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Abstract

There is an intimate relationship between the molecular structure of industrial

polymers, their rheological properties and their final processing and mechanical properties.

The tube model of Doi, Edwards and de Gennes (Doi and Edwards, 1986; de Gennes, 1971)

enables a molecular understanding of this relationship. The linear rheology data of linear and

star polymers can be quantitatively predicted by adaptations of the original tube model. All

parameters can be determined self-consistently from the chemistry except for the dilution

exponent α and friction parameter p2 whose exact values are still being debated (van

Ruymbeke et al., 2012). However, the inherent problems of the tube model theory arise with

predictions of complex branched structures and with predictions of these polymers in complex

non-linear shear and extensional flows. One of the reasons for this is due to the uncertainty

related to relaxation mechanisms such as constraint release. Moreover, it is also a problem of

obtaining well-defined mondisperse branched polymers, accurate characterization of the

branching structure and developing reliable non-linear flow experiments where experimental

artificats are avoided. This is the exact goal of this work, to combine well-defined anionic

synthesized polymers, state-of-the-art characterization tools such as TGIC and systematic

rheological studies in both the linear and non-linear regime in order to validate and improve

existing current tube model theories.

More specifically, our study focuses on the determination of the physical origin of

chain stretch in complex branched polymers.  We use the Sentmanat Extensional Rheometer

fixed to a strain controlled rheometer to perform uniaxial extensional rheology. Uniaxial

extensional rheology is difficult to measure in experimental set-ups but is a crucial experiment

for introducing chain stretch. We investigate three types of architecture from order of

branching complexity: linear, H, comb polymers. The uniaxial extensional rheology of linear

polymers is highly rate dependent and the onset rate of experimental strain hardening (the

macroscopic consequence of chain stretch) is equivalent to the theoretical prediction of the

inverse Rouse time. Moreover, even linear polymers will stretch considerably under high

deformations until they reach finite extensibility. The molecular dynamic picture becomes

more complicated when introducing two or more branch points and two or more relaxation
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times.  We study H polymers, which have been anionically synthesized by (Roovers, 1984)

and characterized recently by state-of-the-art TGIC. We discover that due to the hierarchical

relaxation scheme of the H polymer,  there is a greater degree of chain stretch and an earlier

onset rate. We determine that as the experimental extensional rate is increased, the chain

stretch is increased until it is no longer entropically favourable to do so, and branch point

withdrawal occurs. Contrary to linear polymers, the maximum stretch is independent of stretch

rate and only depends on architecture such that λ=q where q is the number of arms on each

branch point. This can be explained by the simple rationale that the backbone segment is not

free to relax until the branches have full retracted (McLeish and Larson, 1998). When

increasing the number of entanglements of the arms and backbone of the H polymer, the effect

of chain stretch is magnified. Moreover, we study well-defined comb polymers (Roovers,

1979) with long molar mass of backbone Mb and rather short arm ends.  When doubling the

number of entanglements of the arms systematically while keeping the Mb constant, the onset

of chain stretch occurs at earlier rates. This can be rationalized by accounting for the effect of

dynamic tube dilution and extra drag from the arms that results in an effectively slower stretch

relaxation time. We modify the original differential pom-pom model of (McLeish and Larson,

1998) with the recently added modification to include drag strain coupling (Blackwell et al.,

2000) by specifying the coupling of stretch between adjacent backbone segments. The model

is validated successfully by comparison with a wide variety of combs (with different

molecular features) and  a wide range of extensional rates. At high rates, the maximum stretch

condition is reached and branch point withdrawal occurs, when arms are first oriented and

then withdrawn into the stretched backbone tube segments, first from the free ends and then

gradually progressing towards the center. By studying the internal dynamics of the backbone

segments, we discover that at this maximum stretch condition, the central backbone segment

has a stretch factor equal to λ=ns/2 and that the stretch factor decreases by a value of 1 at each

adjacent backbone segment. At these high rates, the addition of drag strain coupling

smoothens the transition to maximum stretch and allows for better predictions.

Moreover, our study focuses on the effects of the environment on the reptation and

fluctuations of model H and comb polymers. By systematically varying the length of the

linear chains, we study the acceleration factor related to the arm and backbone relaxation

times. The acceleration factor has a strong dependence on the length of the linear chains. The

shorter the chains, or the larger the difference between the relaxation times of the linear
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matrix and the branched polymer, the more enhanced is the acceleration factor. For the study

of bidisperse linear blends, there is the Struglinksy-Graessley parameter which is often

invoked to explain the transition from static dilution of the short linear chains in a dilated tube

to reptation in a skinny tube. There is no similar interpretation for blends of branched

polymers and linear chains. We model the SAOS data using the Time Marching Algorithm

by estimating a priori whether the linear polymer would be taken as a theta solvent or whether

the reptation occurs in a skinny tube. The criterion for this estimation is based on the

relaxation timescale separation between the linear matrix and the H or comb. In addition, the

BOB model is used to model the SAOS data of the mixtures and is shown to match the data

moderately well. The second diluted plateau modulus is overpredicted, indicating that the full

dilution is not taken into account.
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Introduction

This chapter provides a summary of the industrial significance and motivation of the study of

the dynamics of model polymers. Also, the existing experimental and theoretical challenges

in the field are discussed. Moreover, the following sections explain the basic concepts of

polymer physics related first to the motion of one single test chain, then to the dynamics of

short polymer chains and finally the extension of theoretical models to larger length scales to

explain the dynamics of long-entangled chains. The tube model is discussed in depth first for

linear chains and then for more complicated branched structures such as stars, H and comb

polymers in order of branching complexity. The chapter concludes with some recent

progress and limitations in the field. Lastly, it enlists the prime objectives and the structure

of this thesis.

1.1 Scientific challenges, industrial significance and motivation

Ever since the development of the tube model (Doi and Edwards, 1978), the field of

entangled polymers has fascinated scientists. The dramatic influence of purely entropic

topological constraints on polymer dynamics has opened the route for designing new

polymers and improving their processability. Moreover, the fact that macromolecular

architecture provides the means to control viscosity via branching distribution (McLeish,

2002), say, increasing total molecular weight, can result in viscosity reduction of a star

polymer in comparison to a linear polymer, has significant implications in technology. The

topology of complex polymers plays a significant role in understanding their processing and

final properties. The key to solving complex industrial processing problems and the design of

new products is the intimate link between the topology of polymers and their melt properties.

An example of a common industrial problem is the so-called shark skin, observed during

Chapter	1
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deformation of a molten polymer upon passing a critical flow rate due to flow instabilities

such as melt fracture and wall slip.

The study of both linear viscoelasticity and non-linear shear and extensional

properties of model polymers are crucial in closing the industrial design loop as shown in

Figure 1.1. Linear viscoelasticity is very sensitive to details of the molecular structure and

offers direct information about relaxation times of branching and blend components, as well

as the respective moduli. Well-controlled non-linear shear and extensional rheology simulate

more closely real processing conditions.

Most industrial processes such as extrusion, blow molding and film blowing consist of

complex flows and are often a combination of strong shear and extensional flows at rates

much higher than the inverse characteristic polymer relaxation time. Hence, the polymer

chains undergo significant orientation and stretching.  In effect, the extensional component

plays a key role in industrial processes, however the majority of the experimental studies are

focused on shear flow.  Moreover, the behavior of one polymeric system under shear is not

necessarily reflective of the behavior of the same system under extension. For example,

common industrial grades linear density polyethylene (randomly branched) and high density

polyethylene (mostly linear) have the same shear thinning response although LDPE is

considerably more strain hardening than HDPE due to the the presence of long-chain

branching (LCB) in the structure of the former (McLeish, 2002).  Therefore, the design of

well-controlled non-linear rheology experiments in both shear and extension as well as the

extension of molecular viscoelastic models also in the non-linear flow regime are of great

industrial interest.
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Figure 1.1: Graphical diagram of the industrial motivation of this study. Rheology is
instrumental in linking the molecular structure with the processing behavior and vice-versa.

Moreover, although model systems are far from industrial polymeric materials since

the former have low polydispersity, are amorphous homopolymers and are well defined in

terms of their branching content, their study is really the first step in understanding the effect

of topological interactions of polymers on the dynamic response. Without the experimental

rheology data generated with these well-defined systems, it would be impossible to further

test and develop any of the latest-state of the art molecular models (Larson et al., 2001;

Likhtman and McLeish, 2002; van Ruymbeke et al., 2006). Graessley was the pioneer of this

type of work, he was the first to systematically study the rheological properties of model

polymers (Graessley et al., 1976; Graessley and Roovers, 1979; Graessley et al., 1980).

The ultimate goal of these molecular models is to be used as a tool to predict

microstructural information from viscoelastic and non-linear data of industrial resins

(Shanbhag, 2011). Linear density polyethylene is an example of an ill-defined industrial

blend polymer material, highly polydisperse in both molecular weight and branching content.
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The topology of LDPE is a combination of several branched structures such as Caylee trees,

combs, H, star and linear polymers. Thanks largely to the advances in computational models

such as Branch on Branch polymers (BOB) (Das et al., 2006), Reptate (Likhtman and

McLeish, 2002), Time Marching Algorithm (TMA) (van Ruymbeke et al., 2006),

Hierarchical Model (Larson, 2001; Park et al., 2005), the mystery behind the structure of

LDPE is one step closer to being solved. These computational models include all of the most

recent and state-of-the art theoretical treatments in the field. A new term coined

computational rheology allows one to match the rheological response of an industrial polymer

to a complex branched ensemble. These new computational tools have strengthened the

collaboration between industry and academia and have allowed for significant advancements

in the field. In this study, we use BOB, Reptate and TMA and verify their applicability,

strengths and weaknesses for model polymers.

Evidence of the major effect of the topology of polymers on the physical properties of

molten polymers is long-chain branching (LCB) in randomly branched polymers.  A very

small amount of LCB provides for optimum final product properties which include a large

amount of shear thinning and high zero shear viscosity. The enhanced shear thinning ensures

reduced energy consumption at the same output rates. The high zero shear viscosity

contributes to improved mechanical properties and reduced sag.

However, the analysis of long-chain branching is extremely difficult and often rheology

on its own is not a powerful enough characterization method. Usually, a combination of

techniques are needed in addition to rheological methods, such as melt-state C-NMR

spectroscopy, size exclusion chromatography (SEC), temperature rising elution

chromatography (TREF) and light-scattering (by g-factor). One of the reasons why rheology

is not sufficient to detect LBC is the fact that, whereas it is such a powerful quantitative tool

sensing any microstructural change, it lacks qualitative resolution, as needed for example in

the case of different microstructural characteristics which give rise to the same macroscopic

response. For example, it has been shown that the effects of polydispersity and the effects of

long-chain branching act in the same direction, say with respect to nonlinear shear and

extensional viscosity (Münstedt, 1980; Hatzikiriakos, 2000; Lohse et al., 2002; Milner, 1996;

Doerpinghaus and Baird, 2003; Auhl et al., 2009; Stadler et al., 2009; van Ruymbeke et al.,

2010b). Note that industrial polyolefins, even when produced using metallocene catalysts,
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have a minimum polydispersity index of 2.  Hence, it is important to separate the effects of

polydispersity and architecture. One of the main goals of the thesis, is to elucidate the role of

branching features such as the length and number of branches on the rheological response.

This is only possible with the use of well-defined model branched systems. We comparatively

study model systems by increasing the level of branching complexity. For example, we study

the rheological effects of a single branch point by comparing a linear polymer to a star

polymer. Moreover, we study the effect of multiple branch points by studying the

macroscopic response of model H and comb polymers.

In the following sections of the introduction, we will begin with a short description

of the polymer physics related to a single polymer chain and then proceed to larger length

scales and finally discuss the dynamics of long entangled chains. Most of the introduction

will be focused on a description of the tube model and its elaboration for branched and

polydisperse structures and for more complex shear and extensional flows.

1.2 Linear flexible chains: Kuhn model

In order to understand the macroscopic dynamic response of topologically complex

polymers, it is important to first understand the fundamental polymer physics of a single

polymer chain. (Kuhn, 1934) first described the configuration of polymer chains using the

random coil model.  A polymer chain is assumed to be a Gaussian freely jointed chain as

shown in Figure 1.2. In addition, the following assumptions are made: it is a phantom chain

(two chain segments cannot occupy the same space); and the chain is not extended by

external forces such as flow (Dealy and Larson, 2006). The chain consists of Nf freely

jointed segments of length bf (Kuhn length).  A molecule will move by Brownian motion

through many equally probable conformations (random walk) at a single point in time and the

mean-square end to end distance is given by:

2 2

0
 1 .1f fR b N
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Figure 1.2: Random walk polymer chain statistics

1.3 Dynamics of short unentangled chains

Short unentangled polymer chains can be modeled using a Rouse model (Rouse, 1953),

the simplest of the molecular dynamic models.  The polymer chain (Figure 1.3) can be

represented as a series of N beads (monomer being the degree of polymerization) with

monomeric friction coefficient ζ0, connected to Gaussian entropic springs. The friction is

considered equidistributed in the chain such that ζ=Nζ0.

Figure 1.3 Sketch of the Rouse model applied to a single polymer chain which is represented
by N beads connected to entropic springs

The Rouse model accounts for the chains in an inert non-interacting environment of

other chains, hence it excludes hydrodynamic interactions and excluded volume effects.

Although, there are many simplifications inherent in the Rouse model, it has been shown to

be useful in modelling entangled polymer dynamics in the melt and in semidilute

concentration regimes (Doi and Edwards, 1986). Also, for long entangled chains, the Rouse

theory is valid at very short times of the chain relaxation within the tube (see below). The

longest Rouse relaxation time is proportional to M2, where M is the molecular weight of the

polymer chain. In a frequency sweep curve, the characteristic features of the Rouse model

include a slope of ½ at intermediate frequencies for both the storage and loss modulus and at

terminal frequencies a slope of 2 and 1 for the storage and loss modulus respectively.



15

1/2

R 0

2

R

1 1'( ), ''( ) ~  for

1'( ) ~  and '( ) ~  for                           1.2

G G

G G

   
 

    


 



Polymers consist of a large number (hundreds or thousands) of repeating monomers

convalenty bonded together. An oligomer is composed of only few monomers. The smaller

the number of monomers in a molecule, the more significant is the effect of the local

monomer chemistry. For instance, amorphous polymers and oligomers have different glass

transition temperatures, which is known to vary significantly with molar mass. Therefore, all

viscoelastic data needs to be compared not at the same temperature but at the same distance to

Tg (Graessley, 2004).

1.4 Dynamics of long entangled chains

Due to their size, the macroscopic properties of long, entangled flexible polymers

depend only on topological interactions. Evidence of the universality of the melt properties

for the same monomer chemistry is observed in both the viscosity scaling and the elastic

plateau modulus.  Below a critical molecular weight where Mc~2 times Me, the viscosity of a

polymer is proportional to the Mw but above Mc it follows a steep power law behavior where~ . (Ferry, 1980; Berry and Fox, 1968).

The high-M regime is known as the entanglement regime. Here, these long chains

cannot cross each and are topologically constraint by their neighbors as seen in Figure 1.4.

The characteristic molecular weight between them is Me and has a characteristic relaxation

time of a sub-chain between two consecutive entanglements τe. These entanglements are

similar to chemical crosslinks such as those found in rubber networks except that the physical

entanglements are transient and are only measured over a limited frequency range. The

molecular model which explains the physical picture of chain statistics preserved within an

entanglement segment (blob) is the tube model which will be explained further below.
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Figure 1.4: Sketch of physical picture of entanglements. The polymer chains which are

contained within their theoretical tube are overlapping with other polymer chains

The molecular weight between entanglements is universal for the same chemical

microstructure and is derived from the rubber-elasticity theory (Green-Tobolsky, 1980; Doi

and Edwards, 1986):

0
                 1.3e

N

RTM
G



At an earlier stage, before entanglements are active, 1/5 of the tension along the chain is

relaxed by longitudinal monomer rearrangements along the tube (Likhtman and McLeish,

2002) and therefore, the plateau modulus is reduced by 4/5 of its value.

0

4                  1.4
5e

N

RTM
G




1.5 Tube model

The scientific breakthrough which made possible the understanding of the link

between molecular structure and polymer dynamics was the tube theory (Doi and Edwards,

1986) and reptation (de Gennes, 1971), concepts which were expanded more recently by

(Milner and McLeish, 1998; Likhtman and McLeish, 2002) and others (van Ruymbeke et al.,

2006). The tube model was first introduced to explain the dynamics of rubbers by (Edwards,

1967) and then elaborated by de Gennes to include the theory of reptation. (Doi and

Edwards, 1978) were the first to develop a constitutive equation based on the elaborated tube

concept and reptation of entangled linear chains.



17

The topological constraints caused by the presence of other long, flexible entangled

chains, also trapped within their respective tubes restricts the motion of the test chain inside a

theoretical tube (Figure 1.5). The parameters which define the tube include the tube diameter

a and the length of the tube leq (primitive path or contour length). The latter is equal to:

                         1.5eq
e

NL l
N


where N represents the total number of Kuhn segments in the chain, Ne is the total number of

Kuhn segments between two entanglements and l is the length of a segment between two

entanglements. The tube diameter a (following Graessley’s definition) is equivalent to:

2
2

0

4                    1.6
5

eM ba
M



with b as the random-walk parameter derived by equation 1.1 where R2 is the end to end
distance of the tube.

Figure 1.5: Sketch of the tube and the parameters which define the tube

1.6 Linear polymers and reptation

In the linear viscoelastic regime, long linear entangled polymers will undergo three

relaxation mechanisms in order to relax their tube conformations from an imposed stress or

strain 1) reptation 2) contour length flunctuations and 3) constraint release.

The test chain trapped within its theoretical tube can only relax its stress by diffusing

(thermal Brownian motion) along the curvilinear distance of its tube, a term known as

a

R

L eq
Entanglement
segment
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reptation. It is the main mechanism of relaxation of linear polymers and becomes

progressively less important, the more heavily branched the polymer system. Figure 1.6

illustrates the steps in the reptation process. The analogy most often used as representative of

the reptation process is the diffusion of a snake.

Figure 1.6: Reptation process (Rubinstein and Colby, 2003) a) at one end of the snake,
formation of a loop b) loop propagates along the tube c) release of the loop and creation of
new section of the tube

The original Doi and Edwards model was further developed by the incorporation of

contour length flunctuations (Doi, 1981; Milner and McLeish, 1998) and thermal constraint

release (de Gennes, 1975; Rubinstein and Colby, 1998). With these modifications, the model

was able to explain more quantitatively terminal viscoelastic properties of flexible linear

polymers such as the 3.4 power law of the zero shear viscosity.

The chain ends of linear polymers will relax by a faster process known as contour

length fluctuations, (Doi, 1981) spring-like chain fluctuations, as seen in Figure 1.7, which

will act to decrease the viscosity with respect to the reptation prediction. Chain-end

fluctuations are more predominant in short chains and by increasing chain length, they

progressively lose importance.
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Figure 1.7: Illustration of contour length fluctuation relaxation process.  The ends of chains
pull away from the tube, previous tube segments vanish and new tube conformations are
created.

Additionally, due to the non-permanent nature of the tube, tube motion (thermal

constraint release) will also act to speed up the reptation process. The release of multiple

constraints due to relaxation of surrounding chains, will act to change the conformation of the

tube (vertical hops of the tube). These vertical tube hops are modeled by “Rouse motion” of

connected tube sections (Likhtman and McLeish, 2002). In Figure 1.8, the steps in the

constraint release relaxation process are illustrated.

Figure 1.8: Illustration of constraint release rouse process. Constraints from surrounding
chains are removed, new constraints are formed and the conformation of the tube changes
(also called tube renewal or tube re-configuration).



20

1.7 Star polymers dynamics

Reptation is not possible for the most simple branched architecture, the star polymer due to

the presence of a branch point which makes it impossible for the chains to slide along the tube.

Rather, stars relax their stress by fluctuations, similarly to the chain ends of linear polymers.

More specifically, initially, the chain ends will relax by rapid Rouse motion (Pearson and

Helfland, 1984; Milner and McLeish, 1997) and later, this rapid chain end motion will

crossover to an exponentially slow activated diffusion of the deeper arm segments.

Meanwhile, the relaxed arms segments will act as a dynamic solvent (Marrucci, 1985; Ball

and McLeish, 1989) for the remaining arm segments and the effective tube grows throughout

the relaxation process.  This is not an entropically favorable process and is exponentially

dependent on the length of the arms (de Gennes, 1979). In figure 1.9, the viscosity

dependence on span Mw for a linear polymer is compared to that of a data set of star polymers

(Fetters and Pearson, 1983). As discussed in Chapter 1.1, the linear entangled polymer

follows a 3.4 power-law dependence whereas the star polymer follows a much steeper

exponential dependence on the number of arm entanglements.

Figure 1.9: Star viscosity data versus span Mw showing the exponential dependence on Marm

and the comparison between the power law-dependence of linear polymers (Fetters and
Pearson, 1983).

Star polymers have both a very broad and slow relaxation time spectrum.  This is clearly

evident in the linear rheology curve where a shoulder in seen in the loss modulus G’’

104 105

~ M w
3.4

~ exp(’M a/M e)

Span M w

  
(P

oi
se

)
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(Frischknecht et al., 2002).   Additionally, the number of arms has no effect on the relaxation

time, up to a functionality of about 30.  At higher functionalities, the central core of the star

has more of a colloidal nature than a polymeric one (Vlassopoulos et al., 2001).

1.8 H polymer dynamics

The next most complicated branched structure is the H polymer. The H polymer

consists of two arms attached to each end of a central backbone. The relaxation mechanism is

primarily governed by a hierarchical process from the outer parts with free ends (here

branches) to the inner without free ends (here backbone) (McLeish, 1988). As seen in Figure

1.10, initially, the H polymer backbone remains frozen until the final retraction of the arms.

Similarly to stars, the H polymer arms will relax by exponentially slow contour length

flunctuations (Roovers, 1984; McLeish et al., 1999). Additionally, the backbone will act as a

type of permanent network for the relaxing arms, and hence slow down the relaxation even

further. The longest relaxation time is then not only exponentially dependent on the number

of entanglements of the arms but also on the arm fraction. The relaxed fraction of the arms

will act as a solvent for the unrelaxed fraction (backbone) and hence, reduce the effective

number of entanglements of the backbone and dilate the tube. Experimental evidence of

dynamic tube dilation is determined from the value of the second plateau modulus which is

equal to 0 1
N bG   where α=1 or 4/3 (Graessley, 2008; Rubinstein and Colby, 1990).

All the effective friction of the arms is concentrated on the branch points.  On time

scales shorter than τarm, the branch points are localized and cannot move. The branch points

begin to hop between neighboring cells of the entanglement net on the time scale of arm

retraction τarm. The length scales of these hops are of the order of the tube diameter a. Figure

1.10 illustrates the three major relaxation mechanisms associated with the H polymer.
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Figure 1.10: Illustration of the three step process in the hierarchical relaxation of H polymers.
First, the star arms will retract while the backbone remains immobile.  Second, the tube will
expand and the arms will act as a dynamic solvent. Third, the branch points will perform
diffusive hops. Image of branch point hopping (Bacova et al., 2013) of a star polymer with
three arms.

The H polymer is the most simple branch polymer which exhibits strain hardening, the

macroscopic consequence of chain stretch, experimentally seen as an upturn in the tensile

stress growth coefficient compared to the linear viscoelastic prediction, in extensional flow.

The condition for strain hardening is that a segment is contained within two branch points.

There has been significant progress in understanding the dynamics of H polymers thanks to

the seminal work of (McLeish et al., 1999) which incorporates in one model the linear

relaxation mechanisms (reptation, CLF, hierarchical relaxation) and the non-linear chain

stretch parameter in order to predict linear, non-linear rheology and neutron scattering

experimental data. Moreover, the pom-pom model of (McLeish and Larson, 1997) provides a

molecular framework for the understanding the non-linear rheology of H polymers and other

more complicated pom-pom structures. The pom-pom model will be discussed in more depth

in Chapter 3.
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1.9 Comb polymer dynamics

The comb polymer is a structure with a higher level of complexity than the H polymer due

to the presence of multiple branch points. For the comb structure, the friction is distributed at

each of these branch points and not localized on the chain ends as is the case of H polymers

or other structures with two branch points and multiple arms attached to these such as the

pom-pom molecule. There are two types of comb polymers which have been investigated

previously, the ones with a linear backbone (Roovers and Graessley, 1981; Ahmadi et al.,

2011; Chambon et al., 2008; Daniels et al,. 2001, Kapnistos et al., 2005) and the ones with a

star backbone (Kapnistos, 2006). Attached to the linear or star backbone, there are an equal

number of branches which are distributed randomly along the branches. However, the

majority of molecular models assume equidistant distribution of comb branches, however,

they account separately for polydispersity and uncertainty and position of branches (Daniels

et al., 2001; Kapnistos et al., 2005). The dynamic relaxation of comb polymers with linear

backbone are similar to H since, they both consist of two separate hierachical mechanisms

governed first by the arms through fluctuations and second by the backbone, through

dynamically diluted reptation. Also, similarly to the H polymers, the segments between

branch points lead to chain stretch and strain hardening.  However, the comb cannot be

modelled using the same physical concepts as used for the H and pom-pom but rather can be

rescaled as a dynamic diluted linear polymer with the effective friction concentrated at the

branch points (Lentzakis et al., 2013). The extensional rheology behaviour of comb polymers

will be discussed in more depth in Chapter 3.

1.10 Industrial branched polymers dynamics

The ultimate goal of all the rheological work on model polymers is to develop the

expertise needed to understand the relaxation mechanisms of more complex branched systems

which are similar to those found in industrial applications. For highly randomly branched

structures, it is known from modeling and from rheological data, that relaxation proceeds

hierarchically (Chen et al., 2010; Das et al., 2006; Read et al., 2011). The relaxation will

proceed from the outer most segments (chain ends between branch points or a dangling end)

to the deeper inner most segments. In order to follow the relaxation of the branching

segments, each segment is given a seniority or priority value (Figure 1.11) and its value is
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determined by the number of segments connected to the dangling ends (Read et al., 2011,

Rubinstein et al., 1990; McLeish, 2002).

All variables in these computational models (BOB and Hierarchical Model) are pre-

determined from the chemistry (Me, τe and melt density) and tube-model theory parameters (α

and p2). However, there are still some uncertainties related to the choice of tube-model

theory parameters (Park and Larson, 2003; van Ruymbeke et al., 2012). Despite this, these

hierarchical models are able to predict semi-quantitatively the rheology of complex randomly

branched polymers (Read et al., 2011).

Figure 1.11: Seniority or priority values of each chain segment in a randomly branched
polymer (Read et al., 2011). The relaxation proceeds from the free ends, assigned a seniority
value of 1 to the inner most segments, which are assigned the highest seniority value (4 in our
diagram).

1.11 Extension of viscoelastic models to branched and blend structures

While the linear rheology of monodisperse linear and star polymers is well described

by adapted versions of the Doi-Edwards model, other more complicated branched structures

(H, combs, Caylee trees) and blends of these still present a challenge. Although, there have

been groups who have been successful in the predictions of H (McLeish, 1988), comb

(Daniels et al., 2001; Kapnistos et al., 2005; Ahmadi et al., 2011) (as mentioned in the

previous sections), asymmetric star polymers (Frischknecht et al., 2002), Cayley-trees

(Blackwell et al., 2001; van Ruymbeke et al. 2007, 2010) there still remains open challenges

and the need for a unified approach.

For instance, one open problem is how to account for polydispersity in both

branching content and molecular weight distribution. In polydisperse systems, it becomes
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important to understand the incorporation of thermal constraint release into the existing

theoretical models. For polydisperse melts of short and long chains, constraint release is

important since fast relaxation of short chains remove topological constraints and allow

partial relaxation of long chains (Struglinsky and Graessley, 1985; Watanabe et al., 1984,

1985, 2004; van Ruymbeke, 2010). Several models and interpretations of constraint release

exist in the literature. Example of the latter include, the Rouse-like motion of the tube

(Graessley, 1982), tube dilation (Marrucci, 1985), double reptation (Tsenoglou, 1987; des

Cloizeaux, 1988) and dual constraint model (Pattamaprom and Larson, 2001). Due to

uncertainty around the interpretation of constraint release, even the linear viscoelasticity of

simple bimodals blends of linear-linear and linear-star still presents a challenge (Viovy et al.,

1991; Park and Larson, 2006; Read et al., 2012).

1.12 Extension of viscoelastic models to non-linear rheology

The tube model of Doi, Edwards and de Gennes (1986) with the added relaxation

mechanisms of CLF and contraint release has been successfully implemented in predicting

the linear viscoelasticity of entangled solutions and polymer melts. Also, in the case of non-

linear step-strain relaxation, the experimental damping function superimposes well with the

predicted damping function for entangled linear and star chains (review by Osaki, 1993).

Moreover, taking into account the theory of dynamic tube dilation, the model also can

quantitatively predict the weaker damping function of more complex branched structures such

as combs which have additional modes of relaxation (Kapnistos et al., 2009). However, in

other cases, the Doi and Edwards model cannot quantitatively and at times, qualitatively

predict the experimental data in the non-linear regime.

For example, start-up transient shear data of linear and branched polymers as a

function of shear rate shows a plateau for shear rates between the inverse Reptation time and

inverse Rouse time. The Doi and Edwards model shows a stress maximum (overshoot) in this

region which suggests a shear banding instability (Ravindranath et al., 2008). (Marrucci,

1996) proposed an additional relaxation mechanism, convective constraint release (CCR) at

high rates, which acts to remove entanglements due to the effect of convective flow on the

surrounding chain. (Ianniruberto and Marrucci, 1996; Mead et al., 1998; Ottinger, 1999;



26

Graham et al., 2003) have developed non-linear constitutive models in which the influence of

CCR and stretch is incorporated.

Moreover, the Doi-Edwards model also fails to predict the negative ½ slope (Bach et

al., 2003) found experimentally using the state-of the art filament stretching rheometer of the

transient steady stress growth coefficient plotted versus extensional rate (rates between 1/τD

and 1/τR). Rather, the Doi-Edwards model predicts a slope of -1. In figure 1.12 (Marrucci

and Ianniruberto, 2004), the difference between the theoretical prediction and the

experimentally determined slope is visualized. In addition, for the experimentally determined

data of the group of Hassager, at high rates, there is no upturn of the tensile stress growth

coefficient for linear entangled polymer melts. However, for entangled polymer solutions,

this upturn is experimentally observed (Huang et al. 2013). Therefore, more experimental

data and theoretical investigations are needed in the non-linear regime in order to be able to

make more quantative predictions.

Figure 1.12: Comparison of experimentally determined data of (Bach et al., 2003) and Doi
and Edwards theoretical prediction  (Marrucci and Ianniruberto, 2004).

1.13 Structural probes and non-linear rheology

Rheology is an indirect probe of chain and tube motion.  From rheological methods,

it is impossible to extract tube parameters such as tube length and tube diameter. The latter

can only be extracted indirectly from tube theory calculations. More microscopic probes of

polymer dynamics include neutron-scattering, neutron-spin echo (Wischnewski et al., 2002;

Zamponi et al., 2010), NMR (Cormier et al., 2001), dielectric spectroscopy (Watanabe et al.
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2004, 2005) and molecular dynamic simulations (Kremer and Grest, 1990; Auhl et al., 2003;

Everaers et al., 2010; Zhou and Larson, 2010; Wang et al., 2010; Bacova et al., 2013).

In order to have fully quantatitive tube model theories, microscopic probes are

needed in addition to rheological methods.  For example, the combination of rheology and

Neutron Scattering experiments (McLeish et al. 1999, Ruocco et al. 2013) or Neutron Spin

Echo Spectroscopy (Zamponi, 2010), allow the direct observation of the short-time stress

relaxation of entangled polymer chains. Selectively labelling parts of the structure of

complex polymers, for example labelling chain ends, allows the distinction between the stress

relaxation of each of the chain segments. One open problem which can only be investigated

by microscopic probes is the validity of the assumption of affine deformation of the tube

(Read, 2004). These questions can only be properly addressed with microscopic probes

although theorists have proposed different explanations in order to understand deviations of

non-linear rheological data (Read, 2003; Marrucci and Ianniruberto, 1999).

