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Abstract

Speech is the primary means of communication between humans. A speech sig-
nal waveform corresponds to the variation of air pressure over time. Over two hundred
years ago there have been early efforts to produce synthetic speech, using mechani-
cal apparatus. Recently, ongoing recent activities have been focused on the artificial
production of human speech, or else speech synthesis. Particularly, there have been
developed vocoders, analyzers and synthesizers of human voice signals, based on math-
ematical models. Furthermore, recently neural vocoders, vocoders based on artificial
neural networks, have introduced a new area in speech synthesis.

Goal of this study is to build a neural vocoder which combines deep learning
with prior knowledge of the inherent sinusoidal nature of speech, in contrast with the
majority of available neural based vocoders which discard signal processing in favor
of neural networks. Particularly, the origin of the present study is modeling complex
multi-component AM and FM sinusoidal waves with the property to represent speech
signals, employing Recurrent Neural Networks (RNNs). The target is to develop a light
neural vocoder, faster than WaveRNN, which achieves state-of-the-art performance. In
the context of this thesis, we implement a variant of the WaveRNN model and we
present the generated state-of-the-art results. Furthermore, we examine the proposed
model’s performance using synthetic as well as real speech signals.
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1
Introduction

Sinusoidal models exploit the quasi-periodic properties of voiced and unvoiced speech
[13]. According to sinusoidal modeling, speech can be represented as a sum of sinusoids
whose frequency is multiple to the fundamental frequency. In this study, we propose
to develop a neural based sinusoidal system. In figure Fig. 1.1 there is a graphical
representation of the proposed neural vocoder.

Figure 1.1: Proposed Lighter Neural Vocoder.

Aim of the thesis is to build a neural vocoder exploiting the sinusoidal nature of
speech signals. Using Recurrent Neural Networks (RNNs) we target to develop a light
neural vocoder, faster than WaveRNN [5] which achieves state-of-the-art performance.
Current neural-based vocoders, such as WaveRNN, have millions of trainable param-
eters, thus the demand of computational resources and large high quality recording
collections is increased. However, we target to significantly reduce the total number of
vocoder parameters making it faster, without sacrificing the quality of the produced
speech and requiring large recording sessions.

We used synthetic as well as real speech signals to examine the proposed model
performance. Specifically, the first step was to implement the model on synthetic mono-
component sinusoidal signals while the second step was to test our models accuracy for
synthetic multi-component sinusoidal signals. Last but not least, we used real audio
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1. Introduction

clips. Particularly, we implemented the decomposition of the speech signals using
Filter Bank analysis and subsequently tested the proposed model under the assumption
that each signal component is a mono-component sinusoidal signal. We extracted and
analyzed the results both in time and frequency domain, as well as calculated the
Relative Mean Squared Error(RelMSE) between the original and the generated signal.

Additionally, we examined the state-of-the-art performance of a WaveRNN variant
model. Similarly, we used both a time and a frequency representation of the implemen-
tation results.

The present Master’s thesis is organised as described below. First, in Chapter 2
there is a brief introduction on speech synthesis and a literature review on neural based
speech synthesis. Moreover, there is an insight into the sinusoidal speech modelling
analysis and into the Mel-Scaled spectrogram as a vocoder feature. In Chapter 3 we
introduce Artificial Neural Networks and a special category of neural networks the
Recurrent Neural Networks.

Continuing, in Chapter 4 we take a closer look at the architecture of a single output
WaveRNN model. We implement a variation of the model and we present the extracted
state-of-the-art results. Chapter 5 describes in detail the mathematical background
and the structure of the proposed model as well as the implementation procedure.
Specifically, we clarify how to extract from the data set the required information, so as
to define the input, the output and the loss function of the neural model. In Chapter 6
there are represented and examined the results of our proposed model implementation
on synthetic as well as real speech signals. In conclusion, Chapter 7 resumes the scope
and the results of this study, while gives some directions for further research.

Additionally, appendix A explains the computational tricks required for the training
and inference of the neural model, while appendix B contains the main Python codes
we developed in the context of this study.
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2
Speech Synthesis

2.1 General on Speech Synthesis
Speech signal waveform correspond to the variation of air pressure over time. Undoubt-
edly, it is the primary means of communication between humans. Aiming to improve
our ability to communicate, there have developed techniques to measure, analyze and
transform speech signals to other forms. The most popular case of this is the analog
telephone handset. A telephone handset converts the time-varying air pressure modi-
fication caused by the speaker’s lips into at time-varying electric voltage signal, which
can be transmitted and re-transformed into speech pressure signal by the receiving
handset.

Furthermore, over two hundred years ago there have been early efforts to produce
synthetic speech, using mechanical apparatus. The previous decades, the area of dig-
ital speech processing has been greatly developed and gathered a lot of attention. A
digital ,or else, a discreet time speech signal can be captured by taking samples of the
air pressure over time with a specific sampling rate. Further more, speech signal anal-
ysis/synthesis systems have been advanced on the production of discrete-time speech
signals. Specifically, in analysis, speech waveform underlying parameters are extracted,
both in temporal and in spectral resolution, while in synthesis the waveform is recon-
structed based on the parameter evaluation. Discrete time speech signal processing and
analysis/synthesis systems have a great variety of applications laying on many different
aspects like speech modification, speech enhancement, speaker/language recognition
and speech coding.

A long-standing dream of human-computer interaction is to allowing people converse
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2. Speech Synthesis

with machines. Ongoing recent activities have been focused on the ability of computers
to understand natural speech and on the artificial production of human speech, or
else speech synthesis. Text to Speech (TTS) Synthesis facilitates the human-machine
communication by converting arbitrary text to speech signals.

For a long time the main methods of Text-to-Speech conversion were the Con-
catenative TTS and Parametric TTS. Particularly, in Concatenative TTS complete
utterances are formed from a large database of short speech fragments, recorded from
a single speaker. However, synthesizing speech using this method is time consuming
while modifying the voice to a different speaker or emotion, requires to record a whole
new database.

On the other hand, Parametric TTS is a more statistical method that addresses the
limitations of concatenative TTS. Using digital speech signal processing techniques the
text is processed to extract firstly linguistic features, such as phonemes and duration,
and secondly vocoder features, such as the spectrogram and the fundamental frequency.
Vocoder features enclose inherent characteristic of human speech and along with the
linguistic features are fed into a Vocoder. A Vocoder is an analyzer and synthesizer of
human voice signals. In this case it is a mathematical model based on Hidden Semi-
Markov processes which estimates speech parameters, such as phase, speech rate and
intonation, and finally generates the speech signal waveform.

2.2 Neural Based Speech Synthesis
Recently, the intensive research activity around the field of Neural Networks and Deep
Learning has added a new perspective to the problem of speech synthesis. Innova-
tive TTS systems based on neural network models constitute a major breakthrough
in terms of high quality synthetic speech. Specifically, in speech synthesis the term
quality implies speech characteristics such as naturalness, intelligibility and speaker
recognizability.

The majority of state-of-the-art neural TTS systems are organized into two separate
neural networks, as illustrated in figure Fig. 2.1. Specifically the first neural model
maps a sequence of characters to a sequence of spectral vectors. The most successful
text-to-spectra model has been proposed by DeepMind and is called Tacotron [2], [3] .
The second neural model is actually a neural vocoder, that takes as input the spectral
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2.3 Sinusoidal Speech Modelling

representation and generates the conditional speech signal. The WaveNet [4] was the
first neural vocoder and established a new era on high quality speech production, while
the WaveRNN [5] and LPCNet [6] followed.

Figure 2.1: Typical Neural TTS System.

The above neural vocoders are autoregressive models. The term autoregressive
implies models where the output speech signal sample depends linearly on previous
sample values, resulting in slow speech waveform generation. To that end the above
mentioned neural vocoders are slow inference. On the other hand, the WaveGlow [7] and
MelGAN [8] are fast inference , however generate lower speech quality, in comparison
to autoregressive neural vocoders.

Text to Speech Synthesis is a highly active field which has gathered a lot of attention.
There is a great variety of applications and recent developments. Some examples include
variants of WaveRNN model such as universal vocoders [9] as well as systems capable
of generating highly intelligible speech in the presence of noise [10], indispensable for
modern mobile devices. Some approaches have employed the inherent nature of speech,
such as source-filter neural synthesis [11]. Also, the sinusoidal modeling of speech due to
its flexible structure has been used for research activities around speech transformations
[12].

In the following sections we will get insights into the sinusoidal speech modelling and
the Mel-scaled spectrogram as a vocoder feature, elements that constitute the proposed
vocoder (Fig. 1.1).

2.3 Sinusoidal Speech Modelling
In this paragraph, there is a brief summary of sinusoidal speech modeling [14]. To begin
with, in the context of sinusoidal modeling, a speech signal s(t) can be represented as
the sum of amplitude-modulated (AM) and frequency modulated (FM) sinusoidal waves
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2. Speech Synthesis

given by

s(t) = a0(t) +
K(t)∑
k=1

2ak(t)cos(ϕk(t)) =
K(t)∑

k=−K(t)
αk(t)eiϕk(t), (2.1)

where αk(t) is the time-varying amplitude and ϕk(t) is the time-varying phase of the
kth signal component. The amplitude αk(t) and phase ϕk(t) components are slow
varying quantities. Additionally, it is noteworthy that the number of components K(t)
is a time-varying quantity. This is an indispensable property for the representation of
non-stationary signals, such as speech and music.

In frame-by-frame sinusoidal signal analysis, the signal s(t) is divided into temporal
segments called frames and denoted by

sl(t) = s(t− tl)w(t), (2.2)

where tl corresponds to the center of the frame and w(t) to the analysis window function
with t ∈ [−Tl, Tl]. The window function typically vanishes at the boundaries of the
frame it is applied on. This structure aims to alleviate discontinuities, as well as to
eliminate the interference between the components.

Frame-by-frame sinusoidal signal analysis was developed under the assumption that
each frame is constructed by stationary components. Particularly, each frame is a
superposition of sinusoidal waves with constant amplitudes and constant frequencies.
To that end each frame is modeled as

hs(t) =
K∑

k=−K
αke

i2πfktw(t), (2.3)

where t ∈ [−T, T ], K is the local number of components, fk and ak are the local fre-
quency and local amplitude of the kth sinusoidal component of the particular frame,
respectively. The subscript l that denotes each particular frame, as in equation Eq. 2.2,
is disregarded for simplicity.

A considerable body of literature in the field of speech signal processing get insights
into the estimation of the unknown sinusoidal parameters. In this study the evaluation
of those unknown sinusoidal parameters is implemented employing neural network based
tools.
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2.4 Mel-Scaled Spectrogram

2.4 Mel-Scaled Spectrogram
In the previous sections we mentioned the Mel-scaled spectrogram as a vocoder feature.
In this paragraph, we will have a brief discussion about the Mel-scaled spectrogram
origin and an insight into its generation procedure.

