UNIVERSITY OF CRETE
DEPARTMENT OF COMPUTER SCIENCE
FACULTY OF SCIENCES AND ENGINEERING

ArgQL: Querying Argumentative Dialogues
using a Formal, Structured Language

Dimitra Zografistou

PhD Dissertation
Presented
in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

Heraklion, November 2019

UNIVERSITY OF CRETE
DEPARTMENT OF COMPUTER SCIENCE
ArgQL: Querying Argumentative Dialogues using a Formal, Structured Language
PhD Dissertation Presented
by Dimitra Zografistou

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

APPROVED BY:

Author: Dimitra Zografistou

’/-'—\/
yZé

Supervisor: Dimitris Blexoykakis, Professor, University of Crete

Committee Member: Giorgos Flouris, Principal Researcher, FORTH-ICS

Committee Member: Antonis Bikakis, Associate Professor, University College of London (UCL)

4)LD‘“~.4,~_\ /

Committee Member: Grigoris Antoniou, Professor, University of Huddersfield

At

Committee Member: Chris Reed, Professor, University of Dundee

AN

Committee Member: Anthony Hunter, Professor, University College of London (UCL)

420

Comm;t{/e 7/bcr: Fouad Zablith, Assistant Professor, American University of Beirut

7
Depﬂr%xtﬂcmirman: Bilas Angelos, Professor, University of Crete

Heraklion, November 2019

To my family...

Acknowledgments

The years of my PhD studies have been recorded in my memory as a blending of both good and
difficult moments, related to the work itself or to personal concerns and motivations. In all those
moments, | had in my surroundings people, who consciously or unconsciously and each one in his
own way offered valuable support. There are no right words to express how lucky I feel for that. This
page is particularly devoted to them.

First and foremost, I would like to express my sincere gratitude to my supervisor Prof. Dimitris
Plexousakis for giving me the opportunity to attend the PhD program, for his insightful advises and for
being that supportive whenever someone needs him. I owe a lot not only to his scientific experience,
but mainly to the quality of his character.

I would also like to thank the rest of my examination committee, Dr. Antonis Bikakis, also one of
the three members of my Advisory Committee, who followed this work from the first steps and gave
valuable comments and remarks, as well as Prof. Anthony Hunter, Prof. Grigoris Antoniou and Dr.
Fuad Zablith for taking the time to participate in the examination and for the interesting comments
and questions. At this point, I would particularly like to refer to Prof. Chris Reed for doing all this
trip in order to join the examination physically, for the interest he manifested about my work and for
the opportunity he gave me to continue my research activity in collaboration with his team.

This thesis wouldn’t have been completed in the way it did without the contribution of Dr. Gior-
gos Flouris, also member of my Advisory Committee. Giorgos combines enthusiasm and intelligence
and working with him was in many aspects a gainful experience. I am deeply thankful for all of his
support, for getting too much into the problems of this work and most importantly for believing in it
— sometimes even more than I did.

Deep gratitude goes to Dr. Theodore Patkos for the endless and stimulating discussions (both the
scientific and the more personal ones). Theodore has a unique way to motivate someone to go after
the best for him and I feel the need to thank him for his precious advises.

I would like to acknowledge the Institute of Computer Science at FORTH and the Computer
Science Department of the University of Crete for the excellent working environment and the financial
support during the period of my studies.

I can’t tell how much I thank my beloved friend (and office neighbor), Roula Avgoustaki. Her
vivid personality, great sense of humor and warm character made the days at work feel so funny and
enjoyable that turned out to be an important support against any difficulty.

During the years of my presence in the Information Systems Lab of ICS-FORTH, I had the chance
to meet exceptional colleagues with which we shared our everyday life, and some of them also became
friends. I genuinely thank them all for offering such a great environment to work and especially

vii

Katerina Papantoniou for the discussions and her support, Constantinos Varsos for all the fun that we
had, Panagiotis Papadakos for his advises, always expressed from his own distinctive point of view,
Fillipos Gouidis for the literary moments he offered, the (now and ex) neighbors, Kostas Petrakis and
Johny Chrysakis for sharing great moments in the hub, Georgia Troullinou, Konstantina Konsolaki,
Nicole Tsampanaki, Nina Saveta, Giannis Roussakis, George Samaritakis for the unforgettable lunch
and coffee breaks, as well as Maria Moutsaki for making the life with the paperwork so much easier
and Dimitris Angelakis for all the technical support.

Beyond the physical boundaries of FORTH, there have been people, whose presence in my life
has proven to be invaluable. In particular, I refer to: Nikolas Grigoriou for being a brotherly friend
since we were kids, Giorgos Kalomoirakis for all the things he has done for me and for being the
person he is, loanna Zerva for her way of thinking, which helped me so many times and for giving
me the delight to become godmother of an adorable child, Athina, Eirini Genitsaridi for our great
discussions and her clear point of view and Larissa Sidorova for her jolly and supportive character
that helped me get away from anything occasionally concerned me. Also to friends, with which I
have spent precious moments in the past and, although apart, are always in my heart. Especially
Mary Koutraki for our longstanding friendship, Sofia Kleisarchaki for her open-minded approach to
the situations, Evangelia Mavromihelaki for her willingness to help anyone whenever needs it, Nelly
Vouzoukidou for her always positive attitude and Maria Valentaki, for the friendship which is never
affected by any space or time distance. Finally, I am truly thankful to Nikos Mastrogiorgakis for
all those beautiful features of his character, for believing in me, his encouragement and support and,
even if it is not a long time, I already feel really lucky to have him in my life. Words are not enough
to express my gratitude. I love you all, each one in a different way and for different reasons.

Last in this page but always first in my heart is my family. I am deeply and forever grateful to my
parents Antonis and Eleni for raising me to the person I am today, for their endless love and support
and for being constantly but subtly next to me in all of my decisions. Also my sisters, Chrysoula and
Eva, my beloved grandma, Pelagia and the wonderful nieces Chrysoula and Spiros gifted me, Ariadne
and Nepheli (and the youngest one which is on the way :)), for being the persons I can always count
on and I will always be there for them. I wouldn’t have made it without you and therefore this thesis
is dedicated to you..

Abstract

In light of the rapid evolution of social media that we experience over the past decade, and their
establishment as one of the main means of communication and dialogical exchange, the problem of
extracting meaningful information from data residing in human dialogues is now more crucial than
ever. Until recently, the challenges associated with this problem were being addressed as an appli-
cation domain for the computational models of fields like the Semantic Web, Information Retrieval,
Data Mining etc. However, there are some information requirements when searching in dialogues
which are quite specific and common for all types of dialogues, regardless of their context or goal,
e.g. concerning the structure of the different opinions and the correlations among them, that could
stand as an autonomous area to study. Isolating those requirements and bringing them together in
the specification of a formal language, designed exclusively for this purpose, is a research direction
which has been given less attention.

Incited by this deficiency, in this thesis we introduce ArgQL (Argumentation Query Language), a
high-level declarative language for querying dialogical data. ArgQL provides a simple and dialogue-
related terminology to write queries in the domain, which in existing query languages would be
quite difficult to express. The theory that founds the data model adopts some of the most prevailing
semantics in the area of Computational Argumentation. As a result, the target data consist of graphs
of interconnected, structured arguments and ArgQL allows for the navigation across such graphs. We
present the formal specification of the language, including the definition of its main constructs, the
concrete syntax, as well as the semantics that determine the evaluation of those constructs against the
data model.

Subsequently, we propose a methodology to translate ArgQL into other languages and in partic-
ular we show the case of RDF and its associated query language, SPARQL. To this end, we define
an RDF scheme based on the AIF conceptualization and we formalize the mappings between this
and our data model. We then build the process of query translation, as a set of rules, that define the
correspondence between the different ArgQL constructs and the respective SPARQL graph patterns.
The soundness and completeness of the process is verified by proving the equivalence between the
matching data for each of these two languages, with respect to their formal semantics. Although cor-
rect, the conformation to the precise definition of the translation rules results to non-optimal queries.
Therefore, on top of this methodology, we propose some optimization, that succeeds shorter and by
extension more efficient queries. We also give prominence to the practical side of ArgQL and we
implement the language, allowing for its execution on real data-sets. Thus, one of the outcomes of
this work was an online query endpoint, where someone can test his own queries. Finally, we conduct
an experimental study to evaluate the query performance under different execution parameters.

iX

Keywords: Computational Argumentation, Graph Query Languages, AIF, Semantic Web

Supervisor:
Dimitris Plexousakis
Professor of Computer Science Department
University of Crete

ITepiAndn

Mmpootd oty poydoion eEEALEN TWY XOLYWILXWDY OXTOWY TOL BLOVOLUE TNV TEAEL-
Tolor Sexaetion xol TNG ASLoLPLOBNTNTNG ETUXPATNONG TOVS OVAUETO GTOL OLOPOPETLUA
KLEOO ETTLXOLYWVLOG, TO TTEORANUO TNG AVEXTNONG WQEALULNG TTANEOPOPLOG ATt SLotAo-
Txd dedopéva elvar T Lo xplotpo artd Tote. Meypl TPdopoT, Ol TTPOXANOELS
TTOL GLYOJEVOVTOY [LE TO GUYXEXPLLEVO TPOBANUOL oV TLUETWOTILOVTOY WG EVOL ETILTTAE-
oV Ted(0 EPUPUOYNG TWY LDTTOAOYLOTIXWY LOYTEAWY TTOL €XOLY ovaTTuyOel o TopElg
OTWG aVTOY TOL LMuactoloYxob latol, g Avaxtnong ITAnpogopiog g EESpLENS
Aedopévwy xAT. ITopdAor aLTA, LTTAEYOLY KATTOLEG TTANPOPOPLUXES AVAYXES TTOV OYE-
tilovtor pe to TEOPBANU TNG avallTNOMG TTANPEOPOPLaG oe SLaAdYous, oL OToleS Elvart
XOLVEG YLt OAOVG TOLG TOTTOVG SLOADGYWY, AVEEXPTNTWG TOV EVPVTEPOVL TTACLGLOL TOVLG
N TOL GTOYOL TTOL UTTOPEL VO €XOLY, TTY. TOL KLPOPEOVY T JOUY] TWV OLOPOPETLXWY
amoOPewy xol Twy mOov)y cvoyetioewy LETOED Tovg, oL omoieg Yo pmopoldoay va
otofody cav plo aveEAPTNT TEELOYN TTPOS ULEAETY. H amoupdvworn autwy Twyv avo-
TXWY %ol N EVTOEN TOLG GTOV TTPOOOLOPLOWO ULOG TUTILXNG YAWOOOS, N oTTola Yo EYEL
OYEOLAUOTEL ATCOXAELGTIXA YL OVTO TO OXOTO, ATOTEAEL plar epevvnTLXY] xoTevbLvVoY, N
oTtolar EYEL PEYPEL Twpo LeAeTnOel eAdyLoTaL.

[Mopoaxtvodpevor amd avt) Ty EAAELPN, O VTN TNV EPYATIO TTOEOVOLALOVUE TNV
I'EE (I'ooo Enepwtioewy Entyetpnpatoroyiog), pwion vdpmiod emtmédov, SnAnTLx?
YAWOoo Yoo TV LTOBOAY EPWTNUATWY o Stohoyixd dedopéva. H I'EE mpoo@épet
plow amtAn xo oyeT{OpeYn KE SLOAGYOLS 0POAOYLOL YLt TNV GUVTOEYN EQWTNUATWY GTO
OUYXEXPLLEVO TOUEN, TOL OTOLXL, WE TLG VTTAPYOVOES YAWOOES ETEPWTNOEWY, Yo NTOW
0PXETA dVOXOAO Vo exppaatoby. H Dewpla mov depelivel to poviého dedouévwy
vtoleTel xdmoLa AT TOL ETULXPATEGTEQPO GNUAGLONOYLXA LOVTEAX, TTOL €YOLY OQLOTEL
otV TepLoyn ¢ Y'moloyiotixrg Emiyeipnuatoroyiog. Zovemedg, Tor dedopéva ot
omolor ameLOVBVETAL N YAWOOK ATTOTEAOVYTOL OO YPAPOLG JLACVVSESEUEVWY XL 3O-
UNUéEVLY emtyetonuaToy xal MEE diver ™ duvatdtnra tng TAoNYMnong o TEToLoug
yYodpoug. Ilapovoldlovpe AOLTOY TLE TUTILXES TPOSLAYPOYES TLS YAWOOAS, Ol OTTOLEG
TEPLAAUBAVOLY TOY 0PLOWUO TwY BoOLXWDY TNG dOUWY, TO CLVTOXTLXO TNG xobwg emiong
X0l TO ONUAGLOAOYLXO LOVTEAO, [Bdoet Tov omolov xaboplletal N ATOTIUNON TWY SOUWY
OUTWY PE OTOLXELOL TOV LOVTEAOL JEDOUEVWLV.