Conventional commercial rheometers can be used for standard linear viscoelastic

measurements. However, in the nonlinear regime at high shear rates and/or shear amplitudes,

modifications to conventional commercial rheometers are needed. The problems arise due to

various instabilities such as edge fracture, wall slip and elastic instability (McKinley et al.,

1991). Edge fracture is an instability which is specific to cone-plate and parallel-plate shear

flows of viscoelastic materials at high shear rates (Hutton, 1963; Tanner and Keentok, 1983).

It is characterized by the formation of a crack or indentation at a high shear rate on the free

surface of the liquid. By the combination of flow visualization techniques and methods to

delay melt fracture such as for example the cone-partitioned plate (Meissner, 1989; Schweizer

2002; Snijkers et al. 2011), more reliable non-linear data can be achieved. The flow

visualization techniques include particle image velocimetry (Ravindranath et al., 2008; Li et

al., 2013) neutron scattering (Heinrich et al., 2004; Ruocco et al., 2013) or confocal

microscopy (Lam et al., 2003). These techniques are essential to both isolate the effects of

each of the flow instabilities but also in the experimental design of non-linear rheological

experiments which are for the most part, free of these flow instabilities. Moreover, it is

important to understand that rheological properties are measured and tested by models based

on the assumption that the flow and deformation is homogeneous. Therefore, the models are

as robust as the design and execution of the experiments.
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1.14 Progress in the field

Important progress has been made in the field of polymer dynamics mainly due to

three contributing factors.  First, the availability of well-defined monodisperse branched

polymers (Roovers, 1979; Pitsikalis, 1998; Hadjichristidis, 1999).  Second, the development

of state-of the art characterization techniques in both chromatography (TGIC) and extensional

(Bach, 2003) and shear rheology (Meissner, 1989; Schweizer, 2002). Third, the advancement

in coarse-grained tube-model theories (Likhtman and McLeish, 2002; Larson et al., 2002;

van Ruymbeke et al., 2006) and “slip-link” models (Schieber et al., 2003; Likhtman, 2005;

Khaliullin and Schieber, 2009, 2010; Masubuchi et al., 2008).

Although nearly monodisperse polymers can be produced (by  high-vacuum anionic

polymerization), when it comes to branched polymers their architectural dispersity could be a

problem.  Recent advances in characterization combining Temperature Gradient Interaction

Chromatography, TGIC (Chang, 2005) and modeling have shown that the targeted anionic

synthesis of a specific branched architecture can lead to a range of side products which may

affect the final rheological properties (Snijkers et al., 2011; Chen et al., 2011, Chambon et al.

2008; Li et al. 2011; Hutchings et al., 2012).   In order to account for the presence of these

side products in the analysis of the rheological response, Larson has developed a rheological

methodology named combinatorial rheology (Chen et al., 2011). First, they characterize the

anionically synthesized branched polymer with the state-of the art TGIC method and perform

fractionation to remove any and all side-products. Next, the sample is blended with its

precursor, characterized once again by TGIC and finally they analyze the rheology of both the

sample and its blend using the latest state-of-the art theories. The idea is to be able to control

the polydispersity and then model the system and not model the system based on the

assumption that the polymers are wrongly monodisperse.

As a short summary of the Introduction, we present a table which presents the

characteristic dynamic features of the most simple polymeric structure of unentangled linear

chains extending to the more complicated branched structures such as H, comb and pom-pom

models.
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Table 1.1: Characteristic dynamic and rheological features of unentangled linear, entangled

linear, star and H, combs and pom-pom structure.
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1.15 Objectives

Listed below are the objectives of this work pertaining to the viscoelastic response of

branched polymers undergoing linear and non-linear deformation.

1. Study of experimental linear and non-linear rheology of well-defined complex

branched polymer systems.

2. Validate and improve current tube-model theories.

Organization of the thesis

This Thesis has been structured in five chapters as follows.

Chapter 1 provides a brief introduction and background literature on polymer dynamics. The

discussion in this chapter sets the motivation and objective of this study.

Chapter 2 gives a detailed description of the model branched polymers systems used in the

thesis and the experimental techniques and the methods used to investigate the structure and

rheology of these systems.

Chapter 3 presents the results on the tensile stress growth coefficient of the simple linear, H

and finally more complex comb polymer systems and how the molecular features affect the

tensile stress growth coefficients and the modeling results on these comb systems.

In Chapter 4, the influence of constraint release and contour length fluctuations in a dilute

blend of model H and comb polymer is presented. We use the TMA (Time-Marching

Algorithm) to fit the linear rheology data and try to understand the effects of the environment

(length of linear chains) on the dynamics of the model branched polymer.

Chapter 5 summarizes the salient conclusions from each chapter enriching the literature on

dynamics of polymers and further ends with the recommendation for future investigations in

this field.
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Systems and Characterization

This chapter provides a detailed procedure used for the rheological characterization and also

gives background information on the experimental protocols and methods that are pertinent

to the results presented in the subsequent Chapters. It begins with a brief description of all

the model systems used. Next, the experimental methodology used is explained. Finally, a

detailed description of the various characterization techniques is presented such as Size

Exclusion Chromatography (SEC), Temperature Gradient Interaction Chromatography

(TGIC), Differential Scanning Calorimetry (DSC), Dynamic light scattering (DLS), and

finally Linear and Non-Linear Rheological Methods.

2.1 Polymer Systems

All polymer systems used in this study are well-defined, nearly monodisperse and

amorphous homopolymers. We have used two different chemistries, polyisoprene (1,4

addition) and polystyrene.  The anionic synthesis of the combs (Roovers, 1979, Kirkwood et

al., 2009) and H polymers (Roovers and Toporowski, 1981) is described in the literature. The

linear polymers were either purchased commercially from Polymer Source (Montreal,

Canada) or Polymer Standard Service (Mainz, Germany) or synthesized by synthetic chemists

in Athens or Mainz. Their molecular characteristics are listed in Table 2.1, 2.2, 2.3 and 2.4.

In all cases, the polydispersity index (PDI=Mw/Mn) where the subscripts w and n refer to

weight- and number- average molar mass) was less than 1.1.  Hence, the samples can be

considered as model polymers. However, the true confirmation of their quality at the

molecular architectural level comes from the temperature gradient interaction

chromatography analysis (TGIC). In order for a polymer to be considered well-defined, it

becomes imperative to control all the following molecular parameters:

Chapter	2
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- Molecular weight

- Microstructure, in the case of polyisoprene, rich in 1,4 addition (>90%)

- Polydispersity (less than 1.1, preferably less than 1.05)

- Chain end (branch) functionality

- Homogeneity of branching architecture (architectural dispersity)

2.1.1 Linear Polymers

Both un-entangled and entangled linear monodisperse polymers were used in this study.

The aim of the rheological experiments on the linear polymers was twofold.  First, as a

reference for the model branched polymers and second, as a blend component in the mixtures.

The molecular characteristics of the linear polymers use in this study are found in Table 2.1.

The rheological response of linear model polymers is well understood and can easily be

predicted by their molar mass.  The larger the molar mass, the more extended the frequency

range of the plateau modulus, although its value is independent of the Mw. The plateau

modulus is inversely proportional to Me and can be determined from equation 1.4. At lower

frequency, the chains are no longer in their pseudo-equilibrium state, they undergo a

relaxation process and the relaxation modulus G(t) drops quickly. The relaxation time for

monodisperse entangled linear polymers has a 3.4 power-law dependency on the molar mass

(same as the zero-shear viscosity).

Table 2.1: Molecular characteristics of linear polymers used

Code Mw (kg/mol)1 PDI

PS 5k4 5.1 1.08

PS 22k4 22.2 1.07

PS 51k4 50.8 1.06

PS 129k4 129 1.04

PS 182k5 182 1.03

PS 262k6 262 1.1

PS 483k5 483 1.05

PS 1M2 1000
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PI 22k3 22.2 1.05

PI 96k2 96 1.02

PI 1.5M3 1500

1 The molar masses mentioned are weight-averaged
2 from Athens
3 from MPI (Mainz Polymer Institute) Polymerforschung
4 from Polymer Source
5 from Polymer Standard Service
6 from BASF

2.1.2 H polymers

The polystyrene H polymers were recently characterized by TGIC in order to determine

their quality and polydispersity since they were synthesized a long time ago by (Roovers,

1981) and kindly donated. Both H polymers have the same molar mass of backbone and arms

and a large volume fraction of arms of approximately 81%.

Table 2.2: Molecular characteristics of model H polymers used

Polystyrene Mb (kg/mol)1 Ma (kg/mol)1 Mtotal(kg/mol)1

H2A12 44 46 228

H3A12 123 132 651

1 The molar masses mentioned are weight-averaged
2 from (Roovers 1981)

2.1.3 Comb polymers

Three series of comb polymers were used in this study, two of which are polystyrene and

the other one is 1,4 polyisoprene. The PS combs were synthesized by (Roovers, 1979) and

the PI combs by Driva (Kirkwood et al., 2009) and kindly donated. The combs were also

recently characterized by TGIC.

The PS combs consists of two series classified by the molecular weight of the

backbone. The C6 series have an Mb of 275k, a constant number of arms (q~30) and an

average Mseg<Me, where Mseg is the molar mass between the backbone branch points as well
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as the molar mass between the chain ends and their respective branch point. The C7 series

have a larger Mb of 860k, a constant number of arms (q~30) and an average Mseg>Me.

The PI series has roughly the same average Mseg>Me, varying number of branches

(4.6-17.6), varying Ma (from less than 1 to 3 entanglements) and varying Mb (14-62

entanglements assuming Me=6kg/mol) (Fetters et al., 2006).

Table 2.3: Molecular characteristics of model comb polymers used

Code Mb (kg/mol) 1 Ma (kg/mol) 1 q (number of
branches)

Mtotal (kg/mol) 1

PI472k2 370 5.8 17.6 472

PI254k2 120.5 18.8 7.1 254

PI211k 2 157 6.3 8.6 211

C622-PS 3 275 11.7 30 624

C642-PS 3 275 47 29 1630

C712-PS 3 860 6.5 30 1055

C722-PS 3 860 11.7 28 1190

C732-PS 3 860 25.7 26 1530

C742-PS3 860 47 29 2530

1 The molar masses mentioned are weight-averaged
2 from (Kirkwood et al., 2009)
3 from (Roovers, 1979)

2.1.4 Mixtures

Two series of mixtures were used. In the first series, the H polystyrene H3A1 was

blended with a series of varying Mw linear polymers.  The second blend consisted of the

comb polyisoprene PI254k blended with different Mw linear polymers.

The linear monodisperse PS samples were blended with 1.5%, 3% and/or 10% volume

fraction of H polymer (Table 2.4).  The samples were carefully weighed, enough

tetrahydrofuran (THF) or toluene was added in order to completely dilute the mixture and the

blend was slowly mixed (for a minimum of one full day). Toluene was used as a solvent

instead of THF in the case of the high Mw PS samples since it was shown to be a more
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appropriate solvent.  The use of a stirrer and THF solvent lead to degradation, more

specifically chain scission, of high Mw PS samples during sample preparation. Therefore to

ensure the high quality of the sample, the mixing of these samples was performed using a

tumbler and THF was replaced with toluene. After mixing, the solvent was then evaporated

slowly at first and then gradually more quickly as the temperature was increased above the

glass transition temperature (above 100°C) in a well-sealed vacuum oven in order to

evaporate the last remaining drops of solvent. In order to ensure that all the THF was

evaporated, the weight of the mixture was monitored. The linear monodisperse PI samples

were blended with 10% by vol. fraction of PI254k comb polymer, mixed with cyclohexane

and the evaporation process followed was the same as for polystyrene.

Table 2.4: Molecular characteristics of mixtures used.

CODE Vol fr. H or comb Mtotal (kg/mol)

PS 5k 1 10% 70

PS 22k 1 1.5%, 3%, 10% 32, 41, 85

PS 51k 1 1.5%, 3%, 10% 60, 70, 111

PS 129k 1 3%, 10% 147, 181

PS 182k 1 1.5%, 3%, 10% 189, 199, 229

PS 483k 1 10% 500

PS 1 M 1 10% 965

PI 22k 2 10% 45

PI 96k 2 10% 51

PI 1.5 M 2 10% 1380

The molar mases mentioned are weight-averaged except for PS 483k, whose molar mass
corresponds to a peak Mw

1 Linear PS blended with H polymer H3A1
2 Linear PI blended with comb polymer PI254k

2.2 Methodology

The global objective of the thesis is to link the molecular characteristics of model

polymers to their dynamic response. In order to achieve this goal, a systematic methodology

is needed and each step is critically important. The polymers are first synthesized and

separately characterized by the synthetic chemists both during and/or after the synthesis.
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Complex branched polymers need to be characterized during synthesis due to the procedure

inherently involved in anionic synthesis.  For example, to synthesize a model H polymer, in a

first step, the arms and backbone are both polymerized and characterized separately and in a

second step, they are polymerized together via a linking agent. The standard characterization

techniques used by the synthetic chemists are Size Exclusion Chromatography (SEC) coupled

with Multiple-Angle Light Scattering for obtention of the molecular weight distribution, 1H-

NMR spectroscopy for analysis of microstructure content and Differential Scanning

Calorimetry (DSC) for determination of glass transition temperature.

Before performing any linear rheology experiments, first computational programs are

used such as tube-based BOB (Das et al., 2006) and Reptate (Likhtman and McLeish, 2002)

in order to predict the rheological response.  Due to the limitations inherent in the study of

model polymers such as low sample quantity and sample degradation even at moderately high

temperatures, it is imperative to have a first estimation of the linear rheological response.

This will enable first to establish the experimental conditions, such as measurement

temperatures and the approximate time needed for sample equilibration and second, as a

problem-solving tool in case of any technical problems related to the measurement.

Especially in the case of linear and star entangled polymers, these computational tools are

indispensable since they offer exceptional viscoelastic predictions. After performing a linear

rheology experiment, the linear viscoelastic envelope is calculated and the appropriate

conditions for non-linear rheology measurements are determined.  A final step after

performing measurements in the non-linear regime is the comparison with appropriate

theoretical molecular models. However, due to the quantitative and often qualitative

differences between non-linear rheological models and experimental data, this is often not

possible. Therefore, there are two alternatives, either a development or modification of tube-

based molecular models or a systematic phenomenological analysis.
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Figure 2.1: Schematic of methodology followed in this thesis

2.3 Anionic synthesis of model polymers

The anionic synthesis of the systems mentioned in Chapter 2.1 was not performed by us

but by synthetic chemists.  Therefore, only a brief description of the method will be

explained.

Living anionic polymerization under high vacuum conditions has been demonstrated to

be an ideal method to synthesize well-defined polymers with low degrees of compositional

heterogeneity and with control of the major structural parameters that affect polymer

properties. This method involves chain reaction polymerizations that proceed in the absence

of the kinetic steps of chain termination and chain transfer. It is possible to determine and

control the number average molecular weight (Mn) of the final polymer via the stoichiometry

since one initiator molecule generates one final polymer molecule.

Anionic synthesis is a very difficult synthetic method to perform since the presence of a

trace amount of impurities will lead to undesirable termination reactions.  As a consequence,

Determination of the effects of molecular architecture on
dynamic response

Comparison of non-linear rheology data with theoretical
predictions

Non-linear rheology of model polymers (uniaxial extension
and start-up shear)

Linear rheology of model polymers and comparison with
prediction

Prediction of linear rheology using computational models:
BOB and Reptate

Characterization of Model Polymers

Anionic Synthesis of Model Polymers
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most often fractionation is needed to remove by-products. Therefore, model polymers

synthesized using this technique are often prepared in very small sample quantities which

becomes a considerable limitation for further rheological measurements.

One example of anionic synthesis of stars using chlorosilane chemistry is shown in

Figure 2.2. The synthesis was performed by Kedar Ratkathwar (Ratkanthwar et al., 2013).

First a narrow Mw linear living polyisoprene was prepared in benzene with sec-BuLi as an

initiator. Each of the arms were removed by termination with degassed MeOH. Next, each

of the living polyisoprene arms were end-capped with 4-5 units of butadiene before the final

reaction with the linking agent tetrachlorosilane to obtain the 4 star arm.

Figure 2.2: Steps of the four arm star PI living anionic polymerization (Ratkanthwar et al.,
2013)

2.4 Characterization of Molar Mass

Traditionally, the method of choice for characterization of Mw was Size Exclusion

Chromatography (SEC) since it was both a quick and efficient method. However, there are

inherent limitations to SEC as will be discussed in the following section. The advent of the

TGIC method allowed for a more accurate characterization tool, with the only limitations of

larger amount of sample and time needed for each measurement.

2.4.1 Size exclusion chromatography (SEC)

The systems described in Chapter 2.1 were characterized by Size Exclusion

Chromatography (SEC) to assess their quality and level of polydispersity. It is a technique
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which separates molecules based on differences in hydrodynamic volume (size), in order to

obtain information about the average molecular weight and molecular weight distribution.

The polymer is dissolved in a solvent and pumped through columns packed with porous

beads. The largest molecules will flow easily and quickly through the column and will be

detected first, while the small molecules will move a longer distance through all beads and

will be detected last.

For linear polymers, molecular weight is proportional to molecular size, which is

defined by the mean square radius of gyration. Standard commercial calibrations are

available for linear polymers which convert elution volume to molecular weight. However,

for branched polymers, characterization is not as straight-forward since the branches can lead

to a more compact structure which decreases the hydrodynamic volume. Otherwise, different

architectures may be of the same size but have different molecular weights. Therefore, in

order to detect the actual Mw distribution, the setup needs to be equipped with a Multi Angle

Light Scattering Detector. Another limitation of SEC is observed for high molecular weight

polymers which are difficult to characterize due to plugging and chain scission during the

measurement.

For SEC analysis of the PS samples, two columns (Agilent, Mixed-B two-column set,

300 × 7.5 mm i.d.) were used at a column temperature of 40 °C. Eluent was THF (Samchun,

HPLC grade) at a flow rate of 0.8 mL/min. SEC chromatograms were recorded with a light

scattering (LS)/refractive index (RI)/viscometer (DP) (Viscotek TDA 302) and a UV

absorption detector (TSP, UV2000 at 260 nm wavelength) for on-line determination of

absolute molar mass of polymers. The dn/dc value for PS in THF is 0.185 mL/g. Polymer

samples were dissolved in THF at a concentration of ~1 mg/mL, and the injection volume

was 100 μL.

2.4.2 Temperature gradient interaction chromatography (TGIC)

Although all the monodisperse branched polymers in this study have been prepared

using high-vacuum anionic synthesis, they cannot be considered to be entirely pure since

there are still very small fractions of other species present (as discussed in the Introduction).

Size exclusion chromatography may reveal a polydispersity index as low as 1.03, but this is

not fully accurate because of the inherent limitations of the technique.  The main problem is
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the co-elution of analytes with similar hydrodynamic volumes.  The effect of these impurities

can be negligeable but in some cases, can have very important rheological implications.  Such

is the case of ring polymers, where very small fraction of linear polymer contaminants (1%)

can produce drastic changes in the rheological response (Kapnistos et al., 2008). The

challenge is both the characterization and the removal of these impurities.

Temperature Gradient Interaction Chromatography (Chang et al., 1999) offers a

solution to the limitations of SEC. It does not separate based on molecular size but rather on

molecular weight and has better resolution and sensitivity to branching components of

complex polymers than SEC. It is a type of high performance liquid chromatography method

which controls the retention of polymer molecules during isocratic elution by a programmed

variation of temperature of the columns.

For reversed phase (RP) TGIC analyses of PS combs, a C18 bonded silica column

(Nucleosil C18, 7 μm, 500 Å pore, 150 × 4.6 mm i.d.) was used. The mobile phase was a

CH2Cl2/CH3CN mixture (57/43, v/v, Samchun, HPLC grade) at a flow rate of 0.5 mL/min.

The temperature of the column was controlled by circulating fluid from a programmable

bath/circulator (ThermoHaake, C25P) through a homemade column jacket. The sample

solutions (~5 mg/mL) were prepared by dissolving the polymers in a small volume of the

eluent and the injection volume was 100 μL. The chromatograms were recorded with a LS

detector (Wyatt, Tristar) and UV detector (Younglin, UV730D).

2.5 Dynamic light scattering (DLS)

Dynamic light scattering measures fluctuations in scattered light intensity due to particles

diffusing by Brownian motion. In our study, dynamic light scattering was performed on a

dilute polystyrene H polymer in a good solvent (THF) in order to determine the overlap

concentration c* (as explained in Figure 2.3).
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Figure 2.3: Polymer chains as they pass from dilute regime c<c*, where the distance between
the chains is larger than their size, to the overlap concentration c=c*, where the chains
overlap and at higher volume fraction c>c*, to the semi-dilute regime where there is
considerable overlap and chain interactions.

The setup is a standard goniometer light scattering setup by ALV (Langen, Germany),

which uses a PM (photo multiplier) tube as a detector and a ALV-5000 correlator which

correlates intensity with time and determines the auto correlation function. Dynamic light

scattering was performed at five angles (30, 60, 90, 120 and 150 degrees).

A beam of monochromatic light (laser of wavelength 532 nm) hits the particles in the

sample and light gets scattered in all directions. The scattering vector q is defined as the

difference between incident beam vector and the scattered beam vector, in equation 2.1

i f
sin /24q K K n     2.1

where n = refractive index of the solvent, λ = wavelength of the laser of 532 nm.

The autocorrelation function (time-dependent fluctuation in the scattering intensity which

contains the dynamic information of the particles), obtained was analyzed typically with an

exponential fit to determine the decay rate.

2( ) ( )tq D q q  2.2

In our case, the sample is monodisperse and therefore the decay rate can be fit with a single

exponential function. The decay rate divided by the diffusion coefficient is plotted against q2

(at various angles). The extrapolation of this curve to q = 0 which in our case is not necessary

since a straight line (another indication that the sample is monodisperse) is obtained will

allow the determination of the diffusion coefficient. The hydrodynamic radius is then related

Dilute c<c* Overlap c=c*          Semi-dilute c>c*
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to the diffusion coefficient and η the viscosity of the solvent by the Stokes-Einstein-

Sutherland equation 2.3

t6
B

H
kTR D

2.3

where Bk the Boltzmann constant and η the viscosity of the solvent.

From the hydrodynamic radius, it was then possible to calculate the critical chain overlap

concentration c*, the crossover concentration between the dilute and semi-dilute

concentration (when chains interpenetrate) regime using equation 2.4.

3
3*

4 H AVG

Mc
R N

 2.4

where M corresponds to the molar mass and Navg corresponds to Avogrado’s Number.

2.6 Differential scanning calorimetry (DSC)

Differential Scanning Calorimetry was used to determine the glass transition

temperature of the amorphous polymers. A standard calorimeter (PL-DSC from TA) was

used and all the samples were heated at a rate of 10 °C/min.

The value of the glass transition temperature is important to measure for the model

polymers since it influences the entanglement time τe. Its value is dependent on the flexibility

of the chains and their interactions. For linear polymers, the Fox-Flory equation relates the

number-average molecular weight Mn, to the glass transition temperature Tg by the following

equation:

,g g

n

KT T
M  .            2.5

where
,gT 

is the maximum glass transition temperature and K is a material specific constant.

This relationship is mostly valid at low molecular weights since the reduction of Tg is due to

the free volume contribution of chain ends and at high molecular weights, there is a levelling

off to a plateau value.
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2.7 Linear rheology

Rheology is the study of flow and deformation of matter. More specifically, it describes

how stress or strain develops in a sample when a well-defined stress or deformation (shear or

extension) is imposed. For complex polymers melts, rheology is an ideal characterization

method since the molecular structure and viscoelastic properties are intimately linked to the

rheological characterization (described in Chapter 1.1).

First, the basic concepts of rheology are introduced by considering the most simple shear

flow condition of two parallel plates separated by a distance d as shown in Figure 2.4. The top

plate slides with a velocity v and a force Fxy applied while the bottom plate is stationary

(v=0), creating a gradient dvx/dy which is constant throughout the gap h. This gradient is

known as the shear rate calculated as the ratio of the velocity v and the plate-plate distance h.

0          2.6
v
h

 

The deformation (strain) is dimensionless and is defined by the deflection d divided by the

plate-plate distance h.

               2.7
d
h

 

Moreover, the shear stress is defined as the ratio of the Fxy and the cross-sectional area.

          2.8xy
xy

F
A

 

In practice, this is not the preferred rheological method and rather rotational rheometers are

more commonly used. Although there are some groups which have designed novel sliding

plate rheometers for oscillatory measurements, notably JM Dealy’s group (Giacomin et al.,

1989).
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Figure 2.4: Shear flow created by an upper plate which moves with a velocity v and force F
while the bottom plate is stationary.

Linear rheology measurements give valuable information on viscoelastic properties, structure,

relaxation times and MWD information. Small amplitude oscillatory shear, stress relaxation

and creep are all examples of linear rheology measurements.  An experiment is assumed to be

linear if the deformation or stress imposed is sufficiently small that the polymer chains remain

in the equilibrium state.

2.7.1 Small amplitude oscillatory shear

The most commonly used linear rheology experiment is SAOS (Small Amplitude Oscillatory

Shear). In a strain controlled rheometer, the strain imposed is a sine wave.

0           2 .9sin( )xy t  

If the strain amplitude is sufficiently small to generate a linear response, the stress response is

also sinusoidal but shifted horizontally by a phase angle δ (Figure 2.5). From an SAOS

experiment, the storage modulus G’ (elastic response) and the loss modulus G’’ (viscuous

response) are the outputs of interest and they can be determined from the stress response.

F, vx

h d

moving plate

stationary plate

y

x
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Figure 2.5: Sinuisodal strain imposed and corresponding stress response in a SAOS
experiment

SAOS experiments were performed for the monodisperse and blend PS and PI samples

on an ARES 2KFRTN1 strain-controlled rheometer (TA Instruments, USA) at temperatures

ranging from 110°C to 190°C for PS and -60°C to 80°C for PI with an Invar (copper-iron

alloy with low thermal expansion coefficient) parallel plate geometry of 8, 13 and 25 mm

diameter. The lower limit is determined by the glass transition temperature of the sample and

the upper limit is determined by the final relaxation time of the sample and the accuracy of

the transducer. The temperature control was achieved with a convection oven yielding an

accuracy  0.1C and the measurements were always performed in a nitrogen environment in

order to reduce the risk of degradation. Although SAOS experiments are relatively easy to

perform, they can still be problematic if a well-defined methodology is not performed which

include the following steps:

1. Sample preparation: High Mw PI and PS samples were press-molded in a vacuum

oven into diskotic shape of 8,13 or 25 mm diameter and thickness between 0.7 and 1.5

mm at temperatures much higher than the glass transition temperature. Low Mw PS and

PI samples were loaded directly in the rheometer.

2. Sample loaded and trimmed in order to fill entire gap and create a homogeneous

spherical (bulge) shape at the ends



t



t),



t) t)

t)
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Figure 2.6: Correct sample loading shape in the parallel plate geometry

3. Time sweep and strain sweep measurements were performed at the loading

temperature in order to ensure proper thermal equilibration of the sample and to

determine the conditions needed (percentage of strain) to remain in the linear regime.

4. Frequency sweep (FS) measurement at loading temperature.

5. Steps 3 and 4 are repeated at different temperatures, minimum of three FS

measurements needed.

6. The final FS measured is again at the loading temperature. If the final FS is

different than the initial FS than this is a sign of sample degradation and/or

inhomogeneous sample shape between the parallel plates.

7. Time-temperature superposition was performed (as explained below)

Time-temperature superposition (TTS) (Ferry, 1980; Dealy and Plazek, 2009) is

necessary in order to extend the frequency sweep to a broad range of frequencies and times.

TTS was performed at a reference temperature of 130°C and 170°C for PS and 0°C and 25°C

for PI and the WLF parameters were calculated in order to generate a complete mastercurve

which captured all the relevant viscoelastic parameters ie entanglement time τe, plateau

modulus GN
0 and reptation time τD. The entanglement time corresponds to the high frequency

crossover of G’ and G’’, the plateau modulus is extracted from the G’ at the minimum of tanδ

= G’’(ω)/G’(ω) and the reptation time corresponds to the low frequency crossover.

For the melts, the vertical shift factors bT were calculated from the density compensation

[Ferry (1980)]:

( )( )            2.11
( )( )
R EF REF

T

T Tb
T T






with ρ the density and T the temperature [K]) where for PS:
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4( ) 1.2503 6.05 10 ( )                      2.12T T   

and for PI (ρ in g/cm3, T in K, Zoller and Walsh 1995)

4 8 2( ) 0 .9 1 8 5 .3 4 1 0 4 .7 0 1 0                2 .1 3T T T      

are hence not fitted. The horizontal shift factors aT follow from a two dimensional

minimization procedure.  They can be fitted with the WLF-equation (Ferry 1980):

1

2

( )log( )             2.14REF
T

REF

C T Ta
C T T
 


 

For the PS samples, the following parameters result: C1=8.4 and C2=80°C at a reference

temperature TREF of 130C. In addition, the data was also time-temperature superimposed at

TREF of 170°C to obtain the following shift factors C1=5.6 and C2=120° C which is consistent

with other literature values when compared to the same reference value (Kapnistos et al.,

2005; Kapnistos et al., 2008; Ferry, 1980). In Figure 2.7, a plot of the shift factors obtained

for various PS architectures is depicted.

Figure 2.7: Horizontal (aT) and vertical shift factors (bT) for polystyrene comb, H, star, linear
and blend mixtures.

For the polyisoprene, the following WLF parameters are found at 0°C, C1=5.5 and C2=110°C

consistent with other works (Snijkers et al., 2013, Kirkwood et al., 2009, Auhl et al., 2008).
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In addition, the data was also time-temperature superimposed at TREF of 25°C to obtain the

following shift factors C1=4.5 and C2=132° C, again consistent with other literature values

when compared to the same reference value. In Figure 2.8, a plot of the shift factors obtained

for various PI architectures is shown.

Figure 2.8: Horizontal (aT) and vertical shift factors (bT) for polyisoprene comb, star, linear
and blend mixtures.

2.7.1.1 Experimental Challenges of SAOS

In the specific case of FS measurements at low frequencies, high phase angle values

(approaching 90°) and when the G’’ is much higher than the G’ value, the G’ values are

associated with a large amount of error and are therefore considered unreliable.  The problem

is that only a small amount of the total signal comes from the response associated with the G’

modulus.  Therefore the characteristic G’ slope equal to 2 which is representative of the

terminal relaxation of a monodisperse polymer sample is difficult to obtain.  Instead there is a

bending of the G’, which is characterized by a higher value of G’ and a tan delta value that

varies with strain%.  A way to counteract this and obtain a reliable G’ measurement is to

continuously increase the strain amplitude as the frequency decreases and thus obtain higher

values of torque.  In this case, it is important to monitor carefully the transition to non-linear

behavior which may arise at high strain amplitudes.  In order to achieve the right balance, a

high enough strain amplitude needs to be applied in order to have a clear G’ signal but not too
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high which would result in the transition to non-linear behavior. A good methodology to use

is to run strain sweeps at varying frequencies and find the minimum strain amplitude which

results in a constant tan delta value (Velankar, 2007).

In addition to the limitations associated with the instrument, there are also sample

considerations which may lead to this G’ bending effect.  Even anionic synthesized polymers

contain some polydispersity, which is often hard to detect even by SEC (Size Exclusion

Chromatography) (Snijkers et al., 2011). Even a very small fraction of high Mw contaminants

(less than 1%) which relax at these low frequencies would add extra elasticity.  Another

potential problem is the existence of small bubbles in the polymer samples. Although the

samples were not loaded with bubbles, it is possible that during the measurement, small

bubbles were formed which are invisible to distinguish by eye (Figure 2.9). These bubbles are

most likely created by the adsorption of water despite the fact that the polystyrene is not

hygroscopic.

