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Chapter 1

Introduction

The evolution and fate of massive stars are closely connected to numerous unanswered questions in modern astro-
physics. These stars play a crucial role in shaping their surroundings through various feedback processes, are the
primary source of chemical enrichment throughout the history of the universe, and it is believed that the initial gen-
erations of massive stars made significant contributions to the re-ionization of the universe [1]. In the local universe,
where heavy elements are more abundant, populations of massive stars exhibit increased diversity [2, 3]. Furthermore,
these stars are responsible for the creation of various astrophysical phenomena that we observe [4].

These massive stars release a significant amount of mechanical and radiative energy as well as various heavier
elements into their surroundings. These get released through stellar winds over longer periods of time and through
supernovae occurring over shorter timescales. As subsequent generations of stars are born, their initial composition
becomes enriched with heavy elements synthesized by their predecessors. Understanding how the composition of these
stars affects their evolution, energy release, and ultimate fate is crucial for comprehending the evolution of galaxies,
as well as the characteristics of stellar populations, astrophysical events such as supernovae [4], and the merging of
compact objects [5] throughout the history of the universe.

Towards the end of their life, massive stars have the potential to undergo explosive events known as core-collapse
supernovae (CCSNe). These explosions may result in the formation of either a neutron star (NS) or a black hole (BH)
remnant. In some cases, massive stars may collapse directly, without producing an explosion, to form a BH. In other
cases, very massive stars experience pair instability SNe, causing them to explode without leaving any remnants [6].

Most massive stars are considered to be constituents of binary or multiple systems which leads to interactions via
mass transfer [7, 8, 9, 10]. This kind of binary interaction may result in the (partial) removal of the hydrogen-rich
envelope of the star [11, 12, 13, 14, 15, 16, 17, 18], thus leaving behind a stripped-envelope star. Such stars differ
greatly from their hydrogen-rich counterparts in their observational properties, their evolution and their remnants.

One of the pending problems in stellar astrophysics is the connection between the properties of the CCSNe progen-
itors and the properties of the resulting explosion and the compact remnant. This difficulty arises from the fact that
a systematic study from first principles is extremely difficult as the CCSNe explosion mechanism is not yet fully un-
derstood [19, 20]. Several attempts have been made in order to understand the CCSNe mechanism from first-principle
CCSNe simulations using numerous techniques [21, 22, 23, 24, 25, 26]. None achieve their goal fully mainly due to
the computational cost and difficulty of scanning the whole parameter space of progenitor models in zero-age main
sequence (ZAMS) mass, metallicity and rotation rate using 3D simulations.

But not all hope is lost, as we can gain insight into the CCSNe mechanism by using approximate analytic models
or parameterised simulations. We will be using the one proposed by Müller et al. [27]. In their model, they split the
evolution in two phases, the pre-explosion phase, where analytic predictions for the heating conditions can be made,
and the final explosion and remnant properties that can be described using simple ordinary differential equations
(ODEs). One benefit of this approach is that it allows for rapid estimation of explosion characteristics using solely
the stellar structure during the initial stages of collapse as input.

With the rise of gravitational wave (GW) astronomy, a new window to study the universe has opened. With the
detection of almost 100 GW mergers, the NS and BH mass distribution is being unveiled across cosmic time. Given
the information being provided to us, it is as good a time as it gets to try and understand better the pre-SN evolution
of massive stars in order to probe the distribution of remnant (NS and BH) masses. This will help us understand
better the formation of highly asymmetric mergers observed during the observation runs. For example, GW 190814
[28] is a gravitational wave merger of a (23 ± 1) M⊙ BH with a (2.6 ± 0.1) M⊙ compact object of unknown nature.

Understanding the mechanism behind the formation of NSs and BHs can help one study better GW mergers,
peculiar in nature or not. In order to probe this mechanism, which is the focus of this project, we will use the model
of Müller et al. [27] (as mentioned before). As input we will use profiles of stripped-envelope stars in the range from
4.5 − 70 M⊙, with a 0.5 step increment, produced using the Modules-for-Experiments-in-Stellar-Astrophysics (MESA)
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code [29, 30, 31, 32, 33] for 3 values of metallicity, 0.5, 0.75 and 1.0 times the solar metallicity Z⊙ [34, 35]. This
model depends on 7 parameters that govern the underlying physical processes of the system. We perform an extensive
parameter study using the value ranges given in literature for each parameter. In each instance, after getting the
estimated data for the explosion (if it happened) and the remnant, we performed a population synthesis in order to
get a remnant mass distribution.
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Chapter 2

Model

As mentioned in the previous section, the model we will use is the one proposed by Müller et al. [27]. In order to
spare you the reading of the whole paper, we shall explain here the model in a simpler manner. We will present it
here as it is in the paper, namely in two parts: 1) the pre-explosion phase and 2) the explosion phase. Before that,
let us describe briefly the different phases of the CCSNe evolution process in order to highlight the physical processes
that the model needs to capture.

During the core-collapse, the iron core of the massive star collapses into a NS which is accompanied by the core
bounce that leads to the creation of a shock wave inside the gas. After that, the shock rapidly stalls due to the
photodisintegration of heavy nuclei and neutrino losses. However, even if the shock has stalled, there is a bit of an
expansion for some milliseconds due to matter being piled onto the proto-NS. Following that, we have a phase where
the entire post-shock region is cooled and after that, a region of net neutrino heating (which is called the gain region)
appears. This period is the pre-explosion phase.

After that, the shock radius reaches its maximum and then proceed to recede again. At this time, we expect shock
revival by a neutrino-driven mechanism to take place. This occurs when the accreted material spend sufficient time
in the gain region which provides the material with enough energy that originates from neutrinos to counteract its
binding energy. This marks the start of the explosion phase.

2.1 Pre-Explosion Phase

During this phase, the gain region is modeled as an adiabatically stratified layer that is dominated by radiation pressure
(P ∝ T 4), meaning the pressure P , density ρ, and temperature T can be described approximately by power laws

P ∝ r−4, ρ ∝ r−3, T ∝ r−1 (2.1.0.1)

Furthermore, it is assumed that the matter reaches the NS within a constant multiple of the free-fall timescale (τff )
for a given mass shell (a mass shell being a sphere that constrains mass M, so it is described by its mass coordinate
M). The infall time of a infalling mass shell of mass M is

t = Cτff =
√

π

4Gρ
(2.1.0.2)

where
ρ = 3M

4πr3 (2.1.0.3)

is the average density of a given mass shell that is located at an initial radius r. Then, with the result from [36] we
can calculate the accretion rate as

Ṁ = 2M

t

ρ

ρ − ρ
(2.1.0.4)

where ρ is the initial density of the given mass shel prior to collapse. The dimensionless constant in eq. 2.1.0.2 has
been chosen such that the analytic estimates match the results from numerical simulations in the late accretion phase.