So as to produce the Mel-scaled spectrogram of a signal the first step is to divide the
signal s(t) into short frames si(n), where n indicates the number of samples included
in the frame and i the number of frames. Particularly, an audio signal corresponds to
a complex dynamic timeserie which value changes constantly. Therefore, for simplicity
we can assume that on short time scales the audio signal statistically stationary. The
duration of a typical frame is usually around 20-40ms. A shorter frame leads defi-
cient number of signal samples for reliable spectral estimate, while a longer frame may
capture shifted signal. After slicing the signal into frames, a window function h(n) is
applied on each frame. Typically, a window vanishes at the boundaries of the frame,
such as the bell-shaped Hann window

h(n) = 1
2

(
1 + cos(2πn

N
)
)
, (2.4)

where 0 ≤ n ≤ N-1 , N is the window length.
Continuing, the next step is to estimate the power spectrum of each frame. The

periodogram-based power spectrum imitates the function of a cochlea and identifies
which frequencies are present in a specific frame. Specifically, the cochlea is an ear
organ which vibrates at different spots, depending on the sound frequency. To that end
the cochlea informs the brain of the incoming sound frequencies values.

Particularly, the periodogram estimate of the power spectrum is given by the
squared absolute value of the complex valued Fourier Transform of each frame. The
K-point Discrete Fourier Transform (DFT) of each signal frame Si(k), or else the Short
Time Fourier Transform (STFT) of the signal, generates the signal frequency spectrum
and is given by the following formula

Si(k) =
N∑
n=1

si(n)h(n)e−i2πkn/N , (2.5)

where 1 ≤ k ≤ K , i denotes the frame number, h(n) is an N sample long window
function and K is the length of the DFT. Note that, windows functions reduce spectral
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2. Speech Synthesis

leakage. Their necessity lays to the assumption made by Finite Fourier Transform
(FFT) that the signal is infinite. To that end the periodogram-based power spectrum
for each speech signal frame is given by

Pi(k) = 1
N
|Si(k)|2, (2.6)

The final step to computing the Mel-scaled spectrogram of the signal is to design
and apply to the power spectrum a Mel-scaled Filter Bank. The Mel-scale is used to
imitate the human ear perception of sound, which is non-linear. Equations Eq. 2.7
convert Hertz (f) to Mel (m) and inverse Mel (m) to Hertz (f)

m = 2595log10

(
1 + f

700

)
f = 700(10m/2595).

(2.7)

A Mel-scaled filter bank is more discriminative at lower frequencies and less discrimi-
native at higher frequencies , as illustrated in figure Fig. 2.2.

Figure 2.2: Plot of Mel Filter-bank and windowed power spectrum, [1].
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2.4 Mel-Scaled Spectrogram

Particularly, in the filter bank each filter can be mathematically modeled by the fol-
lowing equation

Hm(k) =


0, for k < f(m− 1)
k−f(m−1)

f(m)−f(m−1) , for f(m− 1) ≤ k ≤ f(m)
f(m+1)−k

f(m+1)−f(m) , for f(m) ≤ k ≤ f(m+ 1)
0, for k > f(m+ 1)


Eventually, we can extract the frequency bands that constitute the Mel-Scaled Spec-

trogram (Fig 2.3), by applying the Mel-scaled filter bank on the power spectrum.

Figure 2.3: Example of a Mel-Scaled Spectrogram.
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3
Recurrent Neural Networks

(RNNs)

3.1 ANN Overview
Artificial Neural Networks (ANN) is an information processing paradigm that is in-
spired by the way the biological nervous system, such as brain, process information
[16]. It is a technique that teaches computers a behaviour that rises naturally to hu-
mans, to learn by example. An Artificial Neural Network model is composed of a large
number of highly interconnected processing elements, called neurons. These elements
work as a unison so as to face a particular problem.

In this paragraph, we will introduce Artificial Neural Networks starting with the
the Perceptron, the first structrure of an artificial neuron which was inspired by the
biological neuron. We will describe the structure of a neuron and discuss how it is able
to learn, by examining the back-propagation and gradient decent algorithms.

3.1.1 Perceptron

The biological neurons are the nerve cells that constitute a nervous system, like the
brain. They are able to receive information from the external of the cell word, process
those input information and finally transmit the resulted output.

In Fig. 3.1 there is a graphical representation of a biological neuron. It consists
of four parts, the dendrites,the soma, the axon and the synapses. The dendrites are
hair-like tubular extensions around the neuron that are able to receive incoming elec-
trical signals, the soma contains the cell nucleus, which executes necessary biochemical
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3. Recurrent Neural Networks (RNNs)

transformations, the axon is a long, thin, tubular structure responsible for transmitting
information and the synapses are complex cell branches that are capable of connect-
ing neurons to each other. As a whole, at a biological neuron the dendrites collect
input electrical signals provided by the synapses of other neurons, the soma processes
those incoming information and derives an output signal, which is transmitted to other
neurons through the axon and the synapses.

Figure 3.1: A biological neuron. It consists of four parts, the dendrites,the soma, the
axon and the synapses.

The first ANN model was inspired by the biological neuron. It was invented in
1957 by Frank Rosenblatt and was called Perceptron. The Perceptron is an artificial
neuron that mathematically models a biological neuron, imitating the procedures that
take place at each of its parts. At Fig. 3.2 there is a biological neuron connected to an
artificial neuron, representing their similarity.

Figure 3.2: A biological neuron connected to an artificial neuron.

In the biological neurons electrical signals are transmitted through the axons to
dendrites. Imitating this procedure, in the perceptron these electrical signals are rep-
resented as numerical values. The strength of each input electrical signal is modulated,
at the synapses between the dendrite and axons. Correspondingly, in the perceptron

12



3.1 ANN Overview

this operation is mathematically modeled as the multiplication of each numerical input

value with a weight. When the total strength of all the input signals exceeds a certain

threshold, the neuron fires an output signal. In a perceptron the output is determined

by calculating the weighted sum of all the inputs and applying a step function on the

sum. Similarly to biological neurons, this output is fed to other perceptrons.

Figure 3.3: A Perceptron. x1, x2, ..., xN the input to the neuron values, w1, w2, ..., wN

the synaptic weights, sum the weighted sum of the inputs, f(x) the step function and y
the output of the neuron.

In the above figure Fig. 3.3, there is a perceptron representation, where x1, x2, ..., xN

are the input to the neuron values, w1, w2, ..., wN are the synaptic weights, sum is the

weighted sum of the inputs, f(x) is the step function and y the final output of the

neuron. The weights w are multiplied with each input x, determining the strength

of a particular node. The neuron’s output y is the step function of the sum of these

products plus a bias b value :

y = f(
N∑
i=1

wi ∗ xi + bi) (3.1)

There are used different types of step functions, depending on the problem an ANN

model is trying to solve. A step function is also called activation function, since it

decides whether a neuron should be activated or not. Additionally, applying an acti-

vation function includes non-linearity to the neuron’s output. Since, Artificial Neural

Networks are considered to be "Universal Function Approximators"[], non-linearity is

necessary.

13



3. Recurrent Neural Networks (RNNs)

3.1.2 Feed-Forward Neural Networks

Perceptrons arranged in layers can form a neural network. In Fig. 3.4, there is pre-
sented computational graph of a feed-forward neural network with one hidden layer.
Particularly, a feed-forward neural network consists of the input layer, a number of
hidden layers and the output layer. The input layer recieves the incoming inputs and
the output layer produces the outputs. Since, the middle layers have no interaction
with the external of the network environment, they are called hidden.

Figure 3.4: A feed-forward neural network, with one single hidden layer.

On one single layer, there is no connection among perceptrons. However, on one
single layer each perceptron is connected to every perceptron, on the next layer. To
that end, the incoming information is travelling from one layer to the next, and hence
it is "fed forward" to the network.

3.1.3 Learning in Feed-Forward Networks

There are different types of learning in neural networks, depending on the nature of the
problem the network is trying to solve. Feed-forward networks use supervised learning,
a type of machine learning where the network tries to find a function that best maps
an input to an output, based on pairs of input and output example values.

These examples of input-output pairs are called training samples and the whole
learning procedure training. The training samples that are provided to the network,
consist of an input vector x and its desired output vector y. During the training
procedure of supervised learning, the input vector x is fed into the network and the
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3.1 ANN Overview

network generates an output vector ỹ. The output vector ỹ is compared to the desired

output vector y. The squared difference of the generated output vector ỹ and the

desired output vector y defines the loss function J Eq. 3.2 :

J =
N∑
i=1
|ỹi − yi|2 (3.2)

The value of J quantifies the degree of divergence from the desired result. In Eq. 3.4,

there is the expression of the loss function J in terms of the input values xi, the weights

wi, the bias bi and the desired output values yi, of each training sample:

J(w, b) =
N∑
i=1
|(wi ∗ xi + bi)− yi|2 (3.3)

The next step, after feeding to the network the training samples and defining the loss

function is the backpropagation of errors. Backpropagation is a procedure which aims

in finding the global minimum of the loss function J. This goal is approached following

the gradient descent algorithm. According to gradient descent algorithm, decreasing

the value of the weights wi in the direction of the gradient of the loss function J , finally

leads to the most rapid minimization of J . To that end, after feeding the network with

all the training samples and computing the loss function, we go backwards and update

all the weight wi and bias bi values.

Figure 3.5: A feed-forward neural network.
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3. Recurrent Neural Networks (RNNs)

Each weight wi and bias bi is updated using the following formulas :

wi = wi − α
∂J

∂wi
(3.4)

bi = bi − α
∂J

∂bi
(3.5)

, where α is a model hyperparameter. It defines the learning speed, or in other words
how big the step towards the minimum of J will be.

This procedure is repeated for many cycles. Repetitively, the training samples are
fed to the network and going backwards the weight and bias vectors are updated based
on the derivatives of the loss function, so as to gradually decrease J to the minimum
possible value.

3.2 Recurrent Neural Networks
As discussed in the previous section, a simple feed forward neural network is able to
learn efficiently the relation between a set of inputs and outputs. However, in the case
of series type inputs, the efficiency of a feed forward neural network is insufficient.

In a series type set of input training data, each element has a relation with the other
elements of the sequence and probably an influence on its neighbour elements. The
mechanism implemented by a feed forward neural network, is not made for capturing
sequential relationship across inputs. It does not use previous sequence elements to
generate predictions for the future sequence elements. Such problems where the order
of events is important for predicting next events are addressed to a special category of
neural networks, the Recurrent Neural Networks (RNN). The architecture and function
of RNNs will be examined in the sections below.

3.2.1 Vanilla Recurrent Neural Networks

Recurrent Neural networks are a special category of neural networks, which are able to
recognize sequence patterns. They allow information to persist during training process
using loops.

In Fig. 3.6 there is a computational gragh of a recurrent neural network, where x is
the input state, h the hidden state, o the output state and U, V,W are the weights of
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3.2 Recurrent Neural Networks

Figure 3.6: A Recurrent neural network, x the input state, h the hidden state, o the
output state and U, V,W the weights, image by Ixnay.

the network. The loop allows information to flow from the one step to the next, letting

the hidden state h carry information from all the previous steps.

Figure 3.7: A Recurrent neural network unfolded, image by Ixnay.

In the above figure Fig. 3.7 there is an equivalent representation of a recurrent

neural network, this time displayed with the loop unrolled. Practically, it is a neural

network which is not only fed the current input xt, but also the hidden state of the

previous step ht−1. Specifically, the output of a RNN at a specific step ot is given by

the following set of formulas Eq. 3.6:

ht = fh(U ∗ xt + V ∗ ht−1 + bh) (3.6)

ot = fo(W ∗ ht + bo) (3.7)
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3. Recurrent Neural Networks (RNNs)

, where fh the hidden state activation function, bh the hidden state bias, fo the output

state activation function and bo the output state bias.

