UNIVERSITY OF CRETE
SCHOOL OF SCIENCES
DEPARTMENT OF COMPUTER SCIENCE

Service Composition and Service—level Agreements in Open
Distributed Systems

Manolis Marazakis

Doctoral Dissertation

Heraklion, August 2000

UNIVERSITY OF CRETE
SCHOOL OF SCIENCES
DEPARTMENT OF COMPUTER SCIENCE

Service Composition and Service—level Agreements in Open
Distributed Systems

Dissertation submitted by
Manolis Marazakis
in partial fulfillment of the requirements for
the PhD degree in Computer Science

Author:

Manolis Marazakis
Department of COMPUTER SCIENCE

Examination Committee:

Christos Nikolaou, Professor, Dept. of Computer Science, University of Crete, Advisor

Panos Constantopoulos, Professor, Dept. of Computer Science, University of Crete, Reader

Evangelos Markatos, Assistant Professor, Dept. of Computer Science, University of Crete, Reader

Stelios Orphanoudakis, Professor, Dept. of Computer Science, University of Crete, Reader

Dimitris Plexousakis, Assistant Professor, Dept. of Computer Science, University of Crete, Reader

Elias Houstis, Professor, Professor, Purdue University, USA, External Reader

Seif Haridi, Professor, Royal Institute of Technology, Stocholm, Sweden, External Reader
Approved by:

Panos Constantopoulos
Chairman of Graduate Studies

Heraklion, August 2000

Service Composition and Service—level Agreements
in Open Distributed Systems

Manolis Marazakis
PhD Thesis

Department of Computer Science
University of Crete

ABSTRACT

The Internet’s explosive growth motivates a shift from standalone single—purpose applications to
network—centric software systems that consist of independent and widely distributed components. Such
systems use open protocols to combine the services of components in the context of workflow processes,
with multiple participants utilizing diverse resources to perform tasks with data and temporal dependencies.

Workflow process support is the application domain of workflow management systems, which however,
due to their rigid client/server structure and their implicit assumption that they are the sole governing
authority in charge of operations, fail to provide the flexibility required in order to support processes
involving autonomous participants with a severely limited degree of control over each other’s internal state
and procedures. In open systems, explicit agreements are required in order to establish communication
channels and other necessary arrangements for co—operation. Such agreements should also cover service—
level aspects, such as access control policies, exception handling behavior, and performance—related
attributes.

This thesis presents the Aurora infrastructure, a step towards integrating service—level agreements in
a framework that represents resources, tasks and work sessions among autonomous service—provisioning
authorities. By shifting the focus from managing component state transitions, as in most previous systems, to
managing asynchronous requests for performing services, the Aurora infrastructure preserves the autonomy
of service providers and facilitates the composition of services without requiring tight coupling of the
systems that need to be integrated for composing a service. The Aurora infrastructure supports service—
level agreements that describe attributes of components related to access restrictions, exception handling
capabilities, and expected performance. Service—level agreements are explicitly represented as run—time
objects that encapsulate references to components that implement services. Service—level agreement objects
mediate all interactions between service providers and their customers, allowing reliable tracking of the
interaction state, monitoring of conformance to commitments on service—level attributes, and automated
reaction upon detecting deviations from the expected behavior. Support for service—level management in
an open distributed run—time environment is the main contribution of this thesis.

The OMG CORBA platform for distributed applications was used as the implementation basis. This
platform was extended with a CORBA—-based component model, a container execution framework, event
notification services, an access control framework, and a logging/monitoring service. A directory service
was developed to maintain metadata that describe components made available by independent providers
and their service—level attributes. This directory service complements the functionality of the OMG
CORBA Interface Repository. A scripting language, HERMES, was developed as an extension of the
popular scripting language Tcl. The HERMES interpreter is a tool to assist in component configuration
and interconnection, offering primitives for obtaining and managing references to CORBA objects and
components, invoking state monitoring and control operations, issuing and tracking asynchronous requests,
and managing asycnhronous event notifications. These extensions to the OMG CORBA platform for
distributed applications are a requisite step towards an open distributed platform for service composition.

Service—level agreements and the component/container framework are utilized in the development
of a work session framework. Work sessions are managed collections of resources made available by
autonomous providers, and enforce an access control policy specified by the collection owner. Thus, work

sessions provide a resource sharing context that respects the autonomy of providers. Session resources
encapsulate references either to components that directly implement services, or to service—level agreement
objects that mediate the sequencing of service performance under the terms promised by autonomous
service providers. In this framework, work is carried out by issuing asynchronous requests for service
performance. Composite tasks that require several resources can be explicitly represented in this framework,
allowing for explicit representation of the producer/consumer dependencies between session resources. This
work session framework, in conjunction with the component/container framework and the service—level
agreement framework, demonstrates a viable alternative to the currently predominant architecture of
workflow management systems.

Two case studies demonstrate the functionality offered by the Aurora infrastructure. A WWW Link
Recommendation service was developed by composition of two popular WWW services, to highlight the
requirements of network—centric applications, and pinpoint missing functionality in existing distributed
object infrastructures. A case study from the domain of electronic commerce was developed so as to
demonstrate the proposed approach in supporting interactions between service providers and customers
based on service—level agreements. This case study also provided the basis for a qualitative comparison
with the OMG jointFlow framework for workflow based on distributed objects.

Keywords: Service—level Agreements, Open Distributed Systems, Network—centric Applications, Workflow
Management.

Supervisor : Christos Nikolaou, Professor
Department of Computer Science
University of Crete

il

Xovleon Yanpeowov ko Eyyovnoeig Emnéoov Ynnpeoiog
oc Avoikta Katavepnpévae Xvotiparto

Mavding Mapaldxng
Adaxtopikn Atatpipn

Tunpoe Emietung YroAoyiotov
IMavemotypio Kpnng

INEPIAHYH

H expnktikn avantuén tov Awadiktoov evBuppOvel TNV GTPOPN 0O AUTOTEAEIC EQUPUOYEG OF
GLGTNUATO AOYIGUIKOD ATOTEAOVUEVE 0O OVEEAPTNTA KAl EVPENMG KATOVEUNUEVE CLGTATIKA T UATO,
(components). TéTowa ductvokevTpircd GuaTHUATA Y PNGLLOTOLODV AVOIKTH TPOTOKOALN Y10 VO GLVILAGOLY
LTINPEGIEG TOL TAPEYOVTIOL ONO EEYMPLOTA CLOTATIKA TUNIATO GE SLATAEELS TOL UTOPEL VA PNV lyov
npoPrepBel and Tovg wpPYIKOLG GYENCTEG TOVG, GTO TANIGLO JLEPYUCIOV TOL EUTAEKOLV TOAALOVG
GUUUETAGYOVIEG Ol OTOL01 Y PNGLUOTOLOVY UL TOIKIALL TOP®V Y10, VA SLEKTEPULDCOLY EPYUCIEG E
alinieEaptnoelg oyxeTilopevec pe tov kabBoplopud g L POoVIKNG akolovbiag cuufaviov Kot TNy pon
dedouévav.

To Ipopinpa tng apoyns Néwv Yrnpeosriov 6to Awodiktvo

Yrapyetr tepactio {NTNOM Yo vEES epappoyéc, Kat 1 {RTnomn avtny avapévetor vo avénbel kabmng o
aplOpog Tov avlpormy pe duvatotnta tpocPacns oto Atadiktvo cuveyiletl va avEavel. Or meplocoTEPES
amd TIG LIAPYOVOEG EPUPUOYESG GTO AL0dIKTLO TAPEYOLY TPOCPACT] GE LIAPYOVCES EPAPHOYES KAl
TANPOPOPLEKO TEPLEXOUEVO. OU®OC, KATAYPAPETAL £V ALEAVOUEVOL EVOLOPEPOV YO EQOPUOYEG Ol
omoigg cuvoralovv TeplocdTEPEG Umd pio vanpecieg Tapoyxng kar enebepyoaciag TAnpopopidv. Ta
TOPAKATO TOPASELYHOTA E1VAL OVTITPOGOTEVTIKA CVTNG TNG OAOEVE KOL TLO OMUOPIAOVE KOTNYOPiaG
EQUPLOYDV:

o OAokAnpwpéva TagIdIWTIKA TTakéTa: O otd)0C eival N Tapoy | TANPOEOPLOV Y10 dS100ECIUES ae—
POTOPLKEC £TOLPiES, EEVOdOYELD, YPUPELN EVOIKIAGEMG AVTOKIVIT®YV, KOl AAAOLG EE1OIKELUEVOLG
eopeic mapoyng vrnpecidv. Eva onpovtikd Oépa eival o xe1plopodg OA®V TV ATAITOOUEVOV
KPATNOEMV HECH WIOGC LI PECLOG EMKOLVOVIOG HE TOV XPNOTN, T KATAYPAPN TNG TPEYOLCOG
KOTAGTOGNG KOl 1] VTOGTHPLEN TPOTOTOINGEMY KATH TEPITT®GT. AV Kol 0 k0be popéag mapo—
ANS LINPECLOV TUPUUEVEL AVTOVOWOG, ELVOL OTAPAITNTO VO ETLTPENEL EAEYYONEVT TPOGPacT OF
OPLGUEVOLG OO TOLG TOPOLE TOL KATEYEL Kat dtayelpiletal, ota Thaiclo Tng S1EPYNCiog TOL GLV—
ool TV SlafESIU®V VTN PESIOV. EMTAE0V, Y10 va Yivouy TETOlEC LN PECIEC EAKVGTIKEC GTOVG
TEAATEG €lval amopaitnto va emMTPENETAL LYNAOS PabBPOg TOPOUETPOTOINGNG KOl LTOGTNPLEN
aALOYOV TNG TEAELTOIOG OTIYUNG, HECH P0G KOl HOVO ETAGNG Y PNOMNG KAl ACUBAVOVTAG LTOYLY
TOVLC GLYKEKPLUEVOLG OPOLG TToL dLETTOLVY TNV KAbe empépovg Kkpatnon (netaéd arimv, 6pot yia
TOV XELPLOUO aKLPOCEMY Kol aAlayov). Katd cuvénela, n pon ¢ eneepyaciog ToV alTHoemv
eEumnpétnong kabopiletar and copPavta, avti va eival Katd faon ceiplokn.

e YTnpeoieg TTapoxAS TTANPOPOPIWV ECEIBIKEUPEVWY KaTA TTEPIOXN: O otoy0g givar va Anedei
LTOYLY 1 YE@Ypaelkn 0Eom TOov WEAGTN Yo va TOL TPOTUHOVV LINPEGIEG KAl TPOIOVTA TOL
UTOpEL VO Y PNOLUOTOLNGEL GTT GLYKEKPLUEVN 0o, Ta TapadeLypa, (ia VINPECIN TOVPLGTIKMOY
TANPOPOPLOV unopel va a§loToINGEL TV YVOGN TG YEOYPAEIKNG Béomng tov meEAdTN Yo va
TPOTELVEL KOVTLVA £0TIATOPLY KAl TapKa Yyoyxayoyiag. Eival onpoviikd va onpeindel 01l evod ta
S10€c10 TPOIOVTA K10 LT PEGTIEG UTOPEL VO EL1VOL TPOCTEAUGIUA LEGHO TOAAATA®V KOTAAOY®OV AT

iii

avegaptnToug popeig, 1 oOVOETN LANPEGIA OPYOVAOVEL KOL PIATPAPEL TNV SLo0EGIUN TAN pOPOpia pE
Baon kprtnpia oyetildpeva pe TNV Yeypaplkn 0£6m ToL TEAATN, OV KAl TETOL0 AELTOVPYIKOTNTO
umopel vo, unv vmocs TN PileTol GUESH 0O TOVG ETLUEPOVG KOTAAOYOLC.

e YTInpeoieg ouaxéTiong TTANpo@opiwv: O 6tdYog gival Vo, GuvilasTobY TANPOPOPiEg amd TOAAL—
TAEG TNYES 00TOC DOTE va 600el GTOLG TEAUTES Pio. vEQ ATOYN Yid £VO LEYAAO OYKO TAT|POGOPLAOV.
Mo mapadetypa, plo vVINPESia GLGYETIONG TANPOPOPLOV Popel va gvtonilel oeAideg tov TTo—
vxocpiov Iotob oyetilopeveg pe Eva 600€v Bépa, va tig taivouei Bacet Pabporoyiag wg mpog
OPLGUEVH KPLTIPLAL, KO VO TOPAYEL TPOTAGELS TPOG TOVE TEAATEG TOL EVOLUPEPOVTUL VO, GUALEEOLY
TANPOPOPLIES YOPW amd 1o d00EV Bépa. Eival onpovtikd 6t o1 tnyég TAnpogopiog propei vo eival
EEM 0O TNV TEPLOYN EAEYYOL TOL POPEA TAPOY NG LN PESIOV TOL gival vrevBLVOG Y1a TNV Tagl—
vounon. EmmAéov, o1 popeig mapoyng uaNPECIOV TOL EUTAEKOVTIOL GTNV OLEPYOTLO GLGYETIONG
TANPOPOPLOV UTOPEL va unv yvopifovv 6Tt 01 TOPOL TOLG ¥ PNOLOTOLOVVTAL Y10 TNV VAOTOINGT
pog ocbvletng v peGiog.

o Alaxeipion €TMIOTNPOVIKWY TTEIPAPATWY TTOU EUTTAEKOUV TTOAAOUG avegdpTnToug opyaviopoug: O
610Y0¢ eival vo a&lomoinbovv to GOVOAD dEJOUEVMV K10 1 VTOAOYLGTIKT LTTOOOUT] TOALATAMY
opYAVIGU®OV Yo TNV O1eEuymyn LEAETOV TOL OTUlITOLY TOAVTAOKT ene&epyacia dedopévav. H
enefepynacia VTNV UTOPEL Vo TEPIAAUPAVEL HETATPOTES TNG LOPPNG TOV OESOUEVAOV, KAl TNV
Tpo®ONnon g e£630L TPOYPAUPATOV 0plOUNTIKNG eNeEEPYATiag KOl TPOGOUOIMONG GE EMOUEVOLG
LTOAOYIGHOVG G 0ALGida. Eva mapdadelypa €ivar m pelétn tov moykOGUIoLv KAIUATOC, TOov
amaltel Tov GLVOLAOUO SESOUEVOV KOl aplOUNTIKOV HoVTEA®V amd TOALOVE aveEapTNTOLG AALG
GLVEPYALOUEVOLG EMIGTNHOVIKODS 0PpYAVIGUODS, G€ dLAPOPEC YEMYpaplkég 0€ae1g. Eva onpoavtiko
0épa €val O6TL Ol ATOITOOUEVOL LTOAOYIoHOL pmopel va givol poxpdg odpkelag. EmmAiéov,
elval onuovtiko va ival EPLKTN 1 TapakoAobOno™ TS TPooddov LTOAOYICU®V Tov BpicKovTal o€
eEEMEM, KaOMOG kot 1 ToPERPAOT LLE TNV TPOTOTOINGT TAPAUETPOV TOV apLOUNTIKOV poviéiwy. To
oVVvOeTO TEAKO amoTéleG o uropel va a&ilel ToOAD TEPLEGOTEPO AT TO EVOLAUETT UTOTELEGLOTA
TV fnudtov Tov arxatteital va ohokAn pwdodv. Eniong, n vmodopun vtoAoyiGHOD KUl ETIKOLVOVIOV
TPEMEL VO €lval og 0EoM Vo EMTPETEL TELPANATIOUO UE EVVOAOKTIKEG OATAEELG CLOTNUATOV
AOYIoHLKOD Y10 eneEepyacia dESOUEVOV Kol AplOUNTIKT) TPOGOUOI®OT).

e Emxeipnoiakég digpyaaieg TTou eUTTAEKOUV TTOAAOUG aveEdpTnTOUG opyaviopoug: O 6todyog ei—
VOl 1] EVOTOINGT TOV KEVIPIKAOV EMLYELPTNUATIKOV dlepyaciav (business processes) £TALPLOV TOL
cuvepyalovtal ota TAaicta pag kowvorpatiog. O cuvoAlkdg emyelpnuatikdg otdY 0 Eival va
TPocPePBOLY GTOVG MEAATEG LANPEGIEC KOL TPOIOVTA TOV €EUPTOVTAL OO TOVG GLUVOLUGUEVOLG
TOPOLE KUL EMLYELPTUATIKEC OLEPYACIES TOV ETULPLDOV TOL GLUUUETEYOLY TNV Kowvorpaio. Eival
avoykoio va vtootnpifovtal Kol HoKpPOTVOEG GUVEPYUGIEG, LTO TNV LOPPT CTPATNYIK®OV GUULO—
YOV, aAAA Kol BpayvypOVIES, EVKALPLOKEG GUVEPYACIES Y0 TNV JLAPKELD EVOG £PYOL N OKOUA
Kol plag docoAnyiog. Ot emiyelpnuatikéc digpyacieg mov euniékovy TOALOVG aveEapTnTovg
opyaviopoDg eival €v YEVEL SIOALEKTIKNG HOPONG, HE AL AOYLO EMITPETOLY TY/KAL OTALITODV
™MV TopEUPUcT TOV TEAATOV TOL {NTOLV TNV EKTEALECT] TOAAUTADV LINPECIOV KOl AapBavovy
€VOLOUECO ATOTEAECUATO TO. OTO10. LTOPOLYV VA, ¥ pnoLoToinfoly o€ Taparepa Ppata.

Evo Ogpeliddeg kat KpiGLUO YOpUKTPLOTIKO TOV EPAPROYADV TOL TPOUVAPEPONCAV E1VAL TO YEYOVOG
OTl, OV K0l ATOITOVV cuvepyacia yio va dobel aTovg melateg pa abvhety vrypeaia, 1 avTOVOUic TOV
QOPEMV TOPOYNG LN PECSIOV BETEL GoPapolds mepLopiopovg otov Pabud tov eA€yyov Tov PUTOopEL va
ackn0el oTIC EMPUEPOVC LINPEGIEC. AUVTOVOUOL QOPELIG TAPOY NG LANPECLOV dEV UTOPOVV GUECH VO,
ocuvvdeBobv ce éva koivd mAaiclo, Kal, Kupimg, dev pumopel vo vrotebei 6TL exkbéTovy TANpOYOpic
Y0 TNV E0OTEPIKT TOLE KOUTACTOGT UE OKOTO VO KATUOGTEL €QIKTN 1 £€vIOEN TOLG GE £VO OUOYEVEG
KOTOVEUNUEVO ovoTnpa. Avtifétwog, eival mo mbavo vo TEPIHEVEL KAVEIG OTL OLTOVOHOL QOPELG
TOPOYNG LN PECLOV eival dtatedeipnévor va ekBEcovv povo emapéc ypnong (interfaces) yia tovg TEAUTES
TOVC, TOL UTopel va gival GALOL POPELS TOPOYNG LANPECLOV, Y10, Vo LTOGTNPIEOLY TNV LITOBOAN
artnoemv eEurnpétnong kal mbavog TV Tapokolobnom g mpoddov tovg. Eival mo peaiiotikd
va vtof€cel KOVELG Ul opoamovdia 0md LINPEGLEG TOL UTOPOVV VO GLVILUGTOVY KUTO TEPITTMGT, VTl
Y0 pio Kowvn TAAT@OpHO €voTtoinong. E1dikéc ey elpnHoTiKEG CUUPOVIEG UTOPOLY VA ETLTPEYOLY CE
oLvvePYaLOUEVOVG POPELC TOPOYNG LITPECIOY VU KOVOVICOLV MGTE TA ECMTEPLKA TOLG GLOTNUATO VO,
cuvepyalovtal Yo ToLg OKOTOUE TNG TApoyNG VeV cOvleTv vinpeciov. To peloveéKTNUa aVTHG T™NG

v

TPOGEYYIONG €1vVOL OTL LTOVOEL KOTAVONGT TOV Op®V GLVEPYUGING, M omola Opmg dev gival TavTOoTE
copne. EmmAéov, dev gival cagég T uropody ol TEAUTEC va TEPIUEVOLY 0O o cOvOETN vanpecia,
€01KA 0TV TEpinTtOomn TpoPAnudtov enidoong kat e&uipécenv (1660 6e eminedo GLOTAUATOS OGO
KOl 0€ EMINESO GNUAGLOAOYING). ZUYKEKPIUEVE, V1O VO YIVOLV Ol VEEG DTN PEGLEG EAKVOTIKEG Y10 TOVG
TEAATEG LVl OTAPAITN TN 1] SLVATOTNTA TAPAKOAOVONGNG TOL BaOLOV CUUHOPPDCTG TTOVE OPOLG KOl TIG
GLVONKEC TTOL B1ETOLY TNV TOLOTNTO TOV TAPEYOUEVMV VAN PECLAOV, E1O1KOTE P OEGUEDGELG Y10, 1OLOTNTEG
TOV ETMITEDOL LIINPEGLOG OTWE TEPLOPLIGUOL TPOGPucNC, X ELPLoNOG eEULpEcEMY, KAl ETLOOOT).

YXnuacia tov [poPfrinpatog

Kabdc n ocvvBeon vanpecidv npocdidel emmAiéov a&lo oTa LLAPYOVIN GLOTNUATO, LE TO VO Y PTOL—
HOTOLEL TIC dLVATOTNTEG TOVG € VEN TTAaiola, 1 oxediacT Kol avarntuEn vTodoumy Yo tnv cbvBeon
LTINPECLOV Umopel vo Oempnbel ¢ £va avaykaio PR Yo TNV TPOCTACIN TOV TEPACTIOV ENEVOVCEMV
OV £YOLV TPOYHOTOTONOEL Yo TNV AVATTLEN TOV LTAPYOVIOV GLGTNUATOV Aoyiopikov. EmimAéov,
€VPLTATN ATOd0Y N Kal Tay VTt avanTTLEN Tov [aykoopiov Iotol evBappivovy Ty cbvBeosn vanpeciov,
o161t o IMaykoouog Iotdg yiverar to kaboriko péco npocPaong oe vanpecies. Kabmog cuveymg kat
TEPLEGGOTEPOL TAPAOOGLUKOL POPELC TAPOYNG LN PECIOV avAYKALOVTUL (AOY® OVTUY®VIGTIKOV TIEGEWMV)
va amokToovy tapovsia otov [aykocsuo lotd, avanticeetal pHio 1oyvp TAoT Vo Y PNOILOTOLGOLY
TOL ECOTEPLKG TOLVG CLGTNHOTA Y10, TNV EEVTNPETNOT SOGOAN YLDV e eEMTEPIKOLS POPEIC, OTMG TEAUTEC
KOL EMLYELPNUATIKODS GUVEPYATEC.

H ocbvbeon vinpeociov enavEdvel Ty afio TV LTOPYOVIOV LANPECLOV LE TO VO TIG 0ELOTOLEL OF
mAaiclo Ta oroia 6ev £xovy TANPOG KaboPLoTEL €K TV TPOTEPMOV, T 0KOUA OEV £XOLV KOV TPpoPAepDEed.
Avtf glval n ovoia NG SIKTLOKEVIPIKNG TPOGEYYIGNG GTNV KOTACKELT GUGTNUATOV AOYIGULKOD.
H 1016mta avt) kofietd TV SIKTLOKEVIPIKT TPOGEYYIOT EAKLGTIKN Y10 £va av&avopevo aptfud
EQUPULOY®V 0TO TOIKIAD TEdIA, OMMOG TO MAEKTPOVIKO EUTOPLO KOL 1) LTOGTNPLEN GULVEPYACIAG OTA
mAaiclo Epyov. AvTEG Ol HOpREG epappoy®V cuvnBmg mepthapPdavovv digpyacieg pong epyaciog
(workflow processes) mov gkteivovtal TEPA AT T0, SLOKNTIKG Oplo VOGS OPYAVIGHOV, KUl 0alTobV EVa
HOVTELO EKTEAEGTC TOL VO EMLTPETEL AVTOVOUIN TOV GUUUETEYOVIOV G TPOG TO MG UTOSEYOVTOL KAl
eELTNPETOLV AITNGELS Y10 TNV EKTEAECT EPYUCLOV.

Mewovektnpata tov Yrnoapyovoov Ilpoceyyicemy

H vrootpién diepyaciov (process support) gival 10 med0 EQUPUOYNG TOV CLUGTNUATOV LAY EIPIOTG
pong epyaciag (workflow management systems), ta omoio LVEOGTNPILOLY EMLYEIPTNUATIKEC SLEPYUTIEG
VAOTOLOVTOG TIC KATUAANAEG POEC dESOUEVOV KUl ELOOTOINCEMY Y10, GUUPAVTO HETUED TOV GUUUETE—
yoviov [GHS95]. Mo emyeipnpatikn digpyacia opilel Prinata dpactnplotntag yia v enitevén
EVOG EMIYELPNHOTIKOD GTOYXOL KAl KAVOVEG Yo TOV KOOOPLoUo TG oelpds avtav Tov Prpdtov. Ot
dpactnprotnteg (activities) pmopel va mepriaupdavoovv npa&eig nave ce dedouéva mov eEdyovial and
ETMYELPNOLOKO GLOTNUATO, OTWOC GLOTAUATO ENEEEPYACIAG OOCOANYLOV, PACELS OESOUEVOV KUl GL—
GTNUHOTA AOYIGTIKNG Kol TOPOKOAODONONG TG TPEYOVCUE KATAGTUGNG, KAOMC KAl dAANAETIOPACELG
pe oteA€YM mov vrootnpifovial amd dtapopa epyareio Aoyiopkos. T'a mapddetypa, n eneepyacia
pog mapayyeiiog ota TAaiowa pog diepyaciog tpoundeidv propei va tepthapfavel tmy eneepyacia
EYYPAPAOV (OTMG CTUELOUATO K01 POPHESG) AT Hid 0ALG1O0 S101KNTIKOD TPOCMNTLIKOV, AAANAETIdpACT LUE
UNYaVIoHohE S1oKIVONG UNVORATOV (OTMG £va GOGTNIA J10YELPLGTC OLPDY UNVUUATOV) HE GKOTO TNV
TPOGPUCT KoL EVNUEPOCT] TANPOPOPLDV TIG OTO1EG draTnpel Kat dtayelpileTal £V LITAPY OV TATPOPO—
PLOKO CUGTNUA, [0 LTOSLEPYACLH LTTO TOV EAEYYO EVOG GCLOTNHATOG dLAYELPLONG KAl TPOYPAUUATIGHLOD
LPNOMNG ETYELPNCLOKAOV TOP®V (enterprise resource planning system) yio TNV mapaKoAovONGN TG To—
payyeliag, Kol eEE101KEVUEVEG LTOSLEPYUTIEG TOL SLEKTEPULDOVOVTAL 0O EEMTEPLKOVG TPOUNOEVLTEG KOL
vrepepyordpouc (subcontractors).

AL0KPITIKG YVOPIGHOTE TOV EPAPUOYDOV dtayeipiong pong epyaciag eivat [Sch99] n ev yével paxpd
didpxeta, ot GLYVEG aAlayEC (AOY®D ETYELPNUOTIOV UTOPUCEDV OTMG AVUILOPYUVDGELS, PEATIGTO—
TONGELG JLEPYACLAV, KAl 0VADEST EPYUCIOV GE EEMTEPLKOVS GLVEPYATEG), 1| E£APTNOT GE LILAPYOVTEG
EMYELPNOLOKOVG TOPOLS (TOL TEPLAAUPAVOLY Kol avOpOTOLS KAl GUGTHHOTO AOYIGHULKOD), Ol IoYVPES
ATAITNGELS Y10 TapoKkoAovONo”N TG eKTEAEON G BAGEL TOL HOVTEAOL TG SLEPYUCING, KATOVOUT TOPOV

KO0 €pYOoiog mov umopel va damepve o SLotkNTIKG dpila €vOg OpYaVIGHOD, Kol 1 AAANAETIdpacT
pe TANOdpa ypNoTOV TOoL KAveL TNV avibeon mOpwv e gpyacieg kpioipwo TpdPAnua. Ev yéver, ta
GLOTNUATO OLUYEIPLONG PONG EPYUCLOG TOPEYOLY KATOLO UNYOVIGUO UOVTELOTOIGNG KOl TOPUoTO—
oMG dLEPYUTI®V, TOL €Y el GLVNOMG TNV HOPOT EVOG YPUPNUATOS HPUCTNPLOTHTMOV TOL AVATAPLGTA TLG
eEaptnNoelg HeTaED dpacTNPLOTNTOVY, Kol £vo TePLPdAlov eKTEAEGNC HEGH GTO OTMOLO Ol JLEPYOTIES
EVEPYOTOLOLVTOL KOl SIEKTEPALDVOVTUL LE TO VO, EVEPYOTOLODVTOL dPAGTNPLOTNTES, VO, TOPEYOVTIUL GE
QUTEC TO OTOLTOVUE VO, OESOUEVA LGOS0V, KAl TO TAPUYOUEVE, dedopéva €£600V va TpowhovvTal TPog TIg
dPUGTNPLOTNTEG TOL ETOVTAL QVTMV GTO YPaEN U EQAPTNOCE®Y SPUGTNPLOTHTOV.

Mio OepeAlddng, KAl GvYVE Oyl COPAOG KATAYEYPOUUEVT], LTOOECT OGTNV OPYLTEKTOVIKT TOTOL
neldtn/eEonnpétn (client/server) mov yopaxtnpilel TNV Tp€Yovca YEVio GUGTNUATOV S0y ELPLGNC PONG
epyoaciag, 6mmg opiletal and TIg TPodaypapég mov dNpoctevel o opyavicpodg Workflow Management
Coalition (WfMC) [Hol95], eivat 6Tt n unyovn exktéleong tng pong epyaciog (workflow execution engine)
elvatl o kOplog kat kateEoyxNv €£0VGL000TNIEVOC GLVTOVIGTNG TNG EKTEAEON G diepyaci®mv. Ot diepyocisg
Osopeital 6Tt eite mepikieiovtal €6’ 0AOKAN POV GTNV COALPA EAEYYOL TNG UNYOVNG EKTEAEGTC TNG PONG
epyociog, €ite eKTEAODVTAL LTO TOV EAEYYO UNYAVAOV EKTEAEGTC TNG PONG EPYACLAG TOL cuvepPyalovTal
HEC® KATAAANANG EMOENG Y PNOMNG TOoL vrootnpilel dtaieitovpykdtnta (interoperability). Xvvemmg,
glval amapoitnto vo mopoctodel AETTOUEPDS TO OPYUVOTIKO HOVIELO €VOG OPYAVIGUOD KAVOVTOG
LPNGT TOL UNYAVIGUOD HOVTEAOTOIGTG KO TAPACTACTG O1EPYUCIMY TOL LIOGTN PILETAL 0O TO GVOTN A,
dlayelplomg pong epyuciog, Kot OAEC OL EQUPUOYEG TOL UTOPEL VA ¥ PNOIHLOTOINO0VY GE [pOT| €PYACTG
TPEMEL VO, TPOTOTOLN 00OV DOTE VL EMTPETOLY EVEPYOTOINGT Kol ELEYY O ATO TNV UNY OV EKTEALECTC TNG
POMNG EPYOCLAG. ZUVETAG, OAANYEG KAl EV YEVEL EEEAMET TOV DLEPYOUCIDOV GLVETAYOVTUL CTIHLOVTIKO KOGTOG
avintung, edika edv ot diepyacieg amartody TNV OAOKAN p®GT TOPWV and eEMTEPLKOVG OPYUVIGHOVG.
Me 10 va otnpilovral e £va “povortfikd” eEummpétn mov eival vTeHOLYOC Y10, TOV GLVTOVIGUO TNG PONG
epyooiag oALG KOl Y10 TNV EKTEAEGT TOV dPACTNPLOTNTOV, TA LITAPYOVTH GLGTNIATO, dLaYEIPLONG PONG
epyaoiog (6nwg meprypdeovtat and Tig tpodaypapés tng WIMC) ndoyovv and cofapolds TepPLopioovg
otV gver&ia (flexibility) kail tnv duvatotnta KAMpdkoong (scalability). H avagopd [PPC97a] exBéter Tig
GLVEMELEG TNG AKAUTTNG OOUNG TOV LTLAPYOVI®V GLGTNHATOV dlayeipiong pong epyaciag. Eva onpavtikd
TpOPANUa eival 6T1 dev gival duvatd va porpalovrtal ot AMoteg epyaciov (work lists) petad €Tepoyevov
UNYXOVOV EKTEAECTC TNG PONG EPYACIAC, O1OTL 01 MGTEG EpYUCIOV OV £ival TpocTeAGTINES EE® amd TNV
UMY OV EKTEAECNG TNG PONG EPYACIAG. ZOVENMS, Y10 VO, LTOPEL KATOL0G VO, CUUUETEYEL GE O1EPYATIEG
OV EUTAEKOLV dLAPOPETIKOVG EELVTINPETEG, TPEMEL 0 KAOe eEummpétng va datnpel Lexmplotn Alota
EPYOCLDV, Kal, EMTAEOV, TPEMEL OL EQUPUOYEG—TEANTES VO, SLUTNPOLY TALTOY POVE TEPLGCOTEPES OO
pto cvvoéaelg pe eEumnpétec. Eva akopa cofapd mpdfAnua eivar 6tt ot wpodiaypagég thg WIMC
opilovv TPELC SaPOPOPETIKEG ENMUPEC Y PNONC Yo TNV avibeon epyuciag oe avOpm®Tovs, EPaprOYES, Kol
dlEpPynaieg TOL EKETEAOVVTAL GE AAAOVG EELVTINPETES, avTioTol o, ALTn 1 EALELYN SLOQAVELNG GTO TMG
TEALKA LAOTOLOOVTAL Ol dpacTNPLOTNTEG OTA TACICLO [Hiag diepyaciag dvoyepaivel Ty enavavadeon
epyooiag (delegation), kobmg epappoyn pong epyaciog eNPAALEL OLOLOCTIKA CLYKEPLLEVO TPOTO Yid.
TNV vAOToING™ TG KAOE S pacTnPLOTNTAG.