Figure 2.9: Small bubble in the PS sample which are not visible by eye

The bubbles which cause an extra relaxation process may be wrongfully mistaken for a

structural relaxation but rather is due to the slow relaxation of the interfacial tension at the

low frequencies (Mundstedt, 2013).  The action taken to counteract this effect is to anneal the

sample overnight in a vacuum oven before the rheological measurement.

2.7.2 Stress relaxation and creep measurements

Another type of linear rheology experiment is a stress relaxation experiment where the

strain is increased instantaneously from 0 to a constant strain value γ0. The ratio of shear

stress to the strain imposed corresponds to the relaxation modulus G(t). An example of a

stress relaxation curve for an entangled linear polymer is seen in Figure 2.10 where the

sample transitions from a glassy regime to a temporary permanent network (plateau modulus)

to a liquid-like flow regime.
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Figure 2.10: Stress Relaxation Curve

Therefore as explained in 2.7.1.1, due to the problems which may be related either to

instrument or sample limitations, it becomes necessary to find another method in which to

measure the viscoelastic response at low frequencies. Therefore, in addition to FS

measurements performed in the ARES rheometer, we also performed stress relaxation and

creep measurements on the Physica MCR 501 (Anton Paar, Austria) stress-controlled

rheometer (with an efficient feedback control loop for precise strain-control measurements as

well) with 8 mm parallel plates. The temperature control of  0.1C was achieved with a

Peltier system, under nitrogen atmosphere. The Anton-Paar Physica can be used for stress

relaxation experiments since it has a an efficient feedback control loop feedback mechanism

to enable it to function in strain controlled mode. Moreover, the Anton Paar has a better low

torque resolution than the ARES, which enables the measurement of stress relaxation at long

times.

Stress relaxation and creep measurements can provide for more accurate

measurements at long times and low frequencies because they are both faster and can be

performed at lower more safe temperatures. However, there are also many considerations to

take into account such as conversion methods from stress relaxation G(t) and creep

compliance J(t) to dynamic storage G’(ω) and loss modulus G”(ω).  Also, it is very important

to ensure that the strain and stress imposed is in the linear regime.  In order to verify this, the

G(t) and J(t) curves should superimpose on each other at different magnitudes of strain and

stress.

For the purpose of comparing with simulation data, it would be preferable to measure

stress relaxation for a wide range of times and frequencies. However, it is very difficult to

obtain complete and accurate G(t) for a very wide range of times, specifically, at short times
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(transducer response time) and long times (poor torque resolution).  In order to obtain a

higher torque response typically the strain magnitude could be increased but this can

potentially lead to wall slip and edge fracture, two of the most common artifacts of step strain

experiments (Venerus, 2005).  The conversion from stress relaxation G(t) to G’(ω) and G”

(ω) and vice versa can be performed using programs such as TA Orchestrator software,

NLREG (Nonlinear Regression Analysis Programme) software and Reptate.  In order to make

sure that our G(t) is in fact reliable we superimpose the converted G’(ω) and G” (ω), using the

TTS shift factors.

To probe the lowest frequency range, the ideal linear rheology method is creep

compliance since unlike SAOS the torque does not decay with time. However, creep

experiments are not accurate at short times since the stress needs some time to reach its

desired value. Another problem related to this type of measurement is that the build of strain

with time might cause a shift from the linear to the non-linear regime. In creep compliance

measurements, the stress is increased from 0 to a constant stress value of σ0 (as shown in

Figure 2.11). The creep compliance J(t) measured corresponds to the ratio of the transient

strain and σ0.

Figure 2.11: Creep Compliance Curve

There are many numerical methods which can be used to convert from J(t) to G’(ω)

and G’’(ω). Different methods include the use of NLREG software, TA Orchestrator

software, Reptate, Evans et al. program (Evans et al., 2009). However, all these methods

involve Fourier transformation of the G(t) data and can be very sensitive to small scattering of

data (typically at short and long times) and also become unstable. The Schwarzl

approximation uses simple numerical formulae to convert creep compliance data to

viscoelastic moduli (Schwarzl et al., 1969). Despite the fact that it is an approximation, it has

J

σ0

t
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been shown to agree well with the above methods in the intermediate time range and is very

robust. The procedure followed involved first to ensure to be in the linear regime which

implies compliance J(t) constant for different stresses. Second, to find a function that fits the

creep compliance data very well in log scale. Third, to perform the formula of Schwarzl to

obtain dynamic compliance data and then to convert the J’(ω ) and J’’(ω) data to G’(ω) and

G’’(ω). The Schwarzl formulae are described below:

'( ) ( ) 0 . 0 0 0 7 ( ( 3 2 ) (1 6 ) ) 0 . 0 1 8 5 ( (1 6 ) ( 8 ) )
           0 . 1 9 7 ( ( 8 ) ( 4 ) ) 0 . 7 7 8 ( ( 4 ) ( 2 ) )                2 . 1 4
           0 . 1 8 1 ( ( ) ( / 2 ) ) 0 . 0 4 9 ( ( / 4 ) ( / 8 ) )

J J t J t J t J t J t
J t J t J t J t
J t J t J t J t

     
   
   

''( ) 0 . 4 7 ( ( 4 ) ( 2 ) ) 1 . 6 7 4 ( ( 2 ) ( ) )
             0 . 1 9 8 ( ( ) ( / 2 ) ) 0 . 6 2 0 ( ( / 2 ) ( / 4 ) )                      2 . 1 5
             0 . 0 1 2 ( ( / 4 ) ( / 8 ) 0 . 1 7 2 ( ( / 8 ( / 1 6 )
             0 . 0 4 3 ( ( / 3 2

J J t J t J t J t
J t J t J t J t
J t J t J t J t
J t

     
   
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 ) - ( / 6 4 ) ) 0 . 0 1 2 ( ( / 1 2 8 ) - ( / 2 5 6 ) )J t J t J t

In order to have a complete picture for slow relaxing samples, a combination of all

three linear rheology experiments in their respective frequency domains is needed.

Frequency sweeps are the most useful in the high frequency region, stress relaxation in the

intermediate frequency region and creep measurements at the very low frequency region. In

figure 2.12 below, we combine all three methods for the characterization of a 1 M high

molecular weight PS.
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Figure 2.12: Combination of frequency sweep, stress relaxation and creep compliance to
obtain a final mastercurve of the PS 1 M.

2.8 Non-linear Rheology Measurements

Non-linear rheology measurements are useful to perform since they mimic the

conditions found in industrial processes. However, to test entangled model polymeric systems

under large, rapid extension and shear deformations is extremely difficult due to the tendency

of these systems to deform in a non-homogeneous manner.

2.8.1 Extensional Rheology

First, a small description of the history of extensional rheometers will be presented.

Next, a short description on extensional flows and finally, the procedures involved in

performing extensional rheology measurements with the Sentmanat Extensional Rheometer

(SER) and the Filament Stretching Rheometer (FSR).

2.8.1.1 Short history of extensional rheometers

The studies of the behaviour of polymers and specifically model polymers in

elongational flows are rare, due to the difficulty in the design of an experimental setup which

generates well-defined extensional flows. In the last few decades, there has been significant
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progress made, mainly for the development of homogeneous uniaxial extensional flows.  The

Rheometrics melt extensiometer (Meissner and Hostettler, 1994) is the first commercial

extensional rheometer for melts and an adapted version of the original one developed by

Meissner in his laboratory (Meissner, 1969).  The sample is placed in a silicone oil bath (to

remove the sagging effect) and mounted in a horizontal or vertical position and extended by

rotary clamps.  Due to the large sample quantity needed in this type of setup (approximately 1

gram) (Meissner and Hostettler,1994), model polymers are very difficult to measure using

this technique. However, the sample can be stretched for an extended period of time up to a

Hencky strain of 7.

An important milestone occurred with the design of filament stretching rheometer for

solutions (McKinley and Sridhar, 2002 review) and melts (Bach et al., 2003), since better

control over the sample deformation was possible. This could be attributed to a feed-back

control loop and the addition of laser microscopy which enables a direct visualization of the

sample. Uniaxial extensional rheology become available to a wider rheological community

with the advent of the SER (Sentmanat Extensional Rheometer) and EVF (Elongational

Viscosity Fixture) which allowed for a small sample size to be used and consisted of a simple

fixture which could easily be mounted on a commercial rheometer.

2.8.1.2 Description of extensional flows

Extensional flow is different than shear flow for two main reasons, the deformation of

the sample in extension is in the same direction as the applied flow and extensional flows

generate a significant amount of chain stretch in a short period of time. Chain stretch in shear

flow is suppressed by the mechanism of convective constraint release at high rates (as

explained in Introduction 1.12).

There are three types of extensional flows which are possible to generate, uniaxial

extensional, biaxial extensional and planar extension. The most common one and the

technique used in our study is uniaxial extensional flow. The general expressions for the

velocity in the x, y and z direction are (Equation 2.16).
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In the case of uniaxial extension, b=0 and integrating the velocity expressions as a function of

time results in the following expressions (Equation 2.17).
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As seen in Figure 2.13, if a cube is stretched horizontally in the x-direction, its length
increases (stretches) exponentially, while its cross-sectional area decreases exponentially
(compresses).

Figure 2.13: Cube stretched exponentially in the x direction

The average Hencky strain simply corresponds to the following expression:

0

( )ln( )H

L t
L

  2.18

2.8.1.3 Sentmanat extensional rheometer

We have used the SER fixture (Sentmanat, 2004) mounted on an ARES 2KFRTN1

strain-controlled rheometer (TA Instruments, USA). The measurements with polystyrene
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were performed at a temperature of 170°C and with polyisoprene at 0°C, i.e., attempting to

keep nearly the same distance from the glass transition temperature Tg. The average

measured Tg of the PS and PI combs was 106°C and -61°C, respectively (Kapnistos et al.,

2006). These temperatures were carefully chosen in order to allow for the samples to be

sticky enough to adhere to the two cylindrical drums and to ensure that the torque levels are

sufficiently high to avoid the noise levels that arise at low strain rates.  Moreover, the Rouse

times (τR) of the polymer series were estimated based on the linear rheology curves and the

temperature was chosen in order to access extensional rates that fall below and above 1/τR

(see discussion below).  The experiments were always run under a nitrogen environment

(liquid nitrogen in the case of PI, gas for PS).  To further reduce the risk of degradation, extra

effort was made to perform all necessary actions very fast (order of 5 minutes), including

sample loading, equilibration and deformation.

Before measurements, the PS film samples were press-molded into a rectangular

shape with a thickness between 0.6 and 0.8 mm, a length of 17 mm and a width between 4

and 6 mm. The aspect ratio, defined as the width divided by thickness, was always between 6

and 8. The polymer powder samples were first pressed into shape at room temperature, then

placed in between two Teflon disks inserted into a home-made mold and heated in a vacuum

oven at 170°C. For the PI samples, a different procedure was used because of their low glass

transition temperature. The samples were rolled into cylindrical specimens with an

approximate diameter of 1-2 mm and a length of approximately 17 mm at room temperature

(Auhl et al., 2009).
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Figure 2.14: a) The SER sample shape prepared from a rectangular shape cut out prepared by
b) press-molding PS powder in the oven at high temperatures in between two heavy metal
pieces

The diameter was kept as low as possible while still bearing in mind practical

considerations (e.g., noise levels associated with low torque levels).  Results from recent

numerical computations (Yu et al, 2011) indicate that when using a cylindrical sample, a

diameter greater than 0.5-1 mm may result in large deviations from ideal uniaxial extension.

The accurate dimensions of the sample were measured before each experiment.  Due to the

limited amount of sample available (typically of the order of 100 mg), after the completion of

one run, the (usually broken) specimens were reformed and reused.   However, if there was

any sign of degradation, such as yellowing of the sample and/or a deviation of the low-rate

data from the linear viscoelastic envelope, the sample was discarded. Moreover, the

homogeneity of the specimen was also considered to be crucially important, and samples with

uneven thickness, bubbles or appearance of cracks were not used at all.

Special attention was paid to the temperature control which is important for accurate

extensional measurements. The temperature sensor is not located directly on the SER fixture,

hence the temperature control is indirect. In order to ensure that the fixture is at the target

temperature, a long pre-heating time of the fixture was used (1 hour), and afterwards the

sample was loaded as quickly as possible (less than 30 seconds loading).  The tensile stress

coefficient was corrected for thermal expansion (Sentmanat et al., 2005).  Moreover, a pre-

stretch was used for the polystyrene samples in order to correct for any minor sag effects and

to ensure better quality data, especially at short times (Sentmanat et al., 2005).   The results

were always checked against the linear viscoelastic prediction. In the slow-flow regime of

transient start-up, the tensile stress growth coefficient is related to the zero shear viscosity by

a factor of 3 according to the Trouton ratio.
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During the measurement, a constant uniaxial Hencky strain rate is applied which is

equal to the sum of the angular velocity of the slave and master drums divided by the distance

L0 between the drums.

0

2
H

R
L  2.19

The transient tensile stress growth coefficient is then calculated from the tangential force (the

sample’s resistance to deformation) divided by the decreasing cross-sectional area.

( )
exp( )E

H H

F t
A t  

   
2.20

Figure 2.15: a) The sample is placed between two cylindrical drums separated by a distance
L0, the drums rotate in opposite directions creating a tangential force in the horizontal
direction .b) The SER fixture is fixed onto the ARES rheometer

In order to check whether the specimen deformation was uniaxial when a constant

elongational rate was applied, the cross-sectional area was monitored.  Under uniaxial

conditions, this area should decrease exponentially with time. A Fire-iTM digital camera was

used (rate of 30 frames/second) along with an image analysis program (Image J) in order to

record the time-varying width at the center of the specimen during the deformation. To test

the conditions of uniaxial extension, the measurement of the time-dependent width of the

specimen is shown in Figure 2.16 b). The results of the video microscopy show that the

deformation of the sample is uniaxial since the width W(t) of the sample during deformation
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does follow the following relationship
0( ) exp / 2W t W t   
 
 , with W0 the original width of the

undeformed specimen.  From this result we conclude that uniaxial extensional conditions are

achieved in our experiments.

Figure 2.16: a) Fire-iTM digital camera attached to rheometer b) Variation of the normalized
specimen width, -2*ln(W/W0) (to its unstretched value W0) with t. The linear dependence
indicates uniaxial extension and determines the true stretch rate, here 0.097 s-1 (squares),
which compares well to the experimentally imposed (circles) 0.1 s-1.

In addition, an alternative approach was used, according to which the experiments

were run until a Hencky strain of 3, and subsequently the sample was quenched with nitrogen

gas,  removed and then the width in the center of the specimen was measured.  In both cases

the results were very accurate and there was less than 5% deviation from uniaxial prediction.

The only discrepancy occurred at the end of the experiments when the samples broke too

quickly, which would typically occur at low extensional rates (below 0.01s-1).

The maximum Hencky strain achieved was 4, corresponding to one full rotation of the

drums. Often, sample breakage occurred at lower strains.  After one full rotation, the polymer

film sample will touch the clamps which may lead to a sudden increase of the torque

response, resulting in an increase of tensile stress growth coefficient and misleading results.

As also reported by (Barroso et al., 2010), at low extensional rates, the polymer film was

prone to break prematurely by ductile failure, shortly after reaching the maximum in

engineering stress.  This can be explained by the Considère criterion which predicts that for a

purely elastic material sample failure occurs at the maximum in engineering stress (McKinley

and Hassager, 1999).  Recent work with entangled polymers relates the breakup to the elastic
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breakdown of the entanglement network and associated non-uniform extension (Wang et al

2007).

2.8.1.4 Filament stretching rheometer

The filament stretching rheometer used in this study was the one designed by (Bach

et al., 2003b) at the Technical University of Denmark and can be visualized in Figure 2.17.

The PS sample was first pre-moulded in a vacuum oven at 160°C into cylindrical specimens

with radius of 2.7 mm and length of approximately 1.5 mm. The sample was then placed

between two cylindrical parallel plates enclosed in an oven always with a fixed flow of

nitrogen gas to avoid degradation. Thereafter, the samples were pre-stretched to a radius of

approximately 2 mm at a temperature 20°C higher than the measurement temperature.

During the experiment, when a constant Hencky strain rate was applied, the upper plate was

pulled at a constant rate (by a step-rate motor) such that the mid-radius of the sample

decreased exponentially.  An on-line laser micrometer was used to measure the mid-diameter

of the filament during extensional deformation and this information is fed back to the feeback

controlled loop. If the stretching of the sample deviated from uniaxial extension, hence R(t)

is not equal to R0exp(-ε/2) then the end-plate velocity would be adjusted in order to keep

stretching and avoid sample failure. Moreover, by using video images, the sample could also

be visualized during stretching to monitor any sample inhomogeneities.  Also, the axial Force

measured on the bottom plate, placed on top of a weight cell was monitored in order to

calculate the final transient stress growth coefficient using the following expression:
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Figure 2.17: Filament stretch rheometer at DTU equipped with an on-line laser micrometer.
Image kindly provided by Hassager’s group.

The filament stretching rheometer (FSR) at DTU is considered to be state-of the art for a

few reasons.  First, the unique feature of the FSR is the ability for the sample to be stretched

under homogeneous uniaxial elongation for longer stretch times (reaching a Hencky strain of

approximately 6) compared to the standard extensional rheometers. Hence, it is possible for

the polymer melt to reach a steady state tensile stress growth coefficient and therefore, to

avoid the typical problems which may arise such as necking, ductile failure and brittle failure.

Also, since it is assured that steady-state is reached then it also becomes possible to measure

reliable stress relaxation data.  Second, both polymer melts and solutions can be measured in

this experimental setup. Third, it is possible to measure very low extension rates without

resorting to time-temperature superposition to shift the data. Due to all these reasons, the

FSR is an ideal method to test the current state of the art tube non-linear tube theory models.

However, despite all its advantages, the method also has a few limitations. For example,

it becomes very difficult to measure polymer melts with very long relaxation times due to the

difficulty of sample equilibration and adhesion to the plates during deformation. The adhesion

will improve only slightly with a rise in temperature which may also lead to sample

degradation. Also, high rates above ~(0.3-0.5 s-1) are also very difficult to measure again due
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to the problem of sample adhesion. Therefore, to measure high Mw model polymers and to

measure at higher Hencky strain rates, it is advisable to opt for the Sentamanat Extensional

Rheometer. The advantages and disadvantages of SER and FSR are summarized in Table

2.5. (Nielsen et al., 2009) also make a detailed comparison of transient extensional

measurements performed on the SER, EVF and FSR for an entangled linear polyisoprene

melt.

Table 2.5: Advantages and disadvantages associated with the use of the SER and FSR for the
purpose of uniaxial extensional rheology experiments

SER FSR

Advantages Disadvantages Advantages Disadvantages

- Fast and easy
measurements

- Can only stretch to ε=4
and sample usually fails
before this strain is
reached

- Can stretch for
longer time without
the sample
rupturing due to
feedback controlled
loop ε=7

-Must have excellent
sample adhesion to the
metal plates

- Can measure slow
relaxing polymers
with high zero shear
viscosity

- Require a minimum
zero shear viscosity due
to sample sagging

-More control over
sample, laser
micrometer can
track sample
changes

-Difficult to achieve
high rates of extension

- Can reach higher
rates, up to 10 s

-1
- Difficulty to measure
at low rates due to
inhomogeneous sample
failure

-Can reach very low
rates  of stretching

- Slow relaxing
polymers such as high
M

w
polymers difficult

to measure

- Small sample
quantity required

- Cannot measure
polymer solutions

- Can be used also
for polymer
solutions
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The filament stretching rheometer was used to measure the PS H sample H2A1 and to

confirm the reliability of the SER measurements for PS comb sample C712. Specifically for

the comb sample, we performed two experiments with the filament stretching rheometer

(FSR) of Hassager and coworkers in DTU, Denmark (Hassager et al., 2010, Nielsen et al.,

2006). The measured transient tensile stress growth coefficients of the PS comb sample C712

at Tref=170°C at Hencky strain rates of 0.003 s-1 and 0.03 s-1 were in excellent agreement with

the respective SER results.

2.8.2 Non-linear start-up and relaxation in simple shear

Non-linear start-up shear involves the application of a sudden step-rate, monitoring

the transient shear viscosity and then stopping the flow and following the relaxation. The

typical transient shear viscosity diagram for a linear entangled polymer is shown in Figure

2.18 where an overshoot is first seen (due to chain orientation and also chain stretch at high

Wi) and subsequently a lower steady-state shear viscosity is achieved, the flow is then

stopped and the relaxation proceeds very quickly.

Figure 2.18: Schematic of shear start-up and relaxation experiment

Non-linear start-up shear and subsequent steady state relaxation measurements were

performed on select samples using a cone partitioned plate (CPP) fixture. We used the CPP

developed by F.Snijkers, explained in detail elsewhere (Snijkers et al., 2011) and based on the

original version of (Meissner, 1999) and further elaborated by (Schweizer, 2002). The

temperature control of  0.1C was achieved with a home-made ceramic oven custom-made

to fit around the CPP. As seen in Figure 2.19, the CPP was composed of a 25 mm cone

attached to the bottom of the ARES, a 6 mm diameter Invar parallel plate attached to the top

of the ARES and was aligned with the ring of the partitioned plate by three alignement stages.

t

S

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With the use of the CPP, edge fracture is delayed since only the center of the sample is

measured and it will take some time before the edge fracture will progress towards the center

of the sample. The main advantage of using the CPP is that higher shear rates can be

achieved compared to a standard cone and plate geometry since non-linear melt-instabilities

such as edge fracture and wall slip can be delayed. Therefore, even at high rates, exceeding

the inverse Rouse time, the complete start-up shear curves can be measured reliably and a

steady-shear viscosity can be achieved.  The other method which can be used to extend the

range of rates is time-temperature superposition (Auhl et al., 2008), but this is tricky when a

cone is used.

Figure 2.19: a) CPP attached to ARES rheometer, b) 6 mm parallel plate aligned with outer

ring and c) the home-made ceramic oven which fits around the experimental setup.

2.9 Experimental Challenges and Solutions

As a short summary of Chapter 2, Table 2.6 focuses on the solutions to the three major

experimental problems, some of which we address in this thesis: 1) low sample quantities

produced by anionic polymerization, 2) difficulty of characterization of branching and 3) the

challenge of producing homogeneous non-linear flows.
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Table 2.6 Major experimental challenges and solutions

Experimental Challenges Approach

Recent developments in anionic synthesis
and low sample quantity.

- Development of fixtures to adapt to
smaller sample size such as the use of
smaller diameter parallel plates.

- Development of tools such as SER and
CPP which allow for easy and quick
measurements with very low sample
quantity.

Characterization of branching structure - Development and use of Temperature
Gradient Interaction Chromatography
(TGIC) which allows detection of even
small amounts of side products otherwise
undetectable in SEC.

Obtention of reliable non-linear data - Combination of non-linear rheology
with optical methods such as particle
image velocimetry.

- Checking different geometries

- Cone-partitioned plate attached to
conventional rheometers to delay melt
fracture in non-linear shear.

- Filament stretching rheometer which
delays sample failure by incorporation of
an on-line control of diameter during
stretch.
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Understanding the Physical Origin of Chain Stretch

In this chapter, we investigate the uniaxial extensional rheology of simple linear

monodisperse polymers, subsequently more complex H polymers and finally comb polymers.

Our goal is to understand how the molecular architecture effects chain stretch and the

uniaxial extensional response. For linear monodisperse polymers, chain stretch is well

understood and the onset of extensional hardening can be predicted from the value of the

Weissenberg number, the ratio of rate of stretch and the Rouse rate.   For H polymers, the

pom-pom model offers a fairly complete picture of the role of the molecular features on the

extensional response. However, for comb polymers, the pom-pom model is not adequate and

hence, we present a modified version of the pom-pom model taking into account the unique

structural characteristics of the comb.

3.1 Introduction

The parameter free modeling of nonlinear rheology of branched polymers, including

both shear and extensional flows still poses challenges.  However there are important recent

developments, at different levels of coarse graining, such as the pom-pom model (McLeish

and Larson, 1997) and the molecular-stress function approach (Wagner and Rolon-Garrido,

2008; Rolon-Garrido et al., 2009). Interestingly, these models are highly successful in

predicting data with ill-defined commercial polyethylenes. However, the main open problem

is the direct analogy of molecular characteristics and nonlinear response, as done in the linear

case.  To this end, not much progress has been reported (van Ruymbeke et al., 2010a; Nielsen

et al., 2006; Rasmussen et al., 2009). This is a direct consequence of very limited

experimental data on well-defined polymers, which is due to both the difficulty of obtaining

appropriate macromolecules and performing experiments with tiny amounts of samples

synthesized anionically. The effects of number and size of branches are of prime importance

Chapter	3
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to explore. Note that, experimentally the filament stretch rheometer and the rotating drums

fixture constitute an established combination of instrumentation for obtaining reliable data at

a wide range of extensional rates (Hassager et al., 2010; Sentmanat et al., 2005).

In entangled polymers undergoing fast flows the concept of chain stretch becomes

important (Marrucci and Grizzuti, 1988; Marrucci and Ianniruberto, 1999). It is due to

friction of the chain retracting within its tube and occurs at high deformation rates exceeding

the reciprocal Rouse time of the chains, i.e. when the chain segments remain oriented and

stretched in quiescent state. The macroscopic consequence of chain stretch in uniaxial

extension is strain hardening, i.e. the upturn in the tensile stress growth coefficient above its

viscoelastic value. The uniaxial extensional rheology of monodisperse linear polymers (Bach

et al., 2003) has been investigated systematically and seems to be reasonably well understood.

In particular, the ½ power-law scaling of the steady state tensile stress growth coefficient in

relation to the extensional rate was rationalized by invoking the interchain pressure term

(thermal pressure exerted on the tube wall) which is balanced by tube contraction due to the

applied deformation and consequently, a reduction in tube diameter (Marrucci and

Ianniruberto, 2004). The tube pressure concept although it has been to shown to be useful to

predict the extensional response of long-chain branched polymers and some well-

characterized branched architectures (Rolon-Garrido et al., 2009; van Ruymbeke et al.,

2010a), has many shortcomings, for example, when it comes to its applicability to entangled

solutions (Marrucci and Ianniruberto, 2005), which are currently being considered

(Ianniruberto et al., 2012). Also, the same authors have reviewed this concept and have

determined that the discrepancy in the slope is not due to the tube pressure concept but rather

can be explained by a stretch/orientation dependent friction (Ianniruberto et al., 2011; Yaoita

et al., 2012).

Chain stretch becomes especially important for polymers with chain segments

contained between two branch points. For these types of polymers such as the H polymer

(Mcleish et al., 1999), pom-pom (Nielsen et al., 2006) and Caylee trees (van Ruymbeke et al.,

2010a), strain hardening will occur even at very low deformation rates. The increased amount

of chain stretch can be attributed to the fact that the segment between two branch points is not

free to relax its stress until the branches have fully retracted (McLeish and Larson, 1998).



68

Eventually, branch point withdrawal occurs since it becomes more entropically favorable to

withdraw the branches than to continue to stretch the backbone  (McLeish and Larson, 1998).

From the above it is evident that a systematic investigation of the effects of branching

on the extensional rheological behavior of well-characterized branched polymers is much

needed. This is exactly the goal of this work. We investigated the underlying molecular

origin of chain stretch for architectures of increasing complexity: linear, H and comb

polymers. The linear polymers serve as our reference sample.

3.2 Uniaxial extensional response of linear polymers

The uniaxial extensional rheology is directly influenced by the magnitude of the rate

of stretch as shown in Figure 3.1 for a linear monodisperse polymer. When a deformation is

applied, the test chain and the surrounding chains are oriented and/or stretched depending on

the value of the Weissenberg number, the ratio between the experimental deformation rate

and the Rouse relaxation rate. The consequence is a displacement of surrounding chain

entanglements and as a result, a deformation of the test tube. Due to entropic elasticity, the

test chain can retract and relieve the imposed tension and return to its equilibrium length, the

same primitive path length as before the imposed deformation.

At low rates, in Region I (Figure 3.1), below 1/τd, the chains are at an equilibrium

state (flow) where the tensile stress growth coefficient is equivalent to 3η0 according to the

Trouton Ratio.  In Region II, in between 1/τd and 1/τR, the entropic chain tension (due to

constraining tube) is equivalent to 3kT/a (Doi and Edwards, 1986) where kT is equivalent to

the thermal energy and a is the tube diameter (as explained in Chapter 1). Also, the chains

are oriented in the direction of the flow and will relax faster than they are deformed and keep

their equilibrium conformation, hence the contour path occupied by the retracted chain equals

the equilibrium length. The stress saturates with tube orientation to a constant value and

therefore, the tensile stress growth coefficient decreases with a slope of -1.  Experimentally,

this is seen as a slope of -1/2.   In Region III, at rates larger than 1/τR, there is a transition

from orientation to stretching of chains, retraction occurs in a Rouse-like motion of the test

chain along the deformed tube, and the contour path occupied by the retracted chain is larger

than the equilibrium length. In Region IV, the chains are fully stretched and the tensile stress

growth coefficient reaches a plateau value.
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Figure 3.1 Schematic of tensile stress growth coefficient versus time where all four regions are
shown (Marrucci and Ianniruberto, 2004; Malkin and Petrie, 1997).

Small Amplitude Oscillatory Shear (SAOS) was performed on a linear PS of

Mw=262k, PDI=1.1 in order to obtain a linear viscoelastic mastercurve (Figure 3.2 a). Also,

uniaxial extensional rheology was performed using the Sentmanat Extensional Rheometer

(SER) at a rate of 1 s-1 at temperatures ranging from 130°C to 180°C.  The tensile stress

growth coefficient obtained at each of the temperatures was then shifted to 170°C by time-

temperature superposition using the same shift factors as obtained in linear rheology (Figure

3.2 b). We show that in Figure 3.2 b), time-temperature superposition can be successfully

applied also in uniaxial extensional rheology.  This is in congruence with previous studies,

where time-temperature superposition has been shown to be applicable in start-up shear

(Kapnistos et al., 2009) and extension (Auhl et al., 2008) studies.
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Figure 3.2 a) symbols: linear viscoelastic response of linear PS 262k at 170°C and lines:
comparison with fit of (Likhtman and McLeish model 2002) and its respective entanglement
rate (1/τe), Rouse rate (1/τR) and relaxation (crossover) (1/τd) rate indicated by the dashed lines
b) master curve of the extensional response of the same sample at 170°C after performing
time-temperature superposition plotted together with the linear viscoelastic envelope. The
arrow indicates the predicted onset of strain hardening determined from the definition of the
Rouse rate.
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As seen in Figure 3.2 b), the transient tensile stress growth coefficient for the lowest

rates follow the linear viscoelastic prediction. As mentioned in the introduction of this

chapter, the chains will begin to stretch and display extensional hardening at rates higher than

the reciprocal Rouse time due to chain-induced friction. In order to be able to predict the

onset rate of strain hardening, the first step is to calculate the Rouse time which is not obvious

since there is more than one definition which currently exists in the literature (Doi and

Edwards, 1986; Menezes and Graessley, 1982; Roland et al., 1982). We use the classical

definition (Doi and Edwards, 1986) to calculate the Rouse time which is derived from an

expression that is independent of the tube model.

2 2
2

2                           3.1
3R e

B

N b Z
k T

 


 

where ζ is the monomeric friction constant,  kB is the Boltzmann’s constant, N is equal to the

number of monomers, b is the statistical segment length and Z is the number of

entanglements. Using the parameters: Me=15500±1500 g/mol and τe=7.5E-4±2.5E-4 s, a value

of Rouse rate of 5.6±2.8 s-1 is obtained which corresponds roughly to the rate at which we

start to observe strain hardening experimentally, between 3 and 13 s-1.  Despite the simplicity

of this approach, it works quite well to approximate the onset of strain hardening for linear

polymers.  Linear polymers can also display significant strain hardening if the rate of stretch

is significantly higher than the Rouse rate (Region III and IV in Figure 3.1) as seen for PS

262k at a very high rate of 640 s-1. The amount of stretch will increase with the rate until

molecular finite chain extensibility is reached which acts to limit this maximum value.