This chain-like nature reveals that recurrent neural networks are intimately related

to sequences and lists. The chain-like architecture of recurrent neural network eflects

their intimate relation to sequence data. There are various different forms of sequence

data. For instance audio is a natural sequence, which can be split and fed into a RNN,

Fig. 3.8.

Figure 3.8: A split audio spectrogram, image by Michael Phi.

3.2.2 Long Short term Recurrent Neural Networks

Although Recurrent Neural Networks are able to handle sequential data, as a RNN

processes more steps of a sequence, retaining information from previous steps becomes

more difficult. This difficulty is known as short-term memory problem and is due to the

nature of back-propagation, which was described in the previous section. Particularly,

the short-term memory of the network is caused by the appearance of vanishing gra-

dients, during the back-propagation through time procedure. Gradually, the gradient

values exponentially shrink, as it propagates to previous steps of the input sequence.

Small gradients mean small adjustments in the neural networks weights, causing the

network to not learn and forget the information provided from the early steps of the

sequence.

In terms of solving the short-term memory problem, there were created the Long

Short term Recurrent Neural Networks (LSTMs). Due to an internal mechanisms called

gates, LSTMs can learn which data in a sequence is important to keep or throw away,

regulating the flow of information inside the network. At the following paragraphs, we

will take a closer look on their architecture and function.
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3.2 Recurrent Neural Networks

All types of recurrent neural networks have a chain-like form of repeating modules

of neural network. In vanilla RNNs, this repeating modules have the simple structure

of a single activation function layer.

Figure 3.9: The repeating module in a vanilla RNN, image by Christopher Olah.

In long-short term memory RNNs this chain like repeating module consists of four

interacting neural network layers. A computational graph of the inside structure of

each LSTM module is presented in Fig. 3.10. As it is illustrated in this gragh, the

output of one LSTM node is fed as input to the other LSTM nodes. Regarding the

notation used, each line symbolizes vector transfer,the pink circles correspond to point-

wise operations, like vector addition and vector multiplication, the yellow rectangles

are learned neural network layers, the merging lines denote concatenation and a forking

line denotes copying of its content and redirection of each copy to different locations.

Figure 3.10: The repeating module in an LSTM, image by Christopher Olah.

The core idea behind the architecture of LSTMs is the cell state. It is the horizontal

line running through the top of the diagram and crosses the entire chain of nodes in

the network, Fig. 3.11. It is a long-term state which gives the network the ability to
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3. Recurrent Neural Networks (RNNs)

learn during the training procedure what information to add or what information to
remove. This is regulated by structures called gates.

Figure 3.11: The cell state of an LSTM node, image by Christopher Olah.

Specifically, gates are structures that optionally let information through. It consists
of a sigmoid neural network layer and a pointwise multiplication operation. Inside an
LSTM node there are three gates which control the information flow of the cell state,
the forget gate, the input gate and the output gate.

On the left side of Fig. 3.12 there is a graphical representation of the forget gate.
Additionally, on the right side of Fig. 3.12 there is a formula that mathematically
models this gates behaviour. The forget gate is responsible for the decision of what
information are going to be thrown away from the cell state. Information from the
previous hidden state ht−1 and from the current input xt is passed through a sigmoid
funcion. The output of the sigmoid layer ft are numbers between 0 and 1, the closer
to 1 means to keep and the closer to 0 means to forget.

Figure 3.12: The forget gate layer of an LSTM, where ft is the forget gate output, ht−1

is the previous hidden state, xt the current input and σ is a sigmoid funcion, image by
Christopher Olah.

Continuing, in Fig. 3.13 there is a graphical representation of the input gate and
the formula that models its function. The role of the input gate layer is to update the
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3.2 Recurrent Neural Networks

cell state. So as to determine which values will be updated, the previous hidden state
and the current input is passed through a sigmoid function. The output values are
between 0 and 1, where 0 means the value is of a less importance and does not need to
be stored and 1 means the value is of a great importance and needs to be stored in the
cell state for the next steps. Furthermore, the previous hidden state and the current
input is passed thought a tanh function, taking values between -1 and 1. The output
values are the new candidate cell state ĉt, that could be added to the cell state.

Figure 3.13: The input gate layer of an LSTM, where it is the input gate output and ĉt

candidate cell state, image by Christopher Olah.

The final update of the old cell state into the new cell state ct is illustrated in
Fig. 3.13 and is mathematically described by the respective formula. Specifically, the
state forgets what it has to forget as it was decided by the forgate gate, by multiplying
the old cell state by the forget gate output vector. The next step for the complete
update of the state is to add the multiplication of the input gate output and the
candidate cell state, particularly the information that the sigmoid output decided that
are important to keep from the tanh output.

Figure 3.14: The new cell state ct of an LSTM, image by Christopher Olah.

Last but not least is the output gate. The output gate determines the next hidden
state that will be fed to the next LSTM node. As mentioned above, the hidden state is
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3. Recurrent Neural Networks (RNNs)

of a great importance as it includes information from previous inputs and is useful to
make predictions. The first step is to pass the previous hidden state and the current
input into a sigmoid function. Then, the updated new cell state is passed throgth a
tanh function. The tanh output and the sigmoid output are multiplied, producing the
new hidden state ht.

Figure 3.15: The output gate layer of an LSTM, where ot is the output gate output and
ht the hidden state, image by Christopher Olah.

The next LSTM node receives the new cell state and the new hidden state. Along
with the new input value xt, it repeats the same procedure so to update the cell state
and produce the new hidden state.
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4
Deep Neural Network based

Speech Synthesis

Recently, several deep neural network models demonstrate the ability to synthesize high
quality speech by generating raw audio waveforms. There are multiple applications of
neural network based speech synthesis models. Among the most popular paradigms
is the text-to-speech synthesis, speech-to-speech synthesis, speech compression, voice
conversion and speech enhancement.

In natural speech generation, deep neural network models with sequential structure
achieve state-of-the-art performance. In the paragraphs below we will have a closer
look at such a model, named WaveRNN [5]. First, we will describe the architecture of
a WaveRNN model and secondly we will present a WaveRNN variant on a speech-to-
speech synthesis paradigm and demonstrate the generated results.

4.1 Definition of a Single Output
WaveRNN

In natural speech generation, sequential generative models are widely used, because of
their high performance in that field. Specifically, sequential models factorize the data
distribution into a product of conditional probabilities over each sample. In that way,
they learn the joint probability of the data and thus the distribution of the speech
signal waveform.

Recurrent neural networks are especially suitable for this scope. As clarified in the
previous chapter, the main characteristic of a RNN is that a non-linear transformation
of the information a state carries, is delivered to the next state, through a recurrent
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4. Deep Neural Network based Speech Synthesis

layer. In that way, the model is able to detect and learn complex relation among the
data spontaneously, because of its structure itself.

Below we will examine the structure and the performance of the WaveRNN model.
The WaveRNN was proposed in [5] and is a single-layer RNN composed of two feed
forward layers followed by a dual softmax layer. Additionally, the WaveRNN is a model
of great interest as it matches the quality of the state-of-the-art WaveNet [4] model,
a model which uses Convolutional Neural Networks (CNNs) instead of RNNs. The
WaveRNN was initially proposed as a 16-bit model and was split as 8 coarse bits and
8 fine bits. It was taking as input the coarse and fine parts of an audio sample and
generating as output the probability distributions for the coarse and fine parts of the
next sample. In this summary, the coarse/fine split will be neglected. Our aim is to
examine and clarify a simple version of the model with one single output.

In Fig. 4.1 there is a graphical representation of a single output WaveRNN. The
previous audio sample st−1, along with conditioning parameters that correspond to
spectral information S, is fed as input to the model and as output a discrete probability
distribution for the next audio sample P (st) is generated. It is mainly composed of
a gated recurrent unit (GRU), two fully-connected layers and a softmax activation
function. A GRU unit is a recurrent neural network unit, similar to the LSTM described
in the previous chapter, but with simpler structure. The W and U matrices shown in
Fig. 4.1, are the GRU weights.

Figure 4.1: WaveRNN with a single output, st−1 is the previous audio sample, S the
previous audio sample conditioning parameters, W and U the GRU weight matrices, [5].
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4.2 Implementation of a WaveRNN Variant

The following set of equations models the overall computation in a single output
WaveRNN unit:

xt = [st−1;S] (4.1)

ut = σ
(
W (u) · ht−1 + U (u) · xt

)
(4.2)

rt = σ
(
W (r) · ht−1 + U (r) · xt

)
(4.3)

h̃t = tanh
(
rt ◦W (h) · ht−1 + U (h) · xt

)
(4.4)

ht = ut ◦ ht−1 + (1− ut) ◦ h̃t (4.5)

P (st) = softmax(W2ReLu(W1 · ht)), (4.6)

where the biases are discarded for clarity, the sigmoid function is equal to σ(x) = 1
1+e−x

and the ◦ indicates an element-wise vector multiplication. The W (u),W (r) and W (h)

matrices, which form the W matrix, are computed as a single matrix-vector product.
Each one of these matrices corresponds to the contribution to the two gates ut, rt and
the candidate hidden state h̃t respectively, as similarly implemented inside a GRU cell.
Sampling from the probability distribution P (st) outputs the desired synthesized audio
sample st.

Additionally, the sampling of an audio sample st depends on the previous samples
values. To that end, the sampling procedure is strictly serial. In other words, a partic-
ular sample can be generated as long as the previous samples it depends on have been
generated, too.

4.2 Implementation of a WaveRNN
Variant

Figure Fig. 4.2 presents the computational graph of a variant of the WaveRNN model
[17]. The main core of its architecture is like a single output WaveRNN model, con-
structed mainly by a GRU unit, two fully connected layers and a softmax layer, as
described in the previous paragraph. In addition, there are more layers before the
GRUs, building a more complex model. Below we will take a closer look at the func-
tion of each layer and the overall computational flow.

The model is constructed out of a set of FC and GRU layers, following the structure
demonstrated at Fig. 4.2. An FC layer is a Fully Connected Layer, specifically a layer
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4. Deep Neural Network based Speech Synthesis

Figure 4.2: Variant of WaveRNN Diagram, [17] .

which connects all the inputs it receives to every activation unit of the next layer. After

the input information passes through all the structure of layers, is fed into a mixture

of logistics. For instance, in the general case of a single output WaveRNN, discussed in

the previous paragraph, the mixture of logistic was a softmax and a ReLu layer. The

output of the mixture of logistic is the generated vocoded speech.

To begin with, as illustrated in Fig. 4.2, the Mel-scaled spectrogram of a speech

signal gets though an upsampling process and through a layer of residual blocks. Par-

ticularly, the melspectrogram of a speech signal is a colormap which describes the

frequency amplitude modulation over time and is generated by applying Short Time

Fourier Transform (STFT) to the signal. Also, this colormap is rescaled into a log-

arithmic scale, called the Mel scale, examined in the Chapter 2 of this study. The

residual blocks layer, allows the activation from a previous layer to be fast-forwarded

to deeper layers in the neural network. Finally, the upsampling indicates a procedure

where the melspectrogram is upsampled, so as to generate a corresponding frequency
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4.2 Implementation of a WaveRNN Variant

band for each timestep of the speech signal.
Initially the conditioning vector which corresponds to information derived from the

melspectrogram, is divided into parts. Those parts are used to transfer information
of the melspectrogram into other layers deeper into the network. Furthermore, the
upsampled melspectrogram along with information from the initial speech signal and
the initial spectrogram are concatenated and fed into the model.

