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Abstract

We consider the AllenCahn equation with a bistable nonlinearity as-
sociated with a double-well potential with equal depths. The Allen-Cahn
equation describes the process of phase separation in multi-component al-
loy systems in phase transitions. Given a general initial data u0 (indepen-
dent of ε), we study rigorously the generation and motion of the interface.
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1 Introduction

This thesis is occupied with the singular limit of systems of parabolic non-
linear partial differential equations, including a small parameter ε with bistable
non-linear reaction term and general initial data. These equations have arisen as
math models in Biology and Materials Science for various phenomena.

We study the Allen-Cahn equation and a kind of reaction-diffusion system.
Illustratively, we deal with systems and the corresponding interface limits, created
in layered functions, in terms of space. We mainly study the motion of interfaces
and how they interact.

Firstly, in section 2 we discuss the perturbed Allen-Cahn equation. It is
standard that this equation has a unique smooth solution, which we denote by
uε. As ε → 0, a formal asymptotic analysis shows the following: in the very
early stage, the diffusion term ∆u is negligible compared with the reaction term
ε−2(f(u)−εgε(x, t, u)), and it follows that, in the rescaled time scale τ = t2/ε, the
equation is well approximated by the ordinary differential equation uτ = f(u) +
O(ε). Hence f has a bistable nonlinearity, the value of uε becomes quickly close to
either α+ or α− in the most part of Ω, creating a steep interface (transition layer)
between the regions {uε ≈ α−} and {uε ≈ α−}. Once such an interface develops,
the diffusion term becomes large near the interface, and comes to balance with
the reaction term.

In section 3, we present the derivation of such interface motion equation. Next
in section 4, we assume the case of the single Allen-Cahn equation. We show that
leaving from initial data, the solution becomes quickly close to a step function,
apart from a small area of the initial interface, creating a steep transition layer
(generation of interface). Moreover, we study the case where gε ≡ 0 and in
section 4 the general case, where gε 6≡ 0. In section 5, the interface starts to move
and the solution remains close to the step function (motion of interface).

The equation in discussion has a “gradient structure”. Also, the functional
spaces are infinite dimensional, which provides important information for the
evolution. Broadly, in order to find the generation and motion of the interface,
the construction of sub- and super- solutions plays a very important role. More
precisely, the sub- and super- solutions for the motion of interface are constructed
by using the first two terms of the formal asymptotic expansion, while those
for the generation of interface are constructed by modifying the solution of the
equation in the absence of diffusion: ut = ε−2f(u).
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2 Preliminaries

We assume that there is a substance under certain conditions, in liquid and
solid form. A model equation can be given by equation Allen-Cahn:

ut = ∆u+ ε−2(u− u3),

where ε is a small parameter.

Firstly, during the generation of interface, the diffusion term ∆u can be neglected
before the reaction term ε−2(u − u3). The solution uε comprises as the solution
of the ordinary differential equation uτ = f(u), where τ = t

ε2
, so the values of uε

quickly become close to one of the two stable equilibria 1 or -1 and a transition
zone develops between two regions, {uε ≈ 1} and {uε ≈ −1}. We consider that
the area where uε is about 1 outside of the solid form, the interval area is about
-1 and the area where uε is between 1 and -1 at the interface.

Now, the diffusion term can no longer be neglected and its combination with
the reaction term induced, which provokes the motion of interface. Also, the
thickness of the limits of the transition zone, creating interfaces, is related to the
parameter ε. The equations that will be considered, they will be of this type.
Broadly, it is an idea that the dynamics of the order parameter uε develops in
such a way that the value of the functional (free energy) to decline with the most
effective way. To such an extent, the order parameter will be one of the points
that energy takes the minimum value. Next we see the definition of bistability of
f , where f we say the term (u− u3).
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2.0.1 Bistability

Generally, the Allen-Cahn equation :

ut = ∆u+
1

ε2
f(u),

with the function f(u) of bistable type,with three zeros α−, α, α+. Specifically,
f(u)=0 only at u = α−, α, α+,
f ′(u) > 0, u < α∗− or u > α∗+,
f ′(u) < 0, u ∈ (α∗−, α

∗
+),

where α− < α∗− < α < α∗+ < α+. We say that:
u ∈ (α−, α

∗
−) is metastable interval 1;

u ∈ (α∗−, α
∗
+) is spinodal interval;

u ∈ (α∗+, α+) is metastable interval 2.

The parameter ε is an interaction length, small compared to the characteris-
tic dimensions. If the above equation is contained in the vessel Ω, the equation
should be supplemented with boundary conditions in the boundary ∂Ω, such as:

∂v(u) = 0 on ∂Ω,

where ∂v denotes differentiation normal to ∂Ω. The physical meaning of these
two conditions is that none of the mixture can pass through the walls.

The first condition is the way to ensure that the total free energy of the mixture
decreases in time (requirement from thermodynamics).

2.0.2 About Energy

As we mentioned, the order parameter is one of the points that the energy
takes the minimum value. For this reason, we consider the properties of stability
by using the functional Lyapunov from the theory of ordinary differential equa-
tions.

Example: An example of functional energy (Van der Waals type), let it be,

Jε(u) =

∫
Ω

(
ε2

2
| 5 u|2 +W (u))dx,

where W (u) is smooth and non-negative function, double well potential with two
equal minima at u = u1 and u = u2, Ω is a smooth bounded domain in RN , and
ε a small, positive parameter.
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The order parameter can be described by u. Physically, ε gives the order of
magnitude of the surface tendency and it is the main factor for the morphology
of layers. We deal with bistable systems, the idea is that there is more than one
desirable situation (order parameter). The gradient system that corresponds to
Jε is

du

dt
= −gradL2Jε(u),

depending on the metric of L2 manifold, where the gradient is calculated. This
affects the direction that Jε decreasing. The most basic property of gradient
systems is

d

dt
Jε(u) = −‖ut‖2

L2 .

The solutions of the energy are moving very close to +1 or -1 and we have the
generation of layered profiles. There is a competition between W and gradient
term in expression of Jε(u). The W term favors the separation and another the
opposite. Thus, the generation of layers is the result of the conciliation of these
two opposing situations. We set out the initial interface

Γε(t) := { x ∈ Ω, uε(x, t) = α } ,

and suppose is a C3+θ hypersurface without boundary. Thus, we get the genera-
tion of one pattern in Ω, which consists of large areas that are separated from thin
zones. The solution in each area is almost -1 or +1 and we have sharp transition
inside.
There are two models that describe the motion of interface: one that the interface
does not have thickness sharp interface model and the other one that the inter-
face is described as an inner layer with finite non-zero thickness. The Allen-Cahn
equation is an example of the second model.

2.0.3 Phase change problems-thermostatics

The binary alloys are systems consisting of two types of elements A-B, in which
the molecules of A and B create physical links leading to the creation/generation
of a new mix. One such problem is Al-Si, Cu-Ni. Let m grams of binary alloy
A-B which comprises of mA grams of kind A and mB grams of kind B, satisfying
mA + mB = m. The fractions cA := mA

m
, cB := mB

m
express the ratio of A and

B in the corresponding total mass. Considering that cA + cB = 1, it is obvious
that only one from these fractions is necessary to determine the concentration
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of the alloy. The phase changes are determined by the phase diagram, which
describes the various phases that can coexist in thermodynamic equilibrium, the
state of a thermodynamic system in which its properties do not change with time.

Figure 1: Phase diagram

Under constant pressure the thermodynamics state of the mixture is deter-
mined by two parameters: T= temperature, c= specific, 0 < c < 1. TA, TB
are the melting temperatures of A and B. If a state (c, T ) is located between
the liquidus and solidus lines, thus the alloy is contained by liquid with specific
cL(T ) and coexists with the solid with specific cS(T ). So, liquid and solid coex-
ist in thermodynamic equilibrium with different concentrations. If we let λ the
percentage of the liquid in liquid form, then from the law of conservation of mass

c = cL(T1) + (1− λ)cS(T1).

As the temperature decreases in (TA, TB), then we have redistribution of A and B.
Complicated species of interfaces appear where the liquid and solid state coexist
together. If the interface is smooth with respect to some macroscopic scale, then
its motion is described by a system of differential equations.

The problems that we discuss are evolutionary equations. Some examples are
the following:

1. Allen-Cahn equation:{
ut = ε2∆u−W ′(u) in Ω
∂u
∂n

= 0 on ∂Ω
,
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2. Modified Allen-Cahn equation:{
ut = ε2∆u− (W ′(u)− 1

|Ω|

∫
Ω
W ′(u)dx) in Ω

∂u
∂n

= 0 on ∂Ω,
,

where Ω is a bounded domain in RN , N= 1, 2, 3, ∂
∂n

is the derivative over the
unit normal vector exterior to ∂Ω, ε is related with the width of the interface
and W(u) is the double well potential. The behavior changes according to the
dimension N . Likewise, the equation should be provided with initial condition
u(x, 0) = u0(x), so we have to do with initial value problems.

Proposition 1. Jε(u(·, t)) is a decreasing function with respect to t for the above
Allen-Cahn equation.

Proof. Let Jε(u(·, t)) =
∫

Ω
(ε2|∇u|+W (u))dx, we will prove ∂

∂t
Jε(u(·, t)) ≤ 0. Let

u(·, t) be a smooth function then,

∂

∂t
Jε(u(·, t)) =

∫
Ω

(ε2∇u∇ut|+W ′(u)ut)dx.

By Allen-Cahn equation and Green’s Theorem we obtain that

−
∫

Ω

(ε2∆u−W ′(u))utdx+

∫
∂Ω

ut ·
∂u

∂n
dS,

since ∂u
∂n

= 0 on ∂Ω, we have∫
Ω

(−ε2∆u+W ′(u))(ε2∆u−W ′(u))dx

= −
∫

Ω

(ε2∆u−W ′(u))2dx

= −||ut||2L2 ≤ 0.

Therefore, for the case of Allen-Cahn equation we prove that ∂
∂t
Jε(u(·, t)) ≤ 0 is

valid.

The Allen-Cahn equation is an evolutionary equation with dynamic compati-
ble with the ∂

∂t
Jε(u(·, t)). Also, Allen-Cahn equation does not maintain the mass

conservation.
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2.1 Relating to the equation Allen-Cahn

We regard an Allen-Cahn type equation of the form

ut = ∆u+ ε−2f ε(x, t, u), (2.1)

where ε > 0 is a small parameter and f ε a bistable nonlinearity associated with
a double-well potential, whose well-depths are unbalanced by order ε.
Given a general initial data (u0, v0), we show that the component u develops a
steep transition layer and that all the above-mentioned results remain true for
the u-component of these systems.

2.2 Perturbed Allen-Cahn equation

In non-linear diffusion equations, solutions often develop sharp interval lay-
ers or interfaces that separate the spatial domain into different phase regions.
Particularly, this happens when the diffusion coefficient is very small or the reac-
tion term is very large. The motion of such interfaces is driven by their curvature.

A typical example is the Allen-Cahn equation:

ut = ∆u+ ε−2f(u), (2.2)

where ε > 0 is a small parameter and f(u) is a bistable non-linear function.

In this Chapter, we consider a perturbed Allen-Cahn equation of the form:

P ε


ut = ∆u+ 1

ε2
(f(u)− εgε(x, t, u)) in Ω× (0,+∞),

∂u
∂ν

= 0 on ∂Ω× (0,+∞),

u(x, 0) = u0(x) in Ω,

(2.3)

we call P ε the above system and studying the behavior of layers near the sharp
interface limit as ε→ 0.

• Ω is a smooth bounded domain in RN , (N ≥ 2), and ν is the Euclidean
unit normal vector exterior to ∂Ω.

• The nonlinearity is given by f(u) := −W ′(u), where W(u) is a double-well
potential with equal well-depths with global minimum value at u = α− and
u = α+. Also, we assume that f is of class C2 on R and has exactly three
zeros α− < α < α+, such that
f ′(α±) < 0, f ′(α) > 0 (bistable nonlinearity)
and

∫ +α

−α f(u)du = 0.
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double well  potential

Figure 2: Double well potential, which is symmetry respect to u, W (α−) =
W (α+).