Marrucci and Ianniruberto were the first to suggest that linear polymers may behave like

branched polymers in the steady state of fast elongational flows (Ianniruberto and Marrucci,

2013). They successfully compared their theoretical predictions to a limited data set of pom-

pom and asymmetric star melts. Therefore, it is worth examining with more experimental

evidence whether architecture has a significant influence at these high rates where the chains

are aligned and the maximum amount of chain stretch has been reached.

3.3 Uniaxial extensional rheology of H polymers

Although the onset of chain stretch of linear polymers is rather easy to predict and is

influenced solely by the friction of the chain retracting within its tube, the extensional
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behavior of branched polymers is more complex.  As explained previously, in a small

amplitude oscillatory shear measurement the branches act to delay the final reptation time. In

extensional deformation, the branches allow the melt to support a higher force per unit area

and avoid early failure.  More specifically, the presence of branches allows for stronger strain

hardening and a smaller onset rate.

In order to determine the influence of the molecular structure on the extensional

behavior of more complex branched polymers, we start first with the simplest branched

polymer, the H polymer. We use two PS H polymers characterized as having the same molar

mass of backbone and arms and a high volume fraction of arms, whose molecular

characteristics are explained in Chapter 3.1. The linear viscoelastic properties of the H

polymers, also characterized in the past (Roovers, 1984) and remeasured again are shown in

Figure 3.3. The quality of the samples and measurement, is confirmed by the agreement

between our data and the data of Roovers. Due to the large number of entanglements in the H

polymer arms, the backbone is heavily diluted by the arms (φb=0.19), rendering it virtually

unentangled. If φbMb<Mc, the backbone chains are not mutually entangled and the

intermediate terminal relaxation has the characteristic G’~G’’~ω1/2 which is clearly seen by

the ½ slope just before the terminal relaxation. Due to the short arms and equally short

backbone (less than 3 entanglements), there is no clear separation between the relaxation

time of the arms and backbone in the case of the lower Mw H2A1 polymer. For the higher

Mw sample H3A1 which consists of a well-entangled backbone and arms, the timescale

separation is much more well-defined.



73

Figure 3.3: symbols: linear viscoelastic data at 130°C of (a) H2A1 and (b) H3A1, lines: TMA
modelled data and the respective arm and backbone curves.
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We calculate the Rouse time for both H polymers using the expression of

(Ianniruberto and Marrucci, 2013):

2

, 2( 4 4 )                3.2a a
R R b

b b

M M
q M M
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where ,R b is the Rouse time of the backbone, q is the number of arms, λ is the backbone

stretch ratio and λ=q for a Gaussian backbone.

We utilize the Time Marching Algorithm (TMA) (van Ruymbeke et al., 2006) in

order to isolate the linear rheology curve of the H polymer arms and backbone and define a

respective relaxation time of arms and backbone (Figure 3.3). The model uses the same

molecular-based tube model but differs in the implementation of the relaxation mechanisms.

The same relaxation mechanisms are used ie. CLF, DTD, reptation and CR, however the

coordinate system used differs. The relaxation mechanisms occur simultaneously and there is

no clear separation between the relaxation processes. Due to this difference, there is no need

to have a p2 parameter although the familiar α = 1 dilution exponent is used. Also, an extra

consideration is taken in the treatment of dynamic tube dilation, where the Struglinksy-

Graessley criterion is taken into account. The TMA approach was successfully applied to

linear, star polymers and other more complicated branched (comb, pom-pom) and blend

structures (van Ruymbeke et al., 2006, 2007, 2010, 2011, 2012; Ahmadi et al., 2011). The

relaxation times of arms, backbone and crossover relaxation times determined from TMA are

listed in Table 3.1.

Table 3.1:  H2A1 and H3A1 arm volume fraction (φa) and characteristic relaxation times

Code φa τd (s) τa (s) τb (s) τR (s)

H2A1 0.81 77 50 200 71

H3A1 0.81 1E6 1E4 1.6E6 577

For the H2A1 polymer sample, the state-of the art filament stretching rheometer was used

to measure the uniaxial extensional response. As explained in Chapter 2, the filament

stretching rheometer equipped with a feedback-controlled loop enables an extended stretch

time (from 4 to 6 Hencky strain units) and the obtention of a steady-state tensile stress growth
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function for all rates (Figure 3.5a). The steady state viscosity is achieved for the H polymer at

a Hencky strain between 3 and 4 as shown in Figure 3.5a. Moreover, at all rates (Figure 3.4a),

extensional hardening is observed, even at rates lower than the inverse Rouse time and the

inverse crossover relaxation time, indicating the effect of the presence of a segment contained

between two branch points. As demonstrated also in other works (van Ruymbeke et al., 2010;

Bach et al. 2003a), the steady state state tensile stress growth coefficient plotted versus stretch

rate results in a slope of -1/2 (Figure 3.4 b).

Figure 3.4: a) H2A1 transient tensile stress growth coefficient obtained at Tref = 130°C at
different Hencky strain rates (from 0.001 s-1 up to 0.3 s-1) and b) steady-state tensile stress
growth coefficient versus rate.
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quantification of the amount of stretch. The SHF is defined as the ratio of the experimental

steady state tensile stress growth coefficient and three times the shear viscosity (LVE

envelope). In Figure 3.5, b) the SHF is plotted vs Hencky strain. The SHF varies between a

minimum value of 2 at a rate of 3E-4s-1 and a maximum value of 5 at a rate of 0.3 s-1,

indicating the effect of the rate on the amount of chain stretch. We make the analogy of SHF

with the pom-pom value q (number of branches) where the maximum stretch occurs before

branch point withdrawal. The pom-pom model will be explained in more detail below. The

value of SHF is on average higher than the number of branches. (Kempf et al., 2013)

demonstrated that the SHF increases with the number of branches for a series of

monodisperse comb polymers.

Figure 3.5 (a) Shear stress growth function and (b) strain hardening factor (SHF) versus

Hencky strain at rates from 3E-4 s-1 to 0.3 s-1
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The multi-mode pom-pom constitutive equations (Bishko et al., 1997; McLeish and

Larson, 1998), were utilized in order to study the extensional rheology of H polymers. The

model is based on the molecular structure of a model “pom-pom” molecule which consists of

a long flexible backbone with multiple arms attached to each of the two chain ends. The

original purpose of the model was to provide for a molecular framework for the

understanding of the non-linear rheological response of industrially branched polymers. One

of the goals of the thesis is to verify its applicability for model H and comb polymers. In

other studies, semi-quantitative agreement has been demonstrated in simultaneous fitting of

both start-up shear and extension of model H polymers (McLeish and Larson, 1998; McLeish

et al., 1999). We believe that the H2A1 experimental data would be an ideal test for the pom-

pom model since the data covers a large range of Hencky strain rates and captures both the

startup and steady uniaxial extensional data.

The model incorporates some basic mechanisms such as reptation, hierarchical

relaxation, dynamic dilution and chain stretch, however, it misses mechanisms such as

constraint release. Moreover, a failure of the pom-pom model is the excessive shear thinning

in fast shear flows, a known constitutive instability, the same deficiency in the Doi-Edwards

model (Doi and Edwards, 1986). This issue can be resolved by the use of a multi-mode pom

pom model. The solutions of the multi-mode pom pom equations (Inkson et al., 1999) are

able to describe both the shear thinning behaviour in shear and strain hardening in extension.

The dynamic equations of the original pom-pom model consist of a separate integral

orientation and differential backbone stretch evolution equation.

At low rates, the deformation separates the two branch points, only the backbone can

sustain stretch due to the entropic penalty of branch point withdrawal. At intermediate rates,

the stretch of the backbone increases with increasing deformation. At high rates, above the

inverse Rouse time, it becomes entropically more favorable to withdraw the arms into the

tube. Arms are withdrawn into the backbone tube when the sum of all arm tensions balances

the tension of the backbone (Figure 3.6 b). In Figure 3.7, we plot the pom-pom model fit

against the experimental data at rates lower than the Rouse rate. We find that the fit is quite

satisfactory however a q value of 4 is needed in order to capture the magnitude of the strain

hardening. This might indicate that perhaps a larger value of q>number of branches is needed

in order to capture the extent of the strain hardening for pom-pom structures.
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Figure 3.6: a) The H polymer b) the fully aligned conformation of the H polymer, the arms

are withdrawn and the tube contour length is larger than its equilibrium length.

Figure 3.7: Comparison of multimode pom-pom predictions (black lines) with H2A1 (blue
squares) a) tensile stress growth coefficient data and b) tensile stress growth function data
versus Hencky strain.
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Table 3.2: Two mode pom-pom parameters of H2A1 fit

Gi (Pa) τb (s) Q τb/ τs

26400 891 4 2

139300 44 1 1

In order to determine the influence of an increase in Ma and Mb in model H polymers, we

compare the H2A1 with the H3A1 experimental data. The H3A1 has about three times larger

number of entanglements of arms and backbone as compared to the H2A1. However, it

should be noted that the H3A1 data was measured with the SER (explained in detail in

Chapter 2) and hence only the start-up and not the steady part of the curve is captured.  As

shown in Figure 3.8, the increase of the molar mass of the branches and backbone act to

enhance the strain hardening and the magnitude of the tensile stress growth coefficient.

Figure 3.8:  Transient stress growth coefficients at 130°C of black: H3A1 curve and blue:
H2A1 curve. The extensional rates shown for the H2A1 sample (from left to right) 0.3s-1,0.1s-

1, 0.03 s-1, 0.01 s-1, 3E-3 s-1,1E-3 s-1, 3E-4 s-1 and for the H3A1 sample (from left to right) 0.1
s-1, 0.01 s-1, 6E-3 s-1, 2E-3 s-1, 6E-4 s-1, 2E-4 s-1 and 6E-5s-1
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3.4 Uniaxial extensional rheology of comb polymers

From Chapter 3.3, we already see the large effect of having only two branch points,

mainly an earlier onset rate of strain hardening (below the Rouse rate) and a higher overall

amount of strain hardening (except at the very high rates).  It is worth also looking at a more

technologically relevant example of a comb polymer, a structure with multiple branch points.

We use a series of model, anionically synthesized, nearly monodisperse PS and PI comb

polymer series as explained in Chapter 2.1.  This choice is based on the fact that this model

branched polymer is one of the simplest that possess multiple branch points, a key feature of

industrially relaevant long-chain branched polymers. In addition, its linear viscoelasticity has

been studied in great detail (Roovers and Graessley, 1981). Moreover, these sets of combs

have been experimentally studied by others under different flow conditions. (Kapnistos et al.,

2009) developed an analytical model for the PS combs based on oscillatory shear data. He

further modified this model to include the non-linear response after a large step strain

(Kapnistos et al., 2009). Moreover, (Kirkwood et al., 2009) modified the analytical model of

Kapnistos, to describe the oscillatory shear and non-linear step strain data for a subset of the

PI combs. Here we characterize the combs carefully and explore systematically their

extensional rheology with special attention on the role of the molecular parameters, i.e. the

molar mass of branches or arms (Ma), molar mass of backbone (Mb), molar mass of segments

between branches (Mseg) and number of branches (q). We rationalize our findings by

accounting for the stretch relaxation time of the backbone after the branches have relaxed.

We present the TGIC characterization, the results and the discussion. A rationalization of the

results by invoking simple scaling arguments based on the characteristic times of the combs is

offered in part IV. Finally the main conclusions are summarized in part V.

3.4.1 Experimental results and discussion

3.4.1.1 Temperature-gradient interaction chromatography

Figure 3.9 depicts the results of the analysis of the larger-Mb PS combs from Table 3.3,

where the GPC and TGIC results are compared. All polymers showed sharp unimodal peaks

in both GPC and TGIC. To a first approach, this is in contrast to the work of (Chambon et al.,

2008) who reported TGIC results on combs exhibiting multiple peaks, representing the

distribution of numbers of branches on the molecules.  Whereas this is in principle expected
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from the synthesis, which attaches branches randomly to the backbone, the present combs

should have small dispersity in the number of branches per molecule. Moreover, the

combination of large number and, more importantly, low molar mass of branches in our

combs, makes it difficult to resolve small differences in the number of branches, even by

TGIC.

The absolute molar mass and PDI were obtained from the GPC/LS detection. In

addition, the relative molar mass was measured by using a polystyrene standard set (1090,

336, 135, 30.9, 11.5, 3.6, 1.1 kg/mol). The results are summarized in Table 3.3.  It should be

noted that the analysis of sample C742 may involve some error because the retention volume

was out of range of the PS standard set. Nevertheless, we believe that we can draw two

interesting conclusions: (i) the new GPC analysis of these polymers reveals very similar

results to the original ones obtained about 30 years ago. This is consistent with the nearly

identical linear viscoelastic data shown briefly here and discussed in detail by (Kapnistos et

al., 2005). More importantly, it confirms the fact that the samples have not suffered any

degradation while stored for 30 years. (ii) The TGIC analysis indicates that the quality of the

combs is very high, i.e. nearly all synthesized product has the targeted architecture (one well-

defined and reasonably narrow peak).

From this analysis we are confident that we can proceed with the extensional rheology

investigation without the need for sample fractionation.

Table 3.3:  Results from the GPC/TGIC analysis of the high-Mb PS combs

Property /code C712 C722 C732 C742

Mw(absolute
molar mass kg/mol) 976 1117 1447 2155

PDI (absolute) 1.007 1.007 1.006 1.005

Mw(relative molar
mass kg/mol) 752 882 1072 1369

PDI (relative) 1.12 1.11 1.12 1.12
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Figure 3.9: Analysis of PS comb polymers from Table 1. GPC (a) and TGIC (b) analysis.

3.4.1.2 Linear viscoelasticity

This serves two purposes in this study, namely the characterization of the materials used

(complementary to the GPC/TGIC analysis) and the determination of characteristic times of

the combs, as discussed below.  In particular for the PS combs, the linear response has been

studied in detail by (Kapnistos et al. 2005).  Here we present the summary of the data in the

form of master curves of the loss angle tanδ=G’’/G’ versus shifted frequency aTω. Figure

3.10 depicts the results for the PS (a) and PI (b) combs.

Figure 3.10: (a) Linear rheology data of the PS combs(∆) C622, (►) C642, (●) C712, (X)
C722, (○) C732, (right triangle) C742 at a reference temperature Tref =170°C. The tangent of
the phase angle is plotted against the shifted angular frequency aTω. (b) Respective data of the
PI combs (hexagon) PI211k, (○) PI254k, (+) PI472k at Tref = 0°C.
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For both chemistries the same remarks apply. The high-frequency data virtually collapse for

all molar masses, as expected for segmental relaxation. The nearly identical glass transition

temperature for different PS combs conforms to this result (Kapnistos et al., 2005).  As the

frequency is decreased the different features of hierarchical relaxation are revealed. The arms

relax first (intermediate-frequency peak) and later the (diluted) backbone.  Note that in some

combs the two peaks are well separated (when the arms are sufficiently entangled and the

backbones long enough so that they remain entangled after dynamic dilution), whereas in

others the two modes essentially merge into one broad  peak (Ahmadi et al., 2011; Kapnistos

et al., 2010; Kirkwood et al., 2009).

We now focus on the experimental results obtained with the two comb chemistries and

discuss them in the context of the classification of section II.1 in terms of the role of different

molecular parameters.

3.4.1.3 General results of polystyrene C6 and C7 series

Figure 3.11 depicts the measured time-dependent tensile stress growth coefficient for the PS

combs of two different Mb (a-d and e-f) and different Ma.  The first qualitative observation is

the occurrence of strain hardening in all combs for different ranges of extensional rates.  It is

evident that the larger the branch molar mass, the stronger the strain hardening and the

smaller the onset rate for its appearance. For a linear entangled polymer having a molar mass

M=Mb of the comb backbone, the onset rate of strain hardening is expected to occur at the

inverse of the effective Rouse time, ,R l i n , which can be obtained from the formula (Dealy

and Larson, 2006):

2
,                    3.3R lin eZ 

where / eZ M M is the number of entanglements in the linear chain and e is the

entanglement time.  For a comb, considered as a linear backbone chain with grafted branches,

the Rouse time may be estimated by accounting for the increased monomeric friction of the

branches, giving:
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 ,R comb e b b aZ Z qZ   3.4

where Zb and Za are the number of entanglements in the backbone and branches (arms)

respectively. We estimated τe from the linear data as the time where the G’ Rouse line with

slope 1/2 through the high-frequency data intersects the plateau modulus (Kapnistos et al.,

2005), yielding 5×10-4s.  Using this value and Me=17 kg/mol, we can estimate the Rouse time

of the C712 comb to be around 1.6s, which is not very different from the Rouse time of a

linear chain with the same molecular weight as the backbone. This would suggest an onset

rate for strain hardening of approximately 0.6 s-1, which is very consistent with the

experimental value (though we note that the Hencky strain rates used were separated by a

factor of 3, so there is an error involved in this estimation).

For the C712 comb, the short branches are unentangled having a molar mass Ma=6.5

kg/mol (C712) well below the entanglement value of PS. As a result, the Rouse time

provides a good estimate of the onset rate for strain hardening. In general, the inverse of the

onset rate for strain hardening is referred to as the effective stretch relaxation time τs (Auhl et

al., 2009). When  Ma=11.7kg/mol (C722 or C622), slightly below Me, the onset rate for

hardening shifts to a lower value of 0.1 s-1 (see also Table 3.4 below, for τs). This is already

suggestive of the role of branch points (see also discussion on the role of Mseg below) on

extension hardening and the fact that combs with short branches are different from linear

chains (also in linear viscoelastic response (van Ruymbeke et al., 2007). This aspect was not

investigated further due to the lack of appropriate samples in sufficient amounts.  For constant

Mb, the larger the Ma of the comb, the larger the downshift of the onset rate for strain

hardening from the inverse of ,R comb .  This is attributed to the branching structure of the comb

polymer: in general, we expect ,s R comb  , since the Rouse time only includes the effects of

monomeric friction, whilst for longer side branches one should account for increased friction

due to entanglements.  The segments between branches cannot relax their stress until the

outer segments with free dangling ends (branches) have retracted. Therefore, the larger the

branch length, the larger the friction of the diluted backbone and the longer the effective

stretch relaxation time. In the most extreme case studied, i.e., for Ma=47kg/mol which is

about three times their Me, the enhancement of the effective stretch relaxation time in

comparison to the Rouse time of the comb  is roughly a factor of 100 for the C7 series (C742)
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and 60 for the C6 series (C642). The stronger effect of the former is attributed to the fact that

is average molar mass between segments is Mseg>Me, as discussed further below.

The above points to the important role of Ma in controlling and tailoring the stretch

relaxation time of highly entangled combs. When changing the total number of entanglements

Z of a linear monodisperse polymer, the enhancement of effective stretch relaxation time is

expected to follow the Rouse time (Auhl et al., 2009). which we can estimate from equation

(2). Using this as a guide, if we compare the two extreme combs studied here, sample C742

with highly entangled branches (Ma=47 kg/mol) and sample C712 with unentangled branches

(Ma=6.5 kg/mol), this simple relation for τs is clearly violated since the ratio of the total comb

molar mass is 2.4, whereas the τs ratio is about 330.  Therefore, not surprisingly the presence

of long entangled branches appears to act as the more significant factor for the enhancement

of stretch relaxation time.

By comparing combs with the same Ma and different Mb as C742 vs C642 (Fig.3.11

a,e) and C722 vs C622 (Fig.3.11 c,f), those with larger average Mseg (about 29 kg/mol vs 9

kg/mol), i.e. the C742  and C712 in this example, strain harden at smaller rates. Another

qualitative observation is the significant increase in the magnitude of the extensional viscosity

when increasing the molar mass of the backbone segments between branches (the number of

branches q being constant).  This difference can already be predicted from the linear rheology

curves, since the relaxation time of the C6 series is significantly shorter (smaller τd in Table

3.4 below) and the zero-shear viscosity is significantly lower.
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Figure 3.11: Transient tensile stress growth coefficients obtained at Tref=170°C for comb PS
samples of different molecular characteristics at different Hencky strain rates (from 0.003 s-1

up to 10 s-1). The samples from (a) to (d) have the same backbone molar mass Mb=860kg/mol
and varying branch (arm) molar mass a) C742 with Ma =47 kg/mol, (b) C732 with Ma=25.7
kg/mol, (c) C722 with Ma =11.7 kg/mol and (d) C712 with Ma=6.5 kg/mol. Samples (e) and
(f) have the same Mb=275 kg/mol but varying Ma: (e) 47 kg/mol and (f) 11.7 kg/mol.
Samples (e) and (f) have the same Mb=275 kg/mol but varying Ma: (e) C642 with 47 kg/mol
and (f) C622 with 11.7 kg/mol.  The rates from right to left are: 0.003s-1, 0.01s-1, 0.03 s-1, 0.05
s-1, 0.07 s-1 , 0.1 s-1, 0.3 s-1, 1 s-1, 3 s-1, and 10 s-1.  Also, plotted as a solid line are the linear
viscoelastic data.
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3.4.1.4 General results of polyisoprene series

The same observations hold for the PI combs data which are depicted in Figure 3.12. Here,

interestingly, for the three samples studied, the average molar mass between branches is about

the same Mseg18 kg/mol. Therefore, inspection of the data of PI211 and PI472 suggests that

increasing the number of branches while keeping the same Ma results in stronger strain

hardening and smaller onset rate (compare Fig. 3.12a and 3.12c).  On the other hand,

inspection of the PI211 and PI254 data shows that, for the same q and Mb, increasing Ma

results again in stronger strain hardening starting at smaller rates (compare Fig.3.12b and

3.12c), as also observed with the PS combs (Figure 3.11). The comparison of PI472 and

PI254 reveals the dominant role of Ma (over q and Mb) in affecting the onset rate for

extension hardening: despite having smaller q (by a factor of 2.5) and smaller Mb (by a factor

of 3, albeit still well above Me), the increase of Ma by a factor of 3 results in a smaller onset

rate by a factor of 30 (compare Fig.3.12a and 3.12b).
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Figure 3.12 Start-up transient tensile stress growth coefficients obtained at Tref=0°C of comb
PI samples of different molecular characteristics:  (a) PI472k, (b) PI254k, and (c) PI211k at
different Hencky strain rates (from 0.003 s-1 up to 10 s-1).  The rates from right to left are:
0.003 s-1, 0.01 s-1, 0.03 s-1 , 0.1 s-1, 0.3 s-1, 1 s-1, 3 s-1,and 10 s-1. Also, plotted as a solid line is
the linear viscoelastic envelope from the linear viscoelastic data.
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Figure 3.13 depicts the transient tensile stress growth functions for two different combs,
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Moreover, the polystyrene C732 sample ruptures quicker (strain at break less than 3) at the

lower rates (0.01 s-1 and 0.03 s-1) in comparison to the higher rates (0.1 s-1 up to 10 s-1). This

can be a problem since the stresses at these lowest elongational rates have probably not

reached steady state.  Moreover, it remains unclear also whether at the highest rates a clear

steady state has been reached, since the stress reaches a maximum and then decreases quickly.

This trend becomes even more apparent when plotting the engineering stress versus the rate

and is due to the Considėre criterion (McKinley and Hassager, 1999).

Figure 3.13: Start-up transient tensile stress growth functions plotted against Hencky strain ε
obtained at (a) Tref=0°C for PI472 k and (b) Tref=170°C for PS C732, and different Hencky
strain rates (shown in the plots).
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3.4.1.6 Further analysis of extension hardening: The roles of Ma and Mseg

The above qualitative, albeit unambiguous observations can be made more transparent with

some further phenomenological analysis. In Figure 3.14, we plot the transient tensile stress

growth function against the Hencky strain ε for different PS comb samples of the C7 series

having the same Mb but different Ma (samples C712, C722, C732 and C742).  We choose 3

different values of the Hencky strain rate. For a large value of 10 s-1 , there is virtually no

difference among samples. Therefore, for large Hencky strain rates the molar mass of the

branches has little influence on the magnitude of the tensile stress growth coefficient and the

strain hardening. Here the backbone chains are fully stretched and the tensile stress reaches a

maximum of 46 MPa (Figure 3.14a) at full extension (exceeding the plateau modulus GN
0 by

two orders of magnitude). Still the behavior of these combs differs drastically from a linear

elastic solid as seen by comparing against the neo-Hookean prediction in Figure 3.14a. On the

other hand, at lower Hencky strain rates of 0.3 and 0.01 s-1 the effects of Ma become apparent

and whereas the overall functional dependence of σE
+ on t is not clear, the strong increase of

σE
+ with Ma is undisputable (Figures 3.14b,c). At these intermediate rates, lower than the

inverse of the effective stretch time of the comb backbone (as discussed in section IV below),

the magnitude of the tensile stress growth function is dependent on the molar mass of the

branches. At a rate of 0.3 s-1, the comb with the smallest Ma=6.5kg/mol has arms which are

unentangled and hence the backbone chains are free to relax their stress. The decrease in

stress at full extension (by a factor of 20 across the comb series) is depicted in Figure 3.14b.

At the lowest stretch rate of 0.03 s-1, only the comb sample with the longest branches exhibits

strain hardening and has not fully relaxed its stress. The other comb samples have relaxed

their stress to a value close to the plateau modulus GN
00.2 MPa and behave like a viscous

liquid. Moreover, in this case, for all combs the chain segments should be oriented in the

direction of flow since the value of this low Hencky strain rate is above the inverse of their

longest relaxation time (τd).
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Figure 3.14: (a) Tensile stress growth functions σE
+ plotted against Hencky strain ε obtained at

Tref=170°C for PS comb C7 series samples of equal backbone Mb = 860 kg/mol and varying
branch (arm) molar mass Ma=47kg/mol (filled hexagon), Ma=25.7kg/mol (open diamond),
Ma=11.7kg/mol (filled square), and Ma=6.5kg/mol (filled star), at  high Hencky strain rate of
10 s-1 ;  (b) respective data at intermediate Hencky strain rate of 0.3 s-1 ;  (c) respective data at
low Hencky strain rate of 0.01 s-1. Also plotted in (a) as a dotted line is the Neo-Hookean
prediction. (d) Tensile stress growth functions σE

+ plotted against Hencky strain ε obtained at
Tref = 0°C for samples PI211k (open star), PI254k (filled circle) and PI472 (open hexagon) at
high Hencky strain rate of 3 s-1 ; (e) same as (d) but at intermediate Hencky strain rate of 0.3
s-1 ; (f) same as (d) but at low Hencky strain rate of 0.03 s-1 .

The PI comb data conform to the picture emerging from the analysis of the PS comb

data. This suggests a universal extensional behavior for model branched polymers. In

particular, in addition to the established result that combs do indeed strain harden even at low

rates, it is clear that here with Mseg virtually constant, Ma, Mb and q are important for

hardening (Figure 3.14d). Focusing at the lower Hencky strain rates, we can appreciate that

even with small MaMe, large q and large Mb result in clearly larger σE
+ for PI472 (Figure

3.14e,f). Moreover, PI254 with about the same Za3 with PS C742, shows a similar

continuous increase of σE
+ with Hencky strain (Figure 3.14c,f).  The role of Mb appears to be
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less significant in extensional deformation at high Hencky strains, as judged by the

comparison of PI211 and PI254 in Figure 3.14e,f.

In Figure 3.15, we compare σE
+ of two PS combs of the same Ma (the largest) and

different Mb and Mseg.  In this case the main difference between C642 and C742 is that the

average Mseg is about 9 kg/mol and 29 kg/mol, respectively.  Whereas the stronger strain

hardening of the latter was already discussed in the context of Figure 3.11, here it can be

appreciated more by direct comparison of the more sensitive σE
+ vs. ε plot and at three

Hencky strain rates.  As the rate is decreased by two orders of magnitude from 3 to 0.3 to

0.03 s-1 (Fig. 3.15 a,b, and c, respectively), the difference of σE
+ between C642 and C742

becomes more pronounced and extends all the way to the lowest values of Hencky strain

reached.
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Figure 3.15: Transient tensile stress growth functions plotted against Hencky strain obtained at
Tref=170°C for comb PS samples of equal Ma= 47 kg/mol but of different backbone molar
mass: C742 with Mb=860kg/mol (filled circle) and C642 with Mb=275 kg/mol (open
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pentagon).  Data are shown at (a) high Hencky strain rate of 3 s-1 , (b) intermediate Hencky
strain rate of 0.3 s-1 and (c) low Hencky strain rate of 0.03 s-1.

3.4.1.7 Rationalizing the Experimental Data

In an effort to obtain deeper understanding of the experimental data, we look for trends

with molecular parameters. Inspired by the pom-pom model, we have attempted at predicting

the entire time-dependent tensile stress growth function (McLeish and Larson; 1998),

however our first results were hard to interpret as good fits required use of different modes

with a range of q values that varied in an incomprehensible way.  This is the subject of our

current investigations aimed at modeling the whole tensile stress growth functions for

different rates, and will be presented in the final section of this Chapter.   On the other hand,

to further elucidate the role of comb parameters on their response in uniaxial extension and

provide a rational explanation of the experimental results and the trend of the data, we

focused on the onset rate for strain hardening.

We based our simple analysis on two different characteristic stretch time scales which

we define as follows:

(i) The "bare Rouse time" ,R comb of the comb, as given in equation (2), which is the longest

time one would get by ignoring entanglements and simply solving the dynamics of a bead-

spring model for the polymer with local monomeric friction.  Here there is an analogy with

the classic Rouse time of a linear chain.

(ii) The effective "stretch time" τs of the comb is the timescale for stretch relaxation along the

tube when accounting for the large friction that comes from the branches (i.e., if the arms are

entangled, then the hopping of the branch point gives large friction).  We would expect to see

the onset of extension hardening at rates greater than 1/τs. Hence, the experimental stretch

relaxation time τs exp is obtained from the transient stress growth coefficient curve and is

defined as the inverse of the rate at which the first sign of strain hardening (deviation from

linear viscoelastic curve) is observed.

To get a theoretical estimate of the stretch time, let us consider the linear viscoelastic

curves (e.g., Figure 3.10 or Figure 9 below). At low frequencies all the branches are relaxed

(hierarchical relaxation) and the comb can be thought of as an effective linear polymer with
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dilated tube (rescaled entanglement modulus) and larger friction (slowed-down terminal time

τd), both due to the branches.  The diluted number of entanglements Zdil of this rescaled linear

polymer is defined as:

b
dil b

b a

ZZ Z
Z qZ




3.5

It represents the effective number of backbone entanglements after the side-arms have

relaxed, assuming a dilution exponent of 1. Note that the branch and backbone relaxation

times of the combs are estimated in a consistent manner from the linear viscoelastic data

(Figure 3.10 or 3.16 below) and in particular the minima or inflection points  in tan at high

and low frequencies, respectively, based on the good agreement with model predictions

(Kapnistos et al., 2005; Kirkwood et al., 2009).

We now make the hypothesis that the ratio of the terminal time to the stretch time for

the comb is the same as the ratio of terminal time to the Rouse time for an equivalent linear

polymer with the same number of effective entanglements along its tube (Zdil).  This is

illustrated in Figure 3.16 where the entangled linear chain relaxes in a well-defined manner as

in (a), while on the other hand after relaxation of the arms, the (dilated) comb backbone

becomes an effective linear chain with the same number of entanglements as the linear chain,

i.e. same tube diameter and characteristic times as in (b). This equivalence can be expressed

as: τd /τR|linear = τd /τs|comb . We can now estimate all times as follows: We obtain the terminal

time, d for the comb from the linear viscoelastic data. For the equivalent linear polymer, the

ratio τd /τR|linear is obtained from (Likhtman and McLeish, 2002), where the Rouse time for a

linear polymer is as given in equation (1) and the terminal time by:

3 1/2 3/2

3.38 4.17 1.55(1 )
3

d

dil e dil dil dilZ Z Z Z


    3.6

The value of Zdil for this estimation is obtained from equation (3.5), i.e. accounting

for their diluted number of entanglements of the backbone due to the relaxed arms. The

estimated and experimental times are listed in Table 3.4. Each time was taken as the inverse

of the Hencky strain rate where an unambiguous deviation from the linear viscoelastic stress

growth curve was first seen.  We defined this deviation in terms of the strain hardening factor
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(Barroso et al., 2010), the ratio between the extensional viscosity data and the respective data

from the Trouton ratio (linear response). A strain hardening factor greater than 3 at a Hencky

strain of 2.5 was considered as a criterion for the stretch time.