In the pre-explosion phase, it can be assumed that the shock is quasi-stationary, meaning that the shock velocity is
negligible. So, by using the strong-shock approximation and neglecting the thermal pressure in the pre-shock region,
one can write the Rankine-Hugoniot conditions that define the post-shock density ρsh and pressure Psh as

ρsh = βρpre (2.1.0.5)

and
Psh = β − 1

β
ρprev2

pre (2.1.0.6)
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where ρsh and vpre are the pre-shock density and velocity respectively, and β is the compression rate at the shock.
Many simulations have shown that vpre reaches a large fraction of the free-fall velocity, and so one can use

vpre =
√

2GM

rsh
(2.1.0.7)

The pre-shock density can be calculated from the mass accretion rate (assuming that the pre-shock density is constant)
as

ρpre = Ṁ

4πr2vpre
(2.1.0.8)

The formulation of an inner boundary condition for the gain region is necessary. In order to be able to formulate such
a thing, we need a model that describes the evolution of the gain region radius rg, the neutrino luminosity Lν , and
the mean energy of the electron neutrinos and anti-neutrinos Eν as a function of time, proto-NS mass and accretion
rate. To start with, in [37] they show that

Eν ∝ M (2.1.0.9)

and since the cooling layer is taken to be approximately isothermal, it also holds that

Tg ∝ M (2.1.0.10)

Then, in order to find the gain radius rg one need only follow what is said in [20]. There, they note that the accreted
matter loses approximately half of its gravitational potential energy as accretion luminosity GMṀ/(2rg) close to the
gain region, and by equating this contribution in the luminosity to the grey-body luminosity at the gain radius it
arises that

E4
νr2

g ∝ T 4
g r2

g ∝ M4r2
g ∝ GMṀ

2rg
(2.1.0.11)

which gives

rg ∝ Ṁ1/3

M
(2.1.0.12)

However, for small Ṁ this breaks down, and one must use a smooth interpolation between this and the cold NS radius
r0 as

rg =
[

r3
1

(
Ṁ

M⊙s−1

)(
M

M⊙

)−3
+ r3

0

]1/3

(2.1.0.13)

where r0 = 12 km and r1 = 120 km.
The neutrino (both anti- and normal- neutrinos are considered together in this model) luminosity is taken to consist

of two components, the first being the accretion luminosity Lacc

Lacc = ζ
GMṀ

2rg
(2.1.0.14)

where ζ is an efficiency parameter that gauges the efficiency, and the second being the diffusive luminosity Ldiff that
originates from the deeper layers of the proto-NS. Now, in order to estimate Ldiff we will make use of the findings of
[38, 39] which enable us to assume that the binding energy of a cold NS, given by

Ebind ≈ 0.084 M⊙c2
(

MNS

M⊙

)2
(2.1.0.15)

is radiated away as diffusion luminosity over a timescale τcool, where MNS is the gravitational mass of the NS. In
order to account for the fact that the diffusion timescale is increased by higher densities, temperatures and chemical
potentials (for electron neutrinos) in high mass NS, an additional power-law dependence on the baryonic NS mass has
to be introduced in τcool, thus

τcool = τ1.5 ×
(

M

1.5 M⊙

)5/3
(2.1.0.16)

where τ1.5 is the cooling timescale of a 1.5 M⊙ mass NS. With that in mind, we can define the (anti-)neutrino luminosity
as

Lν = −0.3Ėbind ≈ 0.3 × ebind(M)
τcool(M) (2.1.0.17)

where the factor 0.3 accounts for the fact that about only one third of the binding energy is emitted in the form of
Lν that contributes to the neutrino heating in the gain region. If on the other hand we neglect the secular changes in
M and τcool, the diffusion luminosity can be defined as

Ldiff = Ebind(M)e−t/τcool(M) (2.1.0.18)
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where this is used as an instantaneous estimation for Ldiff at constant M , and we have defined the binding energy in
terms of the baryonic mass instead of the gravitational, which is given by

Ebind =

M −

(
−1 +

√
1 + 0.336 M/M⊙

)
M⊙

0.168

 c2 (2.1.0.19)

In order to account for general relativistic effects on the neutrinos that originate close from the proto-NS, meaning

Lν =
√

1 − 2GM

c2rPNS
(Lacc + Ldiff) (2.1.0.20)

where the radius of the proto-NS is taken to be rPNS ≈ 5/7 rg.
As soon as the gain radius, mean neutrino energy and neutrino luminosity are calculated, we can start conceiving

the second (inner) boundary conditions for the pressure stratification in the gain region. If we take the neutrino
heating and the cooling rate per unit mass to be at an equilibrium at the gain radius, we have for the temperature at
the gain region

T 6
g ∝ LνE2

ν

r2
g

(2.1.0.21)

Since Pg ∝ T 4
g (since we talk about neutrinos which can be modeled as a relativistic gas), we get that the pressure at

the gain region scales as

P 3/2
g ∝ LνE2

ν

r2
g

(2.1.0.22)

and this formulates the second (inner) boundary condition for the pressure.
In order to find the shock radius, we must solve eqs. 2.1.0.6, 2.1.0.22 together with P ∝ r−4, which yields

rsh ∝
(
LνE2

ν

)4/9
r

16/9
g

Ṁ2/3M1/3
∝ L

4/9
ν M5/9r

16/9
g

Ṁ2/3
(2.1.0.23)

where the second form is obtained by means of eq. 2.1.0.9. In [40], the authors suggest a modification of the shock
radius to account for the multi-dimensional (multi-D) effects that may affect the shock radius but are not considered
in a 1-dimensional study. To such extend, they modify simply the shock radius as

rsh → rsh

(
1 +

4
〈
Ma2〉
3

)2/3

(2.1.0.24)

where Ma is the Mach number. Despite its simplicity, it works remarkably well as it has been showed by [25]. Since
the shock radius’ only use is to find the point in time when the critical explosion condition τadv/τheat = 1 is met, the
turbulent Mach number can be replaced by its critical value

〈
Ma2〉 ≈ 0.4649 (as found in [40]), which implies that eq.

2.1.0.24 can be written in the simpler form
rsh → αturbrsh (2.1.0.25)

where αturb is a constant factor that accounts for the turbulent effects. By taking all the above into account, the final
scaling law for the shock radius is

rsh = αturb × 55 km ×
(

Lν

1052 erg s−1

)4/9
×
(

M

M⊙

)5/9
×
( rg

10 km

)16/9
×
(

Ṁ

M⊙s−1

)−2/3

(2.1.0.26)

Now that we have an expression for the shock radius, a scaling law for the advection timescale can be found easily
as

τadv = Mg

Ṁ
= 1

Ṁ

∫ rsh

rg

dr 4πr2βρpre (rsh/r)3 ≈ 18 ms ×
( rsh

100 km

)3/2
(

M

M⊙

)−1/2
ln rsh

rg
(2.1.0.27)

where this expression fits the results of [40]. In order to define an expression for the heating timescale τheat we need the
average mass-specific neutrino heating rate q̇ν and the average net binding energy (i.e. thermal, kinetic and potential
energy) eg of matter in the gain region. The scaling law of q̇ν can be found using the results of [20, 40] to be

q̇ν ∝ LνE2
ν

r2
g

(2.1.0.28)

The process to find the average binding energy is not an easy one because neither assuming a constant time-independent
binding energy as in [40] nor the assumption that eg scales with the gravitational potential at the shock as in [20]
conform with the results from simulations. So, in order to get a better estimate for eg, Bernoulli’s theorem for a
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stationary compressible flow in spherical symmetry [41] must be invoked. The sum of the total enthalpy h (which
includes the rest mass contributions), the kinetic energy density, and the gravitational potential are conserved during
the infall process, we can attribute to the sum its initial and negligibly small value at the initial position of a given
mass shell

h + 1
2ρv2 + Φ = 0 (2.1.0.29)

