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1. Abstract

1 Abstract

Systemic lupus erythematosus (SLE) is a complex autoimmune disease with pa-
tients presenting varying levels of disease activity and diverse clinical manifestations.
Better  comprehension  of  the  molecular  mechanisms  that  underlie  the  basis  of  the
pathology, will promote a better diagnosis, prognosis and treatment of patients. In this
study,  RNASeq  data  from peripheral  blood  samples  of  142  SLE patients  and  58
healthy individuals were compared from multiple perspectives. A number of different
analyses were implemented. Already known and novel molecular signatures were iden-
tified as differentially deregulated and associated with disease activity and/or renal
manifestations of the disease. Among the most prominent of them were cell cycle, in-
terferon and plasmablast signatures. Moreover, topological organization of gene ex-
pression was extensively studied. Genomic coexpression domains (CODs) were detec-
ted in patient subgroups and in healthy control group. Results suggest a more ‘frag-
mented’ topological profile for patient gene expression. At the same time, differences
in the size and distribution of CODs were observed between different patient  sub-
groups, suggesting a link between gene expression organization and disease develop-
ment. Cross-correlation of the defined genomic regions with genetic data is likely to
uncover probable origins of the gene expression aberrations associated with SLE pro-
gression.

2 Introduction 

Systemic lupus erythematosus (SLE) is a multifaceted autoimmune disorder1,2. It is
highly heterogeneous and considered a prototype of the systemic autoimmune dis-
eases. The aetiology of the disease includes the contribution of genetic, epigenetic, en-
vironmental and stochastic factors. Notably, SLE is incurable and may be life-threaten-
ing, with clinical manifestations involving essential organs and tissues, such as kidney,
brain and blood. Moreover, SLE predominantly affects young female individuals and
is  characterized by an unpredictable  disease course with flares  interspersed among
periods of remission. Patients are characterized by the production of autoantibodies,
including antinuclear antibodies (ANA) and antiphospholipid antibodies (APA), im-
paired clearance of apoptotic debris and the formation of large amounts of immune
complexes,  that  aggregate  in  tissues  leading  to  damage.  Accumulation  of  damage
stems from the aforementioned progression, side-effects of treatment and comorbid
conditions. In spite of the numerous studies concerning SLE, there are considerable
unmet needs related to diagnosis,  prognosis and therapy development.  Thus, better
comprehension of the disorder in a molecular level is required. 

Several  studies have been performed to investigate  the transcriptional profile of
SLE patients (reviewed in  3,4) using high-throughput techniques. Early studies used
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2. Introduction 

whole blood and microarray analysis to identify the so-called interferon (IFN) signa-
ture5,6. Inflammatory and granulocyte signatures were also observed6. Subsequently, ef-
forts focused on determining signatures in specific cell  types and associating them
with specific patient subgroups, in order to stratify patients and facilitate therapeutic
targeting. However, some of them lack statistical power due to small sample sizes.
Furthermore, it seems that there is a great diversity in the expression levels of specific
signatures upon examination of different cell types or individuals of varying ancestry.
These limitations aside, the high heterogeneity of the disorder ‘demands’ the stratifica-
tion of patients. Additionally, there are recent studies that even follow a personalized
strategy7,8. 

Besides expected functions and pathways related to the immune system (such as the
IFN and granulocyte signatures mentioned above), metabolic pathways and oxidative
stress functionalities have also been associated with the disease9.A plausible explana-
tion stems from the fact that a physiological immune response is linked  to  metabol-
ism. In this view, a recent line of research has been stably developing towards the
definition of  SLE-specific metabolic  signatures,  which could be linked to epigen-
etic10 or epitranscriptomic11 abnormalities.

Research concerning the epigenetic landscape in SLE is also abundant (reviewed in
4,12).  Epigenetic  mechanisms,  that  have  been  connected  with  SLE  comprise  DNA
methylation, post-translational histone modifications, regulation by non-coding RNAs
and, more recently, DNA hydroxymethylation. Aberrations of those mechanisms affect
gene expression. More specifically, there is extensive DNA hypomethylation in the
genome of T-cells from patients with active SLE, which leads to overexpression of
various genes  including those associated with the IFN signature13. Correspondingly,
drugs that exhibit DNA methylation inhibitory activity are known to induce SLE-like
features14. On the other hand, 5-hydroxylmethylcytosine levels are higher in T-cells of
SLE patients and are also positively correlated with increased gene expression15. An
example of a post-translational histone modification associated with lupus is histone
H4 hyperacetylation. Histone H4 hyperacetylation was detected throughout the gen-
ome of monocytes from lupus patients16. Lastly, there are studies that implicate the
activity of diverse microRNA molecules with SLE pathogenesis. Altered microRNA
expression have been detected in peripheral blood mononuclear cells, renal tissue and
in the plasma from lupus patients. Some of them seem to influence significant to the
disease processes, such as TLR signalling and IFN induced genes expression17,18. 

Αn interesting aspect of transcriptional regulation that is becoming increasingly rel-
evant in light of recent technological advances is its relationship with genome struc-
ture19. In this respect, genomic organization may play a critical part in the disease and
its exploration could be of great assistance for the comprehension of the pathogenesis.
There are different approaches to define and study genome organization. For instance,
one can study 3D chromatin interactions. The use of chromatin conformation capture
assays facilitates the investigation of intra and inter-chromosomal contacts and the dis-
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2. Introduction 

covery of ‘territories’, where the contact frequency is higher than average. However,
there are no known studies exploiting contact data in the framework of lupus. Chro-
matin is also organized into ‘open’  and ‘closed’ regions. Accessibility assays can be
used to identify those regions. Scharer and Blalock et al applied the Assay for Trans-
posase Accessible Sequencing (ATAC-seq) to explore the accessibility landscape of
naïve B cells form biobanked specimens of lupus patients under flare status20. They de-
tected alterations of genome accessibility located at regions encompassing genes re-
lated to B cell activation.