Axorodbwg, mpoteivovpe pla pebodoroyior yia ™ petdppoon g 'EE oe diieg
YAWOOEG, oL oLYXEXPLUEVDL, DElYVOLPE TNV TtepiTtTwaon Tng PAD (TAdooa Meptypoprig
Iydv) xow g oLOXETLOUEYNG E OWTAY YAWOOOS eTtepwThocwy, LITAPKA. Tlpog

X1

ov™) ™Y xotedbuvon, opilovue eva PA® oynuo to omolo Baoiletol oo €vvololoYLxd
LovTéNo TN ovtoroyiog AID xot TopovoLdovE TNV AYTLOTOLXLOY LETOED QLTNG TNG
OVATIOLPATTOOYG XL TOU OLXOV UOG LOVTEAOL OEDOUEVWY. XTY OGLVEYELN, TTOOOVGCLAL-
Covpe N dLodLxaolon TNG LETAPEOOTS TWY ETMEPWTNOEWY, WS EVOL GOVOAO XAYOVW®Y TTOV
optlovy TV avtioToLyior LETOED Ty SLaopeTix®y douwy ¢ N'EE xat twv aviiotol-
X0V LoTBwy ypdpov atny ZITAPKA. Ou 1dt6tnteg T 0pbdtnTog xow TAnpdtTog Tng
dtadixootiog, emoainfedovtor amodexviovtog Ty Looduvaulor LETOED TwY aTOTEAE-
opaTwY Yoo xolbeplo amd Tig SO0 YAWOOES, AVaPOPLYE XAL LE TNV TUTILXY] ONUOGLOAO-
viog toug. [apd ™y 0p06T™THL TWY XOUVOVWY PETAPEOONG, N OXELBNG EQUEUOYT TOVG
odnyel oc un BéAtioteg emepwoets. 't avtd T0 AdYyo, TAVW ot awTN TN Lebodoroyia,
TPOTELVOVUE XATOLEG BEATLOTOTIOLNOELG, Ol OTTOLEG ETULTUYYAVOLY ULXPOTEQA OE UNXOG
X0l XOT ETEXTOON TILO ATTOSOTXA EQWTNUATR. AVASELXVOOLUE OXOUO TNV TTEOXTLXY
mAevpd tng 'EE vAomolwvtog ™ YAwooa xat divovtag g ™) SuvaTtoTnTo Vo EXTE-
Aeltal oe TPOYRATIXEG OLANOYES dedopévwy. 'ETat, Eva amd Ta ATOTEAECLOTO. OV TNG
¢ SovAsLdC, elvor plo EQOEUOYN TOL LGTOD, GTNY OTOLO. UTTOPEL OTTOLOGONTTOTE Vi
SOXLULAOEL Vo TPEEEL Tal OLXA TOL EPWTNUOT. TENOG, SLEEAYOLWE WUlOt TTELPOUOTLXN
ULEAETY, TTOOXELUEVOD VO AELOAOYNOOLUE TV ATTOS00Y] TWY ETEQWTNOEWY XATW OTTO
OLOUPOPETIXES TLOPOULETPOVS EXTEAEDTS.

A€Eeig xAedta: Ymoloyiotixn Emiyetpnuatoroyio, I'h\ddooeg Enepwtnocwy o I'pa-
@ovug, AI® ovtoroyia, Znuactoroyixds lotog

Emémtne:
Anprong [TAeEovadxng
Kobnynmig Tunuatog Emtotiung Ymoroytotwdy
[Moavemtomuto Konng

Contents

Acknowledgments e e e vii
ADSITact ix
MepiAndm (Abstractin Greek) xi
Table of Contents e e xiii
Listof Figures e XV
Listof Tables Xvii
I Introduction e 1
1.1 Thebigpicture e e 1

1.2 Motivation and Problem Description 2
1.2.1 USecase sCenarioo v vv vt it 4

1.3 Research QuUestions i i e 4

1.4 The Approach e e 5

1.5 Contributions of this Dissertation 7

1.6 Outline of Dissertation e 8

2 Background and Related Work 9
2.1 Argumentationo e e e e e e e e 10
2,11 OVEIVIEW . . o ottt e e e 10

2.1.2 Argument Representations 13

2.1.3 Abstract Argumentation Frameworks 0 L. 16

2.14 Argument Interchange Format (AIF) 18

2.2 Argumentationin Social Web L 24
2.2.1 Argument Search and Extraction. 27

2.3 RDF Storage Scheme 28
23.1 RDF . .. e 28

232 SPARQL e 28

3 ArgQL - Formal Specification 31
3.1 Data model in Structured Argumentation 31
32 ArgQL Description e e e 35

3.3 Formal specification 41
3.3.1 Patterndefinitions L 41

332 Syntax e e 45

333 0 Semantics i e e e e e 46

334 ResultsForm 50

4 Theoretic principles for Query Execution L L., 51

4.1 Mappings to the RDF storage scheme 52

4.1.1 Datamapping oottt e e e e e 52

4.1.2 ArgQL to SPARQL Translation 56

4.2 Optimization of the ArgQL-to-SPARQL translation 67

4.2.1 Truncating redundantjoins L L Lo 67

4.2.2 Dealing with the equivalence semanticsissues 67

5 Implementation and Evaluation o . 73

5.1 TImplementation e e 73

501 Overviewo e e e 73

5.1.2 Parsing e e 74

5.1.3 Resultscollection 78

5.1.4 ArgQLendpoint 82

5.2 Evaluation 85

5.2.1 Experimental setup 85

5.2.2 Resultsand Discussion, 87

6 Conclusions and Future Directions 95

6.1 Synopsis of Contributions 95

6.2 Directions for Future Work and Research 96

6.2.1 Extensionsinthe Language 97

6.2.2 Implementation 99

Bibliography 101
Appendices

A0 Code ..o 111

Jd.1 RDFdata . ..o oo 111

20 Proofs ..o 113

A Publications 147

B Acronyms e e e 149

List of Figures

1.1

2.1
2.2
23
24

25
2.6
2.7

4.1

5.1
5.2
53
54

5.5
5.6
5.7
5.8
5.9
5.10

5.11
5.12

5.13

Key aspects of argumentation Lo
An interpretation of Toulmin’s model
A simple Argumentation Framework [13]
The AIF core ontology description. Dotted arrows are fulfils relations and normal
arrows are is a relations (unless indicated otherwise)
And AIF argument-graph
Conflict from Unreliability,
Default rephrase in AIF+ conceptualization

AlF graphs. o e

Data flow of the query execution process.
Example of an EBNF specification and an AST for the statement 1 + -(a + b)”

Part of the EBNF for ArgQL
Pseudo-code for the most general parsing points and the generation of the SPARQL

Pseudo-code for the transformation between RDF results into argumentative results .
Pseudo-code for the transformation between RDF results into argumentative results .
Snapshot of the ArgQL endpoint,
Snapshot of the ArgQL endpoint - List of predefined queries
Snapshot of the ArgQL endpoint - Error messages
Estimation about how the size of the SPARQL query is affected when adding con-
structs in the ArgQL query
Effect of the optimization in the executiontime
Estimation about how the execution time of the SPARQL query is affected, when
adding constructs in the ArgQL query
Scalability indatasize

XV

List of Tables

3.1

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2

ArgQL Syntax oo e e e 45
Mappingrules e 54
ArgQL to SPARQL Translation 58
ArgQL to SPARQL Translation 59
ArgQL to SPARQL Translation 60
ArgQL to SPARQL Translation 61
Query Translation with canonical assignment 70
Statistical description of AIFdbcorpora o oL, 86
Sizes of the generated SPARQL in number of JOINS and UNIONS 87
Datamapping RDF 111
Datamapping RDF 112

XVvil

Chapter 1
Introduction

Contents

1.1 Thebigpicture. o vt i ittt ittt ittt ittt oo toseseens 1
1.2 Motivation and Problem Description00, 2

1.2.1 UsSecase sCenario oo v v v vt v vt it e e 4
1.3 ResearchQuestions ittt ittt eeneeeneneneens 4
14 TheApproachttt ittt 5
1.5 Contributions of this Dissertation 7
1.6 Outlineof Dissertationttt inenenens 8

1.1 The big picture

Deliberation has always been the means for humans to manifest their inherent need for communica-
tion and self expression. Everyday, people engage in discussions stating their opinions about mulitple
issues like their daily routine, current affairs, sociopolitical problems, scientific progression and un-
countable other areas. A dialogue is usually incited by specific goals like the resolution of a conflict,
searching for a mutual settlement, exchanging information, reaching common decisions etc. An in-
teresting categorization in the different types of a dialogue can be found in [119]. The final goal may
or may not be common for all of the participants and this usually depends on their individual motives
and aspirations, factors that also affect implicitly the course of a discussion.

The advancements in the technologies of Web 2.0 over the past decade unleashed new potentials
to the way humans communicate. Among others, Web turned into a communication venue of a uni-
versal expansion, changing the way in which users interact with it and transforming them from the
passive content consumers they were during the Web 1.0 era, into active content generators. Nowa-
days, users are given the opportunity to join online communities, get involved in public discussions
with other users around the world, express in public their opinion about particular issues and give
feedback on published information. Social networks (e.g. Facebook!), blogs and microblogs (e.g.

' www.facebook.com

2 Chapter 1. Introduction

Twitter?), debate portals and crowd-sourcing platforms(e.g. Debate.org® , CreateDebate*) and web-
sites allowing rating and reviewing products (e.g. Amazon®) are only a few examples enabling online
discussions. Figure 1.1 gives an insight about the generation rate of user content by some of the most

20 1 9 This Is What Happens In An
Internet Minute

facebook

popular social platforms.

= Q
Google 1 mittion 18.1mitlion [YOURLL >

LoggingIn TextsSent 4 & ppiflion
e Videos Viewed —
NETFLIX Queries

694,444 390,030 e

Hours
Watched

@ $996,956

3.8Million

Apps Downloaded

347,222 ' @J

Spent Online Scrolling Instagram
2.1Million 87,500
@ cted SECONDS ~i
41.6 Million S 1.4 Million
° Messages Swipes
e Sent *
) 4.8 Million illi
L= ; 188 Million
GifsServed Emails Sent
180 1 Million
~1GIPHY Smart Speakers M:sgc Views m
Shipped 5 NN
amazon echo psanng w

Subscriptions w Created By:
Y @LoriLewis

Jj ¥ @OfficiallyChadd

Figure 1.1: Infographic: What happens in an Internet minute in 2019?

1.2 Motivation and Problem Description

As shown in the figure 1.1, tons of data are published every minute on the web. The digital format
of this data varies from pure text, to audiovisual, sharing though one common feature: the lack
of structure and semantic characterization, an absence which harms their potential for utilization. A
considerable portion of these volumes is owned to activities like commentary and discussions between
users. Things become more complicated with the interpretation of such data and this is due to the
vagueness and subjectivity that characterize their nature which make it hard even for a human expert
to analyze and draw conclusions about them. However, the abundance of information lying within

2www.twitter.com

3 https://www.debate.org/
4http://WWW.createdebate.com/
5 www.amazon.com

1.2. Motivation and Problem Description 3

this data, and the fact that it could offer valuable material to many different disciplines and fields like
journalism, statistics, law etc. is something that should not be overlooked, making the need to find
ways to structure, analyze and retrieve them, more imperative than ever.

