or line 69). Denote by C ′SC , C
′
V L

and C ′LL, respectively, the configurations that immediately follow each of these steps. Since

the VL applied by p′ on (opptr′ → status) is successful, opptr′ → status = simulating

in configuration C ′V L.

By Observation 19, opptr′ → owner = q. By Observation 18, in every configura-

tion, there is only one operation owned by q whose status is not done. Since op has status

simulating when p started its attempt and the status of op is not equal to done in C, it

then follows from Observation 16 that the status of op′ is done when the attempt att of op

by p started. Therefore, configuration C ′V L, in which the status of op′ is simulating, must

precede the first configuration in which att is active. In particular, C ′V L precedes CLL1 and

thus C ′LL precedes CLL1.

We consider two cases according to the order in which CLL2 and C ′SC occur:

• C ′SC occurs before CLL2. In that case, no process performs a successful SC(x →

Linearizability Page 51 of 187

Proof of the DAP-UC Algorithm

A[q], opptr′′), where opptr′′ is a pointer to an operation op′′ 6= op, after C ′SC
and before C; this follows from the definition of p′. Notice that the second

SC(x → A[q], opptr) performed by p on line 71 is executed after C ′SC , so it can-

not be successful. However, this SC is unsuccessful only if a process 6= p performs

a successful SC on x → A[q] after CLL2 and before it, thus between C ′SC and C,

which is a contradiction.

• CSC′ occurs after CLL2. Notice that C ′LL precedes CLL1 and p performs a

SC(x.A[q],opptr) (on line 68) between CLL1 and CLL2. If this SC is successful, then

the SC(x.A[q]),opptr’) performed by p′ immediately before CSC′ cannot be success-

ful, which is a contradiction. Otherwise, another process performs a successful SC on

x.A[q] afterCLL1 and before p performs the SC(x.A[q], opptr) on line 68, which also

prevents the SC performed by p′ from being successful, which is a contradiction.

Attempts of distinct operations may access the same direcs. When an attempt att of

op accesses a direc x for the first time by simulating READDI(x) or WRITEDI(x, _), the

operation is first announced to x (on line 37) and then CONCURRENTACCESSES(opptr, x)

is called (on line 38, opptr is a pointer to op) to check whether another attempt att′ of a

distinct operation op′ is concurrently accessing x. If this is the case (line 76), op′ is either

restarted (on line 84) or helped (on lines 79, 85 or 86). Since when HELP(op′) returns, the

status of op′ is done (Observation 17), in both cases attempt att′ is no longer active when

the call to CONCURRENTACCESSES(opptr, x) returns. This is precisely what next Lemma

establishes.

Lemma 26. Let att, att′ be two attempts by two processes denoted p and p′, respectively,

of two operations op, op′ owned by q, q′, where q 6= q′, respectively. Let x be a direc.

Denote by opptr and opptr′ two pointers to op and op′ respectively. Suppose that:

• in att, p calls Announce(opptr, x) and returns from that call,

• in att′, p′ calls ConcurrentAccesses(opptr′, x) (on line 38) and returns from

that call; denote by C ′D the configuration that follows the termination of

ConcurrentAccesses(opptr′, x) by p′.

• p′ returns from Announce(opptr′, x) after p returns from Announce(opptr, x).

Then, if att′ is active in C ′D, the following hold:

1. att is not active in C ′D;

2. if att is successful, opptr → status = done in C ′D.

Page 52 of 187 Linearizability

Proof of the DAP-UC Algorithm

Proof. Let CA denote the configuration immediately after p returns from AN-

NOUNCE(opptr, x). Similarly, denote by C ′A the configuration immediately after p′ returns

from ANNOUNCE(opptr′, x). We have that C ′A occurs after CA, and C ′A occurs before p′

calls CONCURRENTACCESSES(opptr′, x).

The proof is by contradiction. Let us assume that att′ is active in C ′D and either

att is active in C ′D or att is successful and opptr → status 6= done in C ′D. Consider the

execution by p′ of the call CONCURRENTACCESSES(opptr′, x), which ends at configuration

C ′D. In particular, as q′ = op′ → owner 6= op→ owner = q, process p′ checks whether an

operation owned by q has been announced to the direc pointed to by x (on line 74). We

derive a contradiction by examining the steps taken by process p′ in the iteration of the for
loop in which x→ A[q] is examined.

Let C be a configuration that follows CA and precedes C ′D or is equal to C ′D. We

show that x → A[q] = opptr in C. On one hand, att is active in configuration CA and

thus opptr → status = simulating in this configuration. On the other hand, either att

is still active in C ′D, or att is successful, but opptr → status 6= done in C ′D. Therefore,

by Observation 16, the status of op does not change between CA and C ′D or is changed to

〈modifying, _, _〉. Hence, opptr → status ∈ {simulating, 〈modifying, _, _〉} in C.

In particular the configuration C ′RA that immediately precedes the read of x.A[q] by

p′ (LL on line 75) occurs after CA and before C ′D. C ′RA thus occurs after the call of

ANNOUNCE(opptr, x) by p returns, and the status of op is not done in this configuration.

Therefore, by applying Lemma 25, we have that A[q] = opptr in C ′RA.

As attempt att′ is active in C ′D, it is active when p′ performs CONCURRENTAC-

CESSES(opptr′, x). In particular, each VL on opptr′ → status performed by p′ (on line

78 or 83) in the execution of CONCURRENTACCESSES(opptr′, x) returns true. Therefore,

p′ reads the status of the operation pointed to by oppptr (LL(opptr → status) on line 77).

In the configuration to which this LL is applied, which occurs between CA and C ′D, the

status of op is either simulating or 〈modifying, _, _〉 for what above stated.

We consider two cases, according to the value read from opptr → status by p′:

• The read of opptr → status by p′ returns 〈modifying, _, _〉. In that case, p′ calls

HELP(opptr) (line 79). In the configuration C in which p′ returns from this call,

opptr → status = done (Observation 17). As C is C ′D or occurs prior to C ′D, but

after CA, and the status of op is never changed to done between CA and C ′D, this is a

contradiction.

Linearizability Page 53 of 187

Proof of the DAP-UC Algorithm

• The read of opptr → status by p′ returns simulating (line 80). We distinguish two

sub-cases according to the relative priorities of op and op′:

– q′ < q, i.e. op′ has higher priority than op. In this case, p′ tries to change the sta-

tus of op to 〈restart, _〉 by performing a SC on opptr → statuswith parameter

〈restart, opptr′〉 (line 84). The SC is performed in a configuration that follows

CA and that precedes C ′D. The SC cannot succeed. Otherwise there is a config-

uration between CA and C ′D where opptr → status is 〈restart, opptr′〉. This

contradicts the fact that the status of op is simulating or 〈modifying, _, _〉 in

every configuration between CA and C ′D. Therefore, opptr → status has been

changed to 〈modifying, _, _〉 before the SC is performed by p′. Thus, p′ calls

HELP(opptr) (on line 85) after performing the unsuccessful SC. When this call

returns, opptr → status = done (Observation 17) which is a contradiction.

– q < q′. In that case, p′ calls HELP(opptr). As in the previous case, a contradic-

tion can be obtained, since when p′ returns from this call, opptr → status =

done (Observation 17), and p′ returns from the call to HELP(opptr) before

C ′D.

In an attempt of op, a new direc is created each time a CREATEDI() instruction is

simulated on line 42. For such a direc to be later accessed in another attempt, a pointer to

it must be either written to the val field of another direc, or passed as an input parameter

to an operation. Moreover, when the direc is accessed, the status of the operation op is

done.

Lemma 27. Suppose that in att, p creates a direc x. If an instruction ReadDI(x) or

WriteDI(x, _) is simulated in an attempt att′ of an operation op′ 6= op, then op→ status =

done in the configuration preceding the beginning of the simulation of this instruction.

Proof. Recall that x is allocated to a new shared memory slot (on line 42) and then a

dictrec with key a pointer to x is added to the dictionary associated with att (on line

45). While att is active, the dictionary associated with it is private. Hence, in order for a

WRITEDI() or READDI() with parameter x to be simulated in att′, the dictionary associated

with att has to be made public, which can occur only if att is successful. Moreover, there is

a direc x′ created by att such that x′ is written to a direc that is not created by att, or it

is returned by op. This is so, since otherwise, no direcs created in att can be accessed in

any attemp other than att, which contradicts the fact that x is accessed by att′. In the sec-

ond case, the code (lines 21 and 24) and Observation 17 imply that opptr → status = done

Page 54 of 187 Linearizability

Proof of the DAP-UC Algorithm

before a pointer to x is passed as a parameter to op′, that is before att′ simulates an access

on x; so, the claim holds. We continue with the first case. Denote by W the set of direcs

that are written by att but have not been created by it.

In att′, an instruction WRITEDI(x, _) or READDI(x) is simulated. Since x is a dy-

namic direc, this instruction is preceded by a simulation of a READDI() instruction on

some data item not created by att′ that returns a pointer to x. Assume that the first such

instruction R has parameter y. We argue that R is the first access of y by att′. This is so

since a copy of y is inserted into the dictionary of att′ the first time it is accessed by att′ and

any subsequent access of y by att′ returns the value written in the dictionary.

1. y ∈ W . Note that y is neither created in att nor in att′ but accessed in both at-

tempts. Therefore, Observation 24 implies that the first time it is accessed in att,

ANNOUNCE(opptr, y) and CONCURRENTACCESSES(opptr, y) are called (lines 37–

38). Both calls terminate, as att is successful. Denote by CA and CD the configu-

rations that follow the termination of ANNOUNCE(opptr, y) and CONCURRENTAC-

CESSES(opptr, y), respectively. Notice that att is active in CD. This is due to the

fact that att remains active until the SC on line 50 that changes the status of op to

〈modifying, _, _〉 is applied.

Similarly, Observation 24 implies that ANNOUNCE(opptr′, y) and CONCUR-

RENTACCESSES(opptr′, y) are called when att′ simulates READDI(y). Both calls

terminate, since the simulation of READDI(y) by att′ returns a value. Denote by C ′A
and C ′D the configurations that follow the termination of ANNOUNCE(opptr′, y) and

CONCURRENTACCESSES(oppptr′, y), respectively. Note that att′ is active in C ′D
since another instruction, namely, READDI(x) or WRITEDI(x, _), is simulated later,

and the status of op′ is validated before a new instruction is simulated (line 47).

If CA occurs before C ′A, it follows from Lemma 26 that opptr → status = done

in C ′D. Therefore, by Observation 16, the status of op is done when the simulation

of READDI(x) or WRITEDI(x, _) starts in att′. Otherwise, C ′A occurs before CA.

In that case, it follows from Lemma 26 that att′ is not active in CD. Since the SC

on line 50 by att is executed after CD and x becomes visible to other attempts only

after this SC, it is not possible for att′ to access x, which is a contradiction.

2. y /∈W . In this case, a pointer ptrx to x is written to y.val before y.val is read in att′.

This means that in an attempt att′′ 6∈ {att, att′}, an instruction WRITEDI(y, ptrx)

is simulated. Moreover, as in att′, this instruction is preceded by the simulation of

a READDI() instruction that returns x. We apply inductively the same reasoning

Linearizability Page 55 of 187

Proof of the DAP-UC Algorithm

to att′′ to prove the Lemma. In each induction step, the number of configurations

between the creation of x (in att) and the first time a READDI() that returns x is

simulated in the attempt considered strictly decreases. This ensures the termination

of the induction process.

Next lemma establishes that in every configuration, no two operations that are in their

modifying phase reference the same direc. This lemma plays a central role in the defini-

tion of the state of the data structure at the end of a prefix of the (concurrent) execution.

Lemma 28. Let op, op′ denote two distinct operations, and let C be a configuration.

Suppose that in C, op → status = 〈modifying, chgs, _〉 and op′ → status =

〈modifying, chgs′, _〉, where chgs and chgs′ are pointers to dictionaries d and d′ respec-

tively. Then there is no dictrec with the same key in both d and d′.

Proof. Assume, by contradiction, that dictionaries d and d′ have a dictrec whose key

field points to the same direc x in configuration C. Since every process owns at most one

operation with status 6= done in every configuration (Observation 18), op → owner 6=
op′ → owner.

Consider a process that changes the status of op to 〈modifying, chgs, _〉. This occurs

when this process performs a SC on op → status (on line 50). Since once the status of an

operation is 〈modifying, _, _〉, it can only change to done (Observation 16), and for this

SC to be successful, the status of op must be simulating in the configuration in which it is

applied, there is a unique such process. Denote by p this process. Before changing the status

of op to 〈modifying, chgs, _〉, p performs a (successful) attempt of op (lines 34 - 48). De-

note att this attempt. Note that the dictionary associated with att is d. Hence, a dictrec

〈x, _〉 is added to d during att. Define similarly attempt att′ by process p′, the successful

attempt of op′ that ends with the SC that changes the status of op′ to 〈modifying, chgs′, _〉.
As in att, a dictrec 〈x, _〉 is added to d′ in att′.

We consider two cases, according to the instructions simulated when a dictrec with

a pointer ptrx to x is added in att or att′.

• In both att and att′, some dictrec with key x is added to d when a READDI(x)

or WRITEDI(x, _) is simulated. By the code, p calls in att ANNOUNCE(opptr, x)

and CONCURRENTACCESSES(opptr, x) (on lines 37 and 38, respectively) before

Page 56 of 187 Linearizability

Proof of the DAP-UC Algorithm

adding a dictrec 〈ptrx, _〉, to its dictionary (on line 40), where opptr is point-

ing to op. Similarly, p′ calls in att′ ANNOUNCE(opptr′, x) and CONCURRENTAC-

CESSES(opptr′, x), where opptr′ is a pointer to op′, and p′ returns from both calls.

Assume without loss of generality that p′ returns from ANNOUNCE(opptr′, x) after p

returns from ANNOUNCE(opptr, x) by p. Denote by C ′D the configuration immedi-

ately after p′ returns from CONCURRENTACCESSES(opptr′, x). As att′ is a success-

ful attempt, whose end occurs when p′ changes the status of op′ to 〈modifying, _, _〉,
att′ is active in C ′D.

Therefore, by Lemma 26, att is not active inC ′D and, since att is a successful attempt,

the status of op is done in this configuration. This contradicts the fact that the status

op and op′ is 〈modifying, _, _〉 at C that folows C ′D.

• A dictrec with key x is added to d or d′ when a CREATEDI() is simulated. When-

ever a new direc is created (on line 42), a distinct shared memory slot is allocated

to this direc. A dictrec record 〈ptrx, _〉 cannot thus be added in both d and d′

at line 45 when a CREATEDI() instruction is simulated.

Suppose without loss of generality that, in att, 〈x, _〉 is added to d on line 45, as a

result of the simulation of a CREATEDI() instruction. ptrx is thus added to d′ the

first time a READDI(x) or WRITEDI(x, _) instruction for op′ is simulated by p′ in

att′. By Lemma 27, op status is done in the configuration immediately before the

simulation of this instruction begins. Therefore there is no configuration in which the

status of op and op′ is 〈modifying, _, _〉: a contradiction.

Suppose that att is a successful attempt of op. Hence, the status of op is changed

just after att to 〈modifying, chgs, _〉. The changes resulting from the instructions sim-

ulated in att are stored in the dictionary pointed to by chgs. While the status of op is

〈modifying, chgs, _〉, some processes try to apply these changes by modifying the value

of the direcs referenced by op (on lines 52–62). Next lemma establishes that the changes

described by the dictionary pointed to by chgs are successfully applied by the time that the

status of op is changed to done.

Lemma 29. Suppose that CM is the last configuration in which the status of op is

〈modifying, chgs, _〉, where chgs is a pointer to a dictionary d of dictrecs. Let C

be a configuration that follows CM . For every dictrec 〈ptrx, v〉 in d, where ptrx is a

pointer to a direc x, ptrx → val = v in C or there exists a configuration C ′ following

CM and preceding C and an operation op′ such that op′ is referencing x in C ′.

Linearizability Page 57 of 187

Proof of the DAP-UC Algorithm

Proof. Let p be the process that successfully performs SC(op → status, done) on line 61

just after CM . Suppose that in every configuration C ′ following CM and preceding C, no

operation references x. Assume, by contradiction, that ptrx → val = v′ 6= v in C.

Consider the steps performed by p in the execution of the iteration of the for loop

(lines 55 - 60) that corresponds to the dictrec 〈ptrx, v〉. Notice that these steps precede

CM . In this iteration, p tries to change the val of x to v. Since p is the process that changes

the status of op to done, it follows that p does not return on lines 56 and 59. Thus, p executes

two SC instructions SC1 and SC2 on lines 57 and 57, respectively; let LL1 and LL2 be the

matching LL instructions to these SC. Notice that, for each i ∈ {1, 2}, there is a successful

SC between LLi and SCi. Let SC′i be this successful SC (notice that SC′i may be SCi if SCi
is successful).

Since ptrx → val = v′ 6= v in configuration C, some process changes ptrx → val

to v′. Let p′ be the last process that changes ptrx → val to v′ prior to C. By the code, p′

performs successfully SC(ptrx → val, v′) on line 57 or 60; denote by SC′ this SC and let

LL′ and VL′ be its mathing LL and VL (which are executed on lines 55 and 56 or 58 and 59),

respectively. Since ptrx → val = v′ 6= v in C, either SC′ = SC′2 or SC′ occurs after SC ′2.

The status of op′ when V L′ is executed is 〈modifying, chgs′, _〉, where chgs′ is a

pointer to a dictionary that includes a dictrec 〈x, v′〉, thus op′ references x when V L′

is executed. Since we have assumed that no operation references x in any configuration

between CM and C, V L′ precedes CM . By Lemma 28, x cannot be referenced by two

operations at the same time. Hence, V L′ occurs before the status of op is changed to

〈modifying, chgs, _〉. In particular, V L′, and therefore also LL′ precedes LL1. Since SC ′

is realized at SC ′2 or after it, SC′1 occurs between LL′ and SC′. Thus, SC′ is not successful.

This is a contradiction.

Recall that the state of a sequential data structure is a collection of pairs (x, v) where

x is a data item and v is a value for that data item. The state of the data structure we consider

does not depend on where its data items are stored, so by the value of a pointer we mean

which object it points to and not the location of that object in shared memory. The initial

state of a sequential data structure consists of its static data items and their initial values.

Initially, there is one direc for each static data item of the data structure. Each

direc that is created (on line 42) becomes a public dynamic data item if the attempt that

creates it is successful. The current value of a direc in a configuration is the value of its

val field, unless the direc is referenced by an operation op, in which case it is the newval

Page 58 of 187 Linearizability

Proof of the DAP-UC Algorithm

field in dictrec, the dictionary contained in op’s status, whose key points to this direc.

Note that, by Lemma 28, in each configuration, each direc is referenced by at most one

operation.

Recall that a direc is public in configuration C if it corresponds to a direc of a

static data item or there exists a configuration C ′ equal to C or preceding it in which it is

referenced by an operation. For every configuration C in α, denote by DC the set of pairs

(x, v), where x is a public direc and v is its current value in C. Notice that D0 = S0,

where S0 is the initial state of the data structure. We establish in Theorem 33 that, after

having assign linearization points to operations, DC is the state of the data structure that

results if the operations linearized before C are applied sequentially, in order, starting from

the initial state, i.e. that DC = SC .

If an attempt by p of an operation op is active in configuration C, we define the local

state of the data structure in C for the operation and the process that performs the attempt

as follows.

Definition 30. For every configuration C and every operation op, if an attempt att by p of

op is active in C, the local state LS(C, p, op) of the data structure in configuration C for

att is the set of pairs (x, v) such that, in configuration C:

• the dictionary associated with att contains a dictrec 〈x, v〉 or,

• the dictionary associated with att does not contain any dictrec with key x and

(x, v) ∈ DC .

The goal is to capture the state of the data structure after the instructions simulated

so far in att are applied sequentially to DC . We will indeed establish in Theorem 33 that

LS(C, p, op) is the state of the data structure, resulting from the sequential application of

the instructions of att simulated thus far by p to SC . Operations are linearized as follows:

Definition 31. Each operation is linearized at the first configuration in the execution at

which its status is 〈modifying, _, _〉.

By the code and the way the linearization points are assigned, it follows that:

Lemma 32. The linearization point of each operation is within its execution interval.

We continue with our main theorem which proves consistency.

Linearizability Page 59 of 187

Proof of the DAP-UC Algorithm

Theorem 33 (Linearizability). Let C be any configuration in execution α. Then, the follow-

ing hold:

1. DC = SC .

2. Let att be an attempt of an operation op by a process p that is active in C and let τ

be the sequence of instructions of op that have been simulated by p until C. Denote

by ρ the sequence of the first |τ | instructions in a sequential execution of op starting

from state SC . Then, ρ = τ and LS(C, p, op) = SCτ , where SCτ is the state of the

data structure if the instructions in τ are applied sequentially starting from SC .

The proof of Theorem 33 relies on the following lemma.

Lemma 34. Let att denote an attempt by p of some operation op. Suppose that in att,

x → val is read by p while an instruction ReadDI(x) is simulated (line 39), let r be this

read of x → val, let v be the value returned by r, and denote by Cr the configuration

immediately before this read. Then, in every configuration C such that C is Cr or some

configuration that follows Cr and att is active at C, v is the value of x in DC .

Proof. Assume, by contradiction, that in some configuration Cb between Cr and C, the

value of x in SCb
is not v. Denote by C ′ the first such configuration, and let v′ be the value

of x in SC′ . Note that C ′ may be configuration Cr.

By definition of SC′ , v′ is the current value of x in SC′ if either there exists an opera-

tion op′ whose status is 〈modifying, chgs′, _〉 where chgs′ is pointing to a dictionary that

contains a dictrec with key x or no such operation exists and v′ = x→ val.

In configuration Cr, which is equal to C ′ or precedes C ′, x → val = v 6= v′. Since

in every configuration C ′′ between Cr and C ′ (if any), the value of x is v in SC′′ , there

exists an operation op′ whose status is 〈modifying, chgs′, _〉 where chgs′ is pointing to a

dictionary that contains a dictrec with key x. By Lemma 28, op′ is unique.

Let p′ be the process that changes the status of op′ from simulating to

〈modifying, chgs′, _〉. Notice that this occurs before C ′. By the code, it follows that

p′ calls ANNOUNCE(opptr′, x) and CONCURRENTACCESSES(opptr′, x) where opptr′ is

pointing to op′. Denote by C ′A and C ′D the configurations in which p′ returns from AN-

NOUNCE(opptr′, x) and CONCURRENTACCESSES(opptr′, x), respectively. Notice that C ′A
and C ′D precede C ′.

Page 60 of 187 Linearizability

Proof of the DAP-UC Algorithm

By the code it follows that before reading x→ val, p calls ANNOUNCE(opptr, x) and

CONCURRENTACCESSES(opptr, x) where opptr is pointing to op. Denote by CA and CD
the configurations in which p returns from ANNOUNCE(opptr, x) and CONCURRENTAC-

CESSES(opptr, x), respectively. Notice that CA and CD precede CR and therefore also

C ′.

We consider two cases based on the order in which CA and C ′A occur.

• C ′A occurs after CA. By Lemma 26, att is not active in C ′D. This is a contradiction,

since att is active in configurations CA and C, and C ′D occurs between C ′A (which,

by assumption, follows CA) and C.

• CA occurs after C ′A. The attempt of op′ by p′ in which it calls ANNOUNCE(opptr′, x)

and CONCURRENTACCESSES(opptr′, x) is successful, since p′ is the process that

changes the status of op′ to 〈modifying, _, _〉. Thus, it follows from Lemma

26 that the status of op′ in CD is done, contradicting the fact that op′ status is

〈modifying, _, _〉 at C ′ that occurs later.

We finally prove Theorem 33.

Proof. The proof is by induction on the sequence of configurations in α. The claims are

trivially true for the initial configurationC0. Suppose that the claims is true for configuration

C and every configuration that precedes it. Let C ′ be the configuration that immediately

follows C in α.

We first prove claim 1. If no operation has its status changed to 〈modifying, _, _〉
between C and C ′, then DC′ = DC = SC . This follows from the definition of DC ,

Lemma 29, and the induction hypothesis (claim 1). Otherwise, denote by op the operation

whose status is changed to 〈modifying, chgs, _〉 in C ′. The status of op is changed by a SC

performed by some process p on line 50. This SC ends a (successful) attempt att of op by

p. Then, in configuration C ′, the dictionary pointed to by chgs is the dictionary associated

with att. Hence, by definition of DC′ and LS(C, p, op), DC′ = LS(C, p, op). By the

inductive hypothesis (claim 2), LS(C, p, op) = SCτ , where τ is the sequence of instructions

simulated by att until C. Notice that the last instruction of τ is the last instruction of op

and op is the only operation that is linearized at C ′. Thus, by definition of SC′ , it follows

that SCτ = SC′ . Since LS(C, p, op) = SCτ , and DC′ = LS(C, p, op), it follows that

DC′ = SC′ , as needed by claim 1.

Linearizability Page 61 of 187

Proof of the DAP-UC Algorithm

Since by claim 1,DC′ = SC′ , it follows that for each data item in SC′ there is a unique

direc in DC′ that corresponds to this data item and vice versa. So, in the rest of proof, we

sometimes abuse notation and use x to refer either to a direc in DC′ or to a data item in

SC′ .

We now prove claim 2. Let att be an attempt by p of some operation op. If att is not

active in C but is active in C ′, the step preceding C ′ is a LL that reads the status of op (on

lines 26, 31, 51 or 62). In that case, no step of op has been simulated until C ′, so ρ and τ

are empty and by definition, LS(C ′, p, op) = SC′ . So, claim 2 holds trivially in this case.

In the remaining of the proof, we assume that att is active in both C and C ′. Denote

by τ and τ ′ the sequences of instructions of op simulated in att until C and C ′, respectively.

Let dC and dC′ be the values of the dictionary d that is associated with attempt att, in

configurations C and C ′, respectively.

We argue below that two properties, called P1 and P2 below, which are important

ingredients of the proof, are true:

P1 Let Ci be either C or a configuration that precedes C in which att is active. Let τi be

the sequence of instructions that have been simulated in att until Ci. If x is a direc

such that READDI(x) is the first access of x in τi then the value of x is the same in

states SCi and SC′ .

To prove P1, denote by v the value returned by the simulation of the first READDI(x)

in τi. Notice that this is also the value read on line 39 when READDI(x) is simulated in

att. Also, since READDI(x) has been simulated by Ci, it follows that this read precedes Ci.

Since att is active in configurations Ci and C ′, Lemma 34 implies that v is the value of x in

both states SCi and SC′ .

P2 Let Ci be either C or a configuration that precedes C in which att is active. Denote

by dCi the value of d in Ci and by τi the sequence of instructions that have been

simulated in att until Ci. A dictrec 〈x, v〉 is contained in dCi if and only if x has

been accessed in τi and v is the value of x in SCiτi.

To prove P2, notice that by the code, a dictrec with key x is added to d if and only if

an instruction accessing x is simulated (on lines 40 or 45). By the induction hypothesis for

Ci (claim 2), SCiτi is well defined and LC(Ci, p, op) = SCiτ . Thus, by the definition of

LC(Ci, p, op), 〈x, v〉 is contained in dCi if and only if x has been accessed in τi and v is the

value of x in SCiτi.

Page 62 of 187 Linearizability

Proof of the DAP-UC Algorithm

Fix any x that att has accessed for the first time by performing READDI(x). Property

P1 implies that x has the same value in SC and SC′ . Since we have assumed that operations

are deterministic and the state of the data structure does not depend on where its data items

are stored, it follows that the first |τ | instructions of op are the same and return the same

values, independently of whether they are applied in a sequential execution starting from

SC or from SC′ . Since, by the induction hypothesis (claim 2), τ is the same sequence as

that containing the first |τ | instructions of op executed sequentially starting from state SC , τ

is also the same as the sequence of first |τ | instructions of op executed sequentially starting

from state SC′ . Thus, if τ = τ ′, claim 2 follows.

Assume now that τ and τ ′ differ, i.e. τ ′ = τ · ins. Let C ′′ be the configuration

immediately before the simulation of ins starts. If the simulation of ins starts on line

34, that is, τ is the empty sequence and thus τ ′ = ins and ins is the first instruction of

op executed. Thus, ins is the first instruction of op when executed sequentially starting

from state S′C . Otherwise, the simulation of ins starts on line 48. In C ′′, the sequence of

instructions of op that have been simulated is τ . The fact that it is instruction ins that is

simulated next depends on the input of op, the value dC′′ of the dictionary d in configuration

C ′′ and op’s program. On the other hand, in a sequential execution, the instruction of op that

follows τ depends only on the input of op, the value of each data item accessed in τ after

τ has been applied, and op’s program. By property P2 applied to C ′′, d contains in C ′′ a

dictrec 〈x, v〉 if and only if x is accessed in τ and v is the value of x in SC′′τ . Therefore

ins is the instruction of op that follows τ in any sequential execution in which op is applied

to SC′′ .

Moreover, in a sequential execution of op starting from state SC′ , τ is also the sequence

of the first instructions of op. Hence, the same data items are accessed by the first |τ |
instructions of op, regardless of whether op is applied to SC′′ or SC′ . Moreover, by property

P1 applied to C ′′ and the fact that program of op is deterministic, each of these data items

have the same value in SC′′τ and SC′τ . Therefore, ins is also the next instruction of op

following τ in any sequential execution in which op is applied to SC′ . We thus conclude

that the first |τ ′| instructions of op when executed starting from state SC′ in a sequential

execution is τ ′.

By the code, a dictrecwith key x is added to d if and only if an instruction accessing

x is simulated (on lines 40 or 45). Hence, in configuration C ′, there is a dictrec with key

x in d if and only if x is accessed in τ ′ when op is applied to SC′ in a sequential execution.

Therefore, the set of direcs in LC(C ′, p, op) is the same as the set of data items in the

Linearizability Page 63 of 187

Proof of the DAP-UC Algorithm

state SC′τ ′. Consider two pairs (x, v) ∈ LC(C ′, p, op) and (x, u) ∈ SC′τ ′. To complete

the proof that LC(C ′, p, op) = SC′τ
′, we show that u = v:

• There is no dictrec with key x in d in configuration C ′, or equivalently, x is not

accessed by any instruction of τ ′ when op is applied to SC′ in a sequential execution.

Then the value of x in LC(C ′, p, op) is the value of x in SC′ which is the value of x

in SC′τ ′.

• τ ′ = τ or τ ′ = τ · ins but x is not accessed by ins. In that case, the value v of x in

LC(C ′, p, op) is also the value of x in LC(C ′, p, op). By the induction hypothesis,

v is also the value of x in SCτ . Since τ = τ ′ or ins is not accessing x, v is also the

value of x in SC′τ ′.

• τ ′ = τ · ins and x is accessed by ins. If ins is READDI(x) and x is not accessed in

τ , it follows from Lemma 34 and the fact that att is active in C ′ that v is the value

of x in SC′ . Thus v is also the value of x in SC′τ ′. If ins is READDI(x) but x is

accessed in τ , x has the same value in LS(C, p, op) and in LS(C ′, p, op). Since x

has also the same value in SC′τ ′ and SCτ , it follows by the induction hypothesis that

x has the same value in LS(C ′, p, op) and SC′τ ′.

Finally, if ins = WRITEDI(x, v) or ins is a CREATEDI() that creates x, x has the

same value (v or nil if ins = CREATEDI()) in both LC(p, C ′, op) and SC′τ ′.

4.4.3 Wait-Freedom

Consider any sequential data structure and suppose there is a constant M such that every

sequential execution of an operation applied to the data structure starting from any (legal)

state accesses at most M data items. Then we will prove that, in any (concurrent) execu-

tion α of our universal construction, DAP-UC, applied to the data structure, every call of

PERFORM by a nonfaulty process eventually returns.

Observation 35. For every oprec, tohelp[p′] is initially nil and is only changed to point

to oprecs with owner p′.

This follows from the fact that tohelp[p′] is initialized to nil when the oprec is created (on

line 20) and when it is updated (on line 82), opptr′ points to an oprec whose owner is p′,

by Observation 19 (line 75).

Page 64 of 187 Wait-Freedom

Proof of the DAP-UC Algorithm

We say that op restarts op′ in an execution if some process calls CONCURRENTAC-

CESSES(opptr, x), where opptr points to op and x points to a direc, and successfully

performs SC(opptr′ → status, 〈restart, opptr〉) (on line 84), where opptr′ points to op′.

Note that, by line 81, this can only happen if the owner of op has higher priority (i.e. smaller

identifier) than the owner of op′. Thus, an operation cannot restart another operation that

has the same owner. Next, we show that an operation cannot restart more than one operation

owned by each other process.

Lemma 36. For any operation op and any process p other than its owner, there is at most

one time that op restarts an operation owned by p.

Proof. Suppose operation op has restarted operation op′ owned by process p. Before any

process can change the status of op′ from 〈restart, opptr〉 back to simulating (on line 30),

where opptr is a pointer to op, it performs HELP(opptr) on line 29. When this returns, the

status of op is done, by Observation 17.

Consider any process q performing HELP(opptr) with opptr pointing to op, after the

status of op has been set to done. If, when it performs LL on line 77, q sees that op′ has

status simulating, it will see that the status of op is done, when it performs line 83. Hence,

q will not restart op′ on line 84.

Conversely, we show that an operation cannot be restarted more than twice by operations

owned by a single process.

Lemma 37. For any operation op′ and for any process p other than its owner, at most two

operations owned by p can restart op′.

Proof. Let S be the set containing those operations initiated by p that restart op′, which is

owned by process p′ 6= p. Let opptr′ be a pointer to the oprec record of op′. Let |S| = k

and assume, by the way of contradiction, that k > 2. Let opi ∈ S, 1 ≤ i ≤ k, be the

i-th operation that restarts op′ when a process qi executing an attempt of opi successfully

executes the SC on line 84 for op′; let opptri be a pointer to the oprec record of opi. Before

doing so, qi set opptri → tohelp[p′] = opptr′ (on line 82) and then checked that the status

of opi was still simulating (on line 83); thus, opptri → tohelp[p′] is written before the

completion of opi.

Lemma 36 implies that opi will not restart any other operation owned by process p′.

Recall that p does not call PERFORM recursively, either directly or indirectly; so, before

Wait-Freedom Page 65 of 187

Proof of the DAP-UC Algorithm

opi+1 is initiated by p, p’s call of PERFORM(opptri) should respond (on line 24). Before

this response, p reads opptri → tohelp[p′] on line 23. Since, the call of HELP(opptri)

by p (on line 21) has responded before this read, Observation 17 implies that this read

is performed after the status of opi changed to done; thus, it is performed after qi set

opptri → tohelp[p′] = opptr′.

If in the meantime the value of opptri → tohelp[p′] has not changed, then p calls

HELP(opptr′). By Observation 17, the status of op′ is done when this call responds. Thus,

any subsequent operation owned by p will see the status of op′ is done and will not restart

it. So, it should be that in the meantime some process q′i set opptri → tohelp[p′] = opptr′i,

where opptr′i 6= opptr′, while executing an attempt of opptri. Observation 35 implies that

opptr′i points to the oprec record of some operation op′i initiated by p′; op′i should be

initiated by p′ before op′, since otherwise Observation 18 implies that the status of op′ has

changed to done (so, any subsequent operation owned by p will see the status of op′ is done

and will not restart it). Observation 35 implies that the status of any operation initiated by

p′ before opptr′ (including opptr′i), changed to done before the initiation of opptr′, that is

before qi sets opptri → tohelp[p′] = opptr′, that is before p reads opptri → tohelp[p′] (on

line 23), that is before p initiates opptri+1.

Now consider any j, 1 < j ≤ k. Notice that q′j reads opptr′j on line 75 and before it

executes line 82, which sets opptrj → tohelp[p′] = opptr′j , it reads the status of opptr′j
(on line 77) and checks whether it is still simulating (on line 80). Since, this read is

performed after the initiation of opptrj , it follows that before it the status of opptr′j has

changed to done. So, the check fails and line 82 is not executed; that is a contradiction.

From Lemmas 36 and 37, we get the following result.

Corollary 38. An operation can be restarted at most 2 ∗ (n− 1).

Next, we bound the depth of recursion that can occur.

Lemma 39. Suppose that, while executing Help(opptri), a process calls Help(opptri+1),

for 1 ≤ i < k. Then k ≤ n.

Proof. Process pmay perform recursive calls to HELP(opptr′) on lines 29, 0, 85, and 86. If p

calls HELP(opptr′) recursively on line 0 or 85, then, by Observation 16, opptr′ → status is

either modifying or done, so, this recursive call will eventually return without itself making

recursive calls to HELP.

Page 66 of 187 Wait-Freedom

Proof of the DAP-UC Algorithm

By line 75 and Observation 19, when line 81 is performed, opptr′ → owner = p′.

From line 81, if p calls HELP(opptr′) recursively on line 86, then opptr → owner >

opttr′ → owner.

If opptr′ → status = 〈restart, opptr〉, then, from lines 84 and 81, opptr →
owner < opttr′ → owner. Hence, if p calls HELP(opptr′) recursively on line 29,

opptr → status = 〈restart, opptr′〉, so, again, opptr → owner > opttr′ → owner.

Thus, in any recursively nested sequence of calls to HELP, the process identifiers of

the owners of the operations with which HELP is called is strictly decreasing, except for

possibly the last call. Therefore k ≤ n.

Lemma 40. Every call of Help(opptr) by a nonfaulty process eventually returns.

Proof. Consider any call of HELP(opptr) by a nonfaulty process pwhere opptr points to op.