Given the obvious simplicity of this approach we believe that the agreement between

estimated and experimental stretch times is very satisfactory. We note, in particular, that this

approach seems to work for both entangled and unentangled side arms. This result is

encouraging and indicates a success of the hierarchical concept of stress relaxation: at long

timescales, the combs can indeed be considered as renormalized linear polymers. It also

suggests the importance of this considering the effect of entangled branches of the combs in

controlling their extensional rheology. This can form the basis for a more rigorous modeling

development in the future.

Figure 3.16:  Top: Indicative master curves of frequency-dependent G’ and G’’ for entangled
linear (a) and (b) polymers whose diluted backbone has the same number of entanglements Z
as the linear chains. Bottom: Cartoon representation of the tube of the linear chain (left) and
the comb (b). In the latter case, once the branches have escaped their tubes, the backbone tube
diameter increases (and becomes equal to that of the linear chain for the present
considerations) and bears extra friction due to the branches.
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Table 3.4: Experimental and predicted times scales for assessing the onset of extension
hardening. For PI we used Tref=0°C and for PS Tref=170°C.

Sample
code Zdil τd exp (s) τd / τe exp

(x10-5) τR,comb (s) τs predicted

(s) τs exp (s)

PI472k 48.3 1440 144 0.49 16.6 10

PI254k 9.5 304 30.4 0.08 36.7 100

PI211k 19.5 41.2 4.1 0.09 1.65 0.3

C622-PS 7.1 10.3 0.2 0.30 2.05 3

C642-PS 2.7 63.1 1.3 0.78 56.1 100

C712-PS 41.2 274 5.5 1.57 3.9 1

C722-PS 36.6 838 16.8 1.77 13.9 10

C732-PS 28.5 2510 50.2 2.27 58.5 33.3

C742-PS 19.6 7940 159 3.31 313.8 333.3

3.4.1.8 Conclusions

In this study, we have investigated systematically the transient uniaxial extensional

rheology of a series of well-characterized, anionically synthesized comb polystyrenes and

polyisoprenes. The main results can be summarized as follows:

i. At very high Hencky stretch rates, about the inverse Rouse time, all polymers will

strain harden. Monodisperse linear entangled polymers will not do so at lower rates.
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At such high rates, there is virtually no effect of molecular parameters of the combs

(molar mass of backbone or branches or backbone segment between branches).

ii. Combs will also strain harden at lower rates, because of the branches. In general, as the

rate is increased, strain hardening becomes more pronounced and appears earlier.

iii. For such lower rates, increasing the average number of entanglements of the backbone

segments between branch points and/or the branches results in stronger strain

hardening and its faster onset. In particular the number of entanglements per branch

appears to be the key parameter for controlling the extensional rheology and strain

hardening.

The onset of strain hardening can be rationalized by accounting for the effective stretch

relaxation time of the comb, which is the timescale for stretch relaxation along the dilated

backbone tube when accounting for the large friction that comes from the branches.  It can be

estimated from the molecular characteristics of the combs by assuming that the ratio of this

time to the terminal time of the comb is equal to that of Rouse to terminal time of a linear

polymer with the same number of entanglements as the diluted backbone.  The onset of

extension hardening occurs at a rate equal to the inverse stretch time.  Given the simplicity of

this analysis, the predicted and experimental onset rates (times) are in good agreement,

suggesting that the important physics is captured. This result is promising and opens the route

for further analysis toward the fundamental understanding of the uniaxial extensional

rheology of branched polymers.

3.4.2 Modelling uniaxial extensional rheology of combs

3.4.2.1 Modelling linear rheology of combs

The linear rheology of the PS dataset of combs was modelled previously by (Kapnistos

et al., 2005; Ahmadi et al., 2011). The shared common challenge of both of these tube-based

molecular models in modelling this series of combs is related to the unentangled or barely

entangled arms grafted on the linear backbone. The lack of clear separation of the arm and

backbone relaxation time scales is the underlying deficiency. This is a known limitation of

tube models due to the inherent limitations of the DTD theory. (Kirkwood et al., 2009)

accounted for this in other combs with similarly short branches. There added ad-hoc more
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effective friction by artificially increasing the Ma using ideas from Zhou and Larson

(asymmetric stars).

As a first step, we use BOB to fit the linear rheology of the PS and PI combs with a

consistent set of parameters. This is not an easy task for a few reasons. Firstly, due to

difficulty of obtaining monodisperse combs and their subsequent characterization (as

explained in Chapter 2). Hence, the chemical parameters obtained from the characterization

such as Mw and PDI may not be fully accurate. A more accurate molecular weight

distribution can be determined using Temperature Gradient Interaction Chromatography

(TGIC), since this technique can detect even very low level of contaminants.  However, for

the samples used in this study, although TGIC was used, the final Mw and PDI were not

extracted from this technique.   Since SEC was used for the characterization, it may be that

there is up to 10% variation in the Mw and the PDI.

Second, the difficulty with obtaining a consistent set of parameters is due to the

limitations inherent in tube models. Due to the limitations inherent in the synthetic procedure

(Roovers et al., 1979; 1981),  the branchpoints are randomly distributed along the backbone.

The assumption made in all the current models for reason of simplicity is uniform distribution

of branches. Moreover, the theory of dynamic tube dilution is not as rigorous as is required

for more quantitative analysis of combs. Although DTD is both simple and has been shown

in some specific cases to be remarkably accurate (especially for star polymers), it has

considerable limitations.  The requirement of DTD is that the relaxation times of the arms and

backbone are well-separated and independent. Another limitation in tube model analysis is

the parameter inconsistency. The values of α and p2 remain a controversial topic despite a

considerable amount of research efforts (Graessley, 2008; Rubinstein and Colby, 1990; Park

and Larson, 2003; van Ruymbeke et al., 2012). Moreover, even the method of determination

of the molecular parameters such as Me and τe remain unclear. The Me can be extracted from

the definition of the experimental plateau modulus by using the pre-factor of 4/5 or 1. From

data, the equilibrium modulus (defined by rubber-elasticity theory) is extracted. In the Doi-

Edwards framework 1986, the plateau modulus GN=4/5 this value. The other uncertainty is

related to the values of plateau modulus which can vary either due to small experimental

inconsistencies (sample overfilled or under-filled) or in the case of polyisoprene, small

differences in microstructure.  Otherwise, Me or τe can be obtained from published literature
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values. Good agreement with the experimental moduli is achieved when using the following

BOB parameters to model our PS and PI combs respectively, α=1, Me (PS)=12.9 kg/mol, τe

(PS)=1E-4 s at a temperature of 170°C and Me (PI)=4.09 kg/mol, τe=5E-4 s and p2=1/40 at a

temperature of 0°C. As demonstrated in Figure 3.17, the BOB fit matches very well to the

PI254k comb moduli.
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Figure 3.17: Linear rheology data of PI254k comb and BOB fit. Symbols: experimental data
at 0°C and lines: fits to the BOB model

3.4.2.2 Combs fitted with pom-pom model

We use the multimode pom-pom equations to fit the uniaxial extensional rheology of

the combs as seen in Figure 3.18. In all cases, the pom-pom model provides a satisfactory

fitting except at the fast rates larger than the inverse Rouse time. However the connection

between the rather large number of free parameters and the molecular architecture remains

unclear. The procedure used to fit the pom-pom multimode equations involves the following:

first, a Maxwell model is used to fit the linear rheology curve. From this fit, we extract,

moduli and relaxation times for each mode (two first columns in Table 3.5 and 3.6). Next, we

use the extensional rheology data to fit two additional parameters, q and ratio of backbone

orientation/stretch time (two last columns in Table 3.5 and 3.6). The solutions of the pom-

pom model are limited to rates below the inverse of the Rouse time of the backbone for two

main reasons:



100

1) Since only one stretch parameter λ is used for the entire backbone, the assumption is

that local differences in stretch will equilibrate rapidly on timescales on the order of

the Rouse time of the backbone.

2) At high rates, it is not possible for branch point-withdrawal to occur and therefore the

backbone is stretched more than the amount that the maximum stretch condition

implies. In the case of an H polymer, where the inner segment is separated by two

arms, the maximum tension that the backbone can sustain is equivalent to two.

Therefore, if the tension in the backbone exceeds this, branch-point withdrawal occurs

so the molecule redistributes the tension at timescales of τR,backbone.  If the rate is much

larger than the inverse of this timescale, then this process is not captured and the

backbone will continue to stretch.

Figure 3.18: (a) C742-PS and (b) C642-PS tensile stress growth coefficient experimental data
at 170°C in black and comparison with pom-pom fits in red.
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Table 3.5: Pom-pom fitting comb parameters of C742-PS at rates which vary from 0.001s-1 to
0.1s-1.

Mode Gi (Pa) τb (s) q τb/ τS
1 2.71E+06 4.83E-06 1 1
2 6.05E+05 4.32E-05 1 1
3 1.89E+05 3.87E-04 1 1
4 3.34E+04 3.46E-03 1 1
5 6.07E+04 3.09E-02 1 1
6 7.04E+04 2.77E-01 1 1
7 2.11E+04 2.48E+00 1 1
8 2.43E+03 2.21E+01 1 1
9 7.62E+03 1.98E+02 6 4

10 1.15E+04 1.77E+03 6 4
11 7.80E+03 1.59E+04 6 4
12 2.06E+02 1.42E+05 7 3.6

Table 3.6: Pom-pom fitting comb parameters of C642-PS at rates which vary from 0.03s-1 to
0.3s-1

Mode Gi (Pa) τo (s) q τb/ τS
1 1.17E+07 2.99E-06 1 1
2 1.03E+06 2.10E-05 1 1
3 2.75E+05 1.47E-04 1 1
4 1.17E+05 1.03E-03 1 1
5 5.74E+04 7.23E-03 1 1
6 8.66E+04 5.07E-02 1 1
7 5.91E+04 3.55E-01 1 1
8 1.13E+04 2.49E+00 1 1
9 3.67E+03 1.74E+01 1 1
10 2.96E+03 1.22E+02 10 1.5
11 7.40E-01 8.57E+02 12 1.5
12 6.97E-02 6.01E+03 12 1.5

3.4.2.3 Comb-adopted modified pom-pom model

I. Generalized pom-pom stretch equations for comb polymers

Given the above limitations, our next goal is to modify the original pom-pom model

of (McLeish and Larson, 1998) in order to tailor it specifically for comb architectures and to

test this model with our uniaxial extensional rheology data. We consider a comb polymer

with a linear backbone of Zb entanglements and assume that na side-arms of length Za are

grafted uniformly along this backbone. The assumption of uniform grafting does not fit

reality but has been successfully used in molecular tube models for a variety of comb
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structures (Kapnistos et al., 2005; Ahmadi et al., 2011). Moreover, for reasons of simplicity,

we assume that na is odd and that the number of backbone segments ns between branch-points

and between branh points and the free end backbone segments corresponds to ns = na + 1.

Fig. 3.19 shows the numbering scheme of the comb branch-points and the contour lengths

of the backbone segments. We assume that both halves of the backbone about the central

branch-point behave the same way, therefore only one half of the comb is considered. All

backbone segments have the same tube contour lengths leq. The contour length is equivalent

to the mean square end to end distance of a free polymer chain leqa = R2 = Nb2 where the tube

diameter a is related to the Kuhn segment length b by the following relation: a2=Neb2.

Figure 3.19: (a) Schematic of a seven arm comb polymer where only half of the comb is
considered. Branch-points are labelled from the center of the molecule (i=0) and
progressively towards the free ends. In flow, the contour length of the backbone segment
between the branch-points i and i − 1 is li. (b) The dynamics of the branch-point i is
determined by the balance of the viscous force and the elastic recovery force at i. The drag
force is related to the friction of the side arm retraction. The elastic recovery force is due to
the different contour lengths li and li+1 from their relaxed contour lengths leq.

Similarly to all the current tube model theories (Doi and Edwards, 1978), we consider

only the average dynamics for reasons of simplicity. As in H and pom-pom molecules, the

backbone of the comb will stretch at timescales between 1/τd and 1/τa due to the hierarchical

relaxation that prevents a fast retraction process. The stretch of the comb backbone segments

will not occur uniformly on these timescales and rather the sretch of every individual segment

is dependent on its position along the backbone. Therefore, we do not assume an average
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stretch factor λ as is done in the original pom-pom but rather a distribution of stretch factors

λi along the comb segments. Considering the center of the backbone as the origin and

maximum stretch point, a force balance constraint is imposed on each branch point, which

requires that the stretch stretch λi in segment i is always less than or equal to λi+1 +1 (Inkson et

al., 1999; Blackwell et al., 2000; Marrucci et al., 2008) in any given segment cannot exceed

the stretch in the adjacent segment plus one. The segment which has the highest stretch ratio

(λmax corresponding to ns/2) is the backbone segment just to the left and right of the middle

and the one with the lowest stretch ratio is the outermost backbone segments (the free ends)

which do not contribute to the stretch at all. (Marrucci et al., 2008) used a similar reasoning in

order to determine the expected position of the second maximum in shear-flow start-up for a

complex comb-like structure. However, the rates they consider are of much higher order and

not in the range of 1/τd<<1/τa. Moreover, they assume that the maximum in shear stress is

reached when the whole comb is contained within the backbone.

The original differential version of the pom-pom model (McLeish and Larson,

1998), consists of both a stretch dynamic term and an orientation dynamic term as well as

respective relaxation times for each. We modify the stretch dynamic equations but keep the

orientation dynamic equations exactly the same. We assume that there is one single average

orientation distribution of the comb backbone segments and one single backbone orientation

time τo. The backbone reptation time or orientation relaxation time τo is the average time

needed for the branch points to diffuse along the backbone tube, out of a tube of unstretched

length. This approximation is not exactly accurate because similarly to the stretch, the

orientation should also be dependent on position, where the free end segments are barely

oriented compared to the middle segments. However, we assume that the tube is fully aligned

in the direction of flow and at the experimental flow rates of interest, that an average

orientation distribution is sufficient to describe the orientation dynamics.

As with the original differential version of the pompom equations we determine the

orientation tensor S by working with an auxiliary tensor A satisfying the upper convective

Maxwell model:
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Where K is the deformation rate tensor and I is the identity tensor. The expression for the

average orientation tensor is the following:

A(t)
S(t) =

trace A(t)
   3.8

  

At time-scales longer than the side-arm retraction time τa, the branch-points act like localized

drag points. The additional friction is originating from the relaxed arms. The curvilinear

diffusion constant is D=p2a2/2τa. From an Einstein argument, the friction coefficient ζ

describing the branch-point diffusion along the tube diameter a(t) is given by (Das et al.,

2006a).
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The parameter p corresponds to the average hop size of length p*a in units of the tube

diameter a(τa) at the time scale τa. The value of p is not well-defined in the litterature, it will

be described in more depth in Chapter 4.

At rates higher than the inverse reptation time 1/τd of the dynamically diluted

backbone,  the backbone segments are oriented in the direction of flow. At rates between 1/τd

and 1/τa, only the backbone segments between branch-points are stretched. The dynamic

stretch equation is essentially Rouse-like and describes motion of the entangled backbone

chains along the tube. The dynamics of the stretch of the backbone segments is determined

from a force balance at each branch-point during tube motion. The imposed flow causes a

drag force and the relaxation from the imposed stretch results in an elastic recovery force.

More specifically, the drag force is due to the velocity of separation of the branch-point

(branch point hopping) with respect to the tube velocity, and the elastic recovery force from

the neighboring backbone segments.
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Considering branch-point i (Fig. 3.19b), we define its curvilinear velocity along the

tube axis, relative to the central branchpoint, to be vi. The difference between vi and the

velocity of the surrounding tube matrix at the branch-point gives rise to a viscous force.

 
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v i j
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Here, K is the applied deformation rate tensor, S is the average tube orientation tensor, and the

contraction K:S is the average increase of length per length of tube. The relative curvilinear

velocity is K:SL. The Gaussian segments li+1 and li contribute to an elastic recovery force.
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with k being the spring constant describing the Hookean elastic recovery response of the

backbone segments. Setting fv +fe = 0, we find the branch-point velocity.
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The difference of velocity between the branch-points i and i − 1 gives the rate of change of the

contour length of the segment between the two branch-points as

 1 1 1( ) ( 2 ) :                         3.13i
i i i i i i

dl
v v k l l l K S l

dt
         

Dividing by the equilibrium segment lengths leq and defining the dimensionless stretch λi

=li/leq we arrive at
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Here, we define the time τseg,0 =ζ/k that determines stretch relaxation between backbone

segments separated by branch-points. Hence, the expression for τseg is the relaxation time of a

spring (k) working against the drag force (ζ).
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In addition to acting like effective drag points after their relaxation, the arms will act

as a dynamic solvent for the unrelaxed backbone and increase the effective diameter.

Therefore, the expression for tube diameter becomes:

2 2
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From rubber-elasticity theory the spring constant k = 3kBT/Zsa2 , the drag coefficient ζ is

given from expression 3.9 and taking into account the effective enlarged tube with Zs being

the number of entanglements of the backbone segments, the following expression for τseg

results.
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where the weight fraction of backbone material φb = (Zb − 2Za)/(Zb + naZa) and α is the

dilution exponent that we set as 1. We estimate Zs as Zs ≃ Zb/(na + 1). Therefore, the

backbone segmental relaxation time is proportional to both the retraction time of the arms and

the diluted number of entanglements per backbone segment and inversely proportional to the

friction parameter p2. The τseg time is the main input parameter which determines the onset

rate of strain hardening.  The larger the value of τseg, the lower the onset rate of strain

hardening.

The relaxation of the arms results in a drag force on the branch point which is

exponentially dependent on the entanglements of the arm.  There is experimental evidence

that suggests that this drag is not constant and that the drag force should be coupled to the

branchpoint dynamics (McLeish et al., 1999).   The branch point dynamics depends only on

stretch and is therefore negligeable at low rates of deformation. We can approximately

include the effect of local (≤ tube diameter a) displacement of branch-point which results

from tension difference between the two sides of a branch-point (from relaxed and unrelaxed

segments), leading to so-called “drag-strain coupling” (Blackwell et al., 2000). Drag-strain

coupling was first introduced in order to explain the discrepancies which existed between the
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pom-pom model predictions and the experimental data at high rates, when maximum stretch

was reached. Modified pom-pom models have included this correction in numerical

simulations in order to explain unexpected processing phenomena such as transient “stress

fangs” in the processing of polyethylene (Lee et al., 2001). For small displacements,

considering the probability distribution of displacement to be Gaussian, the position of the

branch-point can be considered as a Brownian walk in a quadratic potential (Doi and

Edwards, 1986). Balancing the force from this localizing potential to the elastic force at

branch-point i, the effective contour length of the side-arm at i. that participates in relaxation

by retraction, is reduced by a factor proportional to |λi − λi+1|. Exponential dependence of the

retraction time-scale on the side-arm length leads to an effectively shorter segmental stretch

relaxation time from this drag-strain coupling as

,0 1( ) exp( 2 )    3.17seg seg i ii      

Incorporating this drag-strain coupling, the equations for the stretch dynamics become:
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For large deformations, it is possible that our imposed stretch constraint is not valid,

the difference in stretch between adjacent backbone segments may differ by more than one,

i.e. |λi−λi+1| > 1. An entropic force balance argument, comparing the tension in the side arm

and two backbone segments, indicates that such a situation is unsustainable, and “branchpoint

withdrawal” occurs, in which the side arm is pulled into, and oriented along, the backbone

tube. The branch-point encounters a constant force in such large deformation and hence an

equivalent linear confining potential. This is analogous to the pom-pom model where λmax=q

the number of arms on each branch point when it becomes entropically more favorable to

withdraw the arms than to continue stretching.  In the case of the H and pom-poms, however,

branch point withdrawal of all the arms occurs at the same time. Alternatively, in this

modified model, branchpoint withdrawal occurs first from the outer segments, moving

inwards through the molecule. The maximum stretch condition is reached when the λmax=ns/2,

ie half of the number of backbone segments. The branch point withdrawal process is depicted

in Figure 3.20.
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Figure 3.20: Sketch of the dynamics of branch point withdrawal for combs.  At deformation

rates between 1/τd and1/τa, branch point withdrawal occurs from the outer segments (λ=1) and

progresses inwards to the center. The maximum stretch occurs in the center backbone

segment when λmax is equal to half the number of backbone segments.

The total stress for the stretching backbone segments of the comb in a non-linear flow

is a function of the modulus G, the separate contributions of average orientation S(t) and the

quadratic distribution of stretch factor λi(t).
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This is the same stress expression as the original pom-pom model except for the inclusion of

the distributions of stretch factors.  Using the same methodology as the multimode version of

the original pom-pom model, the SAOS data of the combs is characterized by a set of nM

Maxwell modes.  We assign Maxwell modes for each mode a with characteristic modulus Ga

and relaxation time τo,a to both slower modes coming from the dynamically dilated backbone

and to faster modes, coming from the contribution of the arms and outermost backbone

segments. The criteria used to assign the stretching and non-stretching modes is the

following: we treat the Maxwell modes with relaxation times faster than the arm retraction

time as non-stretching (λi = 1 for all i). All slower modes are treated as stretching modes. We

also tested other criteria for assigning the modes. For example, one can assign Maxwell

λ=1

λmax= ns/2



109

modes to the backbone relaxation as the sum of the slowest relaxation modes which sum up

to the estimated modulus of the diluted backbone 1
,b dil e bG G   . The remaining modes are

assigned as non-stretching modes.  Both methods  work equally well and choosing one or the

other, affects minimally the fit of the final transient extensional rheology data.

The uniaxial extensional response of the fast modes, considered to be the non-stretching

molecules such as the arms and the outermost backbone segments is modeled using the non-

stretching version of the pom-pom model, ie without a stretch factor λ.
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We consider a separate expression for the stretching modes where equal weight is given to the

modulus from each of the internal segments of the backbone with λi,a being the stretch on the

i’th backbone segment that contributes to the α’th Maxwell mode. Assuming there are k non-

stretching modes, and nM −k comb modes, the total stress is obtained from:
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Here, ( )aS t is the average tube orientation experienced by the fraction that contributes to the

a’th Maxwell mode evaluated from Eqns. 3.7 and 3.8.

II. Comparison with Experimental Data

As mentioned previously, the extensional rheology measurements were performed at

170°C for the polystyrene combs and at 0°C for the polyisoprene combs using an SER fixture

(Sentmanat, 2004) mounted on an ARES 2KFRTN1 strain-controlled rheometer. Due to the

limitations inherent in SER, experiments are limited to a maximum Hencky strain of 4, and a

steady-state tensile growth coefficient was not achieved. Therefore, the modeled data can

only be compared to the experimental data in a limited Hencky strain range. On the other

hand, a wide range of extensional rates (especially in the high limit) is available.

In applying our model, we start by fitting the linear viscoelastic moduli measured

from small angle oscillatory shear (SAOS) with approximately three Maxwell modes per
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decade in frequency range of the experimental data. Both a least-square fit and a

regularization term (Press et al., 1992) were applied to ensure that all GM are smooth.

For combs with long side-arms, the phase angle (δ) shows a distinct peak in the SAOS

data. When the side-arms are barely entangled, there is a change of slope in the phase angle.

For each of the combs, we select τa from either the peak or the transition point in the phase

angle. There are other methods of obtaining arm relaxation times which will be mentioned

more in depth in Chapter 4. All methods of obtaining arm relaxation times are in relative

agreement and the values of τa do not vary much between all the methods. The time-scales of

the Maxwell modes define the orientation relaxation times of the modes. We keep the

segmental stretch relaxation time τseg,0 as a global constant fitting parameter. More

specifically, we assign a value for τseg,0 which best fits the onset rate of strain hardening.

Also, we calculate separately τseg,0 from expression 3.16. In most instances, the fitted and

calculated τseg,0 are in close agreement. These values can be found in Table 3.7. We use the

analytically known solution for A in uniaxial extension and numerically solve the coupled

stretch equations (Eqn. 3.16) by using a fifth order Cash-Karp Runge-Kutta method with

adaptive step-size (Press et al.,1992).

Fig. 3.21a shows the phase angle for the PI combs with a distinct peak for PI254 at

1.5 1/s giving τa ≃ 0.67 s. For both PI211 and PI472, there is a change of slope at 320 1/s

giving τa ≃ 0.003 s. In Fig 3.21b-d, we show the experimental data (symbols) and model

predictions (lines) for the start-up stress growth coefficients (transient viscosity η+) in uniaxial

extension for the PI combs at a number of extension rates. The underestimation of stress at the

highest flow rate for PI254 is most likely due to the flow rate exceeding the bare Rouse

relaxation rate which is estimated as 13 s-1. As explained in Chapter 3.4.1, for a comb,

considered as a linear backbone chain with grafted branches, the Rouse time may be estimated

by accounting for the increased monomeric friction of the branches. The Rouse dynamics are

not included both in the original pom-pom model and this present modified version. At such

high rates there is not sufficient time for the arms to withdraw within the tube; chains then

stretch beyond the limit normally set by branchpoint withdrawal. Similar results for the PS

combs are shown in Figs. 3.22 and 3.23.
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Figure 3.21(a) Phase angle δ = tan−1 (G′′/G′) for the PI combs. The arrows indicate peak
(PI254) or change of slope (PI211, PI472) in δ(ω) signifying side-arm retraction times τa (b-d)
Experimental data (symbols) and model predictions for the start-up stress growth coefficients
in extensional flow at the indicated rates.
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Figure 3.22 (a) Phase angle δ for PS622, PS642, and PS712 with arrows indicating
peaks/change in slope selected to find τa. Experimental data (symbols) and model predictions
(lines) for η+ at the indicated rates for (b) PS622, (c) PS642, and (d) PS712
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Figure 3.23: a) Phase angle δ for PS722, PS732, and PS742 with arrows indicating
peaks/change in slope selected to find τa. Experimental data (symbols) and model predictions
(lines) for η+ at the indicated rates for (b) PS722, (c) PS732, and (d) PS742.

In Table 3.7, values of τseg,0 used in the fitting procedure and estimated from Eq. 3.16

assuming α = 1, Me (PI) =4.1 kg/mol, Me (PS) = 12.9 kg/mol, and p2 = 1/40 are depicted.

These values correspond to the best fit parameters of the linear rheology data of the PS and PI

combs using the BOB computational algorithm as explained peviously. Note that the

definition of Me used here includes a (4/5) prefactor (Fetters et al., 1994).

Our estimates for τa from visual inspection of the phase angle could give an error of a

factor 2. We use a single segment length Zs; though the synthesis procedure should create a

wide distribution of Zs. The value of p2 can be different by a factor of 2 from the value used

here and may depend on the architecture (Bačova et al., 2014). Considering these

uncertainties, the agreements between the fit values and the estimates from Eq. 3.16 are
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satisfying. This is even more remarkable (and perhaps surprising) because some of the PS

combs have barely entangled side-arms and backbone segments between branch points that are

shorter than the entanglement molecular weight. Overall, the agreement between model

predictions and experiment, and the self-consistency of the model parameters, are

encouraging.

Table 3.7: The PI and PS combs characteristic relaxation times τa, τseg,0
1 (best fit parameter),

τseg,0
2 (s) (estimated from Equation 3.16)

Code τa (s) τseg,0
1(s) τseg,0

2 (s)

PI472k 0.003 0.45 0.29

PI254k 0.67 20 21.13

PI211k 0.003 0.25 0.22

C622-PS 0.013 0.04 0.09

C642-PS 1.25 1.0 2.60

C712-PS 0.0016 0.025 0.07

C722-PS 0.0029 0.12 0.12

C732-PS 0.07 0.9 2.4

C742-PS 1.0 20.0 20.4

Moreover, since the model successfully captures the comb data series, we can further

study the internal dynamics of the stretch of the backbone segments based on their respective

positions during start up flow. We investigated the stretch dynamics for C732-PS, a 27 arm

comb, with barely entangled arms and long backbone with characteristic relaxation times τa =

0.07 s, τseg,0 = 0.6 s and τo = 103 s. Fig. 3.24 shows the steady state stretch in different

positions of the backbone for a range of extension rates. During start up extensional flow, the

stretch increases with time until it reaches the steady state value. Experimentally, this steady-

state value corresponds to the steady-state tensile stress growth coefficient and is usually

observed between a Hencky strain of 3 and 4 and can only be measured using the FSR (as

explained in depth in Chapter 3). The curves in Figure 3.25 are quite similar to the flow-rate

dependent priority designation for backbone segments (Read et al., 2011) since the maximum
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stretch varies with flow rate. Towards the outside of the molecule it is clear that the maximum

stretch is set by the branchpoint withdrawal limit; at higher rates the outermost segment has a

stretch of 1, the adjacent one has a stretch of 2, the next one has stretch of 3, such that there is

a linear envelope to the maximum stretch. The stretch varies with the position such that

dλn/dn= -1.

However, once the outermost branchpoints are withdrawn, they no longer contribute

friction to the remaining stretch dynamics in Eqns. 3.14 and 3.18. Thus, the effective friction

is confined to the remaining central part of the molecule, comprising segments with non-

withdrawn branchpoints; this section has a progressively faster relaxation time as more of the

outer branchpoints are withdrawn. As a result, at intermediate flow rates, a steady state is

reached in which stretching due to the flow is balanced by relaxation of this central section of

the backbone. In the absence of drag-strain coupling (Fig. 3.24a), this region of intermediate

flow rates is quite narrow. Increasing the rate from 0.01 1/s to 0.03 1/s results in a transition

from nearly unstretched to almost fully stretched conformation. With typical experimental

measurements at rates separated by a factor of 3, it predicts a sharp critical value of strain rate

above which nearly unstretched molecules reach their maximum stretch (except for the very

center of the molecule). Drag-strain coupling (Fig. 3.25) smoothens this transition

significantly.

Fig 3.25 depicts the steady-state stretch in the central segment as a function of the

extension rate. With drag-strain coupling there is about a decade of extensional rates in which

a concept of flow-rate dependent priority (Read et al., 2011) is valid for the central segment.
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Figure 3.24: Steady state stretch in different backbone segments in extensional flow at the
indicated rates for a 27 arm comb with τa = 0.07 s, τseg,0 = 0.6 s, and τo = 103 s. The stretch
factor increases from the central segments towards outside of the comb molecule. The plot on
the left is predictions without drag-strain coupling (Eqn. 3.14) and the plot on the right is
including drag-strain coupling (Eqn. 3.18) in the stretch evolution equations.

Figure 3.25: Steady state stretch in the central segment for the comb molecule considered in
Fig. 3.24 as a function of extension rate. Without drag-strain coupling (circles), there is a very
short range of rates in which the segment reaches its maximum stretch from essentially
unstretched conformation. Drag-strain coupling (squares) smoothen out this transition to some
extent.

III. Discussion

We have presented a simple self-consistent model, based on an extension of the pom-pom

model, that captures the coupled stretch dynamics in a comb polymer under uniaxial



117

extensional flow. We use this model to successfully fit uniaxial extensional data for a series of

polystyrene and polyisoprene combs with a rather large range of molecular characteristics.

Our strategy is to separate the linear rheology data into Maxwell modes associated with the

inner backbone stretching modes t>τa and the arms and outer backbone non-stretching modes

at t<τa. Matching the extensional data requires a single fit parameter τseg,0 for stretch relaxation

in each of the backbone segments. We also demonstrate that our fitted values are physically

reasonable (in the context of branchpoint hopping dynamics) across all combs considered.

We include a short summary of the equations of the modified pom-pom model for combs:
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Summary of input parameters needed for modified pom-pom model for combs:

Topology dependent parameters: number of comb arms na, number of backbone segments
ns, vol. fraction of backbone φb, number of entanglements per backbone segment Zs

Chemistry dependent parameters: entanglement molecular weight Me, entanglement
plateau Ge

Tube model parameters: dilution exponent α=1 and branch point hopping fraction p2=1/40

Parameters extracted from linear rheology: retraction time of comb arms τa, moduli Ga

associated with stretching and non-stretching modes

Non-linear relaxation time constants: segmental relaxation time τseg
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Influence of the Environment on the Entanglement

Dynamics

In this chapter, we investigate the influence of the environment (varying length of linear

chains) on the entanglement dynamics of a probe model polymer (H and comb architecture).