AvTa To LELOVEKTNUATO ETLTELVOVTOL GE 0VOLKTO TEPLBAAAOVTA GLGTNUATOV OTMG TO ALadiKTLO, OTOL
dracvvdedpueva kol OAANAEEQPTOUEVE GLGTOTIKG AVOUEVETAL VO, Eival 6€ BEOM VO X ELPLGTOVY AAANAE—
TOPACELS TOL dEV KOAOLOOVV TPOdLOYEYPOUUUEVOLG TEPLOPLTUOVS Y POVOTPOYPUUUATIGHOV (scheduling
constraints). Ot amo1TNoeLg 6€BACUOD TNG CLTOVOULNG TV SLOPO POV POPEMV GLVETAYOVTUL OTL dEV UTOPEL
Kaveig va Oempnoet dedopévec Polkég vmobéoeic kKal puOpicels Yo To Kavaila ETKOIVOVIAG, TNV eEm—
TEPLKA TPOOTEAAGIUN AELTOVPYIKOTNTA, TIG TOMTIKEG EAEYYOL TPOGPUGNC, TNV AVAUEVOUEVT ETTLOOGT,
KOl TNV GUUTEPLPOPE KaTA ToV Y eIplopd eEarpécemvy. Avtifeta, Tétoleg vToOEGELS Kl puOuicelc TpéTel
va tekunplmbodv capmc, ava mepintwon kot Eexmpiotd yia kabe drabécipo mtopo. Me dedopévoug
TOLG GOPuPOLG TEPLOPLOUOVE TNV TPOGRUGCT) OE ECAOTEPLKN TAT|POPOPLN KATAGTUGTG KOL I 0VIGHLOVG
eLEYYOL TOV TOPOV ToL dtayelpilovtal aveEapTnTol POPEIG TUPOYNG VINPECLOV, Ol EPUPHOYEG PONG
EPYOoioc TPETEL VAL YIVOLV OPKETE EVEMKTEG DOTE VO, IUTOPOLY VO YELPLGTOVYV GLUPOVIEG ETLTEIOL
vninpeciag (service—level agreements), ol omoigg opilovv Tovg apotfaio arodeKTong OPOLE Kol GLVONKEG
OV OLETOLY TNV AAANAETIOpaCT OVAUESH GE £Vva TEAATN KAl Hld LVANPECIA, HECH GE GUPDS OPLOUEVEL
oplo eLEYYOL Tov GERoVTOL TNV €£0VCIN KOl AVTOVOULL TMV AVEEAPTNTOV POPEDYV TOL GUUUETEYOLV GE
diepyaoieg.

H sicayoyn coppovidv emmédov vanpeciog eTPAALEL TNV AvaOEDPNOT TNG CLVOAIKNG OPYAVOONG
KOl TOU LOVTEAOL EKTELECTG TV EPAPLOYDV PONG EPYUGLAG, AOY® TNG CLTOVOULNG TOV POPEMY TAPOYNG
LTI PECLOV K10 TNG OTAITNONG Y10 GOQN TEPLYPAPT], TOPAKOAOVONGN, Kol EAeYy0/eEACEAALON LOLOTNTOV

vi

EMMEIOL VAN PETiag. Ot LTOSOUEG KATAVEUNUEVOV EQUPUOYDY OPEILOVLY VO, EGTIOGOLY TEPLGGOTEPO
otV doyeipion arthoemv eELTNPETNONG Kal TNV a&lOTLIGTN KOTAYPAQT] TN TPOOSOL TOVG, AVTL Y10 TNV
KaToy pagn Tov PETABoA®V KotdoTtaong dpactnplotitov. H e£EMEN avtn) kpivetal avaykaio Adym Tov
SLIALEKTIKOD Y OPOKTN PO TOV S PAGTNPLOTHTOV TOV EUTAEKOVV CLTOVOLOLS POPELG TAPOY NG LI PECLDV.
Ot dpaotnproTnTeg SLOAAEKTIKOD Y apakTNpa dev vToaTNnPilovTal ETOPKOS aATd TA LIAPYOVTO LOVTELD
d1Epyuci®V ToL LTOBETOLY OTL 01 SPUGTNPLOTNTEG EVEPYOTOLOLVTAL drtal, EEKIVOVY TOV KUKAO EKTEAECNG
TOVC, KOl 0EV TOPUYOLV ATOTEAECUATO TOPE LOVO OTAV ALTOG TEPUOTIOTEL €iTE EMITLYMOG €iTE AVOUALD
royo eEapécewv N BraPov. O vrdpyovoeg mpoceyyicelg [GHS9S, Hol95] dev vroatnpilovv dueca
™V aKOp®O™ pag aitnong eEunnpétnong mov Ppicketal og eEEAEN N TNV enavopbwon/anokatdoTacn
(compensation) T@V GLVETEL®V TNG. Ml KAl Ol LTAPYOLVOEG TPOGEYYIGELS OEV TAPSITAVOLY GUECH TLG
a1Tnoelg eEumNPETNONG Kol TIG CUUPMOVIEC EMITESOL LINPEGLNG MG OVTIKEINEVA TPOTNG TAEEMS, TO
TPOPANUE TG Voo TAPLENG GOVOETOV SLHALEKTIKOV TPOTOKOAA®Y OVAUECH GE TEAATEG KOl QOPELG
TOPOYNG LANPECIOV gival EE® amd TIG TPOSIOYPUPEC TOV LTUPYOVIOV Tpoceyyicewv. EmmAiéov,
Ol LTAPYOVOEG TPOGEYYIoELG OeV LTOGTNPILOLY EMUPKADC TNV TAPAKOAOLONGT KAl TOV EAEYYO OF
TPAYUOTIKO Y pOVO TV 01Toe®mVv eEumnpétnong. Ot eddeilyelgavtég emiPAALOVY ONUAVIIKEG ETEKTACELG
OTLG UTTAPYOVCEG TAUTOOPUES KOTAVEUTLEVOV EPAPLOYDV.

Teyvikég Ipoxkinoerg

H cOvBeom vinpeciov and Ye®ypopikdc KATAVEULEVOLS AVEEAPTNTOVG POPELG ATOTELEL E1O1KT TEPI—
TTOOM TOL TPOPANUATOG TNG dadeltovpylkOTNTaG 68 KaboAikn kApaka (global—scale interoperability),
Kol 0611 SOGKOAEG TEYVIKEC TPOKANGELC:

e Autovoypia: To Atadiktuo gival £va 0volkTod, KOTAVEUNUEVO GE gVPELD KAHOKO COGTNUA TOL dEV
AVIAKEL KO OEV EAEYYETAL OO i Kot ovo apyn. Ot aveEapTnTol pOPEIC TAPOY NG VN PECIOV dEV
EKOETOLY LETMTOUEPELEG TV EGOTEPIKDOV TOVG d1EPYACIOV, KaODG 1 yvdorn avtn Ba propodvce va
ATOKOAVYEL TO LOVOSIKG TOVG TAEOVEKTILOTA KOl LELOVEKTNUATO GE OVTOY®VIGTEG. Elval dtate—
Oeipévol vo ekBEGOLY LOVO QPALPETIKES TEPLYPUPES TOV LN PECIOV TOL TOPEY 0LV, EVOEYOUEVMS
EMAVENUEVEG LE TANPOPOPIEG KO UMY OVIGHOVG EAEYY OV 1OLOTHT®V TOL EMMESOL LI peciag. H
QUTOVOUL0 GLVETAYETOL EXLONG TNV ETEPOYEVELD, UE AALA AOYLO TNV DA pEN O10QPOPETIKDOV EVVOLO—
AOYIKOV HOVTEAW®YV, LOVTEA®V OLEPYACIOV KOl EKTEAECTG Y10 TOLC AVEEAPTNTOVS POPELG TUPOYNG
LN PEGLOV. o ToV GeBucd TNC AVTOVOULNG TOV POPEMY TAPOY NG VINPECIOV, ElvVal amapaitnTo
1 VTodoun LVTOCTNPIENG EQUPULOYDY VO €£ac@UAilel OTL Ol GLUUUETEYOVTIEG OE dlepyacieg dev
LpEALETAL VA £YOVV AULECT] YVOCT TOV HOVTEA®Y dEPYUCI®V Kal BTV LAOTOINGNG Yo GALOVG
GLUUETEYOVTEC. B0 TpémeL Vo oTNPifovial HOVO GE UQULPETIKEG TEPLYPAPES TOV dlabécipumy
LTINPEGLOV, OTOC Ol ETAPEG X PNONG TOV LTNPECIOV, KOL GE U0 YEVIKNG EQPAPLOYNC LTOSOUN Y1d.
eEAEYYOUEV OAANAETIOPOGT HETUED TEAUTAOV KOL POPEDV TAPOY NG LT PECLDOV.

e Karavoun eupeiag kAipokag: H svpeiag KApOKOC KATOVOUN TOV TOPOV KOl TOV GLOTATIKOV
TUNHATOV AOYIGUIKOD TOL VAOTOLOVV TIG LN PECIEG €l0Gyel peTaPANTEG (evOeyopEvmg peyd—
reg) kabvotepnoetg, avEnuévn mbavotnta yio pepikég PAaPec kat eEaipECELS, KAl TNV OvAyK™
VTOGTNPLENG €VOG UEYAAOL OO0V LTOAOYIGTIKOV KOUP@V UE SAQOPETIKEG dLVATOTNTES KOl
EMOOGELC, OLOGLVIEOUEVOV HECH GUVOEGHMY ETIKOIVOVIOG L€ TOTKIAEC ¥ MPNTIKOTNTEG. AvTa Ta.
LOPAKTNPLOTIKE TOV OVOIKTOV KOTOVEUNUEV®OV CLUGTNHATOV TOVILOLY TNV CNUACIN TOV OToLTH—
GEWV Y10 0ELOTIGTT TaPakoA0VONGT TNG TPodIoL TV UITHCEMY eELINPETNONG, KOl EMLBAAAOLY
€va Hovtéro ektédean ot pilOpeEVOL TNV S0y ELPLGT AGUYYPOVOV OLTHOE®Y EEVTNPETNONG.

e Augavopeveg aAnAeCapTAoelig peTagu ocuoTnuaTtwy: Kabog n eneéepyacio arthoewv eEumnpé—
TNGNG UTOoPEl vo EPTAEKEL TOPOLG LIO TOV EAEYYO TEPLOCOTEP®V TNG LIOG APy DV, Ol cLVOETEG
LTINPEGiEg e1GayoLY eEUPTNOELG UE TOADTAOKEG SOUEC HETAED TMV POPEMV TAPOYNG VAN PECLAOV.
Kabe @opéag mapoyng vInpecidv eAEYYEL, Kal GLVETMG uropel va Bewpnbel dueca vrevhuvog
Yo, To TUNMOTO eKelva oty enefepyacio piog aitnong eEuanpéTnong Tov TPAYUATOTOLOOVTAL
péca ota 6pla TNG TEPLOYNG EAEYYOL Tov. Me 10 va atnpiletal, cuyvd Eupeca, Kol og GALovGg
QOpPEIC TAPOYNG LANPECLAOV, TO €N TNG AELOTIGTNG TaPAKOAOVON GG TNG TPOOSOL TOV UITHGEMV
eEumnpétnong kot Tov apotfaiov deouevoemv peTald cuvepyaloUe VOV opE®V AToKTH 1d1aitepT
Bapvtnto. H emavavibeon epyocioc ce €101KELUEVOLG POPELG TAPOYNG LN PECIOV YivETAL

vil

GLVNONG TPUKTIKY, ELCUYOVTOC EMTAEOV TOAVTAOKOTNTO OTNV Ta.paKoAoVONGN ToV e€apTioemy.
Agv €ivol oTdVio d10QPOPETIKOT GUUUETEYOVTEC OE [1d dlEPYOTia TapoyNg cOVOETNC vaNpEciag
Vo £Y0VV JLOPOPETIKN AVTIANYN TOV 0pimv GAANAETISpacT G, KOOMDG 01 Popeig TOL TUPEYOLY TIC
EMUEPOVG LN PECIEG OEV ELVAL LTOY PEDMUEVOL VO ATOKUADTTOLV TIG EEQPTNOELS TOVG 1 TIG OYEGELG
enavovadeong epyaciag Tov £youvv avanTugel pe GAAOVS POPELS.

Awtonoon tng Epevovnrikng Osong e Avatpifng

10 va d1evko0lovlel n avay pnoipomoinan Kar 0 GVOLAGUOS DTINPETIMVY Ao aveEapTnTNTEG APYES, EIVAL OVTIDIES
va voaTpiy el 0 AVTOUATIGUOS THS EPAPUOYIS TOUPDVIDV ETITEOOD LINPEGIAS, KKal 1 all0TIoTH KATAYpaph
™G KaTdaTaong aiinieniopaons. H vmootipiln cuupmvicdv EXIméEdon vnpeaias analtel KaTdiAnin mAaTpopua
EQPUPUOYDY.

H mapovoa dtotpifr mapovsialet TNy vrodoun Aurora, plo KOTOVEUNUEVT TAATEOPHO LTOGTNPLENG
EQUPULOYDV TOL GLVOHLALOVY GLOTATIKA TUNUATO AOYIGHUIKOD oL dtotifeEvTal and dVTOVOHOLG POPELS
mapoyns vanpectov. H mlatedpua avtn oyedldotnke Kot avantoyOnke og ETEKTACT TNG TAATQOPUAG
kataveunuévav avtikelpévav OMG CORBA [CORY4]. Eva o pakTnploTiko YVOPLGH CUTHG TNG TAUT—
QOPUAC, TOL TNV SLUPOPOTOLEL ATTO TPOTYOVUEVEG EPYUGLES, E1VOL 1 GUPNC KOTAYPAPT] TOV SECUEDCEDY
amd aveEApTNTOVE POPEIC TUPOYNG LANPESLOV Yo 1O1OTNTEG TOL eMTEIOL vanpeciag. H kataypoen
ETMLTLYYAVETAL LE TNV EQUPUOYT EVOC TAULGIOL Y10 GUUPOVIES EMTEIOL LT PEGIAC, O1 OTOIEG TEKUT PLO—
VOLV TNV GVOUEVOUEVT] CUUTEPLPOPE TOV LN PECSIDOV, OGOV APOPE TOVG TEPLOPLOUOLS TPOSPaong, TOV
YLELPLOUO eEOLPEGEMY, TNV QLTOHOTT AVTIOPAGCT] G€ GLUPAVTO OTMG OTOKAIGELS 0O TOLG GLUPOVNOEVTEG
OpovC, KAl TNV AvVaUEVOUEVT ETTLdOOM.

To Zynua 0.1 deiyver tov poAo g vrodoung Aurora ®g KowvNng Paong yio Tolkileg €QUPUOYEG
pe katovoun evpeiag kKAipokac. To Xyxnua 0.2 deiyvel tmv Béon g vrodoung Aurora ctnyv ctoifa

Emerging Network-Centric Applications

- digital libraries
- electronic commerce
- scientific collabor ative work

(Common Infrastructure

- repository
- scripting language
- coor dination/collabor ation

- monitor
Existing Technologies Dynamic Open Environments
- Internet (protocols & services) - World Wide Web
- distributed object management - Object Web
- wor kflow/collabor ative work - multiple autonomous providers
- document/hypertext management - dynamic (unpredictable) interactions

- databases, TP monitors

Figure 0.1: TTpog pra Kowvn Yrodoun yio Atktvokevipikéc Epappoyég.

npwtokOAL@Y. Tlpdxettal yio teyvoloyia tomov middleware [Ber96], Paciocuévn otnv YA®cGO Tpo—
ypoppatiopov Java [GIS96] katl tnv Thatedpue Katovepunuévoyv aviikelpévov OMG CORBA [CORY%4].
[Mpoceépel avTIKEILEVOGTPOUPT TAAICLO KOl LI PECiEG LTOGTNPLENG Yo vo. Bondnoel oty avdntuén
SIKTLOKEVTPIKAOV EQOPUOYDV, LTOGTNPIlovTac TNV dlayeipion NG pong artHoemv eEunnpétnong, de—

viii

Digital | | Electronic Experiment

Applications _
Library | | Commerce || Management
Existing Object
. Frameworks
Middleware
WWW | Java VM
TCP
Network Resource Reservation
: Setup Protocol
Services
Internet Protocol

Figure 0.2: H ®éomn g Yrodoung Aurora otnv Ztoifa [Ipotokdiiov.

dopEVaV, K1a €100TOINGEMV Y10 GUUPAVTO OVALECO OE KATOVEUTLEVA CLOTATIKA TUNUATO AOYIGUIKOD
mov dtatifevtal and aveEapTNTOVG POopPEiG TAPOYNG LN PECLOV. OTMOG TEPLYPAPETUL AETTOUE POG OTNV
dtatpifn, n vrodoun Aurora cEReTOl TNV CLTOVOUIN TOV QOPE®V TAPOYNG LVIINPECIOV, Kl ETITAEOV
vroatNpilel THV caE TOPAGTUCT] CUUPMOVIOV ETLTESOL LINPECLNG, Kal TNV e£&taon Kal Tov EAEYYO
TOVG GE TPAYUATIKS Y POVO.

Xovoyn Epeovnrikaov Xoveropopov

Axoiovbavtog v avaeopd [MMWFF92], 10 mAaiclo diayeipiong CUHPOVIOV ETITEOOL LT PECIAG
OV TALPOLGLALeTUL GTNV Sl TP VTN ATOdIdEl HEYAADTEPT PUPVUTNTO GTNV AVIIUETOTIGT TNG PONG
ePYooiog Mg S1ad1KaGiaG Yo TNV IKAVOTTOINGT GTOY OV Kol deGUEDTE®V (satisfaction—centered perspective),
avTi ©G Slad1Kacio Yo TNV TapAY®OYN TPOiOVIOV TANpopopiac (production—centrered perspective). Yo
T0 Tpioua avTo, Ol HEGUEDCELG, Ol GLVONKEC IKAVOTOINGNG KAl 1 £YKOLPT TEPATOOT €1val Ol BaolKEG
katevbuvinpileg ypoupéc. Mia emmiéov dtogpopomoinem and v ovvnin aviiAnyn yiwa v pon
epyaciag mov eotialetl ota dedopéva kot tov xeipioud Tovg (data—centric perspective) [BDST93] eivat
0Tl M mopovcoa datpiPn eotialel otny dayeipion acvyypovov aithoeov eEunnpétnong. H dwatpifn
mePLYpaeel Eva kataveunuévo mepiarrov extédeong (Baciopévo otnv mhateoppoe OMG CORBA)
Y10 GUOTOTIKA TUNHOTO AOYIGUIKOD TOL OVATOPLOTOVV JLEKTEPULOTEG EPYACIMY, Ol OTOIOL TAPEYOLY
LTINPEGieg o€ TEAATEG. AuTO TO TEPLPAALOV eKTELEGT G GLVOLALEL GLGTATIKG TUNIATO AOYLGULKOD, TOL
LAOTOLOVVTAUL GUVAPHOAOYDVTOC KATOVEUTUEVA AVTIKEIUEVA, LE 10 GELPA ATO VIINPEGIEC LTOGTNPIENC,
EL01KA pe éva TePIPAALOV EKTEALEGTG TOL AELTOVPYEL MG KEAVPOG Y10 GLUGTATIKG TUNHOTA AOYIGUIKOD
Kol xelpiletor Tig xaunAod emimédov AeNTONEPELEG TNG LTOPOANG KOl TapaKOAOVONONG TG TPOOdOL
artnoemv géunnpétnong. Avtd to mepifdilov—kédlveog (container run—time environment) mapéyet
™mv PBdon yia £vo TAOIGLO TOL OVOTOPLOTE TOPOLG KUl EPYUCIEG, EMTPETOVTING TOV GLVOLAGUO TOVG
e avbaipeTEC SLUPOPPOCELC E TNV LPNON UNYAVIGUOV GOVOECTG CUGTUTIKMOV TUNUATOV AOYIGULKOV.
Avtd t0 TAiGL0 Yo Katavepunuéveg cuvedpieg epyaciog (distributed work sessions) viornoteital névo
and TV PBactopévn oty thateopuc OMG CORBA vrodopun] yio GuoTATIKA TULOTE AOYIGHIKOD TOU
OVTIGTOLYOUV GE LAMPECIEC TOL GVAKOLV KAl AELTOLPYOLV LTO TNV ENMONTELN AVEEAPTNTOV POPEWV

X

TOPOY NG LI PECLAV.
O1 GLVELGPOPEG TNG EPELVNTIKNG TPOSTAOELNG TOL TOPOLGLALETAL BTNV TAPOVGO, dlaTPLPn €ivar ot
egng:

1. Eva mAaiolo yia cup@uwvieg emmTédou UTTNPECIag g€ avoIKTA KaTaveunuéva ouoTiuaTa: Ot cup—
QOVIEG EMTESOL LI PECLOG AVATOPLOTOVIOL AUECH GTO TEPLPAAAOV EKTELEOTC, LEGOAUPOVY OTIG
aAlniemdpdoelc petatd popéa mapoyYNG LINPECI®OV KOl TEAATN, TopaKolovBoby TNV cuupdp—
@e®on M TNV anoKAlon and SEGUEVGELS Y10 1OLOTNTEC ETMITEIOL LI PEGILUC, KUTAYPAPOLY UE TPOTO
a&LOTIGTO TIC EVEPYELEG TOL MEAATN KOL TOL QOPEN TOPOYNG LANPECIOV, KUl QUTOUITOG EVEP—
YOTO100V d1001KAGIEG Yo TNV ENOVOPOOON ATOKAIGE®MY Ao TNV AVAUEVOUEVT] GUUTEPLYOPE TNG
LTI PEGLAG.

2. Mia utrodoun (Baoiopévn otnv TTAat@opua OMG CORBA) yia cuoTaTiKG TUAPATA AOYIOHIKOU TTOU
UAOTTOIOUV UTTNPETIEG, Ol OTTOiEG avAKOuV £€'0AOKAAPOU Kal €AEYXOVTAI ATTOKAEIOTIKA OTTO TOUG
QAVTIOTOIXOUG QOPEIG TTAPOCYNG UTTNPECIWY: H vrodopn avt) mepiiapfavet pio vinpecio Koto—
AOYOL Y10 TEPLY PAPIKEG TANPOPOPIES (LETO—OESOUEVA) Y10, TIG AELTOVPYIKEG EMUPES Y PNONG KOL
TIG GLUPWOVIEG ETMITEIOL LN PESCLNG TOL LLOGTNPILOLY dLAPOPL GLGTATIKA TUNHOTA AOYIGUIKOD,
Eva TEPLPAAALOV—KEALVPOC Y10 GLGTATIKG TUNHOTA AOYIGHIKOD KOl acUYYPOVEG a1TnoELlg eEunn—
pETNOMNG, LANPECieg €LdomoinoNg Yo GLUPAVTO, LINPECIEG KATAYPUPNG KAl TAPakoAovONo™NG
ovpPaviov, éva TAaiclo EAEYYOL TPOGRACNC, Kol £VO S1EPUNVELTH ULOG YADCGOS Y10 TNV dlEL—
KOALVOT TNG SLOUOPO®MCTC GCLGTUTIK®OY TUNUATOV AOYIGUIKOD Kal TNG dlayeiplong achyy povov
artnoewv eEunnpétnonc.

3. EvaTtAdiolo yia katavepnuéveg ouvedpieg pyaaciag e UTTOOTAPIEN VI EAEYXOUEVN KOIVH) TTPOCRA0N
og TOpoug: O1 KatoveunuéVeg GLVEDIPLEG EPYUCIAC E1GAYOVTUL MG £V TAAIGLO Yid EAEYYXOUEVN
TPOGPaoT O€ KOLVOY PNOTOVS TOPOLGE, LTOGTN PILOVTAG TNV ENPOAN TEPLOPIGUDY TPOCTELUGTG KO
LPNONG amd TOLG AveEAPTNTOLG POPEIC TOPOYNG LN PESIMV. Ol HETEYOVTEG GE GLVEDPLEG EPYUTIOG
ovvtovifouy v pon gpyactdv vToPdiloviag altnoelg eEVINPETNONG, Yio TNV ENEEEPYATIH TOV
omoimv amotteital 1 xpNoN Kooy pNoTOV TOpOV. LOVOETEG EPYACIEC AVATAPIGTOVTAL OG TOPOL
pe e£0PTNOELS TOTOL TTAPAYWYOV/KUTAVUANDTT 0O AAAOLS TOPOLG.

4. Avo cuoTtrpara eTidEIENG:

e Mo mpoomeldciun pécw tov Ioykoopiov Iotod vanpecia Tov TPOTEIVEL GLVIEGHOVE Yia,
dobeica Oepatikn xoatnyopia, cvvdolaloviag Tig TOAL dNUoPlAgic vinpecieg Yahoo xat
Altavista

e Eva mepifdAilov nAekTpovikod eumopiov mov vrootnpilel cupEOVieg EMTESOL LI PECLOG
Kot TNV eneepyacio TopUyYEALDV 0O TELATES

Acknowledgements

The research presented in this dissertation are the results of almost years of full-time effort. During this
period, 1 had the benefit of working and interacting with several people that helped me get through the
ordeal of graduate school. To these people I will always be indepted.

First of all, I would like to thank my advisor, Professor Christos Nikolaou for finding the time and
energy to supervise my research efforts, both at the MSc and the PhD level, and for laying out for me the
standards and guidelines for serious research in the area of distributed software systems. For this guidance,
and his tolerance to my occasional lapses, I will always be grateful.

The Institute of Computer Science (ICS/FORTH) supported my research, by providing access to
equipment, by providing financial support, and by subsidizing the cost of my participation in international
conferences and workshops. The system administrators at ICS/FORTH, Panos Sikas, Panos Psikos, and
Vaggelis Karagiannis, helped me get through several “idiosynchrancies” of the computing equipment.
Likewise, the system administrators at the Department of Computer Science, University of Crete, Mrs
Maria Mamalaki and Mrs Cristina Vaglini, managed to make ends meet in several crisis situations during
the crucial last six months of the implementation effort described in this dissertation. The Department’s
Graduate Programme secretary, Mrs Rena Kalaitzaki, helped in making necessary arrangements in time.

During my studies at the Department of Computer Science, University of Crete, I had the priviledge to
interact with several members of the faculty, both as student and as teaching assistant. Among others, |
had the priviledge to attend classes taught by, and work as teaching assistant for, Dr Christos Nikolaou, Dr
Giorgos Tziritas, and Dr Evangelos Markatos. They all set high standards for academic performance and
integrity, which I can only wish to be able to emulate.

The members of the examining committee for this thesis provided valuable feedback about the initial
(inadequate) draft of the text. In particular, the comments by Dr Panos Constantopoulos and Dr Stelios
Orfanoudakis led to a major revision of this text. Dr Dimitris Plexousakis provided detailed technical
comments, as well as insightful questions about theoretical aspects of the Aurora infrastructure presented in
this dissertation. The external readers, Dr Seif Haridi and Dr Elias Houstis also provided valuable comments
and suggestions for improvements in the presentation of the research described in this dissertation. Any
remaining omissions or errors (hopefully minor !) are entirely my responsibility.

I am particularly grateful to Dr Evangelos Markatos for his invaluable technical comments and his
crucial assistance in preparing for the public defense of this thesis. I consider myself to be extremely lucky
for having the chance to discuss matters related to distributed systems technologies, during an extended
period of time, with such a dedicated researcher and teacher as Dr Markatos.

I would also like to express my gratitude to all former and current members of the Parallel and
Distributed Systems (PLEIADES) ! division at ICS/FORTH. I am particularly indepted to Mrs Penelope
Constanta for her words of encouragement, and her invaluable assistance in numerous administrative,
financial, as well as technical matters. I would also like to thank Dr Petros Kavassalis for allowing me to
participate in the preparation of a major European project.

Special thanks are due to the members of The Cage, an informal group of people that at some time
or other worked in, or regularly visited, room G171 in the PLEIADES laboratory. To these people I wish
good luck in their pursuits, and I hope that eventually we will be able to get together again to talk about
things from our past in The Cage.

The ideas about open distributed systems expressed in this dissertation matured through several heated
discussions with Dimitris Papadakis and Giorgos Georgiannakis, people with unusually good listening skills
as well as in—depth knowledge of systems, literature, history, and culture. I wish for them every happiness

Thttp://www.ics.forth.gr/pleiades

X1

and success in their current endeavours. The same wish goes for Stavros Papadakis, a fellow student of
exceptional technical skill and moral quality. Dimitris, Giorgos, and Stavros proved to be reliable friends
in both good times and hard times, and I only hope that we remain friends for life.

The completion of the work described in this dissertation would not have been possible without the
unfailing support of my parents, Lambros and Calliope, and my fiance, Romina.

Xil

Contents

Dissertation Abstract

IMepiinyn Adoktopikig Awatpipig

Acknowledgements

Contents

List of Tables

List of Figures

1 Introduction

1.1
1.2
1.3
1.4
1.5
1.6
1.7

The Problem of Providing New Services Over the Internet
Problem Significanceo
Shortcomings of Existing Approaches
Technical Challenges e
Thesis Statement e e
Summary of Contributions L
Organization of Dissertation e

2 Motivation and Outline of Approach

Adding Value to Existing Services by Composition
Importance of Having a Common Request Protocol
Implications of Autonomy on Perceived Service Levels
Effects of Large—Scale Distribution
Service Level Management through Explicit Agreements
Infrastructure e
Composition via Scriptingo e
A Note on Transactional Properties

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

3 Related Work

Interoperability
Distributed Workflow Enactment 0oL
Service Contracts e e e
Service Level Management

3.1
32
3.3
3.4

4 Component/Container Framework
Component Model e

4.1

4.1.1
4.1.2
4.13
414
4.1.5
4.1.6

Basic Concepts of the Component Model
Management of Exported Interface References
Management of Required Interface References
Management of Event Notifications
Component Metadata L L
Component Installation and Support Services

Xiii

fii

xi

Xiv

XV

xvil

4.1.7 The ComponentProxy Interface
4.1.8 Support for On-line Monitoring and Control of Components
4.2 Management of Asynchronous Requests L.
4.2.1 Asynchronous Requestsin CORBA
4.2.2 Primitives for Asynchronous Request Management
4.2.3 Callbacks for Notifications about Asynchronous Requests

4.3 Access Control Framework
4.4 Support for Event—Driven Execution
4.5 The HERMES Scripting Language
4.6 A Noteon Performancelssues,

5 Service level Agreements

5.1 Definition of Relationship Boundaries
5.2 Logging and Monitor Infrastructure
5.3 Integration with the Component/Container Framework

6 Work Session Framework

6.1 Resources, Tasks and Work Sessions
6.2 Differences from Other Approaches

7 Case Study

7.1 Description of Components
7.2 Order Processing Workflow
7.3 Integration using the Aurora Framework
7.4 Integration using the OMG jointFlow Framework
7.5 A Demonstration of Service—level Agreements,

8 Conclusions and Perspective

8.1 SummaryofResults
8.2 Directions for Further Research

References

Appendix A: IDL Specification for the Aurora Component Framework

Appendix B: IDL Specification for the Aurora Container Run—time Environment
Appendix C: IDL Specification for the Aurora Service—Level Agreement Framework
Appendix D: IDL Specification for the Aurora Work Session Framework

Appendix E: The OMG jointFlow Specification

Appendix F: IDL Specification for Electronic Commerce Case Study

Xiv

76

83

89

96

100

105

108

List of Tables

4.1
4.2
4.3
4.4
4.5

Management Interfaces Exported by Aurora Components. 29
Methods of the ComponentControl interface. 33
Asynchronous request management primitives.o ... 36
Asynchronous request management callbacks.0 0oL 38
HERMES/Tcl Commands for ECA rules and their Parameters. 41

XV

Xvi

List of Figures

0.1
0.2

2.1
2.2

4.1
4.2
4.3
44
4.5

5.1
52
5.3

6.1
6.2
6.3
6.4
6.5

7.1
7.2
7.3

ITpog pro Kowvn Yrodoun yio Atktvokevipikég Epappoyés. . . o . . o o o . o o . L. viil
H ®¢éon g Yrnodoung Aurora otnv Xtoifo [MpwtokdAhov. X
Towards a Common Infrastructure for Network—Centric Applications. 6
The Aurora Infrastructure in the Protocol Stack. 7
Composition of two popular WWW services. 12
Overview of Aurora Architecture. 14
Structure of a container hosting ComponentProxy objects. 34
States in the processing of a work request. L 34
Interaction with a Component Hosted within a Container. 44
Access Control in the Context of a Work Session. 44
Example of composite event notifications by combining the SubjectGroupFSM, TIME

scheduler, SubjectGroupFilter,and EventLoopservices. 45
Elements of the service—level agreement interface. 48
Structure of the Aurora Monitor. 54
Service—level agreements as entry points tO SEIviCes. e v a4 ... 54
A Satisfaction—Oriented View of Workflow., 61
Instantiation and Control of Process Instances in the Aurora run—time environment. 61
Elements of the Aurora session framework. oL 62
Example of a work session involving autonomous participants. 63
The Workflow Management Coalition Reference Model. 63
Order life—cycle in the e-commerce casestudy 66
Service—level agreement for shipping an order: Normalcase. 69
Service—level agreement for shipping an order: Exception handling. 71

Xvil

Some inspiring words . . .
In pioneer days, they used oxen for heavy pulling, and when one ox couldn’t budge a log they didn’t try to grow a
larger ox. We shouldn’t be trying for bigger computers, but for more systems of computers. —— Grace Murray Hopper
(1906 — 1994).
What is it indeed that gives us the feeling of elegance in a solution, in a demonstration? It is the harmony of the diverse
parts, their symmetry, their happy balance; in a word it is all that introduces order, all that gives unity, that permits us
to see clearly and to comprehend at once both the ensemble and the details. —— Henry Poincare (1854 — 1912).
Prediction is very difficult, especially about the future. —— Niels Bohr (1885 — 1962).

To Lambros, Calliope, and Romina.

Chapter 1

Introduction

The Internet’s explosive growth motivates a shift from stand—alone applications
towards software systems consisting of independent and widely distributed computational
components. Such network—centric systems use open protocols to combine the services
offered by individual components in configurations that may not have been foreseen
by their developers, in the context of processes involving multiple participants that
utilize a variety of resources to perform tasks with interdependencies related to temporal
sequencing and data flow.

1.1 The Problem of Providing New Services Over the Internet

There is a tremendous demand for new applications, and this demand is expected to
increase as the number of people with Internet access continues to grow. Most current
Internet applications provide access to existing back—end applications and information
content. However, there is a growing interest in applications that combine several
information processing services. The following examples are representative of this
increasingly popular class of applications:

e Integrated travel packages: The aim is to provide information about available
airlines, hotels, car rental agencies, and other specialized service providers. An
important issue is to handle all the required reservations through a single front—end
service, and provide tracking information and support for on—demand customization.
Although each service provider remains autonomous, it is required to allow controlled
access to certain of their resources, in the context of the process that combines the
available services. Moreover, for making such services attractive to customers it is
essential to allow them a high degree of customization and support for last—minute
changes, through a single interface and taking into account the specific terms for
each reservation (including the terms for handling cancellations and changes). Thus,
the flow of request processing is event—driven, rather than sequential.

e Location—specific information services: The aim is to take the customer’s location
into account in recommending services and products that the customer can use at
the specified location. For example, a tourist information service can use location
information to recommend nearby restaurants and amusement parks. It is important
to note that while available products and services may be accessible through multiple
catalogues from independent providers, the composite service organizes and filters

the available information using location—related criteria, although such functionality
may not be directly supported by the individual catalogues.