 Another approach to study genomic architecture is to explore topological organiza-
tion of gene expression. It is known that gene order is not random in eukaryotes and
that genes with similar expression profiles tend to be clustered within the same gen-
omic region21. In yeast, it has been demonstrated by studying differential expression
upon  topological  stress  that  genes  are  organized  in  topologically  co-regulated
clusters22. In human, Soler-Oliva et al defined genomic coexpression domains (CODs)
based on the correlation of gene expression levels in breast cancer and healthy speci-
mens and tried to associate them with contact data23. CODs are representative of the
total expression coordination and hence it would be informative to study their aberra-
tions in complex disorders, such as SLE. 

In this study, gene expression was analysed in a big dataset, derived from whole
blood RNA sequencing, of 142 SLE patients of  varying levels of disease activity (DA)
and diverse clinical traits (Figure 1), compared to 58 control healthy individuals. Sev-
eral different analyses were applied, including differential expression, functional ana-
lysis and weighted gene co-expression network analysis, to explore the transcriptional
profile of patients and correlate it with DA and clinical manifestations.  At the level of
genome organization, we devised a robust computational pipeline and used it to define,
detect and compare CODs in different patient subgroups and the group of healthy indi-
viduals.

3



2. Introduction 

3 Methods

3.1 Sample collection and RNA sequencing 

Sample collection, RNA sequencing and mapping had already been performed. De-
tailed information regarding the patient cohort, sample collection, RNA sequencing,
mapping and quality control are described by Panousis et al24. Thus, the starting mater-
ial of this work were the bam alignment files, produced by the mapping procedure.

3.2 Fragment summarization

We used FeatureCounts25 to extract raw counts and quantify expression levels for a
comprehensive set of human genes, as compiled under the latest GENCODE annota-
tion v1526. A fragment was counted in case of any overlap with an exon feature and the

counts were grouped based on the ‘gene_name’ attribute of the annotation entities.
Only fragments with both ends successfully mapped were considered for summariza-
tion.  Fragments that  were chimeric,  overlapping multiple  metafeatures  (genes),  not
uniquely mapped,  or having any read marked as duplicate were discarded.

3.3 Gene filtering

The initial number of genes included in raw count table was 51716. A multi-step fil-
tering approach was adopted. At first, the ‘type’ of each gene was extracted from the
annotation GTF file used in fragment summarization. Then, genes belonging to any of
the  following  types  were  filtered  out:  ‘pseudogene’,  ‘processed  transcript’,  ‘poly-
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3. Methods

morphic pseudogene’, ‘antisense’, ‘sense intronic’, ‘sense overlapping’, IG_V pseudo-
gene’, ‘IG_C pseudogene’, ‘TR_V pseudogene’, ‘TR_J pseudogene’, ‘IG_J pseudo-
gene’, ‘non_coding’, ‘Mt-tRNA’ and ‘Mt-rRNA’. The total number of genes belonging
to those categories were 20190. Subsequently, 167 genes, which had multiple entries
in the annotation file, with the same ‘gene_name’, but different chromosome attribute,
and that could generate errors in the fragment summarization process were removed
from our dataset as well. . Lastly, genes with mean CPM value, in all samples, lower
than 0.05 were also filtered out, though that was not applied for the topological ana-
lysis. The number of the remaining genes in the dataset were 18447.

3.4 Differential expression analysis

Differentially expressed genes (DEGs) were called with the implementation of MD-
Seq27 . Firstly, raw counts were normalized using relative log expression (RLE)28. Af-
terwards, a design matrix was constructed based on the groups to be compared. For the
simple analysis, healthy individuals were the control group and SLE patients com-
prised the test group. For the activity analysis, the patient cohort was separated into
three groups according to SLE activity index29 (SLEDAI, Figure 2), low disease activ-
ity group (DA1, SLEDAI < 3), medium activity group (DA2, 2 < SLEDAI < 9) and
high activity group (DA3, SLEDAI > 8). Furthermore, gender and any drug treatment
have been taken under  consideration  as  covariates  in  subsequent  analyses.  Finally,
there was a third grouping relative to the manifestation of the disease. According to the
status of the disease (Active or Inactive), and if a patient had any renal manifestation
or not, the patients were split into three groups. Those are the inactive group, the renal
active group and the non-renal active group. Gender and treatment have also been
taken under consideration here. Last, for any significance assessment corrected p-value
(q-value) and the base-2 logarithm of the fold change (log2FC) were considered. Genes
were considered  DEGs if they had a q-value lower or equal to 0.05 and an absolute lo-
g2FC value greater or equal to 0.5. 

3.5 Functional and Modular analysis

To functionally interpret the results of the differential expression two different ap-
proaches were followed. 

3.5.1 Functional Analysis with gProfileR

Functional Analysis was performed with the use of gProfileR30, a tool that has ac-
cess to data from different databases, and performs hypergeometric test and correction
for multiple testing to find statistically significantly enriched functional ontologies in
the provided gene lists.  That analysis  was restricted to pathways form Gene Onto-
logy31, KEGG32 and Reactome databases33 and was performed separately for overex-
pressed and underexpressed DEGs. Only pathways with q-value lower or equal to 0.05
were considered. 
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3. Methods

3.5.2 Modular analysis

Modular analysis  was performed with the tmod34 R package.  tmod takes a pre-
ranked gene list  as  input  and implements  a gene set  enrichment  analysis.  In  other
words, it tries to find the gene sets, whose relative expression values tend to cluster to-
wards the top (or bottom) of the ranked list in a way similar to Gene Set Enrichment
Analysis  (GSEA)  methods35.  What  differentiates  tmod  from  standard  GSEA ap-
proaches is that it implements the analysis of pre-defined, built-in gene sets (or mod-
ules as they are referred to), hence it performs a modular analysis. These modules are
constructed and annotated in studies36,37, relevant to blood tissue and immunity. Thus,
they are more specific and applicable to this study than other general gene sets. The
gene list (not only DEGs) was ranked according to absolute log2FC value in a decreas-
ing manner. Subsequently, a ‘tmodCERNOtest’ was executed for all the built-in mod-
ules. From the derived statistically significant modules, only those with a minimal per-
centage of  15% being DEGs were retained. 