The conditions imply that the potential W(u) attains its local minima at u =
α−, α+, and that W (α−) = W (α+). As a result, f has two stable zeros α−, α+ ,
having “balanced” stability.
A typical example is f(u) = u(1− u2).

The term gε represents a small perturbation, where gε(x, t, u) is a function
defined on Ω× [0, T ]×R. This breaks the balance of the two stable zeros sightly.
In the special case where gε ≡ 0, Problem (P ε) reduces to the usual Allen-Cahn
equation. We use this special case for our later results.

We assume that gε is C2 in x and C1 in t, u, and that, for any T > 0, there
exist θ ∈ (0, 1) and C > 0 such that, for all (x, t, u) ∈ Ω× [0, T ]× R,

|∆xg
ε(x, t, u)| ≤ Cε−1 and |gεt (x, t, u)| ≤ Cε−1, (2.4)

|gεu(x, t, u)| ≤ C, (2.5)

‖gε(·, ·, u)‖
C1+θ, 1+θ2 (Ω×[0,T ])

≤ C. (2.6)

Moreover, we assume that there exists a function g(x, t, u) and a constant, which
we denote again by C, such that

|gε(x, t, u)− g(x, t, u)| ≤ Cε, (2.7)

for all small ε > 0. Note that the estimate 2.6 and the pointwise convergence
gε → g (as ε→ 0) imply that g satisfies the same estimate as 2.6.
For technical reasons we also assume that

∂gε

∂ν
= 0 on ∂Ω× [0, T ]× R, (2.8)

which implies the same Neumann boundary condition for g.
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Remark. The equation P ε can be expressed in the form:

ut = ∆u+
1

ε2
(f ε(x, t, u),

where f ε is C2 in x, ε and C1 in t, u. Otherwise, by setting

gε(x, t, u) = −f
ε(x, t, u)− f(u)

ε
, (2.9)

g(x, t, u) = −∂f
ε

∂ε
(x, t, u)

∣∣∣∣
ε=0

, (2.10)

the above equation is reduced to that in (P ε). The conditions 2.4 and 2.11 then
follows automatically from the above regularity assumptions on f ε. The condition
2.6 holds if we impose slightly stronger regularity on f ε.

As for the initial datum u0(x) (independent of ε), we assume u0(x) ∈ C2(Ω).
The constant C0 will stand for the following quantity :

C0 :=
∥∥u0

∥∥
C0(Ω)

+
∥∥∇u0

∥∥
C0(Ω)

+
∥∥∆u0

∥∥
C0(Ω)

. (2.11)

Furthermore, we define the initial interface Γ0 by

Γ0 := { x ∈ Ω, u0(x) = α } ,

and suppose that Γ0 is a C3+θ hypersurface without boundary such that, ν being
the outward unit normal vector to Γ0,

Γ0 ⊂⊂ Ω and ∇u0(x) · ν(x) 6= 0 if x ∈ Γ0, (2.12)

(2.13)

u0 > a in Ω+
0 , u0 < α in Ω−0 , (2.14)

where Ω−0 denotes the region enclosed by the hypersurface Γ0 and Ω+
0 the region

enclosed between the boundary of the domain ∂Ω and the hypersurface Γ0.
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3 Formal derivation of the interface motion equa-

tion

We derive the equation of interface motion corresponding to Problem (P ε) by
using a formal asymptotic expansion, the method of matched asymptotic expan-
sions for our problem. The resulting interface equation can be regarded as the
singular limit of (P ε) as ε→ 0. Particularly, the first two terms of the asymptotic
expansion determine the interface equation.

Let uε be the solution of Problem (P ε). We recall that Γεt := { x ∈ Ω, uε(x, t) =
α } is the interface at time t and call Γε :=

⋃
t≥0(Γεt × {t}) the interface. Let

Γ :=
⋃
t≥0(Γεt × {t}) be the solution of the limit geometric motion problem and

d̃ be the signed distance function to Γ defined by:

d̃(x, t) =

{
dist(x,Γt) for x ∈ Ω+

t

−dist(x,Γt) for x ∈ Ω−
, (3.1)

where dist(x,Γt) is the distance from x to the hypersurface Γt in Ω. We remark

that d̃ = 0 on Γ and that |∇d̃| = 1 in a neighborhood of Γ. Then, we define

Q+
T =

⋃
0≤t≤T

(Ω+
t × {t}), Q−T =

⋃
0≤t≤T

(Ω−t × {t}).

We also assume that the solution uε has the expansions

uε(x, t) = α± + εu1(x, t) + ε2u2(x, t) + · · · (3.2)

away from the interface Γ (the outer expansion) and

uε(x, t) = U0(x, t, ξ) + εU1(x, t, ξ) + ε2U2(x, t, ξ) + · · · (3.3)

near Γ (the inner expansion). The functions Uk(x, t, z), k= 0, 1, 2, · · · , are defined

for x ∈ Ω, t ≥ 0, z ∈ R and by definition ξ := d̃(x,t)
ε

. The stretched space variable
ξ gives exactly the right spatial scaling to describe the rapid transition between
the regions {uε ≈ α−} and {uε ≈ α+}. We normalize Uk in such a way that

U0(x, t, 0) = α, Uk(x, t, 0) = 0,

for all k ≥ 1 (normalization conditions). To make the inner and outer expansions
consistent, we require that

U0(x, t,+∞) = α+, Uk(x, t,+∞) = 0, (3.4)

U0(x, t,−∞) = α−, Uk(x, t,−∞) = 0, (3.5)
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for all k ≥ 1 (matching conditions). Then, we will replace the inner expansion 3.3
into parabolic equation of Problem (P ε) 2.3 and collect the ε−2 and ε−1 terms.
For this purpose, we compute the needed terms of (P ε) and get:

uεt = U0t + U0z
d̃t
ε

+ εU1t + U1zd̃t + · · ·

∇uε = ∇U0 + U0z
∇d̃
ε

+ ε∇U1 + U1z∇d̃+ · · ·

∆uε = ∆U0 + 2
∇d̃
ε
· ∇U0z + U0z

∆d̃

ε
+ U0zz

|∇d̃|
ε2

+ε∆U1 + 2∇d̃ · ∇U1z + U1z∆d̃+ U1zz
|∇d̃|2

ε
+ · · · ,

where the functions Ui(i = 0, 1), as well their derivatives, are taken at point

(x, t, d̃(x,t)
ε

). Here, ∇U0 denotes the derivative with respect to x whenever we
regard U0(x, t, z) as a function of three variables x, t and z. Similarly, we define
the ∆U0 that applies to U0z and U1zz. We also use the expansions

f(uε) = f(U0) + εf ′(U0)U1 +O(ε2),

gε(x, t, uε) = g(x, t, uε)+ O(ε)

= g(x, t, U0)+ O(ε).

Next we substitute the expressions above in the partial differential equation in
Problem (P ε) 2.3.

U0t + U0z
d̃t
ε

+ εU1t + U1zd̃t + · · · =

∆U0 + 2
∇d̃
ε
· ∇U0z + U0z

∆d̃

ε
+ U0zz

|∇d̃|2

ε2

+ε∆U1 + 2∇d̃ · ∇U1z + U1z∆d̃+ U1zz
|∇d̃|2

ε

+
1

ε2
(f(U0) + εf ′(U0)U1 +O(ε2)− ε(g(x, t, U0) +O(ε)))

= ∆U0 + 2
∇d̃
ε
· ∇U0z + U0z

∆d̃

ε
+ Uozz

|∇d̃|2

ε2

2∇d̃ · ∇U1z + U1z∆d̃+ U1zz
|∇d̃|2

ε
+
f(U0)

ε2

+
f ′(U0)U1

ε
− g(x, t, U0)

ε
+ · · · ,
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and we observe that U0 depends only on the variable z, we have ∇U0z = 0, which
with the fact that |∇d̃| = 1 near Γt. From the above we obtain that

U0t + U0z
d̃t
ε

+ εU1t + U1zd̃t + · · ·

= ∆U0 + U0z
∆d̃

ε
+ Uozz

|∇d̃|2

ε2
+ 2∇d̃ · ∇U1z

+U1z∆d̃+ U1zz
1

ε
+
f(U0)

ε2
+
f ′(U0)U1

ε
− g(x, t, U0)

ε
+ · · ·

Now we collect the ε−2 terms and yield

U0zz + f(U0) = 0.

Taking into consideration the normalization and matching conditions, we now
assert that U0(x, t, z) = U0,where U0(z) is the unique solution of the stationary
problem {

U ′′0 + f(U0) = 0,

U0(−∞) = α−, U0(0) = α, U0(+∞) = α+.
(3.6)

This solution represents the first approximation of the profile of a transition layer
around the interface observed in the stretched coordinates.

Lemma 3.1. There exist positive constants C and λ such that the following
estimates hold.

0 < α+ − U0(z) ≤ Ce−λ|z| for z ≥ 0,

0 < U0(z)− α− ≤ Ce−λ|z| for z ≤ 0.

In addition, U0 is a strictly increasing function and,for j= 1, 2,

|DjU0(z)| ≤ Ce−λ|z| for z ∈ R. (3.7)

Next we collect the ε−1 terms and obtain

U1zz + f ′(U0)U1 = U ′0(d̃t −∆d̃) + g(x, t, U0), (3.8)

where U ′0 = U0z. This problem can be seen as a linearized problem for 3.6 with
an inhomogeneous term. The following lemma plays the key role in determining
the equation of interface motion.

Lemma 3.2 (Solvability condition). Let A(z) be a bounded function on −∞ <
z <∞. Then the problem{

ψzz + f(U0(z))ψ = A(z) z ∈ R,
ψ(0) = 0, ψ ∈ L∞(R),

(3.9)
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has a solution if and only if ∫
R
A(z)U ′0(z)dz = 0. (3.10)

Moreover the solution, if it exists, is unique and satisfies for some constant C > 0,

|ψ(z)| ≤ C||A||L∞ , (3.11)

for all z ∈ R.