Under the veil of this ambition, we deal with the problem of sense-making and extracting mean-
ingful information over human-dialogical data. The ascertain that the information requirements as-
sociated with this problem are quite specific, discrete and also common for all dialogues, regardless
of their context or goal, motivated us to isolate and investigate them as an independent domain. We
discuss about requirements like exploration of the different ways opinions are justified or withdrawn,
the identification of interactions and degree of relevance between different expressed positions, navi-
gation across a dialogue, finding the most prevailing points in a discussion, evaluating the validity of
positions or whether the goal of the dialogue has been reached also taking into account the personal
motives of the participants etc.

Until now, the problem of knowledge extraction from human dialogues has been an application
domain for the the models of various research fields. Database Management Systems [93] and Se-
mantic Web [17] have provided mechanisms to represent and query such data using a particular
scheme that includes concepts related to the domain [66,94, 117]. The Natural Language Processing
(NLP) [35,70,71] a subfield of linguistics and computer science, the studies of which focus on pro-
cessing textual data, have provided methods to extract argumentative structures from data expressed
in natural language [30, 68, 69, 107], a research area called argument mining. At the same time, the
process of human reasoning while arguing has been an object of longstanding theoretical studies,
having also featured significant computational models in the area of Argumentation [91].

The literature missed an approach which will formalize the process of information seeking in
structured dialogues, providing certain criteria designed exclusively for the domain, that would bring
together the different information requirements into its formal specification. Such a mechanism
would lie on top of any specific database which is currently used to store dialogical data, and will
offer the ability to write formal expressions to require for particular piece of data from dialogues,
using a pure syntax, with built-in dialogue-related keywords and terminology, that a non-expert in
computer science will be able understand and compose by himself. The prominence of such a mech-
anism is amplified by the expressive complexity of traditional languages (e.g. SPARQL) to express
even simple statements like "How an argument that supports a particular position is withdrawn”. We
discuss such things in detail in section 4.1.

To address this limitation, we introduce Argumentation Query Language (ArgQL) [124-126], a
high-level language for querying structured dialogical data. ArgQL reflects our first steps in the
endeavor to understand and embody information requirements like the ones described above, into the
specification of a formal language. ArgQL goes beyond the state of the art, since, to the best of our
knowledge, it is the first query language designed for this purpose.

4 Chapter 1. Introduction

1.2.1 Use case scenario

We give a potential scenario that highlights the usability of ArgQL. Assume a poll company, which
intents to conduct a survey about an issue e.g. the living conditions for a typical household of a
country. To this end, the company picks a representative sample of the population to participate
in the research. Apart from the standard questionnaires that contain some predefined choices that
they have to fill in, it also raises a discussion poll with a few questions and asks them to discuss the
specific issues. The objective for this is that they will be able to obtain a spherical awareness about
the existing social problems from the citizens’ standpoint, identify the points in which the majority
agrees, the most controversial issues and generally come into a deeper comprehension, as well as a
clearer explanation about the results they gathered by the questionnaires.

Subsequently, the company asks from a few analysts to study both questionnaires and discussions
and extract a set of summary reports that will aggregate the results from the survey. The collected
discussions may consist of hundreds of expressed opinions and it would be a very time-consuming
task for someone to read them all. Instead, what they do is gather the collected data, process them
with appropriate Natural Language Processing (NLP) algorithms which will transform them from
their initial textual, unstructured form, into structures allowing for their interpretation. Then, using
ArgQL, they write queries that express their requirements in order to locate the desired information
within the collected data. Some examples of the requests that would help them create their reports
are the following: "How do people justify the position that .. 7, ”How many of them disagree with
this position and for what reasons?”, ”Find positions which are relevant to a particular argument”,
”Which are the most persuasive (acceptable) positions from those expressed and why?”, “Return
complete lines of discussion that conform to a particular motif”. Thereby, they minimize the effort
they have to put for each different task of their report, since the results they get from ArgQL are more
targeted and structured.

1.3 Research Questions

In order to come up against the challenges of defining a new query language from scratch, we dealt
with a number of sub-problems to which it is decomposed, which have both research and practi-
cal character. In particular, we had to make decisions about the following research (and technical)
questions:

* How can arguments and dialogues be modeled in a representation appropriate for searching
and retrieving them, while at the same time being general enough to support different types of
arguments and debates? What kind of interactions can be determined between arguments ?

® Definition of the set information requirements supported by the language. In which general
categories can they be classified?

1.4. The Approach 5

® Decision about the main characteristics of the language? Would it be procedural like a pro-
gramming language, declarative like query languages, rule-based or other? Depending on the
particular decision, decide about the syntax (keywords, expressions, returning elements etc.)?
Build it upon some already existing language and if yes, on which and for what reasons?

* Having defined the formal model of data as well as the concrete syntax of the language, how
can the semantics of the language be defined so that they will show formally the way that the
different expressions of the language are evaluated against the data model. Would we be based
on SPARQL semantics, on First order logic interpretation function or some hybrid approach?

® Regarding the implementation of the language decide between building it from scratch or trans-
lating to another language:

— In the first option, how can we build a pure storage scheme based on the suggested data
model and how will we achieve an efficient implementation?

— With the second option, we had to decide to which language ours would be translated. We
would also have to show the mappings between our data model and the respective data
scheme. How can we define formally the translation, so that we will be able to prove that

it is sound and complete?

* Based on the choice about the language implementation, we also have to decide about how
will we evaluate its efficiency. Where can we find data-sets, what to evaluate and how will we
conduct the experiments?

1.4 The Approach

The definition of the formal specification of ArgQL was built according to the formal semantics of
a data model for representing arguments and dialogues. In order to define this data model, we had
in our disposal a multitude of theoretical models coming from the area of Computational Argumen-
tation [91]. Argumentation is a rich interdisciplinary area, ramified in various fields like Artificial
Intelligence, collaborative learning, philosophy, linguistics and psychology. For at least two decades,
its studies have served a wide variety of theoretical and computational reasoning models that simulate
human cognitive behavior while arguing. Cornerstone for all these studies is the notion of argument.
In particular, a great volume of those studies is devoted to give a definition about the internal struc-
ture of an argument, with the conspicuous majority to consent that it is essentially an inference from
a set of statements (premises) to a central position (conclusion). Others are involved in studying the
different interactions and correlations among arguments, while others view them from an abstract
perspective in which arguments and relations form graphs. On top of these representations they pro-
pose reasoning methods for multiple purposes, like resolving conflicts, reaching common decisions,

6 Chapter 1. Introduction

drawing conclusions etc. We noticed that some of the most prevailing concepts in the domain, are
so discrete and compound, that they could also be included in the formalization of a data model for
dialogical data. As a result, we suggest a data model consisting of graphs of structured arguments
and relations, whereas ArgQL is designed according to these concepts. Note that the intention was
to keep the model as abstract as possible, so that ArgQL will be compatible with the majority of the
models in the area of Argumentation.

In its current form, ArgQL supports a number of information requirements, that can be classified
to one (or more) of the following categories:

a. Locating individual arguments. Queries in this category express constraints on the internal
structure of arguments. For example queries asking for arguments which justify a particular
conclusion, requiring the existence of specific values in the premises of arguments, etc.

b. Identifying commonalities in arguments’ structure. Queries in this category search for corre-
lated arguments based on their content. For example, someone can ask for pairs of arguments
the premise sets of which have common elements.

c. Extracting argument relations. ArgQL offers built-in keywords that allow the expression of re-
strictions about the relations between arguments. Depending on the different types of relations
defined in the data model, the respective set of keywords is defined in the language to identify
each type.

d. Traversing the argument graph. Within this category, ArgQL provides expressions used for
navigation across the graph, which, combined with the mechanisms for filtering the argument
structure, allow the identification of complete paths within the graph.

The syntax of ArgQL has been influenced by Cypher [48] and SPARQL [87], both being graph
query languages, and it is based on the idea of pattern matching. This means that it provides expres-
sions which are used as motifs in order to detect information matching to them. The formal definition
of those patterns have been designed according to the data model and, therefore, we support patterns
that restrict the internal structure of arguments, as well as patterns for graph navigation. ArgQL gives
also special emphasis to the content equivalence, in the sense that it takes into account the fact that
a specific content can be paraphrased in many different ways. This means whenever the search is re-
stricted according to a particular content value, the query is also evaluated against all of its equivalent
ones. The returning values of ArgQL can be either simple elements from the knowledge base, like
arguments, propositions etc., or complete paths. Regarding the semantics, they are mainly influenced
by the semantics of first-order logic. In particular, we define an interpretation function which is ap-
plied on all the different types of patterns and returns sets with all of the matching elements from the
knowledge base.

One of the major objectives of this thesis was to showcase the feasibility of ArgQL in real ap-
plication domains. To this end, we came up against the dilemma about whether we should pursue

1.5. Contributions of this Dissertation 7

a native implementation and build our own methods and algorithms to execute the queries, or trans-
late it in some already existing storage scheme. The first option would require us to deal with a
number of problems already known for their complexity relevant to graph theory, like traversing and
reachability issues, isomorphism, homomorphism etc. a task that falls out of the range of this thesis.
Furthermore, it would require to generate data represented in the proposed data model. Therefore,
we chose to leverage the maturity and efficiency of standardized storage schemes, by translating
ArgQL into other query languages. In the current thesis, we show the case of RDF and the asso-
ciated query language SPARQL. At this point, we need to emphasize that the process is not bound
with this scheme, but it can be reproduced easily for other models as well, like First Order Logic,
Cypher, Relational Databases etc. The reasons for choosing to show the particular storage scheme
though, are manifold. First of all, the main target domain of ArgQL is the Web, where SPARQL
constitutes the standard query language. In addition, a wide number of tools in the area of argumen-
tation [57,66, 88,90,92, 105] already extract their data in the particular format (AIF) and this way we
took advantage of these datasets to test our queries. The implementation of the translation, verified
our initial assertion (which also impelled our research), that, expressing the particular information
requirements in the syntax of the standard languages could be a quite struggling task. On the other
hand, the experimental evaluation that followed revealed that, translating ArgQL in a standard lan-
guage was a good choice since, in most of the cases, the execution times were within satisfying limits,
while in the cases that the execution was a bit slower, was due to limitations of the target language.

1.5 Contributions of this Dissertation

The key contributions of this thesis are the following:

® We propose a data model for representing dialogical data. It adopts abstract semantics being
able to capture a multitude of theoretical models in the field of Argumentation, making the
data model itself and by extension the query language compatible with them. To the best of
our knowledge, this is the first time that semantics from the area of Argumentation are used in
order to define a pure storage format for dialogical data.

® We propose a query language for argumentative data. ArgQL constitutes the first query lan-
guage that formalizes in its specification the information requirements related with the domain
of dialogues. We define the syntax both in a formal way and as an EBNF grammar and we also
define the ArgQL semantics.

® We describe a mapping to the RDF storage scheme. In particular regarding the data models, we
show the correspondence between each of the concepts of our data model and the concepts of
the AIF ontology in RDFS. Concerning the translation into SPARQL, we present, in a formal
way, the translation from each ArgQL pattern to a SPARQL graph pattern. We prove the cor-
rectness of the suggested translation and that it is semantics preserving, based on the semantics
of the two languages and the suggested data and query mappings.

8 Chapter 1. Introduction

* Given that the proposed translation, in practice, does not generate the optimal possible queries,
we suggest an optimization of the proposed translation which achieves shorter and by extension
more efficient queries.

® We conduct an experimental study to evaluate the query execution and in particular, the trans-
lation along with its optimization. In this study we provide an estimation about the sizes of the
generated queries, we show how the different components of the language affect not only that
size but also the execution times, we evaluate the performance before and after the suggested
optimization and finally, we measure the scalability in increasing data volumes.

® We provide an ArgQL endpoint, to allow for testing the language in a real dataset.

1.6 Outline of Dissertation

This thesis is organized as follows:

Chapter 2 provides some background knowledge that the reader will find useful in order to achieve
a deeper comprehension of the related fields. Specifically, it offers a brief description of the most
relevant concepts in the area of Argumentation. Then we present some preliminary terminology from
RDF/s and SPARQL, which we will use to present the translation. Since there are no equivalent query
languages to which we can compare ourselves, we also present in this section some models from the
area of Argumentation that deal with the problem of retrieving information from argumentative data,
but view it from a different research angle.