6
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3.6 Weighted gene co-expression network analysis 

To  detect genes which are coexpressed in the patient cohort and form discrete mod-
ules, weighted gene co-expression network analysis (WGCNA)38 was utilized.  Raw
counts were normalized using RLE28 followed by normalization for gene length. Nor-
malized gene counts of all patients were fed to the WGCNA algorithm. Dichotomizing
information  and  hard-thresholding  may  result  in  information  loss.  The  continuous
nature  of  the  co-expression  information  can  be  preserved  by  implementing  soft
thresholding.  Particularly,  WGCNA uses  a power function,  where the value of  the
power is the soft thresholding parameter. Here, the value assigned to that parameter
was 10 according to scale free topology criterion, which amounts to choosing the low-
est value of such that approximate scale free topology is reached. The resulting gene
network was unassigned, meaning that the absolute value of correlation was used as a
similarity measure. Modules were extracted based on a hierarchical clustering of the
topology overlap matrix. Those initial modules were then merged using hierarchical
clustering of their eigengene and by cutting the resulted tree at the height of 0.25.
Pathway enrichment of the module genes was performed using gProfileR. Finally, the
association of the modules with a list of clinical traits was estimated by calculating the
Pearson correlations of the module eigengenes with the corresponding traits. Student
asymptotic p-values were calculated to statistically assess the correlation values. 

3.7 Topological analysis

3.7.1 Normalization

Normalized counts were utilized. A two step normalization was implemented on
raw counts (filtered for the different irrelevant gene types), using RLE28 followed by
normalization for gene length. 

3.7.2 Coordinates

Gene coordinates were isolated from the annotation file (gencode.v1526). In the an-
notation  file,  there  were  some  entries  having  the  same  'gene_name',  but  different
'gene_id'  and  different  chromosome  attributes.  For  the  subsequent  analysis,  those
genes were discarded (167 genes).

3.7.3 Bin creation and Bin count calculation

Each chromosome was split in 10kb bins, starting from the start of the first gene,
till the end of the last gene (Figure 3). Thus, there is a possibility for the last bin in
each chromosome to be smaller than 10kb. To each bin were attributed the genes,
which start inside the corresponding bin. Subsequently, using the normalized counts of
genes belonging to a bin, the mean count was calculated for each individual. So, from
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a matrix of gene normalized counts for each individual, a matrix of chromosomal bin
counts for each individual was constructed (Figure 3). 

3.7.4 Correlation matrix calculation

Using the bin counts, for each chromosomal bin the Spearman correlation coeffi-
cient was calculated in regard to each one of the rest of the bins that resided in the
same chromosome (Figure 3). Chromosomal bins with zero expression were ignored
for the rest of the analysis. This procedure produced a square correlation matrix for
each chromosome. 

3.7.5 Permutations

To statistically evaluate the correlation coefficients, a Monte Carlo like approach
was implemented. The bin counts, of each individual separately, were shuffled ran-
domly and afterwards the correlation matrix was re-constructed. That procedure was
repeated 1000 times for each chromosome. In every iteration the calculated correlation
coefficients were compared to the actual (observed) correlation coefficients, that were
calculated using the intact bin counts. P-value for each coefficient is equal to the frac-
tion of those 1000 permutations ,in which the corresponding coefficient had the same
or more extreme value compared to the actual one. The correlation coefficients with p-
value greater than 0.05 were discarded from the analysis (turned into 0s).  

8
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3.7.6 COD definition and detection

For the  definition  of  coexpression  domains  (CODs),  we followed a  similar  ap-
proach to the one suggested by Soler-Oliva et al23. That analysis is influenced by meth-
ods designed for topologically associated domain identification. Roughly, CODs are
defined as genomic regions of consecutive (having filtered outbins with zero expres-
sion) chromosomal bins with higher than average correlation among them, delimited
by statistically significant boundaries. More specifically, COD detection is a two step
procedure. First, for each bin an average correlation signal between its upstream and
downstream regions (in a specified window) is computed. The exact formula for the
binsignal calculation is as follows

binsignal ( i)=1/w2
⋅∑

l=1

w

∑
m=1

w

correlation(U i(l), Di(m))

where Ui = {i-w+1,. . .i-1, i}, Di = {i+1, i+2,..i+w}, and w is the size of the window
around i.

Subsequently, binsignal is used to infer CODs. CODs are detected sequentially as
the algorithm reads the vector of binsignals. The complete reasoning of the implemen-
ted algorithm is represented in the flowchart depicted in Figure 4. So, CODs are re-
gions containing bins with binsignal greater or equal to 0.25, the average genome bin-
signal of the healthy group. However, they can contain 2 bins (at maximum) with bin-
signal lower than 0.25, given that these bins are not statistically significant boundaries,
in order to fuse small neighbouring CODs. The statistically significant boundaries are
determined by computing for each bin a Student's t-test, between upstream and down-
stream binsignal values in the same window used for the binsignal calculation. By ob-
serving the flowchart, one can understand that the right boundary of the CODs pro-
duced by that algorithm is not necessarily statistically significant, because it is determ-
ined by the decrease in binsignal value but the low p-value is not required. For that
reason, an additional filtering was implemented, so that those CODs without a signi-
ficant right boundary are excluded.

