
University of Crete

Computer Siene Department

On Computing Deltas of

RDF/S Knowledge Bases with Blank Nodes

Christina Lantzaki

Master's Thesis

Heraklion, January 2013

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ

Υπολογισμός Διαφορών μεταξύ RDF Βάσεων Γνώσης με
Ανώνυμους Κόμβους

Εργασία που υποβλήθηκε απο τον
Χριστίνα Α. Λαντζάκη

ως μερική εκπλήρωση των απαιτήσεων για την απόκτηση
ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΕΙΔΙΚΕΥΣΗΣ

Συγγραφέας:

Χριστίνα Λαντζάκη, Τμήμα Επιστήμης Υπολογιστών

Εισηγητική Επιτροπή:

Ιωάννης Τζίτζικας, Επίκουρος καθηγητής, Επόπτης

Δημήτρης Πλεξουσάκης,Καθηγητής, Μέλος

Γιώργος Γεωργακόπουλος,Αναπληρωτής Καθηγητής ,Μέλος

Δεκτή:

Πάνος Τραχανιάς, Καθηγητής
Πρόεδρος Επιτροπής Μεταπτυχιακών Σπουδών

Ηράκλειο, Ιανουάριος 2013

3

4

On Computing Deltas of
RDF/S Knowledge Bases with Blank Nodes

Christina Lantzaki
Master’s Thesis

Computer Science Department, University of Crete

Abstract

The Semantic Web (SW) is an evolving extension of the World Wide Web in which
the content can be expressed not only in natural language, but also in formal lan-
guages (e.g. RDF/S) that can be read and used by software agents, permitting
them to find, share and integrate information more easily. The statement of Hera-
clitus ”Everything flows, nothing stands still” holds also in the context of the SW
since everything changes (the resources themselves, the ontologies, the resource
descriptions, etc). Consequently, the ability to compute the differences that exist
between two RDF/S Knowledge Bases (KBs), hereafter Delta, is very important.
In particular, Deltas can be employed to (a) aid humans understand the evolution
of knowledge, and (b) reduce the amount of data that need to be exchanged and
managed over the network in order to build SW synchronization, versioning and
replication services.

The comparison problem is not simple because RDF allows anonymous nodes.
A anonymous node, else called blank node, is a node in an RDF graph which is
not identified by a URI and is not a literal. Several RDF KBs rely heavily on
blank nodes (e.g. 7.5% of Linked Data are estimated to be blank nodes) as they
are convenient for representing complex attributes or resources whose identity is
unknown but their attributes (either literals or associations with other resources)
are known. Considering blank nodes as ”constants” unique to both graphs does not
help either in detecting equivalence between graphs nor in reducing the Delta. On
the contrary, matching the blank nodes of the two graphs can significantly reduce
the produced delta. This work is the first that focuses on methods of matching
the blank nodes of the one graph with the blank nodes of the other graph, by
approaching it as an optimization problem aiming at finding the mapping that
yields the minimum in size Delta (with the least number of triples to delete or add
to make the graphs equivalent). We prove that finding the optimal blank node
mapping is NP-Hard in the general case by reducing to the sub-graph isomorphism
problem. When graphs do not contain directly connected blank nodes (no triples
with more than one blank nodes exists), we show that the polynomial Hungarian
algorithm can be used to find the optimal blank node mapping. For the general
case we present various polynomial algorithms returning approximate solutions.
For making the application of our method feasible also to very large KBs we
present a signature-based mapping algorithm with NlogN time complexity.

Finally, for the proposed algorithms we report extensive comparative experi-
mental results, over real and synthetic KBs, regarding delta reduction (and its de-
viation from the optimal), equivalence detection, and computational requirements.
The results are very interesting. Indicatively the signature-based algorithm can
match KBs with up to 150,000 bnodes in a few seconds with Y% deviation from
the optimal.

5

Supervisor: Yannis Tzitzikas
Assistant Professor

6

Σύγκριση RDF/S Βάσεων Γνώσης με Ανώνυμους κόμβους

Χριστίνα Λαντζάκη
Μεταπτυχιακή Εργασία

Τμήμα Επιστήμης Υπολογιστών, Πανεπιστήμιο Κρήτης

Περίληψη

Ο Σημασιολογικός Ιστός (ΣΙ) είναι μια εξελισσόμενη επέκταση του Παγκόσμιου
Ιστού στην οποία το περιεχόμενο μπορεί να εκφραστεί όχι μόνο με φυσική γλώσσα
αλλά και με τυπικές γλώσσες (π.χ. RDF/S), που επιτρέπουν την παροχή προηγ-
μένων υπηρεσιών αναζήτησης, διαμοιρασμού και ολοκλήρωσης πληροφορίας. Η ρήση
του Ηράκλειτου «τα πάντα ρει» ισχύει και στον ΣΙ, αφού οι πόροι (resources), οι οντο-
λογίες, τα μεταδεδομένα διαρκώς αλλάζουν και εξελίσσονται. Εκ τούτου η ικανότητα
υπολογισμού των διαφορών μεταξύ δύο Βάσεων Γνώσεων (ΒΓ) RDF/S , στο εξής
Δέλτα, είναι πολύ σημαντική. Συγκεκριμένα, τα Δέλτα μπορούν (α) να βοηθήσουν
τους χρήστες στην κατανόηση της εξέλιξης της γνώσης, και (β) να μειώσουν τον
όγκο των δεδομένων που χρειάζεται να ανταλλαχθούν και διαχειριστούν στο δίκτυο
για την ανάπτυξη υπηρεσιών συγχρονισμού, διαχείρισης εκδόσεων και αντιγράφων.
Το πρόβλημα της σύγκρισης δεν είναι απλό διότι η RDF υποστηρίζει ανώνυμους

κόμβους. ΄Ενας ανώνυμος κόμβος είναι ένας κόμβος σε ένα ΡΔΦ γράφο, ο οποίος
δεν είναι ούτε URI, ούτε literal και επομένως δεν έχει εξωτερική ταυτότητα. Αρκετές
βάσεις γνώσεων περιλαμβάνουν μεγάλο ποσοστό ανώνυμων κόμβων (π.χ. το 7.5%
των Διασυνδεδεμένων Δεδομένων εκτιμάται ότι αντιστοιχεί σε ανώνυμους κόμβους),
καθώς είναι κατάλληλοι για την αναπαράσταση σύνθετων γνωρισμάτων ή κόμβων των
οποίων η ταυτότητα είναι άγνωστη, αλλά οι ιδιότητες τους (είτε literals ή συνδέσεις
τους με άλλους κόμβους) είναι γνωστές. Η θεώρηση των ανώνυμων κόμβων σαν
μοναδικές σταθερές στους δύο γράφους δε βοηθάει ούτε στον εντοπισμό ισοδύναμων
γράφων, ούτε στη μείωση του Δέλτα. Αντιθέτως, με την αντιστοίχιση των ανώνυμων
κόμβων του ενός γράφου με τους ανώνυμους κόμβους του άλλου γράφου μπορούμε να
μειώσουμε σημαντικά το παραγόμενο Δέλτα. Η παρούσα εργασία είναι η πρώτη εργα-
σία που εστιάζει σε μεθόδους αντιστοίχισης των ανώνυμων κόμβων προσεγγίζοντας
το πρόβλημα ως πρόβλημα βελτιστοποίησης με στόχο την εύρεση της αντιστοίχι-
σης που οδηγεί στο ελάχιστο σε μέγεθος Δέλτα (ελάχιστο πλήθος τριπλετών που
πρέπει να διαγραφούν και να προστεθούν για να γίνουν οι δύο γράφοι ισοδύναμοι).
Αποδεικνύουμε ότι η εύρεση της βέλτιστης αντιστοίχισης είναι NP-Hard στη γενική
περίπτωση ανάγοντας το πρόβλημα της αντιστοίχισης στο πρόβλημα του ισομορφισμού
υπογράφων. Επιπλέον αποδυκνείουμε ότι όταν οι γράφοι δεν περιέχουν ανώνυμους
κόμβους που συνδέονται άμεσα μεταξύ τους (ήτοι, καμία τριπλέτα δεν περιέχει πε-
ρισσότερους από έναν ανώνυμους κόμβους), τότε ο πολυωνυμικής πολυπλοκότητας
Ουγγρικός αλγόριθμος μπορεί να δώσει τη βέλτιστη λύση. Για τη γενική περίπτωση
προτείνουμε διάφορους πολυωνυμικούς αλγορίθμους, που μπορούν να λύσουν το πρό-
βλημα προσεγγιστικά. Για να είναι εφικτή η εφαρμογή των μεθόδων μας ακόμα και
σε πολύ μεγάλες βάσεις γνώσεων, που περιέχουν μεγάλο πλήθος ανώνυμων κόμβων,
δίνουμε έναν προσεγγιστικό αλγόριθμο με NlogN πολυπλοκότητα ο οποίος βασίζεται
σε υπογραφές. Τέλος, για τους προτεινόμενους αλγόριθμους, αναφέρουμε εκτεταμέ-
να συγκριτικά πειραματικά αποτελέσματα επί πραγματικών και συνθετικά παραγμένων
ΒΓ, σχετικά με τις επιδόσεις τους στη μείωση του Δέλτα (και την απόκλιση τους
από το βέλτιστο), στον εντοπισμό ισοδύναμων γράφων, και τις υπολογιστικές τους

7

απαιτήσεις. Τα αποτελέσματα είναι πολύ ενδιαφέροντα. Ενδεικτικά, ο αλγόριθμος
που βασίζεται σε υπογραφές μπορεί να αντιστοιχίσει βάσεις που έχουν μέχρι και 150
χιλιάδες ανώνυμους κόμβους σε λίγα δευτερόλεπτα και U% απόκλιση από το βέλτιστο.

Επόπτης Καθηγητής: Γιάννης Τζίτζικας
Επίκουρος Καθηγητής

8

Acknowledgements

First of all, I would like to thank my supervisor, professor of the University of
Crete, Yannis Tzitzikas, initially for trusting me and then for his continuous sup-
port and his valuable advice. His organizational capability was really helpful for
me, too. I am also grateful to the professors Dimitris Pleksousakis and Giorgos
Georgakopoulos for participating in the supervisory committee.

I would also like to thank the Computer Science Department of Greece for of-
fering a high level of academic education and the Information-Systems Laboratory
of ICS-FORTH for its support in terms of graduate fellowship and for providing a
high-levelled research environment.

Last but not least, I would like to thank my friends and my parents for sup-
porting me all over this period.

This work was partly supported by the NoE APARSEN (Alliance Permanent
Access to the Records of Science in Europe, FP7, Proj. No 269977, 2011-2014),
and the FP7 Research Infrastructures projects SCIDIP-ES (SCIence Data Infras-
tructure for Preservation - Earth Science, 2011, 2014), and iMarine (FP7 Research
Infrastructures, 2011-2014).

9

Contents

Table of Contents iii

List of Figures viii

1 Introduction 1
1.1 The Semantic Web: Concepts and Vision 1

1.1.1 The Semantic Web Stack: Components 1

1.2 Linked Data . 4
1.3 RDF and Blank Nodes . 5

1.3.1 Theoretical Perspective . 5

1.3.2 Practical Perspective . 6
1.3.3 Blank Nodes in published data 10

1.3.4 The future of blank nodes 11

1.4 Managing the evolution of Knowledge Bases 11
1.4.1 Versioning Services . 12

1.4.2 Synchronization Services . 12

1.4.3 Replication Services . 13
1.5 Motivation for comparing of RDF KBs with blank nodes 14

1.5.1 Motivating Scenarios . 15

1.6 Contributions . 17

1.7 Organization of the thesis . 17

2 Related Work 19
2.1 Introduction . 19

2.2 Ontoview . 20

2.2.1 Rules for Changes . 21
2.3 Promptdiff . 22

2.3.1 Heuristic Matchers . 23

2.4 Semversion . 24
2.4.1 Set-based Diff . 25

2.4.2 Structural Diff and Blank nodes 25

2.4.3 Semantic Diff . 26

2.5 x-RDF-3X . 26
2.6 . 27

2.7 RDF utils . 27

2.7.1 Labeling RDF Nodes . 28
2.8 RDF Sync . 28

2.9 CWM of w3c . 28

i

2.9.1 Patch file format . 29

2.9.2 Weak and Strong Deltas . 29

2.10 Jena . 30

2.11 pOWL . 30

2.12 Summary Comparison . 31

3 On reducing RDF Delta in KBs with blank nodes 33

3.1 Introduction . 33

3.2 Preliminaries . 33

3.2.1 Basic Notation . 33

3.2.2 RDF Knowledge Bases . 34

3.2.3 Differential Function and Change Operations 35

3.3 RDF KBs with Blank Nodes . 37

3.3.1 RDF graph equivalence . 37

3.3.2 Bnode Name Tuning . 38

3.3.3 Delta reduction size . 38

3.4 Bnode Matching as an Optimization Problem 38

3.4.1 Problem Formulation . 38

3.4.2 Polynomially-solved (and Frequently Occurring) Cases . . . 40

3.4.2.1 No directly connected blank nodes 40

3.4.2.2 BNode Neighborhoods with bounded tree width . 41

3.5 Approximation Algorithms . 41

3.5.1 Hungarian BNode Matching Algorithm 41

3.5.2 A Fast (O(N logN)) Signature-based Algorithm 42

3.5.2.1 Signature Construction 43

3.5.2.2 The Lookup algorithm 44

3.5.3 More about the Signature Construction 46

3.5.4 Comparing the approximation algorithms 47

3.5.4.1 On Equivalence Detection Potential 47

3.5.4.2 On Delta Reduction Potential 48

3.5.5 On the serialization of the Knowledge Bases 48

3.5.5.1 Signature Construction 50

3.5.5.2 The Lookup algorithm 52

4 Experimental Evaluation 55

4.1 TestBed . 55

4.2 Evaluation: not directly connected bnodes 56

4.3 Evaluation: directly connected bnodes 56

4.3.1 On Complex Bnode structures 56

4.3.2 Delta Reduction Potential 57

4.3.3 Time Efficiency . 57

4.3.4 Equivalence Detection Potential 58

4.4 Scalability . 58

4.5 Measuring the approximation . 59

ii

5 System and Applications 61
5.1 Functionality . 61
5.2 Architecture . 64

5.2.1 Applications . 65
5.2.1.1 Jena rdfcompare 65

5.2.2 . 65

6 Conclusion and Future Work 67

7 Appendix: Proofs 73

iii

iv

List of Tables

1.1 Delta on different matching of the blank nodes 16

2.1 Features of the comparison . 31
2.2 Features comparison of versioning systems and tools 32

3.1 Signatures on bnodes of K1 and K2 of Fig. 3.11 according to the
given option . 44

3.2 Signatures on bnodes of K1 and K2 of Fig. 3.11 according to the
given option . 51

4.1 Features of two real LOD datasets 55
4.2 Experimental results over real datasets 56
4.3 Blank node Features of the synthetic dataset 57

v

vi

List of Figures

1.1 The Semantic Web Stack . 2

1.2 The Semantic Web Stack in 3D presentation 3

1.3 The Linked Open Data Cloud . 4

1.4 Blank node with nested elements 6

1.5 Blank node with nested elements 7
1.6 Examples of blank nodes with complex attributes 7

1.7 Example of blank nodes with a Bag container 8

1.8 Example provenance trail with blank nodes 9

1.9 Top publishers of blank nodes in the corpus 10

1.10 Tree Width distribution . 11

1.11 Two Knowledge Bases with directly connected blank nodes 16

2.1 Comparing two ontologies in OntoView 21

2.2 The architecture of the PromptDiff 23

2.3 The structural diff showing the difference between two versions . . 23

2.4 The Layered Architecture of SemVersion 25

2.5 The granularity of the Semantic Web ranges from the universal
graph to triple. 27

2.6 Three RDF graphs that show personal information from three sources.
The first one asserts that a person who has first name ’Li’ and sur-
name ’Ding’. 28

2.7 pOWL Versioning. 31

3.1 What set of change operations could transform K to K ′? 33

3.2 Distinctions of triples sets . 35

3.3 KB without unique reduction . 35

3.4 Added and deleted triples of the differential functions 36

3.5 Two Knowledge Bases with directly connected blank nodes 40
3.6 Alg. The Signature-based bnode matching algorithm 42

3.7 Two Knowledge Bases of an address ontology 43

3.8 Signature Construction Algorithm 45

3.9 Lookup algorithm . 46

3.10 Alg. The Signature-based bnode matching algorithm 50

3.11 Two versions of an address Knowledge Base 51
3.12 Signature Construction Algorithm 52

3.13 Lookup algorithm . 53

4.1 Delta Reduction over the synthetic datasets 58

4.2 Mapping times over the synthetic datasets 58

vii

4.3 dx over non equivalent (left) and equivalent (right) KBs 59

5.1 Importing the KBs on BNodeDelta 62
5.2 Selecting the BNode matching algorithm on BNodeDelta 62
5.3 Basic Statistics of the BNode matching 63
5.4 The exported files of BNodeDelta 63
5.5 The Sesame component Stack . 64

viii

Chapter 1

Introduction

Life is a series of natural and spontaneous changes.
Don’t resist them, that only creates sorrow.

Let reality be reality.
Let things flow naturally forward in whatever way they like.

Lao Tzu

1.1 The Semantic Web: Concepts and Vision

The content of the World Wide Web is currently formatted in a natural lan-
guage, mainly through HTML. Even though such a language is human-readable
and human-understandable, the machines or else the software agents are only able
to read this information. The machine-intelligibility cannot be achieved with the
current technology.

This gap is called to be solved through the Semantic Web, an extension of
the World Wide Web (WWW). The term was coined by the Tim Berners-Lee,
the inventor of the WWW and the director of the Word Wide Web Consortium
(W3C), and aims at converting unstructured and semi-structured documents into
semantically structured knowledge, that can be processed directly and indirectly
by machines. The promoted formats give the ability to the machines to interpret
the content of the web page and find, share and integrate information more easily.

The Semantic Web is standardized, in the context of Web 3.0, with a set of new
languages organized in a layered architecture enabling users and applications to
write and share information in a machine-readable way. This layered architecture
of the Semantic Web is often referred to as the Semantic Web stack.

Current research proves that the promoted technology is already in use and
starts to reach the market.

1.1.1 The Semantic Web Stack: Components

The Semantic Web stack (Figure 1.1) is a work in progress, where the layers are
developed in a bottom-up manner. The so far well-established technologies are
specified as W3C standards and include RDF, RDF Schema, SKOS, SPARQL and
OWL.

The basic components are given below:

1

Figure 1.1: The Semantic Web Stack

• XML provides an elemental syntax for content structure within documents,
yet associates no semantics with the meaning of the content contained within.
XML is not at present a necessary component of Semantic Web technologies
in most cases, as alternative syntaxes exists (such as Turtle).

