
MEASUREMENT-DRIVEN MODELING
OF TRAFFIC DEMAND AND SHORT

TERM FORECASTING IN LARGE WLANS

by

Elias Raftopoulos

A thesis submitted in fulfillment of the requirements
for the degree of Masters in Computer Science

University of Crete

2007

Approved by __
Maria Papadopouli
Assistant Professor

Chairperson of Supervisory Committee

 __
Apostolos Traganitis

Professor

 __
Panagiotis Tsakalidis
Associate Professor

 __
Panos Trahanias

Professor
Chairperson of the Graduate Studies Committee

Date ___

ABSTRACT

Wireless Local Area Networks (WLANs) have seen enormous success in
response to the growing demand for wireless access. Network operations, such as
capacity planning, admission control, and load balancing, will become more
relevant and will have to be properly engineered to match the WLAN constraints.
In this context, ιt is of critical importance to understand the performance and
workload of the wireless networks and develop wireless networks that are more
robust, easier to manage and scale, and able to utilize scarce resources more
efficiently. Thus, it is important to perform empirical studies to measure the
phenomena of interest in real-life networks and formulate realistic models of user
communication and association patterns. This can be beneficial in the
administration and deployment of wireless infrastructures, protocol design for
wireless applications and services, and their performance analysis. Moreover, the
development of testbeds, tools, benchmarks, and models is of tremendous
importance and can motivate further performance analysis and simulations.

In this work, we study a large infrastructure and model the traffic load at APs. We
take advantage of the wireless infrastructure of the University of North Carolina
(UNC) to draw large amounts of different types of measurement data. In the first
stage of this research effort, we exploit the spatial and temporal resolution
available in data traces in deriving models for traffic demand in the network. Our
contributions have a strong methodological element. For example, in modeling
traffic demand we adopt a hierarchical framework that is found to capture
demand in various levels of spatial scales, ranging from individual buildings to
groups of buildings and network-wide. Throughout this work, we make heavy use
of statistical tools; clustering techniques help us address scalability concerns in
traffic demand modeling. In the second stage, we focus on the AP-level and
design forecasting algorithms to predict the traffic load in different time-scales.
We then apply these forecasting algorithms on real traffic traces acquired from
the most heavily utilized APs and evaluate their performance.

ACKNOWLEDGMENTS

This thesis is the result of a two-year working experience as graduate
student at the research group for Telecommunications & Networks at the
Institute of Computer Science (ICS) of the Foundation for Research and
Technology Hellas (FO.R.T.H.). These years have been very instructive, giving
rise to several interesting tasks more or less related to the research.

First of all I would like to thank Maria Papadopouli, my supervisor, not only
for her encouragement during this work, but also for letting me proceed my own
way until I needed some guidance, and for being right there with the thrusters
when asked!

I want also to thank our colleagues and research collaborators, F.H. Campos,
H. Shen, and M. Karaliopoulus, for their invaluable help. Without their support
the completion of this thesis would not have been possible.

Thanks also to members of the NetLab Group for the friendship and energy
expended in extra-curricular activities, encouragement and comic relief when
things started to get crazy. Of these I want to give special thanks to M. Ploumidis,
V. Lekakis, M. Pantelias, K. Flouri, M. Moudatsos, M.Spanakis, L. Kriara and G.
Tzagkarakis.

This work was supported by a graduate fellowship from the ICS (FO.R.T.H.),
which I also truly acknowledge for providing the necessary technical equipment.

Finally, I would like to thank my family, for providing me with the ideal
environment to grow up in, and exhorting me in changing for the better. Their
constant support and encouragement have really brought me here.

I have had a lot of fun. Thank you all (I hope that I’ve not forgotten
someone).

i

TABLE OF CONTENTS

Abstract
Table of Contents .. i
List of Figures .. iii
List of Tables ... vi
1. Introduction
 1.1 WLAN deployment .. 1
 1.2 Motivation ... 1
 1.3 Goals .. 2
 1.4 Challenges .. 2
 1.5 Related work ... 3
 1.6 Contributions .. 4
 1.7 Roadmap.. 4
2. Network Infrastructure and Measurement Data
 2.1 Introduction .. 6
 2.2 UNC campus .. 6
 2.3 Data collection .. 8
 A. Syslog data ... 8
 B. SNMP data .. 10
 C. Packet header data .. 12
3. Modeling Methodology
 3.1 Introduction .. 15
 3.2 Two-tier modeling approach ... 15
 3.3 Enhancing scalability with clustering.. 21
 A. Data dimensionality reduction via PCA and SVD 23
 B. Building clustering ... 24
 C. Cluster validation ... 29
 3.4 Clustering with respect to session-level flow-related variables 32
 3.5 Conclusions ... 32
4. Validation
 4.1 Introduction .. 33
 4.2 McColl academic building ... 34
 4.3 Hinton James residential building ... 37
5. Short-term Traffic Forecasting
 5.1 Traffic forecasting... 44
 5.2 Traffic load notation .. 44
 5.3 Basic statistics of traffic load ... 45

A. Correlation of the number of associations and traffic load 48

ii

B. Hotspots APs and their spatial locality .. 50
 5.4 Traffic Forecasting Methodology ... 51

A. Time-series extraction and treatment of missing values 51
 B. Spectrum analysis.. 53
 C. Modeling for traffic forecasting .. 54
 I. Periodic based forecasting... 54

 II. Recent history based algorithms: ... 55
 III Adaptive moving average based forecasting 56
 IV. Hybrid algorithms based on periodicities and recent history 57

 V. Multi-sourced algorithms with flow-related information 58
 VI. Normalized ARIMA based time-series forecasting 59

 5.5 Evaluation of the Performance of the Forecasting Algorithms 64
A. Metrics ... 64

 B. Forecasting using historical means and recent traffic (P1,P2, P3) 65
C. Normalized ARIMA multi-step ahead time-series forecasting 69
D. Improvement in forecasting performance using finer time scales 71

 5.6 Conclusions .. 76
6. Conclusions ... 77
References ... 79

iii

LIST OF FIGURES

Number Page
1. Figure 2.3.1. Syslog data polling procedure .. 9

2. Figure 2.3.2. SNMP facilitates the exchange of network information

between devices .. 11

3. Figure 2.3.3. A SNMP-managed network consists of managed devices,

agents, and NMSs ... 12

4. Figure 2.3.4. Campus-wide wireless infrastructure and packet monitor

tool.. 14

5. Figure 3.2.1. Sessions and flows .. 16

6. Figure 3.2.1. Percentage of variance explained by PCs 25

7. Figure 3.3.2. Principle components loadings ... 26

8. Figure 3.2.3. 3D plot of PC1-PC2-PC3 ... 28

9. Figure 3.2.4. Cluster profiles .. 29

10. Figure 3.2.5. Silhouette cluster validation index (192elements feature set) 30

11. Figure 3.2.6. Silhouette cluster validation index (24h feature set) 31

12. Figure 4.2.1. Number of flows per session: CDF under different

building grouping alternatives ... 35

13. Figure 4.2.2. McColl building:CDF of aggregate flow interarrivals 35

14. Figure 4.2.3. McColl building: autocorrelation of aggregate flow

interarrivals .. 36

15. Figure 4.2.4. McColl building: aggregate hourly flow arrivals 37

16. Figure 4.3.1. Hourly session arrivals: Hinton James compared to the

cluster signature .. 39

17. Figure 4.3.2. Hinton James building: EDF of aggregate flow

interarrivals .. 40

iv

18. Figure 4.3.3. CCDF of aggregate flow interarrivals 40

19. Figure 4.3.4. Aggregate hourly flow arrivals. ... 42

20. Figure 4.3.5. Autocorrelation of aggregate flow interarrivals 42

21. Figure 5.3.1. Distribution of total traffic load (GB) at each AP 45

22. Figure 5.3.2. Distribution of total traffic load (GB) at APs 46

23. Figure 5.3.3. Distribution of associations at APs 47

24. Figure 5.3.4. Distribution of total number of associations for each

AP ... 48

25. Figure 5.3.5. Total traffic load compared to the number of associations

at each AP.. 49

26. Figure 5.3.6. Total traffic load compared to the number of associations

at each AP (log scale) .. 49

27. Figure 5.4.1. Traffic load at AP 472: (a) time series (b) power

spectrum .. 54

28. Figure 5.4.2. Traffic load at AP 472(a) normal q-q plot for X (t)

(b) normal q-q plot for Y(t) ... 60

29. Figure 5.4.3. Changing patterns of (a)Y(t) statistics (b)SD and

IQR of Y(t) ... 61

30. Figure 5.4.4. (a) Time series for e(t) (b) Partial ACF plot for e(t) 62

31. Figure 5.5.1. Performance of prediction algorithms P1, P2

considering all APs ... 66

32. Figure 5.5.2. P3 Performance considering all APs, with 25% error

tolerance .. 67

33. Figure 5.5.3. Mean prediction ratios for P1, P2, and P3 with

(a,b,c)=(1,0,0) for each hotspot .. 68

34. Figure 5.5.4. Median prediction ratio for P1, P2 and P3 with weights

(a,b,c)=(1,0,0) for each hotspot .. 68

v

35. Figure 5.5.5 Mean prediction ratio for the P3 and NAMSA forecasting

algorithms for each hotspot .. 69

36. Figure 5.5.6. Median prediction ratio for the P3 and NAMSA

forecasting algorithms for each hotspot .. 70

37. Figure 5.5.7. Absolute error for EMA with five-minute traces 71

38. Figure 5.5.8. Relative error for EMA with five-minute traces 72

39. Figure 5.5.9. Absolute error for NAMSA with five-minute traces 73

40. Figure 5.5.10. Relative error for NAMSA with five-minute traces 74

41. Figure 5.5.11. Absolute prediction error for the type-of-flow based

algorithm on hotspot AP 472 ... 75

42. Figure 5.5.12. Relative prediction error for the type-of-flow based

algorithm on hotspot AP 472 ... 75

vi

LIST OF TABLES

Number Page
1. The evolution of the wireless infrastructure in terms of number of APs

and clients .. 7

2. Analyzed measurement datasets from UNC campus and their use in

modeling tasks ... 14

3. Summary of models for network-wide traffic demand variable 18

4. Summary of building types .. 18

5. Summary model parameters per building type .. 20

6. Modeling alternatives-scenarios for simulation validation 33

7. Summary of the forecasting algorithms with the type of traces used, their

tracing and forecasting period and time scale .. 65

1

1. Int roduction

1.1 WLAN deployment

Wireless Local Area Networks (WLANs) have seen enormous success in
response to the growing demand for wireless access. IEEE802.11
networks are becoming widely available in universities, corporations, and
residential areas to provide wireless Internet access. Such networks are also
increasingly being deployed in airports, hospitals, shopping centers, and
other public areas. Popular applications and services from the wired
networks shift in the wireless arena and new applications are increasingly
being deployed. The proportion of wireless streaming audio and video
traffic increased by 405% between 2001 and 2003/2004, P2P from 5.2% in
2001 to 19.3% in 2003/4, filesystems from 5.3% to 21.5%, and streaming
from 0.9% to 4.6% between January 2006 and March 2006. Moreover, the
rapid deployment of the IEEE802.11 infrastructures in various
environments impacts the way users access the information and triggers
new applications and services that in turn, generate a richer set of traces for
analysis.

1.2 Motivation

Despite their already broad use, the evolution of WLANs towards larger,
multi-service networks bears challenges that have not been thoroughly
addressed by the research community. Standardization work is still ongoing
in IETF (capwap group) and IEEE (802.11x groups) in an attempt to
improve the management of the radio resources and provide the Quality of
Service (QoS) real-time services require. Within this context network
functions, such as capacity planning, access control, and load balancing,
will become more relevant and will have to be properly engineered to
match the WLAN constraints. For the design of adequate quality of service
provision, and network monitoring mechanisms, it is important to analyze
and interpret the traffic characteristics. Real-life measurement studies can
be particularly beneficial in the development and analysis of such
mechanisms. It is critical to understand the performance and workload of
the wireless networks and develop wireless networks that are more robust,
easier to manage and scale, and able to utilize scarce resources more
efficiently.

2

1.3 Goals

The research goals of this work are twofold. In the first stage, we intend to
analyze network traffic using different spatial and temporal scales in order
to capture real-life phenomena, such as user communication and
association patterns, and formulate realistic models of wireless traffic
demand in a scalable manner that will be useful to network administrators,
who wish perform capacity planning and network provisioning. Moreover,
our models can be used to replace existing models which are widely used
by researchers in simulation studies, benchmarks, and testbeds. The
assumptions often made in these models fail to capture phenomena
encountered in large wireless infrastructures and, therefore, can lead to
unrealistic results.

In the second stage, we shall focus on traffic analysis in a very fine
resolution, namely AP-level traffic modeling, and attempt to exploit the
traffic characteristics and the diverse sources of data acquired to monitor
different aspects of the network dynamics, in order to tailor simple short-
term forecasting algorithms. These algorithms can be incorporated in
access points to allow them to perform admission control and capacity
planning in a real-time fashion. So, in this context, each AP predicts its
traffic load for the next time interval (e.g., next hour or five minute
interval) and uses its traffic load forecasts during admission control to not
only better manage its traffic demand but also advice clients to associate
with the appropriate APs to better utilize their local resources. Such
predictions can be used to reduce the energy spending at the client side,
improve the capacity utilization of wireless LANs, and better load balance
the traffic. To the best of our knowledge, these research efforts are the first
traffic forecasting studies on large IEEE802.11 infrastructures.

1.4 Challenges

Wireless network measurements feature higher complexity and, as a result,
are less abundant than those in wired networks. Depending on how
detailed view of the network is required at the spatial dimension, e.g., at an
AP, APs co-located in a building or set of buildings, and the architecture of
the network (single link-level subnet or multiple subnets), one needs to
capture traffic at multiple physical locations. As IEEE 802.11 MAC-layer
frame sniffers are not commonly available, researchers often have to build

3

custom equipment or resort to expensive commercial tools to capture the
over-the-air traffic with the required level of detail. It comes as no surprise
that only recently have traces from large-scale wireless infrastructures with
statistically significant network usage been made available. Notably, the
majority of the measurement studies, e.g., [4, 5, 6], make high-level
observations about network dynamics in both the temporal and spatial
domains without getting into the detail that modeling tasks require.

1.5 Related work

Empirical and performance analysis studies indicate dramatically low
performance of real-time constrained applications over wireless LANs [1],
and large handoff delays [2, 3]. The overhead of scanning for nearby APs is
routinely over 250 ms, far longer than what can be tolerated by highly
interactive applications, such as voice telephony. Mobile users experience
frequent loss of connectivity and high end-to-end delays when they access
the wireless Internet. While in several cases over-provisioning in wired
networks is acceptable, it can become problematic in the wireless domain
due to interference, regulatory, and environmental reasons. Furthermore,
wireless clients have more vulnerabilities than their wired counterparts.
Their energy limitations, dynamic characteristics, and mobility of the
wireless clients impose additional constraints and the bandwidth utilization
at an AP can impact their performance substantially.

Recently, there have been several empirical-based measurement studies
about the traffic load [7, 8, 9, 10, 11, 12, 13], user access [14, 9, 15, 16, 17,
18, 19, 20], handoff [2, 3], delay and packet losses in the MAC [21] and
TCP connections [22], link quality and routing [23, 24, 25]. Measurements
on IEEE802.11-based mesh networks have also received a lot of attention
[25, 26, 24, 27, 28, 39, 30, 31, 32, 33, 29]. However, while there is a rich
literature characterizing traffic in wired networks [34, 35, 36], there are only
a few studies available that examined wireless traffic load and even fewer
studies on short-term wireless traffic forecasting.

1.6 Contributions

In this work, we study a large wireless infrastructure and model the traffic
load in different levels of spatial aggregation, spanning from single access

4

points to the entire network. We take advantage of the large wireless
infrastructure of UNC to draw large amounts of different types of
measurement data. We then exploit both the spatial and temporal
resolution available in data traces to derive models for traffic demand. Our
contributions have a strong methodological element. For example, in
modeling traffic demand we adopt a hierarchical framework that is found
to capture demand in various levels of spatial scales, ranging from
individual buildings to groups of buildings and network-wide. Throughout
this work, we make heavy use of statistical tools; clustering techniques help
us address scalability concerns in traffic demand modeling.

Shifting to a finer level, the AP-level, we design forecasting algorithms to
predict the traffic load in different time-scales and apply these forecasting
algorithms on real traffic traces acquired from the most heavily utilized
APs to evaluate their performance. We show that hourly predictions of the
traffic load at an AP have very large prediction error due to the high
variability. We also focus on finer time scales and (a) present and evaluate a
number of novel forecasting algorithms, such as the adaptive moving-
average and flow-based algorithms, (b) integrate different types of
information in the prediction algorithms (e.g., snmp and tcp-based), (c)
observe dramatically improvement in the forecasting accuracy. We show
that the time granularity and recent traffic history have dominant impact
on the prediction accuracy. That is, the finer the time granularity (5-minute
compared to hourly intervals) and more recent the historical traffic data is,
the larger their impact on the prediction error.

1.7 Roadmap

In Section 2 we present the infrastructure studied, define the main entities
of our simulation study, namely the wireless session and the network flow,
introduce the main mechanisms used to capture network data, and present
the methodology used in order to recover missing values, which can found
in our data due to hardware failures, transient phenomena, or protocol
characteristics. In Section 3 we present our modeling results, in terms of
flow and session related characteristics, and discuss our hierarchical
framework, which aims to capture traffic characteristics in different levels
of spatial aggregation. In Section 4 we evaluate the different modeling
alternatives and compare how the spatial detail affects the model’s

5

capability to capture the traffic demand. Sections 3 and 4 are heavily based
on the paper “On scalable measurement-driven modelling of traffic
demand in large Wlans.”, (published in the IEEE Workshop on Local and
Metropolitan Area Networks 2007), by Merkouris Karaliopoulos, Maria
Papadopouli, Elias Raftopoulos and Haipeng Shen. In Section 5 we shift to
the AP-level and analyze traffic in finer time scales. Based on this analysis,
we formulate short-term traffic load forecasting algorithms, using diverse
sources of data, in an attempt to capture the multiple network dynamics.
We evaluate these algorithms in the most heavily used access points and
discuss our major findings. This Section is based on the following two
publications, “Evaluation of short-term traffic forecasting algorithms
in wireless networks.”, (published in the 2nd Conference on Next Generation
Internet Design and Engineering), by Maria Papadopouli, Elias Raftopoulos,
and Haipeng Shen, and “Short-term traffic forecasting in a campus-
wide wireless network”, (published in the 16th Annual IEEE International
Symposium on Personal Indoor and Mobile Radio Communications), by Maria
Papadopouli, Haipeng Shen, Elias Raftopoulos, Manolis Ploumidis, and
Felix Hernandez-Campos. Finally, we present our main contributions and
draw our conclusions.

6

2. Network infrastructure and measurement data

2.1 Introduction

In this section we present the campus network studied and describe the
different methods used to capture user interaction with the wireless
infrastructure. Users are mobile and often run applications with real time
constraints whereas at the same time they roam seamlessly through
different basic service sets (BSSs). This type of activity is shown in Figure
2.1.1 where we can see a typical user pattern. User B associates with AP1,
he roams to AP2 and AP3 where he terminates his interaction and
disconnects. Three types of data are used to capture user interaction,
namely, syslog data, snmp data, and flow-related data. These types of
information are studied thoroughly in the following sections.

Figure 2.1.1. User interaction with the wireless infrastructure.

2.2 UNC campus

The measurement data for our project are drawn from the UNC campus
wireless network. UNC began the deployment of its wireless infrastructure
in 1999, providing coverage for nearly every building in the 729-acre
campus, encompassing a diverse academic environment which includes
university departments, programs, administration, activities, and residential

7

buildings. During the project, the network has seen substantial growth; the
488 APs by October 2004 had become 574 in April 2005 and 741 by May
2006, making it one of the largest of its kind. Almost all of them belong to
the Cisco Aironet series [37]. The network APs are spread over more than
240 buildings in the 729-acre campus, including student residence halls,
academic buildings, sport halls, and libraries, and a few off-campus
administrative offices. They provide wireless access to 26,000 students,
3,000 faculty and 9,000 staff members. Of the 26,000 students, 61% are
undergraduates and more than 75% of them own a laptop with wireless
access capabilities. Such laptops and other devices allowing the campus
population to interact with the wireless network are called clients. Wireless
clients arrive at the network, associate to one or more APs for some period
of time, and leave the infrastructure. Table 1 shows the evolution of the
wireless infrastructure and the significant increase of APs and wireless
clients.

Tracing period Clients APs
February 10 –April 27, 2003 7,694 232
17-24, October 2004 8,880 459
2-9, March 2005 9,049 532
13-20, April 2005 9,881 574
September29 –November,2005
2005 2005

14,712 574

Table 1. The evolution of the wireless infrastructure in terms of number of
APs and clients.

Information access can be achieved based on this infrastructure. The most
integral part of the wireless architecture is the access aoint. A wireless
access point (AP) (or base station) is a dual-homed device, a gateway with a
radio transmitter and receiver that provides Internet access to hosts in its
wireless range. A typical AP is connected to a wired network and can relay
data between devices on each side. Within the range of the AP, the wireless
end-user has a full network connection with the benefit of mobility. Many
APs can be connected together to create larger networks that allows
“roaming” between them; APs relay packets between each other, so that a
packet can be delivered to its final destination, a roaming client. In

8

contrast, in ad hoc networks, devices operate in a self-organizing,
autonomous manner.

2.3 Data collection

Three types of data have been used to track the interaction of clients with the
wireless network infrastructure: Syslog messages, Simple Network Management
Protocol (SNMP) data, and packet header traces. The first two types of data have
been collected almost continuously from the wireless network, whereas the
packet header traces come from two different eight-day monitoring periods
spaced one year apart, i.e., April 13-20 2005 and Apr 28-May 5 2006.

A. Syslog data

Syslog is a protocol that allows a machine to send event notification
messages across IP networks to event message collectors – also known as
Syslog Servers or Syslog Daemons. In other words, a machine or a device
can be configured in such a way that it generates a Syslog Message and
forwards it to a specific Syslog Daemon (Server). Syslog messages are
based on the User Datagram Protocol (UDP) type of Internet Protocol
(IP) communications. Syslog messages are received on UDP port 514.
Syslog message text is generally no more than 1024 bytes in length. Since
the UDP type of communication is connectionless, the sending or
receiving host has no knowledge receipt for retransmission. If a UDP
packet gets lost due to congestion on the network or due to resource
unavailability, it will simply get lost. Syslog is typically used for computer
system management and security auditing. While it has a number of
shortcomings, syslog is supported by a wide variety of devices and
receivers across multiple platforms. Because of this, syslog can be used to
integrate log data from many different types of systems into a central
repository. Syslog is now standardized within the Syslog working group of
the IETF.

9

Figure 2.3.1. Syslog data polling procedure.

Syslog messages are event-based. They are triggered by different types of
events at the IEEE 802.11x MAC layer, including the
(re)association/disassociation of a client with/from an AP, its
authentication/deauthentication with/from the network, and a client
connection reset. All network APs are configured to report syslog events to
a server, which is continuously operational. The majority of APs on
campus were configured to send trace data via syslog messages to a syslog
server in the computer science department.

There are seven types of events that trigger an AP to transmit a syslog
message. These messages and their corresponding events are interpreted as
follows:

Authenticated: A card must authenticate itself before using the network.
Since a card still has to associate with an AP before sending and receiving
data, we ignore any authenticated messages.

Associated: After it authenticates itself, a card associates with an AP. Any
data transmitted to and from the network is transmitted by the AP.

Reassociated: A card may reassociate itself with a new AP (usually due to
higher signal strength) or the current AP. After a reassociation with an AP,
any data transmitted to and from the network is transmitted by that AP.

10

Roamed: After a reassociation occurs, the old AP and sometimes the AP
with which the card has just reassociated send a roamed message. Since we
still receive the reassociated message, we can ignore this message as well.

Reset: When a card’s connection is reset, a reset message is sent. In our
trace, cards with a reset message are only involved in reset messages. We
believe this to be an artifact of us not having logs from all of the APs, and
therefore ignore any reset messages.

Dissasociated: When a card wishes to disconnect from the AP, it disasso-
ciates itself. We ignore any disassociated messages for a card if the previous
message for that card was a disassociated or deauthenticated message.
 Deauthenticated: When a card is no longer part of the network a deau-
thenticated message is sent. It is not unusual to see repeated
deauthenticated messages for the same card, with no other type of events
for that card in between. We ignore any deauthenticated messages for a
card if the previous message for that card was a disassociated or a
deauthenticated message. A disconnection message describes either a
disassociated or deauthenticated message.

B) SNMP data

SNMP is an Internet-standard protocol for managing devices on IP
networks. Many kinds of devices support SNMP, including routers,
switches, servers, workstations, printers, modem racks, and uninterruptible
power supplies (UPSs). It is an application layer protocol that facilitates the
exchange of management information between network devices and is part
of the Transmission Control Protocol/Internet Protocol (TCP/IP)
protocol suite. SNMP enables network administrators to manage network
performance, find and solve network problems, and plan for network
growth. SNMP forms part of the internet protocol suite as defined by the
Internet Engineering Task Force (IETF) and is used by network
management systems to monitor network-attached devices for conditions
that warrant administrative attention. It consists of a set of standards for
network management, including an Application Layer protocol, a database
schema, and a set of data objects. SNMP exposes management data in the
form of variables on the managed systems, which describe the system
configuration. These variables can then be queried (and sometimes set) by
managing applications.

11

Figure 2.3.2. SNMP facilitates the exchange of network information between
devices.