The window size used in binsignal calculation and in COD detection was three
bins. That choice was based on the average intra-COD correlation of chromosome 1 of
the healthy group . That was computed utilizing a range of values (three to twenty) for
window size. Setting window size equal to three produced the higher average intra-
COD correlation (Figure 5).

9
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Figure 4: Flowchart illustrating the reasoning of the COD detection algorithm

10
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3.7.7 COD comparison

3.7.7.1 Metrics

Two different metrics were applied to explore the differences of COD sets of differ-
ent groups. CODs were handled as a set of chromosomal intervals. The first metric
used was the Jaccard similarity coefficient39. COD pairs between two different groups
(e.g. healthy and patient groups) with chromosomal coordinates that overlap were de-
tected. For every pair the Jaccard index was calculated. The second metric used was
the BP distance score40. BPscore is more versatile and the authors of the study, which
introduced it, recommend it as a more appropriate measure for comparisons between
topologically  associated domains,  as it  takes into account  the relative chromosome

11

Figure 5: Boxplots of intra-COD average correlation values of CODs identified using the 
corresponding window size value indicated at x axis.
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size. The formula used to calculate BPscore was slightly altered compared to the ori-
ginal work to better serve the purposes of the current study.

BP( A , B)=1−1/∑
i

|o|

max (l( f A ,B (i)) ,l ( f B , A(i )))⋅∑
i

|o|

(
l(o [ i ])2

max (l( f A ,B (i)) ,l (f B , A(i)))
)

where A and B are two sets of CODs located in the same chromosome but of different
groups, o is a vector containing all the intersections between A and B, fA,B(i) is a func-
tion mapping o[i] to the exact COD in A, which induced o[i] and l(o[i]) is a function
mapping o[i] to its length.

3.7.7.2 COD reorganization categories

When comparing two sets of CODs, a COD in one set can be further categorized
based on its  overlap ‘status’ against  the other set  (Table 1).  In case a COD in the
healthy group has no overlap with CODs of a patient group, it is referred to as ‘de-
pleted’ from the relative patient group. On the other hand, if a COD present in a patient
group has no overlap with CODs in the healthy group it is called ‘emerged’. If a COD
in healthy group has any overlap with more than one CODs from a patient group, then
it is categorized as ‘split’. In the opposite situation, where a COD of a patient group
has more than one corresponding CODs in healthy group, these are assigned to the
‘merged’ category.  Additionally,  in case a COD pair has identical coordinates, it  is
characterised as ‘intact’. Finally, the remaining uncharacterised COD pairs are categor-
ized based on which of the  two borders (or even both) have been shifted. 

3.7.8 Evaluate DEG inclusion in CODs

The proportion of DEGs, derived from a specific comparison, whose start reside in-
side a COD of  the corresponding groups was calculated. For instance, inclusion of
DEGs, emanated from a comparison of DA3 and healthy groups, was determined for
DA3 and healthy CODs. 

A bootstrap approach was adopted to statistically evaluate the difference of DEG in-
clusion in healthy and patient COD sets. A random gene sample, of same size with the
corresponding DEG set  and taking under consideration chromosomal gene density,
was selected. For that gene set, COD inclusion was calculated as described above fol-
lowed by the calculation of ratio X. X is equal to the inclusion in patient COD set over
inclusion in healthy COD set. The described procedure was repeated 10000 times. The
bootstrap p-value is equal to the amount of repeats, in which X was equal or more ex-
treme than the corresponding ratio computed using the real DEG set, over the total
amount of repeats. 
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3.8 Cell type estimation and entropy estimation

CIBERSORT41 was  utilized to  estimate the proportion of  different  immune cell
types in whole blood. That analysis was performed by Panousis et al24. Shannon en-
tropy42 was used as a metric, in order to assess the variability/uncertainty in the propor-
tions of the different cells types between healthy and SLE subjects. 

H=−∑
i=1

n

p( x i)⋅log2( p( x i))

where H is the Shannon (information) entropy, p(xi) is the estimated proportion of xi

cell type in whole blood and n is the total number of estimated cell types. Entropy was
calculated for every individual in the dataset. Subsequently, the difference between the
distribution of entropies of healthy and SLE groups were statistically evaluated by a
non parametric Wilcoxon–Mann–Whitney test43.

3.9 Source code

Most of the described analysis was implemented in the R programming language44.
Source code for any of the aforementioned pipelines is available upon request.
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3.10 Graphs

In order to produce the plots presented in the current work, a number of different R
packages  were  used.  Those  are  the  ggplot245,  gplots46,  graphics44,  tmod34 and
Sushi47 packages. The REVIGO48 platform was used as well.

4 Results

4.1 Differential expression and Functional analysis

Differential expression analysis indicated a highly modified transcriptional profile
for SLE patients. When SLE group was compared to healthy group, 1639 differentially

expressed genes (DEGs, FDR ≤ 0.05 & |log2FC| ≥ 0.5) were identified, with 1095 be-
ing overexpressed and 544 being underexpressed (Figure 6A). A simple hypergeomet-
ric test revealed multiple statistically significantly enriched Gene Ontology terms (Fig-
ure 7). Enriched functions concerning immune response, cell activation and regulation
of viral life cycle were identified. Consistently, enrichment analysis for KEGG and Re-
actome pathways uncovered a variety of enriched pathways in the overexpressed gene
list, including previously identified terms, such as NOD-like receptor signalling and
interferon signalling,  and other  unexpected pathways,  such as cell  cycle,  oxidative
stress-induced senescence and nucleosome assembly (Table 2A). Furthermore, the un-
derexpressed DEG list was enriched for pathways, with PI3-Akt signalling and extra-
cellular matrix organization acquiring the highest statistical significance (Table 2B).
Thus, whole blood transcriptomic analysis illustrate a highly disrupted profile for SLE
cohort, with specific signatures emanating. 