A comprehensive description of the language is given in chapter 3. In particular, in section 3.1
we describe the theory of the proposed data model. In section 3.2 we present the language informally
by analyzing the informational requirements that currently covers, along with some query examples
that enable an initial familiarization with the language. Then, in section 3.3 we give the formal
specification of the language. The definition of the different patterns as well as its syntax are given in
section 3.3.2, while the formal semantics of the language are presented in section 3.3.3.

Chapter 4 presents formally our methodology for query execution. In particular, in section 4.1.1
we give the mappings between our data model to the RDF format, while in section 4.1.2 we present
the translation of ArgQL into SPARQL. The proof of correctness of the translation is given in the
appendix .2. Section 4.2 describes some optimizations that concern the particular methodology.

Chapter 5 deals with technical issues that regard the execution and the efficiency of ArgQL. In
section 5.1 we describe the implementation of the language. We present the basic algorithms at
the parsing stage (Section 5.1.2), as well as those at the result stage, when the results returned by
the SPARQL query are collected in order to create the final answer of an ArgQL query (Section
5.1.3). Furthermore, in section 5.1.4 we introduce the ArgQL endpoint as one of the outcomes of this
research. A comprehensive experimental study is given in section 5.2.

Finally, some conclusions are drawn in chapter 6, which summarizes all that have been described
in this document, and also includes discussion about future directions of this work.

Chapter 2
Background and Related Work

Contents
21 Argumentation. i ittt ittt et e e 9
201 OVEIVIEW . . . o ot e 9
2.1.2 Argument Representations, 13
2.1.3 Abstract Argumentation Frameworks, 16
2.1.4 Argument Interchange Format (AIF) 18
2.2 ArgumentationinSocial Web i i i, 24
2.2.1 Argument Search and Extraction. 27
23 RDF StorageSchemettt inennenenn 27
231 RDF. ... e 27
232 SPARQL e 28

This chapter is devoted to some background knowledge and related work with respect to our re-
search. In particular, section 2.1, provides a horizontal overview of the main aspects in the area of
Computational Argumentation, since its representations and models highly influenced an important
part of our work so far, but also the directions in which it can be extended in the future. We already
mentioned that, ArgQL is the first query language targeting a data model for argumentation. There-
fore, there are no similar languages with which we can directly compare ourselves. However, in the
literature several approaches can be found that deal with the general problem of searching and ex-
tracting data from argumentative dialogues, but use standard models of other fields to address it. In
section 2.2 we review some of these models. Finally, section 2.3 presents some preliminaries for the

RDF/SPARQL languages since our data model and ArgQL are translated in them in chapter 4.

10 Chapter 2. Background and Related Work

2.1 Argumentation
2.1.1 Overview

In this section we give a concise overview of the area of Argumentation and the research problems
tackled by its theoretical and computational models. As a cognitive capacity, argumentation is impor-
tant for handling conflicting beliefs, assumptions, viewpoints, opinions, goals, and many other kinds
of mental attitudes. Faced with situations of incomplete of inconsistent information, people often re-
sort to a process of constructing arguments in favor or against a given position, in order to make sense
of the situation. Then, they engage in interactions with other people in order to exchange arguments
in a cooperative or competitive attitude to reach a final agreement and/or to defend and promote an
individual position. Exactly this procedure of reasoning is what the computational models of the
argumentation area simulate. In particular, Argumentation promises powerful methods for reasoning
with inconsistent knowledge and handling uncertainty [64, 80] in order to draw general conclusions

We borrow an image from [11] which gives an insightful illustration of the key aspects within
a typical process of argumentation (Figure 2.1). There are five main stages that characterize this
process: structural, relational dialogical, assessment and rhetorical. The boundaries between those
layers usually are not tangible and some of the referred models may be involved in more than one
stages. We will describe each layer separately, by giving some of the most representative argumen-
tation frameworks for each stage. Regarding the first two stages, since they constitute the basic
background of our work, will be discussed in more details the next section.

Structured layer. At this point arguments are constructed. Issues that concern the particular layer,
are related with decisions about the internal structure of arguments in terms of their constitution and
the relations between their ingredients. In all of the existing representations, arguments are created
under a particular logic, and they essentially represent an inference using the method defined by this
logic. Roughly, an argument can be seen as a pair (@, @), where @ is a subset of the knowledge base
(a set of formulae) that logically entails & (a formula). Here, & is called support and « is the claim.
More about the different forms of an argument is given in the following section.

Relational layer. The relational layer deals with the identification and the formal representation
of the different ways in which arguments interlink. Some of the most common types of relations are
the a) subargument/superarguemnt relationships, indicating how an argument is built incrementally
on top of other arguments, b) the attack relation that keeps all the different ways in which an argument
may be withdrawn by other arguments, c) the support relation representing the ways that an argument
supports another one by amplifying its conclusion or some of its premises and d) the preference which
creates a ranking relation among arguments according to some criteria.

Dialogical layer. The dialogical layer deals with issues related to the process of argument ex-
change. That exchange is usually formalized as a game, which is made up of a set of communicative
acts called moves, and is governed by a protocol, that is a set of rules that define the allowed moves

2.1. Argumentation 11

Structural layer: How are arguments constructed?

Relational layer: What are the re-
lationships between arguments?

Dialogical layer: How can argumen-
tation be undertaken in dialogues?

Assessment layer: How can a constellation of inter-
acting arguments be evaluated and conclusions drawn?

Rhetorical layer: How can argumentation be
tailored for an audience so that it is persuasive?

Figure 2.1: Key aspects of argumentation

at each stage of the dialogue. The protocol also specifies which must be the content of the locutions.
Some of the models also formalize the outcome of the game, creating that way an intersection with
the next layer: assesment. Douglas Walton in his book [120] makes a valuable categorization in the
types of dialogues, based upon the information the participants have at the commencement of a dia-
logue, their individual goals for the dialogue and the goals they share. Some of these categories are:
Information-Seeking Dialogues, Inquiry Dialogues, Persuasion Dialogues, Negotiation Dialogues,
Deliberation Dialogues etc.

One of the most known dialogue games has been proposed by Prakken in [82], which formulates
the protocol for a persuasion dialogue, having as a goal to resolve a conflict of opinion. This means
that it is required from the dialogue to have a final outcome and therefore the approach captures also
the next layer. Other equally significant dialogue games found in the literature are: [28] which focus
on inquiry dialogue games, [96] that explore how argumentation schemes and their critical questions
can be characterized as an extension to traditional dialectical systems and [4] where a general and
abstract formal setting for argumentative dialogue protocols is proposed.

Assessment layer. In this layer, the created dialogue is evaluated in order to establish the justi-
fication status of the exchanged arguments. As we mentioned before, there are some argumentation
frameworks that suggest evaluation methods over the defined structures of arguments and their rela-
tions. One of the most known such frameworks is the DELP (Defeasible Logic Programming) [51],
an argumentation framework, the formalism of which combines results of Logic Programming and
Defeasible Argumentation for warranting the entailed conclusions and deciding between contradic-
tory goals. In this framework, the arguments and relations are explicitly defined, and on top of these
formalism, they propose methods to evaluate the created dialectical trees, constituted by a number
of argumentation lines. The Carneades model of argument [53] is a formal, mathematical model
of argument structure and evaluation, taking seriously the procedural and dialectical aspects of ar-
gumentation. The model applies proof standards to determine the acceptability of statements on an

12 Chapter 2. Background and Related Work

issue-by-issue basis.

There is a large portion among the argumentation frameworks though, which do not rely on
the structure of arguments to compute acceptance problems, but instead, they examine other external
features for this purpose. Perhaps the most influential approach in the area of argumentation constitute
the Abstract Argumentation Frameworks with the one of Dung [38] having paved the way to them. In
abstract argumentation frameworks, the internal structure of arguments is indifferent, and dialogues
are faced as graphs, the nodes of which represent arguments, but as abstract entities, and the edges
represent the relations among them. Within such an arrangement, graph-oriented methods are applied
to assess the acceptability of arguments. Due to their importance, we devote a separate section to
describe these frameworks. Several extensions have been proposed that import other domain-related
features in the evaluation process like the preference-based abstract argumentation [8], value-based
argumentation frameworks [16], bipolar argumentation [33] etc.

Another significant category of frameworks that can be classified in the models of this stage,
constitute the weighted argumentation frameworks. We refer to frameworks that assign weights on
arguments (e.g. [5-7,40]) or on attacks (e.g. [36,41]) and draw conclusions about the strength of
arguments based on those numbers. These weights may be some arbitrary number, but in some
cases [61,77] , they express the degree of arguments’ uncertainty, and as a result, the evaluation
of acceptance shifts to the probabilistic theory. Other factors that can affect the acceptability of
an argument, are related with trust issues about the resource from which it originated, [76, 108],
individual preferences [8, 72] etc.

Rhetorical layer. Normally argumentation is undertaken in some wider context of individual
goals for the participants, which may be different from the common one. These goals reflect in
the strategy in which they construct and communicate their argument, combined with whom will be
the one that will receive it. In this stage, concepts like persuasion, audience and Beliefs Desires
Intentions (BDI) are inserted in the reasoning models.

Formulations built around persuasion are based on the idea that, when two (or more) interlocutors
disagree on a state of affairs, then the goal of each one when building an argument to communicate,
is to make the rest change their minds and internalize this argument. Thus, he reasons not only about
his own profile and knowledge, but also with respect to the profiles (or more precisely his perception
about the profiles) of the audience. Some representative argumentation frameworks dealing which
such issues follow.

In the Value-based Argumentation Frameworks (VAF) [16] they model persuasion as follows:
Built on top of abstract argumentation, each argument promotes a set of social values. Audience is
also modeled as an ordering between those values. The strength of an argument depends on the social
values that it advances, and that whether the attack of one argument on another succeeds depends on
the comparative strength of the values advanced by the arguments concerned. In [20, 59], on top
of logic-based argumentation formalisms, the resonance (or impact) of an argument, depends on the
extent to which the justification of the argument, agrees with what the audience regards as important,
otherwise, to which extent, the justification and the beliefs of the audience intersect. In [9] they define

2.1. Argumentation 13

three measures for analyzing dialogs from the point of view of an external agent: i) measures of the
quality of the exchanged arguments in terms of their strengths, ii) measures of the behavior of each
participating agent in terms of its coherence, its aggressiveness in the dialog, and finally in terms of
the novelty of its arguments, iii) measures of the quality of the dialog itself in terms of the relevance
and usefulness of its moves. Some additional persuasion models can be found in [29,44,82,113].

BDI is a model, which is usually met in cognitive systems and is used to represent the mental
state of intelligent agents. In particular, they can be represented by the following components: Beliefs
represent the knowledge of the world, Desires represent the objective to accomplish and Intentions
represent the course of actions currently under execution, in order to achieve the desires. Their
methods find valuable application in the argumentation reasoning process since they may highly
influence the way in which participants argue towards the satisfaction of their goals. Some examples
of argumentative systems that use the BDI model are given in [78, 101, 102]

Argumentation in multi-agent environments

Multi-agent systems is a domain in which all those models of argumentation can offer valuable appli-
cation. In essence, agents are independent and intelligent entities, with particular cognitive skills and
the smooth coexistence in the same environment of more than one agents, requires that they are able
to communicate with each other, in order to result in agreements when some issue arises. The motives
that may bring them in such communication are manifold, like the resolution of a conflict, the joint
decision making, the determination of some plan of actions (practical reasoning) etc. For all these
problems, there is covering with all of the argumentation stages described above. A deeper analysis
of this area would fall out of the scope of our research. For the interested reader though, in [91] there
is a whole chapter devoted to the relation between argumentation and multi-agent systems.

2.1.2 Argument Representations

An argument is the elementary unit in a typical argumentation process. Especially in the early years
of argumentation, many philosophers and experts in the area, invested efforts to give a precise but
generic though answer to the question that raised much controversy in the community: “What is an
argument?”