An SNMP-managed network consists of three key components: managed
devices, agents, and network-management systems (NMSs). A managed
device is a network node that contains an SNMP agent and that resides on
a managed network. Managed devices collect and store management
information and make this information available to NMSs using SNMP.
Managed devices, sometimes called network elements, can be routers and
access servers, switches and bridges, hubs, computer hosts, or printers. An
agent is a network-management software module that resides in a managed
device. An agent has local knowledge of management information and
translates that information into a form compatible with SNMP. An NMS
executes applications that monitor and control managed devices. NMSs
provide the bulk of the processing and memory resources required for
network management. One or more NMSs must exist on any managed
network.

12

Figure 2.3.3. A SNMP-Managed Network Consists of Managed Devices,
Agents, and NMSs.

In our infrastructure SNMP data become available periodically from each
AP. We implemented a custom SNMP-polling system relying on a non-
blocking SNMP library. APs are polled independently with a period of five
minutes, so that delays incurring during the processing of SNMP polls by
the slower APs do not affect the other APs. This eliminates any extra
delays due to the slow processing of SNMP polls by some of the slower
APs. The system ran in a multiprocessor system and the CPU utilization in
each of the three processors we employed never exceeded 70%. The
collection of SNMP data is a 24/7 process, which has been running almost
without interruption since September 2004.

C) Packet header data

The bulk of the campus wireless network has a single aggregation point
that connects to a gateway router. This router provides connectivity
between the wireless network and the wired links, including all of the
campus computing infrastructure and the Internet. Packet header traces

13

were collected with a high-precision monitoring card (Endace 4.3GE). The
card was installed in a high-end FreeBSD server and captured all packets
traversing the link between UNC and the Internet in both directions. The
monitoring period was 178.2 hours in 2005 and 192 hours in 2006, yielding
175GB and 365GB of packet headers, respectively. During that period, the
campus used primarily Cisco Aironet 350 802.11 APs, although some areas
on campus are serviced by older APs from other manufacturers. As the
syslog traces indicated, the infrastructure was accessed by 7,694 distinct
wireless clients. The 37% of them made one or more HTTP requests
during the tracing period February 26 through March 24, 2003. The sharp
increase in the trace size indicates the significant growth of the wireless
demand between these periods.

The HTTP traces were based on packet headers collected from the
FreeBSD monitoring system described in the previous section. The tracing
tool tcp-dump was employed to collect all TCP packets that have payloads
that begin with the ASCII string “GET” followed by a space. The full
frame was collected as a potential HTTP request. We did not restrict our
collection to the standard HTTP port, allowing us to record HTTP
requests sent to servers on non-standard ports, which include many
common peer-to-peer file-sharing applications. The packet trace was then
processed to extract the HTTP GET requests contained therein. From
each packet, we kept the time of the packet’s receipt (with one-second
resolution), the hostname specified in the request’s Host header, the
Request-URI, and the hardware MAC address of the wireless IEEE 802.11
client. If all of these items were not available in a packet, we did not
include the recorded packet in our recorded requests. Using these criteria,
8,358,048 requests for 2,437,736 unique URLs were traced and included in
the analysis. By recording the traffic before it had passed through an IP
router, we were able to capture the original MAC header as generated by
the IEEE 802.11 clients for transmission to the gateway router.

14

Figure 2.3.4. Campus-wide wireless infrastructure and packet monitor tool.

Our measurement data are summarized in Table 2. Each type of
measurement data provides insight to different aspects of the clients’
interaction with the network and proves relevant to different modeling
tasks. In the following sections, we describe the use of traces in modeling
the network traffic demand, and the way clients move in the network
Moreover, we discuss their advantages and weaknesses in the respective
context. In separate experiments, we have also captured intra-WLAN
traffic from a finite number of APs. Doing this throughout the network
would demand monitoring in many physical locations, which is impractical.
In results presented subsequently packet header traces are drawn from the
UNC-Internet link.

Data traces Monitoring period APs seen Clients seen Size Modeling task
Packet headers Apr 13-20, 2005 Apr

28-May 5 2006
N/A 9777

1248
175GB
365GB

Traffic demand

SNMP pollings Sep 29, 2004-Jun 30, 2006 488-741 27GB Traffic demand

Syslog messages Jan 20, 2005-Mar 3, 2006
Apr 3-Jun 30, 2006

488-640
640-741

3GB
630MB

Client roaming

Table 2. Analyzed measurement datasets from UNC campus and their use in
modeling tasks.

15

3. Modeling Methodology

3.1 Introduction

In this section we process the large amount of different measurement data
we have acquired from the wireless infrastructure of UNC. We then take
advantage of the spatial and temporal resolution available in data traces in
deriving models for traffic demand of users in this network The main
contribution is that, in modeling traffic demand we adopt a hierarchical
framework that is found to capture demand in various levels of spatial
scales, ranging from individual buildings to groups of buildings and
network-wide. Throughout this section, we make extended use of statistical
tools; clustering techniques are used in order to address scalability concerns
in traffic demand modeling.

3.2 Two-tier modeling approach

The modeling approach proposed in this work, is hierarchical in that it
organizes the activity of network clients into wireless sessions and network
flows. The wireless session can be viewed as an episode in the interaction
of a client and the wireless infrastructure: a wireless client arrives at the
network, associates to one or more APs for some period of time, and then
leaves the infrastructure. It was preferred over modeling individual
association-disassociation sequences, whose dynamics in wireless LANs
can change dramatically due to small changes in the network layout,
physical environment, or network/client equipment. Likewise, at lower
level we work with network flows, such as TCP connections and UDP
conversations, rather than with packets. Flows include well-separated
collections of packets exchanged between a pair of Internet hosts, i.e.,
packets that share the same transport-layer “5-tuple”.

16

Figure 3.2.1. Sessions and flows.

Arguments related to scalability and reusability, which are particularly
desirable properties in modeling, complicate the problem. Previous
modeling studies have either attempted to model traffic demand over
hourly intervals at the level of individual APs [38] or studied the problem at
system-level deriving models for the aggregate network-wide traffic
demand [39]. Clearly, both approaches have their strong and weak points.
The second approach results in datasets that are amenable to statistical
analysis and provides a concise summary of the traffic demand at system-
level. However, it fails to capture the variation of this demand at finer
spatial detail that may be required in the evaluation of system functions
with focus on the AP-level (e.g., load balancing). While working at the AP-
level achieves that, it fails in other respects: the approach does not scale for
large wireless infrastructures since a large number of distributions has to be
derived and simulated grows linearly with the number of APs, which is not
desirable when studying large-scale wireless infrastructures, and data do not
always lend to statistical analysis. Moreover, the modeling results are largely
sensitive on the specific AP layout of a particular network and short-term
variations of the radio propagation conditions.

17

So in the spatial domain we decided to work with buildings rather than
APs. We view buildings as more robust entities for modeling the spatial
variation of traffic demand. In fact, we could draw an analogy between
flows-packets and buildings-APs. Much as packet-level dynamics are
subject to network topology and instantaneous conditions, AP-level user
activity is sensitive to radio propagation dynamics and environmental
setting. One good example is the “ping-pong” effect, where a stationary
user may be alternately associated with two, or even more, APs due to
short-term radio signal propagation variations.

The notable advantage of working with buildings is that many of our
findings for the aggregate network traffic demand also hold for the per-
building traffic demand. Session arrivals, for example, can still be modeled
by time-varying Poisson processes, as reported in [40]. Moreover, buildings
of the same type are found to share largely similar patterns in their hourly
session arrival rates, despite discrepancies in volume. Likewise, the
distributions listed in Table 3, BiPareto for number of flows per session
and flow sizes and Lognormal for flow interarrivals within session, hold
not only at the building level but also at intermediate levels of spatial
aggregation, such as over all buildings of the same building type.
Furthermore, at building level client sessions appear more stationary than
when considering APs. Building-roaming sessions, during which a WLAN
client visits more than one building, account for less than 10% of the
overall sessions. Therefore, simulating the traffic workload consists of
simulating sessions and the flows started inside them, leaving packet-level
and association dynamics to underlying mechanisms that are independent
of our model.

18

Table 3. Summary of models for network-wide traffic demand variable.

The actual processes/variables we model are four, namely session arrival,
flow inter-arrival, flow number and flow size. In the following sections,
one of the questions we address is what level of modeling the traffic
demand variation in the spatial dimension yields the best trade-off between
modeling efficiency and scalability. Generally, for each traffic variable listed
in Table 3, the spatial detail of modeling could be the building, building
type, or in the extreme case the network as a whole. Although the building
type is an intuitive basis for grouping buildings, it is not the best one. In
fact, in the following section, we use clustering techniques to come up with
alternative groupings of buildings of higher utility for our modeling task.

Building type Academic Administrative Athletic Business Clinical Library Residential Social
Number 51 25 17 8 18 4 110 10

Table 4. Summary of building types.

Parametric models describe the traffic demand variables. When compared
with empirical models, they provide better insight to the properties and
dynamics of the modeled quantities. In parallel, they are more adequate in
summarizing datasets and make their comparison straightforward. We then
use formal and visual statistical analysis methods and tools, such as
goodness-of-fit tests and quantile plots with simulation envelopes, to find
the distributions best matching the modeled traffic variables. Since traffic

19

demand in large WLANs varies changes with time and in space, our
modeling has considered various scales in both dimensions. The spatio-
temporal variation actually manifests itself, though to a different extent, in
all four traffic variables we have chosen in our two-level modeling
approach. There are two notable results in this respect.

Firstly, we have found out that the same statistical distributions, though
with different parameter sets, model our traffic variables during both the
2005 and 2006 monitoring periods. A time-varying Poisson process with
constant rate over intervals of an hour captures the non-stationarity of
session arrivals. The custom statistical test for testing the hypothesis of the
time-varying Poisson process is described in [41]. The per-session number
of flows and the flow sizes are well modeled by the BiPareto distribution
[42]. BiPareto distributions have Pareto tails on both ends; since on a log-
log plot a Pareto tail of the form x-a appears as a straight line with slope –a,
the log-log plot of the BiPareto survival function results in two nearly
linear regimes. This property of the distribution favors it over other tested
distributions, including Weibull, Gamma, and Pareto, for the modeling of
the per-session number of flows and flow sizes [43]. Likewise, the
Lognormal distribution gives the best fit for the in-session flow interarrival
durations.

Secondly, the same set of distributions has been found to match the
modeled variables over different spatial scales. Whether we look at traffic
in individual buildings or groups of buildings of the same type (e.g., Social,
Residential, Academic), or all over the wireless network, the same four
statistical distributions, each time with different parameter sets, match very
well the variables we model. Table 5 lists the parameters of the
distributions for two representative campus buildings with high demand
and some sets of buildings with the same usage. The parameters for more
buildings and the multi-scale analysis of the 2006 dataset are available at
[44], whereas the distributions for the network-wide traffic during the April
2005 monitoring period are detailed in [43].

20

Table 5. Summary model parameters per building type.

The methodological choices made attempt to strike a good trade-off
between the two extreme approaches to traffic modeling that were outlined
earlier, namely AP-level compared to network-level modeling. Not only do
we model traffic workload in terms of sessions and flows, but we also look
in more detail into the spatial dimension, using buildings as basic entities of
traffic demand modeling. Major features of user activity, such as the traffic
patterns they generate and their mobility within the wireless network, are
studied at the building level. Heuristic and more formal clustering
techniques are then applied to the data to group together buildings with
similar traffic characteristics and achieve the scalability objective in our
modeling.

Considerable effort is devoted to the validation of the modeling
methodology. Synthesizing traffic based on the derived models and
comparing with the trace data, helps us assess the reusability of system-
wide models to smaller spatial scales, the accuracy-scalability trade off and
the possible contributions of clustering techniques to its resolution.
Moreover, the availability of datasets from two different monitoring
periods, spaced one year apart, lets us identify modeling elements that are
time-persistent.

The contributions in the modeling aspect of this section are summarized in
the following:

· A hierarchical framework for modeling traffic workload both
system-wide and at finer spatial scales (i.e., at building level and over

Modeled variable Hourly session arrivals
Poisson λ(t),
λ(t) є [λl, λh]

Per-session flow
number
BiPareto(α,β,c,k)

Per-session flow
interarrivals
Lognormal(μ, σ)

Flow size
BiPareto(α,β,c,k)

Network (2005) [44,1132] (0.06,1.72,284.79,1) (-1.37,2.79) (0,0.91,5.20,179)
Network (2006) [75, 1171] (0.09,1.49,585.4,1) (-1.49,2.92) (0,1.03,18.41,152)
Academic bldgs [0, 421] (0.11,2.17,713.85,1) (-1.64,2.99) (0,1.08,23.64,152)
Library bldgs [0, 123] (0.06,2.30,846.67,1) (-1.74,2.98) (0,1.18,24.94,154)
Social bldgs [0, 139] (0.00,0.08,718.69,1) (-1.82,2.97) (0,1.18,21.81,179)
McColl bldg [0, 217] (0.09,2.69,1026.37,1) (-1.69,3.01) (0,1.07,23.87,152)
H. James bldg [0, 27] (0.08,1.95,1357.35,1) (-1.62,2.99) (0,1.03,13.55,182)

21

groups of buildings). We find that the same set of parametric
distributions models our session- and flow-related traffic variables
at various spatial scales and over two different monitoring periods.

· A novel methodology for scalable modeling of the spatial variation
of traffic demand in large wireless networks drawing on heuristic
and statistical clustering techniques.

Validation of our modeling approach assessing the model accuracy and
scalability. Our results suggest that the two approaches are complementary
in that they result in clusters with high purity in different traffic variables.

3.3 Enhancing scalability with clustering

Working at system-level presents two extreme cases in modeling traffic
demand. The first approach gives a good insight to the user activity
patterns and forms a valuable input for the network design and
dimensioning. However, the averaging it introduces is not desirable for
many system functions working at smaller spatial scales. For example, load
balancing algorithms usually consider the traffic load of a set of APs that
are in close proximity when making their decisions. Evaluation of these
functions requires traffic demand models of finer detail in the spatial
dimension. On the other hand, AP-level modeling, whilst giving the
maximum possible accuracy, has the caveats and does not scale well. The
number of distributions that have to be derived and simulated grows
linearly with the number of APs, which is not desirable when studying
large-scale wireless infrastructures. Furthermore, for many APs the
available amounts of data are not adequate to allow statistical analysis and
derivation of meaningful modeling results.

One way to resolve the trade-off between the two extreme approaches, as
mentioned in previous sections, is to consider buildings. The use of
buildings reduces complexity from 0(N) to 0(M), where N is the number of
network APs and M is the number of buildings. However, this is often not
adequate. For example, the UNC campus hosts more than 200 buildings.
Therefore, we consider clustering as a way to group buildings and reduce
the number of models we have to implement and use in the simulator.
Clustering may be carried out with respect to one or more of the four
traffic variables we consider in our model; its ultimate aim is to use the
same cluster-level set of variables for a group of buildings instead of a

22

separate one for each building. Our hierarchical modeling framework
evolves around individual buildings at the finest and the entire system at
the coarsest detail. As mentioned in the introduction, both approaches
have weaknesses. We address them by enhancing this framework with an
intermediate level of detail, namely clusters of buildings that exhibit similar
behavior with respect to the traffic variables we model.

Moreover, the main modeled entities in our two-level model are sessions,
where the traffic non-stationarity is captured via the time-varying Poisson
processes. Most of the buildings exhibit distinct session arrival
characteristics during specific hours of the day. It seems like a natural
selection to use the mean hourly session arrival timeslots as the input
variable. Hence, we apply clustering techniques at the session level with the
aim to come up with groups of buildings featuring similar variation of
session arrivals in time. The ultimate aim of our building clustering is to
use the same cluster-level hourly session arrival rate time series, hereafter
called cluster profile or signature, for a group of buildings instead of a
separate time series for each building, the building profile. Therefore, our
clustering needs to take into account the size displacement between
different building profiles. This requirement cannot be satisfied if we
consider heuristic ways to group buildings, e.g., the building type as defined
in Section 3.3, which result in building groups with high similarity in shape
but large size displacements. To get clusters of buildings with the desired
properties we combine clustering with dimension reduction techniques.

Clustering is a division of data into groups of similar objects. Each group,
called cluster, consists of objects that exhibit similarity between themselves
and dissimilarity to objects of other groups. Data representation based on
fewer clusters is a coarse-grained approach and it is unavoidable to lose
some high resolution details, but simplification is achieved making
modeling a much easier task. However, the accuracy and reliability of a
classification method will not be efficient if highly correlated variables are
included in the analyzed dataset. The dimensionality of the underlying
model in our data is the number of independent variables used. One
important aspect of the data pre-processing before applying the actual
clustering methodology, is to reduce dimensionality sacrificing the lowest
possible accuracy. Principal components analysis is a quantitatively rigorous
method for achieving this goal. The method involves a mathematical

23

procedure that transforms a number of possibly correlated variables into a
smaller number of uncorrelated variables called principal components. The
objective is to reduce the dimensionality of the dataset but retain most of
the original variability in the data. All the principal components, which are
a linear combination of the original variables, are orthogonal to each other,
so there is no redundant information. These components form an
orthogonal basis, which constitutes the space of the data where the
clustering procedure will be performed in the following steps. The first
component accounts for the largest possible amount of variance. The
second component, formed from the variance remaining after that
associated with the first component has been extracted, accounts for the
second largest amount of variance, etc. Therefore, the aim is to reduce the
dimensionality of the original data, whilst preserving most of the variation
in data in the first few Principal Components(PCs). Geometrically PCs can
be viewed as dimensions in a reduced space where each dimension is
perpendicular to each other. In our case the input variables are the hourly
session arrivals.

Hence, we apply clustering techniques at the session level with the aim to
come up with groups of buildings featuring similar variation of session
arrivals in time. Specifically, we work with the 2006 trace resulting in a time
series of 192 hourly session arrival rates for each building. The integration
of time in the original variables will be revealing in the case of temporal
phenomena, since our model will be able to capture characteristics related
to the human behavior which are translated to periodic patterns in the data.
Moreover, clustering based on a single metric, namely the mean session
arrival rate, will produce results that are easier to examine and interpret.
The time series are the features or attributes of the data matrix X input to
clustering. The matrix has 250 rows, one for each campus building.
Whereas the clustering algorithm is the same in all cases, we consider three
alternatives for reducing the dimensionality of our dataset and bring out
the size element. They rely on Principal Component Analysis (PCA) and
Singular Value Decomposition (SVD).

A. Data dimensionality reduction via PCA and SVD
In the first one, centering is applied to the data matrix by subtracting the
column means of X, which correspond to the average building session

24

arrival rates. The mean subtracted from each dimension is the average
across each dimension producing a dataset whose mean is zero. No scaling
is performed at this point since we want to preserve the different scales
among different buildings. Even if the session arrival pattern found in two
different buildings is the same, we would expect these two buildings to fall
into different groups if the session arrival rate’s scale is significantly
different. This effect would be ignored if the data were scaled preserving
only the trend. We then perform PCA. The full set of principal
components produced by principle components analysis, is as large as the
original set of variables. However, if we keep the lower order principal
components and ignore the higher order ones we keep the most important
aspects of the data while discarding redundant information, thus
performing a dimension reduction. To decide how many PCs to extract,
we employ the scree plot, which plots the percentage of variance in data
that is explained by PC i.

The other two alternatives do not apply any centering on the data matrix.
In the first approach, we take the original data matrix X and standardize
the series for each building by dividing over the scale factor, calculated as
the square-root of the sum of squares of session arrivals over the 192
hours. We then apply SVD to the standardized matrix to obtain a number
of left PCs equal to the one that came out of the PCA technique described
earlier. The scale factor vector is then used as an additional dimension, in
addition to the PCs that came out of SVD, to be passed to the actual
clustering. The second alternative is similar to the first one, only now the
additional dimension is the vector of average numbers of session arrivals
over the whole tracing period for the 250 buildings.

In the rest of the section we present in more detail the clustering results for
the PCA-based clustering. We then give the results that came out of the
two SVD-based clustering alternatives and compare them on the basis of
validity indices assessing the compactness of clusters and their degree of
separation.

B) Building Clustering

The first thing to do before proceeding with the actual clustering is the
determination of the number of PCs to use. Figure 3.2.1 shows the scree

25

plot for the first seven PCs. The decision of when to stop extracting
principle components basically depends on when there is only very little
variability left. The nature of this decision is arbitrary, however, a
reasonable approach is to locate a “knee” in the plot and discard all the
components that are above that knee. The knee in this case, is located at
PC3 indicating that only the first three components can adequately capture
most of the variability in our dataset (approximately 90%).

Figure 3.3.1. Percentage of variance explained by principle components.

The plots of the first three loading vectors in Figure 3.3.2 suggest that PC1
is highly correlated with the mean session arrival rate, PC2 captures the
difference between day (6am-7pm) and night, whereas PC3 expresses the
difference between the first 12 hours of day (12pm -11am) and the last 12
hours of day.

26

Figure 3.3.2. Percentage of variance explained by principle components.

Clustering is subsequently carried out on the projected space, i.e., the
space spanned by the orthonormal PC1-PC3. Our goal is to partition the
given data set into groups (clusters) such that the data points in a cluster
are more similar to each other than points in different clusters. Thus, the
main concern is to reveal the organization of patterns into sensible
groups, allowing us to discover similarities and differences, derive useful
conclusions about them, and discover distribution of patterns and
interesting correlations in the dataset, thus making modelling easier. We
employ agglomerative hierarchical clustering. Hierarchical clustering is an
agglomerative schema allowing us to investigate groupings in the data,
simultaneously over a variety of different scales, by creating a cluster tree.
The cluster tree, which is called a dendrogram, is not a single group of
clusters, but rather a multilevel hierarchy, where clusters at one level are
joined into a single cluster at a higher level of the hierarchy. The most
straightforward way to express alikeness between different buildings is to
calculate their distance in the projected space, consisting of the first three
principle components. The distance metric used is the standardized
Euclidean distance and the unweighted pair-group method using

27

arithmetic averages (UPGMA) respectively, which proved to be adequate
choices for our data. Dissimilarity between buildings and clusters are mea-
sured by the standardized Euclidean distance. They are both popular
choices for clustering tasks [45].

Moreover, a distance metric has to be introduced in order to measure the
degree of association between a data point and a cluster or between two
clusters. This type of distance measure is called linkage and the most
prominent selection for our case is average linkage. The size of the link
expresses the degree of similarity between two connected components.
The goal of assigning buildings to specific groups is equivalent to
partitioning the cluster tree to disjoint segments, each one corresponding
to a different cluster. The optimal level for this cut can be inferred by
comparing the length of each link between cluster pairs in the cluster tree
with those links at the same level of hierarchy. If they are similar, then the
data clustered at this level show great alikeness, and therefore a high level
of consistency, otherwise the links appear to be inconsistent. The
existence of this kind of inconsistency, denoting a possible cut on the
dendogram, is expressed by the inconcistency coefficient. The higher the
value of this coefficient, the less associated the buildings connected by the
link are. Leaf nodes have an inconsistency coefficient equal to zero. The
depth used for the coefficient’s calculation, denoting the number of levels
of the cluster tree included in the calculation, is in this case two. In order
to determine the cut-off threshold for the inconsistency coefficient one
constraint has to be accepted, namely that the set of resulting clusters is
the minimal one.

The results are shown in Figure 3.3.3 where the projected scores are
visualized in a 3-dimensional space consisting of the first three principle
components. An additional processing step we take after clustering is to
exclude from subsequent analysis buildings with few session arrivals.
Those buildings actually group together in the same cluster. To assist
visualization of results and since the major challenges to system
engineering come from the heavy-load buildings, we use heuristics to filter
them out. After trial and error, the rule we set for filtering is to exclude
those clusters, in which all buildings have mean session arrival less than
50, and the average of their maximum hourly session arrival rate does not

28

surpass a threshold equal to 5. The remaining 74 buildings are shown in
Figure 3.3.3.

Figure 3.3.3. 3D plot of PC1-PC2-PC3.

It is evident from the plot that only a segment of the buildings’
population is taken into account. Several buildings exhibited only a
negligible amount of session arrivals during the tracing period analyzed.
These buildings were discarded after the clustering procedure was
complete. It is important to note that the filtering was not performed a
priori, but rather all buildings participated in the analysis and then we
could identify which clusters consisted of low mean session arrival
buildings and eliminate them. Figure 3.3.3 plots the PC1-PC3, using
different colors and symbols to present the various clusters obtained by
the hierarchical clustering. To characterize each cluster, we calculate the
cluster centroid in the projected space. To capture the main behavioral
and statistical characteristics of each cluster, we then back transform its
centroid, getting the “signature” session arrival rate series that
corresponds to the specific centroid. This signature then works as a

29

profile for that particular cluster. Figure 3.3.4 plots the signature profiles
for the obtained clusters. For example, clusters 5 and 10, which are
mostly populated by residential buildings, exhibit a high arrival rate
during afternoons and a similar pattern during weekends; on the other
hand, clusters 9 and 16 consist of academic buildings, which have a
strong session arrival rate peak during the mornings on weekdays and a
distinct drop during weekends.

Figure 3.3.4. Cluster profiles.

C) Cluster validation

To validate the clustering result, we can use some internal criteria to
measure how well a clustering fits the geometric structure of the data
with no reference to information known a priori, such as the silhouette
index.

The silhouette index is a confidence indicator on the membership of the ith
building in cluster Xj. A silhouette index value close to unity implies that
the ith building has been assigned to an appropriate cluster. An index value
close to zero suggests that the sample could also be assigned to the nearest
neighbouring cluster, i.e. such a sample lies equally far away from both
clusters. A silhouette value close to –1, one may argue that such a sample
has been misclassified. Thus, for a given cluster, Xj, it is possible to

30

calculate a cluster silhouette Sj, which characterises the heterogeneity and
isolation properties of such a cluster. It is calculated as the sum of all
samples’ silhouette widths in Xj. Moreover, for any partition, a global
silhouette value or silhouette index, GSu, can be used as an effective validity
index for a partition U. Based on this methodology we can not only
examine the current clustering results but it is also possible to validate the
192 feature selection. One would argue that the usage of a more compact
dataset, such as a 24hour feature set capturing the diurnal effects and
preserving lower memory and computational demands is much more
appropriate.