If we neglect the kinetic energy in the post-shock region, we have

ϵtherm + ϵdiss + Psh

ρsh
− GM

rsh
≈ 0 (2.1.0.30)

which gives us the thermal energy ϵtherm per unit mass just behind the shock. We have to note here that the rest mass
contributions in eq. 2.1.0.30 are excluded from ϵtherm and is absorbed by the dissociation energy ϵdiss term. Since in
the post-shock region radiation pressure dominates, we have

Psh

ρsh
= ϵtherm

3 (2.1.0.31)

and hence we get
4
3ϵtherm + ϵdiss = GM

rsh
⇒ ϵtherm = 3

4

(
GM

rsh
− ϵdiff

)
(2.1.0.32)

With this expression for the thermal energy per unit mass, we get that the post-shock binding energy without rest
mass contributions is

|eg| =
∣∣∣∣ϵtherm − GM

rsh

∣∣∣∣ = 3
4ϵdiss + GM

4rsh
(2.1.0.33)

If we assume total dissociation of the infalling matter into nucleons, we get for the dissociation energy ϵdiss ≈ 8.8 MeV.
Let us note here that the value of the total energy per unit mass immediately behind the shock is used as a proxy for
the entire gain region. We can now combine eqs. 2.1.0.28 and 2.1.0.33 and by choosing the appropriate proportionality
constant to abide to simulations, we get the following expression for the heating timescale

τheat = 150 ms ×
(

|eg|
1019 erg s−1

)
×
( rg

100 km

)
×
(

Lν

1052 erg s−1

)
×
(

M

M⊙

)−2
(2.1.0.34)

From eqs. 2.1.0.26, 2.1.0.27 and ?? we can infer the mass in the gain region Mg, the average neutrino heating rate
per unit mass q̇ν and the volume-integrated neutrino heating rate Q̇ν = q̇νMg, which enable us to define the efficiency
parameter ηacc as

ηacc = Q̇ν

Ṁ
(2.1.0.35)

which will be useful for the treatment of the next part, the explosion phase.

2.2 Explosion Phase

With the procedure we described in the previous section we can compute the critical timescale ratio τadv/τheat as a
function of the mass coordinate of the infalling shells. With this ratio we can deduce the remnant of the stellar model
as follows: If we find the ratio to be < 1 throughout the star or at least for all M smaller than the maximum baryonic
NS mass Mmax (which is a parameter in the model and thus does not have a predetermined value), then the star
is taken to result in a BH without ever experiencing shock revival. On the other hand, if no such criterion for the
ratio is satisfied, then we consider the minimum M for which the ratio satisfies τadv/τheat = 1 as an "initial mass cut"
Mini and then begin the process of estimating the residual accretion onto the proto-NS and the explosion parameters.
This is done by relating the amount of accretion after shock revival, the shock propagation, and the energetics of the
incipient explosions (which is quantified by the diagnostic explosion energy Ediag, which in other words is the total
energy of the material that is nominally unbound at a given stage after shock revival) to each other. Let us now see
how this is achieved.

Except for the least massive SN progenitors [42, 43], simulations of SN explosions from first principles [44, 45, 26, 46]
(and many more) have shown that the accretion downflows persist for many hundreds of milliseconds after shock revival,
and in many cases it persists till the end of the simulations which makes the final explosion parameters of the model
difficult to determine. In [41] a more quantitative analysis of the mass fluxes Ṁout and Ṁacc, where the former refers to
neutrino-driven outflows and the latter to cold accretion downflows, showed that the accretion by downflows outweighs
the outflow rate for a long time,

Ṁacc ≫ Ṁout (2.2.0.1)

This long persistence of accretion posses a major technical problem for simulations. However, it helps in simplifying
the treatment of the post-explosion phase by allowing us to use the same estimates for the accretion rate onto the
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proto-NS (and consequently for the NS contraction, the neutrino luminosity and the neutrino heating rate) as in the
pre-explosion phase (see Section 2.1). So, in the initial phase of the explosion (which will be called phase I hereafter
for simplicity) the primary contribution to the explosion are the neutrino-heated outflow that are driven by relatively
high accretion luminosity.

In time, the residual accretion will cease and eq. 2.2.0.1 will break down. This indicates the start of the cooling
period of the proto-NS as it radiates neutrinos over a timescale of several seconds and this neutrino driven wind will
contribute to the explosion energy. This period will be called phase II hereafter.

In [47] they propose a way to estimate the transition between phase I and phase II. The transition happens
approximately when the newly shocked material is accelerated to the local escape velocity as this prevents accretion
onto the proto-NS on a short timescale (however the interaction with the rest of the ejecta may lead to late-time
fallback). This process can be translated into a condition for the shock velocity: Since at the transition point the
shock will have propagated to several thousands or even tens of thousands of kilometers, the post-shock velocity in
the immediate vicinity will be high compared to the small pre-shock infall velocity. So, if the pre-shock velocity is
negligible, we can define the post-shock velocity vpost of the newly shocked material in terms of the pre-shock velocity
vsh and the compression ratio βexpl as

vpost = βexpl − 1
βexpl

vsh (2.2.0.2)

and thus the accretion criterion can be expressed simply as

βexpl − 1
βexpl

vsh =
√

2GM

r
(2.2.0.3)

where r is the initial radius of the mass shell M and is assumed that it has not moved that far from its initial position
when it is hit by the shock. It is assumed that accretion will subside when the criterion in eq. 2.2.0.3 is met. It
is important to note here that the compression ratio βexpl at the explosion phase is different and will be smaller in
general than the pre-explosion compression ratio β = (γ + 1)/(γ − 1) for an ideal gas with a γ-law equation of state
(EoS) due to the nuclear burning in the shock.

How the shock propagates depends greatly on the energetics of the underlying explosion. Specifically, in [41] it
is highlighted that the enormously complicated mutli-D flow structure after shock revival does not affect greatly the
shock velocity as the average shock velocity (defined simply as the time derivative of the average shock radius) does
not deviate much from the analytic formula given in [48] where they consider shock propagation in spherical symmetry

vsh = 0.794
(

Ediag

M − Mini

)1/2(
M − Mini

ρr3

)0.19
(2.2.0.4)

where Ediag is the diagnostic explosion energy as we defined it previously, and ρ, r refer to the initial progenitor model.
Both the final explosion energy and the final NS mass (which can be found through the amount of residual accretion)

can be calculated using eqs. 2.2.0.3 and 2.2.0.4 by simply considering a model for the evolution of Ediag in phase I and
II. During phase I, the explosion energy mainly consists of strong neutrino heating that is powered by the accretion
downflows and the nuclear burning that takes place in the shock. This together with the results of simulations enable
us to estimate the contribution of the neutrino heating as follows: As the outflowing material just barely reaches
positive total energy, the outflow rate is roughly given by the ratio of the volume-integrated neutrino heating rate Q̇ν

and the initial binding energy at the gain radius |eg|

Ṁout = ηoutQ̇ν

|eg|
= ηoutηaccṀacc

|eg|
(2.2.0.5)

where ηout is a dimensionless parameter that gauges the efficiency of the conversion of neutrino heating to an outflow
rate, and we used the heating from eq. 2.1.0.35 that we calculated in Section 2.1 since the accretion onto the proto-NS
(and hence the neutrino heating rate) are barely affected by the initial outflows. Let us mention here that ηout must
not be confused with the αout parameter that shall be introduced later and expresses the surface fraction that is
occupied by neutrino-driven outflows far away from the gain radius. [49, 50] show that the energy input via neutrino
heating into the outflow is used solely to completely unbind the material and the energy contribution arises from the
recombination of nucleons. With that, the evolution of the diagnostic explosion energy is

Ėdiag = ϵrecṀout (2.2.0.6)

where ϵrec is the recombination energy. The value of the recombination energy depends on what kind of particles are
created by the nuclear burning and the turbulent interaction between downflows and outflows. For this model, the
value ϵrec ≈ 5 MeV is used as found by [41].