Immediately prior to every iteration of the while loop on lines 27–61 during HELP(opptr),

process p performs LL(opptr → status) on line 26, 31, 51, or 62.

If op has status done at the beginning of an iteration, HELP(opptr) returns immedi-

ately. If opptr has status modifying, no recursive calls to HELP are performed during the

iteration. Then, Observation 24 and Theorem 33 (item 1) imply that the dictrecs in a

dictionary have different keys (i.e. point to different direcs) and correspond to differ-

ent data items accessed by a sequential execution of op applied to the data structure (lines

36, 40, and 45). Thus, the total number of dictrecs in a dictionary is bounded above

by M and, so, at most M iterations of the for loop on lines 54–60 are performed. Hence

HELP(opptr) eventually returns.

If opptr has status restart, then, during an iteration of the while loop, p performs

one recursive call to HELP (on line 29) and, excluding this, performs a constant numbers of

steps.

Finally, suppose that opptr has status simulating at the beginning of an iteration.

Theorem 33 (item 2) implies that p simulates a finite number of instructions while it is

executing an active attempt of op. After this attempt becomes inactive, the test on line 47

evaluates to true during this iteration, so pmay simulate at most one more instruction during

this iteration; so, the number of instructions is finite. For each instruction in its program, p

performs one iteration of the while loop on lines 35–48, in which it takes a constant number

of steps, excluding calls to CONCURRENTACCESSES. Observation 24, Theorem 33 (item 2),

and the definition ofM , imply that CONCURRENTACCESSES can be called at mostM times

Wait-Freedom Page 67 of 187

Proof of the DAP-UC Algorithm

during an active attempt of op. Then, Theorem 33 (item 2) imply that process p performs a

constant number of steps and at most one recursive call to HELP (on line 0, 85, or 86) each

time it calls CONCURRENTACCESSES. Thus, excluding the recursive calls to HELP, this

iteration of the while loop on lines 27–61 eventually completes.

If p does not return on line 63 after exiting from the while loop or on line 56 or 59,

it tries to change opptr → status via an SC on line 30, 50, or 61. Therefore, each time p

performs an iteration of the while loop on lines 27–61, opptr → status changes. It follows

from Observation 16 and Corollary 38 that p performs at most 2n complete iterations of this

while loop during HELP(opptr).

By Lemma 39, the depth of recursion of calls to HELP is bounded. Therefore, the call

of HELP(opptr) by p eventually returns.

Finally, we prove wait freedom:

Theorem 41. Every call of Perform by a nonfaulty process eventually returns.

Proof. Consider any call of PERFORM by a nonfaulty process. In PERFORM, the process

calls HELP at most n times (excluding recursive calls), each time for an oprec owned by

a different process It follows from Lemma 40 that all these instances of HELP eventually

return. Thus, this call of PERFORM eventually returns.

4.4.4 Disjoint-Access Parallelism

As in the other part of the proof, we consider an execution α of our universal construction

applied to some data structure. Recall that the execution interval Iop of an operation op starts

with the first step of the corresponding call to PERFORM() and terminates when this call

returns. In the following to simplify the presentation we denote PERFORM(op) the call to

PERFORM corresponding to operation op.

LetCop be the configuration immediately after p performs line 20, that is, immediately

after an oprec has been initialized for op, and let C ′op be the first configuration at which the

status of op is 〈modifying, _, _〉. Note thatCi′ is the configuration at which op is linearized,

see Definition 31.

Let S = {SC | C is between Cop and C ′op}. Then, for the data set DS(op) of op, it

holds that DS(op) = ∪SC∈S {set of data items accessed by op when executed sequentially

starting from SC }.

Page 68 of 187 Disjoint-Access Parallelism

Proof of the DAP-UC Algorithm

We recall also the definition of the shared-access graph of an execution interval I .

The shared-access graph is an undirected graph, where vertices represent operations whose

execution interval overlaps I and an edge connects two operations whose data sets intersect.

Given two operations op and op′, we denote by SAG(op, op′) the shared-access graph of

the minimal execution interval that contains Iop and Iop′ . Finally, recall that we say that two

processes contend on a base object b if they both apply a primitive on b, and at least one of

these primitives is non-trivial.

Recall that an attempt of an operation op by a process p is a longest execution interval

that begins when p performs LL on op → status on line 26, 31, 51 or 62 that returns

simulating and during which op→ status does not change.

Lemma 42. When Announce(opptr, x) is called, the data item x is in the data set of the

operation to which opptr points.

Proof. Let C be the configuration before p calls ANNOUNCE(opptr, x) at which p last per-

forms an LL or a successful VL on opptr → status (on lines 26, 31, or 47). By the code,

such a configuration C exists, and if p performs an LL at C, this LL returns simulating.

Hence, an attempt att of op by p, the operation pointed to by opptr, is active in configura-

tion C. It thus follows from Theorem 33(2) that the sequence of instructions τ of op that

have been simulated before C is the same as in a sequential execution of op applied to SC .

Hence, as in the concurrent execution, ANNOUNCE(opptr, x) is called in a simulation of a

write to or of a read from x following τ , x is also accessed in the sequential execution of the

first instructions τ of op applied to SC . Therefore, x ∈ DS(op).

Inspecting the code of ANNOUNCE, we then obtain:

Corollary 43. If x→ A[p] 6= nil, then the data item x is in the data set of the operation to

which x→ A[p] points.

Observation 44. If a process executes a successful VL(opptr → status) while performing

Announce(opptr, x) or ConcurrentAccesses(opptr, x), then the oprec to which opptr is

pointing has status simulating.

This is because a process only calls ANNOUNCE(opptr, x) (on line 37) and CONCUR-

RENTACCESSES(opptr, x) (on line 38) if opptr → status was simulating (line 32) when

p last executed LL(opptr → status) (on line 26, 31, or 51).

Disjoint-Access Parallelism Page 69 of 187

Proof of the DAP-UC Algorithm

When helping an operation op, process p may starts helping another operation op′.

This occurs for example when two operations concurrently accessing the same data item are

discovered by p, that is, when the two operations access the same direc. Next Lemma

shows that indeed, when p calls HELP(op′) while executing HELP(op), the datasets of op

and op′ share a common element.

Suppose that p calls HELP(opptr) and HELP(opptr′), where opptr and opptr′ are

pointers to operations op and op′, respectively. Denote by I the execution interval of

HELP(opptr). We say that HELP(opptr′) is directly called by p after HELP(opptr) if p

calls HELP(opptr′) in I and every other call to HELP previously made in by p in I has

returned when HELP(opptr′) is called by p .

Lemma 45. If Help(opptr′) with opptr′ pointing to op′ is called directly by p after calling

Help(opptr) with opptr pointing to op, then DS(op) ∩DS(op′) 6= ∅.

Proof. In an instance of HELP(opptr) by p, where opptr is pointing to op, HELP(opptr′)

with opptr′ pointing to op′ may be called on line 29, when p discovers that op has been

restarted, or in the resolution of the concurrent accesses on some direc x, when p exe-

cutes CONCURRENTACCESSES(opptr, x) (lines 79, 85 or 86). We consider these two cases

separately:

• HELP(opptr′) is called in the execution of CONCURRENTACCESSES(opptr, x). Be-

fore calling CONCURRENTACCESSES(opptr, x), p calls ANNOUNCE(opptr, x) (line

37). Therefore, it follows from Lemma 42 that x ∈ DS(op). For HELP(opptr′) to be

called in CONCURRENTACCESSES(opptr, x), opptr′ is read from x → A[q′], where

q′ is the owner of op′ (LL on line 75). Hence, op′ has been previously announced to

x, from which we conclude by corollary 43 that x ∈ DS(op′).

• HELP(opptr′) is called on line 29. This means that some process p′ has changed

the status of op to 〈restart, opptr′〉 (SC on line 84). p′ thus calls CONCUR-

RENTACCESSES(opptr′, x) for some direc x in which it applies a successful

SC(opptr, 〈restart, opptr′〉). By the code of CONCURRENTACCESSES, this implies

that opptr is read from x→ A[q], where q is the owner of op (LL on line 75). Thus,

op has been announced to x, from which we have by Corollary 43 that x ∈ DS(op).

Moreover, p′ calls CONCURRENTACCESSES(opptr′, x) after returning from a call to

ANNOUNCE(opptr′, x). Hence, by Lemma 42, x ∈ DS(op′).

When a process p is performing an operation op, i.e. p has called PERFORM(op) but

Page 70 of 187 Disjoint-Access Parallelism

Proof of the DAP-UC Algorithm

has not yet returned from that call, it may access oprecs of operations op′ 6= op. We show

that if p applies a non-trivial primitive to an oprec op′ 6= op then the execution interval

Iop′ of that operation overlaps the execution interval Iop of op.

Lemma 46. If p applies a non-trivial primitive to an oprec op′ in Iop, Iop′ ∩ Iop 6= ∅.

Proof. A non-trivial primitive may be applied to oprec op′ on line 30, 50, 53, 61 in the

code of HELP or on lines 82 or 84 in the code of CONCURRENTACCESSES. The non-trivial

primitive applied by p on line 30, 50 or 61 is a SC that aims at changing the status of op′

to simulating, 〈modifying, _, _〉 or done respectively. On line 53, the output of op′

is changed. Any of these steps, if applied by p, is preceded by an LL(opptr′ → status)

by p (on lines 26, 31, 51 or 62), where opptr′ is pointing to op′. The value returns by

this LL is 6= done. Therefore, in the configuration at which this LL is applied, the call of

PERFORM(op′) has not yet returned. Hence, Iop ∩ Iop′ 6= ∅.

In the remaining case, p writes opptr′ to opptr → tohelp[p′] on line 82 or applies

SC(opptr′ →, 〈restart, _〉) on line 84. Here also, before these steps, an LL(opptr′ →
status) by p occurs (on line 77) and this LL returns a value 6= done. As above, we then

conclude that Iop ∩ Iop′ 6= ∅.

Lemma 47. If p applies a primitive to a direc x in Iop, there exists an operation op′ such

that x ∈ DS(op′), Iop′ ∩ Iop 6= ∅ and p calls Help(opptr′) where opptr′ is pointing to op′.

Proof. Let x denote a direc accessed by p. By the code, x is accessed in one of the

following cases:

• The step in which p accesses x occurs in a call to ANNOUNCE(opptr′, x) (lines

66, 68, 69, or 71), in a call to CONCURRENTACCESSES(opptr′, x) (line 75) where

opptr′ is pointing to some operation op′, or in the simulation of READDI(x) on be-

half of op′ (line 39). Each of these accesses to x occurs after p has called AN-

NOUNCE(opptr′, x). Therefore, by Lemma 42, x ∈ DS(op′). Moreover, before

applying any of these steps, p has verified that the status op′ is 6= done (by apply-

ing a LL on opptr′ → status on line 26, 31 or 51). More precisely, consider the

last configuration C at which p applies LL(opptr′ → status) before accessing x.

Such a step occurs since the first step following a call to HELP(opptr′) is a LL on

opptr′ → status (line 26). This last LL must returns simulating since p has to pass

the test on line 32 before applying any step considered in the present case. Therefore,

in C, the call to PERFORM(op′) has not returned, from which we have Iop ∩ Iop′ 6= ∅.

Disjoint-Access Parallelism Page 71 of 187

Proof of the DAP-UC Algorithm

• The step in which p accesses x is a LL, VL or SC on the val field of x (lines

55, 56, 57, 58, 59 or 60). Before applying any of these steps, p performs a

LL(opptr′ → status) (on lines 26, 31 or 51), where opptr′ is pointing to op′, which

returns 〈modifying, chgs′, _〉 since the test on line 52 is passed. In the configuration

in which this LL is applied, the calls to PERFORM(op) and PERFORM(op′) have not

returned, hence Iop ∩ Iop′ 6= ∅.
Consider the dictionary d′ pointed to by chgs′. Note that x is the key of a dictrec

in d′. Hence, in a successful attempt of op′ by some process p′, a dictrec with

key x is added to the dictionary associated with that attempt (on line 40 or 45) when

an instruction of op′ simulated. Therefore, it follows from Theorem 33 that x ∈
DS(op′).

Lemma 48. If p calls Help(opptr′) in Iop, where opptr′ is pointing to op′, then Iop ∩ Iop′ 6=
∅.

Proof. Process p can only call HELP(opptr′) on line 21, line 23, line 29, line 79, line 85 or

line 86. If p calls HELP(opptr′) on line 21, op′ = op and the Lemma holds.

If p calls HELP(opptr′) on line 23, a concurrent accesses with op′ has been detected

by some process q and q has tried to restart op′. More precisely, there exists some process q,

and a direc x such that q calls CONCURRENTACCESSES(opptr, x) and, before returning

from that call, writes opptr′ to opptr → tohelp[p] (line 82), where opptr is pointing to op.

By the code, before calling CONCURRENTACCESSES(opptr, x), q verifies that the status of

op is simulating by applying a LL on opptr → status. Denote by CLL the last configu-

ration that precedes the call to CONCURRENTACCESSES(opptr, x) at which a LL(opptr →
status) is applied by q. opptr → status = simulating at C. Moreover, it follows from

the code of CONCURRENTACCESSES that before writing to opptr → tohelp[p], q performs

a successful VL(opptr → status) on line 78. Let CV L denote the configuration at which

this step is applied. By observation 44, opptr → status = simulating in CV L and has not

changed since CLL. In its previous step, q reads opptr′ → status (line 77), and the value

it gets back is simulating, since the test on line 80 is later passed. Therefore, there exists

a configuration between CLL and CV L in which opptr′ → status = simulating, from

which we conclude that Iop ∩ Iop′ 6= ∅.

HELP(opptr′) is called on line 29. As in the previous case, a process q′ performs the

successful SC that changes opptr → status to 〈restart, opptr′〉 (on line 84). This occurs

when q′ is executing CONCURRENTACCESSES(opptr′, x) for some direc x. The same

Page 72 of 187 Disjoint-Access Parallelism

Proof of the DAP-UC Algorithm

reasoning as in the previous case (inverting opptr and opptr′) can be used to establish the

existence of a configuration in which opptr → status = opptr′ → status = simulating,

from which it follows that Iop ∩ Iop′ 6= ∅.

Otherwise, process p calls HELP(opptr′) on line 79, 85 or 86. Before calling

HELP(opptr′) on any of these lines, p has read the status of op′ (LL(opptr′ → status)

on line 77), and this LL returns a value 6= done (By the tests on line 79 or line 80,

opptr′ → status has to be simulating or 〈modifying, _, _〉 in order for p to call

HELP(opptr′) on line 79, 85 or 86). As this occurs before p returns from the call of PER-

FORM(op), Iop ∩ Iop′ 6= ∅.

Lemma 49. Suppose that p applies a primitive operation to an oprec op′ after calling

Help(op) and before returning from that call. Denote byC andC ′ the configuration at which

Help(op) is called and the primitive is applied respectively. If every call by p to Help() that

occurs between C and C ′ returns before C ′ then op = op′ or DS(op) ∩DS(op′) 6= ∅.

Proof. Suppose that op 6= op′. By the code, p accesses op while executing CONCUR-

RENTACCESSES(oppptr, x) where x is a direc and opptr is pointing to op. Since every

call to CONCURRENTACCESSES(oppptr, x) is preceded by a call to ANNOUNCE(opptr, x)

(lines 37 and 38), it follows from Lemma 42 that x ∈ DS(op). op′ is accessed by p via

the announce array x → A. Hence op′ has been announced to x and thus by corollary 43,

x ∈ DS(op′).

Theorem 50. Let b be a base object and let op, op′ be two operations. Suppose that p and

p′ apply a primitive on b in Iop and Iop′ respectively. Then, if at least one of the primitives

is non-trivial, there is a path between op and op′ in CG(op, op′).

Proof. Base object b is a field of either an oprec or a direc, a dictrec or a statrec.

A statrec can only be accessed through the unique oprec that points to it. A dictrec

can only be accessed through the unique statrec that points to the unique dictionary that

contains it. Thus to access b, p and p′ have to access the same oprec or the same direc.

We consider these two cases separately:

• p and p′ access the same oprec op∗. Suppose that op∗ is accessed by p and p′

while in some instances of HELP(). That is, there exists an operation op1 such p calls

HELP(opptr1), where opptr1 is pointing to op1, and has not returned from that call

when op∗ is accessed. Moreover, when it accesses op∗, p has returned from each of

Disjoint-Access Parallelism Page 73 of 187

Proof of the DAP-UC Algorithm

its calls to HELP that are initiated after the call to HELP(opptr1) and before the access

of op∗.

This also holds for p′ for some operation op′1. Thus, there exists two chains of opera-

tions 〈op = opk, . . . , op1〉 and 〈op = op′k′ , . . . , op
′
1〉 such that:

– ∀i, 1 ≤ i ≤ k,∀i′, 1 ≤ i′ ≤ k′ : p calls HELP(opptri) and p′ calls

HELP(opptr′i′) where opptri and opptr′i′ are pointing to opi and op′i′ respec-

tively;

– ∀i, 2 ≤ i ≤ k, ∀i′, 2 ≤ i′ ≤ k′ : after calling HELP(opptri), and be-

fore returning from this call, p calls directly HELP(opptri−1). Similarly, af-

ter calling HELP(opptr′i′), and before returning from this call, p′ calls directly

HELP(opptr′i′−1).

It thus follows from the second property that for each i, 2 ≤ i ≤ k, HELP(opptri−1)

is called directly in an attempt of opi, from which we derive by Lemma 45 that

DS(opi)∩DS(opi−1) 6= ∅. Moreover, it follows from Lemma 48 that Iop∩Iopi 6= ∅,
for each i, 1 ≤ i ≤ k. Therefore, operations op = opk, . . . , op1 are vertexes

of the graph CG(op, op′) and there is path from op = opk to op1. Similarly,

op = op′k′ , . . . , op
′
1 are vertexes of the graph CG(op, op′) and there is path from

op′ = op′k′ to op′1.

op∗ is also a vertex of GC(op, op′) because, as p or p′ applies a non-trivial primitive

to op∗, Iop ∩ Iop∗ 6= ∅ or Iop′ ∩ Iop∗ 6= ∅ by Lemma 46. p applies a primitive to op∗

after calling HELP(opptr1) and before returning from this call. Moreover, when this

step is applied, every call to HELP() by p that follows the call of HELP(opptr1) has

returned. Hence by Lemma 49, op1 = op∗ or DS(op1) ∩ DS(op∗) 6= ∅. Similarly,

op′1 = op∗ or DS(op′1)∩DS(op∗) 6= ∅. We conclude that there is a path between op

and op′ in GC(op, op′).

If op∗ = op or op∗ = op′, one chain consists in a single operation, namely op∗. The

reasoning above is still valid.

Finally, op∗ may be accessed by p or p′ on line 23, when p or p′ helps an opera-

tion that may have been restarted by some process helping op or op′ respectively.

Without loss of generality, assume that op∗ is accessed in this way, that is p′ ac-

cesses op∗ by reading tohelp[p∗], where p∗ is the owner of op∗. As p next calls

HELP(opptr∗), where opptr∗ is pointing to op∗, it follows from Lemma 48 that

Iop ∩ Iop∗ 6= ∅. Therefore, op∗ is a vertex of the graph CG(op, op′). Consider the

step in which opptr∗ is written to opptr → tohelp[p∗] (line 82). This occurs while

Page 74 of 187 Disjoint-Access Parallelism

The TI-DAP-UC Universal Construction

CONCURRENTACCESSES(opptr, x) is executed, for some direc x. By Lemma 42

and the fact that the call CONCURRENTACCESSES(opptr, x) is preceded by a call to

ANNOUNCE(opptr, x), x ∈ DS(op). Moreover, by the code of CONCURRENTAC-

CESSES(), op∗ has been announced in to x, and thus by corollary 43, x ∈ DS(op∗).

Hence op and op∗ are connected in CG(op, op′). Depending on how op∗ is accessed

by p′, the same reasoning or the reasoning above can be used to show that there is a

path between op∗ and op′ in CG(op, op′). Therefore, there is a path between op and

op′ in CG(op, op′).

• p and p′ access the same direc x∗. By Lemma 47, there exists op1, op′1 such that

(1) p calls HELP(op1) and p′ calls HELP(op′1), (2) x∗ ∈ DS(op1) ∩DS(op′1) and (3)

Iop ∩ Iop1 6= ∅ and Iop ∩ Iop′1 6= ∅.
If op′1 = op1 = op∗, p and p′ access the same oprec op∗. In the proof of the

previous item, we use the fact that p or p′ applies a non-trivial primitive to op∗ only to

show that Iop∗ ∩ Iop 6= ∅ or Iop∗ ∩ Iop′ 6= ∅. Here, we already known that this holds.

Therefore, by the same argument as in the first case, we conclude that there is a path

between op and op′ in CG(op, op′).

If op′1 6= op1, we consider the two chains of operations chains of operations 〈op =

opk, . . . , op1〉 and 〈op = op′k′ , . . . , op
′
1〉 defined as in the first case. By the same

reasoning as in the first case, each of these operations is a vertex and (opi, opi−1),

(op′i′ , opi′−1) are edges of CG(op, op′) , for each i, i′ : 2 ≤ i ≤ k, 2 ≤ i′ ≤ k′. Since

DS(op1) ∩ DS(op′1) 6= ∅, we conclude that op and op′ are connected by a path in

CG(op, op′).

4.5 The TI-DAP-UC Universal Construction

It is an extension of the universal construction DAP-UC presented in Section 4.3. The

additions to DAP-UC are highlighted in the code (Figures 4.8, 4.9, and 4.10).

Recall that DAP-UC does not ensure wait-freedom when it is applied to data struc-

tures on which each operation can access an unbounded number of different data items. To

overcome this limitation, TI-DAP-UC enhances DAP-UC in the following ways. When p

invokes an operation op, it acquires a new timestamp by calling getTimestamp. The

timestamp and all entry points of op are stored in the data record vx of each data item x

created by op. Static data items have timestamp 0 and entry point null. The first time op

accesses a data item x, it announces itself in vx and then checks whether the timestamp of x

Page 75 of 187

The TI-DAP-UC Universal Construction

is larger than the timestamp of op. If so, the execution interval of op overlaps with the exe-

cution interval of the operation op′ that created x, and op announces itself in the data record

of each entry point to the data structure used by op′. Any successive operation that uses any

one of these entry points will detect a concurrent access with op and help it to complete, in

accordance with the priority scheme used in DAP-UC. We assume an upper bound on the

number of entry points to the data structure. Therefore, each operation is initiated with a

finite number of entry points. Moreover, since the state of the data structure is finite when

an operation op is initiated, op accesses a finite number of dynamic data items before it is

announced in the data record of each entry point used by each operation that creates after

the initiation of op, a data item that op accesses. Each operation invoked after this point will

either not contend with op or will help op, if it is not yet completed.

In the singly-linked list, suppose a SEARCH accesses a data item that was created by

an APPEND operation op′, which was invoked after the SEARCH. Then the SEARCH is

announced in the data record, vlast, for the pointer to the last element in the list. Hence, the

next APPEND invoked by each process q will help the SEARCH to complete, if the SEARCH

is still in progress.

Finally, we prove that our algorithm does not violate timestamp-ignoring disjoint-

access parallelism. The difficult case is when op is an operation that accesses a data item

x created by an operation op′ with a larger timestamp. Then op announces itself in the

data records of the entry points used by op′. Let op′′ be any operation that accesses one

of these entry points y. Because op′ is concurrent with op, its execution interval overlaps

the minimum execution interval containing the execution intervals of op and op′′. Thus, op′

belongs to CG. Since op′ accesses both y and x, there is an edge between op′ and op and an

edge between op′ and op′′ in CG. Thus, there is a path between op and op′′ in CG.

Theorem 51. The TI-DAP-UC universal construction (Figures 4.8, 4.9, and 4.10) produces

timestamp-ignoring disjoint-access parallel, wait-free, concurrent data structures when ap-

plied to sequential data structures with a bounded number of entry points.

Page 76 of 187

The TI-DAP-UC Universal Construction

1 type direc
2 value val

3
tmval tm
set of ptr to direc
pvar

4 ptr to oprec A[1..n]

5 type statrec
6 {〈st : simulating〉,
7 〈st : restart, ptr to oprec restartedby〉,
8 〈st : modifying, ptr to dictionary of dictrec changes,value output〉
9 〈st : done〉}

10 type oprec
11 code program
12 process id owner
13 value input
14 value output

15
tmval tm
set of ptr to direc
pentry

16 statrec status
17 ptr to oprec tohelp[1..n]

18 type dictrec
19 ptr to direc key
20 value newval

21 value PERFORM(prog, input) by process p:
22 opptr := pointer to a new oprec record

opptr → program := prog, opptr → input := input, opptr → output := ⊥
opptr → tm := getTimestamp(), opptr → pentry := input.entry

opptr → owner := p, opptr → status := 〈simulating〉,
opptr → tophelp[1..n] := [nil, . . . , nil]

23 HELP(opptr) /* p helps its own operation */

24 for q := 1 to n excluding p do /* p helps operations that have been restarted by its operation op */

25 if (opptr → tohelp[q] 6= nil) then HELP(opptr → tohelp[q])

26 return (opptr → output)

Figure 4.8: Type Definitions and the Code of PERFORM of TI-DAP-UC

Page 77 of 187

The TI-DAP-UC Universal Construction

27 HELP(opptr) by process p:
28 opstatus := LL(opptr → status)
29 while (opstatus 6= 〈done〉)

30 if (opstatus = 〈restart, opptr′〉) then /* op′ has restarted op */

31 HELP(opptr′) /* first help op′ */

32 SC(opptr → status, 〈simulating〉) /* try to change the status of op back to 〈simulating〉 */

33 opstatus := LL(opptr → status)

34 if (opstatus = 〈simulating〉) then /* start a new simulation phase */

35 dict := pointer to a new empty dictionary of dictrec records
36 ins := first instruction in opptr → program
37 while ins is not a return do /* simulate instruction ins of op */

38 if ((ins is WRITEDI(x, v) or READDI(x)) and /* first access of x by

(there is no dictrec with key x in dict)) then this attempt of op */

39
if (opptr → tm < x→ tm) then

for each y in x→ pvar do ANNOUNCE(opptr, y)
40 ANNOUNCE(opptr, x) /* announce that op is accessing x */

41 CONCURRENTACCESSES(opptr, x) /* possibly, help or restart other operations accessing x */

42 if (ins = READDI(x)) then v := x→ val
43 add new dictrec 〈x, v〉 to dict /* create a local copy of x */

44 else if (ins is CREATEDI()) then
45 x := pointer to a new direc record
46 x→ tm := opptr → tm, x→ pvar := opptr → pentry

47 x→ A[1..n] := [nil, . . . , nil]
48 x→ A[opptr → owner] := opptr
49 add new dictrec 〈x, nil〉 to dict
50 else /* either ins is WRITEDI(x, v) or READDI(x) and there is a dictrec with

key xin dict,or ins is not a WRITEDI(), READDI() or CREATEDI() instruction */

execute ins, using/changing the value in the
appropriate entry of dict if necessary

51 if (¬VL(opptr → status) then break /* end of the simulation of ins */

52 ins := next instruction of opptr → program

53 if (ins is return (v)) then /* v may be empty */

/* try to change status of op to modifying; it is successful iff simulation is over and status of op unchanged

54 SC(opptr → status,〈modifying, dict, v〉) since beginning of simulation */

55 opstatus := LL(opptr → status)

56 if (opstatus = 〈modifying, changes, out〉) then
57 opptr → outputs := out
58 for each dictrec 〈x, v〉 in the dictionary pointed to by changes do

59 LL(x→ val) /* try to make writes visible */

60 if (¬VL(opptr → status)) then return /* op is completed */

61 SC(x→ val, v)

62 LL(x→ val)
63 if (¬VL(opptr → status)) then return /* op is completed */

64 SC(x→ val, v)

65 SC(opptr → status, 〈done〉)
66 opstatus := LL(opptr → status)
67 return

Figure 4.9: The Code of HELP of TI-DAP-UC

Page 78 of 187

The TI-DAP-UC Universal Construction

68 ANNOUNCE(opptr, x) by process p:
69 q := opptr → owner

70 LL(x→ A[q])
71 if (¬ VL(opptr → status)) then return
72 SC(x→ A[q], opptr)

73 LL(x→ A[q])
74 if (¬VL(opptr → status)) then return
75 SC(x→ A[q], opptr)

76 return

77 CONCURRENTACCESSES(opptr, x) by process p:
78 for q′ := 1 to n excluding opptr → owner do
79 opptr′ := LL(x→ A[q′])
80 if (opptr′ 6= nil) then /* op may concurrently access x with op′ */

81 opstatus′ := LL(oppptr′ → status)

82 if (¬VL(opptr → status)) then return

83 if (opstatus′ = 〈modifying,−,−〉) then HELP(opptr′)

84 else if (opstatus′ = 〈simulating〉) then
85 if (opptr → owner < q′) then /* op has higher priority than op′ , restart op′ */

86 opptr → tohelp[q′] := opptr′

87 if (¬VL(opptr → status)) then return
88 SC(opptr′ → status, 〈restart, opptr〉)

89 if (LL(oppptr′ → status) = 〈modifying,−,−〉) then HELP(opptr′)

90 else HELP(opptr′) /* op has lower priority that op′ , help op′ */

91 return

Figure 4.10: The Code of ANNOUNCE and CONCURRENTACCESSES of TI-DAP-UC

Page 79 of 187

Chapter 5

The WFR-TM Software
Transactional Memory Algorithm

Page 81 of 187

Main Ideas

5.1 General

In this chapter, we introduce an STM algorithm that guarantees wait-freedom for read-only

transactions, called Wait-Free Read-only Transactional Memory or WFR-TM. For read-

intensive workloads it is important to ensure that read-only transactions never abort and

are wait-free. In Section 5.2, the main ideas of WFR-TM are presented. Also, in Sections

5.3 and 5.4, the pseudocode of WFR-TM is described. Finally, in Section 5.5, the proof of

correctness and progress properties ensured by WFR-TM are presented.

5.2 Main Ideas

Each transaction T starts by announcing itself into an appropriate element of an announce ar-

ray; this array has size n, with one entry for each process, used by the corresponding process

to announce its transactions. Then, during its simulation phase, it speculatively executes its

code while it keeps track of the data items it accesses by maintaining two sets implementing

its read-set and its write-set. For each data item read by T , its (implementation of) read-set

contains the value read; similarly, for each data item written by T , its (implementation of)

write-set contains the value that T wants to write to it. At commit time, an update transac-

tion also executes an updating phase, where it actually updates the data items in its write-set,

and a waiting phase, where it waits for live announced read-only transactions to commit; the

latter phase is needed to ensure wait-freedom for read-only transactions.

Update transactions employ fine-grained locking to ensure consistency when updating

data items. Specifically, at commit time and before entering its updating phase, an update

transaction Tw attempts to obtain the locks that are associated with each data item in its

read-set and its write-set. In order to avoid deadlocks, the locks are acquired in ascending

order based on the address of the data item. Consider any data item x in the write-set of Tw
and let e be the entry for x in Tw’s write-set. After acquiring the lock of x, Tw adds in e

the value that x has at the time locked by Tw. Once Tw acquires all the required locks, it

first enters its updating phase, then it enters its waiting phase, and finally it releases all the

acquired locks and commits.

If an update transaction enters its updating phase, WFR-TM guarantees that it will

commit in a finite number of steps. Also, WFR-TM guarantees that any read-only transac-

tion that does not crash commits in a finite number of steps; i.e. it guarantees wait-freedom

for read-only transactions.

Page 82 of 187

Main Ideas

For each transaction T , WFR-TM maintains a record that contains: i) the status of T ,

a variable that represents the current state of T and can take the values simulating, updat-

ing, waiting, committed or aborted, ii) the read-set and write-set of T , and iii) a set called

beforeMe of live transactions that will be linearized before T , which is used in order to

ensure consistency of reads, as described below.

For each data item x, WFR-TM maintains a record that contains: i) the current value

of x, ii) its version which is a strictly increasing sequential number, updated whenever the

value of x is updated, and iii) a pointer owner to some transaction’s record which indicates

whether x is locked. An update transaction Tw acquires the lock of x each time it success-

fully executes a CAS to identify itself as the owner of x; x is considered to be unlocked if

either the owner field of its record is null or the status of the transaction that it points to is

aborted or committed. Tw releases all the locks it has acquired in a single step, by updating

its status to either committed or aborted (using a write primitive).

In order to provide wait-freedom for read-only transactions, WFR-TM ensures that

each read-only transaction Tr reads consistent values independently of whether the data

items that it accesses are locked or not, as follows. When a data item x is unlocked, Tr reads

its value directly from the record maintained for x. Suppose now that x is locked by some

update transaction Tw at some point. We define an old value and a new value for x at that

point. The old value of x is the value stored in x’s record at the moment that it was locked

by Tw, whereas the new value of x is the value that Tw wants to write to x. Notice that the

old value of x is contained it its record until Tw actually writes the new value for it, during

its updating phase; afterwards, the old value is recorded in the write-set of Tw.

During its initialization, each transaction T takes a snapshot of the announce array;

this snapshot is a consistent view of the announced transactions together with their statuses.

Using this snapshot, T decides whether it must read or ignore the new values written by

live update transactions. Specifically, T adds into the beforeMe set all those announced

transactions whose status is waiting or committed and ignores any new values written by

transactions not contained it this set, as described below. Before committing, each update

transaction reads all entries of the announce array and waits for the completion of each an-

nounced read-only transaction that it encounters. By incorporating this waiting mechanism,

WFR-TM ensures that if a read-only transaction Tr ignores the value written to a data item

by an update transaction Tw, then Tw does not commit before Tr has committed. This is

necessary to argue that at the time that Tr commits, it will not have read an inconsistent

set of values. This ensures consistency of read-only transactions. We also remark that this

Page 83 of 187

Type Definitions

waiting mechanism provides the wait-free property to read-only transactions.

When some transaction T accesses a data item locked by some update transaction Tw,

it checks if Tw is in T ’s beforeMe set. If Tw ∈ beforeMe, then T does not ignore the

new value of x written by Tw and reads it directly from the record of x; this value is the

new value written by Tw. Otherwise, if Tw /∈ beforeMe, T ignores the new value written

from Tw and decides from where to read the old value of x based on the phase of Tw. If Tw
is in its simulating phase, then T reads the old value from x’s record, since Tw has not yet

started updating its data items. If Tw is in its updating phase, then T reads the old value of

x from Tw’s write-set. Notice that this is necessary since in this case, Tw is in the process

of updating the data items contained in its write-set, so some of them may contain the new

values and some of them may still contain the old values; so, if for instance the read-set

of T contains two data items x and y updated by Tw, and T reads both of them from their

records, it may read the old value for x and the new value for y, which would be inconsistent.

The same action is taken by T when Tw is in its waiting phase, since similar consistency

problems could appear if T has read other data items written by Tw while Tw was in its

updating phase.

For each data item x, there is a version that is associated to it whose value is unique

for each value stored in x. An update transaction Tw performs its reads by executing the

same actions described above for read-only transactions. Additionally, since the waiting

mechanism is not employed between update transactions, in order to ensure opacity, Tw
must validate its read-set whenever it reads a data item for the first time, as well as a final

time before it starts its updating phase. Specifically, Tw validates the read-set by comparing

the current version of each data item contained there in, against the version that Tw last read

for this data item (which is contained in its read-set). Tw aborts if a mismatch is found for

some data item. We remark that, Tw performs a final (indirect) validation by acquiring the

lock of each data item contained in its read-set. If a version mismatch is found, the CAS

used to acquire the lock of the corresponding data item, fails, and Tw aborts.

5.3 Type Definitions

Figure 5.1 presents the data structures of WFR-TM.

For each transaction T , WFR-TM stores a record of type txrec that contains: 1)

the identifier pid of the process that initiated T , 2) a three-bit variable status, storing the

Page 84 of 187

Type Definitions

1 typedef statval {SIMULATING, UPDATING, WAITING, COMMITTED, ABORTED}

2 type txrec
3 unsigned int pid
4 statval status
5 set of wnode elements wset
6 set of pointers to

txrec elements beforeMe

7 type direc
8 value val
9 unsigned int ver
10 txrec *owner

11 type rnode
12 direc *tvar
13 value val
14 unsigned int ver

15 type wnode
16 direc *tvar
17 value oldval
18 unsigned int oldver
19 value newval

20 /* Shared variable */

21 shared txrec *A[1..n]

/* Persistent local variable for process p */

22 set of rnode elements rsetp

Figure 5.1: Data structures of WFR-TM.

status of T , 3) a set wset of wnode elements, implementing the write-set of T , 4) a set

beforeMe of pointers to elements of type txrec. Also, each process maintains a local set

rset of rnode elements, implementing the read-set of the transactions it initiates.

For each data item x, WFR-TM stores a CAS object of type direc, containing: i) the

value val of x, ii) the version ver of x, an unsigned integer, and iii) a pointer owner to a

txrec record. To implement WFR-TM with single-word CAS objects, indirection can be

used (as in [14, 18]).

We remark that an element of type rnode contains: i) a pointer tvar to the direc

record of x, ii) the value val of x read by T , and iii) an unsigned integer value ver represent-

ing the version of x read by T . Moreover, an element of type wnode contains: i) a pointer

tvar to the direc record of x, ii) the (old) value oldval of x; this field is initialized to ⊥
and it is set to the value of x at the time x is locked by T , iii) an unsigned integer oldver

representing the (old) version of x; this field is also initialized to⊥ and it is set to the version

of x at the time x is locked by T , and iv) the value newval that T will store into x.