Proof. (⇒) First, multiplying the equation by U ′0 and integrating it by parts

U ′0ψzz + U ′0f
′(U0(z))ψ = U ′0A(z)

∫
R
(U ′0ψzz + U ′0f

′(U0(z))ψ)dz =

∫
R
U ′0A(z)dz, (3.12)

∫
R
U ′0ψzzdz = −

∫
R
U ′′0ψzdz + [U ′0(z)]+∞−∞ = −

∫
R
U ′′0ψzdz,

∫
R
U ′0f

′(U0(z))ψdz =

∫
R
(f(U0(z)))′ψdz = −

∫
R
f(U0(z))ψz

+[f(U0(z))ψ]+∞−∞ = −
∫
R
f(U0(z))ψz + (f(α+)ψ − f(α−)ψ),

taking into consideration 3.4, 3.5 and that f is bistable type with three zeros at
α−, α, α+. Finally 3.12 is∫

R
(−U ′′0ψz − f(U0(z))ψz)dz =

∫
R
U ′0A(z)dz,∫

R
(−U ′′0 − f(U0(z)))ψzdz =

∫
R
U ′0A(z)dz,

by 3.6 we get
∫
R(−U ′′0 − f(U0(z)))ψzdz = 0. Therefore, the

∫
R U

′
0(z)A(z)dz = 0

condition is necessary.
(⇐) Conversely, suppose that this condition is satisfied. Then, since U ′0 is
bounded positive solution to the homogeneous equation ψzz + f(U0(z))ψ = 0,
we can use the method of variation of constants to find the above solution ψ.
More precisely, set ϕ := U ′0,

ψ(z) = ϕ(z)

∫ z

0

(ϕ−2(ζ)

∫ ζ

−∞
A(ξ)ϕ(ξ)dξ)dζ (3.13)

= −ϕ(z)

∫ z

0

(ϕ−2(ζ)

∫ ∞
ζ

A(ξ)ϕ(ξ)dξ)dζ. (3.14)

The estimate 3.11 follows from the above expression and previous lemma.
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From the above lemma and multiplying with U ′0 the solvability condition for
3.8 is given by∫

R
[U ′20 (z)(d̃t −∆d̃)(x, t) + g(x, t, U0(z))U ′0(z)]dz = 0 for all (x, t) ∈ QT . (3.15)

Then we get

d̃t −∆d̃ = −
∫
R g(x, t, U0(z))U ′0(z)dz∫

R U
′2
0 (z)dz

,

which gives

d̃t = ∆d̃−
∫ α+

α−
g(x, t, r)dr∫

R U
′2
0 (z)dz

. (3.16)

Moreover, multiplying equation 3.6 by U ′0 and integrating it from −∞ to z, we
obtain

0 =

∫ z

−∞
(U ′′0U

′
0 + f(U0)U ′0)(s)ds. (3.17)

The first term from right side gives:∫ z

−∞
U ′′0U

′
0(s)ds,

let U0 = U ′0(s) and dU0 = U ′′0 (s)ds,
hence ∫ z

−∞
U ′′0U

′
0(s)ds =

∫ z

−∞
U0dU0 = [

1

2
U2

0 (s)]z−∞

=
1

2
U ′20 (z)− 1

2
U ′20 (−∞)

=
1

2
U ′20 (z).

Next we set for the second term from right side, U0 = u, du = U ′0ds, and we get∫ z

−∞
f(U0)U ′0(s)ds =

∫ z

−∞
f(u)du

= −W (U0(z)) +W (α−),
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since we have defined f(u) := −W ′(u). Then 3.17 is equal with

1

2
U ′20 (z)−W (U0(z)) +W (α−), (3.18)

where we have also used the matching conditions 3.5. This implies that

U ′0(z) =
√

2(W (U0(z))−W (α−))1/2,

and therefore ∫
R
U ′20 (z)dz =

∫
R
U ′0(z)

√
2(W (U0(z))−W (α−))1/2dz (3.19)

=
√

2

∫ α+

α−

(W (s)−W (α−))1/2ds. (3.20)

It then follows, that equation 3.16 becomes

d̃t = ∆d̃−
∫ α+

α−
g(x, t, r)dr

√
2
∫ α+

α−
(W (s)−W (α−))1/2ds

. (3.21)

We define the constant c0 by

c0 = [
√

2

∫ α+

α−

(W (s)−W (α−))1/2ds]−1, (3.22)

with W the double- well potential associated with f :

W (s) = −
∫ s

α

f(r)dr. (3.23)

Consequently,

d̃t = ∆d̃− c0

∫ α+

α−

g(x, t, r)dr. (3.24)

Now, we derive the equation of interface motion. Since, ∇d̃(= ∇xd̃(x, t) coincides

with the outward normal unit vector to the hypersurface Γt, we have d̃t(x, t) =
−Vn, where Vn is the normal velocity of the interface Γt. Also, we define that the
mean of curvature κ at each point of Γt, of the interface is equal to ∆d̃/(N − 1),

κ =
d̃

(N − 1)
⇒ d̃ = (N − 1)κ.

Thus, the equation of interface motion is given by:

Vn = −(N − 1)κ+ c0

∫ α+

α−

g(x, t, r)dr on Γt. (3.25)
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We define a step function ũ(x, t) by

ũ(x, t) =

{
α+ in Ω+

t

α− in Ω−t
for t ∈ [0, T ],

which represents the formal asymptotic limit of uε (or the sharp interface limit)
as ε→ 0. In our occasion, the solution uε of Problem (P ε) satisfies

uε =

{
α+ in Q+

t

α− in Q−t
as ε→ 0,

we have formally proved that the boundary Γt between Ω−t and Ω+
t moves ac-

cording to the law 3.25.
We give some basic estimates for U1(x, t, z), which we will need in later section
to study the motion of interface. Substituting 3.16 into 3.8 gives{

U1zz + f ′(U0(z))U1 = g(x, t, U0(z))− γ(x, t)U ′0(z),

U1(x, t, 0) = 0, U1(x, t, ·) ∈ L∞(R),
(3.26)

where γ:= c0

∫ α+

α−
g(x, t, r)dr. Thus U1()x, t, z) is a solution of 3.9 with

A = A0(x, t, z) := g(x, t, U0(z))− γ(x, t)U ′0(z), (3.27)

where the variables x, t are considered parameters. The problem 3.26 has a
unique solution by virtue of Lemma 3.2. Next, since A0(x, t, z) remains bounded
as (x, t, z) varies in Ω× [0, T ]× R, the estimate 3.11 implies that

|U1(x, t, z)| ≤M for x ∈ Ω, t ∈ [0, T ], z ∈ R, (3.28)

for some M > 0. Similarly, since ∇U1 is a solution of 3.9 with

A = ∇xA0(x, t, z) := ∇x(g(x, t, U0(z))− γ(x, t)U ′0(z)),

and since g is assumed to be C1 in x, we obtain

|∇xU1(x, t, z)| ≤M for x ∈ Ω, t ∈ [0, T ], z ∈ R, (3.29)

for some M > 0. To obtain estimates z → ±∞, we observe that Lemma 3.1
implies

A0(x, t, z)− g(x, t, α±) = O(e−λ|z|) as z → ±∞, (3.30)

uniformly in x ∈ Ω, t ∈ [0, T ].
The following Lemma is the result from the two previous Lemmas.
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Lemma 3.3. Let the assumptions of Lemma 3.2 hold, and assume further that
A(z)− A±= O(e−δ|z|) as z → ±∞ for some constants A+, A− and δ > 0. Then
there exists a constant λ > 0 such that

ψ(z)− A±

f ′(α±)
= O(e−λ|z|), |ψ′(z)|+ |ψ′′(z)| = O(e−λ|z|), (3.31)

as z → ±∞.

From the above lemma and 3.30 we obtain the estimate

|U1z(x, t, z)|+ |U1zz(x, t, z)| ≤ Ce−λ|z|, (3.32)

for x ∈ Ω, t ∈ [0, t], z ∈ R. Similarly, since the definition of A0 3.27 and estimate
3.7 imply

(∇xA0)(x, t, z)− (∇xg)(x, t, α±) = O(e−λ|z|) as z → ±∞,

we can apply Lemma 3.3 to ψ = ∇xU1, to obtain

|∇xU1z(x, t, z)|+ |∇xU1zz(x, t, z)| ≤ Ce−λ|z|,

for x ∈ Ω, t ∈ [0, t], z ∈ R. As a consequence, there is a constant, which we
denote again by M, such that

|∇xU1z(x, t, z)| ≤M. (3.33)

Eventually, we consider that 2.8 implies

∂

∂ν
A0 =

∂

∂ν
[g(x, t, U0(z))− γ(x, t)U ′0(z)] = 0 on ∂Ω× [0, T ]× R. (3.34)

Consequently, from the expression 3.14 we get for the solution U1 the correspond-
ing expression

U1(x, t, z) = U ′0(z)

∫ z

0

((U ′0(ζ))−2

∫ ζ

−∞
A0(x, t, ξ)U ′0(ξ)dξ)dζ,

and we observe that

∂U1

∂ν
= 0 on ∂Ω× [0, T ]× R. (3.35)
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4 Generation of interface: special case

The aim of the present section is to study the limited behavior of the solu-
tion uε of Problem (P ε) as ε → 0. Our first main result describes the profile
of the solution after a short initial period. It asserts that: given an arbitrary
initial datum u0, the solution uε quickly becomes close to α±, except in a small
neighborhood of the initial interface Γ0, creating a steep transition layer around
Γ0 (generation of interface). The time needed to develop such a transition
layer, which we will denote by tε, is of order ε2|lnε|. The theorem then states
that the solution uε remains close to the step function ũ on the time interval [tε,
T] (motion of interface), in other words, the motion of transition layer is well
approximated by the limit of interface equation and Γt|t=0 = Γ0. For the time
being, we focus on the special case where gε = 0. Furthermore, η0 will stand for
the following quantity:

η0 :=
1

2
min(α− α−, α+ − α).

Our main result is the following.

Theorem 4.1. Let η ∈ (0, η0) be arbitrary constant and define µ as the derivative
of f(u) at the unstable equilibrium u = α, that is

µ = f ′(α). (4.1)

Then there exist positive constants ε0 and M0 such that, for all ε ∈ (0, ε0) and
for all tε ≤ t ≤ T , where tε := µ−1ε2| ln ε|,

• for all x ∈ Ω,

α− − η ≤ uε(x, µ−1ε2| ln ε|) ≤ α+ + η, (4.2)

• for all x ∈ Ω such that |u0(x)− α| ≥M0ε, we have that

if u0(x) ≥ α +M0ε then uε(x, µ−1ε2| ln ε|) ≥ α+ − η, (4.3)

if u0(x) ≤ α−M0ε then uε(x, µ−1ε2| ln ε|) ≤ α− + η. (4.4)

4.1 The bistable ordinary differential equation

To prove these results for the generation of interface and the motion of in-
terface that we will see in section 5, we construct two completely different pairs
of sub- and super- solutions: one for the generation of interface and the other
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for the motion of interface. Fitting these pairs of sub- and super- solutions into
each other, we estimate, in an optimal way, the thickness of transition layer, and
its location. More precisely, the above sub- and super- solutions are constructed
for the generation of interface by modifying the solution of the equation in the
absence of diffusion term: ut = ε−2f(u). We have the corresponding problem:

ut =
1

ε2
f(u), u(x, 0) = u0(x). (4.5)

This solution is written in the form

u(x, t) = Y

(
t

ε2
, u0(x)

)
, (4.6)

where Y(τ, ξ) denotes the solution of the ordinary differential equation{
Yτ (τ, ξ) = f(Y (τ, ξ)) for τ > 0,

Y (0, ξ) = ξ.
(4.7)

Here ξ ranges over the interval (−2C0, 2C0), with C0 being the constant defined
in 2.11. We study the basic properties of Y to prove the previous Theorem.

Lemma 4.2. We have Yξ(τ, ξ) > 0, for all ξ ∈ (−2C0, 2C0) \ {α−, α, α+ } and
all τ > 0. Furthermore,

Yξ(τ, ξ) =
f(Y (τ, ξ))

f(ξ)
. (4.8)

Proof. First, differentiating equation 4.7 with respect to ξ, we obtain{
Yξτ = Yξf

′(Y ),

Yξ(0, ξ) = 1,

which can be integrated:

Yξ(τ, ξ) = exp

[∫ τ

0

f ′(Y (s, ξ))ds

]
> 0, (4.9)

since τ > 0. Then we differentiate equation 4.7 with respect to τ and we obtain{
Yττ = Yτf

′(Y ),

Yτ (0, ξ) = f(ξ),

which can be integrated:

Yτ (τ, ξ) = f(ξ) exp

[∫ τ

0

f ′(Y (s, ξ))ds

]
= f(ξ)Yξ(τ, ξ)
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and by 4.7, we take

Yξ(τ, ξ) =
f(Y (τ, ξ))

f(ξ)
.

We define a function A(τ, ξ) by

A(τ, ξ) =
f ′(Y (τ, ξ)− f ′(ξ)

f(ξ)
. (4.10)

Lemma 4.3. We have, for all ξ ∈ (−2C0, 2C0) \ {α−, α, α+ } and all τ > 0,

A(τ, ξ) =

∫ τ

0

f ′′(Y (s, ξ))Yξ(s, ξ)ds. (4.11)

Proof. Differentiating the equality of Lemma 4.2 4.8 with respect to ξ leads to

Yξξ =
f ′(Y (τ, ξ))Yξf(ξ)− f(Y (τ, ξ))f ′(ξ)

f 2(ξ)

=
f ′(Y (τ, ξ))Yξf(ξ)− Yξf(ξ)f ′(ξ)

f 2(ξ)

=
f ′(Y (τ, ξ))− f ′(ξ)

f(ξ)
Yξ = A(τ, ξ)Yξ,

whereas differentiating 4.9 with respect to ξ yields

Yξξ = Yξ

∫ τ

0

f ′′(Y (s, ξ))Yξ(s, ξ)ds.