• RDF (Resource Description Framework) is a simple language for expressing
data models, which refers to resources (web resources) and asserts binary
relationships between them. Such assertions have the form of triples, called
statements. The elements of a triple are called subject, predicate and object.
A collection of RDF statements intrinsically represents a labeled, directed
multi-graph. As such, an RDF-based data model is more naturally suited
to certain kinds of knowledge representation than the relational model and
other ontological models. An RDF-based model can be represented in a
variety of syntaxes, such as RDF/XML, Notation3, Turtle, NTriples and
RDFa. As this thesis focuses on this layer, more details are given in the
following sections.

• RDFS (RDF Schema) is a vocabulary that extends RDF for describing prop-
erties and classes of RDF-based resources, with semantics for generalized-
hierarchies. In particular, the statements of RDF Schema (RDFS) make
it possible to define hierarchies of classes, hierarchies of properties and to
describe domains and ranges of the properties.

• OWL (Web Ontology Language) builds-up on RDFS introducing more ex-
pressive description constructs. In particular, OWL adds relations between
classes, cardinality, equality, richer typing of properties, characteristics of
properties, and enumerated classes. OWL has three increasingly expres-
sive sublanguages: OWL Lite, OWL DL and OWL Full. OWL Lite sup-
ports those users primarily needing a classification hierarchy and simple
constraints. OWL DL supports users who want the maximum expressiveness
while retaining computational completeness and decidability. OWL Full is

2

meant for users who want very high expressiveness and the syntactic free-
dom of RDF with no computational guarantees. In OWL 2, there are three
sublanguages of the language. OWL 2 EL is a fragment that has polynomial
time reasoning complexity; OWL 2 QL is designed to enable easier access
and query to data stored in databases; OWL 2 RL is a rule subset of OWL
2.

• SPARQL is the most prevalent RDF query language for semantic web data
resources, able to retrieve and manipulate data stored in Resource Descrip-
tion Framework format. In general, querying allows fine-grained data access.

The rest of the components are not yet fully standardized or realized, such as
the Rule Interchange Format (RIF) in the Rule Layer or the Unifying Logic and
Proof Layer.

In all cases the intention of the semantic web is to enhance the usability and
usefulness of the Web and its interconnected resources through servers which
expose existing data systems using the RDF and SPARQL standards, through
converters to RDF, through documents ”marked up” with semantic information,
through common metadata vocabularies (ontologies) and maps between vocab-
ularies, through automated agents to perform tasks for users or finally through
web-based services to supply information specifically to agents.

Alternatively, Figure 1.2 offers a 3D presentation of the Semantic Web stack,
providing more information without sacrificing compactness and simplicity 1. The
one side gives the concepts and the abstraction of the Semantic Web and the other
side gives the specification and the solutions for each concept.

Figure 1.2: The Semantic Web Stack in 3D presentation

Most applications just use only a subset of the described stack. Indicatively,
the Linked Data (see more in section 1.2) use a small selection of the technologies
and in particular the RDF and OWL technology.

1http://bnode.org/

3

1.2 Linked Data

Linked Data is about using the Web to connect related data that wasn’t previously
linked, or using the Web to lower the barriers to linking data currently linked using
other methods. More specifically, Wikipedia defines Linked Data as ”a term used
to describe a recommended best practice for exposing, sharing, and connecting
pieces of data, information, and knowledge on the SW using URIs and RDF.”

Tim Berners-Lee coined the term in a design note discussing issues around the
SW project. However, the idea is very old and is closely related to concepts includ-
ing database network models, citations between scholarly articles, and controlled
headings in library catalogs.

The goal of the W3C SW community project is to extend the Web with a
data commons by publishing various open datasets as RDF on the Web and by
setting RDF links between data items from different data sources. In 2007, datasets
consisted of over two billion RDF triples, which were interlinked by over two million
RDF links. By 2011 this had grown to 31 billion RDF triples, interlinked by around
504 million RDF links. There is also an interactive visualization of the Linked
datasets to browse through the cloud. Here we provide a static visualization of
the cloud, seen in Figure 1.3.

Figure 1.3: The Linked Open Data Cloud

It follows a list with some main datasets inside or outside LOD cloud.

• CKAN: registry of open data and content packages provided by the Open
Knowledge Foundation

• DBpedia: a dataset containing extracted data from Wikipedia. It contains
about 3.4 million concepts described by 1 billion triples, including abstracts
in 11 different languages

4

• GeoNames: provides RDF descriptions of more than 7, 500, 000 geographical
features worldwide

• UMBEL: a lightweight reference structure of 20, 000 subject concept classes
and their relationships derived from OpenCyc, which can act as binding
classes to external data. It also has links to 1.5 million named entities from
DBpedia and YAGO

• FOAF: a dataset describing persons, their properties and relationships

1.3 RDF and Blank Nodes

As we have already mentioned, RDF is a data model that represents knowledge
in the form of simple statements, called RDF triples, which consist of a subject, a
predicate and an object, like a simple sentence in a human language. The subject is
a thing(resource) that a statement describes, the predicate of a statement identifies
a property or a relation, while the object is a value of a property or a target of a
relation.

In RDF, there are three types of nodes, URI references, blank nodes and literals.
URI references identify resources, blank nodes represent anonymous resources that
are not assigned a URI, and literals denote values such as numbers or dates. The
subject of an RDF triple may be a URI reference or a blank node, the predicate
must be a URI reference, and the object may be all three kinds of all three kinds
(URI references, literals, blank nodes). When combined together, RDF triples
form a direct labeled graph (RDF graph). Subjects and objects of RDF triples
become nodes in an RDF graph and predicates become arcs connecting them.

Although RDF is based on a simple idea, there are some problems that make
it complicated. One main problem is the existence of blank nodes.

1.3.1 Theoretical Perspective

Nodes without a name represent a special kind of nodes, called blank nodes (for
short bnodes). These nodes simply indicate the existence of a thing, without using
or saying anything about the name of that thing. Therefore, according to the
standard, they are referred to as existential variables of an RDF graph.

Due to the absence of a name (URI), manipulating data containing blank nodes
is much harder. They make otherwise trivial operations (like the comparison of
two KBs or the simple entailment checking) far more complex or even intractable.

On the other hand, they enable a great flexibility in expressing.
In this flexibility a more profound reason is hidden, which perhaps can explain

how blank nodes have survived as a part of the RDF model all these years despite
all the headaches they have caused. The thing is, blank nodes reflect a human way
of referencing things. Let us show an example:

If I want to talk about my left arm, it is quite unnatural to invent a new
identifier for it. I will just say ”my left arm”, describing it relative to myself, and
a listener will understand. This is possible due to human’s ability to understand
the context. He or she knows that the pronoun ”my” refers to me as something
unique, the arm being part of me, and the ”left” finally specifying the exact arm.
So, my left arm, unique in the universe, is referenced quite simply and elegantly.

5

In RDF, it can be expressed with the two statements as: ”I have an arm. It
(has a property that) is left”. Let us assume that we know that the blank node is
of a type ”ex:Arm” implicitly through the property:

ex:hasArm rdfs:range ex:Arm

Given that the URI of me is http://foaf/id/3243435, and assuming the relevant
properties are defined in ex ontology, we can express it with the following triples:

http://foaf/id/3243435 ex:hasArm [
ex:hasProperty ex:Left

]

The left arm is represented by the blank node, which is the object in the first
triple and the subject in the second, thus chaining them and forming a rather
readable code.

1.3.2 Practical Perspective

While in theory blank nodes do not have a name, in practice, when publishing
data, they can be assigned an ID in a local graph/document scope, in order to
enable several RDF triples to reference the same unidentified resource. This local
identifier is called a ”blank node identifier” and it is different from URIs or literals,
because it does not provide a unique name in the global context. This identifier is
denoted by the characters (” : ”) followed by a string. It follows an example for
better understanding of the benefits of this assignment.

Figure 1.4 shows some triples in RDF-XML syntax, where the blank node can
is represented by nested elements.

< foaf : Person rdf : about = ”http : //example.org/Person#John” >
< foaf : knows >

< foaf : Person foaf : birthDate = ”04− 21” >
< /foaf : knows >

< /foaf : Person >

Figure 1.4: Blank node with nested elements

If the same blank node is used more than once in the same RDF graph, it can
be identified by giving an identifier, like in Figure 1.5. So, now we can express the
fact that John and Mary have a common friend.

6

< foaf : Person rdf : about = ”http : //example.org/Person#John” >
< foaf : knows >

< foaf : Person rdf : nodeID = ”b1”/ >
< /foaf : knows >

< /foaf : Person >
< foaf : Person rdf : about = ”http : //example.org/Person#Mary” >

< foaf : knows >
< foaf : Person rdf : nodeID = ”b1”/ >

< /foaf : knows >
< /foaf : Person >

Figure 1.5: Blank node with nested elements

According to a current paper [9], the usage of blank nodes is attributed to the
following aspects:

• Blank nodes have the capability to describe ”Multi-component Structures”
or else ”Complex Attributes”.
Figure 1.6 is an example of an RDF graph with such functionality. Complex
attributes (e.g. an attribute address of Figure 1.6) can be represented with-
out having to name explicitly the auxiliary node that is used for connecting
together the values that constitute the complex value (i.e. the particular
street, number and postal code values).

Figure 1.6: Examples of blank nodes with complex attributes

Thus, the information is described in a multi-component structure and we
use bnodes to express the existence of the information. Also in RDF, we need
to describe groups of things, for example several authors of a book or some
students of a team. The container is a structural concept in RDF data model.
There are three types of containers: the Bag (group of resources or literals),
the Sequence (group of resources or literals, where their order is significant)
and the Alternative (group of resources or literals that are alternatives).

7

These structures can be described with blank nodes, like Figure 1.7, where
the characters of a book are given through a blank node.

Figure 1.7: Example of blank nodes with a Bag container

• Blank nodes have the capability to describe the Refication.
Refication or else provenance is used to describe other RDF statements using
the RDF format, for instance to record information about when statements
were made, who made them or other similar information. For example, we
have an RDF triple as:

Then we get the refication of the triple in a graph, whose triples are shown
below:

The blank node : b is intended to refer to the original (first) triple and it
is called, rather confusingly, a reified triple. We can use another triple to
describe the information about the original triple, like the following:

In other words, the statement is itself an object that can be talked about
in RDF, we can associate information to this very basic atom of data, such
as who made this particular statement and when. The so-called provenance
trails are used in many fields of science and business to support the needs of
capturing, processing, presenting and preserving data in the digital object’s
life cycle.

Figure 1.8 shows a small provenance trail with two subsequent events.

8

Figure 1.8: Example provenance trail with blank nodes

• Blank nodes can hide the Unexposible Information
In many senses the publishers may not want to expose their data completely,
so the blank nodes can help them to shield some sensitive information. For
example, if a shopping center wants to publish some shopping information,
we can replace the real costumer’s identity with the blank node:

Thus the browsers outside just only can get the information about the shop-
ping of the shopping center, but can not know any other information about
the identity of the costumer. The blank nodes actually protected the inner
information in a good manner.

• Blank nodes can express the ”Multi-relationship”
The idea behind this functionality is that RDF can only describe binary
relationships directly like p(s, o). As to multi-relationship p(s1, s2, .., sn) the
RDF must express this using an indirected form with the help of bnodes. We
do it by choosing one participant (s1) as the subject of the relationship p and
a bnode as the object, then we create a group of relationships p2, p3, .., pn
to express the relationships and the participants s2, s3, .., sn. Figure 1.6 also
describes the ”multi-relationship” between a person and his address. As
depicted there, the blank node is used to connect all the participants like a
bridge.

As there have been developed various SW frameworks, there are different
parsers that treat blank nodes differently. Some parsers use methods for auto-
matically assigning URIs (skolemization), which complicates things further. In
first-order logic, Skolemization is way of removing existential quantifiers from a
formula in prenex normal form (a chain of quantifiers followed by a quantifier-free
formula). The central idea of Skolemization is to replace existential quantified
variables for ”fresh” constants that are not used in the original formula. When the
original formula does not have universal quantifiers, only constants are needed in
the Skolemization process. Since only existential quantifiers are found in simple

9

RDF graphs, we need only to talk about Skolem constants. However, if Skolem-
ization was used to study the satisfiability of logical formulae in more expressive
languages (e.g. OWL), Skolem functions would be needed. Consequently, in terms
of RDF, Skolemization refers to replacing existential variables with unique con-
stants or simply a way of assigning URIs to blank nodes.
Other parsers just assign local identifiers/ labels in a systematical way. This
labelling is based on the explicit blank node labels or the order of appearance
(serialization order) of the blank nodes inside the imported set of triples or a com-
bination of both. All the above methods are preferable than a completely arbitrary
labelling.

1.3.3 Blank Nodes in published data

In this section we give some information on the use of blank nodes in RDF data
published on the Web, according to [21]. These information were collected over a
domain-agnostic sample of RDF data containing 965 MB of unique triples.

Looking at terms in the data-level position of triples, they found that the 57.8%
of the unique terms were blank nodes, and only 32.2% were URIs, and 10% were
literals. Each blank node had on average 5.2 data-level occurrences. Each blank
node occurred, on average, 0.99 times in the object position of a non-rdf:type
triple, with 3.1 MB blank nodes (1.9of all blank nodes) not occurring in the object
position. Conversely, each blank node occurred on average 4.2 times in the subject
position of a triple, with 0.04% not occurring in the subject position. Thus, we
get that (i) blank nodes are prevalent on the Web; (ii) most blank nodes appear
in both the subject and object position, but occur most prevalently in the former.
Both their functionality and possibly the tree-based RDF/XML syntax can verdict
in favour of these results.

Figure 1.9: Top publishers of blank nodes in the corpus

Moreover, Table 1.9 lists the top ten domains in terms of publishing unique
blank nodes found in their corpus. “LOD?” indicates whether the domain features
in the LOD cloud diagram. Of the 783 domains contributing to our corpus, 345
(44.1%) did not publish any blank nodes. The average percentage of unique terms
which were blank nodes for each domain was 7.5%, indicating that although a small
number of high-volume domains publish many blank nodes, many other domains
publish blank nodes more infrequently. The analogous figure including only those
domains appearing in the LOD cloud diagram was 6.1%.

10

Figure 1.10: Tree Width distribution

Regarding the structure of the blank nodes inside the graphs of the published
data, we get the following information. They found 23% of all documents con-
taining blank nodes and a 9% of all documents contained “non-reflexive” blank
triples (triples with only one blank node). As for the treewidth they give Table
1.10. Notably, 98.4% of the components are acyclical, but a significant number
are cyclical (treewidth greater than 1).

1.3.4 The future of blank nodes

Recent bibliography ([9], [21]) propose the reduction of blank nodes in the RDF
graphs by clearing all the blank nodes that represent redundant information and
the blank nodes which can be mapped into some URI references. This would help
to make leaner and cleaner RDF graphs.

In Linked Data publication, it is not encouraged to describe information us-
ing blank nodes, but the common mechanisms of publishing Linked Data cannot
avoid the usage of blank nodes, as it gives the developers the aforementioned con-
veniences.

Discussion on blank nodes is still open, but as the amount of published data
grows rapidly, a consensus is very much needed. At the same time, because of the
absence of an undisputed solution, the problems of blank nodes are an inevitable
reality and research, like this thesis, is orientated on their solution.

1.4 Managing the evolution of Knowledge Bases

As already mentioned, Semantic Web is an evolving extension of the World Wide
Web. This means that a lot of data need to be stored or exchanged over the
network. Three kinds of services are exploited to cope with those needs:

• Versioning services are used to control multiple versions of the same unit of
information.

• Synchronization services are used to keep remote data consistent (i.e. both
of them contain the same information although something changed at one
side).

• Replication services are used to ensure consistency between redundant re-
sources (stored in multiple storage devices)

11

1.4.1 Versioning Services

Version control is the management of multiple revisions of the same unit of infor-
mation. It is commonly used in engineering and software development to manage
ongoing development of digital documents like application source code and other
critical information that may be worked on by a team of people. Changes to these
documents are identified by incrementing an associated number or letter code,
termed the ”revision number”, ”revision level”, or simply ”revision” and associ-
ated historically with the person making the change. A simple form of revision
control, for example, has the initial issue of a drawing assigned the revision number
”1”. When the first change is made, the revision number is incremented to ”2”
and so on.

In computer software engineering, revision control is any practice that tracks
and provides control over changes to source code. Software developers sometimes
use revision control software to maintain documentation and configuration files as
well as source code. Most revision control software can use delta encoding, which
retains only the differences between successive versions of files. This allows more
efficient storage of many different versions of files.

Delta encoding is a way of storing or transmitting data in the form of differences
between sequential data rather than complete files. Delta encoding is sometimes
called delta compression, particularly where archival histories of changes are re-
quired.

The differences are recorded in discrete files called ”deltas” or ”diffs”. Because
changes are often small, delta encoding greatly reduces data redundancy. Collec-
tions of unique deltas are substantially more space-efficient than their non-encoded
equivalents. From a logical point of view the difference between two data values
is the information required to obtain one value from the other. The difference
between identical values (under some equivalence) is often called 0 or the neutral
element. A good delta should be minimal, or ambiguous unless one element of a
pair is present.

A delta can be defined in two ways, symmetric delta and directed delta. A
symmetric delta can be expressed as: ∆(v1, v2) = (v1 v2) ∪ (v2 v1), where v1 and
v2 represent two successive versions.

A directed delta, also called a change, is a sequence of (elementary) change
operations which, when applied to one version v1, yield another version v2 (note
the correspondence to transaction logs in databases).

In delta encoded transmission over a network, where only a single copy of the
file is available at each end of the communication channel, special error control
codes are used to detect which parts of the file have changed since its previous
version.

The nature of the data to be encoded influences the effectiveness of a particular
compression algorithm. Delta encoding performs best when data has small or
constant variation.

1.4.2 Synchronization Services

In computer science, synchronization refers to one of two distinct, but related
concepts:

12

• Process synchronization refers to the idea that multiple processes are to join
up or handshake at a certain point, so as to reach an agreement or commit
to a certain sequence of action.

• Data synchronization refers to the idea of keeping multiple copies of a dataset
in coherence with one another, or to maintain data integrity. Process syn-
chronization primitives are commonly used to implement data synchroniza-
tion.

At this thesis we study the problem of data synchronization. Data synchro-
nization is the process of establishing consistency among data on remote sources
and the continuous harmonization of the data over time. It is fundamental to a
wide variety of applications, including file synchronization [32], Personal Digital
Assistant synchronization [2], and Public Key Server synchronization.

Several theoretical models of data synchronization exist in the research liter-
ature. The models are classified based on how they consider the data to be syn-
chronized. Some models consider the data to be unordered while others consider
the data to be ordered.