During the training procedure, the model learns how to synthesize speech by com-
puting the loss between the vocoded output speech signal and the initial input signal.
Since the aim is to predict the probability distribution of the next sample, it is a clas-
sification problem. To that end the loss function used is the Cross-entropy, or log loss,
which measures the performance of a classification model whose output is a probability
value between 0 and 1. The code for the implementation of this model is open source
and available online on github [17].
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4.3 WaveRNN Variant Results
In this paragraph we will present the state-of-the-art performance of the WaveRNN
model described in the previous section. The code for the implementation of this
model is open source and available online on github [17].

Particularly, we used single-speaker audio clips with sampling rate fs equal to
22050samples/second collected from a public domain speech dataset,The LJ Speech
Dataset [18]. Also, the neural model was trained for 5000 epochs, with batch size
equal to 64 and the training procedure duration was about 3,5 days. Additionally, as
mentioned above the sampling procedure is serial. Particularly, the prediction of audio
sample depends on the prediction of the previous sample, with respect to the ordering.

Figure 4.3: Time representation of a test speech signal, where figure Fig. 4.3.a illustrates
the original signal waveform, Fig. 4.3.b the copy synthesis signal. x axis is time and y axis
is the signal s(t) value.

In figure Fig. 4.3 there is the model’s performance in the time domain. The figure
Fig. 4.3.a illustrates the original signal waveform and the figure Fig. 4.3.b the copy
synthesis results. At the x axis there is time and at the y axis the value of the signal
s(t).
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Moreover, if we zoom in figure Fig. 4.3, we gain a closer look of the signal waveform
for a short time range. The area we focus on is presented in figure Fig. 4.4. Respectively,
in figure Fig. 4.4.a and figure Fig. 4.4.b there are the original and the copy synthesis
signal waveforms.

Figure 4.4: A short time range focus of figure Fig. 4.3, figure Fig. 4.3.a presents the
original and figure Fig. 4.3.b the copy synthesis signal waveform.

The model’s performance in the frequency domain is demonstrated in figure Fig. 4.5.
Figure Fig. 4.5.a illustrates the Mel-scaled spectrogram of the original signal and fig-
ure Fig. 4.4.b the Mel-scaled spectrogram of the copy synthesized signal. The x axis
represents the time evolution is seconds, the y axis the frequency range in Hertz and
the colorbar the frequency amplitude of the signal at each point at the frequency-time
lattice in Decibel. Additionally, the y-axis is in logarithmic scale.
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Figure 4.5: Frequency representation - Male Scaled Spectrogram of a speech signal,
where x axis is time t in seconds, y axis frequency in Hertz in logarithmic scale and the
colorbar illustrates the frequency amplitude at each point at the frequency-time lattice in
Decibel. Figure Fig. 4.5.a corresponds to the original signal and figure Fig. 4.5.b to the
copy synthesized signal.

30



5
RNN based Modelling of Speech

Signals

5.1 Model Definition
First generation neural vocoders, like WaveRNN, are designed to output the probability
distribution of the next sample, by quantizing the waveform of the speech signal. How-
ever, more recently there have developed models which reconstruct the speech signal
waveform directly and predict the actual waveform value of the next sample, employing
suitable loss functions.

In this thesis, our aim is to design and develop a deep neural network model for
speech synthesis, faster than the WaveRNN model, examined in the previous chapter.
We will make use of recurrent neural networks, as in the WaveRNN. However our
purpose is to embrace the benefits of RNNs, while at the same time reducing the
total number of the model’s parameters. Long Short Term Memory recurrent neural
networks help us achieve this scope.

5.1.1 Mathematical Background

Below we will have a closer look at the mathematical background of our proposed
model.

To begin with, the sum of amplitude-modulated AM and frequency modulated FM
sinusoidal waves can principally simulate speech signals. To that end a speech signal is
described by

s(t) =
K∑
k=1

αk(t)cos (ϕk(t)) , (5.1)
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where αk(t) is the time-varying amplitude of the kth signal component and ϕk(t) is the
time-varying phase. The amplitude αk(t) and phase ϕk(t) components are slow varying
quantities. Additionally, observing the above formula Eq. 5.1 one can realize that a
speech signal is equal to the real part of the complex function x(t) ∈ C :

s(t) = Re{x(t)} = Re

{
K∑
k=1

αk(t)eiϕk(t)
}

(5.2)

The decomposition of the time-varying phase component ϕk(t) is presented in the
equation Eq. 5.3

ϕk(t) = 2πfk,car(t) + φk(t), (5.3)

where fk,car is the carrier frequency of the kth signal component , a constant quantity
which corresponds to the frequency of the signal’s carrier wave, and φk(t) the respective
phase component.

Under the assumption of slowly varying components, we consider a single-component
signal and apply the following approximations

α(t+ 1) = α(t) + ∆α(t) (5.4)

ϕ(t+ 1) = ϕ(t) + 2πfcar + ∆ϕ(t). (5.5)

If we substitute the above approximations into the single component complex valued
signal function

x(t) = α(t)eiϕ(t) (5.6)

we get

x(t+ 1) = α(t+ 1)eiϕ(t+1)

= (α(t) + ∆α(t))ei(ϕ(t)+2πfcar+∆ϕ(t))

=
(

1 + ∆α(t)
α(t)

)
ei(2πfcar+∆ϕ(t))x(t)

= c(t)ei2πfcarx(t),

(5.7)

where c(t) ∈ C is a complex, time-varying factor equal to

c(t) =
(

1 + ∆α(t)
α(t)

)
ei∆ϕ(t). (5.8)

So, finally the temporal advancement of a sinusoidal signal is given by the formula

x(t+ 1) = c(t)ei2πfcarx(t). (5.9)
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Observing the result Eq. 5.9, in our proposed model the evolution over time of a si-
nusoidal signal depends on the previous sample multiplied by a time-varying factor.
However, it is noteworthy to mention that the fact that the temporal advancement
is performed multiplicatively, is in direct contrast to autoregressive models where is
performed additively. The term autoregressive implies models where the output signal
depends linearly on its own previous values.

Inspired from the above observation, the goal of this study is to build a recurrent
neural network capable of predicting the complex factors ck(t), efficiently and robustly.
Specifically, our aim is to build a neural phase vocoder, as illustrated in figure Fig. 5.1.
Traditionally, a phase vocoder based on the sinusoidal modeling of speech, with STFT

Figure 5.1: Proposed neural phase vocoder.

extracts information for the component phase and amplitude, from the signal frequency
representation. Therefore, we will employ neural networks so as to extract each com-
ponent time-varying amplitude and phase, from frequency domain. Subsequently, we
will synthesize the complex signal waveform out of its components.
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5.1.2 Model Architecture

The above formulas and calculations driven us to the idea to build a vocoder that
exploits the fact that a speech signal can be decomposed into simpler sinusoidal com-
ponents. To that end, the main goal of this study is to design and train a simpler,
smaller and sparser neural network, comparing to WaveRNN, by decoupling the com-
plex speech signal into simpler sinusoidal components .

The architecture and overall computation flow of the proposed model is illustrated in
figure Fig. 5.2. The first step is to generate the Mel-scaled spectogram of the signal and
extract the information required to be fed as input to the LSTM network. Continuing,
the generated output ck(t) combined with the analytic ground true signal components
xk(t), produce the prediction for the next sample component value x̃k(t+ 1). Finally,
the sum of all components construct the prediction for analytic complex signal x̃k(t+1).
We can measure the accuracy of our prediction, by comparing the prediction with the
ground true signal value.

Figure 5.2: Computational Graph of the Proposed Model.

It is noteworthy to mention that the proposed model is separated into a non-
autoregressive and an autoregressive part. As we can observe in the above graph,
autoregressive is the second part of the model, where the next sample x̃k(t+ 1) is pre-
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dicted, using the previous sample xk(t) ground true value. However, the first part of
the model, where the factor ck(t) is generated, is not autoregressive.

5.2 Model Implementation
As discussed in the previous chapter, our target is to train a model qualified to perform
waveform reconstruction of the initial speech signal, as well as of the components that
comprise it.

To achieve this scope, we mainly used the programming language Python along
with a Matlab script, so to preprocess and extract the information required from the
data. Also, we used the deep learning framework Pytorch, so as to build and train our
neural vocoder. Below, we will have a closer look at the overall data processing and the
technical details required for the model implementation. We will clarify how to extract
the information we need so as to define the input, the output and the loss function of
the neural model.

5.2.1 Synthetic Speech Signals

The first step on building our neural vocoder was to produce synthetic speech signals.
Particularly, we produced mono-component, as well as multi-component AM and FM
complex valued signals x(t)

x(t) =
K∑
k=1

xk(t). (5.10)

As shown in equation Eq. 5.10, the sum over all the K components xk(t) constitute the
complex valued signal x(t). Each component has a different time-varying amplitude
αk(t) and phase ϕk(t)

xk(t) = αk(t)eiϕk(t). (5.11)

While producing synthetic speech signals, linguistic limitations should be taken
into consideration. Particularly, the maximum values of each component frequency
fk(t) have to satisfy the following relation

fk(t)max <
fs
2 , (5.12)
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where fs is the sampling rate, a constant value which defines how many samples are
generated per unit time. Additionally, time-varying signal component frequency fk(t)
is directly associated with the phase ϕk(t) through its temporal derivative

fk(t) = 1
2π

dϕk(t)
dt

. (5.13)

5.2.2 Real Audio Speech Signals

Moreover, we used real audio clips collected from a public domain speech dataset, The
LJ Speech Dataset [18]. In this case, we extracted the signal real valued waveform s(t)
and the sampling rate fs value using a Matlab script. However, so as to define the
neural model input and loss function, we need to extract the components sk(t) of those
speech signals as well as the analytic signal xk(t) of each component.

5.2.2.1 Filter Banks

So as to decompose the speech signals generated from the audio clips into separate
components, we used Filter Banks.

Using the Matlab function Uniform Filter Bank [19], we designed a uniform filter
bank with a given number of K filters. The impulse response of the filter bank on
the waveform of the signal s(t) returns the signal decomposition into a number of K
components. Each component is covering a specific range of the signal frequencies
and those ranges are equally separated, since the filter bank is uniform. The carrier
frequency of each signal component is equal to the intermediate value of the frequency
range it covers.

To that end, the output of each filter is assumed to be a mono-component AM and
FM signal, while the sum over all the components construct the initial multi-component
signal.

5.2.2.2 Hilbert Transformation

The analytic signal component xk(t) is generated by the Hilbert Transformation of the
real valued signal s(t)

xk(t) = F−1
(
F
(
sk(t)

)
2U
)
, (5.14)
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where F is the Fourier transform, U the unit step function [1].

5.2.3 Spectogram Linear Interpolation

In order to build the input dataset, we need to produce one frequency band S(t)
corresponding to each timestep of the signal s(t).