¢ Information correlation services: The aim is to combine information from multiple
sources so as to provide customers with new insight regarding a large volume of
information. For example, an information correlation service could locate WWW
pages related to a specified topic, rank them using some criteria, and generate
recommendations to customers who are interested in obtaining information on the
specified topic. It is important that the information sources may be beyond the scope
of control of the service provider that performs the ranking. Moreover, the service
providers involved in the correlation process need not be aware that their resources
are being used for realizing a composite service. An example of an information
correlation service is presented in detail in Section 2.

e Multi-organization experiment management: The aim is to utilize the data sets
and computational infrastructure of multiple organizations in performing complex
processing of data sets. Such processing may involve performing data format
translations, and feeding the output of simulation programs to other computations
in pipeline. An example is a global climate study, that combines data and numerical
models from multiple organizations, at various geographic locations. An important
issue is that computations may be of long duration. Furthermore, it is essential
to be able to monitor the progress of ongoing computations, as well as to be able
to manipulate model parameters. The composite result is more valuable than the
intermediary results of the steps involved. The underlying infrastructure should
facilitate experimentation with alternative configurations of data processing and
numerical simulation software systems.

e Multi-organization business processes: The aim is to integrate the core business
processes of enterprises that co—operate in the context of a coalition. The overall
business objective is to offer to customers services and products that rely on the
combined resources and business processes of multiple enterprises participating in
the coalition. It is necessary to support both long—term collaborations, taking
the form of strategic alliances, and short—term, opportunistic collaboration for the
duration of a single project or transaction. Multi—organization business processes are
usually conversational, in other words allow or require interaction where customers
issue multiple service invocations and receive intermediate results that may be used in
further interactions. The execution time—line of a composite service includes one or
more service requests, as well as feedback and control operations during the ongoing
service performance and the delivery of service results.

A crucial characteristic of such applications is that, while co—operation is required
for providing customers with a composite service, the autonomy of service providers
severely restricts the degree of control that can be exercised on individual services.
Autonomous service providers cannot be readily coupled in a common framework, and,
more importantly, cannot be assumed to expose internal state information for allowing
tight coupling in a coherent distributed system. Rather, it is more likely to expect that
autonomous service providers will be willing to expose only interfaces for customers, or
other service providers, to submit requests and possibly to track their progress. Instead of
a single integration platform, it is more realistic to assume a federation of services that can
be combined on a case—by—case basis. Although special business deals could allow service

providers to arrange for their internal systems to co—operate for the purposes of providing
new composite services, such an approach has the disadvantage of relying on an implicit
understanding on the terms of co—operation. Moreover, it is not clear what customers
can expect from a composite service, especially in the event of performance problems and
exceptions (both system—level and semantic). In particular, for new services to become
attractive for customers it is essential to be able to monitor conformance to terms and
conditions for the qualities of services, in particular commitments about service—level
attributes such as access restrictions, exception handling, and performance.

1.2 Problem Significance

Since service composition adds value to existing systems, by using their capabilities in
new contexts, the design and development of platforms for service composition can be
seen as a requisite step for protecting the tremendous investments that have been made
in developing existing single—purpose software systems. Moreover, the wide acceptance
and rapid growth of the World Wide Web motivate service composition, since the Web
becomes the pervasive service access medium. As more and more traditional service
providers are forced (due to competition pressures) to establish a presence on the Web,
there is a strong potential for their internal systems to be used in serving transactions from
external entities, such as customers and business partners.

Composition of services adds value to existing services by utilizing them in contexts
that have not been fully prescribed or even anticipated. This is the essence of network—
centric approach to constructing software systems, which makes it attractive for a growing
number of applications from diverse domains, such as electronic commerce and support
for collaborative work. This type of applications typically involves workflow processes
that span administrative boundaries, and necessitate an execution model that allows for
the autonomy of participants in how they accept and perform requests for work.

1.3 Shortcomings of Existing Approaches

Process support is the application domain of workflow management systems that support
business processes by realizing appropriate flows of data and event notifications among
participants [GHS95]. A business process defines activity steps for achieving a business
goal and rules for determining the sequence of these steps. Activities may involve
manipulations of operational data extracted from line—of—business systems, such as
transaction processing systems, databases and accounting/tracking systems, as well as
interactions with human workers that are assisted by various tools. For example, order
processing in a procurement process may involve processing of documents (such as memos
and forms) by a chain of administration personnel, interaction with message brokering
facilities such as a queuing system in order to access and update information managed by
a legacy information system, a sub—process managed by an enterprise resource planning
system for tracking the order, and specialized sub—processes executed by external suppliers
and subcontractors.

Distinctive characteristics of workflow applications include [Sch99] long duration,
frequent changes (due to business—level decisions such as reorganizations, process
optimization and outsourcing), reliance on existing business assets (both human workers
and software systems), strong requirements for monitoring execution in terms of the

underlying process model, distribution that may span administrative domains, and
interaction with several end—users that makes assignment of work to resources a crucial
issue. Typically, workflow management systems provide some type of process modeling
mechanism, most commonly a form of activity network that represents the dependencies
between activities using an activity graph model, coupled with an execution environment
within which processes can be enacted by initiating activities, passing them their required
input data, and forwarding their output data to their successors in the activity graph.

A fundamental, and often implicit, assumption underlying the client/server architecture
of current—generation workflow management systems, as outlined in the specifications
published by the Workflow Management Coalition (WfMC) [Hol95], is that the workflow
execution engine is the principal and authoritative co—ordinator of processes, which are
either completely contained within its sphere of control or execute under the control of
another workflow engine that supports interoperation by implementing an appropriate
interoperability interface. Therefore, an enterprise’s organizational model needs to be
represented in detail using the system’s modeling functionality and all applications involved
in the workflow need to be adapted to allow invocation and control by the workflow
engine. Changes and evolution of processes can therefore entail major development
efforts, especially if they involve the integration of resources from external organizations.
By relying on a monolithic server that is responsible for both workflow coordination
and activity execution, current workflow management systems as defined by the WfMC
impose severe limitations on flexibility and scalability. [PPC97a] outlines the consequences
of the current systems’ rigid structure. A major problem is that work lists cannot be shared
by heterogeneous workflow engines, since they are not externally accessible. Thus, in
order for a participant to take part in multiple workflows on different workflow servers,
a separate work list needs to be maintained at each server and client applications need
to maintain multiple dedicated connections. Moreover, three different interfaces are used
for assigning work to human participants, invoked applications, and sub—workflows on
other servers. This lack of transparency in how the activities are implemented makes
delegation of work difficult, as the workflow application mandates the actual activity
implementation.

Such shortcomings are exacerbated in open systems such as the Internet where
interconnected and interdependent components are expected to be able to handle
interactions that do not adhere to predefined scheduling constraints. Autonomy
considerations imply that assumptions and convenient arrangements about communication
channels, exported functionality, access policies, performance, and exception handling
behavior cannot be taken for granted, but rather have to explicitly established, in a case—
by—case fashion for each resource of interest. With severely limited access to the internal
state and operational procedures of independent service providers, workflow applications
need to become flexible enough so as to accommodate service—level agreements that
define the mutually accepted terms and conditions for interaction, within well-defined
boundaries of control that respect the authority of independent participants.

The introduction of service—level agreements necessitates rethinking the overall
organization and execution model of workflow applications, due to the autonomy
of service providers and the requirement for explicit specification, monitoring, and
enforcement of service—level qualities. The distributed application infrastructure needs
to focus more on the management of requests and reliable tracking of their progress,
rather than tracking the state transitions of activities. This is necessary in order to
capture the conversational nature of activities that involve autonomous service providers.

Conversational activities cannot be adequately supported by existing process models
which assume that activities are invoked once, begin execution, and produce no results
until they are completed successfully or stopped due to exceptions or failures. In particular,
existing approaches [GHS95, Hol95] do not directly support the cancellation of a service
request in progress, or compensation for its effects. Since current approaches typically
do not explicitly represent requests and service—level agreements as first—class objects,
the problem of supporting a complex conversational protocol between a customer and
a service provider is beyond the scope of existing approaches. What is more, existing
approaches do not adequately support on—line monitoring and control of service requests.
Such shortcomings necessitate major extensions to existing application platforms.

1.4 Technical Challenges

The composition of services from geographically distributed independent providers,
a special case of the problem of global—scale interoperability, poses hard technical
challenges:

e Autonomy: The Internet is an open, large—scale distributed system that is not owned
and controlled by any single authority. Independent service providers do not expose
details of their internal processes, since such knowledge could reveal their unique
strengths and weaknesses to competitors. They are only willing to expose functional
abstractions of their available services, possibly augmented with information and
controls on service—level qualities. Autonomy also implies /eterogeneity, in other
words different conceptual, process, and/or execution models for the independent
service providers. In order to respect the autonomy of service providers, the
application infrastructure should ensure that process participants require no direct
knowledge of the process models and implementations used by other participants.
Instead, they can rely only on functional abstractions such as published interfaces
for available services, and generic infrastructure support for controlled interaction
between customers and providers of services.

e Large—scale distribution: The large—scale distribution of the resources and software
components that implement services introduces variable (possibly long) delays, an
increased likelihood of partial failures, and the need to accommodate a large number
of hosts with varying capabilities, over communication links with various capacities.
These characteristics of open distributed system environments stress the requirements
for reliable tracking of requests, and necessitate an execution model that facilitates
asynchronous request management.

e Increasing interdependencies among systems: Since the processing of service
requests may involve resources under the control of multiple authorities, composite
services introduce complex dependency structures among service providers. Each
service provider can control, and be held directly responsible for, segments of service
processing that take place within its domain of control. By relying, often indirectly,
on other service providers, it becomes essential to be able to perform reliable tracking
of the progress of requests, and the mutual commitments between collaborating
service providers. Delegation of work to specialized providers is becoming standard
practice, further complicating dependency tracking. It is often the case that different
participants in the process of providing a composite service have differing views of the

boundaries of interaction, since providers do not necessarily reveal their dependencies
or delegation relationships with other providers.

1.5 Thesis Statement

In order to facilitate reuse and combination of services from independent authorities, it is
essential to support automatic sequencing of service—level agreements, and reliable tracking
of interaction state. An appropriate platform needs to be in place to enable service—level
agreements.

This dissertation describes the Aurora infrastructure, a distributed component platform
for applications that combine components made available by autonomous service
providers. This platform has been designed and implemented as an extension of the
OMG CORBA distributed objects platform [COR94]. A distinguishing aspect of this
infrastructure is the explicit representation of the commitments made by independent
service providers. This is achieved by a framework for service—level agreements that
document the expected behavior of services, in terms of access restrictions, exception
handling, automated reaction to events such as deviations from agreed—upon terms, and
performance.

Figure 1.1 illustrates the role of the Aurora infrastructure as a common infrastructure for
diverse large—scale distributed applications. Figure 1.2 places the Aurora infrastructure in

Emerging Network-Centric Applications

- digital libraries
- electronic commerce
- scientific collabor ative work

(Common Infrastructure

- repository

- scripting language

- coor dination/collabor ation
- monitor

/\

Existing Technologies Dynamic Open Environments
- Internet (protocols & services) - World Wide Web
- distributed object management - Object Web
- wor kflow/collabor ative work - multiple autonomous providers
- document/hypertext management - dynamic (unpredictable) interactions

- databases, TP monitors

Figure 1.1: Towards a Common Infrastructure for Network—Centric Applications.

the protocol stack. It is a middleware technology [Ber96], based on the Java programming
language [GJS96] and the OMG CORBA platform for distributed objects [COR94], that
offers object frameworks and support services for assisting developers in the construction
of network—centric applications by managing the flow of requests, data, and event

Applications D_'g'tal Electronic Experiment
Library | | Commerce || Management
Existing Object
. Frameworks
Middleware
WWW | Java VM
TCP
Network Resource Reservation
. Setup Protocol
Services
Internet Protocol

Figure 1.2: The Aurora Infrastructure in the Protocol Stack.

notifications among distributed software components from independent service providers.
As described in detail in later chapters, the Aurora infrastructure respects the autonomy
of service providers, but still enables the explicit representation, and on—line inspection
and control, of service—level agreements.

1.6 Summary of Contributions

Following [MMWFF92], the service—level management framework presented in this
dissertation shifts the emphasis from a production—centered view of workflow towards
a satisfaction—centered perspective, where commitments, conditions of satisfaction and
timely completion are the guiding concerns. As a further departure from a data—centric
perspective on workflow [BDS"93], we focus on the management of asynchronous work
requests, and describe a CORBA-based distributed run—time environment for hosting
components that represent performers of work providing services to customers. This run—
time environment combines components, implemented as assemblies of distributed objects,
with a range of support services and in particular a container execution environment that
handles the low—level details of issuing and monitoring the progress of requests. This
provides the basis for a framework that represents resources and tasks, allowing for their
combination in arbitrary configurations using component linking facilities provided by
the underlying component model. This framework for distributed work sessions is built on
top of a CORBA-based platform for components that implement services, owned and
managed exclusively by their respective service providers.
The contributions of the research presented in this dissertation are as follows:

1. A framework for service—level agreements in open distributed systems: Service—

level agreements are represented as first—class objects in the run—time environment,
to mediate the interaction between a service provider and a customer, monitor
conformance to commitments on service—level attributes, reliably log the actions of
customer and service provider, and automatically invoke compensating actions in
the event of deviations from the expected behavior.

2. A CORBA-based platform for components that implement services owned and
managed exclusively by their respective service providers: This platform includes a
directory service that maintains metadata describing the functional interfaces as well
as the service—level agreements supported by software components, a container run—
time environment for hosting components and supporting asynchronous requests,
event notification services, logging/monitoring services, an access control framework,
and a scripting language interpreter for facilitating component configuration and
asynchronous request management.

3. A work session framework for controlled resource sharing: Work sessions are
introduced as a resource sharing context that enables the enforcement of access
restrictions in using resources from independent providers. Session participants
sequence work assignments by issuing requests to be served by using resources.
Composite tasks are represented as resources with producer/consumer dependencies
with other resources.

4. Two demonstrator systems:

e A WWW link recommendation service that combines services from the Yahoo
directory and the Altavista search engine

e An electronic commerce environment that supports service—level agreements in
the processing of orders placed by customers.

1.7 Organization of Dissertation

In this dissertation we present a framework and infrastructure services for managing
service—level agreements for workflow in open distributed systems. Chapter 2 presents a
WWW link recommendation service that was developed as a demonstrator to highlight
important aspects of workflow management in an open distributed environment with
autonomous service providers. This demonstrator system serves to motivate the
development of the Aurora infrastructure presented in later chapters of this dissertation.
Chapter 3 presents a review of related work, in order to highlight the distinguishing
aspects of the work presented in this dissertation. The service—level management
framework relies on a container/component framework, presented in Chapter 4, that was
developed as an extension of the OMG CORBA platform for distributed applications
[CORY4], along with a number of services added to this platform in order to support
access control restrictions and event—driven interactions between autonomous partners.
These extensions and additional services serve to provide the implementation basis for
work sessions, which represent a workspace for controlled access to shared resources by
autonomous participants in dynamic workflows. Chapter 5 presents the service—level
management framework. Chapter 6 presents the work session framework, which allows
service providers to publish their resources and specify appropriate access restrictions for
customers that submit work requests and initiate tasks that may involve interdependent

steps. This framework supports the notion of a shared workspace that allows controlled
sharing of resources from autonomous providers, offering a workflow paradigm that is
appropriate for open distributed environments.

A case study in Chapter 7 serves to demonstrate the proposed approach in supporting
interactions between service providers and customers based on service—level agreements.
This case study also provided the basis for a qualitative comparison with the OMG
jointFlow framework [jF198, Sch99], an adaptation of the WfMC run—time reference
model to a business objects execution environment. Chapter 8 concludes this dissertation
with a brief summary of the research results presented in this dissertation, and suggestions
for further research. Appendices A—F present the interface specifications for the
component/container framework, the service—level agreement framework, and the work
session framework that comprise the Aurorainfrastructure. These specifications, expressed
using the OMG IDL language, supplement the functional descriptions of the Aurora
infrastructure presented in Chapters 4—6.

Chapter 2

Motivation and Outline of Approach

As an example of the effects of autonomy on composition, consider the following
scenario, inspired from [Ude]. The Yahoo directory ! provides links to WWW sites
organized in a hierarchy of categories 2. The AltaVista search engine 3 can provide the
number of references to a specified WWW link as recorded in its database of links (through
the Iink: directive). For a collection of WWW links on similar topics, such as those
listed under the same Yahoo category, the number of references can be interpreted as a
measure of the relative popularity of the corresponding WWW sites, assuming that WWW
sites with a higher number of references are recognized as more authoritative references
for material that falls under the specified category.

Based on this intuition, we have implemented a simple workflow (see Figure 2.1) where
the two services are combined to provide a ranking of WWW sites in a given category
based on their respective number of references, after discarding links whose reference
count is below a given threshold. Thus a simple—minded but useful recommendation
service 1s built, by presenting the user with a rop—N list of WWW links according to the
ranking, and optionally fetching the HTML pages referenced by these links, to generate
a briefing page by simply concatenating the contents of the original pages. This simple
example illustrates several important aspects of workflow in an open environment, and in
particular the impact of autonomy in the realization of a workflow.

2.1 Adding Value to Existing Services by Composition

First of all, the example illustrates that composition of components in a distributed
system adds value to existing services by utilizing them in contexts that have not
been fully prescribed or even anticipated. This is the essense of the network—centric
approach to constructing software systems, which makes it attractive for a growing
number of applications from diverse domains, such as electronic commerce and support
for collaborative work. This type of applications typically involves workflows that
span administrative boundaries, and necessitate an execution model that allows for the
autonomy of participants in how they accept and perform requests for work. In this simple
example, the workflow involves two participants, other than the end—user, which are fully
autonomous service providers that independently maintain their services and make them
available for use under their own terms, through interfaces of their own choosing.

'http://dir.yahoo.com
2 An example of a Yahoo category is /Science/Astronomy/, which contained 3248 links, on August 16, 1999
3http://www.altavista.com

11

Topic Selected

(user i/f)

Yahoo category
speci fication

Links Ranked

Links Retrieved

list
list of
(URL, #ref’s)
pairs
Recommendations Recommendations
Displayed Available
(user i/f) HTM (threshold + sort)
page
(top-N list)

Figure 2.1: Composition of two popular WWW services.

2.2 Importance of Having a Common Request Protocol

In this example the request protocol for both service providers is HTTP, allowing the
end—user to combine their services despite the fact that they do not expose their internal
state and procedures. Complications would arise if their request protocols were different.
In such a case "proxy" objects could insulate the end—user from the differences in the
protocols, and expose a uniform request protocol, independent of the underlying services.
A common request protocol to be implemented by all process participants allows a
clean separation between workflow coordination actions and actual work performance.
Such an explicit distinction has important consequences for workflow management in an
open environment. Different participants can share heterogenous and autonomous service
providers while imposing minimal requirements on the providers, namely that they publish
a description of their services, and support the common request protocol either natively
or though proxy objects. Moreover, delegation of tasks is enabled without requiring
the client to become aware of this arrangement between service providers. This can be
achieved by allowing a service provider to forward requests, possibly after decomposition
and some pre—processing, to other co—operating providers. Optionally, the provider
can inform the client that a request has been forwarded through a callback invocation
mechanism. Using callbacks, a provider can explicitly accept or deny to process a request

under the terms specified by the client, or initiate a negotiation process over the terms
specified by the client.

2.3 Implications of Autonomy on Perceived Service Levels

In this example access is unrestricted due to the nature of the services involved, and
absolutely no guarantees are promised by the providers regarding performance, reliability,
and other service—level qualities of their services (such as accuracy of the results produced).
In business process settings it is expected that the terms and conditions of access to services
provided by partners will be subject to explicit agreements regarding access restrictions
as well as service—level attributes. Workflows act as service requesters and participants
(humans, apps, organizations) act as service providers to workflows. A workflow has
a—priori no authority over service providers invoked during the course of its execution.
Service—level agreements define a service provider’s degree of exposure of internal state
and procedures and the specific control and monitoring actions offered to service users.
This view necessitates making service—level agreements first—class objects in the system.

2.4 Effects of Large—Scale Distribution

Another aspect of composing the services of wide—area distributed components is that
the workflow is subject to variable (possibly long) delays and higher chances of partial
failures introduced by large—scale distribution. This aspect of open environments makes
the commonly used blocking requests unattractive. In this example, extracting the
reference counts from AltaVista for all the links in a Yahoo category may take several
minutes, during which the end—user has no control over the progress of the ongoing
(aggregate) request. Such long—duration interaction necessitate asynchronous request
management, where, instead of issuing a single blocking request and waiting for results
or an failure/exception signal, the client carries out a sequence of steps to initiate a
request (such as binding to the service provider, setting parameters, and indicating the
method to be executed) and arranges with the service provider to receive results and status
information in an asynchronous manner, whenever such information becomes available.
This is a shift from a state—based view of the workflow towards a transaction—oriented
view, as requests are treated as first—class objects rather than being simple messages
exchanged between workflow participants. A consequence of long process duration is
that requests need to have persistent unique identifiers whose lifetime exceeds that of the
application programs that generated them, so as to minimize the coupling between a work
performer and its customers.

2.5 Service Level Management through Explicit Agreements

It is important to note that current transaction processing techniques [GR93] cannot be
directly applied, since there may be multiple related interactions between any two partners
over a time interval of unpredictable duration, introducing a much greater variability in
response time than commonly assumed in transaction processing applications, thereby
making locking protocols for data consistency unattractive. Furthermore, the autonomy
of participants and the heterogenity of their internal processes complicate consistency

management. In the context of a process, all messages (requests, responses, asynchronous
event notifications) are semantically meaningful and therefore cannot be simply discarded
or rolled—back in the event of deviation from the desired course. An alternative to classic
transaction processing is needed to provide guarantees of some form, allow monitoring
of conformance to agreed terms and conditions, and handle deviations in a meaningful
manner, without imposing restrictions on the autonomy of participants.

Such requirements fall within the domain of contract law, which governs common
business practices such as cancellations, modifications, and compensation for requests
that have been issued. In our work we attempt to reify a form of service—level contracts
in a framework supporting configurations of resources, process participants, and tasks in
flexible combinations.

2.6 Infrastructure

This dissertation presents a distributed software component infrastructure thta serves
as the basis for implementing work sessions combining services made available from
autonomous service providers. This infrastructure, Aurora, provides a CORBA—-based
component model, a set of component management services, and support for autonomous
services to export explicit contracts on the terms and conditions for usage by clients. In
particular, the component framework supports dynamic management of dependencies
among components, on—line monitoring and control of ensembles of interconnected
components, run—time inspection and manipulation of configuration properties and
component interconnections, and enforcement of access restrictions and constraints on
acceptable performance and exception handling. The work session and service level
agreement frameworks that we propose are built on top of this component model to
provide a controlled run—time environment for workflow management applications that
can cope with the large—scale distribution and autonomy of service providers. Figure 2.2
illustrates the basic components of the Aurora infrastructure. The Aurora infrastructure
was first presented in [NMP*97, MPN97].

Service Providers

Runtime
Environment

Logging
Federation of Repositories Systen

0
i

Session/Monitoring Manager
Define

- Instantiate
—-{----=--=-F=""" Session Management
Director
< Publish
- _ >
- ® X I
- g ! : A e NN
- N Bindi - ! 1 H i
- N System Metadata inding ! :] . ﬁ = |
Resource/Service . —_———————— : : ' == =7 B
Access Interfaces Publishe : : ' ==
. : : J 257 |
. | | 1 Container,
Service Flow Specification \ | H i ﬁ
,,,,,,,,,,,,,,,,,, irectory |~ ' : B
: < | 1ing @ ‘ .] 3 : j
| / 1= ~"Publish — T ' + Network of Components
&l . el g NI : oo
: - : | SystemMetadata L e Session Management
T Interface

Instantiate

Runtime
Environment

Logging
Systen

0
i

Defines

Application - Session
Designer

Figure 2.2: Overview of Aurora Architecture.

2.7 Composition via Scripting

In Aurora, the developer’s task is to identify appropriate components and “plug” them
together, via a form of scripting. A script is a set of software components with compatible
input and output ports connected together to allow interoperation. The scripting model
consists of the types of ports defined and the rules that determine plug—compatibility
[NTdS91]. In the Aurora infrastructure, a connection between an input port and and
an output port represent service availability, in the sense that it binds a client to a
service provider. The execution model supports peer—to—peer interactions between loosely
coupled participants, covering both coordination and collaboration. In Aurora, we achieve
plug—compatibility by encapsulating services offered by resources in software component
containers which export a uniform management interface. We synthesize on—demand
composite services by linking the appropriate input and output communication ports,
and thus implement a composite service as a network of cooperating components, in a
run—time environment provided by a session manager and supervised by a monitor. A
container is an extensible shell combining application—specific code that implements a step
in a work session with an application—independent management interface, which enables
external control of containers in a manner that is independent of the work session context.

Work sessions are implemented by establishing a network of active components, hosted
by containers. Containers export a uniform interface for task /component management,
which enables them to participate in work sessions supervised by a session manager. While
a task (encapsulated in a container) remains active, it can retrieve data from its input port
and forward data to its output port. Input and output are in the form of streams, which
represent a flow of data as well as operation (action) invocations from a producer task
to one or more consumer tasks. Each component is also expected to provide some form
of instrumentation for monitoring and control purposes. The Aurora execution model
assumes that application components encapsulated in containers export for these purposes
part of their state, in the form of a list of attribute—value pairs. The uniform management
interface provides methods for initializing, enabling, and disabling the instrumentation
within an application component encapsulated in a container, and methods for retrieving
and modifying the values of state variables exposed by the application component.

We have designed a scripting language, HERMES [MPNO98c], to express scripts for
work sessions, assuming that the resources of autonomous distributed service providers
are accessible through software components that export certain uniform interfaces. The
interpreter for the scripting language acts as a mediator between components. Such
components are reusable because they are relatively context—free, in the sense that
they have only a limited and well-documented set of dependencies on the run—time
environment that hosts them and make no particular assumptions about other components
that may invoke their services and interact with them. These aspects of components are
discussed in Section 4.1. The application—specific configuration of components and
in particular their interconnection in an ensemble is achieved by submitting scripts for
execution to the work session manager provided by the Aurora infrastructure. An
important aspect is that scripts themselves can be encapsulated in components, allowing
the development of more complex scripts that combine components and scripts in higher—
level software abstractions that appropriate for applications. Since the scripting model
does not depend fundamentally on the programming language used for implementing
components, script developers do not need to be fully aware of the details of the
component infrastructure, as long as they understand the scripting model and select

appropriate components for compositions. Visual development tools are well—suited for
supporting this type of programming tasks.

Control and data flow are driven by events that are a combination of service request
messages, state transition signals associated with tasks, as well as system—generated
or application—specific notifications. Event—Condition—Action (ECA) rules [DHL90]
specify the events and conditions that activate a task. The course of a workflow may
change dynamically, as the next actions to execute are determined by rule triggering.
Data and operation invocations flow among components through streams which are
established as a result of rule triggering. Optionally, a component can provide additional
state information by producing application—specific events. Thus, the results of automated
tasks as well as the actions of humans may affect the workflow.

The Aurora infrastructure supports a service flow paradigm, where composite services
are realized in the context of work sessions as flows of asynchronous service requests among
components. Scripts describe the desired configuration of components for realizing a
work process; however, this configuration can be inspected and manipulated at run—time.
Dynamic configuration is achieved by invoking state inspection and control operations
exported by the components encapsulated in containers. By allowing manipulation of
components and their interconnections at run—time, workflow becomes more adaptive to
the dynamics of the execution environment.

Each component that implements a task is required to notify its run—time environment
when a significant state transition is to take place, particularly when the task begins
execution (START), and when it terminates, either with success (DONE) or with failure
(FAIL). Task execution may generate events for itself, as well as cause other tasks in a
service flow to generate events. Optionally, a task can provide notification of the beginning
and end of phases during its execution. Phases represent application—specific activity states
and state transitions. Notification about the beginning and end of phases may be taken
into account in the specification of work sessions. The Aurora run—time environment
allows a task to be instructed to reset its original communication channels settings, and,
furthermore, load dynamically a new application component. Thus, phase transitions
allow run—time adaptation, which is essential for supporting dynamic and adaptive work
sessions. Moreover, phase transitions allow the developer of an application component
to expose task structure and state in detail, thus enabling monitoring of the task. An
important aspect is that the instrumentation emebedded in components is separated
from the definitions of rules that determine transaction boundaries, allowing external
correlation of the events exposed by components. The developers of components only need
to identify significant internal states and transitions, without having to embed transaction
definitions in the instrumentation code. System administrators can independently define
the transactions of interest and combine the notifications generated by the instrumentation
emebedded in components to extract relevant measurements or to maintain audit trails.

2.8 A Note on Transactional Properties

Since we are considering open environments with multiple autonomous service providers,
we cannot assume that all the providers involved in a session are able or even willing to
participate in a distributed transaction under the supervision of a single (mutually trusted)
transaction coordinator. Therefore, it is not possible to guarantee fully transactional
semantics for the execution of HERMES scripts, as we cannot enforce desired semantics

on work session participants. We only require that service providers provide notifications
about significant state transactions for the requests that they execute. Such events can
be combined using Boolean operators to express activation conditions for actions that
need to be taken in order to handle partial failures. Provided that service providers
export compensating actions to handle failures, it is possible to specify rules that
emulate transaction commitment protocols (such as two—phase commit) or to handle
partial failures in an application—specific manner. Therefore, rather than focusing on
global consistency requirements, we provide mechanisms enabling compensation and event
tracking via the Aurora monitor service.

Chapter 3

Related Work

In this chapter, we review related research and compare it with the Aurora approach
presented in this dissertation in terms of objectives, approach, and scope. Section 3.1
focuses on related research on interoperability. Section 3.2 reviews research on distributed
workflow enactment. Section 3.3 reviews research related to contract management, an
area that has started to receive considerable attention. Finally, Section 3.4 focuses on
research related to service—level management.

3.1 Interoperability

The InfoBus testbed, developed in the context of the Stanford Integrated Libraries Projects
[PCGM™196] (a project that was part of the DLI initiative), provided a comprehensive
solution to the problem of interoperability in the domain of digital library services.
The InfoBus testbed applies the OMG CORBA distributed object technology [COR94]
by using wrapper objects to present a unified interface of digital library services, and
a metadata architecture [BCGP97] to maintain metadata needed for interoperation of
services. The component/container framework of the Aurora infrastructure serves as
similar purpose, with specific provisions for interoperation of components that have been
published in a directory service. The work session framework provides coordination
support for general-purpose applications that fit the service flow paradigm, rather than
more customized coordination for automating specific types of transactions.

An example of such a specific solution is given in [KGMP97] which presents event—
driven models for different modes of consumer—to—merchant interaction, and an API
to facilitate commerce transactions. Shopping models encapsulate the rules for specific
types of commerce transactions and instruct the participants what to do next in the
way of ordering, payment, and delivery. Another example is given in [RW97] which
addresses the issue of rights management and discusses the automation of certain aspects
of contract negotiation and enforcement. In comparison, the Aurora framework also
offers a generic service—level agreement framework that can subsume the functionality
described in [RW97].

The Infospheres project [CCD*96] is concerned with theories for reasoning about
concurrent composition of agents, and methods and tools for implementing sessions
over the Web. [CCD™'96] describes a Java—based system that supports peer—to—peer
communication among distributed processes. Each process is implemented as a multi—
threaded object with a set of queues for incoming and outgoing messages. Such objects

19

can be composed into sessions, by binding output queues to to one or more input
queues. The focus of this project is on identifying and specifying software components
that can be composed to create distributed applications, layered on top of standard
network technologies such as the WWW. The proposed system model is similar to
Aurora, as both approaches focus on applications requiring dynamic composition of
services. There are however important differences in the overall aims and technical
approach, as Aurora provides a run—time environment that can be monitored in
detail for composing components that encapsulate services from autonomous providers,
and, moreover, supports dynamic configuration and control of components and their
interconnections. The Infospheres infrastructure does not include support services
comparable in functionality with the Aurora container run—time environment, and does
not support a service—level agreement abstraction.

WIDL [AllI97] is a metadata syntax, implemented in the XML meta—language [Bos97],
that defines programmatic interfaces to Web content and services, so as to enable
automated and structured access by client programs. WIDL definitions include the
location (URL) of each service, input parameters to be submitted (via the GET and
POST methods of the HTTP protocol), and output parameters to be returned by each
service (as regions of returned documents). It is also possible to specify conditions
for successful completion of a service and error indications to be returned to clients.
Conditions further enable chaining of services, so that a client can issue requests that
incorporate multiple services. Similar work is described in [Fuc96], which presents an
approach in which domain—specific markup languages are used to handle interactions
in a peer—to—peer system. These languages are understood both by software agents and
the humans who interact with them. The objective is to dynamically integrate tools into
distributed collaborative applications. SGML [Gol90] is used as the metagrammar system
for specifying domain—specific markup languages.

[A1197, Fuc96] address mostly the problem of describing and invoking a single service.
In the Aurora infrastructure, descriptions of services (both CORBA—-based and WWW-—
accessible) allow invocation of services with minimal knowledge of the implementation
details of services. Clients can browse or search a directory service to identify target
services, and then issue synchronous or asynchronous requests for obtaining results from
these services. Moreover, services can be combined using the HERMES scripting language
described in Section 4.5, either in a short—term basis for serving a particular request or in
a long—term basis in the resource sharing context of a work session. Finally, the Aurora
infrastructure explicitly addresses the issues of status tracking and on—line monitoring
of services without compromising the autonomy of the service providers (as described in
Section 4.1).

A compiler—assisted approach is taken in [BTJWO9S§] that presents the CHAIMS
language for composition of autonomously operated and maintained distributed components.
This language provides primitives for preparing and issuing asynchronous service requests,
checking their status, and extracting results. Wrappers hide the details of interaction with
remote components, which may be complete computation and data servers. The language
compiler generates client—side code for invoking the services exported by different
components. By relying on statically—generated stubs at both the client— and the service—
side, this system implicitly assumes that the participants in a workflow are willing to
distribute and install stubs, which need to be kept up—to—date as the workflow evolves in
time. The CHAIM S language does not support monitoring of service—level attributes.

The Programmer’s Playground [GSM™95] is a software library and run—time system

that supports I/O abstraction, a high—level approach to interprocess communication.
Relationships among distributed modules are established via connections among their
published data structures, whereby updates of published data result in implicit communication
according to the configuration of logical connections. Input is observed passively, or
handled by reactive control within a module. This system targets mainly the requirements

of collaborative multimedia applications, where autonomy and service—level management
are not the essential concerns.