The problem of synchronizing unordered data (also known as the set recon-
ciliation problem) is modelled as an attempt to compute the symmetric difference
SA⊕SB = (SA−SB)∪ (SB −SA) between two remote sets SA and SB [23]. Some
solutions to this problem are typified by:

• Wholesale transfer. In this case all data is transferred to one host for a local
comparison.

• Timestamp synchronization. In this case all changes to the data are marked
with timestamps. Synchronization proceeds by transferring all data with a
timestamp later than the previous synchronization.

• Mathematical synchronization. In this case data are treated as mathematical
objects and synchronization corresponds to a mathematical process.

Considering ordered data two remote strings σA and σB need to be reconcilied.
Typically, it is assumed that these strings differ by up to a fixed number of edits
(i.e. character insertions, deletions, or modifications). Some solution approaches
to this problem include:

• shingling - splitting the strings into shingles in order to reduce this problem
into an unordered synchronization problem.[8]

• synchronizing files and directories from one location to another while mini-
mizing data transfer using delta encoding.

1.4.3 Replication Services

Replication is one of the most important topics in the area of distributed systems.
It involves sharing information so as to ensure consistency between redundant
resources, such as software or hardware components, to improve reliability, fault-
tolerance, or accessibility.

There are two kinds of replication:

13

• data replication if the same data is stored on multiple storage devices

• computation replication if the same computing task is executed many times

In the context of this thesis we focus on data replication. These processes are
passive and operate only to maintain the stored data, reply to read requests, and
apply updates.

Knowledge Base replication can be seen as an evolution of database replication.
Database replication can be used on many database management systems usually
with a master/slave relationship between the original and the copies. The mas-
ter logs the updates, which then ripple through to the slaves. The slave outputs
a message stating that it has received the update successfully, thus allowing the
sending (and potentially resending until successfully applied) of subsequent up-
dates. Multi-master replication, where updates can be submitted to any database
node, and then ripple through to other servers, is often desired, but introduces
substantially increased costs and complexity which may make it impractical in
many situations. The most common challenge that exists in multi-master replica-
tion is transactional conflict prevention or resolution. Most synchronous or eager
replication do conflict prevention, while asynchronous solutions have to do conflict
resolution. For instance, if a record is changed on two nodes simultaneously, an
eager replication system would detect the conflict before confirming the commit
and abort one of the transactions. A lazy replication system would allow both
transactions to commit and run a conflict resolution during resynchronization.
The resolution of such a conflict may be based on a time-stamp of the transaction,
on the hierarchy of the origin nodes or on much more complex logic, which decides
consistently on all nodes.

In terms of the mobile domain it is very unlikely that an application will access
all of them online, since mobile network connectivity is not always available for
reasonable prices. To overcome this problem,and to decrease response times, data
from remote sources can be replicated locally, and applications can operate on
these local copies. However, it is not practical to duplicate several billions of RDF
triples to a mobile device with limited computing power and memory capacity,
and often this is not required at all for a specific application.

The replication of data from external sources, which can be selected based on
the specific application context, is relatively straightforward for read-only data.

1.5 Motivation for comparing of RDF KBs with blank
nodes

RDF Deltas can be employed to aid humans understand the evolution of knowl-
edge, and to reduce the amount of data that need to be exchanged and managed
over the network in order to build Semantic Web synchronization [33, 4], version-
ing [18, 19, 4, 11, 36] and replication [30] services.

Although RDF Knowledge Bases can be serialized in various text formats, a
straightforward application of existing version control systems for software code
(such as RCS and CVS) or for XML data (such as [22], [12] and [10]) is not a
viable solution for computing RDF Deltas. This is mainly due to the fact that

14

RDF Knowledge Bases essentially represent graphs which (a) may feature several
possible serializations (since there is no notion of edge ordering) and (b) can be en-
riched with semantics of a particular specification (also including inferred triples).
For these reasons several non text-based tools have been developed for comparing
graphs produced autonomously on the Semantic Web. We are going to refer later
to examples of such tools. However, existing RDF differential tools have not yet
focused enough on the size of the produced deltas, a very important aspect for
building versioning services over Semantic Web repositories. [37] focuses on apply-
ing various differential functions that minimize the delta size, but they treat the
blank nodes as named nodes.

As we have previously mentioned the existence of blank nodes makes the whole
procedure much more complex. The prevalence of the blank nodes becomes clear
through empirical study on the published data. Looking at terms in the data-level
position they found that 57.8% of the unique terms were blank nodes. Indicatively,
two domains of their corpus with a high number of publishing unique blank nodes
are the following (a) the “hi5.com foaf” domain consisting of 87.5% of blank nodes
and (b) the “opencalais.com” domain, which is part of LOD (Linked Open Data)
cloud, with 44.9% of blank nodes. The authors also state that the inability to
match blank nodes increases the delta size and does not assist in detecting the
changes between subsequent versions of a Knowledge Base.

Previous works on comparing RDF Knowledge Bases have not elaborated on
this issue thoroughly. There are works (e.g. [36, 37]) proposing differential func-
tions that yield reduced in size deltas (in certain cases) but treat blank nodes as
named nodes. Other works and systems (specifically Jena [8]) focus only on decid-
ing whether two KBs that contain blank nodes are equivalent or not, and do not
offer any delta size saving for the case where the involved KBs are not equivalent.
There are other works that compare non equivalent KBs that neither aim directly
at reducing the delta size nor treat the blank nodes for all the cases. [4] is able
to match blank nodes only if they have functional term labels. [35] creates an
identity for each blank node but is only restricted in finding the accurately same
blank nodes. [26] proposes a blank node matching that presupposes that blank
nodes are part of uniquely identified triples.

In brief, and to the best of our knowledge, our work is the first one that
attempts to establish a blank node mapping:

• for reducing the delta size for the case of equivalent and not equivalent KBs

• that focuses on minimizing the delta size

• that can be applied in all the cases of KBs with blank nodes

Note that finding such a mapping can be considered as a preprocessing step, a
task that is carried out before a differential function (like those described in [30,
35, 27, 25, 19, 36]) is applied.

1.5.1 Motivating Scenarios

At this subsection we are going to give a motivating scenario that will be used in
the rest of this work.

15

Figure 1.11: Two Knowledge Bases with directly connected blank nodes

Consider the Knowledge Bases K1 andK2 in Figure 1.11. K2 can be considered
as a subsequent updated version of K1. It is clear that all the triples of the two
graphs contain at least one blank node. As a result, if we do not apply any blank
node matching, then all the triples of the first graph are considered different from
the triples of the second graph. The delta will contain 18 change operations.

On the other hand, if we match the blank nodes of the first graph with the
blank nodes of the second graph, delta can be reduced. Table 1.1 shows different
matching options and the exported delta for each case.

Blank Node Matching Delta (Deleted triples) Delta (Added triples) Delta Size

∅ Del(foaf : Orville, hasAgenda, : 1)
Del(foaf : Orville, hasAgenda, : 2)
Del(: 1, brother, : 3)
Del(: 1, friend, : 4)
Del(: 2, friend, : 5)
Del(: 3, name,Wilbur)
Del(: 3, sname,Wright)
Del(: 4, name, Tom)
Del(: 5, name, John)

Add(foaf : Orville, hasAgenda, : 6)
Add(foaf : Orville, hasAgenda, : 7)
Add(: 6, brother, : 8)
Add(: 6, friend, : 9)
Add(: 7, friend, : 10)
Add(: 8, name,Wilbur)
Add(: 8, sname,Wright)
Add(: 9, name, John)
Add(: 10, name, Tom)

18

(: 1− > : 6)
(: 2− > : 7)
(: 3− > : 8)
(: 4− > : 9)
(: 5− > : 10)

Del(: 3, name,Wilbur)
Del(: 4, name, Tom)
Del(5, name, John)

Add(: 4, name, John)
Add(5, name, Tom)

4

(: 1− > : 8)
(: 2− > : 10)
(: 3− > : 6)
(: 4− > : 7)
(: 5− > : 9)

Del(foaf : Orville, hasAgenda, : 1)
Del(foaf : Orville, hasAgenda, : 2)
Del(: 1, brother, : 3)
Del(: 1, friend, : 4)
Del(: 2, friend, : 5)
Del(: 3, name,Wilbur)
Del(: 3, sname,Wright)
Del(: 4, name, Tom)
Del(5, name, John)

Add(foaf : Orville, hasAgenda, : 3)
Add(foaf : Orville, hasAgenda, : 4)
Add(: 3, brother, : 1)
Add(: 3, friend, : 5)
Add(: 4, friend, : 2)
Add(: 1, name,Wilbur)
Add(: 1, sname,Wright)
Add(: 5, name, John)
Add(2, name, Tom)

18

(: 1− > : 7)
(: 2− > : 6)
(: 3− > : 8)
(: 4− > : 10)
(: 5− > : 9)

Del(: 1, brother, : 3) Add(2, brother,: 5) 2

Table 1.1: Delta on different matching of the blank nodes

The third row of the Table shows the worse case, which can come from a
completely random matching of the blank nodes. In such a case the delta size
equals to that of no blank node matching. The second row has a matching that
is more physical and coherent with the serialization order. However, the third

16

matching of the fourth row gives the minimum delta.

In the next chapters we are going to focus on how we should theoretically
formulate the problem so as to always get the blank node matching with the
minimum delta and then comprehend the difficulties that arouse in the practical
application of this problem.

1.6 Contributions

In a nutshell the main contributions of this thesis are:

This work focuses on defining theoretically the blank node matching problem,
as the problem of mapping the blank nodes from one graph to another in an
optimal way. The optimality refers to the size of the produced delta (the number
of triples to delete or add to make the graphs equivalent) considering the mapping
of their blank nodes. We prove that finding the optimal blank node mapping is
NP-Hard in the general case by framing it in terms of the sub-graph isomorphism
problem. When the graphs do not contain directly connected blank nodes (no
triples with more than one blank nodes), we show that the polynomial(cubic)
Hungarian algorithm can be used directly to find the optimal bnode mapping.

When the blank nodes are connected (there are triples with more than one
blank nodes), we propose to use polynomial heuristics algorithms returning ap-
proximate solutions. One algorithm uses the Hungarian algorithm but considers
blank nodes as variables with no cost in matching. For making the application of
our method feasible also to large Knowledge Bases we present a signature-based
algorithm with n-logn complexity. This algorithm computes and orders signatures
(encoding edges of blank-nodes) to find blank nodes with similar neighbourhoods.

The experimental results over real and synthetic datasets showed that the
proposed algorithms significantly reduce the sizes of the produced deltas, while
the time required is affordable (just indicatively the n log n algorithm requires a
few seconds for KBs with up to 150,000 bnodes). We provide comparative results
regarding their time efficiency, their potential for delta reduction and equivalence
detection, their scalability and their deviation from the optimal solution.

1.7 Organization of the thesis

The rest of this work is organized as follows. Chapter ?? gives an introduction on
the field of comparing RDF KBs and on blank nodes by discussing on change op-
erations, RDF Deltas and RDF KBs with blank nodes. Chapter 3.4 elaborates on
the problem of finding the optimal blank node mapping and proposes approximate
bnode matching algorithms. Finally, Chapter ?? reports experimental results, dis-
cusses the applicability of the method at the presence of inference rules and various
semantics. Chapter ?? gives the related work and finally, Chapter ?? concludes
the work and identifies issues for further research.

This work has resulted in the publication of the following papers:

• Blank Node Matching and RDF/S Comparison Functions, Y annisTzitzikas,
ChristinaLantzaki and DimitrisZeginis, ISWC 2012

17

• Demonstrating BlankNode Matching and RDF/S Comparison Functions,
ChristinaLantzaki, Y annisTzitzikas and DimitrisZeginis, DemoPaper
ISWC 2012

18

Chapter 2

Related Work

This section examines state of the art tools with the same or similar orientation
and points out their differences in relation to our work.

2.1 Introduction

Several non text-based tools have been recently developed for comparing RDF
graphs produced autonomously on the SW as for example:

• Ontoview [19]. Is an ontology management system, able to compare two
ontology versions and highlight their differences.

• PromptDiff [27, 28, 25]. Is an ontology-versioning environment, that includes
a version-comparison algorithm (based on heuristic matchers)

• SemVersion [35]. Proposes two Diff algorithms one structure-based and one
semantic-aware

• RDF Utils [13]. Introduce the notion of RDF molecules as the finest com-
ponents to be used when comparing RDF graphs.

• CWM of w3c [4]. Is a general-purpose semantic web data processing tool
which can compare two RDF files. It uses a functional or inverse functional
properties to identify a blank nodes.

• Jena 1. Is a Java framework for building Semantic Web applications. It
provides a tool for checking isomorphism between two RDF graphs.

• Powl [3]. Is a web based ontology management tool that tracks the editing
actions that are made using the system.

Existing RDF comparison tools have neither focused on the size of the produced
Deltas, nor in the blank nodes matching, two very important aspects for building
versioning services over SW repositories. Furthermore, the output of these tools is
exploited by humans, and thus an intuitive presentation of the comparison results
(and other related issues) has received considerable attention.

1http://jena.sourceforge.net/

19

Finally, tracking the evolution of ontologies when changes are preformed in
more controlled environments (e.g. collaborative authoring tools) has been ad-
dressed in [20, 29, 38].

It follows an analysis over the most important tools and some annotations
about the way they treat blank nodes.

2.2 Ontoview

OntoView [19] is a web-based system2 inspired by CVS [6] that helps users to man-
age changes in ontologies. OntoView stores the contents of the versions, metadata,
conceptual relations between constructs in the ontologies and the transformations
between them. The internal version management is partly based on change speci-
fications and the versions of ontologies themselves, but also uses additional human
input about the meta-data and types of changes (as described below). It allows
users to differentiate between ontologies at a conceptual level and to export the
differences as adaptations or transformations.

Two types of change are distinguished. There can be changes in the logi-
cal definition of a concept which are not meant to change the concept, and, the
other way around, a concept can change without a change in its logical definition.
An example of the first case is attaching a slot “fuel − type” to a class “Car”.
Both class-definitions still refer to the same ontological concept, but in the second
version it is described more extensively. On the other hand, a natural language
definition of a concept might change, e.g. the new definition of “chair” might
exclude “reclining− chairs” without a logical change of the concept. The former
kind of change is referred in the literature as explication change, while the latter
conceptual change. Since at the syntactic level, the same data can be the result of
any of these types of change, more (human) input is needed to classify the change.

OntoView provides a web ”diff” view for comparing two versions of an ontology
(see Figure 2.1) at a structural level. The comparison function is inspired by UNIX
diff, but the implementation is quite different. The UNIX diff compares file version
at line-level, highlighting the lines that textually differ in two versions. Ontoview,
in contrast, compares versions of ontologies at a structural level, showing which
definitions or properties are changed. So as to produce such meaningful difference
for ontologies (where there is no inherent ordering), the ontology is canonicalized
at the syntactic level before being given to the diff tool.

The comparison function used by the Ontoview distinguishes between the fol-
lowing types of change:

• Non-logical change (conceptual change). A change at the natural language
defintion. e.g. changes in the rdfs:label of a concept or property, or in a
comment inside a definition.

• Logical definition change (explication change). This is a change in the defi-
nition of a concept or property that affects its formal semantics. Examples
of such changes are alterations of subClassOf, domain, or range statements.
Additions or deletions of local property restrictions in a class are also logical
changes.

2currently there is no link working for this tool

20

Figure 2.1: Comparing two ontologies in OntoView

• Identifier change. This is the case when a concept or property is given a new
identifier, i.e. a renaming.

• Addition of definitions.

• Deletion of definitions.

Most of these changes can be detected completely automatically, except for
the identifier change, because this change is not distinguishable from a subsequent
deletion and addition of a simple definition. In this case, the system uses the
location of the definition in the file as a heuristic to determine whether it is an
identifier change or not.

2.2.1 Rules for Changes

The algorithm uses the fact that the RDF data model underlies a number of
popular ontology languages, including RDF Schema and DAML+OIL. First, it
splits the document at the first level of the XML document. This groups the
statements by their intended “definition”. The definitions are then parsed into
RDF triples, which results in a set of small graphs. Each of these graphs represent
a specific definition of a concept or a property, and each graph can be identified
with the identifier of the concept or the property that it represents.

Then, the algorithm locates for each graph in the new version the corresponding
graph in the previous version of the ontology. Those sets of graphs are then checked
according to a number of rules. Those rules specify the “required” changes in the
triples set for a specific type of change.

The rules have the following format:

IF exist:old

21

〈A,Y,Z〉∗
exist:new

〈X,Y,Z〉∗
not-exist:new

〈X,Y,Z〉∗
THEN change-type A

They specify a set of triples that should exist in one specific version, and a
set that should not exist in another version (or the other way round) to signal
a specific type of change. With this rule mechanism, the tool is able to specify
almost all types of changes, apart from the ”identifier change”.

The rules are specific for a particular RDF-based ontology language because
they encode the interpretation of the semantics of the language for which they
are intended. For another language other rules would have been necessary to
specify other differences in interpretation. The semantics of the language are thus
encoded in the rules. The mechanism relies on the “materialization” of all rdf:type
statements that are encoded in the ontology. In other words, the closure of the
RDF triples according to the used ontology language has to be computed.

Regarding the blank nodes, we realize that they can be determined as ”identifier
changes” through their blank node identifiers. As we have already mentioned the
proposed rule mechanism is not applicable to them. The blank node matching is
described and applied in an indirect way, by using their location in the file as a
heuristic to determine their matching (or not) with a blank node in the second
file. No more information are given on this issue.

2.3 Promptdiff

Prompt is an ontology-management framework that brings together different ontology-
management tools and provides an infrastructure for other related tools. The key
components of the framework are: iPrompt an interactive ontology-merging tool,
AnchorPrompt a graph-based tool for finding related concepts in different ontolo-
gies, Protege a tool that provides access to a library of ontologies, giving users
meta-information about an ontology and PromptDiff.

PromptDiff is an ontology-versioning tool that determines what has changed
between two versions. It finds a structural diff between versions i.e. compares the
structure of ontology versions and not their text serialization.

Figure 2.2 shows the overall architecture of the PromptDiff ontology-versioning
system. Two versions of an ontology, v1 and v2, are inputs to the system. The
heuristic-based algorithm for comparing ontology versions analyzes the two ver-
sions and automatically produces a diff between v1 and v2 called a structural diff
(Figure 2.3). The post-processing module uses the diff to identify complex changes.
The results are presented to the user through the intuitive interface. The user then
has the option of accepting or rejecting changes and these actions are reflected in
the updated diff.