Finally, A is the announce array maintained by WFR-TM. Initially, each entry of A

points to a dummy txrec record whose status field is equal to COMMITTED and its wset

set is empty. Also, for each data item x, the fields of the direc record of x have the

Page 85 of 187

The Code of the WFR-TM Algorithm

following values: i) val contains an initial value, ii) ver is equal to 0, and iii) owner points

to a dummy txrec record whose status field is equal to COMMITTED.

5.4 The Code of the WFR-TM Algorithm

The pseudocode of WFR-TM is provided in Figures 5.2 and 5.31.

BEGINTX. When called by process p for transaction T , it creates (line 24) and initializes

(lines 25 - 30) the txrec record of T , and then announces T in A[p]. Finally, it calls

CHECKIFPERFORMED to appropriately initialize the beforeMe set of T (line 31). Each

iteration of the while loop of CHECKIFPERFORMED, reads all elements of A (lines 35 - 36)

and adds to T ’s beforeMe (line 38) new update transactions (i.e. those that are not already in

beforeMe) whose status is either waiting or committed (line 37). A new iteration will start

if some transaction is added to beforeMe in the current iteration. This procedure guarantees

that at the beginning of the last execution of the for of line 35, i.e. the for executed during

the last execution of the do while of lines 34 to 39 beforeMe contains a consistent snapshot

of the announced transactions that have entered their waiting phase. We now explain why

CHECKIFPERFORMED terminates within a finite number of steps. Any transaction T ′ that

is announced after the announcement of T cannot commit before CHECKIFPERFORMED

completes, given that even if T ′ reaches its commit phase, T ′ will consider T as a read-only

transaction (since T has an empty write-set as long as it executes CHECKIFPERFORMED),

so T ′ will wait for T to either terminate or become an update transaction. This ensures

that only a limited number of new transactions can appear while CHECKIFPERFORMED is

executed, which in turn ensures that CHECKIFPERFORMED returns in a finite number of

steps.

CREATEDI. When called by process p for transaction T , it creates, initializes (line 41) and

returns (line 42) a new direc record for the newly allocated data item.

READDI. When called by T to read the value of some data item x, it first checks if there is

an entry for x in the write-set or in the read-set of T . If this is the case, READDI returns the

value from there (to ensure consistency). Otherwise, the value of x is determined on lines

48-51.

1Notice that in the algorithm pseudocode of this section, the abort response is modelled by boolean value
false, while the commit response is modelled by boolean value true.

Page 86 of 187

The Code of the WFR-TM Algorithm

23 txrec *BEGINTX() by process p:
24 txrec *newTx := new txrec
25 newTx→ pid := p
26 newTx→ status = SIMULATING
27 newTx→ wset := empty set of wnode elements
28 newTx→ beforeMe := empty set of pointers to txrec elements
29 rsetp := empty set of rnode elements

30 A[p] := newTx /* T announces itself */

31 CHECKIFPERFORMED(newTx) /* T initializes its beforeMe set */

32 return (newTx)

33 CHECKIFPERFORMED(txrec *newTx) by process p:
34 do
35 for i = 1 up to n, excluding p, do
36 tran := A[i]

/* check if tran is an update transaction not in newTx’s beforeMe set that has entered its waiting phase,

37 if (tran /∈ newTx→ beforeMe AND tran→ wset 6= ∅ AND
tran→ status ∈ {WAITING,COMMITTED}) then

38 add tran in newTx→ beforeMe then add it once to beforeMe */

39 while a new element is added in newTx→ beforeMe

40 direc *CREATEDI(txrec *tx) by process p:
41 direc newTvar := new direc 〈⊥, 0, tx〉
42 return (newTvar)

43 〈boolean,value〉 *READDI(txrec *tx, direc *tvar) by process p:
44 if an element el with el.tvar = tvar exists in tx→ wset then
45 return 〈true, el.newval〉
46 if an element el with el.tvar = tvar exists in rsetp then
47 return 〈true, el.val〉

48 〈val, ver, owner〉 := *tvar
49 status := owner → status

/* if tvar is locked by a transaction Tw that is not to be linearized before tx and Tw

is in its updating or waiting phase, then read the old value of tvar from Tw ’s write-set */

50 if (an element el with el.tvar = tvar ∈ owner → wset AND
owner /∈ tx→ beforeMe AND status 6= SIMULATING) then

51 〈val, ver〉 := 〈el.oldval, el.oldver〉

52 add 〈tvar, val, ver〉 in rsetp

53 if (tx→ wset 6= ∅ AND VALIDATE(tx) = false) then /* call VALIDATE to ensure opacity */

54 tx→ status = ABORTED
55 return 〈false,⊥〉

56 return 〈true, val〉

57 boolean VALIDATE(txrec *tx) by process p:
58 for each element el in rsetp
59 〈val, ver, owner〉 := *el.tvar
60 if (ver 6= el.ver) then return false
61 return true

Figure 5.2: Pseudocode for BEGINTX, CHECKIFPERFORMED, CREATEDI, READDI, and
VALIDATE of WFR-TM

Page 87 of 187

The Code of the WFR-TM Algorithm

62 boolean WRITEDI (txrec *tx, direc *tvar, value value) by process p:
63 if an element el with el.tvar = tvar exists in tx→ wset then
64 update el.newval with value
65 else add 〈tvar,⊥,⊥, value〉 in tx→ wset
66 return true

67 boolean COMMITTX(txrec *tx)by process p:
68 if (tx→ wset = null) then /* if tx is read-only, commit */

69 tx→ status := COMMITTED
70 return true

71 if (LOCKDATASET(tx) = false) then /* if locking of some data item fails, abort */

72 tx→ status := ABORTED
73 return false

74 tx→ status := UPDATING /* tx enters updating phase */

75 for each element el in tx→ wset do
76 CAS(*el.tvar,*el.tvar, 〈el.newval, el.tvar → ver + 1, tx〉)

/* write here would also do; we use CAS to be coherent with our model */

77 tx→ status := WAITING /* tx enters waiting phase */

78 WAITREADERS(tx) /* tx waits announced read-only transactions */

79 tx→ status := COMMITTED /* tx commits */

80 return true

81 boolean LOCKDATASET (txrec *tx) by process p:
82 for each element el in tx→ wset ∪ rsetp, in ascending order (based on tvar field)
83 if ∃ an element el′ ∈ rsetp with el′.tvar = el.tvar then

/* if tx has read the tvar before, use this old value for consistency */

84 〈val, ver, owner〉 := 〈el′.val, el′.ver, el′.tvar → owner〉
/* otherwise, if the tvar was not read before, use the current value as old value */

85 else 〈val, ver, owner〉 := *(el.tvar)

86 if (owner → status /∈ {COMMITTED,ABORTED}) /* el.tvar is locked */

87 if ∃ an element el′′ ∈ owner → wset with el′′.tvar = el.tvar then
88 return false /* if it is in the write-set of owner, locking fails; otherwise, wait until it is unlocked1 */

89 else wait until owner → status ∈ {COMMITTED,ABORTED}
/* l-cas: try to lock el.tvar */

90 if (CAS(*el.tvar, 〈val, ver, owner〉, 〈val, ver, tx〉) = false) then
91 return false

/* if el is written by tx, then maintain the old value of el.tvar */

92 if (el ∈ tx→ wset) then update 〈el.oldval, el.oldver〉 with 〈val, ver〉

93 return true

94 WAITREADERS(txrec *tx) by process p:
95 for i = 1 up to n, excluding p, do
96 tran := A[i]
97 if (tran 6= null AND tran→ wset = null) then
98 wait until (tran→ status = COMMITTED OR tran→ wset 6= null)

Figure 5.3: Pseudocode for WRITEDI, COMMITTX, LOCKDATASET, and WAITREADERS

of WFR-TM

Page 88 of 187

The Code of the WFR-TM Algorithm

Initially, the value 〈val , ver , owner〉 of x’s direc record (line 48) and the status of

x’s owner (line 49) are read. Assume first that x is not locked. Then, the value for x that T

returns is val, as read on line 48. Assume now that x is locked by a transaction Tw. If the

status of Tw is simulating, then again the value for x that T returns is val. Otherwise, the

status of Tw is either updating or waiting or committed, and the first and third condition of

line 50 evaluate to true. Recall that we consider that x has an old value and a new value,

which are stored in Tw’s write-set entry for x (specifically, in fields oldval and newval of

this entry, respectively). If Tw is contained in T ’s beforeMe set, i.e. the second condition of

line 50 evaluates to false, then Tw’s update on x has already been performed before the

beginning of T . Therefore, again the value for x that T should read is val. However, if Tw
is not contained in T ’s beforeMe set, then T should not read Tw’s update on x, i.e. the new

value of x, and should instead read the old value of x; this value is read on line 51.

After T determines the value to read for x, it adds it together with its corresponding

version in its read-set (line 52). In case T is an update transaction, then its read-set is

validated by calling VALIDATE (line 53); VALIDATE (lines 58-61) returns true when no

version of the elements in T ’s read-set has changed; it returns false otherwise. We remark

that this validation mechanism can also be implemented using a timestamping mechanism

as that presented in TLII [29] or LSA [30], to boost performance.

WRITEDI. When called by Tw to update some data item x with value val, Tw first checks

whether it has previously invoked WRITEDI to modify x. If this is so, then there is already

an element for x in Tw’s write-set (line 63) and WRITEDI updates to val the newval field

of this element (line 64). Otherwise, a new wnode element for x is added in Tw’s write-set

(line 65).

Recall that when Tw enters its updating phase, the oldval and oldver fields of x’s

wnodemust contain the value and version, respectively, written by the transaction for which

it holds that it had x in its write-set and was the last to commit before Tw’s acquisition of

the lock of x (or the initial values if such a transaction does not exist). WFR-TM allows

another transaction T ′ to snoop into Tw’s write-set (line 51) in order to read the old value

of some data item contained there. Therefore, Tw’s write-set must offer a way to T ′ to read

values that are mutually consistent. To achieve this, WRITEDI sets the oldval and oldver

fields of new wnode elements that are added in a write-set to be equal to ⊥ (line 65). This

is necessary for avoiding bad scenarios such as the following: Apart from x, assume that Tw
wants to write also another data item y and let C be a configuration at which Tw has written

Page 89 of 187

The Code of the WFR-TM Algorithm

x but not yet y. Thus, T has created a write set entry for x, but there is no such entry in T ’s

write-set for y. Tw has also read (before C) the contents of x’s direc to store in the oldval

and oldver fields of x’s wnode. Now, let another transaction T ′′ lock and update both x

and y, and commit. Then, Tw continues by writing y. So it places an entry in its write-set

for y and reads the contents of y’s direc to store in the oldval and oldver fields of this

entry. Then, Tw acquires the locks of both x and y. So, if T ′ snoops both x and y from Tw’s

write-set, it reads inconsistent values.

COMMITTX. If T is a read-only transaction (its write-set is empty), COMMITTX changes

T ’s status to committed and returns true (lines 68-70). If T is an update transaction, it

attempts to acquire the required locks by calling LOCKDATASET (line 71), which is de-

scribed in the next paragraphs. If it fails to acquire some lock (LOCKDATASET returns

false), T is aborted (lines 71-73). Otherwise, all the required locks have been acquired

(LOCKDATASET returns true). Then, T enters its updating phase (lines 74 - 76) and up-

dates the data items in its write-set (line 76). Notice that it also increments the version of

each data item by one. Afterwards, T enters its waiting phase (line 77) and waits until all an-

nounced read-only transactions commit. This is done by calling WAITREADERS (line 78).

WAITREADERS goes through the announce array A, and waits until each active read-only

transaction (line 97) either commits or turns out to be an update transaction (line 98).

LOCKDATASET is called by T to lock each data item in its read-set and write-set.

Deadlocks are avoided by acquiring the locks in (ascending) order (based on the tvar pointer

contained in each rnode or wnode element). Initially, LOCKDATASET determines the

value and version of each data item x that it wants to lock, as follows: If x exists in T ’s

read-set, these values are taken from the corresponding read-set entry (line 83). Otherwise,

they are read from x’s direc record (line 85).

LOCKDATASET tries to lock x using a CAS operation which stores a pointer to T ’s

txrec record into the owner field of x’s direc record (line 91). Notice that this CAS

also serves as a final validation of the value of x read by T (in case x is in T ’s read-set).

LOCKDATASET returns true only if it successfully locks all the data items in T ’s read-

set and write-set (line 93). If x is already locked by some transaction T ′ (lines 86 to 88),

LOCKDATASET by T returns false. If x is locked by some transaction that does not

intend to update it, LOCKDATASET waits until this transaction completes (line 89). Finally,

recall that when LOCKDATASET is invoked, the contents of the oldval and oldver fields of

x’s element in T ’s write-set are ⊥. In case x is locked, these fields are updated with the

Page 90 of 187

Proof of the WFR-TM Algorithm

determined current values for x (line 92), so that if T enters its updating phase these fields

are appropriately set in each element of T ’s write-set.

5.5 Proof of the WFR-TM Algorithm

In this section, we prove that WFR-TM is opaque. We also study the progress properties

of WFR-TM. In Section 5.5.1, we provide some preliminaries including useful notation, in

Section 5.5.2, we present the full proof of correctness of WFR-TM, and in Section 5.5.3, we

study its progress properties.

5.5.1 Preliminaries

The execution interval of some transaction T is denoted by αT . The process p that initiates

T is its initiator. Whenever p applies a primitive while executing T , we also say that T

applies this primitive. We denote by CET the last configuration of αT . We say that T

announces itself when it executes the write to A[p] of line 30.

By inspection of the code of WRITEDI (lines 63 - 65), T adds in its write-set a unique

record for each data item that it writes. Moreover, by inspection of the code of READDI

(lines 44 - 56), for each data item x read by T , T executes lines 48 - 56 during the first

instance of READDI for x executed by T ; we denote by RTx,T this instance. We remark

that each subsequent instance of READDI for x executed by T returns either on line 45 or on

line 47. So, by inspection of the code (line 52), T maintains in its read-set a unique record

for each data item read by it.

Observation 1. Consider any transaction T and let C be any configuration. Then,

1. if T has executed at least one instance of WriteDI for some data item x at C, there

is a unique record for x in T ’s write set at C;

2. if T has executed RTx,T for some data item x at C, there is a unique record for x

in T ’s write set at C; any instance of ReadDI for x by T following RTx,T does not

execute lines 48 - 56.

Each time T successfully executes the CAS instruction of line 90 for some data item

x, we say that T becomes the owner of x or acquires the lock for x. We call the CAS

instruction of line 90 l-cas. Since, LOCKDATASET is executed at most once (line 71) by

Page 91 of 187

Proof of the WFR-TM Algorithm

T , by inspection of the code (lines 82 - 91), at most one l-cas is executed for each data

item in the data-set of T . Assume that T acquires the lock for x. We denote by CLx,T the

configuration after the successful execution of the l-cas for x by T . Each time T executes the

write instruction of line 76 for some data item x with values 〈v, d〉, we say that T updates

the value and the version of x with v and d, respectively, or writes the value v and version d

for x.

By inspection of the code (line 24), each transaction T is associated with a unique

txrec record. Recall that the status of T is the value of the field status in this record.

Throughout this proof we abuse notation and we use the same notation to refer both to the

name of some transaction and to its txrec record.

Fix any execution α of WFR-TM. Consider any transaction T in α. By inspection of

the code (line 26), T.status is initially SIMULATING. Notice that no other transaction can

update the status of T . If T is read-only, by inspection of the code (lines 53, 56, and 68 -

70), its status can only change from SIMULATING to COMMITTED (line 69).

If T is an update transaction, then by inspection of the code (lines 54 - 55 and 72 -

73), its status may change from SIMULATING to ABORTED. Also, by inspection of the

code (lines 74, 77 and 79), its status may change from SIMULATING to UPDATING, from

UPDATING to WAITING, and from WAITING to COMMITTED. As long as its status is

SIMULATING, UPDATING, or WAITING, we say that T is in its simulating, updating, or

waiting phase, respectively.

Observation 2. The following hold for each transaction T :

1. if T ’s status is SIMULATING, it can change either to ABORTED or to UPDATING;

2. if T ’s status is UPDATING, it can only change to WAITING;

3. if T ’s status is WAITING, it can only change to COMMITTED.

If the status of T becomes COMMITTED or ABORTED, then it never changes again.

If its status becomes COMMITTED or ABORTED, we say that T completes (commits or

aborts, respectively). Notice that if a committed (aborted) transaction returns, it returns

true (false). If T commits in α, we denote byCMT the configuration after the execution

of line 79 which changes T ’s status to COMMITTED. If T aborts in α, we denote by CAT
the configuration after the execution of the write instruction (line 54 or line 72) that changes

the status of T to ABORTED. Notice that if T completes, then either CET = CMT or

CET = CAT , depending on whether T commits or aborts, respectively.

Page 92 of 187 Preliminaries

Proof of the WFR-TM Algorithm

Table 5.1 briefly summarizes the notation introduced thus far, as well as some notation

that will be introduced later. Note that notation that refers to some configuration starts with

the letter C.

αT the execution interval of T

RTx,T
the (first and) unique instance of READDI for x by T during
which T executes lines 48 - 56 for x; x is globally read by T

CET the last configuration of αT

CLx,T
the configuration after the successful execution of the l-cas for x
by T (line 90)

CUT
the configuration after the execution of line 74 that changes the
status of T to UPDATING

CWT
the configuration after the execution of line 77 that changes the
status of T to WAITING

CMT
the configuration after the execution of line 79, that changes the
status of T to COMMITTED

CAT
the configuration after the execution of the write instruction (lines
54 or 72) that changes the status of T to ABORTED.

αx,T
the execution interval of αT during which T maintains the lock
for x

CRT
the configuration at the beginning of the last execution of the for
of line 35 in CHECKIFPERFORMED by T

RST (C)
the set containing each triple 〈x, v, d〉 added to the set rset (of
the process executing T) until configuration C

RST RST (CET)

CwT

the configuration preceding the first execution of line 65 by T ,
i.e. the point at which T adds its first element in its write set, thus
indicating that it is an update transaction.

`C
the sequence of transactions of α that have been serialized before
or at C

Table 5.1: Useful Notation for the Proof of Correctness

Consider any update transaction Tw. If Tw enters its waiting phase in α, we denote

by CUTw and CWTw the configurations after the execution of lines 74 and 77, respectively,

which change Tw’s status to UPDATING and WAITING, respectively. By inspection of the

code (lines 52, 68, 71, and 74), Tw calls LOCKDATASET before CUTw and this call returns

true (i.e. it was successful). Thus, by inspection of the code (lines 52, 65, 82, 90, and 93),

Tw has acquired the locks for all data items accessed by Tw before CUTw .

If Tw acquires the lock for some data item x, by inspecting the code it follows that

Preliminaries Page 93 of 187

Proof of the WFR-TM Algorithm

at CLx,Tw the status of Tw is equal to SIMULATING. We say that Tw maintains the lock

for x, or x is locked by Tw, in each configuration following CLx,Tw (including it) in which

the status of Tw is neither COMMITTED nor ABORTED. The change of the status of Tw to

COMMITTED or ABORTED, indicates that Tw releases all locks it has acquired. We denote

by αx,Tw the execution interval of αTw during which Tw maintains the lock for x. We remark

that αx,Tw starts with CLx,Tw and, in case Tw completes in α, it ends with the configuration

preceding CMTw or CATw (depending on whether Tw commits or aborts respectively). If

Tw does not complete in α, αx,Tw is the suffix of α, starting at CLx,Tw .

The inspection of the code (lines 71 - 77) and the definition of αx,Tw imply the follow-

ing.

Observation 3. Consider any update transaction Tw that enters its waiting phase in α. For

each data item x accessed by Tw, CUTw and CWTw occur in αx,Tw .

Lemma 4. Consider any update transaction Tw that acquires the lock for some data item x.

During αx,Tw , the owner field of the direc record of x contains a pointer to the txrec

record of Tw.

Proof. By inspection of the code (line 90) and by the definition of CLx,Tw , at CLx,Tw the

claim holds. Assume, by the way of contradiction, that there is some configuration in αx,Tw
in which the owner field of the direc record of x contains a pointer to the txrec record

of a transaction T ′w 6= Tw. Let C be the first such configuration. By inspection of the code

(line 90), T ′w has acquired the lock for x. Let lCAS be the successful l-cas that T ′w executed

in order to acquire the lock for x. Before executing lcas, T ′w reads the value 〈−,−, owner〉
from the direc record of x either on line 84 or on line 85; let rx be this read. Notice that

rx is executed before the end of αx,Tw .

To derive a contradiction, we consider the following cases. Assume first that rx
is performed after CLx,Tw . In this case, the owner field of the direc record of x

contains a pointer to the txrec record of Tw. By definition of αx,Tw , Tw.status /∈
{COMMITTED,ABORTED} during αx,Tw . So, by inspection of the code (lines 87 and 88),

the instance of LOCKDATASET executed by T ′w returns false. Then, by inspection of

the code (lines 71 - 73), T ′w aborts, so it does not attempt to lock x. This contradicts the

assumption that T ′w has acquired the lock for x at C.

Assume now that rx is performed before CLx,Tw . Let rx return owner = T ′′w, where

T ′′w 6= Tw. Notice that lcas can only succeed if the owner field of the direc record of x

Page 94 of 187 Preliminaries

Proof of the WFR-TM Algorithm

contains a pointer to the txrec record of T ′′w. However, since lcas is the first successful

CAS for x executed after CLx,Tw , the owner field of the direc of x contains a pointer

to the txrec of Tw when lcas is executed (and not to T ′′w). It follows that lcas does not

succeed. This contradicts the definition of lcas.

By Observation 3 and by inspection of the code (lines 74 - 77), it follows that any

update transaction Tw updates each data item x in its write-set during αx,Tw . Moreover, by

inspection of the code (lines 71, 77, 82, 90, and 93), each update transaction that enters its

waiting phase acquires the lock for each data item in its read-set and each data item in its

write-set. Observation 3 and Lemma 4 imply the following.

Corollary 5. Consider any update transaction Tw that enters its waiting phase in α. Con-

sider any data item x in the read-set or the write-set of Tw. Then, during αx,Tw , 1) Tw
updates x during αx,Tw and 2) for each update transaction T ′w 6= Tw that updates x, αx,Tw
and αx,T ′w do not overlap.

The version of each data item changes only by executing the CAS of line 76, i.e. when

an update transaction executes its updating phase. Corollary 5 and the inspection of the code

(lines 41 and 76) imply the following claim.

Observation 6. The version of each data item is strictly increasing.

We continue to prove the following stronger claim.

Lemma 7. Let S = T1T2, . . . be the sequence of update transactions that acquire the lock

for some data item x in α. Then, for each integer d, d > 0, (1) Td has a wnode element

for x in its write set with value d − 1 stored in its oldver field, (2) Td writes d as the new

version for x, and 3) all but the last transaction in S enter their waiting phase.

Proof. The proof is by induction on the value of d. Fix any d > 0 and assume that the claim

holds for d − 1. We prove that the claim holds also for d. Recall that Td acquires the lock

for x by successfully executing an l-cas for x (line 90). In case d = 1, then the initial value

of the version of x is 0. In case d > 1, then by the induction hypothesis (claim 2), it follows

that Td−1 writes the value d − 1 as the new version of x. Since Td is the first transaction

to execute a successful l-cas for x after Td−1, by inspection of the code (lines 83, 85, and

92) and Corollary 5, it follows that Td uses 〈−, d − 1, Tw〉 as the old value for its l-cas. by

Preliminaries Page 95 of 187

Proof of the WFR-TM Algorithm

inspection of the code (lines 83, 84, 89, 90), it follows that d− 1 is the value that Td stores

as the oldver field in the wnode for x in its write set. So, claim (1) holds.

Moreover, by inspection of the code (lines 76 and 79), Td updates the version of x

during αx,Td . By Lemma 4, it follows that Td updates the version of x to d. So, claim (2)

holds. Also, if Td is not the last transaction of S, then Lemma 4 implies claim (3).

Corollary 8. Let S = T1T2, . . . be the sequence of update transactions that acquire the

lock for some data item x and enter their waiting phase in α. Then, for each d > 0,

CWTd < CWTd+1
, i.e. the serialization point of Td precedes that of Td + 1 in α.

Consider any update transaction Tw that enters its waiting phase in α. Then, by in-

spection of the code (lines 77 and 78), if Tw calls WAITREADERS, it does so after CWTw .

Consider also any read-only transaction Tr. By inspection of the code (lines 30, 77 - 78, and

95 - 98), if Tr performs its announcement before CWTw , Tw will wait (line 98) for Tr to

commit. Therefore, in this case, Tr commits before the completion of Tw.

Lemma 9. Consider any update transaction Tw that enters its waiting phase in α and any

read-only transaction Tr that commits in α. If Tr performs its announcement before CWTw ,

then Tr commits before the completion of the waiting phase of Tw in α.

In WFR-TM, we assign serialization points to read-only transactions that commit in α

and to update transactions that enter their waiting phase in α. Consider any such transaction

T in α. Let CRT be the configuration at the beginning of the last execution of the for of

line 35 in CHECKIFPERFORMED by T . Notice that CRT is the configuration where the first

iteration of the for of line 35 starts executing during the last execution of the do while of

lines 34 to 39. If T is a read-only transaction, we place its serialization point at CRT . If T is

an update transaction that enters its waiting phase, we place its serialization point at CWT .

By the way serialization points are assigned, the serialization point of each transaction is

placed in its execution interval. Moreover, at each configuration C, there is a sequence of

transactions of α that have been serialized before or at C. Let `C denote this sequence.

Consider any transaction T in α and let C be any configuration. Let RST (C) be the

set containing each triple 〈x, v, d〉 that has been added to the set indicated by the rset set

of the process executing T until C. If T completes, let RST = RST (CET). Consider any

triple 〈x,−, d〉 ∈ RST (C). We say that d is consistent at C, if it is the version written

by the last transaction in `C that updates x. RST (C) is consistent at C, if for each triple

〈x,−, d〉 ∈ RST (C) the version d of x is consistent at C.

Page 96 of 187 Preliminaries

Proof of the WFR-TM Algorithm

Consider a transaction T that adds a triple with version d for some data item x in its

read-set during RTx,T . Let Td and Td+1 be the update transactions that write versions d and

d+ 1, respectively, for x. The next lemma proves that during RTx,T , T reads, as the owner

for x, on line 48 either Td or Td+1 and if it reads Td then T has included Td in its beforeMe

set.

Lemma 10. Let T be any transaction and let C be a configuration at which a triple triple

〈x,−, d〉 ∈ RST (C). T adds 〈x,−, d〉 in its read-set (line 52) during RTx,T . Let r and

r′ be the reads of line 48 and line 49, respectively, executed by T in RTx,T and let Tw be

the value returned by r for x → owner. If Td and Td+1 are the update transactions that

write d and d + 1, respectively, for the version of x (line 76). then, either Tw = Td and

Td ∈ T → beforeMe, or Tw = Td+1.

Proof. We start by providing an intuitive explanation of the proof. We proce that if T reads

Td on line 48, then line 51 is not executed. On the other hand, if T reads Td+1, we argue

that Td+1 /∈ T → beforeMe set. If Td+1’s status is SIMULATING, then Td+1 has not yet

updated x when T executes line 49. So, on line 48, T has read d for x and line 51 is not

executed. If T reads a value other than SIMULATING for the status of Td+1 (on line 49),

then T executes line 51. So, T reads the version d for x from the write-set of Td+1.

We now provide the details of the proof. To obtain a contradiction, suppose that either

Tw /∈ {Td, Td+1}, or Tw = Td and Td /∈ T → beforeMe. We first argue that if T reads d

on line 51, then Tw = Td+1. If T reads d on line 51, then by inspection of the code (lines

48 and 50), T reads x’s version in the oldver field of some element e for x in the write-set

of Tw. Then, Lemma 7 implies that Tw = Td+1.

Assume first that Tw /∈ {Td, Td+1}. Since, Tw 6= Td+1, it follows that T does not

read d on line 51. Lemma 7 implies that if T reads d on line 48, then Tw = td which is a

contradiction. Assume now that Tw = Td and Td /∈ T → beforeMe. Since Tw 6= Td+1,

it follows that T does not read d on line 51. Thus, T reads d on line 48. We consider

the following cases for the status of Td returned by r′. Notice that this value is other than

ABORTED since Td enters its updating phase.

If r′ returns SIMULATING then r′ < CUx,Td . Since (1) r′ is performed during αx,Td ,

(2) r′ < CUx,Td , and (3) Td changes the version of x from d − 1 to d after CUTd (lines 74

and 76), Corollary 5 implies that r returns d − 1. This is a contradiction to the assumption

that r returns d.

Preliminaries Page 97 of 187

Proof of the WFR-TM Algorithm

Assume now that r′ returns a value other than SIMULATING. By inspection of the

code (line 82 and 90) and since Td updates x and acquires the lock for x, Td has added

an element for x in its write-set. So, since r′ is performed after CLx,Td , an element e with

e.tvar = x exists in the write set of Td. Lemma 7 implies that e.oldver = d−1. Also, since

by assumption Td /∈ Tr → beforeMe, by inspection of the code (lines 50 - 51), T reads

e.oldver on line 51 and it is this value that T adds to its read-set (line 52); this contradicts

our assumption that T reads d on line 48.

Lemma 11. Consider any transaction T and let C be a configuration at which a triple

〈x,−, d〉 ∈ RST (C). Let Td be the update transaction that writes the version d for x (line

76) and let p′ be the process executing Td. Then, Td enters its waiting phase andCWTd < C.

Proof. During the execution of CHECKIFPERFORMED by T , T repeatedly reads (line 36),

the transaction that is announced in A[p′] and the status of this transaction (line 37). Let

r1 and r2 be these two reads executed by T in the last iteration of the for loop of line

35, during the last iteration of the do while loop of lines 34 - 39. Moreover, during

the execution of RTx,T , T reads the direc for x (line 48) and the status (line 49) of the

transaction that it read as the owner of x on line 48 (during the execution of RTx,T). Let r3
and r4 be these reads.

To obtain a contradiction, suppose that either Td does not enter its waiting phase or

CWTw > C; let C ′ be either the configuration following the last step taken by T in α, or

CWTw , respectively. We first argue that Td /∈ T → beforeMe. T reads d for x by executing

either line 48 or line 51 during RTx,T . If T executes line 51, let r5 be this read. Notice that

by inspection of the code, r1 < r2 < r3 < r4 < r5 < C, and by assumption, C < C ′. Thus,

the definitions of r1 and r2 imply that in the instance of its CHECKIFPERFORMED, either T

does not read Tw in A[p′] whenever it executes line 36 or if it reads Tw in A[p′], is some of

these reads, it does not read a value equal to WAITING or COMMITTED for the status of Tw
on line 37. Therefore, by inspection of the code (lines 36 to 38), Tw /∈ T → beforeMe.

Since 〈x,−, d〉 ∈ RST (C), Lemma 10 implies that either r3 returns Td+1 or r3 returns

Td and Td ∈ T → beforeMe. Since Td /∈ T → beforeMe, it follows that r3 returns Td+1.

Lemma 7 implies that there is a sequence S = T1, T2, . . . of update transactions in α that

acquire the lock for x and Td precedes Td+1 in S. Corollary 5 implies that αx,T1 < αx,T2 <

. . .. Observation 3 implies that if CWTd occurs, then it occurs in αx,Td . Since r3 < C ′, it

follows that r3 cannot return Td+1. This is a contradiction.

Page 98 of 187 Preliminaries

Proof of the WFR-TM Algorithm

5.5.2 Correctness

5.5.2.1 Correctness of read-only transactions

Throughout this section, we consider a read-only transaction Tr that commits in α. The next

lemma proves that if Tr reads d for a data item x, then the serialization point of the update

transaction Tw which writes the version d for x is placed before the serialization point of Tr.

Lemma 12. Consider any triple 〈x,−, d〉 ∈ RSTr . Let Td be the update transaction that

writes the value d for the version of x. Then, CWTd < CRTr .

Proof. To obtain a contradiction, suppose that CWTd > CRTr . Let r and r′ be the reads on

line 48 and line 49, respectively, executed during RTx,T . Let Tw be the transaction returned

by r as the owner of x. Then, CLx,Tw < r. If Td+1 is the update transaction that writes

the version d + 1 for x, then Lemma 10 implies that either Tw = Td+1, or Tw = Td and

Td ∈ Tr → beforeMe.

Assume first that Tw = Td and that Td ∈ Tr → beforeMe. By inspection of the

code (lines 37 and 38), Td can be added in the beforeMe set of Tr only after CWTd . Since

CRTr<CWTd
, this addition occurs afterCRTr . By inspection of the code (line 39), it follows

that an iteration of the do-while loop of lines 36 to 38 is initiated after CRTr . This is a

contradiction to the definition of CRTr .

We next assume that Tw = Td + 1. Since Tr reads d for x and Td writes d for x,

Observation 3 implies that r > CLx,Tw . Since we have assumed that CWTd > CRTr ,

Lemma 9 implies that Tr commits before Td completes its waiting phase. So, r occurs in

αx,Td . Lemma 7 implies that there is a sequence S = T1, T2, . . . of update transactions in

α that acquire the lock for x and Td precedes Td+1 in S. Corollary 5 implies that αx,T1 <

αx,T2 < Observation 3 implies that CWTd occurs in αx,Td . Since r occurs in αx,Td , it

follows that r cannot return Td+1. This is a contradiction.

Lemma 13. The set RSTr is consistent at CRTr .

Proof. For each triple 〈x,−, d〉 ∈ RSTr , we prove that d is written by the last committed

transaction that updates x and is serialized before CRTr . By Observation 6, there is a

unique update transaction Td that writes d in x (CAS of line 76). Let Cd be the configuration

following this CAS (line 76). By inspection of the pseudocode, Cd < CWTd . By Lemma

12 CWTd < CRTr .

Correctness Page 99 of 187

Proof of the WFR-TM Algorithm

Assume, by the way of contradiction, that the last committed transaction (let it be Tw)

that updates x and is serialized before CRTr , writes the value d′ 6= d for x. Let Cw be the

configuration following this CAS (line 76) and let p be the process that executes Tw. Since

CWTd < CRTr , and Tw is the last committed transaction that updates x and is serialized

before CRTr , it follows that CWTd < CWTw By Observation 3, CWTd is in αx,Td and

CWTw is in αx,Tw . Then, Corollary 5 implies that Cd < Cw. So, by Observation 6 it

follows that d′ > d. Thus, Cd < CWTd < Cw < CWTw < CRTr .

Notice that after CRTr , Tr reads on line 36, the transaction that is announced in A[p]

and then Tr reads the status of this transaction on line 37. Let r1 and r2 be these two reads.

Moreover, Tr reads the direc for x on line 48, in the first instance of READDI that it

initiates for x, and on line 49 the status of the transaction that it read as the owner of x on

line 48. Let r3 and r4 be these reads.

We argue that r3 does not return d for the version x. Thus, Tr must read d in the

oldver field of some transaction by executing line 51. Let r5 be this read. We also argue

that r5 reads from the write-set of Tw. We argue that the read of line 51 occurs only if

Tw /∈ Tr → beforeMe. We also argue that r1 read Tw in A[p] and r2 reads WAITING for

the status of Tw. Then, by inspection of the code, Tr adds Tw in Tr → beforeMe, which is

a contradiction. We start by proving that r3 does not return d for the version of x.

By inspection of the code (lines 76 and 78), Tw has updated the version of x to d′

before CWTw . Since r1 > CWTw , Observation 6 implies that r1 returns either d′, or a value

larger than d′ for the version of x. Thus, d is not read by Tr on line 48. So, by inspection

of the code , d must be read by Tr on line 51, through the oldver field of the element

maintained for x in the write-set of the owner of x at that point in time.

Moreover, since CRTr > CWTw , r3 returns as the owner of x a transaction T ′w, which

is either Tw or some other transaction that acquired the lock for x after Tw. We argue that

this owner is Tw. We next argue that Tw /∈ Tr → beforeMe. Since Tw writes d′ > d,

Observation 6 implies that any transaction that acquires the lock after Tw writes a value

larger than d′. Lemma 7 implies that all these transactions other than Tw have a value larger

than d stored in the oldver field of the wnode forx in their write-sets. Lemma 7 also implies

that it must be Tw that has the value d in the oldver field of the wnode for x in its write-set,

and that Tw writes d + 1. It follows that the read of line 48 returns Tw as the owner for

x. by inspection of the code, Tw /∈ Tr → beforeMe and r4 returns either WAITING or

UPDATING for the status of Tw. Since r4 occurs after CRTr and therefore, after CWTw , it

Page 100 of 187 Correctness

Proof of the WFR-TM Algorithm

follows that r4 returns WAITING for the status of Tw.

Since, Tw is announced before CWTw (lines 30 and 77), CWTw < CRTr < r1 <

r3 < r4, and r4 returns WAITING for the status of Tw, it follows that r1 returns Tw as the

owner of x and r2 returns WAITING for the status of Tw. So, by inspection of the code

(lines 37 - 38), Tw ∈ Tr → beforeMe. This is a contradiction.

5.5.2.2 Correctness of update transactions

Throughout this section, we consider an update transaction Tw that enters its waiting phase.

By inspection of the code (lines 27 and 65), Tw is initiated as read-only and it becomes an

update transaction after the first execution of line 65 by it. Let CwTw be the configuration

before the first execution of line 65 by Tw.

Lemma 14. Consider any instance V of Validate executed by Tw that returns true and

let CV be the configuration before the invocation of V . Then, for each triple 〈x,−, d〉 ∈
RSTw(CV), d is consistent at CV .