The HADAS system [BSCHL97] explicitly addresses autonomy issues. It provides
an integration framework that hosts components, configuration support for establishing
connections between components, and a scripting language (based on Scheme) for
explicitly programming distributed computation involving these components. Connections
effectively represent explicit agreements among autonomous providers for interaction of
their components. Explicit links need to be established between sites in order to allow
the use of remote components. The run—time system supports a protocol for automatic
installation of component packages. The HADAS system does not support service—
level agreements, and does not provide asynchronous request management and event
notification services.

3.2 Distributed Workflow Enactment

Workflow management systems provided an automation framework for managing
business processes, within and across organizations. Application domains where workflow
technology is currently in use include telecommunications, health—care, manufacturing,
finance and banking, and office automation. Workflow management systems provide
support for the definition of business processes by composition of predefined tasks
(processing steps). Workflow execution is based on the interpretation of process models.
Representations of business models are maintained persistently in a database, and multiple
instances of them can be instantiated at any given time. Workflow management systems
allow organizations to re—engineer, streamline, automate, and track processes that involve
both humans and information systems [SGJT96, KS95, GHS95]. Rather than having
control and data flow embedded in application logic, steps in a workflow are performed
according to the process model, with the workflow management system handling all
issues of step invocation and data passing. Process models can be expressed in terms of
work assignments for certain roles, rather than individual workers or resources, and a
workflow management system can apply a role resolution policy to determine, from a pool
of available and eligible workers or resources, the actual allocation at process execution
time.

The view presented in this dissertation is that long—running processes spanning
multiple organizations necessitate an infrastructure that supports asynchronous request
management and reliable tracking of the actions of business partners, so as to support
each partner in taking steps to handle failures and exceptions independently of all others
while allowing co—operation under well-defined rules. In the Aurora infrastructure co—
operation takes place in the context of work sessions that represent shared workspaces, 1.e.
dynamic collections of resources that can be utilized under the access restrictions imposed
by their respective owners. The component/container run—time environment presented
in this dissertation serves to minimize the dependencies among the co—operating parties,
while providing mechanisms for issuing and tracking asynchronous requests for service

performance.

Workflow technology is a broad research area that is concerned with modeling
and automating processes that involve multiple tasks [GHS95, KS95]. However, most
implementations so far have been centralized, with a single component responsible for
sequencing process execution. There are few exceptions, and in the remainder of this
section we proceed to examine them and compare them to our approach. A major
aspect of our approach is that the Aurora application model assumes autonomous service
providers, in contrast to implicitly assuming tight integration and a single authority in
charge of management and administration.

Exotica/FMQM [AAA™195] and WIDE [CGS97] present distributed architectures for
workflow enactment based on middleware technologies. The design of Exotica/FMQM
is layered on top of a persistent queue system that supports transactional semantics
for its queue access API calls. A process model definition is divided into parts by a
compiler and each part is distributed to the appropriate node. Each node synchronizes
with other nodes by communication over the network of persistent queues. WIDE is
distributed CORBA—based architecture for workflow management, based on a database
management system with active rule support. Each workflow engine maintains an event
database, and includes a scheduler component that matches events to rules. Selected rules
are recorded in a ““to—execute” list, which is polled by a rule interpreter component. Both
approaches appear to be more appropriate for the private networks of enterprises, since
the dependence on specific middleware components imposes restrictions on the autonomy
of service providers.

The INCA (Information Carriers) model is presented in [BMR96]. Work is carried
out as interactions between an INCA, encapsulating an activity, and processing stations,
which are assumed to be autonomous and may be only partially automated. The locus
of computation migrates with the INCA, which includes the relevant execution context
for the workflow, from one processing station to another. The INCA contains private
data for the activity, which define the context shared by activity steps, a log of all actions
(together their parameters) executed so far, and a set of rules defining the control and data
flow among activity steps. Each processing station, upon receiving an INCA, performs
the service requested and routes the INCA to the next destination(s). Rules encode control
and data flow, as well as failure atomicity requirements. It is possible for a processing
station to modify, add, or delete the rules and the data in an INCA. This agent—based
approach provides considerable flexibility and autonomy, but seems more suitable for
workflow involving mostly human workers. The set of rules embedded in an INCA could
in principle encapsulate a service—level agreement, that would be fulfilled by executing
actions at each processing station.

In the approach presented in this dissertation, a workflow may involve multiple
service—level agreements, since agreements are are associated with specific services and
made available by the service providers themselves. Aurora work sessions are established
by creating networks of related components that co—operate to implement composite
services. Co—operation is achieved by streams of operation invocations and data that flow
between components, which are encapsulated in containers offering uniform interfaces for
management purposes. This container framework, which enables detailed monitoring and
control of active tasks and long—running compositions of tasks, is a major distinguishing
feature of the approach presented in this dissertation.

The M ETEOR,; project [SKM196] has developed two prototypes, ORBWork based
on CORBA and WebWork based purely on Web technologies, that support distributed

workflow scheduling. The workflow specification is stored in a format which includes
all the predecessor—successor dependencies of tasks and the definitions of data objects
passed between tasks, as well as task invocation information. A code generator produces
task management components and “wrappers’’, both for human and automated tasks.
Each wrapper includes a hard—wired specification of the immediate predecessors and
successors of the task that it manages, as well as code for evaluating the task’s activation
condition, invoking the task, and handling error recovery. After these components are
installed manually at each site, users can instantiate processes. A centralized monitor
provides limited support for tracking and monitoring. When activated, the task wrapper
code gets the task input, by unpacking the data objects passed by the predecessors tasks,
invokes the task code on the assigned processing entity, and, upon completion, determines
the final state of the task, packs its output data objects, and signals the successors tasks.

In contrast, a task encapsulated in an Aurora container can relay operation invocations
and data values to other tasks without restrictions, once the session manager has
determined the component interconnections for the desired service flow. The run—time
environment is more dynamic, as the specification of the component configuration for
the session is interpreted, rather than pre—compiled and the network of components
(hosted within containers) is dynamically established and can be modified at run—time.
Furthermore, the actual resources to be used for each service step are dynamically
determined, via the directory service.

PLEGMA [KZLO98] is an agent—based architecture for developing network—centric
information processing systems. Originally derived from an environment of distributed
image processing [Zik97], PLEGMA applies an auction—based mechanism for determining
which processing node is to perform a particular task. Software agents represent
the resources available in the run—time environment. Statistical profiles for service
costs, including run—time estimates of data transfer time and execution time, are used
in the selection process. Moreover, metadata describing the execution parameters of
algorithms, or processing tasks in general, are maintained for use in the selection process,
and in supporting sequences of task executions. PLEGMA has also been applied for
managing workflow in the health—care domain. Overall, the PLEGMA architecture
closely follows the WEMC reference model, but also provides functionality for dynamic
resource allocation. It does not explicitly support asynchronous request management,
and does not support service—level agreements as first—class objects. Quality of service
requirements can be taken into account in the process of selecting a resource for executing
a task, but there is no support for reliable tracking of conformance to agreed—upon terms.

[GSBC99] presents the Collaboration Management Infrastructure (CMI) project, which
addresses the management of processes involving the integration of processes under the
control of autonomous partners. The CMI project targets the requirements of applications
such as crisis mitigation, command and control, logistics, and service provisioning in
virtual enterprises. These applications are characterized by collaboration processes that
require combined process and situation awareness, and cannot be effectively supported
by existing workflow and groupware technologies. This aspect of the CMI project makes
it particularly relevant to the research presented in this dissertation.

The service model of CMI enables the definition of abstract service interfaces that
specify the application—specific semantics of services by describing their input/outpout
parameters and state transition diagrams with application—specific states and operations.
Such state transition diagrams capture the conversational interaction protocol between
service providers and their customers. Conversational service coordination is solely

conducted on the basis of the service interfaces. The CMI project investigates service
brokering, the process of selecting among providers of services that conform to a given
interface specification. The selection takes into account quality—of—service attributes.

In comparison, the Aurora infrastructure allows service providers to make commitments
on service—level attributes of their services, and provides reliable means for such
commitments to be monitored and enforced at run—time. This is a major distinguishing
aspect of the Aurora infrastructure. Moreover, service providers can expose important
state transitions of their published components, and thus allow any authorized external
entity to monitor event notifications about these transitions. Moreover, the asynchronous
request management primitives supported by the container run—time environment
allow control of conversational services. It is important to note that service—level
management, asynchronous request management, event notifications, and selective
exposure of component state are offered as generic services for applications, as part of
a component/container framework that builts upon the well-established OMG CORBA
platform for distributed objects. Therefore, these services are generic, rather than being
available only within the confines of a specific application run—time environment.

3.3 Service Contracts

The framework for service—level agreements presented in this dissertation allows the
interactions between service providers and their customers to take the form of contract
fulfillment, by providing to all the parties involved an explicit and durable means of
documenting the mutually accepted terms of service, the steps taken towards implementing
these terms, and the notification and compensation actions to be taken in the event of
deviations from the expected behavior. Contracts provide a powerful framework for
expressing and managing complex relationships between transaction participants. This
has been illustrated in the context of rights management and access control [SL97, RW97],
which are key issues as the interest in electronic commerce is growing [Sza97]. Contacts
provide a powerful framework for expressing and managing complex relationships
between transaction participants. The research presented in this dissertation extends the
scope of such contracts to include terms related to expected performance and exception
handling behavior. This extension is deemed necessary for enabling more predictable and
manageable services in dynamic open environments.

[Lud98, FFH 98] point out, using examples from the insurance service industry, the
issues of customization and on—line control of the fulfillment processes for long—running
complex services, through invocations of control operations and feedback loops. In a
similar vein, [LW99] outlines an approach to cross—organization workflow that relies
on dedicated gateways between the independent workflow systems that encapsulate the
details of agreements for co—operation. [Lud99] discusses the problem of assigning
the costs due to deviations from the expected process flow in an interorganizational
settings. This functionality, falling under the more general category of on—line control of
a long—running fulfillment process, is covered by the service—level agreement framework
presented in this dissertation.

The Coyote system [DP97a, DP97b] supports the specification and enforcement of
business deals among providers, based on code generation tools that generate server—side
and client—side code for enforcing the terms of service contracts. The Coyote system
supports the service transactions model, which includes service actions that implement

activity steps, persistent conversations built from actions, scheduling rules that determine
the “next” action in response to events, and a compensation paradigm to maintain
integrity. The Coyote system assumes that user actions control the flow of execution
between blocks of transaction code that implements steps in a complex service.

By relying on statically—generated stubs at both the client— and the service—side, this
system implicitly assumes that the participants in a workflow are willing to distribute
and install stubs, which need to be kept up—to—date as the workflow evolves in time.
This is a fundamental limitation of approaches that rely on statically—generated stubs.
In contrast, the approach taken in this dissertation is to provide a platform for hosting
proxies to services and an asynchronous request management protocol to allow clients to
issue, monitor, and control requests without having access to stubs specific to the target
services. The platform relies exclusively on metadata published by the providers about
their services, and the dynamic interface invocation mechanism of CORBA [CORY%4].

An IETF Internet Draft [Swe98] describes the Simple Workflow Access Protocol,
that allows a client to initiate, control and monitor asynchronous long—duration service
execution at remote sites. Related work is also reported in [PPC97b] that presents an
architecture for supporting workflows involving autonomous participants and service
providers, based on asynchronous requests among workflow participants and standard
interfaces for sources and performers of work items. In our approach, we share the
emphasis on defining a generic asynchronous request management infrastructure, and
complement that with a flexible work session framework and service—level agreements as
first—class objects.

Extended and flexible transaction models [EIm92] place particular emphasis on the
specification of tasks and their outcomes. However, by focusing on the low—level of detail
of individual data manipulation operations, transactions are classified only as successful
or failed, thus restricting the ability to reason about transactions from a contractual point
of view that can capture failure and exception handling as part of handling contract
violations.

The APRICOTS prototype [Sch93] implements the ConTract extended transaction
model [WR92]. This approach supports long—lived transactions by allowing the developer
to commit results as early as possible in the course of a transaction, while having the
option to define compensating actions that will be executed in the event of failures to
restore an acceptable global system state.

[VPI8] presents an object framework that uses interacting, possibly nested transactions
in implementing the fulfillment phase of contracts that describe obligations related to the
delivery of business services. In this framework, contracts are explicitly represented as
objects that mediate the execution of transactions.

3.4 Service Level Management

Monitoring is an essential issue in managing interactions that combine the services of
autonomous service providers. This dissertation shares the view expressed in [Wei95],
which argues that “workflow monitoring is an important link between the computer—
science and the business—science perspective of workflow management”. The logging
and monitoring infrastructure presented in this dissertation corresponds to the audit trail
approach of [Wei95] for providing an application—level log, with a facility for correlations
and aggregations.

Service level management for workflow in open systems has not been investigated
in—depth, although it provides a link between issues related to workflow infrastructure
and actual business goals. As argued in [KTL*92] (in the context of software process
management), establishing performance baselines, setting improvement goals, explicitly
defining processes, and measuring progress toward goals are essential aspects of process
management.

Service Level Management is an activity that has long been practiced in enterprise
data processing centers, typically on mainframe computing systems, which provide
comprehensive monitoring and resource control facilities. IBM’s Workload Manager
(WLM) for the MVS/ESA [BE95] allows an installation to group units of work in “‘service
classes” and define performance goals for them. Thus, installation managers explicitly
state to the operating system the service performance goals towards which the units of
work should be managed. The relative priorities of classes of units of work are reflected in
the allocation of available resources to units of work, using dynamic resource allocation
policies [NFC92, FNGD92, FNGD93] to dynamically adjust access to processor and
storage resources.

This is not yet the case with open systems, primarily due to the lack of a standard
way to monitor management metrics and enforce resource access controls; however,
there are some recent developments towards service level management for client/server
business systems [McB96]. An important development towards this direction has
been the introduction of the Universal Measurement Architecture [UMA97] and the
Application Response Measurement (ARM) API [CC96]. UMA provides services focused
on controlling the acquisition, delivery, and management of performance—related data
and events in distributed multi—vendor client/server systems. Transactions in distributed
computing environments are not fully contained in a single system, as in the case of
centralized systems. Therefore, they are difficult to track across systems. Tracking
requires both tagging of performance—related data about the components of a unit of
work and a mechanism for gathering and correlating this data from multiple sources.
Both of these requirements are outside the scope of UMA. The ARM API is designed
to cover the first of these requirements, enabling instrumentation of applications so as
to delimit ““transactions’ of interest, by inserting start, update, stop indicators
around sections of application code. The design of the Aurora monitoring infrastructure
subsumes the functionality of the ARM API, since application components can produce
log records delimiting transactions of interest, and, furthermore, supports correlation and
other types of navigational queries over the interaction history of complex units of work,
as a generic service for applications.

[Kic96] argues that it is beneficial from a performance point of view for software
module developers to expose implementation details to clients. This is a form of
computational reflection, supported by offering two interfaces. The primary interface
provides the module’s functionality, while the meta—interface allows clients to adjust
certain implementation options that underlie the primary interface. The proposed SLA
abstraction allows service providers to selectively expose implementation details to clients,
thus enabling monitoring performance metrics and control of operational parameters.
The actual implementation of monitoring and control is by instrumentation provided
by service component developers. The SLA abstraction hides such details, providing a
uniform interface for clients.

[Gun95b, Gun95a] propose extending the methodology of benchmarking beyond the
current paradigm of treating the system under test as a “‘black box’’ to which a predefined

“stimulus” (such a SPEC or TPC benchmark workload) is applied and performance
statistics are collected and aggregated into the external performance metrics specified
by the benchmark standard definition. The drawback of such benchmarking is it is not
straightforward to explain #ow the reported metrics were attained. Analysts can only make
conjectures based on metrics. A “flight recorder” paradigm is proposed, that involves
performing internal measurements as well, allowing performance analysts to track the
“flight” of a unit of work through the system under test, as the unit of work consumes
resources by passing through a chain of components. This requires installing measurement
probes in the components involved, which may span several client and server systems in
the case of complex units of work, and it is argued that UMA can provide a standardized
infrastructure for the capture and transport of distributed performance data. In this
paradigm, a benchmark specification includes the definition of the instrumentation points
that must be measured and reported. The approach proposed in this paper not only
adopts the performance measurement paradigm of [Gun95b, Gun95a] but, additionally,
addresses the issue of multiple autonomous service providers. Each provider publishes
a SLA for its clients, but there is no single authority for supervising all the providers
involved in a complex unit of work in order to maintain the integrity, performance, or
security constraints promised by SLAs. Therefore, each service provider can only enforce
pair—wise SLAs with its clients, and has its own partial view of the interactions involved
in a complex unit of work.

[CDY97] presents a simple language that allows the expression of common strategies
for handling failure and slow communication when fetching content on the Web. In this
context, a service is an HTTP—accessible content provider wrapped in error detection
and handling code. The language provides service combinators, which are operators for
composing services taking into account both their output and their failures. The semantics
of the language are defined in terms of the effects of these operators on the state of
services. The service—level agreement abstraction presented in this dissertation provides
the basis for automated interactions, including handling failure and slow communication,
as it captures the expected behavior of service providers and can trigger the execution of
automated actions.

Interactive steering is the “on-—line configuration of a program by algorithms or
human users, where the purpose of such configuration is to affect the program’s execution
behavior” [SEST97]. Falcon [GEK"94] is a set of tools and libraries supporting on—line
monitoring of application—level events. Falcon provides a sensor specification language, a
compiler for generating application sensors, and uses one or more local agents for on—line
information capture, collection, filtering, and analysis. Monitoring/steering middleware
1s provided to disseminate monitoring events to the clients that wish to inspect and interact
with the running application. The proposed SLA abstraction can provide the basis for
on—line monitoring and steering. Futhermore, the Aurora monitor supports correlation of
log records related to a complex unit of work, that may involve multiple service providers
and participants.

Chapter 4

Component/Container Framework

In our approach, in the context of the Aurora project, we take the view that dynamic
workflow is best supported by a distributed component infrastructure providing standard
services for locating potential workflow participants and managing service requests. By
standardizing these aspects of workflow execution, service providers can participate
in distributed workflow processes without having to agree upon a common workflow
specification language or to maintain accounts and work—lists on multiple workflow
management systems (see also [PPC97b]). Participants remain autonomous, and can
be held responsible only for work that is performed within their own scope of control.
Workflow, involving scheduling and coordinating work among multiple service providers,
management of control/data flow and exception handling, is reduced to issuing requests
to service providers, as no global authority has overall control over the service providers.

4.1 Component Model

We have implemented a CORBA—-based component model as the basis of our work
session infrastructure. Aspects of this run—time infrastructure have been previously
presented in [MPN98b, MPNO98c, MPP98, MPN99]. Table 4.1 summarizes the structure
of a component according to the Aurora model. The following subsections describe the
functionality offered through these interfaces. The component model was first presented
in [MPN99].

Management Interface | Functionality
Exporter | dynamic collection of exported service object references
Importer | dynamic collection of imported service object references
Reactor | receiver of event notifications
Notifier | notifier of events to registered subscribers
Configurator | collection of configuration properties
ComponentControl | collection of exposed state variables and control operations
ComponentBase | “front—end” for component

Table 4.1: Management Interfaces Exported by Aurora Components.

29

4.1.1 Basic Concepts of the Component Model

A component provides one or more functional interfaces and may use interfaces provided
by other components or infrastructure—provided services. A component may also
emit notifications for events related to its internal operation, and monitor event
notifications generated by other components. By defining interface connections and
event propagation/consumption relationships among components, developers establish
communication channels among components. The Aurora run—time environment allows
inspection and manipulation of a component’s channel settings at run—time. Moreover,
each component has configurable properties, some of which can only be set at instantiation
time while others can be manipulated at run—time as well. Configuration and other
monitoring and control operations, such as retrieving the values of certain state variables
and setting parameters that affect performance, are enabled through a ComponentControl
object to be implemented (optionally) by the component developer.

The instantiation of a component in the run—time environment of a service provider
requires references to the CORBA objects that implement its exported service interfaces,
and references to any external services that they depend upon. The former are maintained
by the Exporter object, while the latter are maintained by the Importer object.
Instantiation of a component may also require that the component subscribes to event
notifications from various sources, including other components. Subscription entails
that the component’s Reactor object is instructed to receive notification from the
appropriate sources, and a corresponding callback object is specified for each source.
This arrangement allows the component to react upon asynchronous notifications of
events that affect its operation. Finally, component instantiation requires that the
component’s configuration properties must be set accordingly, via the Configurator
interface. Examples of configuration properties include settings for connecting to database
systems and other data sources, and threshold values for various performance tuning
parameters that affect the internal operation of the component. By invoking a method
finalize_configuration() onthe Configurator object, the component becomes
ready to accept and service customer requests.

4.1.2 Management of Exported Interface References

A component provides one or more services, through its Exporter object that maintains
a dynamic collection of CORBA references to objects that implement the services. A
customer can browse through this collection or select a service by name. Once a selection is
made, the customer can issue a request to the selected service using the standard invocation
mechanisms of CORBA. A service provider is free to add or remove object references to
this collection, thus being able to introduce, withdraw or upgrade services without having
to shutdown and restart the component.

4.1.3 Management of Required Interface References

The object references maintained by the Importer object represent services required for
implementing the component’s functionality, and may include services offered by other
components as well as support services offered by the container run—time environment.
It is possible for a component to maintain multiple (redundant) references for the same
service, allowing fail—over in the event of failure to contact a service.

4.1.4 Management of Event Notifications

When activated a component may generate events, such as significant internal state
transitions or advisory notifications, that may be needed by other components. The
Notifier object of a component maintains dynamic collections of the components that
have registered to receive notifications of events from this component, and allow the
source component’s implementation to forward notifications when appropriate.

4.1.5 Component Metadata

Components are described by metadata, maintained by a directory service that complements
the functionality of CORBA’s Interface Repository by describing the interfaces provided
and required by a component, the events that it can emit and monitor, its access control
restrictions and supported service—level attributes, its exposed state variables and control
operations, and its configuration options. Component descriptors are expressed in the
form of sets of attribute/value pairs, which can be nested and thus form a tree that can be
navigated to extract portions of interest to a customer. The directory service also allows
providers of components to define trading properties encoded as lists of name/value pairs,
to support clients in selecting among similar components.

4.1.6 Component Installation and Support Services

A component ultimately takes the form of a package consisting of files that contain
the component’s implementation as well as metadata describing the component (such as
an access control list, estimates of expected performance, and supported compensating
actions for exceptions). A component is deployed by installing a package in the run—time
environment provided by a container, which provides components with access to several
support services and maps method invocation requests to threads from a shared pool. A
component package can be pre—installed in the run—time environment of a container, or
can be obtained via a service of type ComponentClassProvider that operates under
the control of a service provider or a trusted third—party.

The support services offered by the container consist of a CORBA run—time
environment including an Object Request broker and instances of the OMG COS
Name Service and the OMG Interface Repository, a directory of component descriptors,
a generic component loader and factory service, services for volatile and persistent data
storage, and several variants of services for asynchronous notifications. The container
also offers a scheduling service for automatic execution of action sequences when a
condition, specified as a boolean condition over monitored event notifications, becomes
true (ECA scheduler), as well as a time—based action scheduling service (T IME scheduler)
that supports the execution of actions at a specific point in time, or periodically. The TIME
scheduler also supports periodic invocations of probe operations on objects that implement
the ProbeMonitor interface. This interface allows periodic checks on the current state
of running services. As a specific example, a ProbeMonitor implementation has been
developed to measure the response time for fetching the first page of WWW services,
such as the Yahoo directory and the Altavista search engine, and characterizing the
current state of the service as one of responsive, slow, or inaccessible, based on
configurable thresholds.

Finally, a specialized class of containers, of type WorkRequestManager, offers
an asynchronous request management service, described in detail in Section 4.2, and

a persistent logging system that provides a request monitor service with support for
aggregation and correlation of request—related log records, described in Section 5.2.

4.1.7 The ComponentProxy Interface

For a container to be able to mediate accesses to services provided by a component, the
component developer must provide a software module that implements the ComponentProxy
interface. This interface merely provides an identification of the component package,
and one or more object references to instances of the component’s ComponentBase
management interface, which in turn provides references to the component’s standard
management interfaces as well as its functional interfaces. This reference is not exposed
by the container to customers, thus prohibiting direct interaction with the service and
preserving the autonomy of the provider. In this way, the container mediates all
interactions of customers with the service implementation, after performing access control
checks and logging, and allows the customer to interact with the target service only
within the constraints defined by the service provider, which makes available the package
containing the ComponentProxy object.

A component developer may provide an implementation of the UpdatableComponentProxy,
a specialization of ComponentProxy that allows a service provider, or a third—party
service that monitors the implementation of the service represented by the proxy object, to
maintain the reference encapsulated in the proxy up—to—date. When there is a change on
the CORBA object reference for the corresponding service, or when a reference has become
invalid, or even when alternative references for a given service have become available,
the service provider that owns the service notifies all containers that are known to host
instances of proxy objects for the specific service. The container, in turn, invokes call-back
operations exposed by the UpdatableComponentProxy interface to reflect the changes
signaled by the service provider, with minimal impact on its customers. Customers are to
a large extend shielded from such changes, since they do not directly use object references
for services, but rather rely on the container to mediate their requests. Customers need
only to preserve the persistent request identifiers returned by the container in response to
their requests (for example by using the persistent logging service provided by the Aurora
infrastructure). Notifications of changes regarding the actual object references for service
implementations provide a crucial building block for robust and scalable operation in
the face of long—duration workflow processes. Support for alternative references for a
service allow the container to coordinate load sharing and fail-over without the explicit
cooperation of customers. Such functionality can be requested by setting appropriate
attributes in the service—level specifications that accompany requests issued by customers.

An additional measure towards scalability is that a container can ‘“‘swap—out” a
component instance, provided that it supports the PoolObject interface, which is a
specialization of the Updatab leComponentProxy interface. This interface standardizes
the methods that the container must invoke in order to inform the component instance
that it has been selected for eviction from the space of active component instances, and
give it a chance to preserve its state, as well as the methods for restoring previously
stored state. The current prototype uses a simple least—recently—used (LRU) policy for
selecting the component instance to be evicted when a container—specific threshold on the
number of active component instances has been exceeded. Thus, there is an upper bound
on the number of concurrently active proxy objects that are hosted by the container,
and, moreover, reuse of proxy objects is possible. When a customer invokes a request

management operation with an evicted component instance as the target, the container
uses the Pool Interface to restore the original state. This functionality relies on the
persistent storage service provided by the Aurora infrastructure.

4.1.8 Support for On—line Monitoring and Control of Components

Optionally, a ComponentProxy can provide a reference to a ComponentControl
object, that is part of the actual service implementation at the service provider’s site and
exports state variables and control operations. This functionality requires instrumentation
embedded within the service implementation. The reference for the ComponentControl
object is not directly exposed to the customer; rather, the container delegates monitoring
and control operations to the ComponentControl object upon request by customers.
The UpdatableComponentProxy provides operations for keeping the reference to
ComponentControl objects up—to—date. Table 4.1.8 summarizes the methods of the

Method | Functionality
Start | (re)start with given parameters
Stop | shutdown execution
Suspend | temporarily suspend execution
ListStateVars | metadata describing exposed state variables
ListControlOps | metadata describing supported controls
RetrieveState | retrieval of specified state variables
SetState | update of specified state variables
Initinstrumentation | initialize internal instrumentation
Enablelnstrumentation | enable (selective) inspection/updates
Disablelnstrumentation | disable (selective) state inspection/updates
Stoplnstrumentation | cancel internal instrumentation

Table 4.2: Methods of the ComponentControl interface.

ComponentControl interface that allow a customer to perform on-line monitoring
and control operations on a component, provided that the component’s implementation,
which is the responsibility of the component’s owner service provider, supports these
operations. If not supported, a method invocation on the ComponentControl interface
should raise an exception of type UnsupportedControlOperation so as to notify
the caller that the requested method is not implemented. This design convention
allows the ComponentControl interface to remain uniform across components that
contain instrumentation code of widely varying sophistication. The uniformity of the
ComponentControl interface is essential for managing ensembles of components that
have been configured to co—operate in the context of work sessions.

4.2 Management of Asynchronous Requests

Figure 4.1 illustrates the structure of a container. The container exports a standard
interface for asynchronous request management, and handles the low—level details of
monitoring their progress and taking prescribed actions upon their completion or upon
exceptions. These actions include callback invocations on customers, initiation of
alternative actions, and fork/join primitives for concurrent request scheduling. This
request management interface is used in the implementation of work sessions and service

,’ proxies for remote
,/ autonomous services
request ’

Container ,/

access /

N control 7
\k .
' \

- component packages
o oo o0
References for support services: Thread Pool
ORB, name service, descriptor directory, - o -
volatile & persistent data store, publish/subscribe, -
ECA scheduler, time-based action scheduler -

Figure 4.1: Structure of a container hosting ComponentProxy objects.

level agreements. Figure 4.2 presents an state transition diagram describing the life—cycle
of a request.

SUSPENDED

INIT —_— IN-PROGRESS

ABORTED COMPLETED TERMINATED

Figure 4.2: States in the processing of a work request.

4.2.1 Asynchronous Requests in CORBA

Applications that perform a series of tasks that must be done sequentially cannot benefit
from asynchronous communication. Applications that make only short duration remote
operations have little need for asynchronous communication.

Asynchronous communication can allow an application to perform additional tasks
instead of waiting for tasks to complete. Applications that have a number of tasks
that can be performed in any order can often benefit from distributed asynchronous

communication. This becomes more important for applications that call lengthy remote
operations. In order to benefit from asynchronous communication, an application must be
able to perform some task after the request is issued but before the response is available.
Tasks might include prompting for additional user input, displaying information, or
making additional remote operation requests. Typical asynchronous communication
candidates include applications that need to perform several lengthy database queries or
complex calculations.
At the lowest level CORBA supports two modes of communication:

e synchronous request/response: allows an application to make a request to some
CORBA object and then wait for a response.

e deferred synchronous request/response: allows an application to make a request
to some CORBA object. An empty result will be returned immediately to the
application. It can then perform other operations and later poll the CORBA Object
Request Broker to check if the result has been made available.

At the lowest level, the CORBA deferred synchronous communication does allow a
certain degree of asynchronous communication. Polling for responses represents only
one form of asynchronous communication. Other more sophisticated asynchronous
communication can only be achieved by developing mechanisms on top of the lowest
levels of CORBA. The Aurora component platform presented in this dissertation provides
such mechanisms, as described in Section 4.2.2.

Moreover, while CORBA does support a deferred synchronous request/response,
it does not directly support distributed requests with a callback—driven response. A
callback—driven response allows an application to perform an operation on a distributed
object, associate a callback with the response, continue with other processing. When
the server responds, the associated callback is automatically executed within the original
caller’s application. Callback invocation also enables a client or a third—party monitoring
service to track the current status of a request, and receive up—to—date information about
the request’s progress (including partial results). Section 4.2.3 describes the callback—
driven response mechanisms provided by the Aurora component platform.

4.2.2 Primitives for Asynchronous Request Management

Table 4.2.2 presents the primitives provided by the Aurora container for managing
asynchronous requests. Requests are represented by persistent identifiers, assigned by the
container, of the following form:

request : [/ < cref >/ <cK > [<iK > | < seq# >? < pspec > .

A request identifier includes a reference cref to the container that handles the request
on behalf of the client, an identifier ¢K specifying the class of the target component,
an identifier (key) iK for the specific component class instance, a container—generated
sequence number for the request, and a specification of parameters pspec. The parameters
specification is of the form

c =< caller >:1 =< inter face >: m =< mX >: sla =< slalD >,

thereby providing an identification for the client that issued the request and specifying the
target component’s interface to be used for performing the requested service (as specified

by the method parameter). The sla parameter specifies which of the service—level
agreements supported by the component is to be applied in processing the request. The
actual request parameters are recorded in the persistent log maintained by the container
when the request is issued. Similarly the results (including partial results that a service may
provide to the client as they become available) are logged by the container, thus providing
a complete audit trail for the execution of the request and assisting the implementation
of compensating actions to handle exceptions. The asynchronous request management

Method | Effect
request_init | prepare request for submission to service
request_start | submit a prepared request
request_issue | combination of request_initand request_start
request_cancel | attempt to cancel a submitted request
request_results | retrieve (partial) results of request
requestwait | block until (final) results of request become available
request_fork | submit concurrently a set of prepared requests
request_join | block until at least the specified
number of requests from a set complete
request_with_compensation | submit prepared request and specify
compensation request
request with_time_limit | submit prepared request and specify
maximum acceptable delay
list_pending.requests_limit | identifiers of requests that have not yet been processed

Table 4.3: Asynchronous request management primitives.

primitives were first presented in [MPP9S].

It is important to note that the request management primitives are exported by the
container, rather than by the components hosted in the run—time environment provided
by the container. The container handles all the details of supporting asynchronous request
management for services that do not necessarily support asynchronous interaction.
Moreover, the container does not expose the actual references to the components that
implement services. This design decision introduces a level of indirection in the interaction
of customers with service providers, a necessary step for enforcing access controls and
reliable tracking of requests in the context of service—level agreements.

The container supports asynchronous requests by using multiple threads of execution
to handle concurrent requests. Multi—threading supports concurrent processing within
a particular server that hosts the container. An application that needs to perform
concurrent distributed requests can issue requests in different threads, without having
to handle the details of thread synchronization and management, by using the request
management primitives exported by the container. The container incorporates a pool of
re—usable threads that can be assigned to perform the processing for a particular request.
Upon successful termination of processing the request, or upon detection of a run—time
exception or system failure during the processing of the request, the container returns the
thread that handled the request to the pool of available threads. By maintaining a pool
of threads, rather than creating a new thread for each request, the container reduces the
overhead cost of processing an asynchronous request.

The actual processing of a request is performed by having a thread issue a request via
the Dynamic Invocation Interface (DII) supported by CORBA [COR94]. This method
of issuing requests has the advantage that the container does not need to have stub code
for the target service. The ComponentProxy object that is hosted in the run—time
environment provided by the container only needs to offer a reference to the target

service, and this reference is not exposed to the clients of the service. This reference
may be an Interoperable Object Reference (IOR) [COR94] for a CORBA object that
directly implements the target service, or an IOR for an Aurora component that exports
the specified interface. In the latter case, the container must obtain a reference to the
component’s Exporter interface, and use that interface to obtain a reference (IOR) for
the specified service.