Given two versions of an ontology O, v1 and v2, a structural diff between v1
and v2, is a set of pairs 〈r1, r2〉 where:

• r1 ∈ v1 or r1 = null, r2 ∈ v2 or r2 = null

22

Figure 2.2: The architecture of the PromptDiff

Figure 2.3: The structural diff showing the difference between two versions

• r2 is an image of r1 (matches r1), that is, r1 became r2. If r1 or r2 is null,
then we say that r2 or r1 respectively does not have a match.

• Each resource from v1 and v2 appears in at least one pair.

• For any resource r1, if there is at least one pair containing r1, where r2 6= null,
then there is no pair containing r1 where r2 = null. The same is true for r2.

The PromptDiff algorithm consists of two parts: (1) an extensible set of heuris-
tic matchers and (2) a fixed-point algorithm to combine the results of the matchers
to produce a structural diff between two versions. Each matcher employs a small
number of structural properties of the ontologies to produce matches. The fixed-
point step invokes the matchers repeatedly, feeding the results of one matcher into
the others, until they produce no more changes in the diff. Then the differences
found by the algorithm are presented to the user who is responsible to accept or
reject them.

2.3.1 Heuristic Matchers

The PromptDiff algorithm combines an arbitrary number of heuristic matchers,
each of which looks for a particular property in the unmatched frames. The heuris-
tic matchers compare two ontology versions looking for the following situations:

• Resources of the same type with the same name. In general, if r1 ∈ K1

and r2 ∈ K2 and r1 and r2 have the same name and type, then r1 and r2
match.

23

• Single unmatched sibling. In general, if c1 ∈ K1 and c2 ∈ K2, c1 and c2
match, and each of the classes has exactly one unmatched subclass, subC1

and subC2, respectively, then subC1 and subC2 match.

• Siblings with the same suffixes or prefixes. In general, if c1 ∈ K1 and
c2 ∈ K2, c1 and c2 match, and the names of all subclasses of c1 are the same
as the names of all subclasses of c2 except for a constant suffix or prefix, then
the subclasses match.

• Single unmatched Property. In general, if c1 ∈ K1 and c2 ∈ K2, c1 and
c2 match, and each of the classes has exactly one unmatched property, p1
and p2 respectively, and p1 and p2 have the same domain and range, then p1
and p2 match.

• Unmatched inverse properties. If a knowledge model allows definition of
inverse relationships, then those relationships can be used to create matches
as well. In general, if p1 ∈ K1 and p2 ∈ K2, p1 and p2 match, invP1 and
invP2 are inverse properties for p1 and p2 respectively, and invP1 and invP2

are unmatched, then invP1 and invP2 match.

• Split classes. In general, if c0 ∈ K1 and c1 ∈ K2 and c2 ∈ K2, and for each
instance of c0, its image is an instance of either c1 or c2, then c0 was split
into c1 and c2. A similar matcher identifies classes that were merged.

The above heuristic matchers are mainly focusing on the matching of the nodes
according to their structural difference or similarities. As a result, they can be
applied for the matching of the blank nodes. However, no special attention is paid
in their case.

2.4 Semversion

SemVersion [35] is a Java library for providing versioning facilities to RDF data.
It is based on RDF/RDFS, so it can be used for any ontology language built or
adapted to this data model.

Semversion offers an easy to use (and thus, integrate with) API that closely
follows the usual functions and concepts of CVS [6]. To commit a new version,
a user can either provide the complete contents of the version (which is an RDF
model, i.e., simply a set of triples), or a diff, that is, the change that is to be
applied on a preexisting version to create the new one.

At the implementation level (Figure 2.4), persistence is handled by RDF2Go 3,
which provides common storage interfaces over triple- and quad-stores (SemVersion
uses the abstraction of the latter), such as Jena 4, Sesame 5, YARS 6, NG4J 7, etc.
SemVersion stores each version of an RDF model as a unique independent graph
that contains the whole model.

3http://ontoware.org/projects/rdf2go/
4http://jena.sourceforge.net/
5http://www.openrdf.org/
6http://sw.deri.org/2004/06/yars/
7http://sites.wiwiss.fu-berlin.de/suhl/bizer/ng4j/

24

Figure 2.4: The Layered Architecture of SemVersion

Diffs serve two purposes: First, SemVersion allows to compute (structural and
semantic) diffs between two arbitrary chosen models, to inform the user about
changes. This allows collaborative ontology engineering. Second, diffs can be
used in an update command to apply changes to a remotely stored model. When
dealing with very large models, it might not be feasible (nor efficient) to transfer
the complete model, if only a small fraction has changed.

Semversion provides three type of diff s analyzed at the next sections.

2.4.1 Set-based Diff

For versioning, the set-based diff is simply the set-theoretic difference of two RDF
triple sets. Such diffs can be computed by simple set arithmetics for triple sets
that contain only URIs and literals.

2.4.2 Structural Diff and Blank nodes

Without the presence of blank nodes, the set-based diff is the same as the structural
diff. With blank nodes, the set-based diff considers all blank nodes to be different
and reports all statements involving blank nodes both as added and as removed.

SemVersion also handles the problem of uniquely identifying blank nodes.
Blank nodes cannot be globally identified, as they lack a URI, and this poses
a challenge at diff algorithms. This is overcome by adding functional properties
to each blank node leading to a URI, effectively treating them, from that point
on, as normal nodes. This procedure is called blank node enrichment. Other tools
that process the RDF data are expected not to remove this property, so this will
survive the roundtrip ”extract a version from the repository, manipulate it in some
ontology editor, reinsert the changes at the repository to create a new version”, so
that SemVersion can understand whether two blank nodes are the same. If this
URI is missing, then SemVersion treats the node as new (since creating a new
node from an external tool would be missing this, of course).

However, blank nodes are matched only in the case where they participate in
exactly the same triples. In the context of a system where changes arise between
subsequent versions, this blank node matching technique is a bit restrictive, as no
closest matching is applied.

25

2.4.3 Semantic Diff

The semantic difference has to take the semantics of the used ontology language
into account.

An intuitive way to understand the concept of a sematic diff goes like this: Let’s
assume we use RDF Schema as our ontology language, and have two versions (K
and K ′) of an RDFS ontology. Now, in order to compute the semantic RDFS diff,
we use the closure of K (C(K)). Then we do the same for K ′ (C(K ′)). Now we
calculate a structural (syntactical, set-based) diff on C(K) and C(K ′). This is not
the same as the structural diff between K and K ′. If the structural diff of two
models is empty, then the semantic diff must also be empty. The inverse is not
necessarily true: There might be two different RDF Knowledge Bases which encode
the same semantic model, resulting in an empty semantic diff, but a nonempty
structural diff.

2.5 x-RDF-3X

The work presented in presents an extension of the RDF-3x system that supports
versioning and some other services as time-travel access and transactions on RDF
databases. Versioning is achieved by maintaining versions of individual triples
(updates are considered as pairs of insertions and deletions, so two timestamps
fields are used, the created and deleted to denote the life of each triple version).
The [created, deleted] interval is the lifespan of the triple version, where deleted
has a null value for versions that are presently alive. The database state of a given
point in time t can be reconstructed by returning all triples for which t falls into
the corresponding lifespan interval. Ideally, timestamps reflect the commit order
of transactions, but unfortunately the commit order is not known when inserting
new data. In order to cope with this problem each transaction is assigned a write
timestamp once it starts updating the differential index, and this timestamp is
then used for all subsequent operations. Ideally the migration is performed at
transaction commit only, which means that the timestamps perfectly reflect the
commit order and need no further updates. Moreover, a transaction inventory is
used, that tracks transaction ids, their begin and commit times (BOT and EOT),
the version number used for each transaction, and the largest version number of all
committed transactions (highCV #) at the commit time of a transaction (Figure
2.14). This inventory serves to efficiently decide if a transaction committed before
another one. Also, it relates the relative time of transaction ordering and version
numbering to wall clock times. This is needed for supporting time-travel queries
and snapshot isolation. Regarding the experimental evaluation synthetic work-
loads were constructed based on real data (from the LibraryThing book-tagging
web site) and the x-RDF-3x system was compared with two other systems: Post-
greSQL and Jena. The results show that the first system was 3 times more space
efficient than the others systems.

26

2.6

2.7 RDF utils

RDF utils is developed as part of the KnoBot project. KnoBot is an RDF-based
content management system which stores all its data in a Jena Model. It is de-
signed to allow decentralized exchange of information founded on trust relation-
ships between individual persons/agents. While it is designed to maximally com-
ply with standards and best practices it offers novel features (e.g. relevance based
aggregation).

RDF utils is a utility tool for dealing with RDF data, it provides the following
features:

• Leanify: Remove redundant statements (and anonymous nodes) from rdf-
graphs

• Diff : Show the difference between two rdf-graphs

Figure 2.5: The granularity of the Semantic Web ranges from the universal graph
to triple.

The main difference of this work to others is the choice of the level of granularity
(Figure 2.5). The problem of granularity is well explained in [13]. RDF documents
and named graphs are too coarse for some particular application needs, such as in
tracking provenance of an RDF graph. In this case, the overlap of the graph at
hand with other graphs is a key to identify its provenance. But a named graph
can’t be used to express an overlap, as it will generally contain irrelevant triples
too, unless explicitly calculating the intersection. On the other hand, triple-level
is too fine-grained, due to the case of blank nodes. For example, see the RDF
graphs of Figure 2.6. The first one shows an unnamed resource (blank node) with
surname ’Ding’ and first name ’Li’. The second graph is identical, while the third
described another ’Ding’ person, in particular ’Zhongli Ding’. If the triple-based
overlap was meant to be used, the first and the third graph would appear that they
share a common triple, while in fact the triples describe different people. This is
due to the lack of universal identity of blank nodes; their identity is only derived
by the named resources or literals connected to them. Clearly, when blank nodes
are involved, equality of triples can’t reliably be used as identification of equal
RDF content.

27

Figure 2.6: Three RDF graphs that show personal information from three sources.
The first one asserts that a person who has first name ’Li’ and surname ’Ding’.

In [14], the decomposition is defined as follows. An RDF graph decomposition
consists of three elements (W,d,m): the background ontology W , the decom-
pose operation d(G,W) which breaks an RDF graph G into a set of sub-graphs
G∗ = G1, G2, ..., Gn using W , and the merge operation m(G∗,W) which combines
all elements in G∗ into the a unified RDF graph G′ using W . In addition, a de-
composition must be lossless such that
for any RDFgraph G,G = m(d(G,W),W).

RDF molecules are defined as the finest and lossless subgraphs of a graph G

according to a decomposition (W,d,m). Worth of note is that this concept is very
similar to the notion of Minimum Self-contained Graphs (MSG), described in [34],
one of the differences being that molecules also consider an arbitrary reasoning
-the ”background ontology”- while MSG deals only with RDF).

2.7.1 Labeling RDF Nodes

As mentioned by

2.8 RDF Sync

2.9 CWM of w3c

CWM is part of SWAP, a Semantic Web Application Platform. SWAP consists
of tools and applications to manipulate RDF graphs much like traditional tools
manipulate text files. CWM is a command-line tool, written in python, for pro-
cessing RDF in both the standard XML encoding and an experimental encoding,
Notation3 [5].

CWM offers a utility that allows the user to compute the delta between two
Knowledge Bases and then to apply the delta on the first Knowledge Base to obtain
the second.

The authors state that in case which all the nodes are names, computing the
difference between two graphs is simple and straightforward:

If G1 and G2 are ground RDF graphs, then the ground graph delta of G1 and
G2 is a pair of (inserions, deletions) where insertions is the set difference G2−G1

and deletions is G1−G2. This form of delta is reasonably economical: the storage
cost is linear in the size of the difference between the graphs.

28

2.9.1 Patch file format

By analogy to the text diff, there is a need not only for a difference-finding algo-
rithm, but for a patch file format. Such a format needs:

• A way to uniquely identify what is changing.

• A way to distinguish between the pieces added and those subtracted.

It is straightforward to pinpoint the parts of the Knowledge Base that have
changed when all nodes are named, but less so in the presence of anonymous nodes.
To identify what is changing, Notation3 expressions are used and three new terms
are introduced. For example:

prefix diff: < http://www.w3.org/2004/delta# >.

{ ?x bank:accountNo "1234578"; bank:balance 4000}

diff:replacement

{ ?x bank:accountNo "1234578"; bank:balance 3575}.

This one new property replacement can express any change. Deletions can be
written {...} diff:replacement {} and additions can be written {} diff:replacement

{...}.
The second alternative is very similar but involves two properties, one for

inserting and one for deleting:

{ ?x bank:accountNo "1234578"}

diff:deletion { ?x bank:balance 4000};

diff:insertion { ?x bank:balance 3575}.

The form using diff:insertion and diff:deletion is implemented in CWM.

2.9.2 Weak and Strong Deltas

CWM distinguishes two types of RDF deltas:

• Weak delta. Gives enough information to apply it to exactly the Knowledge
Base it was computed from.

• Strong delta. Specifies the changes in a context independent manner. The
difference is not in the format of the output but in the information a partic-
ular delta gives.

For example, if bank account numbers are globally unique, then a blank node
that represents a bank account can be identified by a particular bank account. In
OWL terms, if bank : accountNumber is an owl : InverseFunctionalProperty,
then the node must be the owl : sameAs any other node with the same account
number. In that case, the delta will be strong. If however, many accounts can have
the same number, applying that delta to another knowledge base may inadvertently
alter the wrong account. The delta is weak.

In order to produce strong deltas CWM uses the owl : FunctionalProperty

and owl : InverseFunctionalProperty to assign labels to blank nodes in order to
uniquely identify them. Strong deltas are provided if sufficient information can be
found in the Web to fully label the input graphs.

29

It becomes clear that the blank nodes cannot be matched in the general case.
The blank node matching is successfully built only in the case of ontologies with
functional datatype properties, which are compatible in OWL/Full but not in
OWL/DL, let alone in RDF.

2.10 Jena

Jena is a Semantic Web toolkit for Java programmers. The heart of the Semantic
Web recommendations is the RDF Graph as a universal data structure. Jena
similarly has the Graph as its core interface around which the other components
are built.

Jena provides tools, including: a Java model/graph API, an RDF Parser (sup-
porting an N-Triples filter), a query system based on RDQL , support classes for
DAML+OIL ontologies and persistent/in-memory storage on BerkeleyDB or var-
ious other storage implementations. Due to its storage abstraction, Jena enables
new storage subsystems to be integrated. To facilitate querying, Jena provides
statement-centric methods for manipulating an RDF model as a set of RDF triples
and resource-centric methods for manipulating an RDF model as a set of resources
with properties, as well as built-in support for RDF containers. Jena contains
Joseki RDF server, a server accepting SOAP and HTTP requests to query RDF
resources. The latest version of Jena and Joseki support SPARQL.

Jena does not provide a mechanism to compare two RDF graphs and find the
differences between them (i.e. compute the delta). But it provides a mechanism
that decides whether two RDF graphs are isomorphic or not.

It follows the approach intoduced at [8] to decide isomorphism between graphs.
A signature is created for each node (named or unnamed) assuming its position
in the graph. Nodes that have the same signatures between the two graphs are
matched. If all the nodes of the two graphs match then the graphs are isomorphic.

Although blank nodes are treated here in a more sophisticated and general way
than the aforementioned papers, no attention is paid in the case of not isomorphic
Knowledge Bases, as no delta can be computed.

2.11 pOWL

Powl, a web based ontology management tool. Its capabilities include parsing,
storing, querying, manipulating, versioning, serving and serializing RDF and OWL
knowledge bases for different target audiences.Powl is implemented in the web
scripting language PHP.

Powls architecture consists of 4 stacked tiers, while trying to minimize depen-
dencies and supplying clean interfaces between tiers. It consists of the following
tiers:

• Powl store: SQL compatible relational database.

• RDFAPI, RDFSAPI, OWLAPI: layered APIs for handling RDF, RDFS and
OWL.

• Powl API: containing classes and functions to build web applications on top
of those APIs.

30

• User interface: a set of PHP pages combining widgets provided by Powl API
for accessing (browsing, viewing, editing) model data in a Powl store.

To enable domain experts to collaboratively develop shared conceptualizations
based on the Ontology Web Language a key requirement is to support a version-
ing strategy. In order to suport versioning, pOWL does provide a mechanism to
compare Ontologies and find the differences between them, but supposes that all
the changes were made through the pOWL platform and so they are tracked. One
editing action by the user may be complex, but every editing action can be decom-
posed into smaller editing actions (Figure 2.7) and finally into adds and removes
of RDF triples to or from the RDF model.

Powl enables rollback of every particular editing action by determining if the
involved triples are still present (if added) or still missing (if removed). A parent
action thus may only be rolled back if all sub-actions may be rolled back as well.

Figure 2.7: pOWL Versioning.

2.12 Summary Comparison

Table ?? presents a number of basic features which are then used for providing an
overview of the functionality offered by each of the previously described systems.

Features Description

∆e Use ∆e as differential function
∆c Use ∆c as differential function
∆d Use ∆d as differential function
∆dc Use ∆dc as differential function
∆ed Use ∆ed as differential function
Up Use Up-semantics
Uir Use Uir-semantics
Heuristic matchers Use heuristic matchers to detect changes
Isomorphism Decide isomprphism between two RDF graphs
Change Log Maintain the sequence of applied changes

Table 2.1: Features of the comparison

The first five features correspond to the differential functions already intro-
duced (i.e. ∆e, ∆c, ∆d, ∆dc and ∆ed) and indicate if a system uses the compari-
son function or not. The next two features correspond to the two different change
operations semantics introduced (i.e. Up and Uir).

31

Heuristic matchers are a kind of rules that are used in order to decide if some-
thing has changes at a Knowledge Base. Unfortunately, the heuristic matchers are
language specific i.e. depend on the semantics of the underlying language. For
example the heuristic matchers that need to be used for RDF differ from those
used for OWL.

The Isomorphism is the ability to decide whether two RDF graphs, which may
contain blank nodes, have the same structure. The tools that implement this
feature may not produce a delta as a result, but just decide isomorphism between
the graphs.

The Change Log is a registry that records the actions that occurred in the
versioning system, for example the steps taken to create a new version from an
older one. If the actions are completely recorded, one could traverse this log and
apply the actions in the order that they occurred and reach the same result. The
change log is also useful for a user that wants to understand the changes made by
someone else, to see the way they work and possibly spot errors.