Proof. Consider any triple 〈x,−, d〉 ∈ RSTw(CV). We will prove that d is written by

the last committed transaction that is serialized before CV and updates x. By Observation

6, there is a unique update transaction Td that writes d in x (line 76). Since 〈x,−, d〉 ∈
RSTw(CV) (i.e. Tw reads the version d for x), Lemma 11 implies that CWTw precedes the

completion of the instance of CHECKIFPERFORMED executed by Tw and since CWTd <

CV .

Assume, by the way of contradiction, that the last committed transaction that is se-

rialized before CV is Td′ 6= Td which writes the value d′ 6= d for x (line 76). Since

CWTd < CV , it must be that CWTd < CWTd′ < CV since otherwise Td′ would not be the

transaction that is serialized last before CV . Thus, Corollary 5 and Observation 6 imply that

d < d′.

After CV , Tw reads the version of x (line 59); let r be the first such read. Since

CWTd′ < CV < r, and by inspection of the code (lines 76 and 77), Td′ writes d′ > d

for x before CWTd′ , Observation 6 implies that r returns either d′ or a value larger that d′.

However, since V returns true, r must return d for x. This is a contradiction.

Lemma 15. RSTw is consistent at CWTw .

Correctness Page 101 of 187

Proof of the WFR-TM Algorithm

Proof. Let 〈x,−, d〉 be any triple added to the read-set of Tw. We prove that d is written by

the last committed transaction that is serialized beforeCWTw and updates x. By Observation

6, there is a unique update transaction Td that writes d in x; let Cd be the configuration

following this write (line 76).

Let V be the last instance of VALIDATE (line 53) executed by Tw beforeCWTw ; letCV
be the configuration preceding the invocation of V . Lemma 14 implies that d is consistent

at CV .

Since Tw enters its waiting phase, by inspection of the code (lines 71 - 72), it fol-

lows that the instance D of LOCKDATASET executed by Tw returns true; let CD be the

configuration following this response. Since D returns true, by inspection of the code

(lines 82, 90, and 91), it follows that the CAS of line 91 executed for x is successful. By

inspection of the pseudocode (lines 83 - 84, and 90), this CAS uses d as the version of its

second parameter. Since, it is successful no other transaction has written x between CWTd

and CLx,Tw .

Assume, by the way of contradiction, that the last committed transaction Td′ that up-

dates x and is serialized after CV and before CWTw , writes the value d′ 6= d to x. Then,

Corollary 5 implies that there is some configuration between CWTd and CLx,Tw in which

the version of x is d′ 6= d. A contradiction.

Lemmas 13, 14 and 15 imply the following.

Theorem 16. WFR-TM is an opaque TM algorithm.

5.5.3 Progress

In this section, we show that read-only transactions in WFR-TM are wait-free, and that

update transactions are not prone to deadlock.

Let α be an execution of WFR-TM. Let mw be the maximum number of data items

written by any update transaction in α and mr be the maximum number of data items read

by any read-only transaction in α.

Lemma 17. Consider any transaction T executed by some process pi in α. Then, T →
beforeMe contains at most two transactions initiated by each process pj , 1 ≤ j ≤ n,

j 6= i.

Page 102 of 187 Progress

Proof of the WFR-TM Algorithm

Proof. Notice that a new element can be added to T → beforeMe only during the exe-

cution of CHECKIFPERFORMED by T ; specifically, this occurs with the execution of line

38. We will prove that line 38 can be executed by T at most twice for each entry A[j],

1 ≤ j ≤ n, j 6= i. We remark that since T → wset = ∅ during the execution of CHECK-

IFPERFORMED by T , T is considered as a read-only transaction as long as it executes its

CHECKIFPERFORMED.

Fix any j, 1 ≤ j ≤ n, j 6= i. To obtain a contradiction, suppose that line 38 is

executed by T three times for A[i]. Notice that before executing line 38, T reads (on line

36) the direc record of some transaction, from A[i]; let r1, r2, and r3 be the reads of line

36 in that for iteration in which the first, the second, and the third execution, respectively,

of line 38 by T occurs.

Let T1, T2, and T3 be the transactions returned by r1, r2, and r3, respectively. Notice

that T1, T2, and T3 have the same initiator pi. Since the first execution of line 38 occurs after

r1, the second after r2, and the third after r3, the inspection of the code (1st condition of line

37) implies that T1 6= T2 6= T3. Moreover, by inspection of the code (3rd condition of line

37), the statuses of T1, T2, and T3 are either WAITING or COMMITTED when the condition

of the if statement of line 38 is executed. So, by inspection of the code (lines 72 - 73, 74,

77, and 79) T1, T2, and T3 do not abort.

By inspection of the code (lines 30, 78 - 79, and 95 - 98), T1, T2, and T3 call WAIT-

READERS after CWT1 , CWT2 , and CWT3 , respectively. Recall that T is considered as a

read-only transaction while executing its instance of CHECKIFPERFORMED.

Assume first that the announcement of T precedes the announcement of T1, thus it

also precedes CWT1 . So, T1 waits (line 98) until the instance of CHECKIFPERFORMED

initiated by T returns. Therefore, pi cannot initiate T2 as long as T executes its instance of

CHECKIFPERFORMEDṪhis contradicts the fact that pj reads T2 in A[i] while T executes its

instance of CHECKIFPERFORMED.

Assume now that T1 is announced before the announcement of T . Notice that T2 is

initiated by pj after the completion of T1. Since T reads T1 on line 36 from A[i] (though

r1) and r1 follows the announcement of T (line 30), it follows that T is announced before

the announcement of T2, that is also before CWT2 . Therefore, pj cannot initiate T3 as long

as T executed Icip. This contradicts the fact that pi reads T3 in A[j] during the execution of

Icip.

Progress Page 103 of 187

Proof of the WFR-TM Algorithm

Lemma 18. Consider any transaction T in α. Then, T completes BeginTx within O(n2)

steps.

Proof. T executes lines 24 to 30 in O(1) steps. Thus, it remains to show that CHECKIF-

PERFORMED completes after O(n2) steps. Lemma 17 implies that no more than 2(n − 1)

elements are added in T → BeforeMe. Thus, no more than O(n) iterations of the do

while are executed. Each such iteration completes in O(n) additional steps since it reads

n elements of the announce array. Additionally, each such iteration executes a search in

T → beforeMe. We remark that if we implement beforeMe set of each transaction as a

two-dimensional array of 2n elements (i.e. two elements per process), then this search can

be executed in O(1) steps.

Theorem 19. Each read-only transaction executed by some process that accesses m data

items commits after O(n2 + mrmw) steps, i.e. the execution of each read-only transaction

is wait-free.

Proof. Lemma 18 implies that Tr completes BEGINTX within O(n2) steps.

We prove that each instance of READDI executed by Tr completes in O(mw) steps.

Since Tr is a read-only transaction, Tr → wset = ∅. Thus, lines 44 and 53 are executed

in O(1) steps. Lines 46, 47, and 52 execute only local computations. All remaining lines

other than 50 are also executed in O(1) steps. Notice that the second condition of line 50

performs a search on beforeMe set of Tr for transaction owner. Recall that if we imple-

ment beforeMe set of Tr as a two-dimensional array of 2n elements (i.e. two elements per

process), then this search can be executed in O(1) steps, given that the process id of owner

is stored in its txrec. Thus, the only condition that may cause the execution of more

that O(1) steps on line 50 is the verification of the condition “tvar ∈ owner → wset”.

This costs O(mw) steps. Thus, each instance of READDI executed by Tr completes within

O(mw) steps.

By inspection of the code (lines 68 to 70), it follows that COMMITTX, when called by

a read-only transaction completed within O(1) steps. Thus, Tr completes within O(n2 +

mrmw) steps.

If Tw is an update transaction, then Theorem 19 and the inspection of the code imply

that, for each read-only transaction Tr, Tw waits only for a finite number of steps in order

for Tr to complete, on lines 89 or 98.

Page 104 of 187 Progress

Proof of the WFR-TM Algorithm

Theorem 20. In any infinite execution of WFR-TM, each update transaction Tw completes

within a finite number of steps.

Proof. Since sets Tw → beforeMe, Tw → wset, and Tw’s read-set are finite, by inspection

of the code, it follows that CREATEDI, WRITEDI, VALIDATE, and LOCKDATASET when

called by Tw complete within a finite number of steps. By inspection of the code (lines

95 to 98), Tw may have to wait for the completion of at most n − 1 read-only transactions

while executing WAITREADERS. Theorem 19 implies that, for each read-only transaction

Tr, Tw waits for a finite number of steps in order for Tr to complete. Thus, WAITREADERS

completes within a finite number of steps and therefore the same is true for COMMITTX.

Theorem 21 proves that WFR-TM provides deadlock-freedom also among update

transactions.

Theorem 21. In any infinite execution α of WFR-TM in which infinitely many update trans-

actions are initiated, infinitely many update transactions commit.

Proof. To obtain a contradiction, suppose that no update transaction ever commits after

some configuration C of α. Then, Theorem 20 implies that infinitely many transactions

abort after C.

By inspection of the code (lines 53 - 55, 71, and 72), an update transaction Tw aborts

either when one of the instances of VALIDATE (line 53) that Tw executes returns false,

or when the single instance of LOCKDATASET that Tw executes during COMMITTX returns

false. In the first case, by inspection of the code of VALIDATE, it follows that the version

of at least one data item has changed since it has been initially read by T ; let this update be

performed by some transaction T ′w. By inspection of the code (lines 74 - 80) and Theorem

20, it follows that T ′w commits within a finite number of steps. Since, no transaction commits

after C, it follows that only a finite number of instances of VALIDATE can return false,

after C.

Let C ′ be the configuration following the return of the last instance of VALIDATE that

returns false, after C. So, any update transaction T ′w initiated after C ′ aborts because

the instance D′ of LOCKDATASET it executes returns false. By inspection of the code

(lines 86 - 88 and 91), D′ returns false when a data item in RST ′ is locked by some

other transaction. By inspection of the code (line 82), each transaction acquires the locks of

the data items it accesses in (ascending) order. So, there is at least one transaction that is

Progress Page 105 of 187

Proof of the WFR-TM Algorithm

initiated after C ′, for which the instance of LOCKDATASET executed by it will be able to

acquire all the required locks and respond with true; that is a contradiction.

Page 106 of 187 Progress

Chapter 6

The SemanticTM Software
Transactional Memory Algorithm

Page 107 of 187

Main Ideas

6.1 General

In this chapter, we introduce SemanticTM, an STM algorithm which achieves fine-grain

parallelism at the transactional instruction level. Additionally, for simple transactions, as-

suming compiler support, SemanticTM ensures that all transactions (both read-only and

update) complete within a finite number of steps and never abort, by ensuring that no trans-

actions conflict. Since SemanticTM ensures local-progress, it naturally supports irrevo-

cable operations. In Section 6.2) the main ideas of SemanticTM are presented. Also, in

Section 6.3 the pseudocode of SemanticTM is described, and in Section 6.4, the proof

of correctness and progress properties ensured by SemanticTM is presented. Finally, in

Section 6.5, the results of the experimental evaluation of SemanticTM are presented.

6.2 Main Ideas

SemanticTM uses a set of lists, called di-lists, one for each data item. A scheduler pro-

cesses transactions one after the other and places the instructions of each transaction in the

appropriate di-lists based on which data items each of them accesses. All the instructions of

each transaction are placed in the di-lists before the instructions of any subsequent transac-

tion. The scheduler also records any dependencies that may exist between the instructions

of the same transaction. Each of the workers repeatedly chooses, uniformly at random, a

di-list and executes the instructions of this list, starting from the first one. Processing trans-

actions in this way ensures that conflicts never occur; so, transactions never abort. Recall

that compiler support is employed to know, for each instruction, any dependency that leads

to or originates from it. Figure 6.1 shows the main structure of SemanticTM.

For example, consider transactions T1 and T2 of Figure 6.2. Without loss of generality,

assume that the instructions of T1 are placed in the di-lists first. Then, the instructions of

lines 1 and 2 of T1 will be placed in the di-list for x before the write to x on line 6 of T2.

Similarly, the write to y of line 3 of T1 will be placed in the di-list for y before the write to y

of line 5 of T2. Since the worker processes respect the order in which instructions have been

inserted in the lists when they execute them, the instructions of T1 on each data item will be

executed before the instructions of T2 on this data item, and thus no conflict between them

will ever occur.

The set of data items accessed by a transaction is its data set. We call control flow

statements the conditionals and loops, and we use the instruction cond to refer to such a

Page 108 of 187

Main Ideas

Code of
Application

Dependence

Analysis
Module

T1: e1, in1, out1, f1

T1: e2, in2, out2, f2

T2: e3, in3, out3, f3

T3: e4, in4, out4, f4

T3: e5, in5, out5, f5

…

T1: e1, in1, out1, f1

T3: e5, in5, out5, f5

…

T1: e2, in2, out2, f2

…

T2: e3, in3, out3, f3

T3: e4, in4, out4, f4

…

execute ready
transactional
instructions

x

val

e1, in1, out1, f1

e5, in5, out5, f5

z

val

e3, in3, out3, f3

e4, in4, out4, f4

y

Working
Processes

val

e2, in2, out2, f2

SemanticTM

Figure 6.1: Main Components of SemanticTM. Extraction of Transactional Instructions
and Their Placement Into di-lists

statement. The instructions of a transaction are read, write, and cond instructions. We

call the set of instructions in the body of a control flow statement a block; so each cond

instruction is associated with a block.

6.2.1 Dependencies

If the execution of an instruction e1 requires the result of the execution of another instruction

e2, then there is a dependency between e1 and e2. This dependency is an input dependency

for e1 and an output dependency for e2. If e1 requires the value read or written by e2, then

this dependency is called data dependency. Any other dependency that either leads to or

originates from a cond instruction is called control dependency.

We remark that SemanticTM will place five instructions for T1 (Figure 6.2) in the

di-lists: e1 which is a write to x (line 1), a read e2 from x and a write e3 to x (line

2), a read e4 from x and a write e5 to y for line 3. There is an output data dependency

Dependencies Page 109 of 187

Main Ideas

1 x := 3
2 x++
3 y := x

T1

4 z := 2
5 y := z
6 x := y

T2

7 x := 1
8 if (. . .) then
9 x := x+ 2
10 else
11 x := x+ 4
12 y := x

T3

13 i := 1
14 while (i ≤ 3) cnt ∈ {0, 1, 2, 3}
15 j := 1
16 while (j ≤ 5) cnt ∈ {0, 1, . . . , 15}
17 j := j + 1 startinneriter ∈ {0, 5, 10}
18 i := i+ 1

T4

Figure 6.2: Transactions

from ei to ei+1, 1 ≤ i < 5. Notice that in order to execute an assignment between two data

items (e.g. line 3, where the assignment on y depends on the value of x), SemanticTM
places a read instruction (e4 on x) before the corresponding write instruction (e5 on

y). By doing this, SemanticTM avoids maintaining data dependencies between write

instructions (e.g. between e3 and e5). Also, for each control flow statement, SemanticTM
places (to the appropriate di-lists) one read instruction for each of the data items used

by it, before the corresponding cond instruction. By doing this, SemanticTM avoids to

maintain data dependencies between the cond of this statement and each (if any) of the

write instructions that writes some data item used by it.

Moreover, SemanticTM does not maintain input data dependencies for any read

instruction e from a data item x, since all writes to x on which e depends have been

placed in the di-list of x before e and thus the read can get the value from the metadata

of x (by the way the algorithm works, this value will be consistent). Thus, SemanticTM
records input data dependencies only for write and cond instructions (that originate from

read instructions). For each such dependency, additional metadata is maintained, including

the value of the data item, read by the corresponding read instruction, which is also called

value of the dependency. We remark that each read (write or cond) instruction may

have several output (input) data dependencies.

For each cond instruction, SemanticTM maintains an output control dependency

from cond to each instruction e of the block associated with it. As an example, there is one

output control dependency for instruction 8 (to 9) and another one for instruction 10 (to 11).

We assume that for each write instruction to a data item x or for each cond instruc-

tion e, a function f can be applied to the values of the input dependencies of e in order either

to calculate the new value of x or to evaluate whether the condition is true or false, re-

spectively. We remark that f should be applied after all the input data dependencies of e

Page 110 of 187 Dependencies

Main Ideas

have been resolved1. Table 6.1 provides a brief description of all possible dependencies for

each instruction. The state of an instruction is waiting, if at least one of its input depen-

dencies has not been resolved, otherwise, it is ready. An instruction that has an unresolved

input control dependency is inactive; otherwise, it is active. Notice that a ready instruction

is also active.

Recall that by using compiler support, the dependencies between the instructions of a

transaction are known before the beginning of its execution. Each instruction, together with

its dependencies (and function), is placed in the appropriate di-list, as a single entry.

6.2.2 Conditionals

Each conditional statement (if, else if, else) is associated with a cond instruction

and a block. Therefore, for if . . .then . . .else statements, the two conds (for the if

and the else statement) and their blocks’ transactional instructions will be placed in the

appropriate di-lists. Then, at runtime, one of the two cond instructions will be evaluated

as false so its block’s instructions will be invalidated by the working thread that executes

this cond. A cond instruction can be inserted in the di-list of any data item; in the current

version of SemanticTM it is placed in the di-list of the first instruction of its block.

Notice that a transactional instruction of some block, may have outside-block depen-

dencies which come from or lead to instructions that does not belong to the block. We

remark that in SemanticTM outside-block dependencies are resolved directly (i.e. no extra

metadata are maintained for them) because of the way that the transactional instructions are

placed in the di-lists. For instance, there are input outside-block dependencies from the in-

struction of line 7 to the instructions of the conds’ blocks (lines 9 and 11). However, recall

that in SemanticTM each of the lines 9 and 11 is replaced by a read from x and a write

instruction to x, and no input data dependencies are maintained for reads. Moreover, with

similar reasoning, the output outside-block dependencies from lines 9 and 11 to line 12 are

also resolved directly.

1Computation on local variables can be included in the code of function f . For this reason, such a function
may also be maintained for read instructions.

Conditionals Page 111 of 187

Main Ideas

Transactional
Instruction

Dependencies
Input Output

Data Dep Control Dep Data Dep Control Dep

e = read(x)

In SemanticTM,
e has no input
data dependen-
cies

if e participates in
some block, it has
an input control
dependency orig-
inating from the
block’s cond

e forwards the
value it reads
to write and
cond instruc-
tions that depend
on it

if e participates
in some loop’s
block, an output
control depen-
dency originates
from e to its
block’s cond

e = write(x)

e may have input
data dependen-
cies originating
from reads

if e participates in
some block, it has
an input control
dependency orig-
inating from the
block’s cond

In SemanticTM,
e has no output
data dependen-
cies

if e participates
in some loop’s
block, an output
control depen-
dency originates
from e to its
block’s cond

e = cond

e may have input
data dependen-
cies originating
from reads

if e participates in
some block, it has
an input control
dependency orig-
inating from the
block’s cond;
if e is a cond of
a loop cond, it
has an input con-
trol dependency
originating from
each of its block’s
instructions

e has output
control depen-
dencies to each
of its block’s
instructions

Table 6.1: Data Dependencies Between Transactional Instructions

6.2.3 Loops

Let e be a transactional instruction that is included in a loop block; let c be the associated

cond. SemanticTM places c and each instruction of the block in the appropriate di-lists

only once independently of the number of times that the loop will be executed since this

number may be known only at run time.

Additionally to the control dependency from c to e, an input control dependency of c

from e is maintained. By doing this, c can initiate a new iteration only after its input control

dependencies originating from its block instructions have been resolved, i.e. after all these

instructions have been executed for the current iteration. Recall that these instructions can

Page 112 of 187 Loops

Main Ideas

be executed only if their input control dependencies (from c) have been resolved. So, loop

iterations are initiated one after the other, i.e. a new loop iteration is initiated only after the

previous loop iteration has been completed.

In order to perform c (and e) multiple times, an iteration counter cntc is associated

with c. This counter stores the current iteration number of the loop’s execution. Moreover,

the input control dependency of e is implemented with a counter cnte; the same counter is

also used to implement the input control dependency of c from e. If cnte = cntc − 1, then

the input control dependency of e is resolved for the (cntc)th iteration, otherwise, it is not;

if cnte = cntc, then e has been performed and the input control dependency of c from e is

resolved, for the (cntc)th iteration. Notice that cnte can be either equal to or smaller by one

from cntc. This is so since loop iterations are initiated one after the other.

To ensure correctness, an iteration number is associated with each of the input data

dependencies of e (or c). When the iteration number of an input data dependency inDep of

e (or c) is smaller than cntc, it follows that inDep is unresolved for the current iteration; if

all input data dependencies of e have their iteration number fields equal to cntc, then all data

dependencies of e have been resolved and e can be executed. Once e is executed, it resolves

the control dependency to c by writing cntc to cnte; recall that the same action marks e as

performed for the current iteration. When all dependencies of c have been resolved c can be

executed. If it decides to initiate the next iteration (i.e. its condition is evaluated as true)

it increments cntc by one to resolve its output control dependencies for the next iteration.

We remark that the execution of e (and c) in some iteration may depend on the execu-

tion of some transactional instructions of the previous iteration; we call such a dependency

across-iteration. Notice that SemanticTM does not maintain any of the across-iteration de-

pendencies of e. Moreover, additionally to the instructions of the block of c, SemanticTM
subsequently places (to the appropriate di-lists) one read instruction for each of the data

items used by c. By doing this, SemanticTM avoids to maintain across iteration data de-

pendencies between c and any of the write instructions (if any) that writes some data item

used by c. So, c may only have input across-iteration dependencies from read instructions.

Notice that although (in SemanticTM) e does not have data dependencies with in-

structions outside the block of c, c may have input data dependencies from instructions both

outside its block and inside its block; we call them outer and inner data dependencies, re-

spectively. SemanticTM differentiates them so that inner data dependencies are not taken

into consideration when c decides the initiation of the first loop iteration. Notice that, when

Loops Page 113 of 187

Main Ideas

the input control dependencies of c are resolved for some iteration, then its inner data de-

pendencies are also resolved for the same iteration; so, c uses them to decide the initiation

of the next loop iteration. Also notice that the inner data dependencies of c are the same

with its across-iteration dependencies. So, c takes into consideration only its inner data

dependencies, for iterations other than the first one.

Consider a di-list that contains two instructions e1 and e2, in this order, which are

included in the same loop block, and assume that e1 has been executed for the first loop

iteration. Notice that e1 is currently inactive until the next loop iteration is initiated. Also,

recall that the next loop iteration is initiated by this loop’s cond only after e2 has also been

executed for the first loop iteration. Since e1 precedes e2 in the di-list, the working processes

may have to skip inactive instructions and search which element of the corresponding di-list

is ready (instead of just checking whether the first element of the list is ready). Specifically,

the di-list should be searched until an instruction is found that is either inactive or not ready,

or does not participate in the same loop, or until the end of the list if such an instruction

does not exist. In this way, the loop instructions are executed as if the loop was unfolded

and all its instructions were executed in FIFO order. We remark that the loop in which an

instruction participates can be determined using its input control dependency.

6.2.4 Nesting of Conditional Statements

Let c2 be a cond that participates in the block of another cond c1 (so the block of c2 is

nested in that of c1). In SemanticTM, the output control dependencies of c1 include only

c2 and not any instruction in the block of c2; respectively, each instruction of the block of c2
has an output control dependency with c1.

We consider first the case where c1 and c2 are conditionals. During the execution

of c1 by some process p, p will resolve c1’s output control dependency to c2. If c2 is not

invalidated, then c2 and the instruction of its block are executed; otherwise, c2 and the

instructions of its block are invalidated.

We consider now the case where c1 and c2 are loops. Each time c1 initiates a new

iteration, c2 is executed. During its execution, c2 may execute several iterations of its block

code. When its execution completes for some iteration of c1, c2 resolves its output control

dependency to c1. Recall that from this point on and until all the input control dependencies

of c2 from its block’s instructions (including c1) are resolved once more, c2 is inactive.

Page 114 of 187 Nesting of Conditional Statements

Main Ideas

Recall that c2 has both inner and outer data dependencies. We remark that, in each

iteration of c1, c2’s outer data dependencies should be resolved before c2 is executed for the

first time for the current iteration of c1. Notice that, a cond that does not participate in some

loop is executed for the first time when its iteration counter equals 0. This is true for c2, for

the first iteration of c1, but probably in next iterations of c1 may have a value greater than 0.

To figure out the first time that c2 is executed for the current iteration of c1, a start inner

iteration number startinneriterc2 is associated with c2. Before the input control depen-

dency of c2 is resolved, startinneriterc2 is updated (by some working process executing

c1) so that startinneriterc2 = cntc2 . For example, consider T4 (Figure 6.2), with c1 and

c2 be the cond instructions of lines 14 and 16, respectively. Notice that startinneriterc2
takes values {⊥, 0, 5, 10} (in this order) where ⊥ is its initial value and the rest are the val-

ues of cntc2 before c2’s loop starts in each iteration of c1’s loop, i.e. (i− 1) ∗ 5, 1 ≤ i ≤ 3,

for the ith iteration of c1’s loop.

The case where c2 is a conditional’s cond and c1 is a loop’s cond is similar with

the previous one, with the difference that c2 is executed only once each time c1 initiates

another (outer) loop iteration. Finally, the case where c2 is a loop’s cond and c1 is a

conditional’s cond is again similar with the above one (where c1 and c2 are both loops),

with the difference that c2’s input control dependency is resolved at most once; specifically,

if c1 is evaluated as true.

6.2.5 Worker Processes

Since working processes choose the di-list to work on uniformly at random, it may hap-

pen that several working processes may (concurrently) execute the same instruction. To

synchronize workers that execute the same instructions, the following synchronization tech-

niques are employed. For each transactional instruction e, a status field (with initial value

SIMULATING) is maintained in its entry, indicating that e has not yet been performed. As

soon as a working process completes the execution of e, it changes e’s status to DONE.

For each data item x, SemanticTM maintains a single CAS object which stores the

value of x together with a version number. This is done in order to atomically update x.

Recall that several instances of a write instruction e to some data item xwhich is contained

in a loop block are executed (one for each iteration). The working processes executing the

same instance of e should use the same old value for x, so that x is updated consistently;

also, they should calculate the same new value for x for the current iteration. To ensure

Worker Processes Page 115 of 187

Pseudocode Description

this, SemanticTM maintains a CAS object in the record of e which stores the old value of

the data item to be updated by e and an iteration number; moreover, the new value of x, is

calculated by all working processes using the values provided in input data dependencies of

e for the current iteration.

In order to consistently resolve a data dependency, the value of this dependency is

stored into a CAS object. Recall that an instruction participating in some loop has an iteration

number associated with each of its data dependencies. In this case, this number is stored

together with the value of the corresponding data dependency into a CAS object.

We consider now the case where a cond c2 is nested under a cond c1 and at least one

of them is a loop’s cond. In order the working processes executing c1 to correctly update

the startinneriterc2 field of c2, this field is maintained into a CAS object. A worker process

that wants to update this field for some iteration j > 0 of c1, it first reads its current value,

then it validates that the jth iteration of c1 has not yet been initiated, and the updates this

field (using CAS). By doing this, SemanticTM ensures that startinneriterc2 is updated

exactly once for each iteration of c1.

6.3 Pseudocode Description

6.3.1 Type Definitions

The type definitions of SemanticTM are presented in Figure 6.3. For each data item x,

SemanticTM stores a record of type direc which consists of two fields: the value val of

x and its version ver (initially 0); these direcs are maintained in some array Ditem of

size M , where M is the total number of data items. Also, SemanticTM associates with

the ith data item xi a di-list List[i] which maintains the instructions to be applied on xi;

this list is implemented as a singly-linked list and each of its elements is of type entry.

Specifically, List[i] is a pointer to the first element of the di-list of xi.

For each instruction e, SemanticTM stores a record called entry. The first field of

entry, called ins, describes e and depending on the type (iType) of ins, it contains the

following fields:

1. In case iType = read: outDD, a CAS object containing a record of type direc,

implementing the output dependency of e. The ver field of this direc is initialized

Page 116 of 187

Pseudocode Description

1 type direc /* used to avoid ABA when updating val or input data dependencies */

2 val: value
3 ver : unsigned int

4 type oldvaluerec /* stores the old value of a data item */

5 oldv: direc
6 inum : unsigned int

7 type entry
8 ins: {

〈iType : read,
outDD : direc〉, /* implements the output data dependencies of ins */

〈iType : write,
inDD[] : ptr to direc, /* implements the input data dependencies of ins */

f : function,
oldvrec : oldvaluerec〉,
〈iType : cond,

inDD[] : ptr to direc, /* implements the outer input data dependencies of ins */

inDDinner[] : ptr to direc, /* implements the inner input data dependencies of ins */

f : function,
outCD[] : ptr to entry, /* together with cnt, implements the outer output control dependencies of ins */

isloop : boolean,
cnt : unsigned int, /* together with outCD, implements the outer output control dependencies of ins */

startinneriter : unsigned int,
inCD[] : unsigned int〉 /* implements the inner input control dependencies of ins; used to ensure that a new

iteration starts after all its block instructions have been executed for the current iteration */

} /* end of ins */

9 status : {SIMULATING, DONE}
10 inloop : boolean
11 pcond : ptr to entry
12 icond : unsigned int /* index in the array of pcond→ inCD where ins should write (if needed) */

13 next : ptr to entry

/* Shared variables */

14 shared Ditem[M]: direc /* metadata for each data item */

15 shared List[M]: ptr to entry /* di-list of each data item */

/* Persistent local variables for process p */

16 innerExecutingCondp : ptr to entry /* maintain required information when executing

17 innerExecutingCondIterp : unsigned int instructions participating in a loop */

18 local type iterations /* used to locally maintain inner and outer iterations of an instruction */

19 in : unsigned int
20 out : unsigned int

Figure 6.3: Type Definitions of SemanticTM

Type Definitions Page 117 of 187

Pseudocode Description

with the value 0; this initial value is the same with the initial value of the iteration

counter of the cond instruction of the block in which e participates (if any).

2. In case iType = write that is applied on some data item x: (a) inDD, an array of

pointers to records of type direc. For each instruction eptr from which e depends,

a pointer is maintained that points to eptr → outDD, from where e should read its

input value. (b) f , a function that can be applied to the values read through inDD

when e becomes ready, in order to calculate the new value of x. (c) oldvrec, a CAS

object that contains an oldvaluerec record. It is used to maintain the old value of

x. If e participates in a loop block, this value may be different for each loop iteration.

3. In case iType = cond: (a) inDD, an array that contains similar information for

each of the (outer, in case e is a loop’s cond) input data dependencies of e as for

writes above. (b) inDDinner, an array that contains similar information for each

of the inner input data dependencies of e as for inDD; it is used only when e is a

loop’s cond. (c) f , a function that can be applied to the values maintained in inDD

(or inDDinner, in case e is a loop’s cond that decides the initiation of a loop

iteration other than the first one) when e becomes ready, in order to evaluate whether

cond is true or false. (d) outCD, an array that contains the output control

dependencies of e; specifically, it contains a pointer to the entry record of each

instruction participating in e’s block. (e) isloop, a boolean that is true when e is a

loop’s cond; otherwise it is false. (f) cnt, a CAS object that contains an unsigned

integer with initial value 0. It is used to determine its block’s iteration and resolve

e’s output control dependencies. Each time the next iteration k ≥ 1 is ready to start

its execution, it is updated from k− 1 to k and e’s control dependencies are resolved

for the kth iteration. (g) startinneriter, a CAS object that contains an unsigned

integer with initial value 0. It is used when e participates in a block (i.e. when its

block is nested under some other block). It maintains the value of cnt each time

the input control dependency of e is resolved. (i) inCD, an array that maintains the

input control dependencies of e. If e is a loop’s cond, inCD contains one element

for each instruction included in cond’s loop block; otherwise, it is not used. Recall

that each input control dependency is implemented as a counter; so each element of

inCD is a CAS object containing an unsigned integer which is initialized to 0.

In addition to ins, entry contains also the following fields: (a) status, a single bit

that describes the status of an instruction e. It is initially SIMULATING and changes to

DONE after the execution of e has been completed; (b) inloop, a boolean that is true if

Page 118 of 187 Type Definitions

Pseudocode Description

e participates in some loop’s block; otherwise, it is false; (c) pCond, a pointer which

is either null (if e does not participate in some block), or points to the entry record of

the unique cond instruction from which e has an input control dependency (otherwise); (d)

iCond, if e participates to some loop’s block, then it is an index in the array pCond →
inCD where e should write, to indicate that it has been executed for each specific iteration;

(e) next, a pointer which is either null, or points to the next entry of the di-list containing

e.

Recall that in order to execute several transactional instructions of a single loop

which are contained in the same di-list, inactive instructions of this loop may have to be

skipped. To implement this, locally in each process p, SemanticTM maintains a pointer

innerExecutingCondp to some entry of a cond instruction that is currently executing

(i.e. its output control dependency to its parent cond is not resolved) and the current inner

iteration innerExecutingCondIterp of this block’s cond.

The first time an instruction e has to be skipped and since e may be nested under other

conds, the parent conds of e are visited until a cond that is currently executing is found,

as follows. SemanticTM ensures that each new cond c visited participates in the same loop

and the same iteration with e by checking the outer iteration of c against the inner iteration

of c’s parent cond, and then (if needed) performs the same check one level up between c’s

parent cond and c’s grandparent cond, levelling up one level at a time. When a cond

that is currently executing is found, SemanticTM maintains this cond and its inner current

iteration into innerExecutingCondp and innerExecutingCondIterp, respectively.

Then, whenever an instruction e′ is reached that either has to be skipped or it is ac-

tive, then the above procedure is repeated for e′ and the parent cond cine′ of e′ that is

currently executing is found. Since e′ may be nested under e, it may be that cine′ 6=
innerExecutingCondp. In this case, SemanticTM validates that cine′ participates to

the loop of innerExecutingCondp and to iteration innerExecutingCondIterp, by re-

peating the above procedure. In case e′ has to be skipped, innerExecutingCondp and

innerExecutingCondIterp are updated with cine′ and its current iteration, respectively.

By doing this, SemanticTM is able to ensure that the first active instruction found in some

subsequent point (after e) of the corresponding di-list participates to the same block and it

is executed for the same iteration.

Finally, SemanticTM’s pseudocode uses local structure iterations to maintain

the inner (if any) and outer iterations of some instruction.

Type Definitions Page 119 of 187

Pseudocode Description

21 APPLYINSTRUCTIONS()
22 S = {1, . . . ,M} /* S is initialized with the indexes of all di-lists */

23 while (S 6= ∅) do /* as long as there is work */

24 i := randomly choose an integer from S
25 while (List[i] 6= null) do
26 〈eptr, iters〉 := GETACTIVEINS(List[i]) /* find an active instruction */

27 if (eptr = null) then break /* if no such instruction exists, choose some other di-list */

28 〈bool, arrayDD〉 := CHECKDD(eptr, iters) /* check the input data dependencies of eptr */

29 if (bool = false) then break /* if they are not resolved, eptr is not ready */

30 EXECUTEINS(eptr, iters,&Ditem[i], arrayDD) /* execute eptr */

31 if (List[i]→ status = DONE) then List[i] := List[i]→ next /* update di-list */

32 if (List[i] = null) then S = S − {i} /* List[i] is empty; remove index i */

Figure 6.4: The Code of APPLYINSTRUCTIONS of SemanticTM

6.3.2 The Code of the SemanticTM Algorithm

SemanticTM’s pseudocode is presented in Figures 6.4 to 6.8.

APPLYINSTRUCTIONS. APPLYINSTRUCTIONS repeatedly chooses a data item x (line 24)

and executes consecutive ready instructions contained in its di-list, in order, starting from the

first. More specifically, APPLYINSTRUCTIONS chooses the index of a data item maintained

in the Ditem array and the index of its corresponding di-list maintained in the List array,

from a set S that is initialized to contain all these indexes (line 22).

Recall that, if some instruction e in x’s di-list participates in a loop’s block and has

been performed for the current iteration, other instructions in later positions of the list may

be ready to execute for this iteration before e becomes ready again. Therefore, APPLYIN-

STRUCTIONS calls function GETACTIVEINS to find the first ready instruction in x’s di-list.