Very short linear chains with few or no entanglements act simply as a solvent and dilute the

entanglements of the probe chains. When the number of entanglement of linear chains

increases, the overlap between the reptation time of the linear chains and the retraction time

of the arms (by CLF) becomes more significant as well as the interdependence between these

relaxation processes. Our goal is to quantify the dependence of CLF and reptation on the

environment (length of linear chains). We use tube based models such as TMA and BOB in

order to determine the respective relaxation times associated with each of the relaxation

processes as well as to model our blend linear rheology data.

4.1 Introduction

There is considerable scientific and technological importance in the study of model

polymer blends.  All industrial polymers are blends, either of different architectures

(involving structures such as linear, stars, H, combs, pom-pom, Caylee trees, etc. and their

combinations), chain lengths (bimodal, trimodal, etc.), monomer chemistry (copolymers) or

inorganic/organic (fillers) composites.  As explained in the Introduction, in order to target a

final product application, the link between macromolecular structure, polymer rheology and

final product properties has to be well understood.   Refinement in experiment and modeling

of the dynamics of model polymer blends allows one to bridge the design gap.

All the early studies of linear viscoelasticity of linear monodisperse polymer blends

have focused on phenomenological blending laws (Ferry et al., 1954; Graessley, 1971; Prest

Chapter	4
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1970).  These blending laws provided for a simple method of calculating long-term properties

such as zero shear viscosity, zero shear compliance and final relaxation times.  There are a

couple of key parameters to consider in the linear viscoelasticity of simple blends such as the

ratio between the relaxation times (is there an overlap or are the linear viscoelastic curves

well separated) and the volume fraction of each of the components (concentrated or diluted).

One example of a blend is a dilute amount of a fast relaxing component trapped in a

permanent (cross-linked) or temporary entanglement network.  Another example is a 50%

volume fraction of two blend components with similar relaxation times.  In the dilute case,

the chains do not overlap and the linear viscoelastic curves can be added together.  In the

concentrated case, the interactions between the entanglements of the chains become important

and simple blending laws are no longer sufficient.

Figure 4.1: Example of monodisperse blends include (a) one dilute component trapped in a
temporary network analogous to pure reptation (Colby and Rubinstein, 1990) or (b) two
components whose relaxation times overlap and there are mutual interactions between the
chains, hence there are entanglements created by the short-long chains and entanglements
between the short chains and long chains (Watanabe et al., 2004).

The linear rheology of monodisperse entangled linear polymers is well understood and

can be predicted with tube-based molecular models (Likhtman and McLeish, 2002).

However, the current tube model theories are not yet at the level of refinement where they can

in all cases predict the linear rheology of blends of two or more monodisperse polymers. The

problem remains that there is no truly quantitative and universal self-consistent tube model

mean field theory for polydisperse polymers due to the uncertainty around the interpretation

of Constraint Release (CR).  Examples of models which interpret CR include “double

reptation” (Tsenoglou, 1987; des Cloizeaux, 1988), “Constraint Release Rouse” (Graessley,

1982; Watanabe, 1999) and “dynamic tube dilation” (Marrucci, 1985; Ball and McLeish,
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1989). Although they have shown to be successful in limited cases, these models are not

universal for all types of blends i.e. for a wide range of volume fractions and relaxation times

of the respective monodisperse components.  Most of the literature has focused on bidisperse

linear blends (Watanabe and Kotaka, 1984; Struglinsky and Graessley, 1985; van Ruymbeke

et al., 2010; Read et al., 2012; Watanabe et al., 1985; 2004; 2013; Park and Larson; 2004;

2006) and blends of linear and star polymers (Blottiere et al., 1987; Struglinsky et al., 1988;

Watanabe et al., 1988; Milner et al., 1998; Lee and Archer, 2002; van Ruymbeke el al., 2010)

since they are the most straight-forward blend cases and tube model theories are most

successful at predicting their linear viscoelasticity.  However, other than experimental studies

involving star and linear mixtures, there are few other studies of binary mixtures of model

branched polymers.  One notable study involved the mixture of ring polymers with a dilute

amount of linear polymers which lead to the penetration of rings by linear chains and an

opening of the double-folded ring structure (Kapnistos et al., 2008).

As stated previously, one of the deficiencies of the expanded tube model theory for

blends is a lack of thorough understanding of the relaxation mechanism of constraint release

(CR). The influence of CR on macromolecular motion has not reached the level of

understanding of other mechanisms such as reptation and CLF.  For instance, most tube

model theories on polydisperse systems include a full dynamic tube dilation theory, DTD

(Marrucci, 1985; Ball and McLeish, 1989; Milner and McLeish, 1997) where the relaxed

segments are immediately taken as a solvent.  However, as was recently demonstrated by

(Watanabe et al., 2004; 2008; 2013), it may be that only partial DTD is needed in order to

provide a universal molecular picture for polydisperse polymers.  The concept they present is

that of a chain which reptates along a partially dilated tube that wriggles in the fully dilated

tube (Matsumiya et al., 2013).  Watanabe demonstrated that full DTD is only applicable in

the blend case of two monodisperse linear polymers where the components have widely

separated relaxation times.  The failure of full DTD has also been observed by others (Archer

et al., 2001).  They demonstrated experimentally that in the case of a blend of bidisperse

linear polymers, the ratio between their Mw values should be much larger than 1 in order for

full DTD to be applicable. Moreover, they determined that the terminal relaxation properties

are dependent on a critical value of Mw of short chains. Below this value, the terminal

properties depend only on the volume fraction of the long chains, similarly to entangled
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polymer solutions. However, above this Mw, the terminal properties are only affected by the

Mw of the short chains.

In addition to DTD, i.e.,  the constraint release where the relaxing segments act as a

solvent and enlarge the tube, there is a second type of constraint release acting at shorter time

scales and linked to the motion and renewal of the tube, known as thermal Constraint Release

(Graessley, 1982; Watanabe, 1999).  This type of constraint release occurs when relaxing

segments act to release topological constraints and enable lateral motions of the tube,

modeled by the Rouse model (as explained in the Introduction), and becomes very significant

in the study of polydisperse polymers. As first explained by (Struglinsky and Graessley,

1985), there is a crossover point where CR dominates over all other mechanisms of relaxation

of the chain in the tube, primarily reptation and CLF.  Struglinsky and Graessley were the

first to approximate this transition for bidisperse linear polymers, in the form of the

“Struglinsky-Graessley” criterion (SG), equivalent to the ratio of the reptation of the long

chains in an undilated tube τdL and the Constraint Release Rouse time τRCR.
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where ML and Ms are the molecular weights of the long and short polymer chains respectively.

When the value of this parameter is small, then reptation of the long chains occurs along the

thin tube, otherwise, the long chains relax in a dilated tube mediated by Constraint Release

Rouse.  More specifically, in a mixture of long entangled chains dispersed in a short un-

entangled chain matrix, the final reptation of the long chains by CRR mechanism will occur

only under the condition that the long chain CR time is significantly faster than the reptation

time.  Otherwise, the final reptation of the long chains will occur in a skinny tube.  Hence, the

CR mechanism can be properly analyzed only if there is a distinct separation of time scales,

and this is not often the case. A numerical value of 1 (Struglinsky and Graessley, 1985) and

0.064 (Park and Larson, 2004) has been proposed for this criterion but this is still under

question. The value of 0.1 was determined from diffusivity measurements (Green et al., 1984)

and shown to be applicable in linear viscoelastic data (Park and Larson, 2004). More

specifically, tracer diffusion data for the long chains diffused in a matrix of short chains

demonstrated that reptation is the dominant diffusion mechanism at large values of Mc
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(critical Mw) of short chains, whereas at smaller values, the diffusion coefficient associated

with CR dominates.

The influence of the constraint release (CR) on the terminal relaxation of each of the

components of the blend is also not fully understood.  Moreover, it becomes important to

distinguish between each of the CR events.  Taking the example of earlier works (Doi et al.,

1987; Viovy et al., 1991), (Read et al., 2002) have simplified the CR picture by assigning

only two constraint release events (although there are many), one representing entanglements

of long chains with all other chains and a second representing entanglements with long chains

only. The simplified tube-based picture (Figure 4.2) is that of two tubes, one ‘thin’ tube

(representative of all entanglements) contained with one ‘fat’ (dilated) tube (representative of

entanglements with long chains). The long chains will reptate in the dilated ( /2
L
 larger than

the thin tube) tube only if they have enough time to explore all the conformations in this tube,

otherwise their reptation will occur in a skinny tube. The associated time needed for a chain

to move from its skinny tube to its dilated tube is not instantaneous and corresponds to its

Rouse time.

Figure 4.2:  Test chain in a thin tube (entanglements of long chains with short chains) trapped
in a dilated tube (entanglements of long chains).  There are two possibilities of long chain
reptation: either in the thin tube with tube diameter a0 or in the dilated tube with tube diameter
a0* /2

L
 .

Note that this molecular picture is similar to the one of Watanabe, again invoking the

idea of two tubes, a thin tube trapped within a dilated tube.  Using this simplified depiction of

CR, these authors have successfully modeled both linear and elongation rheology of

bidisperse linear blends (Auhl et al., 2009). (Read et al., 2012) have adapted the (Viovy et al.,

a0a(t)
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1991) diagram (Figure 4.3) in order to provide an illustrative picture of the four regimes

associated with the relaxation dynamics of bidisperse linear polymers. The terminal

relaxation properties of the bidisperse blends are dependent on the Struglinsky criterion rSG (y

axis) and the number of entanglements of the long chains (x axis). The solid lines represent

the transition between the regimes. If the values of both rSG and φL are large, reptation of the

long chains will occur in a dilated tube, mediated by CR in the thin tube. However, if the

value of φL is large but the value of rSG is small, reptation of the long chains will occur in a

thin tube.  Alternatively, if the φL is small and the value of rSG is large, then the relaxation

occurs by Constraint Release Rouse. The last option is that both the values of rSG and φL are

small and therefore, reptation occurs in a thin tube mediated by CR along the thin tube.

Figure 4.3: Four regimes associated with the relaxation dynamics of bimodal polymers (Read
et al., 2012; Viovy et al., 1991)

Others such as (Liu et al., 2006) have explored the consequences of CR on chain

dynamics. To this end, they have attempted to switch-off CR events by properly choosing

blends with specific ratios of characteristic times of the components, say a short one and a

much longer representing an effective ‘sea’ of fixed constraints. This type of study allows

quantifying the “amount” of CR and is known as probe dynamics.  When a dilute amount of

short but entangled polymer chains are added to a melt of concentrated overlapping long
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chains, the constraint release associated with the short chain entanglements can be effectively

switched-off. This is analogous to a mixture of dilute polymer chains fixed in a cross-linked

network (Kan et al., 1980).  (Liu et al., 2006) and others (Glomann et al., 2011; Watanabe et

al., 2013) have shown that there is a retardation (slowing down) of the terminal relaxation

time of the short polymer chains in the environment of long polymer chains because the tube

motion of the short chains is essentially frozen (no CR of short chains to speed-up the

process). They have made a convincing argument by proving that the terminal relaxation time

versus the molecular weight conforms to the well-known power law reptation scaling of 3.1 in

the nearly permanent matrix environment (associated with the combination of reptation and

CLF) and 3.4 in the monodisperse case (CR also included) (as shown in Figure 4.4). (Liu et

al., 2006) have also shown that this retardation factor is a function of the length of the short

polymer chains.  More specifically, the shorter the chains or the larger the difference between

the Mw of the short and long chains (hence, on the relaxation times), the more significant the

retardation factor becomes.  (Watanabe et al., 2013) have also shown that the CR mechanisms

accelerate dielectric and viscoelastic relaxation of linear PI and the suppression of CR on

blending with a much longer polymer, retards the relaxation in the blend. (Glomann et al.,

2011) have shown that the dielectric relaxation spectra for linear PI are independent of CR

contribution and hence the combination of viscoelastic and dielectric characterization

provides a full description of chain dynamics.  (Watanabe et al., 2013) have also recently

developed a “blend model” for bidisperse linear blends which works for a wide range of Ms

and Ml values. They consider self-consistently all types of possible entanglements (short-

long,short-short, long-long) and take into account a relatively new concept of CR-activated

tension equilibration (Ruymbeke et al., 2012).
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Figure 4.4: Plot of the crossover relaxation time vs Mw (Liu et al., 2006) which conforms to a

3.1 power law scaling (suppression of CR) and 3.4 power law scaling (with CR tube motions)

From the above, it becomes evident that it is interesting now to try to understand CR

events in the context of more complex blends of polymers, since CR will interfere not only

with reptation but also with fluctuation mechanisms. We investigate the relaxation dynamics

of a binary mixture of a dilute amount of H polymer (our probe) and a concentrated linear

polymer (matrix).  The well-defined monodisperse H polymer, that has recently been

characterized by Temperature Gradient Interaction Chromatography (TGIC), whose linear

viscoelastic properties have been well characterized in the past (Roovers, 1984) was blended

with monodisperse linear chains of varying length.

In order to study the effect of the size of the linear matrix on the relaxation time of the

arms and backbone of the H polymer, we chose seven different linear PS matrix Mw’s, 5k,

22k, 51k, 129k, 185k, 483k and 1M.   Since we are interested in performing probe rheology,

more specifically probing the dynamics of a dilute H polymer in a concentrated mesh of

linear chains, we chose to have very low concentrations of H polymer in the blend,

specifically concentrations considerably below the overlap concentration (1.5%, 3% and

10%).

The H polymer melt will undergo hierarchical relaxation where the outer arms will

retract by fluctuations and act as a solvent for the backbone which will only relax by reptation

(center of mass diffusion of chains out of their tube) after the arms have fully retracted

(McLeish et al., 1999). In addition, there are continuously constraint release events occurring
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when relaxed segments (first arms and then outer backbone) release topological constraints

on un-relaxed segments thus speeding up the process of reptation. When we dilute the H3A1

polymer in a long linear matrix, we attempt to turn off constraint release events associated

with the H polymer chains and consequently this will lead to a slowing down of the

relaxation.  However, when we dilute the H3A1 polymer in a short linear matrix, we expect a

speeding up of the relaxation of the H polymer due to constraint release events. Quantifying

these effects is the real challenge.

Moreover, in addition to the H polymer, we study a well-defined PI comb PI254k

(Kirkwood et al., 2009) as our probe model branched polymer and examine the effect of the

environment (length of linear chains) on the entanglement relaxation dynamics of the comb

polymer.  We vary the length of the monodisperse linear chains (22k, 96k and 1.5M) in our

mixture and keep a constant volume fraction of 10% of comb probe. Our main reasoning for

the choice of comb as our probe is due to the well separated relaxation time of the respective

arms and backbone. Although the H3A1 polymer (Roovers,1984) is a good candidate as a

probe model polymer since both the arms and the backbone are well entangled, the inherent

limitation is the difficulty of extracting very accurate relaxation times for the arms and the

backbone due to the overlap of their linear viscoelastic curves.

Specifically, two questions that we would like to answer during this study are:

How can we quantitatively determine the relaxation time of the arms in the bulk H

polymer and, more importantly, in the blends?

How much do we expect the arm relaxation time and the backbone relaxation time to

speed-up (in the case of short chains) or slow-down (in the case of long chains)?

4.2 Characterization of linear polymers and blends

4.2.1 Dynamic light scattering study (DLS)

A hydrodynamic radius for the H3A1 polymer of 20 nm in good solvent THF was

calculated from the diffusion coefficient (Figure 4.5) obtained following a systematic

dynamic light scattering study (details of the method found in Chapter 2).  The overlap

concentration c* of the H3A1 polymer in THF was estimated to be 0.03g/mL. The overlap

concentration divided by the density of THF, multiplied by 100 results in 3% weight fraction
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of H3A1 in THF. Moreover, according to the Flory theory, there is a universal power law

dependence of polymer size R on the degree of polymerization (Colby and Rubinstein, 2003):

~                   4.2R N

The scaling exponent ν is equivalent to 0.5 in a theta solvent (such as the PS linear chains)

and 0.588 in a good solvent (THF solvent).  Therefore, the radius of the H3A1 polymer in the

PS mixture is equivalent approximately to 9.5 nm and the overlap concentration is equivalent

to 0.3g of H3A1/mL PS mixture. Now, dividing this value by the density of PS results in a

weight fraction or volume fraction of 29%. Moreover, in order to ensure that the H polymer

chains are in fact truly diluted (no interpenetration of the chains) we chose to have a

concentration of H3A1 polymer of 1.5%, 3% and 10% in the blend.

Figure 4.5: The linear fit of the diffusion constant of the H3A1 polymer in a good solvent THF
(dilute concentration of 0.0126 wt%) at all values of q2 results in a diffusion constant value of
2.2E-7 cm2/s.

4.2.2 Differential scanning calorimetry and temperature ramp test

All the details related to Differential Scanning Calorimetry (DSC) are explained in

Chapter 2.  DSC was performed in order to determine the glass transition temperature of the

linear samples and blends of linear PS and H polymer H3A1. Below, Table 4.1 depicts the

measured glass transition temperatures (Tg). The difference in glass transition temperature

between the lowest Mw PS linear and the highest Mw PS sample corresponds to a horizontal

shift in the frequency axis (due to a difference in respective entanglement times).  In order to
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compare all the linear and blend viscoelastic curves with respect to one another, it was

necessary to horizontally shift the PS22k, the PS51k and the PS1M curves in order to have

the same temperature difference between the reference of the linear viscoelastic curve and

their respective glass transition temperatures. The higher Mw PS samples have a constant

measured Tg value of 106±1°C. As expected, the barely entangled linear PS22k has a lower

Tg of 103±1°C and a shift factor of 0.47 and PS51k has a Tg of 104±1°C and a shift factor of

0.6. In contrast, PS1M has a higher Tg value of 107±1°C and a shift factor of 1.3.  The

method used to obtain the shift factors was to shift the linear viscoelastic data in order to

compare at the same (Tm-Tg) difference, taking the average value of 106°C as the reference

Tg,a. For example, for PS22k, the Tg-Tg,a difference corresponds to -3°C. Since our reference

measuring temperature Tm is 130°C (ie the ref T of the TTS mastercurve), therefore, the

PS22k data is shifted to 127°C.

Table 4.1: Glass transition temperatures as obtained by DSC

Linear and blend PS Tg (°C)

PS 22k 103±1

PS 51k 104±1

PS 129k10% H3A1 106±1

PS 185k 106±1

PS 185k10% H3A1 106±1

PS 1M 107±1



129

Figure 4.6: DSC curves for linear samples PS22k, PS182k and PS1M and for blend samples
PS182k10% H and 129k10% H

In addition to DSC, another method which was used to obtain the glass transition temperature

is a dynamic temperature ramp test.  This test is analogous to the commonly used Dynamic

Mechanical Analysis (DMA) method. We performed a temperature ramp from 100°C to 70°C

at a rate of 1°C/min. We assign the Tg of 82°C as the temperature at which we begin to have a

decrease of G’ and G’’ due to the mobility of the chains. For this sample, the T-Tg,a is very

large, -24°C and hence, the SAOS data of the PS5k has to be shifted to 106°C. The horizontal

shift factor for this sample is very significant and corresponds to 6E-3.
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Figure 4.7: Dynamic temperature ramp test for PS5k. Indicated by an arrow is the glass
transition temperature Tg at 82°C.

4.2.3 Size exclusion chromatography

All the details concerning the Size Exclusion Chromatography (SEC) measurements

are explained in Chapter 2.  In Table 4.2, the weight average molecular weight values

measured by SEC equipped with a refractive index (RI) detector for a select number of linear

and blend samples are depicted.  In a few cases, these Mw values are quite different than those

which are provided by the manufacturing companies or synthetic chemists (Table 2.5).  The

last column in Table 4.2 indicates the % difference between the Mw values as given by the

synthetic chemists and those determined independently by SEC analysis. The discrepancy

between the Mw values could be due to the error and variability (different procedures

employed in different locations) associated with SEC measurements.  For all the PS samples

listed in table 4.2, the PDI is still relatively low and the samples can still be considered to be

monodisperse. The Mw value and PDI are input parameters in the tube model theories that we

are currently using (TMA and BOB) and therefore, it is important to ensure the values are

accurate as possible. TMA and BOB will be explained in more details in Chapter 4.3.
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Table 4.2: Weight average molecular weight values obtained with SEC equipped with RI
detector

Linear PS Mw (kg/mol) PDI % Mw
difference

PS 22k 24.3 1.07 9%

PS 22k 10%

H3A1H

H3A1H: 550.4 1.105

PS 22k: 24.5 1.118

PS 51k 63.3 1.08 22%

PS129k 121 1.15 6%

PS 185k 153 1.08 17%

4.3 Description of computational tube-based models

The first computational model for predicting the linear rheology of blends of branched

polymers was the “hierarchical model” (Larson, 2001).  The original model was based on the

Milner and McLeish model (Milner and McLeish, 1997) and it has been more recently

updated to include refinements in tube model theory (Park et al., 2005) and can predict a

larger variety of complex blend structures. More recently, (Das et al., 2006), developed a

similar computational model nicknamed BOB (Branch-on-Branch) that predicts the linear

rheology of branched structures. Both BOB and the hierarchical model are based on the tube

model hierarchical framework and hence take into account all relaxation mechanisms such as

arm retraction, CLF, DTD, reptation and CR-Rouse motion. There are quite a few

discrepancies between the computational hierarchical model and BOB (Wang et al., 2010).

One of the most important differences is observed in the treatment of the arm retraction

mechanism.  Contrary to BOB, the hierarchical model includes a heuristic treatment of branch

collapse (Park et al., 2005).

4.3.1 BOB tube-based computational algorithm

In Table 4.3, we describe the main characteristic features associated with the BOB

hierarchical computational algorithm. To summarize briefly, following a small step strain, a

branched polymer will undergo a series of relaxation processes at different time scales.  At
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rates larger than τe, the free ends will retract towards the branch points by fluctuations (taking

into account Milner and McLeish, 1997).  After the branch point hopping process, additional

frictional drag will be added to the local friction of the remaining unrelaxed segments

attached to these free ends, thus resulting in a compound arm.

In addition, these free ends will also dilute the entanglements of the unrelaxed

segments, with dilution exponent α=1 (Marrucci, 1985) except in the case of Constraint

Release Rouse (Viovy et al., 1991; Milner et al., 1998).  The DTD evolves with time, the

resulting compound arm will further dilute the fixed segments (immobile segments trapped

between branch points) closest to it and further form additional compound arms. When only 2

compound arms remain, they form an effective linear chain, reptation will occur in a thin tube

(no DTD associated with reptation) mediated by slow thermal CR events on a timescale

which is well separated from the retraction time.

Table 4.3: Characteristic features related to the treatment of the relaxation mechanisms in the
BOB computational algorithm.

Relaxation
pathways

Stress relaxation G(t) = Gfast(t)+Gslow(t)
Gfast (t) at times faster than τe:

- Fast Rouse motion along the tube
- Redistribution of chain segments along the tube via longitudinal

Rouse motion.
Gslow(t):
- Escape of chain segments from the deformed tube.  Timescale

depends exponentially on the distance from the free ends of the
chain.

- Relaxation of the tube itself via constraint release.

Arm retraction

- Entropic spring behavior for the curvilinear retraction, same as for
star polymers (Milner and McLeish 1997)

- Hierachical relaxation, following arm retraction, dynamic tube
dilution Z=Zφ-α, φ is almost always equal to the unrelaxed fraction
except in the case of CR-Rouse motion

Compound arm
fluctuation

- Compound arm is one containing one or more localized drag points
due to collapsed side arms.

- Compound arm retracts in the same way as a simple arm except with
a different effective friction and potential.

- Modeled as a series of springs connected at the branch points.
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Arm retraction
potential Ueff

and τlate
- Numerical evaluation of Taylor expansion at each step

Branch point
friction

- Branch point takes hops of size pa at timescale τa where p2 = 1/40
- Tube diameter scaled at the timescale of arm retraction.

Dilution
exponent α

- α =1, according to tube dilution theory the plateau modulus becomes
Gdil ~ G0 Φ1+α

Determination
of Me

- the entanglement molecular weight is determined by the following
definition:

0

4
5e
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

Reptation

- When only 2 arms remain unrelaxed, the chain becomes effectively
linear.

- Friction from backbone proportional to its length and added to friction
of collapsed arms.

- Reptation occurs in thin tube (no DTD since in most cases, no clear
separation of time scales of blend components).  Struglinsky-
Graessley criterion and partial DTD not included in the model.

- Clear timescale separation of retraction time and reptation time.

CR-Rouse
regime

- During supertube relaxation, the effective tube constraint of reptation
and retraction is that of a thin tube.

We consistently use the same BOB parameters (Me=14k, τe=0.5s, 0
NG =192k, α=1, p2=1/40) for

all of our PS H, linear and blend samples at a temperature of 130°C.  These values are

consistent with other works (Kapnistos et al., 2005) when taking into account the horizontal

and vertical shift factors associated with temperature differences.

4.3.2 Time marching algorithm model for H polymer analysis

Similarly to BOB, the TMA model is based on the tube concept and uses the same

relaxation mechanisms as any tube-based model. However, a different molecular coordinate

system is defined (van Ruymbeke et al., 2006; 2007).  In particular, the relaxation of a

polymer segment is followed hierarchically on a discretized time axis (τxi, where xi

corresponds to a normalized molecular segment) and can thus handle all relaxation processes

in a simultaneous fashion.  We consider for example an H polymer with two branches
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attached to each end of a linear backbone with a defined molecular coordinate system

depicted in Figure 4.8.  The main difference from other tube models is that here, whereas the

center of the molecule is of course the same (at xb=1), one follows the relaxation continuously

from xb=0 to xb=1, i.e., past xb=xbrpt.  Instead, the other tube models follow the relaxation of

the branch from xbr=1 to xbrpt and then that of the backbone from xb=xbrpt to xb=1.  In doing so,

the backbone relaxation encompasses the friction coming from the branch already and there is

no need for adjusting the value of p2 (which is set to 1) (van Ruymbeke et al., 2006; 2007;

2011).

Figure 4.8: H polymer molecular coordinate system. Two reference paths, the first from the
end of the branches to the branch point and the second from the end of the branches to the
middle of the backbone.

The faster relaxation modes (common to all linear and branched polymer systems) are

the high-frequency Rouse modes which occur at time scales shorter than the entanglement

time, before the chains have time to experience the tube.  Additionally, longitudinal relaxation

modes (Likhtman and McLeish, 2002) also occur at these early time scales and correspond to

a redistribution of monomer reorientation along the tube, corresponding to 1/5 of the total

early stress relaxation.  At timescales larger than τe, the H polymer relaxation proceeds

hierarchically and begins with the relaxation of the branches (arms). The ends of the

branches, corresponding to xb=0 relax first by end-point diffusion and at later times, the inner

segments of the branches will proceed with an activated retraction which is exponentially

suppressed towards the branch point (xb=xbr,pt=1).  This is analogous to the star polymer

relaxation and involves an exponentially broad spectrum of CR-mediated relaxation times.

After arm retraction, the backbone segments are free to move and will proceed to relax by

two different fluctuations modes (van Ruymbeke et al., 2006).  The first, involves equilibrium

length fluctuations of the outer parts of the backbone (similar to star arms) that begin at the

xb=0

xb=1

xb= xbrpt

xb=0 xb=0

xb=0

Mb

Mbr
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branch free ends (xb=0) and end at the branch point (xb=xbrpt) with the associated friction

which originates from the monomeric friction of the chain itself.  The second, also involves

fluctuations which begin at the branch free ends (xb=0) (even though the arms have relaxed

they still have a non-zero equilibrium length) and terminate at the center of the backbone

(xb=1) and are associated with the enhanced friction (drag) produced by the relaxing arm

segments.

The branch points are considered to be effective friction blobs following arm

relaxation. Also, a delay time associated with the backbone relaxation due to the arm

relaxation needs to be added to the Rouse segmental relaxation.  Moreover, after the

equilibrium length fluctuations of the outer and inner parts of the backbone, the extended

backbone (similar to a 2 arm star) will undergo an activated retraction towards the center of

the backbone.  The reptation of the backbone will eventually take over as fluctuations will

become exponentially slow.  It will either occur in a skinny tube or in a fat tube depending on

the extent of dilution.  If the relaxation of the arms and backbone are well separated in time,

the relaxed branches will act as a solvent and swell the backbone and full DTD (Watanabe,

2004; 2008; 2013) is applicable.  In order to apply DTD, it becomes necessary to rescale the

tube model parameters, ie the molecular weight between entanglements Me, the equilibrium

length Leq and the tube diameter a as a function of the dynamic tube dilution of the unrelaxed

fraction φunr:
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Alternatively, the backbone can relax by a Rouse relaxation process (if the volume fraction of

the arms is large enough as to completely dilute the backbone) taking into account only

monomeric friction under the condition that the backbone is completely diluted by the arms.

Moreover, there are additional constraint release events to take into account when

considering a mixture of the H polymer in a linear matrix. When the constraint release events

associated with the linear chains are slow, the fastest motion available is that of a skinny tube
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subject to monomeric friction or alternatively, if the constraint release events are fast, the

motion can occur along the fat tube, mediated by constraint-release events from the relaxed

entangled segments.

The relaxation modulus G(t), based on Milner and McLeish theory (1997) can be

considered as a sum of the survival probability p of every molecular segment, taking into

account all relaxation proceses (ie reptation, fluctuations and CR) and the renormalized

values of the tube model parameters (due to DTD).
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We consistently use the same TMA parameters (Me=14.8k, 0
NG =230k, τe=0.5s and

α=1) for all of our PS linear and blend samples at a temperature of 130°C. Similary to the

BOB parameters, these values are consistent with other works (Kapnistos et al., 2005) when

taking into account the horizontal and vertical shift factors associated with temperature

differences.

We use both the BOB and the TMA computational algorithm as a tool to model the

linear rheology of the H, the linear and the blends of these in order to try to understand the

effects of the environment (length of linear chains) on the entanglement dynamics of the

model polymer. The use of different models provides the opportunity to show that the basic

premises of tube models is right. The use of different models with the unique data sets offers

the opportunity to test the assumptions and details that mark their differences.

Meanwhile, we discover the inherent limitations of the models. Moreover, we also

compare the model predictions associated with both tube-based hierarchical models.  Both

models are excellent predictors of linear and star polymer linear viscoelasticity. The inherent

problems arise when predicting the rheological response of more complex structures such as

H, combs and the deficiencies become more pronounced with predictions of blends of these.

The problem lies in the lack of understanding of CR (as explained in the Introduction) even

for basic blends such as linear bidisperse blends or also in the context of complex hierarchical

structures such as the H and comb polymer.  In order to determine the relaxation times of the
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H polymer arms and backbone in our blend samples, we use the TMA model since there is an

option to deconvolute the linear viscoelastic curve of the arms and backbone.

4.3.3 Value of tube model parameters: α and p2

All molecular parameters for both TMA and BOB are determined self-consistently

from the chemical characterization and from analysis of the linear rheology.  The two

exceptions are the dilation exponent α and the p2 parameter related to the branch point

friction. There is yet to be a clear agreement on the value of the dilation exponent α and the p2

parameter. Recently, there has been significant research progress towards the determination

of these parameters self-consistently (van Ruymbeke et al., 2012; Bacova et al., 2014)

The dilution exponent of the plateau modulus associated with static dilution ie the

dilution associated with a polymer dissolved in a theta solvent (no excluded volume

interactions) is α=4/3.  (Colby and Rubinstein, 1990; Colby et al., 1992) determined this

scaling by considering that the entanglement constraints in polymer solutions are composed

of a fixed number of intermolecular binary contacts.  The density of binary contacts in a theta

solvent scales as c2 and the distance between binary contacts scales as c-2/3. Moreover, the

tube diameter a scales as c-2/3.  The corresponding volume is a sphere a3 filled with blobs of

diameter ξ. The number of blobs are calculated by assuming a random walk of blobs. The

length scale of the blob scales as c-3/4. Finally, the plateau modulus can be defined by the

following expression as G ≈ kT/a2ξ which finally implies that G~c7/3 and α=4/3.