So, firstly, we extract the signal’s melspectrogram, by applying STFT and rescaling
the frequency axis to the Mel-scale. As we have mentioned in previous chapters, the
melspectrogram S(f, t) illustrates the amplitude of each frequency value f at each
timestep t, at a discrete time interval. While implementing STFT, the number of Mel
frequency bands that are generated is smaller than the overall signal timesteps. As a
result, so as to assure one corresponding frequency band for each signal timestep, we
upsample the melspectrogram by applying a linear interpolation algorithm.

Particularly, assume that we want to interpolate a discrete function f(τ), with
sampling step dτ . A linear approximation of the value the function has at a specific
time t can be estimated using the following formula

f(t) = 1−
t−

⌊
t
dτ

⌋
dτ

dτ
f(
⌊
t

dτ

⌋
) +

t−
⌈
t
dτ

⌉
dτ

dτ
f(
⌈
t

dτ

⌉
), (5.15)

where
⌊
t
dτ

⌋
indicates the floor of the scalar t

dτ , particularly the largest integer i, such
that i ≤ t

dτ . Subsequently,
⌈
t
dτ

⌉
indicates the ceil of the scalar t

dτ , particularly the
smallest integer i, such that i ≥ t

dτ .

5.2.4 Model input

Using the convex interpolation algorithm we generate a frequency representation cor-
responding to each timestep of the initial speech signal. So finally the input data that
we feed our network are the frequency bands of each specific timestep t concatenated
with their differences from the frequency bands of the previous timestep t− 1

∆S(t) = S(t)− S(t− 1). (5.16)

When implementing the STFT of the initial speech signal, we choose the number of the
Mel bands we want to generate, and subsequently the size of the input frequency bands.
At each time point, since the input dataset I(t) is produced from the concatenation
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described above, its size will be equal to twice the number of Mel bands we have chosen

I2∗mels(t) = [Smels(t),∆Smels(t)]. (5.17)

5.2.5 Model Output

As described above, at each time point we feed the respective input I(t) into the
LSTM model and the model outputs the complex valued multiplicative factor ck(t).
Technically, in Pytorch framework, where we define and train our LSTM model, we
work with Tensors and complex valued Tensors are not supported. Thus, we define our
LSTM model output to be the real and the imaginary part of each ck(t), separately.
To that end, each output O(t) has size twice the number K of the signal’s components

O2∗K(t) = [Re{c1(t)}, Im{c1(t)}, ..., Re{cK(t)}, Im{cK(t)}]. (5.18)

5.2.6 Loss Function

So as to train our neural model we feed it examples of input and output pairs. The
model is taught the correct answer and learns how to generate the desired output by
making mistakes. In our case, at each time point the deviation between the prediction
x̃(t+ 1) and the ground true value x(t) is calculated through their Mean Squared Error
(MSE)

MSE(t) = |x̃(t+ 1)− x(t+ 1)|2. (5.19)

In contrast to the WaveRNN variant examined in the previous chapter, our model
does not learn to solve a classification problem. We aim to directly reconstruct the sig-
nal waveform and not the probability distribution of the next sample value. To that we
use a different and appropriate to our implementation loss function, the Mean squared
Error.

More technical details of how the MSE is computed using the deep learning frame-
work Pytorch can be found in Appendix A.
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6
Results & Discussion

6.1 Modelling of Sinusoidal Signals
The results of our proposed model implementation on synthetic as well as real speech

signals are presented in this paragraph. As clarified at the Chapter 5.1.2, the second

part of our proposed model is autoregressive, in other words the model uses the previous

sample value so as to generate the next. In this study, during the training as well as

the inference procedure, for the prediction of next sample value x̃(t + 1) we use the

previous sample value of the original speech signal x(t). In the future steps of our study

we plan to use the previous sample value that the model predicts x̃(t), instead of the

value generated from the original speech signal x(t), so as to build a stand-alone neural

vocoder faster than the WaveRNN examined in Chapter 4.

6.1.1 Modelling of Single Component Sinusoidal Signals

The first step was to test the model on synthetic mono-component sinusoidal signals.

Particularly we generated an AM and FM sinusoidal signal in discrete time domain,

with n = {1, 2, ..., 50000} timesteps. We created a signal with 10 periods T , with

sampling rate fs equal to 5000samples/sec and with carrier frequency fcar equal to

1000. Also, the LSTM model we trained had 20 hidden states, a number of 100 epochs

and learning rate equal to 0.01.

We produced the analytic signal using the following formula

x(t) = a(t)eiϕ(t). (6.1)
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The time-varying amplitude a(t) and phase ϕ(t) are

a(t) = 1 + acos(2πt+ φa)

ϕ(t) = 2πfcart+ aϕcos(2πt+ φϕ),
(6.2)

where the constant amplitudes a, aϕ have values equal to 0.7 and 75.5, respectively.
Also, the constant phases φa, φϕ have values equal to 0 and 0.4, respectively. Each
discrete time step ti is equal to ni/fs, with n = {1, 2, ..., 50000}.

Continuing, we extracted the necessary information from the produced signal and
followed the computational flow described in the Chapter 5.2. Figure Fig. 6.1 presents
the model’s performance in the time domain. The blue line illustrates the original
signal waveform and the orange line the signal waveform generated from the proposed
model, or else the copy synthesis results.

Figure 6.1: Time representation of a mono-component AM and FM signal, where the
blue line illustrates the original signal waveform, the orange line the copy synthesis signal,
x axis is time t and y axis is the signal s(t) value. Figure Fig. 6.1.b focuses on a short time
range of figure Fig. 6.1.a.

At the x axis there is time and at the y axis the value of the signal s(t) = Re{x(t)}.
The red dashed line separates the timeseries into two parts, the left part is used during
training and the left part during inference. We train our model using examples of input
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and output pairs extracted only from the left part of the waveform. The right part of
the waveform is used to test our model’s performance on new different examples, that
has not processed before. Moreover, if we zoom in Fig. 6.1.a, we gain a closer look of
the signal waveform for a short time range. The green oval circle indicates the area we
focus and figure Fig. 6.1.b presents the signals waveform of this area.

The model’s performance in the frequency domain is demonstrated in figure Fig. 6.2.
Figure Fig. 6.2.a illustrates the Mel-scaled spectrogram of the original signal and Fig-
ure Fig. 6.2.b the Mel-scaled spectrogram of the copy synthesized signal. The x axis
represents the time evolution is seconds, the y axis the frequency range in Hertz and
the colorbar the frequency amplitude of the signal at each point at the frequency-time
lattice in Decibel. The red dashed line separates the spectrograms into two parts, the
left part is used during the training and the left part during the inference of the LSTM
model.

Figure 6.2: Frequency representation - Male Scaled Spectrogram of a mono-component
AM and FM signal, where x axis is time t in seconds, y axis is frequency in Hertz and the
colorbar illustrates the frequency amplitude at each point at the frequency-time lattice in
Decibel. Figure Fig. 6.2.a corresponds to the original signal and figure Fig. 6.2.b to the
copy synthesized signal.

In the above figures, it is clear that the model’s prediction for the next sample come
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to a great agreement with the respective original signal value. So as to quantitatively
measure our model’s performance we will calculate the Relative Mean Squared Error
(RelMSE) between the original x(t) and the copy synthesized signal x̃(t), using the
following formula

RelMSE = |x(t)− x̃(t)|2

|x(t)− x|2
, (6.3)

where x is the original signal mean value.
Taking into consideration that x(t), x̃(t) ∈ C (see Appendix A), the RelMSE of the

model implementation on a mono-component, AM and FM signal for the training and
the inference data set is shown in Table 6.1.

Table 6.1: Mono-Component Sinusoidal Signal

SET RelMSE

Training 0.0038
Inference 0.0077

We observe that in the inference dataset the RelMSE is slightly greater than in
the training dataset. This is a reasonable result, since the model has been trained on
predicting samples from the training dataset. In conjunction, the inference data set
is more challenging, since it contains samples different from those that the model has
been trained on. Also, the fact that the RelMSE for both sets has the same magnitude
of value is a promising indication that our model is generalized and is not overfit.
Particularly, generalization is the model’s ability to give sensible outputs to sets of
input that has never seen before. Also, with the term overfit model we indicate a
model that learns to output only to the training sets of input and fails to output to
new sets of input that is unfamiliar to.
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6.1.2 Modelling of Multi-Component Sinusoidal Signals

The second step of our study, was to repeat the above procedure for a synthetic multi-
component sinusoidal signal. Similarly, to the previous section, we generated three dif-
ferent AM and FM sinusoidal signals in discrete time domain, with n = {1, 2, ..., 50000}
timesteps. Each one of the three signals is created has 10 periods T , sampling rate fs
equal to 5000samples/sec and carrier frequency fcar , equal to 400, 1000, 1700, respec-
tively. The LSTM model characteristics are 20 hidden states, 100 epochs and learning
rate equal to 0.01, as in the implementation described in the previous section.

In this case, we produced the analytic signal using the following formula

x(t) =
3∑

k=1
ak(t)eiϕk(t). (6.4)

The time-varying amplitude ak(t) and phase ϕk(t) are

ak(t) = 1 + akcos(2πt+ φa,k)

ϕk(t) = 2πfcar,kt+ aϕ,kcos(2πt+ φϕ,k),
(6.5)

where k = {1, 2, 3} ,for each component the amplitudes values are ak = {0.7, 0.6, 0.5}
and aϕ,k = {142.5, 66.3, 51.2} and the component phases values are φa,k = {2.2, 2.3, 2.9},
φϕ,k = {0.6, 2.9, 0.3}. Each discrete time step ti is equal to ni/fs, with n = {1, 2, ..., 50000}.

Below, we will examine our model’s performance in synthesizing multi-component
AM and FM signals. We will observe the results in the time as well as in the frequency
domain, equivalently to section 6.1.1.
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In Figure Fig. 6.3 there is a time representation. The blue line illustrates the
original signal waveform and the orange line its copy synthesis. At the x axis there is
time and at the y axis the value of the signal s(t) = Re{x(t)}. The red dashed line

Figure 6.3: Time representation of a three-component AM and FM signal, where the
blue line illustrates the original signal waveform, the orange line the copy synthesis signal,
x axis is time and y axis is the signal s(t) value. Figure Fig. 6.3.b focuses on a short time
range of figure Fig. 6.3.a.

separates the timeseries into two parts, the left part is used during training and the left
part during inference. We train our model using examples of input and output pairs
extracted only from the left part of the waveform. The right part of the waveform is
used to test our model’s performance on new different examples, that has not processed
before. Moreover, if we zoom in Fig. 6.3.a, we gain a closer look of the signal waveform
for a shorter time range. The green oval circle indicates the area we focus and figure
Fig. 6.3.b presents the signals waveform of this area.
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The model’s performance in the frequency domain is demonstrated in figure Fig. 6.4.
Figure Fig. 6.4.a illustrates the Mel-scaled spectrogram of the original signal and Fig-
ure Fig. 6.2.b the Mel-scaled spectrogram of the copy synthesized signal. The x axis
represents the time evolution is seconds, the y axis the frequency range in Hertz and
the colorbar the frequency amplitude of the signal at each point at the frequency-time
lattice in Decibel. The red dashed line separates the spectrograms into two parts, the
left part is used during the training and the left part during the inference of the LSTM
model.