Philosopher Stephen E. Toulmin [111] proposed argumentation model of law, in which (1) the
proponent is trying to prove claim, by giving (2) evidence or data to support that claim and (3)
underlies the argument with assumptions or presuppositions that constitute the warrant. These three
notions constitute the required part. In addition, he defined an optional part that consists of the
following: qualifiers give a qualitative measurement for the uncertainty of the argument, rebuttals
give the points where an argument can be withdrawn and backing is used for extra evidence to the
warrant. Figure 2.2 shows Toulmin’s original argument pattern. Although theoretical and intuitive
enough, Toulmin’ s model has been many times considered as a reference point to the research of
computational argumentation. Several extensions of his model have been proposed ([15], [12], [50])

14 Chapter 2. Background and Related Work

Qualifier,
(Deta) \ Claim

Warrant ’ Rebuttal
Backing)

Figure 2.2: An interpretation of Toulmin’s model

Walton [122] introduced twenty-five argumentation schemes namely, stereotypical, non-deductive
and non-monotonic patterns of reasoning (structures of inference) able to represent arguments of our
everyday life. ”Argument from Position to Know”, ”Appeal to Expert Opinion”, ”Argument from
Cause to Effect” are some of these patterns. Each scheme has a corresponding set of critical ques-
tions, representing its defeasibility conditions and the possible weak points that the interlocutor can
use to challenge the argument. Below is an example for argument from expert opinion:

Major Premise: Source E is an expert in subject domain S containing proposition A.

Minor Premise: E asserts that proposition A (in domain §) is true(false)

Conclusion: A may plausibly be taken to be true (false)

The standard six basic critical questions matching the appeal to this scheme are the following.

1. Expertise Question: How credible is E as an expert source?

2. Field Question: 1Is E an expert in the field F that A is in?

3. Opinion Question: What did E assert that implies A?

4. Trustworthiness Question: Is E personally reliable as a source?

5. Consistency Question: Is A consistent with what other experts assert?

6. Backup Evidence Question: Is E’s assertion based on evidence?

One of the most important points in these argumentation schemes, lies in their capability to offer com-
plete arguments by filling missing statements from enthymemes, that is arguments whose premises
or conclusion are either left unstated or are implied. Despite the lack of logical formality in the rea-
soning procedures and the interactions between arguments of these forms, Walton’s schemes have
significantly influenced the research especially in the areas of social argumentation and argument

mining.

2.1. Argumentation 15

Despite the controversy around its constitution, there is a point of reference to which, most of the
representations seem to conform, and it is that an argument is a pair (Support,Conclusion), such that
the Conclusion part is inferred by the Support. The majority of the frameworks use formal languages
to define their arguments around this general concept, and the differentiations are mainly detected in
the inference method. One such model was given by Besnard and Hunter [20] in which arguments
are defined in classical logic as

Definition 1. An argument is a pair (®,) such that
o Pl
s O
* & js a minimal subset of A, where A is a finite set of formulae.
On top of this argument structure, three types of relations are defined:

Definition 2 (Defeater). A defeater for an argument (P,) is an argument (¥,), such that B +

(@1 A---A@y) for some (@y,...,¢,) C D

Definition 3 (Undercut). An undercut for an argument (P, o) is an argument (¥',-(@1 A---Ap)),
where (91,...,¢,) C P

Definition 4 (Rebuttal). An rebuttal for an argument (®, @) is an argument (¥,), iff B < «

Arguments do not represent proofs, instead their nature is defeasible. It is explained in terms of
the interactions between conflicting arguments: inferences can be defeated and conclusions which
have been drawn, may be later withdrawn, when additional information becomes available that gives
rise to stronger counterarguments. Vreeswijk in [116] defined the arguments as “’defeasible proofs”
and used an unstructured language without logical connectiveness such as negation, to formalize

them. His formalization was later used by various versions of ASPIC formalism [84]. In particular:

Definition 5. An argument A on the basis of a knowledge base (IC,<) in an argumentation system
(L,—,R,<)is:

1. @ if ¢ e K with
Prem(A) ={o},
Conc(A) = o,
Sub(A) = o,
DefRules(A) = @,
TopRule(A) = undefined.

2. Ay,..., A, > WifAy,... A, are arguments such that there exists a strict rule

Conc(Ay),ldots,Conc(A,) — Y in R,

16 Chapter 2. Background and Related Work
Prem(A) = Prem(A;)U...UPrem(A,),
Conc(A) = v,
Sub(A) =Sub(A;)u...uSub(A,)U{A},
DefRules(A) = DefRules(A;)U---UDefRules(A,),
TopRule(A) =Conc(Ay),...,Conc(A,) >y
3. Ay,... Ay = Y ifAy,... A, are arguments such that there exists a defeasible rule Conc(Ay),

..., Conc(A,) = W in Ry

Prem(A) = Prem(A;)U...UPrem(A,),

Conc(A) = v,

Sub(A) = Sub(A;)u...uSub(A,)U{A},

DefRules(A) = DefRules(A;)U---UDefRules(A,) u{Conc(Ay),...Conc(A,) = vy},
TopRule(A) =Conc(Ay),...Conc(A,) =y

Other non-monotonic reasoning formalisms that have been proposed are described in ([80], [86]).

Some works represent defeasibility as uncertainty in the premises e.g argumentation based on as-

sumptions [39, 115], while others express it by using defeasible inference rules [S1]. However,

in [18, 19, 103], it has been shown that by having a classical logic-based notion of argumentation

we can have a much deeper understanding of the individual arguments and of the counterarguments

that impact on each argument. Some general reviews of formalisms for argumentation can be found
in [47].

2.1.3 Abstract Argumentation Frameworks

According to Dung [38] an argumentation framework is defined as:

Theorem 1. An argumentation framework (AF) is a pair (Arg, R) where

® Arg is a finite set of arguments

® RC ArgxArg is a relation representing attacks.

An example of a simple argumentation framework is depicted in figure 2.3
A B Cc D

Figure 2.3: A simple Argumentation Framework [13]

In the graph of figure 2.3, A attacks B, B attacks C, and there is a mutual attack (or conflict)

between C and D. These are called directed attacks and there is also the relation of defense between

2.1. Argumentation 17

A and C as A directly attacks the attacker of B, so indirectly it defends B. On top of this representation,
he introduced a number of semantics that, essentially constitute different ’contexts” under which the
status of arguments is determined. In the paper of Baroni et. al [13], it is asserted that an argument
in a AF may be characterized by one of three statuses: accepted, rejected or undecided. This is
expressed with the labelling A = {in,out,undec} respectively and it constitutes a valuable effort to
describe the semantics of Dung through these labels. An alternative approach for assigning labels
can be found in [62] that use the set {+,—, ?} for accepted, rejected and undecided respectively. Dung
defined acceptability through the term of extension, that is subsets of Arg that include only acceptable
arguments or with the labelling semantics, these arguments that are labeled as in. So, an argument,
may or may not be included in an extension (there is not a sense of undefined argument). Before
starting describing the semantics, it is worth introducing some definitions.

Theorem 2. Given an Argumentation Framework AF = (Arg, R), a set S € Arg is conflict-free, iff for
eacha,beS,(a,b) ¢R

Conflict free is every set of arguments not attacking each other. From the example in figure 2.3, the
conflict-free sets are {A},{B},{C},{D},{A,C},{A,D},{B,D}. Admissibility is defined based on
the notion of defending arguments as follows:

Theorem 3. Given an Argumentation Framework AF = (Arg, R), a set S € A is admissible, iff S is
conflict-free and S € F(S), where F(S) = {A | S defends A}

Meaning that the arguments included in the set S are acceptable with respect to S. The admissible
sets in figure 2.3 are {A},{D},{A,C} and {A,D}. The following definition says that a complete set,
includes all the arguments it defends, or otherwise defines the closure for admissibility.

Theorem 4. Given an Argumentation Framework AF = (Arg, R), a set S C A is complete, iff S is
conflict-free and S = F(S), where F(S) = {A | S defends A}

All complete sets are also admissible, however the opposite does not hold. For example the complete
sets in the example are {A},{A,C},{A,D}. In the following definitions, we introduce the different
semantics:

Theorem 5. Given an Argumentation Framework AF = (Arg, R), the grounded extension of AF is a

minimal with respect to set inclusion complete extension of AF.

The grounded extension includes the arguments that are included in every extension and one cannot
avoid to accept. It is not necessary that each AF has a grounded extension. In our example, there is
one and it is the set {A}.

Theorem 6. Given an Argumentation Framework AF = (Arg, R), the preferred extension of AF is a

maximal with respect to set inclusion complete extension of AF.

18 Chapter 2. Background and Related Work

Preferred semantics express the idea to accept as many arguments as reasonably possible. In the
example, two preferred extensions exist, namely {A,C},{A,D}.

Theorem 7. Given an Argumentation Framework AF = (Arg, R), the stable extension of AF is a
conflict-free set S and Va € Args \ S, there exists b € S, such that (a,b) € R

Stable semantics, indicate that no undecidable arguments exist in the graph, and they are either ac-
cepted or rejected. For the example in the figure, two stable extensions exist, namely {A,C},{A,D}.

In [13] they describe four alternative semantics: semi-stable, ideal, stage and CF2 but we will not
get into more details about them. Grounded semantics is the case of skeptical acceptance and can give
solutions for problems that require a unique result. On the other hand, preferred and stable solutions
give more than one results and is the case of credulous acceptance. In the example of figure 2.3, the
different alternatives for each semantics, are caused because of the existence of a cycle in the graph,
by considering each time one of the conflicted arguments as accepted and the other as defeated.

2.1.4 Argument Interchange Format (AIF)

The Argument Interchange Format (AIF) [34,89] has been devised in order to support the interchange
of ideas and data between different projects and applications in the area of computational argumenta-
tion. In order to support such interchange, an abstract ontology for argumentation is presented, which
serves as an interlingua between various more concrete argumentation languages. For example, a
mapping from AIF to one of the most known argumentation frameworks, ASPIC+ [84] has been
defined in [24].

The AIF core ontology is first and foremost an abstract, high-level specification of argumentative
information and the relations of inference, conflict and preference between this information. The
core ontology is intended as a conceptual model of arguments and the schemes or patterns arguments
generally follow. It defines arguments and their mutual relations as typed graphs [92], which is an
intuitive way of representing argument in a structured and systematic way without the formal con-
straints of a logic. Furthermore, this high-level description of the AIF ontology thus also meets [56]’s
criterion of *minimal encoding bias’ for ontologies, which states that a conceptualization should be
specified at the knowledge level, without depending on a particular symbol-level encoding. The
high-level description of the AIF ontology can be made more concrete in individual specifications
that make use of particular formalisms. Examples of such specifications of the AIF are the OWL-
Description Logic specification proposed by [88], the RDFs specification as discussed by [92] and
the Database Schema specification outlined in [89].

Description of the AIF Core Ontology

The AIF core ontology falls into two natural halves: the Upper Ontology and the Forms Ontology.
The Upper Ontology defines the basic building blocks of AIF argument graphs, nodes and edges. The

2.1. Argumentation 19

Forms Ontology allows us to type the elements of AIF graphs in terms of argumentation-theoretical
concepts such as inference, conflict and so on. Nodes can be used to build argument-graphs and
these nodes then fulfill (i.e. instantiate) specific forms, such as inference schemes, from the Forms
Ontology. In figure 2.4 an overview is given with the main description of the AIF ontology. White
nodes define the classes (concepts) in the Upper Ontology whilst grey nodes define those in the Forms
Ontology. The arrows denote the different relations between the classes in the ontology: dotted arrows
are fulfills relations and normal arrows are is a (class inclusion) relations. So, for example, the class
of inference schemes is a subclass of the class of schemes and RA-nodes (Rule Applications) fulfill

inference schemes.

 — .
EcEc L6 T I » Form H
EE |-
' | ' 1 1IN
S-Node I-Node | ,| Statement g& &% 3
Scheme Application Information Description Scheme TP ? T E
'y ¥ Fy ¢
B [
EE B¥
33 3

: ‘ []

CA-Node || PA-Node || RA-Node -
Inference | |Preference|| Conflict

Conflict Preference Rule Premise -3
Application Application Appiication -Presumption- Scheme Scheme Scheme

=

.