Features Systems
OntoView PromptDiff SemVersion RDF Utils CWM Jena Powl SWKM

∆e no no yes yes yes no no yes
∆c no no yes no no no no yes
∆d no no no no no no no yes
∆dc no no no no no no no yes
∆ed no no no no no no no yes
Up no no yes yes yes no no yes
Uir no no no no no no no yes

Heuristic matchers yes yes no no no no no no
Isomorphism no no no yes yes yes no not yet
Change Log no no no no no no yes no

Table 2.2: Features comparison of versioning systems and tools

The differential function ∆e is utilized by SemVersion, RDF Utils, CWM and
SWKM, while ∆c is used by SemVersion and SWKM. The other differential func-
tions (i.e. ∆d, ∆dc and ∆ed) are used only by SWKM. Considering the change
operation semantic, Up is used by SemVersion, RDF Utils, CWM and SWKM,
while Uir is used only by SWKM. PromptDiff and OntoView detect changes using
heuristic matches. RDF Utils, CWM and Jena can detect if two RDF graphs are
isomorphic. Finally, Powl uses a change log to keep track of the changes in order
not to have to compute the delta.

32

Chapter 3

On reducing RDF Delta in
KBs with blank nodes

3.1 Introduction

Versioning, Synchronization and Replication services need a method to compare
two RDF KBs with blank nodes and then transform the first KB to the second
(Figure 3.1). For this reason two modules are required:

• A differential function to report the differences between two RDF KBs

• A change operation semantics that indicates the way the differences must be
applied to the first RDF KB to get the second one.

K K’
What set of change
operations could
transform K to K’?

?

Figure 3.1: What set of change operations could transform K to K ′?

Obviously, a differential function that yields the smallest in size result is pre-
ferred. Furthermore, a pair of (differential function & change operation semantics)
must at least satisfy correctness when synchronizing remote Knowledge Bases.

3.2 Preliminaries

In this chapter we initially give some basic notation, that is followed in the rest
of this work. Then we give the basic definition of RDF KBs and determine the
differential functions and change operations.

3.2.1 Basic Notation

Let t be an RDF triple of the form (s, p, o), where s is called the subject, p the
predicate and o the object of the triple. Let T be the set of all possible RDF triples

33

that can be constructed from an infinite set of URIs (for resources, classes and
properties) as well as literals. In general, an RDF Knowledge Base can be seen as
a finite subset K1 of T , i.e. K ? T .

Another presentation of a Knowledge Base K1 is as a directed labelled graph
G1 = (N1, R1). The nodes of the graph are the URIs, the literals and the blank
nodes that appear as subjects or objects in the triples of K, while the edges of the
graph are labelled (with URIs) arcs that connect the corresponding nodes. We
can partition the nodes of N into three sets N = U1?L1?B1, where U1 is the set
of all URI nodes, L1 is the set of all literals nodes, and B1 is the set of all blank
nodes of G.

3.2.2 RDF Knowledge Bases

Apart from the explicitly specified triples of a K, other triples can be inferred
based on the RDF/S semantics [17]. For this reason, we introduce the notion of
closure and reduction of RDF/S KBs.

The closure of a K, denoted by C(K), contains all the triples that either
are explicitly asserted or can be inferred from K by taking into account class or
property assertions made by the associated RDFS schemas. Thus, we can consider
that C(K) is defined (and computed) by taking the reflexive and transitive closures
of RDFS binary relations such as subClassof and type. It should be stressed that
our work is orthogonal to the consequence operator of logic theories [15] actually
employed to define the closure operator C. Specifically, if P denotes the powerset
of all possible sets of triples of T , then the closure operator can be defined as any
function C : P → P that satisfies the following properties:

• K ⊆ C(K) for all K, i.e. C is extensive

• If K ⊆ K ′ then C(K) ⊆ C(K ′), i.e. C is monotonically increasing

• C(C(K)) = C(K) for all K, i.e. C is an idempotent function

If it holds C(K) = K, then we will call K completed. The elements of K will
be called explicit triples, while the elements of C(K) −K will be called inferred.
We can now define an equivalence relation between two knowledge bases.

Def. 1 Two knowledge bases K and K ′ are equivalent, denoted by K ∼ K ′, iff
C(K) = C(K ′).

The reduction of a K, denoted by R(K), is the smallest in size set of triples
such that C(R(K)) = C(K). Let Ψ denote the set of all knowledge bases that
have a unique reduction. Independently of whether the reduction of a K is unique
or not, we can characterize a K as (semantically) redundancy free, and we can
write RF (K) = True (or just RF (K)), if it does not contain explicit triples which
can be inferred from K. Formally, K is redundancy free if there is not any proper
subset K ′ of K (i.e. K ′ ⊂ K) such that K ∼ K ′. Figure 3.2 illustrates the above
sets of triples (R(K) is enclosed in a dashed box because it is not always unique).

It is worth noticing that the reduction of a K is not always unique. In general,
uniqueness of the transitive reduction of a binary relation R is guaranteed only
when R is antisymmetric and finite. Unfortunately, this is not the case of RDF/S
KBs allowing cycles in the subsumption relations. For example, in Figure 3.3 we
have K ∼ K1 ∼ K2, moreover RF (K1), RF (K2), but K1 6= K2.

34

R(K)

K

C(K)

inferred triples

Redundant explicit triples

explicit triples

K

K-R(K)

C(K)-K

Redundant triples
C(K)-R(K)

Figure 3.2: Distinctions of triples sets

B C

A

B C

A

B C

A
K K2K1

Figure 3.3: KB without unique reduction

3.2.3 Differential Function and Change Operations

In the context of this work, we focus on two basic change operations allowing to
transform one KB to another, namely triple addition Add(t) and deletion Del(t)
where t ∈ T . In this respect, a triple update is ”split” into an addition and a
deletion of triplets having the same subject and predicate (and thus keep both
”old” and ”new” values usually ignored by updates).

[37] introduced five differential functions of RDF/S KBs. They are given in
Figure 3.4, namely, ∆e, ∆c, ∆d, ∆dc and ∆ed.

∆e(K → K ′) = {Add(t) | t ∈ K ′ −K} ∪ {Del(t) | t ∈ K −K ′}

∆c(K → K ′) = {Add(t) | t ∈ C(K ′)− C(K)} ∪ {Del(t) | t ∈ C(K)− C(K ′)}

∆d(K → K ′) = {Add(t) | t ∈ K ′ − C(K)} ∪ {Del(t) | t ∈ K − C(K ′)}

∆dc(K → K ′) = {Add(t) | t ∈ K ′ − C(K)} ∪ {Del(t) | t ∈ C(K)− C(K ′)}

∆ed(K → K ′) = {Add(t) | t ∈ K ′ −K} ∪ {Del(t) | t ∈ K − C(K ′)}

∆e (where e stands for explicit) actually returns the set difference over the
explicitly asserted triples, while ∆c (where c stands for closure) returns the set
difference by also taking into account the inferred triples 1. Three novel differential
functions namely ∆d (where d comes from dense), ∆dc (dc comes from dense &
closure) and ∆ed (ed comes from explicit & dense) are introduced in [36]. It results
that ∆d produces the smallest in size set of change operations.

1Mention that ∆e and ∆c define a symmetric set difference.

35

C(K)

C(K')

K

K'

C(K)

C(K')

K

K'

C(K)

C(K')

K

K'

K

K'

C(K)

C(K')

C(K)

C(K')

K

K'

∆e ∆c

∆d ∆dc ∆ed

deleted triples added triples

K

C(K')

K'

C(K)

C(K')

K

K'

C(K)

Figure 3.4: Added and deleted triples of the differential functions

These five differential functions yield essentially sets of atomic change op-
erations. More formally, for a differential function ∆x(K → K ′)) where x ∈
{e, c, d, dc, ed}, ∆+

x is used to denote the corresponding set of triple additions (i.e.
incremental changes) and ∆−

x the set of triple deletions (i.e. decremental changes).
Obviously, ∆x contains only sets of useful change operations reflecting the

net effect of successive modifications over the same (explicit or inferred) triple of
two KB versions. In other terms, ∆x does not contain both Add(t) and Del(t)
operations for a given t ∈ T .

Def. 2 A Delta ∆(K → K ′) is useful if it holds ∆+ ∩∆− = ∅.

By defining RDF Deltas as sets of atomic change operations, we avoid to specify
an execution order as in an edit-script (i.e. a sequence of triple additions or
deletions). This design choice amends to simpler computation requirements for
RDF/S Deltas while it provides the opportunity of applying alternative semantics
of changes when transforming one KB to another (i.e. with or without side-effects
on the KB closure). e introduce two sets of change operations:

• Atomic change operations
Here we have operations of the form Add(t) and Del(t) where t ∈ T .

• Bulk change operations
Here we consider the operation AddDel(A,D) where A and D are disjoint
sets of triples (i.e. A ⊆ T , D ⊆ T , A ∩D = ∅).

It is not hard to see that the result of a differential function ∆(K → K ′) could be
applied on K by issuing one single call to AddDel(·, ·) (i.e. AddDel(∆+,∆−)), or
by issuing |∆+| calls to Add(·) and |∆−| calls to Del(·) in any possible order.

36

For the needs of this work we mostly use the differential function ∆e. For
short, its output is called delta.

3.3 RDF KBs with Blank Nodes

3.3.1 RDF graph equivalence

The equivalence of RDF graphs that contain blank nodes is defined in [1] as:

Def. 3 (Equivalence of RDF Graphs that contain Blank nodes)
Two RDF graphs G1 and G2 are equivalent if there is a bijection2 M between the
sets of nodes of the two graphs (N1 and N2), such that:

• M(uri) = uri for each uri ∈ U1 ∩N1

• M(lit) = lit for each lit ∈ L1

• M maps blank nodes to blank nodes (i.e. for each b ∈ B1 it holdsM(b) ∈ B2)

• The triple (s, p, o) is in G1 if and only if the triple (M(s), p,M(o)) is in G2.
⋄

It follows that if two graphs are equivalent then it certainly holds U1 = U2,
L1 = L2 and |B1| = |B2|.

Let us now relate the problem of equivalence with edit distances.

Def. 4 (Edit Distance over Nodes given a Bijection)
Let o1 and o2 be two nodes of G1 and G2, and suppose a bijection between the
nodes of these graphs, i.e. a function h : N1 → N2 (obviously |N1| = |N2|). We
define the edit distance between o1 and o2 over h, denoted by disth(o1, o2), as
the number of additions or deletions of triples which are required for making the
“direct neighborhoods” of o1 and o2 the same (considering h-mapped nodes the
same). Formally, disth(o1, o2) =
|{(o1, p, a) ∈ G1 | (o2, p, h(a)) 6∈ G2}|+ |{(a, p, o1) ∈ G1 | (h(a), p, o2) 6∈ G2}|+

|{(o2, p, a) ∈ G2 | (o1, p, h−1(a)) 6∈ G1}|+ |{(a, p, o2) ∈ G2 | (h−1(a), p, o1) 6∈ G1}| ⋄

Now recall that if G1 is equivalent to G2 then there exists a bijection h such
that (a, p, b) ∈ G1 ⇔ (h(a), p, h(b)) ∈ G2. We will denote this by G1 ≡h G2. It
follows that:

Theorem 1 (RDF Graph Equivalence and Edit Distance)
G1 ≡h G2 ⇔ disth(o, h(o)) = 0 for each o ∈ N1.

Obviously the above theorem is useful for the case where the bijection h respects
the constraints of Def. 3 (i.e. maps named elements to named elements, and
anonymous elements to anonymous).

2A function that is both one-to-one (injective) and onto (surjective).

37

3.3.2 Bnode Name Tuning

The basic idea for reducing the delta is the following: if we match a blank node b1
(of B1) to a blank node b2 (of B2), through a bijecion M , then these blank nodes
can be considered as equal at the computation of delta. For example, ifK1 contains
a triple (b1, name, Joe) and K2 contains a triple (b2, name, Joe) and we match
b1 to b2, then these two triples will be considered equal and thus no difference
will be reported. However we should note that in the context of versioning or
synchronization services the change operations derived by a differential function
should not be used as they are. For example, consider K1 = {(b1, name, Joe)}
and K2 = {(b2, name, Joe), (b2, lives, UK)} and suppose that we match again b1
to b2. In this case a mapping-aware comparison function will return the delta
{Add((b2, lives, UK))}. If we want to apply it on K1 then we have to replace b2
by b1, i.e we should apply on K1 the operation Add((b1, lives, UK)), and in this
way, we will obtain K ′

1 = {(b1, name, Joe), (b1, lives, UK)} which is equivalent to
K2. We call this step Bnode Name Tuning, and it actually replaces (renames)
in the delta the local names of the blank nodes of B2 by the local names of the
matched blank nodes in B1. In this way the delta does not need any rename
operation (i.e. rename(b1, b2)) and hence not any particular execution order.

3.3.3 Delta reduction size

Blank node matching cannot increase the delta size. Without blank node matching
any pair of blank nodes from different Knowledge Bases is considered different, and
thus all triples to which they participate will be different and reported as change
operations in the delta. In particular, we denote Da as the average number of
direct edges of the blank nodes (i.e. average number of triples to which a blank
node participates) and n1 = |B1|, n2 = |B2|. Without blank node matching the
produced delta will contain at least (n1 + n2) ∗Da change operations.
On the other hand, if two blank nodes are matched then the delta size is reduced
if they participate to triples with the same predicate and the same other node (i.e.
the same subject or object). In the worst case where all predicates/nodes of these
triples are different, the delta size that will be reported is what will be reported
without blank node matching.

3.4 Bnode Matching as an Optimization Problem

Let us now focus on the case where two Knowledge Bases, K1 and K2, are not
necessarily equivalent and do contain blank nodes. We would like to find a mapping
over their blank nodes that reduces the size (i.e. the number of change operations)
of their delta and allows detecting whether K1 is equivalent to K2. Furthermore
we want an efficient (tractable at least) method for finding such a mapping.

3.4.1 Problem Formulation

Here we formulate the problem of finding a mapping between the blank nodes
of two Knowledge Bases as an optimization problem. Let n1 = |B1|, n2 = |B2|
and n = min(n1, n2). We have to match n elements of B1 with n elements of
B2, i.e. our objective is to find the unknown part of the bijection M . To be

38

more precise, M a priori contains the mappings of all the URIs and literals of
the Knowledge Bases (URIs and literals are mapped as an identity function as in
Def. 3), and its unknown part concerns B1 and B2. Suppose that n = n1 < n2.
Let J denote the set of all possible bijections between B1 and a subset of B2

that comprises n elements. The number of all possible bijections (i.e. |J |) is
n2 ∗ (n2 − 1) ∗ ... ∗ (n2 − n1 + 1), i.e. the first element of B1 can be matched with
n2 elements of B2, the second with n2 − 1 elements, and so on. Consequently, the
set of candidate solutions is exponential in size.
Since our objective is to find a bijection M ∈ J that reduces the delta size (as
regards the “unnamed” parts of the Knowledge Bases), we define the cost of a
bijection M as follows:

Cost(M) =
∑

b1∈B1

distM (b1,M(b1)) (3.1)

Def. 5 (The bijection yielding the less delta size) The best solution (or so-
lutions) is defined as the bijection with the minimum cost, i.e. we define:

Msol = argM min
M∈J

(Cost(M)) ⋄

The notation argM returns the M in J that gives the minimum cost.

Theorem 2 (Equivalence and Mapping Cost) If G1 ≡Msol
G2 (according to

Def. 3) then Cost(Msol) = 0.

The proof follows easily from the definitions. It is also clear that the inverse of
Th. 2 does not hold (i.e. Cost(Msol) = 0 6⇒ G1 ≡Msol

G2) because the cost is
based on the distance between the direct neighborhoods of the blank nodes only,
and not between the named parts of the graphs.

From the algorithmic perspective, one naive approach for finding the best solu-
tion (i.e. Msol) would be to examine the set of all possible bijections. That would
require at least n! examinations (true if n1 = n2 = n, while if n1 < n2 then their
number is higher than n!). However, the problem is intractable in general:

Theorem 3 Finding the optimal bijection (according to Def. 5) is NP-Hard.
Proof:
We will show that subgraph-isomorphism (which is NP-complete problem) can be reduced
to the problem of finding the optimal bijection (meaning that our problem is at least as
hard as subgraph-isomorphism). Let us make the hypothesis that we can find the optimal
bijection in polynomial time. We will prove that if that hypothesis were true, then we would
be able to solve the subgraph isomorphism in polynomial time. The subgraph isomorphism
decision problem is stated as: given two plain graphs G1 and G2 decide whether G1 is
isomorphic to a subgraph of G2. Let G1 = (N1, R1) and G2 = (N2, R2). We can consider
these graphs as two RDF graphs such that: all of their nodes are blank nodes and all
property edges have the same label. Assume that |N1| ≤ |N2| and let n = min(|N1|, |N2|).
If we can find in polynomial time whether there is a bijection between the n nodes of G1

and n nodes of G2 such that Cost(Msol) = 0, then this means that we have found whether
G1 is isomorphic to a subgraph of G2. Specifically, to decide whether there is a subgraph
isomorphism, (a) we compute the optimal bijection, say Msol, and (b) we compute its
cost. If the cost returned by step (b) is 0 then we return YES, i.e. that there is a subgraph
isomorphism. Otherwise we return NO (i.e. there is no subgraph isomorphism). Note

39

that step (a) is polynomial by hypothesis, while step (b) relies on Def. 4 and its cost is
again polynomial. Regarding the latter, note that Msol contains n pairs, and to compute
distM (b1, b2) for each (b1, b2) pair of M , we consider only the direct neighborhoods of the
two nodes in the two graphs (for G2 we have to consider only those that connect nodes that
participate in Msol)

3. It follows that its computational cost is analogous to the number of
edges of the graphs, and thus polynomial. Therefore given a bijection Msol, to compute
Cost(Msol) requires polynomial time. Also note that Th. 1 holds also for plain graphs
assuming a distance function over not labeled edges. We conclude that if our hypothesis
were true, then we would be able to decide subgraph isomorphism in polynomial time.

We conclude that finding the optimal bijection is NP-Hard.⋄

Below we will show that there are algorithms of polynomial complexity for
a frequently occurring case. For the general case, we will propose algorithms of
polynomial complexity that return an approximate solution.

3.4.2 Polynomially-solved (and Frequently Occurring) Cases

3.4.2.1 No directly connected blank nodes

Consider the Knowledge Bases in Figure 3.5 and suppose that we want to compute
disth(: 1, : 6) (according to Def. 4). It is not hard to see that this distance
depends on the mappings (by h) of the blank nodes that are connected to : 1
and : 6, i.e. on the mappings of : 3, : 4, : 8 and : 9. However several
datasets do not have directly connected blank nodes. For this reason, here we
study a variation of the problem that is appropriate for this case. The key point is
that the distance between two blank nodes does not depend on how the rest blank
nodes are mapped.