Figure 6.4: Frequency representation - Male Scaled Spectrogram of a three-component
AM and FM signal, where x axis is time t in seconds, y axis is frequency in Hertz and the
colorbar illustrates the frequency amplitude at each point at the frequency-time lattice in
Decibel. Figure Fig. 6.4.a corresponds to the original signal and figure Fig. 6.4.b to the
copy synthesized signal.

We can clearly observe that the model’s prediction for the next sample comes to
a great agreement with the respective original signal value, in the case of a multi-
component sinusoidal signal too. Using the equation Eq. 6.3 we can calculate the
Relative Mean Squared Error (RelMSE) between the original x(t), given by the three-
component signal equation Eq. 6.4 and the respective copy synthesized signal x̃(t).
Taking into consideration that x(t), x̃(t) ∈ C (see Appendix A), the RelMSE of the
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model implementation on a three-component, AM and FM signal of the training and
the inference procedure is shown in Table 6.3.

Table 6.2: Three-Component Sinusoidal Signal

SET RelMSE

Training 0.0041
Inference 0.0042

Also in this case, the values of the RelMSE are similar to the mono-component
implementation of our model. We reasonable observe that in the inference dataset the
RelMSE is slightly greater than in the training dataset. Also, the RelMSE for both
sets has the same magnitude of value, in this case too. This is a promising indication
that our model is generalized and is not overfit.

6.2 Modelling of Speech Signals
In the previous sections, we have examined the proposed model’s performance on syn-
thetic speech signals. Speech in principle is a sum of multiple AM and FM signals.
To that end we firstly we tested the case of a mono-component AM and FM signal
and secondly a multi-component signal, aiming to simulate real speech signals. In this
section we test real audio clips collected from a public domain speech dataset, The LJ
Speech Dataset [18].

6.2.1 Filter Bank Analysis Results

In order to test the proposed model on real audio clips, firstly we have to decompose the
speech signals generated from the audio clips into separate components. By following
the procedure analytically explained in Chapter 5.2.2, employing the fact that speech
is a multi-component signal with the use of Filter Banks we separate the signal into 20
components. Each one of those 20 components is considered to be a mono-component
AM and FM signal and the sum over all the mono-component signals construct the
initial speech signal.
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Particularly, we used one female audio clip , with sampling rate fs equal to 16000
samples/sec and duration equal to 9seconds. We decomposed the signal using a Uni-
form Filter Bank of 20 filters. The Filter Bank analysis results in time domain are
presented in figure Fig. 6.5. Figure Fig. 6.5.a illustrates the speech signal waveform,
while the figure Fig. 6.5.b presents each one of the 20 AM/FM mono-component signals
that build the initial signal.

Figure 6.5: Filter Bank analysis results in time domain. Figure Fig. 6.5.a illustrates the
speech signal waveform and figure Fig. 6.5.b the 20 AM/FM mono-component signals that
build the initial signal.

While applying a Uniform Filter Bank of 20 sub-bands on the complex signal,
the complex signal frequency range is equally divided into 20 sections. Each signal
component covers a different frequency section of the signal. Additionally, we consider
that each component, or else each AM/FM signal, has carrier frequency equal to the
intermediate value of the frequency range it covers.

In figure Fig. 6.6 there is the spectrogram of the initial complex signal, with y-axis
in linear scale. The Filter Bank analysis results in frequency domain are presented in
figure Fig. 6.6, too. Particularly, each sub-figure illustrates the frequency range each
signal component covers, beginning from the lowest frequency range S1(f, t) till the
highest S20(f, t).

47



6. Results & Discussion

Figure 6.6: Filter Bank analysis results in frequency domain, each sub-figure illustrates
the melspectrogram of each one of the 20 components, beginning from the lowest frequency
range S1(f, t) till the highest S20(f, t) .
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6.2.2 Modelling of Speech Signals

In this paragraph there are presented the results generated from real audio clips. Partic-
ularly, we used one female audio clip, with sampling rate fs equal to 16000samples/second
and duration equal to 9 seconds. We separated the signal into 20 components, each
one characterized by a different carrier frequency, as described in the previous section.
Also, the LSTM model we trained had 20 hidden states, a number of 1000 epochs and
learning rate equal to 0.0001. Additionally, before feeding the training data set into
the LSTM model, we separated it into batches, with batch size equal to 64.

Similarly to the previous sections, in figure Fig. 6.7 there is the model’s performance
in the time domain. The blue line illustrates the original signal waveform and the orange
line the copy synthesis results. At the x axis there is time and at the y axis the value
of the signal s(t) = Re{x(t)}. Moreover, if we zoom in Fig. 6.7.a, we gain a closer look
of the signal waveform for a short time range. The green oval circle indicates the area
we focus on and figure Fig. 6.7.b presents the signal waveform in this area.

Figure 6.7: Time representation of a speech signal, where the blue line illustrates the
original signal waveform, the orange line the copy synthesis signal, x axis is time and y axis
is the signal s(t) value. Figure Fig. 6.7.b focuses on a short time range of figure Fig. 6.7.a.
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Figure Fig. 6.7 presents a timeserie that is not used during the training procedure.

It corresponds to an audio clip new for the neural model, but generated from the same

female voice used for training. Specifically, the training as well as the inference of the

proposed model is performed on single-speaker audio clips. Multiple speaker speech

synthesis is a different category, known as universal synthesis.

The model’s performance in the frequency domain is demonstrated in figure Fig. 6.8.

Figure Fig. 6.8.a illustrates the Mel-scaled spectrogram of the original signal and fig-

ure Fig. 6.2.b the Mel-scaled spectrogram of the copy synthesized signal. The x axis

represents the time evolution is seconds, the y axis the frequency range in Hertz and

the colorbar the frequency amplitude of the signal at each point at the frequency-time

lattice in Decibel. Additionally, the y-axis is in logarithmic scale.

Figure 6.8: Frequency representation - Male Scaled Spectrogram of a speech signal,
where x axis is time t in seconds, y axis frequency in Hertz in logarithmic scale and the
colorbar illustrates the frequency amplitude at each point at the frequency-time lattice in
Decibel. Figure Fig. 6.8.a corresponds to the original signal and figure Fig. 6.8.b to the
copy synthesized signal.

In the above figures, it is clear that the model’s prediction for the next sample

come to a great agreement with the respective original signal value. Using the equation
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Eq. 6.3 we can calculate the Relative Mean Squared Error (RelMSE) between the orig-
inal x(t) generated from the audio clip and the respective copy synthesized signal x̃(t).
Taking into consideration that x(t), x̃(t) ∈ C (see Appendix A), the RelMSE of the
model implementation on a speech signal for the inference data set is shown in Table
6.3

Table 6.3: Speech Signal

SET RelMSE

Inference 0.0890

From the above results we observe that the proposed model perform satisfyingly
in the case of real speech signals, too. However so as to able to compare our models
accuracy with state-of-the-art models, like the WaveRNN model examined in Chapter
4, there are some additional future steps that we have to implement further.
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7
Conclusions and Future Steps

In this thesis, we target to develop a light neural vocoder, faster than the state-of-the-
art WaveRNN model [5]. For this scope we combine deep learning(RNNs) with prior
knowledge of the inherent sinusoidal nature of speech. Particularly, we build a neural
vocoder taking into consideration the sinusoidal nature of speech signals. Moreover, we
use Recurrent Neural Networks (RNNs) and particularly Long Short Term Recurrent
neural networks.

We demonstrate the state-of-the-art performance of a WaveRNN variant model and
present the generated results both in time and frequency domain. Firstly, we examine
the proposed model performance using mono-component as well as multi component
sinusoidal signals. We demonstrate the results both in time and frequency domain, also
we calculate the Relative Mean Speared Error between the target and the generated
sample. Observing the results we conclude that the model’s prediction for the next
sample comes to a great agreement with the respective original signal value.

Furthermore, we use real speech signals generated from audio clips. After the
speech signal decomposition, we test the proposed model under the assumption that
each signal component is a mono-component sinusoidal signal. Also, we use both time
and frequency representation of the results and we calculate the Relative Mean Speared
Error between the target and the generated sample. From the results we observe that
the proposed model perform satisfyingly in the case of real speech signals, too.

However so as to able to compare our models accuracy with state-of-the-art models
we have to implement further some additional steps. In this study, the prediction of
next sample value is executed using the previous sample value of the original signal,
during the training as well as the inference procedure. In the future steps of our study
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we plan to use the previous sample value that the model predicts, instead of the original
previous sample value, so as to build a stand-alone neural vocoder.

Moreover, there has to be more research on the neural model architecture. An
alternative of the LSTM unit could be a GRU unit. Also, we could use different loss
function, too. Currently, we are using the MSE of the real speech signal values, in time
domain. However, we could test the performance of a different loss function too, taking
into consideration the nature our problem. Particularly, the fact that speech has both
real and imaginary part and that speech is represented in frequency domain too.

I would be glad to discuss any comments or feedback (apapadaki@physics.uoc.gr).
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A
Pytorch, Tensors & Complex

Numbers

As mentioned in Chapter 5, our neural vocoder is built and trained in Pytorch frame-

work. Pytorch framework uses Tensors so as to perform the training. However, complex

valued Tensors are not supported. So, below we will describe in detail how we imple-

ment technically the training procedure.

As described in Chapter 5, at each time step we feed our model examples of input

and output pairs. For each I(t) there is a respective O(t). Final aim of the neural

vocoder is to predict the next complex valued audio sample x̃(t+ 1), which is equal to

the summation Eq. A.1 over all signal component following

x̃(t+ 1) =
K∑
k=1

ck(t)xk(t)ei2πfk,car , (A.1)

where ck(t), xk(t) ∈ C. The fk,car corresponds to the carrier frequency of each compo-

nent.

According to Eq. A.1, we can build the next sample component xk(t + 1) by mul-

tiplying the LSTM model output ck(t) with the previous sample component xk(t) and

with the exponential ei2πfk,car . However, since we can not manipulate complex values,

we calculate separately the real and the imaginary part of the next sample x̃(t + 1).

Particularly, consider three complex numbers z1, z2, z3 ∈ C, Eq. A.2

z1 = a+ ib

z2 = c+ id

z3 = e+ if,

(A.2)
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where a, b, c, d, e, f ∈ R. The product of those three complex numbers is given by the
following formula Eq. A.3

z1 · z2 · z3 = [(a · c− b · d) · e− (a · d+ b · c) · f ]

+ i[(a · c− b · d) · f + (a · d+ b · c) · e].
(A.3)

Thus, since equation Eq. A.1 is the product of three complex values, the real and the
imaginary parts of the next sample prediction are calculated according to the following
equations

Re{x̃(t+ 1)} =
K∑
k=1

(
Re{ck(t)}Re{xk(t)} − Im{ck(t)}Im{xk(t)}

)
cos(2πfk,car)

−
(
Re{ck(t)}Re{xk(t)}+ Im{ck(t)}Im{xk(t)}

)
sin(2πfk,car)

Im{x̃(t+ 1)} =
K∑
k=1

(
Re{ck(t)}Re{xk(t)} − Im{ck(t)}Im{xk(t)}

)
sin(2πfk,car)

+
(
Re{ck(t)}Re{xk(t)}+ Im{ck(t)}Im{xk(t)}

)
cos(2πfk,car).