Many experimental works using tube-based models have shown better viscoelastic

data prediction agreement using a dilution parameter α=1 rather than α=4/3 (Park and Larson,

2003; Ruymbeke et al., 2006).  In all our model fittings, we therefore consistently use a

dilution parameter of α=1 although it could be that this is an oversimplification.  However,

the advantage of consistently using the same value, which is independent of architecture,

monomer chemistry and polydispersity of the polymer sample is that we are not creating a

bias. Some evidence suggests that the value of the dilution exponent could be model

dependent.  For example, in the hierarchical model of Larson and colleagues (Park and

Larson, 2005), α=4/3 is considered to be the best fit parameter, whereas in the BOB (Das et

al., 2006) and TMA (Ruymbeke et al. 2006) computational algorithm, a value of α=1 is
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recommended.  Moreover, the analysis of linear viscoelastic data also reveals the uncertainty

related to the dilution exponent as well as the difficulty of extracting the dilution parameter

from rheological data.  In the case of well separated relaxation times of entangled branched

segments, it is possible to calculate with linear viscoelastic data, the experimental value of the

dilution exponent. Utilizing the data for well-defined monodisperse combs, (Kapnistos et al.,

2006) plotted the ratio of the second rubber plateau modulus (representing the dynamically

diluted backbone) and the global plateau modulus versus the volume fraction of the backbone

and found that the data scattered between  α=1 and α=4/3 (Kapnistos et al., 2006). This may

suggest that the dilution exponent should be chosen on a case by case basis.  Following their

study of the dielectric spectroscopy and the linear viscoelasticity of bidisperse linear blends,

(van Ruymbeke et al., 2012) determined that both dilution exponents should be used at

different time scales. More specifically, at short times, a dilution exponent of α=1 is most

appropriate whereas at long times a recommended dilution exponent of α=4/3 is required. The

authors suggest that the exponent α=4/3 is achieved only after tension equilibration (an

additional relaxation process) and conformational adjustment of the long chains activated by

the short chains.  Additionally, there is a transition zone, where the effective dilution

exponent corresponds to a value between 1 and 4/3.

Moreover, there is also uncertainty related to the value of p2, the dimensionless

parameter related to the hopping distance of a branch point relative to the tube diameter.

Similarly to the dilution exponent, p2 also appears to be model dependent since in the

Hierarchical model (Park et al., 2005), the recommended value is p2=1/12 (Das et al., 2006),

in BOB, it is 1/40 and in the TMA model (van Ruymbeke et al., 2006) p2=1.  There are many

unresolved issues related to branch point hopping, first, the length scale associated with hops.

By definition, the hopping distance is p times the tube diameter. However, one fundamental

question is whether to assume hopping occurs in a thin or in a fat tube. (McLeish et al., 1999)

assumed that hopping occurred in a dilated tube and determined that a value of 1/p2=12

provided the best fit for rheological data on H polymers. Another fundamental question is

related to the direction of the hopping motion, more specifically, should the branch points be

considered to occur along the thin tube contour or fat tube contour. Different versions of

hierarchical tube based-models have incorporated different assumptions about branch point

hopping length and direction (Frischknecht et al., 2002; Daniels et al., 2001; Inkson et al.,

2006; Kapnistos et al., 2005; Kirkwood et al., 2009; McLeish et al., 1999; Park et al., 2006)
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and consequently, a broad range of p2 values has been reported in the literature. Recently,

(Bacova et al., 2014), systematically investigated very different macromolecular architectures

and determined that the most consistent description of p2 can only be achieved by considering

both the backbone friction and hopping in the dilated tube.

There is evidence that suggests that perhaps the value of p2 is dependent on the

polymer architecture and the length of the branches for complex branched structures.  For

example, (Frischknecht et al., 2002) varied the value of p2 from ¼ to 1/60 in order to

quantitatively fit the linear viscoelastic data of asymmetric three arms stars and determined

that its value was dependent on the length of the arms and their associated frictional drag. The

value of p2 used for intermediate-short arms were shown to be similar to those needed for H

polymers, whereas the small values of p2 for the short arms (even for unentangled arms)

indicate a larger than predicted amount of drag.

It is possible to calculate p2 for complex branched systems taking into account some

already developed theoretical equations.  At the timescale of branch relaxation, the branch

points perform diffusive steps (hops) along the tube contour with a diffusivity which is

proportional to the p2 parameter and the tube diameter a2 (either original or dilated).

Moreover, the friction for branched polymer systems can also be assumed to be dominated by

the arms.

2 2
                       4.6

2 a

p aD
q



For a linear chain, the entanglement time is calculated by equation 4.7. Note for more

complex architectures and blends, the entanglement time will also need to be rescaled due to

DTD.  For these cases, an effective entanglement segment relaxation time τe,dil is calculated.
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Where Ne is the number of monomers per entanglement segment, ζ is the monomeric friction

constant and b is the Kuhn segment length. Also, the diffusivity (due to only to monomeric
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friction) can be calculated by expression 4.8. However, for more complex architectures and

blends, the diffusivity may also need to be adjusted to take into account CR events.

                                 4.8
( )

B

e

k TD
ZN



Moreover, since the chains are Gaussian, the following expression for tube diameter applies:

2 2
0                               4.9ea N b

By combining equations 4.7 to 4.9 and by considering the effect of dilution on both the

entanglement segment and the number of entanglements, the expression for the diffusivity

results in the following expression:
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Now, by combining equations 4.6 and 4.10, it becomes possible to calculate p2 simply by

taking into account the arm relaxation time, the entanglement spacing and equilibration time.
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All the parameters in equation 4.11 can be calculated from the linear rheology curve. The

determination of arm relaxation time can be tricky. In an effort to identify the arm relaxation

time for complex branched polymers, three different indirect methods can be used:

1. Analysis of the tube survival probabilities provided by the BoB computational algorithm.

2. Analysis of the intermediate peak in the frequency dependence of the experimental loss

tangent tanδ = G’’(ω)/G’(ω)

3. Defining the time at which 0 2( ) N unrG t G  , where G(t) and Ge are the experimental stress

relaxation function and entanglement modulus, respectively. The quantity φunr is the fraction

of unrelaxed material at the timescale of the arm relaxation time.

Moreover, the relaxation time of the arms for complex branched systems can be also

directly determined from hierarchical models such as TMA where the deconvolution of the

arm and backbone linear viscoelastic curves is achievable. We apply all direct and indirect
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methods when applicable for the determination of relaxation times associated with the H,

combs and blends of these.

4.4 Linear rheology results of H3A1 polymer

In Figure 4.9, the linear viscolastic data of the H3A1 polymer measured recently are

compared with the linear viscoelastic data of (Roovers, 1981). The agreement between the

two curves in addition to the TGIC characterization, demonstrates that the H polymer is still

of good quality and monodisperse despite the long period of storage.   Moreover, in Figure

4.10, the linear rheology experimental data of the H3A1 polymer are compared to fitted

predictions using the software program BOB (Branch on Branch rheology) and the TMA

(Time Marching Algorithm).

Figure 4.9:  Comparison of H3A1 G’ and G’’ experimental data recently obtained and the
data obtained by (Roovers, 1981)

The main relaxation features of the H3A1 polymer are directly observed in the

rheological data (indicated by arrows in Figure 4.9).  The hierarchical relaxation of the H3A1

polymer is clearly observable in the loss modulus G’’ data.  The broad G’’ shoulder is

representative of the exponentially slow arm time retraction and the peak in G’’ is

representative of the backbone late-time relaxation. Due to the large number of entanglements
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in the arms, the backbone is heavily diluted by the arms, the backbone chains are not

mutually entangled and the characteristic Rouse relaxation G’~G’’~ω1/2 is clearly seen by the

½ slope (Figure 4.11 (a)) just before the terminal relaxation. The volume fraction of the

backbone is 19% and the number of entanglements of the backbone is 8±1 (Me=14-18).

Therefore if we consider the theory of DTD (although this is an approximation due to coupled

arm and backbone relaxation time) and hence, the number of entanglements of the

dynamically diluted backbone is equivalent to Zbdil= b bZ  . The backbone would then have one

effective entanglement after the arms full relax.

Both fits based on tube model theories capture reasonably well the linear viscoelastic

behavior of the well entangled H polymer (Figure 4.10 and 4.11) in both the low (Figure

4.11(a)) and high frequency (Figure 4.11(b)) region.  However, there are clear discrepancies

between the fits and the experimental data for both models. More specifically, the TMA

model captures the data quite well in the high frequency region although not perfectly (Figure

4.11(b)), however, the ½ Rouse slope is extended and consequently, the crossover relaxation

time predicted is slower (Figure 4.11(a)). The TMA model predicts a slower relaxation time

of the inner H polymer backbone since the transition from retraction of the arms to the

relaxation of the backbone by the Rouse process is not well defined. In effect, this a

limitation in all tube-based molecular models.  Contrarily, BOB predicts accurately the

crossover relaxation time τd, however, the plateau modulus is under-predicted and the ½

intermediate slope is not captured. The under-prediction of the plateau modulus is an inherent

limitation of the Milner-McLeish theory (1997) which has been incorporated in the BOB

algorithm.
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Figure 4.10: Comparison of H3A1 G’ and G’’ experimental data with BOB and TMA model

fits.

Figure 4.11: The H3A1 G’ and G’’ experimental data, the BOB and TMA model fits in (a) the
low frequency region where the ½ Rouse slope is clearly visible and (b) high frequency region

One of the goals of our study is to clearly identify the arm relaxation of the H polymer

alone and in the blends. As depicted in the linear rheology data of Figure 4.10, distinguishing

one single relaxation time is not clear since the arm relaxation time is very broad and coupled

to the backbone relaxation. In effect, the arm relaxation time for an H polymer is even

broader than for a star polymer with the same number of arms since the arm retraction is

delayed further by the presence of the backbone (which acts similarly to a permanent

network). Moreover, we discover that the relaxation behavior of the H3A1 polymer can be

compared to a blend of a long linear polymer of 2.5M (v1=0.19) and a 4 arm star polymer

(v2=0.81) with volume fractions associated with respective H3A1 polymer backbone and

arms. This is quite evident by the positive agreement of the BOB fit of the H3A1 polymer

moduli compared with the BOB fit of the linear and star mixture and the H3A1 experimental

data.  In the case of a monodisperse star, the arm relaxation time is exponentially dependent

on Za, the number of entanglements of each arm.  However, for an H polymer, both Za

(number of entanglements of each arm) and φa (volume fraction of arms) are included in the

exponent of the longest relaxation time of the arm retractions (McLeish et al. 1999) (equation

4.12).
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Figure 4.12: Comparison of the H3A1 G’(ω) and G’’(ω) experimental data with the respective
BOB fit of the H3A1 polymer and a blend of linear 2.5M (19 vol% same backbone fraction as
H3A1) and a 4 arm star polymer (81 vol% same arm fraction as H3A1).

4.5 Determination of arm and backbone relaxation time of H

The most reliable and straight-forward method to obtain respective arm and backbone

relaxation times is with the use of a molecular model such as TMA where the arm and

backbone linear viscoelastic curves are deconvoluted. As already presented in Chapter 3 and

shown again in Figure 4.13, the TMA model fit of the H3A1 storage G’(ω) and loss modulus

G’’(ω) data was decomposed into two curves, one which is representative of the arm time

retraction process and the other, the dynamically diluted backbone relaxation.
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Figure 4.13: symbols:  G’(ω) storage and  G’’(ω) loss modulus experimental data of H3A1
at 130°C, solid black lines: G’ TMA modelled data and dashed lines: G’’ TMA modelled data
and the respective arm and backbone curves (grey lines). The crossover time of the arms τa and
crossover time of the backbone τb corresponds to the inverse of the crossover frequency
indicated by the dashed arrows.

In addition to the low ω crossover time τd, the longest relaxation time τ0 (Graessley, 2008) was

determined. This was deemed necessary since there is one or more additional relaxation mode

which occur after the crossover time associated with complex branched polymers and blends

of these. This is most evident with further examination of the H3A1 SAOS data, where the

backbone relaxation τb is clearly slower than the crossover relaxation time τd. Moreover,

there is a clear discrepancy between the crossover times and the longest relaxation times for

each respective component (ie arm, backbone or global H) (Table 4.4).

The values of the longest relaxation time τ0 are determined by the following expression:
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The longest relaxation times τo, the arm relaxation times τa and crossover relaxation times τd

associated with both the experimental data and the corresponding TMA model fit are

presented in Table 4.4.
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Table 4.4: Comparison of arm relaxation times τa, longest relaxation times τ0 and crossover
relaxation times τd of the experimental data1 and TMA model2

Relaxation times H3A1 data1 H3A1 TMA model 2

τd (s) 2E5 1E6

τ0 (s) 1.8E6 4.9E6

τd arms (s) 1E4

τ0 arms (s) 3.2E4

τd backbone (s) 1.6E6

τd backbone (s) 5.8E6

Moreover, in an effort to try to identify the respective arm and backbone relaxation

times of the H3A1 polymer by utilizing only the linear rheological data, several other indirect

methods are evaluated.  The first method involves an identification of a range of arm

relaxation times representative of the exponentially broad arm relaxation times.  We model a

star polymer with the same molecular parameters as the H polymer, namely 4 arms, Ma=132k

and PDI=1.1 with the use of BOB computational algorithm (Figure 4.14).  The initial

relaxation time of the H polymer arms is determined as the terminal relaxation of the star

(inverse of crossover frequency), a value of 1E4s. Moreover, the terminal relaxation time of

the arms corresponds to the inverse crossover frequency of the H polymer, a value of 2E5s.

Also, the backbone relaxation time can be approximated as the inverse frequency at the G’’

peak, a value of 1.3E6s.

The experimental stress relaxation modulus G(t), can also serve as an important tool

to extract characteristic relaxation times. In Figure 4.14, the modulus of the H3A1H polymer

is compared with the modulus of an equivalent linear polymer (half the Mw of the H) and a 4

arm star with the same molecular characteristics as the arms of the H polymer. At short time

scales, the G(t) response is associated with Rouse and longitudinal modes, at intermediate

times, the shoulder is representative of the arm relaxation and the sharp drop in modulus is

due to backbone relaxation.  To determine the final arm retraction time, first, we calculate the

remaining volume fraction after the arms have relaxed, which is approximately equal to the

volume fraction of backbone φb.  At this time, the relaxation modulus G(t) should equal,

approximately, GNφb
2 assuming full DTD (ie that the arms should be taken as a solvent) and a

dilution exponent of α=1.  Note that this is just an approximation since full DTD is not

applicable due to the coupled arm and backbone relaxation times. For the PS H polymer,
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GN=2E5 Pa and φb is equivalent to 0.19.  Therefore at a relaxation time G(t) corresponding to

7200 Pa, we determine an approximate relaxation time for the arms of 3E5s.

Figure 4.14: Stress relaxation modulus G(t) of H3A1 polymer, BOB fit of G(t) of star with
same Ma and G(t) of a linear polymer with Mw equivalent to half of the H polymer Mw

Additionally, another method of estimation of arm retraction time of complex branched

polymers is the analysis of the tube survival probabilities Φ(t) provided by the BOB

computational algorithm. We estimate that the arm relaxation time τa as the time at which

Φ(τa)= Φunr, with  φunr = φb = 1−φa In Figure 4.15, the un-relaxed fraction of H3A1 polymer is

plotted versus time.  We identify the arm relaxation time after the full relaxation of the arms

at φb=0.19 as 3.4E5s.

Figure 4.15: Plot of BOB prediction of unrelaxed fraction of H31A polymer versus time. The
arm relaxation time at a φb=0.19 is indicated by the dotted line.
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An additional method which is used in order to better resolve the relaxation times

associated with both the H polymer arms and backbone is to transform the dynamic moduli

G’(ω) and G’’(ω) into a continuous relaxation time spectrum H(t). Two software programs,

Orchestrator and NLREG (non-linear-regularization) were used to perform this conversion.

When the relaxation spectrum H(t) is multiplied by time and plotted versus time, two

relaxation peaks appear which correspond to the respective arm and backbone distribution of

relaxation times (Figure 4.16). Although the area under the peak is not the same for the plots

generated by using NLREG in comparison to Orchestrator, the time at which the peaks appear

is exactly the same. We determine that the small early peak corresponds to an average arm

relaxation time of 6E4 s and another much larger peak associated with the backbone

relaxation time at 1E6 s. This method also allows an extraction of a range of arm relaxation

times which correspond to the breadth of the peak (1E4-1.5E5s).

Figure 4.16: Plot of relaxation spectrum H(t) multiplied by time versus time . The two
characteristic peaks which appear, the first corresponding to the average arm relaxation time
and the second, to the backbone relaxation time.

In Table 4.5, a summary is depicted of the different graphical methods used to obtain the

characteristic relaxation times associated with the H3A1 polymer hierarchical relaxation.

Since the arm relaxation is exponentially broad, there is a time scale (~1 decade long)

associated with its terminal relaxation, more specifically from approximately 1E4s to 3E5s.

The backbone relaxation time is approximately 1E6s and a good convergence is found with

all methods used.
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Table 4.5: Comparison of different graphical methods used in order to obtain characteristic
H3A1H polymer arm and backbone relaxation times.

Methods τa (s) τb (s)
Comparison of star relax time

(range defined) 1E4 – 2E5

Survival probability (BOB) 3.4E5
Defining the time at which

0 2( ) N unrG t G  3E5

Transformation to H spectrum
(range defined) 1E4-1.5E5 1E6

Peak in G’’ 1.3E6

Eta’’ plot 1E6

4.6 Determination of arm retraction time of comb polymer

Contrary to the H polymer, the terminal relaxation times of the arm and backbone of

the PI254 comb differ by several orders of magnitude and hence it becomes more straight-

forward to separate the two relaxation processes using only linear rheology.  Again, as a first

estimation, we utilize the tube survival probability, an output of the BOB computational

algorithm.  In this case, the expression for the φunr at the timescale of the arm retraction is

equal to the following, taking into account the contribution of arms (Kapnistos et al., 2005):

2 / ( 1)
1 ( ) 1                                    4.14a b

unr a c
a b

qM M q
qM M

  
 

    


where φa and φc are the volume fraction of the arms and dangling backbone ends, respectively.

The values of Ma and Mb correspond to the arm and backbone molar mass respectively.  In

addition, we determine a lower bound τa at which the fraction of unrelaxed material is given

by φunr=1- φa.  Both arm time estimations are indicated by arrows in the Figure below. Also,

for comparison, the experimental tanδ plot versus frequency is included in the same graph.

The analysis of the intermediate peak in the tanδ frequency domain is another method which

can be utilized to estimate the arm retraction time. A Gaussian function can be fit to the loss

angle tanδ versus frequency curve and the inverse frequency of the fitted peak is taken as the

corresponding τa. Moreover, the inverse frequency at which the zero value of the derivative

of the same curve is also computed to obtain the arm retraction time. An arrow indicating the

retraction time corresponding to the tanδ peak is also shown in the figure below. From the
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combination of these methods, a range of arm retraction times between 0.06s and 0.6s is

obtained.

Figure 4.17: Unrelaxed volume fraction Φ(t) (solid line) obtained from BOB computational
algorithm and experimental tanδ (dashed line) as a function of time. The arrows indicate the
lower bound Φ(τal)=1- φa and the higher bound Φ(τah) =1- (φa+ φC)

4.7  Linear PS SAOS

The main rationale for the measurement of linear viscoelastic data for the linear PS

and PI series is for use as a reference for comparison with the blends. Moreover, the timescale

separation between the linear and probe arm and backbone relaxation is critically important in

the assessment of constraint release. As was demonstrated by experimental studies on

bidisperse linear blends (Struglinsky and Graessley, 1985; Watanabe et al., 2013), CR leads

to an acceleration of probe relaxation time when the probe time is slower than the matrix

relaxation time (since the matrix acts to dilute the effective number of entanglements) or

when the reverse is true, a suppression of probe relaxation time occurs (since the matrix acts

as a type of temporary network and tube probe motion is frozen).  Figure 4.18 depicts the

linear viscoelastic mastercurves of the linear monodisperse PS matrix (5k, 22k, 51k, 129k,

182k, 483k and 1M).  The main relaxation features of the linear polymers are directly

observed in the rheological data. The G’(ω) and G’’(ω) moduli for the PS linear 5k and 22k,

whose Mw is below the critical Mc of PS, follow a characteristic Rouse relaxation. The other

well-entangled PS linear samples have a characteristic plateau modulus (which increases with

increasing Mw) and a characteristic G’=G’’ crossover relaxation time at τd=1/ωc (since the
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linear samples are monodisperse).  In addition, the characteristic terminal slopes of 2 (G’~ω2)

and 1 (G’~ω) are observed. The superposition of the plateau modulus and the G’ and G’’

moduli in the high frequency region demonstrates that the microstructure is consistent in all

the PS samples. Moreover, as mentioned previously, the linear rheology curves of the two un-

entangled PS samples (PS22k and PS51k), were shifted horizontally based on respective

differences in glass transition temperatures. According to our earlier assessment of H3A1 arm

relaxation times, it is evident that the terminal relaxation of all the linear samples except for

the PS1M occurs earlier than the H arm time retraction. Moreover, PS483k has a crossover

relaxation time τd which is slightly faster than the H3A1 arm relaxation time whereas PS1M

has a crossover relaxation time which is similar to the crossover relaxation of the H3A1

polymer. In Figure 4.19, we present a schematic relaxation time scale.

Figure 4.18:  linear viscoelastic mastercurves of the linear monodisperse PS (5k, 22k, 51k,
129k, 182k, 483k and 1M) samples. The moduli of the vertically shifted H3A1 polymer (10x)
is also shown for comparison.

10-6 10-4 10-2 100 102102

104

106

 5k
 22k
 51k
 129k
 185k
 483k
 1M

G
', 

G
'' (

Pa
.s)

rad/s)

H3A1



152

Figure 4.19:  Relaxation time scale which follows the order of relaxation of the blend
components.  The unentangled linear chains have the fastest relaxation by a Rouse process. All
the PS monodisperse linear samples in our study relax by CLF/reptation at an earlier time than
the H polymer arms except for the PS1M. The H3A1 polymer backbone has the slowest
relaxation.

We use three different molecular models, BOB (Das et al., 2006), TMA (Ruymbeke et

al., 2006) and (Likhtman and McLeish, 2002) to fit the PS linear rheology data (Figure 4.20).

In all models, the dilution parameter α=1 is used and the relaxation time of each entanglement

spacing is kept constant at τe=0.5s. In addition, the Me values are quite similar for all three

models taking into account the definition of Me with 4/5 pre-factor (Me=14kg/mol in BOB

and Me=14.8kg/mol in TMA) and without pre-factor (Me=17kg/mol in Likhtman and

McLeish).  All the models are based on the tube-model concept.  In addition, the theory of

Likhtman and McLeish is incorporated into the BOB computational algorithm.  The

difference between the two models is the p2 hopping parameter which is absent in the

Likhtman and McLeish model and instead, the former includes constraint release parameter cv

linked to the number of chains needed to create an entanglement.  Moreover, incorporated in

the BOB algorithm, there is an option to include the polydispersity index associated with each

of the linear samples. The fits are satisfactory in most cases except for the linear PS51k,

where all three models fail to fit the data. This is related to the inherent problem of all tube-

based models to predict the rheology of chain lengths which are approximately 2-4 Me. The

problem is linked to an overlap between Rouse and reptation dynamics for short chains.  The

BOB fits all show a lower G’’ minimum in comparison to the experimental data and to the



153

other model fits. A higher PDI value incorporated in BOB would reduce this G’’ value and

provide for a better fit. The lower G’’ minimum in comparison to the experimental data is

also observed in the other two models. This could also be linked to the problems of the linear

PS samples that have a higher PDI than what is reported by the manufacturers. The PS1M fits

are also not perfect due most likely to the rheological limitations associated with its

measurement and a higher PDI compared to the other samples. The PS1M G’’ slope (located

between the minimum of G’’ and the crossover frequency) is approximately ½ for the fits and

closer to ¼ for the experimental data, indicating a higher polydispersity.
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Figure 4.20: The PS linear data is modelled with a) Likhtman and McLeish 2002 b) TMA
(Ruymbeke et al., 2006) and c) BOB (Das et al., 2006). The circles correspond to experimental
data and the lines to model fits. The linear samples relax in order of chain length, PS5k (dark
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grey), PS22k (brown), PS51k (red), PS129k (light grey), PS185k (green), PS483k (blue) and
PS1M (orange)

4.8 Linear PI oscillatory rheology results

Figure 4.21 depicts the linear viscoelastic mastercurves of the linear monodisperse PI

(22k, 96k and 1.5M) and the vertically shifted PI254k comb. Due to the well separated comb

arm and backbone relaxation of the PI254k comb, there are two visible G’ moduli, the first,

corresponding to the global plateau modulus and the second, to the dynamically diluted

plateau modulus. In addition, a peak in G’’ representative of the terminal relaxation time of

the comb arms is easily distinguishable. The relaxation of the PI22k by CLF/reptation occurs

before the arm retraction of the comb arms whereas the relaxation of the PI96k occurs

between the comb arm and backbone relaxation. The PI 1.5M has a slow relaxation due to the

higher number of entanglements and relaxes after the comb backbone. A graphical

representation of hierarchical relaxation time scale of each of the monodisperse components

is depicted in Figure 4.22.

Figure 4.21:  Linear viscoelastic mastercurves of the linear monodisperse PI (22k, 96k and
1.5M) samples. The moduli of the vertically shifted PI254k comb is also shown for
comparison.
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Figure 4.22:  Relaxation time scale which follows the order of relaxation of the PI blend
components.

A consistent set of parameters are used to fit the PI linear rheology data (Figure 4.23) by both

BOB (Das et al., 2006) and (Likhtman and McLeish, 2002) model. The parameters

determined using BOB and Likhtman and McLeish model are τe=1.3E-5s and Me=4k and

τe=1.5E-5s and Me=4.8k respectively. The fits although not perfect are quite reasonable in all

cases.
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Figure 4.23: The monodisperse linear PI storage G’(ω) and loss modulus G’’(ω) data is
compared with two model fits, BOB (Das et al., 2006) (above) and (Likhtman and McLeish,
2002) (below). The circles correspond to experimental data and the lines to the model fits. The
linear samples relax in order of chain length, PI22k (red), PI96k (black) and PI1.5M (blue).

4.9 Linear and dilute H PS mixtures oscillatory results

Figure 4.24 depicts the linear viscoelastic mastercurves of the 10% by volume

fraction of the H3A1 and 90% by volume fraction of a set of linear monodisperse samples.

Due to the small amount of H polymer in the blend, its characteristic rheological features are

overshadowed by the relaxation of the linear polymer. The linear samples which have the

highest ratio of their crossover relaxation time versus the crossover relaxation time of the
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H3A1 polymer, demonstrate the strongest effect of the H polymer response on their G’ and/or

their G’’ data. As depicted in Figure 4.24, the PS 22k and PS 51k mixtures have a noticeably

different G’(ω) and G’’(ω) moduli compared to the linear monodisperse matrix. The H

polymer relaxation feature in the PS 51k, PS129k and PS182k mixtures is seen as a small

transition region in the storage G’ moduli at low frequencies (Figure 4.24). The lower G’’

slope (in the region between the minimum and crossover G’’) of the mixtures of H3A1 with

the higher Mw samples (PS483k and PS1M) is also due to H polymer response. The BOB fits

are plotted in Figure 4.25. For the mixtures with the high Mw linear chains, the BOB fits

match quite well except for the lower estimated plateau modulus. In the case of the PS182k

mixture, the fit is satisfactory except for the overprediction of the second, diluted plateau

modulus. The BOB model seems to underpredict the dilution effect from the linear chains.

The overall BOB fit for the mixture with the barely entangled chains, the PS51k is poor, but

this is a limitation which is consistent amongst all tube models since they consider that the

chains are composed of at least a few entanglements.

Figure 4.24:  linear viscoelastic mastercurves of 10% vol.fr. H3A1 blended with linear PS of
varying Mw (5k, 22k, 51k, 129k, 182k, 483k and 1M) samples. The storage modulus data are
represented by open circles and the loss modulus data by closed circles.
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Figure 4.25: BOB fits (solid lines) of the 10% H3A1 and 90% linear PS mixtures (circles) of
varying Mw (51k, 182k, 483k and 1M).

4.10 Linear and dilute comb polymer blend oscillatory results

Figure 4.26 displays the linear viscoelastic mastercurves of the 10% by volume fraction

of the PI254k comb and 90% by volume fraction of the linear monodisperse samples.  Due to

the small amount of comb polymer in the blend, its characteristic rheological features are

overshadowed by the relaxation of the linear polymer. The comb polymer response is most

evident in the PI22k blend G’ curve where an extra relaxation process occurring after the

relaxation of the linear PI22k is clearly visible (shown in the Figure below with an arrow). A

small transition region is also visible in the G’ of the PI96k blend, however, it is less obvious.

Moreover, the PI1.5M blend has a G’’ minimum which extends one decade. This is contrary

to the monodisperse linear PI1.5M which has a much more sharp G’’ minimum. This

difference can be attributed to the additional comb arm retraction process which occurs at the

same frequency as the G’’ minimum. The experimental data is plotted alongside the

theoretical predictions of BOB. Interestingly, the fit associated with the PI1.5M is

satisfactory, while the other two fits are not as successful at capturing the data. The BOB fit

for the PI96k blend matches well until reaching a low frequency value of 0.1 rad/s. The poor

fit at the low frequency region indicates that the BOB model overpredicts the response

associated with the comb backbone relaxation, indicating perhaps the extent of the dilution of
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the backbone is not taken into account. In the case of the PI22k blend, BOB does not match

the experimental SAOS data well at both high and low frequency time scales. The relaxation

predicted is at least two decades slower than the experimental data.

Figure 4.26:  linear viscoelastic mastercurves (circles) of the 10% by vol.fraction of PI254k
comb blended with linear PS of varying Mw (22k, 96k and 1.5M) samples. Plotted alongside
the experimental data are the BOB fits (solid lines).

4.11 Discussion: dilution of H in short linear chains

We first investigate the relaxation dynamics of binary mixtures consisting of a dilute

amount of H polymer (probe) in a ‘sea’ of short linear chains (matrix), more specifically PS

linear 5k (unentangled) and PS linear 22k (barely entangled, ~1 entanglement).

When short linear chains are added to a dilute amount of H polymer, three global

hierarchical relaxation processes occur at different time scales.  The short linear chains are the

first to fully relax at short time scales by Rouse relaxation, the H polymer arms will retract by

fluctuations at short and intermediate time scales mediated by CR events and finally the

unentangled backbone will relax immediately after the arms by Rouse relaxation with a

strong solvent effect (due to static dilution and dynamic tube dilation). A schematic

illustration is depicted in Figure 4.27.  These three global relaxation processes do not occur in

isolation, there is a mutual interdependence between all three of these relaxation processes.

This mutual interdependence becomes more pronounced, the greater the overlap of these
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relaxation processes. In the case of our H polymer blends, these three relaxation processes

are not well-separated in time and hence their relaxation times are interrelated. As mentioned

previously, the H polymer arm entanglements will dilute the backbone entanglements by

DTD. The added influence of the short linear chains on the other two relaxation processes is

a further static dilution of both the arm and backbone entanglements.  In both static dilution

and dynamic tube dilation, there is a dilution of the modulus and an apparent ~e unrM  .

Moreover, DTD is a time-dependent CR process associated with an increase of tube diameter

(reduction of effective entanglements) at short and intermediate time scales which slows

down the overall relaxation, whereas static dilution occurs on short time scales and speeds up

the overall relaxation. The H3A1 backbone is therefore diluted twice, first by the static

dilution associated with the short linear chains and second by DTD associated with the H

polymer arms. Hence the number of entanglements of the backbone after linear and H

polymer relaxation is equivalent to ,b dil b H bZ Z    and therefore fewer than 0.1

entanglements remain (assuming vol. fraction of H between 1.5 and 10%) and the backbone

can be considered to be unentangled and its terminal relaxation is defined by a Rouse process

mediated by CR events.