If GETACTIVEINS returns 〈null,−〉, no instruction in this di-list is ready and AP-

PLYINSTRUCTIONS selects some other di-list (line 27). Otherwise, 〈eptr, iters〉 is returned

by GETACTIVEINS, where eptr is active for iterations iters. So, GETACTIVEINS contin-

ues by checking if eptr’s data dependencies are resolved for the current iteration, by call-

ing CHECKDD (line 28). If this is true, CHECKDD returns true together with the array

containing the (read) transactional instruction from where the values of the input data de-

pendencies of eptr should be read (that is either eptr → inDD or eptr → inDDinner);

otherwise, it returns false. In the former case, GETACTIVEINS performs the ready in-

struction eptr, using function EXECUTEINS (line 30). In the latter case, APPLYINSTRUC-

Page 120 of 187 The Code of the SemanticTM Algorithm

Pseudocode Description

33 〈ptr to entry,iterations〉 GETACTIVEINS (pstart : ptr to entry)
34 innerExecutingCondp := null
35 eptr := pstart
36 while (eptr 6= null) do
37 iters := READITERATIONS(eptr) /* read the inner (if any) and outer iterations */

/* if at least one inactive loop instruction has been skipped, validate that eptr participates in this loop, and update inner most

executing cond of this loop and its current iteration (if needed); if validation fails then no active instruction has been found */

38 if (innerExecutingCondp 6= null and
PARTICIPATESINLOOP(eptr, innerExecutingCondp,

innerExecutingCondIterp) = false) then
39 return 〈null,⊥〉

/* If the input control dependency of eptr is unresolved

40 if (iters.out = 0) then return 〈null,⊥〉 for its 1st iteration, no active instruction is found */

41 if (eptr → inloop = true) then /* if eptr participates in some loop */

/* if no instruction has been skipped, find the inner most executing cond of this loop and its current iteration, and

validate that eptr and its parent conds are executed for this iteration of the loop; if not restart from pstart */

42 if (innerExecutingCondp = null AND
FINDINNEREXECUTINGCOND(eptr, iters.out) = false) then

43 eptr := pstart
44 continue

/* if the input control dependency of eptr from its parent cond has been resolved and eptr

either is not a cond, or it is a cond and the input control dependencies from the instructions

participating in its block are resolved, then eptr is an active instruction */

45 if ((iters.out = eptr → pcond→ ins.inCD[eptr → icond] + 1) and
(eptr → ins.iType 6= cond or CHECKINNERCD(eptr, iters.in) = true) then

46 return 〈eptr, iters〉

/* otherwise (eptr does not participate in some loop and the input control

dependency of eptr’s parent, if any, is resolved), if eptr is a cond */

47 else if (eptr → ins.iType = cond)
/* if eptr is not a loop’s cond, then it is active */

48 if (eptr → ins.isLoop = false) then return 〈eptr, iters〉

/* otherwise (eptr is a loop’s cond), if the input control dependencies

of eptr from its block’s instructions are resolved, then eptr is active */

49 else if (CHECKINNERCD(eptr, iters.in) = true) then return 〈eptr, iters〉

/* otherwise (eptr is an inactive loop’s cond) and since eptr should be skipped, it is added

it is maintained as the cond of the currently executing loop, together with its inner iteration */

50 innerExecutingCondp := eptr
51 innerExecutingCondIterp := iters.in

/* otherwise (eptr does not participate in some loop, the input control dependency

52 else return 〈eptr, iters〉 of eptr’s parent, if any, is resolved, and eptr is either a read or a write), return eptr */

/* eptr is an inactive loop instruction; other ready instructions of the same loop

53 eptr := eptr → next block in later positions of this di-list may have to be executed; so, skip eptr */

54 return 〈null,⊥〉

Figure 6.5: The Code of GETACTIVEINS of SemanticTM

The Code of the SemanticTM Algorithm Page 121 of 187

Pseudocode Description

55 iterations READITERATIONS(eptr : ptr to entry)
56 if (eptr → ins.itype = cond) then /* if eptr is a cond */

/* if eptr does not participate in some block→ return inner iteration and 1 */

57 if (eptr → pcond = null) then return 〈eptr → ins.cnt, 1〉
58 return 〈eptr → ins.cnt, eptr → pcond→ ins.cnt〉 /* otherwise, return both inner and outer iteration */

/* if eptr participates in some block, then return its (outer) iteration */

59 else if (eptr → pcond 6= null) then return 〈0, eptr → pcond→ ins.cnt〉
60 else return 〈0, 1〉 /* otherwise, return that eptr is executed for its 1st (and single) iteration */

61 boolean PARTICIPATESINLOOP(eptr : ptr to entry, loop : ptr to entry,
loopIter : unsigned int)

62 condptr := eptr → pcond /* condptr is the parent cond of eptr */

63 while (condptr 6= null AND condptr 6= loop) then
64 conditers := READITERATIONS(condptr)

/* if condptr participates in some loop, has not yet been performed for its current outer iteration, and innerExecutingCondp

has not yet been updated, then maintain condptr as the cond of the currently executing block of the loop */

65 if (condptr → pcond 6= null AND condptr → inloop = true AND
conditers.out = condptr → pcond→ ins.inCD[condptr → icond] + 1 AND
innerExecutingCondp = loop) then

66 innerExecutingCondp := condptr
67 innerExecutingCondIterp := conditers.in

68 condptr := condptr → pcond

69 if (condptr = null OR condptr → ins.cnt 6= loopIter) then return false
70 return true

71 boolean FINDINNEREXECUTINGCOND(eptr : ptr to entry, iter : unsigned int)
72 outIter := iter /* remember the outer iteration of eptr */

73 condptr := eptr → pcond /* condptr is the parent cond of eptr */

74 while (true) do
75 conditers := READITERATIONS(condptr)

/* validate that outIter is the current loop iteration of condptr */

76 if (outIter 6= conditers.in) then return false
77 /* if condptr participates in some loop and has not yet been performed for its current outer

iteration, maintain it as the cond of the currently executing block of the loop and return true */

78 if (condptr → pcond = null OR condptr → inloop = false OR
conditers.out = condptr → pcond→ ins.inCD[condptr → icond] + 1) then

79 innerExecutingCondp := condptr
80 innerExecutingCondIterp := outIter
81 return true

82 outIter := conditers.out /* remember the outer iteration of condptr */

83 condptr := condptr → pcond /* advance to the parent cond of condptr */

84 boolean CHECKINNERCD(eptr : ptr to entry, iter : unsigned int)
/* eptr is a cond instruction; check whether its input control dependencies have been resolved for iter */

85 for each element el ∈ eptr → ins.inCD do
86 if (el 6= iter) then return (false) /* if not, return false */

87 return (true) /* otherwise, return true */

Figure 6.6: The Code of PARTICIPATESINLOOP, READITERATIONS, UPDATELOOP-
CONDS, and CHECKINNERCD of SemanticTM

Page 122 of 187 The Code of the SemanticTM Algorithm

Pseudocode Description

88 〈boolean, arrayDD[] : entry〉 CHECKDD(eptr : ptr to entry, iters : iterations)
/* if eptr is a read instruction, then it has no input data dependencies; so, return true */

89 if (eptr → itype = read) then return 〈true,⊥〉

/* if eptr is a write, or a cond that has not been executed at least once for iters.out */

90 else if (eptr → ins.iType = write OR eptr → ins.startinneriter = iters.in) then
/* it is checked whether each of eptr’s input data dependencies is resolved for iteration iters.out */

91 for each element d ∈ eptr → ins.inDD with index j do
92 tmp :=*d
93 if (tmp.ver 6= iters.out) then return 〈false,⊥〉 /* if this is not true, false is returned */

94 return 〈true, eptr → ins.inDD〉 /* if this is true for all the dependencies of eptr, true is returned */

/* eptr is an active cond that has been executed at least once for iters.out, so it is also ready */

95 else return 〈true, eptr → ins.inDDinner〉

96 EXECUTEINS(eptr : ptr to entry, iters : iterations, pdi : ptr to direc,
arrayDD : entry)

97 if (eptr → ins.iType = cond) then /* eptr is a cond */

/* if eptr is an if statement in some loop and has been initiated for the current loop iteration, then complete it for the current (outer) iteration */

98 if (eptr → ins.isloop = false AND eptr → inloop = true AND
iters = 〈eptr → ins.startinneriter + 1, eptr → pcond→ ins.cnt〉) then

99 decision := false
100 else
101 values[1..k] := {arrayDD[1]→ val, . . . , arrayDD[k]→ val}
102 decision := eptr → ins.f(values) /* otherwise, evaluate its condition */

103 if (decision = true) then /* if condition is evaluated as true, then its dependent */

/* if eptr either handles a loop or participates in some loop, then the conds participating in its block are initialized */

104 if (ins→ ins.isloop = true OR ins→ inloop = true) then
105 INITIALIZEDEPENDENTCONDS(eptr, iters.in+ 1)

/* its control deps are resolved for iteration iters.in + 1 */

106 CAS(eptr → ins.cnt, iters.in, iters.in+ 1)
/* if eptr neither participates in some loop nor handles some loop, mark it as completed */

107 if (eptr → inloop = false AND eptr → ins.isloop = false) then
eptr → status := DONE

/* if its condition is evaluated as false and eptr participates in

108 else if (eptr → inloop = true) then some loop, then its output control dependency is resolved */

109 CAS(eptr → pcond→ ins.inCD[eptr → icond], iters.out− 1, iters.out)

110 else /* otherwise, eptr does not participate in some loop and its condition is

111 RESOLVECDINVALID(eptr) evaluated as false, resolve its control dependencies so that its dependent

112 eptr → status := DONE instructions are marked as completed and mark it as completed */

113 else /* otherwise, eptr is not cond. if eptr is read, resolve its output data dependencies */

114 if (eptr → ins.iType = read) then RESOLVEDD(eptr, iters.out, pdi)
115 else /* otherwise eptr is a write, so calculate pdi’s new value and update it */

116 values[1..k] := {arrayDD[1]→ val, . . . , arrayDD[k]→ val}
117 newval := eptr → ins.f(values)
118 UPDATEDI(pdi, newval, eptr, iters.out)

119 if (eptr → inloop = true) then /* if eptr participates in some loop, resolve its output control dependency */

120 CAS(eptr → pcond→ ins.inCD[eptr → icond], iters.out− 1, iters.out)
121 else eptr → status := DONE /* otherwise, mark eptr as completed */

Figure 6.7: The Code of CHECKDD and EXECUTEINS of SemanticTM

The Code of the SemanticTM Algorithm Page 123 of 187

Pseudocode Description

122 UPDATEDI(pdi : ptr to direc, newval : value, eptr : ptr to entry,
cnt : unsigned int)

123 data := *pdi /* read the current value of pdi’s direc record and try to store it into oldvrec field of eptr */

124 CAS(eptr → ins.oldvrec, 〈eptr → ins.oldvrec.oldv, cnt− 1〉, 〈data, cnt〉)

125 〈oldv, inum〉 := eptr → ins.oldvrec /* read oldvrec field of eptr */

126 if (inum 6= cnt) then return /* if eptr has already been performed for iteration cnt, then return */

127 CAS(pdi, oldv, 〈newval, oldv.ver + 1〉) /* update pdi with newval and increment its version */

128 RESOLVEDD(eptr : ptr to entry, iter : unsigned int, pdi : ptr to direc)
129 val := pdi→ val /* read the value of the pdi’s val field */

/* read the current value of the val field of eptr’s output

130 curval := eptr → ins.outDD.val data dependency and update it with the val of pdi using

131 CAS(eptr → ins.outDD, 〈curval, iter − 1〉, 〈val, iter〉) this dependency’s current val and iteration iter */

132 INITIALIZEDEPENDENTCONDS(eptr : ptr to entry, newiter : unsigned int)
133 for each element d ∈ eptr → ins.outCD do /* for each dependant d of eptr */

134 if (d→ iType = cond) then /* if d is a cond */

135 curinnerIter := d→ ins.cnt /* read the current inner iteration of d */

136 tmpstartinneriter := d→ ins.startinneriter /* read d’s maintained inner block iter */

137 /* if the execution of d for outer iteration newiter has not started yet d’s, then

the maintained inner block iteration is updated with its current (inner) iteration */

138 if (eptr → pcond.ins.nct = newiter − 1 AND
tmpstartinneriter < curinnerIter) then

139 CAS(d→ ins.startinneriter, tmpstartinneriter, curinnerIter)

140 RESOLVECDINVALID(eptr : ptr to entry)
141 for each element d ∈ eptr → ins.outCD do /* for each dependant d of eptr, if d is a cond,

142 if (d→ iType = cond) then RESOLVECDINVALID(d) then mark d’s dependants as completed, and

143 d→ status := DONE mark d as completed */

Figure 6.8: The Code of UPDATEDI, RESOLVEDD, INITIALIZEDEPENDENTCONDS, and
RESOLVECDINVALID of SemanticTM

Page 124 of 187 The Code of the SemanticTM Algorithm

Pseudocode Description

TIONS selects some other di-list (line 29).

When the execution of e is completed (line 31), the head pointer of x’s di-list is up-

dated, so that it points to the next instruction (if any) after e in this di-list. If APPLYIN-

STRUCTIONS reaches the end of x’s di-list, then since all the instructions of this di-list have

been executed, the index of x is removed from S and APPLYINSTRUCTIONS selects some

other di-list (line 32).

CHECKDD. CHECKDD (lines 89 - 95) takes as a parameter a pointer eptr2 to some active

transactional instruction’s entry record and the iterations iters of eptr. If eptr is a read

instruction, then true is returned (line 89). If eptr is either a write instruction, or a

cond instruction that has not been executed at least once for its outer iteration (line 90),

then CHECKDD (lines 91 to 93) checks whether the iteration number of each input data

dependency of eptr matches its current outer iteration (line 93); if this is true, CHECKDD

returns true together with eptr → inDD (line 94), otherwise, it returns false (line

93). Otherwise, eptr is a cond instruction that has been executed at least once for its

outer iteration and since it is active, it follows that its data dependencies are resolved and

〈true, eptr → inDDinner〉 is returned (line 95).

GETACTIVEINS, PARTICIPATESINLOOP, READITERATIONS, UPDATELOOPCONDS, and

CHECKINNERCD. GETACTIVEINS takes as a parameter a transactional instruction pstart

of a di-list L and returns a pointer (eptr) to the topmost element of L that is active (if

any), as well as some information about its status, as described below; eptr is initial-

ized with pstart. To implement this, for each working process p, GETACTIVEINS uses

innerExecutingCondp (and innerExecutingCondIterp) which is initialized (line 34).

Initially, it determines the inner (if any) and outer iterations of eptr by calling REA-

DITERATIONS (line 37). READITERATIONS (lines 56 - 60) returns both inner and outer

iterations when eptr is a cond that participates in some block (line 58), it returns the inner

iteration and value 1 for its outer iteration when eptr is a cond that does not participate in

some block (line 57), it returns the (outer) iteration of eptr when it is a read or a write

that participates in some block (line 59), and it returns the 1st and single (outer) iteration

when eptr is a read or a write that does not participate in some block (line 60).

In case some inactive transactional instruction has been skipped (1st condition of

line 38) and either eptr does not participate in some loop, or participates in a loop dif-
2Notice that from this point on, we use eptr to refer both to the data item’s name and to the pointer to its

entry record.

The Code of the SemanticTM Algorithm Page 125 of 187

Pseudocode Description

ferent than the one starting with innerExecutingCondp, or in some iteration of this loop

other than innerExecutingCondIterp, then GETACTIVEINS returns 〈null,⊥〉, identi-

fying that no active instruction has been found in L (line 39). GETACTIVEINS validates

that eptr is executed for this loop and this iteration by calling PARTICIPATESINLOOP (lines

62 to 70), which traverses the parent conds of eptr until either innerExecutingCond or

null is found, and returns either true (line 70) or false (line 69), respectively. More-

over, PARTICIPATESINLOOP validates that the current iteration of the inner most executing

cond (innerExecutingCondp) has not changed (line 69); if this is not true, false is re-

tuned. Finally, PARTICIPATESINLOOP updates (if needed) the inner most executing cond

(innerExecutingCondp) of this loop (lines 65 - 67). If PARTICIPATESINLOOP returns

false, then GETACTIVEINS returns 〈null,⊥〉. Otherwise, GETACTIVEINS continues as

follows.

If the outer iteration of eptr is 0 (line 40), then its input control dependency has not

been resolved at least once, so eptr is inactive and GETACTIVEINS returns 〈null,⊥〉,
identifying that no active instruction has been found in L. Otherwise, GETACTIVEINS

continues as follows.

We consider first the case that eptr participates in some loop (line 41). If no instruc-

tion has been skipped, GETACTIVEINS finds the inner most executing cond of this loop

and its current iteration, and validates that eptr and its parent conds are executed for this

iteration of the loop, by calling FINDINNEREXECUTINGCOND (line 42). More specifi-

cally, FINDINNEREXECUTINGCOND (lines 72 to 83) traverses the parent conds of eptr

(lines 73, 74, and 83) and checks that they are executed for the same loop iteration (line

76); if not, false is returned. When a cond is reached that either does not participate

in some loop or it is not yet performed for its current outer iteration (line 78), FINDIN-

NEREXECUTINGCOND maintains it together with its iteration in innerExecutingCondp
and innerExecutingCondIterp (lines 79 - 80) as the cond and the iteration, respectively,

of the currently inner most executing block of the loop and returns true (line 81).

If FINDINNEREXECUTINGCOND returns false (line 42), then GETACTIVEINS

restarts with eptr equal to pstart. Otherwise, if FINDINNEREXECUTINGCOND returns

true, GETACTIVEINS checks whether the input control dependency of eptr is resolved

(1st condition of line 45) and, in case it is a cond the input control dependencies from

instructions participating in eptr’s block are resolved (3rd condition of line 45). If this is

true, then eptr is active and it is returned together with its iterations (line 46); otherwise,

eptr is skipped (line 53). Notice that GETACTIVEINS checks the input control dependen-

Page 126 of 187 The Code of the SemanticTM Algorithm

Pseudocode Description

cies of eptr from instructions participating in its block by calling CHECKINNERCD(line

45). CHECKINNERCD (lines 85 to 87) returns true if all input control dependencies of

eptr are resolved for the current iteration; otherwise, it returns false.

We consider now the case that eptr does not participates in some loop. Recall that

the input control dependency of eptr (if any) is resolved (line 40). If eptr is a cond (line

47) but not a loop cond (line 48), then it is active and it is returned. If eptr is a loop

cond, GETACTIVEINS checks whether the input control dependencies from instructions

participating in eptr’s block are resolved (line 49). If this is true, then eptr is active and it

is returned (line 49). Otherwise, since eptr has to be skipped, it is maintained as the cond

of the currently executing block of the loop (line 50), together with its current inner iteration

(line 51), and then eptr is skipped (line 53). Finally, if eptr is not a cond (line 52), then it

is active and it is returned.

EXECUTEINS, UPDATEDI, RESOLVEDD, INITIALIZEDEPENDENTCONDS, and RE-

SOLVECDINVALID. EXECUTEINS (lines 97 - 121) takes as parameters eptr, the iterations

of eptr, a pointer to the direc record of the data item on which eptr is applied (when

eptr → iType ∈ {read,write}), and an array arrayDD describing the transactional

instruction from where the values of the input data dependencies of eptr should be read.

We consider first the case where eptr is a cond. If eptr is a conditional (1st con-

dition of line 98) that participates in some loop (2nd condition of line 98), and has been

initiated for the current loop iteration (3rd condition of line 98), then EXECUTEINS assigns

false to the local variable decision, so that it completes the execution of eptr in the cur-

rent (outer) iteration by resolving its output control dependency (line 109). Otherwise, its

condition is evaluated (lines 101 - 102) and the result is stored in decision. If decision

is true (line 103) and eptr either handles a loop or participates in a loop (line 104), then

its dependent conds are initialized by calling INITIALIZEDEPENDENTCONDS (line 105)

with parameters eptr and the inner iteration of eptr incremented by one. Also, the output

control dependencies of eptr are resolved (line 106) and in case eptr neither participates in

some loop nor handles a loop it is marked as completed (line 107).

If decision is false and eptr participates in some loop (line 108), then its output

control dependency is resolved (line 109) and at the same time eptr is marked as inactive

(for the current outer iteration). Otherwise, eptr neither participates in nor is nested under

some loop, its condition is evaluated as false (line 110), and its control dependencies

are resolved using RESOLVECDINVALID (line 111), so that its block’s instructions and any

The Code of the SemanticTM Algorithm Page 127 of 187

Pseudocode Description

block’s instructions nested under it are marked as completed. Also, eptr is marked as com-

pleted (line 112). RESOLVECDINVALID (lines 141 - 143) marks as completed (line 143) all

the instruction participating in eptr’s block (line 141) and all the instructions participating

in any block nested under eptr’s block by iteratively calling RESOLVECDINVALID for any

cond instruction reached (line 142).

INITIALIZEDEPENDENTCONDS (lines 133 - 139) takes as parameters eptr and the

new iteration newiter to be initiated by eptr. If d participates in the block of e and is a

cond, the current inner iteration (line 135) of d, and the maintained inner start iteration

(line 136) of d are read. If the execution of d for iteration newiter has not yet started (first

condition of line 138) and the maintained inner start iteration of d is smaller than the current

inner iteration of d, then d’s maintained inner start iteration is updated using d’s current

inner iteration (line 139).

We now discuss the case where eptr is not a cond (line 113). If the type of eptr is

read (line 114), its output data dependencies are resolved for its (outer) iteration, by calling

function RESOLVEDD. RESOLVEDD (lines 129 - 131) reads the current data data of pdi

and updates the output dependency of eptr, using the old data of this dependency and the

specified iteration number.

If the type of eptr is a write on some pdi (line 115), then the new value newval of

pdi is calculated (lines 116 - 117) and then pdi is updated with newval, by calling func-

tion UPDATEDI (line 118). Specifically, UPDATEDI (lines 123 - 127) takes as parameters

di, newval, eptr, and cnt. It starts by trying to store the current value of x’s direc to-

gether with the current iteration (cnt) into eptr → ins.oldvrec (line 124). Then, it checks

whether eptr is already performed (line 126); if this is true, it returns. Otherwise, the direc

record of x is atomically (using CAS) updated (line 127) using eptr → ins.oldvrec.oldv

(as the first parameter of this CAS) and newval together with the stored version of di (that is

eptr → ins.oldvrec.oldv.ver) incremented by one (as the second parameter of this CAS).

Finally, if eptr participates in some loop (line 119) its output control dependency is

resolved (line 120); otherwise, its status is updated to DONE (line 121).

Page 128 of 187 The Code of the SemanticTM Algorithm

Proof of the SemanticTM algorithm

6.4 Proof of the SemanticTM algorithm

Recall that SemanticTM focuses on relatively simple transactions that access a known set

of data items, so the work of the scheduler can be performed statically at compile time.

More specifically, the dependencies of each transactional instruction (read, or write, or

cond) are statically known. Together with its dependencies, the instruction is placed into

the appropriate di-list (as an entry record) based on which data item it accesses. Moreover,

statically at compile time, the transactional instructions of each transaction are placed in the

di-lists before the transactional instructions of any subsequent transaction.

So, roughly speaking, in order to prove SemanticTM’s correctness it is enough to

prove that i) the transactional instructions of each di-list are executed by worker processes

in the order they are placed in the list, ii) each instruction e is executed only after its de-

pendencies have been resolved, iii) the dependencies of e are resolved exactly once for each

iteration in which it is performed, and iv) in each iteration of a block its transactional in-

structions are executed exactly once.

6.4.1 Definitions

Each transactional instruction e is associated with a unique entry record; the status of e

is the value of field status in this record, which is initially SIMULATING. As long as the

status of e is SIMULATING, we say that e is not finished. If its status becomes DONE, we

say that e is finished. Throughout this proof we abuse notation and we use the same notation

to refer both to the name of some transactional instruction and to its entry record.

Recall that each cond instruction is associated with a block of transactional instruc-

tions. Consider any transactional instruction e. If e.pcond = null, we say that e participates

in the main block. If e.pcond 6= null, we say that e participates in the block of e.pcond,

e.pcond is the parent and an ancestor of e, and e is a child and a descendant of e.pcond.

Notice that e may have several ancestor conds, e.g. in case e.pcond.pcond 6= null, then

e.pcond.pcond is an ancestor cond of e, as well. More specifically, if ac is an ancestor

cond of e and ac.pcond 6= null, then ac.pcond is an ancestor cond of e. Also, e is a

descendant of each of its ancestors. If e is a cond and e.ins.isloop = true, we say that e

handles a loop. If any of the ancestors of e handles a loop, we say that e participates in the

loop of that cond.

Page 129 of 187

Proof of the SemanticTM algorithm

Consider any write or cond instruction wc. Recall that when an outer (or inner)

data dependency exists between wc and a read instruction r that is input data depen-

dency for wc and output data dependency for r, then an entry of wc.inDD (or an entry

of wc.inDDinner, in case wc is a cond) points to the outDD field of r. 3. Consider any

cond instruction c. Recall that when an outer control dependency exists between c and a

transactional instruction e that is input control dependency for e and output control depen-

dency for c, then an entry of c.outCD points to e. Moreover, in this case, e.pcond = c and

if c handles a loop, then c and e also have an inner control dependency that is input control

dependency for c and output control dependency for e. Figure 6.9 presents an example of the

control dependencies maintained in SemanticTM. In case some transactional instruction e

participates in the main block, for simplicity, we assume that it has an (outer) input control

dependency (from the fictitious cond of the main block to e).

Observation 1. Consider a transactional instruction e and let c be either e.pcond, in case

e.pcond 6= null, or the fictitious cond of the main block, otherwise. Then, the following

hold:

1. e has an outer input control dependency originating from c,

2. if e participates in some loop, then it has an inner output control dependency leading

to c,

3. if e is a cond, let e′ be any of the transactional instructions participating in the

block of e, then

(a) e has an outer output control dependency leading to e′, and

(b) if e participates in some loop, then e has an inner input control dependency

originating from e′.

Each data item x is associated with a unique direc record and a unique di-list.

Throughout this proof we abuse notation and we use the same notation to refer both to the

name of some data item and to its direc record. Each time a working process p success-

fully executes the CAS instruction of line 127 for some data item xwith values 〈v, l〉, we say

that p updates the value and the version of x with v and l, respectively, or writes the value v

and version l to x. Recall that RESOLVEDD is only called by read instructions. Each time a

working process p successfully executes the CAS instruction of line 131 for some data item
3Notice that outDD points to the opposite direction of the data dependency’s direction. This is so, since

in SemanticTM, each write instruction “reads” the required values by accessing the direcs of the corre-
sponding read instructions, instead of having each read instruction “sending” the value read to its dependant
write instructions.

Page 130 of 187 Definitions

Proof of the SemanticTM algorithm

 write (i,1)

 c': loop cond (i≤3) cnt{0,1,2,3}

 e: write (j,1)

 c: loop cond (j≤5) cnt{0,1,...,15}

 tmpj = read(j)

 e': write(j, tmpj+1)

 tmpj = read(j)

 write(i, tmpi+1)

Example of instances of transactional instructions c and c' for their iterations:

c': <0,1> <1,1> <2,1> <3,1>
c : <0,1> <1,1> ... <5,1> <5,2> .. <10,2> <10,3> .. <15,3>

For c' : <0,1> <1,1> <2,1> are instances of inner iterations and <3,1> is for outer iteration of c'
For c : <0,1>.. <4,1> <5,2>.. <9,2> <10,3>.. <14,3> are instances of inner iterations
and <5,1> <10,2> <15,3> are for outer iterations of c

cond
(e.g. c)

outer control
dependencies

inner control
dependencies

inner input control dependency originating from each
instruction of its block (e.g. for c it originates from e')

inner output control dependency leading to its parent
cond (e.g. for c it leads to c')

outer input control dependency originating from its
parent cond (e.g. for c it originates from c')

transactional
instruction

outer output control dependency leading to each
instruction of its block (e.g. for c it leads to e')

not a cond
(e.g. e)

inner output control dependency leading to its parent
cond (e.g. for e it leads to c')

outer input control dependency originating from its
parent cond (e.g. for e it originates from c')

Figure 6.9: Control Dependencies in SemanticTM

Definitions Page 131 of 187

Proof of the SemanticTM algorithm

x with values 〈v, l〉, all instructions that have an input data dependency originating from e

can find the value read in outDD. Thus, once this CAS is executed, the value read becomes

“visible” to the other processes. For this reason, when this CAS is successfully executed we

say that p reads the value v for x.

6.4.2 Preliminaries

Consider any cond instruction c. The code (lines 26, 30, 37, 46, 48, 49, and 52) implies that

the second parameter iters of EXECUTEINS is returned by READITERATIONS (line 37) and

the code (lines 56 - 58) implies that iters.in = c.ins.cnt. Recall that c.ins.cnt is initialized

with the value 0. Moreover, notice that c.ins.cnt can only be updated with the CAS of line

106, which updates it from iters.in to iters.in+ 1.

Observation 2. The following hold for the ins.cnt field of a cond instruction:

1. it has the initial value 0,

2. it changes only on line 106, and

3. if it has the value l ≥ 0, it can only change to l + 1.

Fix any execution α of SemanticTM and consider a transactional instruction e. If e

participates in the main block, denote by αe the execution interval of α, that is defined as

follows. If e finishes in α, then αe starts with the initial configuration of α and ends with

the configuration following the completion of e. If e does not complete in α, then αe = α.

We say that e has a single outer iteration whose execution interval is αe.

If e is a cond instruction, let k be the larger integer assigned to e.ins.cnt during α.

We consider the execution intervals αie,in, 1 ≤ i ≤ k, which are defined as follows.

When the value i is written in e.ins.cnt, then αie,in starts with the configuration following

this assignment; also, if i > 1, αi−1e,in ends with the configuration preceding this assignment.

If e completes, then αke,in ends with the configuration following the completion of e. If e

does not complete, then αke,in is a suffix of α. We say that αie,in is the execution interval of

the ith inner iteration of e. Notice that when some working process p successfully executes

the CAS instruction of line 106 and updates e.ins.cnt to the value i, we say that p initiates

the ith inner iteration of e and e is completed for its ith inner iteration. If i > 1, we also say

that p completes the (i− 1)st inner iteration of e.

If e participates in the block of a cond instruction c, let k be the larger integer assigned

to c.ins.cnt during α. Then, let αie,out = αic,in, 1 ≤ i ≤ k. We say that αie,out is the

Page 132 of 187 Preliminaries

Proof of the SemanticTM algorithm

execution interval of the ith outer iteration of e. Notice that each inner or outer iteration is

associated with a unique number.

Consider a cond instruction c that either handles some loop or participates in some

loop. Notice that c has both inner and outer iterations (given that it initiates at least one

iteration of its loop), while any other cond, read, and write instruction has only outer

iteration. Moreover, the execution interval of each of the inner iterations of c is included in

(i.e. is a subsequence of) the execution interval of some outer iteration of c and the execution

intervals of several inner iterations of cmay be included in the execution interval of the same

outer iteration of c. Also notice that, the execution interval of each of the inner iterations

of c is also the execution interval of the outer iteration of each transactional instruction

participating in c’s block, and for each two instructions e1 and e2 participating in the block

of c, it holds that the number k of outer iterations of e1 is the same as that of e2 and, for each

i, 1 ≤ i ≤ k, the execution interval of the ith outer iteration of e1 is the same with the ith

outer iteration of e2.

We say that a working process p reaches a transactional instruction e for inner iteration

in (if any) and outer iteration out, or simply for iteration 〈in,out〉, when an instance of

READITERATIONS (line 37), executed during an instance bi of the body of the while

loop of line 36 with eptr = e, returns 〈in,out〉; after p reaches e for 〈in,out〉 and before bi

finishes, we say that p examines e for iteration 〈in,out〉. We say that a working process skips

e for iteration 〈in,out〉, if it executes line 53 while it examines e for 〈in,out〉. We say that

a working process skips e, if there exist iteration 〈in, out〉 such that the process skips e for

〈in, out〉. We say that a working process selects e for iteration 〈in,out〉, when 〈e,〈in,out〉〉
is returned by an instance of GETACTIVEINS (line 26), initiated by this process; We say that

a working process selects e, if there exist iteration 〈in, out〉 such that the process selects e

for 〈in, out〉; in this case, we also say that the corresponding instance of GETACTIVEINS

selects e. We say that a working process executes e for iteration 〈in,out〉, when it initiates

an instance of EXECUTEINS (line 30) with first parameter e and second parameter 〈in,out〉.
If e finishes while it is executed for outer iteration out, we suppose that e completes for out.

The code (lines 26, 30, 46, 48, 49, and 52) implies that p may execute a transactional

instruction e for iteration 〈in,out〉 only if p selects e for this iteration, which happens after

p reaches e for this iteration. The code (lines 30, 37, and 56 to 58) implies that EXE-

CUTEINS takes as second parameter the iters returned by READITERATIONS (line 37). If e

participates in the main block, the code of READITERATIONS (lines 57 and 60) implies that

iters.out = 1. Otherwise, the code of READITERATIONS (lines 58 and 59) implies that

Preliminaries Page 133 of 187

Proof of the SemanticTM algorithm

iters.out = e.pcond → ins.cnt. In this case, the code (lines 26, 27, 30, and 40) implies

that a working process may execute an instance of EXECUTEINS only if iters.out ≥ 1. So,

in both cases iters.out ≥ 1. Also, the inspection of the code of READITERATIONS and

Observation 2 imply the following.

Observation 3. Consider a transactional instruction e that is executed for iteration

〈in, out〉. Then, in ≥ 0 and out ≥ 1.

Recall that a working process p initiates the ith inner iteration of ewhen it successfully

executes the CAS instruction of line 106 and updates e.ins.cnt to the value i. Before p

initiates an inner iteration, it executes lines 98 to 102 to decide whether to initiate this

iteration, or not. So, when p executes either line 99 or line 102, while executing a cond

instruction c for inner iteration in, we say that p decides whether to initiate the (in + 1)st

inner iteration of c (in which case decision = true), or not (in which case decision =

false).

Consider any transactional instruction e that participates in some loop which is han-

dled by a cond instruction c. The code (lines 30, 37, and 56 - 58) implies that the sec-

ond parameter iters of EXECUTEINS is returned by READITERATIONS (line 37). Since

e.pcond = c 6= null, the code of READITERATIONS (lines 58 and 59) implies that

iters.out = e.pcond→ ins.cnt. Recall that c.ins.inCD[e.icond] is initialized with value

0. Moreover, notice that c.ins.inCD[e.icond] can be updated with the CAS of either line

109 or line 120, which updates it from iters.out − 1 to iters.out, while e is executed for

iteration iters. Observation 3 implies that iters.out ≥ 1. Then, Observation 2 implies the

following.

Observation 4. The following hold for each element of the ins.inCD array of a cond

instruction:

1. it has the initial value 0,

2. it changes either on line 109, or on line 120, and

3. if it has the value l ≥ 0, it can only change to l + 1.

Consider any cond instruction c which has an outer control dependency d with some

transactional instruction e, i.e. e is in the block of c. We say that d is resolved for the ith,

1 ≤ i ≤ k (where k is the larger integer assigned to c.ins.cnt during α), inner iteration of

c when the value i is written to c.ins.cnt. If c.ins.cnt < i, then d is unresolved for this

Page 134 of 187 Preliminaries

Proof of the SemanticTM algorithm

iteration. Recall that αic,in starts with the configuration following the update of c.ins.cnt

to i. So, each control dependency d from c to some transactional instruction e in c’s block

is resolved for the ith inner iteration of c, when αic,in starts. So, when a working process

initiates the ith inner iteration of c, it also resolves the outer output control dependencies of

c for this iteration.

Moreover, recall that, if c either handles or participates in some loop, then c also has

an inner control dependency d′ originating from e. If c.inCD[e.icond] = i, i ≥ 1, we

say that d′ is resolved for the ith inner iteration of c and e is completed for its ith (outer)

iteration; otherwise, d′ is unresolved and e is not completed, for this iteration. Observation

4 implies that any inner control dependency can be resolved at most once for each inner

iteration. So, when some working process p executing e, successfully executes either the

CAS of line 109 or the CAS of line 120, and updates c.inCD[e.icond] from i − 1 to i, we

say that p resolves the inner output control dependency of e during its ith outer iteration and

completes the execution of e for this iteration. Recall that αic,in = αie,out.

Assume now that c participates in some loop, i.e. it is in the block of a cond instruc-

tion c′. Then, if c is completed for the kth inner iteration of c′, we say that each instruction

e in c’s block is completed for the kth inner iteration of c′. Notice that c′ is an ancestor of e.

This definition can be recursively applied on each other ancestor of e that is completed for

some iteration.

We remark that, in the case that some transactional instruction e participates in the

main block, its (outer) input control dependency is trivially resolved at the initial configura-

tion.

Consider any read instruction r. The code (lines 30, 37, and 56 to 58) implies

that EXECUTEINS takes as second parameter the iters returned by READITERATIONS

(line 37). If e participates in the main block, the code of READITERATIONS (lines 57

and 60) implies that iters.out = 1; otherwise, the code (lines 58 and 59) implies that

iters.out = e.pcond → ins.cnt. Recall that r.ins.outDD.ver is initialized with value

0. Moreover, notice that r.ins.outDD.ver can only be updated with the CAS of line 131,

which updates it from iters.out − 1 to iters.out. This is so since RESOLVEDD is called

on line 114 of EXECUTEINS with iters.out as its second parameter. Observation 3 implies

that iters.out ≥ 1. So, Observation 2 implies the following.

Observation 5. The following hold for the ins.outDD.ver field of a read instruction:

1. it has the initial value 0,

Preliminaries Page 135 of 187

Proof of the SemanticTM algorithm

2. it changes only on line 131, and

3. if it has the value l ≥ 0, it can only change to l + 1.

Consider any write or cond instruction wc which has an input data dependency

from a read instruction r. We say that this dependency is resolved for the ith, i ≥ 1,

outer iteration of wc when r.outDD.ver = i; if r.outDD.ver < i, it is unresolved for this

iteration. Observation 5 implies that any data dependency can be resolved at most once for

each iteration. So, when some working process p successfully executes the CAS instruction

of line 131 and updates r.outDD.ver from i−1 to i, i ≥ 1, we say that p resolves the output

data dependencies of r for its ith (outer) iteration; also, we say that r is applied for its ith

(outer) iteration when this CAS is successfully executed. If wc is a cond and e participates

in the block of c, these concepts are defined for the inner iterations of c, similarly.

An instruction that has an unresolved input control dependency for some iteration is

inactive; otherwise, it is active for this iteration. An instruction is in waiting state for some

iteration, if at least one of its input (control or data) dependencies has not been resolved for

this iteration; otherwise, it is ready for this iteration. By definition, each ready instruction is

also active, for some iteration.