(A.4)

The loss function of our model is the MSE between the model prediction of the next
sample value x̃(t + 1) and the ground true sample value x(t) , as shown in equation
Eq. 5.19. However, we need a formula that calculates the MSE using the real and
the imaginary part of x̃(t + 1) and x(t). Below we will mathematically describe the
procedure of extracting such a formula.

To begin with, if we substitute the real and the imaginary parts of x̃(t + 1) and
x(t), the equation Eq. 5.19 takes the following form

|x̃(t+ 1)− x(t)|2 =
∣∣∣∣(Re{x̃(t+ 1)} −Re{x(t)}

)
+ i

(
Im{x̃(t+ 1)} − Im{x(t)}

)∣∣∣∣2

=
(
Re{x̃(t+ 1)} −Re{x(t)}

)2
+
(
Im{x̃(t+ 1)} − Im{x(t)}

)2
,

(A.5)

since for z ∈ C with z = a + ib, the square root of the absolute value is equal to
|z|2 = a2 + b2.

Continuing, consider two set of numbers A, B, where A = a1, a2, ..., aN and B =
b1, b2, ..., bN . The mean value of their sum is equal to the sum of the mean value of
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each set separately, as proven below

A+B = 1
N

N∑
i=1

(ai + bi)

= 1
N

N∑
i=1

ai + 1
N

N∑
i=1

bi

= A+B.

(A.6)

Observing the above result, we can extract a formula for the MSE which contains
the real and the imaginary parts of x̃(t+ 1) and x(t) and can be practically used in the
programming implementation of our model. To that end, applying the result Eq. A.6
on the equation Eq. A.5 gives the following formula

MSE(t) = |Re{x̃(t+ 1)} −Re{x(t)}|2 + |Im{x̃(t+ 1)} − Im{x(t)}|2. (A.7)
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B
Python Code

B.1 Training

1

2 import librosa
3 import librosa . display
4 import time
5 import matplotlib
6 import numpy as np
7 import matplotlib . pyplot as plt
8 import pandas as pd
9 import torch

10 import torch.nn as nn
11 from torch. autograd import Variable
12 from sklearn . preprocessing import MinMaxScaler
13 import scipy
14

15

16

17 # Reproducibility
18 np. random .seed (876543210)
19 torch. manual_seed (876543210)
20

21

22

23

24

25 # Define Model
26 class LSTM(nn. Module ): # nn. Module : convinient way of
27 # encapsulating parameters
28
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29 def __init__ (self , num_classes , input_size , hidden_size ,
num_layers ):

30 super(LSTM , self). __init__ ()
31

32 self. num_classes = num_classes # output_size
33 self. num_layers = num_layers
34 self. input_size = input_size
35 self. hidden_size = hidden_size
36 self. seq_length = seq_length
37

38 # Define the LSTM layer
39 self.lstm = nn.LSTM( input_size = input_size , hidden_size =

hidden_size ,
40 num_layers = num_layers , batch_first =

True)
41 # when batch_first = True
42 # it will use the second dimension as the sequence

dimension :
43 # (batch_size , seq_len , n_features )
44 # Define the output layer
45 self.fc = nn. Linear ( hidden_size , num_classes )
46 # Applies a linear transformation to the incoming data:
47 # y = x W^T + b
48

49

50

51 def forward (self , x):
52 # initialise our hidden and cell state
53 # Don ’t do this if you want your LSTM to be stateful
54 h_0 = Variable (torch.zeros(
55 self.num_layers , x.size (0) , self. hidden_size ))
56 # h_0 = Variable (torch. normal ( mean = 0, std = 1.5, size = (

self.num_layers , x.size (0) , self. hidden_size ) ))
57 # print ("\n x.size (0) = ", x.size (0))
58 # print ("\n h_0.shape = ", h_0.shape)
59

60 c_0 = Variable (torch.zeros(
61 self.num_layers , x.size (0) , self. hidden_size ))
62 # c_0 = Variable (torch. normal ( mean = 0, std = 1, size = (

self.num_layers , x.size (0) , self. hidden_size ) ))
63 # print ("\n c_0.shape = ", c_0.shape)
64

65 # Propagate input through LSTM
66 ula , (h_out , _) = self.lstm(x, (h_0 , c_0)) # returns :

lstm_out , ( hidden_state , cell_state )
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67 # print ("\n ula.shape = ", ula.shape)
68 # print ("\n A h_out.shape = ", h_out.shape)
69

70 h_out = h_out.view (-1, self. hidden_size ) #
71 # print ("\n B h_out.shape = ", h_out.shape)
72 out = self.fc(h_out. squeeze (0)) # works like Dence
73 # print ("\n out.shape = ",out.shape)
74 return out
75

76

77

78 def validate (epoch , testX , testY , car_fs ):
79 with torch. no_grad ():
80 output = lstm(testX)
81

82

83

84 # Obtain the loss function
85 test_prediction = Variable (torch.zeros( (testY.shape [0], 2))

) # [real , imag]
86 test_prediction [:, 0] = (testY [:, 0, 0] * output [:, 0] -

testY [:, 0, 0 + 1] * output [:, 0 + 1]) * np.cos (2 * np.pi * car_fs
[0]) \

87 - (testY [:, 0, 0] * output [:, 0 + 1]
+ testY [:, 0, 0 + 1] * output [:, 0]) * np.sin (2 * np.pi * car_fs [0])

88 test_prediction [:, 1] = (testY [:, 0, 0] * output [:, 0] -
testY [:, 0, 0 + 1] * output [:, 0 + 1]) * np.sin (2 * np.pi * car_fs
[0]) \

89 + (testY [:, 0, 0] * output [:, 0 + 1]
+ testY [:, 0, 0 + 1] * output [:, 0]) * np.cos (2 * np.pi * car_fs [0])

90 for i in range (1, k):
91 m = 2 * i
92 test_prediction [:, 0] = test_prediction [:, 0] + (testY

[:, 0, m] * output [:, m] - testY [:, 0, m + 1] * output [:, m + 1]) *
np.cos (2 * np.pi * car_fs [i]) \

93 - (testY [:, 0, m] * output [:, m
+ 1] + testY [:, 0, m + 1] * output [:, m]) * np.sin (2 * np.pi * car_fs
[i])

94 test_prediction [:, 1] = test_prediction [:, 1] + (testY
[:, 0, m] * output [:, m] - testY [:, 0, m + 1] * output [:, m + 1]) *
np.sin (2 * np.pi * car_fs [i]) \

95 + (testY [:, 0, m] * output [:, m
+ 1] + testY [:, 0, m + 1] * output [:, m]) * np.cos (2 * np.pi * car_fs
[i])

96
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97

98

99

100

101 test_groundtrue = Variable (torch.zeros( (testY.shape [0], 2))
) # [real , imag]

102 test_groundtrue [:, 0], test_groundtrue [:, 1] = testY [:, 1,
0], testY [:, 1, 0 + 1]

103 for i in range (1, k):
104 m = 2 * i
105 test_groundtrue [:, 0] = test_groundtrue [:, 0] + testY [:,

1, m] # real part
106 test_groundtrue [:, 1] = test_groundtrue [:, 1] + testY [:,

1, m + 1] # imaginay part
107

108

109

110

111

112 loss_real = criterion ( test_prediction [:, 0],
test_groundtrue [:, 0] )

113 loss_imaginary = criterion ( test_prediction [:, 1],
test_groundtrue [:, 1] )

114 loss = loss_real + loss_imaginary
115

116

117 return loss
118

119

120

121

122

123 x = np.load("/mnt/hdd2/ apapadaki / Dataset /70 xs.npy")
124 y = np.load("/mnt/hdd2/ apapadaki / Dataset /70 ys.npy")
125

126 print("\n x.shape = ", x.shape , " y.shape = ", y.shape)
127

128

129

130

131

132

133 k = 20
134 print("\n *** SUNM OF {} SIGNALS ***". format (k))
135 fs= 16000
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136 car_f = (fs / 2) / k / 2
137 car_fs = np.array( [( car_f + (fs / 2) / k * i) for i in range (k)]

)
138

139

140 seq_length = 1 # window / timesptep
141 n_features = 1024
142 input_size = n_features
143 num_classes = 2 * k # the output has 2 features
144

145 train_percent = 0.98
146

147

148

149

150

151

152

153 train_size = int(len(y) * train_percent )
154 test_size = len(y) - train_size
155

156 dataX = Variable (torch. Tensor (np.array(x)))
157 dataY = Variable (torch. Tensor (np.array(y)))
158 print("dataX.shape = ", dataX.shape , ", dataY.shape = ", dataY.shape

)
159

160 trainX = Variable (torch. Tensor (np.array(x[0 : train_size ])))
161 trainY = Variable (torch. Tensor (np.array(y[0 : train_size ])))
162 print(" trainX .shape = ", trainX .shape , ", trainY .shape = ", trainY .

shape)
163

164 testX = Variable (torch. Tensor (np.array(x[ train_size : len(x)])))
165 testY = Variable (torch. Tensor (np.array(y[ train_size : len(y)])))
166 print("testX.shape = ", testX.shape , ", testY.shape = ", testY.shape

)
167

168

169

170

171

172 # Random Train Samples
173 rand_indx = np. arange ( trainX .shape [0])
174 np. random . shuffle ( rand_indx )
175

176 trainX = trainX [rand_indx , :, :]
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177 trainY = trainY [rand_indx , :, :]
178

179

180

181

182

183 # Save Test arrays
184 torch.save(testX , ’testX.pt’)
185 torch.save(testY , ’testY.pt’)
186

187

188

189

190

191

192 # Define Network Hyperparameters
193 batch_size = 64
194 num_epochs = 10000
195 learning_rate = 0.0001
196 hidden_size = 20
197 num_layers = 1
198

199

200

201

202 # Define Model
203 lstm = LSTM( num_classes , input_size , hidden_size , num_layers )
204 criterion = torch.nn. MSELoss ()
205 optimizer = torch.optim.Adam(lstm. parameters (), lr = learning_rate )
206

207

208

209 # Train the model
210 hist , val_hist = np.zeros( num_epochs ), np.zeros( num_epochs )
211 time_0 = time.time ()
212

213

214

215 for epoch in range( num_epochs ):
216 for b in range (0, len( trainX ),batch_size ):
217

218 inpt = trainX [b : b + batch_size , : , :]
219 target = trainY [b : b + batch_size , :, :]
220

221 # Clear stored gradient

64



B.1 Training

222 lstm. zero_grad ()
223

224 # Initialise hidden state and do Forward / Inference pass
225 outputs = lstm(inpt)
226 # print (" outputs .shape = ", outputs .shape )
227

228

229

230

231

232 # Obtain the loss function
233 prediction = Variable (torch.zeros( ( target .shape [0], 2)) )

# [real , imag]
234 prediction [:, 0] = ( target [:, 0, 0] * outputs [:, 0] - target

[:, 0, 0 + 1] * outputs [:, 0 + 1]) * np.cos (2 * np.pi * car_fs [0]) \
235 - ( target [:, 0, 0] * outputs [:, 0 + 1] +

target [:, 0, 0 + 1] * outputs [:, 0]) * np.sin (2 * np.pi * car_fs [0])
236 prediction [:, 1] = ( target [:, 0, 0] * outputs [:, 0] - target