Figure 3.5: Two Knowledge Bases with directly connected blank nodes

This is very important because in this case we can solve the optimization
problem (as defined in Definition 5) using the Hungarian algorithm [24] (for short
AlgHung, an algorithm for solving the assignment problem. Here the elements
(blank nodes) of B1 play the role of workers, the elements (blank nodes) of B2

play the role of jobs, and the edit distances of the pairs in B1 × B2 play the
role of the costs. Consider for the moment that |B1| = |B2|. If we compute
the edit distances between all possible n2 pairs, then AlgHung can find the optimal
assignment at the cost of O(n3) time. This means that finding the optimal solution

3Alternatively, if Cost(Msol) 6= 0 (using the distance as defined in the main paper), we return
YES only if ∆e(G1 → G2) as defined in section ??, after blank node name tuning, contains only
triples each containing one blank node in B1 and one not in B1.

40

costs polynomial time. An extension of AlgHung giving the ability to assign the
problem in rectangular matrices (i.e. when |B1| 6= |B2|) is already provided in [7].
We conclude that if there are not directly connected blank nodes then the optimal
mapping can be found in polynomial time.

Theorem 4 Finding the optimal bijection (according to Def. 5) is a polynomial
task if there are no directly connected blank nodes.⋄

3.4.2.2 BNode Neighborhoods with bounded tree width

[21] also surveyed the structure of blank nodes in published data. According
to their results almost the 58% of their documents containing blank nodes had
directly connected blank nodes. However, the 98.4 of those blank node structures
were acyclic. The acyclicity of a structure is equivalent with a tree width up to 1.

Taking the above statistics into account, it is worth investigating the exis-
tence of tractable solutions for the wider case of RDF graphs with acyclic bnode
neighborhoods.

Bounding the tree width makes many intractable (in the general case) problems
tractable.

3.5 Approximation Algorithms

At section 3.5.1 we present a variation of AlgHung for getting an approximate
solution for the general case, then at Section 3.5.5 we present a signature-based
algorithm appropriate for larger datasets.

3.5.1 Hungarian BNode Matching Algorithm

We have already stated that AlgHung can find the optimal mapping in polynomial
time if no directly connected bnodes exist in the compared KBs. For the cases
where there are directly connected bnodes, AlgHung enriched with an assumption
regarding how to treat the connected bnodes at the computation of disth, could
be used for producing an approximate solution. Also in this case the algorithm
will make n1 × n2 distance computations (where n1 = |B1| and n2 = |B2|), and
the complexity of the algorithm will be again O(n3).

Regarding connected bnodes, at the computation of disth, one could either
assume that all of the connected bnodes are different, or all of them are the same.
The first assumption does not require any bijection (h contains only the identity
functions of the URIs and literals). According to Definition 4, the fact that all the
bnodes are different means by extension that the triples in the direct neighborhoods
connecting blank nodes are different too, even in the case where these triples have
the same properties. For instance, applying the Definition 4 between bnodes (: 1,
: 6) and (: 1, : 7) of Figure 3.5, we get that disth(: 1, : 6) = 4 and

disth(: 1, : 7) = 3 respectively. However, bnodes : 1, : 6 have two outgoing
triples with exactly the same properties, while bnodes : 1, : 7 have only one.
We observe that this assumption is not very good because we would prefer : 1 to
be “closer” to : 6 than to : 7.

According to the alternative assumption, when comparing bnodes (: 1, : 6)
in Figure 3.5, bnode : 3 can be matched either with bnode : 8 or with bnode

41

: 9, depending on the existence of a common property between them. This yields
disth(: 1, : 6) = 0 since both bnodes have two outgoing triples with common
properties (i.e. (: 1, brother, : 3) is matched with (: 6, brother, : 8) and
(: 1, friend, : 4) is matched with (: 6, friend, : 9)). Regarding : 1 and : 7,
we get disth(: 1, : 7) = 1 because of the deleted triple (: 1, brother, : 3). It
follows that the results of this assumption are better over this example, as : 1 is
“closer” to : 6 than to : 7. In general it is better because it exploits common
properties, and therefore we adopt this assumption in our experiments.

In other words, the above assumptions do not compute the ”likelihood” of the
blank nodes to be matched. They arbitrarily suppose that there is no likelihood
(0) of matching (first assumption) by charging with 2 the edit distance (one dele-
tion and one addition) or there is probability equal to 1 of the blank nodes to
be matched, by not charging at all the edit distance. The computation of the
”likelihood” would require an increase in the time and memory demands.

3.5.2 A Fast (O(N logN)) Signature-based Algorithm

The objective here is to devise a faster mapping algorithm that could be applied
to large KBs (with a heavy load of bnodes), at the cost of probably bigger deltas
and less chances to detect equivalences if they exist 4. We propose a signature-
based mapping algorithm, for short AlgSign, which consists of two phases: the
signature construction and the mapping construction phase. Regarding the signa-
ture construction phase, for each bnode b we produce a string based on the direct
neighborhood of b. This string is called the signature of bnode b. At the end of
this phase we get two lists of signatures, one for the bnodes of each KB. These
lists should be considered as bags rather than sets, as there is a probability that
two or more bnodes get the same signature. This probability and by extension
the deviation of this algorithm from the optimal solution depends on the way the
signature is built (we discuss this later).

Alg. SignatureMapping

Input: two sets of bnodes B1 and B2,
where |B1| < |B2|

Output: a bij. M between B1 and B2

(1) M = ∅
(2) BS1 = BS2 = emptybag
(3) for each b1 ∈ B1

(4) BS1 = BS1 ∪ {Signature(b1)}
(5) for each b2 ∈ B2

(6) BS2 = BS2 ∪ {Signature(b2)}
(7) sort(BS1)
(8) sort(BS2)

(9) for each bs1 ∈ BS1

(10) bs2 = Lookup(BS2, bs1)
(11) if (bs2 == bs1)
(12) M = M ∪ {(bn1[bs1], bn2[bs2])}
// bn1[str] returns the b ∈ B1 corresponding to str

(13) BS2.remove(bs2)
(14) BS1.remove(bs1)
(15) for each bs1 ∈ BS1

(16) bs2 = Lookup(BS2, bs1)
(17) M = M ∪ {(bn1[bs1]), bn2[bs2])}
(18) BS2.remove(bs2)
(19)return M

Figure 3.6: Alg. The Signature-based bnode matching algorithm

The mapping phase takes these two bags of strings and compares the elements
of the first bag with those of the second. To make binary search possible, both bags
(lists) are sorted lexicographically. Subsequently, we start from the smaller list,

4however we theoretically and experimentally show that it gets the same chance to detect
equivalence

42

say BS1, and for each string bs1 in that list we perform a lookup in the second list
BS2 using binary search. If an exact match exists (i.e. we found the string bs1 also
in BS2) we produce a bnode mapping, i.e. the pair (bn1[bs1], bn2[bs1]). Since more
than one bnodes may have the same signature we select one. We prefer the order as
provided by the managing software, which in many cases reflects the order by which
bnodes appear in files. As there is a high probability for subsequent versions to keep
the same serialization, using the original order increases the probability of matches
in case of same signatures5. More information about the role of serialization are
given in Section ??. We continue in this way for all strings of BS1. For each
element bs1 of BS1 for which no exact match was found in BS2 we perform a
second lookup over the remainder part of BS2, say BS′

2, which will produce a
mapping based on the closest element of BS′

2 to the bs1 element. Specifically
we will match bs1 to the element of BS′

2 to which binary search stopped, i.e. to
the lexicographically closer element. Note that we perform the closest matches
after finishing with the exact matches in order to avoid the situation where an
approximate (closest) match deters an exact match at a later step.

The algorithm is shown in Figure 3.10 and relies on an algorithm Signature

for producing signatures, and on an algorithm Lookup, that are analyzed below.
The complexity of this algorithm is O(n logN) where N = max(n1, n2) and n =
min(n1, n2), assuming that the average graph degree of bnodes (and thus signature
size) does not depend on N .

3.5.2.1 Signature Construction

A crucial issue is how the signature of each bnode is derived. We would like to
devise a signature construction method producing signatures with high discrimi-
nation power. Our objective is to derive a string that will allow good matches in
the Lookup algorithm even if the bnodes do not match exactly. The more resources
we capture inside the signature of a bnode, the more we increase its discrimination
power. However, the need to keep the signature size independent of N forces us
to remain only in the direct neighborhood.

Figure 3.7: Two Knowledge Bases of an address ontology

Figure 3.11 shows two subsequent KBs of the Address Ontology. Table 3.2 gives
the signatures of all the bnodes in Figure 3.11. The namespaces of the resources

5We do the same in AlgHung in case of ties in costs.

43

are omitted here just for needs of space.

Table 3.1: Signatures on bnodes of K1 and K2 of Fig. 3.11 according to the given
option

Local
Name

Signature

: 1 ChristinahasAddress♦typeAddress♦cityLondon ∗ no14 ∗ streetOxfordStreet

: 3 ChristinahasAddress♦typeAddress♦cityLondon ∗ no14 ∗ streetOxfordStreet

: 2 Y annishasAddress♦typeAddress♦cityNewY ork ∗ no445 ∗ streetBroadway

: 4 Y annishasAddress♦typeAddress♦cityChicago ∗ no132 ∗ streetMichiganAvenue

Consider bnode : 1 of Figure 3.11 which is involved in the following triples:
Incoming triples: {(Christina, hasAddress, :1)},
Outgoing triples: {(:1, street, Oxford Street), (:1, No, 14), (:1, city, London)},
Class Type triples: {(:1, typeOf, Address)}.

The set Class Type contains the triples with the rdf:type property of the re-
spective bnode. Each of these triples will be mapped to a substring (i.e. “Christi-
nahasAddress” for the triple (Christina, hasAddress, : 1)).

For each one of the three different sets of triples (Incoming, Outgoing, Class
Type) we are going to construct a concatenation of substrings (i.e. “cityLondon ∗
no14∗streetOxfordStreet” for the Outgoing set of triples). The substrings inside
each set are sorted lexicographically and separated by a special character, here
denoted by ∗.

These sets of substrings are then concatenated and separated by a special
character, here denoted by ♦. This final concatenation yields the signature. In
case there is a blank node as subject in the set of incoming triples or object in
the set of outgoing triples, we replace it by a special character, here denoted by
♣. In other words, we treat them as equal, as we did in the second assumption of
approximation version of AlgHung. The reasoning of the structure of the signature
is given later.

The exact steps of the signature construction algorithm are shown in algorithm
Signature1 at Figure 3.12. The method name(o) gives us the uri reference if o is
a uri and the label if o is a literal. The method isBNode(n) returns a boolean
that is true if n is a bnode or false if it is not. The strings inSet, outSet, classSet
are the three sets that are gradually built by concatenating the information from
all the triples in the direct neighborhood.

3.5.2.2 The Lookup algorithm

This algorithm is actually responsible for the high time efficiency of this approx-
imation algorithm, as it is a slightly modified version of Binary Search. Instead
of the classical BinarySearch, this algorithm Lookup always returns a string. If
the Lookup succeeds, it returns the matching (i.e. the string that we search), oth-
erwise it returns the closest (in lexicographical order) string. The closest string
is defined as the string located either in the position the BinarySearch stopped
or in the exact previous (if the last iteration decreased the high value) or in the
next (if the last iteration increased the low value) position. In order to make a
decision among the two strings (signatures), we define the elements of a signature,

44

Alg. Signature1

Input: a blank node b
Output: a string bs signature of the blank node
(1) bs = null
(2) inSet = outSet = classSet = ∅
//construction of the Set of Incoming Triples
(3) for each{(sub, pr, ob) | ob = b}
(4) if (isBNode(sub))
(5) inSet = inSet ∪ {name(pr) + ”♣”}
(6) else
(7) inSet = inSet ∪ {name(pr) + name(sub)}
(8) for each{(sub, pr, ob) | sub = b}
//construction of the Set of rdf:type Triples
(9) if (isTypeOf(pr))
(10) classSet = classSet ∪ {name(pr) + name(ob)}
(11) else if (isBNode(ob))
(12) outSet = outSet ∪ {name(pr) + ”♣”}
//construction of the Set of Outgoing Triples
(13) else
(14) outSet = outSet ∪ {name(pr) + name(trim(ob))}
(15)sort(inSet)
(16)sort(outSet)
//concatenation of the three Sets
(17)for (each strings ∈ inSet)
(18) bs = bs+ s+ ”♦”
(19)for (each strings ∈ classSet)
(20) bs = bs+ s+ ”♦”
(21)for (eachstrings ∈ outSet)
(22) bs = bs+ s+ ”♦”
(23)return bs

Figure 3.8: Signature Construction Algorithm

45

say elems(bs), as the number of the building blocks (i.e. substrings split by the
characters ♦ or ∗) included in its string. The returned string among these two
strings is the one that has as elems a value closer to the elems of the searching
string. The exact steps of the algorithm LookUp are shown in Figure 3.13.

Alg. Lookup

Input: a string bs and a sorted bag of strings BS
Output: the best matching string bs2
(1) a = NULL
(2) low = 0
(3) high = BS.length
(4) while (low < high)
(5) mid = ⌊(low + high)/2⌋
(6) bmid = BS[mid]
(7) if (bs < bmid))
(8) high = mid
(9) else if (bs > bmid)
(10) low = mid+ 1
(11) else return bmid // exact match found
(12)end while
(13)if (bs < bmid ∧ (|elems(bs)− elems(bmid)| > |elems(bs)− elems(BS(mid− 1))|)
(15) return BS[mid− 1]
(16)else if (bs > bmid) ∧ (|elems(bs)− elems(bmid)| > |elems(bs)− elems(BS(mid+ 1))|)
(18) return BS[mid+ 1]
(19)else
(20) return bmid

Figure 3.9: Lookup algorithm

Applying the SignatureMapping algorithm in the simple example of Figure
3.11 we get the final mapping: :1 ↔ :3 and :2 ↔ :4. Going to a more complex
example (i.e. with connected bnodes), like the one of Figure 3.5 the final mapping
would be :1 ↔ :6, :2 ↔ :7, :3 ↔ :8, :4 ↔ :10, :5 ↔ :9.

3.5.3 More about the Signature Construction

A key point in the efficiency of this algorithm is the order by which the sets of
triples are concatenated. The prevailing option is to give a first priority to the set
of the incoming triples, a second priority to the set with the rdf:type properties,
and the last priority to the set of the outgoing triples. Let us remind that at
this phase we are looking for a signature construction method that is completely
general and domain-agnostic.

Some intuition for the proposed ordering stems from the evidence that the
probability for the outgoing statements to change is higher than the ingoing (i.e.
like in Figure ??(a) where updating the address of a person is more probable than
changing his/her name).

A closer approach to the functionality of the blank nodes, could persuade the
reader for the prevalence of their outgoing triples over their incoming triples. This
fact entails that the probability for an outgoing triple to change is higher than
an incoming triple. Based on the analysis of functionality of bnodes, described

46

in Section 1, we get the following: (a) the multi-component structure yields that
bnodes are arising more times as subjects than objects (see Figure ??(a)), (b) the
functionality of provenance imposes the usage of bnodes in the subject position
more than in the object position and (c) in the “Multi-relationship expression”
the bnode occurs once in the object position and more than once in the subject
position.

Moreover, taking into account the empirical surveys of bnodes in Linked Data,
we get that, according to [21], surveying a corpus of 1G quadruples, they got that
each bnode occured 0.99 times in the object position of a non-rdf:type triple (with
1.9% of all bnodes not occuring at all in the object position), whereas each bnode
occurred on average 4.2 times in the subject position of a triple (with 0.04% not
occuring at all in the subject position).

A reason that urges the above results is the tree-based RDF/XML syntax.

We conclude that mainly the functionality purposes and secondly the prevailed
RDF format (RDF/XML) indicate the dominance of bnodes in the subject posi-
tion, justifying that the Incoming Set has more probability to stay stable from the
one version to the other, than the Outgoing Set.

3.5.4 Comparing the approximation algorithms

In this section we are going to compare the algorithms AlgHung and AlgSign at a
theoretical level. An analysis over their complexities has already been offered in
the previous sections and made clear that the AlgSign offers a much better time and
main memory complexity. Now we are going to focus on the equivalence detection
and delta reduction potential.

3.5.4.1 On Equivalence Detection Potential

As regards the equivalence detection potential we get the following proposition:

Theorem 5 (Comparing on Equivalence Detection Potential) TheAlgSign
has the same equivalence detection potential with the AlgHung. Proof:

Let us suppose that we have two equivalent KBs (K1 and K2). We have to investigate

the following cases.

1st Case: The KBs do not have any directly connected bnodes. In this case, the constructed

signatures do not contain any blank node (as no bnode belongs to the direct neighborhood

of a bnode). This means that during signature matching no assumptions have to be made

about the treatment of the directly connected bnodes (in equivalence with the Optimal Hun-

garian). Let us focus on the signature matching phase and suppose that exact and closest

signature mappings occur. Suppose a closest signature mapping occurs i.e. the signature

s1 of a bnode b1 in K1 is mapped to the signature s2 of a bnode b2 in K2 and s1 6= s2.

The fact that s1 was mapped to s2 entails that there is no signature of K2 that equals s1,

or that there are more signatures that are the same with s1 in K1 than there are in K2

(so the rest of the same bnodes are already mapped and removed from the signature lists

according to lines 9 - 14 of the Signature Mapping Algorithm). From the signature con-

struction method we know that all triples of the direct neighborhood of b1 are represented

inside the s1 in a deterministic manner, which is independent of the serialization order

of these triples. In other words, two same signatures correspond to two bnodes with the

47

same direct neighborhoods. As a result, we get that the closest signature matching entails

that there is a bnode in K1 with a direct neighborhood D1 that does not exist in K2 or that

there are more bnodes in K1 equivalent with D1 than there are in K2. Both entailments are

wrong because K1 and K2 are equivalent. We conclude that the signature matching phase

of two equivalent KBs performs only exact signature mappings. For this subcase, this fact

is equivalent to a total cost equals to zero, as an exact signature matching is equivalent

with a zero edit distance and additionally is independent of the other blank node pairs. We

conclude that for equivalent KBs the AlgSign always finds the solution that has a zero total

cost for the AlgHung and by extension it always finds the optimal bijection (according to

Theorem 2 and Theorem 4).

2nd Case: The KBs contain directly connected bnodes. Recall that signature construction

phase represents each bnode in the direct neighborhood of a bnode with the same sym-

bol. Consequently, all the connected bnodes are considered the same during the signature

matching phase, exactly like in the AlgHung. This means that if we focus on the signature

matching phase, it is clear that we only have exact signature mappings (similarly with the

1st Case). Each exact signature matching is equivalent to a zero edit distance between

the bnodes of these signatures in the AlgHung . As a result, the same bnode matchings

are extracted for the AlgSign and the AlgHung. Remind that each KB remains exactly the

same (same serialization of bnodes) during the comparison with both the algorithms. ⋄

3.5.4.2 On Delta Reduction Potential

The lower delta reduction potential is the price to pay for the low time complexity
of the AlgSign. Recall that the binary search produces a bnode mapping giving pri-
ority to the first part of the signatures. Consequently, its delta reduction potential
is built upon a quite general probabilistic model based on predictions/statistics
about the changes that we expect to be made on the direct neighborhoods of the
bnodes. This is the extra approximation factor in relation to the AlgHung, that
justifies a probable bigger delta.