The metadata published by the service provider in the directory service offered by
the Aurora component platform allows the container to issue a request without having
access to stub code generated by an IDL compiler. The parameters of the primitives
request_initand request_issue suffice for the container to extract from the target
service’s metadata the method name and the identifier of the interface of the target service,
as declared in the Interface Repository service (IFR) specified by the OMG CORBA
standards [COR94]. An IFR service is part of the run—time environment provided by
a container. The IFR identifier allows the container to obtain a machine—readable
description of the target service’s interface. This description is used by the container
to perform marshaling of the supplied request parameters, and to extract the results of
the method invocation. These tasks would be conventionally handled by stub code as
generated by an IDL compiler; however, by relying on stubs an implicit coupling between
the service provider and the container (and in turn its customers) would be enforced, as the
service provider would have to handle the task of distributing appropriate stubs to all its
clients. By using the DII invocation mechanism, the service provider only has to publish
(and maintain up—to—date) the metadata describing its services. This arrangement allows
for fully autonomous service providers, by minimizing the degree of coupling between
service providers and their clients.

4.2.3 Callbacks for Notifications about Asynchronous Requests

CORBA communication is inherently asymmetric: Request messages originate from
clients and responses originate from servers. It is important to realize that a CORBA
server is a CORBA object, while a CORBA client is really a CORBA stub. A client
application may use object references to request remote service, but it may also instantiate
CORBA objects and thus be capable of servicing incoming requests. Along the same lines,
a server process that implements CORBA objects may have several object references that
it uses to make requests to other CORBA objects. Those CORBA objects may reside in
client applications. By implementing a CORBA object within an client application, any
process that obtains its object reference can notify it by performing an operation on the
client—located object. This approach is applied in the design of a callback mechanism for
asynchronous requests in the Aurora component platform.

Table 4.2.3 presents the callbacks that a container can invoke on an object of type
CallerCB provided by a client that prepares a request and issues it to a target service
using the container’s request management primitives (presented in Table 4.2.2). Figure 4.3
illustrates how a customer interacts with services provided by a component that is hosted
within a container.

Method | Effect

request_ready_to_start | notification after request_init
that the processing of a request can be started
request._accepted | confirmation that a submitted request
can be processed
request_refused | explicit declaration that a submitted request
cannot be processed
request_in_progress | heartbeat from target service, with partial results

request_completed | notification of successful completion,
with final results

request_aborted | service failure notification
request._delegated | notification of request delegation

Table 4.4: Asynchronous request management callbacks.

4.3 Access Control Framework

Access control in the Aurora architecture is based on the notions of actions, actors, roles,
and access controllers.

Actions include using an interface exported by a component, invoking a specific method
on a target component that represents a service, and monitoring event notifications
emitted by a target component. Actions are initiated through method invocations, which
are intercepted by the container. Actions related to using interfaces and monitoring
event notifications are used for establish a network of cooperating components. Such
component assemblies implement distributed multi—party work sessions.

Actors are entities that initiate actions in the course of a work session, identified by
security credentials. An actor may have a set of descriptive properties, such as contact
information for a human involved in the work project represented by the session and
machine—readable specifications of the capabilities of a computational service. Unique
security credentials are associated with each session participant, through directories made
available by certification authorities, and are passed along with each request, as part of
the request context. Credentials include security—related information about an actor,
including its identity, public—key certificate, and certification authority.

Roles represent sets of actions that an actor may initiate. A Role object may be
shared by multiple components. Access controllers define the permissions/restrictions for
actors participating in a work session to assume given roles, thus determining whether a
particular requester can initiate the actions associated with a role, on components that
support this role. Session participants wishing to execute an action on a component
have to be explicitly allowed to assume one of the roles specified by the authority that is
responsible for the component. The object interaction diagram in Figure 4.4 illustrates the
flow of method invocations for establishing whether a requester can initiate an action in
the context of a work session that involves components hosted in containers that intercept
all incoming requests.

It is possible to have multiple access controllers associated with the same component,
depending on the application scenario. Multiple roles may share the same access controller
object, thus sharing the same access control policy. Actions, roles, and access controllers
are expected to be defined independently by the developers and managers of autonomous
services. Whereas actions are tied to specific target objects, roles as well as access
controllers may be developed by independent authorities other than the service provider,

for the purposes of enforcing a customized access policy for a composite service as enabled

by the collection of resources available in the sharing context of a work session (see
Chapter 6).

4.4 Support for Event—Driven Execution

The Aurora infrastructure provides several services for asynchronous notifications.
References to these services are made available through the container to components.
This allows for example developers of Task components (described in the Section 6.1) to
publish notifications about state transitions and significant events during their operation
to registered subscribers. Subscribers receive a Channel object that allows them to poll
for pending notifications, block until a notification is received, or register a callback to be
executed automatically upon arrival of a notification. All variants of the publish/subscribe
services offered by the Aurora infrastructure provide their customers with Channel
objects, thus simplifying the work of component developers. The variants are differentiated
by the level of detail that they allow in the specification of events of interest. What is more,
Channel objects are returned also by the ECA and TIME scheduler services provided
by the infrastructure. This uniformity allows for composition of the mechanisms for
event—driven execution, thus enabling the implementation of complex sequencing rules.
This functionality is utilized by the scripting language HERMES.

The basic publish/subscribe service provides SubjectGroup objects for allowing
components to handle the details of keeping track of subscribers that receive notifications
for all events published by the component on the subject represented by the SubjectGroup
object. Event notifications are objects that provide a string tag identifying the event and a
list of attribute/value pairs for carrying component—specific state. The receivers of event
notifications are expected to be able to extract this state information, which is opaque to
the infrastructure services.

SubjectGroupFi lter is a specialization of Sub jectGroup that allows a customer
to request notifications only for events published on a subject that satisfy a boolean
predicate expressed over the state included in the event. The predicate is encapsulated in an
object of type Filter that is provided by the customer to the SubjectGroupFi L ter. Filter
objects are constructed using a factory service, which is provided by the infrastructure,
based on textual specification of the predicate. When an event source publish an event on
a SubjectGroupFi lter, the Filter objects of the subscribers are invoked to determine
whether the event should be relayed. Although the infrastructure does not comprehend
the semantics of this state information, which is application context—specific, it can
mechanically invoke the predicate test method of Filter objects.

Another specialization of SubjectGroup allows for notifications based on a finite
state machine model. An object of type SubjectGroupFSM encapsulates a definition
of a finite state machine, in the form of a graph where nodes represent states and arcs
represent state transitions that take place when specified events have been signaled. The
specification allows the distinction between final and non—final states. A customer can
subscribe to receive notifications when either a specific state is reached or when a specific
transition takes place. For example, for a simple workflow specification that can be
described by a finite state machine specification, a customer can register a callback to
be invoked when the workflow reaches one of its final states for monitoring purposes or
to enable initiation of a subsequent activity that relies on the results of the completed

workflow. As a further example, a customer can use the TIME scheduler to periodically
probe the state of a remote service and install a callback that will update the state of a
finite state machine representing the possible states of the remote services. By registering
a callback on the transition from a nominal state to a state corresponding to a failure,
the customer can automatically react to this event, without having to explicitly poll the
current state of the remote service. This example demonstrates the flexibility offered by
composition of primitives.

A ComSubjectGroup object is a specialization of SubjectGroup that allows a
customer to define a boolean condition over events emanating from other Sub jectGroup
objects and receive notifications only when this condition has become true. The evaluation
of the condition is incremental, which requires that the condition evaluator embedded in
ComSubjectGroup objects distinguishes between three truth values: TRUE, FALSE,
UNKNOWN. Since the condition only involves subject names, rather than state variables
associated with events as in the case of the SubjectGroupFi lter, the evaluator does
not require the customer to specify any custom evaluator object. A ComSubjectGroup
can, by virtue of composition, evaluate conditions that involve events from other
SubjectGroup objects.

Finally, the Aurora infrastructure offers an EventLoop service that allows customers
to subscribe to notifications for composite hierarchical events. Customers specify a
composite event using the following event path expression notation:

eV P1.€V2 I P2l ... [EVK [PK,

where ev;,7 = 1,..., K are event name tags, and p;,7 = 1,..., K are optional predicates
over the name/value pairs associated with the corresponding events. Assuming that the
common case is for event notifications to be hierarchical in nature, with events encountered
earlier in a path expression being of broader interest than following events which provide
fine—grained detail, a customer can specify in detail when it should receive a notification.
Path expressions (without predicates over name/value pairs) are also used by customers
that announce events to this service. When an event is announced, only the customers that
have subscribed with a path expression that includes the announcer’s path expression as a
prefix will be notified, provided that all their data—related predicates along the event path
expression are satisfied. Subscribers to this service receive Channel objects, as in the case
of the SubjectGroup family of services. The implementation of the service combines
SubjectGroupFilter objects in a data structure that has the form of a collection of
trees. Trees are formed when there are subscriptions with event path expressions that share
a common prefix. Announcers of events to this service can be callbacks activated by any
of the previously described variants of SubjectGroup, thus allowing for composition of
all the event management services provided by the Aurora infrastructure. For example, an
instance of SubjectGroupFSM may notify its clients when specific states are reached in
the finite—state machine encapsulated in the SubjectGroupFSM object, where the state
changes are signaled asynchronously by callbacks that have been registered with other
event notification sources. Specific examples would be callbacks registered with time—
related events (generated by the TIME scheduling service), callbacks registered with an
instance of a SubjectGroupFi lter service (that applies a filter to the data associated
with event notifications), and callbacks registered for a path expression supported by an
EventLoop service. Figure 4.5 illustrates this capability for composition.

The Aurora infrastructure also provides a service for persistent logging of event
notifications in a relational database management system. This service allows a client

to request that event notifications generated from an object of type SubjectGroup are
monitored during a specified time interval, which may be open—ended. For each such
event source, the persistent event monitor service maintains a table of all notifications
received that includes the state data associated with the notifications. Clients can later
retrieve series of records corresponding to notifications that occurred during a specified
time interval, and have the option to filter such record series by applying a selection
predicate over the name/value data associated with notifications. This service is part of the
persistent logging and monitor service provided by the Aurora infrastructure, and aims to
support applications that require a persistent audit trail for management purposes.

It is important to note that the event notification services of the Aurora infrastructure
support multiple independent event domains. The goal is to avoid imposing a shared
naming scheme on all potential workflow participants by allowing them to select the
names of their published event notifications independently of all others. This functionality
1s required for being able to distinguish the event notifications generated within each
domain, while maintaining the autonomy of the domain. An event domain is supported
by a SubjectGroup factory service, and corresponds to a set of services offered by an
independent service provider.

4.5 The HERMES Scripting Language

The Aurora run—time environment includes support for the HERMES language (described
in Section 2.7) for configuring components into ensembles in order to construct the
infrastructure for work sessions. We have developed an embedding of HERMES in the
popular scripting language Tcl [Ous94], taking advantage of the extensibility features of
the Tcl interpreter. We used Jacl, a Java—based implementation of Tcl, and added to this
interpreter commands for enabling use of CORBA objects and commands for interacting
with components and containers, including support for managing asynchronous requests.
Furthermore, we added the commands listed in Table 4.5 for implementing event—driven
flow of control, including support for ECA rules. This embedding of HERMES in Tcl

command | main parameters return value
rule_variable | name, required flag, prompt handler ——
whenever | trigger variables, action procedure rule handle
when | trigger variables, condition evaluation procedure,
action procedure rule handle
cancel_rule | rule handle ——

Table 4.5: HERMES/Tcl Commands for ECA rules and their Parameters.

allows a developer to combine procedural and event—driven control flow constructs, and
supports component configuration as well as programming tasks that access distributed
components and monitor/control asynchronous work requests.

The embedding allows direct interaction with CORBA objects using the OMG
Name service to discover interoperable object references (IORs) and the OMG Interface
Repository (IFR) to discover their interface for the purposes of invoking their exported
operations via the Dynamic Invocation Interface (DII). Interactions with these two basic
infrastructure services can be time—consuming, therefore the embedding supports caching
of IORs and results of IFR lookup operations as a performance optimization. Moreover,

the embedding supports interaction with components as presented in Section 4.1, event
management services as presented in Section 4.4, and component containers that support
asynchronous requests over components as presented in Section 4.2.

Script variables can be set or updated by callbacks invoked as a consequence of event
notifications. The commands when and whenever shown in Table 4.5 can be used in a
script to declare that certain processing steps, grouped as a procedure, are to be invoked
when a certain condition becomes true. Condition evaluation is triggered when a variable
that has been declared to be a rule—related variable, using the rule_variable command,
is set or updated by a callback or by direct assignment. The rule_variable command
does not actually define the designated variable; rather, it informs the interpreter that
upon executing commands that set or update the value of the designated variable there
may be rules that need to be checked to determine if their associated actions are to be
executed.

Using the whenever command, a script developer can specify that a procedure is to
be activated upon a value change of a rule—related variable. Using the when command, a
value change of a rule—related variable triggers the execution of a procedure that evaluates
a condition and returns a value that can be either +1, 0, or —1, corresponding to truth
values TRUE, FALSE, UNKNOWN. If the result of the condition evaluation procedure is
TRUE, then the associated action procedure is executed. The TIME scheduling service
can augment the rule constructs by triggering condition evaluation and/or actions based
on time—related events, while the ECA scheduler and the other event—related services
presented in Section 4.4 facilitate the use of complex evaluation conditions that involve
correlation of events from distributed sources.

The flow of events in a distributed system consisting of loosely coupled autonomous
components is inherently asynchronous, thus necessitating support for event—driven
control flow constructs such as rules of the form when and whenever supported by
the HERMES /Tcl combination that we have developed. However, there is a limitation
in this model of execution with respect to the handling of missing values for variables
required for the evaluation of activation conditions. Specifically, condition evaluation
assumes that the variables referenced have been defined and their truth values are readily
available for testing. This means that the distributed objects corresponding to the rule
variables have been instantiated and activated. This approach is intuitive for applications
where there is a flow of requests, each carrying its associated information elements, being
routed among several services or processing components, but does not work as well for
applications where information is not readily available and needs to be explicitly extracted
from sources such as users, database systems or external services. In such cases, the rule
processing infrastructure needs to be augmented with support for obtaining information
from external sources, so that this information can then be used for condition evaluation.

In the Aurora infrastructure, a rule—related variable can be designated as required, so
that, whenever its value is referenced in a condition a and its truth value is found to be
UNKNOWN, a special action is triggered to obtain a value for it. Examples of such actions
include prompting the user to enter a value, database queries, and computations that
combine values obtained from several external services. The infrastructure assumes that
components that can provide a value for a variable referenced in a rule export a uniform
interface called Promptlnterface, which offers the get_ value_for_variable()
method for requesting the (latest) value for a specified variable. This interface can be
implemented by user interface components that directly interact with human workers,
by wrapper services that encapsulate the details of interacting with a data source, or

by components that combine data from several other sources to compute the requested
value. Designating a rule—related variable as required requires that the script developer
also specifies a component that exports this interface. When the evaluation of a condition
needs the value of a required variable, the get_value_for_variable() method will be
automatically invoked to obtain a value for this variable.

4.6 A Note on Performance Issues

To the best of our knowledge, there are no published data on the performance,
availability, and scalability of commercially available workflow management systems.
There are no standardized benchmarks such as the TPC suite for transaction processing
applications [Gra91]. Concerns have been raised in the literature about the lack of
adequate performance and scalability, and this can be expected to become a more pressing
problem with the increasing deployment of workflow management systems in the context
of Internet applications. There is still limited support for comprehensive workflow
run—time environment monitoring, statistical data collection and reporting.

We believe that the design and adoption of meaningful performance benchmarks is
a critical step towards building more scalable workflow management systems to sustain
increasing demands in dynamic business environments, where interoperation is the norm
rather than an exceptional case. Without widely accepted benchmarks, it is difficult
to compare quantitatively a system’s performance with that of another with a different
architecture. We consider this a major stumbling block in the evolution of workflow
management systems.

An important complication for workflow management benchmarks is that the time
scale is different than that of other workloads [Den94]. In particular, the process of
estimating performance metrics is complicated by the need to correlate the individual
steps in units of work that involve both application programs and human participation
in complex configurations. A consequence of this complexity is that it is hard to perform
quantitative comparisons of the performance potential of alternative system architectures.
So far, the predominant architecture is the client/server architecture outlined by the
WEMC standards [Hol95]. However, the wide acceptance of Web—related technologies
and distributed component frameworks provide opportunities for alternative designs. It is
our view that by focusing on request management, rather than state transformations and
transitions as in the WfMC reference model, it may be possible to obtain simplified but
relevant performance models for evaluating alternative system architectures for workflow
management in a distributed setting. Moreover, we advocate shifting the emphasis from
a production—centered view of workflow, which implies low—level performance metrics
such as average response times and throughput, toward a satisfaction—centered view,
which focuses on commitments and conditions of satisfaction [MMWFF92]. This shift
makes it possible to concentrate on metrics that are at the same level of abstraction
as the business—level performance goals of workflow management. The service—level
management approach presented in this dissertation provides an important link between
the system and business aspects of workflow. It is our view that service—level management
should be considered as the driving concern in the evaluation of system architectures for
workflow management.

-_- -

- Lotus Notes internal state & resources

1
1
1
1
I | nput Dat a
1
! Service
1 I
control !
|
I - < D exported controls
Work Coordinator i nqui re, & state
- WFMS 1 e
. e’ ~
- TP monitor 1 — /’
1
1

- > published events

e 1 .
notifi Icat i ons & state changes
| 1
1
1
1
1
! ‘on put Data
1
T
Service Requestor : Service Provider

Figure 4.3: Interaction with a Component Hosted within a Container.

Certification Component Session Manager + Lo Session . .
Actor Container Authority Directory 9 9 Access Control Service Implementation
reques‘tn;»“‘”"f

- SLA B e L o

- action check_credentials B

- session ID - ST

-
- credentials credentials_verified

cal ler_rol es_required Bt

T roles)

I og_request 7T e I
nk_request (DIl) |77
-
{results) |
D i | 0g_response T feeeeeaoo
{results}y | | Tt e R
.

Figure 4.4: Access Control in the Context of a Work Session.

EventLoop

TIME Scheduler

- periodic probes
- tiner-activated actions

SubjectGroupFilter

data filter (A .
/I
.datafilter//(B)

Figure 4.5: Example of composite event notifications by combining the SubjectGroupFSM, TIME
scheduler, SubjectGroupFilter, and EventLoop services.

Chapter 5

Service level Agreements

All process participants must voluntarily agree to co—operate with each other, perhaps
on a restricted and temporary basis, and clearly define their commitments in a co—
operative workflow. A service—level agreement documents the expected behavior of a
service provider, in terms of functionality, performance and failure/exception handling
behavior, for a particular client or class of clients. The material presented in this Chapter
was first presented in [MPN98b].

5.1 Definition of Relationship Boundaries

The mechanics of controlling a service provider’s interaction with a client is encapsulated
in a first—class relationship object. Rather than attaching control information directly
to the controlled service for interpretation in a service—specific manner, the service level
agreement object enumerates the components that it controls, and encapsulates the state
and code needed for monitoring and controlling interactions between the service provider
and a customer. While it can be co—located with the service it controls, it is possible for
the service level agreement to reside at a trusted third—party (such as a clearing house).
A service level agreement provides a reification of relationship boundary conditions
for a service provider and its clients, together with a set of generic operations applicable
to them. In effect, it represents a "contract" involving two or more parties and a set of
"promises" that become effective once the contract has been accepted and all prerequisites
have been fulfilled [RW97]. It provides the basis for monitoring and control of long—
duration multi—step interactions, by authorizing actions, enforcing prerequisites and
enforcing the execution of subsequent actions. It enables ongoing proof of conformance to
agreed—upon service—level attributes, and enforces accountability as all actions covered by
the service—level agreement can be persistently logged and later used in resolving disputes.
Figure 5.1 shows the basic service—level agreement interface provided by our framework.
This interface, and its corresponding "factory" interface, are intended to serve as the
inheritance base for specific process implementations, such as in the case of an electronic
commerce scenario. It is important to note that the actual actions for implementing
a service—level agreement are generic in the sense that the details of implementing an
agreement are contained exclusively in the service provider’s domain. The service—level
agreement interface provides operations to inspect the current state in the performance
of a service on behalf of a customer, and provides hooks for monitoring relevant event
notifications. Introspection is supported by the get_supported_actions method,

47

Service-Level Agreement

- get_service_handl e

- get _supported_actions
- get _service_descriptor
- get_contract_spec

- sla_event
- get _history
- start/term nate/ conpl ete

- get/set_status
- get/set_sla_state

/* customer-side */
- request _fulfill ment

- declare_satisfied
- decl are_conpl ai nt

/* provider-side */
- declare fulfilled
- decl are_excepti on

Figure 5.1: Elements of the service—level agreement interface.

which provides handles for Action objects that represent the basic capabilities provided
by components implementing a service; namely, the right to use an exported interface,
the right to register to receive notifications of an event, and the right to invoke a
method. Moreover, the interface provides both human—readable and machine—readable
descriptions of the terms and conditions governing the use of the service, as plain text
and structured name/value pair list respectively. The get_service_handle operation
provides a handle that allows the customer to invoke methods offered by the service
through a container.

The actual sequencing of service performance is achieved by invocations of the
methods set_status, set_sla state, and request_fulfillment. The specific
implementation defines the rules for determining when to permit updates of the state
associated with this agreement. The method request_fulfilIment allows a customer
to issue a request for the service provider to perform the "promised" actions. This method
returns a persistent request identifier computed by the container that will handle the
request.

The method declare_fulfilled is to be called by the provider as a statement that
all promised actions have been carried out successfully, whereas declare_exception

covers the case when the provider declares that an exception occurred and needs to be
handled according to the specific terms and conditions defined in the agreement. Similarly,
the customer is expected to invoke declare_satisfied to explicitly acknowledge that
a service request has been carried out with acceptable quality, or declare_complaint
otherwise. Depending on the specifics of the agreement, declare_exception and
declare_complaint may trigger compensating actions, programmed explicitly for
each supported action. All events of relevance to an agreement are persistently logged,
and can be reviewed for auditing purposes. Events of particular significance include the
instantiation of the agreement, its termination (either successfully or unsuccessfully), the
state/status changes during its life—cycle, and the declarations made by the independent
participants.

5.2 Logging and Monitor Infrastructure

The term workflow denotes [Moh97] all operational aspects of a business process, including
the sequence of tasks and who performs them, the information flow to support tasks,
and tracking and reporting mechanisms that measure and control tasks. Workflow
management aims not necessarily to automate all tasks of a process, but rather to
automate the tracking of states of tasks and to allow specification of preconditions to
decide when tasks are ready to be executed and of information flow between tasks.
Current state—of—the—art workflow systems [AAAMO97, GHS95] are mainly concerned
with the routing and assignment of tasks, providing little support for administration
and management tasks, such as workflow monitoring and reporting, management of
resources, tracking the status of ongoing processes, and exception handling. Support
for such tasks is essential for establishing a robust and manageable work environment,
and providing quality guarantees. Overall business planning and operations control
require comprehensive mechanisms for performance monitoring and policy enforcement.
Such mechanisms improve accountability, which entails that the availability and level of
performance of all entities involved in workflow processing be tracked and maintained
according to predetermined levels.

The need for management support is exacerbated in dynamic open environments,
where services provided and managed by multiple autonomous authorities need to be
integrated. Such environments significantly stretch the assumptions underlying current
workflow system designs, especially in the areas of autonomy and dynamic control
flow. The World Wide Web (WWW) [T. 94] is rapidly becoming a universal information
and communication resource, thus creating a pressing need for workflow management
technology to address the requirements of conducting business processes on the WWW.
It is necessary to extend workflow execution models, and their underlying infrastructures,
beyond the current state—of—the—art to support more dynamic and adaptive processes,
and provide more effective support for human—intensive work. As argued in [She97],
this can be achieved by integrating coordination and collaboration technologies with
information management. We consider this integration as the basis for realizing a shared
workspace, enabling collaboration among participants in a work session by allowing
participants to invoke services and publish results.

This dissertation proposes service level management as a framework for addressing
all managerial issues in an integrated manner, in the context of a workflow execution
model that supports dynamic configuration of work sessions in a dynamic run—time

environment. The information contained in the SLA is required for providing guidance
to clients of a service as to what is the service’s expected behavior, and can be retrieved
from the Aurora repository. It can be used during the binding phase to select among
alternative service offers, based on the client’s requirements on attributes of the service.
Dynamic open environments such as the Internet are inherently unreliable and exhibit
widely varying responsiveness. However, provided that a service implementation supports
cancellation of the effects of service actions, it is possible to modify or cancel the effects
produced by a work session, by executing compensating actions. Clients are allowed to use
each service only through the SLA exported by the service provider, which enforces the
access policies specified by the provider and implements the functionality and behavior
“promised” by the service interface. As containers are instantiated at run—time, a run—
time representation of the SLA to be enforced for a client is instantiated at run—time, to
monitor and control action requests.

Information about expected performance and supported compensation actions guides
clients in planning a strategy for obtaining service despite failures and unpredictable
performance. For example, a client can use the information exported by the SLA to set
timeouts and to schedule retries and compensating actions in case of failure. Moreover, a
client can abort/cancel its requests when the measured service—level parameters (such as
transfer rate and response time) become worse than specified thresholds. These capabilities
contribute to making services in a dynamic open environment more predictable, and, in
this sense, more manageable. Furthermore, service providers can modify SLAs at run—
time, by updating their service offer entries in the repository, to reflect their updated
access policies and current performance level.

By informing clients about how to obtain information on the supported guarantees
for transactional execution and expected performance, this specification contributes to
making services in a dynamic open environment more predictable, and, in this sense, more
manageable. It is important that the autonomy of service providers is not compromised,
as a service provider is the only authority responsible for exporting an interface for use
by clients and for establishing and enforcing service attributes such as transactional and
performance guarantees. Another important point is that a service provider may combine
multiple services, made available by other autonomous providers, in order to provide
a composite service to a client. A client does not need to be aware of this complexity.
Moreover, other service providers may not be aware that their services are being used
in the context of a composite service request. The SLA exported by a service provider
hides such implementation aspects, exporting only aspects related to the service level that
a client can expect, together with information about available “emergency’ actions to
compensate for actions that were not completed successfully or that the client wishes to
revoke. This paradigm, therefore, takes into account the characteristics of dynamic open
environments.

Service level management has long been practiced in enterprise data processing centers
[Noo89], typically on mainframe computing systems, and has recently begun to draw
attention in the context of client/server business systems. However, there is yet no such
support for open environments such as the Internet and the WWW. Apart from the
difficulties of monitoring management metrics from multiple heterogeneous systems, in
open environments there is no single authority responsible for all available services. In
particular, there is no single authority responsible for maintaining integrity as in the case
of traditional transaction processing systems. Multiple authorities (service providers) need
to interact to implement all the steps in a session. Each service provider is responsible for

its own services and may have no knowledge of the interactions among authorities that
take place in a session. As argued in [DP97b], different participants may have differing
views of the boundaries of a session, as it is possible for a provider to hide from its clients
whether services from other providers are utilized in the course of a session.

Service level management requires a comprehensive monitoring infrastructure. Aurora
provides an infrastructure for building such environments, and, through its monitoring
mechanisms that allows each service provider to log information about its own state
and its interactions with others, supports monitoring of pair—wise interactions between
parties. A session may span multiple distributed resources, owned by autonomous
providers. Keeping track of the activities of tasks is achieved by requiring each container
to register with the logging system that is part of its run—time environment. Thus,
the logging systems of session managers constitute the basis of a distributed monitoring
infrastructure. The Aurora monitor enables a client (for example a workflow administrator
using a management application) to collect all log records about events of interest to the
execution of a workflow. This infrastructure enables tracking the progress and current
state of service flows, as well as maintaining the interaction history for each participant.
A basic function of this infrastructure is support for correlation of event records. Thus,
it is possible to examine the entire interaction history for a session, the records related
to the actions of a particular participant, or the records related to a particular service
provider. Another important function is to support aggregation queries, especially based
on temporal information (such the completion time of tasks). This is important for
benchmarking the performance of the workflow infrastructure, and producing concise
performance reports.

Log records can simply define the start and end of steps in a work session, or provide
more detailed information that can later be used for compensating for certain actions.
Such information is expressed as a list of attribute—value pairs, and may include, for each
task (processing step) in a session, the name of the resource used, the start and ending
time, the persistent identifier for the work session within which the task is executed, and
various performance metrics of relevance for the task and session (such task completion
time). A basic function of the monitor service is support for correlation of log records.
Methods are provided to examine the entire interaction history for a work session, retrieve
the records related to a particular task within a session, and select the records that satisfy
a client—specified predicate over the attribute—value pairs associated with log records.
Queries to the monitor service can be further qualified by specifying a time interval,
as log records include a timestamp. Figure 5.2 illustrates the structure of the Aurora
monitor. As multiple groups within IT are responsible for different parts of the IT
infrastructure (such as applications, databases, networks, desktop and server machines),
it is difficult to maintain a single—system image for management purposes, resulting in
multiple, overlapping views, each focusing on specific infrastructure components without
fully considering inter—component dependencies. A user request may span multiple
management views, as it may involve multiple components. The query and correlation
engine of the Aurora monitor (currently under development) enables grouping of log
records, gathered from multiple session managers, according to several criteria. Examples
include grouping of all records related to a given session participant, grouping of all
records related to a given work session, and grouping of all records related to a given
service provider.

Monitoring requires applications and resource managers to provide notification of
events, as well as mechanisms for accessing application state variables. Service offers

published through the repository service allows service providers to specify the metrics that
can be requested from an application component, and the events (with their associated
attributes) that a component can generate. The entry for a resource in the repository
includes all the essential information that enable monitoring and control of the component.

Management applications, acting as clients of the monitor service, may invoke the
GetRecs, GetRecsByConstraint, GetAllRecs methodsinorder to correlate log
records, produced by multiple tasks in the context of a work session and stored in multiple
logging systems. This is essential for keeping audit trails of critical business processes,
collecting performance—related data to identify bottlenecks, as well as for enabling flexible
recovery and compensation in the event of failures that cause exceptions. Recovery and
compensation are possible since the producers of log records can provide sufficient state
information to enable a management application to cancel or modify the effects of an
action, by including in their log records the name and arguments of each action method
that they invoke. This information can later be used by compensating actions invoked
through the SLA.

The specification of the measurements and events that a component can generate
complements the specification of the component’s functional interface. This allows service
providers to selectively expose implementation details and run—time state to clients, thus
enabling monitoring performance metrics and control of operational parameters. The
actual implementation of monitoring and control is by instrumentation provided by
component developers. The SLA hides such details, providing a uniform interface for
clients. The uniform container provided by the Aurora architecture encapsulates, apart
from application components (which incorporate instrumentation for monitoring and
control), a run—time representation of the supported SLA, which includes, the name of
the service, the specification of the service interface (in the form of attributes and action
methods), the access control restrictions for each actions, information about how to
cancel, or compensate for, the effects of each action (if this is possible), and information
about expected performance (such as the expected average and standard deviation of
response times). Management applications can discover at run—time (via the operations
ListStateVars, ListControlOpssupported by the uniform managementinterface
of Table 4.1.8) what state variables are exposed and what control operations are provided
by each of the components, including state variables that record performance—related
information. Performance—related information provides a more predictable view of
services to clients, as it can provide guidance in setting time—outs at the client—side, and
assist in planning an “‘access strategy’’. The latter is important for fully automated sessions
involving coordinated access to multiple services.

The SLA documents the expected behavior of service providers, for a given client or
client class. SLA enforcement requires on—line monitoring of the delivered service levels
and the actual resource/service demands, and the ability to invoke configuration and
control actions to affect the behavior of active tasks. Ongoing proof of conformance to a
SLA requires the ability to produce on—line reports on the delivered service levels, thus
achieving accountability. This aspect is particularly important for business processes that
span organization boundaries.

5.3 Integration with the Component/Container Framework

An important aspect is that the service—level agreement framework readily integrates with
the component/container framework, so as to allow interactions between customers and
services from autonomous providers to take the form of contract fulfillment processes.
Such contracts are specified in the cases where it is important to be explicit about
the mutual obligations of interacting transactions and the handling of violations of
agreements on access terms and level of service. In such cases, the service—level
agreement object encapsulates a semantic agreement between the customer and the
service provider, sequencing their interaction and maintaining a persistent log of the
actions invoked and their outcomes. Figure 5.3 shows how a service—level agreement
object mediates a customer’s interaction with a component that implements a service
offered by a provider. The service—level agreement object encapsulates a reference to the
component implementing the service, which is not directly available to the customer.
The customer interacts with the service only through the service—level agreement
object, by invoking the request_ fulfillment method. In turn, the service—level
agreement object interacts with the container that hosts the component, using the uniform
request management interface exported by the container. All steps in the interaction
are persistently logged by the service—level agreement object, which can also receive
notifications from the service provider’s component about the progress of a request. An
interaction is considered to have been completed successfully only when the provider has
invoked the declare_fulfilled method and the customer responds by invoking the
declare_satisfied method.

The service—level agreement implementation, as instantiated by the corresponding
run—time object, dictates the specific semantics of interaction between a service provider
and a customer. Specific examples are given in the case study presented in Chapter 7.
Provided that a domain model of the specific application area is available, it is possible to
develop comprehensive service—level agreement objects. The generic framework presented
in this dissertation handles low—level details of reliable state tracking, and of automatic
response to deviations from the expected run—time behavior. It is also important to note
that a service—level agreement object may be hosted either directly by a service provider
or by a third—party authority that acts as auditor of the interactions between providers
and their customers.

registry/topology update queries on interaction
history

Aurora Monitor

N
- Registry of Active Tasks

attribute - ““Topology’’ of Network of Resources

retrieval

A #
update .
Query & Correlation
/ Engine

A

subscribe A
to events event subscriptions &
Y notifications
Interface to Session Manager’s
Logging System \
o o @
--- - . J .
oo @ o ¢
Event/Data Composite Event
Sources onsumers

to Logging Systems
of Session Managers

Figure 5.2: Structure of the Aurora Monitor.

Service-level Agreement

CUSTOMER REQUEST

request _ful fill nent

-

service component
referenc

Service

Implementation

Container

™ request_issue

[Persistent Log |

ComponentProxy

Figure 5.3: Service—level agreements as entry points to services.

Chapter 6

Work Session Framework

Service—level agreements are explicitly instantiated in the run—time environment as
objects. Such objects control the sequencing of interactions between the customer and
the provider, maintain persistent state for the current status of requests, and allow both
the provider and the customer to declare explicitly what they see (independent of each
other) as satisfactory outcomes or as deviations from the agreed—upon execution pattern.
Service—level agreements can be used directly, or in the context of work sessions, which are
collections of distributed resources that can be accessed under the restrictions of an access
policy that is enforced by an access controller object specified by the authority owning the
collection.