Figure 3.3.5. Silhouette cluster validation index (192-elements feature set).

31

Figure 3.3.6. Silhouette cluster validation index (24h feature set).

Therefore, we repeated clustering with a reduced 24-element feature set.
Each one of the 24 features corresponded to the mean hourly session
arrival rate estimated over all days of the tracing period. This feature set is
more compact, while it can still capture the diurnal effect. However, it
results in a significant reduction of the GSu value, 0.21 compared to 0.39
for the 192-element feature set. It comes out that the 192-element feature
set reflects better the temporal variation across week days. Averaging daily
session arrival rates, the 24-element feature set results in loss of detail in
our data with negative impact on clustering.

With the first clustering alternative, combining SVD with the scale factor
vector, we obtain 9 clusters. The largest cluster contains 216 buildings, all
of which satisfy the filtering criteria for low-utilized buildings. The
remaining 8 clusters all appear reasonable; the GSu index is 0.76 when all
clusters are considered. The second SVD-based clustering alternative
produces 26 clusters; eighteen are filtered out when applying our filtering
rules corresponding to 181 buildings. The estimated GSu index is 0.40. Out
of the three approaches, the SVD-scale factor approach results in the best

32

separation between high/low traffic buildings, whereas the one huge
cluster produced consists of buildings with low session arrival rate.

3.4 Clustering with respect to session-level flow-related variables

After clustering the buildings according to session arrival rate, we need to
model the session-level flow-related variables (see Table 3). There are
different alternatives for this task in light of the clustering work for session
arrivals. One option would be to perform a separate clustering of buildings
for each flow-related attribute. However, this approach would give rise to a
large total number of clusters and would complicate the modeling effort. A
variant of this would be to carry out the additional clustering within each
cluster obtained from the session arrival rate clustering. Another alternative
is to consider modeling flow-related variables using the same building
groups that come out of the clustering on session arrival rates. In our
validation analysis, we will compare this last approach against more
heuristic groupings (i.e., based on the building-type).

3.5 Conclusions

Traffic demand modeling has resulted in a hierarchical modeling
framework evolving around wireless sessions and network flows. We have
proposed parametric distributions for the four traffic variables we model:
time varying Poisson process for hourly session arrivals, BiPareto
distributions for in-session flow numbers and flow sizes, and Lognormal
for in-session flow interarrivals. These distributions capture the modeled
variables across different spatial scales, ranging from individual buildings to
the whole network, and over two different monitoring periods spaced one
year apart. Application of clustering techniques at building level is a
promising way to compromise accuracy with scalability in large-scale
wireless network modeling. We got good results combining clustering
algorithms with PCA and SVD, but heuristical ways to group buildings also
perform well with flow-related variables.

33

4. Val idat ion

4.1 Introduction

In this section we evaluate the different modeling alternatives described in
previous sections. We work with individual buildings and compare how the
models’ capability to capture the traffic demand at the building level
changes as we zoom in/out of the trace data and consider different levels
of detail in our modeling. We consider two alternatives for parameterizing
the time-varying Poisson process for the session arrivals: the hourly session
arrivals of the specific building we study and the signature of the cluster
this building was assigned to. For the flow-related variables, the levels we
consider in increasing order of spatial aggregation are the building, cluster,
building-type and, for comparison reference purposes, the network level.
We combine these alternatives into six scenarios and use them alternately
in our simulations to assist the illustration of our main findings and
support our discussion. Table 6 summarizes these scenarios and their
requirements in terms of sampling distributions when the whole wireless
network is to be modeled. In each we model four variables: the session
arrival process and the three flow-related variables.

Modeling scenario Description Sampling distributions

bldg-bldg Both session arrivals and flow-related variables
are modeled after bldg-specific data for the
whole trace duration

4*N
N : number of bldgs

bldg-bldg (day) The same with bldg-bldg, only now
different distributions are derived for
each day of the monitoring period

4*N*D
D : number of days

bldg-bldgtype Session arrivals are modeled after bldg-specific data
and flow-related variables over data aggregated at
bldg type level

N + 3*M,
M : num. of bldg types

cluster-bldg The cluster signature is used for session
arrival modeling, whereas the distributions
for flow-related variables are drawn from
building-specific data

C + 3*N,
C : number of clusters

cluster-cluster Both session arrivals and flow-related variables are
modeled after clustering

4*C

bldg-network Bldg-specific data for session arrivals,
network-wide distributions for the flow-related variables

N+3

Table 6. Modeling Alternatives-Scenarios for Simulation Validation.

34

Given the heavy-tailed session durations, our simulation times are in the
order of days rather than hours. We compare synthetic traffic against traces
with respect to building-level traffic variables not explicitly addressed by
our models. Such variables are the aggregate flow arrival count process and
the aggregate flow interarrival time-series for the building under study. We
examine first-order and second-order statistics of the flow interarrival
process and hourly flow arrival counts. We present results for two
buildings, one academic (McColl) and one residential (Hinton James). They
are two of the busiest campus buildings and represent the two main
building types. In the same time they exemplify the use of heuristical
(McColl) and more formal (Hinton James) clustering for achieving a good
trade-off between model precision and scalability.

4.2 McColl academic building

McColl is the busiest campus building in terms of session arrivals.
Irrespective of the clustering approach followed in Section 3.3, the McColl
building does not group with other buildings but rather forms a separate
cluster on its own. Therefore, the cluster signature coincides with the
building hourly session arrival rate and the modeling alternatives are only
relevant to the set of distributions for the flow-related variables. A first
view of the “noise” that averaging introduces is given in Figure 4.2.1. The
plot compares the cumulative empirical distribution function of the in-
session number of flows for the McColl building with those estimated for
all academic buildings and network-wide. The deviation between the
curves increases with the degree of spatial aggregation of data. The way
these discrepancies affect the aggregate flow-related metrics we described
in Section 3.2 is summarized in Figures 4.2.1-4.2.3.

35

Figure 4.2.1. Number of flows per session: complementary cumulative
distribution function under different building grouping alternatives.

Figure 4.2.2. McColl building: cumulative empirical distribution function of
aggregate flow interarrivals.

36

With respect to aggregate flow interarrivals, the synthetic traffic generator
tracks most closely the trace when we model the in-session flow number
and flow interarrivals separately for each one of the three days of
simulation time. Considering a single set of distributions over the whole
trace, does not give better results than when using the aggregate
distributions for academic buildings. This implies that the averaging in the
time-dimension may cancel out the benefit of getting higher spatial
resolution out of the trace data. Moreover, staying at the building-type level
gives us comparable precision with that obtained when zooming into the
building-specific data. Figure 4.2.2 clearly suggests that reuse of the
network-wide distributions for modeling traffic demand at finer spatial
scales is not an attractive alternative. Looking at the autocorrelation
process in Figure 4.2.3, one notes that the bldg-bldgtype curve is not much
worse than the one corresponding to the bldg-bldg scenario. In fact, the
former seems to underestimate less the short-term autocorrelation than the
latter.

Figure 4.2.3. McColl building: autocorrelation of aggregate flow interarrivals.

37

Finally, inferior in absolute terms is the match for the hourly flow counts,
which is the most demanding metric. Figure 4.2.4 plots the averages over
20 simulation runs along with their 95% confidence intervals. In this case,
further improvement would be obtained by modeling the flow-related
variables over shorter time periods than over the full monitoring period or
a day. In fact, the standard practice is to focus the modeling attention on
short time windows where the building activity experiences its peak (busy
hour). In any case, the aggregation along the building type performs only
marginally worse than the bldg-bldg scenario. The required number of
sampling distributions for modeling the each campus building under the
bldg-bldg scenario would be 4*N*D = 3000, for N = 250 and D = 3.
When all buildings of the same type are modeled after a common set of
distributions for flow-related variables, their number is reduced down to N
+ 3*M = 274, for M = 8.

Figure 4.2.4. McColl building: aggregate hourly flow arrivals.

4.3 Hinton James residential building

Contrary to McColl, the Hinton James building was clustered together with
other buildings under all clustering alternatives described in the clustering
study. We consider for further analysis the cluster that came out of the

38

SVD-scale factor technique, which is the one that gave the highest global
silhouette index amongst the three alternatives. This cluster comprises
three other buildings, two of the social and one of the library type.
Therefore, one additional modeling alternative now is to consider the
cluster signature instead of its hourly session arrival rate for modeling the
session arrivals in the building. We consider four alternative scenarios in
our simulator. In two of them we model session arrivals after the building
hourly session arrivals and in the other two we use the cluster signature.
For the flow-related variables, we have three alternatives for getting the
respective sampling distributions: consider only the building-specific data,
aggregate over data from all four buildings in the cluster and, aggregate
over data from all residential buildings in campus. The precision compared
to aggregation level trade-off is even more clear than with the Mc-Coll
building. Interestingly, the cluster-bldg combination presents a good
compromise with matching score too close to the one obtained when we
consider the specific building session arrival rates.

Figures 4.3.1-4.3.5 summarize the relative performance of the four
alternatives. The bldg-bldg curve corresponds to modeling both the hourly
session arrivals and the three flow-related variables after the building data,
whereas for the cluster-bldg curve the hourly session arrival rate time series
is assumed to be common for all buildings in the same cluster and
coincides with the cluster signature. Likewise, the bldg-bldgtype arises
when the distributions for the flow-related variables are derived by looking
at data from all campus academic buildings. Under this scenario, the
distributions for the three flow-related variables are the same for all
academic buildings. With the bldg-network approach, averaging takes
places over data from the whole network with the same three distributions
being used in all buildings.

The “noise” that averaging introduces becomes clear in Figure 4.3.1, where
the hourly sessions arrival rate in Hinton James is plotted against the
cluster signature. How this deviation affects the modeling accuracy is
summarized in Figures 4.3.2-4.3.4

39

Figure 4.3.1. Hourly session arrivals: Hinton James compared to the cluster
signature.

The bldg-bldgtype alternative is inferior to the cluster-bldg one, implying
that modeling in-session flow number and flow interarrivals by simply
taking into account data from all residential buildings has some cost.
However, it is still better than applying the clustering results obtained for
the hourly session arrival rates to the modeling of the flow-related variables
as well. This becomes clear in Figures 4.3.2 and 4.3.3, which show that
when this happens the mismatch is the worst of all scenarios. It comes out
from these plots that the building type can be most useful in grouping
buildings with respect to the session-level flow-related variables we model.

40

Figure 4.3.2. Hinton James building: empirical distribution function of
aggregate flow interarrivals.

Figure 4.3.3. Complementary empirical distribution function of aggregate flow
interarrivals.

41

The relative performance of the four scenarios is preserved with respect to
the second-order statistics (Figure 4.3.5) and the flow-counts (Figure 4.3.4).
In the second case, the match for the hourly flow counts, which is the
most demanding metric, is inferior. In this case, further improvement
would be obtained by modeling the flow-related variables over shorter time
periods than over the full monitoring period or a day. In fact, the standard
practice is to focus the modeling attention on short time windows where
the building activity experiences its peak (busy hour). As with the McColl
building, the implication is that additional detail in the time domain may be
necessary to get higher precision. Nevertheless, considering the cluster
signature instead of the per-building session arrival rates gives almost
identical performance. Again, this happens at the benefit of scalability,
since the required number of sampling distributions (parameter sets) to be
entered in the simulator is C+3*N = 770, for C = 20 versus 4*N = 1000,
respectively. Even better scalability in this case would be achieved under a
combination cluster-bldgtype, i.e., if we used the clustering results to model
the session arrival process and aggregate data at the building-type level for
the flow-related variables. The required number of sampling distributions
would be C+3*M = 44, resulting in an impressive reduction of complexity
in the simulator.

42

Figure 4.3.4. Aggregate hourly flow arrivals.

Figure 4.3.5. Autocorrelation of aggregate flow interarrivals.

43

With respect to aggregate flow interarrivals, as expected, the synthetic
traffic generator tracks most closely the trace when we model the in-
session flow number and flow interarrivals after the building data. It is
more notable though that the bldg-bldgtype alternative is inferior to the
cluster-bldg one, implying that modeling in-session flow number and flow
interarrivals by simply aggregating data from all residential buildings has
some cost. However, it is still better than reusing the clustering results
obtained for the hourly session arrival rates to the modeling of the flow-
related variables. This becomes clear in Figure 4.3.3, which shows that
when this happens the mismatch is the worst of all scenarios. It comes out
from these plots that the building type can be most useful in grouping
buildings with respect to the flow-related variables in our model.

44

5. Short -term Traff ic Forecast ing

5.1 Introduction

One of the main goals of this study is to enable APs to perform short-term
forecasting in order to provide better load balancing, admission control,
and quality of service provisioning. Specifically, they can use the expected
traffic estimations to decide whether or not to accept a new association
request or advise a client to associate with a neighboring AP. In addition,
the traffic models can assist in detecting abnormal traffic patterns (e.g., due
to malicious attacks, AP or client misconfigurations and failures).
The main contributions of this section are the following: we discovered
that both the total traffic load and number of associations at each AP are
lognormal distributions. Our results also suggest that the average total
traffic from an association in more “popular” APs (i.e., those with more
associations) is larger than the average total traffic in less popular APs. As
the popularity of an AP grows, the average traffic per association increases.
More specifically, the logarithms of the total number associations and
traffic load at each AP are strongly correlated. We also found a spatial
locality in the most heavily utilized APs and observed diurnal periodicities
at the total traffic load of the wireless infrastructure and also at several
APs. Based on its periodicity and recent traffic history, we propose several
models for the traffic load at an AP. Finally, we build some simple traffic
forecasting algorithms that employ these models and evaluate their
performance. To the best of our knowledge, this is the first study on traffic
forecasting using actual traces from a 802.11 infrastructure.
Two types of data are used, namely, data collected using SNMP, and
packet header collected from the link between the university and the rest of
the Internet.

5.2 Traffic load notation

Based on the SNMP trace for each AP, we produce a time series of its
traffic load at hourly intervals. This traffic is the total amount of bytes
received and sent from all clients that were associated with the AP at that
time interval. In the rest of this section, depending on the mathematical

45

expression, we will use two notations for these time series. Specifically, the
traffic of the AP i during the ith hour of day d, that corresponds to time t, is
Ti(h,d) = Xi(t).

5.3 Basic statistics on traffic load
Figure 5.3.1 shows the total traffic (in GB) that each AP sent and received
during the monitoring period. Total traffic was highly variable (notice the
use of a logarithmic y-axis), so typical summary statistics, such as the mean,
are of little use. The most heavily utilized AP handled 268 GB, while the
most lightly utilized one handled only 9,621 bytes. In addition, seven APs
did not handle any wireless traffic. The plot reveals a very consistent linear
trend in the total traffic for almost 300 APs. It is therefore possible to
model these data using an exponential model of the form y = 10ax+b. The
plot shows the result of fitting this model using linear regression (with a
coefficient of determination R2 of 0.9974 between ranks 75 and 300). The
top 50 APs in terms of total traffic had significantly higher utilizations than
this model predicts, while the bottom 125 had significantly lower
utilizations. It is still striking to find such clear log-linear structure in the
majority of data.

Figure 5.3.1. Distribution of total traffic load (GB) at each AP.

46

We further studied this data by plotting its cumulative distribution
function, and this suggested a log-normal model, which turns out to work
very well. Figure 5.3.2 shows the quantile-quantile plot of the total traffic
data against the theoretical quantiles of a log-normal distribution with
parameters μ = 22.35 and σ = 1.59. The quantiles of the data are well
within confidence intervals for all but the smallest values (lightest
utilizations). Therefore, total traffic per AP appears to follow a log-normal
distribution in our campus. Confirming that total traffic is log-normally
distributed in other campus wireless networks would be a useful result
applicable to the design of wireless testbeds and realistic experiments.

Figure 5.3.2. Distribution of total traffic load (GB) at APs.

Figure 5.3.3 shows the total number of associations per AP. As in the case
of total traffic, there is a wide variability in the number of associations per
AP. The most popular APs saw 33,581 associations, which constitute an
average of 600 associations per day. Interestingly, we also found a

47

consistent linear region in this data (notice again the logarithmic y-axis).
APs with the largest number of associations lie above the log-linear model,
while those with the smallest number lie below it. We have also considered
whether this data follows a log-normal distribution.

Figure 5.3.3. Distribution of associations at APs.

The quantile-quantile plot in Figure 5.3.4 shows a reasonable fit (R2 of
0.9919). However, the distribution of the data is heavier for the smallest
values, and we found a significant deviation (ten quantiles outside
confidence intervals) in the tail of the distribution. This finding implies
that the average total traffic from an association in a more “popular” APs,
those with more associations, is larger than the average in less popular APs.
Associations in popular APs tend to send and receive more data, and as the
popularity of an AP increases, the average traffic per association grows.

48

Figure 5.3.4. Distribution of total number of associations for each AP.

A. Correlation of the number of associations and traffic load
Previous studies [8] observed no correlation between the number of
associations and the total traffic per AP. We have also studied this
question and found only a weak correlation in our data (a Pearson’s
correlation coefficient of 0.46), which is consistent with previous work.
However, we made an interesting discovery. Figure 5.3.5 shows a
scatterplot of the logarithm of the total number of associations against the
logarithm of the total traffic for each AP. There is a clear upward trend,
with a Pearson’s correlation coefficient of 0.8. This means that log10t ≈ a x
log10n + b where t is the total traffic and n is the number of associations.
Therefore t ≈ 10bna, and the total amount of traffic grows very quickly with
the total number of associations. Using linear regression, we found a =
0.619 and b = 8.096 (R2 of 0.64). The interpretation of this result is that the
number of associations has a multiplicative effect on the total traffic of an
AP, rather than the more intuitive additive effect one would come to
expect. We do not have a precise explanation for this phenomenon yet.
We hypothesize that client reassociation dynamics could be a cause of it.

49

An IEEE802.11 client gets disconnected when its signal strength drops
below a threshold. Frequently, the client reassociates immediately with the
same AP. An increase in the number of associations at an AP can be due
to reassociations of the same client or the arrival of new clients. Higher
reassociation rates could be related to higher AP traffic loads.

Figure 5.3.5. Total traffic load compared to the number of associations at each
AP.

Figure 5.3.6. Total traffic load compared to the number of associations at each
AP (log scale).

50

This finding implies that the average total traffic from an association in a
more “popular” APs, those with more associations, is larger than the
average in less popular APs. Associations in popular APs tend to send and
receive more data, and as the popularity of an AP increases, the average
traffic per association grows.

B. Hotspots APs and their spatial locality

We would like to distinguish the most heavily utilized APs. For that, we
define the hotspots of the wireless infrastructure based on three metrics,
namely, the maximum hourly traffic,the total traffic and the maximum
daily traffic.

Hotspots based on maximum hourly traffic (set 1) These are the top a% APs
ordered by their maximum traffic during an hour in the entire tracing
period.

Hotspots based on total traffic (set 2) These are the top a% APs ordered by
their total traffic during the tracing period.

Hotspots based on maximum daily traffic (set 3) These are the top a% APs
ordered by their maximum traffic during a day in the entire tracing period.

Hotspot (main definition)
We define as a hotspot an AP that belongs in the top a% of APs with the
highest maximum hourly traffic and in the top a% of APs with either the
highest total traffic load or the highest maximum daily traffic load (i.e., the
set (set1 ∩ (set2 U set3))). We will use this definition in the following
sections.
We first investigate the spatial locality of the hotspots and name two APs
co-located, if they are placed in the same building. How likely is to find co-
located hotspots in the campus? We found that for a=20, the percentage of
co-located hotspots is above 76% and 79% for the hourly and total-traffic
based definitions, respectively. 62% of the co-located APs belong in the
(set1 ∩ (set2 U set3))). For a = 10, the corresponding percentages are about
11% smaller than their respective values for a = 20. Note that, if using the
uniform distribution, we had randomly selected the same number of APs,
the mean percentage of co-located APs in those selections is 48%. We are
currently investigating other spatial locality properties of the hotspots
(such as visit duration, applications, number of distinct clients, and usage

51

patterns) and plan to report these results in a followup study. For a = 10,
there are 19 such APs.

5.4 Traffic forecasting methodology
We distinguish three main categories of forecasting algorithms based on
their traffic models, namely, the periodic-based, the AR-based, and the hybrid
algorithms. The first category exploits the periodicities (e.g., diurnal and
weekly patterns) in the traffic by incorporating historical means of traffic.
The second type considers only a window of recent traffic history (e.g., the
traffic during the last three hours). The window size could be fixed
throughout the forecasting process or dynamically adjusted. In the latter
case, the algorithm monitors the traffic dynamically, detects prominent
changes in the traffic, decides about the window size (amount of traffic
history to be used) and applies the prediction algorithm using this window
of traffic. Examples of such algorithms are the moving average-based
algorithms described in the following paragraphs. When the traffic load
exhibits both strong periodicities and temporal dependencies, hybrid
models can be better choices. This classification can be extended
depending on whether the algorithm uses the predicted or actual values of
the recent history. More specifically, a forecasting algorithm is one-step
ahead, when it uses the actual values of traffic for the traffic during the
recent history window, and multi-step ahead, when it employs the predicted
ones. To enhance the performance of the forecasting algorithm, additional
information about the type of traffic, application, and client profile can be
used. Finally, depending on whether one or several sources of data have
been used, a forecasting algorithm is single-source or multi-source. For
example, a forecasting algorithm using SNMP-based data and TCP-packet
headers is a multi-source algorithm.
Our general methodology consists of the following steps: (A) Time-series
extraction, data cleaning, and treatment of missing values; (B) Power
spectrum and partial autocorrelation analysis; (C) Data normalization and
traffic load modeling; and (D) Forecasting using the traffic load models.

A. Time-series extraction and treatment of missing values
While our monitoring system requested traffic load information from each
AP precisely every five minutes, missing values are relatively frequent in
our dataset. They are due to several reasons: (1) an AP may be down for

52

maintenance, or in the middle of an accidental reboot; (2) an AP may be
too busy to reply to an SNMP query; (3) the network path between our
monitor and the AP may be temporarily broken; and (4) query packets
and response packets may be lost (they are transported using UDP). While
these pathologies are expected to be infrequent, our dataset is large enough
to contain numerous instances of each of them. Thanks to the cumulative
nature of SNMP counters, we were able to reconstruct missing values quite
accurately.

The basic technique for extracting an equally-spaced time-series X = { x1,
x2, … , xn} from SNMP data is to subtract the cumulative counters from
two consecutive polling operations. In order to detect missing values and
reboots, our polling samples include not only the cumulative counters but
also the time of each polling operation, and the cumulative time that the
AP has been running since the last reboot (up time). This means that the i-th
polling sample for an AP has the form (ti, ui, ci), where ti is time of the
polling operation, ui is the cumulative up time, and ci is some cumulative
counter (i.e., total load in bytes).

Given two consecutive polling samples, the load xi observed between ti-1
and ti, generally equal to ci – ci-1. There are two exceptions. First, SNMP
counters are represented using 32 bits, so counters often wrap-around. We
consider that a counter has wrapped around whenever ci < 230 and ci-1 >
3*230. In this case, xi is equal to ci + (232 – 1 – ci-1). Second, after a reboot,
all the counters in an AP are reset. Therefore, if a reboot occurs at some
point between ti-1 and ti, xi is equal to ci and the value of ci-1 should not be
subtracted from ci. Reboots can be detected by checking the value ui in
each polling sample. If ui is significantly less than ti - ti-1, the AP has been
reset, and xi is equal to ci. Otherwise, xi is equal to the subtraction of the
two cumulative counters. Note that resets may create situations that look
like a wrap-around, so the detection of the reboots should be performed
before the detection of the wrap-arounds.

When all of the polling operations are successful, ti - ti-1 is equal to the
polling interval (i.e., 5 minutes). However, when a polling operation fails, ti
- ti-1 is a multiple of the polling interval. If this is due to an AP reboot, the
counter ci only reports on the activity since the reboot operation.

53

Therefore, ci becomes the last value of the time-series. The values between
ti-1 and ti, for which no polling samples were available, are set to zero (APs
have no load while offline). If no reboot took place, the ci – ci-1 does not
correspond to a single xi but to the m values of the time-series between ti-1
and ti. In this case, we perform linear interpolation and set each
intermediate value of the time-series to (ci – ci-1)/m. Finally, note that ti - ti-
1 is not always exactly equal to the polling interval (or a multiple of it). The
most significant cause is the retransmission mechanism in our SNMP
monitor, which retransmits unanswered requests up to three times. Each
new request is spaced by 5 seconds. Therefore, the maximum deviation of
ti - ti-1 with respect to the polling interval is 20 seconds, and our time-
series extraction program takes into account this deviation.

B. Spectrum analysis
We find that the aggregate hourly traffic for all APs in the infrastructure
exhibits diurnal and weekly periodicities. Similar trends are observed in the
hourly traffic for several APs by autocorrelation plot and spectrum
analysis. 10 out of the 19 hotspots have a clear spike at 24 hours/cycle and
do not have a high frequency variation. Also, some APs have weekly
patterns at around 168 hours/cycle.

Figures 5.4.1(a) and (b) show the time series and spectrum plots of the
hotspot AP 472. This AP exhibits strong diurnal periodicity. There are
other APs with no clear periodic pattern, for which there is little prediction
power among the historical data. Further smoothing does not appear to be
helpful, at least with our current relatively short traces.

54

Figure 5.4.1. Traffic load at AP 472: (a) time series (b) power spectrum.

C. Modeling for Traffic Forecasting

1) Periodic-based forecasting: We propose several models that facilitate the
diurnal and weekly periodicity of the traffic load. Let us first consider
hourly traffic time series. We define the historical mean hour (P1) traffic
of an AP as the mean of the traffic during that hour for each day in the
history of that AP (Ndays days). Similarly, the historical mean hour-of-day
(P2) traffic is the mean of the traffic at such hour of day in the history of
that AP. We tailor two simple models based on the historical mean hour
and mean hour-of-day. Such periodic models can be extended for finer
time scales (e.g., five-minute time series).