Thus, in case of KBs with no directly connected bnodes the AlgSign gives the
same (optimal) or bigger delta than the AlgHung. However, in case of KBs with
directly connected bnodes there are scenarios, where the AlgSign exports bigger
deltas than the AlgHung, but there are other scenarios where the AlgSign exports
smaller deltas than the hung. In other words, the extra approximation factor of
the AlgSign may impact in a positive way to the exported delta. The percentage
of how smaller or bigger the delta could be cannot be determined generally, only
under specific domain statistics.

3.5.5 On the serialization of the Knowledge Bases

As we have already mentioned, the serialization of the two files may play an im-
portant role in the delta reduction or the equivalence detection potential of both
the algorithms. In particular, in case of equivalent KBs with directly connected
blank nodes the only factor that restricts the AlgSign and the AlgHung algorithms
from getting the optimal bijection is the serialization order of their blank nodes. In
other words, the serialization order is the order of appearance of the blank nodes
inside the file. Formally, we get:

48

Theorem 6 (The serialization order as an approximation factor) If two
equivalent KBs have the same serialization order (for their bnodes), both the
AlgSign and AlgHung find the optimal bnode mapping.
Proof:

We will prove that if two equivalent KBs (K1 and K2) have the same serialization order

for their bnodes, then the optimal bijection between their bnodes will be built. Suppose

that K1 and K2 have the same serialization fr their bnodes and that they do not give the

optimal bnodes bijection. The AlgHung will calculate the edit distances between the bnodes

of K1 and K2. From the Theorem 1 we get that if two RDF graphs are equivalent, then

there is a bijection M between their bnodes such that the pairs of bnodes of this bijection

have a zero edit distance. As the AlgHung makes an assumption about the treatment of the

connected bnodes that assumes all the connected bnodes the same, it will compute as zero

at least the edit distances of the pairs of bnodes in M . However there is a probability that

a bnode b1 of B1 has a zero edit distance not only with b2 of B2 s.t. (b1, b2) ∈ M , but also

with other bnodes of B2 and inversely. So, we should further investigate this case and in

particular we give the two different scenarios for the existence of this case.

Scenario A’: There are more than one bnodes (let’s say 2) in K1 with the same direct

neighborhoods (D1) and respectively there are 2 bnodes with the same direct neighborhoods

D1 in K2 (as K1 and K2 are equivalent). Their direct neighborhoods do not contain bn-

odes, only URIs and literals. As a result, whatever kind of bijection can occur between the

2 bnodes of K1 and the 2 bnodes of K2 the total cost will remain zero and the optimal

solution will be given in any case.

Scenario B’: There are more than one bnodes in K1 (let’s say 2) with exactly the same

named parts and the same number of bnodes in their direct neighborhoods (D1, D2). Re-

spectively there are 2 bnodes in K2 with exactly the same features. Let us denote with

b1, b2 the bnodes ∈ K1 and b3, b4 the bnodes ∈ K2. Bnodes b1a, b1b are connected to b1

and respectively b2a, b2b are connected to b2 and so on. Let us keep the same serialization

order of these bnodes for both the files of K1 and K2, or in other words if the order that

the bnodes are displayed inside the first file is b1, b1a, b1b, b2, b2a, b2b, then the order in

the second file will be b3, b3a, b3b, b4, b4a, b4b. Subsequently, we get that the AlgHung gives

an array of edit distances with many zero values, because of the assumption that all the

connected bnodes are the same. However, because the serialization remained the same, we

get that the pairs (b1, b3) and (b2, b4) will be given in the final bijection and the assumptions

that are made during the computation of the edit distances will also be part of the final

bijection. It similarly goes, if instead of 2 bnodes structures we had 3 and so on. So the

same serialization order of the bnodes ensures the fact that no assumptions made for the

edit distances of the final bijection, is going to be violated and by extension the total cost

will remain 0 or else we get the optimal solution. We get that our assumption does not

stand. ⋄

The objective here is to devise a faster mapping algorithm that could be applied
to large KBs, at the cost of probably bigger deltas and less chances to detect
isomorphisms if they exist 6. We propose a signature-based mapping algorithm,
for short AlgSign, which consists of two phases: the signature construction and the
mapping construction phase. For each bnode b we produce a string based on the
direct neighborhood of b. This string is called the signature of bnode b. This
phase gives us two lists of signatures, one for the bnodes of each KB. These lists

6theoretically and experimentally show that gets the same chance to detect isomorphism

49

should be considered as bags rather than sets, as there is a probability that two
or more bnodes get the same signature. The probability depends on the way the
signature is built (we discuss this later).

Alg. SignatureMapping

Input: two sets of bnodes B1 and B2,
where |B1| < |B2|

Out: a bij. M between B1 and B2

(1) M = ∅
(2) BS1 = BS2 = emptybag
(3) for each b1 ∈ B1

(4) BS1 = BS1 ∪ {Signature(b1)}
(5) for each b2 ∈ B2

(6) BS2 = BS2 ∪ {Signature(b2)}
(7) sort(BS1)
(8) sort(BS2)

(9) for each bs1 ∈ BS1

(10) bs2 = Lookup(BS2, bs1)
(11) if (bs2 = bs1)
(12) M = M ∪ {(bn1[bs1], bn2[bs2])}
// bn1[str] returns the b ∈ B1 corresponding to str

(13) BS2.remove(bs2)
(14) BS1.remove(bs1)
(15) for each bs1 ∈ BS1

(16) bs2 = Lookup(BS2, bs1)
(17) M = M ∪ {(bn1[bs1]), bn2[bs2])}
(18) BS2.remove(bs2)
(19)return M

Figure 3.10: Alg. The Signature-based bnode matching algorithm

The mapping phase takes these two bags of strings and compares the elements
of the first bag with those of the second. To make binary search possible, both
lists are sorted lexicographically. Subsequently, we start from the smaller list, say
BS1, and for each string bs1 in that list we perform a lookup in the second list BS2

using binary search. If an exact match exists (i.e. we found the string bs1 also in
BS2) we produce a mapping, i.e. the pair (bn1[bs1], bn2[bs1]). Since more than one
bnodes may have the same signature we select one. We prefer the order as provided
by the managing software, which in many cases reflects the order by which bnodes
appear in files. As there is a high probability for subsequent versions to keep the
same serialization, using the original order increases the probability of matches
in case of same signatures7. We continue in this way for all strings of BS1. For
each element bs1 of BS1 for which no exact match was found in BS2 we perform
a second lookup over the remainder part of BS2, say BS′

2, which will produce
a mapping based on the closest element of BS′

2 to the bs1 element. Specifically
we will match bs1 to the element of BS′

2 to which binary search stopped, i.e. to
the lexicographically closer element. Note that we perform the closest matches
after finishing with the exact matches in order to avoid the situation where an
approximate match deters an exact match at a later step.

The complexity of this algorithm is O(n logN) where N = max(n1, n2) and
n = min(n1, n2), assuming that the average graph degree of bnodes (and thus
signature size) does not depend on N . The algorithm is shown in Figure 3.10 and
relies on an algorithm Signature for producing signatures, and on a algorithm
Lookup. These are analyzed below.

3.5.5.1 Signature Construction

A crucial issue is how the signature of each bnode is derived. We would like a sig-
nature construction method producing signatures with high discrimination power.
The objective is to derive a string that will allow good matches (i.e. matches that
will yield small deltas) even if the bnodes do not match exactly. To this end, we

7We do the same in AlgHung in case of ties in costs.

50

should give priority (i.e. bring to the front part of the string) the items of the
bnode that have lower probability to be changed from one version to the other.

Figure 3.11: Two versions of an address Knowledge Base

Table 3.2: Signatures on bnodes of K1 and K2 of Fig. 3.11 according to the given
option

Local
Name

Signature

: 1 ChristinahasAddress♦typeAddress♦cityLondon ∗No14 ∗ streetOxfordStreet

: 3 ChristinahasAddress♦typeAddress♦cityLondon ∗No14 ∗ streetOxfordStreet

: 2 Y annishasAddress♦typeAddress♦cityNewY ork ∗No445 ∗ streetBroadway

: 4 Y annishasAddress♦typeAddress♦cityChicago ∗No132 ∗ streetMichiganAvenue

Consider bnode : 1 of Figure 3.11 which is involved in the following triples:
Incoming: {(Christina, hasAddress, : 1)}, Outgoing: {(: 1, street, OxfordStreet),

(: 1, No, 14), (: 1, city, London)}, Class Type: {(: 1, typeOf,Address)}. Each of
these triples will be mapped to a string (e.g. ”ChristinahasAddress” for the triple
(Christina, hasAddress, : 1)). The set Class Type contains the triples with the
rdf:type (“type” in the figure) property of the respective bnode. For the three
different sets of triples (Incoming, Outgoing, Class Type) we are going to construct
three sets of substrings respectively (i.e. ”cityLondon♦No14♦streetOxfordStreet♦”
for the Outgoing set of triples).The substrings inside each set are sorted lexico-
graphically and separated by a special character, here denoted by ∗ .

The triples inside these sets are sorted lexicographically. The concatenation of
these sets of substrings will yield the signature.

A key point is the order by which the sets are concatenated. One option is
to give a first priority to the set of the incoming triples, a second priority to the
set with type information (i.e. ”typeAddress”), and the last priority to the set
of the outgoing triples. We should also mention that inside the signature the
sets are separated by a special character, here denoted by ♦. Table 3.2 shows
the signatures of all the bnodes of Figure 3.11 according to this option. The
proposed ordering of the substrings inside the signature stems from the assumption
that the probability for the outgoing statements to change is higher than the
ingoing (i.e. like in Figure 3.11 where updating the address of a person is more
probable than changing his/her name). A more stable argument for the proposed
ordering is the fact that, according to [21], blank nodes occur most prevalently
in the subject position than the object position due to the tree-based RDF/XML
syntax. This structure yields the existence of a resource (i.e. the subject of the
incoming triple) and its properties (i.e. the objects of the outgoing triples). There
are more chances to face a change of properties of a resource than of the name
itself of the resource (probably a URI). However it is worth investigating other
signature construction methods. Under this assumption the ingoing statements
should precede the outgoing inside the signature. Similarly for the class type of

51

the bnode, it is not usual to be changed from the one version to the other. 8 We
represent the blank nodes which are subjects of incoming statements or objects of
the outgoing statements, by a special character ♣ (i.e. we treat them as equal, as
we did in the 2nd assumption of approximation version of AlgHung). The exact
steps of the signature construction algorithm are shown in algorithm Signature1
at Figure 3.12.

Alg. Signature1

Input: a blank node b
Output: a string bs signature of the blank node
(1) bs = null
(2) inSet = outSet = classSet = ∅
(3) for each{(sub, pr, ob) | ob = b}
(4) if (isBNode(sub))
(5) inSet = inSet ∪ {name(pr) + ”♣”}
(6) else
(7) inSet = inSet ∪ {name(pr) + name(sub)}
(8) for each{(sub, pr, ob) | sub = b}
(9) if (isTypeOf(pr))
(10) classSet = classSet ∪ {name(pr) + name(ob)}
(11) else if (isBNode(ob))
(12) outSet = outSet ∪ {name(pr) + ”♣”}
(13) else
(14) outSet = outSet ∪ {name(pr) + name(trim(ob))}
(15)sort(inSet)
(16)sort(outSet)
(17)for (each strings ∈ inSet)
(18) bs = bs+ s+ ”♦”
(19)for (each strings ∈ classSet)
(20) bs = bs+ s+ ”♦”
(21)for (eachstrings ∈ outSet)
(22) bs = bs+ s+ ”♦”
(23)return bs

Figure 3.12: Signature Construction Algorithm

3.5.5.2 The Lookup algorithm

The algorithm SignatureMapping also uses a Lookup method, which is actually a
slightly modified version of Binary Search. Instead of the classical BinarySearch,
this algorithm Lookup always returns a string. If the Lookup succeeds, it returns
the matching (i.e. the string that we search), otherwise it returns the closest
(in lexicographical order) string. The closest string is defined as the string located
either in the position theBinarySearch stopped or in the exact previous (if the last
iteration decreased the high value) or in the next (if the last iteration increased the
low value) position. In order to make a decision among the two strings (signatures),
we define the elements of a signature, say elems(bs), as the number of the building
blocks (i.e. substrings split by the character ♦) included in its string. The returned
string among these two strings is the one that has as elems a value closer to the

8Note that the assumption that the outgoing statements change more frequently

than the ingoing is an assumption.

52

elems of the searching string. The exact steps of the algorithm LookUp are shown
in Figure 3.13.

Alg. Lookup

Input: a string bs and a sorted bag of strings BS
Output: the best matching string bs2
(1) a = NULL
(2) low = 0
(3) high = BS.length
(4) while (low < high)
(5) mid = ⌊(low + high)/2⌋
(6) bmid = BS[mid]
(7) if (bs < bmid))
(8) high = mid
(9) else if (bs > bmid)
(10) low = mid+ 1
(11) else return bmid // exact match found
(12)end while
(13)if (bs < bmid ∧ (|elems(bs)− elems(bmid)| > |elems(bs)− elems(BS(mid− 1))|)
(15) return BS[mid− 1]
(16)else if (bs > bmid) ∧ (|elems(bs)− elems(bmid)| > |elems(bs)− elems(BS(mid+ 1))|)
(18) return BS[mid+ 1]
(19)else
(20) return bmid

Figure 3.13: Lookup algorithm

Applying the SignatureMapping algorithm in the simple example of Figure
3.11 we get the final mapping: :1 ↔ :3 and :2 ↔ :4. Going to a more complex
example (i.e. with connected bnodes), like the one of Figure 3.5 the final mapping
would be :1 ↔ :6, :2 ↔ :7, :3 ↔ :8, :4 ↔ :10, :5 ↔ :9.

53

54

Chapter 4

Experimental Evaluation

We performed experiments for evaluating the potential for delta reduction, equiva-
lence detection and time efficiency, deviation from the optimal delta and scalability.

They were performed using Sesame RDF/S Repository (main memory), using
a PC with Intel Core i3 at 2.2 Ghz, 3.8 GB Ram, running Ubuntu 11.10.

to be done

4.1 TestBed

In order to provide an integrated experimental evaluation experiments were
performed over real and synthetic datasets.

Real Datasets. We used two real datasets available in the LOD cloud: the
Swedish open cultural heritage dataset1, and the Italian Museums dataset2, pub-
lished from LKDI3. From each one we downloaded two versions with a time dif-
ference of one week or month. A preprocessing was necessary for corrections (e.g.
missing URIs for some classes) and for merging the files. The features of these two
datasets are given in Table 4.1. In both datasets there are no directly connected
bnodes.

Synthetic Datasets. Although semantic data generators already exist in the

1http://thedatahub.org/dataset/swedish-open-cultural-heritage used from
http://kringla.nu/kringla/ for providing information on cultural data of Sweden.

2http://thedatahub.org/dataset/museums-in-italy
3http://www.linkedopendata.it/

Table 4.1: Features of two real LOD datasets

Swedish Italian

File 1 File 2 File 1 File 2

Date 15/10/11 22/10/11 2/11/11 4/12/11
|Triples| 3,750 3,589 49,897 49,897
|BNodes| 535 509 6,390 6,390
|Triples with bnodes| 77.7% 77.2% 43.85% 43.85%
Total Size 378 KB 365 KB 5.49 MB 5.46 MB

to be done

55

Table 4.2: Experimental results over real datasets

Swedish Italian

without
BM

with BM (bnode matching) without
BM

with BM (bnode matching)

Random AlgHung AlgSign Random AlgHung AlgSign

|Added| 2,805 2,726 75 127 21,885 19,762 3 3
|Deleted| 2,966 2,887 236 288 21,885 19,762 3 3
|∆e| 5,771 5,613 311 419 43,770 39,524 6 6

BLoad Time(ms) - 631 630 634 - 428 423 421
SC Time(ms) - - - 210 - - - 840
BM Time(ms) - 1.3 5,391 130 - 4.9 576,592 82.5
Diff Time(ms) 55 64 30 47 145 166 169 163
Tuning Time(ms) - 15 0.2 0.5 - 3,332 9.4 9.5
Total Time(ms) 57 715 5,931 1,024 147 3,935 577,197 1,521

bibliography, none of them deals with the blank node connectivity issues. There-
fore we designed and developed a synthetic generator over the UBA (Univ-Bench
Artificial data generator) [16] that provides control over the bnode structures of
the generated datasets. Each dataset corresponds to an RDF graph G.

4.2 Evaluation: not directly connected bnodes

Experiments were conducted with and without bnode matching. Regarding match-
ing we tested: (a) the random, (b) the Hungarian, and (c) the Signature-based
mapping methods. The results are shown in Table 4.2. The first rows show the
size of the yielded deltas and the last rows the time required for loading the bnodes
(BLoad), constructing signatures (SC), bnode maping (BM), delta computation
(Diff), bnode name tuning (Tuning Time), and the total time. We observe that
the algorithms provide a delta of 12.7 to 7, 294 times smaller than without bnode
mapping. AlgHung yields an equal (for the Italian) or smaller (0.34 times smaller
for the Swedish) delta than AlgSign, but it requires more time (from 15 to 624
times).

4.3 Evaluation: directly connected bnodes

4.3.1 On Complex Bnode structures

LetNodes be the set of all nodes in the graph, B be the set of bnodes (B ⊆ Nodes),
and conn(o) be the nodes of G that are directly connected with a node o ∈ Nodes.

We define bdensity as bdensity = avgb∈B
|conn(b)∩B|
|conn(b)| . Note that if there are no directly

connected bnodes then bdensity = 0. The extended generator can create datasets
with the desired bdensity and the desired maximum length of paths that consist of
edges that connect bnodes (we denote by blen their average).