Instead of eq. 2.2.0.6, it is more useful to express it in terms of derivatives of the mass coordinate Msh that is
reached at a given time by the shock, meaning we will find an expression for dEdiag/dMsh. If we assume that a fraction
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(a − αout), where αout is the already mentioned surface fraction that is occupied by neutrino-driven outflows, of the
shocked mass is accreted in the end, then Ediag should grow as

dEdiag

dMsh
= ϵrec

dMout

dMacc

dMacc

dMsh
= (1 − αout)ϵrecηoutηacc

|eg|
(2.2.0.7)

where the term dMout/dMacc can be calculated from eq. 2.2.0.5, and the term dMacc/dMsh is simply the accreted
fraction (1 − αout). Eq. (2.2.0.7) gives us the eventual contribution to the explosion energy form a given mass shell.
However, the diagnostic explosion energy will be lower at the time when the mass shell is shocked. This lower value is
needed in order to determine when accretion subsides (which is done via the post-shock velocity). In order to calculate
the diagnostic energy Eimm at the time when the shock reaches a given mass shell, we first assume that the accretion
rate is given by eq. 2.2.0.1. As we have already said in Section 2.1, the shock sweeps up matter at a rate of

dMsh

dt
= 4πr2vshρ (2.2.0.8)

and so, for the evolution of the diagnostic explosion energy when the shock reaches a given mass shell we get

dEimm

dMsh
= dEimm

dt

dt

dMsh
= 1

4πr2vshρ

dEdiag

dt
= 1

4πr2vshρ

ϵrecQ̇ν

|eg|
= ϵrecηoutηaccṀ

4πr2vshρ|eg|
(2.2.0.9)

where since Eimm is nothing more than Ediag just when the shock has reached a given masss shell. Eq. 2.2.0.9 holds
in the regime where the vsh ≫ vpre (in case one has forgotten what this symbols mean, the condition that the above
equation holds is when the shock velocity vsh is substantially larger than the pre-shock infall velocity vpre). However,
right after shock revival that does not hold, and it can instead be assumed that the shocked matter is accreted onto
the proto-NS. To account for both regimes, the equation for the growth of Eimm must become

dEimm

dMsh
= ϵrecηaccηout

|eg|
min

(
1,

Ṁ

4πr2vshρ

)
(2.2.0.10)

Once we can calculate Eimm, we can find the shock velocity from eq. 2.2.0.4 and then determine the amount of
explosive burning as we will see now.

Excluding the energy input by neutrino heating, it must also account for the fact that provided the post-shock
temperatures are high enough, a contribution to the explosion energy must be considered to account for the initially
bound shocked material and the nuclear burning that takes place in the shock. The correction to the growth rate is
easily done by adding two terms, one corresponding to the binding energy per unit mass ϵbind and one for the nuclear
burning ϵburn as

dEdiag

dMsh
= (1 − αout)ϵrecηoutηacc

|eg|
+ αout(ϵbind + ϵburn) (2.2.0.11)

As opposed to neutrino heating powered by accretion, ϵbind and ϵburn contribute to the energy instantly, so eq. 2.2.0.10
becomes after the corrections

dEimm

dMsh
= ϵrecηoutηacc

|eg|
min

(
1,

Ṁ

4πr2vshρ

)
+ αout(ϵbind + ϵburn) (2.2.0.12)

It is noteworthy that both ϵbind and ϵburn are multiplied by αout as not all the shocked material gets swept up by the
ejecta, some is channelled into downflows.

We can define ϵburn in terms of the initial and final mass fractions Xi and X ′
i prior to and after nuclear burning

respectively, and the rest-mass contributions ϵrm per unit mass for a nucleus i as

ϵburn =
∑

i

(Xi − X ′
i) ϵrm,i (2.2.0.13)

So, in order to proceed we need knowledge about Xi. To do so, we shall employ the "flashing" method as in [51] where
they assume that the different burning processes take place instantaneously when the different temperatures required
for their ignition are satisfied. With that, it is possible to calculate the post-shock temperature Tsh if we simply assume
that the pressure in the domain behind the shock is dominated by radiation pressure and that the infall velocity is
negligible compared to the shock velocity. Under these assumptions, the post-shock pressure Psh can be found using
the jump conditions and we find

Psh = αT 4
sh

3 = βexpl − 1
βexpl

ρv2
sh (2.2.0.14)

or, solving for Tsh

Tsh =
(

3βexpl − 1
αβexpl

ρv2
sh

)1/4
(2.2.0.15)

where α is the radiation constant.
The initial conditions depend on Tsh greatly and change as follows:
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(i) For 2.5 × 109 K ≤ Tsh ≤ 3.5 × 109 K, elements lighter than O are burnt to 16O.

(ii) For 3.5 × 109 K ≤ Tsh ≤ 5 × 109 K, elements lighter than Si are burnt to 28Si.

(iii) For 5 × 109 K ≤ Tsh ≤ Tα, everything burns to 56Ni by following [52] where the threshold temperature for
complete Si is different from [51].

Tα denotes the density-dependent temperature for which the mass fraction of α−particles reaches 0.5 in nuclear
statistical equilibrium. From [53, 51] we get that Tα is given by

log10 ρ = 11.62 + 1.5 log10

(
Tα

109 K

)
− 39.17

(
Tα

109 K

)−1
(2.2.0.16)

Due to the accretion that persists during phase I of the explosion phase, the proto-NS continues to grow. The
fraction of surface downflows roughly determines the fraction of shocked material that ends up in the proto-NS.
Additionally, due to neutrino heating a fraction ηaccηout/|eg| of the accreted material is re-ejected. So, the baryonic
mass of the NS as a function of Msh is given by the differential equation

dMby

dMsh
= (1 − αout)

(
1 − ηoutηacc

|eg|

)
(2.2.0.17)

and evolution of explosion energy and the mass Msh of the proto-NS during phase I of the explosion phase can thus
be found using eqs. 2.2.0.3, 2.2.0.4, 2.2.0.11 and 2.2.0.17.

During phase II of the explosion phase, the bound material accumulated by the shock, the neutrino-driven wind
(which helps in reducing the mass of the proto-NS) and the explosive burning in the shock affect the explosion energy.
The works of [54, 55] justify the neglecting of the effect of the neutrino-driven wind on the final explosion and the
properties of the remnant in this model and the consideration of only the other two contributions. Now, since all
the matter that is swept by the shock contributes to the energy of the ejecta and not a fraction αout, the diagnostic
explosion energy growth can be defined in a similar way as in phase I as

dEdiag

dMsh
= ϵbind + ϵburn (2.2.0.18)

and the baryonic remnant mass Mby is left unchanged during this phase. By integrating eq. 2.2.0.18 up to the stellar
surface we can find the final explosion energy Eexpl. Now, if Eexpl is positive, we can find the gravitational mass of
the NS, MNS, via the approximate formula given in [38, 39]

MNS = Mby − 0.084 M⊙

(
MNS

M⊙

)2
(2.2.0.19)

However, if Ediag becomes negative at any Msh, if the remnant mass MNS exceeds the maximum NS mass Mmax or if
the condition τadv/τheat = 1 was never met during the whole pre- and explosion phases, then we set Eexpl = 0, assume
that no explosion happens and that the entire start collapses into a BH, and the gravitational remnant mass MBH is
set to be equal to the pre-collapse mass of the star.