In an effort to uncover gene signatures associated with disease activity, the patient
cohort was split into three subgroups of increasing activity, DA1, DA2 and DA3 (see
Figure 2, above). The transcriptional profile of each DA group was analysed in com-
parison to control healthy expression expression levels, henceforth representing differ-
ential expression profile of the group unless stated otherwise, and to the rest of patient
groups as well. The results of the different comparisons are illustrated in volcano plots
of Figure 6 and in the heatmap depicted in Figure 8. Interestingly, patient groups with
higher DA are linked with increased ratios of  numbers of over- against  under-ex-
pressed DEGs(which will be referred to as r ratio from here on).  In other words,  in-
creased DA associates with a slight transcriptional ‘turnover’ to overexpression. How-
ever, the comparison between  DA1 and DA2 groups resulted in only one statistically
significant DEG. In general, the transcriptional profiles of DA1 and DA2 are closer to
one another while DA3 differentiates significantly. That was verified by a hierarchical
clustering, illustrated in Figure 8. Functional enrichment analysis was implemented to
interpret these data. Differential expression of all three patient groups was enriched in
immune system related functional terms (Table 3). Particularly, innate immunity path-
ways, such as NOD-like receptor signalling and IFN signalling, were enriched in over-
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expressed  DEGs.  Nevertheless,  differences  were  detected  as  well.  Underexpressed
DEGs of DA1 and DA2 but not DA3 are enriched in adaptive immunity pathways
(signalling through Fc and B cell receptor signalling), something that can probably be
explained by the lymphopenia that SLE patients endure.  Moreover, cell cycle path-
ways seem to be enriched in DA3 overexpressed genes. Those differences were detec-
ted in the comparison between DA3 and DA1 (Table 3G). Overexpressed DEGs from
that comparison were enriched in cell cycle and B cell receptor (BCR) signalling path-
ways.
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Figure 6: Volcano plots illustrating differential expression resulted from different group comparisons.
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Figure 7: Treemaps depicting Gene Ontology terms enriched in the DEG list of SLE vs Healthy
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Table 2: KEGG  and Reactome pathways enriched in overexpressed (A) and underexpressed (B) genes
in SLE patients.
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Figure 8: Heatmaps illustrating Log2FC values of DEGs derived from different comparisons. A. 
Patients have been grouped according to the state and the manifestations of the disease. B. Patients 
have been grouped according to disease activity. Genes depicted in each heatmap are differentially 
expressed in at least one of the comparisons indicated at x axis. Trees in each heatmap depict the 
results of hierarchical clustering.
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Table 3: KEGG and Reactome pathways enriched in overexpressed and underexpressed genes of DA1
(A,B), DA2 (C,D), DA3 (E,F) and pathways enriched in the overexpressed genes resulted from DA3 vs
DA1 (G) and DA3 vs DA2 (H).
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Because there is not yet any simple, universal and absolute method to define and
quantify SLE disease activity, a more relevant, and clear to detect, characteristic that
may assist in a stratified tackling of the disease, is any clinical manifestation. One of
the most severe manifestations of SLE is renal damage. To analyse the expressional
data through that reasoning, the patient cohort was split again to three groups, this time
according to disease status (Active or Inactive) and if a patient had any renal manifest-
ation or not. We coin these as the inactive group, the renal active group and the non-
renal active group. The transcriptional profile of each group was analysed in regard to
control  healthy  expression,  henceforth  representing  the  expressional  profile  of  the
group unless stated otherwise, and to the rest of patient groups as well (Figure 9 and
Figure 8A). Once more, there seems to be an association between the groups and  the r
ratio, with the renal active group having the highest r value and the non-renal active
the lowest. Generally, non-renal active and inactive expression profiles cocluster first,
in  a hierarchical clustering (Figure 8A). Similar functional terms are enriched com-
pared to former analysis  (Table 4), which is expected, as The DA3 group includes
mostly patients with nephritis and the DA1 one includes all the Inactive patients. En-
riched pathways in overexpressed genes include cytokine signalling, IFN signalling
and NOD-like receptor signalling. BCR signalling is enriched in the list of underex-
pressed DEGs of inactive and non-renal active groups and cell cycle-related pathways
emerge from the analysis overexpressed DEGs in the renal active group compared to
the rest of patient groups. Finally, DEGs from the non-renal active group compared to
the inactive group are almost exclusively underexpressed and enriched for innate im-
mune system and mitochondrion related ontologies, i.e. oxidative phosphorylation and
tRNA processing in mitochondrion (Table 4I). 
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Figure 9:Volcano plots illustrating differential expression resulted from different group comparisons.

40



4. Results

41



4. Results

42



4. Results

43



4. Results

44



4. Results

45



4. Results

46



4. Results

Table  4:  KEGG and  Reactome  pathways  enriched  in  overexpressed  and  underexpressed  genes  of
Active-Renal (A,B),  Active-nonRenal (C,D), Inactive (E,F),  pathways enriched in the overexpressed
genes  resulted  from  Active-Renal  vs  Active-nonRenal  (G)  and  Active-Renal  vs  Inactive  (H),  and
pathways enriched in the underexpressed genes resulted from Active-nonRenal vs Inactive (I).
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4.2 Modular Analysis

Another approach was followed for a more comprehensive functional interpretation
of expression deregulation in the different patient groups. That is the so called ‘modu-
lar analysis’. It involves a gene set enrichment – like analysis, which may overcome
restrictions posed by an analysis based on the use of p-value threshold for DEG identi-
fication, a hypergeometric test for functional enrichment and correction for multiple
testing. The gene sets used were the ‘blood modules’, constructed by computational
analysis based on expression data derived from blood tissue samples36. Blood modules
comprise genes, whose expression co-cluster in multiple experiments related to im-
mune system. The size of those modules in terms of number of genes is smaller than
pathway ontologies used so far. Hence, blood modules may be more appropriate for
the current study and could result in more specific signatures.