First, we model the traffic load at an AP during an hour. The model
facilitates the diurnal and weekly periodicity of the traffic load. We define
the historical mean hour traffic of an AP as the mean of the traffic during that
hour for each day in the history of that AP (Ndays days). We only consider
weekdays.

For example, the historical mean-hour traffic for AP i is defined as

),(*),()/1()(
1

dIsAWeekdaydhTNh
daysN

d
iweekdays å

=

´=im

55

where h = 1,..., 24 and IsAWeekday?(d) is a binary indicator function that
specifies whether or not the d-th day is a weekday, and

Similarly, the historical mean hour-of-day traffic is the mean of the traffic at
such hour of day in the history of that AP. For example, the mean hour-
of-day for AP i is defined as

The IsW eekdayl (k,l) is a binary indicator function that specifies whether
or not the x is a weekday l. The nw(l) counts the total number of
weekdays / (e.g., the number of Mondays). For example, for the μi,(2)
we take the historical mean of the traffic at AP i for all days in the
history at 2am. Similarly, for the μi,(2, “Mon”), we compute the mean of
the traffic of all Mondays at 2am.

We tailor two simple models based on the historical mean hour and
mean hour-of-day. Specifically, for each AP (e.g., AP i), we define the
models Zi1 and Zi2, as follows:

We propose two simple prediction algorithms based on the
aforementioned models. P1 and P2 use the historical means to compute
the Zik(h,d), k = 1,2 for P1 and P2, respectively, and predict the traffic load
of AP i during the t-th time interval (that corresponds to the h-hour of day
d).

å

å

=

=

=

=

´´=

days

days

N

k

N

k
i

lkIsWeekdaylnandSun

throughMonfromrunslhwhere

khTlkIsWeekdaylnlh

1

1

),()(,""

"""",24,...,1

),,(),())(/1(),(im

å Î
´=

=

},...,{
2

1

),(),(),()2(

)(),()1(

SunMonii

i

lhdhIsWeekdaydhZP

hdhZP

i

i

m

m

.)?(
1
å
=

=
daysN

d
weekdays dIsAWeekdayN

56

2) Recent history based algorithms: We apply some simple linear predictors
based on localized regression. They are less demanding than more complex
linear predictors, such as ARIMA where selecting the order and
coefficients requires a large amount of previous historical data. The linear
models used are moving average and exponentially moving average.

A simple moving average (MA) is the unweighted mean of the previous
w data points in the time series.

A weighted moving average is a weighted mean of the previous w data
points in the time series. A weighted moving average is more responsive to
recent movements than a simple moving average.
An exponentially weighted moving average (EMA) is an exponentially
weighted mean of previous data points,

The parameter α of an EMA can be expressed as a proportional per-
centage. For example, in a 10% EMA, each time period is assigned a
weight that is 90% of the weight assigned to the next (more recent) time
period. A higher a cannot smooth out the measurement noise whereas a
lower value is slow in adapting to changes in the time series. Note that for
a equal to 1, we have a simple AR(1) model, very sensitive to the level
changes in the traffic. For a equal to 0, the algorithm corresponds to a
simple moving average less sensitive to the level changes. The prediction
algorithm uses the aforementioned models to compute the predicted traffic
for the next time interval. We will assume that these prediction algorithms
consider a fixed window size for the recent traffic history.

3) Adaptive moving average based forecasting: Motivated by the need to better
capture the burstiness of the traffic and adapt to its sudden changes during
the forecasting process, we propose a novel forecasting approach. The
adaptive moving-average algorithm dynamically detects the level shifts
(i.e., prominent changes of traffic) in the traffic and establishes a new
window size of the recent traffic. It then applies a moving-average based
algorithm using this window of recent traffic. As the traffic is received and
sent at an AP during each interval (e.g., k-th interval), the X(k) is being
formed. The algorithm employs a sliding window that moves across the

å
+-=

=+
t

wtx
kX

w
tX

1
)(1)1(ˆ

)(ˆ)1()()1(ˆ tXataXtX -+=+

57

X(j), j=k,k-1,…, and detects the level shifts. A recent history window has a
minimum and maximum size (wmin and wmax, respectively), currently set at 3
and 12 time intervals.

Let us assume that the current window is Lm starting and ending at the
beginning of the km-th and km+1-th interval, respectively (wmin ≤ km+1-km ≤
wmax). The traffic accessed during the window Lm is the set of all values in
the X(km),... ,X(km+1). Each traffic value X(km) corresponds to the aggregate
traffic accessed from the AP during the km-th time interval. Depending on
the time-scale the km-th interval is one hour or 5-minute interval. The
algorithm “scans backwards” the time series on the fly (while the AP
operates), starting from the end of the current interval kj (kj > km+1) and
detects level shifts in the traffic (accessed during those time intervals). A
level shift flag is triggered when one of the following conditions becomes
true.

If none of the above conditions are true, the current window Lm is
expanded to include the current intervals up to kj-th and the algorithm
continues with the next interval kj+1. When the current window size
exceeds its maximum size, the algorithm keeps as its current window only
the wmax most recent values. When one of the aforementioned conditions
becomes true, a new interval Lj that corresponds to the subset {X(kj),...,
X(kj+3)} is formed. A level shift at kj is detected if the confidence intervals of
the traffic accessed during Lm and Lj are non-overlapping (level shift criteria). In
the case of a new level shift, the current window becomes the Lj and the
algorithm continues to the next interval kj+1.

4) Hybrid algorithms based on periodicities and recent history: To incorporate both
the recent traffic and periodicities, we build a hybrid model that uses the
moving average and historical means. Specifically, for each AP (e.g., AP i),
we introduce the hybrid model (P3), a weighted average of the periodic-
based models of the historical mean hour and hour-of-day and the simple
moving average (MA) defined as

mllj

mllj

LkkXkX
LkkXkX

Î"<

Î">

)()()2(

)()()1(

å
-

-=

´+´+´=
1

3)(),()()/1(),()3(
t

wtk
ii hcdhbkXwadhZP imm

58

We experiment with different window sizes and weights to evaluate the
impact of the recent history and periodicity on forecasting. Note that the
P3 with weights (a,b,c) equal to (1,0,0) and history window w is a simple
MA model of window w and has the form of an autoregressive process of
order w, AR(w). In that case, the prediction takes into account only the
recent traffic history instead of the periodicity. The weights of the P3 can
be established using multiple linear regression, revealing which of the
predictors, namely, the historical mean hour, historical mean hour-of-day,
recent-history have the greatest effect. The linear model takes the form y =
Xb + e, where y is a vector of observations, X is a matrix of independent
variables (regressors/predictors) and e is a vector of random disturbances.
Multiple linear regression aims to obtain the best fitting curve by
minimizing the least square errors. P3 with weights established via multiple
linear regression is denoted as P-MA-RG. Note that P3 and P-MA-RG are
one-step ahead prediction algorithms, since for recent traffic data points, they use
the actual traffic values as opposed to the predicted ones (for the next-hour
prediction).

5) Multi-sourced algorithms with flow-related information: The . Furthermore, we
found a high correlation (above 90%) in the log-log scale between the
traffic load and number of flows in both the hourly and five-minute time
intervals. We designed two novel algorithms that use flow-based
information to enhance the predictions. Unlike the previous algorithms
that use only SNMP data, the new algorithms integrate SNMP and flow-
based information. Specifically, we investigated the impact of number of
flows and type of application on forecasting. For that, we correlated the
SNMP-client based and TCP-packet headers information. Since the time
granularity of the SNMP data is five minutes, we created five-minute time
series of the number of active flows at each interval for each AP using
the TCP-packet headers. We established the relation between number of
active flows and traffic load per interval for each AP by applying linear
regression on the two time-series generated using a training data set.
Therefore, for each AP, the number of flow based model was a function
of the form: log(X(k)) = alog(Nflows(k — 1)) + b, where X(k) and Nflows(k)
are the total traffic and number of flows during the kth interval of that
AP, respectively. To forecast the traffic during the kth interval the

59

number-of-flows-based prediction looks-up the number of flows at the
previous interval and predicts as traffic demand the

The type-of-flow-based forecasting algorithm predicts the traffic at the
next time interval based on the estimation of the traffic “contribution” of
its active flows at that interval. To compute the contribution of a flow, we
use the median traffic size and duration of flows of the same port number
(application type). There is a one-to-one mapping between the application
type and port number of the destination of a TCP flow. For example, let us
assume that and are the median traffic size and duration of flows of
port number p and d the time-scale. To forecast the traffic load of an
interval k, we find the set of active flows at the end of the (k-1)th interval.
For each active flow / (of application type p) that started at time ts we
estimate it’s expected traffic contribution at the kth interval as the ratio of
the median bandwidth requirement of this type of flows by the estimated
duration of that flow,

The type-of-flow-based forecasting algorithm will predict as the traffic load
of the next time interval, the sum of the contributions of all active flows in
that interval. Note that the type-of-flow-based algorithm does not consider
the arrival of new flows at the next time interval.

6. Normalized ARIMA based time-series forecasting: There are hotspot APs
whose traffic load shows strong diurnal periodicity. Figure 5.4.1(a) shows
the time series plot of the hourly traffic load at AP 472, from which one
can observe a clear diurnal pattern as well as a possible weekly pattern. To
verify their existence, we plot the corresponding power spectrum in Figure
5.4.1(b). The plot indicates that the most dominate period is the 24-hour
one, with smaller ones corresponding to 12 hours (day/night), and 168
hours (weekly period). Similar periodicities are observed in several other
APs as well. The existence of such strong periodicities motivates us to
consider forecasting traffic load using some time series models like
ARIMA. Intuitively, one would expect such models will have a better
forecasting performance than the aforementioned three algorithms.

)1())1(()(ˆ a
flows

b kNekX -=

)),1(*min((dkddt
d
l

ps
p

p --+

pl pd

60

Because such models take into account the strong periodic patterns as well
as the auto-correlation among the hourly traffic load. Below we propose
one such time series forecasting model using illustration with the traffic
load observed at AP 472.

Suppose Xi (t) is the traffic load within hour t at a particular AP i (e.g., AP
472). Due to the nature of the wireless network traffic, X472(t) has local
spikes that are very hard to predict as illustrated in Figure 5.4.1(a). In
addition, it most likely has a skewed marginal distribution. Figure 5.4.2(a)
plots the normal quantile plot of X472(t) for AP 472, which clearly suggests
the marginal distribution of the traffic load is heavily skewed to the right.
This calls for a suitable transformation to make the data closer to a normal
distribution. Such a transformation can reduce the effect of those local
spikes on the forecasting performance. In addition, standard time series
modeling procedures are most suitable for situations with normal data
[47]. After experimenting with different transformations, the 1/4 power
transformation, Y(t) = X472(t)1/4, seems to give the best result. In particular,
Figure 5.4.2(b) gives the normal quantile plot for the transformed load Y(t)
at AP 472. As one can see, Y(t) is much closer to be normally distributed,
and does not have extreme outliers as those in Figure 5.4.2(b). The
following model will be performed on Y(t).

Figure 5.4.2. Traffic load at AP 472: (a) normal quantile plot for X472 (t) (b)
normal quantile plot for Y(t).

61

We first point out that Y(t) exhibits strong non-stationarity in both the
mean and the variance. Figure 5.4.3(a) plots the bimodal changing patterns
of its mean, median, 25-th percentile and 75-th percentile as functions of
hour-of-day (h(t)), which shows that both the mean and the percentiles
change across the day. For example, the mean curve suggests that there is
very little traffic between midnight and 7-8AM; then the load starts to
increase until it reaches the first mode around 10AM and stays flat until
noon; after lunch-break, the load increases again to the second mode
around 3PM before it starts to decrease until midnight. Very sensible
explanations can be given for such a diurnal pattern. Similarly, Figure 5.4.3
(b) indicates the diurnal patterns for the standard deviation and Inter
Quartile Range (IQR) (i.e., the difference between the 25-th and 75-th percentiles).
The plot suggests that there is increasing variability in the traffic load
during 7AM-10AM and 1PM-3PM, exactly when the load increases. In
addition, the variability stays small between 10AM and 1PM.

Figure 5.4.3. (a)Changing patterns of mean, median, and quartiles of Y(t)
(b) Changing patterns of standard deviation (SD) and inter-quartile range of Y(t).

The above exploratory data analysis motivates us to normalize the
transformed load Y(t) in the following way,

)(

)()(
)(

th

thtY
te

s
m-

=

62

where h(t) is the corresponding hour-of-day for time t, μh(t) is the mean of
Y(t) during those time periods with the hour-of-day being h(t) while σh(t) is
the standard deviation of Y(t) during those time periods, and e(t) can be
treated as a normalized version of Y(t). Note that μh(t) and σh(t) have been
plotted in Figure 5.4.3 (a) & (b) for AP 472.

After the normalization, we can assume e(t) to be a stationary time series as
shown in Figure 5.4.4(a). The corresponding partial autocorrelation
function (Partial ACF) (Figure 5.4.4(b)) suggests that an AR(1) model is
reasonable for the normalized time series, e(t). Thus, we fit a family of
AR(p) models to e(t) using the Yule-Walker method and select the
approximate order p by minimizing the Akaike Information Criterion
(AIC). See Brockwell and Davis (1998) for details about the estimation
method and the model selection criterion, AIC. Note that the order p
specifies the number of lagged variables in the time series model and the
AR(p) model is written as

where n(t) is the model residual.

Figure 5.4.4. (a) Time series for e(t) (b) Partial ACF plot for e(t).

),()(...)1()(1 tnpteateate p +-++-=

63

As for the load at AP 472, p is selected to be 1 and the fitted AR(1) model
is

with the residuals n(t) being normally distributed with mean 0 and variance
0.6349. One can then use (1) to predict the traffic load during the next
hour, corresponding to time (t + 1), X472(t). First, a point prediction for e (t
+1) can be obtained as

then Y(t + 1) can be predicted as

Finally, a point forecast for X472(t + 1) is obtained by back-transforming
Y(t + 1),

In general, our proposed time-series forecasting approach can be
summarized as follows:

1) Transform the load in a reasonable way to make the data more
normally distributed. Note that the transformation here is subjectively
chosen, and it seems to be working well in the current application.

2) Investigate time-varying patterns of the mean and variability of the
transformed load.

3) Normalize the transformed load if the mean and variability are indeed
time-varying.

4) Develop standard time series models like AR(p) for the normalized
series, and employ rigorous model selection procedures like AIC to
select the optimal model.

5) Perform one-step-ahead or multi-step-ahead forecasting on the
normalized series using the fitted model, and then back-transform the
forecast to the original scale.

)1()()1(5689.0)(tntete +-=

)(5689.0)1(tete =+

).1(ˆ)1(ˆ
)1()1(+´+=+ ++ tetY thth sm

)1(ˆ)1(ˆ 4 +=+ tYtX

64

5.5 Evaluation of the performance of the forecasting algorithms

A. Metrics: absolute/ relative prediction error ratio and percentage of correct predictions
To evaluate the performance of the prediction algorithms, we compute
the absolute prediction error defined as the absolute difference of the predicted
from the actual traffic and the relative prediction error which is the ratio of
this absolute error over the actual traffic. The relative prediction error r(t)
at an AP i during the t-th time interval is defined as r(t) = |ZIK(t)- XI(t)| /
XI(t). A perfect prediction algorithm has absolute and relative prediction
error equal to 0. The relative prediction error is a conservative metric,
since it does not take into account the intervals with zero actual traffic,
which are frequent in the trace. Furthermore, large relative prediction
errors indicate large over or under-estimations of traffic. To better
appreciate the performance of the forecasting algorithms, both the
relative and absolute prediction errors need to be considered. A good
prediction algorithm should have low absolute and relative prediction
errors. The mean (median) relative prediction error of all hotspots is the
average of the mean (median) relative prediction error considering all
hotspots. Similarly, we compute the mean and median absolute prediction
error. For the evaluation of the forecasting algorithms, we use the
aforementioned metrics.

In the case of periodic based forecasting, the prediction algorithms apply a
predicted interval based on the historical mean and a tolerance (or
precision) error level. Specifically, we define the e-tolerance prediction interval
from a mean μ to be the interval [(1 — ε) * μ, (1 + ε) * μ]. The prediction
algorithm computes the percentage of times that the actual traffic is in the
predicted interval. For example, in the case of the prediction Pk, k = 1,2,3,
for the traffic of AP i during the h-th hour of day d, it computes the
prediction interval and checks if Xi(t) is
in that interval.

A good prediction algorithm should have a high correct prediction
percentage and low prediction error ratio. A large prediction error ratio
indicates large prediction estimates and may result in conservative
prediction and resource underutilization.

)],()1(),,()1[(dhZdhZ k
i

k
i *+*- ee

65

B. Forecasting using historical means and recent traffic (P1,P2, P3)
For all the aforementioned prediction algorithms, we computed the means
based on the history for each AP. The history corresponds to three weeks
of the trace, excluding weekends and starting on Monday, October 18th,
2004. We predict the traffic for each AP, for all the hours during the
weekdays of the following week (Monday, November 8th until Friday,
November 12th). We call this period forecasting period.

Table 7. Summary of the forecasting algorithms with the type of traces used,
their tracing and forecasting period and time scale.

For P3, we varied the recent history window size to be 2, 3, 4, and 5
hours. We evaluated P3 for various values of a,b, and c, including also
values resulted from applying multiple linear regression for each AP.

66

Figures 5.5.1 and 5.5.2 show the histograms of the percentage of correct
predictions for the P1, P2, and P3 considering all APs.

Figure 5.5.1. Performance of prediction algorithms P1, P2 considering all APs.

P3 outperforms P2 and P1 with respect to the correct predictions
percentage. P3 also outperforms P2 and P1 with respect to the correct
predictions percentage, when we only consider the hotspots. Specifically,
for a window of two hours and (a,b,c) equal to (1,0,0), P3’s percentage of
correct predictions for a 25%-tolerance prediction interval has a (mean,
median, std. deviation) equal to (34.17%, 24.17%, 22.86%).

67

Figure 5.5.2. Performance of prediction algorithm P3 considering all APs, with
25% error tolerance.

The mean percentage of correct predictions of hotspots for an e-tolerance is the
average of the percentages of correct predictions for that e-tolerance
considering all hotspots. The mean prediction error ratio of hotspots is the
average of the mean prediction error ratios considering all hotspots. In the
same manner, we compute their median and std. deviation. For the same e-
tolerance, P2 has a lower percentage of correct predictions than P3 but
higher than P1 (for both median and mean prediction of correct
percentages). Similarly, the median prediction error ratio for P3 is lower
than for P1 and P2 (see Figure 5.5.4). On the other hand, P3’s mean
prediction error ratio is lower than P1’s and higher than P2’s one. The high
mean prediction error ratio of P1, P2, and P3 are due to the high variability
in the traffic.

68

Figure 5.5.3. Mean prediction ratios for P1, P2, and P3 with weights
(a,b,c)=(1,0,0) for each hotspot.

Figure 5.5.4. Median prediction ratio for P1, P2 and P3 with weights
(a,b,c)=(1,0,0) for each hotspot.

69

C. Normalized ARIMA multi-step ahead time-series forecasting (NAMSA)
Using the same 3-week data (as in the other prediction algorithms), this
normalized ARIMA multi-step ahead time series forecasting performs as
follows. As Figures 5.5.5 and 5.5.6 illustrate, the prediction error ratio of
the AP 472 (hotspot id 18) has a mean, median, and SD of 1.42, 0.72, and
3.77, respectively. Its correct percentages are 17.5%, 9.17%, and 6.67%,
for a 25%, 10%, and 5%- tolerance prediction interval, respectively. The
corresponding percentages for P1 are 20%, 10% and 6.67%, and forP2
20%, 18.33%, 16.67%, respectively. For a 25%-tolerance prediction
interval, P3 with a two-hour window size and (a, b, c)=(1, 0, 0) has a
24.17% correct prediction percentage.

Figure 5.5.5. Mean prediction ratio for the P3 and NAMSA forecasting
algorithms for each hotspot.

We apply the NAMSA algorithms to the 19 hotspots APs and the result is
compared with the three aforementioned algorithm below. Note that the
order of the AR(p) model is adaptively selected using AIC for each AP
separately. Figures 5.5.5 and 5.5.6 illustrate the mean and median
prediction error ratio of the P3 with weights (a,b,c)= (1,0,0), P3 with
weights fitted using multiple linear regression, and NAMSA forecasting

70

algorithm for all hotspots. Compared to the simple prediction algorithms
P1, P2, and P3, the NAMSA algorithm results in better values for the
mean and the SD of the error ratio (Figure 5.5.5). On the other hand, the
median of its error ratio is a bit worse than that of the P3 algorithm
(Figure 5.5.6). This forecasting algorithm is a multi-step-ahead forecasting.
That is, to predict a value, apart from the traffic model, the multi-step-
ahead forecasting uses the recent predicted values instead of the actual ones.
This makes the prediction even harder than the one-step ahead
forecasting that uses the actual recent values like P3. We expect better
performance when we use this algorithm for one-step ahead forecasting.

Figure 5.5.6. Median prediction ratio for the P3 and NAMSA forecasting
algorithms for each hotspot.

Note that P3 with weights fitted using multiple linear regression performs
worse than P3 and NAMSA (with respect to both mean and median error
ratio). This is due to the difference in the metrics used: The prediction
error ratio is the ratio of the absolute difference of the predicted from the
actual traffic over the actual traffic, whereas the multiple regression
minimizes the square difference. When we use as metric the difference of

71

the predicted from the actual traffic in square, we can observe that the
mean of the overall improvement of P3 (with multiple regression) for
hotspots reaches 26%. Furthermore, we found that the dominant
regressor in the weighted sum of P3 is history (for all hotspots).
Specifically, in average, the recent history predictor participates in P3 with
a percentage of 43.8% while historical mean hour and historical mean
hour-of-day percentages are 41.1% and 15.1%, respectively.

D. Improvement in forecasting performance using finer time scales
The performance of the MA and EMA when forecasting in finer time
scales (in 5minute traces) has been improved dramatically. To evaluate the
algorithms, we considered one-day from the original snmp-aggregate data
in 5-minute intervals and run variations of the MA and EMA algorithms.
We were particularly interested in testing the adaptivity of the adaptive-
EMA algorithm, and for this, we select an a = 0.4 and 95%-confidence
intervals, for the level-shift detection criteria. The adaptive EMA reports a
relative prediction error of 2.95 and 0.46, for its mean and median
considering all hotspots and 5-minute interval predictions, respectively. The
mean and median absolute errors are 3.33MB and 0.75MB. This algorithm
performs much worse on hourly traffic time-series.

Figure 5.5.7. Absolute error for EMA with five-minute traces.

72

Figure 5.5.8. Relative error for EMA with five-minute traces.

The algorithm first forecasts the received and sent traffic at each five-
minute interval. Based on these forecasts, it reports as the total traffic for
that five-minute interval, the sum of the predicted receive and sent. Notice
that its performance is one or two orders of magnitude better than P1’s,
P2’s, and P3’s performance on hourly based time-series. Although, several
APs have strong diurnal patterns, the performance analysis reveals that the
more “recent” the historical data and the finer their time scale, the stronger
its impact on forecasting. Figures 5.5.7 and 5.5.8 illustrate the performance
of adaptive EMA when it first predicts receive and sent traffic (from the
corresponding recent history measurements) and then forecasts as total
traffic the sum of the predicted receive and sent. We found that the
improvement in forecasting the total traffic “indirectly” (i.e., through the
forecasts of the received and sent traffic) over forecasting directly the five-
minute time-series of total traffic is negligible. On the other hand, the
adaptive mechanism in MA or EMA does not show any improvement
when it is applied on hourly time-series. For example, the adaptive MA has
a mean relative prediction error 3213.90 and a median relative prediction
error 0.78 which is larger than the prediction errors of simple MA-based

73

models. As Figures 5.5.9 and 5.5.10 illustrate, the NAMSA on 5-minute
traces has slightly better medians but worse means in both the absolute and
relative prediction errors. However, the improvement in the performance
of NAMSA on 5-minute traces over the one on hourly time intervals is
distinct. In both cases, NAMSA was applied on traces that correspond to
the same period.

Figure 5.5.9. Absolute error for NAMSA with five-minute traces.

74

Figure 5.5.10. Relative error for NAMSA with five-minute traces.

Compared to the aforementioned algorithms that require some statistical
analysis of the traffic, the flow-based algorithms presented in Section 5.4-
C.V are simpler and require less processing overhead. We used the SNMP
client-based and TCP-flow based data sets with one-day training period to
create the 5-minute interval times series of traffic load and number of
flows at each AP and then fit the parameters of

We evaluated the number-of-flows algorithm on the 5-minute-interval
trace of the next two days. The (median, mean) pairs of the relative and
absolute prediction errors are (0.89,19.68) and (0.23MB, 4.24MB),
respectively.

a
flows

b kNekX))1(()(ˆ -=

75

Figure 5.5.11. Absolute prediction error for the type-of-flow based algorithm on
hotspot AP 472.

Figure 5.5.12. Relative prediction error for the type-of-flow based algorithm on
hotspot AP 472.

76

The type-of-flow based algorithm applied on a 5-minute traces for the
hotspot AP 472 has a median and mean absolute prediction error of
4.67MB (0.02MB) and 0.57MB (0.48MB), respectively. The median and
mean relative prediction error of 0.96 (1) and 1.11 (30.33). In parenthesis,
we indicate the performance of the number-of-flow based algorithm in 5-
minute intervals for the same tracing period and AP. Figures 5.5.11 and
5.5.12 illustrate the CCDF of the absolute and relative errors when the
type-of-flow algorithm was used on hotspot AP 472, respectively.