Then,

A(τ, ξ)Yξ = Yξ

∫ τ

0

f ′′(Y (s, ξ))Yξ(s, ξ)ds,

and finally

A(τ, ξ) =

∫ τ

0

f ′′(Y (s, ξ))Yξ(s, ξ)ds.

Now we see some estimates on the growth of Y, A and their derivatives. We
first consider the case where the initial value ξ is far from the stable equilibria,
more precisely when it lies between α− + η and α+ − η.
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Lemma 4.4. Let η ∈ (0, η0) be arbitrary. Then there exist positive constants

C̃1 = C̃1(η), C̃2 = C̃2(η) and C3 = C3(η) such that, for all τ > 0,

• if ξ ∈ (α, α+ − η) then, for every τ > 0 such that Y (τ, ξ) remains in the
interval (α, α+ − η), we have

C̃1e
µτ ≤ Yξ(τ, ξ) ≤ C̃2e

µτ , (4.12)

and

| A(τ, ξ) |≤ C3(eµτ − 1), (4.13)

• if ξ ∈ (α− + η, α) then, for every τ > 0 such that Y (τ, ξ) remains in the
interval (α− + η, α) and the above 4.12, 4.13 hold as well, where µ is the
constant that defined as µ = f ′(α).

Proof. We take ξ ∈ (α, α+ − η) and suppose that for s ∈ (0, τ), Y (s, ξ) remains
in the interval (α, α+ − η). Integrating the equality 4.7

Yτ (s, ξ) = f(Y (s, ξ))⇒ Yτ (s, ξ)

f(Y (s, ξ))
= 1

from 0 to τ yields ∫ τ

0

Yτ (s, ξ)

f(Y (s, ξ))
ds = τ.

By the change of variable q = Y (s, ξ)(dq = Y (s, ξ)ds, s ∈ (0, τ) ⇒ the integral
now ranges from ξ to Y (τ, ξ)), and we get∫ Y (τ,ξ)

ξ

dq

f(q)
= τ. (4.14)

Moreover, the equality of Lemma 4.2, 4.8 leads to

lnYξ(τ, ξ) =

∫ Y (τ,ξ)

ξ

f ′(q)

f(q)
dq

=

∫ Y (τ,ξ)

ξ

f ′(α) + f ′(q)− f ′(α)

f(q)
dq

=

∫ Y (τ,ξ)

ξ

[
f ′(α)

f(q)
+
f ′(q)− f ′(α)

f(q)

]

= µτ +

∫ Y (τ,ξ)

ξ

h(q)dq,
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since from 4.14 and where h(q) = f ′(q)−µ
f(q)

.

And from means value theorem h(q) → f ′′(α)
f ′(α)

as q → α, h is continuous on

[α, α+ − η]. Hence we can define

H = H(η) :=‖ h ‖L∞(α,α+−η) .

Since | Y (τ, ξ)− ξ | takes its values in the interval [0, α +−α− η] ⊂ [0, α+ − α].
It follows from the above integrals that

µτ −H(α+ − α) ≤ lnYξ(τ, ξ) ≤ µτ +H(α+ − α),

gives

C̃1e
µτ ≤ Yξ(τ, ξ) ≤ C̃2e

µτ .

Next by Lemma 4.3 and the above estimate yield

| A(τ, ξ) |=|
∫ τ

0

f ′′(Y (s, ξ))Yξ(s, ξ)ds |

≤ sup
z∈[α−,α+]

| f ′′(z) |
∫ τ

0

C̃2e
µsds

≤ C3(eµτ − e0) ≤ C3(eµτ − 1),

which completes the proof. The case where ξ and Y (τ, ξ) are in (α− + η, )α is
similar.

Corollary 4.4.1. Let η ∈ (0, η0) be arbitrary. Then there exist positive constants
C1 = C1(η) and C2 = C2(η) such that, for all τ ,

• if ξ ∈ (α, α+−η) then, for every τ such that Y (τ, ξ) remains in the interval
(α, α+ − η), we have

C1e
µτ (ξ − α) ≤ Y (τ, ξ)− α ≤ C2e

µτ (ξ − α), (4.15)

• if ξ ∈ (α− + η, α) then, for every τ > 0 such that Y (τ, ξ) remains in the
interval (α− + η, α), we have

C2e
µτ (ξ − α) ≤ Y (τ, ξ)− α ≤ C1e

µτ (ξ − α). (4.16)

Proof. Since

f(q)− f(α)

(q − α)
=

f(q)

(q − α)
→ f ′(α) = µ as µ→ α,
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by means value theorem and f(u) = 0 at u = α−, α, α+. It is possible to find
constants B1 = B1(η) > 0 and B2 = B2(η) > 0 such that, for all q ∈ (α, α+ − η),

B1(q − α) ≤ f(q) ≤ B2(q − α). (4.17)

We write this inequality for α ≤ Y (τ, ξ) ≤ α+ − η to obtain

B1(Y (τ, ξ)− α) ≤ f(Y (τ, ξ)) ≤ B2(Y (τ, ξ)− α).

We also write this inequality for α ≤ ξ ≤ α+ − η to obtain

B1(ξ − α) ≤ f(ξ) ≤ B2(ξ − α).

Next we use the equality of Lemma 4.2 to conclude that

B1

B2

(Y (τ, ξ)− α) ≤ (ξ − α)Yξ(τ, ξ) ≤
B2

B1

(Y (τ, ξ)− α),

which, in view of 4.12, implies that

B1

B2

C̃1e
µτ (ξ − α) ≤ Y (τ, ξ)− α ≤ B2

B1

C̃2e
µτ (ξ − α),

since
∫ ξ
α
Ys(τ, s)ds = Y (τ, ξ) − Y (τ, α) = Y (τ, ξ) − α. This proves the first

estimate, the second is similar.

We now present estimates in the case where the initial value ξ is smaller than
α− + η or larger than α+ − η.

Lemma 4.5. Let η ∈ (0, η0) and M > 0 be arbitrary. Then there exists a positive
constant C4 = C4(η,M) such that

• if ξ ∈ [α+ − η, α+ +M ], then, for all τ > 0, Y (τ, ξ) remains in the interval
[α+ − η, α+ +M ] and

| A(τ, ξ) |≤ C4τ for τ > 0, (4.18)

• if ξ ∈ [α− −M,α− + η], then, for all τ > 0, Y (τ, ξ) remains in the interval
ξ ∈ [α− −M,α− + η] and the above estimate hold as well.

Now we choose the constant M in the above lemma sufficiently large so that
[−2C0, 2C0] ⊂ [α− −M,α+ +M ], and fix M hereafter. Then C4 only depends on
η. Using the fact that τ = O(eµτ − 1) for τ > 0, one can easily deduce from 4.13
and 4.18 the following general estimate.

Lemma 4.6. Let η ∈ (0, η0) be arbitrary and let C0 be the constant defined
in 2.11. Then there exists positive constant C5 = C5(η) such that, for all ξ ∈
(−2C0, 2C0) and all τ > 0,

| A(τ, ξ) |≤ C5(eµτ − 1) (4.19)
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4.2 Construction of sub- and super- solutions

Now we construct the sub- and super- solutions for the study of generation of
interface. For simplicity, we first consider the case where

∂u0

∂ν
= 0 on ∂Ω. (4.20)

In this case, our sub- and super- solutions are given by

w±ε (x, t) = Y (
t

ε2
, u0(x)± ε2C6(eµt/ε

2 − 1)). (4.21)

In the general case where 4.20 does not necessarily hold, we have to slightly
modify w±ε (x, t) near the boundary ∂Ω, which we see later.

Lemma 4.7. Assume 4.20. Then there exist positive constants ε0 and C6 such
that, for all ε ∈ (0, ε0), (w−ε , w

+
ε ), is a pair of sub- and super- solutions for

Problem (P ε), in the domain

{ (x, t) ∈ QT , x ∈ Ω, 0 ≤ t ≤ µ−1ε2 | ln ε | } ,

satisfying w−ε (x, 0) = w+
ε (x, 0) = u0(x). Consequently

w−ε (x, t) ≤ uε(x, t) ≤ w+
ε (x, t) for x ∈ Ω, 0 ≤ t ≤ µ−1ε2 | ln ε | (4.22)

Proof. The assumption 4.20 implies

∂w±ε
∂ν

= 0 on ∂Ω× (0,+∞).

Now we define the operator L0 by

L0u := ut −∆u− 1

ε2
f(u),

since gε ≡ 0 and we prove that L0w
+
ε ≥ 0. Straightforward computations yield

L0w
+
ε =

1

ε2
Yτ + C6µe

µt/ε2Yξ −∆u0Yξ− | ∇u0 |2 Yξξ −
1

ε2
f(Y ),

since from

(w+
ε )t =

1

ε2
Yτ + ε2C6

(µτ
ε2

)′
eµτ/ε

2

,

∆w+
ε = ∆u0Yξ+ | ∇u0 |2 Yξξ,

1

ε2
f(w+

ε ) =
1

ε2
f(Y ),
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where w+
ε (x, t) = Y ( t

ε2
, u0(x) + ε2C6(eµτ/ε

2 − 1)), for τ = t
ε2

and ξ = u0(x) +

ε2C6(eµt/ε
2 − 1). Therefore, in view of 4.7 we have that Yτ (τ, ξ) = f(Y (τ, ξ)) and

we obtain

L0w
+
ε =

[
C6µe

µt/ε2 −∆u0− | ∇u0 |2
Yξξ
Yξ

]
Yξ

We note that, the range 0 ≤ t ≤ µ−1ε2 | ln ε |, we have, for ε0 sufficiently small,

0 ≤ ε2C6(eµt/ε
2 − 1) ≤ ε2C6(ε−1 − 1) ≤ C0,

where C0 is the constant that defined in 2.11. Hence,

ξ := u0(x)± ε2C6(eµt/ε
2 − 1) ∈ (−2C0, 2C0),

so that we can use the estimate of Lemma 4.6 and A =
Yξξ
Yξ

, then we obtain

L0w
+
ε ≥

[
C6µe

µt/ε2− | ∆u0 | −C5(eµt/ε
2 − 1) | ∇u0 |2

]
Yξ

≥
[
(C6µ− C5 | ∇u0 |2)eµt/ε

2− | ∆u0 | −C5 | ∇u0 |2
]
Yξ.

Since Yξ > 0, this inequality implies that, for C6 large enough,

L0w
+
ε ≥

[
C6µ− C5C

2
0 − C0

]
Yξ ≥ 0.

Hence w+
ε is a super solution for the problem (P ε). Similarly w−ε is a sub- solution.

Obviously,

w−ε (x, 0) = w+
ε (x, 0) = Y (0, u0(x)) = u0(x).