The results of the modular analysis are illustrated in detail in Supplemented Figure
1. They seem to agree with the results described in the previous section. A plethora of
deregulated modules was identified, comprising an SLE related ‘module profile’. The
majority of them were overexpressed, with the most prominent ones including cell
cycle, cell death and extracellular matrix signatures and innate immunity related signa-
tures, namely IFN, inflammation, neutrophil, dendritic cell and cytosolic DNA sensing
signatures (Figure 10). There are underexpressed modules as well, mainly associated
with B cell, plasma cell and NK cell signatures. It is really interesting to examine the
profile of the aforementioned signature in the different patient subgroups (Figure 11).
There are those that are very similar between the different groups and those that diver-
sify, in terms of complete presence or absence from a group, or the amount of the gene
members of the module which are deregulated. The profile of inflammation, dendritic
cell and cytosolic DNA sensing is approximately the same in the different DA groups.
Neutrophil and extracellular matrix signature profiles are also similar between the DA
groups. However, they are overexpressed in DA3 compared to DA1 as well, which im-
ply that while the corresponding genes are deregulated independently of disease activ-
ity, the levels of deregulation are greater in patients with increased activity. Regarding
IFNs, there are multiple blood modules, from which some remain stable throughout
DA  and some are enhanced, as in higher DA groups. Cell death signature fluctuate,
with DA1 being the most extreme and DA2 the least  extreme. Intriguingly,  B cell
module underexpression is ‘weakened’ as DA increases and plasma cell signature is
overexpressed in DA3 compared to DA1. A plasmablast signature was identified as the
most robust biomarker of DA in a study of longitudinal blood transcriptomic data in
pediatric lupus cases7.  Finally,  cell  cycle modules are deregulated only in the DA3
group and are deregulated even when DA3 is compared to DA1. Modular analysis of
the data split according to renal manifestation provided similar results, with renal act-
ive group resembling DA3 group (Supplemented Figure 1).
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Figure 10: Modular analysis for the differential expression of SLE patients. Modules are represented by
pies. The proportion of module genes, which have been detected as DEGs, is indicated by the coloured
portion of the pies. Red indicates overexression and blue indicates underexpression. 
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Figure 11: Modular analysis for the differential expression of DA groups. Modules are represented by
pies. The proportion of module genes, which have been detected as DEGs, is indicated by the coloured
portion of the pies. Red indicates overexression and blue indicates underexpression. 
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4.3 WGCNA analysis

Weighted gene co-expression network analysis is an alternative to classical differen-
tial  expression  analysis  for  investigation  and  interpretation  of  expression  data.
WGCNA modules are identified de novo, based on the clustering of a network con-
structed by exploiting weighted correlation of gene expression in the studied dataset.
Here, 13 modules were detected in the patient cohort, which were named after a colour
randomly assigned to them. The significance of each module was assessed on the basis
of the correlation between the module eigengene, used as a representative variable for
the module, and a number of traits recorded for every patient, such as age, SLEDAI
activity index, different manifestations and given treatments (Figure 12, Supplemented
Figure 2). At the same time, WGCNA modules were also explored for any enriched
pathway. The ‘Lightyellow’ module, the one with the highest significant correlation
with SLEDAI, comprising 224 genes, was enriched for innate and adaptive immune
pathways, mainly signalling through FC and BCR. Interestingly, that module intersec-
ted with the B cell signature identified during modular analysis. The ‘Orange’ module
comprising 184 genes was pinpointed as the most highly correlated with renal mani-
festations and active nephritis and was enriched for neutrophil activation and neutro-
phil degranulation biological processes. Consistently, neutrophil activity has been pre-
viously  associated  with  nephritis  in  the  literature.  The ‘Ivory’ module  was  highly
linked with antinuclear and anti-DNA antibodies presence. It included 282 genes en-
riched for IFN signalling. The ‘Darkgrey’ module had the second greatest association
with anti-DNA antibodies and active nephritis. It contained 245 genes enriched for cell
cycle, P53 signalling, DNA repair and cellular senescence pathways. In general, mod-
ules that appeared to be linked with a particular trait comprised at most a few hundred
genes,  whereas modules  that  demonstrated no correlation involved a few thousand
genes.

Figure 12: Heatmap representation of the correlations between WGCNA modules and a variety of traits
recorded from all the patients. Red indicates positive correlation and green indicates negative correla-
tion.
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4.4 Topological analysis

4.4.1 COD profiling

Topological organization of gene expression was explored in the form of domain
co-expression analyses and at the focus of our study. Co-expression domains (CODs)
were defined as  regions  of consecutive,  gene containing chromosomal bins,  which
have higher than average correlation of expression among them, delimited by statistic-
ally significant borders. The exact pipeline implemented to define, detect, and analyse
CODs is described in detail in ‘Methods’ section. COD organization was studied in the
three DA groups and compared to CODs of the  healthy group. First, CODs were iden-
tified in each group. Approximately, 460 CODs were detected in healthy control group
(Figure 13). The two chromosomes with the greatest COD abundance were chromo-
some 1, the largest chromosome and chromosome 19, that is , expectedly, the most
gene-dense chromosome (Figure 14).
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Figure 13: Barplot depicting the total number of CODs detected in control healthy group and in the 
three DA patient groups.
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Subsequently, we reported a number  of different COD characteristics, in order to
monitor, characterize and compare their distribution. Particularly, these variables in-
cluded the total number of CODs (Figure 13), the size of CODs (Figure 15) and the
average intra (Figure 16) and inter COD co-expression (Figure 17). Moreover, the pro-
portion of chromosomal bins, in which expressed genes are located, and that reside in-
side CODs was documented (Figure 18). A smaller number and mean size of CODs in
patients vs controls, strongly suggested different topological organization of gene ex-
pression, with patient expression profiles being more "fragmented". This was also sup-
ported by the smaller percentage of chromosomal bins that resided inside CODs (Fig-
ure 18). In other words, regions that are transcriptionally active in patient profiles are
less topologically correlated. Interestingly, the greatest extent of changes is observed
in patients with the lowest disease activity, an observation that could prove valuable in
pinpointing factors underlying early disease onset. It should be noted that inactive pa-
tients were previously active and went into remission as a result of treatment. Hence
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Figure 14: Barplot 
depicting the total number of CODs per chromosome detected in control healthy group and in the three DA patient groups.
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despite the lack of disease manifestation, their transcriptional profile remains disrup-
ted.