Figure 2.4: The AIF core ontology description. Dotted arrows are fulfils relations and normal
arrows are is a relations (unless indicated otherwise)

The Upper Ontology places at its core a distinction between information, such as propositions
and sentences, and applications of schemes, general patterns of reasoning such as inference or con-
flict. Accordingly, the Upper Ontology describes two types of nodes for building argument graphs:
information nodes (I-nodes) and scheme application nodes (S-nodes), as well as an edge relation for
the edges between nodes. S-nodes can be rule application nodes (RAnodes), which denote specific
inference relations, conflict application nodes (CA-nodes), which denote specific conflict relations,
and preference application nodes (PA-nodes), which denote specific preference relations. As [34]
notes, nodes can have various attributes (e.g. creator, date). In the current AIF specification, a node
consists of an identifier and some content (i.e. the information or the specific scheme that is being
applied)

The Forms Ontology defines the schemes and types of statements commonly used in argumen-
tation. The cornerstones of the Forms Ontology are schemes: inference, conflict and preference are
treated as genera of a more abstract class of schematic relationships [26], which allows the three
types of relationship to be treated in more or less the same way, which in turn greatly simplifies the
ontological machinery required for handling them. Thus, inference schemes, conflict schemes and

preference schemes in the Forms Ontology embody the general principles expressing how it is that

20 Chapter 2. Background and Related Work

q is inferable from p, p is in conflict with q, and p is preferable to q, respectively. The individual
RA-, CA- and PA-nodes that fulfil these schemes then capture the passage or the process of actually
inferring q from p, conflicting p with q and preferring p to g, respectively.

The nodes from the Upper Ontology can be used to build AIF argument graph, as follows:

Definition 6 (AIF graph). An AIF argument graph Gayr is a simple digraph (Vair, Eajr) where

1. Vaip=TURAUCAUPA is the set of nodes in Gayr, where I are the I-nodes, RA are the RA-nodes,
CA are the CA-nodes and P A are the PA-nodes; and

2. Eg;p € Varr x Vagp \ I x 1 is the set of the edges in Gajp. Any edge e € Ezjp is assumed
to have exactly one type from among the following: premise, conclusion, preferred element,

dispreferred element; and
3. ifve Vi \l then v has at least one direct predecessor and one direct successor; and

4. if ve RA then v has at least one direct predecessor via a premise edge and exactly one direct
successor via a conclusion edge; and

5. ifve PA then v has exactly one direct predecessor via a preferred element edge and exactly one

direct successor via a dispreferred element edge; and

6. if veCA, then v has exactly one direct predecessor via a premise edge and exactly one direct
successor via a conclusion edge.

We say that, given two nodes vy, v, € Vayr, v1 is a predecessor of v, and v; is a successor of vy if
there is a path in G4;r from v to v, and vy is a direct predecessor of v, and v; is a direct successor
of vy if there is an edge (v1,v2) € Ea;r. A node v is called an initial node if it has no predecessor.

Condition 2 states that I-nodes can only be connected to other I-nodes via S-nodes, that is, there
must be a scheme that expresses the rationale behind the relation between I-nodes. S-nodes, on
the other hand, can be connected to other S-nodes directly (see, e.g., Figures 3, 4). Condition 3
ensures that S-nodes always have at least one predecessor and successor, so that (a chain of) scheme
applications always start and end with information in the form of an I-node.

Notice that in Definition 6 the edges are typed to indicate what the role of one node is with respect
to another node. These edge types are defined in the Forms Ontology for each of the schemes and
forms they connect (see the named arrows with the open heads in Figure 2.4). For example, a node
that fulfils an inference or e conflict scheme can have a predecessor via a premise or presumption
edge. Conditions 4 - 6 in Definition 6 state the specific constraints on edges in an argument graph:
inference applications (RA-nodes) always have at least one premise and at exactly one conclusion
(4), preference applications are always between two distinct nodes representing the preference’ s
preferred element and dispreferred element (5) and conflict applications always lies between exactly
two nodes, both being predecessor and successor at the same time, since v is connected with two types

2.1. Argumentation 21

of edges with each one, an incoming premise edge and an outgoing conclusion edge (6). Regarding
condition (6) we make a convention here that if we want to force a conflict to be symmetric, we say
that the involved in the conflict nodes are at the same time predecessor and successor of the node
v € CA and they are both connected with premise and conclusion edges. In the other case that the
conflict is asymmetric, it has the meaning of “attack”.

Inference schemes in the AIF ontology are similar to the rules of inference in a logic, in that they
express the general principles that form the basis for actual inference. They can be deductive (e.g.
the inference rules of propositional logic) or defeasible (e.g. [121]’s argumentation schemes). One
example of an inference scheme is that of Defeasible Modus Ponens [84, 85], of which the premises
are the minor premise ¢ and the major premise ¢ ~ y (here, ~ is a connective standing for defeasible
implication) and the conclusion is Y, where ¢ and y are meta variables ranging over well formed
formulae in some language. Figure 2 shows an actual argument based on this scheme, represented in
the AIF ontology. The scheme is indicated next to the RA-node ra2 representing the application of
the scheme and the edges show their respective types.

o

Defeasib!e Modus Ponens

prapie prem, -

VA \

(e) (e=a)

Figure 2.5: And AIF argument-graph

In figure 2.5, the fact that g is inferable from p is represented in the object layer as the (defeasible)
conditional p ~» g. In line with a long tradition in argumentation theory and non-monotonic logic
(e.g. [51,99, 119], such specific knowledge can be modeled as inference rules itself, that is, as an
inference scheme in the Forms Ontology. Take, for example, the inference scheme for Argument
from Expert Opinion [119]:

Scheme for Argument from Expert Opinion

Premises: E is an expert in domain D, E asserts that P is true, P is within D;

Conclusion: P is true;

Presumptions: E is a credible expert, P is based on evidence;

Exceptions: E is not reliable, P is not consistent with the testimony of other experts.

An argument based on this scheme is rendered in Figure 2.6. Thus, specific (but still generaliz-
able) knowledge can be modeled in the AIF in a principled way, using argumentation schemes, for
which we can assume, for example, a raft of implicit assumptions which may be taken to hold and
exceptions which may be taken not to hold. Note that the AIF ontology itself does not legislate which
schemes are in the Forms Ontology and the exact structure of these schemes; rather, this depends

22 Chapter 2. Background and Related Work

on the inference rule schemes or argumentation schemes that a particular specification of the AIF
ontology uses. Like inference, conflict is also generalizable. General conflict relations, which may
be based on logic but also on linguistic or legal conventions, can be expressed as conflict schemes in

e

conclusion Expert
Unreliability

the Forms Ontology.

premise conclusion

Expert Opinion e, is not

reliable

premise

e, asserts
p

premise

premise

l
(e, isan%expertin J (pis ind, J
1

Figure 2.6: Conflict from Unreliability

As an example of a conflict scheme, take the scheme for Conflict From Expert Unreliability,
which states that that the fact that an expert is unreliable is in conflict with the inference based on the
Expert Opinion scheme. In other words, the conflicting element of this scheme is ’E is not reliable’
and the conflicted element is the Scheme for Argument from Expert Opinion. Figure 2.6 shows
the application of the conflict scheme Expert Unreliability, which here attacks the application of the
Expert Opinion inference scheme as represented by the node ral2 (i.e. the fact that the expert e; is
not reliable is in conflict with the fact that p is inferred from the premises).

AIF+

AIF+ [97,98] is an extension of AIF used to represent dialogic argumentation. One of the challenges
of AIF+ is to tie together the rules expressed in dialogue protocols with the inferential relations
between premises and conclusions. The extensions are founded upon two important analogies which
minimize the extra ontological machinery required. First locutions in a dialogue are analogous to
AIF I-nodes, which capture propositional data. Second, steps between locutions are analogous to
AIF S-nodes which capture inferential movement. The particular goals of AIF+ are listed bellow:

1. Extend the AIF to support representation of argumentation protocols (i.e. specifications of how
dialogues are to proceed).

2. Extend the AIF to support representation of dialogue histories (i.e. records of how given dia-
logues did proceed).

2.1. Argumentation 23

3. Place little or no restriction on the types of dialogue protocol and dialogue history.

4. Integrate the dialogic argument representation of the AIF+ with the monologic argument repre-

sentation of the AIF.

5. Meet all of 1-4 with the minimum extra representational machinery possible.

In this work, we do not take advantage of the entire conceptualization of AIF+, since the area of
dialectical games, falls out of the scope of our research. We care exclusively about the content and
the actual information of dialogues and not about a dialogue as an evolving process of information
exchanging that confronts to a communication protocol (consisting of a set of particular types of
movements (locutions) and a set of communication rules that define the behavior of an interlocutor in
a dialogue), or about historical information. What we particularly need by this ontology, is the notion
of default rephrase. Intuitively, a default rephrase represents the idea of paraphrasing and it holds
between two propositions with the same or similar content expressed with different linguistic surface.

Figure 2.7 represents a default rephrase between two I-nodes iy,i; € 1.

start/end- end/start-
locution TA-node locution
ta
anchor locution
locution
YA-node YA-node YA-node
ya2 yal ya3
lllocutionary content lllocutionary content lllocutionary content

}

I-node I-node

Figure 2.7: Default rephrase in AIF+ conceptualization

To represent this concept, AIF+ uses the following extra classes. L refers to the class Locution-
node (L-node). L-node inherits I-node and includes some extra meta-information that regard the
existence of an I-node in the context of a dialogue, such as who said the proposition, when was
it expressed, to which dialogue it is part etc. The aspect of dialogue is characterized as a form of
inference called transitional inference and is represented by TA-Nodes (TA), Transition Application
nodes, which capture the flow of a dialogue, for example recording that a given assertion has been
made in response to an earlier question. YA-nodes (YA) are called illocutionary schemes and, roughly,
describe the passage of a specific linguistic relation dependent on the type of illocutionary force used

24 Chapter 2. Background and Related Work

in speech act, or otherwise, the passage between L-nodes and I-nodes. Finally, MA-nodes (MA),
capture the general concept of a default rephrase. Essentially, a default rephrase is represented as a
transition from the dialectical content of the first I-node, to the respective dialectical content of the
second. More about the AIF+ ontological extensions can be found in [97]. The Vy;r is now extended
to include new classes as follows:

Varrs =Vaip ULUTAUYAUMA

2.2 Argumentation in Social Web

With the emergence of the Social Web, the models of argumentation shifted towards the technologies
of the web and since then, we witnessed an important increase in Web 2.0 human-centered collab-
orative deliberation tools. In only a few years of research, a huge number of argumentation tools
appeared on the Web mostly aiming to facilitate the users’ experience of online debating.

A comprehensive review of these tools can be found in [105]. There are various categories, to
which these tools can be classified according to the functionality they provide. Some of the most
common and important features are: querying, visualization, searching, evaluation, and user engage-
ment. Since the number of these tools is quite big, we will not present here the extensive list, but will
present a representative sample, by giving emphasis to the way in which they search for argumentative
information within their data.

An interesting formalization of dialogues is provided by Issue-Based Information Systems (IBIS)
[65], a problem-solving structure first published in 1970. As the name suggests, IBIS centers around
controversial issues, which take the form of questions and it is especially intended to support com-
munity and political decision-making. It was originally designed as a documentation system, meant
to organize discussion and allow subsequent understanding of the decision taken; this explains the
use of “Information System” in its acronym. The context of the discussion is a discourse about a
topic. Issues may bring up questions of fact and be discussed in arguments. Here, “arguments” are
constructed in defense of or against the different positions until the issue is settled by convincing the
opponents or decided by a formal decision procedure. IBIS also recognizes model problems, such as
cost-benefit models, that deal with whole classes of problems.

The Argumentation Markup Language (AML) [2] is an XML interchange language for structured
arguments. It is intended to be both human and machine readable, capable of representing many
different forms of structured arguments. Its goals include the following three: 1) If tools can be said
to be argumentation tools, then AML should be capable of representing their arguments 2) Argument
viewing / browsing tools should be capable of displaying AML arguments that were developed us-
ing argumentation tools and 3) Argument editing tools should be capable of importing arguments,
modifying them, and exporting the results, be the original arguments from the same or a different
tool.