In the more general case where 4.20 is not necessarily valid, one can proceed
as follows, we have defined ”the initial interface” Γ0 by

Γ0 := { x ∈ Ω, u0(x) = α } ,

and having supposed that Γ0 is a C3+θ hypersurface without boundary such that,
n being the outward unit normal vector to Γ0,

Γ0 ⊂⊂ Ω and ∇u0(x) · n(x) 6= 0 if x ∈ Γ0,

u0 > α in Ω+
0 , u0 < α in Ω−0 ,

where Ω−0 denotes the region enclosed by the hypersurface Γ0 and Ω+
0 the region

enclosed between the boundary of the domain ∂Ω and the hypersurface Γ0. Then
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there exist positive constants d1, ρ such that u0(x) ≥ α + ρ if d(x, ∂Ω) ≤ d1.
Let χ be a smooth cut- off function defined on [0,+∞) such that 0 ≤ χ ≤ 1,
χ(0) = χ′(0) = 0 and χ(z) = 1 for z ≥ d1. Then we define

u+
0 (x) = χ(d(x, ∂Ω))u0(x) + [1− χ(d(x, ∂Ω))] max

x∈Ω
u0(x), (4.23)

u−0 (x) = χ(d(x, ∂Ω))u0(x) + [1− χ(d(x, ∂Ω))](α + ρ) (4.24)

Clearly, u−0 ≤ u0 ≤ u+
0 , and both u−0 and u+

0 satisfy 4.20. Now we set

w±ε (x, t) = Y

(
t

ε2
, u±0 (x)± ε2C6(eµt/ε

2 − 1)

)
. (4.25)

Then the same argument as in Lemma 4.7 shows that (w̃−ε , w̃
+
ε ) is a pair of

sub- and super- solutions for the Problem (P ε). Furthermore, since w̃−ε (x, 0) =
u−0 (x) ≤ u0(x) ≤ u+

0 (x) = w̃+
ε (x, 0), the comparison principle asserts that

w̃−ε (x, t) ≤ uε(x, t) ≤ w̃+
ε (, t) for x ∈ Ω, 0 ≤ t ≤ µ−1ε2 | ln ε|. (4.26)

4.3 Proof of Theorem 4.1

To prove Theorem 4.1 we first present a key estimate on the function Y (τ, ξ)
after a time interval of order τ ∼| ln ε |.

Lemma 4.8. Let η ∈ (0, η0) be arbitrary, there exist positive constants ε0 and C7

such that, for all ε ∈ (0, ε0),

• for all ξ ∈ (−2C0, 2C0) ,

α− − η ≤ Y (µ−1 | ln ε |, ξ) ≤ α+ + η, (4.27)

• for all ξ ∈ (−2C0, 2C0) such that | ξ − α |≥ C7ε, we have that

if ξ ≥ α + C7ε then Y (µ−1 | ln ε |, ξ) ≥ α+ − η (4.28)

if ξ ≤ α− C7ε then Y (µ−1 | ln ε |, ξ) ≤ α− + η. (4.29)

Proof. We first prove 4.28. For ξ ≥ α + C7ε, as long as Y (τ, ξ) has not reached
α+ − η, we can use 4.15 to deduce that

Y (τ, ξ) ≥ α + C1e
µτ (ξ − α)

≥ α + C1C7e
µτε

≥ α+ − η,
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since (ξ − α) ≥ C7ε, solving with respect to τ in previous estimate and we have

α + C1C7e
µτε ≥ α+ − η, (4.30)

eµτ ≥ α+ − α− η
C1C7ε

, (4.31)

τ ≥ µ−1 ln
α+ − α− η
C1C7ε

, (4.32)

then we define τ ε and provided that τ satisfies

τ ≥ τ ε =: µ−1 ln
α+ − α− η
C1C7ε

.

Choosing

C7 =
max(α− α−, α+ − α)− η

C1

,

we see that µ−1 | ln ε |≥ τ ε, which completes the proof of 4.28.
Now for 4.29 we use the second estimate of Corollary, the 4.16, and get

Y (τ, ξ) ≤ α + C1e
µτ (ξ − α)

≤ α + C1C7e
µτε

≤ α− + η,

and similarly

α + C1C7e
µτε ≤ α− + η,

eµτ ≤ α− − α + η

C1C7ε
,

τ ≤ µ−1 ln
α− − α + η

C1C7ε
,

provided that τ satisfies

τ ≤ τ ε =: µ−1 ln
α− − α + η

C1C7ε
.

Now choosing

C7 =
min(α− α−, α+ − α) + η

C1

,

and from µ−1 | ln ε |≤ τ ε, which completes the proof of 4.29.
Next we prove the 4.27. First by the bistable assumptions of f, if we leave from
a initial value ξ ∈ [α− − η, α+ + η] then Y (τ, ξ) will remain in [α− − η, α+ + η].
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Now suppose that α+ + η ≤ ξ ≤ 2C0. We check bellow that Y (µ−1 | ln ε |, ξ) ≤
α+ + η. First we recall that valid the following

f ′(α±) < 0, f ′(α) > 0,

∫ α+

α−

f(u)du = 0

and we can find p > 0 such that

if α+ ≤ u ≤ 2C0 then f(u) ≤ p(α+ − u) (4.33)

if 2C0 ≤ u ≤ α− then f(u) ≥ −p(u− α−). (4.34)

We then use the 4.7 to obtain, as long as α+ + η ≤ Y ≤ 2C0, the inequality

Yτ ≤ f(Y ) ≤ p(α+)− Y.

It follows that

Yτ
Y − α+

≤ −p.

Integrating this inequality from 0 to τ leads to∫ τ

0

Yτ
Y − α+

ds ≤ −
∫ τ

0

pds,

[ln(Y (s, ξ))− α+]τ0 ≤ −pτ,

ln

(
Y (τ, ξ)− α+

Y (0, ξ)− α+

)
≤ −pτ,

Y (0, ξ) = ξ from the initial condition of 4.7 and we get

ln

(
Y (τ, ξ)− α+

ξ − α+

)
≤ −pτ,

finally

Y (τ, ξ) ≤ α+ + (ξ − α+)e−pτ

≤ α+ + (2C0 − α+)e−pτ .

Since (2C0 − α+)e−pµ
−1|ln ε| = (2C0 − α+)e−∞ → 0 as ε→ 0, where lim

x→0+
x = −∞,

the above inequality proves that, for ε ∈ (0, ε0), with ε0 = ε0(η) sufficiently small
and we obtain

Y (µ−1 | ln ε |, ξ) ≤ α+ + η,

which completes the proof of 4.27.
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Now we are ready to prove Theorem 4.1. By setting τ = µ−1ε2 | ln ε | in 4.26,
we obtain

Y (µ−1 | ln ε |, u−0 (x)− (C6ε− C6ε
2)) (4.35)

≤ uε(x, µ−1ε2 | ln ε |) ≤ Y (µ−1 | ln ε |, u+
0 (x) + C6ε− C6ε

2). (4.36)

Furthermore, by the definition of C0, we have, for ε0 small enough,

−2C0 ≤ u±0 ± (C6ε− C6ε
2) ≤ 2C0, for x ∈ Ω. (4.37)

Thus the assertion 4.2 of Theorem 4.1 is direct consequence of 4.27 and 4.36.
Next we prove the second assertion of the Theorem. We choose M0 large enough
so that M0ε−C6ε+C6ε

2 ≤ C7ε. Then for any x ∈ Ω such that u−0 (x) ≥ α+M0ε,
we have

u−0 (x)− (C6ε− C6ε
2) ≥ α +M0ε− C6ε+ C6ε

2 ≥ α+ + C7.

Combining this, 4.36 and 4.28, we see that

uε(x, µ−1ε2 | ln ε |) ≥ α+ − η,

for any x satisfies u−0 (x) ≥ α +M0ε . From the definition of u−0 , it is clear that

u−0 (x) ≥ α +M0ε if and only if u0(x) ≥ α +M0ε,

provided that ε is small enough. This proves 4.3. The inequality 4.4 can be
shown the same way. This completes the proof of Theorem 4.1.

4.4 Optimality of the generation time

To conclude this section we show that the generation time τ := µ−1ε2 | ln ε |
that appears in Theorem 4.1 is optimal. In other words, the interface will not be
fully developed much before tε.

Proposition 2. Denote by tεmin the smallest time such that for all ε ∈ (0, ε0) and
for constant C

uε(x, t) ∈


[α− − η, α+ + η] if x ∈ NCε(Γt)

[α− − η, α− + η] if x ∈ Ω−t \NCε(Γt)

[α+ − η, α+ + η] if x ∈ Ω+
t \NCε(Γt),

where Nr(Γt) := { x ∈ Ω, dist(x,Γt) < r } denotes the r- neighborhood of Γt,
holds for all t ∈ [tεmin, T ]. Then there exists a constant b = b(C) such that

tεmin ≥ µ−1ε2(| ln ε | −b) for all ε ∈ (0, ε0).
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Proof. For simplicity, we deal with the case where

∂u0

∂ν
= 0 on ∂Ω

is valid. In that case, the 4.22 hold for all small ε0 > 0. For each b > 0, we set

tε(b) := µ−1ε2(| ln ε | −b),

and evaluate uε(x, tε(b)) at point x ∈ Ω+
0 where dist(x,Γ0) = Cε. Since u0 = a

on Γt and since | ∇u0 |≤ C0 by definition of C0, we have

u0(x) ≤ α + C0Cε. (4.38)

It follows from this and from 4.15 that

w+
ε (x, tε(b)) = Y (µ−1(| ln ε | −b), u0(x) + εC6e

−b − ε2C6)

≤ α + C2e
|ln ε|−b(u0(x) + εC6e

−b − ε2C6 − α)

≤ α + C2ε
−1e−b(C0Cε+ εC6e

−b)

= α + C2e
−b(C0Cε+ C6e

−b).

Now choose b to be sufficiently large, so

α + C2e
−b(C0Cε+ C6e

−b) < α+ − η.

Then the above estimate and 4.22 yield

uε(x, tε(b)) ≤ w+
ε (x, tε(b)) < α+ − η.

This implies that the uε(x, t) from the assumption of proposition does not hold
at t = tε(b), hence tε(b) = tεmin. The proposition is proved.
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5 Generation of interface in the general case

Our goal in this section is to extend Theorem 4.1 to the case where gε 6= 0.
The underlying ideas are the same, but we point out the main differences.

5.1 The perturbed bistable ordinary differential equation

We first assume a slightly perturbed nonlinearity:

fδ(u) = f(u) + δ,

where δ is any constant. For | δ | small enough, this function is still bistable. We
claim that fδ has the following properties.

Lemma 5.1. Let δ0 be small enough. Then for all δ ∈ (−δ0, δ0),

• fδ has exactly three zeros, namely α−(δ) < α(δ) < α+(δ) and there exists a
positive constant C such that

| α−(δ)− α− | + | α(δ)− α | + | α+(δ)− α+ | ≤ C | δ | . (5.1)

• We have that

fδ is strictly positive in (−∞, α−(δ)) ∪ (α(δ), α+(δ)), (5.2)

fδ is strictly negative in (α−(δ), α(δ)) ∪ (α+(δ),+∞). (5.3)

• Set

µ(δ) := f ′δ(α(δ)) = f ′(α(δ)),

then there exists a positive constant, which denote again by C, such that

| µ(δ)− µ |≤ C | δ | (5.4)

or | f ′(α(δ))− µ |≤ C | δ |.

We define Y (τ, ξ; δ) for each δ ∈ (−δ0, δ0) as the solution of the following
ordinary differential equation :{

Yτ (τ, ξ; δ) = fδ(Y (τ, ξ; δ)) for τ > 0,

Y (0, ξ; δ) = ξ,
(5.5)

where ξ varies in (−2C0, 2C0) with C0 being the constant that we have defined.
To prove Theorem 4.1, we will construct a pair of sub- and super- solutions
for (P ε) by simply replacing the function Y (τ, ξ) in 4.21 by Y (τ, ξ; δ), with an
appropriate choice of δ. We have to check that the basic properties of Y (τ, ξ)
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in subsection 4.1 carry over to Y (τ, ξ; δ). It is clear that all the differential and
integral identities in subsection 4.1 are still valid for 5.5. Particularly, Lemmas
4.2 and 4.3 remain to hold if we replace Y (τ, ξ) by Y (τ, ξ; δ), f by fδ and A(τ, ξ)
by A(τ, ξ; δ), where

A(τ, ξ; δ) =
f ′δ(Y (τ, ξ; δ))− f ′δ(ξ)

fδ(ξ)
. (5.6)

Next we show the basic estimates from section 4 that are also valid for the function
Y (τ, ξ; δ). The following lemma is fundamental(analogue of 4.4)

Lemma 5.2. Let η ∈ (0, η0) be arbitrary. Then there exist positive constants

δ0 = δ0(η), C̃1 = C̃1(η), C̃2 = C̃2(η) and C3 = C3(η) such that, for all δ ∈
(−δ0, δ0), for all τ > 0,

• if ξ ∈ (α(δ), α+ − η) then, for every τ > 0 such that Y (τ, ξ; δ) remains in
the interval (α(δ), α+ − η), we have

C̃1e
µ(δ)τ ≤ Yξ(τ, ξ; δ) ≤ C̃2e

µ(δ)τ , (5.7)

and

| A(τ, ξ; δ) |≤ C3(eµ(δ)τ − 1), (5.8)

• if ξ ∈ (α− + η, α(δ)) then for every τ > 0 such that Y (τ, ξ; δ) remains in
the interval (α− + η, α(δ)), and the above hold as well.