6.4.3 Correctness

Lemma 6. Consider any transactional instruction e in α and assume that 〈in, out〉 are two

integers such that e is selected for iteration 〈in, out〉. Let C be the final configuration of the

execution interval of the first instance Ig of GetActiveIns at which e is selected. Then, the

input control dependencies of e have been resolved for iteration 〈in,out〉, before C.

Proof. Let p be the working process that executes Ig. We start by proving that the outer input

control dependency of e has been resolved for outer iteration out before C. If e participates

in the main block, then this claim holds trivially. Thus, assume that e participates in the

block of some cond instruction c. To prove that the outer input control dependency of e has

been resolved by C in this case, it suffices to argue that c.inc.cnt ≥ out by C. Let WL be

the last instance of the body of the while loop of line 36 executed during Ig. By the code

(lines 37, 58, and 59), it follows that out = c.ins.cnt at the configuration that the instance

of READITERATIONS initiated by p on line 37 of WL returns. Since this configuration

precedes C, the claim follows.

Page 136 of 187 Correctness

Proof of the SemanticTM algorithm

We continue by proving that the inner input control dependencies of e are resolved for

inner iteration in before C. If e is not a cond instruction, or if it is a cond instruction

that neither handles nor participates in some loop, then e has no inner iterations and this

claim holds trivially. Assume that e is a cond instruction that either handles, or participates

in some loop, or both. If e handles a loop without participating in some loop, the code

(lines 47 to 50) implies that it is on line 49 that 〈e,〈in,−〉〉 is returned; so, the instance of

CHECKINNERCD initiated by p on line 49 of WL returns true. If e participates in some

loop (independently of whether it handles a loop or not), the code (lines 41 - 46) implies

that 〈e,〈in,−〉〉 is returned on line 46; so, the instance of CHECKINNERCD initiated by p

on line 45 of WL returns true. So, in both cases, the code of the corresponding instance

of CHECKINNERCD (85 to 87) implies that the inner input control dependencies of e have

been resolved for in before C. So, the lemma holds.

Lemma 7. Consider a cond instruction c that either handles or participates in some loop.

Let e be any transactional instruction participating in the block of c and let cd be the entry

for e in c.ins.inCD. Then, at any configuration of α, it holds that either cd = c.ins.cnt or

cd = c.ins.cnt− 1.

Proof. The proof is by induction on the configurations C1, C2, . . . of α. Fix any i > 0

and assume that the claim holds for Ci−1. We prove that the claim holds also for Ci. If

i = 1, at the configuration C1 (the initial configuration), recall that both cd and c.inc.cnt

are initialized with value 0; so, the claim holds, in this case. Consider any i > 1 and let s

be the step executed at Ci−1 to get Ci. If s does not change neither c.inc.cnt nor cd, then

claim holds by the induction hypothesis. We consider now that s changes either c.inc.cnt

or cd.

We assume first that s changes c.inc.cnt. The code (lines 30 and 106) implies that

c.ins.cnt can only be updated with the CAS of line 106, which updates it from itersc.in to

itersc.in+1, while c is executed for iteration itersc. Observation 3 implies that itersc.in ≥
0. The code (lines 26, 30, 37, 46, 48, 49, and 52) implies that the second parameter itersc
of EXECUTEINS is returned by READITERATIONS (line 37). Since c is a cond instruction,

the code (lines 56 - 58) implies that itersc.in = c.ins.cnt. If itersc.in = 0, then s updates

c.ins.cnt from 0 to 1 and, by the induction hypothesis, cd = 0 at Ci; so, the claim holds, in

this case. We consider now that itersc.in > 0. The code (lines 26, 30, 46, 48, 49, and 52)

implies that c can be executed for iteration itersc only after c is selected for itersc. Since

c has an input inner control dependency from e, Lemma 6 implies that c can be selected

Correctness Page 137 of 187

Proof of the SemanticTM algorithm

for itersc, only after this dependency is resolved for itersc.in. So, at Ci it holds that

cd = itersc.in and c.ins.cnt = itersc.in+ 1; so, the claim holds, in this case.

We assume now that s changes cd. The code (lines 30, 109, and 120) implies that

cd can be updated with the CAS of either line 109 or line 120, which updates it from

iterse.out− 1 to iterse.out, while e is executed for iteration iterse. Observation 3 implies

that iterse.out ≥ 1. The code (lines 26, 30, 37, 46, 48, 49, and 52) implies that the second

parameter iterse of EXECUTEINS is returned by READITERATIONS (line 37). Since e par-

ticipates in the block of c, the code (lines 58 and 59) implies that iterse.out = c.ins.cnt.

If iterse.out = 1, then s updates cd from 0 to 1 and, by the induction hypothesis,

c.ins.cnt = 1 at Ci; so, the claim holds, in this case. We consider now that cd > 1.

The code (lines 26, 30, 46, 48, 49, and 52) implies that e can be executed for iteration iterse
only after e is selected for iterse. Since e has an input outer control dependency from c,

Lemma 6 implies that e can be selected for iterse, only after this dependency is resolved

for iterse.out. So, at Ci it holds that c.ins.cnt = iterse.out and cd = iterse.out; so, the

claim holds.

Lemma 8. Consider the di-list lb of the bth, b > 0, data item x, and two consecutive

transactional instructions e′, e in lb, where e′ precedes e in lb. Suppose that e′ neither

participates in some loop nor handles a loop, and let in and out be the maximum numbers

of inner and outer iterations, respectively, such that e is selected for iteration 〈in, out〉.
Then, for each i, j, 0 ≤ i ≤ in, 1 ≤ j ≤ out, e can be selected for iteration 〈i, j〉 only after

e′ finishes.

Proof. To obtain a contradiction, suppose that there exist i, j such that some working pro-

cess p selects e for iteration 〈i,j〉 before e′ finishes. Consider the corresponding instance

Ig of GETACTIVEINS executed by p that returns 〈e,〈i,j〉〉. The code (lines 26, 35) implies

that the first instance of the body of the while loop of line 36 during Ig is initiated with

eptr = List[b].

If Ig has returned (lines 46, 48, 49, and 52) the head of lb, then e = List[b]. The code

(line 31) implies that e becomes the head of lb after e′ finishes; this is a contradiction. So,

Ig does not return List[b]. Then, the code (lines 26, 35, 43, and 53) implies that e is some

transactional instruction following List[b]. Since, Ig returns e and e′ precedes e in lb, e′ has

to be skipped during some instance WL of the body of the while loop of line 36. Since,

by assumption, e′ neither participates in some loop nor handles a loop, and e′ and e are

consecutive in lb, the code (lines 47, 48, and 52) implies that, during WL, Ig returns with e′

Page 138 of 187 Correctness

Proof of the SemanticTM algorithm

either on line 48 (if e′ = cond) or on line 52 (if e′ ∈ {read,write}). So, e′ cannot be

skipped during WL; this is a contradiction.

Lemma 9. Consider an instance Ig of GetActiveIns executed by some process p. Then, the

following hold:

1. Let WL be an instance of the body of the while loop of line 36 during the exe-

cution of Ig in which p evaluates the statement of line 38 to false and let C be the

configuration before this evaluation. If eptr points to some transactional instruction

e and innerExecutingCondp 6= null at C, then innerExecutingCondp points

to some transactional instruction e′ that is an ancestor of e.

2. Let WL′ be an instance of the body of the while loop of line 36 during the exe-

cution of Ig in which p selects a transactional instruction e. Assume that p skips

at least one transactional instruction while executing Ig and let C ′ be the config-

uration before the last such skip. If innerExecutingCondp 6= null at C ′, then

innerExecutingCondp points to some transactional instruction e′ that is an an-

cestor of e.

Proof. We start by proving claim 1. To obtain a contradiction, suppose that e′ is not an

ancestor cond of e. Since the statement of line 38 is evaluated by p as false, during WL

and after C, and since innerExecutingCondp 6= null at C, the instance Ipl of PARTICI-

PATESINLOOP initiated by p for e returns true. By inspection of the code of Ipl (lines 62

- 63 and 68), it follows that condptr starts from e.pcond and traverses the ancestors of e,

until either null or e′ is reached. Since we assume that e′ is not an ancestor cond of e, the

code (line 69) implies that Ipl returns false; this is a contradiction.

We now prove claim 2. Notice that p selects e on one of the lines 46, 48, 49, and 52

during WL′. Thus, during the execution of WL′, the statement of line 38 is evaluated by p

as false; let C ′′ be the configuration before this evaluation. Notice that WL′ is the last exe-

cution of the body of the while loop of line 36. So, the execution of WL′ follows C ′ and

C ′′. SinceC ′ is the configuration before the last skip (of some transactional instruction) by p

during Ig, the code (lines 53 and 36 - 38) implies that the value of innerExecutingCondp
is the same at C and C ′. Since we assume that innerExecutingCondp 6= null at C ′, then

claim 1 implies the claim.

Lemma 10. Consider any instance Ig of GetActiveIns executed by some working process

p. Then, during Ig and after the execution of line 35,

Correctness Page 139 of 187

Proof of the SemanticTM algorithm

1. either innerExecutingCondp = null, or innerExecutingCondp 6= null and

innerExecutingCondp never changes back to null, and

2. if innerExecutingCondp 6= null, then innerExecutingCondp points to some

transactional instruction e that either handles or participates in some loop.

Proof. The proof is by induction on the configurations C1, C2, . . . between the execution

of line 35 and the response of Ig. Fix any i > 0 and assume that the claims hold for

Ci−1. We prove that the claims hold also for Ci. If i = 1, then at the configuration C1

(after the execution of line 35), innerExecutingCondp = null, so the claims hold. Con-

sider any i > 1 and let s be the step executed at Ci−1 to get Ci. If s does not change

innerExecutingCondp, then claims hold by the induction hypothesis. We consider now

that s changes innerExecutingCondp. By inspection of the pseudocode, it follows that s

(which follows C1) is the execution of on one of the lines 50, 66, and 79. To prove claim 1

we argue below that s updates innerExecutingCondp with a value not equal to null.

If s is the execution of line 50, then eptr is written on innerExecutingCondp. Then,

the code (line 36) implies that eptr 6= null. Also, the code (lines 47 and 48) implies that

eptr is a cond instruction and handles a loop; so, claim 2 holds, in this case.

If s is the execution of line 66, then condptr is written on innerExecutingCondp.

Then, the code (first condition of line 63) implies that condptr 6= Null. Also, the code

(second condition of line 65) implies that condptr participates in some loop; so, claim 2

holds, in this case.

If s is the execution of line 79, then condptr is written on innerExecutingCondp.

Notice that condptr is initialized with eptr.pcond on line 73 and may be updated on line 83.

Also, notice that FINDINNEREXECUTINGCOND is initiated with first parameter eptr (line

42). The code (line 36) implies that eptr 6= null; so, eptr.pcond 6= null. Also, the code

(line 41) implies that eptr participates in some loop; so, eptr.pcond either handles or partic-

ipates in some loop. Since eptr.pcond 6= null, the code (first condition of line 78 and line

83) implies that during the execution of the while loop (line 74) of FINDINNEREXECUT-

INGCOND, condptr may be updated with values different than null. So, claim 1 holds.

Since eptr.pcond either handles or participates in some loop, the code (second condition of

line 78 and line 83) implies that condptr either handles or participates in some loop. So,

claim 2 holds.

Lemma 11. Consider a transactional instruction e that participates in some loop. Assume

Page 140 of 187 Correctness

Proof of the SemanticTM algorithm

that a process p skips e and let C be the configuration preceding this skip. Then, at C:

1. innerExecutingCondp 6= null and points to some transactional instruction that

is an ancestor cond of e, and

2. if innerExecutingCondIterp has the value k ≥ 0, then the following hold: for

each cond instruction c that is an ancestor of e and a descendant of the transac-

tional instruction pointed to by innerExecutingCondp, c has been completed for

its outer iteration k.

Proof. Recall that p skips e on line 53 during some instance WL of the body of the while

loop of line 36 of some instance Ig of GETACTIVEINS (line 26).

We start by proving claim 1. Notice that during WL, p evaluates the statement of

line 38 as false, since otherwise, WL would terminate on line 39 without executing line

53. We assume first that innerExecutingCondp = ac and ac 6= null at the configura-

tion C ′ before p evaluates the first condition of line 38, during WL. Thus, it must be that

the instance Ipl of PARTICIPATESINLOOP initiated by p for e during WL returns true.

Lemma 9 (claim 1) implies that ac is an ancestor of e. By inspection of the code of Ipl
(lines 62 - 63 and 68), it follows that condptr starts from e.pcond and traverses the ances-

tors of e. Moreover, innerExecutingCondp may be updated with the value of condptr

(line 66) only if condptr 6= null. So, when Ipl returns, innerExecutingCondp 6= null

and points to some transactional instruction that is an ancestor cond of e. Since e partic-

ipates in some loop, line 41 is evaluated as true, so line 50 is not executed. Then, since

inerExecutingCond 6= null, the first condition of line 42 evaluates to false; thus, FIND-

INNEREXECUTINGCOND is not executed, so line 79 is not executed. Moreover, CHECKIN-

NERCD does not change innerExecutingCond. Thus, innerExecutingCondp does not

change by C. So, claim 1 holds, in this case.

We assume now that innerExecutingCondp = null at C ′. Then, since e is skipped

during WL, line 53 is executed. Since innerExecutinCond = null at C ′, the first con-

dition of line 38 is evaluated as false, so PARTICIPATESINLOOP is not executed (and thus

line 66 is not executed). By the code (lines 41, 42, and 53), it follows that p evaluates the

statement of line 42 as false during WL and before C (since otherwise it would execute the

continue of line 44 and the skip would not occur). So, the instance If of FINDINNEREX-

ECUTINGCOND initiated by p for e during WL returns true. By inspection of the code

of FINDINNEREXECUTINGCOND (lines 79 - 81), it follows that innerExecutingCondp
is updated with the value of condptr before If returns true. Moreover, by inspection

Correctness Page 141 of 187

Proof of the SemanticTM algorithm

of the code of FINDINNEREXECUTINGCOND (lines 73 - 74, 78 and 83), it follows that

condptr starts from e.pcond (for which it holds e.pcond 6= null, since e participates in

some loop), traverses the ancestors of e, and condptr never takes the value null (due to

the first condition of line 78). So, when If returns, innerExecutingCondp 6= null and

points to some transactional instruction that is an ancestor cond of e. Since CHECKIN-

NERCD does not change innerExecutingCondp and line 50 is not executed, it follows

that innerExecutingCondp does not change by C, claim 1 holds.

We finally prove claim 2. The code (line 34) implies that innerExecutingCondp is

initialized to null during Ig. Since, by claim 1, innerExecutingCondp 6= null at C,

it follows that, during Ig and before C, innerExecutingCondp has been updated at least

once. LetC ′′ be the configuration before the last such update U of innerExecutingCondp.

Notice that C ′′ < C.

Since e participates is some loop, line 41 is evaluated as true, so line 50 is not ex-

ecuted. Therefore, by inspection of the code (lines 38 - 46), the only lines that can up-

date innerExecutingCondp is either line 66 or line 79. Thus, U is a write of ei-

ther line 66 or line 79 during some instance IU of PARTICIPATESINLOOP or FINDIN-

NEREXECUTINGCOND, respectively. By executing U , p writes the value of condptr in

innerExecutingCondp during an instance WLU of the body of the while loop of either

line 63 or line 74, respectively, with condptr = innerExecutingCondp, during IU . By

the code (lines 62 - 63 and 68, and lines 73 - 74, 78 and 83, respectively), it follows that

condptr starts from e.pcond and traverses the ancestors of e. The code (lines 67 and 80)

implies that innerExecutingCondIterp is updated during WLU and after the execution

of U . If innerExecutingCondIterp is updated on line 67, it takes the value conditer.in.

The code (lines 64 and 57 - 58) implies that conditers.in = condptr → ins.cnt. If

innerExecutingCondIterp is updated on line 80, it takes the value outIter. The code

(line 76) implies that outIter = conditers.in. Also, the code (75 and 57 - 58) implies that

conditers.in = condptr → ins.cnt.

We consider any cond instruction c that is an ancestor of e and a descendant of the

transactional instruction pointed to by innerExecutingCondp. To obtain a contradiction,

suppose that atC, c is not completed for its outer iteration with number k, the value stored in

innerExecutingCondIterp atC. So, either c or an ancestor cond of c that is a descendant

of innerExecutingCondp is not completed for its outer iteration; let c′ be this cond. We

start by proving the following Claim.

Page 142 of 187 Correctness

Proof of the SemanticTM algorithm

Claim 1. Consider an instance WL′ of the body of the while loop of either line 63 or line

74, executed by p before WLU , with condptr = ac, where ac is an ancestor cond of e,

during IU . Then:

1. p evaluates the statement ST ′ of either line 65 or line 78 to false, and

2. innerExecutingCondp does not change before the beginning of WLU .

Proof. We start by proving claim 1. To obtain a contradiction, suppose that ST ′ is eval-

uated as true. In case ST ′ is the statement of line 78, the code (line 81) implies that

WLU is not executed; this is a contradiction. In case ST ′ is the statement of line 65,

innerExecutingCondp takes the value ac on line 66, during WL′. During WLU , the

statement of line 65 is evaluated as true (since, otherwise, U is not executed) and therefore

the fourth condition of this statement is evaluated as true. Thus, innerExecutingCondp =

loop when the evaluation of the condition occurs, during WLU . By inspection of the pseu-

docode, the value of loop does not change during the execution of IU . Since WLU follows

WL′, WLU is not the first instance of the body of the while loop of line 63 during which

line 66 is executed. Thus, at the beginning of WLU , innerExecutingCondp has the value

that condptr had at the beginning of some previous instance of this body. This is a contra-

diction, since then the second condition of the statement of the while loop of line 63 at the

beginning of that instance would evaluate to false and that instance would not be executed.

So, claim 1 holds.

We now prove claim 2. Claim 1 implies that if either line 65 or line 78 is executed

during IU and before the beginning of WLU , then it evaluates to false. Thus, neither line 66

nor line 79 is executed during IU and before the beginning of WLU ; so, claim 2 holds.

We now continue with the proof of claim 2. Since c′ is a descendant of

innerExecutingCondp (and an ancestor of e), it follows that during IU and before ex-

ecuting WLU , p executes an instance WL′ of the body of the while loop of either line 63 or

line 74 with condptr = c′. Then, Claim 1 (claim 1) implies that duringWL′, p evaluates the

statement ST ′ of either line 65 or line 78 to false. In the following, we derive a contradiction

by arguing that ST ′ is evaluated as true.

Since innerExecutingCondp 6= null, Lemma 10 (claim 2) implies that

innerExecutingCondp either handles or participates in some loop. Since c′ is a descen-

dant of innerExecutingCondp, it follows that c′.pcond 6= null and c′ participates in

Correctness Page 143 of 187

Proof of the SemanticTM algorithm

some loop. So, if ST ′ is the statement of line 65, p evaluates to true the first two condi-

tions of ST ′, whereas if ST ′ is the statement of line 78, p evaluates to false the first two

conditions of ST ′. We now argue that p evaluates the third condition of ST ′ to true. By

inspection of the pseudocode (lines 64 and 75) conditers has the value returned by REA-

DITERATIONS on line 64 or 75. Notice that READITERATIONS is called with parameter

condptr, where condptr points to c′. Since, c′.pcond 6= null, READITERATIONS returns

on line 58. So, conditers.out = c′.pcond → ins.cnt. Since, by assumption, c′ is not

completed for its outer iteration Lemma 7 implies that c′.pcond → ins.inCD[c′.icond] =

c′.pcond → ins.cnt− 1, when ST ′ is executed. So, p evaluates the third condition of ST ′

to true.

In case ST ′ is the statement of line 78, then it is evaluated as true; this is a contradic-

tion. We consider now that ST ′ is the statement of line 65. To prove that ST ′ is evaluated

as true, we argue that the fourth condition of ST ′ is evaluated as true (since we have al-

ready argued that the other three condition of ST ′ are evaluated as true). Claim 1 (claim 2)

implies that innerExecutingCondp does not change during IU and before the beginning

of WLU . Since PARTICIPATESINLOOP is initiated with its second parameter equal to the

value of innerExecutingCondIterp at the beginning of its invocation (line 38), then the

fourth condition of ST ′ is evaluated as true; this is a contradiction.

Recall that SemanticTM assumes that the transactions of an execution α are pro-

cessed one after the other. Let T1, T2, . . . be this order. Let σ be the sequential execution of

transactions T1, T2, . . . in this order. Let Ti, i > 0, be any of these transactions. Assume

that ki ≥ 0 is the number of cond instructions of Ti. Let c0, c1, . . . , cki be the cond in-

structions of Ti, in the order they appear in the code of Ti. Notice that c0 is the fictitious

cond of the main block of Ti. For each cond instruction cj , 0 ≤ j ≤ ki, let kij ≥ 0 be

the number of iterations executed in σ for cj . We call these iterations inner iterations of cj .

If some cond c (or any other instruction e) participates in the block of cj , then the inner

iterations of cj are outer iterations of c. Let e be any of the transactional instructions that

participate in the block of cj . If e is not a cond, then e does not have inner iterations. For

each `, 1 ≥ ` ≥ kij , we call instance of e for iteration 〈0, l〉 the `th instance of e in σ. For

each cond cj′ , j ≥ j′ ≥ kij′ , that participates in the block of cj , if kij,` is the number of

inner iterations of cj′ executed for the `th inner iteration of cj , for each `′, 0 ≤ `′ ≤ kij,`,

we call instance of e for iteration 〈`′, `〉 the (
∑`−1

t=1 k
i
j,t + `′)th occurrence of cj′ in σ, where∑`−1

t=1 k
i
j,t is the number of occurrences of c′j in the inner iterations of cj that precede the

Page 144 of 187 Correctness

Proof of the SemanticTM algorithm

(`− 1)st inner iteration of cj .

Consider an instance δ of a transactional instruction e for iteration 〈in, out〉 in σ. If e

is executed for iteration 〈in, out〉 in α, then this execution of e in α, denoted by δα, is called

the instance of e for iterations 〈in, out〉 in α and it corresponds to δ; otherwise, δα = ⊥. If δ

is not the last instance of e for its outer iteration out in σ, then c must be a cond that either

handles or participates in some loop. We say that δ is completed in α when e is completed

for its inner iteration in in α. Otherwise, δ is completed when e is completed for its outer

iteration out. When a working process executes (selects or applies) e for 〈in,out〉 in α, we

also say that p executes (selects or applies) δ, or δ is executed (selected or applied).

Observation 12. Consider a transactional instruction e and let in, out be any two integers

such that δ is an instance of e for iteration 〈in,out〉 in σ. Let C be a configuration at which

e is completed. Then, the following hold:

1. if e 6= cond, then e has no inner iterations (so in = 0) and e has a single instance

for iteration out,

(a) e is completed for its outer iteration out at C, and

(b) if e participates in some loop, then the inner output control dependency of e

has been resolved for its outer iteration out by C,

2. if e = cond and if, before C, the process executing e has decided whether to initiate

the next inner iteration in+ 1, then

(a) if decision = false, then

i. at C, e is completed for its outer iteration out, and

ii. if e participates in some loop, then the inner output control dependency of

e has been resolved for its outer iteration out by C.

(b) if decision = true, then at C:

i. e has been completed for its (in+ 1)st inner iteration, and

ii. if e neither participates in some loop nor handles some loop, then e is

completed for its outer iteration out.

We remark that a partial order PO, denoted by <PO, exists among the instances of

the transactional instructions (T1, T2, . . .) executed in σ. Notice that this order is partial,

since two transactional instructions may neither have any dependency with each other nor

access the same data item; we say that these instructions are independent, otherwise, they

are dependent. More specifically, considering two dependent transactional instructions e

Correctness Page 145 of 187

Proof of the SemanticTM algorithm

and e′, which are transactional instructions of transactions Ti and Tj , respectively, where

i, j > 0:

• if a dependency exists among e, e′ (so i = j) and if, in σ, e initiates kin ≥ 0 inner

iterations and is executed in kout > 0 outer iterations, then

– if e has an output data dependency leading to e′, and e, e′ participate to the same

block, then the instance δ of e for each iteration 〈i, j〉, 0 ≤ i ≤ kin, 1 ≤ j ≤
kout, precedes in PO the instance δ′ of e′ for this iteration, or δ <PO δ′,

– if e has an outer output control dependency leading to e′, then

∗ the instance δ of e for each iteration 〈i, j〉, 0 ≤ i ≤ kin, 1 ≤ j ≤ kout,

precedes in PO the instance δ′ of e′ for iteration 〈in′, i+1〉, where in′ ≥ 0 is

the number of the last inner iteration of e′ executed for the ith outer iteration

of e′, or δ <PO δ′, and

∗ if e handles a loop, then it has an inner input control dependency originating

from e′. Let δ be the instance of e for each iteration 〈i, j〉, 1 ≤ i ≤ kin, 1 ≤
j ≤ kout, and δ′ be the instance of e′ for iteration 〈in′, i〉, where in′ ≥ 0 is

the number of the last inner iteration of e′ executed for the ith outer iteration

of e′. Then, δ′ precedes δ in PO δ, or δ′ <PO δ.

• if e, e′ access the same data item x, no dependency exists among e, e′, and either

i = j and e precedes e′ in sequential order defined by the sequential semantics of Ti,

or i < j, then the last instance δ of e precedes in PO the first instance δ′ of e′.

Consider two instances δ and δ′. If δ <PO δ′, then δ′ >PO δ and we say that δ′

follows δ in PO. We also say that δ and δ′ are dependent in PO. If any instance δ′′ exist

such that δ <PO δ′ and δ′ <PO δ′′, then δ <PO δ′′.

Let δ be an instance of a transactional instruction e for some iteration 〈in, out〉. We

define the next instance of e to be some instance δ′ of e for some iteration 〈in′, out′〉 such

that δ <PO δ′, and there is no other instance δ′′ of e such that δ <PO δ′′ and δ′′ <PO δ′.

Also, we say that an instance delta′ is consecutive to an instance δ, if δ <PO δ′, and there is

no other instance δ′′ such that δ <PO δ′′ and δ′′ <PO δ′. Consider the sequence of instances

of transactional instructions that write the same data item x in σ. Then, we say that the ith,

i > 0, instance of this sequence is the ith write on x.

Lemma 13. Let δ be an instance of some transactional instruction e for iteration 〈in, out〉
and let δnext be the next instance of e in σ. Then, if δα 6= ⊥ and δαnext 6= ⊥, then δnext can

be executed only after the completion of δ.

Page 146 of 187 Correctness

Proof of the SemanticTM algorithm

Proof. Since e has more than one instances, e either handles or participates in some loop.

If δ is not the last instance of e for out, then e handles a loop, δ is an instance of e for in,

and δnext is an instance of e for inner iteration in + 1. Let ch be any of the transactional

instructions participating in the block of e. Consider any instance Ig of GETACTIVEINS

at which ch is selected for iteration 〈−, in + 1〉. Lemma 6 implies that the input control

dependencies of ch have been resolved for 〈−, in + 1〉, before the final configuration C of

the execution interval of Ig. Since ch has an input control dependency from e, it follows

that the outer input control dependency of ch from e has been resolved for 〈−, in+ 1〉, i.e.

e.ins.cnt = in + 1, by C. So, e is completed for its inth inner iteration by C. Therefore

δ is completed by C. Moreover, since e has an (inner) input control dependency from ch,

by following similar arguments, Lemma 6 implies that δnext can be selected only after the

completion of ch for its (in + 1)st outer iteration. Since before an instance is executed it

has first to be selected, it follows that δnext is executed only after the completion of δ. The

claim holds, in this case.

We consider now that δ is the last instance of e for out. Then, δ is an instance of

e for out and, since δ is not the last instance of e, e participates in some loop. Let pc =

e.pcond. Since pc has an inner input control dependency from e, by following similar

arguments, Lemma 6 implies that pc can be selected for its outth inner iteration only after

the completion of δ. So, pc completes for its (out + 1)st inner iteration only after the

completion of δ. Moreover, since e has an input control dependency from pc, by following

similar arguments, Lemma 6 implies that δnext can be selected only after the completion

of pc for its (out + 1)st inner iteration. Since before an instance is executed it has first

to be selected, it follows that δnext is executed only after the completion of δ. The claim

holds.

Lemma 14. Consider two transactional instructions e, e′ such that e, e′ are consecutive

transactional instructions of the same block, e, e′ access the bth, b > 0, data item x and they

are placed in the di-list lb of x, and e′ is placed before e in lb. If there exist two integers

in, out such that δ1 is an instance of e for iteration 〈in, out〉 in σ and δ2 is an instance of

e′ in σ such that dα2 6= ⊥ and δ1 is consecutive to δ2. Then, if e is selected for iteration

〈in, out〉, this occurs after the completion of δ2.

Proof. To obtain a contradiction, suppose that some working process p selects e for 〈in,out〉
before the completion of δ2. Notice that since e′ and e participate to the same block δ2 is the

instance of e′ for out.

Correctness Page 147 of 187

Proof of the SemanticTM algorithm

Consider the instance Ig of GETACTIVEINS executed by p that returns 〈e,〈in,out〉〉
during some instance WL of the body of the while loop of line 36; let C be the configura-

tion before this happens (i.e. before p selects e for 〈in,out〉). The code (lines 26, 35) implies

that the first instance of the body of the while loop of line 36 during Ig is initiated with

eptr = List[b]. If Ig has returned (lines 46, 48, 49, and 52) the head of li, then e = List[b].

The code (line 31) implies that e becomes the head of lb after the completion of e′; this is a

contradiction.

So, Ig does not return List[b]. Then, the code (lines 26, 35, 43, and 53) implies that

Ig returns some other transactional instruction following List[b]. Since, Ig returns e and e′

precedes e in lb, e′ has to be skipped during some instance WL′ of the body of the while

loop of line 36; let C ′ be the configuration preceding the execution of this line (i.e. before

p skips e′). Notice that C ′ < C. If e′ neither (is a cond and) handles nor participates in

some loop, then the code (lines 41, 47 - 48, and 52) implies that e′ is returned either on line

48 or on line 52, and can not be skipped; this is a contradiction. So, e′ either handles or

participates in some loop.

We consider first that e′ and e are consecutive in lb. Since e′ and e participate in

the same block, it follows that e′ participates in some loop and does not handle a loop

(since, if e′ handles a loop, then e′ and e can not be consecutive in lb). Since e′ participates

in some loop, the code (lines 41, 45, and 53) implies that before p skips e′ it evaluates

as false the statement of line 45, during WL′; so, the first condition of this statement is

evaluated as false. However, since this condition is evaluated by p for e′ during WL′ and

before C ′, C ′ < C, and e′ completes for out after C ′, Lemma 7 implies that e′.pcond →
ins.inCD[e′.icond] = out − 1 when this condition is evaluated. So, this conditions is

evaluated as true; this is a contradiction.

We consider now that e′ and e are not consecutive in lb; so e′ = cond and handle a

loop. Let e′′ be the last transactional instruction skipped by p, before e is selected by p for

〈in,out〉. Notice that e′′ participates in the loop of e′ and, since e′ and e participate in the

same block and are consecutive in this block, e′ is one of the ancestor conds of e′′. We

remark that p skips e′′ on line 53 during some instance WL′′ of the body of the while

loop of line 36; let C ′′ be the configuration preceding the execution of this line (i.e. before

p skips e′′). Notice that C ′ < C ′′ < C.

Since e′′ participates in some loop and it is skipped before C ′′, Lemma 11 (claim 1)

implies that innerExecutingCondp = ac 6= null, where ac is one of the ancestor conds

Page 148 of 187 Correctness

Proof of the SemanticTM algorithm

of e′′, before C ′′; also, let innerExecutingCondIterp = inIter, where inIter ≥ 0.

If e′ and e do not participate in some loop, notice that since e is selected by p for

iteration 〈e,〈in,out〉〉, during WL the statement of line 38 is evaluated as false, after C ′′.

Since innerExecutingCondp 6= null before C ′′, the first condition of line 38 is evaluates

as true, during WL, and since e does not participate in some loop, the code (lines 38, 62

- 63, and 69) implies that the second condition of line 38 is also evaluated as true, during

WL. So, the statement of line 38 is evaluated as true during WL; this is a contradiction.

So, e′ and e participate in some loop; let cpc be e.pcond, or equivalently e′.pcond.

Since innerExecutingCondp 6= null before C ′′, Lemma 9 (claim 2) implies that e can be

selected during WL for 〈in,out〉 by p only if ac is either cpc or one of the ancestor conds

of cpc. Since e′ is an ancestor cond of e′′ and a descendant of cpc, Lemma 11 (Claim

2) implies that this is possible only if e′ is completed for the inner iteration with number

inIter of ac, before C ′′. Let out′ be the maximum number of e′’s outer iteration for which

e′ is completed before C ′′. Since, e′ completes for out after C and C > C ′′, it follows that

out′ < out. During WL and before C, p initiates an instance Ipl of PARTICIPATESINLOOP

with parameters e, ac, inIter, which returns true. Notice that e is reached for 〈in, out〉
during WL (line 37) and before the initiation of Ipl; let C ′′′ be the configuration before

e is reached. In case ac = cpc, then inIter ≤ out′, or inIter < out. Also, at C ′′′,

cpc.ins.cnt = out, or equivalently ac.ins.cnt 6= inIter. In case ac 6= cpc, since e′ is

completed for both out′ and inIter before C ′′, and since ac is ancestor cond of cpc, by

recursively applying Lemma 6, it follows that e can be reached for 〈in, out〉 only after ac

initiates an iteration larger than inIter. So, in both cases, it holds that ac.ins.cnt 6= inIter

at C ′′′. Since ac is an ancestor cond of e, the code of Ipl (lines 62 - 63 and 68) implies

that condptr takes the value ac during some instance of the body of the while loop of

line 63. Then, since Ipl is initiated with second parameter ac, so loop = ac during Ipl,

the second condition of the subsequent execution of the statement of the while of line 63

evaluates to false. So, the statement of line 69 is evaluated with condptr = ac. Notice that

Ipl is initialized with its third parameter inIter, so loopIter = inIter during Ipl. Since,

ac 6= null and ac.ins.cnt 6= inIter, where inIter = loopIter, the statement of line 69

evaluates to false and Ipl returns false; this is a contradiction.

Lemma 15. Consider some transactional instruction e that does not participate in some

loop and it is in the head of the di-list lx of some data item x. Let in, out be integers such

that δ is an instance of e that is not completed for iteration 〈in, out〉. Assume that the

Correctness Page 149 of 187

Proof of the SemanticTM algorithm

input data and control dependencies of e are resolved for 〈in, out〉 and let C be the first

configuration at which all dependencies of e have been resolved for iteration 〈in, out〉. If

the iteration of e does not change after C, then some process selects e for 〈in, out〉 after C.

Proof. To obtain a contradiction, suppose that no process selects e for 〈in, out〉 after C.

Since e is in the head of lx, the code (line 26) implies that at least one instance of GETAC-

TIVEINS is initiated with parameter e, after C. Then, the code (lines 35 and 36) implies that

at least one iteration of the while loop of line 36 is executed with eptr = e; let WL be the

first of them and let p be the working process executing WL.

During WL, p initiates an instance of READITERATIONS after C and since , by as-

sumption, the outer input control dependency of e is resolved before Cδ′ , the iterations of

e do not change after C, and e does not participates in some loop, the code of this instance

(lines 56 - 60) implies that in ≥ 0, out = 1, and p reaches e for iteration 〈in, out〉. Then,

the code (line 34) implies that p evaluates to false the first condition (and the statement) of

line 38 and, since out = 1, it also evaluates to false the statement of line 40.

Since e does not participate in some loop, p evaluates to false the condition of line 41.

In case e = {read,write}, then GETACTIVEINS responds with 〈e,〈in, out〉〉 (line 52);

this is a contradiction. In case e = cond and e does not handle a loop, then GETACTIVEINS

responds with 〈e,〈in, out〉〉 (line 48); this is a contradiction. In case e = cond and e handles

a loop, an instance Icd of CHECKINNERCD is initiated with parameters e and in. Since ,

by assumption, all the inner input control dependencies of e are resolved before C and these

iterations do not change after C, the code (lines 85 - 87) implies that Icd returns true. So,

the condition of line 49 evaluates to true and GETACTIVEINS responds with 〈e,〈in, out〉〉;
this is a contradiction.

Lemma 16. Consider some transactional instruction e that either handles or participates

in some loop L and it is placed in the di-list lx of some data item x. If e participates in L,

let e1 be the first transactional instruction of L that is placed in lx (it may be that e1 = e);

otherwise, if e handles L, let e1 = e. Assume that e is the kth, k ≥ 1, transactional

instruction of L that is placed in lx. Assume that some process p initiates an instance Ig
of GetActiveIns for e1 and let C be the configuration preceding this initiation. Let δ be

an instance of e for iteration 〈in, out〉. Assume that any instance of some instruction that

precedes δ in PO is completed before C and that no other instance can be executed after

C. Then,

Page 150 of 187 Correctness

Proof of the SemanticTM algorithm

1. if δ is not completed before C, then p selects e for 〈in, out〉.
2. otherwise, if δ is completed before C, then p skips e during the kth iteration of the

while loop of line 36 of Ig.

Proof. Since, by assumption, any instance of some instruction that precedes δ in PO is

completed before C, it follows that the input control dependencies of e for 〈in, out〉 are

resolved before C.

Let S = e1, e2, . . . , ek, k ≥ 0, be the (possibly empty) sequence of transactional

instructions that precede e in lx that either handle (i.e. e1) or participate in L. The proof is

by induction on the value of k. Fix any k > 0 and assume that the claims hold for k−1. We

prove that the claims hold also for k. Let WL be the kth instance of the body of the while

loop of line 36, during Ig.