5.5 Conclusions

We designed a number of forecasting algorithms and evaluated their
performance on the hotspots of a large production wireless network.
Short-term forecasting on wireless networks is challenging but the use of
finer time-scale can improve dramatically the mean prediction errors. We
investigated the impact of recent history and periodicities of traffic,
dependencies of number and type of flows. The algorithms achieve a
median absolute and relative prediction error of 0.33MB and 0.42
respectively, considering all hotspot APs in 5-minute intervals.

We also noticed in the APs’ traffic some hours with unexpectedly low
(compared to the historical means) values. In this section, we proceeded
with the prediction without pre-processing these values. A more rigorous
approach is to impute those entries with some estimates, such as the mean
traffic load during the same hour-of-day from the other days. We expect
that it will improve the prediction performances of the algorithms and
plan to investigate this further. We intend to study more systematically the
spatial correlations of APs and classify APs based on various parameters
(e.g., traffic characteristics, building type, number of associations, and
distinct clients). Furthermore, we aim to explore the impact of the above
parameters and spatial correlations on forecasting. Finally, our goal is to
simulate load balancing mechanisms that facilitate these forecasting
algorithms to evaluate their impact on the performance of the network.

77

6. Conclus ions

Wireless networks grow in response to the increasing demand for wireless
access. In the same time, more features are added to them to enable
support of more demanding applications and efficient management of
their resources. The availability of precise and scalable models for both the
system-wide and more local-scale study of these networks is a
fundamental requirement for their engineering. Moreover, traffic load
forecasting estimates can be used by APs to not only better manage their
traffic demand but also advice clients to associate with the appropriate
APs to better utilize their local resources. Such predictions can be used to
reduce the energy spendings at the client side, improve the capacity
utilization of wireless LANs, and better load balance the traffic. We
address this requirement in the context of traffic demand modeling and
forecasting.

In this work, we introduced a novel methodology for modeling the
wireless access and traffic demand by providing a multilevel perspective: it
models the arrival and size of sessions and flows at systems-wide and AP
levels. It investigates their statistical properties, dependencies and inter-
relations. It shows the stationarity of the number of flows and flow inter-
arrival in a session. Most of the modeling efforts have been on the AP-
level. The shift to sessions and flows has gained two important advan-
tages: Sessions at an AP can mask the network-related dependencies that
are not important in a range of applications and simulation environments,
such as brief transitions from one AP to another due to a transient
behavior of the signal, and exhibit nice statistical properties (such as
stationarity) that makes them amenable to modeling.

We have proposed a hierarchical modeling framework for traffic demand
in large wireless LANs. We first confirmed that the same distributions
apply when we look at traffic at finer spatial scales, such as the building
level or all buildings having similar usage. We promote the building as the
primary entity for traffic demand modeling at the spatial dimension.
Working at building level circumvents several problems emerging when
working at AP-level: non amenability to statistical processing, higher
sensitivity of monitored traffic variables to the short-term propagation

78

conditions, lack of scalability. We emphasize this last aspect, considering
ways to come up with models that scale with the size of the network
whilst preserving modeling efficiency. To this end, we proposed both
heuristic and more formal clustering techniques to group buildings for
traffic demand modeling purposes. By way of example, we showed that
both of them can benefit the traffic modeling task. Interestingly, the two
approaches are complementary. Heuristical segregation of buildings scores
better with flow-related variables, but is not as efficient with the modeling
of session arrivals, where the requirement is to group buildings depending
on size rather than shape. Clustering combined with PCA and SVD
behaves better there, even if the interpretation is less intuitive than with
the heuristical alternative.

Moreover, we designed a number of forecasting algorithms based on the
knowledge acquired from the modeling task, and evaluated their
performance on the hotspots of a larger production wireless network. We
investigated the impact of recent history and periodicities of traffic,
dependencies of number and type of flows, and tailored different types of
forecasting algorithms using multiple sources of data. Our ultimate goal is
to design and develop admission control, capacity planning and load
balancing tools incorporating these forecasting mechanisms.

79

REFERENCES

1. A. Adya, P. Bahl, R. Chandra, and L. Qiu. Architecture and techniques
for diagnosing faults in ieee802.11 infrastructure networks. In ACM
International Conference on Mobile Computing and Networking (MobiCom),
Philadelphia, September 2004.

2. Ishwar Ramani and Stefan Savage. SyncScan: Practical fast handoff for
802.11 infrastructure networks. In Proceedings of the IEEE Conference
on Computer Communications (Infocom), Miami, FL, March 2005.

3. Arunesh Mishra, Minho Shin, and William A. Arbaugh. An empirical
analysis of the IEEE 802.11 MAC layer handoff process. April 2003.

4. T. Henderson, D. Kotz, and I. Abyzov. The changing usage of a mature
campuswide wireless network. In Proceedings of ACM MobiCom,
Philadelphia, PA, USA, September 2004.

5. M. Balazinska and P. Castro. Characterizing mobility and network usage
in a corporate wireless local-area network. In Proceedings of MobiSys, San
Francisco, CA, USA, May 2003.

6. A. Balachandran, G. Voelker, P. Bahl, and V. Rangan. Characterizing user
behavior and network performance in a public wireless LAN. In
Proceedings of ACM Sigmetrics, CA, June 2002.

7. Diane Tang and Mary Baker. Analysis of a local-area wireless network. In
ACM International Conference on Mobile Computing and Networking
(MobiCom), pages 1-10, Boston, Massachusetts, USA, August 2000.

8. Magdalena Balazinska and Paul Castro. Characterizing mobility and
network usage in a corporate wireless local-area network. In First
International Conference on Mobile Systems, Applications, and Services
(MobiSys), San Francisco, USA, May 2003.

9. Anand Balachandran, Geoffrey Voelker, Paramvir Bahl, and Venkat
Rangan. Characterizing user behavior and network performance in a
public wireless lan. In Proceedings of the ACM Sigmetrics Conference on
Measurement and Modeling of Computer Systems, California, USA,
2002.

10. David Kotz and Kobby Essien. Analysis of a campus-wide wireless
network. Technical Report TR2002-432, Dept. of Computer Science,
Dartmouth College, September 2002.

11. Tristan Henderson, David Kotz, and Ilya Abyzov. The changing usage of
a mature campuswide wireless network. In ACM International
Conference on Mobile Computing and Networking (MobiCom),
Philadelphia, September 2004.

80

12. Xiaoqiao Meng, Starsky Wong, Yuan Yuan, and Songwu Lu.
Characterizing flows in large wireless data networks. In ACM
International Conference on Mobile Computing and Networking
(MobiCom), pages 174-186, Philadelphia, 2004.

13. Maria Papadopouli, Elias Raftopoulos, and Haipeng Shen. Evaluation of
short-term traffic forecasting algorithms in wireless networks. In 2nd
Conference on Next Generation Internet Design and Engineering,
Valencia, Spain, 2006.

14. Amiya Bhattacharya and Sajal K. Das. LeZi-update: an information-
theoretic approach to track mobile users in PCS networks. In
Proceedings of the Annual ACM/IEEE International Conference on
Mobile Computing and Networking, pages 1–12, Seattle, Washington,
USA, August 1999.

15. Maria Papadopouli, Haipeng Shen, and Manolis Spanakis. Characterizing
the duration and association patterns of wireless access in a campus. In
11th European Wireless Conference, Nicosia, Cyprus, April 2005.

16. Cristian Tuduce and Thomas Gross. A mobility model based on wlan
traces and its validation. In Proceedings of the IEEE Conference on
Computer Communications (Infocom), Miami, FL, March 2005.

17. Augustin Chaintreau, Pan Hui, Jon Crowcroft, Christophe Diot, Richard
Gass, and James Scott. Impact of human mobility on the design of
opportunistic forwarding algorithms. In Proceedings of the IEEE
Conference on Computer Communications (Infocom), Barcelona, Spain,
April 2006.

18. Minkyong Kim and David Kotz. Modeling users’ mobility among wifi
access points. In WiTMeMo ’05, Berkeley, CA, USA, June 2005.
USENIX Association.

19. Ravi Jain, Dan Lelescu, and Mahadevan Balakrishnan. Model T: an
empirical model for user registration patterns in a campus wireless lan.
Cologne, Germany, August 2005.

20. A. Jardosh, E. M. Belding-Royer, K. C. Almeroth, and S. Suri. Towards
realistic mobility models for mobile ad hoc networks. In ACM
International Conference on Mobile Computing and Networking
(MobiCom), San Diego, CA, September 2003.

21. D. Eckhardt and P. Steenkiste. Measurement and analysis of the error
characteristics of an in building wireless network. ACM Computer
Communication Review, 26(4):243–254, October 1996.

22. Felix Hernandez-Campos and Maria Papadopouli. Assessing the real
impact of 802.11 wlans: A large-scale comparison of wired and wireless
traffic. In 14th IEEE Workshop on Local and Metropolitan Area
Networks, Chania, Greece, September 2005.

23. Douglas S. J. De Couto, Daniel Aguayo, John Bicket, and Robert Morris.
A high-throughput path metric for multi-hop wireless routing. In ACM

81

International Conference on Mobile Computing and Networking
(MobiCom), San Diego, CA, September 2003.

24. Sanjit Biswas and Robert Morris. Opportunistic routing in multi-hop
wireless networks. In SIGCOMM Symposium on Communications
Architectures and Protocols, Philadelphia, PA, August 2005.

25. Daniel Aguayo, John Bicket, Sanjit Biswas, Glenn Judd, and Robert
Morris. Link-level measurements from an 802.11b Mesh network. In
SIGCOMM Symposium on Communications Architectures and
Protocols, August 2004.

26. John Bicket, Daniel Aguayo, Sanjit Biswas, and Robert Morris.
Architecture and evaluation of an unplanned 802.11b mesh network. In
ACM International Conference on Mobile Computing and Networking
(MobiCom), Cologne, Germany, August 2005.

27. Krishna Ramachandran, Elizabeth Belding, Kevin Almeroth, and Milind
Bud-dhikot. Interference-aware channel assignment in multi-radio
wireless mesh networks. In Proceedings of the IEEE Conference on
Computer Communications (Infocom), Barcelona, Spain, April 2006.

28. Henrik Lundgren, Krishna Ramachandran, Elizabeth Belding-Royer,
Kevin Almeroth, Michael Benny, Andrew Hewatt, Alexander Touma,
and Amit Jar-dosh. Experiences from the design, deployment, and usage
of the UCSB Mesh-Net testbed. IEEE Wireless Communications, April
2006.

29. Self-organizing neighbourhood wireless mesh networks.
http://research.microsoft.com/mesh/.

30. Roofnet is an experimental 802.11b/g mesh network in development at
MIT. http://pdos.csail.mit.edu/roofnet/doku.php.

31. P. Bahl, R. Chandra, and J. Dunagan. Ssch: Slotted seeded channel
hopping for capacity improvement in ieee 802.11 ad-hoc wireless
networks. Philadelphia, PA, September 2004.

32. R. Draves, J. Padhye, and B. Zill. Routing in multi-radio, multi-hop
wireless mesh networks. Philadelphia, PA, September 2004.

33. R. Draves, J. Padhye, and B. Zill. Comparison of routing metrics for
static multi-hop wireless networks. Portland, OR, August 2004.

34. w. e. Leland, m. s. Taqqu, w. Willinger, and d. v. Wilson. On the self-
similar nature of ethernet traffic. ACM Computer Communication
Review, 25(1):202–213, 1995.

35. W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson. Self-similarity
through high-variability: Statistical analysis of ethernet lan traffic at the
source level. ACM Computer Communication Review, 25(4):100–113,
October 1995.

36. Mark Crovella and Azer Bestavros. Self-similarity in world wide web
traffic: Evidence and possible causes. In Proceedings of SIGMETRICS
’96, 1996.

http://research.microsoft.com/mesh/
http://pdos.csail.mit.edu/roofnet/doku.php

82

37. “Cisco Aironet AP specifications,” Product information sheet. [Online].
Available: http://www.cisco.com/en/US/products/hw/wireless

38. X. G. Meng, S. H. Y. Wong, Y. Yuan, and S. Lu. Characterizing flows in
large wireless data networks. In Proc. of ACM MobiCom, New York, ny,
United States, 2004, pp. 174–186.

39. F. Hernandez-Campos, M. Karaliopoulos, M. Papadopouli, and H. Shen.
Spatio-temporal modeling of traffic workload in a campus wlan. In
Second Annual International Wireless Internet Conference, Boston, ma,
USA, 2006.

40. M. Karaliopoulos, E. Raftopoulos, M. Papadopouli, and H. Shen. On
scalable measurement-driven modeling of traffic demand in large
WLANs. ICS-FORTH, Heraklion, Greece, Tech. Rep. 383, July 2006.

41. L. D. Brown, N. Gans, A. Mandelbaum, A. Sakov, H. Shen, S. Zeltyn,
and L. Zhao, “Statistical analysis of a telephone call center: a queueing-
science perspective,” Journal of the American Statistical Association, vol.
100, no. 469, pp. 36-50, March 2005.

42. C. Nuzman, I. Saniee, W. Sweldens, and A. Weiss, “A compound model
for TCP connection arrivals for LAN and WAN applications,” Computer
Networks, vol. 40, no. 3, pp. 319–337, 2002.

43. F. Hernandez-Campos, M. Karaliopoulos, M. Papadopouli, and H. Shen,
“Spatio-temporal modeling of traffic workload in a campus WLAN,” in
Second Annual International Wireless Internet Conference, Boston, MA,
USA, 2006.

44. M. Karaliopoulos, E. Raftopoulos, M. Papadopouli, and H. Shen, “On
scalable measurement-driven modeling of traffic demand in large
WLANs,” ICS-FORTH, Heraklion, Greece, Tech. Rep. 383, July 2006.
[Online]. Available: http://www.ics.forth.gr/ftp/tech-
reports/2006/2006.TR383_WLANScalable_Traffic_Modeling.pdf

45. h. c. Rosemburg, Cluster Analysis for Researchers. Belmont, ca, United
States: Lifetime Learning Publications, 1984.

46. r. Mojena, “Hierarchical grouping methods and stopping rules: An
evaluation.” Computer Journal, vol. 20, p. 359363, 1977.

47. P.F. Brockwell and R.A. Davis. Time Series: Theory and Methods. New
York: Springer-Verlag, New York, 1998.

http://www.cisco.com/en/US/products/hw/wireless
http://www.ics.forth.gr/ftp/techreports/2006/2006.TR383_WLANScalable_Traffic_Modeling.pdf
http://www.ics.forth.gr/ftp/techreports/2006/2006.TR383_WLANScalable_Traffic_Modeling.pdf

APPENDIX

 SeperateTrace2APFiles.pl
#!/usr/local/bin/perl

USAGE

my ($progname) = $0 =~ /([^\/]+)$/;

my $usage=<<EOF;
Description:
 Helper function used to split original data to AP files
EOF

PRAGMAS

use strict;

MAIN

#Number of Input Files - Trace File Days

my $input_files_no = 63;
my $file_num;
my $filename;

for $file_num(1 ... $input_files_no) {

$filename = 'd'.$file_num.'.dat';
 print 'Trying to open :'."$filename"."\n";

open (DATA, "$filename");

while (<DATA>) {
next if (/^\s*$/); # skip empty lines

Parse client polling line

my ($poll_time, $ap_num, $ap_up_time, $speed, $bytes_recv,
$uni_pkts_recv, $multi_pkts_recv, $pkts_recv_not_delivered,
$pkts_recv_discarded, $bytes_sent, $uni_pkts_sent, $multi_pkts_sent,
$pkts_sent_not_deliv, $pkts_sent_discarded, $num_assoc, $num_authent,
$num_roams_in, $num_roams_away, $num_deauthent, $num_disassoc) = split;

 die "cannot parse line\n[$_]" if ($poll_time eq "");

my $APfilename;
$APfilename = 'ap'.$ap_num;

if(-e $APfilename){
open(OUT, ">>$APfilename") || die "cannot create $APfilename: $!";

}
else{

open(OUT, ">$APfilename") || die "cannot create $APfilename: $!";

}
 print OUT $_;

close(OUT) || die "cannot close $APfilename: $!";
}
close(DATA);

}

 clt2anon-clt.pl
#!/usr/local/bin/perl

USAGE

my ($progname) = $0 =~ /([^\/]+)$/;

my $usage=<<EOF;
Description:
 Anonymize SNMP client data.
Usage:

$progname [options] list-of-APs list-of-clients < snmp-clt-data
e.g.,
 list-of-APs: ~fhernand/src/wireless/misc/ap_list/unc.may25.ap_list
 list-of-clients: ~fhernand/src/wireless/misc/clt_MACS.jun2.txt.gz
 this is the initial location of files, now all AP-related and client-related files
 are at the UNC-infrastructure directories
Options:

-h Show this help message.
EOF

PRAGMAS

use strict;

MAIN

#
OPTIONS
#

use Getopt::Std;

my (%opts);
if (not getopts("h", \%opts) or $opts{"h"}) {
 print "$usage";
 exit;
}

my $AP_fname = $ARGV[0];
die "cannot find AP list '$AP_fname'" if (not -e $AP_fname);

my $clt_fname = $ARGV[1];
die "cannot find clt table '$clt_fname'" if (not -e $clt_fname);

#
Read list of APs and load the AP_IP to APnum mapping on the

ap_ip2num hash
#
my %ap_ip2num;

open AP_LIST, "$AP_fname" || die "cannot open $AP_fname";
while (<AP_LIST>) {

next if (/^\#/);
 chomp;

my ($AP_Number, $Name, $IP, $OS, $Version,
$LAN_MAC, $Radio_MAC, $Channel) = split;

if (exists $ap_ip2num{$IP}) {
 die "New Num $AP_Number != " . $ap_ip2num{$IP}

if ($AP_Number != $ap_ip2num{$IP});
} else {

$ap_ip2num{$IP} = $AP_Number;
}

}

#
Read list of clients from the single-column file with client MAC addresses
Load the mapping on the clts hash
#

my %clts; # key: IP; value: AP_type

open CLT_LIST, "$clt_fname" || die "cannot open $clt_fname";
my $num_clts = 1;
while (<CLT_LIST>) {

next if (/^\#/);
 chomp;

$clts{"$_"} = $num_clts++;
}
close CLT_LIST || die "cannot close $clt_fname";

my @new_clts;

#
Anon line - here do the anonymization for both fields - AP IP and client MAC address
#

while (<STDIN>) {
 chomp;

my @fields = split;
$fields[1] ap
$fields[3] clt

 die "cannot find AP $fields[1]" if (not exists $ap_ip2num{$fields[1]});
$fields[1] = $ap_ip2num{$fields[1]};
if (not exists $clts{$fields[3]}) {

$clts{$fields[3]} = $num_clts++;
 push @new_clts, $fields[3];

}
$fields[3] = $clts{$fields[3]};

 print "@fields[0..($#fields - 1)]\n";
}

#
Update list of clients (append new MAC-to-ClientNum assignments)
#

if (@new_clts > 0) {
 open CLT_LIST, ">>$clt_fname" || die "cannot append to $clt_fname";

my $mac;

ClientNum is given by the row number, starting at 1
foreach $mac (@new_clts) {

 print CLT_LIST "$mac\n";
}

 close CLT_LIST || die "cannot close $clt_fname after appending";
}

 ap_ts2tot_traf.pl
#!/usr/local/bin/perl

USAGE

my ($progname) = $0 =~ /([^\/]+)$/;

my $usage=<<EOF;
Transform original time series to final traffic format
EOF

PRAGMAS

use strict;

OPTIONS

use Getopt::Std;

my (%opts);
if (not getopts("h", \%opts) or $opts{"h"}) {
 print "$usage";
 exit;
}

MAIN

my $AP2Bldg_fname = 'apmapbldg2.txt';
 open AP2Bldg_LIST, "$AP2Bldg_fname" || die "cannot open $AP2Bldg_fname";

my $B_CNT = 1; my %Bldgs; my %APs;
while(<AP2Bldg_LIST>){

next if (/^\#/);
 chomp;

APIP Building Building_type
my($AP_Number, $IP, $B_ID, $B_TYPE) = split;
if(exists $Bldgs{$B_ID}) {

#already mapped
}
else{

$Bldgs{$B_ID} = $B_CNT++;
}
$APs{$AP_Number} = $Bldgs{$B_ID};

}
 close AP2Bldg_LIST;

my $ap_mapping = 'ap2bnum.txt';
 open OUT_AP_LIST, ">$ap_mapping" || die "cannot append to $ap_mapping";

for my $key (keys %APs) {
my $value = $APs{$key};

 print OUT_AP_LIST "$key $value\n";
}

 close OUT_AP_LIST || die "cannot close $ap_mapping after appending";

my $bldg_mapping = 'bldgid2bnum.txt';
 open OUT_B_LIST, ">$bldg_mapping" || die "cannot append to $bldg_mapping";

for my $key (keys %Bldgs) {
my $value = $Bldgs{$key};

 print OUT_B_LIST "$key $value\n";
}

 close OUT_B_LIST || die "cannot close $bldg_mapping after appending";

 ts2ts.pl
#!/usr/local/bin/perl

#
Felix Hernandez Campos
#
February-March 2005
#

USAGE

my ($progname) = $0 =~ /([^\/]+)$/;

my $usage=<<EOF;
Description:
 Change bin length in time-series.
Usage:

$progname [options] bin-size < tr.ts
Options:

-h Show this help message.
EOF

PRAGMAS

use strict;

MAIN

#
OPTIONS
#

use Getopt::Std;

my (%opts);
if (not getopts("h", \%opts) or $opts{"h"} or @ARGV != 1) {
 print "$usage";
 exit;

}

my $binlen = $ARGV[0];

print STDERR "Bin length: $binlen\n";

my $next_bin = $binlen;
my $tot = 0;

while (<STDIN>) {

if (/^\#/) {
 print $_;

}
else {

my ($ts, $value) = split;
while ($next_bin < $ts) {

 print "$next_bin $tot\n";
$tot = 0;
$next_bin += $binlen;

}
$tot += $value;
}

}

 APTotalTrafficPerDayAndHour.pl

#!/usr/local/bin/perl

Code Based on
Felix Hernandez Campos
#
November 2004
#
Versions:
1.0 11/2/2004 10 PM: First version
1.1 11/3/2004 11 AM: Removed absolute value comparison
2.0 17/5/2005 7PM : Changed function's define_day_and_hour implementation

Modifications by Elias Raftopoulos

USAGE

#my ($progname) = $0 =~ /([^\/]+)$/;

my $usage=<<EOF;
Get hourly traffic data for all APs
EOF

PRAGMAS

use strict;

MAIN

#
OPTIONS
#

use Getopt::Std;

my (%opts);
if (not getopts("dh", \%opts) or $opts{"h"}) {
 print "$usage";
 exit;
}

#Thresholds used
my $clt_up_time_threshold = 20;
my $deltas_threshold = 20;

#Number of Input Files
my $input_files_no = 14710;
#Duration of traces in days
my $no_of_days = 58;

Previous line data
my $prev_line; # just for better error messages
my $prev_clt_num;
my $prev_poll_time;
my $prev_ap_num;
my $prev_clt_up_time;
my $prev_bytes_sent; # just for sanity check
my $prev_bytes_recv; # just for sanity check

#Initial timestamp based on CL SNMP data
my $cl_SNMP_init_time = 1096463101;
#my $syslog_init_time = 1096430465;

############
my $row;
my $col;
my @hour_day;
my @matrix;
#Initialize output matrix
my $maxAPID = define_maxID($input_files_no);

print 'maxAPID found'."$maxAPID"."\n";
for $row (1 .. $no_of_days*24){ #days * hours_per_day

for $col (1 .. $maxAPID){
$matrix[$row][$col] = 0;

}
}

my $file_num;
my $filename;

for $file_num(1 ... $input_files_no) {

$filename = 'sortedClient'. $file_num.'.txt';
 print 'Trying to open :'."$filename"."\n";

open (DATA, "$filename");

############
while (<DATA>) {

next if (/^\s*$/); # skip empty lines

 print "INPUT: $_" if ($opts{"d"});

Parse client polling line

my ($poll_time, $ap_num, $ap_up_time, $clt_num, $clt_up_time,
$clt_state, $dbm, $power_save,
$pkts_recv, $bytes_recv, $pkts_sent, $bytes_sent,
$dups, $retrans_msdu, $undelivered_msdu) = split;

 die "cannot parse line\n[$_]" if ($poll_time eq "");

if ($prev_clt_num eq "" or $prev_clt_num ne $clt_num) {

New client => first association
########

@hour_day = define_day_and_hour($poll_time);
$row = $hour_day[0];
$matrix[$row][$ap_num] += ($bytes_sent + $bytes_recv);

########
 print "NEW CLIENT\n" if ($opts{"d"});
 print "$clt_num $ap_num $poll_time\n"if ($opts{"d"});

}
elsif ($prev_ap_num eq "" or $prev_ap_num ne $ap_num) {

New AP => new association
########

@hour_day = define_day_and_hour($poll_time);
$row = $hour_day[0];
$matrix[$row][$ap_num] += ($bytes_sent + $bytes_recv);

########
 print "NEW AP\n" if ($opts{"d"});
 print "$clt_num $ap_num $poll_time\n" if ($opts{"d"});

}
else {

Same client
my $polling_delta = $poll_time - $prev_poll_time;

 die "polltime going backward. Was the input trace properly sorted?\n$prev_line$_" if
($polling_delta < 0);

Detect associations
if ($clt_up_time - $polling_delta <= -$clt_up_time_threshold) {

Association
########

@hour_day = define_day_and_hour($poll_time);
$row = $hour_day[0];
$matrix[$row][$ap_num] += ($bytes_sent + $bytes_recv);

########
 print "ASSOCIATION: CLT UP TIME BELOW THRESHOLD\n" if ($opts{"d"});
 print "$clt_num $ap_num $poll_time\n" if ($opts{"d"});

}
elsif ($clt_up_time - $polling_delta >= $clt_up_time_threshold) {
No Association

 print "NO ASSOCIATION: CLT UP TIME ABOVE TRESHOLD\n" if ($opts{"d"});

if ($bytes_sent < $prev_bytes_sent) {
if ($prev_bytes_sent >= 3*2**30 and # prev close to 2^32