The Aurora component platform provides a framework that adopts the satisfaction—
oriented view of workflow presented in MM WFF92] (see Figure 6.1), where commitments,
conditions of satisfaction and timely completion are the guiding concerns. This is
different from the focus of current workflow management systems on managing state
transformations and transitions, and flow of information products (such as business
documents) between workflow participants, which are usually human workers that
perform tasks by using assistant tools. It is our view that a satisfaction—oriented
perspective on workflow is more appropriate for generic services, made available by
autonomous providers, as it does not require full exposure of internal state transformations
and transitions, and also does not assume that the results from steps in a workflow are
discrete units, such as information products. Moreover, this view of workflow is more
appropriate for open environments as no globally consistent state needs to be maintained.

Instead of focusing on the flow of data objects and their life—cycle within a closed
system, the thesis presented in this dissertation is to adopt a satisfaction—oriented
approach, focusing on managing and tracking requests by customers to service providers.
Requests are essentially fokens by which customers demand that providers perform the
steps necessary for realizing their service—level commitments, as documented in service—
level agreements. The combination of service—level agreements with a generic resource
sharing environment is a major contribution of the research effort presented in this
dissertation. The work session framework was first presented in [MPNO98a].

Figure 6.3 illustrates the basic objects defined in the Aurora work session framework.
This framework models workflows that may span administrative domains as configurations
of participants in shared workspaces that group together the resources used in the
workflow. Shared workspaces, also termed work sessions, define the boundaries of
a process by encapsulating the resources, participants, tasks with dependencies, work
requests and related events that occur during its life—cycle. The Aurora work session

55

framework allows participants to browse through the resources in a shared workspace,
select the resources that they consider of value, and interact with them, through their
exported proxy objects that are hosted in containers and can be used through the
asynchronous request management interface described in Section 4.2.

Figure 6.2 outlines the overall model of process control in the Aurora run—time
environment. Three types of actions, corresponding to roles, are clearly distinguished
and may be fulfilled at run—time by independent authorities. A process definition
comprises specifications of the set of resources, essentially components that export
service interfaces, that need to be instantiated and appropriately interconnected in
order to fulfill a certain goal (such as offering a composite service to customers). A
process instance exists in a (distributed) run—time environment that hosts the components
specified by a process definition, and realizes inter—component communication paths and
sequencing constraints. The Aurora infrastructure described in this dissertation provides
such a distributed run—time environment. The task of configuring and interconnecting
components, as well as the task of controlling the sequence of service invocations and
handling asynchronous event notifications, are supported by the HERMES scripting
language that is part of the Aurora infrastructure. The HERMES scripting language
can also be used for monitoring and control of process instances, by accessing and
manipulating the state variables exposed by components, and by requesting notifications
of asynchronous events related to significant state transitions. Alternatively, application
developers can directly use the unform management interfaces exported by Aurora
containers to monitor and control the components that they host.

6.1 Resources, Tasks and Work Sessions

A session resource is a wrapper for the container—generated reference to a component
that implements one or more services. This component can be accessed through the
container’s uniform management interfaces (described in Chapter 4). A session resource
has descriptive properties and unique security credentials. It can potentially be used in
performing a task, in the context of a session, but it is important to note that it exists
independently of any task or session and operates autonomously under the authority of
its owner. An access control policy, represented by an access controller object of type
ACL (see Section 4.3), specifies the access restrictions for the resource. This policy is
interpreted by the container upon attempts to invoke actions exported by the resource’s
underlying component. A resource can belong to one or more sessions, which take the
form of resource collections maintained by independent participants. A work session,
which is a resource in itself, can contain sub—collections of resources, in a hierarchical
configuration, and may enforce access restrictions of its own.

A specialization of the session resource interface represents a session participant, which
can create sessions, initiate tasks, and accept work requests. A task is a specialization
of the session resource type that has a designated owner and dependencies on resources,
which can be either predecessors or successors. In other words, a task relies on a set of
resources (which can be tasks in their own right), and is used by another set of resources
(which may be the results of executing the task). Predecessor resources are expected to
provide required input for further processing, while successor resources receive the results
of such processing.

Tasks may be short—lived, to support a specific short—term request by a participant,

or open—ended, providing a service that combines a number of (predecessor) resources.
Open—ended tasks exist independently of their owners. A participant can create a task, by
interconnecting resources, and then other participants can use this assembly of resources
for their own purposes, subject to the access restrictions enforced by the task object and
the work session that contains the task.

Tasks, sessions, and participants are capable of receiving resource—related event
notifications. Such notifications allow the participants of a work session to keep track
of changes in the availability of resources in the shared workspace of a session. The
addition and removal of resources in a work session triggers notification via callback
invocations. The Aurora session manager service allows potential session participants to
browse through the currently available resources in a work session, and also make their
own resources available for sharing by registering them in the session. A work session
1s essentially a dynamic collection of shared resources, which are managed exclusively
by their owners. The Aurora work session framework only requires that the owners
of resources add their resources to the collection of the session. Access to resources
(specifically, the right to use an interface exported by the component whose reference is
encapsulated in a SessionResource) is restricted by the access controller associated
with the session. Session participants can create sub—collections of resources, with their
custom access controllers, and register them with an existing session, under their own
terms as encapsulated by their access controllers.

Figure 6.4 shows a schematic of a work session that can be modeled using this
framework. This example shows that a work session may involve both humans and
software systems, and requests issued to a certain service provider may be decomposed
into subrequests, which in turn can be processed either by the provider or delegated to
other providers, in a manner transparent to the customer that issued the original request.
Difterent participants in a workflow may thus have differing views of the boundaries of
interactions, without compromising the overall integrity of the process or the integrity
of individual participants. This allows a recursive, scalable construction of complex
workflows, without compromising the autonomy of service providers.

6.2 Differences from Other Approaches

Initiatives such as SWAP [Swe98] and OMG jointFlow [jJF198, Sch99] mainly address
the submission of tasks to distributed enactment services, but do not address issues
such as the hierarchical decomposition and coordination required for workflow among
autonomous workflow engines, and service—level management. Figure 6.5 illustrates
the structure of the reference model defined by the Workflow Management Coalition
(WfMC), which comprises the vast majority of workflow system vendors. This model
corresponds closely to the predominant architecture of current—generation workflow
systems. Examples of widely—deployed commercial systems conforming to this reference
model include FlowMark [LR94, Flo96] and InConcert [MS93]. As shown in Figure
6.5, the reference model relies on a monolithic server that is responsible for the major
workflow management functions, including process enactment, management of the staff
directory, binding of activities to participants, distribution of work items to the work—lists
of workflow participants, work—list management, and invocation of application tools
for use by participants. An implicit assumption in this reference model is that the
workflow execution engine is the principal and authoritative co—ordinator of processes,

which are either completely contained within its sphere of control or execute under the
control of another workflow engine that supports interoperation by implementing an
appropriate interoperability interface. Therefore, an enterprise’s organizational model
needs to be represented in detail using the system’s modeling functionality and all
applications involved in the workflow need to be adapted to allow invocation and control
by the workflow engine. Changes and evolution of processes can therefore entail major
development efforts, especially if they involve the integration of resources from external
organizations. By relying on a monolithic server that is responsible for both workflow
coordination and activity execution, current workflow management systems as defined
by the WEMC impose severe limitations on flexibility and scalability. [PPC97a] criticizes
the consequences of the current systems’ rigid structure. A major problem is that work
lists cannot be shared by heterogeneous workflow engines, since they are not externally
accessible. Thus, in order for a participant to take part in multiple workflows on different
workflow servers, a separate work list needs to be maintained at each server and client
applications need to maintain multiple dedicated connections. Moreover, three different
interfaces are used for assigning work to human participants, invoked applications, and
sub—workflows on other servers. This lack of transparency in how the activities are
implemented makes delegation of work difficult, as the workflow application is inherently
dependent on the choice of the actual implementation of each activity.

Such shortcomings are exacerbated in open systems such as the Internet where
interconnected and interdependent components are expected to be able to handle
interactions that do not adhere to predefined scheduling constraints. Autonomy
considerations imply that assumptions and convenient arrangements about communication
channels, exported functionality, access policies, performance, and exception handling
behavior cannot be taken for granted, but rather have to explicitly established, in a case—
by—case fashion for each resource of interest. With severely limited access to the internal
state and operational procedures of independent service providers, workflow applications
need to become flexible enough so as to accommodate service—level agreements that
define the mutually accepted terms and conditions for interaction, within well-defined
boundaries of authority that respect the authority of independent participants.

In our approach, we shift the emphasis on defining a generic asynchronous request
management infrastructure, and complement that with a flexible work session framework
and service—level agreements as first—class objects. Under the severe restrictions imposed
by the autonomy of resource owners, the Aurora infrastructure can by necessity only handle
aspects of distributed workflow related to request management and data interchange (in
the form of request parameters and responses). Support is provided for asynchronous
event notification, and persistent logging of steps in the processing of requests, allowing
the participants of work sessions to monitor their interactions and perform audit checks,
independently of each other. By having service—level agreements explicitly represented in
the run—time environment, the relationship between service providers and their customers
can be explicitly monitored and managed on—line. This approach is a departure from
current practices, which do not represent the terms of interaction so explicitly. Moreover,
by providing several workflow support services for general use (such as the access control
framework and asynchronous event notification services), rather than centralizing such
services in a workflow server, our approach contributes to a more open infrastructure for
large—scale distributed workflow applications, without requiring multiple accounts and
work lists to be maintained. Finally, by focusing on asynchronous request management,
rather than the low—level details of interoperability interfaces for specific types of

work performers, our approach allows a generic treatment of service providers and
their interactions with customers that does not comprise the autonomy of workflow
participants. What is more, this approach to workflow allows the integration of service—
level agreements in workflow processing by simply encapsulating references to service—
level agreement objects within session resource objects.

The focus on asynchronous request management is also characteristic of the Simple
Workflow Access Protocol (SWAP), described in an IETF Internet Draft [Swe98]. SWAP
allows a client to initiate, control and monitor asynchronous long—duration service
execution at remote sites. SWAP provided the basis for the Interoperability Wf—XML
Binding that was issued by the Workflow Management Coalition in January 2000
[WfX00]. This specification defines an XML—-based language for modeling the data
transfer requirements of interoperable workflow systems. Related work is also reported in
[PPC97b] that presents an architecture for supporting workflows involving autonomous
participants and service providers, based on asynchronous requests among workflow
participants and standard interfaces for sources and performers of work items. The work
presented in this dissertation extends this previous work by introducing a framework for
service—level agreements, that represent explicit commitments by providers to customers
on service—levels.

The OMG jointFlow specification [jF198, Sch99] adapts the WfMC runtime standards
to a business objects execution environment. The jointFlow specification distinguishes
between requesters, that implement the WFRequester interface to allow a process
to propagate status updates, and work performers, that implement the WFActivity
interface to allow observation and control of the state of an activity in the context of
a workflow. Objects that implement the WFProcess interface represent entities that
perform work requests, often by delegating them to other entities, providing operations
to control the execution of the work request and to observe its state. The specification
also includes the WFEventAudi t interface for describing the contents of status—change
events produced by WFActivity and WFProcess objects.

A workflow—process model can be translated into the jointFlow metamodel in two
ways: One option is to use the framework as an object veneer on top of an existing
workflow engine; in this case the implementation of the jointFlow interfaces would
delegate most of their operations to the back—end WFMS. Alternatively, the process
definition could also be coded into a WFProcess object and and a set of WFActivity
objects that are hosted by a business object server.

The jointFlow specification is a major evolutionary step for WfMC-compliant
workflow management systems. However, the specification does not address the
hierarchical scaling and coordination required for a flexible, distributed co—operation
among autonomous workflow engines. It is assumed that all the parties involved in the
overall workflow are integrated through the jointFlow metamodel, with WFACtivity
objects acting either as adapters for existing business objects or as bridges for interaction
between a main workflow and another workflow application. In the latter case, the
WFActivity implementation is expected to also implement the WFRequester interface,
so as to allow the workflow activity to receive status updates from the sub—workflow.
There is no support for cases where the workflow systems may not be able to communicate
status information to one another. More importantly, there is no support for monitoring
service levels, and in particular monitoring of exceptions and deviations from the expected
behavior of service providers. Another subtle limitation on the autonomy of providers
is that the life—time of WFActivity objects is tightly coupled with that of WFProcess

objects. In effect, a WFACtiVvity object cannot exist outside the context of a WFProcess
object. In contrast, in the Aurora work session framework SessionResource objects
exist independently of work sessions, under the control of their respective service providers.
SessionResource objects can thus be discovered at run—time by potential customers,
whereas in the OMG jointFlow framework it is assumed that in order to initiate a
WFProcess all the required resources have been resolved (in a manner that is not covered
by the specification, which only provides the WFAssignment interface representing the
association of a resource with an activity) and appropriate WFACtivity objects can
be instantiated. By placing no restrictions on the life—cycle of session resources, the
Aurora work session framework respects the autonomy of service providers and provides
mechanisms for managing asynchronous requests and reliable tracking of interaction
state through service—level agreements. Requests are not explicitly represented in the
OMG jointFlow framework, and therefore cannot be monitored and managed in detail.
Moreover, service—level management issues are not addressed, although they become
crucial in the case of inter—organizational workflow which presumes the existence of
contracts among the different participating organizations. A main theme in this thesis
is that such contracts should be explicitly represented at run—time in order to improve
accountability and monitor conformance to the terms of co—operation agreed upon by
the participating organizations.

4[Proposal } { Agreement]—

- -
- ~
- ~
- ~.