Proof. In view of 5.1, we can choose a small constant δ0 = δ0(η) such that
(α(δ), α+ − η) ⊂ (α(δ), α+(δ)) for every δ ∈ [−δ0, δ0]. Therefore fδ(q) does
not change sign in the interval (α(δ), α+ − η). We just have to write again the
proof of Lemma 4.4, simply replacing Y (τ, ξ) by Y (τ, ξ; δ). Instead, we explain

why C̃1, C̃2 and C3 are independent of δ, in view of the proof of Lemma 4.1, it is
sufficient to estimate, for q ∈ [α(δ), α+ − η], the modulus of the quantity

hδ(q) =
f ′δ(q)− f ′δ(α(δ))

fδ(q)

by a constant depending on η but not on δ ∈ [−δ0, δ0]. Since

hδ(q)→
f ′′δ (α(δ))

f ′δ(α(δ))
=
f ′′(α(δ))

f ′(α(δ))
as q → α(δ),

since having used the means value theorem, we also see that the function (q, δ) 7→
hδ(q) is continuous in the compact region { | δ |≤ δ0, α(δ) ≤ q ≤ α+−η }. Then,
it follows that | hδ(q) | is bounded as (q, δ) varies in this region.
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Corollary 5.2.1. Let η ∈ (0, η0) be arbitrary. Then there exist positive constants
δ0 = δ0(η), C1 = C1(η) and C2 = C2(η) such that, for all δ ∈ (−
delta0, δ0), for all τ > 0,

• if ξ ∈ (α(δ), α+ − η) then, for every τ > 0 such that Y (τ, ξ; δ) remains in
the interval (α(δ), α+ − η), we have

C1e
µ(δ)τ (ξ − α(δ)) ≤ Y (τ, ξ; δ)− α(δ) ≤ C2e

µ(δ)τ (ξ − α(δ)), (5.9)

• if ξ ∈ (α− + η, α(δ)) then, for every τ > 0 such that Y (τ, ξ; δ) remains in
the interval (α− + η, α(δ)), we have

C2e
µ(δ)τ (ξ − α(δ)) ≤ Y (τ, ξ; δ)− α(δ) ≤ C1e

µ(δ)τ (ξ − α(δ)). (5.10)

Proof. In order to prove that C1 and C2 are independent of δ, all we have to
do is to find constants B1 = B1(η) > 0 and B2 = B2(η) > 0 such that, for all
q ∈ (α(δ), α+ − η),

B1(q − α) ≤ f(q) ≤ B2(q − α). (5.11)

In view of 5.4, we can choose δ0 > 0 small enough so that, for all δ ∈ [−δ0, δ0],
we have µ(δ) ≥ µ/2 > 0. Since

fδ(q)− f(α(δ))

q − α(δ)
=

fδ(q)

q − α(δ)
→ f ′(α(δ)) = µ(δ) as q → α(δ),

by means value theorem and bistability of fδ. It follows that (q, δ) 7→ fδ(q)/(q −
α(δ)) is a strictly positive and continuous function on the compact region { |
δ |≤ δ0, α(δ) ≤ q ≤ α+ − η }, which insures the existence of the constants B1

and B2 We write this inequality for α(δ) ≤ Y (τ, ξ) ≤ α+ − η to obtain

B1(Y (τ, ξ)− α(δ)) ≤ f(Y (τ, ξ)) ≤ B2(Y (τ, ξ)− α(δ)).

We also write this inequality for α(δ) ≤ ξ ≤ α+ − η to obtain

B1(ξ − α(δ)) ≤ f(ξ) ≤ B2(ξ − α(δ)).

Next we use the equality Yξ = fδ(Y )/fδ(ξ) to conclude that

B1

B2

(Y (τ, ξ)− α(δ)) ≤ (ξ − α(δ))Yξ(τ, ξ) ≤
B2

B1

(Y (τ, ξ)− α(δ)),

which, in view of 5.7, implies that

B1

B2

C̃1e
µτ (ξ − α(δ)) ≤ Y (τ, ξ)− α(δ) ≤ B2

B1

C̃2e
µτ (ξ − α(δ)),

since
∫ ξ
α(δ)

Ys(τ, s)ds = Y (τ, ξ)−Y (τ, α(δ)) = Y (τ, ξ)−α(δ). This proves the first

estimate, the second is similar.
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Now we establish an analogue of Lemmas 4.5 and 4.6 with constants indepen-
dent of δ. We claim that:

Lemma 5.3. Let η ∈ (0, η0) and M > 0 be arbitrary. Then there exist positive
constants δ0 = δ0(η,M) and C4 = C4(η,M) such that, for all δ ∈ (−δ0, δ0),

• if ξ ∈ [α+ − η, α+ +M ], then, for all τ > 0, Y (τ, ξ; δ) remains in the
interval [α+ − η, α+ +M ] and

| A(τ, ξ; δ) |≤ C4τ for τ > 0, (5.12)

• if ξ ∈ [α− −M,α− + η], then, for all τ > 0, Y (τ, ξ; δ) remains in the
interval ξ ∈ [α− −M,α− + η] and the above estimate hold as well.

Now we choose the constant M in the above lemma sufficiently large so that
[−2C0, 2C0] ⊂ [α− −M,α+ +M ], and fix M hereafter. Then C4 only depends on
η. Using the fact that τ = O(eµτ − 1) for τ > 0, one can easily deduce from 5.12
and 5.8 the following general estimate.

Lemma 5.4. Let η ∈ (0, η0) be arbitrary and let C0 be the constant defined in
2.11. Then there exist positive constants δ0 = δ0(η) C5 = C5(η) such that, for all
δ ∈ (−δ0, δ0), for all ξ ∈ (−2C0, 2C0) and all τ > 0,

| A(τ, ξ; δ) |≤ C5(eµ(δ)τ − 1). (5.13)

5.2 Construction of sub- and super- solutions

We now use Y (τ, ξ; δ), the solution of the ordinary differential equation 5.5,
to construct the sub- and super- solutions for the study of generation of interface.
The same cut-off argument as in subsection 4.2 enable us to assume

∂u0

∂ν
= 0 on ∂Ω.

for simplicity. We set our sub- and super- solutions are given by

w±ε (x, t) = Y (
t

ε2
, u0(x)± ε2r(±εG, t

ε2
);±εG), (5.14)

where the function r(δ, τ) is given by

r(δ, τ) = C6(eµ(δ)τ − 1),

and the constant G is chosen such that, for all small ε > 0,

| gε(x, t, u) |≤ G for all (x, t, u) ∈ Ω× [o, T ]× R,

which in view of 2.6, is clearly possible.
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Lemma 5.5. Assume 4.20. Then there exist positive constants ε0 and C6 such
that, for all ε ∈ (0, ε0), (w−ε , w

+
ε ), is a pair of sub- and super- solutions for

Problem (P ε), in the domain

{ (x, t) ∈ QT , x ∈ Ω, 0 ≤ t ≤ µ−1ε2 | ln ε | } ,

satisfying w−ε (x, 0) = w+
ε (x, 0) = u0(x). Consequently

w−ε (x, t) ≤ uε(x, t) ≤ w+
ε (x, t) for x ∈ Ω, 0 ≤ t ≤ µ−1ε2 | ln ε | (5.15)

Proof. The assumption 4.20 implies that w±ε satisfy the homogeneous Neumann
boundary condition

∂w±ε
∂ν

= 0 space on ∂Ω× (0,+∞).

Now we define the operator L by

Lu := ut −∆u− 1

ε2
(f(u)− εgε(x, t, u)),

and we prove that Lw+
ε ≥ 0. Straightforward computations yield

Lw+
ε =

1

ε2
Yτ + Yξ

[
C6µe

µt/ε2 −∆u0− | ∇u0 |2
Yξξ
Yξ

]
− 1

ε2
f(Y ) +

1

ε
gε(x, t, Y ),

since

(w+
ε )t =

1

ε2
Yτ + ε2C6

(
µ(εG)τ

ε2

)′
eµ(εG)τ/ε2 ,

∆w+
ε = ∆u0Yξ+ | ∇u0 |2 Yξξ,

1

ε2
f(w+

ε ) =
1

ε2
f(Y ),

1

ε
gε(x, t, w+

ε ) =
1

gε
(x, t, Y ),

where w+
ε (x, t) = Y ( t

ε2
, u0(x)+ε2r(εG, t

ε2
)), for τ = t

ε2
and ξ = u0(x)+ε2r(εG, t

ε2
).

Therefore, in view of 5.5 we have that Yτ (τ, ξ) = f(Y (τ, ξ)) + εG and we obtain

Lw+
ε =

[
C6µ(εG)eµ(εG)t/ε2 −∆u0− | ∇u0 |2

Yξξ
Yξ

]
Yξ +

1

ε
[gε(x, t, Y ) +G] .
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We note that ±εG ∈ (−δ0, δ0) and that, in the range 0 ≤ t ≤ µ−1ε2 | ln ε |, we
have, for ε0 sufficiently small,

0 ≤ | ε2C6(eµ(±εG)t/ε2 − 1) | ≤ | ε2C6(ε−µ(±εG)/µ − 1) ≤ C0,

which implies that

u0(x)± ε2r(±εG, t
ε2

)

where C0 is the constant that defined in 2.11. Hence,

ξ := u0(x)± ε2r(±εG, t
ε2

),

with τ = t
ε

and δ = εG. By the choice of G the second term is positive. Using

the estimate of A =
Yξξ
Yξ

in Lemma 5.4, then we obtain, for a constant C5 that is

independent of ε,

Lw+
ε ≥

[
C6µ(εG)eµ(εG)t/ε2− | ∆u0 | −C5(eµ(εG)t/ε2 − 1) | ∇u0 |2

]
Yξ

≥
[
(C6µ(εG)− C5 | ∇u0 |2)eµ(εG)t/ε2− | ∆u0 | +C5 | ∇u0 |2

]
Yξ.

In view of 5.4, this inequality implies that, for ε ∈ (0, ε0) for C6 large enough,

Lw+
ε ≥

[
C6

1

2
µ− C5C

2
0 − C0

]
Yξ ≥ 0.

Hence w+
ε is a super solution for the problem (P ε). Similarly w−ε is a sub- solution.

Obviously,

w−ε (x, 0) = w+
ε (x, 0) = Y (0, u0(x);±εG) = u0(x).

5.3 Proof of Theorem 4.1 for the general case

As in subsection 4.3, we first present a key estimate on the function Y (τ, ξ; δ)
after a time interval of order τ ∼| ln ε |. A perturbation δ of order ε does not
affect the result of Lemma 4.7.