As a last note, let us state that during both phases I and II the mass of iron group elements that are produced
by explosive nuclear burning MIG is integrated by taking into account only a fraction αout will be ejected during
phase I. This quantity, MIG, can be taken as a rough proxy for the nickel mass, but we have to be careful with
this interpretation as 56Ni is not the only iron group element that is produced by explosive nuclear burning when
sufficiently high temperatures are reached. Additionally, the very crude "flashing" method we are employing based on
estimated of the post-shock temperature cannot be expected to yield quantitatively reliable results. So, MIG can at
best be expected to agree with the actual nickel mass within a factor of ∼ 2.

All of the parameters that have been introduced here have some typical value that is used in literature, however
this value cannot represent the physical processes present in the star’s evolution in some cases and they are of great
importance since they could lead to the formation of compact objects either in the mass gap, or with an extreme mass
ratio as in [28]. So, in the next chapter, we will discuss how we applied this model on some profiles for stars and the
results that we got by performing a parameter study with this model.
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Chapter 3

Simulations of Stellar Explosions

3.1 Simulations and Population Synthesis

As we said in the Introduction (Section 1), we are interested in studying the later stages (meaning the explosion phase
and the aftermath) of the evolution of stars whose H-rich envelope has been removed (let us remind here that H stands
for hydrogen and He for helium, and they will be used for simplicity). This process alters greatly the core structures
of the star resulting in the formation of NSs and BHs with different masses compared to those formed by H-rich stars.
Stars that have lost their H-rich envelope are called stripped-envelope stars, or He stars since their main element is
now He.

To do this, we used published stellar profiles from [34, 35] of single non-rotating helium stars at 0.5, 0.75 and 1
times the solar metallicity Z⊙. As input to the semi-analytic code of [27] (described in Section 2) we used the pre-SN
stellar structures of the aforementioned profiles, in order to determine whether that star explodes into a SN or collapses
into a BH. However, as we have said, the semi-analytic model depends on some parameters that are introduced in
order to quantify some processes (for example the effects of turbulent phenomena on the shock radius, the conversion
of neutrino heating into outflows, etc) shown in Table 3.1. These parameters are assigned some typical value in the
literature, but this may be constricting the underlying physical processes that may occur during the final stages of
stellar evolution. This can affect the outcome of the death of the star and also the properties of the remnant. In order
to get a better understanding of stellar explosions and the remnants they leave behind, we will perform a parameter
study where we will let each parameter take values in the range they are theorised to lie in.

We shall briefly review said parameters and state their purpose and their range of values in a table, so the reader
can have a place to check quickly and not have to look through Section 2 to try and find the answer.

parameter explanation typical range
αout volume fraction of outflows 0.3 . . . 0.7
αturb shock expansion due to turbulent stresses 1 . . . 1.4

β shock compression ratio during explosion phase 3 . . . 7
ζ efficiency factor for conversion of accretion energy into ν luminosity 0.5 . . . 1

τ1.5 cooling timescale for 1.5 M⊙ NS 0.6s . . . 3s
ηout efficiency factor for conversion of neutrino heating to an outflow rate 0 . . . 2

Mmax maximum mass for a NS 2M⊙ . . . 3M⊙

Table 3.1: Table of the model’s parameters that were changed during simulations.

We created a parameter grid by first letting each parameter (excluding the metallicity for which we only consider the
previous 3 values) take 3 values in the aforementioned interval which created 2187 combinations. The grid resolution
(i.e. how many values each parameter takes) can be changed except for the metallicity which is fixed to these 3 values
as they were used in creating the profiles with the MESA code.

In order to better understand the explosion mechanism, we need perform a population synthesis and study the
remnants by means of their mass distribution. Its shape can reveal many insights of the explosion processes as shown
in a similar study (they did only a population synthesis, not a parameter study) done in [56] where by using the same
model and focusing only on the BHs, they found a bimodal BH mass distribution which is linked to the fact that
carbon and neon burning becomes neutrino-dominated, altering the interior structures in such a way that is becomes
difficult for the star to explode, thus leading to more BHs forming. In our case, we consider both NSs and BHs and
we tread as follows.

First, we randomly sample the initial mass of a zero age main sequence (ZAMS) star using the Salpeter initial
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mass function (IMF) [57]
p(M) ∝ M−2.35 (3.1.0.1)

This mass gets converted to a He core mass following the formula of [58]

MHe, ini ∼
{

0.0385M1.603
ZAMS, if MZAMS < 30M⊙

0.5MZAMS − 5.87M⊙, if MZAMS ≥ 30M⊙
(3.1.0.2)

Then, the resulting mass gets mapped into a mass for which we have a profile using a modified floor function, which
returns the nearest integer or half-integer to the input mass as follows

Mfor profile =
{

⌊M⌋ , if Mmod int(M) < 0.5
⌊M⌋ + 0.5, if Mmod int(M) ≥ 0.5 (3.1.0.3)

where ⌊·⌋ is the floor function, which that takes as input a real number x, and gives as output the greatest integer less
than or equal to x (meaning 3.9 gets rounded to 3) and in the code is is done using the np.fix function of the NumPy
[59] library, and int returns the integer part of the input and a mod b returns the remainder of the division a with b.
This is the scheme we chose and it may not be realistic, but it enables us to correspond the He core mass to an already
evolved stellar profile. From the data of the evolved profile, we got the final (gravitational) mass of the remnant. This
process is repeated for 10000 samples for all combinations of parameters values. These resulting gravitational masses
are recorded for further analysis.

3.2 Analysis for all 3 values of Z

From these data, we can find the mass gap (if present) in the remnant mass distribution. To do so, we extract the
value of the Mmax parameter that we have assigned in this case of our parameter study, and split further the data
into NS masses and BH masses by checking whether the mass is lesser or equal to Mmax (NS) or larger (BH). Then,
we check if there are any data for NSs (as in some cases the values of the parameters it was made really hard for stars
to explode and turn into a NS) and then we subtract the maximal value of the NS data from the minimal value of the
BH data which gives us an estimation of the mass gap.

Out of the 6561 cases of the above population synthesis, which corresponds to 3 (from the values of Z) × 2187
(which are the total parameter values combinations), only 4566 (or ∼ 70%) exhibit a mass gap in the remnant mass
(meaning NS + BH) distribution. This means that the rest 1995 (corresponding to ∼ 30%) of the cases do not exhibit
a mass gap. Out of those, 1977 (or ∼ 99%) do so because these models predict no NSs, meaning that for these
parameter values it is extremely hard for stars to explode. The rest 18 (or ∼ 1%) do not exhibit a mass gap because
these models do not predict any BHs, which means that these parameter values make it so that stars explode really
easily. Both of these cases are unnatural since we have observed both NSs and BHs in nature, and so they shall be
labeled as unnatural and we remove them so as to not be taken into consideration in any further analysis.