~
~~~~~~
______

—[ Satisfaction } [ Performance ]—

Figure 6.1: A Satisfaction—Oriented View of Workflow.

Process Definition

create instance

Monitor/Control
get/ change

dat a/ par aneters

%

state change
notifications

Process Instance

Figure 6.2: Instantiation and Control of Process Instances in the Aurora run—time environment.




Session Resource

- credentials
- descriptor
- component reference

Session Participant

- request queue

- task factory

Work Request

- RID + opaque block

- "folder" factory

Task

- dependencies:
- producers

- consumers
- context

Resource Event

- type tag + opaque block

Work Session Manager

- session factory/directory
- participant registry

Work Session (workspace)

- collection of participants
- access control

Figure 6.3: Elements of the Aurora session framework.




participant (B)

—

ta:

sk (B:t)'l [j

participant (A)

task (A1) [j
task (A2) [j
task (A3) [j\
task (A4) [j\

- automated business
information process

participant (C)

—H

task (c;[j

participant (E)

- human worker
assisted by interaction tool

- service provider

task (E1) [j
A

participant (D) /
g .
task (D1) [j task (D1a)

or '

ek 020 1
Nwen
task (D2c) [j

taskA(D1b) CI

participant (F)

—>

task (F2) E
o 4

- service provider
with outsourcing
relationships

Figure 6.4: Example of a work session involving autonomous participants.

Process Definition Tools

process definition i/f

Administration &
Monitoring Tools

administration &

Workflow API & Interchange Formats

: Interface

monitoring i/f

Wor kf | ow
Engi ne

interoperability i/f

- service provider

(task (F1) E

Workflow Enactment Service

client applications i/f

invoked applications i/f

Workflow Client
Applications

- work list
- process control

Invoked Applications

Wor kf | ow
Engi ne

Other Workflow
Enactment Service(s)

Figure 6.5: The Workflow Management Coalition Reference Model.






Chapter 7

Case Study

This chapter describes a prototype implementation of an electronic commerce system
that was developed for the purposes of demonstrating the integration of service—level
agreements in the run—time environment. The prototype also provides the basis for a
qualitative comparison of the work session framework presented in Chapter 6 to the
approach taken by current—generation workflow management systems, as reflected by
the jointFlow specification by the OMG Business Object Domain Task Force [jF198].

The electronic commerce system consists of components, as described in Chapter 4,
that provide a number of commerce—related services. The components are combined to
build a distributed electronic commerce environment, assuming that these services are
offered by independent authorities and therefore mandate as loose a coupling as possible.
These components were used in the two alternative implementations, the one based on
the Aurora infrastructure and the one based on the OMG jointFlow framework. The two
alternative implementations highlight the limitations of the OMG jointFlow framework,
as discussed in Section 6.2.

7.1 Description of Components

The suite of components developed for this case study offer the following services:

e ProductsCatalogue: a database of product descriptions

e Inventory: extension of ProductsCatalogue that keeps track of the available quantity
for each product and generates alerts when the inventory level for a specified product
becomes lower/higher than a threshold

e Shopping Basket: service for combining products from one or more ProductsCatalogue
services into a single order

e PaymentProcessor: front—end for electronic payment processor

e OrderTracking: order management and tracking service capable of handling orders
that include multiple products from independent providers

e FeedbackLog: service for logging client feedback and problem reports so that
providers can inspect them and take appropriate actions to handle them

The implementations of these components rely on a number of support services provided
by the Aurora infrastructure, such as the persistent data storage service, the volatile data
storage service, and the logging service.

65



7.2 Order Processing Workflow

We focus on order processing and tracking in an electronic commerce environment, built
using the components described in Section 7.1. This workflow is described by the state
transition diagram of Figure 7.1, which defines the life—cycle of an order. The VOID state

INIT

NO CREDIT CONFIRMED
VOID CREDIT_OK

!II

SHIPPED RETURNED
REFUNDED

Figure 7.1: Order life—cycle in the e—commerce case study

represents an order that has been cancelled for some reason, either by the customer or
by a provider. After an order has been submitted (INIT state), the order management
and tracking service performs validity checks on the product and shipping information
submitted by the customer to determine if the order can be marked as CONFIRMED.
This step is followed by checks of the payment—related information submitted by the
customer to determine if order—processing can proceed (CREDIT_OK state) or should
stop (NO_CREDIT state). The order management and tracking service marks an order
as SHIPPED after all the products selected by the customer have been shipped to the
specified address, provided that this action takes place within a specified deadline. Until
this deadline expires, the order may be modified or cancelled either by the customer or by
the providers, with no consequence. After the products have been shipped, the customer
is given the option to return the products (RETURNED state), in which case the order has
to be marked as REFUNDED within a specified deadline.

The order processing and tracking workflow described by Figure 7.1 is inherently
event—driven. The prototype uses the SubjectGroupFSM service and the EventLoop
service, described in Section 4.4, to register callbacks to be invoked when an order reaches



each of the states shown in Figure 7.1.

7.3 Integration using the Aurora Framework

We developed ComponentProxy objects (see Section 4.1) for the components presented
in Section 7.1, so as to allow them to be combined while remaining independent, under the
control of autonomous service providers. A work session was established, comprising of
SessionResource objects that provided persistent handles for the ComponentProxy
objects, which in turn were hosted by containers. The order processing workflow was
implemented by executing a configuration script, expressed using the scripting language
presented in Section 4.5, that established callback actions to be executed upon notifications
on order state changes.

The resulting component configuration had minimal coupling among components,
since the component model, in particular the standard interfaces Importer, Exporter,
and Notifier facilitated composition for the purposes of combining the functions
supported by the components, without implicit embedding of object references in the
component implementation code. For example, the order tracking service can retrieve
a reference for the PaymentProcessor service by querying its Importer interface,
allowing flexibility in the selection of the service. Moreover, by providing implementations
of the ComponentControl interface for each of the components, it is possible for system
administrators to monitor the components at run—time, by inspecting the state variables
that they expose. In the prototype implementation, components exposed measurements
of the average and maximum response times for requests. Additional measurements could
easily be accommodated in the framework, provided that the component implementation
exposed these measurements to the corresponding ComponentControl objects.

An important point is that the implementation based on the Aurora work session
framework benefits from the service—level agreement framework. This framework allows
the providers of services such as the order tracking system and the payment processor to
explicitly declare their terms of service, and track the course of fulfillment transactions
jointly with their customers. This functionality covers an aspect of workflow management
that is outside the scope of the OMG jointFlow specification. Section 7.5 describes
examples of interaction sequencing through a service—level agreement object.

A further characteristic of the implementation based on the Aurora work session
framework is the loose coupling and dynamic binding of resources/tasks, which is
facilitated by the uniform management interfaces exported by components in the Aurora
run—time environment, and the directory service that allows service providers to publish
the interfaces and their associated non—functional properties (access control restrictions,
compensation support, expected performance). Service providers may register or withdraw
their resources at any time, while potential customers that express their work requests in
terms of abstract specifications using the resource type definitions in the service directory
need not be aware of such decisions by the service providers. Customers and service
providers remain autonomous, provided that a facility such as the service—level agreement
framework explicitly delimits their interactions.

The implementation based on the Aurora work session framework represents tasks and
work requests as first—order entities, existing outside the scope of specific work sessions.
Task are modeled as entities that can consume and produce resources, so as to explicitly
model dependencies among services. Work requests are submitted to session participants,



which are also explicitly represented in the context of work sessions. Session participants,
being resources themeselves, can process work requests by issuing further requests to other
participants and by utilizing resources available in the current work session context.

7.4 Integration using the OMG jointFlow Framework

For the purposes of experimentation with alternative designs for the work session
framework, we developed an integration framework based on the system based on
the OMG jointFlow specification [jF198], and used it as an integration platform for the
components presented in Section 7.1 to implement the order processing workflow scenario.
This specification [Sch99] adapts the WfMC run—time standards to a business objects
execution environment, defining a framework for implementing distributed workflow
applications. It defines standard interfaces for enabling interoperation of process
components, monitoring of process execution, and associating workflow components
with resources.

In short, the OMG jointFlow framework mainly addresses the submission of tasks
to distributed workflow enactment services, but does not address issues such as the
hierarchical decomposition and coordination required for workflow among autonomous
workflow engines, and service—level management. As discussed in detail in Section 6.2,
there is no support for cases where the workflow systems may not be able to communicate
status information to one another; it assumed that objects of type WFACtIVIty represent
tasks in the overall workflow process

7.5 A Demonstration of Service—level Agreements

In Sections 7.3 and 7.4, two implementations of the same workflow management
application were described, using the Aurora work session framework and a framework
based on the OMG jointFlow specification, respectively. This section describes how a
service—level agreement has been integrated in the prototype electronic commerce system.
Specifically, the prototype supports monitoring of the delay in shipping an order once it
has been confirmed, and automatic invocation of compensating actions in case of deadline
expiration. This functionality relies on the TIME scheduling service, described in Section
4.1.6.

The service—level agreement object implemented for this demonstration uses the
SubjectGroupFSM service to keep track of state transitions in the processing of an
order. Completing an order involves submitting a shopping basket, containing products
from one or more product catalogues, to an order tracking service. The service—
level agreement object encapsulates a reference to a container—hosted component that
implements the order management and tracking service. The customer does not directly
access the order management and tracking service, but rather interacts with the service
via the service—level agreement object that supervises order processing. The actual steps
in processing an order are carried out by a service of type OrderTracking that is hosted
in the provider’s run—time environment. The service—level agreement object interacts
with a container to relay asynchronous requests for order processing. The parameters of
these asynchronous requests include the deadline for completing order processing, and
the compensating actions, encapsulated in an object that exports the compensation
method, to be automatically triggered in the event of missing the deadline. In the prototype,



the compensating actions are merely to notify both the customer and the provider. More
elaborate actions could easily be accommodated, provided that they are coded as part of
the compensation method.

Customer I

O G O

i 2
Order Handling SLA L Timed-Event Scheduler

- event history

: request_fulfillment
: schedule_action

: set_ctx, start

: sla_event

: get_history

iq : declare_fulfilled
Provider I ©)) : declare_satisfied
\ order tracking

4)] (6

N OUTAWNE

FSM

Figure 7.2: Service—level agreement for shipping an order: Normal case.

Figure 7.2 illustrates the flow of requests and events in the case of an order that is
shipped within the specified deadline.

1. Customer invokes request_fulfilIment method on the service—level agreement
object, which invokes the submit_order method of the ShoppingBasket service,
through an asynchronous request. The parameters of the request_fulfillment
method include the security credentials of the customer. The return value of this
method is the persistent identifier for the request for executing the submit_order
method. All parameters and return values of methods invoked on the service—
level agreement object are persistently logged, and are associated with the security
credentials of the invoking entity.

2. The service—level agreement object invokes the schedule_action method on the
TIME scheduling service, to arrange for receiving a notification when the deadline
for shipping the order expires.

3. The methods set_ctx and start are invoked by the service provider, to mark that
the execution of the service has begun, and to initialize the persistent state maintained
by the service—level agreement object.



. While processing the order, the service provider can emit asynchronous event

notifications, using the sla_event method. These notifications, mostly progress
indications, are persistently logged.

. The customer can view the event history for an ongoing request, by invoking the

get_history method on the service—level agreement object. It is important to
note that the service—level agreement object is not necessarily hosted by the service
provider, which may keep his own log of events and actions. The log maintained
by the service—level agreement object is the externally visible record of the ongoing
interaction, and serves as proof of conformance or deviations from the behavior
promised by the provider.

. The service provider performs, at his site, the steps necessary for handling the order.

Assuming that the deadline for shipping the order is not exceeded, the service provider
at some point in time invokes the declare_ful il led method. This invocation is
an explicit declaration that the service provider claims to have completed his part of
the agreement.

. The interaction is completed successfully when the customer, independently of the

provider, confirms that the service was indeed completed in an acceptable manner.
This is achieved by invoking the declare_satisfied method on service—level
agreement object.

Figure 7.3 illustrates the flow of requests and events in case the deadline for shipping a
confirmed order expires. The first five steps are the same as in the case of normal execution
flow.

1.

Customer invokes request_ful fil Iment method on the service—level agreement
object.

. The service—level agreement object invokes the schedule_action on the TIME

scheduling service, to arrange for notification in case the deadline is missed.

. The methods set_ctx and start are invoked by the service provider.

While processing the order, the service provider can emit asycnhronous event
notifications, using the sla_event method.

. The customer can inspect the event history by invoking the get_history method.

. Assuming that the deadline expires without the provider having completed order

processing, the TIME scheduling service notifies the service—level agreement object.
This is achieved by an invocation of the callback method timed_event_cb. This
method persistently logs the fact that the deadline has expired.

. After logging the deviation from the promised execution behavior, the service—

level agreement object invokes the compensation callback method on the service
provider.

Optionally, the service provider may acknowledge the deviation, by emitting an
event to be logged by the service—level agreement object. It should be noted that the
service—level agreement object does not directly affect the internal state of the service
provider’s order processing system.



Customer I

@1 6
i 2
Order Handling SLA @ Timed-Event Scheduler
- event history
(6)
1: request_fulfillment
4 (M 1®) 2: schedule_action
3: set_ctx, start
4: sla_event
5: get_history
Provid 6: timed_event_cb
Frovider ©)) 7: compensation
\ 8: sla_event
order tracking 9: declare_complaint

FSM

Figure 7.3: Service—level agreement for shipping an order: Exception handling.

9. The customer may opt to log a formal complaint, using the declare_complaint
method. This action would be useful for auditing purposes and handling disputes.
Depending on the specific terms of the service—level agreement, the provider may
continue processing to ship the order, at a reduced cost, or the order may be cancelled.

It should be noted that, in both examples, the service—level agreement object keeps
track of the current state in the prcoessing of the order. This is achieved by having
registered a callback to be activated when the provider’s SubjectGroupFSM service
emits notifications. Since notifications are generated when each state is reached, as well as
when specific state transitions take place, the implementor of the service—level agreement
can program specific reactions for specific events of relevance to the order processing
workflow.






Chapter 8

Conclusions and Perspective

8.1 Summary of Results

This dissertation presented a model for network—centric applications that rely on the
cooperation of autonomous services in an open distributed environment. Extensions
to the CORBA object framework were presented in Chapter 4 to facilitate composition
of new services by combining existing ones, with support for on—line monitoring and
control. Service—level agreements were introduced into the distributed component
infrastructure in Chapter 5 to allow interactions while preserving autonomy and
guaranteeing accountability. By constraining both the service provider and the service
customer to interact through service—level agreements, which are first—class objects in
our infrastructure, the run—time properties of services become more predictable and in
this sense more manageable. An infrastructure that utilizes components and service—level
agreements to model configurations of resources and tasks in the context of work sessions
provides a framework for dynamic and adaptive workflow, presented in Chapter 6. In our
perspective, work sessions are defined primarily by the (dynamic) collection of resources
made available by autonomous service providers, the requests issued by the partners
involved, and the mutual commitments between service providers and their customers
implied by these requests through explicit agreements on service—level aspects. Thus,
the Aurora infrastructure not only provides support for implementing the actions taken
by individual service providers to satisfy their commitments, but also explicitly supports
co—ordination and tracking of requests for performing actions. A case study from the
domain of electronic commerce, presented in Chapter 7, demonstrates the integration of
service—level agreements in the run—time environment. The case study also provides the
basis for a qualitative comparison of the work session framework presented in Chapter 6
to the approach taken by current—generation workflow management systems, as reflected
by the jointFlow specification by the OMG Business Object Domain Task Force [jF198].
The work session abstraction, that models a Web of resources utilized by interdependent
tasks, contributes to realizing a shared workspace within which diverse applications and
tools can be shared by a community of end—users in dynamic configurations. This
workspace enables interoperation of components that implement services, while respecting
the autonomy of the service providers, in a sense enabling dynamic trading in the context
of a virtual marketplace [Der97]. In such a setting, composition capabilities are essential

73



for service providers to gain market advantage, by allowing more rapid creation of new
services. Moreover, such a setting requires a comprehensive infrastructure for allowing
independent providers to express terms and conditions for usage of their services, including
access restrictions and performance—related indicators and controls, and support for both
providers and customers to monitor the conformance of ongoing interactions to mutually
agreed terms. The research presented in this dissertation is a step towards realizing such a
vision.

8.2 Directions for Further Research

All'in all, we consider system—level infrastructure support for service—level agreements to
be a major direction for research, as well as an essential requirement for advancing the
scope and quality of processes in a dynamic open environment, especially in the context
of electronic commerce applications. We are particularly interested in applying our work
in enterprise portals that combine infrastructure, business models and organizational
structures to enable network—centric business processes. Such systems provide the
means for connecting customers, partners, suppliers and employees, by integrating the
business processes of individual participants and building business communities. Portals
encompass applications to support functions such as discovery of information and business
opportunities, collaboration, business transaction execution, customer support, and
supply chain management. Many of these applications may share software components,
and require an infrastructure that readily supports on—demand combination of available
service offerings to create customized packages for customers. This infrastructure needs
to support dynamic deployment of new components and services, dynamic configuration,
and service—level monitoring, despite the challenges raised by the large—scale distribution
and autonomy of process participants. It is our view that these requirements can be
addressed through the development of a service—level monitor that, in analogy with a
transaction processing monitor [GR93], provides a controlled run—time environment and
support services for dynamic workflow involving distributed, independently developed
and managed components. The Aurora infrastructure is a step towards this direction.

An important development is the increasing popularity of thin—client devices, such
as personal digital assistants (PDAs) and third—generation mobile phones with Internet
access capabilities. Use of such devices is becoming pervasive, and there is growing interest
in using them as generic service access terminals. Their inherent limitations, namely limited
CPU and memory capacity, limited bandwidth, and intermittent bandwidth, pose hard
challenges for application development. It is our view that the service—level agreement
and work session frameworks presented in this dissertation could be used in this context
as well. However, the infrastructure services presented in this dissertation rely on
CORBA and Java technologies that are too heavy—weight for thin—client devices. A
direction for further research is the design and development of light—weight mechanisms
for allowing thin—client devices to access services from independent and autonomous
providers. It is our view that the Wireless Application Protocol [Ltd99] by the WAP
Forum, an international industry consortium, offers a major enabling technology for
allowing generic service access from thin—client devices. A direction for research is to
design and develop a service access gateway for services hosted by the Aurora run—time
infrastructure that will allow WAP-compliant thin—client devices to access services.

Another major direction for research is to investigate how to handle changes in



the service—level agreements exported by service providers, especially in the case of
interdependent providers. For example, assume that service provider A relies on the
services of providers B and C, and that each of the providers exports its own service—level
agreement, sla(A), sla(B), and sla(C), respectively. If service provider B changes its
service—level agreement, for example by promising shorter response times or by offering
more elaborate compensating actions, service provider A needs to be notified, since its
service—level agreement must take into account the changes made by service provider
B. In the case of changes related to expected response times, it may be possible to
automatically update the parameters of the service—level agreement exported by service
provider A. In the case of compensating actions and access restrictions, changes may be
much more difficult to handle. Due to the increasing interdependencies between service
providers, the problem of propagating changes in service—level agreements needs to be
investigated in—depth.

Moreover, we are interested in applying the service—level agreement framework in
cases where an ontology models the specific application domain. In this setting, service—
level agreements can encapsulate application domain—specific semantics, allowing for
more detailed handling of the interaction between service providers and their customers.
By giving an explicit link between the systems—level and business—level aspects of the
application infrastructure, service—level agreements provide a flexible framework for
explicitly representing and managing complex relationships between service providers
and their customers, and allow for reliable tracking of the interaction party by all sides
involved, without comprising autonomy. It is for this reason that we believe service—
level agreements should become an integral part of large—scale distributed application
platforms.



76



Bibliography

[AAAT95]

[AAAMY7]

[A197]

[BCGP97]

[BDS*93]

[BE9S]
[Ber96]

[BMRY6]

[Bos97]

[BSCHL97]

[BTIWOS]

G. Alonso, D. Agrawal, A. El Abbadi, C. Mohan, M. Kamath,
and R. Guenthoer. “Exotica/FMQM: A Persistent Message—Based
Architecture for Distributed Workflow Management”. In Proc. IFIP
Working Conference on Information Systems Development for Decentralized
Organizations, pages 1 ——18, 1995. Also available as IBM Research Report
RJ9912, IBM Almaden Research Center, 1994.

G. Alonso, D. Agrawal, A.El Abbadi, and C. Mohan. “Functionality and
Limitations of Current Workflow Management Systems”. IEEE Expert,
1(9), 1997. Special Issue on Cooperative Information Systems.

C. Allen. “WIDL: Automating the Web with XML”. World Wide Web
Journal, 2(4):229—-248, 1997.

M. Baldonado, C.K. Chang, L. Gravano, and A. Paepcke. “The Stanford
Digital Library Metadata Architecture”. Int’l Journal of Digital Libraries,
1(2), 1997.

Y. Breitbart, A. Deacon, H.J. Schek, A. Sheth, and G. Weikum. “Merging
application—centric and data—centric approaches to support transaction—
oriented multi—system workflows”. ACM SIGMOD Record, 22(3), 1993.

E. Berkel and P. Enrico. Effective Use of MVS Workload Manager
Controls. IBM Corp., 1995.

P.A. Bernstein. “Middleware: A Model for Distributed System Services™.
Communications of the ACM, 39(2):86—-98, February 1996.

D. Barbara, S. Mehrotra, and M. Rusinkiewicz. “INCAs: Managing
Dynamic Workflows in Distributed Environments”. Journal of Database
Management, 7(1):5——15, 1996. Special Issue on Multidatabases.

J. Bosak. “XML, Java, and the Future of the Web”. World Wide Web
Journal, 2(4):219—-227, 1997.

I. Ben—Shaul, A. Cohen, O. Holder, and B. Lavva. “HADAS: A Network—
Centric Framework for Interoperability Programming”. [International
Journal of Cooperative Information Systems, 6(3/4):293—-314, 1997.

D. Beringer, C. Tornabene, P. Jain, and G. Wiederhold. “A Language
and System for Composing Autonomous, Heterogeneous and Distributed
Megamodules”. In Proc. Int’l Workshop on Component—Based Modeling
of Distributed Systems (in conjunction with DEXA’98), pages 826——833,
1998.

77



[CC96]

[CCD"96]

[CD97]

[CGS97]

[COR94]

[Den94]

[Der97]

[DHLY0]

[DP97a]

[DP97b]

[EIm92]

[FFH*98]

[Fl1096]

IBM Corp. and Hewllet—Packard Corp. ‘“Application Response
Measurement API  User Guide”, 1996. Available via URL
http://www.hp.com/go/ARM.

K.M. Chandy, A. Chelian, B. Dimitrov, H. Le, J. Mandelson,
M. Richardson, A. Rifkin, P.A.G. Sivilotti, W. Tanaka, and L. Weisman.
“A World—Wide Distributed System Using Java and the Internet”. In Proc.

S5th IEEE Int’l Symposium on High Performance Distributed Computing,
1996.

L. Cardelli and R. Davies. “Service Combinators for Web Computing”.
In Proc. USENIX Conference on Domain—Specific Languages, 1997.

S. Ceri, P. Grefen, and G. Sanchez. “WIDE: A Distributed Architecture
for Workflow Management”. In Proc. 7th Int’l Workshop on Research
Issues in Data Engineering, 1997.

“The Common Object Request Broker: Architecture and Specification”.
Object Management Group, Framingham, Mass., 1994. Revision 2.0.

P. Denning. “The Fifteenth Level”. In Proceedings of the ACM
SIGMETRICS Conference on Measurement and Modeling of Computer
Systems, pages 1——4, 1994.

M.L. Dertouzos. “What Will Be : How the New World of Information Will
Change Our Lives”. Harper San Francisco, 1997.

U. Dayal, M. Hsu, and R. Ladin. “Organizing Long—Running Activities
with Triggers and Transactions”. In Proceedings of the ACM SIGMOD
Conference on Management of Data, pages 204—-214, 1990.

A. Dan and F. Parr. “An Object Implementation of Network
Centric Business Service Applications (NCBSAs): Conversational Service
Transactions, Service Monitor and an Application Style”. In Proc.
OOPSLA’97 Business Object Workshop, 1997. Available via URL
http://www.tiac.net/users/jsuth/oopsla97/.

A. Dan and F. Parr. “The Coyote Approach for Network—Centric Service
Applications: Conversational Service Transactions, a Monitor and an

Application Style”. In Proc. High Performance Transaction Processing
(HTPS) Workshop, 1997.

A. K. Elmagarmid, editor. Transaction Models for Advanced Database
Applications. Morgan Kaufmann, 1992.

S. Field, C. Facciorusso, Y. Hoffner, A. Schade, and M. Stolze. “Design
Criteria for a Virtual Market Place (VIMP)”. In Proc. European Conference
on Research and Advanced Technology for Digital Libraries, pages 819——
832, 1998.

“IBM FlowMark Programming Guide (Version 2 Release 3)”, 1996.
Document Number SH19-8240-02.

78



[FNGD92]

[FNGD93]

[Fuc96]

[GEK*+94]

[GHS95]

[GJS96]

[Gol90]
[GR93]

[Gra91]

[GSBC99]

[GSM*95]

[Gun95a]
[Gun95b]
[Hol95]

[F198]

D. Ferguson, C. Nikolaou, L. Georgiadis, and K. Davies. “Goal Oriented,
Adaptive Transaction Routing for High Performance Transaction
Processing Systems”, 1992. IBM Research Report RC18139.

D. Ferguson, C. Nikolaou, L. Georgiadis, and K. Davies. “Satisfying
Response Time Goals in Transaction Processing Systems”. In Proceedings
of the 2nd International Conference on Parallel and Distributed Information
Systems, 1993.

M. Fuchs. “Let’s Talk: Extending the Web to Support Collaboration™.
In Proc. 5th Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises, 1996.

W. Gu, G. Eisenhauer, E. Kraemer, K. Schwan, J. Stasko, J. Vetter, and
N. Mallavarupu. ‘“Falcon: On—-line Monitoring and Steering of Large—
Scale Parallel Programs”. Technical Report GIT-CC-94-21, Georgia
Institute of Technology, 1994. Available at http://www.cc.gatech.edu/.

D. Georgakopoulos, M. Hornik, and A. Sheth. “An Overview
of Workflow Management: From Process Modeling to Workflow
Automation Infrastructure”. Distributed and Parallel Databases, 3(2):119—
—154, April 1995.

J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Java
Series. Addison—Wesley, September 1996.

C.F. Goldfarb. “The SGML Handbook’. Oxford University Press, 1990.

J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann, 1993.

J. Gray. The Benchmark Handbook for Database and Transaction Processing
Systems. Morgan Kaufmann, 1991.

D. Georgakopoulos, H. Schuster, D. Baker, and A. Cichocki. “Managing
Process and Service Fusion in Virtual Enterprises”. Information Systems,
Special Issue on Information Systems Support for Electronic Commerce,

24(6):429—-—-456, 1999.

K. Goldman, B. Swaminathan, T.P. McCartney, M.D. Anderson, and
R. Sethuraman. “The Programmer’s Playground: I/O Abstractions for
User—Configurable Distributed Applications”. IEEE Trans. on Software
Engineering, 21(9):735—-746, 1995.

N.J. Gunther. “Flight Recorders, Timing Chains, and Directions for SPEC
System Benchmarks”. SPEC Newsletter, March 1995.

N.J. Gunther. “Thinking Inside the Box and the Next Step in TPC
Benchmarking — A Personal View”. TPC Quarterly Report, January 1995.

D. Hollingsworth. “The Workflow Reference Model”, 1995. WFMC-
TC-1003 — available via WWW at URL http:/www.wfmc.org.

“OMG BODTF RFP #2 Submission Workflow Management Facility”,
1998. OMG Document Number bom/98—-06—-07.

79



[KGMP97]

[Kic96]

[KS95]

[KTL*92]

[KZLO9S]

[LR94]

[Ltd99]

[Lud9g]

[Lud99]

[LW99]

[McB96]

S.P. Ketchpel, H. Garcia—Molina, and A. Paepcke. “Shopping Models:
A Flexible Architecture for Information Commerce”. In Proc. Int’l

Conference on Theory and Practice of Digital Libraries, pages 65——74,
1997.

G. Kiczales. “Beyond the Black Box: Open Implementation”. IEEE
Software, 13(1), 1996.

N. Krishnakumar and A. Sheth. “Managing Heterogeneous Multi—System
Tasks to Support Enterprise—Wide Operations”. Distributed and Parallel
Databases, 3(2):155——186, April 1995.

H. Krasner, J. Terrel, A. Linehan, P. Arnold, and W.H. Ett. “Lessons
Learned from a Software Process Modeling System”. CACM, 35(9):91—-
100, 1992.

E. Kaldoudi, M. Zikos, E. Leisch, and S.C Orphanoudakis.
“PLEGMA: An Agent—Based Architecture for Developing Network—
Centric Information Processing Services”. Technical Report FORTH-
ICS/TR-228, Institute of Computer Science — FORTH, 1998. Available
at http//www.ics.forth.gr/TR.

F. Leymann and D. Roller. “Business Process Management with
FlowMark™. In Proc. 39th IEEE Computer Society Int’l Conf. (CompCon),
pages 230—-234, 1994.

WAP Forum Ltd. “WAP: Wireless Internet Today”, 1999. White paper,
available via WWW at http:/www.wapforum.org/what/whitepapers.htm.

H. Ludwig. ‘““Analysis Framework of Complex Service Performance for
Electronic Commerce”. In Proc. Int’l Workshop on Business Process

Reengineering and Supporting Technologies for Electronic Commerce (in
conjunction with DEXA’98 ), pages 638——643, 1998.

H. Ludwig. “Termination Handling in Inter—Organizational Workflows :
An Exception Management Approach™. In Proc. Euromicro Workshop on
Parallel and Distributed Processing, 1999.

H. Ludwig and K. Whittingham. “Virtual Enterprise Coordinator:
Agreement—Driven Gateways for Cross—Organizational Workflow
Management”. In Proc. Int’l Conf. Work Activity Coordination and
Collaboration (WACC), pages 29—-38, 1999. Also Available as IBM
Research Report RZ 3082, IBM Research Division, Zurich Research
Laboratory, 1998.

D. McBride. “The SLA Cookbook: A Recipe for Understanding System
and Network Resource Demands”. Hewlett—Packard Company, 1996.
Available via URL http//www.hp.com/openview/rpm.

[MMWFF92] R. Medina—Mora, T. Winograd, R. Flores, and F. Flores. “The Action

Workflow Approach to Workflow Management Technology”. In Proc.
ACM Conf. on Computer—Supported Collaborative Work, pages 281 —-—288,
1992.

80



[Moh97]

[MPN97]

[MPN98a]

[MPNO98b]

[MPN98c]

[MPN99]

[MPP9S§]

[MS93]

[NFC92]

[NMP+97]

[Noo8&9]

[NTAS91]

C. Mohan. “Recent Trends in Workflow Management Products, Standards
and Research”. In Proc. NATO Advanced Institute (ASI) Workshop on
Workflow Management Systems and Interoperability, 1997. Available via
URL http://www.almaden.ibm.com/cs/exotica.

M. Marazakis, D. Papadakis, and C. Nikolaou. ‘“The Aurora Architecture
for Developing Network—Centric Applications by Dynamic Composition
of Services”. Technical Report TR 213, FORTH/ICS, 1997.

M. Marazakis, D. Papadakis, and C. Nikolaou. “Aurora: An Architecture
for Dynamic and Adaptive Work Sessions in Open Environments”. In Proc.
Int’l Conference on Database and Expert Systems Applications (DEXA’98 ),
IEEE Computer Society Press, pages 480——491, 1998.

M. Marazakis, D. Papadakis, and C. Nikolaou. ‘“Management of Work
Sessions in Dynamic Open Environments”. In Proc. Int’l Workshop on
Workflow Management (in conjunction with DEXA’98), pages 725—-730,
1998.

M. Marazakis, D. Papadakis, and C. Nikolaou. “The HERMES Language
for Work Session Specification”. In Proc. Int’l Workshop on Coordination
Technologies for Information Systems (in conjunction with DEXA’9S8 ), IEEE
Computer Society Press, pages 542—-547, 1998.

M. Marazakis, D. Papadakis, and C. Nikolaou. “System-—level
Infrastructure Issues for Controlled Interactions among Autonomous
Participants in Electronic Commerce Processes”. In Proc. Int’l Workshop

on Information Technologies for Electronic Commerce (in conjunction with
DEXA’99), IEEE Computer Society Press, 1999.

M. Marazakis, D. Papadakis, and S.A. Papadakis. “A Framework for
the Encapsulation of Value—Added Services in Digital Objects™. In Proc.

European Conference on Research and Advanced Technology for Digital
Libraries, pages 75——94, 1998.

D.R. McCarthy and S.K. Sarin. ‘“Workflow and Transactions in
InConcert”. Data Engineering Bulletin, 16(2), 1993.

C. Nikolaou, D. Ferguson, and P. Constantopoulos. ‘“Towards Goal
Oriented Resource Management”, 1992. IBM Research Report RC17919.

C. Nikolaou, M. Marazakis, D. Papadakis, Y. Yeorgiannakis, and
J. Sairamesh. “Towards a Common Infrastructure to Support Large—Scale

Distributed Applications”. In Proc. European Conference on Research and
Advanced Technology for Digital Libraries, pages 173——193, 1997.

J. Noonan. “Automated Service Level Management and its Supporting
Technologies”. Mainframe Journal, October 1989.

O. Nierstrasz, D. Tsichritzis, V. deMey, and M. Stadelmann. “Object +
Scripts = Applications”. In D. Tsichritzis, editor, Object Composition.
University of Geneva, 1991.

81



[Ous94]
[PCGM*96]

[PPC97a]

[PPC97b]

[RW97]

[Sch93]

[Sch99]

[SEST97]

[SGI196]

[She97]

[SKM*96]

[SL97]

[Swe9s]

J. Ousterhout. “Tcl and the Tk Toolkit”. Addison—Wesley, 1994.

A. Paepcke, S. B. Cousins, H. Garcia—Molina, S. F. Hassan, S. P. Ketchpel,
M. Roscheisen, and T. Winograd. “Using Distributed Objects for Digital
Library Interoperability”. IEEE Computer, 29(5), 1996.

S. Paul, E. Park, and J. Chaar. “Essential Requirements for a Workflow
Standard”. In Proc. OOPSLA’97, Business Object Workshop 111, 1997.

S. Paul, E. Park, and J. Chaar. ‘“RainMan: A Workflow System for
the Internet”. In Proc. USENIX Symposium on Internet Technologies and
Systems, 1997.

M. Roscheisen and T. Winograd. “The FIRM Framework for
Interoperable Rights Management: Defining a Rights Management
Service Layer for the Internet”. In Forum on Technology—
based Intellectual Property Management, 1997. Available via URL
http://pcd.stanford.edu/rmr/commpacts.html.

F. Schwenreis. “APRICOTS: A Prototype Implementation of a ConTract
System™. In Proc. 12th IEEE Symposium on Reliable Distributed Systems,
1993.

M.T. Schmidt. “The Evolution of Workflow Standards”. IEEE
Concurrency, 7(3), 1999.

B. Schroeder, G. Eisenhauer, K. Schwan, F. Alyea, J. Heiner, V. Martin,
B. Ribarsky, M. Trauner, J. Vetter, R. Wang, and S. Zou. “Framework
for Collaborative Steering of Scientific Applications”. Science Information
Systems Newsletter, IV(40), 1997.

A. Sheth, D. Georgakopoulos, S. Joosten, Rusinkiewicz, W. Scacchi,
J. Wilden, and A. Wolf. Report from the NSF Workshop
on Workflow and Process Automation in Information Systems.
Technical report, University of Georgia, 1996. Available via URL
http://LSDIS.cs.uga.edu/publications.

A. Sheth. “From Contemporary Workflow Process Automation to
Adaptive and Dynamic Work Activity Coordination and Collaboration™.
In Proc. Workshop on Workflow Management in Scientific and Engineering
Applications, 1997.

A. Sheth, K. Kochut, J. Miller, D. Worah, S. Das, C. Lin, D. Palaniswami,
J. Lynch, and I. Shevchenko. “Supporting State—Wide Immunization
Tracking using Multi—Paradigm Workflow Technology™. In Proc. VLDB
Conference, 1996.

M. Stefik and J. Lavendel. “Libraries and Digital Property Rights”. In
Proc. European Conference on Advanced Technologies for Digital Libraries,
1997.

K. Swenson. “Simple Workflow Access Protocol (SWAP)”, 1998. Internet
Draft <draft—ietf—swenson—swap—prot—00.txt>, available via WWW at
URL http://www.ics.uci.edu/ ietfswap/.

82



[Sza97]

[T. 94]

[Ude]

[UMA97]

[VPIS]

[Wei95]

[WFXO00]

[WR92]

[Zik97]

N. Szabo. “Formalizing and Securing Relationships on Public Networks™.
First Monday, 2(9), 1997. Available via URL http:/www.firstmonday.dk/.

T. Berners—Lee and R. Cailliau and A. Luotonen and H. Frystyk—Nielsen
and A. Secret. “The World Wide Web”. Communications of the ACM,
37(8):76——82, August 1994.

J.  Udell. “Measuring  Web  Mindshare™. Article in
Byte.com, March 1999, available via WWW at URL
http://www.byte.com/features/1999/03/udellmindshare.html.

“Systems Management: Universal Measurement Architecture”, 1997. The
Open Group, Document No. C427.

E.M. Verharen and M.P. Papazoglou. “Introducing Contracting in
Distributed Transactional Workflows”. In Proc. 31st Annual Hawaii Int’l
Conf. on System Sciences (vol. 7: Software Technology), pages 324—-333,
1998.

G. Weikum. “Workflow Monitoring: Queries on Logs or Temporal
Databases 7. In Proc. High Performance Transaction Processing (HTPS)
Workshop, 1995.

“Workflow Management Coalition Workflow Standard — Interoperability
Wf-XML Binding”, 2000. Document Number WFMC-TC-1023, Draft
1.0 (Beta Status) — available via WWW at URL http://www.wfmc.org.

H. Waechter and A. Reuter. “The ConTract Model”. In Database
Transaction Models for Advanced Applications. Morgan—Kaufman, 1992.

M. Zikos. “An Agent—Based Architecture for the Support of Distrubuted
Information Processing Services™, 1997. MSc Thesis (in Greek).

83



84



Appendix A: IDL Specifications for the
Aurora Component Framework

This appendix presents the main interfaces of the Aurora component framework,
expressed in the OMG Interface Definition Language (IDL). The specifications rely
on basic support services, such as the Query Collection, Property Set, and Messaging
Framework services, the specifications of which which are omitted in the interests of
brevity (along with the definitions of auxilliary data types and exception types).

Source code of the Aurora is available at http://atlas.csd.uoc.gr/aurora

/*
* Component.idl —— IDL specification of a ‘component’, i.e. a named managed
* object that represents a set of *features’ (in the form of functional

* interfaces) supported by encapsulated arbitrarily complex software.
*/

module AuroraComponentModel {

/* interface navigation—related data type definitions */
struct ProvidedInterface {
InterfaceName ifName; /* distinguishing name of interface */
RepositorylD ifID; /* allows lookup in descriptor repository */
CORBA::Object ifRef; /* could reference ComponentBase (DSI) */
b
struct ProvidedInterface {
SourceName srcN;
MessagingFramework::SubjectGroup notification_grp;
CosQueryCollection::NamedCollection cb_collection;

J%

/* connection management—related data type definitions */
struct ConnectedTarget {

ConnectionLabel label;

RepositorylD ifID;

CORBA::Object ref;
b

/* Configurator —— interface for setting configuration properties */
interface Configurator {
CosPropertyService::PropertySet get_configuration_properties();
void set_config_property(in CosPropertyService::Property cfgval)
raises(ConfiguratorException);
void set_config_properties(in CosPropertyService::Properties cfgvals)
raises(ConfiguratorException);
boolean is_configuration_complete();
void configuration_complete();

85



/* Exporter —— navigation among the (functional) interfaces
* provided by a component. A component’s implementations is the
* ‘aggregation’ of the implementation of all the interfaces it exports.
*/
interface Exporter {
ProvidedInterface get_provided_interface(in InterfaceName ifn)
raises(ExporterException);
ProvidedInterfaces get_provided.-interfaces(in InterfaceNames ifns)
raises(ExporterException);
ProvidedInterfaces get_all_provided_interfaces()
raises(ExporterException);
InterfaceNamelList get_provided_interface_names()
raises(ExporterException);
ProvidedInterface provide_interface(in InterfaceName ifn,
in RepositoryID ifID, in CORBA::Object ifRef)
raises(ExporterException);
ProvidedInterfaces provide_interfaces(in InterfaceNames ifns,
in RepositoryIDs ifIDs, in ObjectRefs ifRefs)
raises(ExporterException);
void revoke_provided_interface(in InterfaceName ifn)
raises(ExporterException);
void revoke_provided_interfaces(in InterfaceNames ifns)
raises(ExporterException);
void revoke_all_provided_interfaces()
raises(ExporterException);
b

/* Importer —— management of ’connections’ between component
* interfaces. Each link associates a distinctive "label’ to a target
* object that implements a named interface. Such links enable a
* component to ‘use’ external services (provides via interfaces of
* other components). For each named interface that a component uses,
* there can be one or more ‘connected’ target objects, each with its own label.
*/
interface Importer {
void connect(in InterfaceName ifn, in ConnectionLabel Ibl,
in CORBA::Object ref)
raises(ImporterException);
void disconnect(in InterfaceName ifn, in ConnectionLabel 1bl)
raises(ImporterException);
void disconnect_all(in InterfaceName ifn)
raises(ImporterException);
ConnectedTarget get_connected(in InterfaceName ifn, in ConnectionLabel 1bl)
raises(ImporterException);
ConnectionLabelList get_all_connection_labels(in InterfaceName ifn)
raises(ImporterException);
ConnectionTargetDescription get_all_connection_targets( in InterfaceName ifn)
raises(ImporterException);

s

/* Reactor —— interface allowing reception of event notifications

* This interface must be provided by the implementation of components.
*/

interface Reactor: MessagingFramework::CallbackObject {

/* represents a ‘subscriber’ that exports a method with the following

* signature: oneway void notify(in MessagingFramework::MsgReceived evM);
*/

readonly attribute SourceName source_name;

readonly attribute SinkName sink_name;

readonly attribute MessagingFramework::Channel comm_channel,;

86



attribute MessagingFramework::CallbackHandle cb_handle;

s

/* Notifier —— management of event sources and sinks. For each

* event type, components interested in receiving notifications

* are expected to register a Reactor object. Each component can

* retrieve its "listener’ object for each specific event type (as

* identified by the ’sink’ name). Each component can provide multiple
* event sources, each with multiple ’listeners’.

*/

interface Notifier {

/* add_sink: subscribe to an event type (subject) */
void add_sink(in SourceName src, in SinkName sn, in Reactor sink)
raises(NotifierException);

/* get_sink: returns the Reactor object for a named sink */
Reactor get_sink(in SourceName src, in SinkName sn)
raises(NotifierException);

/* remove_sink: remove a sink from source’s subscriber list */
void remove_sink(in SourceName src, in SinkName sn)
raises(NotifierException);

/* remove_all_sinks: remove all sinks from subscriber list */
void remove_all_sinks(in SourceName src)
raises(NotifierException);

/* get_all_source_names(): returns list of available ’subjects’ */
SourceNameList get_all_source_names()
raises(NotifierException);

/* get_sinks: returns all subscribers to event type */
EventListenerList get_sinks(in SourceName src)
raises(NotifierException);

/* push_event: disseminate event data (name/value pairs) to subscribers */
void push_event(in SourceName src, in Event ev)