We first argue that p reaches e for 〈in, out〉 during WL. If k = 1, then the code

(lines 35 and 36) implies that p executes WL with eptr = e1 = e. If k > 1, then, by the

induction hypothesis, claim 2 implies that p skips ek−1 during the (k − 1)st instance of the

body of the while loop of line 36 and the code (lines 53 and 36) implies that p executes

WL with eptr = ek = e. So, for k ≥ 1, p initiates an instance of READITERATIONS (line

37) during WL. Since, by assumption, the input control dependencies of e for 〈in, out〉
are resolved before C and no instance of e is executed after C, by inspection of the code of

READITERATIONS with parameter e (lines 56 - 60), it follows that p reaches e for iteration

〈in, out〉 during WL; so, claim holds. Let C ′ be the configuration before p reaches e for

iteration 〈in, out〉 during WL.

We next argue that p evaluates to false the statement of line 38. If k = 1, the code

(line 34) implies that p evaluates to false the first condition (and the statement) of line

38; so claim holds, in this case. If k > 1, then, by the induction hypothesis, claim 2

implies that p skips ek−1 during the (k − 1)st instance of the body of the while loop

of line 36. Observation 11 (Claim 1) implies that innerExecutingCondp 6= null,

innerExecutingCondp = ac, where ac is one of the ancestor conds of ek−1, before

C ′; also, let innerExecutingCondIterp = inIter. So, p evaluates as true the first con-

dition of line 38 and continues by initiating an instance Ipl of PARTICIPATESINLOOP with

parameters e, ac, and inIter. Since, by assumption, any instance of some instruction that

precedes δ in PO is completed before C and that no other instance can be executed after

C, it follows that ac is also an ancestor cond of e. Since, by assumption, the inner control

dependencies of ac for inIter are resolved before C and no other instance of ac is executed

Correctness Page 151 of 187

Proof of the SemanticTM algorithm

before the return of Ig, and the code (lines 38 and 62 - 70) imply that Ipl returns true and

p evaluates to false the second condition (and the statement) of line 38; so, claim holds.

We now argue that p evaluates as false the statement of line 40. If e does not partici-

pate in some loop and handles a loop, the outer input control dependency of e is (trivially)

resolved, i.e. out = 1. Otherwise, if e participates in some loop, by assumption, the outer

input control dependency of e is resolved; so, out ≥ 1. Thus, in both cases, p evaluates as

false the statement of line 40; so, claim holds.

If e does not participate in some loop and handles a loop, then the code (lines 47 - 49)

implies that p initiates an instance Icd of CHECKINNERCD with parameters ept and in.

Otherwise, if e participates in some loop, e evaluates as true the condition of line 41

and continues by evaluating the statement of line 42. We argue that p evaluates as false this

statement. If k > 1, then the induction hypothesis (claim 2) and Observation 11 (claim 1)

imply that p evaluates as false the first condition (and the statement) of line 42; so, claim

holds. If k = 1, then the code (line 34) implies that p evaluates as true the first condition

of line 42 and continues by initiating an instance If of FINDINNEREXECUTINGCOND with

parameters e and out (line 42). Since any instance of some instruction that precedes δ inPO
is completed before C and since no subsequent instance of this instruction can be executed

after C then the code (lines 97 - 121) implies that the iterations of all these instructions do

not change while p is executing If . So, the code (lines 72 - 83) implies that If returns true

and p evaluates as false the second condition of line 42; so, claim holds. So, p continues by

evaluating the statement of line 45.

We now proceed to prove claim 1. We consider first that e does not participate in

some loop and handles a loop. Since, by assumption, the inner control dependencies of e

are resolved for in before C and (the iterations of) these dependencies do not change before

Ig returns (that is also before Icd returns), the code of Icd (lines 85 - 87) implies that Icd
returns true. Thus, the code (line 49) implies that p selects e for 〈in, out〉.

We now consider that e participates in some loop. Since δ is not completed, p evaluates

as true the first condition of line 45. If e ∈ {read,write}, then p evaluates as true the

second condition of line 45 and selects e for 〈in, out〉. If e = cond, then p initiates an

instance I ′cd of CHECKINNERCD with parameters e and in (third condition of line 45).

Since, by assumption, the inner control dependencies of e are resolved for in before C and

(the iterations of) these dependencies do not change before Ig returns (that is also before I ′cd
returns), the code of I ′cd (lines 85 - 87) implies that I ′cd returns true. Thus, the code (line

Page 152 of 187 Correctness

Proof of the SemanticTM algorithm

46) implies that p selects e for 〈in, out〉. Thus, claim 1 holds.

Finally, we prove claim 2. We consider first that e does not participate in some loop

and handles a loop. Since e either handles or participates in some loop, and δ is completed

for iteration 〈in, out〉, it follows that in ≥ 1. Since e handles a loop, by assumption, the

inner input control dependencies of e are resolved for in − 1 before C and they cannot be

resolved for a subsequent (inner) iteration of e before Ig returns (i.e. before the return of

Icd). So, by inspection of the code of Icd (lines 85 - 87), Icd returns false and the condition

of line 49 is evaluated as false, during WL. Then, the code (line 50 - 51 and 53) implies

claim 2, when e does not participate in some loop and handles a loop.

We consider now that e participates in some loop. Since e is completed for out, p

evaluates as false the first condition of the statement of line 45 and p continues by executing

line 53 (with which it skips e) during WL; so, claim 2 holds.

Lemma 17. Consider some transactional instruction e that is in the head of the di-list lx of

some data item x. Let δ be an uncompleted instance of e for iteration 〈in, out〉. Assume that

some process p selects e for 〈in, out〉 and let C be the configuration preceding this. In case

e = cond and δ is the first instance of e for out, assume that e.ins.startinneriter = in

after (and at) C. Moreover, in case e = cond and δ is not the first instance of e for out,

assume that e.ins.startinneriter 6= in after (and at) C. If the input data and control

dependencies of e are resolved for 〈in, out〉 before C, then some process executes e for

〈in, out〉 after C.

Proof. Since p selects e for 〈in, out〉 (line 26), it initiates an instance Idd of CHECKDD on

line 28 with parameters e and 〈in, out〉, after C.

We first argue that Idd returns 〈true,⊥〉. In case e = read, the code (line

89) implies that Idd returns 〈true,⊥〉; so, claim holds. We consider now that e ∈
{write,cond}. In case, e = cond, by assumption, e.ins.startinneriter = in, only

if δ is the first instance of e for out. So, in case either e = cond and δ is the first instance

of e, or e = write, the statement of line 90 evaluates as true. Moreover, since, by assump-

tion, the input data dependencies of e are resolved for out before C, the code (lines 91 - 94)

implies that Idd returns 〈true,−〉 (line 94); so, claim holds. Otherwise, if e = cond and δ

is not the first instance of e for out, then, by assumption, e.ins.startinneriter 6= in. So,

the statement of line 90 is evaluated as false and Idd returns 〈true,−〉 (line 95); so, claim

holds.

Correctness Page 153 of 187

Proof of the SemanticTM algorithm

Since, Idd returns 〈true,−〉, the code (lines 29 and 30) implies that p executes e for

〈in, out〉, after C.

Lemma 18. Let δ be an uncompleted instance of some transactional instruction e for iter-

ation 〈in, out〉. Assume that some process executes e for 〈in, out〉 and let p be the first of

them. LetC be the configuration before p starts the execution of e for 〈in, out〉. Assume that

any instance of e that precede δ in PO is completed before C and that no instance of e that

follows δ completes after C. In case δ is the last instance of e for out, e = cond, e does not

handle a loop, and e participates in some loop, assume that e.ins.startinneriter = in−1,

before C and does not change after C. Moreover, in case δ is not last instance of e for

out, e = cond, e does not handle a loop, and e participates in some loop, assume that

e.ins.startinneriter 6= in− 1, before C and does not change after C. Then, the following

hold, in this order:

1. δ completes (i.e. if δ is not the last instance of e for out, then e completes for in,

otherwise, if δ is the last instance of e, then e completes for out), and

2. if δ is the last instance of e and e does not participate in some loop, then

(a) if e = cond and its condition is evaluated as false, then any instruction par-

ticipating in the block of e, and

(b) e finishes.

Proof. Since, by assumption, any instance of e that precede δ in PO is completed before

C and that no instance of e that follows δ completes after C, it follows that the control

dependencies of e for 〈in, out〉 are resolved before C and after C they may be resolved

only for iteration 〈in, out〉. Notice that in case either δ is not the last instance of e or e

participates in some loop, then claim 2 trivially holds.

We consider first that e ∈ {read,write}. If e does not participate in some loop,

then δ is the last instance of e and the code (lines 113 and 121) implies that some process

finishes e (also, e completes for out); so, 1 and 2b hold. If e participates in some loop, then

the code (lines 113 and 119 - 120) implies that at least one process executes an instance of

the CAS of line 120; let CS′ be the first instance of this CAS executed by these processes.

Since δ is not completed and, by assumption, the control dependencies of e for 〈in, out〉
are resolved before C and after C they may be resolved only for iteration 〈in, out〉, then

at C it holds that e.pcond → ins.inCD[e.icond] = out − 1. So, since CS′ > C, CS′ is

successful and claim 1 holds.

Page 154 of 187 Correctness

Proof of the SemanticTM algorithm

We consider now that e = cond. If δ is the last instance of e, it follows that either

some process evaluates as true the condition of e and e neither handles a loop nor participates

in some loop, or some process evaluates as false the condition of e, We consider first that

some process evaluates as true the condition of e and e neither handles a loop nor participates

in some loop. Then, at least one process executes the CAS of line 106; let CS′′ be the

first instance of this CAS executed by these processes. Since δ is not completed and, by

assumption, the control dependencies of e for 〈in, out〉 are resolved before C and after C

they may be resolved only for iteration 〈in, out〉, then at C it holds that e.ins.cnt = in.

So, since CS′′ > C, CS′′ is successful and claim 1 holds. Moreover, the code (lines 107)

implies that some process completes e; so, claim 2b holds.

We consider now that some process evaluates as false the condition of e. If e does

not participate in some loop, then the code (lines 100 and 102) implies that decision =

false and the code (lines 110 - 112 and 141 - 143) implies that some process finishes

any instruction participating in the block of e and e, in this order (also, e completes for

out); so, claims 1, 2a, and 2b hold. Otherwise, if e participates in some loop, then e may

either handle a loop or not. In the former case, the code (lines 100 and 102) implies that

decision = false. In the latter, since δ is the last instance of e for out, by assumption,

e.ins.startinneriter = in− 1 before C and can not change after C. Also, by assumption,

e.pcond→ ins.cnt = out beforeC and can not change afterC. So, some process evaluates

as true the statement of line 98 and the code (line 99) implies that decision = false. Then,

in both cases, the code (lines 108 - 109) implies that at least one process executes the CAS

of line 109; let CS′′′ be the first instance of this CAS executed by these processes. Since δ is

not completed and, by assumption, the control dependencies of e for 〈in, out〉 are resolved

before C and after C they may be resolved only for iteration 〈in, out〉, then at C it holds

that e.pcond → ins.inCD[e.icond] = out − 1. So, since CS′′′ > C, CS′′′ is successful

and claim 1 holds.

If δ is not the last instance of e, then e either handles a loop or participates in some

loop, and some process evaluates as true the condition of e. If e handles a loop, then the

code (lines 100 and 102) implies that decision = true. Moreover, if e does not handle

a loop, e participates in some loop, and δ is not the last instance of e for out, then, by

assumption, e.ins.startinneriter 6= in− 1 before C and can not change after C. So, any

process executing e for 〈in, out〉 evaluates to false the statement of line 98 and the code

(lines 100 and 102) implies that decision = true. So, in the above two cases, the code

(lines 103 and 106) implies that at least one process executes the CAS of line 106; let CS′′′′

Correctness Page 155 of 187

Proof of the SemanticTM algorithm

be the first instance of this CAS executed by these processes. Since δ is not completed and,

by assumption, the control dependencies of e for 〈in, out〉 are resolved before C and after

C they may be resolved only for iteration 〈in, out〉, at C it holds that e.ins.cnt = in. So,

since CS′′′′ > C, CS′′′′ is successful and claim 1 holds.

We consider now that e does not handle a loop, e participates in some loop, and δ

is the last instance of e for out. Then, by assumption, e.ins.startinneriter = in − 1

before C and can not change after C. Also, by assumption, e.pcond → ins.cnt = out

before C and can not change after C. So, some process evaluates as true the statement

of line 98 and the code (line 99) implies that decision = false. Then, in both cases,

the code (lines 108 - 109) implies that at least one process executes the CAS of line 109;

let CS′′′′′ be the first instance of this CAS executed by these processes. Since δ is not

completed and, by assumption, the control dependencies of e for 〈in, out〉 are resolved

before C and after C they may be resolved only for iteration 〈in, out〉, then at C it holds

that e.pcond→ ins.inCD[e.icond] = out− 1. So, since CS′′′′′ > C, CS′′′′′ is successful

and claim 1 holds.

Lemma 19. Let m be the number of subsets of equivalence classes of PO. Let ∆ be any

of these subsets and let |∆| = m′. Then, let S(∆) = δ1, δ2, . . . , δm′ be the sequence of

instances of ∆ such that for each j, 1 ≤ j < m′, δj+1 is consecutive to δj . For each i,

1 ≤ i ≤ m′, assume that δi−1 is the instance a transactional instruction e′ and δi is the

instance of a transactional instruction e for iteration 〈in, out〉, in σ. Then,

1. If δαi 6= ⊥ and δαi−1 6= ⊥, then

(a) If e′ = read and e′ does not participates in the block of e, and e′ and e does

not participate in the same di-list, or e′ ∈ {write,cond}, then δi can only

be executed after δi−1 is applied,

(b) otherwise, δi can only be executed after δi−1 is completed.

2. the following occur, in this order:

(a) δαi 6= ⊥ and there is some configuration C1 such that δi is executed at C1,

(b) i. if e = read, then there is some configuration C3 such that the output data

dependencies of e are resolved for its outth outer iteration and C3 > C1,

ii. if e = write on some data item x and δi is the dth, d > 0, write on x,

A. the CAS of line 124 is successfully executed exactly once at some con-

figuration C2 updating e.ins.oldvrec.inum from out − 1 to out and

C2 > C1,

Page 156 of 187 Correctness

Proof of the SemanticTM algorithm

B. the CAS of line 127 is successfully executed exactly once at some con-

figuration C3 updating x.ver from d− 1 to d and C3 > C2,

iii. if e = cond, e either handles a loop or participates in some loop, and

its decision is to initiate inner iteration in + 1 of e, then for each cond

instruction c ∈ e.ins.outCD: only if c has initiated at least one inner

iteration during its inth outer iteration, then there exists some config-

uration C3, where C3 > C1, such that if k is the value of c.ins.cnt

after c completed its last inner iteration during its inth outer iteration,

then the CAS of line 139 is successfully executed exactly once updating

c.ins.startinneriter to k at C3.

(c) there exists some configuration C4 at which δi is completed and C4 > C3, and

(d) if δi is the last instance of e and e does not participate in some loop, then

i. if e = cond and its condition is evaluated as false, then there exists some

configuration C5 at which any instruction participating in the block of e

finishes and C5 > C4„ and

ii. there exists some configuration C6 at which e finishes and, in case e =

cond, C6 > C5, otherwise, C6 > C4.

Proof. The proof is by induction of the values of i. To obtain a contradiction, suppose that

Lemma does not hold for the first time when δ is the bth instance in ∆, b ≥ 1, and δ′ is the

(b− 1)st instance in ∆.

Claim 1. Suppose that claim 1 does not hold. Let p be the working process executing e for

iteration 〈in,out〉 and letC be the configuration preceding the initiation of the corresponding

instance of EXECUTEINS (line 30) by p. When b = 1, δ is the first instance in ∆ and claim

trivially holds; so, b > 1.

Case 1. We consider first that e has an input dependency from e′.

Case 1.1. If e has an input control dependency from e′, then Lemma 6 implies that

e is selected for 〈in,out〉 after its input control dependency from e′ is resolved for out. If

e′ = cond, then by definition e′ is also applied for 〈in,out〉 before e is selected for 〈in,out〉.
If e′ = read, claims 2(b)i and 2c imply that e′ is applied before it resolves its (inner) output

control dependency with e, for out. In both cases, since p selects e for iteration 〈in,out〉
before it executes e for this iteration, that is also before C, this is a contradiction.

Case 1.2. So, e has an input data dependency from e′. Then, e′ = read and

Correctness Page 157 of 187

Proof of the SemanticTM algorithm

e ∈ write,cond. The code (lines 28 to 30) implies that an instance Idd of CHECKDD

with parameters 〈e,〈in,out〉〉 is executed by p before C, which returns true. In case

e = write, the code of Idd (first condition of line 90, and lines 91 - 94), implies that

the input data dependencies of e are resolved for out before C, i.e. e′ is applied for iter-

ation 〈in,out〉 before C; this is a contradiction. So, e = cond. Assume first that e has

not initiated any inner iteration for out; so, e′ participates in the same block with e. Then,

since e can initiate an inner iteration for out after C, claim 2(b)iii implies that during the

execution of Idd it holds that c.ins.startinneriter = c.ins.cnt; so, p evaluates as true the

second condition of line 90. Then, the code (lines 91 - 94) implies that the (outer) input data

dependencies of e are resolved for out before C ′; this is a contradiction. So, in is an inner

iteration initiated by e during out, e′ participates in the block of e, and e has an input inner

control dependency from e′; this is a contradiction.

Case 2. We consider now that e has no input dependency from e′. So, e′ and e

participate in the same di-list lx of some data item x. If e precedes e′ in lx, then e = cond,

and e′ participates in some loop and in the block of e. So, e has an inner input control

dependency from e′; this is a contradiction. So, e follows e′ in lx.

Case 2.1. Assume first that e and e′ participate in different blocks. If e′ participates in

the block of some cond instruction c′ that either handles or participates in some loop, then

an instance δ′c ∈ ∆ of c′ follows δ′ and precedes δ, δ′ <PO δ′c′ <PO I; this is a contra-

diction. If e′ participates in the block of some cond instruction than neither participates in

some loop nor handles a loop, then δ′ <PO δ only when e′ is the last instruction of the block

of e′.pcond, and e′ and e are consecutive in lx. Then, Lemma 8 implies that p selects e for

iteration 〈in,out〉 after the completion of e′; this is a contradiction, since p selects e for iter-

ation 〈in,out〉 before it executes e for this iteration, that is also before C. So, e participates

in the block of some cond instruction c. If c = e′, then e has an input control dependency

from e′; this is a contradiction. So, c 6= e. Then, an instance δc ∈ ∆ of c precedes I and

follows δ′, δ′ <PO δc <PO δ; this is a contradiction.

Case 2.2. So, e′ and e participate in the same block and they are consecutive in this

block. So, since e′ precedes e in lx, Lemma 14 implies that p selects e for iteration 〈in,out〉
after the completion of e′ for this iteration; this is a contradiction, since p selects e for

iteration 〈in,out〉 before it executes e for this iteration, that is also before C.

Claim 2. Suppose that claim 2 does not hold. Suppose first that claim 2a does not hold.

Let e be placed in the di-list lx of some data item x. When b > 1, by assumption, δ′

Page 158 of 187 Correctness

Proof of the SemanticTM algorithm

completes and any instance δ′′ <PO δ′ (and δ′′ <PO δ) of some transactional instruction e′′

completes. If b > 1, let Cδ′ be the configuration following the completion of δ′; otherwise,

let Cδ′ be the initial configuration of α. Also, let S be the set containing those instructions

whose instances precede I; notice that when b = 1 it holds that S = ∅, otherwise, e′ ∈ S.

By assumption, the instances of the instructions in S that precede I in PO are completed,

beforeCδ′ . Since δ neither is applied (claim 2(b)i) nor completes (claim 2c), claim 1 implies

that none of the instances of the instructions in S that follow δ in PO is executed after Cδ′ .

We start by arguing that the input data and control dependencies of e are resolved

for 〈in.out〉, before Cδ′ . If b = 1, then the input data (in case e ∈ {read,cond}) and

control dependencies of e are (trivially) resolved. We consider now that b > 1. In case

e = {write,cond}, Claim 2(b)i implies that the input data dependencies of e are resolved

for out, before Cδ′ . In case e participates in the main block, then its (outer) input control

dependency is trivially resolved for out. In case e participates in some block, then Claim 2c

implies that its (outer) input control dependency is resolved for out, before Cδ′ . In case e

handles a loop and δ is the first instance of e, then its (inner) input control dependencies are

(trivially) resolved for in; otherwise, if δ is not the first instance of e, then Claim 2c implies

that its (inner) input control dependencies are resolved for in, before Cδ′ . So, claim holds.

We next argue that some process selects e for 〈in, out〉, after Cδ′ . We consider first

that e does not participate in some loop. If b = 1, then e participates in the main block and it

is the head of lx. If b > 1, δ′ is the last instance of e′. Thus, by assumption, each instruction

in S finishes, before Cδ′ , and the code (lines 25 - 31) implies that e becomes the head of lx,

after Cδ′ . So, for b ≥ 1, Lemma 15 implies the claim, in this case.

We consider now that e participates in some loop L; so, b > 1. Let S = e1, e2, . . . , ek,

k ≥ 0, be the sequence of transactional instructions that precede e in lx and either handle

(i.e. e1) or participate in L; notice that in case e is the first transactional instruction of L

in lx, then S is empty (and k = 0). If k > 0, let e′′ = e1, otherwise, let e′′ = e. By

assumption, any transactional instruction that precedes e′′ in lx is finished, before Cδ′ . So,

the code (lines 25 - 31) implies that e′′ becomes the head of lx. Since e′′ is in the head

of lx, the code (line 26) implies that at least one instance of GETACTIVEINS is initiated

with parameter e′′. Let Cgai be the configuration preceding the execution of some of these

instances by some process; notice that Cgai > Cδ′ . To obtain a contradiction, suppose that

no process selects e for 〈in, out〉, after Cδ′ . So, e is not finished before Cgai and Lemma 16

implies the claim; this is a contradiction.

Correctness Page 159 of 187

Proof of the SemanticTM algorithm

In case δ is not the first instance of e for out, then e participates in some loop and

since the first instance of e is completed, claim 2(b)iii, implies that e.ins.startinneriter =

in− 1, before Cδ′ and, by assumption, e.ins.startinneriter does not change after Cδ′ . In

case δ is the first instance of e for out, we consider the following cases. If e does not partici-

pate in some loop, then the code (lines 104 - 105 and 139) implies that e.ins.startinneriter

is never updated, so at Cdelta′ and after Cδ′ , e.ins.startinneriter has its initial value,

that is 0. Also, since e does not participate in some loop, in = 0. So, in this case,

e.ins.startinneriter = in. If e participates in some loop, then claim 2(b)iii implies that

e.ins.startinneriter = in before Cδ′ and does not change after Cδ′ . Then, Lemma 17

implies that δ is executed by some process, after Cδ′ . So, claim 2a holds. This is a contra-

diction.

So, at least one process executes e for 〈in, out〉.

We consider fist that e = read on x. The code (lines 113 - 114) implies that at least

one process initiates an instance of RESOLVEDD with parameters e, out, and x. Then, the

code (lines 129 - 131) implies that at least one process executes an instance of the CAS of

line 131; let CS′ be the first instance of this CAS executed by these processes. If δ is the first

instance of e, recall that e.ins.outDD is initialized to 0. If δ is not the first instance of e, by

assumption, all instances of e that precede δ in PO are applied. Also, Lemma 13 implies

that any instance of e that follows δ in PO can be executed only after δ is completed. So,

the code (lines 130 - 131) implies that CS′ is successful and claim 2(b)i holds.

We consider now that e = write on x and e is the dth, d > 0, write on x. The code

(lines 113, 115, and 118) implies that at least one process initiates an instance of UPDATEDI

with parameters x,−, e, out. Then, the code (lines 129 - 131) implies that at least one

process executes an instance of the CAS of line 124; let CS′′ be the first instance of this CAS

executed by these processes. If δ is the first instance of e, recall that e.ins.oldvrec.inum

is initialized to 0. If δ is not the first instance of e, by assumption, all instances of e that

precede δ in PO are completed. Also, Lemma 13 implies that any instance of e that follows

δ in PO can be executed only after δ is completed. So, CS′′ is successful and claim 2(b)iiA

holds.

Since, any instance of e that follows δ inPO can be executed only after δ is completed,

the code (lines 125-126) implies that at least one process evaluates to true the statement of

line 126. Thus, at least one process executes an instance of the CAS of line 127; let CS′′′

be the first instance of this CAS executed by these processes. If d = 1, recall that x.ver is

Page 160 of 187 Correctness

Proof of the SemanticTM algorithm

initialized to 0. If d > 1, by assumption, all instances of transactional instruction that write

x and precede δ in PO are completed. Also, Lemma 13 implies that any instance of e that

follows δ in PO can be executed only after δ is completed. So, CS′′′ is successful and claim

2(b)iiB holds.

We consider now that e = cond, e either handles a loop or participates in some loop,

and its decision is to initiate inner iteration in+ 1. The code (lines 103 - 105) implies that at

least one process initiates an instance of INITIALIZEDEPENDENTCONDS with parameters

e and in + 1. Then, consider a cond instruction c ∈ e.ins.outCD. Let k be the value

of c.ins.cnt after c completed its last inner iteration during its inth outer iteration. If δ is

the first instance of e, recall that c.ins.cnt is initialized to 0. If δ is not the first instance of

e, by assumption, all instances of e that precede δ in PO are completed. Also, Lemma 13

implies that any instance of e that follows δ inPO can be executed only after δ is completed.

So, since inIter = in + 1 (since INITIALIZEDEPENDENTCONDS is initiated with second

parameter in+1), at least one process evaluates as true the first condition of line 138. Then,

since, by assumption at least one inner iterations has been initiated for e during its inth outer

iteration, claim 2(b)iii of the induction hypothesis implies that at least one process evaluates

as true the second condition of line 138. Thus, at least one process executes an instance of

the CAS of line 139; let CS′′′′ be the first instance of this CAS executed by these processes.

If δ is the first instance of e, recall that c.ins.startinneriter is initialized to 0. If δ is not

the first instance of e, by assumption, all instances of e that precede δ in PO are completed.

Also, Lemma 13 implies that any instance of e that follows δ in PO can be executed only

after δ is completed. So, CS′′′′ is successful and claim 2(b)iii holds.

Suppose now that claims 2c and 2d do not hold. In case δ is not last instance of e

for out, e = cond, e does not handle a loop, and e participates in some loop, (i.e. δ is

the first instance of e for out) claim 2(b)iii implies that e.ins.startinneriter = in (that is

e.ins.startinneriter 6= in− 1), before CI′ and does not change after CI′ . In case δ is the

last instance of e for out, e = cond, e does not handle a loop, and e participates in some

loop, (i.e. δ is the second instance of e for out) since the first instance of e is completed

and by claim 2(b)iii, it follows that e.ins.startinneriter = in − 1, before CI′ and, by

assumption, e.ins.startinneriter does not change after CI′ . Moreover, by Lemma 13,

claim 1, and by assumption, it follows that all instances of e that precede δ are completed,

before some process executes e for 〈in, out〉, and since δ does not complete no instance of

e that follows δ completes. Then, Lemma 18 implies that claims 2c and 2d hold. This is a

contradiction.

Correctness Page 161 of 187

Proof of the SemanticTM algorithm

Recall that SemanticTM processes transactions one after the other. Let S =

T1, T2, . . . , Tk, k > 0, be the sequence of transactions processed by SemanticTM. While

processing each transaction Ti, 0 < i ≤ k, SemanticTM places each transactional in-

structions of Ti in the appropriate di-list, together with its dependencies and respecting the

sequential semantics of Ti’s instructions. So, in each di-list, the transactional instructions of

the transactions in S respect the order of S .

We say that a value of some data item x is correct at some configuration C, if it is the

value written by the last instance of a write instruction that updates x before C. We say

that an instance of a read instruction is correct at C, if it reads a value that is correct at C.

We say that an instance of a write instruction is correct at C, if it updates x with a value

v that is computed using values that are correct at C. We say that an instance of a cond

instruction that evaluates its condition is correct at C, if this evaluation is performed using

values that are correct at C.

Below we prove that all instances of transactional instructions that occur in α are

correct. We remark that by doing so, we also prove that SemanticTM satisfies linearizability

(and opacity).

Theorem 20. The instances of transactional instructions that occur in α are correct.

Proof. The proof is by induction on the place of some instance of a transactional instruction

in PO. Fin any k > 0 and assume that the claim holds for all the instances of PO up to the

(k − 1)st. We prove that the claims holds also for kth instance. Let δ be the kth instance

of PO and let δ be the instance of some transactional instruction e. Lemma 19 (claim 2a)

implies that at least one process executes δ.

We consider first that e = read on some data item x, placed in the di-list lx of x.

Lemma 19 (claim 2(b)i) implies that exactly one process reads (line 131) a value v of x for

δ; let p be this process. The code implies that p read v on line 129 from the direc of x,

while p executes δ. So, since all the write instructions that operate on x are contained in

lx, Lemma 19 (claims 1 and 2(b)iiB) implies the claim.

We consider now that e = write on x. Lemma 19 (claim 2(b)iiB) implies that

exactly one process writes (line 131) a value v in x for δ; let p′ be this process. The code

implies that p′ calculates v on line 117 using values read on line 116 through the val field

Page 162 of 187 Correctness

Experimental Evaluation

of each transactional instruction in arrayDD, while p′ executes δ. The code (lines 30, 28,

94, and 95) implies that arrayDD ∈ {e.ins.inDD, e.ins.inDDnner}. Thus, Lemma 19

(claims 1 and 2(b)i) implies the claim.

We consider now that e = cond. In case δ is an instance of e that evaluates the

condition of e, then the code implies that at least one process performs this evaluation on

line 102 using values read on line 101 through the val field of each transactional instruction

in arrayDD, while some process executes δ. The code (lines 30, 28, 94, and 95) implies

that arrayDD ∈ {e.ins.inDD, e.ins.inDDnner}. Thus, Lemma 19 (claims 1 and 2(b)i)

implies the claim.

6.5 Experimental Evaluation

In this section, we present some experimental results on the performance of SemanticTM.

6.5.1 The system

We use a Core i7-4770 3.4 GHz Haswell processor, running Linux 3.9.1-64-net1 x86_64.

This processor has 4 cores, each with 2 hyperthreads, and hyperthreads enabled. Each core

has a private 32KB 8-way associative level-1 data cache and a 256KB 8-way level-2 data

cache. The chip further includes a shared 8MB level-3 cache. The cache lines are each

64-bytes.

The benchmark code was written in C and compiled with GCC-4.8.1. We compare

SemanticTM to GccSTM, the gcc’s STM support which was introduced in GCC-4.7 [33].

GccSTM is considered as the industry STM standard.

6.5.2 Tested Workload

We study four micro-benchmarks that execute simple static transactions, testing different

conflict patterns among them. In each of our benchmarks, we execute 105 transactions and

have N ∈ {1, 2, . . . , 8} worker processes W1, . . . ,Wn work on N data items and their

associated di-lists V1, . . . , VN . For our experiments, we consider a simplified version of Se-
manticTM the code of which works as follows; the type definitions and its pseudocode are

presented in Figure 6.10. Before the beginning of each experiment, a single process places

Page 163 of 187

Experimental Evaluation

1 shared Ditem[M]: value /* the value of each data item */

2 shared List[M]: array of entry records /* di-list of each data item */

3 type entry
4 ins: {

〈iType : read,
outDD : value〉, /* implements the output data dependencies of ins */

〈iType : write,
inDD[] : ptr to value, /* implements the input data dependencies of ins */

f : function〉,
〈iType : cond,
inDD[] : ptr to value, /* implements the input data dependencies of ins */

f : function,
decision : boolean〉 /* implements the output control dependencies of ins */

}

5 APPLYINSTRUCTIONS() by process p:
6 for each element eptr ∈ List[p] do /* as long as there is work */

7 if (eptr → pcond 6= null) /* if eptr participates in some block, waitthen
8 wait until eptr → pcond→ decision 6= ⊥ its input control dependency to be resolved */

9 if (eptr → pcond→ decision = false) then continue
/* if eptr is a read, resolve its output data dependencies */

10 if (eptr → ins.iType = read) then eptr → outDD := Ditem[p]
11 else /* otherwise, read the values of the input data dependencies of eptr */

12 values := RETURNDDVALUES(eptr)
13 /* if eptr is a write on data item x, calculate the new value of x, and update it */

14 if (eptr → ins.iType = write) thenDitem[p] := eptr → f(values)
/* otherwise, eptr is a cond, calculate its decision and resolve its output control dependencies */

15 else eptr → decision := eptr → ins.f(values)

16 〈values[] : value〉 RETURNDDVALUES(eptr : ptr to entry) by process p:
for each element d ∈ eptr → ins.inDD with index j do /* for each input data dependency d of eptr

17 wait until *d 6= ⊥ wait until d is resolved

18 values[j] :=*d and maintain its value into values */

19 return values

Figure 6.10: Type Definitions, and the Code of APPLYINSTRUCTIONS and RETURND-
DVALUES of the Simplified Version of SemanticTM

Page 164 of 187 Tested Workload

Experimental Evaluation

1 Vk ← V(k−2)%N + 1
2 wait for some time
3 V(k+1)%N ← V(k−1)%N + 1

T1

4 add read to V(k−2)%N

5 add write to Vk dep on V(k−2)%N followed by wait
6 add read to V(k−1)%N

7 add write to V(k+1)%N dep on V(k−1)%N

T1 - SemanticTM

8 Vk ← Vk + 1
9 wait for some time
10 Vk ← Vk + 1

T2

11 V1 ← V1 + 1
12 wait for some time
13 V1 ← V1 + 1

T3

14 V1 ← 10000
15 while (V1 6= 0) do
16 if (V1 > 0) then
17 V1 ← V1 + 1
18 wait for some time
19 Vk ← Vk + 1

T4

Figure 6.11: The Code of Transaction Ti, 1 ≤ i ≤ 4, Executed by process k, 1 ≤ k ≤ N

the instructions of each transaction in each di-list, with the difference that loops are now un-

folded; we remark that in our experiments the number of times a loop is executed is known

before the corresponding transaction is initiated. Specifically, considering a loop cond in-

struction c, instead of inserting only a single instance for c and its block’s instructions into

di-lists, multiple instances are inserted, one for each iteration of the loop; by doing this, any

cond instruction is now manipulated as a conditional statement (i.e. if, then, else).

Then, N workers are initiated and worker Wk, 1 ≤ k ≤ N , processes all transactional

instructions contained in di-list Vk; instead of having each worker to repeatedly choose, uni-

formly at random, a di-list and execute the instructions of this list. This static assignment of

workers to lists trades wait-freedom for performance. We remark that no integration of gcc’s

STM support was required in order to implement this simplified version of SemanticTM.

The GccSTM code works on N variables as well, and initiates exactly N processes,

each executing the same type and number of transactions as in SemanticTM. In both Gcc-
STM and SemanticTM, in each benchmark, each worker process executes transactions of

the same type. We denote by Ti, 1 ≤ i ≤ 4, the transactions’ type executed in our ith

benchmark. The code of Ti executed by Wk is shown in Figure 6.11; also, the Seman-
ticTM version of the code of T1 is presented. Notice that all the accesses performed by each

of our four benchmarks are shared accesses. So, there is no need to use selective instru-

mentation in our code (i.e., only instrument variables that are actually potential sources of

contention).

We measure the throughput, i.e. the number of transactions that are executed suc-

cessfully per second. The interesting thing about the workload of the 1st benchmark is that

Tested Workload Page 165 of 187

Experimental Evaluation

 0

 2

 4

 6

 8

 10

 12

1 2 3 4 5 6 7 8

M
 o

ps
 /

se
c

threads

GccSTM
SemanticTM

(a) T1 (conflicts) - Short Wait Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 2 3 4 5 6 7 8

M
 o

ps
 /

se
c

threads

GccSTM
SemanticTM

(b) T1 (conflicts) - Long Wait Time

Figure 6.12: Transactions With Long and Short Wait Time, to Demonstrate the Impact of
Different Amounts of Local Work, for T1

Page 166 of 187 Tested Workload

Experimental Evaluation

 2

 4

 6

 8

 10

 12

 14

 16

1 2 3 4 5 6 7 8

M
 o

ps
 /

se
c

threads

GccSTM
SemanticTM

(a) T2 (no-conflict) - Short Wait Time

 0

 0.5

 1

 1.5

 2

 2.5

1 2 3 4 5 6 7 8

M
 o

ps
 /

se
c

threads

GccSTM
SemanticTM

(b) T2 (no-conflict) - Long Wait Time

Figure 6.13: Transactions With Long and Short Wait Time, to Demonstrate the Impact of
Different Amounts of Local Work, for T2

Tested Workload Page 167 of 187

Experimental Evaluation

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

1 2 3 4 5 6 7 8

M
 o

ps
 /

se
c

threads

GccSTM
SemanticTM

(a) T3 (counter) - Short Wait Time

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

1 2 3 4 5 6 7 8

M
 o

ps
 /

se
c

threads

GccSTM
SemanticTM

(b) T3 (counter) - Long Wait Time

Figure 6.14: Transactions With Long and Short Wait Time, to Demonstrate the Impact of
Different Amounts of Local Work, for T3

Page 168 of 187 Tested Workload

Experimental Evaluation

 0

 2

 4

 6

 8

 10

 12

1 2 3 4 5 6 7 8

M
 o

ps
 /

se
c

threads

GccSTM
SemanticTM

(a) T4 (cond) - Short Wait Time

 0

 0.5

 1

 1.5

 2

 2.5

1 2 3 4 5 6 7 8

M
 o

ps
 /

se
c

threads

GccSTM
SemanticTM

(b) T4 (cond) - Long Wait Time

Figure 6.15: Transactions With Long and Short Wait Time, to Demonstrate the Impact of
Different Amounts of Local Work, for T4

Tested Workload Page 169 of 187

Experimental Evaluation

GccSTM, as well as any other optimistic TM algorithm, will abort all transactions while

executing line 2. The reason is that while Wk waits by calling wait, Wk−2 writes a data

item (Vk−2) which is contained in Wk’s read-set. However, Wk realizes that it has to abort

only at commit time. Thus, the longer each transaction waits, the higher is the penalty (in

terms of the number of aborted transactions) that an optimistic TM pays. We remark that

the use of wait is realistic since it simulates the execution of local work which might be

necessary.