[:, 0, 0 + 1] * outputs [:, 0 + 1]) * np.sin (2 * np.pi * car_fs [0]) \
237 + ( target [:, 0, 0] * outputs [:, 0 + 1] +

target [:, 0, 0 + 1] * outputs [:, 0]) * np.cos (2 * np.pi * car_fs [0])
238 for i in range (1, k):
239 m = 2 * i
240 prediction [:, 0] = prediction [:, 0] + ( target [:, 0, m] *

outputs [:, m] - target [:, 0, m + 1] * outputs [:, m + 1]) * np.cos (2
* np.pi * car_fs [i]) \

241 - ( target [:, 0, m] * outputs [:, m +
1] + target [:, 0, m + 1] * outputs [:, m]) * np.sin (2 * np.pi * car_fs
[i])

242 prediction [:, 1] = prediction [:, 1] + ( target [:, 0, m] *
outputs [:, m] - target [:, 0, m + 1] * outputs [:, m + 1]) * np.sin (2

* np.pi * car_fs [i]) \
243 + ( target [:, 0, m] * outputs [:, m +

1] + target [:, 0, m + 1] * outputs [:, m]) * np.cos (2 * np.pi * car_fs
[i])

244 # print ("\n prediction .shape = ", prediction .shape)
245 # print( prediction [0])
246

247

248

249

250

251 groundtrue = Variable (torch.zeros( ( target .shape [0], 2)) )
# [real , imag]

252 groundtrue [:, 0], groundtrue [:, 1] = target [:, 1, 0], target
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[:, 1, 0 + 1]
253 for i in range (1, k):
254 m = 2 * i
255 groundtrue [:, 0] = groundtrue [:, 0] + target [:, 1, m]

# real part
256 groundtrue [:, 1] = groundtrue [:, 1] + target [:, 1, m +

1] # imaginay part
257 # print ("\n groundtrue .shape = ", groundtrue .shape)
258 # print( groundtrue [0])
259

260

261

262

263

264 loss_real = criterion ( prediction [:, 0], groundtrue [:, 0] )
265 loss_imaginary = criterion ( prediction [:, 1], groundtrue [:,

1] )
266 loss = loss_real + loss_imaginary
267

268 hist[epoch] = loss.item ()
269 if epoch % 100 == 0:
270 print( "\n Epoch : %d \n loss : %1.5f" % (epoch , hist[

epoch ]) )
271

272 # Zero out gradient , else they will accumulate between
epochs

273 optimizer . zero_grad () # ??
274

275 # Computes gradients and does BackPropagation
276 loss. backward ()
277

278 # Update parameters
279 optimizer .step ()
280

281 # Validation
282 val_loss = validate (epoch , testX , testY , car_fs ) # !!!
283 val_hist [epoch] = val_loss .item ()
284 if epoch % 100 == 0:
285 print( " val_loss : %1.5f" % ( val_hist [epoch ]) )
286 time_1 = time.time ()
287 print("\n TRAINING TIME = ", ( time_1 - time_0 ) / 60, " min \n ")
288

289

290

291
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292

293

294

295 np. savetxt (" val_hist_70wavs_10Kepochs_64batchsize_20hidden .txt",
val_hist )

296 np. savetxt (" hist_70wavs_10Kepochs_64batchsize_20hidden .txt", hist)
297

298

299 PATH = ’/mnt/hdd2/ apapadaki / Dataset / generate_models /70
wavs_10Kepochs_64batchsize_20hidden .pth ’

300 torch.save(lstm. state_dict (), PATH) # save the model
301

302

B.2 Inference

1

2

3 import librosa
4 import librosa . display
5 import time
6 import matplotlib
7 import numpy as np
8 import matplotlib . pyplot as plt
9 import pandas as pd

10 import torch
11 import torch.nn as nn
12 from torch. autograd import Variable
13 from sklearn . preprocessing import MinMaxScaler
14 import scipy
15

16

17

18 # Reproducibility
19 np. random .seed (876543210)
20 torch. manual_seed (876543210)
21

22

23

24 # Define Model
25 class LSTM(nn. Module ): # nn. Module : convinient way of
26 # encapsulating parameters
27
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28 def __init__ (self , num_classes , input_size , hidden_size ,
num_layers ):

29 super(LSTM , self). __init__ ()
30

31 self. num_classes = num_classes # output_size
32 self. num_layers = num_layers
33 self. input_size = input_size
34 self. hidden_size = hidden_size
35 self. seq_length = seq_length
36

37 # Define the LSTM layer
38 self.lstm = nn.LSTM( input_size = input_size , hidden_size =

hidden_size ,
39 num_layers = num_layers , batch_first =

True)
40 # when batch_first = True
41 # it will use the second dimension as the sequence

dimension :
42 # (batch_size , seq_len , n_features )
43 # Define the output layer
44 self.fc = nn. Linear ( hidden_size , num_classes )
45 # Applies a linear transformation to the incoming data:
46 # y = x W^T + b
47

48

49

50 def forward (self , x):
51 # initialise our hidden and cell state
52 # Don ’t do this if you want your LSTM to be stateful
53 h_0 = Variable (torch.zeros(
54 self.num_layers , x.size (0) , self. hidden_size ))
55 # h_0 = Variable (torch. normal ( mean = 0, std = 1.5, size = (

self.num_layers , x.size (0) , self. hidden_size ) ))
56 # print ("\n x.size (0) = ", x.size (0))
57 # print ("\n h_0.shape = ", h_0.shape)
58

59 c_0 = Variable (torch.zeros(
60 self.num_layers , x.size (0) , self. hidden_size ))
61 # c_0 = Variable (torch. normal ( mean = 0, std = 1, size = (

self.num_layers , x.size (0) , self. hidden_size ) ))
62 # print ("\n c_0.shape = ", c_0.shape)
63

64 # Propagate input through LSTM
65 ula , (h_out , _) = self.lstm(x, (h_0 , c_0)) # returns :

lstm_out , ( hidden_state , cell_state )
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66 # print ("\n ula.shape = ", ula.shape)
67 # print ("\n A h_out.shape = ", h_out.shape)
68

69 h_out = h_out.view (-1, self. hidden_size )
70 # print ("\n B h_out.shape = ", h_out.shape)
71 out = self.fc(h_out. squeeze (0)) # works like Dence
72 # print ("\n out.shape = ",out.shape)
73 return out
74

75

76

77

78 #xs = np.load ("/ mnt/hdd2/ apapadaki / Dataset /1xs.npy ")
79 #ys = np.load ("/ mnt/hdd2/ apapadaki / Dataset /1ys.npy ")
80 #
81 #testX = Variable (torch. Tensor (np.array(xs)))
82 #testY = Variable (torch. Tensor (np.array(ys)))
83

84

85

86

87

88 dataX = torch.load(’TestX.pt’)
89 dataY = torch.load(’TestY.pt’)
90 print("dataX.shape = ", dataX.shape , ", dataY.shape = ", dataY.shape

)
91

92

93

94

95

96

97 k = 20
98 print("\n *** SUNM OF {} SIGNALS ***". format (k))
99 fs= 16000

100 car_f = (fs / 2) / k / 2
101 car_fs = np.array( [( car_f + (fs / 2) / k * i) for i in range (k)]

)
102

103 # Define Network Hyperparameters
104 seq_length = 1
105 n_features = dataX.shape [2]
106 input_size = n_features
107 num_classes = 2 * k # the output has 2 features
108 hidden_size = 20
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109 num_layers = 1
110

111

112

113

114

115

116

117 # Define Model
118 lstm = LSTM( num_classes , input_size , hidden_size , num_layers )
119

120 # Load saved model
121 PATH = ’/home/ katerina / Desktop / fromPegasus /1

wavs_1Kepochs_64batchsize_20hidden .pth ’
122 lstm. load_state_dict (torch.load(PATH)) # load the saved model
123

124

125

126

127

128

129 # # # now we will go from TENSORS to NUMPY # # #
130

131

132

133

134

135 # ############################# Predictions
##############################

136 lstm.eval ()
137 dataY_plot = dataY.data.numpy ()
138 print("\n dataY_plot .shape = ", dataY_plot .shape)
139

140 train_predict = lstm(dataX)
141 data_predict = train_predict .data.numpy ()
142 print("\n data_predict .shape = ", data_predict .shape)
143

144

145

146

147

148 comp_data_predict = ( dataY_plot [:, 0, 0] + 1j * dataY_plot [:, 0, 0 +
1]) * ( data_predict [:, 0] + 1j * data_predict [:, 0 + 1]) * np.exp( 1

j * 2 * np.pi * car_fs [0])
149 for i in range (1, k):
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150 m = 2 * i
151 comp_data_predict += ( dataY_plot [:, 0, m] + 1j * dataY_plot [:,

0, m + 1]) * ( data_predict [:, m] + 1j * data_predict [:, m + 1]) * np.
exp( 1j * 2 * np.pi * car_fs [i])

152 data_predict = comp_data_predict
153 print("\n data_predict .shape = ", data_predict .shape)
154 print("\n data_predict [0 ,:] = ", data_predict [0])
155

156

157

158

159

160 comp_dataY = dataY_plot [:, 1, 0] + 1j * dataY_plot [:, 1, 0 + 1]
161 np. savetxt (" S_r_i_TEST .txt", dataY_plot [:, 1, :] )
162

163 for i in range (1, k):
164 m = 2 * i
165 comp_dataY += dataY_plot [:, 1, m] + 1j * dataY_plot [:, 1, m + 1]
166 dataY_plot = comp_dataY
167 print("\n dataY_plot .shape = ", dataY_plot .shape)
168 print("\n dataY_plot [t=0] ", dataY_plot [0] )
169 np. savetxt (" S_real_sum_TEST .txt", np.real( dataY_plot ))
170

171

172

173

174

175

176

177 matplotlib . rcParams . update ({’font.size ’: 20})
178 T = dataY_plot .shape [0] / fs
179 n = np. linspace (1, T * fs , T * fs , endpoint = True)
180

181

182

183

184

185

186 # Hear Predictions
187 scipy.io. wavfile .write("1 wavs_1Kepochs_64batchsize_100hidden_gtrue .

wav", fs , np.real( dataY_plot ). flatten ())
188 scipy.io. wavfile .write("1 wavs_1Kepochs_64batchsize_100hidden_pred .

wav", fs , np.real( data_predict ). flatten ())
189

190
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191

192 realmse = (np. square (np.real( dataY_plot ) - np.real( data_predict ))).
mean(axis =0)

193 immse = (np. square (np.imag( dataY_plot ) - np.imag( data_predict ))).
mean(axis =0)

194 realstd = (np. square (np.real( dataY_plot ) - np.real( dataY_plot .mean(
axis =0) ))).mean(axis =0)

195 imstd = (np. square (np.imag( dataY_plot ) - np.imag( dataY_plot ).mean(
axis =0) )).mean(axis =0)

196 print("TRAIN REL.MSE = ", ( realmse + immse) / ( realstd + imstd) )
197 print("TRAIN REL.MSE = ", ( realmse ) / ( realstd ) )
198

199
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