$bytes_sent <= 2**30) { # current
close to 0

wrap around is ok => do not output an ERROR
########

@hour_day = define_day_and_hour($poll_time);
$row = $hour_day[0];

$matrix[$row][$ap_num] += 2^32 - 1 - $prev_bytes_sent + $bytes_sent -
$prev_bytes_recv + $bytes_recv;
########

}
else {

 warn "ERROR: wrong sorting? cisco bug?\n$prev_line$_"
}

}
########

else{
No Association - normal flow
@hour_day = define_day_and_hour($poll_time);

$row = $hour_day[0];

if(($bytes_recv - $prev_bytes_recv) < 0){ #cisco bug in recv counter
$matrix[$row][$ap_num] += ($bytes_sent - $prev_bytes_sent);

}
else{

$matrix[$row][$ap_num] += ($bytes_sent - $prev_bytes_sent) + ($bytes_recv -
$prev_bytes_recv);

#Debug
my $test = ($bytes_sent - $prev_bytes_sent) + ($bytes_recv - $prev_bytes_recv);
if($test < 0){

 print "Bug Found FILE:$filename\n";
 print "INPUT: $_";
 print "PREV INPUT: $prev_line";

}
#endDebug

}
}

########
}
else
{
my $clt_up_time_delta = $clt_up_time - $prev_clt_up_time;

if ($polling_delta - $clt_up_time_delta >= $deltas_threshold) {
Association

########
@hour_day = define_day_and_hour($poll_time);
$row = $hour_day[0];
$matrix[$row][$ap_num] += ($bytes_sent + $bytes_recv);

########
 print "ASSOCIATION: HIGH CLT UP TIME DELTA\n" if ($opts{"d"});
 print "$clt_num $ap_num $poll_time\n" if ($opts{"d"});

}
elsif ($clt_up_time_delta - $polling_delta >= $deltas_threshold) {

 die "Unexpected negative difference between deltas";
}
else {

 print "UNCLEAR => ASSUME NO REASSOCIATION\n" if ($opts{"d"});
}
}

}
$prev_line = $_;
$prev_clt_num = $clt_num;
$prev_poll_time = $poll_time;
$prev_ap_num = $ap_num;
$prev_clt_up_time = $clt_up_time;
$prev_bytes_sent = $bytes_sent;
$prev_bytes_recv = $bytes_recv;

}#while (<DATA>) closing here

close(DATA);
}#for $file_num(1 ... $input_files_no) closing here

###########
#write matrix data to output file

open(OUT, ">APTrafficPerDayAndHourInit.txt");

for $row (1 .. $no_of_days*24){
for $col (1 .. $maxAPID){

 print OUT $matrix[$row][$col]." ";
}

 print OUT "\n";
}
###########

sub define_maxID{

my $maxAPID = 0;
my $input_files = $_[0];
my $file_num;

for $file_num(1 ... $input_files) {

$filename = 'sortedClient'. $file_num.'.txt';
open (DATA, "$filename");

while (<DATA>) {
next if (/^\s*$/); # skip empty lines

 print "INPUT: $_" if ($opts{"d"});

Parse client polling line

my ($poll_time, $ap_num, $ap_up_time, $clt_num, $clt_up_time,
$clt_state, $dbm, $power_save,
$pkts_recv, $bytes_recv, $pkts_sent, $bytes_sent,
$dups, $retrans_msdu, $undelivered_msdu) = split;

 die "cannot parse line\n[$_]" if ($poll_time eq "");

if($maxAPID < $ap_num){
$maxAPID = $ap_num;

}
}

}
return $maxAPID;

}

sub define_day_and_hour{

my $curr_poll = $_[0];
my $poll_hour;
my $poll_day;
my $error_log = 'ERROR_LOG.txt';
my $poll_hour_final;

$poll_hour = (int (($curr_poll - $cl_SNMP_init_time)/3600));
$poll_day = (int $poll_hour/24) + 1;
$poll_hour_final = $poll_hour - ($poll_day-1)*24 + 1;

#some sanity checking...

if($poll_hour > $no_of_days*24 or $poll_hour < 0){
if(-e $error_log){

open(ERRORLOG, ">>$error_log") || die "cannot create $error_log: $!";
}
else{

open(ERRORLOG, ">$error_log") || die "cannot create $error_log: $!";
}

 print ERRORLOG 'ERROR::Invalid timestamp
'.$curr_poll."[hour=".$poll_hour.",day=".$poll_day."]\n";
 print 'ERROR::Invalid timestamp'."[hour=".$poll_hour.",day=".$poll_day."]\n" if
($opts{"d"});

close(ERRORLOG) || die "cannot close $error_log: $!";
$poll_hour = -1;
$poll_day = -1;

}
return ($poll_hour,$poll_day);

}

 corelate_cvec.pl
#!/usr/local/bin/perl

USAGE

my ($progname) = $0 =~ /([^\/]+)$/;

my $usage=<<EOF;
Description:
 Correlating SNMP client data and cvec data.

Usage:
$progname [options] snmp-session-file start-trace < cvec-file > flow-info

Input format:
- snmp-session-file is the sorted output of clt_data2session.v4.pl, filtered
for single client IP sessions with

 grep "^s" | grep -v "," | grep " 152\.[12]" | sort +9 -10 +3n -4 -s
- cvec-file is the output of ascii-file processing with tcp2cvec

Options:
-c Conservative connection duration estimation.
-d Debugging mode.
-h Show this help message.
-i 3rd rule (associations inside connections). Requires -c.

EOF

PRAGMAS

use strict;

--
IMPORTS
--

#die "Environment variable \$SRC undefined or incorrect"
if ($ENV{SRC} eq "");
#require "$ENV{SRC}/stats/cdf.pl";
require "./stats/cdf.pl";

MAIN

#
OPTIONS
#

use Getopt::Std;

my (%opts);
if (not getopts("cdhi", \%opts) or $opts{"h"} or @ARGV != 2) {
 print "$usage";
 exit;
}

my $snmp_fname = $ARGV[0];
die "cannot find $snmp_fname" if (not -e $ARGV[0]);
if ($ARGV[0] =~ /\.gz$/) {
 open SNMP_FILE, "zcat $ARGV[0] |";
} else {
 open SNMP_FILE, "$ARGV[0]";
}

open DFILE, ">out.debug-session-cvec";

my $start_trace = $ARGV[1];

my $poll_int = 300; # 5 minutes
my $delta_poll = 25; # conservative adjustment (due to req/rsp losses)

my $snmp_line;

my $snmp_clt_ip;
my $snmp_clt_mac;
my $ap_ip;

my @session_set; # list of hashes storing basic information about session (start/end point, id)
for a single client. The list is emptied (undefined) upon change of client

my $session_num = 1;

#(MK) : the extra allow a flow in the cvec file to finish at some point beyond the last
SNMP polling interval that a session of the same client was seen, as long as this interval
does not exceed the one POLLING INTERVAL
my @correlated_sessions_stats_certain;
my @correlated_sessions_stats_extra; # end of SNMP assoc + poll_int
my @correlated_sessions_stats_all; # end of SNMP assoc + poll_int

(MK) variables logging stats
my ($flow_not_correlated, $flow_correlated, $flow_session_not_found,

$snmp_clt_not_correlated, $snmp_clt_correlated);

(MK) part of the output file format
my ($lan_ip, $lan_port, $wan_ip, $wan_port,

$start_ts, $end_ts, $start_ts_lan, $end_ts_lan,
$tot_pkts, $tot_bytes,
$tot_pkt_lost, $rtt_mad, $rtt_sd, $term);

my %num_sessions_per_clt;

while (not eof STDIN) {
&read_snmp_clt; # read all assoc info for one client (MK : store all his sessions in the list

of hashes session_set)

&process_clt_flows; # process client if the next one in flow info
is same as above, skip or advance otherwise

}

print STDERR "STATS:\n\n";
print STDERR "Uncorrelated flows (missing clt): $flow_not_correlated\n";
print STDERR "Uncorrelated flows (missing session): $flow_session_not_found\n";
print STDERR "Correlated flows: $flow_correlated\n";
print STDERR "Uncorrelated SNMP clients: $snmp_clt_not_correlated\n";
print STDERR "Correlated SNMP clients: $snmp_clt_correlated\n\n";

my $i;
print STDERR "Correlated Sessions stats (certain):\n";
for ($i = 0; $i <= $#correlated_sessions_stats_certain; $i++) {
 print STDERR " $i = $correlated_sessions_stats_certain[$i]\n";
}
print STDERR "Correlated Sessions stats (heuristic):\n";
for ($i = 0; $i <= $#correlated_sessions_stats_extra; $i++) {
 print STDERR " $i = $correlated_sessions_stats_extra[$i]\n";
}
print STDERR "Correlated Sessions stats (all):\n";
for ($i = 0; $i <= $#correlated_sessions_stats_all; $i++) {
 print STDERR " $i = $correlated_sessions_stats_all[$i]\n";
}

use IO::File;

my ($m, %cdf);
foreach $m (keys %num_sessions_per_clt) {

&add_data_point($num_sessions_per_clt{$m}, \%cdf);
}

my $fname = "num_sessions_per_clt.cdf";
my $fh = new IO::File "> $fname";
die "cannot open $fname" if (not defined $fh);
build_freqbased_cdf($fh, \%cdf);
$fh->close;

--

sub read_snmp_clt {
empty assoc set

 undef @session_set;
if (eof SNMP_FILE) {

$snmp_clt_ip = "";
return;

}

reuse old line if possible
1113510964 172.29.148.71 91407143 0.5.78.72.175.4 5631 3 -80 1 6323 1088981 5683 4205332 74

546 0 152.23.64.10
$snmp_line = <SNMP_FILE> if ($snmp_line eq "");

(MK) : out of the previous processing step we now only have session entries with single
client IP address

s 0.5.60.3.102.101 1113754247 1113754078 1113775547 1113775547 15 2 1 152.2.124.10
my ($type, $mac, $first_ts, $start_ts, $last_update, $last_ts,
$num_visits, $num_APs, $num_IPs, $IP, $apip) = split /\s/, $snmp_line;

 die "session lines expected\n" if ($type ne "s");
Here I change the original script so that it allows for the last field to be an IP address

(that of the
attachment AP). The check was made only to secure that there is only one IP address there but

this

should not be a problem given that in the previous processing step we filtered against
entries

with 2 or more client IPs

die "only one IP expected\n$snmp_line" if ($IP !~ /^\d+\.\d+\.\d+\.\d+$/);
$snmp_clt_ip = $IP;
$snmp_clt_mac = $mac;
$ap_ip = $apip;

 print "SL: $snmp_line" if ($opts{"d"});

create or update assoc from polls of these clients

while ($IP eq $snmp_clt_ip) {
(MK) : session is a hash storing the starting/end points of sessions and its global id
my %session = ("start" => "$start_ts", "end" => "$last_ts",
"num" => $session_num++);

 push @session_set, \%session;
$num_sessions_per_clt{$snmp_clt_mac}++;

&print_sessions if ($opts{"d"});

return if (eof SNMP_FILE);
$snmp_line = <SNMP_FILE>;
($type, $mac, $first_ts, $start_ts, $last_update, $last_ts,
$num_visits, $num_APs, $num_IPs, $IP,$apip) = split /\s/, $snmp_line;

 print "SL: $snmp_line" if ($opts{"d"});
}

}

sub print_session {
my ($index) = @_;

 printf "SESSION: %d. %s %s\n", $session_set[$index]->{"num"},
$session_set[$index]->{"start"}, $session_set[$index]->{"end"};

}

sub print_sessions {
my $i;
for ($i = 0; $i <= $#session_set; $i++) {

print_session($i);
}

}

sub process_clt_flows {

we come here with a snmp_clt_IP at hand together with the list of all his sessions
in the 7-8 days

 print ">> proc_flows\n" if ($opts{"d"});

1113422694.133 30.085 152.23.64.10 1041 65.57.174.62 80 19 8862 Complete

(MK) : read from cvec file. Read all entries up to lines starting with CAP
apparently corresponding to a single connection
&read_cvec if ($start_ts eq "");

find next relevant connection
(MK) : keep on reading from cvec file till the lan_ip address coincides with the snmp_clt_ip
read from the SNMP file before entering the process_clt_flows
while (not eof STDIN and $snmp_clt_ip gt $lan_ip) {

 print "> skipped $snmp_clt_ip gt $lan_ip" if ($opts{"d"});
&read_cvec;
$flow_not_correlated++;

}

(MK): either the snmp_clt_ip address will be equal to the IP address of the flow read in
read_cvec or

the latter will have exceeded it without finding a flow to correlate with this SNMP client
if ($snmp_clt_ip eq $lan_ip) {

$snmp_clt_correlated++;
client found - (MK) : nothing yet concluded for a certain session
enter the loop below to scan all flows with the same lan_ip, to see how many
of them can be correlated with one of the client sessions
while ($snmp_clt_ip eq $lan_ip) {

 print "> correlated clt IP $snmp_clt_ip\n" if ($opts{"d"});

$flow_correlated++;

find assocs that overlap with this flow
my $i = 0;
my %correlated_sessions;
my $session_count = 0;
my $session_count_extra = 0;

(MK) : if we have chosen conservative estimation of the connection, consider
as start and end time of the connection the time you saw the first (last packet).

my $start = (exists $opts{"c"} ? $start_ts_lan : $start_ts);
my $end = (exists $opts{"c"} ? $end_ts_lan : $end_ts);
(MK) : scan the sessions to see where fo I have flows within sessions
the rationale is anything other than apparent : A flow should be correlated with a

session
only if start_flow > start_session and end_flow < end_session
while ($i <= $#session_set) {

if (# overlap on the start
($session_set[$i]->{"start"} <= $start and
$session_set[$i]->{"end"} >= $start) or
overlap on the end
($session_set[$i]->{"start"} <= $end and
$session_set[$i]->{"end"} >= $end) or
problem with duration for lan disconnected
or
association within flow lifetime
($opts{"i"} and
$session_set[$i]->{"start"} >= $start and
$session_set[$i]->{"end"} <= $end)) {

(MK) : if the flow overlaps with one of the sessions, when session end are
defined as a

POLLING INTERVAL-long larger, delete an entry that might exist in the second
definition

and add one for the normal case
if (not exists $correlated_sessions{$session_set[$i]->{"num"}}) {

if (exists $correlated_sessions{"(" . $session_set[$i]->{"num"} . ")"}) {
 delete $correlated_sessions{"(" . $session_set[$i]->{"num"} . ")"};

(MK) : Shouldn't I reduce the sessions_count_extra counter here?
}
$correlated_sessions{$session_set[$i]->{"num"}}++;

}

$session_count++;

} elsif (($session_set[$i]->{"start"} <= $start and
$session_set[$i]->{"end"} + $poll_int >= $start) or
($session_set[$i]->{"start"} <= $end and
$session_set[$i]->{"end"} + $poll_int >= $end)) {

$correlated_sessions{"(" . $session_set[$i]->{"num"} . ")"}++

if (not exists $correlated_sessions{$session_set[$i]->{"num"}});

$session_count_extra++;
}
$i++;

}
my @session_nums = sort { $correlated_sessions{$a} <=> $correlated_sessions{$b} }

 keys %correlated_sessions;

if (@session_nums == 0) {
if ($opts{"d"}) {

 print "NOT FOUND: ";
&print_cvec;

 print "\n";
}
$flow_session_not_found++;

} else {
&print_cvec;

 print "$session_count $session_count_extra ";

my ($i, $certain, $extra);
for ($i = 0; $i <= $#session_nums; $i++) {

 print "$session_nums[$i]" . ($i == $#session_nums ? "" : " ");
if ($session_nums[$i] =~ /^\(/) {

$extra++;
} else {

$certain++;
}

}
 print "\n";

$correlated_sessions_stats_certain[$certain]++;
$correlated_sessions_stats_extra[$extra]++;
$correlated_sessions_stats_all[$certain + $extra]++;

}

last if (eof STDIN);
&read_cvec;

}

} else {
snmp will read another client

 print "> cannot find $snmp_clt_ip\n" if ($opts{"d"});
$snmp_clt_not_correlated++;

}
}

sub read_cvec {
$_ = <STDIN>;
while (not /^CAP/) {

if (/^CONC/ or /^SEQ/) {
SEQ 152.23.64.10.1034 > 128.109.34.38.80 t 456715003146 456805030131 3425 >SYN <SYN

>FIN/RST
my @fields = split;

($lan_ip, $lan_port) = $fields[1] =~ /(\d+\.\d+\.\d+\.\d+)\.(\d+)/;
($wan_ip, $wan_port) = $fields[3] =~ /(\d+\.\d+\.\d+\.\d+)\.(\d+)/;
$start_ts = $fields[5] / 1e6 + $start_trace;
$end_ts = $fields[6] / 1e6 + $start_trace;

 die "negative duration\n$_" if ($end_ts - $start_ts < 0);
if ($fields[$#fields] eq "<FIN/RST") {

if ($fields[$#fields-1] eq ">FIN/RST") {

$term = "Complete";
} else {

$term = "WAN_Closed";
}

} elsif ($fields[$#fields] eq ">FIN/RST") {
$term = "LAN_Closed";

} else {
$term = "Not_Closed";

}

} elsif (/^LOSS/) {
my @fields = split;
$tot_pkt_lost = $fields[3] + $fields[4] + $fields[7] + $fields[8];

} elsif (/^More-RTT/) {
my @fields = split;
lan side
$rtt_mad = $fields[11];
$rtt_sd = $fields[9];

} elsif (/^More-TS/) {
my @fields = split;

$start_ts_lan = $fields[2] / 1e6 + $start_trace;

if ($fields[3] != -1) {
$end_ts_lan = $fields[3] / 1e6 + $start_trace;

} elsif ($fields[4] != -1) {
$end_ts_lan = $fields[4] / 1e6 + $start_trace;

} elsif ($fields[5] != -1) {
$end_ts_lan = $fields[5] / 1e6 + $start_trace;

} else {
(MK) : this adaptation is for avoiding some abnormal entries of More-TS to
cause termination of the program with die

 print DFILE "not lan end timestamp\n";
 print DFILE $_;

$start_ts_lan = $start_ts;
$end_ts_lan = $end_ts;
#die "not lan end timestamp\n$_";

}

 die "negative LAN duration\n$_" if ($end_ts_lan - $start_ts_lan < 0);

} elsif (/^w/) {
w 17520 7504 > 9 0 767 399 < 9 0 8310 7942

my @fields = split;

$tot_pkts = $fields[4] + $fields[9];
$tot_bytes = $fields[6] + $fields[11];

}

$_ = <STDIN>;
}

}
sub print_cvec {

 printf "%.3f %.3f %.3f %.3f %s %s %s %s %s %s %s %s %s %s $term ",
$start_ts, $end_ts, $start_ts_lan, $end_ts_lan,
$snmp_clt_mac, $lan_ip, $lan_port, $wan_ip, $wan_port,
$tot_pkts, $tot_bytes, $tot_pkt_lost, $rtt_mad, $rtt_sd;

}

 create_Bid2BtypeMap.pl
#!/usr/local/bin/perl

my ($progname) = $0 =~ /([^\/]+)$/;

USAGE

my $usage=<<EOF;
Map specific buildings to building types
EOF

PRAGMAS

use strict;

#---
OPTIONS
#---

use Getopt::Std;
my (%opts);
if (not getopts("dhrowfc", \%opts) or $opts{"h"}) {

 print "$usage";
 exit;

}

MAIN

my %bldgid2bnum_hash;
my %buildings_10June06_hash;
my %btype2btype_num;
my %results = ();
get_Bnum();
write_output_data();

FUNCTIONS

sub get_Bnum{
my $Bldg_fname = 'bldgid2bnum.txt';

 open Bldg_LIST, "$Bldg_fname" || die "cannot open $Bldg_fname";
while(<Bldg_LIST>){

next if (/^\#/);
 chomp;

my($B_ID, $B_NUM) = split;
if(exists $bldgid2bnum_hash{$B_NUM}) {

#already mapped
}
else{

$bldgid2bnum_hash{$B_NUM} = $B_ID;
}

}
 close Bldg_LIST;

my $Bldg_fname = 'buildings_10June06.txt';
 open Bldg_LIST, "$Bldg_fname" || die "cannot open $Bldg_fname";

my $Btype_num = 1;

while(<Bldg_LIST>){
next if (/^\#/);

 chomp;
my($B_ID, $B_TYPE) = split;
if(exists $btype2btype_num{$B_TYPE}) {

#already mapped
}
else{

$btype2btype_num{$B_TYPE} = $Btype_num++;
}

if(exists $buildings_10June06_hash{$B_ID}) {
#already mapped

}
else{

$buildings_10June06_hash{$B_ID} = $B_TYPE;
}

}
 close Bldg_LIST;

}
sub write_output_data{

#write output data to corresponding files
open(OUT, ">Bnum2BtypeNum.txt");

my ($cur_bid, $cur_num, $cur_btype, $cur_btype_num);
foreach $cur_num(keys %bldgid2bnum_hash){

$cur_bid = $bldgid2bnum_hash{$cur_num};
$cur_btype = $buildings_10June06_hash{$cur_bid};
$cur_btype_num = $btype2btype_num{$cur_btype};
#print OUT "$cur_num $cur_bid $cur_btype $cur_btype_num\n";

 print OUT "$cur_num $cur_btype_num\n";
}
close(OUT);

}

sub write_output_data2{
#write output data to corresponding files
open(OUT, ">Btype2Bnumtype.txt");

my ($cur_bid, $cur_num, $cur_btype, $cur_btype_num);
foreach $cur_btype(keys %btype2btype_num){

$cur_btype_num = $btype2btype_num{$cur_btype};
 print OUT "$cur_btype $cur_btype_num\n";

}
close(OUT);

}

session-cvec-analysis-v2.pl
#!/usr/local/bin/perl

USAGE

my ($progname) = $0 =~ /([^\/]+)$/;

my $usage=<<EOF;
Description:
 Correlating SNMP client data and cvec data.

Usage:

$progname [options] snmp-session-file start-trace < cvec-file > flow-info

Input format:
- snmp-session-file is the sorted output of clt_data2session.v4.pl, filtered
for single client IP sessions with

 grep "^s" | grep -v "," | grep " 152\.[12]" | sort +9 -10 +3n -4 -s
- cvec-file is the output of ascii-file processing with tcp2cvec

Options:
-c Conservative connection duration estimation.
-d Debugging mode.
-h Show this help message.
-i 3rd rule (associations inside connections). Requires -c.