In the 2nd benchmark, no transaction ever aborts, since each of them accesses a dis-

joint set of data items (Wk accesses only Vk). Using this benchmark, the overhead added

by the SemanticTM’s implementation is compared against the overhead added by Gcc-
STM. In the 3rd benchmark each transaction increments by one the same shared counter

(V1). Finally, the 4th benchmark studies SemanticTM’s performance for transactions with

conditionals and loops.

6.5.3 Results

The graphs of Figures 6.12 to 6.15 show the performance advantage of SemanticTM in

comparison to GccSTM. As expected, this advantage is significant in the 1st experiment

(Figure 6.12), since the abort ratio of GccSTM is very high (for eight processes, it is 8

times faster than GccSTM when wait time is short and 20 times faster when wait time is

long). In the 3rd experiment (Figure 6.14), GccSTM causes a smaller number of aborts,

since at the first write, V1 is locked due to its encounter-time-locking algorithm [33]. We

remark that in encounter time locking V1 is locked when WRITEDI is executed for it, as

opposed to acquiring the lock later during commit time. Still its performance degrades.

However, since the di-list of V1 becomes a bottleneck, SemanticTM is only 2.5 times faster

than GccSTM when wait time is short, and 2 times faster when wait time is long.

Finally, the 2nd experiment (6.13) where no conflicts occur, show that the overhead

added by SemanticTM is less than the overhead added by GccSTM, since SemanticTM is

almost 2 times faster than GccSTM in this experiment. For a small number of processes, the

gap in performance is small for long wait time, since the overhead added by the GccSTM
is amortized.

Page 170 of 187 Results

Chapter 7

Conclusion and Future Research

Page 171 of 187

Synopsis of Contribution

7.1 Synopsis of Contribution

In this thesis, we studied two well-established mechanisms for automatically executing se-

quential code segments in a concurrent environment from the perspective of achieving en-

hanced parallelism without sacrificing correctness and progress. We studied three major

techniques for enhancing parallelism, namely disjoint-access parallelism, speculation, and

fine-grained parallelism at instruction level.

In the avenue of studying disjoint-access parallel algorithms, we proved that it is not a

coincidence that no algorithm in the literature ensures both disjoint-access parallelism and

wait-freedom. Specifically, we proved that there is no linearizable universal construction

that ensures both disjoint-access parallelism and wait-freedom. To prove our impossibil-

ity result we considered a data structure that can grow arbitrarily large in some execution;

specifically, a singly liked-list.

For data structures that have a bound on the number of data items accessed by each

operation they support, we also presented a universal construction (DAP-UC) that ensures

both wait-freedom and disjoint-access parallelism. We further introduced and studied a

weaker version of disjoint-access parallelism, which still however allow for increased paral-

lelism, and we presented We presented a universal construction (TI-DAP-UC) that ensures

wait-freedom and this version of disjoint-access parallelism.

In the STM context, as a first step towards achieving enhanced parallelism, we intro-

duced WFR-TM, an STM algorithm which attempts to combine some of the advantages of

pessimistic and optimistic STM. Finally, we introduced SemanticTM, an STM algorithm

in which parallelism is achieved at the level of transactional instructions; i.e. not only the

transactions themselves but also the instructions of each transaction may be executed con-

currently. For simple transactions and assuming compiler support, SemanticTM guarantees

that all transactions are wait-free, by ensuring that transactions never conflict.

When considering specific applications, some of the above algorithms may be advanta-

geous over the others, in terms of achieved performance. For highly-contented applications,

i.e. those that the concurrent execution of its operations result on highly-contented execu-

tions, DAP-UC can ensure both disjoint-access parallelism, strong progress guarantees, and

high fault tolerance. For applications whose operations are read-intensive, WFR-TM offers

strong progress guarantees and high fault tolerance for the read-only operations. Finally,

for applications that contain simple operations such that the dependencies between the in-

Page 172 of 187

Directions for Future Work and Research

structions of each operation are known at compile time, SemanticTM offers strong progress

guarantees and high fault tolerance for all operations.

7.2 Directions for Future Work and Research

Although our work on disjoint-access parallel and wait-free universal constructions and

STMs answers an open research problem, several problems arise that deserve further re-

search. An interesting future research direction would be to introduce and study other

meaningful weaker versions of disjoint-access parallelism that still allow for increased par-

allelism. A family of such properties could be derived by considering versions of disjoint-

access parallelism which allows processes to interfere on a set of base objects. Considering

different types of base objects and different sizes of such sets one could get an hierarchy

of algorithms which satisfy S-ignoring disjoint-access parallelism, for which it is possible

to provide both wait-free and disjoint-access parallel concurrent implementations for either

any data structure or data structures with specific properties.

Another interesting future research direction is to identify the properties of data struc-

tures for which it is either possible or impossible to provide both wait-free and disjoint-

access parallel concurrent implementations for any data structure. For instance, TI-DAP-
UC ensures both timestamp-ignoring disjoint-access parallelism and wait-freedom for data

structures whose operations have a bounded number of entry points. Extending the algo-

rithm to work for data structures with unbounded number of entry points, or proving an

impossibility result, is an open problem. Moreover, both DAP-UC and TI-DAP-UC re-

quires Θ(n) space overhead per data item. It is an open problem whether a more space

efficient universal construction can be designed. Similar questions arise regarding the step

complexity of both algorithms.

WFR-TM attempts to reconcile positive aspects of the pessimistic and optimistic ap-

proaches in STM computing. Specifically, WFR-TM is a STM implementation that ensures

wait-free execution of read-only transactions. It additionally, provides a deadlock-free, op-

timistic implementation of update transactions. Because of the fine-grained locking and the

waiting mechanism, update transactions in WFR-TM are blocking. Recall that an update

transaction may end up waiting for the termination of read-only transactions that are stalling

or stopped. Future work could deal with eliminating these progress problems. Helping

mechanisms can be introduced to the algorithm to make the update transaction non-blocking.

Page 173 of 187

Directions for Future Work and Research

It is also interesting to study whether more efficient STM algorithms that WFR-TM
and be designed by trading opacity. Moreover, it is interesting to investigate whether there

are trade-offs between liveness and safety, i.e. can stronger progress properties be achieved

by trading safety?

In the STM computing, several open problems arise in the direction of achieving more

fine-grained parallelism, as well. The current version of SemanticTM assumes that each

transaction accesses a known set of data items. This can be overcome by using wildcards;

a wildcard is an instruction which accesses a data item but this data item is known only at

runtime. As an example, consider a transaction that accesses an array; however, the exact

elements of the array that it accesses become known only at runtime. To cope with this

difficulty (or other similar cases), SemanticTM can maintain a di-list L for the entire array,

as well as one list Li, 1 ≤ i ≤ m, for each of its elements, where m is the array size. The

scheduler places each instruction e that accesses a (possibly unknown) element of the array

in L. When later (at runtime), becomes known that the element is that in position i of the

array, e is moved in list Li. A similar strategy may work for supporting dynamic memory

allocation, if we consider the memory heap as an array.

SemanticTM is currently achieving fine-grain parallelism at the level of transactional

instructions by maintaining a di-list for each data item. Its space overhead can be decreased

by maintaining a single di-list for a set of more than one data items. So, there is a tradeoff

between the space overhead and the granularity of parallelism achieved by it.

Recall that in SemanticTM there are output dependencies from all instructions of a

block to its cond and vice versa. However, the scheduler may choose to add such depen-

dencies from the block’s cond instruction only to those instructions that do not depend on

other block instructions, since the rest have dependencies originating from them and there-

fore they will be executed after them. Moreover, no output control dependencies to a block’s

cond from those block instructions that do not contribute to the evaluation of the cond are

needed. Such optimizations may have positive impact on the performance of SemanticTM.

Page 174 of 187

Author’s Publications

Page 175 of 187

Directions for Future Work and Research

BOOK CHAPTERS

Hillel Avni, Shlomi Dolev and Eleftherios Kosmas, “Proactive Contention Avoidance”, Eds.

Rachid Guerraoui, EPFL, and Paolo Romano, INESC-ID, Springer-Verlag, 2014, under re-

vision. I have contributed to the following sections: 1) No Aborts and No Serialization, 2)

Prior TM Algorithms for Abort Elimination, 3) SemanticTM in a Nutshell, and 4) Seman-
ticTM.

Panagiota Fatourou, Mykhailo Iaremko, Eleni Kanellou, and Eleftherios Kosmas, “Software

Transactional Memory Algorithms”, Eds. Rachid Guerraoui, EPFL, and Paolo Romano,

INESC-ID, Springer-Verlag, 2014, under revision. I have contributed to the following sec-

tions: 1) Introduction, 2) The system, 3) Transactional Memory Model, 4) STM Design

Decisions and Mechanisms, 5) Interface for Transactional Operations, and 6) Non-Blocking

Algorithms.

JOURNALS

Faith Ellen, Panagiota Fatourou, Eleftherios Kosmas, Alessia Milani, and Corentin Travers,

“Universal Constructions that Ensure Disjoint-Access Parallelism and Wait-Freedom”, sub-

mitted to Distributed Computing, 2014.

CONFERENCES

Panagiota Fatourou, Eleni Kanellou, Eleftherios Kosmas, and M. Forhad Rabbi, “WFR-

TM: Wait-Free Readers Without Sacrificing Speculation of Writers”, Presented in the 18th

International Conference on Principles of Distributed Systems (OPODIS ’14), Cortina

d’Ampezzo, Italy, December 2014. I have contributed to all parts of this paper, with my

main contribution to be on designing the WFR-TM algorithm, describing its pseudocode,

and writing the proof of its correctness and progress properties.

Hillel Avni, Shlomi Dolev, Panagiota Fatourou, and Eleftherios Kosmas, “Abort Free Se-

manticTM by Dependency Aware Scheduling of Transactional Instructions”, in Proceed-

ings of the 2014 International Conference on Networked Systems (NETYS ’14), Marrakech,

Morocco, May 2014. I have contributed to the biggest part of this paper. My contribution

on the Experimental Evaluation Section was on the selection of the appropriate benchmarks

and on finalizing the implementation of the simplified version of SemanticTM.

Faith Ellen, Panagiota Fatourou, Eleftherios Kosmas, Alessia Milani, and Corentin Travers,

Page 176 of 187

Directions for Future Work and Research

“Universal Constructions that Ensure Disjoint-Access Parallelism and Wait-Freedom”, 31st

Annual ACM Symposium on Principles of Distributed Computing (PODC ‘12), Madeira,

Portugal, July 2012. I mostly contributed to the production of the pseudocode of DAP-
UC, its description, and the proof of its correctness, its progress, and its disjoint-access

parallelism property. I also contributed contributed to the main idea of the impossibility

result.

WORKSHOPS

Shlomi Dolev, Panagiota Fatourou and Eleftherios Kosmas, “Abort Free SemanticTM by

Dependency Aware Scheduling of Transactional Instructions”, 5th Workshop on the Theory

of Transactional Memory (WTTM ’13), Jerusalem, Israel, October 2013. I have contributed

to all parts of this paper.

Faith Ellen, Panagiota Fatourou, Eleftherios Kosmas, Alessia Milani and Corentin Travers,

“Timestamp-Ignoring Wait-Free Universal Constructions for Unbounded Data Structures”,

5th Workshop on the Theory of Transactional Memory (WTTM ’13), Jerusalem, Israel, Oc-

tober 2013. I have contributed on defining timestamp-ignoring disjoint-access parallelism,

designing the TI-DAP-UC algorithm, and writing its description.

Shlomi Dolev, Panagiota Fatourou and Eleftherios Kosmas, “Abort Free SemanticTM

by Dependency Aware Scheduling of Transactional Instructions”, Euro-TM Workshop on

Transactional Memory (WTM ’13), Prague, Czech Republic, April 14, 2013. I have con-

tributed to all parts of this paper.

Shlomi Dolev, Panagiota Fatourou, and Eleftherios Kosmas, “Abort Free SemanticTM by

Dependency Aware Scheduling of Transactional Instructions”, 8th Workshop on Transac-

tional Computing (TRANSACT ‘13), Houston, TX, USA, March 2013. I have contributed to

all parts of this paper, including the description of how SemanticTM works, designing the

SemanticTM algorithm, describing its pseudocode, and describing its possible extensions.

I also worked on the Introduction and Related Work Sections.

Page 177 of 187

Bibliography

Page 179 of 187

[1] M. Herlihy, “A methodology for implementing highly concurrent data structures,”
in Proceedings of the 2nd ACM SIGPLAN Symposium on Principles & Practice
of Parallel Programming (PPOPP). ACM, 1990, pp. 197–206. [Online]. Available:
http://doi.acm.org/10.1145/99163.99185

[2] M. Herlihy, “Wait-free synchronization,” ACM Trans. Program. Lang. Syst., vol. 13, pp.
124–149, 1991. [Online]. Available: http://doi.acm.org/10.1145/114005.102808

[3] N. Shavit and D. Touitou, “Software transactional memory,” in Proceedings of the
fourteenth annual ACM symposium on Principles of distributed computing, ser. PODC
’95. New York, NY, USA: ACM, 1995, pp. 204–213. [Online]. Available: http:
//doi.acm.org/10.1145/224964.224987

[4] M. Herlihy and J. E. B. Moss, “Transactional memory: architectural support for lock-free data
structures,” vol. 21, no. 2. New York, NY, USA: ACM, May 1993, pp. 289–300. [Online].
Available: http://doi.acm.org/10.1145/173682.165164

[5] M. Herlihy and J. M. Wing, “Linearizability: A correctness condition for concurrent objects,”
ACM Transactions on Programming Languages and Systems, vol. 12, no. 3, pp. 463–492, 1990.

[6] R. Guerraoui and M. Kapalka, “On the correctness of transactional memory,” in
Proceedings of the 13th ACM SIGPLAN Symposium on Principles and practice of parallel
programming, ser. PPoPP ’08, New York, USA, 2008, pp. 175–184. [Online]. Available:
http://doi.acm.org/10.1145/1345206.1345233

[7] V. Bushkov, R. Guerraoui, and M. Kapalka, “On the liveness of transactional memory,”
in Proceedings of the 2012 ACM Symposium on Principles of Distributed Computing,
ser. PODC ’12. New York, NY, USA: ACM, 2012, pp. 9–18. [Online]. Available:
http://doi.acm.org/10.1145/2332432.2332435

[8] J.-T. Wamhoff, T. Riegel, C. Fetzer, and P. Felber, “Robustm: A robust software transactional
memory,” in Proceedings of the 12th International Symposium Stabilization, Safety, and Secu-
rity of Distributed Systems (SSS), ser. Lecture Notes in Computer Science, vol. 6366. Springer,
2010, pp. 388–404.

[9] Y. Afek, M. Merritt, G. Taubenfeld, and D. Touitou, “Disentangling multi-object operations
(extended abstract),” in Proceedings of the 16th annual ACM Symposium on Principles
of Distributed Computing (PODC). ACM, 1997, pp. 111–120. [Online]. Available:
http://doi.acm.org/10.1145/259380.259431

[10] G. Barnes, “A method for implementing lock-free shared-data structures,” in Proceedings of
the 5th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA). ACM,
1993, pp. 261–270.

Page 181 of 187

http://doi.acm.org/10.1145/99163.99185
http://doi.acm.org/10.1145/114005.102808
http://doi.acm.org/10.1145/224964.224987
http://doi.acm.org/10.1145/224964.224987
http://doi.acm.org/10.1145/173682.165164
http://doi.acm.org/10.1145/1345206.1345233
http://doi.acm.org/10.1145/2332432.2332435
http://doi.acm.org/10.1145/259380.259431

[11] H. Attiya, E. Hillel, and A. Milani, “Inherent limitations on disjoint-access parallel implemen-
tations of transactional memory,” Theory Comput. Syst., vol. 49, no. 4, pp. 698–719, 2011.

[12] H. Attiya and E. Hillel, “A single-version stm that is multi-versioned permissive,” Theory Com-
put. Syst., vol. 51, no. 4, pp. 425–446, 2012.

[13] D. Dice and N. Shavit, “What Really Makes Transactions Faster?” in 1st Workshop on Trans-
actional Computing, 2006, electronic, no proceedings.

[14] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer, III, “Software transactional memory
for dynamic-sized data structures,” in Proceedings of the Twenty-second Annual Symposium
on Principles of Distributed Computing, ser. PODC ’03. New York, NY, USA: ACM, 2003,
pp. 92–101. [Online]. Available: http://doi.acm.org/10.1145/872035.872048

[15] K. Fraser, “Practical lock freedom,” University of Cambridge, Computer Laboratory, Tech.
Rep., 2003, http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-579.pdf.

[16] M. Herlihy, V. Luchangco, P. Martin, and M. Moir, “Nonblocking memory management
support for dynamic-sized data structures,” ACM Trans. Comput. Syst., vol. 23, pp. 146–196,
2005. [Online]. Available: http://doi.acm.org/10.1145/1062247.1062249

[17] V. J. Marathe, W. N. S. III, and M. L. Scott, “Adaptive software transactional memory,” in Pro-
ceedings of the 19th International Conference on Distributed Computing (DISC), ser. Lecture
Notes in Computer Science, vol. 3724. Springer, 2005, pp. 354–368.

[18] F. Tabba, M. Moir, J. R. Goodman, A. W. Hay, and C. Wang, “Nztm: nonblocking zero-
indirection transactional memory,” in Proceedings of the 21st Annual ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA). ACM, 2009, pp. 204–213.

[19] V. Gramoli, D. Harmanci, and P. Felber, “Toward a theory of input acceptance for transactional
memories,” in Proceedings of the 12th International Conference on Principles of Distributed
Systems, ser. OPODIS ’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 527–533.

[20] R. Guerraoui, T. A. Henzinger, and V. Singh, “Permissiveness in transactional memories,” in
Proceedings of the 22Nd International Symposium on Distributed Computing, ser. DISC ’08.
Berlin, Heidelberg: Springer-Verlag, 2008, pp. 305–319.

[21] R. Guerraoui and M. Kapalka, “The semantics of progress in lock-based transactional
memory,” SIGPLAN Not., vol. 44, no. 1, pp. 404–415, Jan. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1594834.1480931

[22] I. Keidar and D. Perelman, “On avoiding spare aborts in transactional memory,” in In SPAA
2009, pp. 59–68.

Page 182 of 187

http://doi.acm.org/10.1145/872035.872048
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-579.pdf
http://doi.acm.org/10.1145/1062247.1062249
http://doi.acm.org/10.1145/1594834.1480931

[23] D. Perelman, R. Fan, and I. Keidar, “On maintaining multiple versions in stm,” in Proceedings
of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing,
ser. PODC ’10. New York, NY, USA: ACM, 2010, pp. 16–25. [Online]. Available:
http://doi.acm.org/10.1145/1835698.1835704

[24] Y. Afek, A. Matveev, and N. Shavit, “Pessimistic software lock-elision,” in Proceedings
of the 26th international conference on Distributed Computing, ser. DISC’12. Berlin,
Heidelberg: Springer-Verlag, 2012, pp. 297–311. [Online]. Available: http://dx.doi.org/10.
1007/978-3-642-33651-5_21

[25] A. Matveev and N. Shavit, “Towards a fully pessimistic stm model,” 2012.

[26] R. Guerraoui and M. Kapałka, “On obstruction-free transactions,” in Proceedings of the 20th
Annual Symposium on Parallelism in Algorithms and Architectures (SPAA). ACM, 2008, pp.
304–313. [Online]. Available: http://doi.acm.org/10.1145/1378533.1378587

[27] A. Israeli and L. Rappoport, “Disjoint-access-parallel implementations of strong shared
memory primitives,” in Proceedings of the 13th Annual ACM Symposium on Principles
of Distributed Computing (PODC). ACM, 1994, pp. 151–160. [Online]. Available:
http://doi.acm.org/10.1145/197917.198079

[28] F. Ellen, P. Fatourou, and E. Ruppert, “The space complexity of unbounded timestamps,”
in Proceedings of the 21st International Conference on Distributed Computing, ser.
DISC’07. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 223–237. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2393794.2393815

[29] D. Dice, O. Shalev, and N. Shavit, “Transactional locking ii,” in Proceedings of the 20th
international conference on Distributed Computing, ser. DISC’06. Berlin, Heidelberg:
Springer-Verlag, 2006, pp. 194–208. [Online]. Available: http://dx.doi.org/10.1007/11864219_
14

[30] T. Riegel, P. Felber, and C. Fetzer, “A lazy snapshot algorithm with eager validation,”
in Proceedings of the 20th International Conference on Distributed Computing, ser.
DISC’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp. 284–298. [Online]. Available:
http://dx.doi.org/10.1007/11864219_20

[31] M. F. Spear, V. J. Marathe, W. N. S. III, and M. L. Scott, “Conflict detection and validation
strategies for software transactional memory,” in Proceedings of the 20th International Sym-
posium Distributed Computing (DISC), ser. Lecture Notes in Computer Science, vol. 4167.
Springer, 2006, pp. 179–193.

[32] P. Felber, C. Fetzer, P. Marlier, and T. Riegel, “Time-based software transactional memory,”
IEEE Transactions on Parallel and Distributed Systems, vol. 21, pp. 1793–1807, 2010.

Page 183 of 187

http://doi.acm.org/10.1145/1835698.1835704
http://dx.doi.org/10.1007/978-3-642-33651-5_21
http://dx.doi.org/10.1007/978-3-642-33651-5_21
http://doi.acm.org/10.1145/1378533.1378587
http://doi.acm.org/10.1145/197917.198079
http://dl.acm.org/citation.cfm?id=2393794.2393815
http://dx.doi.org/10.1007/11864219_14
http://dx.doi.org/10.1007/11864219_14
http://dx.doi.org/10.1007/11864219_20

[33] T. Riegel, “Software transactional memory building blocks,” Ph.D. dissertation, Technische
Universität Dresden, Dresden, 01062 Dresden, Germany, 2013. [Online]. Available:
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-115596

[34] P. Jayanti and S. Petrovic, “Efficiently implementing ll/sc objects shared by an unknown num-
ber of processes,” in Proceedings of the 7th International Workshop on Distributed Computing
(IWDC), ser. Lecture Notes in Computer Science, vol. 3741. Springer, 2005, pp. 45–56.

[35] C. H. Papadimitriou, “The serializability of concurrent database updates,” J. ACM, vol. 26,
no. 4, pp. 631–653, Oct. 1979. [Online]. Available: http://doi.acm.org/10.1145/322154.322158

[36] M. Herlihy, V. Luchangco, and M. Moir, “Obstruction-free synchronization: Double-ended
queues as an example,” in Proceedings of the 23rd International Conference on Distributed
Computing Systems, ser. ICDCS ’03. Washington, DC, USA: IEEE Computer Society, 2003,
pp. 522–. [Online]. Available: http://dl.acm.org/citation.cfm?id=850929.851942

[37] H. Attiya and E. Dagan, “Universal operations: unary versus binary,” in Proceedings of the
15th Annual ACM Symposium on Principles of Distributed Computing (PODC). ACM, 1996,
pp. 223–232. [Online]. Available: http://doi.acm.org/10.1145/248052.248097

[38] H. Attiya and E. Hillel, “Built-in coloring for highly-concurrent doubly-linked lists,” Theory
Comput. Syst., vol. 52, no. 4, pp. 729–762, 2013.

[39] H. Attiya and E. Hillel, “Single-version stms can be multi-version permissive,” in Proceedings
of the 12th International Conference on Distributed Computing and Networking, ser.
ICDCN’11. Springer-Verlag, 2011, pp. 83–94. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1946143.1946151

[40] H. Attiya and E. Hillel, “Highly concurrent multi-word synchronization,” Theor. Comput. Sci.,
vol. 412, no. 12-14, pp. 1243–1262, 2011.

[41] Y. Afek, D. Dauber, and D. Touitou, “Wait-free made fast,” in Proceedings of the 27th annual
ACM Symposium on Theory of Computing (STOC). ACM, 1995, pp. 538–547.

[42] P. Fatourou and N. D. Kallimanis, “The redblue adaptive universal constructions,” in Proceed-
ings of the 23rd International Symposium Distributed Computing (DISC), ser. Lecture Notes in
Computer Science, vol. 5805. Springer, 2009, pp. 127–141.

[43] P. Fatourou and N. D. Kallimanis, “A highly-efficient wait-free universal construction,” in Pro-
ceedings of the 23rd Annual ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA). ACM, 2011, pp. 325–334.

Page 184 of 187

http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-115596
http://doi.acm.org/10.1145/322154.322158
http://dl.acm.org/citation.cfm?id=850929.851942
http://doi.acm.org/10.1145/248052.248097
http://dl.acm.org/citation.cfm?id=1946143.1946151
http://dl.acm.org/citation.cfm?id=1946143.1946151

[44] J. H. Anderson and M. Moir, “Universal constructions for multi-object operations,” in
Proceedings of the 14th annual ACM symposium on Principles of distributed computing
(PODC). ACM, 1995, pp. 184–193. [Online]. Available: http://doi.acm.org/10.1145/224964.
224985

[45] J. H. Anderson and M. Moir, “Universal constructions for large objects,” IEEE Trans. Parallel
Distrib. Syst., vol. 10, no. 12, pp. 1317–1332, 1999.

[46] P. Chuong, F. Ellen, and V. Ramachandran, “A universal construction for wait-free transaction
friendly data structures,” in Proceedings of the 22nd ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA). ACM, 2010, pp. 335–344. [Online]. Available:
http://doi.acm.org/10.1145/1810479.1810538

[47] T. Crain, D. Imbs, and M. Raynal, “Towards a universal construction for transaction-based
multiprocess programs,” Theor. Comput. Sci., vol. 496, pp. 154–169, 2013.

[48] A. Welc, B. Saha, and A.-R. Adl-Tabatabai, “Irrevocable transactions and their applications,”
in Proceedings of the twentieth annual symposium on Parallelism in algorithms and
architectures, ser. SPAA ’08. New York, NY, USA: ACM, 2008, pp. 285–296. [Online].
Available: http://doi.acm.org/10.1145/1378533.1378584

[49] P. Felber, C. Fetzer, and T. Riegel, “Dynamic performance tuning of word-based software trans-
actional memory,” in PPoPP ’08: Proceedings of the 13th ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming. New York, NY, USA: ACM, 2008, pp. 237–246.

[50] S. M. Fernandes and J. a. Cachopo, “Lock-free and scalable multi-version software
transactional memory,” in Proceedings of the 16th ACM symposium on Principles and practice
of parallel programming, ser. PPoPP ’11. New York, NY, USA: ACM, 2011, pp. 179–188.
[Online]. Available: http://doi.acm.org/10.1145/1941553.1941579

[51] D. Perelman, A. Byshevsky, O. Litmanovich, and I. Keidar, “Smv: Selective multi-versioning
stm.” in DISC, ser. Lecture Notes in Computer Science, D. Peleg, Ed., vol. 6950. Springer-
Verlag, 2011, pp. 125–140.

[52] R. Guerraoui, M. Herlihy, and B. Pochon, “Toward a theory of transactional contention
managers,” in Proceedings of the twenty-fourth annual ACM symposium on Principles of
distributed computing, ser. PODC ’05. New York, NY, USA: ACM, 2005, pp. 258–264.
[Online]. Available: http://doi.acm.org/10.1145/1073814.1073863

[53] W. N. Scherer, III and M. L. Scott, “Advanced contention management for dynamic software
transactional memory,” in Proceedings of the twenty-fourth annual ACM symposium on
Principles of distributed computing, ser. PODC ’05. New York, NY, USA: ACM, 2005, pp.
240–248. [Online]. Available: http://doi.acm.org/10.1145/1073814.1073861

Page 185 of 187

http://doi.acm.org/10.1145/224964.224985
http://doi.acm.org/10.1145/224964.224985
http://doi.acm.org/10.1145/1810479.1810538
http://doi.acm.org/10.1145/1378533.1378584
http://doi.acm.org/10.1145/1941553.1941579
http://doi.acm.org/10.1145/1073814.1073863
http://doi.acm.org/10.1145/1073814.1073861

[54] M. Ansari, M. Luján, C. Kotselidis, K. Jarvis, C. Kirkham, and I. Watson, “Steal-on-abort:
Improving transactional memory performance through dynamic transaction reordering,”
in Proceedings of the 4th International Conference on High Performance Embedded
Architectures and Compilers, ser. HiPEAC ’09. Berlin, Heidelberg: Springer-Verlag, 2009,
pp. 4–18. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-92990-1_3

[55] H. Attiya, L. Epstein, H. Shachnai, and T. Tamir, “Transactional contention management
as a non-clairvoyant scheduling problem,” in Proceedings of the twenty-fifth annual ACM
symposium on Principles of distributed computing, ser. PODC ’06. New York, NY, USA:
ACM, 2006, pp. 308–315. [Online]. Available: http://doi.acm.org/10.1145/1146381.1146428

[56] H. Attiya and A. Milani, “Transactional scheduling for read-dominated workloads,” in
Proceedings of the 13th International Conference on Principles of Distributed Systems, ser.
OPODIS ’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 3–17. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-10877-8_3

[57] H. Attiya and D. Sainz, “Relstm: A proactive transactional memory scheduler,” in Proceedings
of the 8th ACM SIGPLAN Workshop on Transactional Computing, ser. TRANSACT ’13, 2013.

[58] S. Dolev, D. Hendler, and A. Suissa, “Car-stm: scheduling-based collision avoidance and
resolution for software transactional memory,” in Proceedings of the twenty-seventh ACM
symposium on Principles of distributed computing, ser. PODC ’08. New York, NY, USA:
ACM, 2008, pp. 125–134. [Online]. Available: http://doi.acm.org/10.1145/1400751.1400769

[59] R. Motwani, S. Phillips, and E. Torng, “Non-clairvoyant scheduling,” Theor. Comput. Sci., vol.
130, no. 1, pp. 17–47.

[60] R. M. Yoo and H.-H. S. Lee, “Adaptive transaction scheduling for transactional memory
systems,” in Proceedings of the twentieth annual symposium on Parallelism in algorithms and
architectures, ser. SPAA ’08. New York, NY, USA: ACM, 2008, pp. 169–178. [Online].
Available: http://doi.acm.org/10.1145/1378533.1378564

[61] R. Guerraoui, M. Kapalka, and J. Vitek, “Stmbench7: a benchmark for software transactional
memory,” in Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2007, ser. EuroSys ’07. New York, NY, USA: ACM, 2007, pp. 315–324.
[Online]. Available: http://doi.acm.org/10.1145/1272996.1273029

[62] R. Guerraoui, M. Herlihy, M. Kapalka, and B. Pochon, “Robust contention management in soft-
ware transactional memory,” in OOPSLA ’05 Workshop on Synchronization and Concurrency
in Object-Oriented Lanugages (SCOOL ’05), 2005.

[63] A. Dragojević, R. Guerraoui, A. V. Singh, and V. Singh, “Preventing versus curing: avoiding
conflicts in transactional memories,” in Proceedings of the 28th ACM symposium on Principles

Page 186 of 187

http://dx.doi.org/10.1007/978-3-540-92990-1_3
http://doi.acm.org/10.1145/1146381.1146428
http://dx.doi.org/10.1007/978-3-642-10877-8_3
http://doi.acm.org/10.1145/1400751.1400769
http://doi.acm.org/10.1145/1378533.1378564
http://doi.acm.org/10.1145/1272996.1273029

of distributed computing, ser. PODC ’09. New York, NY, USA: ACM, 2009, pp. 7–16.
[Online]. Available: http://doi.acm.org/10.1145/1582716.1582725

[64] H. E. Ramadan, I. Roy, M. Herlihy, and E. Witchel, “Committing conflicting transactions in
an stm,” in Proceedings of the 14th ACM SIGPLAN symposium on Principles and practice
of parallel programming, ser. PPoPP ’09. New York, NY, USA: ACM, 2009, pp. 163–172.
[Online]. Available: http://doi.acm.org/10.1145/1504176.1504201

[65] I. Pandis, R. Johnson, N. Hardavellas, and A. Ailamaki, “Data-oriented transaction execution,”
Proc. VLDB Endow., vol. 3, no. 1-2, pp. 928–939, Sep. 2010. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1920841.1920959

[66] J. Steffan and T. Mowry, “The potential for using thread-level data speculation to
facilitate automatic parallelization,” in Proceedings of the 4th International Symposium on
High-Performance Computer Architecture. Washington, DC, USA: IEEE Computer Society,
1998, pp. 2–. [Online]. Available: http://dl.acm.org/citation.cfm?id=822079.822712

[67] J. G. Steffan, C. B. Colohan, and T. C. Mowry, “Architectural support for thread-level data
speculation,” School of Computer Science, Carnegie Mellon University, Tech. Rep. Tech. rep.
CMU-CS-97-188, 1997.

[68] M. Cintra and D. R. Llanos, “Design space exploration of a software speculative parallelization
scheme,” IEEE Trans. Parallel Distrib. Syst., vol. 16, no. 6, pp. 562–576, Jun. 2005. [Online].
Available: http://dx.doi.org/10.1109/TPDS.2005.69

[69] M. Cintra, J. F. Martínez, and J. Torrellas, “Architectural support for scalable speculative
parallelization in shared-memory multiprocessors,” SIGARCH Comput. Archit. News, vol. 28,
no. 2, pp. 13–24, May 2000. [Online]. Available: http://doi.acm.org/10.1145/342001.363382

[70] P. Yiapanis, D. Rosas-Ham, G. Brown, and M. Luján, “Optimizing software runtime systems
for speculative parallelization,” ACM Trans. Archit. Code Optim., vol. 9, no. 4, pp. 39:1–39:27,
Jan. 2013. [Online]. Available: http://doi.acm.org/10.1145/2400682.2400698

[71] J. a. Barreto, A. Dragojevic, P. Ferreira, R. Filipe, and R. Guerraoui, “Unifying thread-level
speculation and transactional memory,” in Proceedings of the 13th International Middleware
Conference, ser. Middleware ’12. New York, NY, USA: Springer-Verlag New York, Inc.,
2012, pp. 187–207. [Online]. Available: http://dl.acm.org/citation.cfm?id=2442626.2442639

Page 187 of 187

http://doi.acm.org/10.1145/1582716.1582725
http://doi.acm.org/10.1145/1504176.1504201
http://dl.acm.org/citation.cfm?id=1920841.1920959
http://dl.acm.org/citation.cfm?id=822079.822712
http://dx.doi.org/10.1109/TPDS.2005.69
http://doi.acm.org/10.1145/342001.363382
http://doi.acm.org/10.1145/2400682.2400698
http://dl.acm.org/citation.cfm?id=2442626.2442639

	Acknowledgements
	Abstract
	Extended Abstract in Greek
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Focus
	Contribution
	Disjoint-Access Parallelism in Shared-Memory Computing
	New Software Transactional Memory Algorithms

	Roadmap

	Model
	Abstract Data Types
	Sequential Data Structures
	Model of Computation
	Concurrent Data Structures
	Transforming a Sequential Data Structure to a Concurrent Data Structure
	Universal Constructions
	Software Transactional Memory
	Common Definitions

	Correctness
	Progress
	Data Set of an Operation
	Disjoint-Access Parallelism

	Related Work
	Disjoint-Access Parallelism Definitions
	Impossibilities for Disjoint-Access Parallelism in Shared-Memory Computing
	Disjoint-Access Parallel or Wait-Free Implementations
	Wait-Free or Never Aborting Read-Only Transactions
	Contention Managers, Scheduling, Dependence-Aware Systems
	Speculation

	Disjoint-Access Parallelism in Shared-Memory Computing
	General
	Impossibility Result
	The DAP-UC Universal Construction
	Proof of the DAP-UC Algorithm
	Preliminaries
	Linearizability
	Wait-Freedom
	Disjoint-Access Parallelism

	The TI-DAP-UC Universal Construction

	The WFR-TM Software Transactional Memory Algorithm
	General
	Main Ideas
	Type Definitions
	The Code of the WFR-TM Algorithm
	Proof of the WFR-TM Algorithm
	Preliminaries
	Correctness
	Progress

	The SemanticTM Software Transactional Memory Algorithm
	General
	Main Ideas
	Dependencies
	Conditionals
	Loops
	Nesting of Conditional Statements
	Worker Processes

	Pseudocode Description
	Type Definitions
	The Code of the SemanticTM Algorithm

	Proof of the SemanticTM algorithm
	Definitions
	Preliminaries
	Correctness

	Experimental Evaluation
	The system
	Tested Workload
	Results

	Conclusion and Future Research
	Synopsis of Contribution
	Directions for Future Work and Research

	Author's Publications
	Bibliography