56

Figure 15: Violin plots illustrating the estimated distribution of COD sizes in each group, classic 
boxplots are included, the scale is logarithmic (log(bp)) and the results of Mann-Whitney-Wilcoxon 
tests comparing each one of patient groups with healthy group are represented by p-values.

Figure 16: Average intra COD correlation estimated distribution summarized in violin plots. Classic 
boxplots are included and the results of Mann-Whitney-Wilcoxon tests comparing each one of patient 
groups with healthy group are represented by p-values.
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Figure 17: Average inter COD correlation estimated distribution summarized  in violin plots. Classic 
boxplots are included and the results of Mann-Whitney-Wilcoxon tests comparing each one of patient 
groups with healthy group are represented by p-values.
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Concerning the levels of co-expression, intra-COD average correlation values also
appear to differentiate in patient groups. Surprisingly, though the latter statement is
true when examined in a genome scale (Figure 16), if intra – COD correlation distribu-
tion is examined in a per chromosome basis, only in four chromosomes seems to be
significantly lower (Supplemented Figure 3). In two of these cases the group that dis-
criminate from healthy is DA1. On the other hand, average correlation of expression
between chromosomal bins contained in two different patient CODs is significantly
different in most chromosomes from the corresponding variable in healthy group (Sup-
plemented Figure 4). Soler-Oliva et al made the same observation when comparing
CODs from breast  cancer tissue to  control healthy CODs23.  However,  it  should be
mentioned that the total amount of average inter – COD correlation values is greater
than the corresponding intra – COD values, because every possible intra-chromosomal
COD pair is checked, and though statistical significance is obvious, further study is re-
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Figure 18: Violin plots illustrating the estimated distribution of chromosomal bins 
percentage, in which expressed genes are located and that reside inside CODs, classic
boxplots are included and the results of Mann-Whitney-Wilcoxon tests comparing 
each one of patient groups with healthy group are represented by p-values.
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quired to verify biological significance. At the same time, differences are observed
among the different DA groups concerning the aforementioned measured variables,
suggesting a link between gene expression organization and disease development. 

The observed aberrations could be partially  explained by a higher variability  in
blood cell composition of patients. Since whole blood samples were used, a greater
variability in cell type populations could be the culprit of lower correlations at tran-
scriptional level. In order to test that, the proportion of different immune cell types in
whole blood was estimated for every individual (see Methods section for details). Sub-
sequently, proportions were handled as probabilities and entropy was calculated for
every subject as a measure of the variability/uncertainty of blood cell composition. The
distribution of entropy values differed significantly only between DA1 and healthy
groups.  Nevertheless,  DA1  had  smaller  median  entropy  value  (Figure  19).  Con-
sequently, the observed abnormalities cannot be attributed to cell-type dependent ex-
pression variability, as in fact greater fragmentation in CODs is derived from samples
with comparable cell-type population variance.

4.4.2 Structural COD changes

A more detailed inspection revealed different cases of COD alterations. That was
performed with the healthy COD set designated as a reference. When the correspond-
ing coordinates of a healthy COD are explored in a DA group, the possible outcomes
are for a COD or a segment of a COD to be encountered, or not. That is because a
COD of the healthy group could have been completely absent from a patient group or
its borders could have been altered resulting in a COD that retain an overlap with the
healthy  control  COD. In addition,  a  COD could  have  been identified  in  a  patient
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Figure 19: Violin plot representation of the entropy calculated using the different immune cell 
proportions per individual. Classic boxplots are included and the results of Mann-Whitney-Wilcoxon 
tests comparing each one of patient groups with healthy group are represented by p-values.
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group, which had not existed in the healthy COD profile. Indeed, all those cases were
discovered  (Supplemented  Figure  5).  COD  changes  were  systematically  classified
(Table 1). Specifically, COD alteration categories are ‘depleted’, ‘emerged’, ‘intact’,
and left, right or both ‘borders shifted’. More complex phenomena were described as
well. A COD could also split to more, or multiple CODs could merge to one. The nor-
malized number of CODs altered in a particular way in each DA group are demon-
strated in the heatmap of Figure 20. DA1 had relatively the biggest amount of split
CODs and DA2 had the biggest amount of intact CODs. As far as the depleted CODs
are concerned, DA2 had the least amount and DA1 and DA3 had approximately the
same number. In an endeavour to quantify COD rearrangements for patient CODs that
had an overlap with healthy CODs, two different  metrics were used.  Both metrics
agreed in  DA2 being ‘closer’ to  the healthy group relatively to  the rest  of  patient
groups and absence of any statistically significant difference between DA1 and DA3
(Figures 21, 22).