For the rest of the analysis, we shall focus only on the BH data, as the data for NSs do not have the necessary
resolution in order to be put through the following analysis as they suffer from numerical noice. For the BH mass
distribution, we will analyse the shape and the structure of its distribution in order to gain information.

However, doing that graphically for all the parameter cases and values of Z will take ages, so in order to get
information about the distribution shape in a programmingly way, we employ the method of Gaussian Mixture fitting.
To each distribution we fit a Gaussian Mixture Model (GMM), which corresponds to the likelihood function, which
for a datum xi is given by

p(xi|θ⃗) =
N∑

i=1
ϕiN (µi, σi) (3.2.0.1)

where N (µ, σ) is a normal (Gaussian) distribution with mean µ and variance σ2, θ⃗ is the parameter vector of the
estimated µi, σi and ϕi values of the model, ϕi is the weight of the ith component with mean µi and standard
deviation σi. For normalisation reasons, we have that

∑N
i=1 ϕi = 1. In order to fit the GMM in our code, we used the

scikit − learn library [60]. More specifically, we used the GaussianMixture model from the mixture package. We
iterated N with values from 1 to 10 and each instance corresponds to a different model that is fitted onto our data.
In order to quantify the accuracy of the fit, we used the Bayesian Information Criterion (BIC) [61] which is formally
defined as

BIC = k ln(2) − 2 ln
(

L̂
)

(3.2.0.2)

where k corresponds to the number of parameters that are estimated by the model M (each instance of the GMM in
our case), n is the number of data points, and L̂ is the maximized value of the likelihood function of the model M. The
model’s fit is more accurate the lower its BIC value is. Additionally, we split the data (the BH gravitational masses)
into two subsets, MBH

train and MBH
test with a 75 − 25 % split accordingly. We used the MBH

train to fit the model, and the
MBH

test to find the BIC.
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So, we created an array of models as mentioned above, which were trained using MBH
train and their BIC score was

evaluated using MBH
test. Then, we found the minimum value of the BIC array and the corresponding model, which

shall be called the best model (BM) hereafter. We also saved the number of components Ncomp of the BM. Since the
maximum value of N is set to 10, we consider any distribution that had Ncomp > 6 as one having a complex structure
that cannot be described adequately by discrete Gaussian processes. Then, we used the criteria described in [62] to
get information abut the structure of the distributions, and more specifically the statistic

D = 21/2 |µj − µj+1|√
σ2

j + σ2
j+1

(3.2.0.3)

which gauges the separation between two Gaussians, N (µj , σj) and N (µj+1, σj+1), in order to find any information
about multimodality in the distributions. For a clean separation we expect D > 2, as stated in [62]. We have used the
j and j +1 indices here as we have multiple components in our models, and we want to check the distance between any
two consecutive components. Additionally, we search for components that have a distance D > 4, which we consider
that they comprise distinct groups, and components that have a distance D > 8 as these have a large separation.

As stated before, 18 cases did not produce any BHs and 1977 cases did not predict NSs, which means that only
4566 cases have a (physically acceptable) BH mass distribution. Now, out of those 4566 cases, 2323 (or ∼ 51%) have
more than 6 components in their BM, as seen in Figure 3.1, which corresponds in a complex structure that cannot be
adequately described by discrete Gaussian processes.
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Figure 3.1: Histogram of the number of components of the best GMM fitted to the BH mass distribution in each case
for all values of Z.

Furthermore, 2702 (or ∼ 59%) cases have more than 1 distinct groups, as seen in Figure 3.2a, with of them 1486 (or
∼ 55%) having at least one set of consecutive groups with a large gap between them, Figure 3.2b. A large number
of distinct groups indicates a sporadic spread in the BH mass distribution, meaning that the models can only predict
the corresponding BH masses, leaving a lot of gaps in the process. This is accompanied by the fact that there exist
models with many large gaps between their distinct groups. This leaves certain BH masses out of the equation.

These results are, however, cumulative in terms of metallicity, which leads to the overshadowing of the effect of
the metallicity in the mass gap and the BH mass distribution. Let us now study each metallicity case separately and
see what information we get, considering that metallicity affects the evolution of a star as stated in [63] and in the
references therein. Additionally, for each Z value, we will plot the remnant mass (given by the gravitational mass
Mgrav) as a function of final mass of the star pre-collapse (Mfinal), as well as we will present to random cases in order
to paint a picture for the process. Let us start with the lowest metallicity, Z = 0.5 Z⊙.

3.2.1 For Z = 0.5 Z⊙

Limiting the data to those for Z = 0.5 Z⊙, we get 2187 total cases, which is exactly the number we expected given
the number of combinations of values for the parameters we stated in Section 3.1. Out of those, 1557 (or ∼ 71%)
have a mass gap, with the remaining 630 (or ∼ 29%) not having a mass gap due to not predicting any NSs. These
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Figure 3.2: Histograms of two different structural characteristics derived from the statistic 3.2.0.3 of the BH mass
distribution for all values of Z. Specifically, 3.2a depicts the number of distinct groups, meaning D > 4, found in the
distributions. 3.2b depicts the number of large groups, meaning D > 8, encountered in the distributions.

630 cases are labeled unphysical and are removed from the rest of the analysis. Moving our attention to the BH mass
distribution for Z = 0.5 Z⊙, we get 1557 cases, since we have removed the unphysical ones. Out of the remaining, 738
(or ∼ 47%) have more than 6 components in their BM, as seen in Figure 3.3. Additionally, 757 (or ∼ 49%) have at
least 2 distinct groups, see Figure 3.4a, and out of those 363 (or ∼ 48%) have at least one set of consecutive groups
with a large gap between them, as seen in Figure 3.4b.
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Figure 3.3: Histogram of the number of components of the best GMM fitted to the BH mass distribution in each case
for Z = 0.5 Z⊙.

Let us take a better look at two cases. These were chosen randomly among the numerous others as to eliminate
bias to show the good cases. The only condition we imposed it that it corresponds to a physically acceptable case of
parameter values, as we have argued above. The first of these two cases has the parameter values shown in Table 3.2.
We plotted the remnant mass distribution, together with the best GMM fit, and the BH mass distribution, also with
its best GMM fit, for this case, and are shown in Figure 3.5a and Figure 3.5b respectively.

17



1 2 3 4 5 6 7 8 9
Number of distinct groups

0

100

200

300

400

500

600

700

800

Nu
m

be
r o

f d
ist

rib
ut

io
ns

For Z = 0.5 Z

(a)

0 1 2 3 4 5 6 7 8
Number of large gaps

0

200

400

600

800

1000

1200

Nu
m

be
r o

f d
ist

rib
ut

io
ns

For Z = 0.5 Z

(b)

Figure 3.4: Histograms of two different structural characteristics derived from the statistic 3.2.0.3 of the BH mass
distribution for Z = 0.5 Z⊙. Specifically, a depicts the number of distinct groups, meaning D > 4, found in the
distributions. b depicts the number of large groups, meaning D > 8, encountered in the distributions.