EOF

PRAGMAS

use strict;

--
IMPORTS
--

#die "Environment variable \$SRC undefined or incorrect"
if ($ENV{SRC} eq "");
#require "$ENV{SRC}/stats/cdf.pl";
require "./stats/cdf.pl";

MAIN

#
OPTIONS
#

use Getopt::Std;

my (%opts);
if (not getopts("cdhi", \%opts) or $opts{"h"} or @ARGV != 2) {
 print "$usage";
 exit;
}

my $snmp_fname = $ARGV[0];
die "cannot find $snmp_fname" if (not -e $ARGV[0]);
if ($ARGV[0] =~ /\.gz$/) {
 open SNMP_FILE, "zcat $ARGV[0] |";
} else {
 open SNMP_FILE, "$ARGV[0]";
}

open DFILE, ">out.debug-session-cvec";

my $start_trace = $ARGV[1];

my $poll_int = 300; # 5 minutes
my $delta_poll = 25; # conservative adjustment (due to req/rsp losses)

my $snmp_line;

my $snmp_clt_ip;

my $snmp_clt_mac;
my $ap_ip;

my @session_set; # list of hashes storing basic information about session (start/end point, id)
for a single client. The list is emptied (undefined) upon change of client

my $session_num = 1;

#(MK) : the extra allow a flow in the cvec file to finish at some point beyond the last
SNMP polling interval that a session of the same client was seen, as long as this interval
does not exceed the one POLLING INTERVAL
my @correlated_sessions_stats_certain;
my @correlated_sessions_stats_extra; # end of SNMP assoc + poll_int
my @correlated_sessions_stats_all; # end of SNMP assoc + poll_int

(MK) variables logging stats
my ($flow_not_correlated, $flow_correlated, $flow_session_not_found,

$snmp_clt_not_correlated, $snmp_clt_correlated);

(MK) part of the output file format
my ($lan_ip, $lan_port, $wan_ip, $wan_port,

$start_ts, $end_ts, $start_ts_lan, $end_ts_lan,
$tot_pkts, $tot_bytes,
$tot_pkt_lost, $rtt_mad, $rtt_sd, $term);

my %num_sessions_per_clt;

while (not eof STDIN) {
&read_snmp_clt; # read all assoc info for one client (MK : store all his sessions in the list

of hashes session_set)
&process_clt_flows; # process client if the next one in flow info

is same as above, skip or advance otherwise
}

print STDERR "STATS:\n\n";
print STDERR "Uncorrelated flows (missing clt): $flow_not_correlated\n";
print STDERR "Uncorrelated flows (missing session): $flow_session_not_found\n";
print STDERR "Correlated flows: $flow_correlated\n";
print STDERR "Uncorrelated SNMP clients: $snmp_clt_not_correlated\n";
print STDERR "Correlated SNMP clients: $snmp_clt_correlated\n\n";

my $i;
print STDERR "Correlated Sessions stats (certain):\n";
for ($i = 0; $i <= $#correlated_sessions_stats_certain; $i++) {
 print STDERR " $i = $correlated_sessions_stats_certain[$i]\n";
}
print STDERR "Correlated Sessions stats (heuristic):\n";
for ($i = 0; $i <= $#correlated_sessions_stats_extra; $i++) {
 print STDERR " $i = $correlated_sessions_stats_extra[$i]\n";
}
print STDERR "Correlated Sessions stats (all):\n";
for ($i = 0; $i <= $#correlated_sessions_stats_all; $i++) {
 print STDERR " $i = $correlated_sessions_stats_all[$i]\n";
}

use IO::File;

my ($m, %cdf);
foreach $m (keys %num_sessions_per_clt) {

&add_data_point($num_sessions_per_clt{$m}, \%cdf);
}

my $fname = "num_sessions_per_clt.cdf";
my $fh = new IO::File "> $fname";

die "cannot open $fname" if (not defined $fh);
build_freqbased_cdf($fh, \%cdf);
$fh->close;

--

sub read_snmp_clt {
empty assoc set

 undef @session_set;
if (eof SNMP_FILE) {

$snmp_clt_ip = "";
return;

}

reuse old line if possible
1113510964 172.29.148.71 91407143 0.5.78.72.175.4 5631 3 -80 1 6323 1088981 5683 4205332 74

546 0 152.23.64.10
$snmp_line = <SNMP_FILE> if ($snmp_line eq "");

(MK) : out of the previous processing step we now only have session entries with single
client IP address

s 0.5.60.3.102.101 1113754247 1113754078 1113775547 1113775547 15 2 1 152.2.124.10
my ($type, $mac, $first_ts, $start_ts, $last_update, $last_ts,
$num_visits, $num_APs, $num_IPs, $IP, $apip) = split /\s/, $snmp_line;

 die "session lines expected\n" if ($type ne "s");
Here I change the original script so that it allows for the last field to be an IP address

(that of the
attachment AP). The check was made only to secure that there is only one IP address there but

this
should not be a problem given that in the previous processing step we filtered against

entries
with 2 or more client IPs

die "only one IP expected\n$snmp_line" if ($IP !~ /^\d+\.\d+\.\d+\.\d+$/);
$snmp_clt_ip = $IP;
$snmp_clt_mac = $mac;
$ap_ip = $apip;

 print "SL: $snmp_line" if ($opts{"d"});

create or update assoc from polls of these clients

while ($IP eq $snmp_clt_ip) {
(MK) : session is a hash storing the starting/end points of sessions and its global id
my %session = ("start" => "$start_ts", "end" => "$last_ts",
"num" => $session_num++);

 push @session_set, \%session;
$num_sessions_per_clt{$snmp_clt_mac}++;

&print_sessions if ($opts{"d"});

return if (eof SNMP_FILE);
$snmp_line = <SNMP_FILE>;
($type, $mac, $first_ts, $start_ts, $last_update, $last_ts,
$num_visits, $num_APs, $num_IPs, $IP,$apip) = split /\s/, $snmp_line;

 print "SL: $snmp_line" if ($opts{"d"});
}

}

sub print_session {
my ($index) = @_;

 printf "SESSION: %d. %s %s\n", $session_set[$index]->{"num"},
$session_set[$index]->{"start"}, $session_set[$index]->{"end"};

}

sub print_sessions {
my $i;
for ($i = 0; $i <= $#session_set; $i++) {

print_session($i);
}

}

sub process_clt_flows {

we come here with a snmp_clt_IP at hand together with the list of all his sessions
in the 7-8 days

 print ">> proc_flows\n" if ($opts{"d"});

1113422694.133 30.085 152.23.64.10 1041 65.57.174.62 80 19 8862 Complete

(MK) : read from cvec file. Read all entries up to lines starting with CAP
apparently corresponding to a single connection
&read_cvec if ($start_ts eq "");

find next relevant connection
(MK) : keep on reading from cvec file till the lan_ip address coincides with the snmp_clt_ip
read from the SNMP file before entering the process_clt_flows
while (not eof STDIN and $snmp_clt_ip gt $lan_ip) {

 print "> skipped $snmp_clt_ip gt $lan_ip" if ($opts{"d"});
&read_cvec;
$flow_not_correlated++;

}
(MK): either the snmp_clt_ip address will be equal to the IP address of the flow read in

read_cvec or
the latter will have exceeded it without finding a flow to correlate with this SNMP client
if ($snmp_clt_ip eq $lan_ip) {

$snmp_clt_correlated++;
client found - (MK) : nothing yet concluded for a certain session
enter the loop below to scan all flows with the same lan_ip, to see how many
of them can be correlated with one of the client sessions
while ($snmp_clt_ip eq $lan_ip) {

 print "> correlated clt IP $snmp_clt_ip\n" if ($opts{"d"});

$flow_correlated++;

find assocs that overlap with this flow
my $i = 0;
my %correlated_sessions;
my $session_count = 0;
my $session_count_extra = 0;

(MK) : if we have chosen conservative estimation of the connection, consider
as start and end time of the connection the time you saw the first (last packet).

my $start = (exists $opts{"c"} ? $start_ts_lan : $start_ts);
my $end = (exists $opts{"c"} ? $end_ts_lan : $end_ts);
(MK) : scan the sessions to see where fo I have flows within sessions
the rationale is anything other than apparent : A flow should be correlated with a

session
only if start_flow > start_session and end_flow < end_session
while ($i <= $#session_set) {

if (# overlap on the start
($session_set[$i]->{"start"} <= $start and
$session_set[$i]->{"end"} >= $start) or
overlap on the end

($session_set[$i]->{"start"} <= $end and
$session_set[$i]->{"end"} >= $end) or
problem with duration for lan disconnected
or
association within flow lifetime
($opts{"i"} and
$session_set[$i]->{"start"} >= $start and
$session_set[$i]->{"end"} <= $end)) {

(MK) : if the flow overlaps with one of the sessions, when session end are
defined as a

POLLING INTERVAL-long larger, delete an entry that might exist in the second
definition

and add one for the normal case
if (not exists $correlated_sessions{$session_set[$i]->{"num"}}) {

if (exists $correlated_sessions{"(" . $session_set[$i]->{"num"} . ")"}) {
 delete $correlated_sessions{"(" . $session_set[$i]->{"num"} . ")"};

(MK) : Shouldn't I reduce the sessions_count_extra counter here?
}
$correlated_sessions{$session_set[$i]->{"num"}}++;

}

$session_count++;

} elsif (($session_set[$i]->{"start"} <= $start and
$session_set[$i]->{"end"} + $poll_int >= $start) or
($session_set[$i]->{"start"} <= $end and
$session_set[$i]->{"end"} + $poll_int >= $end)) {

$correlated_sessions{"(" . $session_set[$i]->{"num"} . ")"}++
if (not exists $correlated_sessions{$session_set[$i]->{"num"}});

$session_count_extra++;
}
$i++;

}
my @session_nums = sort { $correlated_sessions{$a} <=> $correlated_sessions{$b} }

 keys %correlated_sessions;

if (@session_nums == 0) {
if ($opts{"d"}) {

 print "NOT FOUND: ";
&print_cvec;

 print "\n";
}
$flow_session_not_found++;

} else {
&print_cvec;

 print "$session_count $session_count_extra ";

my ($i, $certain, $extra);
for ($i = 0; $i <= $#session_nums; $i++) {

 print "$session_nums[$i]" . ($i == $#session_nums ? "" : " ");
if ($session_nums[$i] =~ /^\(/) {

$extra++;
} else {

$certain++;
}

}
 print "\n";

$correlated_sessions_stats_certain[$certain]++;
$correlated_sessions_stats_extra[$extra]++;
$correlated_sessions_stats_all[$certain + $extra]++;

}

last if (eof STDIN);
&read_cvec;

}

} else {
snmp will read another client

 print "> cannot find $snmp_clt_ip\n" if ($opts{"d"});
$snmp_clt_not_correlated++;

}
}

sub read_cvec {

$_ = <STDIN>;
while (not /^CAP/) {

if (/^CONC/ or /^SEQ/) {
SEQ 152.23.64.10.1034 > 128.109.34.38.80 t 456715003146 456805030131 3425 >SYN <SYN

>FIN/RST
my @fields = split;

($lan_ip, $lan_port) = $fields[1] =~ /(\d+\.\d+\.\d+\.\d+)\.(\d+)/;
($wan_ip, $wan_port) = $fields[3] =~ /(\d+\.\d+\.\d+\.\d+)\.(\d+)/;
$start_ts = $fields[5] / 1e6 + $start_trace;
$end_ts = $fields[6] / 1e6 + $start_trace;

 die "negative duration\n$_" if ($end_ts - $start_ts < 0);
if ($fields[$#fields] eq "<FIN/RST") {

if ($fields[$#fields-1] eq ">FIN/RST") {
$term = "Complete";

} else {
$term = "WAN_Closed";

}
} elsif ($fields[$#fields] eq ">FIN/RST") {

$term = "LAN_Closed";
} else {

$term = "Not_Closed";
}

} elsif (/^LOSS/) {
my @fields = split;
$tot_pkt_lost = $fields[3] + $fields[4] + $fields[7] + $fields[8];

} elsif (/^More-RTT/) {
my @fields = split;
lan side
$rtt_mad = $fields[11];
$rtt_sd = $fields[9];

} elsif (/^More-TS/) {
my @fields = split;

$start_ts_lan = $fields[2] / 1e6 + $start_trace;

if ($fields[3] != -1) {
$end_ts_lan = $fields[3] / 1e6 + $start_trace;

} elsif ($fields[4] != -1) {
$end_ts_lan = $fields[4] / 1e6 + $start_trace;

} elsif ($fields[5] != -1) {
$end_ts_lan = $fields[5] / 1e6 + $start_trace;

} else {
(MK) : this adaptation is for avoiding some abnormal entries of More-TS to

cause termination of the program with die
 print DFILE "not lan end timestamp\n";
 print DFILE $_;

$start_ts_lan = $start_ts;
$end_ts_lan = $end_ts;
#die "not lan end timestamp\n$_";

}

 die "negative LAN duration\n$_" if ($end_ts_lan - $start_ts_lan < 0);

} elsif (/^w/) {
w 17520 7504 > 9 0 767 399 < 9 0 8310 7942

my @fields = split;

$tot_pkts = $fields[4] + $fields[9];
$tot_bytes = $fields[6] + $fields[11];

}

$_ = <STDIN>;
}

}

sub print_cvec {

 printf "%.3f %.3f %.3f %.3f %s %s %s %s %s %s %s %s %s %s $term ",
$start_ts, $end_ts, $start_ts_lan, $end_ts_lan,
$snmp_clt_mac, $lan_ip, $lan_port, $wan_ip, $wan_port,
$tot_pkts, $tot_bytes, $tot_pkt_lost, $rtt_mad, $rtt_sd;

}

SeperateTrace2CLFiles.pl
#!/usr/local/bin/perl

USAGE

my ($progname) = $0 =~ /([^\/]+)$/;

my $usage=<<EOF;
Description:
 Split original data to separate files for each client
EOF

PRAGMAS

use strict;

MAIN

#Number of Input Files - Trace File Days

my $input_files_no = 10;
my $file_num;
my $filename;

for $file_num(1 ... $input_files_no) {

$filename = 'd'.$file_num.'.dat';
 print 'Trying to open :'."$filename"."\n";

open (DATA, "$filename");

while (<DATA>) {
next if (/^\s*$/); # skip empty lines

Parse client polling line

my ($poll_time, $ap_num, $ap_up_time, $clt_num, $clt_up_time,
$clt_state, $dbm, $power_save,
$pkts_recv, $bytes_recv, $pkts_sent, $bytes_sent,
$dups, $retrans_msdu, $undelivered_msdu, $br) = split;

 die "cannot parse line\n[$_]" if ($poll_time eq "");

my $CLfilename;
$CLfilename = 'cl'.$clt_num;

if(-e $CLfilename){
open(OUT, ">>$CLfilename") || die "cannot create $CLfilename: $!";

}
else{

open(OUT, ">$CLfilename") || die "cannot create $CLfilename: $!";
}

 print OUT $_;
close(OUT) || die "cannot close $CLfilename: $!";

}
close(DATA);

}

sortClientFiles.pl
#!/usr/local/bin/perl

USAGE

my ($progname) = $0 =~ /([^\/]+)$/;

my $usage=<<EOF;
Description:
 Helper function used to sort client files – sort first by AP and then by timestamp
EOF

PRAGMAS

use strict;

MAIN

my %hash = ();
my $client;

my $fileName;
my $totalClients = 15000;
my $ap;
my $timestamp;

for $client(1 ... $totalClients)
{

$fileName = 'cl' . $client;

if(-e $fileName)
{

 print 'Trying to open: '."$fileName"."\n";
open(DATA, "$fileName")|| die "cannot open source file";

%hash = ();

while (<DATA>)
{

next if (/^\s*$/); # skip empty lines

my ($poll_time, $ap_num, $ap_up_time, $clt_num, $clt_up_time,
$clt_state, $dbm, $power_save,
$pkts_recv, $bytes_recv, $pkts_sent, $bytes_sent,
$dups, $retrans_msdu, $undelivered_msdu) = split;

 die "cannot parse line\n[$_]" if ($poll_time eq "");

$hash{$ap_num}{$poll_time} = $_;
}

close(DATA);

$fileName = 'sortedClient' . $client . '.txt';

open(outCFILE, ">$fileName") || die "cannot open target file";

foreach $ap (sort by_number keys(%hash))
{

foreach $timestamp (sort by_number keys(%{$hash{$ap}}))
{

 print outCFILE "$hash{$ap}{$timestamp}";
}

}

close(outCFILE);
}

}

sub by_number
{

$a <=> $b;
}

StatisticsPerClient.pl

#!/usr/bin/perl -w

#--#
DESCPRIPTION :
This script is used to calculate some statistics about each client in the tcp flow trace.

INPUT
Flow data split to client files.
OUTPUT
The columns will contain the following elements :
col0 : client id
col1 : mean flow size
col2 : median flow size
col3 : std
col4 : 95% confidence interval lower bound for flow size
col5 : 95% confidence interval upper bound for flow size
col6 : mean duration
col7 : median duration
col8 : std of the duration
col9 : 95% confidence interval lower bound for flow duration
col10 : 95% confidence interval upper bound for flow duration
#--#

USAGE

my ($progname) = $0 =~ /([^\/]+)$/;
my $usage=<<EOF;
StatisticsPerClient.pl mode
-mode 0 : perform analysis for all clients
-mode 1 : perform analysis for clients that have home AP

 HomeAPwith75Thres.txt has the corresponding mapping from clientID to homeAP
EOF

PRAGMAS

use strict;

OPTIONS

use Getopt::Std;

my (%opts);
if (not getopts("dh", \%opts) or $opts{"h"}) {
 print "$usage";
 exit;
}

MAIN

my $functiontype = $ARGV[0]; # 0 all aps - 1 aps that have home AP
my $numArgs = $#ARGV + 1;
if ($numArgs < 1 or (($functiontype != 0)and($functiontype != 1))){
 print "$usage";
 exit 0;
}
my $max_client_id = 20000;
my ($i,$j);
my %homeAP;
my ($input_filename, $output_filename);
my (@array, @sample);
my $counter_in_array = 0; # number of entries in array

#--#
OUTPUT Format (array)
col0 : client id
col1 : mean flow size
col2 : median flow size
col3 : std flow size
col4 : 95% confidence interval lower bound for flow size
col5 : 95% confidence interval upper bound for flow size
col6 : mean duration
col7 : median duration
col8 : std of the duration
col9 : 95% confidence interval lower bound for flow duration
col10 : 95% confidence interval upper bound for flow duration
#--#
getHomeAP();
for($i=0; $i<$max_client_id; ++$i){

$input_filename = "cl"."$i";
my @temp_duration_vector; my @temp_traffic_vector; my @temp_100pkt_traffic_vector;
my $temp_duration_counter = 0; my $temp_traffic_counter = 0; my $temp_100pkt_traffic_counter =

0;
my @temp_100pkt_duration_vector, my $temp_100pkt_duration_counter = 0;
my @temp_100pkt_fromHome_traffic_vector, my $temp_100pkt_fromHome_traffic_counter = 0;
my @temp_100pkt_fromHome_duration_vector, my $temp_100pkt_fromHome_duration_counter = 0;
if(-e $input_filename){

open(INPUT, "$input_filename");
 print 'Opening Client File :'."$input_filename"."\n";

while(<INPUT>) {
@sample = split;
#$poll_time, $wireless_cl_num, $ap_id, $tot_pkts, $tot_bytes, $duration, $duration_lan,

$tcp_term, $port_num_lan, $port_num_wan
$temp_duration_vector[$temp_duration_counter++] = $sample[5];
$temp_traffic_vector[$temp_traffic_counter++] = $sample[4];
if($sample[3] >= 100){

$temp_100pkt_traffic_vector[$temp_100pkt_traffic_counter++] = $sample[4];
$temp_100pkt_duration_vector[$temp_100pkt_duration_counter++] = $sample[5];

}
if(($functiontype == 1)&&(exists $homeAP{ $sample[1] })){

if(($homeAP{ $sample[1] } == $sample[2]) && ($sample[3] >= 100)){
$temp_100pkt_fromHome_traffic_vector[$temp_100pkt_fromHome_traffic_counter++] =

$sample[4];
$temp_100pkt_fromHome_duration_vector[$temp_100pkt_fromHome_duration_counter++]

= $sample[5];
}

}
}
$array[$counter_in_array][0] = $sample[1];
$array[$counter_in_array][1] = mean(@temp_traffic_vector);
$array[$counter_in_array][2] = median(@temp_traffic_vector);
$array[$counter_in_array][3] = my_std(@temp_traffic_vector);
$array[$counter_in_array][4] = mySum(@temp_traffic_vector);
$array[$counter_in_array][5] = lower_conf_interval(@temp_traffic_vector);
$array[$counter_in_array][6] = upper_conf_interval(@temp_traffic_vector);
$array[$counter_in_array][7] = mean(@temp_duration_vector);
$array[$counter_in_array][8] = median(@temp_duration_vector);
$array[$counter_in_array][9] = my_std(@temp_duration_vector);
$array[$counter_in_array][10] = lower_conf_interval(@temp_duration_vector);
$array[$counter_in_array][11] = upper_conf_interval(@temp_duration_vector);
$array[$counter_in_array][12] = $temp_traffic_counter;

if($temp_100pkt_traffic_counter > 0){
$array[$counter_in_array][13] = mean(@temp_100pkt_traffic_vector);
$array[$counter_in_array][14] = median(@temp_100pkt_traffic_vector);

$array[$counter_in_array][15] = my_std(@temp_100pkt_traffic_vector);
$array[$counter_in_array][16] = mySum(@temp_100pkt_traffic_vector);
$array[$counter_in_array][17] = mean(@temp_100pkt_duration_vector);
$array[$counter_in_array][18] = median(@temp_100pkt_duration_vector);
$array[$counter_in_array][19] = my_std(@temp_100pkt_duration_vector);
$array[$counter_in_array][20] = $temp_100pkt_traffic_counter;

}
else{

$array[$counter_in_array][13] = -1;
$array[$counter_in_array][14] = -1;
$array[$counter_in_array][15] = -1;
$array[$counter_in_array][16] = -1;
$array[$counter_in_array][17] = -1;
$array[$counter_in_array][18] = -1;
$array[$counter_in_array][19] = -1;
$array[$counter_in_array][20] = -1;

}
if($temp_100pkt_fromHome_traffic_counter > 0){

$array[$counter_in_array][21] = mean(@temp_100pkt_fromHome_traffic_vector);
$array[$counter_in_array][22] = median(@temp_100pkt_fromHome_traffic_vector);
$array[$counter_in_array][23] = my_std(@temp_100pkt_fromHome_traffic_vector);
$array[$counter_in_array][24] = mean(@temp_100pkt_fromHome_duration_vector);
$array[$counter_in_array][25] = median(@temp_100pkt_fromHome_duration_vector);
$array[$counter_in_array][26] = my_std(@temp_100pkt_fromHome_duration_vector);
$array[$counter_in_array][27] = $temp_100pkt_fromHome_traffic_counter;

}
else{

$array[$counter_in_array][21] = -1;
$array[$counter_in_array][22] = -1;
$array[$counter_in_array][23] = -1;
$array[$counter_in_array][24] = -1;
$array[$counter_in_array][25] = -1;
$array[$counter_in_array][26] = -1;
$array[$counter_in_array][27] = -1;

}
$counter_in_array++;
close(INPUT);

}
else {

do nothing
}

} # end of for loop counting clients

$output_filename = "perClientStatistcs2.dat";
open(OUTPUT, ">$output_filename");

for($i=0; $i<$counter_in_array; $i++){
for($j=0; $j<27; ++$j) {

 print OUTPUT "$array[$i][$j]"." ";
}

 print OUTPUT "$array[$i][$j]"."\n";
}

close(OUTPUT);

Functions

sub getHomeAP{
open(HOMEAP, "HomeAPwith75Thres.txt");
while (<HOMEAP>){

next if (/^\s*$/); # skip empty lines
Parse client polling line
my ($client, $ap) = split;

$homeAP{ $client } = $ap;
}
close(HOMEAP);

}
sub checkValidRange{

my $cur_poll = $_[0];
#From [Wed Apr 13 19:05:58 2005] to [Thu Apr 21 05:18:16 2005]
if(($cur_poll > 1113408358)&&($cur_poll < 1114049896)){

return 1;
}
else{

return 0;
}

}

Stats Functions

sub mySum {

my ($sum, $elem);
$sum = 0;
foreach $elem (@_) {
$sum += $elem;

}
return($sum);

}
sub mean {

my(@data)=@_;
my $sum;
foreach(@data) {

$sum+=$_;
}
return($sum/@data);

}
sub median {

my(@data)=sort { $a <=> $b} @_;
if (scalar(@data)%2) {

return($data[@data/2]);
} else {

my($upper, $lower);
$lower=$data[@data/2];
$upper=$data[@data/2 - 1];
return(mean($lower, $upper));

}
}
sub std_dev {

my(@data)=@_;
my($sq_dev_sum, $avg)=(0,0);

$avg=mean(@data);
foreach my $elem (@data) {

$sq_dev_sum+=($avg-$elem)**2;
}
return(sqrt($sq_dev_sum/@data-1));

}
sub my_std {

my(@data) = @_;
my $avg = mean(@data);
my $sum = 0;
my $counter = 0;

foreach my $elem (@data) {
$sum += ($elem-$avg)**2;

$counter++;
}
--$counter;
if($counter != 0) {

$sum = $sum / $counter;
$sum = sqrt($sum);

}
else {

if one vector contains only one element then the std of that vector is the value of that
one element.