Using the synthetic generator, we created a sequence of 9 pairs of KBs (each
pair has two subsequent versions of a KB). For instance, the first KB is K0 and
its pair is K ′

0.
Each time we compare the subsequent versions of a pair with respect to map-

ping time and yielded delta size. From now on we express the delta size as a

56

Table 4.3: Blank node Features of the synthetic dataset

K |triples| |B| Da bdensity blen Optimal
delta
size

Variation

K0a 5,846 240 13.4 0 0 1% No connected blank nodes
K1a 5,025 240 10.5 0.1 1 0.5% b Neighborhoods of 2 bnodes, reduced

b named triples
K2a 2,381 240 7 0.15 1 1.5% Reduced b named triples
K3a 1,628 240 5 0.2 1 1.5% Reduced b named triples
K4a 1,636 240 5 0.2 1.15 1% b Neighborhoods of up to 8 bnodes
K5a 1,399 240 4 0.25 1.15 1.7% Reduced b named triples
K6a 919 240 3 0.32 1.15 3.2% b Neighborhoods of up to 15 bnodes, re-

duced b named triples
K7a 909 240 3.25 0.4 1.35 2.7% Connect b Neighborhoods, reduced

b named triples
K8a 1,001 240 3.94 0.5 21.5 2.5% Connect b Neighborhoods

percentage of the number of triples of the KB, i.e. as |∆e(K,K ′)|
|K|+|K′|

2

. Table 4.3 shows

the blank node properties of each pair of KBs, its optimal delta size over its sub-
sequent version (known by construction) and its variation over the next pair of
KBs (we call b Neighborhood every subgraph having as nodes only bnodes, and
we call b named triple every triple that contains one bnode). With Da we denote
the average number of direct edges of the bnodes (i.e. average number of triples
to which a bnode participates). to be done

4.3.2 Delta Reduction Potential

Figure 4.1(left) gives the delta reduction potential of each algorithm in logarithmic
scale. Without bnode mapping the delta size ranges from 95% (for the second pair
of KBs) to 143% (for the ninth pair of KBs). Instead for AlgHung it ranges from
0.47% to 10.67% and for AlgSign it ranges from 1% to 11.5%. Notice that AlgSign
does not reduce the delta to the optimal for any pair of datasets, while AlgHung

achieves the optimal delta for most of the pairs.
Figure 4.1 (right) shows the delta reduction potential for the same pairs with the
difference that the two bnode lists are not scanned in the original order (as in
the left figure), but the second list is reversed. We notice that as the areas of
directly connected bnodes become bigger (after the sixth pair of datasets), we
get different (here higher) deltas. In such areas the direct neighborhoods lose
their discrimination ability and thus the delta reduction potential becomes more
unstable, increasing the probability to get a bigger delta.

If we use the optimal delta as baseline, and compute the percentage
|∆x|−|∆opt|

|∆opt|
,

in the first diagram this percentage for AlgHung falls in [0, 2.88], while the AlgSign’s
percentage falls in [0.4,3.2] (in the second diagram they fall in [0,8] and [0.4,8]
resp.).

4.3.3 Time Efficiency

Figure 4.2 (left) shows the mapping times of each algorithm in logarithmic scale.
AlgSign gives two orders of magnitude lower mapping times.

57

Figure 4.1: Delta Reduction over the synthetic datasets

Figure 4.2: Mapping times over the synthetic datasets

4.3.4 Equivalence Detection Potential

Regarding equivalent KBs, if there are no directly connected bnodes then AlgHung

detects them at polynomial time (recall Th. 4). To investigate what happens if
there are directly connected bnodes we compared the pairs (Kia,Kia) for i=0 to
8 of the synthetic KBs. In case of similarly ordered bnode lists both AlgHung and
AlgSign detected equivalences for all the KBs, while for reverse scanned bnodes
lists they detected 5 of the 9 equivalences. They did not detect equivalences for
the KBs with bdensity ≥ 0.25.

4.4 Scalability

To investigate the efficiency of AlgSign in bigger datasets, we created 7 pairs of
KBs: the first pair contains 23,827 triples and 2,400 bnodes, the second pair has
the double number of triples and bnodes, and so on, until reaching the last pair
containing 153,600 bnodes. From Fig. 4.2 (right) we can see that the mapping
time for AlgSign was only 10.5 seconds for the seventh pair of KBs (153,600 bn-
odes). AlgHung could not be applied even to the third pair of KBs due to its high
(quadratic) requirements in main memory space.
The results are summarized in the concluding section.

58

Figure 4.3: dx over non equivalent (left) and equivalent (right) KBs

4.5 Measuring the approximation

The upper bound of the reduction of the delta size that can be achieved with
bnode matching is the min number of bnodes of the two KBs multiplied by their
average degree. Experimentally we have investigated whether bdensity (which is
zero if there are no directly connected bnodes, and equal to 1 if all nodes are
bnodes as in the proof of Th. 3), is related with the deviation from the optimal

delta dx =
|∆x|−|∆opt|
|∆opt|+1 . Results over equivalent and non-equivalent KBs are shown

at Figure 4.3. Both algorithms give a much smaller deviation from optimal than
without bnode matching (its dx ranges [47,114]). We also observe that keeping
the original order of the bnodes is beneficial for both algorithms. For the non
equivalent KBs the AlgHung gives always equal or (mostly) smaller delta than the
AlgSign, while for the equivalent both algorithms give exactly the same deviation.

59

60

Chapter 5

System and Applications

Here we discuss the system that we have implemented and various applications.

5.1 Functionality

BNodeDelta supports all the bnode matching algorithms that have been described.

This tool contains two different versions. The first version is a command line
version and the second one is a web based application. At this point we are going
to give a brief presentation of these two versions.

Regarding the web based version, initially the user/client gives the two KBs
to be compared (which can be given either as paths to local files of the client or
through URLs). Then the server uploads the KBs through FTP and imports them
in the local main memory repository or fetches them from the network through
HTTP respectively.

Figure 5.1 shows a screen shot, where the user has uploaded the two KBs and
selected the RDF format of these KBs.

Afterwards, the user/client specifies the bnode matching algorithm to be used
and selects some extra output options. Figure 5.2 shows such a screen shot.

After these two steps the user/client submits the request and the BNodeDelta
outputs:

• a file with the deleted and the added statements (or one file with the deleted
statements and one file with the added statements) in the selected RDF
format

• statistics regarding the delta

• a file with statistics regarding the KBs (optional)

• a static visualization of the delta as a graph, where the red parts are the
deleted triples and the green parts are the added triples (only in case the
delta size is less than sixty triples)

Figure 5.3 and 5.4 show the exported results from the BNode matching over
the Address KBs using the AlgHung.

An optional step can take as input a namespace mapping table (if a names-
pace nm1 is mapped to a nm2 then they are considered equal at the comparison

61

Figure 5.1: Importing the KBs on BNodeDelta

Figure 5.2: Selecting the BNode matching algorithm on BNodeDelta

62

Figure 5.3: Basic Statistics of the BNode matching

Figure 5.4: The exported files of BNodeDelta

63

phase). Such a phase can be really useful, in case the namespace URI references
has changed from the one version to the other, but we do not to this kind of change
to impact on the exported detla.

Regarding the command line version of BNodeDelta, the user (human or other
program) can execute the jar file through the command line. The input is now
given as parameters of the jar file.

5.2 Architecture

BNodeDelta was developed over the Sesame Virtuoso provider, which is a fully
operational Native Graph Model Storage Provider for the Sesame Framework, al-
lowing users of Virtuoso to leverage the Sesame Framework to modify, query, and
reason with the Virtuoso quad store using the Java language. Sesame Frame-
work’s purpose is to provide a Java-friendly access point to Virtuoso. For the
needs of BNodeDelta Sesame is used as a Java library. It provides us with the
necessary tools to parse, interpret, query and store all this information, embedded
in BNodeDelta, while abstracting the details of the underlying machinery. Figure
5.5 shows an overview of Sesame’s architecture.

Figure 5.5: The Sesame component Stack

Starting at the bottom, the Storage And Inference Layer, or SAIL API, is an
internal Sesame API that abstracts from the storage format used (i.e. whether the
data is stored in an RDBMS, in memory, or in files, for example), and provides
reasoning support. Each Sesame repository has its own SAIL object to represent
it. For the storage of BNodeDelta’s data, we used the Main Memory object with its
two different implementations. The first implementation is the one that operates
directly on top of a SAIL object and the second operates as a proxy to a Sesame
repository available on a remote server, accessible through HTTP.

On top of the SAIL, we find Sesame’s functional modules, such as the SeRQL,
RQL and RDQL query engine, the admin module, and RDF export. BNodeDelta

64

uses the SeRQL language to extract the blank nodes as well as the triples contain-
ing blank nodes. Access to these functional modules is available through Sesame’As
Access APIs, consisting of two separate parts: the Repository API and the Graph
API. The Repository API provides high-level access to Sesame repositories, such
as querying, storing of rdf files, extracting RDF, etc. The Graph API provides
more fine-grained support for RDF manipulation, such as adding and removing
individual statements, and creation of small RDF models directly from code.

Sesame’As main memory model is primarily graph-based, where URIs are
nodes, and triples are a pair of edges (an edge from subject to predicate, and
an edge from predicate to object) each. This provides a quite simple view of RDF
data, that allows someone to navigate uniformly the logical RDF graph, ignor-
ing RDF intricacies where they are irrelevant. Sesame’As main memory model is
triple-based view oriented, a choice that at least affords its API to be very concise.

5.2.1 Applications

At this section we focus on applications that could take advantage of our work in
order to integrate their systems.

5.2.1.1 Jena rdfcompare

Jena is an open source Semantic Web framework for Java, grown out of work with
the HP Labs Semantic Web Programme. It provides an API to extract data from
and write to RDF graphs. The graphs are represented as an abstract ”model that
can be sourced with data from files, databases, URLs or a combination of these.
Jena is actually similar to Sesame; though, unlike Sesame, Jena provides support
for OWL (Web Ontology Language).

The Jena’s rdfcompare is a command line tool written in java which loads two
RDF files into Jena RDF models and uses an API call to check if the models are
isomorphic. Although it seems to correctly tell whether two graphs are isomorphic,
Can compare two files in different RDF formats, it doesn’t give any analysis of the
difference between the files, like someone would expect from UNIX diff.

The existence of blank nodes is the main reason that frameworks have not
elaborated integrated versioning systems. However, this tool could make use of
the AlgSignin order to provide in a tolerable time a quite small delta.

5.2.2

65

66

Chapter 6

Conclusion and Future Work

In this paper we showed how we can exploit bnode anonymity to reduce the delta
size when comparing RDF/S KBs. We proved that finding the optimal mapping
between the bnodes of two KBs, i.e. the one that returns the smallest in size
delta regarding the unnamed part of these KBs, is NP-Hard in the general case,
and polynomial in case there are not directly connected bnodes. To cope with the
general case we presented polynomial algorithms returning approximate solutions.

In real datasets with no directly connected bnodes AlgSign was two orders of
magnitude faster than AlgHung (less than one second for KBs with 6,390 bnodes),
but yielded up to 0.34 times (or 34%) bigger deltas than AlgHung, i.e. than the
optimal mapping. AlgHung also identified all equivalent KBs.
For checking the behavior of the algorithms in KBs with directly connected bnodes,
we created synthetic datasets, over which we compared AlgSign and the AlgHung

approximation algorithm. AlgHung yielded from 0 to 3 times smaller deltas than
AlgSign, but the latter was from 18 to 57 times faster. AlgSign requires only 10.5
seconds to match 153,600 bnodes.

This is the first work on this topic. Several issues are interesting for further
research. For instance, it is worth investigating other special cases where the opti-
mal mapping can be found polynomially (e.g. directly connected bnodes that form
graphs of bounded tree width). Another direction is to comparatively evaluate
various (probabilistic) signature construction methods and greedy approximation
algorithms.

Software and datasets are available to download and use from:
http://www.ics.forth.gr/isl/BNodeDelta. Finally, in the case of very large
KBs that do not fit in memory it would be possible to have a diff implementation
over RQL.

67

68

Bibliography

[1] Resource Description Framework (RDF):Concepts and Abstract Syntax.

[2] S. Agarwal, D. Starobinski, and A. Trachtenberg. “On the Scalability of Data
Synchronization Protocols for PDAs and Mobile Devices”. In IEEE Network
(Special Issue on Scalability in Communication Networks), Vol. 16, No.4,
pp.2228, 2002.

[3] S. Auer. “Powl - A Web Based Platform for Collaborative Semantic Web
Development”. In Proc. of 1st Workshop Workshop Scripting for the Semantic
Web (SFSW’05), Hersonissos, Greece, May 2005.

[4] T. Beners-Lee and D. Connoly. ”Delta: An Ontology for
the Distribution of Differences Between RDF Graphs”, 2004.
http://www.w3.org/DesignIssues/Diff (version: 2006-05-12).

[5] T. Beners-Lee, D. Connoly, and S. Hawke. Semantic web tutorial using n3.
In Twelfth International World Wide Web Conference, Budapest, Hungary,
May 2003.

[6] B. Berliner. “CVS II: Parallelizing Software Development”. In Procs of the
USENIX Winter 1990 Technical Conference, pages 341–352, Berkeley, CA,
1990.

[7] François Bourgeois and Jean-Claude Lassalle. An extension of the Munkres
algorithm for the assignment problem to rectangular matrices. Commun.
ACM, 1971.

[8] J. J. Carroll. “Matching RDF graphs”. In Procs of the ISWC’02, pages 5–15,
Italy, Oct. 2002.

[9] Lei Chen, Haifei Zhang, Ying Chen, and Wenping Guo. ”Blank Nodes in
RDF”. ISWC’12, 2012.

[10] S. Chien, V. Tsotras, and C. Zaniolo. Eficient Management of Multiver-
sion Documents by Object Referencing. In Proceedings of the International
Conference on Very Large Data Bases (VLDB), pages 291–300, Roma, Italy,
2007.

[11] R. Cloran and B. Irwin. ”Transmitting RDF graph deltas for a Cheaper
Semantic Web”. In Procs. of SATNAC’2005, South Africa, September 2005.

69

[12] G. Cobena, S. Abiteboul, and A. Marian. Detecting Changes in XML Docu-
ments. In Proceedings of the International Conference on Data Engineering
(ICDE), Heidelberg, Germany, 2001.

[13] L. Ding, T. Finin, A. Joshi, Y. Peng, P. da Silva, and D. McGuinness. “Track-
ing RDF Graph Provenance using RDF Molecules”. In Procs of ISWC’05,
Galway,Ireland, November 2005.

[14] Li Ding, Tim Finin, Yun Peng, Paulo Pinheiro da Silva, and Deborah L.
McGuinness. Tracking RDF Graph Provenance using RDF Molecules. Tech-
nical report, UMBC, April 2005.

[15] G. Flouris. “On Belief Change and Ontology Evolution”. PhD thesis, Com-
puter Science Department, University of Crete, Greece, 2006.

[16] Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for OWL knowledge
base systems. In Selected Papers from the Intern. Semantic Web Conf. ISWC,
2004.

[17] P. Hayes. “RDF Semantics, W3C Recommendation”, 2004.

[18] J. Heflin, J. Hendler, and S. Luke. “Coping with Changing Ontologies in
a Distributed Environment”. In Procs of AAAI-99 Workshop on Ontology
Management, Florida, July 1999.

[19] M. Klein, D. Fensel, A. Kiryakov, and D. Ognyanov. “Ontology versioning
and change detection on the web”. In Procs of EKAW’02, pages 197–212,
Siguenza, Spain, Oct 2002.

[20] M. Klein and N. Noy. “A component-based framework for ontology evolution”.
In InWorkshop on Ontologies and Distributed Systems at IJCAI-03, Acapulco,
Mexico, 2003.

[21] A. Mallea, M. Arenas, A. Hogan, and A. Polleres. On blank nodes. In Procs of
the 10th Intern. Semantic Web Conference (ISWC 2011). Springer, October
2011.

[22] A. Marian, S. Abiteboul, G. Cobena, and L. Mignet. Change-Centric Man-
agement of Versions in an XMLWarehouse. In Proceedings of the International
Conference on Very Large Data Bases (VLDB), pages 581–590, Roma, Italy,
2001.

[23] Y. Minsky, A. Trachtenberg, and R. Zippel. Set reconciliation with nearly op-
timal communication complexity. In International Symposium on Information
Theory, page 232, 2001.

[24] J. Munkres. Algorithms for the assignment and transportation problems.
J-SIAM, 5(1), 1957.

[25] M. Klein N. F. Noy, S. Kunnatur and M. A. Musen. “Tracking Changes Dur-
ing Ontology Evolution”. In Procs of ISWC’04, pages 259–273, Hisroshima,
Japan, November 2004.

70

[26] A. Newman, YF Li, and J. Hunter. A scale-out rdf molecule store for improved
co-identification, querying and inferencing. In Intern. Workshop on Scalable
Semantic Web Knowledge Base Systems (SSWS), 2008.

[27] N. F. Noy and M. A. Musen. ”PromptDiff: A Fixed-point Algorithm for Com-
paring Ontology Versions”. In Procs of AAAI-02, pages 744–750, Edmonton,
Alberta, July 2002.

[28] N. F. Noy and M. A. Musen. “Ontology versioning in an ontology management
framework”. IEEE Intelligent Systems, 19(4):6–13, 2004.

[29] P. Plessers and O. De Troyer. “Ontology Change Detection Using a Version
Log”. In Procs of ISWC’05, pages 578–592, Galway,Ireland, November 2005.

[30] B. Schandl. Replication and versioning of partial rdf graphs. ESWC’10, 2010.

[31] Y. Theoharis, V. Christophides, and G.Karvounarakis. “Benchmarking
Database Representations of RDF/S Stores”. In Procs of ISWC’05, pages
685–701, Galway, Ireland, Nov 05.

[32] A. Tridgell. “Efficient algorithms for sorting and synchronization”. Phd thesis,
The Australian National University, February 1999.

[33] G. Tummarello, C. Morbidoni, R. Bachmann-Gmur, and O. Erling. RDFSync:
efficient remote synchronization of RDF models. In (ISWC-07), 2007.

[34] Giovanni Tummarello, Christian Morbidoni, Paolo Puliti, and Francesco Pi-
azza. Signing individual fragments of an rdf graph. In Proceedings of the
World Wide Web conference, 2005.

[35] M. Volkel, W. Winkler, Y. Sure, S. Ryszard Kruk, and M. Synak. ”SemVer-
sion: A Versioning System for RDF and Ontologies”. In Procs of ESWC’05.,
Heraklion, Crete, May 2005.

[36] D. Zeginis, Y. Tzitzikas, and V. Christophides. “On the Foundations of Com-
puting Deltas Between RDF Models”. In Proceedings of the 6th International
Semantic Web Conference (ISWC-07), Busan, S. Korea, 2007.

[37] D. Zeginis, Y. Tzitzikas, and V. Christophides. “On Computing Deltas of
RDF/S Knowledge Bases”. ACM Transactions on the Web (TWEB), 2011.

[38] Z. Zhang, L. Zhang, C. Lin, Y. Zhao, and Y. Yu. “Data Migration for Ontology
Evolution”. In Poster Proceedings ISWC’03, Sanibel Island, Florida, USA,
October 2003.

71

72

Chapter 7

Appendix: Proofs

73