Parameter Values
β αout ηout ζ αturb τ1.5 Mmax

5.0 0.3 2.0 0.5 1.2 3.0 2.5

Table 3.2: Parameter values for the first example for Z = 0.5.
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Figure 3.5: Remnant mass distribution a along with the best GMM fit (red line) and BH mass distribution b and
along with the best GMM fit for Z = 0.5, β = 5.0, αout = 0.3, ηout = 2.0, ζ = 0.5, αturb = 1.2, τ1.5 = 3.0, Mmax = 2.5.
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Figure 3.6: Remnant mass distribution a along with the best GMM fit (red line) and BH mass distribution b and
along with the best GMM fit for Z = 0.5, β = 7.0, αout = 0.3, ηout = 1.0, ζ = 1.0, αturb = 1.0, τ1.5 = 1.8, Mmax = 2.5.

We can see that the remnant mass distribution in Figure 3.5a has some structures, but the most important for our
analysis is there is a mass gap of 2.4 M⊙. This is a prime example of a problematic NS distribution, since it predicts
only one mass for NSs. Furthermore, The BH mass distribution in Figure 3.5b is bimodal (has 2 distinct groups) with
no large gaps between the groups and its best GMM fit has 8 components (as can be seen by carefully counting the
number of Gaussian peaks).

The second case has the parameter values shown in Table 3.3. We can see that the remnant mass distribution in
this case shown in Figure 3.6a has a mass gap of 2.0 M⊙, which is the characteristic we are looking for. The BH mass
distribution of this case, shown in Figure 3.6b, is not bimodal but nevertheless has 2 distinct groups, and as it can be
seen the best fit has 8 components.

Parameter Values
β αout ηout ζ αturb τ1.5 Mmax

7.0 0.3 1.0 1.0 1.0 1.8 2.5

Table 3.3: Parameter values for the second example for Z = 0.5.

Finally, let us take a look at the remnant mass Mgrav - final mass Mfinal plot, Figure 3.7. We can clearly see there
that there is a clear correlation between Mfinal and the mass of a BH MBH , whereas for NSs is not evident. This is
probably due to the short range of NS mass values as opposed to the BHs, but a similar tendency as in the BHs can
be observed for the NSs as well. We expect the final mass to affect the remnant mass, and any results that point to
the other direction shall be attributed to an unphysical case. Let us move now to the Z = 0.75 Z⊙ case.

3.2.2 For Z = 0.75 Z⊙

Focusing now on the data for Z = 0.75 Z⊙, we again get 2187 total cases. Out of those, 1605 (or ∼ 73%) have a mass
gap in their remnant mass distribution, whereas the remaining 582 (or ∼ 27%) do not with all of them not predicting
any NSs, thus we labeled them unphysical and removed them from the rest of the analysis. For the remaining 1605,
917 (or ∼ 57%) have more than 6 components in their BM, as seen in Figure 3.8, and 1028 (or ∼ 64%) have at least
two distinct groups, Figure 3.9a, with 556 (or ∼ 55%) of them having at least a set of two consecutive groups that
have a large gap between them, Figure 3.9b.

Let us now proceed to the two examples for this case. The first example has the parameter values shown in Table 3.4

Parameter Values
β αout ηout ζ αturb τ1.5 Mmax

7.0 0.5 1.0 0.75 1.0 0.6 2.0

Table 3.4: Parameter values for the first example for Z = 0.75.
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Figure 3.7: Remnant mass Mgrav - Final mass Mfinal plot for Z = 0.5.
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Figure 3.8: Histogram of the number of components of the best GMM fitted to the BH mass distribution in each case
for Z = 0.75 Z⊙.

We then plot the remnant mass distribution, Figure 3.10a, which has a mass gap of 1.9 M⊙, which is the charac-
teristic we are looking for. The remnant mass distribution as it can be seen has a weird structure. This peculiarity
may be an artifact of the binning of the histogram. The BH mass distribution of this case, shown in Figure 3.10b,
is quadramodal which may or may not be a result of the binning. The aforementioned analysis said that it has 6
distinct groups and 3 large gaps. The large gaps can be easily seen, but one can only distinguish 4 groups (5 if you
consider that the two peaks in the second mode are sufficiently apart and 6 if one used the same argument for the
fourth mode). Additionally, the best GMM fit has 7 components, which is hard to see in the plot. Let us note here
that in all the plots where also the best GMM fit is shown, we have fixed the scale of the best fit by multiplying it
with the ratio max(BH distribution)/max(best GMM fit), resulting in a scaled down version.

For the second example, we have the parameter values shown in Table 3.5. The plot for the remnant mass
distribution is shown in Figure 3.11a. This is also an example why the NS mass distribution is problematic. It
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Figure 3.9: Histograms of two different structural characteristics derived from the statistic 3.2.0.3 of the BH mass
distribution for Z = 0.75 Z⊙. Specifically, a depicts the number of distinct groups, meaning D > 4, found in the
distributions. b depicts the number of large groups, meaning D > 8, encountered in the distributions.

overshadows the BH mass distribution and causes the fitting process to derail. Nevertheless, the distribution has
a mass gap of 18.6 M⊙, but unfortunately it cannot be seen in the plot. Turning our attention to the BH mass
distribution in Figure 3.11b, we can clearly see that here also the fit, which has 9 components, is not that accurate,
despite it being the best one. Our analysis process said that the distribution has 6 distinct groups, but they are
not easily seen in the plot, with 4 large gaps, which can be discerned. The inbetween not-large gaps that give the
distribution a weird structure are most probably a result of the binning of the data.

Parameter Values
β αout ηout ζ αturb τ1.5 Mmax

3.0 0.3 1.0 0.5 1.4 0.6 2.0

Table 3.5: Parameter values for the second example for Z = 0.75.

Unfortunately, due to some complications that have yet to be resolved in the process of making the Mfinal − Mgrav
plot, it will not be displayed here. Once they are resolved, it will be added. Finally, let us focus on Z = 1.0 Z⊙.
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Figure 3.10: Remnant mass distribution a along with the best GMM fit (red line) and BH mass distribution b and
along with the best GMM fit for Z = 0.75, β = 7.0, αout = 0.5, ηout = 1.0, ζ = 0.75, αturb = 1.0, τ1.5 = 0.6,
Mmax = 2.0.

21



0 5 10 15 20
0

1

2

3

4

NS + BH mass distribution for Z=0.75, =3.0, out=0.3, 
out=1.0, =0.5, turb=1.4, 1.5=0.6, mmax=2.0

Actual remnant mass distribution
Best Gaussian Mixture fit

(a)

19.5 20.0 20.5 21.0 21.5 22.0 22.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

BH mass distribution for Z=0.75, =3.0, out=0.3, 
out=1.0, =0.5, turb=1.4, 1.5=0.6, mmax=2.0

Actual BH mass distribution
Best Gaussian Mixture fit

(b)

Figure 3.11: Remnant mass distribution a along with the best GMM fit (red line) and BH mass distribution b and
along with the best GMM fit for Z = 0.75, β = 3.0, αout = 0.3, ηout = 1.0, ζ = 0.5, αturb = 1.4, τ1.5 = 0.6, Mmax = 2.0.

3.2.3 For Z = 1.0 Z⊙

For Z = 1.0 Z⊙ we have a total of 2169 cases, due to the 18 that did not predict any BHs that where removed in
Section 3.2. Out of those, 1404 (or ∼ 65%) have a mass gap, while the rest 765 (or ∼ 35%) do not have one as they do
not predict any NSs, and as before they are removed. The BH mass distributions of the remaining 1404 cases where
fitted with GMMs, of which the BM of 668 (or ∼ 48%) has more than 6 components, as seen in Figure 3.12. 917 (or
∼ 65%) of the distributions have at least two distinct groups, as seen in Figure 3.13a, and 557 (or ∼ 61%) of them
have at least a set of consecutive groups that have a large gap inbetween them, see Figure 3.13b.
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Figure 3.12: Histogram of the number of components of the best GMM fitted to the BH mass distribution in each
case for Z = 1.0 Z⊙.