60



4. Results

Results so far suggested that gene expression correlation, even though quite extens-
ive, may be sharply disrupted in ways that are associated with disease development. In
this respect we next set out to investigate whether changes in the co-expression pat-
terns could be attributed to particular genes with differential expression status. The hy-
pothesis here is that differentially expressed genes may be drivers of aberrant expres-
sion patterns extending in much wider areas and thus act as disruptive agents for co-
expression domains. In order to do this we calculated the proportion of DEGs residing
inside a COD region for all studied groups. So as to statistically evaluate the differ-
ences in DEG inclusion between a patient COD set and healthy COD set, a bootstrap
based approach was implemented with 10000 iterations. DA1 and DA3 groups were
significantly distinctive from healthy control group with a bootstrap p-value of 0,0028
and 0 respectively (Figure 23). Therefore, at those groups the observed disruptions in
the organization of gene expression is definitely linked to and may be partially ex-
plained by the activity of DEGs. Consistently, there were cases, in which CODs are
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Figure 20: Heatmap highlighting the number of CODs in healthy group, that are altered in a
particular way when the corresponding genomic area is examined in patient groups, a 
normalizaton per change category (row) has been performed and change categories have 
been grouped based on a hierarchical clustering.
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disrupted in a patient group and DEGs are associated with the region of the disruption
(Figure 24). 

4.4.3 Interesting cases

A number of very interesting cases of COD alteration were identified. These include
reorganizations that progress in an almost gradient-like manner across DA groups. For
instance, in chromosome 14 a border emerges, which separates the IgH locus and the
upstream neighbourhood (Figure 25A), in chromosome 2 a border extension encloses
the IgK locus (Figure 25B) and in chromosome 22 CODs are merged and expanded
encompassing that way more IgL genes  (Figure 25C). In contrast to previous observa-
tions, in those examples co-expression is enhanced in patient groups and remarkably is
getting more robust as DA increases. Immunoglobin expression is substantial for SLE
progression and hence the latter findings support the importance of topological organ-
ization of gene expression for the development of this complex disease. Noteworthy,
the aforementioned genes correspond to the underexpressed B cell signature identified
during modular analysis, which ‘fades away’ with increase in DA and though gene ex-
pression levels become less differential,  topological architecture of gene-expression
does not develop to ‘healthy-like’. 

Another interesting example of COD disruption involves a SNP. Variant rs1734787
in chromosome X has been implicated in SLE development and is co-localized with a
COD split region in DA3  (Figure 26). Accordingly, genes reported to be affected by
that variant, IRAK1 and MECP2, are not included in the post-split CODs.
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Figure 21: A. Violin plots demonstrating the estimated distribution of a per chromosome distance score 
calculated for CODs in each patient group compared to CODs in healthy group. B.  Violin plots 
demonstrating the estimated distribution of a per chromosome distance score calculated for 
randomized CODs of each patient group compared to CODs in healthy group
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Figure 22:  Violin plots demonstrating the estimated distribution of Jaccard similarity coefficients 
calculated for CODs in each patient group compared to CODs in healthy group.
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Figure 23: Barplots exhibiting the proportion of DEGs, derived from the comparison indicated at the 
horizontal axis, that reside inside CODs of the group indicated by colour code. Bootstrap p-values 
demonstrate statistical significance of the difference in DEG inclusion of each patient group and 
healthy control group.
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Figure 24: Cases where COD alterations, like a split (A) or a depletion (B), are associated with genes 
that are differentially expressed, when patient and healthy groups are compared.
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Figure 25: Cases where organization of gene expression alters in an almost gradient-like manner. In
chromosome 14 a border emerges, which separates the IgH locus and the upstream neighbourhood (A),
in chromosome 2 a border extension encloses the IgK locus (B), and in chromosome 22 CODs are
merged and expanded encompassing that way more IgL genes.

Figure 26: Variant rs1734787 in chromosome X is co-localized with a COD split region
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5 Discussion

SLE is  an incurable systemic autoimmune disease.  Better comprehension of the
molecular basis of the disorder would lead to improved diagnosis, prognosis and un-
veil new therapeutic targets. Here, gene expression profiles from whole blood samples
of patients with diverse disease activity and manifestations have been studied. That
was accomplished using various methodologies, in an effort to extract as much inform-
ation as possible from the data. Through differential expression analysis coupled with
modular  analysis,  previously  reported  and  novel  signatures  were  identified.  In-
triguingly, some signatures were common among the different patient cohorts, while
others could be attributed to a specific patient subgroup or differentially modified in
patient subgroups. Comparable signatures were identified de novo from the data using
WGCNA, which were also correlated with varying clinical traits of patients. In addi-
tion, coordination of expression was investigated. Disease activity is associated with
greater fragmentation of topologically defined co-expressed gene domains, suggesting
possible implications of the genome architecture in SLE development.

It should be noted that the current work has limitations. Though the cellular func-
tional units  are predominantly proteins,  expression was studied through monitoring
mRNA levels and hence a significant part of transcriptional regulation is inaccessible.
Moreover, whole blood samples were utilized and as a result the RNA abundance ob-
served is an average of all the different cell types included. Although this could be use-
ful for biomarker test development, it renders the interpretation of the results rather
complxe when specific mechanisms are studied. Finally, it should be mentioned that
the profile studied is a ‘snapshot’ in time. Longitudinal data could be proved beneficial
for disease development and even personalized studies.

However, this study has a lot of perspectives. Due to the abundance of information
contained in the results, a thorough inspection of them combined with new experi-
ments could aid the formation of new hypothesis concerning specific aspects of the
disease.  Incorporation  of  the  different  signatures  currently  identified  into  machine
learning based approaches could lead to novel biomarker discovery. Lastly, concerning
the topological analysis, further incorporation of genetic association data is likely to
uncover  mechanistic  links  for  the  observed gene  expression  aberrations  associated
with the progression of this complex disease. At the same time, integration of other
sources of information linked to genome structure (epigenetically marked, chromatin
domains, enhancer-promoter pairing etc) could lead to the development of additional
working hypothesis towards an enhanced understanding of SLE onset and progression
mechanisms.
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