Araucaria [95] is a repository of arguments drawn from newspaper editorials, parliamentary re-
ports and judicial summaries. It is chiefly intended for pedagogical use addressing the need to im-

2.2. Argumentation in Social Web 25

prove students’ critical thinking. Using argumentation schemes, the result of any given analysis is a
marked up version of the original text. That is, the text is interspersed with tags that indicate which
parts of the text correspond to individual propositions, how these propositions relate to others, where
particular argumentation schemes are instantiated, where enthymematic premises should be inserted
and how a particular claim is evaluated by the analyst. The Araucaria System that creates files marked
up according to AML is a tool of informal logic. In addition, there is not the notion of attack and
conflicting arguments and as a result there is no mechanism that evaluates arguments according to
their acceptability. As such, it can be employed as an aid to support argument analysis and as a
diagrammatic presentation tool.

ArgDF [92] is a Semantic Web-based system, that uses the AIF-RDF ontology. ArgDF enables
users to create and query arguments that are semantically annotated using different argumentation
schemes. The system also allows users to manipulate arguments by attacking or supporting parts
of existing arguments and also to re-use existing parts of an argument in the creation of new argu-
ments. ArgDF also allows users to create new argumentation schemes. As such, ArgDF is an open
platform not only for representing arguments, but also for building interlinked and dynamic argument
networks.

Argunet [104] is a rather simple desktop tool for collaborative argumentation analysis by visual-
izing the structure of complex argumentations and debates, coupled with an open source federation
system for sharing argument maps. A feature in which makes it unique is its multi-lingual environ-
ment. An Argument map is represented with multiple colors for better reading it. Arguments are
reconstructed as premises and conclusions and there is also the notion of attack in the form of red or
green arrows depending on whether it is a defeat or support relation respectively.

Avicenna is a Web-based system using Jena, ARQ and Pellet. The basic functionalities it offers,
is firstly the chaining of arguments, that is retrieving all arguments that directly or indirectly support
a given conclusion and secondly that arguments can be classified into the hierarchy of argument
schemes defined by Walton.

Carneades [53] is a set of Open Source software tools providing support for a range of argu-
mentation tasks including evaluation, construction and visualization. It is particularly suitable for
legal applications. Users through a front-end web application, enter facts of cases to send feedback
to legislative bodies about policy issues and legislative proposals. The legal norms and policies are
modeled with high-level declarative rule language. The same language is also used to model Walton’s
argument schemes and critical questions, which are exploited for the classification of the arguments
and for managing enthymemes. For the evaluation of statements during the dialectical process, four
proof standards are used drawn from logic (dialectical validity) and from legal proof standards (a
scintilla of evidence, a preponderence of the evidence, beyond a reasonable doubt). Carneades Argu-
ment Graphs have also been translated to the specification of Argument Interchange Format and vice
versa [21].

DebateGraph [127] is a cloud-based Web 2.0 application that uses concept maps to explore topics
and issues associated with them. It is a wiki debate visualization tool which has been adopted for use

26 Chapter 2. Background and Related Work

at the Kyoto climate change summit and is being tested by EU projects. It offers the opportunity to
the public to collaborate to “externalize, visualize, question and evaluate all of the considerations that
any member thinks may be relevant to the topic at hand”. In a few words it offers a way for somebody
to learn about, deliberate and decide on complex issues. DebateGraph affords several visualizations,
which can also be embedded in other websites, encouraging users to add links to related webpages
within graphs.

ConvinceMe [3] is an online debating environment where users participate in real debates. Battles
are one-to-one debates between two users. The rest of the users vote for the arguments that are more
convincing to them and the winner of the debate is the one who gets the most votes. No structure is
defined to the arguments and the counterarguments but it is the only debating tool that inserted the
process of voting.

DiscourseDB [1] is the online database of opinions and commentary. By making use of wiki
technology it collaboratively collects opinions of journalists and commentators from various news
sources, about current events in word’s politics, economy and other issues. Users can search for
opinions for or against a position, according to a specific author or topic entering also the parameters
of time, venue and so forth. Although it is a useful system for exploring opinions, it does not give the
opportunity for an online debate between the users. Argumentation theory and technology in terms
of structuring the opinions or evaluating the positions are not taken into consideration.

Opinions Space [46] is a software developed by UC Berkeley’s Center for New Media also de-
signed to collect and visualize opinions on a variety of topics. Unlike DiscourseDB, Online Space ’s
users are not afforded with a rich in its searching alternatives tool for opinions. Instead they are given
the opportunity for real time deliberations in a way of declaring their agreement/disagreement with
an opinion and stating their own positions regarding the topic. The notable point here is that they use
sliders to express their sentiment to the specific opinion, entering the notion of strength on this inter-
action. The system then creates a map of opinions which is visualized as various sized points, each
one representing a different perspective and with the larger points to map more popular perspectives.
Neither the specific system uses a structure for the opinions and is mostly useful for visualization of
real debates.

Parmenides [31,32,74] is an argumentation tool, that allows for a more effective participation of
citizens in governmental decisions, by gathering the opinions of public about a proposal for a political
action. It exploits two methods of argument theory: Argument schemes to structure proposals and Ar-
gumentation Frameworks to diagrammatically analyze the opinions submitted by users. Participants
respond to a series of questions by asking them whether they agree or disagree as well as the points
of disagreement regarding the position. They are also asked for alternative proposals. At the end their
complete position is summarized before it is submitted. The system then analyzes these positions
using argumentation techniques in favor of the government giving her a more clear perception of the
public sentiment for the specific topic.

Rationale [114] is a commercial package allowing the diagramming and visualization of argu-
ments; while its predecessor, Reason!Able, was designed for the education domain, Rationale is

2.2. Argumentation in Social Web 27

aimed at lawyers. Rationale facilitates the creation of ‘box-and-arrow’ argument maps, where users
link premises to conclusions with boxes and arrows.

In a nominative presentation some more tools are Archelogos, Arvina, the online evaluation tool
for DELP, TOAST (the online evaluation tool for the ASPIC+ framework [84], CasAPI, Cohere,
Argue tuProlog etc.

2.2.1 Argument Search and Extraction

The extraction of argumentative structures from text gains increasing attention in recent years, espe-
cially with the emergence of machine learning technologies which found important application in the
domain of NLP. Arguments created by models adopting those algorithms, as well as those created
by the preexisted argumentation tools have been collected in argument corpora, upon which, search
engines have been developed, enabling for their retrieval.

Two of the most known argument search engines are the AIFdb ! and the args.me 2. Both of
them support keyword search. AIFdb [66] is built on top of an RDF database that uses the AIF-
RDF representation. It returns a visual representation of the argument maps in which the particular
keywords are found. args.me [117] allows for the composition of approaches to acquiring, mining,
assessing, indexing, querying, retrieving, ranking and presenting arguments while relying on stan-
dard infrastructure and interfaces. The search engine relies on an initial, freely accessible index of
nearly 300k arguments crawled from reliable web sources. The returned results are distinguished be-
tween those which are for or against the “issue” expressed in the search. Others systems performing
argument retrieval are the IBM’s Project Debater [100] and ArgumenText [106]. All those systems
rely on some of the standard infrastructure to implement the search. None of them defines a formal
language having been designed for their needs. In the same sense, other approaches can be found
in [10,14,43,73,90,112]

In [81] an interesting framework for ranking retrieved arguments based on the notion of relevance
is presented. They assess relevance in three quality dimensions: rhetorical, logical and dialectical.
Rhetorical quality includes notions of persuasive effectiveness, correct language, vagueness and style.
An argument of high rhetorical quality is well-written and appealing to the audience. Logical quality
refers to an argument’s structure and composition. An argument of high logical quality is based on
acceptable premises and combines them in a cogent way to support the argument’s claim. Dialectical
quality captures an arguments’ contribution to the discourse. An argument of high dialectical quality
is useful to support cooperative decision making or to resolve a conflict.

1//www.aifdb.org/search
2https://www.args.me/

28 Chapter 2. Background and Related Work
2.3 RDF Storage Scheme
2.3.1 RDF

Resource Description Framework (RDF) [49] is a meta-data model, where the universe of discourse
is a set of resources. A resource is essentially anything that can have a unique Universal Resource
Identifier (URI). Resources are described using binary predicates, which are used to form descriptions
(triples) of the form (subject, predicate, object): a subject denotes the described resource, a predicate
denotes a resource’s property and an object the corresponding property’s value. The predicate is also
a resource, while an object can be a resource or a literal value. We consider two disjoint and infinite
sets U, L, denoting the URIs and literals, respectively.

Definition 7 (RDF triple and RDF graph). An RDF triple t is a tuple (s,p,0) € U x U x (U U L), where
s, p and o are the subject, predicate and object, respectively. An RDF graph G is a set of RDF triples.

The RDF Schema (RDFS) language [37] provides a built-in vocabulary for asserting user-defined
schemas and ontologies in the RDF data model. In the schema level, it provides mechanisms for
declaring the classes and the properties of the model, as well as the semantic topology they form,
which is created by defining the domain and range classes in the specification of each property (pred-
icates [rdfs:domain], [rdfs:range]). In addition, subsumption relationships among classes and prop-
erties are expressed with the RDFS [rdfs:subClassOf] and [rdfs:subPropertyOf] predicates, respec-
tively. At the data level one can assert class individuals (instances) with the instance of relationships
of resources, using the RDF predicate rdf:type [type].

232 SPARQL

Protocol and RDF Query Language (SPARQL) [52] has been established as the standard query lan-
guage for RDF. In this work we deal with SPARQL 1.1, to leverage some extra features this version
offers, compared to previous ones, like path expressions.

Let a set of variables, W and UWL, UW, UL the sets U uW UL, U uW and U UL, respectively. The
core fragment of SPARQL, is based on two main syntactical units, triple pattern and graph pattern.
These are defined as follows:

Definition 8 (Triple pattern). A triple pattern tp is a triple (sp,pp,op) e UV xUV xUVL, where sp,
pp, op are a subject pattern, predicate pattern and object pattern, respectively.

Definition 9 (Graph pattern). A graph pattern is defined by the following abstract grammar:

gp — tp | gp AND gp | gp OPT gp | gp UNION gp | gp FILTER expr
where AND, OPT, and UNION are binary operators that correspond to SPARQL conjunction, OP-
TIONAL and UNION constructs, respectively. FILTER expr represents the FILTER construct with
a boolean expression expr, which is constructed using elements of the set UVL, constants, logical
connectives (-,A,V), inequality symbols (<,<,>,>), the equality symbol (=), unary predicates and
other features defined in [52]. Function var(gp) returns the set of variables that appear in gp.

2.3. RDF Storage Scheme 29

The main body of a SPARQL query is given by the following syntax:

Definition 10 (SPARQL query). A SPARQL query sparql is defined as:
sparql — Select varlist Where gp

where varlist = (vy,...,v,) is a set of variables and varlist € var(gp).

According to [79], the semantics of SPARQL are defined in terms of the following mapping
function:

Definition 11 (Variable mapping). Let a mapping 6 :W — UL be a partial function that assigns RDF
terms of an RDF graph, to variables of a SPARQL query.

Abusing notation, for a triple pattern ¢p we denote by o (¢p) the triple obtained by replacing the
variables in #p according to . The domain of o, dom(0), is the subset of W over which ¢ is defined.
Two mappings o) and o, are compatible, (written as o] ~ 03), if 61(x) = 62(x) for all variables
xedom(oy)ndom(0,). Mappings with disjoint domains are always compatible.