Lemma 5.6. Let η ∈ (0, η0) be arbitrary, there exist positive constants ε0 and C7

such that, for all ε ∈ (0, ε0),

• for all ξ ∈ (−2C0, 2C0) ,

α− − η ≤ Y (µ−1 | ln ε |, ξ;±εG) ≤ α+ + η, (5.16)
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• for all ξ ∈ (−2C0, 2C0) such that | ξ − α |≥ C7ε, we have that

if ξ ≥ α + C7ε then Y (µ−1 | ln ε |, ξ;±εG) ≥ α+ − η (5.17)

if ξ ≤ α− C7ε then Y (µ−1 | ln ε |, ξ;±εG) ≤ α− + η. (5.18)

Proof. In view of 5.1, we have, for C7 large enough,

α + C7ε ≥ α(±εG) +
1

2
C7ε,

for all ε ∈ (0, ε0), with ε0 sufficiently small. Hence for ξ ≥ α + C7ε, as long as
Y (τ, ξ;±εG) has not reached α+ − η, we can use 5.9 to deduce that

Y (τ, ξ;±εG) ≥ α(;±εG) + C1e
µ(;±εG)τ (ξ − α(;±εG))

≥ α(;±εG)− εCG+
1

2
C1C7e

µ(;±εG)τε

≥ α+ − η,

since (ξ − α(;±εG)) ≥ C7ε, solving with respect to τ in previous estimate and
we have

τ ≥ 1

µ(;±εG)
ln
m0 − η + CGε

1
2
C1C7ε

=: µ−1(ε) | ln ε | (5.19)

A simple computation shows that

µ−1 | ln ε | −µ−1(ε) | ln ε |= µ(±εG)− µ
µ(±εG)

| ln ε | − 1

µ(±εG)
ln
m0 − η + CGε

1
2
C1

+
1

µ(±εG)
lnC7.

Thanks to 5.4, as ε → 0, the first above term is of order ε | ln ε | and the sec-
ond one of order 1. For C7 large enough, the upper quantity is positive for all
ε ∈ (0, ε0), with ε0 sufficiently small. Similarly proved the second one.
Now we prove the estimate. First, by taking ε0 sufficiently small, we can as-
sume that the stable equilibria of f±εG, namely α−(±εG) and α−(±εG), are in
[α− − η, α+ + η]. Hence, f±εG being a bistable function, if we leave from a ξ ∈
[α− − η, α+ + η] then Y (τ, ξ;±εG) will remain in the interval [α− − η, α+ + η].
Now suppose that α+ + η ≤ ξ ≤ 2C0. We check bellow that Y (µ−1 | ln ε |
, ξ;±εG) ≤ α+ + η. As done in the proof of Lemma 4.8, as long as α+ + η ≤ Y ≤
2C0, 4.33, 4.34 leads to the inequality Yτ ≤ p(α+ − Y ) + εG. It follows that

Yτ
Y − α+

≤ −p+ ε
G

η
,

which implies, by integration from 0 to τ , that

Y (τ, ξ;±εG) ≤ α+ + (2C0 − α+)e(−p+εG
η

)τ .

Since (2C0−α+)e(−p+εGη−1)µ−1|ln ε| → 0 as ε→ 0, the above inequality proves that,
for ε ∈ (0, ε0), with ε0 = ε0(η) sufficiently small, Y (µ−1 | ln ε |, ξ;±εG) ≤ α+ +η,
which completes the proof.
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We are now ready to prove Theorem 4.1 in the general case. By setting
t = µ−1ε2 | ln ε | in 5.15, we get

Y (µ−1 | ln ε |, u0(x)− ε2r(−εG, µ−1 | ln ε |);−εG)

≤ uε(x, µ−1ε2 | ln ε |) ≤ Y (µ−1 | ln ε |, u0(x) + ε2r(εG, µ−1 | ln ε |); +εG).

The point is that, in view of 5.4,

lim
ε→0

µ− µ(±εG)

µ
ln ε = 0.

Hence we have, for ε0 small enough,

ε2r(±εG, µ−1 | ln ε |) = C6ε(ε
(µ−µ(±εG))/µ − ε) ∈

(
1

2
C6ε,

3

2
C6ε

)
.

Hence, as in subsection 4.3, the result 4.2 of Theorem 4.1 is a direct consequence
of 5.16 and the above estimate. Next we prove 4.3. We take x ∈ Ω such that
u0(x) ≥ α +M0ε so that

u0(x)− ε2r(−εG, µ−1 | ln ε |) ≥ α +M0ε−
3

2
C6ε

≥ α + C7ε,

if we choose M0 large enough. Using the above estimate and 5.17 we obtain 4.3.
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6 Motion of interface

In the previous sections, we proved that the solution uε develops a clear
transition layer within a very short time. The aim of the present section is to
show that, once such a clear transition layer is formed, it persists for the rest of
time and that its law of motion is well approximated by the interface equation
(P 0).
We formulate the above assertion by taking the first two terms of the formal
asymptotic expansion 3.3 we get a formal approximation of the solution uε up to
order ε:

uε(x, t) ≈ ũε(x, t) := U0

(
d̃(x, t)

ε

)
+ εU1

(
x, t,

d̃(x, t)

ε

)
. (6.1)

Here U0, U1 are defined in 3.6 and 3.26. The right side has a clear transition
layer which lies exactly on Γt. Our goal is to show that this function is a good
approximation of the real solution, more precisely:

If uε becomes rather close to ũε at some time moment t = t0, then it stays
close to ũε for the rest of time. Consequently, Γεt evolves roughly like Γt.

In order to prove such a result, we will construct a pair of sub- and super-
solution u−ε and u+

ε for Problem (P ε) by slightly modifying the above function
ũε. It then follows that, if the solution uε satisfies

u−ε (x, t0) ≤ uε(x, t0) ≤ u+
ε (x, t0),

for some t0 ≥ 0, then

u−ε (x, t) ≤ uε ≤ u+
ε (x, t),

for t0 ≤ t ≤ T . As a result, since both u+
ε , u

−
ε stay close to ũε, the solution uε

also stays close to ũε for t0 ≤ t ≤ T . That is why we should construct these sub-
and super- solutions.

6.1 A modified signed distance function

We define a cut- off signed distance function d as follows. We recall that d̃ is
defined in 3.1 as the usual distance function. First, choose d0 > 0 small enough
so that d̃(·, ·) is smooth in the tubular neighborhood of Γ

{ (x, t) ∈ QT , | d̃(x, t) |< 3d0 }
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and such that

dist(Γt, ∂Ω) ≥ 3d0 for all t ∈ [0, T ]. (6.2)

Next let J(s) be a smooth increasing function on R such that

J(s) =


s if | s | ≤ d0, (−d0 ≤ s ≤ d0)

−2d0 if s ≤ −2d0

2d0 if s ≥ 2d0.

We then define the cut- off signed distance function d by

d(x, t) = J
(
d̃(x, t)

)
.

Therefore,

d(x, t) = J
(
d̃(x, t)

)
=


d̃(x, t) if | d̃(x, t) |≤ d0

−2d0 if d̃(x, t) ≤ −2d0

2d0 if d̃(x, t) ≥ 2d0,

where

d̃(x, t) =

{
dist(x,Γt) for x ∈ Ω+

t

−dist(x,Γt) for x ∈ Ω−t .

Note that | ∇d |= 1 in the region { (x, t) ∈ QT , | d̃(x, t) |< d0 } and that, in view
of and the above definition, ∇d = 0 in a neighborhood of ∂Ω. Note also that the
equation of motion (P 0), which is equivalent to 3.24, is now written as

dt = ∆d− γ(x, t) on Γt, (6.3)

where we recall that

γ(x, t) = c0

∫ α+

α−

g(x, t, r)dr. (6.4)

6.2 Construction of sub- and super- solutions

The sub- and super- solutions for the motion of interface are constructed
by using the first two terms of the formal asymptotic expansion 3.3. Now, we
construct these solutions by modifying the function ũε in 6.1. Concerning the
second term U1, which define in 3.26, the terms ∆U1 and U1t do not make sense
as we only assume that g(·, ·, u) ∈ C1+θ, 1+θ

2 . In order to cope with this lack
of smoothness, as gε(·, ·, u) ∈ C2,1 for θ = 1, we replace U1 by a more smooth
function U ε

1 , which defined by



6 Motion of interface 42

{
U ε

1zz + f ′(U0(z))U ε
1 = gε(x, t, U0(z))− γε(x, t)U ′0(z),

U ε
1 (x, t, 0), U ε

1 (x, t, ·) ∈ L∞(R),
(6.5)

where

γε(x, t) = c0

∫ α+

α−

gε(x, t, r)dr. (6.6)

Thus U ε
1 (x, t, z) is a solution of 3.9 with

A = ∇xA
ε
0(x, t, z) := gε(x, t, U0(z))− γε(x, t)U ′0(z)), (6.7)

where the variables x, t, ε are considered parameters. Using 2.6 and the same
arguments as in the end of the section 3, we obtain estimates analogous to 3.28
and 3.29, with a constant M independent of ε:

| U ε
1 (x, t, z) |≤M, | ∇xU

ε
1 (x, t, z) |≤M. (6.8)

Moreover, gε being C2 in x and C1 in t, ∇xU
ε
1 and U ε

1t are solutions of 3.9 with
A = ∇xA

ε
0 and A = Aε0t, respectively. Thus, in view of 2.4, we obtain

| ∆xU
ε
1 (x, t, z) |≤ C/ε, | U ε

1t(x, t, z) |≤ C/ε, (6.9)

for a constant C independent of ε. Similarly, 2.5, 2.6 and Lemma 3.3 yield
estimates analogous to 3.32 and 3.33 for U ε

1 , for constants C and M independent
of ε:

| U ε
1z(x, t, z) | + | U ε

1zz(x, t, z) |≤ Ce−λ|z|, (6.10)

| ∇xU1z(x, t, z) |≤M. (6.11)

In the rest of this section, C and M will stand for the constants that appear in
inequalities 6.8- 6.11. Also, by the same arguments used to obtain 3.35, we see
that 2.8 implies the homogeneous Neumann boundary condition for U ε

1 :

∂U ε
1

∂ν
= 0 on ∂Ω× [0, T ]× R. (6.12)

We look for a pair of sub- and super- solutions u±ε for (P ε) of the form

u±ε (x, t) = U0

(
d̃(x, t)± εp(t)

ε

)
+ εU ε

1

(
x, t,

d̃(x, t)± εp(t)
ε

)
± q(t), (6.13)

where

p(t) = −e−βt/ε2 + eLt +K, (6.14)

q(t) = σ(βe−βt/ε
2

+ ε2LeLt). (6.15)
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Note that q = σε2pt. It is clear from the definition of u±ε that

lim
ε→0

u±ε (x, t) =

{
α+ for all (x, t) ∈ Q+

T

α− for all (x, t) ∈ Q−T .
(6.16)

The main result in this section is the following.

Lemma 6.1. Choose β, σ > 0 appropriately. For any K > 1 we can find positive
constants ε0 and L such that, for any ε ∈ (0, ε0), the functions (u−ε , u

+
ε ) are a pair

of sub- and super- solutions for the Problem (P ε) in the range x ∈ Ω, 0 ≤ t ≤ T .
In other words, u−ε and u+

ε satisfy the homogeneous Neumann boundary condition
and

Lu−ε ≤ 0 ≤ Lu+
ε ,

in the range x ∈ Ω, 0 ≤ t ≤ T , where we recall that the operator L is defined by

Lu := ut −∆u− ε−2(f(u)− εgε(x, t, u)).

6.3 Proof of Lemma 6.1

By virtue of 6.12 and the fact that ∇d = 0 near ∂Ω, we have the homogeneous
boundary condition

∂u±ε
∂ν

= 0 on ∂Ω× [0, T ].

In the following we prove inequality Lu+
ε ≥ 0, the inequality Lu−ε ≤ 0 following

the same argument.

Computation of Lu+
ε :

Straightforward computation yields

(
u+
ε

)
t

= U ′0

(
dt
ε

+ pt

)
+ εU ε

1t + U ε
1z (dt + εpt) + qt,

∇u+
ε = U ′0

∇d
ε

+ ε∇U ε
1 +∇U ε

1z∇d,

∆u+
ε = U ′′0

| ∇d |2

ε2
+ U ′0

∆d

ε
+ ε∆U ε

1 + 2∇U ε
1z · ∇d+ U ε

1zz

| ∇d |2

ε
+ U ε

1z∆d,

where the function U0, as well its derivatives, is evaluated at (x, t(d(x, t) + εp(t))/ε).
Here, ∇U ε

1 denotes the derivative with respect to x whenever we regard U ε
1 (x, t, z)



6 Motion of interface 44

as a function of three variables x, t and z. The symbol ∆U ε
1 is defined similarly.