Let us take a look at the two examples for this case as well. The first example has the parameter values shown in
Table 3.6. The plot for the remnant mass distribution is shown in Figure 3.14a. In the plot we can see that the number
of NSs that this model predicted are few and peculiarly distributed, and we can see some gaps in the distribution, but
these may or may not exist as in Figure 3.14b they are not there. Nevertheless, since we have NSs, we can define a
mass gap, which in this case is 1.7 M⊙. The BH mass distribution is shown in Figure 3.14b. First thing we can see, is
that due to the low number of NSs and their peculiar distribution, both the remnant and the BH mass distributions
have the same best model fit. It has 7 components (some of them are hard to discern) and the analysis identified
only one distinct group, which means that the gaps in Figure 3.14a are probably an artifact of the binning. Since the
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Figure 3.13: Histograms of two different structural characteristics derived from the statistic 3.2.0.3 of the BH mass
distribution for Z = 1.0 Z⊙. Specifically, a depicts the number of distinct groups, meaning D > 4, found in the
distributions. b depicts the number of large groups, meaning D > 8, encountered in the distributions.

distribution has only 1 distinct group, we cannot define a large gap.
For the second example, the parameters have the values shown in Table 3.7. This case is an example of the peculiar

cases that were encountered in the population synthesis seeded from the parameter study. First of all, it is another
case of a problematic NS distribution as we can see from the remnant mass distribution in Figure 3.15a. The NS
distribution overshadows the one for the BHs, but due to the presence of both remnant types we can define a mass
gap, and it is 1.8 M⊙. Also, we can see a gap in the BH mass distribution that is not present or detected in the fitting
done in Figure 3.15b. Furthermore, the best fit in Figure 3.15b, that has 6 components, identifies 6 distinct groups,
all of which have a large gap inbetween them. However, the distribution does not show anything like this. From the
BH mass distribution, one can clearly see 3 distinct groups (the third one being on the far right side and it is barely
visible), with 2 large gaps. This indicates that the best fitted model is wrong, or that the binning of the data does not
allow these structures to reveal themselves. It is not clear which is the case here. Similar cases were most probably
present throughout the study and if we want to eliminate them, then we must find a systematic way to do so.

In addition, let us look at the Mfinal − Mgrav plot for this case of metallicity, which is shown in Figure 3.16. Here,
as well as in the Z = 0.5 Z⊙ case shown in Figure 3.7, we can see a clear correlation of Mgrav with Mfinal whereas it is
not apparent for the NSs, due to the different range of values, but a similar tendency as in the BHs can be observed
for the NSs as well.

Parameter Values
β αout ηout ζ αturb τ1.5 Mmax

7.0 0.3 0.0 1.0 1.4 0.6 3.0

Table 3.6: Parameter values for the first example for Z = 1.0.

Parameter Values
β αout ηout ζ αturb τ1.5 Mmax

7.0 0.3 1.0 0.5 1.4 0.6 2.0

Table 3.7: Parameter values for the second example for Z = 1.0.

Looking at Figures 3.3, 3.8 and 3.12 and the statistics describing them, we can see that almost ∼ 50% of the
distributions in each case have a complex structure that is difficult to describe by means of discrete Gaussian processes.
Additionally, the number of models with numerous (lets say more than 3) sets of consecutive groups that have a large
gap between them as can be seen from Figures 3.4b, 3.9b and 3.13b is steadily low, since many large gaps hint of
a disjoint and sporadic distribution which cannot predict some BH masses, and that may be a problem since in the
realm of stellar BHs the mass spectrum is expected to be somewhat coherent. Finally, from all 3 sets of Figures 3.4a
& b, 3.9a & b and 3.13a & b we can see that the number of distributions with a single distinct group or the number of
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Figure 3.14: Remnant mass distribution a along with the best GMM fit (red line) and BH mass distribution b and
along with the best GMM fit for Z = 1.0, β = 7.0, αout = 0.3, ηout = 0.0, ζ = 1.0, αturb = 1.4, τ1.5 = 0.6, Mmax = 3.0.
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Figure 3.15: Remnant mass distribution a along with the best GMM fit (red line) and BH mass distribution b and
along with the best GMM fit for Z = 1.0, β = 7.0, αout = 0.3, ηout = 1.0, ζ = 0.5, αturb = 1.4, τ1.5 = 0.6, Mmax = 2.0.

distributions without any large gaps in them is decreasing as Z increases. This indicates the arising of more structures
in the distributions.

Finally, let us remark here that this work in not complete yet. The model of [27] is outdated and as such is missing
the effects of fallback on the newly formed compact object. In [64], which is an updated version of [27], the shock
can continue to spread outward, even when the NS has reached its maximum mass limit because of ongoing material
accumulation following an explosion. This shock keeps developing until it either surpasses the velocity required to
escape, stopping the material from falling onto the remaining object, or weakens to become a faint sound pulse, ejecting
a small portion of the surrounding envelope. We expect this to affect the outcome of the SN. Additionally, we want
to extend our parameter and population synthesis across cosmic time, as explained in the subsection 6.5.2 in [65],
to better understand the relation between SN explosion physics and redshift z. This will also probe the BH mass
distribution across z.
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Figure 3.16: Remnant mass Mgrav - Final mass Mfinal plot for Z = 1.0.
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Chapter 4

Conclusions

In the preceeding chapters we described the model [27] we used, the parameters whose values we are interested in
investigating further, Table 3.1, and the population synthesis we performed using published non-rotating binary-
stripped star profiles for 3 values of metallicity Z = 0.5, 0.75, 1.0 Z⊙, in order to gauge the remnant (NS + BH), NS
and BH mass distributions, and the process which we created in order to study these distributions (although the lack
of resolution in the NS case lead us into to not taking this distribution into account when performing this analysis).
Out of said analysis, it was found that ∼ 30% combinations of parameter values were labeled unphysical as they
failed to predict any NSs or BHs with the model [27]. Of the remaining physically acceptable cases, it was found
that ∼ 51% of them exhibited a complex structure via means of GMM fitting. Furthermore, ∼ 59% of the physically
acceptable cases had more than one distinct group in their distribution, with ∼ 55% of those having at least one large
gap inbetween two consecutive groups. This information hints on multimodal structures in these distributions.

Next, we repeated this analysis for each value of the metallicity in order to probe the effect of the metallicity in
the evolution and the structures of the distributions. This analysis showed that Z affects the structures found in the
BH mass distributions, which is expected, also the number of models with complex structured distributions varies
between the Z values, but further simulations should be done in order to answer that definitely. In addition, we saw 2
examples in each case and elaborated on the problematic nature of the NSs distribution and the accuracy of the fitted
GMM in cases of distributions with weird structures. Lastly, we plotted the remnant mass as a function of the final
mass in order to elucidate the relation between these two masses.

Lastly, this work is still in progress, as we intend on using the updated version of [27], [64], which takes into account
the effect of fallback onto the newly formed compact object, and also to extend this study across cosmic time following
the prescription in Section 6.5.2 of [65] in order to gauge the effects of the redshift z in all of this.
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