raises(NotifierException);
b

/* ComponentBase —— basic attributes and properties of component, plus

* accessors for Home, ConfigurationBase, Control, RequestManagement,

* EventManagement, ConnectionManagement, InterfaceNavigation objects
* associated with the component.

*/

interface ComponentBase {

/* component name, type tag, key, and short description */
readonly attribute string componentName;

readonly attribute string componentKey;

readonly attribute string componentTypeTag;

readonly attribute string componentDescription;

/* properties manipulated at deployment—time, including IOR’s of used
* interfaces and IOR’s of event emmiters

*/

attribute CosPropertyService::PropertySet configProps;

/* properties manipulated at run—time, including IOR’s of used
* interfaces and IOR’s of event emmiters

87



*/
attribute CosPropertyService::PropertySet runtimeProps;

/* get_descriptor() —— component descriptor object */
AuroraComponentDescriptor::DescriptorStruct get_descriptor();

/* get_configurator() —— configuration management object */
Configurator get_configurator();

/* get_control() —— monitoring/control object */
ContainerFramework::ComponentControl get_control();

/* get_request_manager() —— request management object */
ContainerFramework::WorkRequestManager get_request_-management_interface();

/* get_connection_manager() —— connection management object */
Importer get_connection_management_interface();

/* get_interface_navigator() —— interface directory object */
Exporter get_interface_navigator();

/* get_event_manager() —— event dissemination management object */
Notifier get_event_manager();

88



Appendix B: IDL Specifications for the
Aurora Container Framework

This appendix presents the main interfaces of the Aurora container framework,
expressed in the OMG Interface Definition Language (IDL). The specifications rely
on basic support services, such as the Query Collection, Property Set, Binary Data, and
Security Framework services, the specifications of which which are omitted in the interests
of brevity (along with the definitions of auxilliary data types and exception types).

/*
* Container.idl —— IDL specification for the Aurora container framework
* that allows clients to load, activate and monitor software components
* within a controlled run—time environment.
3

*/

module ContainerFramework {
typedef sequence<octet> OctetString;
typedef OctetString Identity;
typedef OctetString Authority;
struct Name {
Identity identity;
Authority authority;
b
typedef sequence<name> NameL.ist;
struct ClassName { /¥ OMG MASIF-style definition of class identity */
string name; /* fully qualified class name */
OctetString secID; /* class binary ID — may be used for security */
b
interface ComponentClassProvider {
readonly attribute string provider_name;
readonly attribute OctetString provider_authority;
AuroraComponentDescriptor::ByteArrayHolder fetch_class(in ClassName classN)
raises(ClassUnknown, ComponentClassProviderException);
AuroraComponentDescriptor::ByteArrayHolder fetch_classes(in ClassNameList classNL)
raises(MultipleClassesUnknown, ComponentClassProviderException);
b
struct MetadataDescriptor{
string name;
boolean is_op;
string signature;
string description;
b
typedef string ComponentStatus;
typedef sequence<MetadataDescriptor> MetadataDescriptors;
typedef CosPropertyService::PropertySet ComponentState;

/* ComponentControl: uniform monitoring and control. This interface must be

89



* implemented by the component’s developer so as to support uniform

* monitoring and control. This allows containers to export a generic

* interface for monitoring and control, by delegating requests for

* state/metadata inspection and manipulation, component—specific

* instrumentation control and communication channel manipulation to
* a ComponentControl object provided by the component’s developer.

*/

interface ComponentControl {

/* operations to start/stop/suspend/resume component execution */
void Start(in ComponentState ctx)

raises(ComponentControlException, UnsupportedControlOperation);
void Stop()

raises(ComponentControlException, UnsupportedControlOperation);
void Suspend()

raises(ComponentControlException, UnsupportedControlOperation);
void Resume(in ComponentState ctx)

raises(ComponentControlException, UnsupportedControlOperation);

/* operation to inspect ‘status’ of component (active, suspended, etc) */
ComponentStatus QueryStatus()
raises(ComponentControlException, UnsupportedControlOperation);

/* operations for controlling component instrumentation */
void InitInstrumentation(in ComponentState ctx)
raises(ComponentControlException, UnsupportedControlOperation);
void Enablelnstrumentation(in ComponentState ctx)
raises(ComponentControlException, UnsupportedControlOperation);
void DisableInstrumentation()
raises(ComponentControlException, UnsupportedControlOperation);
void StopInstrumentation()
raises(ComponentControlException, UnsupportedControlOperation);

/* operations for listing and manipulating component—related metadata */
MetadataDescriptors QueryMetadata()
raises(ComponentControlException, UnsupportedControlOperation);
void SetMetadata(in MetadataDescriptors attrs)
raises(ComponentControlException, UnsupportedControlOperation);
MetadataDescriptors ListStateVars()
raises(ComponentControlException, UnsupportedControlOperation);
MetadataDescriptors ListControlOps()
raises(ComponentControlException, UnsupportedControlOperation);

/* operations for retrieving and (re)setting component state */

ComponentState RetrieveState(in MetadataDescriptors attrs)
raises(ComponentControlException, UnsupportedControlOperation);

void SetState(in MetadataDescriptors attrs, in ComponentState state)
raises(ComponentControlException, UnsupportedControlOperation);

/* operations to establish/destroy communication channels */

ChannelID EstablishChannel(in SubjectID subject, in ComponentInstanceKey target)
raises(ComponentControlException, UnsupportedControlOperation);

ChannellD DestroyChannel(in ChannellD chid)
raises(ComponentControlException, UnsupportedControlOperation);

s

/* ComponentProxy: i/f that must be implemented by components
* hosted within a Container’s run—time environment
*/
interface ComponentProxy {
string server_name();

90



ContainerID container_key();
ComponentPackageKey component_package_key();
CORBA::Object component_main_ref();
ComponentControl component_control();

s

/* UpdatableComponentProxy: i/f that must be implemented by ComponentProxy
* objects that insulate customers from changes of the references to
* the actual implementations of services and their corresponding control
* objects. The callbacks specified by this i/f allow a service provider
* (or an independent third—party, such as the authority that manages the
* container run—time environment) to update or invalidate an exported
* reference, or to export alternative references that may be used by
* customers via the container’s request management API. Such
* notifications allow the container to keep its map of component
* instances up—to—date, and provide a crucial building block for robust
* and scalable operation of the infrastructure in the face of
* long—duration workflow processes. Support for alternative references
* for a service allows the container to coordinate load sharing and
* fail—over without the explicit cooperation of customers, who can
* request such functionality by setting appropriate attributes in the
* service—level specifications that accompany their requests.
*/
interface UpdatableComponentProxy: ComponentProxy {
void reset_component_main_ref(in CORBA::Object newRef);
void alternative_component_main_ref(in CORBA::Object altRef);
void invalidate_component_main_ref(in CORBA::Object ref);
void invalidate_ll_component_main_refs();
void reset_component_control(in ComponentControl newRef);
void invalidate_component_control();

s

/* PoolObject: V/f that must be implemented by ComponentProxy objects
* that can be pooled in a LRU pool maintained by the container
*/
interface PoolObject: UpdatableComponentProxy {
AuroraComponentDescriptor::ByteArrayHolder object_to_bytes()
raises(PoolObjectException);
void bytes_to_object(in OctetString bdata)
raises(PoolObjectException);
void object_init(in BinaryDataServiceModule::bdatalD persistentRef)
raises(PoolObjectException);
void objectIn(in BinaryDataServiceModule::bdatalD persistentRef)
raises(PoolObjectException);
void objectOut(in BinaryDataServiceModule::bdatalD persistentRef)
raises(PoolObjectException);
void object_released( in BinaryDataServiceModule::bdatalD persistentRef)
raises(PoolObjectException);
string to_string()
raises(PoolObjectException);
b

/* Container: run—time environment for components (loader + support services)
* A container allows clients to load ‘component packages’, and then

* instantiate them. A client can invoke inspection and control methods

* on a component instance, as well as invoke services (possibly remote).

* It is possible to interconnect component instances, by having a

* component subscribe as listener to a subject provided by a source

* component. Publishing on a subject results in invocations of callback

* methods on all listener objects.

*/

91



struct ComponentPackageDescriptor {

I

Name package_name;

unsigned long access_type;

ComponentPackageKey package_key;
ClassNameList class_names;
CosPropertyService::PropertySet package_properties;

struct ComponentInstanceDescriptor {

J%

ComponentPackageKey package_key;
ComponentInstanceKey instance_key;

Container containerRef;

CORBA::Object component_main_objRef;
ComponentControl component_control;
CosPropertyService::PropertySet instance_properties;

interface Container {

readonly attribute string server_name;
readonly attribute ContainerID container_key;
readonly attribute SecurityFramework::SecurityCredentials container_credentials;
readonly attribute boolean supports_workflow;
readonly attribute CosPropertyService::PropertySet serviceRefs;
ComponentPackageKey load_component_package_drep(
in SecurityFramework::SecurityCredentials sc,
in string pkg_name, in string drepK, in unsigned long access_type,
in CosPropertyService::PropertySet props)
raises(ComponentPackageException);
ComponentPackageKey load_component_package( in SecurityFramework::SecurityCredentials sc,
in unsigned long access_type, in Name packageN, in ClassNameList cnames,
in CosPropertyService::PropertySet props)
raises(ComponentPackageException);
void unload_component_package( in SecurityFramework::SecurityCredentials sc,
in ComponentPackagekey pkgK)
raises(ComponentPackageException);
ComponentPackageKeys list_component_packages( in SecurityFramework::SecurityCredentials sc)
raises(ComponentPackageException);
ComponentPackageDescriptor component_package_descriptor(
in SecurityFramework::SecurityCredentials sc, in ComponentPackageKey pkgK)
raises(ComponentPackageException);
ComponentInstanceKey init_component_instance( in SecurityFramework::SecurityCredentials sc,
in ComponentPackagekey pK, in CosPropertyService::PropertySet props)
raises(ComponentInstanceException);
void destroy_component_instance( in SecurityFramework::SecurityCredentials sc,
in ComponentInstanceKey cK)
raises(ComponentInstanceException);
ComponentInstanceKeys list_component_instances( in SecurityFramework::SecurityCredentials sc)
raises(ComponentInstanceException);
void reset_component_main_ref(
in SecurityFramework::SecurityCredentials sc, in ComponentInstanceKey cK,
in CORBA::Object newRef)
raises(ComponentInstanceException);
void alternative_component_main_ref{(
in SecurityFramework::SecurityCredentials sc, in ComponentInstanceKey cK,
in CORBA::Object newRef)
raises(ComponentInstanceException);
void invalidate_component_main_ref(
in SecurityFramework::SecurityCredentials sc, in ComponentInstanceKey cK,
in CORBA::Object newRef)
raises(ComponentInstanceException);
void invalidate_all_component_main_refs(
in SecurityFramework::SecurityCredentials sc, in ComponentInstanceKey cK)
raises(ComponentInstanceException);

92



void reset_component_control(
in SecurityFramework::SecurityCredentials sc, in ComponentInstanceKey cK,
in ComponentControl cRef)
raises(ComponentInstanceException);
void invalidate_component_control(
in SecurityFramework::SecurityCredentials sc, in ComponentInstanceKey cK)
raises(ComponentInstanceException);
void init_instrumentation(
in SecurityFramework::SecurityCredentials sc, in ComponentInstanceKey cK,
in CosPropertyService::PropertySet props)
raises(ComponentInstanceException);
void enable_instrumentation(
in SecurityFramework::SecurityCredentials sc, in ComponentInstanceKey cK,
in CosPropertyService::PropertySet props)
raises(ComponentInstanceException);
void disable_instrumentation(
in SecurityFramework::SecurityCredentials sc, in ComponentInstanceKey cK)
raises(ComponentInstanceException);
void stop_instrumentation(
in SecurityFramework::SecurityCredentials sc, in ComponentInstanceKey cK)
raises(ComponentInstanceException);
ComponentStatus get_status(
in SecurityFramework::SecurityCredentials sc, in ComponentInstanceKey cK)
raises(ComponentInstanceException);
stringList list_control_variables(
in SecurityFramework::SecurityCredentials sc, in ComponentInstanceKey cK)
raises(ComponentInstanceException);
stringList list_control_operations(
in SecurityFramework::SecurityCredentials sc, in ComponentInstanceKey cK)
raises(ComponentInstanceException);
stringList get_component_instance_metadata(
in SecurityFramework::SecurityCredentials sc, in ComponentInstanceKey cK)
raises(ComponentInstanceException);
void set_component_instance_metadata(
in SecurityFramework::SecurityCredentials sc, in ComponentInstanceKey cK, in stringList attrs)
raises(ComponentInstanceException);
CosPropertyService::PropertySet retrieve_state(
in SecurityFramework::SecurityCredentials sc, in ComponentInstanceKey cK,
in stringList state_vars, in CosPropertyService::PropertySet s)
raises(ComponentInstanceException);
void set_state(in SecurityFramework::SecurityCredentials sc,
in ComponentInstanceKey cK, in stringList state_vars,
in ComponentState s)
raises(ComponentInstanceException);
void start_component_instance(
in SecurityFramework::SecurityCredentials sc, in ComponentInstance cK,
in ComponentState ctx)
raises(ComponentInstanceException);
void suspend_component_instance(
in SecurityFramework::SecurityCredentials sc, in ComponentInstance cK)
raises(ComponentInstanceException);
void resume_component_instance(
in SecurityFramework::SecurityCredentials sc, in ComponentInstance cK,
in ComponentState ctx)
raises(ComponentInstanceException);
void stop_component_instance(
in SecurityFramework::SecurityCredentials sc, in ComponentInstance cK)
raises(ComponentInstanceException);
ChannellD establish_channel(
in SecurityFramework::SecurityCredentials sc, in ComponentInstanceKey fromK,
in SubjectID subject, in ComponentInstanceKey toK)

93



raises(ComponentInstanceException);
void destroy_channel(in SecurityFramework::SecurityCredentials sc,
in ComponentInstance cK, in ChannellD chid)
raises(ComponentInstanceException);
anyList execute_method(in ComponentInstanceKey cK,
in CallerID caller, in string if_name, in SLAspec sla,
in string method_name, in anyList args)
raises(ComponentInstanceException);

b

/* CallerCB: callback i/f allowing a client to receive notifications about
* whether a request that he issued has been accepted or refused, and
* also to receive the results (complete or partial) or abort notification
* about a request. All callback methods provide the RequestID of the
* request in question, since a caller may have multiple outstanding
* requests on different component instances, hosted by the same or by
* different containers.
*/
interface CallerCB {
void request_ready_to_start(in RequestID rid, in CosPropertyService::PropertySet ctx)
raises(WorkRequestManagerException);
void request_refused(in RequestID rid, in CosPropertyService::PropertySet ctx)
raises(WorkRequestManagerException);
void request_accepted(in RequestID rid, in CosPropertyService::PropertySet ctx)
raises(WorkRequestManagerException);
void request_in_progress(in RequestID rid, in CosPropertyService::PropertySet ctx)
raises(WorkRequestManagerException);
void request_completed(in RequestID rid, in CosPropertyService::PropertySet ctx)
raises(WorkRequestManagerException);
void request_aborted(in RequestID rid, in CosPropertyService::PropertySet ctx)
raises(WorkRequestManagerException);
void request_delagated(in RequestID rid, in RequestID new_rid, in Container nc)
raises(WorkRequestManagerException);
b

/* WorkRequestManager: specialization of Container that supports

* asynchronous request management (basis for dynamic workflow)

*

* generic interface for request management: allows application servers to
* maintain a pool of pending requests for each component, while allowing
* each component to implement its own admission control policy.

* Alternatively, a container may enforce its own policy for *work item’

* allocation, as 'legacy’ components may not be 'workflow—enabled’.

*/

interface WorkRequestManager: Container, CallerCB {

RequestID request.init(in SecurityFramework::SecurityCredentials sc,
in CallerID caller, in CallerCBSpec cb_spec, in ComponentInstancekey ck,
in string ifN, in SLAspec sla, in string method, in anyList args)

raises(WorkRequestManagerException);

void request_start(in SecurityFramework::SecurityCredentials sc,
in RequestID rid)

raises(WorkRequestManagerException);

RequestID request_issue(in SecurityFramework::SecurityCredentials sc,
in CallerID caller, in CallerCBSpec cb_spec, in ComponentInstancekey ck,
in string ifN, in SLAspec sla, in string method, in anyList args)

raises(WorkRequestManagerException);

void request_cancel(in SecurityFramework::SecurityCredentials sc,
in RequestID rid)

raises(WorkRequestManagerException);

anyList request_wait(in SecurityFramework::SecurityCredentials sc,

in RequestID rid)

94



raises(WorkRequestManagerException);
anyList request_results(in SecurityFramework::SecurityCredentials sc,
in RequestID rid)
raises(WorkRequestManagerException);
RequestID request_fork(in SecurityFramework::SecurityCredentials sc,
in RequestIDs rids)
raises(WorkRequestManagerException);
RequestID request_join(in SecurityFramework::SecurityCredentials sc,
in RequestIDs rids, in unsigned long min_cnt)
raises(WorkRequestManagerException);
void request_with_compensation(
in SecurityFramework::SecurityCredentials sc, in RequestID rid,
in RequestID compensation_rid)
raises(WorkRequestManagerException);
void request_with_time_limit(
in SecurityFramework::SecurityCredentials sc, in RequestID rid,
in TimeSpec timeLimit)
raises(WorkRequestManagerException);
void set_request_with_time_limit(
in SecurityFramework::SecurityCredentials sc, in RequestID rid,
in TimeSpec timeLimit)
raises(WorkRequestManagerException);
RequestIDs list_pending_requests( in SecurityFramework::SecurityCredentials sc)
raises(WorkRequestManagerException);

I

/* ContainerServer: factory/directory for Container objects
*/
interface ContainerServer {
readonly attribute string server_name;
readonly attribute SecurityFramework::SecurityCredentials server_sc;
ContainerID create_container( in SecurityFramework::SecurityCredentials sc, in string name,
in boolean supports_workflow, in unsigned long max_active_instances,
in unsigned long long expiration_timeout)
raises(ContainerServerException);
void shutdown_container( in SecurityFramework::SecurityCredentials sc, in ContainerID cid)
raises(ContainerServerException);
ContainerIDs list_containers( in SecurityFramework::SecurityCredentials sc)
raises(ContainerServerException);
Container get_container(in ContainerID cid)
raises(ContainerServerException);
b
b

95



96



Appendix C: IDL Specifications for the
Aurora Service—Level Agreement
Framework

This appendix presents the main interfaces of the Aurora service—level agreement
framework, expressed in the OMG Interface Definition Language (IDL). The specifications
rely on basic support services, such as the Query Collection, Property Set, Binary Data,
Security Framework, and Logging/Monitoring services, the specifications of which which
are omitted in the interests of brevity (along with the definitions of auxilliary data types
and exception types).

/*
* SLA.idl —— IDL specification for a service—level agreement framework
P
* — Service—level agreements encapsulate the context of an interaction
* between a service provider and a client. As an example, a SLA can
* coordinate the interaction between a merchant and a customer in the
* case of an electronic commerce transaction. The SLA is executed either
* by the service provider or by a mutually trusted thrid—party, in order
* to coordinate the actions of the participants. In the e-commerce example,
* the SLA could specify what the participants (merchant, customer, banks,
* etc) should do next in the way of ordering, payment, and delivery.
P
* — All participants in an interaction, including the SLA object, respond to
* incoming requests by taking local actions (eg: authorize a payment,
* initiate a delivery process) and issuing requests to other participants
* 50 as to advance the state of the ongoing interaction.
3
* — The event handlers in each of the participants can be ’proxies’ to
* autonomous systems, thus insulating the SLA as well as the participants
* from the implementation details for particular actions.
P
* — SLA objects are ’generic’ in the sense that the details of implementing
* a specific ‘contract’ are contained exclusively within the provider’s
* event handlers.
3
* — The interface declarations in this specification are intended to serve
* as ’inheritance base’ for specific process implementations (eg: an
* e—commerce transaction scenario).
3

*/
module SLAframework {

/* auxilliary data types */
typedef CospropertyService::PropertySet SLAstate;

97



struct SLAevent {
TimeSpec ts;
StatusTag status;
SDAstate data;
typedef AuroraComponentDescriptor::Resourcekey ServiceDescriptor;
typedef ContainerFramework::ComponentInstanceKey ServiceHandle;
typedef CosQueryCollection::Collection ActionCollection;
typedef CosQueryCollection::Iterator Actionlterator;
typedef CosQueryCollection::Iterator Historylterator;
typedef any TermsAndConditions;
typedef string StatusTag;

/¥ SLA */
interface SLA: SecurityFramework::Actor {
readonly attribute string description;
readonly attribute SecurityFramework::SecurityCredentials authority;
SLAid sla_id();
LoggingServiceModule::SessionID session_id();
LoggingServiceModule:: TaskID task_id();
void set_status(in SecurityFramework::SecurityDCredentials sc,
in StatusTag status)
raises(SLAexception);
StatusTag get_status(in SecurityFramework::SecurityCredentials sc)
raises(SLAexception);
void set_sla_state(in SecurityFramework::SecurityCredentials sc,
in SLAstate state)
raises(SLAexception);
SLastate get_sla_state(in SecurityFramework::SecurityCredentials sc)
raises(SLAexception);
void start(in SecurityFramework::SecurityCredentials sc,
in StatusTag status, in SLAstate state)
raises(SLAexception);
void terminate(in SecurityFramework::SecurityCredentials sc,
in StatusTag status)
raises(SLAexception);
void complete(in SecurityFramework::SecurityCredentials sc)
raises(SLAexception);
void passivate(in SecurityFramework::SecurityCredentials sc)
raises(SLAexception);
void reactivate(in SecurityFramework::SecurityCredentials sc,
in StatusTag status, in SLAstate state)
raises(SLAexception);
Historylterator get_history(in SecurityFramework::SecurityCredentials sc)
raises(SLAexception);
void sla_event(in SecurityFramework::SecurityCredentials sc,
in SLAevent ev)
raises(SLAexception);
TermsAndConditions get_contract_specification(
in SecurityFramework::SecurityCredentials sc)
raises(SLAexception);
ServiceHandle get_service_handle( in SecurityFramework::SecurityCredentials sc)
raises(SLAexception);
Actionlterator get_supported_actions( in SecurityFramework::SecurityCredentials sc)
raises(SLAexception);
ServiceDescriptor get_service_descriptor(
in SecurityFramework::SecurityCredentials sc)
raises(SLAexception);
ContainerFramework::RequestID request_fulfillment(
in SecurityFramework::SecurityCredentials sc, in SLAspec spec,
in SecurityFramework::Action action, in SLAstate params)
raises(SLAexception);

98



void declare_fulfilled(in SecurityFramework::SecurityCredentials sc,
in ContainerFramework::RequestID rid, in SLAstate state)
raises(SLAexception);
void declare_exception(in SecurityFramework::SecurityCredentials sc,
in ContainerFramework::RequestID rid, in SLAstate state)
raises(SLAexception);
void declare_satisfied(in SecurityFramework::SecurityCredentials sc,
in ContainerFramework::RequestID rid)
raises(SLAexception);
void declare_complaint(in SecurityFramework::SecurityCredentials sc,
in ContainerFramework::RequestID rid, in SLAstate state)
raises(SLAexception);

I

/* SLA factory */
interface SLAfactory {

SLA create_sla(in SecurityFramework::SecurityCredentials sc,
in string description, in TermsAndConditions contract,
in ActionCollection actions, in ServiceHandle serviceH,
in ServiceDescriptor descriptor_key, in LoggingServiceModule::SessionID sid,

in LoggingServiceModule:TaskID tid,
in CosPropertyService:;PropertySet exportedProps,
in string slaName, in string slaClassName)
raises(SLAfactoryException);

SLA get_sla(in SecurityFramework::SecurityCredentials sc,

in SLAId sla_id)
raises(SLAfactoryException);

void terminate(in SecurityFramework::SecurityCredentials sc,
in SLAId sla_id, in StatusTag status)

raises(SLAfactoryException);

void complete(in SecurityFramework::SecurityCredentials sc,
in SLAId sla_id)

raises(SLAfactoryException);

void passivate(in SecurityFramework::SecurityCredentials sc,
in SLAId sla_id)

raises(SLAfactoryException);

void reactivate(in SecurityFramework::SecurityCredentials sc,
in SLAId sla_id, in StatusTag status, in SLAstate state)

raises(SLAfactoryException);

SLAIds list_slas(in SecurityFramework::SecurityCredentials sc)

raises(SLAfactoryException);
b
b

99



100



Appendix D: IDL Specification of the
Aurora Work Session Framework

This appendix presents the main interfaces of the Aurora container framework,
expressed in the OMG Interface Definition Language (IDL). The specifications rely
on basic support services, such as the Query Collection, Property Set, Binary Data, and
Security Framework services, the specifications of which which are omitted in the interests
of brevity (along with the definitions of auxilliary data types and exception types).

/*
* Session.idl —— IDL specification of the Aurora work session framework
K3
* — This specification defines a model that represents basic objects and
* their relationships in the end—user view of a distributed system. The
* objective is to provide a consistent and common description of fundamental
* concepts such as users, resources, tasks so as to enable applications to
* significantly raise the level of collaboration and resource sharing within
* projects and enterprises, while also raising the level of abstraction for
* the end—users that directly interact with the distributed system, in the
* context of 'work sessions’, which are defiend as configurations of
* participants in shared workspaces using resources in processes.
*/

module SessionFramework {
typedef ResourceEvent {
string event_type;
any event_data;
b
typedef SharedWorkspace Session;
typedef sequence<string> EventTypeTags;

* ResourceEventReceiver: i/f for receiving notifications of type
ResourceEvent (string tag (event_type) + ‘any’ value that contains a
MessagingFramework::ConditionNotification)

/
interface ResourceEventReceiver {
EventTypeTags get_supported_event_types();
oneway void resource_event(in ResourceEvent ev);
ResourceEventlterator get_history()
raises(SessionFrameworkException);
b

/* SessionEventCallback: i/f for receiving notifications of session—related
* events: added/removed in workspace, produced/consumed by task
*/

101



interface SessionEventCallback {
void resource_added_in_workspace(in Session wpsace);
void resource_removed_from_workspace(in Session wpsace);
void resource_produced_by_task(in Task ptask);
void resource_consumed_by_task(in Task ptask);

b

/* SessionResource:
* — inherits the following methods from the Actor interface:
* name(), get_credentials(), get_exported_properties(),
* set_exported_properties()
*/
interface SessionResource: SecurityFramework::Actor, SessionEventCallback {
string rname();
string rkey();
string rtype();
string rdescription();
void set_ctx(in CosPropertyService::PropertySet ctx)
raises(SessionFrameworkException);
CosPropertyService::PropertySet get_ctx();
Workspacelterator get_iterator_on_workspaces();
Tasklterator get_iterator_on_producers();
Tasklterator get_iterator_on_consumers();
ContainerFramework::ComponentInstanceKey component._ref();
void release(in StatusCode status)
raises(SessionFrameworkException);

J%

/* Session Participant */
interface SessionParticipant: SessionResource {
void submit_request(in WorkRequest req)
raises(SessionFrameworkException);
void remove_request(in WorkRequest req)
raises(SessionFrameworkException);
WorkRequestlterator get_request_iterator()
raises(SessionFrameworkException);
Task create_task(in string name, in TaskID key,
in SharedWorkspace work_session, in SessionResource data)
raises(SessionFrameworkException);
TasklIterator get_task_iterator()
raises(SessionFrameworkException);
SharedWorkspace workspace();
SharedWorkspace create_workspace(in string name, in SessionID key,
in SecurityFramework::ACL acl, in string ws_class_name)
raises(SessionFrameworkException);

I

/* WorkRequest:
* — inherits the following methods from the Action interface:
* target(), callerRolesRequired()
*/
interface WorkRequest {
ContainerFramework::RequestID request_id();
any request_body();

b

/* Shared Workspace */
interface SharedWorkspace: SessionResource, ResourceEventReceiver {
SecurityFramework::ACL get_acl();
SharedWorkspace create_subworkspace(in string name, in WorkspacelD key,
in string description, in SecurityFramework::ACL acl, in string ws_class_name)

102



raises(SessionFrameworkException);

void add_resource(in SessionResource r)
raises(SessionFrameworkException);

void remove_resource(in SessionResource r)
raises(SessionFrameworkException);

Resourcelterator get_resource_iterator(in string resourceType)
raises(SessionFrameworkException);

I3

/* Task */
interface Task: SessionResource, ResourceEventReceiver {

string state();

SessionParticipant owner();
void set_owner(in SessionParticipant owner)
raises(SessionFrameworkException);

void add_consumed(in SessionResource r)
raises(SessionFrameworkException);

void remove_consumed(in SessionResource r)
raises(SessionFrameworkException);

Resourcelterator get_consumed_resource()
raises(SessionFrameworkException);

void add_produced(in SessionResource r)
raises(SessionFrameworkException);

void remove_produced(in SessionResource r)
raises(SessionFrameworkException);

Resourcelterator get_produced_resource()
raises(SessionFrameworkException);

void start()
raises(SessionFrameworkException);

void stop()
raises(SessionFrameworkException);

void suspend()
raises(SessionFrameworkException);

void resume()
raises(SessionFrameworkException);

b

/* Session Manager */
interface SessionManager {
SessionID open_session(in SecurityFramework::SecurityCredentials sc,
in string name, in string skey, in string descr,
in SecurityFramework::ACL acl, in CosPropertyService::PropertySet ctx)
raises(SessionFrameworkException);
void close_session(in SecurityFramework::SecurityCredentials sc,
in SessionID sid, in StatusCode status)
raises(SessionFrameworkException);
void join_session(in SecurityFramework::SecurityCredentials sc,
in SessionID sid, in SessionResource r)
raises(SessionFrameworkException);
void leave_session(in SecurityFramework::SecurityCredentials sc,
in SessionID sid, in SessionResource r)
raises(SessionFrameworkException);
CosPropertyService::PropertySet get_session_state(
in SecurityFramework::SecurityCredentials sc, in SessionID sid)
raises(SessionFrameworkException);
Session get_session(in SecurityFramework::SecurityCredentials sc,
in SessionID sid)
raises(SessionFrameworkException);
SessionlIDs list_sessions(in SecurityFramework::SecurityCredentials sc)
raises(SessionFrameworkException);
SessionID get_session_byName( in SecurityFramework::SecurityCredentials sc,

103



in string name)
raises(SessionFrameworkException);
SessionID get_session_byAttributes( in SecurityFramework::SecurityCredentials sc,
in CosPropertyService::Properties attrs)
raises(SessionFrameworkException);
b
b

104



Appendix E: IDL Specification of a
Workflow Facility based on the OMG
jointFlow Standard

This appendix presents the main interfaces of the workflow facility described in the
case study of Chapter 7. This workflow facility is modeled after the OMG jointFlow
specification [jF198], with minor adjustmentments to re—use some of the basic support
services of the Aurora run—time ennvironment.

/*
* jFlow.idl —— IDL specification for a workflow execution and monitoring
* infrastructure that is similar in spirit to the OMG jointFlow standard
* as described in OMG Document Number bom/98—-06—-07
*/

module jFlowFramework {

typedef string StatusCode;

typedef string StatelD;

typedef CosQueryCollection::Iterator AssignmentMemberlIterator;

typedef CosQueryCollection::Iterator Activitylterator;

typedef CosQueryCollection::Iterator Processlterator;

typedef CosQueryCollection::Iterator Historylterator;

typedef CosPropertyService::PropertySet Data;

typedef DataSignatureStruct {
string attribute_name; /* name of argument/parameter */
string type_name; /* IFR id for type of argument/parameter */

s

typedef sequence<DataSignatureStruct> DataSignature;

/* Resource */
interface Resource {
string name();
string key();
string description();
AssignmentMemberlterator get_iterator_on_assignments()
raises(ProcessException);
boolean is_member_of_assignment(in Assignment assignment)
raises(ProcessException);
void release(in Assignment assignment, in StatusCode status)
raises(ProcessException);

b

/* Requester */
interface Requester {
Processlterator get_iterator-on_performers()
raises(ProcessException);
boolean is_associated_with_process(in WorkflowProcess process)

105



raises(ProcessException);
void notification(in EventNotification ev)
raises(ProcessException);
b

/* Perfomer */
interface Performer {

string name();

string key();

string description();

StatelD state();

void set_state(in StateID state)
raises(ProcessException);

Data context_data();

void set_context_data(in Data ctx_data)
raises(ProcessException);

unsigned long priority();

void set_priority(in unsigned long prio)
raises(ProcessException);

void suspend()
raises(ProcessException);

void resume()
raises(ProcessException);

void abort()
raises(ProcessException);

void terminate()
raises(ProcessException);

Historylterator get_history_iterator()
raises(ProcessException);

J%

/% Activity ¥/
interface Activity: Requester, Performer {
Data result();
raises(ProcessException);
void set_result(in Data res)
raises(ProcessException);
WorkflowProcess parent_process();
boolean is_member_of_assignment(in Assignment assignment)
raises(ProcessException);
AssignmentMemberlterator get_iterator_on_assignments()
raises(ProcessException);
void complete()
raises(ProcessException);
b

/* Workflow Process */
interface WorkflowProcess: Performer {
Requester process_requester();
PrcoessManager process_mgr();
Activitylterator get_iterator_on_activities()
raises(ProcessException);
boolean is_parent_of_activity(in Activity activity)
raises(ProcessException);
Dataa result()
raises(ProcessException);
void start()
raises(ProcessException);
b

/* Process Manager */

106



interface ProcessManager {
string name();
string key();
string description();
Processlterator get_iterator_on_processes()
raises(ProcessException);
boolean is_creator_of_process(in WorkflowProcess process)
raises(ProcessException);
DataSignature context_data_signature();
DataSignature result_data_signature();
WorkflowProcess create_process(in Requester requester)
raises(ProcessException);
b

/* Assignment
* — allowed values for ‘state’: pending_approval, approved
*/
enum assignment_state {
no-assignment, pending_approval, approved
%
interface Assignment {
string assignment_name();
string assignment_key();
string assignment_description();
Activity assigned_to_activity();
Resource assigned_resource()
raises(ProcessException);
void set_resource(in Resource r)
raises(ProcessException);
assignment_state state();
void set_state(in assignment_state s)
raises(ProcessException);

b

/* EventNotification:
* — allowed values for ‘event_type’: create_process, process_state_change,
* activity_state_change, activity_ctx_update, activity_result_update,
* assignment_state_change, process_ctx_change
*/
enum event_notification_type {
create_process, process_state_change, activity_state_change, activity_ctx_change,
activity_result_update, activity_ctx_change, activity_result_update,
assignment_state_change, process_ctx_change
¥
interface EventNotification {
Performer source();
string event_type();
TimeSpec ts();
string process_name();
string process_key();
string activity_name();
string activity_key();
string proces_mgr_name();
string prev_state();
string new_state();
string prev_assignment_state();
string new_assignment_state();

107



108



Appendix F: IDL Specification for the
Electronic Commerce Case Study

This appendix presents the main interfaces of the electronic commerce framework
described in the case study of Chapter 7. Only the definitions of auxilliary data types and
exception types have been omitted in the interests of brevity.

/*
* ecommerce.idl —— IDL specification for services supporting electronic
* commerce: products catalogue, order tracking, shopping basket,
* payment processor, problem log
%
* — The implementation of these support services uses the LogMonitor service.
*/

module EcommerceModule {

/* ProductsCatalogue: i/f of products database
* — distinction between ’soft’ and "hard’ goods: Soft goods can be
* obtained immediately, whereas hard goods require a fulfillment
* process before the order can be marked for shipping.
* — Product entries cannot be deleted, since a product may have been
* ordered thus creating an entry in the order tracking system.
*/
struct ProductStruct {
ProductID product.id;
string product_name;
string product_description;
double price;
string currency;
boolean soft_good_p;
boolean for_sale_p;
string terms_and_conditions;
Quantity quantity; /* defined in the context of the Inventory service */
b

typedef sequence<ProductStruct> ProductStructList;

interface ProductsCatalogue: ContainerFramework::StatisticsSource {
AuroraComponentDescriptor::ByteArrayHolder get_product_info(
in SecurityFramework::SecurityCredentials sc, in ProductID product_id)
raises(ProductsCatalogueException);
AuroraComponentDescriptor::ByteArrayHolder get_current_products(
in SecurityFramework::SecurityCredentials sc)
raises(ProductsCatalogueException);
AuroraComponentDescriptor::ByteArrayHolder get_discontinued_products(
in SecurityFramework::SecurityCredentials sc)
raises(ProductsCatalogueException);
ProductID add_product_entry( in SecurityFramework::SecurityCredentials sc,
in string name, in string descr, in boolean soft_good_p,

109



in double price, in string currency, in string terms)
raises(ProductsCatalogueException);
void modify_product_entry( in SecurityFramework::SecurityCredentials sc,
in ProductID product_id, in string name, in string descr, in boolean soft_good_p,
in boolean for_sale_p, in double price, in string currency, in string terms)
raises(ProductsCatalogueException);
ProductIDs list_product_ids( in SecurityFramework::SecurityCredentials sc)
raises(ProductsCatalogueException);

b

/* Inventory: specialization of ProductsCatalogue /f to keep track of
* the available quantity for each product and to support automatic

* alerts when the inventory level for a product becomes higher/lower
* than a specified threshold. It is assumed that when a product is
*discontinued’ an alert is signalled to all clients that have

* registered an interest in monitoring this product’s ’quantity’.

*/

enum InventoryAlertType {
LT_-THRESHOLD, EQ_.THRESHOLD, GT_.THRESHOLD
b
struct InventoryLevelNotificationStruct {
ProductID product.id;
boolean discontinued;
Quantity prev_quantity;
Quantity delta;
b
interface Inventory: ProductsCatalogue, ContainerFramework::StatisticsSource {
void update_quantity(in SecurityFramework::SecurityCredentials sc,
in ProductID product_id, in Quantity delta)
raises(InventoryException);
Quantity get_quantity(in SecurityFramework::SecurityCredentials sc,
in ProductID product_id)
raises(InventoryException);
InventoryAlertID request_alter( in SecurityFramework::SecurityCredentials sc,
in ProductID product_id, in Quantity threshold, in InventoryAlertType alter_type,
in MessagingFramework::CallbackObject cb)
raises(InventoryException);
void cancel_alert(in SecurityFramework::SecurityCredentials sc,
in InventoryAlertID alter_id)
raises(InventoryException);

J%

/* OrderTracking: /f of order management/tracking system

* — supports queries over particular orders. queries over the

* time series of orders so far (history view), as well as grouping
* orders by product, date, and/or customer name.

*/

struct OrderStruct {
OrderID order_id;
ProductIDs product_ids;
Quantities quantities;
double tot_amount;
PaymentMethodSpecification payment_details;
LoggingServiceModule::SessionID sid;
LoggingServiceModule:: TaskID tid;
LoggingServiceModule::Sourceldentity srcID;
TimeSpec confirmed_date;
TimeSpec expiration_date;
TimeSpec shipped_date;

110



TimeSpec last_change_date;
CustomerName cust_name;
CustomerAddress cust_addr;
CustomerPhone cust_phone;
CustomerEmail cust_email;
ShippingAddress shipping_addr;
OrderState order_state;
/* Possible order states: INIT, void, confirmed, failed_authorization,
* authorized, shipped, returned, refunded, expired
*/
b
typedef sequence<OrderStruct> OrderStructList;
interface OrderTracking: ContainerFramework::StatisticsSource {
OrderID add_order(in SecurityFramework::SecurityCredentials sc,
in ProductsIDs product_ids, in Quantities quantities, in double tot_amount,
in LoggingServiceModule::SessionID sid, in LoggingServiceModule::TaskID tid,
TimeSpec confirmed_date, in TimeSpec expiration_date, in TimeSpec shipped_date,
in CustomerName cust_name, in CustomerAddress cust_addr, in CustomerPhone cust_phone,
in CustomerEmail cust_email, in PaymentMethodSpecification payment_details,
in ShippingAddress shipping_addr, in BankAuthorizationCode bcode)
raises(OrderTrackingException);
void set_order_state(in SecurityFramework::SecurityCredentials sc,
in OrderID order_id, in OrderState order_state)
raises(OrderTrackingException);
OrderState get_order_state( in SecurityFramework::SecurityCredentials sc,
in OrderID order_id)
raises(OrderTrackingException);
void set_shipped_date(in SecurityFramework::SecurityCredentials sc,
in OrderID order_id, in TimeSpec shipped_date)
raises(OrderTrackingException);
AuroraComponentDescriptor::ByteArrayHolder get_order_info(
in SecurityFramework::SecurityCredentials sc, in OrderID order_id)
raises(OrderTrackingException);
AuroraComponentDescriptor::ByteArrayHolder get_orders(
in SecurityFramework::SecurityCredentials sc, in ProductID product_id, in OrderState order_state,
in CustomerName cust_name, in TimeSpec startTS, in TimeSpec endTS)
raises(OrderTrackingException);

b

/* ShoppingBasket: i/f for combining products from one or more

* ProductsCatalogue services into a single order.

P

* — submit_order() results in issuing orders for products listed in one or
* more ProductsCatalogue’s, via a specified OrderTracking service.

*/

typedef SB_State {
INITIALIZED, SUBMITTED, EXPIRED

struct ShoppingBasketStruct {
ShoppingBasketID sb_id;
SB_State sb_state;
LoggingServiceModule::SessionID sid;
LoggingServiceModule::TaskID tid;
LoggingServiceModule::Sourceldentity srcID;
TimeSpec init_change;
TimeSpec last_change_date;
TimeSpec expiration_date;
TimeSpec submit_date;
ProductIDs product_ids;
Quantities quantities;

111



OrderTrackingSvcCosName order_tracking_svc;
b
typedef sequence<ShoppingBasketStruct> ShoppingBasketStructList;
struct SB_Item {
ProductID product.id;
Quantity quantity;
b
typedef sequence<SB_Item> SB_ItemList;
interface ShoppingBasket: ContainerFramework::StatisticsSource {
ShoppingBasketID init_sb(in SecurityFramework::SecurityCredentials sc,
in TimeSpec expiration_date, in LoggingServiceModule::SessionID sid,
in LoggingServiceModule::TaskID tid)
raises(ShoppingBasketException);
void add_item(in SecurityFramework::SecurityCredentials sc,
in ShoppingBasketID sb_id, in ProductID product.id, in Quantity quantity_delta)
raises(ShoppingBasketException);
void remove_item(in SecurityFramework::SecurityCredentials sc,
in ShoppingBasketID sb_id, in ProductID product.id, in Quantity quantity_delta)
raises(ShoppingBasketException);
OrderID submit_order(in SecurityFramework::SecurityCredentials sc,
in ShoppingBasketID sb_id, in OrderTrackingSveCosName ot_svc_cosN,
in PaymentMethodSpecification payment_details, in CustomerName cust_name,
in CustomerAddress cust_addr, in CustomerPhone cust_phone,
in CustomerEmail cust_email, in ShippingAddress shipping_addr,
in BankAuthorizationCode bcode, in TimeSpec expiration_date)
raises(ShoppingBasketException);
AuroraComponentDescriptor::ByteArrayHolder list_items(
in SecurityFramework::SecurityCredentials sc, in ShoppingBasketID sb_id)
raises(ShoppingBasketException);
SB_State get_sb_state(in SecurityFramework::SecurityCredentials sc,
in ShoppingBasketID sb_id)
raises(ShoppingBasketException);
AuroraComponentDescriptor::ByteArrayHolder get_sb(
in SecurityFramework::SecurityCredentials sc,
in ShoppingBasketID sb_id)
raises(ShoppingBasketException);
void drop_sb(in SecurityFramework::SecurityCredentials sc,
ShoppingBasketID sb_id)
raises(ShoppingBasketException);
ShoppingBasketIDs list_shopping_basket_ids(
in SecurityFramework::SecurityCredentials sc)
raises(ShoppingBasketException);

s

/* PaymentProcessor: minimal wrapper (front—end) for electronic payment
* — send_command_to_server() allows using the payment processor’s API

* directly (eg: CyberCash: mauth, postauth, mauthcapture, query, etc).

* — do_direct_payment() is a convenience method, grouping together all

* the steps required for completing a payment transaction.

* — get_tx_history() returns all log records related to a specified

* task within a session thus providing a history of ’significant’

* events during the course of a payment transaction.

*/

interface PaymentProcessor: ContainerFramework::StatisticsSource {
unsigned long send_command( in SecurityFramework::SecurityCredentials sc,
in LoggingServiceModule::SessionID sid, in LoggingServiceModule::TaskID tid,
in CosPropertyService::PropertySet ins, in CosPropertyService::PropertySet outs)
raises(PaymentProcessorException);
unsigned long execute_direct_payment( in SecurityFramework::SecurityCredentials sc,
in LoggingServiceModule::SessionID sid, in LoggingServiceModule::TaskID tid,

112



=

I

in CosPropertyService::PropertySet ins, in CosPropertyService::PropertySet outs)

raises(PaymentProcessorException);
AuroraComponentDescriptor::ByteArrayHolder get_tx_history(
in SecurityFramework::SecurityCredentials sc,

in LoggingServiceModule::SessionID sid, in LoggingServiceModule::TaskID tid)

raises(PaymentProcessorException);

/* ProblemLog: service for logging problem reports so that service providers
* can inspect them and take appropriate action to handle them

*/

struct ProblemStruct {

b

ProblemID problem.id;

OrderID order_id;
LoggingServiceModule::SessionID sid;
LoggingServiceModule:: TaskID tid;
LoggingServiceModule::Sourceldentity srcID;
TimeSpec problem_date;

TxType tx_type;

TxStatus tx_status;

string err-msg;

typedef sequence<ProblemStruct> ProblemStructList;
interface FeedbackLog: ContainerFramework::StatisticsSource {

J%

ProblemID add_problem_entry( in SecurityFramework::SecurityCredentials sc,
in OrderID order_id, in TxType tx_type, in TxStatus tx_status,
in string err_msg, in LoggingServiceModule::SessionID sid,
LoggingServiceModule::taskID tid)
raises(FeedbackLogException);
void remove_problem_entry( in SecurityFramework::SecurityCredentials sc,
in ProblemID problem_id)
raises(FeedbacklLogException);
AuroraComponentDescriptor::ByteArrayHolder get_problem_entry(
in SecurityFramework::SecurityCredentials sc, in ProblemID problem_id)
raises(FeedbackLogException);
AuroraComponentDescriptor::ByteArrayHolder get_problem_entries_on_order(
in SecurityFramework::SecurityCredentials sc, in OrderID order_id)
raises(FeedbackLogException);
AuroraComponentDescriptor::ByteArrayHolder get_problem_log(
in SecurityFramework::SecurityCredentials sc)
raises(FeedbackLogException);
ProblemIDs list_problem_ids( in SecurityFramework::SecurityCredentials sc)
raises(FeedbackLogException);

113