$sum = $data[0];
}
return $sum;

}
sub lower_conf_interval {

my (@lower_conf_interval_temp) = @_;
my $mean_val = mean(@lower_conf_interval_temp);
my $std_val = my_std(@lower_conf_interval_temp);
my $constant = 1.96;
for 95% confidence interval the constant in the equation for the confidence interval must ne

1.96
my $array_len = scalar(@lower_conf_interval_temp);

return $mean_val - (($constant*$std_val)/sqrt($array_len)) ;
}
sub upper_conf_interval {

my (@upper_conf_interval_temp) = @_;
my $mean_val = mean(@upper_conf_interval_temp);
my $std_val = my_std(@upper_conf_interval_temp);
my $constant = 1.96;
for 95% confidence interval the constant in the equation for the confidence interval must ne

1.96
my $array_len = scalar(@upper_conf_interval_temp);

return $mean_val + (($constant*$std_val)/sqrt($array_len)) ;
}

 getTopAps.m
%--%
% DESCPRIPTION :
% Function used to locate hotspots among all APs
% INPUT
% Traffic: matrix containing the traffic (SNMP) data for all Aps
% rows correspond to Aps and columns to time slots
% holes: vector containing invalid APIDs
% OUTPUT
% top: vector containing hotspots
% topTraffic: matrix containing traffic time series for the corresponding hotspots
%--%
function [top,topTraffic] = getTopAps(Traffic, holes)

%input daily traffic

[r, c] = size(Traffic);

 numTopDAY = 65;
 numTopHOUR= 65;

%%%% GET TOP HOUR APS
for i = 1:numTopDAY

 topHOUR(i, 1) = 0; %ap
 topHOUR(i, 2) = 0; %top hourly traffic for that AP

end

for j = 1:c
 curAP = j;

if(find(holes(:,1) == curAP))
 continue;

end
for i = 1:r

 curTraffic = Traffic(i, j);

if(curTraffic > topHOUR(1, 2))
 foundTop = find(topHOUR(:, 1) == curAP);

if(foundTop)
 topHour(foundTop, 2) = curTraffic;
 topHOUR = sortrows(topHOUR, [2]);

else
 topHOUR(1, 1) = curAP;
 topHOUR(1, 2) = curTraffic;
 topHOUR = sortrows(topHOUR, [2]);

end
end

end
end

 topHOUR;
%%%% GET TOP DAY APS

for j = 1:c
 curAP = j;
 startRow = 1;
 endRow = 24;
 curAPTopDay = 0;

if(find(holes(:,1) == curAP))
 continue;

end
while(startRow < r - 23)

 curDAY = Traffic(startRow:endRow, j);

 curDayTraffic = sum(curDAY);
if(curDayTraffic > curAPTopDay)

 curAPTopDay = curDayTraffic;
end

 startRow = startRow + 24;
 endRow = endRow + 24;

end
 APTopDay(curAP, 1) = curAP;
 APTopDay(curAP, 2) = curAPTopDay;

end

 APTopDay = sortrows(APTopDay, [2]);

for i = 1:numTopDAY
 APTopDaySel(i, 1) = APTopDay(c + 1 - i, 1);
 APTopDaySel(i, 2) = APTopDay(c + 1 - i, 2);

end
 APTopDaySel;

%%%% Final Selection
 sizeTop = 1;
 top(1, 1) = 0;
 top(1, 2) = 0;

for i = 1:numTopDAY
 curAP = APTopDaySel(i, 1);

 found = find(topHOUR(:,1) == curAP);
if(found)

 top(sizeTop, 1) = APTopDaySel(i, 1);
 top(sizeTop, 2) = APTopDaySel(i, 2);
 top(sizeTop, 3) = topHOUR(found, 2);
 sizeTop = sizeTop + 1;

end
end

 top = sortrows(top, [2]);

[r, c] = size(top);

for i = 1:r
 curHotspot = top(i, 1);
 topTraffic(:, i) = Traffic(:, curHotspot);

end

 movingAverage.m
%--%
% DESCPRIPTION :
% Function used to locate hotspots among all APs
% INPUT
% Traffic: matrix containing the traffic (SNMP) data for all Aps
% rows correspond to Aps and columns to time slots
% window: window for which the moving average is calculated
% OUTPUT
% smooth: smoothed values produced
%--%

function smooth = movingAverage2(Traffic, window)

[r, c] = size(Traffic);

for j = 1:c
 index = 1;

for i = 1:r
if(window == 3)

if(i == 1)
 smooth(i, j) = (Traffic(i, j) + Traffic(i+1, j) + Traffic(i+2, j))/3;

elseif(i == r)
 smooth(i, j) = Traffic(i-2, j) + Traffic(i-1, j) + Traffic(i, j)/3;

else
 smooth(i, j) = Traffic(i-1, j) + Traffic(i, j) + Traffic(i+1, j) /3;

end
elseif(window == 5)

if(i == 1)
 smooth(i, j) = (Traffic(i, j) + Traffic(i+1, j) + Traffic(i+2, j))/3;

elseif(i == 2)
 smooth(i, j) = (Traffic(i-1, j) + Traffic(i, j) + Traffic(i+1, j) +
Traffic(i+2, j))/4;

elseif(i == r)
 smooth(i, j) = Traffic(i-2, j) + Traffic(i-1, j) + Traffic(i, j)/3;

elseif(i == r - 1)
 smooth(i, j) = Traffic(i-2, j) + Traffic(i-1, j) + Traffic(i, j) +
Traffic(i+1, j)/4;

else
 smooth(i, j) = Traffic(i-2, j) + Traffic(i-1, j) + Traffic(i, j) +
Traffic(i+1, j) + Traffic(i+2, j) /5;

end

else
 smooth(1, 1) = -1;

end
end

end

 predictAP2ratioRegressW4.m
%--%
% DESCPRIPTION :
% P3 Algorithm
% INPUT
% Traffic: matrix containing the traffic (SNMP) data for all Aps
% rows correspond to Aps and columns to time slots
% Visits: matrix containing the visits (SNMP) data for all Aps
% rows correspond to Aps and columns to time slots
% week_num: weeks selected to apply the algorithm
% holes: vector containing invalid APIDs
% window: window used in the moving average component of the algorithm
% mode: if mode equals ‘all’ then the algorithm is applied over all hotspots
% hotspots: vector containing hotspots in the corresponding dataset
% multi_step: boolean value – if 1 then the algorithm is multi steo otherwise
% single step method is used
% OUTPUT
% P3_FINAL: [Apid; meanP3val; medianP3val; stdP3val]
%--%

%added visits in the formula....
function [P3_FINAL,debugT] = predictAP2ratioRegressW4(Traffic, Visits, week_num, holes,

window, mode, hotspots, multi_step)
%function [P3,debug] = predictAP2ratioRegressW2(Traffic, week_num, holes, window, mode,

rWeights, multi_step)

[r, c] = size(Traffic);
 APid = hotspots(:,1);

 week_start = ((week_num-1)*7+5)*24 + 1;
 week_end = ((week_num-1)*7+5+5)*24;
 week = Traffic(week_start:week_end, :);
 weekV = Visits(week_start:week_end, :);

 tWeights = getRegressionWeights4(Traffic, week, holes, window, hotspots);
 vWeights = getRegressionWeights4(Visits, weekV, holes, window, hotspots);
 logWeights = getRegressionWeights4b(Traffic, Visits, tWeights, vWeights, week, weekV,
holes, window, hotspots);

for j = 1:c
 curAP = j;

[APMeanTot,APMeanTotPerHour] = ratioHelper(Traffic, r, curAP, week_num, multi_step);
[APMeanTotV,APMeanTotPerHourV] = ratioHelper(Visits, r, curAP, week_num, multi_step);
%V1
for k = 1:24

 V1(k, j) = mean(APMeanTot(:, k));
 VV1(k, j) = mean(APMeanTotV(:, k));

end
%V2

 hour2 = 1;
 day2 = 1;

for n = 1:120
 hmean = mean(APMeanTotPerHour(:, n));
 hmeanV = mean(APMeanTotPerHourV(:, n));

 col2 = (curAP-1)*5 + day2;
 V2(hour2, col2) = hmean;
 VV2(hour2, col2) = hmeanV;

if(hour2 == 24)
 hour2 = 0;
 day2 = day2 + 1;

end
 hour2 = hour2 + 1;

end
end

%APMeanTot size = (5*5)x24 [5*5 indicates 5days(weekdays) for 5 weeks]
%V1 size = 24*488 [each row contains the mean traffic for that specific hour]

[r, c] = size(week);
 holesFoundSize = 1;
 sizeP3 = 1;
 debugSIZE = 1;
 debugTsize = 1;

for j = 1:c
 curAP = j;
 hour3 = 1;
 day3 = 1;
 posP3 = 0;
 tot = 0;

for h = 1:window
 history(h, 1) = 0;
 historyV(h, 1) = 0;

end
if(find(holes(:,1) == curAP))

%do nothing
else

for i = 1:r
 curTraffic = week(i, j);
 curVisits = weekV(i, j);

 meanHistory = mean(history(:, 1));
 meanHistoryV = mean(historyV(:, 1));

 found = find(tWeights(:, 1) == curAP);
 foundV = find(vWeights(:, 1) == curAP);
 foundL = find(logWeights(:, 1) == curAP);

if(found)
 tweight1 = tWeights(found, 2);
 tweight2 = tWeights(found, 3);
 tweight3 = tWeights(found, 4);

else
 tweight1 = 0;
 tweight2 = 0;
 tweight3 = 0;;

end
if(foundV)

 vweight1 = vWeights(foundV, 2);
 vweight2 = vWeights(foundV, 3);
 vweight3 = vWeights(foundV, 4);

else
 vweight1 = 0;
 vweight2 = 0;
 vweight3 = 0;;

end
if(foundL)

 lweight1 = logWeights(foundL, 2);
 lweight2 = logWeights(foundL, 3);

else
 lweight1 = 0;
 lweight2 = 0;

end

 avgT = tweight2*V1(hour3, curAP) + tweight3*V2(hour3, (curAP-1)*5 + day3) +
tweight1*meanHistory;

%%%%%%%%%
 debugT(debugTsize, 1) = avgT;
 debugTsize = debugTsize + 1;

%%%%%%%%%
 avgV = vweight2*VV1(hour3, curAP) + vweight3*VV2(hour3, (curAP-1)*5 + day3)
+ vweight1*meanHistoryV;
 avg = lweight1*log(avgT) + lweight2*log(avgV);
 lweight1
 lweight2

if(curTraffic ~= 0)
if(mode == 'all')

 found = 1; %ALL APS
else

 found = find(APid(:, 1) == curAP);
end
if(found)

 value = (abs(avg - log(curTraffic)))/log(curTraffic);

 P3(sizeP3, 1) = j;
 P3(sizeP3, 2) = value;
 sizeP3 = sizeP3 + 1;

end
end

if(hour3 == 24)
 hour3 = 0;
 day3 = day3 + 1;

end
 hour3 = hour3 + 1;

%update history
if(window >= 2 && window <= 6)

 history(1, 1) = history(2:window, 1);
 history(window, 1) = curTraffic;
 historyV(1, 1) = historyV(2:window, 1);
 historyV(window, 1) = curVisits;

else
disp('wrong WINDOW SIZE');

end
end

end
end

debug = unique(P3(:,1));
[r, c] = size(P3);

 prevAP = P3(1, 1);
 tabSize = 1;
 P3size = 1;

for i = 1:r
 curAP = P3(i, 1);

if(curAP ~= prevAP)

 P3_FINAL(P3size, 1) = prevAP;
 P3_FINAL(P3size, 2) = mean(ratioTab(:,1));
 P3_FINAL(P3size, 3) = median(ratioTab(:,1));
 P3_FINAL(P3size, 4) = std(ratioTab(:,1));

clear ratioTab;
 P3size = P3size + 1;
 tabSize = 1;

end
 ratioTab(tabSize, 1) = P3(i, 2);
 tabSize = tabSize + 1;

 prevAP = curAP;
end

 P3_FINAL(P3size, 1) = prevAP;
 P3_FINAL(P3size, 2) = mean(ratioTab(:,1));
 P3_FINAL(P3size, 3) = median(ratioTab(:,1));
 P3_FINAL(P3size, 4) = std(ratioTab(:,1));

 stats(1,1) = mean(P3(:,2));
 stats(2,1) = median(P3(:,2));
 stats(3,1) = std(P3(:,2));

NAMSA2RemOutliers.m
%--%
% DESCPRIPTION :
% NAMSA Algorithm
% INPUT
% traffic: matrix containing the traffic (SNMP) data for all Aps
% rows correspond to Aps and columns to time slots
% visits: matrix containing the visits (SNMP) data for all Aps
% rows correspond to Aps and columns to time slots
% week_num: weeks selected to apply the algorithm
% mode: if mode equals ‘all’ then the algorithm is applied over all hotspots
% OUTPUT
% namsa_final: [Apid; meanNAMSAval; medianNAMSAval; stdNAMSAval]
% residuals: vector containing the residual values
%--%

function [namsa_final,residuals] = NAMSA2RemOutliers(traffic, visits, week_num, mode, APid)

if(week_num ~= 0)
 week_start = ((week_num-1)*7+5)*24 + 1;
 week_end = ((week_num-1)*7+5+5)*24;
 traffic = traffic(week_start:week_end, :);
 visits = visits(week_start:week_end, :);

end

[rt, ct] = size(traffic);
[rv, cv] = size(visits);

% trafficRemOutliers = matrixRemoveOutliers(traffic, 1.96);
% visitsRemOutliers = matrixRemoveOutliers(visits, 1.96);

 normTraffic = traffic.^(1/4);
 normVisits = visits.^(1/4);

% normTrafficRemOutliers = trafficRemOutliers.^(1/4);
% normVisitsRemOutliers = visitsRemOutliers.^(1/4);

 normTrafficRemOutliers = matrixRemoveOutliers(normTraffic, 1.96);

 normVisitsRemOutliers = matrixRemoveOutliers(normVisits, 1.96);

 namsa_resSize = 1;
if(rt ~= rv || ct ~= cv)

disp 'Invalid Input'
else

for j = 1:ct
%get regression weights

 y = normTrafficRemOutliers(2:rt, j);
 X(:,1) = ones(rt-1, 1);
 X(:,2) = normTrafficRemOutliers(1:rt-1, j);
 X(:,3) = normVisitsRemOutliers(1:rt-1, j);
 rweights = regress(y, X);
 rw_a = rweights(1, 1);
 rw_b = rweights(2, 1);
 rw_c = rweights(3, 1);

 residualsSize = 1;
 curAP = j;

for i = 2:rt
 curTraffic = traffic(i, j);
 curVisits = visits(i, j);
 prevTraffic = normTrafficRemOutliers(i-1, j);
 prevVisits = normVisitsRemOutliers(i-1, j);

 avg = rw_a + rw_b*prevTraffic + rw_c*prevVisits;

 avgR = avg^4;
 res_val = curTraffic - avgR;
 residuals(i-1, curAP) = res_val;

if(curTraffic ~= 0)
if(mode == 'all')

 found = 1; %ALL APS
else

 found = find(APid(:, 1) == curAP);
end
if(found)

 avgf = avg^4;
 value = (abs(avgf - curTraffic))/curTraffic;

 namsa_res(namsa_resSize, 1) = j;
 namsa_res(namsa_resSize, 2) = value;
 namsa_resSize = namsa_resSize + 1;

end
end

end
end

end

[r, c] = size(namsa_res);
 prevAP = namsa_res(1, 1);
 tabSize = 1;
 namsaSize = 1;

for i = 1:r
 curAP = namsa_res(i, 1);

if(curAP ~= prevAP)
 namsa_final(namsaSize, 1) = prevAP;
 namsa_final(namsaSize, 2) = mean(ratioTab(:,1));
 namsa_final(namsaSize, 3) = median(ratioTab(:,1));
 namsa_final(namsaSize, 4) = std(ratioTab(:,1));

clear ratioTab;
 namsaSize = namsaSize + 1;
 tabSize = 1;

end
 ratioTab(tabSize, 1) = namsa_res(i, 2);
 tabSize = tabSize + 1;

 prevAP = curAP;
end

 namsa_final(namsaSize, 1) = prevAP;
 namsa_final(namsaSize, 2) = mean(ratioTab(:,1));
 namsa_final(namsaSize, 3) = median(ratioTab(:,1));
 namsa_final(namsaSize, 4) = std(ratioTab(:,1));

 stats(1,1) = mean(namsa_res(:,2));
 stats(2,1) = median(namsa_res(:,2));
 stats(3,1) = std(namsa_res(:,2));

spectrum_analysis.m
%--%
% DESCPRIPTION :
% Perform a spectrum analysis in a given vector dataset
% INPUT
% HTraffic: matrix containing the traffic (SNMP) data for all Clients
% rows correspond to Clients and columns to time slots
% Client: client for which the spectrum analysis is performed
% parCorrOn _num: boolean value – if ‘1’ then partial correlation analysis
% is performed
% OUTPUT
% cycle: The resulting dominant period
%--%

function cycle = spectrum_analysis(HTraffic, Client, parCorrOn)

%HTraffic format 7751x3610
%Rows correspond to specific clients - columns contain ts values
%Column 1 contains client ID - columns 2:361 contain ts values

[r,c] = size(HTraffic);
 cl_index = find(HTraffic(:, 1) == Client);
 cl_index

if(cl_index)
 x = HTraffic(cl_index:cl_index, 2:c);

 Y = fft(x);
 N = length(Y);
 Y(1) = [];
 power = abs(Y(1:N/2)).^2;
 nyquist = 1/2;
 freq = (1:N/2)/(N/2)*nyquist;
 period = 1./freq;

[mp,index] = max(power);
 cycle = period(index);

if(parCorrOn == 1)
subplot(2,1,1)

end
plot(period,power), grid on

 s = sprintf('Spectrum Analysis Client[%d] - Cycle=%d', Client,cycle)
title(s)
ylabel('Power')
xlabel('Period')

if(parCorrOn == 1)
subplot(2,1,2)

 parcorr(x, 24)
 s = sprintf('Partial Autocorrelation Function Client[%d]', Client)

title(s)
end

else
disp 'Invalid client ID'

end

chiSquareTest.m
%--%
% DESCPRIPTION :
% Perform a ChiSquare Test
% INPUT
% Input : Input data are expected in columns 3 and 4 respectively and column
% five should be filled with zero vals if the corresponding row is valid
% is performed
%--%

function [chi2 critical df] = chiSquareTest(a);

% read individual columns of interest from a - in paraller filter elements with
% "invalid" values
w1 = a(:,3); len1 = length(w1);
dist1 = a(:,4);
valid1 = a(:,5);
ww1 = find(valid1 < 0);
w1(ww1) = NaN.*w1(ww1); w1 = w1(~isnan(w1));
dist1(ww1) = NaN.*dist1(ww1);dist1 = dist1(~isnan(dist1));

% carry out the chi-square independence test for the contingency table
% need to determine bins -try to make them equal size
nbinsx = 10;
nbinsy = 10;
alpha = 0.01;

% 1st dataset
w1s = sort(w1);
indx = round([1/nbinsx:1/nbinsx:1]*length(w1s));
binsx = w1s(indx);
% check whether some of the binsx values are the same and adapt bins
binsxx(1) = binsx(1);
ind2=1;
for ind1=2:length(binsx)

if binsx(ind1) > binsx(ind1-1)
 ind2=ind2+1;
 binsxx(ind2) = binsx(ind1);

end
end
%binsxx

dist1s = sort(dist1);
indy = round([1/nbinsy:1/nbinsy:1]*length(dist1s));
binsy = dist1s(indy);

binsyy(1) = binsy(1);
ind2=1;
for ind1=2:length(binsy)

if binsy(ind1) > binsy(ind1-1)
 ind2=ind2+1;
 binsyy(ind2) = binsy(ind1);

end
end
%binsyy

[chi2 critical df]=chi2D_contingency(w1,dist1,binsxx,binsyy,alpha);
fprintf('Chi-square test for the contingency table of edge weights and distances\n');
fprintf('Chi-square statistic T = %f critical_value at alpha=%f c=%f for df=%d
\n\n',chi2,alpha,critical,df);

clear binsx binsxx indx binsy binsyy indy ind1 ind2;

predictExponential.m
%--%
% DESCPRIPTION :
% Predict traffic using the correlation relationship between traffic and visits
% in the log scale
% INPUT
% Visits: matrix containing the visits data for all APs
% rows correspond to APs and columns to time slots
% Traffic: matrix containing the traffic (SNMP) data for all APs
% rows correspond to APs and columns to time slots
% predict_start, predict_end : week numbers corresponding to the time period
% used as history window
% hotspots: vector containing the hotspot Aps
% OUTPUT
% cycle: The resulting dominant period
%--%

function [ExpRatioRes,absDiff] = predictExponential(Flows, Traffic, predict_start, predict_end,
hotspots)

%Get Prediction Period
 TrafficPredict = Traffic(predict_start:predict_end-1,:);
 FlowsHistory = Flows(predict_start:predict_end-1,:);

[r, c] = size(Flows);
[rt, ct] = size(TrafficPredict);

 bweight = flows2traffic(Flows, Traffic, predict_start, hotspots, 2, 1)
 sizeP3 = 1; absDiffSize = 1;

for curAP = 1:ct
 isHotspot = find(hotspots(:,1) == curAP);

if(isHotspot)
for curRow = 2:rt

 curTraffic = TrafficPredict(curRow, curAP);
 prevFlows = FlowsHistory(curRow-1, curAP);

%T = e^b*V^a
 weightIndex = find(bweight(:,1) == curAP);
 alpha = bweight(weightIndex, 2);
 beta = bweight(weightIndex, 3);
 predTraffic = exp(beta)*(prevFlows.^alpha);

if(curTraffic ~= 0)
 value = (abs(predTraffic - curTraffic))/curTraffic;

 P3(sizeP3, 1) = curAP;

 P3(sizeP3, 2) = value;
 sizeP3 = sizeP3 + 1;

end
 absDiff(absDiffSize, 1) = (abs(predTraffic - curTraffic));
 absDiff(absDiffSize, 2) = predTraffic;
 absDiff(absDiffSize, 3) = curTraffic;
 absDiffSize = absDiffSize + 1;

end
end

end
[r, c] = size(P3);

 prevAP = P3(1, 1);
 tabSize = 1;
 P3size = 1;

for i = 1:r
 curAP = P3(i, 1);

if(curAP ~= prevAP)
 ExpRatioRes(P3size, 1) = prevAP;
 ExpRatioRes(P3size, 2) = mean(ratioTab(:,1));
 ExpRatioRes(P3size, 3) = median(ratioTab(:,1));
 ExpRatioRes(P3size, 4) = std(ratioTab(:,1));

clear ratioTab;
 P3size = P3size + 1;
 tabSize = 1;

end
 ratioTab(tabSize, 1) = P3(i, 2);
 tabSize = tabSize + 1;

 prevAP = curAP;
end

 ExpRatioRes(P3size, 1) = prevAP;
 ExpRatioRes(P3size, 2) = mean(ratioTab(:,1));
 ExpRatioRes(P3size, 3) = median(ratioTab(:,1));
 ExpRatioRes(P3size, 4) = std(ratioTab(:,1));

overlapping_intervals.m
%--%
% DESCPRIPTION :
% Check whether data vectors v1 and v2 have overlapping confidence intervals
% INPUT
% v1: data vector 1
% v2: data vector 2
% OUTPUT
% overlap: value is 1 if v1 and v2 have overlapping confidence intervals. 0 otherwise
%--%

function [overlap,trend] = overlapping_intervals(v1, v2)

 l1 = length(v1); l2 = length(v2); overlap = 0;
[confV1L,confV1R] = confidenceInterval(v1);
[confV2L,confV2R] = confidenceInterval(v2);

if(((mean(v1) > mean(v2)) && (confV2R > confV1L)) || ((mean(v2) > mean(v1)) &&
(confV1R > confV2L)))
 overlap = 1;

end
if((overlap == 0) && (mean(v1) > mean(v2)))

 trend = 2; %ascending

else
 trend = 1; %descending

end

confidenceInterval.m
%--%
% DESCPRIPTION :
% Calculate confidence intervals for given data vector
% INPUT
% vector: input data
% OUTPUT
% confL – confR: left and right confidence intervals respectively
%--%

function [confL,confR] = confidenceInterval(vector)

 X = mean(vector);
 n = length(vector);
 SS = 0; c = 1.96;

for i = 1:n
 SS = SS + (vector(i) - X).^2;

end
 SS = (1/(n-1))*SS;
 S = sqrt(SS);
 confL = X - c*S/sqrt(n);
 confR = X + c*S/sqrt(n);

levelShiftConfInt.m
%--%
% DESCPRIPTION :
% Function levelShiftConfInt
% last modification 4/10/05
% -> introducing a method to locate level shifts based on confidence intervals
% INPUT
% traffic_vec : Traffic matrix column corresponding to the AP analyzed
% index : index in the traffic_vec matrix containing the value tested
% meanTrafficVal : threshold used to set the minimum diffence for the method metric for
% two possible consecutive levels
% OUTPUT
% CurLevel : level corresponding to the traffic_vec[index] value tested
%--%

function [CurLevel, level_shift_index_asc, level_shift_index_desc] = levelShiftConfInt(traffic_vec,
index)
 trafficLen = length(traffic_vec);
 possible_shift_min_size = 0;
 L2 = [];

if(trafficLen < 5)
disp 'Cannot Initiate Level Detection - Input Vector is too small'

elseif(index <= 5)
 L1 = traffic_vec(1:index);
 L2_start = index + 1;

else
%Initialize L1

 L1_start = 1; L1_end = 3;
 maxL1Size = 12;

%Initialize L2
 L2_start = 4; L2_end = 4;
 minL2Size = 3;

%Initialize flags

 level_shift_asc_size = 1; level_shift_desc_size = 1;
 trigger = 0; overlap = 1;
 foundLargerVal = 0; foundSmallerVal = 0;;

while((L2_end < index)&&(L2_end < trafficLen))
if(trigger == 0 && possible_shift_min_size == 0)

%ADVANCE L1
if((L1_end - L1_start) >= maxL1Size) %maxSize reached

 L1_start = L1_start + 1;
end

 L1_end = L1_end + 1;
clear L1;

 L1 = traffic_vec(L1_start:L1_end, 1);
%ADVANCE L2

 L2_start = L1_end + 1;
 L2_end = L2_start;

clear L2;
 L2 = traffic_vec(L2_start:L2_end, 1);

if(find(L1(:, 1) >= L2(1, 1)))
 foundLargerVal = 1;

end
if(find(L1(:, 1) <= L2(1, 1)))

 foundSmallerVal = 1;
end
if(foundLargerVal == 0 || foundSmallerVal == 0)

 trigger = 1;
end

 foundLargerVal = 0; foundSmallerVal = 0;
else

%ADVANCE L2
 L2_end = L2_end + 1;

if(L2_end < trafficLen) %reached the end of traffic_vec
clear L2;

 L2 = traffic_vec(L2_start:L2_end, 1);
else

break;
end
if(L2_end - L2_start < minL2Size)

 possible_shift_min_size = 1;
else

 possible_shift_min_size = 0;
[overlap,trend] = overlapping_intervals(L1, L2);
if(overlap == 0)

%New Level Found
 L1_start = L2_start;
 L1_end = L2_end;
 L2_start = L1_end + 1;
 L2_end = L2_start;
 L1 = traffic_vec(L1_start:L1_end, 1);
 L2 = traffic_vec(L2_start:L2_end, 1);

if(trend == 1)
 level_shift_index_asc(level_shift_asc_size, 1) = L1_start;
 level_shift_asc_size = level_shift_asc_size + 1;

elseif(trend == 2)
 level_shift_index_desc(level_shift_desc_size, 1) = L1_start;
 level_shift_desc_size = level_shift_desc_size + 1;

else
disp 'Invalid trend found'

end
else

%disp 'Overlapping'
end

 trigger = 0;
end

end
end

end
if(L2_start <= index)

%Return L1-L2 Level [aggregate]
 s2 = length(L2);
 s1 = length(L1);
 CurLevel(1:s1, 1) = L1;
 CurLevel((s1+1):(s1+s2), 1) = L2;

else
%Return CurLevel [L1]

 CurLevel = L1;
end

ccdf.m

%--%
% DESCPRIPTION :
% Plot CCDF based on empirical CDF
% INPUT
% inputvec: input data vector
% OUTPUT
% vec : CDF values computed
%--%

function [vec,xvals] = ccdf(inputvec)
[vec,xvals] = ecdf(inputvec);
plot(xvals, 1-vec, 'r.')

	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	1. Introduction
	1. Introduction
	1.1 WLAN deployment
	1.2 Motivation
	1.3 Goals
	1.4 Challenges

	2. Network infrastructure and measurement data
	2. Network infrastructure and measurement data
	2.1 Introduction
	2.2 UNC campus
	2.3 Data collection

	3. Modeling Methodology
	3. Modeling Methodology
	3.1 Introduction
	3.2 Two-tier modeling approach
	3.3 Enhancing scalability with clustering
	3.4 Clustering with respect to session-level flow-related variables
	3.5 Conclusions

	4. Validation
	4. Validation
	4.1 Introduction
	4.3 Hinton James residential building

	5. Short-term Traffic Forecasting
	5. Short-term Traffic Forecasting
	5.1 Introduction
	5.2 Traffic load notation
	5.4 Traffic forecasting methodology
	5.5 Evaluation of the performance of the forecasting algorithms
	5.5 Conclusions

	6. Conclusions

	REFERENCES
	APPENDIX