Figure 4.27: Schematic depiction of the hierarchical relaxation process associated with the

short linear chains PS5k or PS22k blended with the H3A1 polymer. The short chains will

relax by a fast Rouse relaxation. They will then act as solvent for the early time τearly H

polymer arm fluctuations. The solvent and arms will then dilute the backbone, which

willremain unentangled, and will relax quickly with a strong solvent effect.
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The expression for G(t) is a combination of these two dilution processes which occur at

different time scales. The G(t) is a function of the fraction of unrelaxed polymer after

occurrence of these relaxation processes and can be defined by the following expression:

0 0( )                                   4.14
Rouse

N N
DTD H bG t G G       

The storage modulus G’ and loss modulus G’’ of linear PS5k and that of a 10% volume

fraction of H3A1 and 90% volume fraction of PS5k is displayed in Figure 4.28.  We use the

TMA model and consider that the short linear chains act as a solvent for both the early time

and activated fluctuations of the branches.  For very early times, the entropic barrier to

retraction is less than kBT, therefore, Ueff<kBT.  The effective potential has no significance

and the free arm ends diffuse freely by Rouse tube motion. The mean square displacement of

any monomer on a Rouse chain in a tube, scales as x2~t1/2. The expression for τearly, taking

into account static dilution by the short chains is the following where τR is the Rouse

relaxation time of the arms.
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The effect of the solvent dilution is also extended to the late time arm retraction. Normally,

this late arm time retraction process is defined as being entropically unfavorable and

exponentially slow when the arms are long and well entangled. However, due to static

dilution by the short chains Za,dil=Zaφunr where φunr is equal to φH, therefore there is

approximately only one arm entanglement remaining (assuming a vol. fraction of 10% H)

after full dilution due to the short linear chains. Since there is a large time scale separation

between the relaxation of short chains and the H probe arm retraction, the static dilution is

considered to fully applicable. Hence, there is no longer a strong exponential dependence of

the arm retraction time on the number of arm entanglements (equation 4.16).  However, in the

case where the linear chains of are well-entangled, when they no longer act as a simple theta

solvent, the arm retraction process has a more significant exponential dependence on the

number of entanglements of the arms. Moreover, in this case, the fluctuations are assumed to

occur in a skinny tube. Therefore, the original expression for arm retraction time (equation

4.16) also needs to be adjusted for DTD. In addition to the dilution associated with the short
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chains, there is also a DTD process (if the arms remain entangled after the first static dilution)

associated with an exponential separation of arm relaxation times (Ball and McLeish, 1988).
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As depicted in Figure 4.28, the TMA model does fit the linear PS5k moduli data quite well in

the low frequency region.  However, in the high frequency region, the fit is not in agreement

with the data.  Moreover, the TMA model fit of the 5k blend data moduli is again satisfactory

for the low frequency region, however, the predicted storage G’ and loss moduli G’’ are

lower than the experimental data. An explanation for this could be due to the CR process

mediated by the relaxation of the short chains does not have sufficient time to take place in

order to speed up the relaxation of the H polymer. The consequence is that the value of the

second rubber plateau modulus is closer to 0
N HG * rather than

H

0 2
NG * where φH is the

volume fraction of the H polymer chains. This issue could be corrected by adding the

condition that the CR process cannot take place faster than the intrinsic Rouse time of the H.
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Figure 4.28: Linear rheology data of PS5k linear (above) and a mixture of vH=0.10 blend of
H3A1 with the PS5k linear matrix vl=0.9 (below). The experimental data is plotted with the
TMA model fits.

The storage modulus G’(ω) and loss modulus G’’(ω) of linear PS22k and the moduli of

the three blend mixtures (1.5, 3 and 10%) are displayed in Figure 4.29. The moduli data of the

blends is shifted vertically upwards for better clarity.  The tan delta values (G’’/G’) values are

also shown below the moduli data.  Both a low and high frequency tan delta minimum is

observed for all three different concentrations of H polymer. The high frequency value of ω is

associated with the global plateau modulus whereas the low frequency value of ω is

associated with the diluted H polymer modulus, following the relaxation of the linear chains.

The frequency value at the second tanδ minimum associated with the diluted H polymer

relaxation is the same for all three blends. This indicates that there is little effect of the

concentration of the H polymer on its relaxation time in the mixture, proving that we are
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indeed below the overlap concentration. Hence, the H polymer chains are not mutually

entangled.

Figure 4.29: Linear rheology data (above) of PS 22k (○) and blends with 1.5% H3A1 polymer
PS (shifted vertically upwards by 100) (∆), 3% H3A1 polymer (shifted vertically upwards by
1E4) () and 10% H3A1 polymer (shifted vertically by 1E6) () and respective tan delta
(G’’/G’).

Again, we use the TMA model to fit the PS22k10% blend linear rheology curves as

depicted in Figure 4.30.  We also plot the de-convoluted H polymer arm and backbone

curves. Again, it is evident that the predicted storage G’(ω) and loss modulus G’’(ω) are

lower than those associated with the experimental data which could be due to the H polymer

which relaxes by its intrinsic Rouse relaxation faster than the CR process mediated by the

relaxation of the short chains.  From Figure 4.30, it is clear that the terminal relaxation time
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of the mixture is similar to the terminal relaxation time of the branches (in green) due to the

fact, that the inner backbone is heavily diluted by the branches. The total volume fraction of

the backbone in the mixture is only 1.9% and considered marginal, hence the terminal

relaxation is dominated by the arm relaxation.  In the TMA model, this is taken account by

ignoring the friction associated with the small branches in the fluctuation processes of the

inner backbone. Therefore, the inner backbone fluctuates immediately after the fluctuations of

the long branches but with a stronger solvent effect rather than a strong friction effect.

Figure 4.30: Linear rheology data (circles) of 90% PS22k and 10% probe H3A1 mixture. The
experimental data is plotted alongside the TMA fit (lines) as well as the deconvoluted arm and
backbone relaxation curves.

4.12 Dilution of H in well-entangled linear chains

As the length of linear chains is increased above a critical molecular weight then they no

longer act as simply as a theta solvent for the H polymer arms and backbone. More

specifically, this means that the fast chains (linear chains) will only act effectively as a

solvent for the slow chains (the H polymer) if the latter have had enough time to explore all

the conformations of their dilated tube.  For bidisperse blends, as explained in the

Introduction, this is defined as the Struglinsky-Graessley parameter (Struglinsky and

Graessley, 1985).  For mixtures of linear polymers with more complex structures such as H

and comb, this transition region has not been properly defined. The condition is that there is a

large timescale separation between the relaxation of each the components.  In the case of the
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H3A1 polymer, the arms are well entangled (8±1 entanglements) and coupled with the

backbone relaxation and hence the full arm retraction process occurs over a large range of

time scale (2 decades long, the equivalent of the frequency range of the G’’ shoulder).

Therefore, the ratio between the relaxation of the short chains and the arm retraction process

would need to be large enough to satisfy the condition of static dilution. This condition is

only reached for the very short length of chains, specifically for the PS5k and the PS22k.

For larger Mw PS, the interactions between the linear chains and the H polymer chains

become important and the short chains can no longer be considered as a simple theta solvent.

We consider that the early fluctuations processes of the branches are not influenced by the CR

of the well-entangled linear chains and hence, are considered to happen in a skinny tube.

Again in this case, the relaxation mechanisms follow a hierarchical relaxation (depicted in a

schematic in Fig. 4.31), the linear chains are the first to relax by CLF/reptation, the H

polymer arm retraction will then follow, first by early-time fluctuations followed by

exponentially slow fluctuations (influenced by CR events) and finally, the backbone, which is

completely un-entangled by dilution, will relax immediately after the arms.

The expression for G(t) is a combination of these two relaxation processes which occur at

different time scales. The G(t) is a function of the fraction of unrelaxed polymer 1-φl-φa after

entangled linear and H polymer arm relaxation and can be defined by the following

expression:

0 0( )           4.18N N
reptation DTD H bG t G G       
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Figure 4.31: Schematic depiction of the hierarchical relaxation process associated with the
linear PS51k, PS129k, or PS 182k blended with the H3A1 polymer. The short chains will
relax by CLF/reptation. The early arm time fluctuations will occur in a skinny tube. Finally,
the heavily diluted backbone will relax immediately after the arms with a strong solvent effect.

The storage modulus G’(ω) and loss modulus G’’(ω) of linear PS51k and the moduli

of the three blend mixtures (1.5, 3 and 10%) are displayed in Figure 4.32. The moduli data of

the blends is shifted vertically upwards for better clarity. The tan delta values (G’’/G’) values

are also shown below the moduli data.  Moreover, the TMA model fits as well as the

deconvoluted curves for the linear, H polymer arms and backbone are displayed in Figure

4.33. The model fits are in agreement with the experimental data, although the plateau

modulus is under-predicted. However, in order to fit the linear rheology data, the Mw needed

to be adjusted in comparison to the value given by the manufacturer of 51k to 64k, the value

determined by independent SEC measurement.  By using the TMA model deconvoluted

curves, we define relaxation times associated with the linear, the H arms and backbone

relaxation at each of the three H polymer concentrations, ie 1.5%, 3% and 10%. The

relaxation times of each of the respective blend components are depicted in Table 4.6.  It is

evident that for the linear, H arms and H backbone, all three relaxation times (corresponding

to each respective concentration) are almost identical. Thus demonstrating that the

concentration of H polymer in the mixture clearly has no effect on the relaxation times of

each of the blend components

.
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Figure 4.32: Linear rheology data (above) of PS 51k (○) and blends with 1.5% H3A1H
(shifted vertically upwards by x10) (∆), 3% H3A1H polymer (shifted vertically upwards x100
() and 10% H3A1H polymer (shifted vertically upwards by 1000) () and respective tan
delta (G’’/G’) (below).
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Figure 4.33:  Storage G’(ω) and loss G’’(ω) modulus data of  PS51k and a) 1.5%, b) 3% and
c) 10% mixture of H3A1.  The experimental data are plotted alongside the TMA fit as well
as the deconvoluted linear, arm and backbone relaxation curves
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Table 4.6: Relaxation times associated with each of the blend components, ie linear, H arms
and backbone of the PS51k mixtures.

Component Relaxation PS51k 1.5%

1.5%

PS51k 3%

3%

PS51k 10%

1.5%
Linear τd (s) 13 14 14

τ0 (s) 20 20 20

H arms τd (s) 130 130 130

τ0 (s) 750 800 800

H
backbone

τd (s) 640 640 700

τ0 (s) 8.2E3 8.3E3 9.4E3

The SAOS data of linear PS129k and the two blend mixtures (3% and 10% vol. fr.)

are displayed in Figure 4.34. The moduli data of the blends is shifted vertically upwards for

better clarity.  The tan delta values (G’’/G’) values are also shown below the moduli data. It

is difficult to distinguish any difference between the PS129k and the PS129k blend moduli

simply by visual inspection.  The same applies to the PS182k linear and blends (Figure 4.36).

However, the differences are more easily distinguished in the more sensitive tanδ curve. A

second minimum in tanδ which indicates a secondary relaxation process is clearly visible in

the PS129k 10% and PS182k 10% blend curve. However, it is evident that as the Mw of the

linear PS is increased, the secondary relaxation process of the H polymer in the mixture

becomes more weak and harder to detect. The TMA fits of the PS129k 3% and 10% (Figure

4.35) and PS185k 1.5%, 3% and 10% (Figure 4.37) are in agreement with the experimental

data. Again, in a similar fashion as the PS51k blends, there is no influence on the

concentration of H polymer in the mixture on the respective linear, arm and backbone

relaxation times. The only difference is depicted in the storage modulus curve, where a higher

concentration of H polymer results in higher G’(ω) values at frequencies above the inverse

relaxation time of the linear polymer.
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Figure 4.34: Linear rheology data (above) of PS 129k (○) and blends with 3% H3A1 (shifted
vertically upwards by a factor 10) () and 10% H3A1 (shifted vertically upwards by a factor
100) () and respective tan delta (G’’/G’) (below)
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Figure 4.35: Storage G’(ω) and loss G’’(ω) modulus data of PS129k and 3% (above) and 10%
H3A1 mixture (below).  The experimental data are plotted along with the TMA fit and the
deconvoluted linear, arm and backbone relaxation curves.
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Figure 4.36: Linear rheology data (above) of PS 182k (○) and blends with 1.5% PS H3A1
(shifted vertically upwards by x10) (∆), 3% H3A1 polymer (shifted vertically upwards by
x100) () and 10% H3A1 polymer shifted vertically upwards by 1000 () and respective tan
delta (G’’/G’) (below).
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Figure 4.37: Storage G’(ω) and loss G’’(ω) modulus data of PS182k (a) 1.5%, (b) 3% and (c)
10% mixture of probe H3A1.  The experimental data (circles) are plotted alongside the TMA
fit (solid lines) as well as the deconvoluted linear, arm and backbone predictions.
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4.13 Dilution of combs by well-entangled linear chains

The storage modulus G’(ω) and loss modulus G’’(ω) of the linear PI22k at 25°C and

the 10% comb blend mixture is displayed in Figure 4.39. The moduli data of the 10% blend

and comb data is shifted vertically upwards for better clarity.  Additionally, the loss tangent

tanδ values are also plotted below. The arm retraction of the combs is clearly distinguished in

the tanδ peak. Moreover, we also plot the stress relaxation modulus G(t) and distinguish

quite clearly three relaxation processes, the first, related to the relaxation of the linear PI22k

at 1E-3s, the second, to the comb arm retraction at 0.014s and the third, to the dynamically

diluted backbone relaxation at 0.1s. The hierarchy of relaxation mechanisms in the blend is

quite clear and depicted in Figure 4.40 by a schematic representation. The well-entangled

linear chains are the first to relax by CLF/reptation.  They will act as a solvent for both the

early and activated arm time fluctuations due to the well separated relaxation time scales

between the PI22k and the comb PI254k. The backbone relaxation time is even more

accelerated than the comb arms, since it undergoes a double dilution process, first by static

dilution by the linear chains and second, by DTD associated with the slow arm retraction

process. In addition, the linear viscoelastic data of PI96k blended with 10% vol. fraction of

comb PI254k is depicted in Figure 4.41. In this case,  the relaxation of the linear PI96k occurs

after the relaxation of the comb arms and before the relaxation of the comb backbone. The

relaxation of the comb arms is depicted as a change of slope in the tanδ and the relaxation of

the comb backbone as the low frequency minimum in tanδ. As depicted in the schematic of

Figure 4.42, the comb arms are retarded by the linear chains and the comb backbone is

accelerated by the linear chains.



177

Figure 4.38: Linear rheology data at 25°C (above) of PI 22k (○) and comb PI254k (shifted

vertically x 100) (∆) and blend of PI 22k with 10% PI254k comb polymer (shifted vertically

x10) () and respective tan delta (G’’/G’) (below).
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Figure 4.39: Stress relaxation log G(t) data at 25°C (above) of PI 22k (○) and comb PI254k
(∆) and blend of PI 22k with 10% PI254k comb polymer (). Indicated by arrows are the
respective linear, arm and backbone relaxation times.

Figure 4.40: Schematic depiction of the hierarchical relaxation process associated with the
linear PI22k blended with the comb PI254k. The entangled linear chains relax by
reptation/CLF.  The fluctuations of the comb arms are accelerated by the linear chains which
act like a theta solvent.  The backbone relaxation is accelerated by an even greater factor than
the arms since it experiences both static dilution and DTD.
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Figure 4.41: Linear rheology data at 25°C (above) of PI 96k (○) and comb PI254k (∆) (shifted
vertically upwards by x100) and blend of PI 96k with 10% PI254k comb polymer (shifted
vertically upwards by x10) () and respective tan delta (G’’/G’) (below)

10-3 10-1 101 103 105102

104

106

108

  PI 96k linear
 10% comb + PI 96k
 PI254k comb

G
', G

'' (
Pa

)

 (rad/s)

10-3 10-1 101 103 10510-1

101
 PI 96k linear
 10% comb + PI 96k
 PI254k comb

ta
n

 (rad/s)



180

Figure 4.42: Schematic depiction of the hierarchical relaxation process associated with the
linear PI96k blended with the comb PI254k.

4.14 Dilution of H polymer in long linear chains

In Figure 4.43 (above), the storage and loss modulus associated with the PS483k 10%

blend experimental data and TMA model fit is depicted. In Figure 4.43 (below), the moduli of

the PS1M blend and model fit is shown. In both cases, the TMA model predicts a weak G’’

minimum associated with the H polymer arm relaxation. This relaxation feature is not

captured in the experimental data most likely due to polydispersity in the sample. In the case

of the PS483k blend, the arm relaxation time of the H polymer in the blend is exactly the

same as in the probe. Most likely, this is due to the similar relaxation times of the linear

PS483k matrix and the H polymer arm probe. In the case of the PS1M blend however, the

model shows that the arm relaxation time is delayed, approximately 10 times, indicating the

effect of the CR.
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Figure 4.43: top: Storage G’(ω) and loss G’’(ω) modulus data of 90% vol.fraction PS483k
and bottom: 90% vol. fr. of PS1M with 10% vol.fr. of H3A1 mixture.  The experimental data
(circles) is plotted with the TMA fit (lines) as well as the deconvoluted branches (blue) and
backbone (green) relaxation curves.
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Figure 4.44: Schematic depiction of the hierarchical relaxation process associated with the
linear PI96k blended with the comb PI254k.

4.15 Dilution of comb polymer in long linear chains

In the same fashion as the PS H mixtures, the long linear chains, act to suppress tube

motion (CR) of the probe PI254k comb polymer. The fluctuations of the arms are delayed by

the long linear PI1.5M which acts similarly to a permanent network and suppresses CR and

tube motion. This is evident when comparing the loss modulus G’’(ω) of the PI1.5M with the

G’’(ω) of the mixture (Figure 4.45). The delayed arm retraction process in the mixture is

clearly observed on frequency scales between 1 rad/s and 1000 rad/s. The backbone relaxation

is only slightly delayed by the presence of the long linear chains due to the rather small

separation between their time scales.  Unfortunately, the very low frequencies were not

reached in the SAOS experiments as depicted in Figure 4.45, in order to avoid degradation

effects that occur at high temperatures.  The hierarchical process is depicted in Figure 4.46.

The arms fluctuations of the combs are retarded by the long linear chains. The backbone is

also retarded by the long linear chains but to a lesser degree. The PI 1.5M is the last

component to relax.
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Figure 4.45: Linear rheology data (above) of PI 1.5M (○), comb PI254k (∆) and blend of PI
1.5M with 10% PI254k comb polymer () and respective tan delta (G’’/G’) (below)
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Figure 4.46: Schematic depiction of the hierarchical relaxation process associated with the

linear PI1.5M blended with the comb PI254k.

4.16 Acceleration factor of the H arms and backbone

Depicted in Figure 4.47, the acceleration factor (ratio between τd of the H polymer

arms and backbone in the melt versus τd of the arms and backbone in the mixture) is plotted

versus the number of entanglements of the linear polymer. In order to be consistent, the

relaxation times determined by using the TMA model were used in our analysis. The higher

the number of entanglements of the linear matrix, the less significant is the acceleration factor

of both the arms and backbone of the H polymer. The acceleration factor of the H polymer

backbone is greater (on average about 30 times) than the H polymer arms. This is intuitive

since the backbone has a larger time scale separation than the arms. We notice the exact same

acceleration factor curve for both the H polymer arms and backbone. This demonstrates that

the CR mechanisms involved in both the arms and backbone relaxation are the same. We

notice a transition zone at approximately 10 entanglements, which is equivalent to the

dilution of the H polymer by the PS linear 182k. This can be explained by the CR influence

on the relaxation. We are moving from a regime of acceleration by CR mechanisms to a

regime of suppression by CR mechanisms. It is evident that the acceleration by CR is much

more pronounced than its suppression. The transition zone most likely corresponds to the

point at which static dilution by the linear chains is no longer applicable and the interaction of

linear chains with the H polymer chains becomes active.



185

Figure 4.47: Acceleration factor of H polymer arms and backbone versus Z the number of
entanglements of the linear chains.

4.17 Acceleration factor of the comb arms and backbone

In a similar fashion, we plot the acceleration factor of the comb arms and backbone in

the mixture versus the number of entanglements of the linear matrix in order to determine the

effect of CR on their relaxation dynamics. These acceleration factors are more approximate

since the relaxation times were not determined from the TMA model for the simple reason

that the model has not yet been fully adapted specifically for the dilute comb blends. We used

more approximate methods of determination of arm and backbone relaxation times based on

the graphical methods which were explained in more detail previously. Again, it is evident

from Figure 4.48 that as the number of entanglements is increased, the acceleration factor of

the branched components is reduced. Again, there is a transition region (at around 10

entanglements) where the relaxation times are not accelerated but rather retarded due to the

effects of CR. Moreover, again similarly to the H polymer, the acceleration factor is always

greater for the backbone in comparison with the comb arms. However, the difference between

the acceleration factor of the respective arm and backbone is much greater in the mixture with

the blend PI22k in comparison to the other mixtures.  In this specific blend, the PI22k acts as

a solvent, diluting the entanglements of the comb arms and backbone and acting to enhance

the acceleration factor to a greater degree. In the other comb blends, the linear polymers do

not act as simple theta solvent and therefore, reptation occurs in a skinny tube rather than a
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dilated tube. The similarities between the H and comb relaxation behavior in their respective

mixtures, conforms to a universal behavior.

Figure 4.48: Acceleration factor of H polymer arms and backbone versus Z the number of
entanglements of linear chains.
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Conclusions

The thesis reports on the investigation of the effects of well-controlled polymer

architecture on the molecular rheology of model branched polymers and blends. We focus

on the right combination of state-of-the-art synthesis – characterization – and theoretical

modeling on order to be able to link the molecular structure of complex polymers to their

rheological behavior.

We address the physical origin of strain hardening for well-defined linear and

complex branched polymers such as H and comb. In the case of monodisperse linear

homopolymers, the prediction of the onset rate of strain hardening (the macroscopic

consequence of chain stretch) is straight forward and corresponds to the inverse Rouse time

and is due to the friction of the chain retracting within its tube. The experimental uniaxial

extensional rheology obtained using a Sentmanat Extensional Fixture of a linear polystyrene

of Mw=262k confirms that the onset rate of strain hardening is equivalent to this simple

theoretical prediction. The molecular picture becomes more and more complex as the level of

branching complexity increases.

We demonstrate experimentally that the inner segments between branch points of two

well-defined H polymers (Roovers, 1981) result in an earlier onset rate of stretch and a larger

magnitude of strain hardening compared to a linear analog. In effect, strain hardening is even

observed at rates lower than the inverse of crossover relaxation time. Moreover, an increase

in the number of entanglements of arms and backbone will also lead to a higher amount of

chain stretch. Although the pom-pom model of (McLeish and Larson, 1997) seems to fit

reasonably well the tensile stress growth coefficient data, the limitation is that the magnitude

of strain hardening is not well predicted by simply using q=number of arms. Moving on to a

higher order level of complexity, we study a well-defined series of combs with large Mb and

Chapter	5
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varying number of branches, synthesized by J. Roovers, 1979 and characterized by state-of-

the-art temperature-gradient interaction chromatography recently by (Chang et al. 1999). We

systematically vary the molecular characteristics of the combs. In general, the larger the

number of entanglements of the segments between branches and/or of the branches, the

stronger the strain hardening and the smaller the characteristic rate for its onset. The key

molecular parameter appears to be the number of entanglements per branch. By varying it,

one can tailor the amount and onset of strain hardening. This can be rationalized by

accounting for the combined effect of backbone tube dilation and extra friction, brought about

by the branches. In fact, we define an effective "stretch time" of the comb as the timescale for

stretch relaxation along the dilated backbone tube when accounting for the large friction that

comes from the branches and suggest that extension hardening occurs at rates equal to or

greater than its inverse. The good comparison of this prediction to experimental data indicates

that despite its simplicity, it is a robust rationalization.

In order to quantitatively model the extensional data, two approaches are compared (a)

the original pom-pom model of McLeish and Larson (b) a modified pom-pom model which

accounts for the comb architecture. The fit provided by the former is in agreement with the

experimental data, however, there are too many free parameters and hence the model fails to

offer any meaningful physical interpretation. Rather, the latter, also results in good

agreement with the experimental data with no free parameters. In order to account for the

comb structure, the stretch evolution equation of the original pom-pom model is modified.

The key assumptions made is that the tube is fully aligned in the direction of flow, that the

comb backbone segments can be equally separated into two symmetric halves, that the

maximum stretch occurs in the middle section of the comb and that the free backbone ends do

not contribute to the stretch. For H polymers, invoking the pom-pom model rationalization,

branch point withdrawal occurs when the maximum stretch is equal to the number of arms

fixed to each branch point, λmax=q.  Contrarily, for comb polymers, invoking the comb model,

branch point withdrawal occurs when λmax=ns/2 where ns is equal to the number of backbone

segments and occurs from the outer segments inwards. A new characteristic time τseg

corresponding to the stretch relaxation time of each backbone segment is introduced.  This

new parameter free comb model which takes into account all relevant tube theory concepts
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such as hierarchical relaxation and dynamic tube dilution can predict well the extensional

rheology data of a variety of model comb polymer systems.

We report on the role of constraint release on CLF/reptation in a dilute blend of model

H and comb blended with a linear matrix. We use the model of TMA (Time-Marching

Algorithm) and BOB when applicable to fit the linear rheology data and try to understand the

effects of the environment (length of linear chains) on the dynamics of the model polymer.

Very short un-entangled linear chains act only as a solvent and dilute the branched polymer

and speed up its relaxation considerably. As the length of the linear chains increases, short-

long chain entanglements are formed. If the reptation time of the linear chains is significantly

slower than the retraction time of the arms but faster than the reptation time of the backbone,

the linear chains will act as a solvent for the backbone and at the same time, slow down

slightly the relaxation of the arms by the effect of constraint release. If the reptation time of

the linear chains is slower than the arm retraction and the backbone relaxation, the branched

polymer relaxation will be slowed down due to the effect of constraint release. The long

linear polymer chains will act as a type of permanent network, thus suppressing the effects of

CR. For both comb and H molecules in the mixture, the acceleration factors of arm and

backbone relaxation times decrease with the number of entanglements of the linear matrix,

pointing to the role of CR.

5.1 Questions and Recommendations

The key to improving one’s own knowledge and also the general knowledge of the scientific

community is to continuously frame the right questions.

This notion of two tubes, one tube contained within another tube has been invoked

particulary when modelling two or more blend components. Watanabe and colleagues have

used this molecular picture also to correct some of the deficiencies inherent in the full DTD

which in itself is perhaps too simplified a picture for polydisperse systems. Is the picture of

two tubes absolutely necessary or is it just complicating the molecular tube dynamic picture?

Can the molecular rheology framework of complex blends and complex flows be described

by simply using one tube?

As was mentioned previously, most theoretical models assume that the slow relaxing

component in blends can simply be taken as a solvent. However, as was demonstrated by us
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and others, this is not the case. Can the Struglinsky-Graessley (rSG) parameter, initially

proposed for simple bidisperse blends be expanded also for more complex blends. Is there a

universal behavior for this transition point? For example, can the rSG parameter also be

applied for example to star polymers. Can a transition point also be defined when CR

competes with arm fluctuations? Should the relaxation by fluctuations also be made

environment dependent? Another important related question is how to expand the

Struglisnky-Graessley parameter also in the non linear regime.

The subject of parameter consistency is of great concern in tube model theories. Can a

universal rule be applied to the dilation parameter α and the friction parameter p2,

independent of the specific molecular tube model, ie BOB, Hierarchical, TMA, etc.?

The subject of strain hardening is of great industrial industrial, especially for

packaging film produced from film blowing industrial processes. The goal is to tailor the

molecular structure of the polyethylene resin in order to produce a highly strain hardening

material and this would offer a greater bubble stability. Therefore, a relevant industrial

question to ask is how can one design the molecular structure of complex polymers to provide

for the greatest amount of chain stretch. The two relevant parameters used to define stretch are

the amount of strain hardening in reference to the linear viscoelastic enveloppe which is often

referred in industry as strain hardening factor and the onset of chain stretch, the rate at which

strain hardening first appears. The higher the amount of strain hardening and the lower rate at

which it first appears are both positive indicators.  For the most simple case of branched

polymer, an H or pom-pom, the maximum amount of stretch sustainable upon applying

deformation is a function of the number of arms and the onset of stretch is a function of the

arm retraction time, the number of entanglements of the backbone and the number of arms

(McLeish and Larson, 1998). From our own work, for comb polymers, an increase in the

number of entanglements of the backbone and more importantly, in the number of

entanglements of the arms will lead to greater amount of chain stretch and an earlier onset

rate. Evidently, the more the arm retraction process is delayed, the more stretch is sustainable

in the backbone.   Moreover, in our modified pom-pom model for combs, the maximum

amount of stretch is approximately equivalent to half the number of arms. From the work of

(Kempf et al., 2013), they demonstrated that increasing the number of comb arms increases

the amount of stretch. However, in the range of 15 to 29 branches, a limit for the number of
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branches is reached, where a further increase no longer has an effect on the strain hardening.

In the work of (van Ruymbeke et al.,2010), it has been demonstrated that increasing the

number of generations in a Caylee tree will lead to a greater amount of strain hardening.

Three generations of Caylee trees results in three levels of relaxation hierarchy observed in

SAOS data and three levels of strain hardening. From (Nielsen et al., 2006), it is known that

asymmetric stars will also strain harden appreciably, due to the separation of time scales of

the relaxation processes associated with each respective arm length. (Auhl et al., 2009),

demonstrated that a small amount of high Mw polymer in a bidisperse blend will lead to a

greater amount of stretch since the onset of strain hardening is related to the effective stretch

relaxation of the long chains. Therefore, clearly increasing the level of hierarchical

complexity of the branching components and number of components with very slow

relaxation times has a significant influence on increasing the amount of chain stretch and

enables the design of a polymer resin with superior processing ability.

Although TGIC was used as a characterization tool for the branched polymer, the

method was not utilized to the full of its potential. Although more exhaustive, it would be

preferable to use TGIC in combination with SEC to identify all possible side products, to

fractionate these products out of the original system and also identify the differences in

rheological responses of both the clean and polydisperse product. Thus, following the

methodology of others such as Larson and colleagues (Larson, 2001), van Ruymbeke and

colleagues (Snijkers et al., 2011) and Hutchings and colleagues (Hutchings et al., 2012), we

would be more assured of having an accurate and complete rheological picture of truly

monodisperse polymers.

Moreover, there is some evidence that the theoretical tube models with some

modifications can be applied to other more complicated systems such as supramolecular

polymers or other self-healing materials. Associating polymers differ from simple polymers

since they contain a fair amount of weaker bonds which form what is known as “sticky

bonds” with each other via associative interactions weaker than covalent bonds. The terms

sticky Rouse and sticky Reptation model have been coined to describe associative polymer

networks (Rublinstein and Semenov, 2001; Leibler et al., 1991). It is clear that in these

systems, there is a more complicated interplay than just polymer physics.
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Moreover, we and others make the assumption of uniform grafting of the combs. Is it

a truly vaild assumption? It would be relevant to synthesize model comb polymers with equal

spacing between branches and perform rheological experiments in the linear and non-linear

regime to test this assumption further.

Rheology is a purely macroscopic experimental characterization method and an

indirect probe of branch point motion. In order to fully understand for branch point dynamics,

microscopic probes are needed in addition to rheological methods. For example, selectively

labeling the branch point region (having the rest deuterated) and performing neutron

scattering rheology experiments in addition to non-linear rheology experiments would allow a

more complete study of branch point dynamics.

Although performing uniaxial extensional rheology experiments is quite difficult which

is evident by the few studies on model polymers which exist in literature, it is a rather

simplified depiction of real extensional flows encountered in industrial processes.  The study

of model polymers under biaxial flows would be for example, more industrially relevant.
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