We also expand the reaction terms

f(u+
ε ) = f(U0) + (εU ε

1 + q)f ′(U0) +
1

2
(εU ε

1 + q)2f ′′(θ),

g(x, t, u+
ε ) = g(x, t, U0) + (εU ε

1 + q)gu(x, t, ω),

where θ(x, t) and ω(x, t) are some functions satisfying U0 < θ < u−ε , U0 < ω <
u+
ε . Writing gε = g+ gε− g and combining the above expressions with equations

6.5 and 3.6.
We recall that 3.6 is solution of the ordinary differential equation{

U ′′0 + f(U0) = 0,

U0(−∞) = α−, U0(0) = α, U0(+∞) = α+,

and 6.5 : {
U ε

1zz + f ′(U0(z))U ε
1 = gε(x, t, U0(z))− γε(x, t)U ′0(z),

U ε
1 (x, t, 0), U ε

1 (x, t, ·) ∈ L∞(R),

where

γε(x, t) = c0

∫ α+

α−

gε(x, t, r)dr.

Finally, we have

Lu+
ε = U ′0

(
dt
ε

+ pt

)
+ εU ε

1t + U ε
1z (dt + εpt) + qt − U ′′0

| ∇d |2

ε2

−U ′0
∆d

ε
− ε∆U ε

1 − 2∇U ε
1z · ∇d− U ε

1zz

| ∇d |2

ε
− U ε

1z∆d

− 1

ε2
f(U0)− 1

ε2
(εU ε

1 + q)f ′(U0)− 1

ε2

1

2
(εU ε

1 + q)2f ′′(θ)

+
1

ε
g(x, t, U0) +

1

ε
(εU ε

1 + q)gu(x, t, ω) +
1

ε
gε(x, t, U0)

+
1

ε
(εU ε

1 + q)gεu(x, t, ω)− 1

ε
g(x, t, U0)− 1

ε
(εU1 + q)gu(x, t, ω).
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We obtain

Lu+
ε = E1 + E2 + · · ·+ E7,

where:

E1 = − 1

ε2
q

(
f ′(U0) +

1

2
qf ′′(θ)

)
+ U ′0pt + qt,

E2 =

(
U ′′0
ε2

+
U ε

1zz

ε

)
(1− | ∇d |2),

E3 =

(
U ′0
ε

+ U ε
1z

)
(dt −∆d+ γ),

E4 = εU ε
1zpt +

1

ε
q(gu(x, t, ω)− U ε

1f
′′(θ)),

E5 = −γU ε
1z −

1

2
(U ε

1 )2f ′′(θ) + U ε
1gu(x, t, ω)− 2∇U ε

1z · ∇d,

E6 = εU ε
1t − ε∆U ε

1 ,

E7 =
1

ε
(gε − g)(x, t, u+

ε )− 1

ε
(gε − g)(x, t, U0) +

1

ε
(γε − γ)(x, t)U0

′.

Since having substituted where, U ′′0 = −f(U0) and U ε
1zz = −f(U0(z))U ε

1 + gε −
γεU ′0. We estimate each of the above terms so as to estimate the Lu+

ε . Before
starting to estimate the terms, we see some useful inequalities. First, by bista-
bility assumption f ′(α±) < 0, f ′(α) > 0, there exist positive constants b, m such
that

f ′(U0(z)) ≤ −m if U0(z) ∈ [α−, α− + b] ∪ [α+ − b, α+]. (6.17)

On the other hand, since the region { z ∈ R | U0(z) ∈ [α− + b, α+ − b] } is
compact and since U ′0 > 0 on R, there exists a constant a1 such that

U ′0(z) ≥ a1 if U0(z) ∈ [α− + b, α+ − b] } . (6.18)

We set

β =
m

4
, (6.19)
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and choose σ that satisfies

0 < σ ≤ min(σ0, σ1, σ2), (6.20)

where

σ0 :=
a1

m+ F1

, σ1 :=
1

β + 1
, σ2 :=

4β

F2(β + 1)
,

with the constant F1 and F2 defined by

F1 := max
α−≤u≤α+

| f ′(u) |, F2 := max
α−−2≤u≤α++2

| f ′′(u) | .

Combining 6.17 and 6.18, and considering that σ ≤ σ0, we obtain

σ ≤ σ0 ⇒ σ ≤ a1

m+ F1

.

Then,

U ′0(z)− σf ′(U0(z)) ≥ σm for −∞ < z <∞. (6.21)

Now letK > 1 arbitrary. In what follows we will show that Lu+
ε ≥ 0 provided that

the constants ε0 and L are appropriately chosen. We recall that α− < U0 < α+.
We continue under the following assumptions

ε0M ≤ 1, ε2
0Le

LT ≤ 1. (6.22)

It follows from 6.8 that, for all ε ∈ (0, ε0), we have ε | U ε
1 (x, t, z) |≤ 1. Moreover,

σ ≤ σ1 ⇒ σ ≤ 1

β + 1
⇒ σ ≤ 1

m
4

+ 1

implies that 0 ≤ q(t) ≤ 1, so that, in view of 6.13,

α− − 2 ≤ u±ε (x, t) ≤ α+ + 2. (6.23)

The term E1:

E1 = − 1

ε2
q

(
f ′(U0) +

1

2
qf ′′(θ)

)
+ U ′0pt + qt.

By substituting 6.14, 6.15 in E1, we obtain

E1 = − 1

ε2
σ
(
βe−βt/ε

2

+ ε2LeLt
)(

f ′(U0) +
1

2
σ(βe−βt/ε

2

+ ε2LeLt)f ′′(θ)

)
+U ′0

(
β

ε2
e−βt/ε

2

+ LeLt
)
− σβ

2

ε2
e−βt/ε

2

+ ε2L2eLt,
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where

pt =
β

ε2
e−βt/ε

2

+ LeLt,

qt = σ
β2

ε2
e−βt/ε

2

+ ε2L2eLt.

We set

I = U ′0 − σf ′(U0)− σ2

2
f ′′(θ)(βe−βt/ε

2

+ ε2LeLt).

And we end up in the following relation

E1 =
β

ε2
e−βt/ε

2

(I − σβ) + LeLt(I + ε2σL).

In virtue of 6.21 and 6.23, we have

I ≥ σm− σ2

2
f ′′(θ)(β + ε2LeLT ).

Combining this, 6.22 and the inequality

σ ≤ σ2 ⇒ σ ≤ m

F2(m
4

+ 1)
.

We obtain

I ≥ 2σβ.

Consequently, we have

E1 ≥
σβ2

ε2
e−βt/ε

2

+ 2σβLeLT .

The term E2:

E2 =

(
U ′′0
ε2

+
U ε

1zz

ε

)
(1− | ∇d |2).

First, in the region where | d |< d0, we have | ∇d |= 1, hence E2 = 0. Next we
consider the region where | d |≥ d0. We deduce from Lemma 3.1 and from 6.10
that:

|E2| ≤ C

(
1

ε2
+

1

ε

)(
1 + ‖∇d‖2

∞
)
e−λ|d+εp|/ε

≤ 2C

ε2

(
1 + ‖∇d‖2

∞
)
e−λ(d0/ε−|p|).
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By definition of p in 6.14, we have that 0 < K−1 ≤ p ≤ eLT +K. Consequently,
if we assume

eLT +K ≤ d0

2ε0

, (6.24)

then d0
ε
− |p| ≥ d0

2ε
, so that

|E2| ≤
2C

ε2

(
1 + ‖∇d‖2

∞
)
e−λd0/(2ε)

≤ C2 :=
32C

(eλ0)2

(
(1 + ‖∇d‖2

∞
)
.

The term E3:

E3 =

(
U ′0
ε

+ U ε
1z

)
(dt −∆d+ γ).

We recall that

(dt −∆d+ γ)(x, t) = 0 on Γt = { x ∈ Ω, d(x, t) = 0 } .

By equality 6.4 and assumption 2.6, we see that γ is in C1+θ, 1+θ
2 so that the

interface Γ is of class C3+θ, 3+θ
2 . Therefore both ∆d and dt are Lipschitz continuous

near Γt. It follows, from the mean value theorem applied separately on both sides
on Γt that there exists a constant N0 > 0 such that:

|(dt −∆d+ γ)(x, t)| ≤ N0 |d(x, t)| for all (x, t) ∈ QT .

Applying Lemma 3.1 and estimate 6.10 we deduce that

|E3| ≤ 2N0C
| d(x, t) |

ε
e−λ|d(x,t)/ε+p(t)|

≤ 2N0C max
y∈R
|y| e−λ|y+p(t)|

≤ 2N0C max(|p(t)| , 1

λ
)

≤ 2N0C(|p(t)|+ 1

λ
),
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by setting y = d(x,t)
ε

.
Thus recalling that

|p(t)| ≤ eLt +K,

we obtain

|E3| ≤ C3(eLt +K) + C3
′,

where C3 := 2N0C and C3
′ = 2N0C/λ.

The term E4:

E4 = εU ε
1zpt +

1

ε
q(gu(x, t, ω)− U ε

1f
′′(θ)).

In view of 2.5 and 6.10, both gu and |U ε
1z| are bounded by some constant C.

Hence, substituting the expression for pt and q, we obtain

|E4| = εU ε
1z(

β

ε2
e−βt/ε

2

+ LeLt) +
1

ε
σ(βe−βt/ε

2

+ ε2LeLt)(gu − U ε
1f
′′(θ)),

we observe that | gu |≤ C. Then

|E4| ≤ (
1

ε
βe−βt/ε

2

+ εLeLt),

where C4 := C + σ(C +MF2).

The term E5:

E5 = −γU ε
1z −

1

2
(U ε

1 )2f ′′(θ) + U ε
1gu(x, t, ω)− 2∇U ε

1z · ∇d.

In view of 6.4, the term |γ| is bounded by c0(α+−α−)C on Ω× [0, T ]. Using 6.8,
6.10, 6.11 and 2.5, we obtain

|E5| ≤ c0(α+ − α−)CM +
1

2
M2F2 +MC + 2M ‖∇d‖2

∞ =: C5.

The term E6:

E6 = εU ε
1t − ε∆U ε

1 .
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We use 6.9 to deduce that

|E6| ≤ 2C =: C6.

The term E7:

E7 =
1

ε
(gε − g)(x, t, u+

ε )− 1

ε
(gε − g)(x, t, U0) +

1

ε
(γε − γ)(x, t)U0

′.

We recall that |gε − g| ≤ Cε so that |γε| ≤ c0(α+−α−)Cε. We also observe that

1

ε
(gε − g)(x, t, u+

ε )− 1

ε
(gε − g)(x, t, U0) ≤ 2C.

It then follows, in view of Lemma 3.1, that

|E7| ≤ 2C + c0(α+ − α−)C2 =: C7.

Completion of the proof : So collecting the above estimates of E1 −E7 terms
gives

Lu+
ε ≥ (

σβ2

ε2
− C4β

ε
)e−βt/ε

2

+ (2σβL− C3 − εC4L)eLt − C8, (6.25)

where

C8 := C2 +KC3 + C3
′ + C5 + C6 + C7.

Now we set

L :=
1

T
ln

d0

4ε0

,

which, for ε0 small enough, validates assumptions 6.22 and 6.24. If ε0 is chosen
sufficiently small, also L large enough, we have for all 0 < ε < ε0 that the first
term of the right side of 6.25 is positive, and that

Lu+
ε ≥ [σβL− C3] eLt − C8

≥ 1

2
σβL− C8

≥ 0.

With the choice of the constants β, σ as in 6.19 and 6.20 the proof of Lemma
6.1 is complete.
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