Let ; and €, be sets of mappings. The following operators (join, union, difference and left
outer join) are defined between 21 and €2;:

Q1 xQ ={01U0, | 01 € Q1,0; € Q) are compatible mappings},
Quy={c|oceQioroe,},

Q2 ={oeQ |forall 6’ € ,, 6 and 6’ are not compatible},
Q:xQ) ={(21xQ)u (21N)}

The evaluation of a SPARQL graph pattern gp, over an RDF graph G, is denoted as €5(gp) and
is defined in a recursive way in the next list.

e If gp is a triple pattern #p, then €5(gp) = {0 | dom(o) = var(tp) and 6(tp) € G }, where var(tp)
is the set of variables occurring in #p and o (¢p) is the triple obtained by replacing the variables
in tp according to ¢

e If gpis gp1 AND gp,, then 6(gp) = €6(gp1) = €6(gp2)
o If gpis gp1 OPT gp», then €6(gp) = €6(gp1) : = €6(gp2)
e If gpis gp1 UNION gp», then e6(gp) = e6(gp1) U €6(gp2)

The semantics of the FILTER expression expr is defined as follows. Given a mapping ¢ and an
expression expr, o satisfies expr, denoted by ¢ =gexpr, iff:

expr is bound(?X) and ?X € dom(o);

expris ?2X op 1, 72X € dom(o) and 6(?X) op 1, where op —» < | <[> | > | =;

expris ?X op ?Y, 7X,?Y € dom(o) and 6(?X) op 6(?Y), where op — < | <|>|>|=;
expr is (—expry) and it is not the case that ¢ =g expry;

30 Chapter 2. Background and Related Work

expr is (expri Vexpry) and © = expry Or C k=g expra;
expr is (expri Aexpry), © = expr; and O =g exprs;

We extend the ¢ mapping so that we get the set of triples that result from the application of ¢ on

a graph pattern gp, as follows:

e If gp is a triple pattern p, then 6(gp) = {c(tp)}

* If gp is any of the (gp1 AND gp»), (gp1 OPT gp>) or (gp1 UNION gp») then
o(gp)=0o(gp1)uo(gp2)

Now, for a given gp, we define the set E;(gp) as the set that contains all the sets of matching
triples for gp. In particular:

&c(gp) ={o(gp) | o cec(egp)}

Chapter 3
ArgQL - Formal Specification

Contents
3.1 Data model in Structured Argumentation. 31
32 ArgQLDescriptionttt ittt ittt teeeennsennos 35
3.3 Formalspecification.ttt ittt 41
3.3.1 Patterndefinitions 41
332 Syntax ... e e 45
333 SemantiCs e e 46
334 ResultsForm 50

In this chapter, we present the formal specification for the main core of our work. In particular, in
the first section 3.1 we present the data model according to which argumentative data are structured.
The data model was designed, based on the most prevailing concepts in the area of argumentation.
The next section 3.2 presents the language informally by describing the categories of queries it allows
to express, and through a number of representative queries for each category based on a data example.
Later in this chapter, (section 3.3) we give the formal description of the language. In particular, in
section 3.3.2 we present formally the main constructs of the language and its syntax, while in section
3.3.3, we give the semantics.

3.1 Data model in Structured Argumentation

The formal principles that rule the target data come from the theory of structured argumentation.
We adopt Alfred Tarski’s [109] abstract logic, who defined a general theory, of which, almost all
well-known monotonic logics (classical logic, modal logic etc.) can be considered special cases.
In particular, we assume the pair £ =< P, Cn >, where P a set of well-formed formulas, called
propositions and Cn is a function, mapping sets of propositions to sets of propositions (consequence
operator). The intuitive meaning of Cn is that a set X implies exactly the propositions contained in
Cn(X). Cn satisfies the following axioms:

1. XcCn(X) (Expansion)

31

32 Chapter 3. ArgQL - Formal Specification

2. Cn((Cn(X)))=Cn(X) (Idempotence)
3. IfXcY,thenCn(X)<Cn(Y) (Monotonicity)

4. Cn(@)+#P (Coherence)

The following properties arise from the axioms above:

1. Cn(X) =UycxCn(Y) (Finiteness)

2. IfyccCn(X)and ZcCn(XuUY),thenZcCn(X) (Transitivity)

The consequence operator allows to define the concepts of equivalence and conflict as follows:

Definition 12 (Equivalence). We say that two sets X,Y C'P are equivalent (denoted by X =Y) if and
only if Y <Cn(X) and X cCn(Y) .

Definition 13 (Conflict). We say that two sets X,Y ¢ P are conflicting (denoted by X }Y) if and only
ifCn(XuY)="P.

In this work, we will need to express equivalence and conflict between single propositions, apart
from sets of propositions. Thus, we abuse notation for the operators Fand = and will write, e.g. x ¢y,
instead of {x} ¢ {y} for x,y e P.

We impose the following obvious propositions regarding the conflict and equivalence relations.
The first one states that, there is no case two sets of propositions being equivalent and conflicting, at
the same time. The second one postulates, that the conflicting of a proposition, is also conflicting to
all of its equivalents.

Proposition 1. For X,Y c P, it cannot hold X } Y and X =Y at the same time.
Proposition 2. For X,Y,ZcP,IfX }Y andY =Z, then X } Z.
The notion of consistency is defined as:

Definition 14 (Consistency). A set X € P is inconsistent with regard to the logic L iff Cn(X) = P.
Otherwise, it is consistent.

Based on the consequence operator, we define an argument as a special case of inference, in
which the inferred set is a singleton. A set of zero or more propositions justify the validity of that
central proposition. Formally:

Definition 15 (Argument). Given a set of argument identifiers N, an argument of the logic L is a
tuple (id, Pr,c), where

® id e N is the identifier of the argument

3.1. Data model in Structured Argumentation 33

® PrcP,it is consistent and it is called premise
e ceCn(Pr) and it is called conclusion and

° ﬂ prcPr, s.t., ce Cn(Pr)'

Given an argument a, we will refer with id(a) to its identifier, with prem(a) to its premise set and
with concl(a) to its conclusion.

The coexistence of the notions of conflict and equivalence in our language cause bipolar interac-
tions between arguments, as well. Thus we discern two positive (support) and two negative (attack)
types of relations defined as follows:

Definition 16 (Argument relations). We define two types of attack (rebut, undercut) and two types of
support (endorse, backing) as:

® There is a rebut between two arguments ay,az, iff concl(ay) ¢ concl(az)

® There is an undercut from argument ay to ay, iff concl(ay) ¢ p for p € prem(ay)
® There is an endorse between two arguments ay,ay, iff concl(ay) = concl(ay)

o There is a back from argument ay to ay, iff concl(ay) = p for p € prem(ay)

A knowledge base that confronts to the data model defined in this section, is called argument base
and is defined as follows:

Definition 17 (Argument base). Given the logic L, we define an argument base A as an arbitrary, but

fixed set of structured arguments defined in L. For an argument base A, we extract the following sets:

« P(A) =Ugea (prem(a) uconcl(a)) is the logical content of the arguments in A.

- cf(A) ={(p1,p2) | p1 # p2 with py € P(A) or p, € P(A)} is a set of conflicts in P(A)

- eq(A) ={(p1,p2) | p1 = p2 with p1 € P(A) or pr € P(A)} is a set of equivalences in P(A)

In an abstract level, arguments together with the relations of definition 16 form a graph. Intuitively
such a graph of arguments represents the notion of structured dialogue and its definition is given
below:

Definition 18. Given an argument base A we define the argument graph G4 = (A,R), in which A
is a finite set of structured arguments and R € A x A the set of their relations, which can be of four
different types {rebut, undercut, endorse, back}, depending on the existing interactions between the

arguments.

Like any graph model, the notion of path is a foreground concept. It allows to discuss about
connectivity and reachability between the nodes. In the following, we define a path as:

34 Chapter 3. ArgQL - Formal Specification

Definition 19 (Path). Given an argument graph G, = (A,R), we define a path between two arguments
ay,ay as the sequence Py, .., = (ai...ay) with aj,ay,...,a, € A for which, 3r; € R, such that r; =
(ai,ai+1), for 1 <i<n-1. It also holds that P,_,, = a.

Definition 20 (Path concatenation). Given two paths Py, q, = (a1 ...ay) and Py 4, = (ay...an), we

denote their concatenation as Py, q, - Py,—a, = (a1 ...0ax...ay) = Py q,

Now, we will show the transition from the formal principles of the proposed data model, to the
practical issues that concern their realization in actual data. In particular, we need to specify the
syntax of the data, which will later define the expected answer to the queries.

At first, we adopt the quoted (string) representation for the proposition values. We use the angles
(-) to enclose the whole argument. The set of premises is inserted within the {-} brackets, while the
conclusion is a single proposition after the comma. In the following we give an example of data
that conform to the proposed data model. Note that wherever in this document we use labels on the
arguments, it is for presentation purposes since it is is not part of the definition 15.

Example 3.1.1. Let an argument base consisting of the following set of arguments A:
a:{{ai,az,asz},c,), with ay,az,a3,c, € P and c, € Cn({ay,a2,a3})
b:({b1},cp), withby,cp, € P and cp € Cn({b1})
c:{{c1,c2},cc), with ¢y,¢2,¢. € P and c. € Cn({c1,c2})
d:{{di,dr},cq), withdy,dr,cq € P and cq € Cn({d;,d>})

({e1},cq), with ey,c. € P and c, € Cn({e1 })

({fi,c1},cr), with fi,c1,cp € P and cp e Cn({ fi,c1})

({g1},cq), with g1,82,c4 € P and cg € Cn({g1})

We also assume the set of conflicts between the involved propositions:

cf (A) ={(ca,cp), (ce,b1), (carce), (cg:a) }

and the set of equivalences:

e:
f:
g:

eq(A) ={(cy.e1),(ca; prop1),(er, prop2)}, with propi, prop € P
For simplicity we did not use the quoted representation for the propositions. The next figure

depicts the argument graph generated by A.

The relations between the arguments are created according to the definition 16 and the given set of
conflicts and equivalences. Note that the rebut and endorse relations are symmetric and this happens
because of the property of symmetry of the conflict and equivalence relations. On the contrary, the

back and undercut relations are non-symmetrical.

3.2. ArgQL Description 35

Gy
b g
endorse
undercut
c v
e
A
\\‘
W& back

d .f

3.2 ArgQL Description

In this section we provide a thorough demonstration of ArgQL and its main features. As we already
mentioned, it constitutes a declarative language targeting data, which are structured according to the
data model suggested in the section above. In particular, it targets both structured view of an argument
base A (definition 17) as well as its abstract graph view G4 (definition 18). Currently, ArgQL provides
mechanisms for retrieving data as they are saved in the knowledge base, whereas it does not allow

modifications or reasoning about them.

The information requirements that a query language for structured dialogues should satisfy can
be various from simple to more complex ones. In a first attempt to formally define such a language,
we restrict ourselves to a specific set of requirements in which data are queried according to their
structure and content. As a result, we currently support the following four general categories of
queries: a) Locating individual arguments, b) Identifying commonalities in arguments’ structure, c)
Extracting argument relations and d) Traversing the argument graph. Among these categories, queries
in (a) and (b) target the argument base A, while (c) and (d) target the G4. Of course, ArgQL support
hybrid queries, belonging to more than one categories. Below we discuss separately each of these
categories and we give representative query examples against data of the example 3.1.1, to show how
they are supported by the proposed language. In this section, we give an informal description of the

language, while its formal syntax and semantics is presented in section 3.3.

Locating individual arguments. One of the main features of ArgQL is that it allows to identify
specific arguments, using patterns and filters that restrict their internal structure. To do this, ArgQL
provides a construct, called argument pattern, that matches with whole arguments. An argument
pattern can be either a single variable or have the form (premise_pattern, conclusion_pattern). More
about the concrete syntax of argument patterns can be found in the next section.

The simplest query in ArgQL is the one that asks for all arguments in the knowledge base. There

are two ways to express this:

36 Chapter 3. ArgQL - Formal Specification

Q. match ?arg return ?arg
where the argument pattern has the form of a single variable ?arg which binds all arguments, or:

Q. match ?7arg:(?pr, ?c)

return ?arg

where variable ?pr binds the premises of all the arguments, variable ?c their conclusion and ?arg their
complete value. The results are the same for both queries and these are:

1. [?arg: (a) ({ a;, az, a3 }, ¢4)]
2. [?arg: (b) {({ b1}, cp)]

3. [?arg: (c) ({ c1, c2}, ¢)]

4. [2arg: (d) ({ d;, 2}, cq)]

5. [?arg: (e) ({ e1}, ca)]

6. [?arg: (f) {({ f1. c1}, ¢r)]

7. [7arg: () {{ &1}, cg)]

Other cases of individual arguments retrieval are queries which restrict the internal structure. For
example the following query asks for arguments with the conclusion the proposition cy:

Q3. match 7arg: (?pr, ’c¢’) return ?arg
for which the answer is
1. [7arg: (8) ({ g1}, cg)]
The following query requires arguments for which the proposition c; exist in their premises:
Q4. match 7arg: (?pr[/{’ci’}1, ?c)
return ?arg

for which the answer is:

1. [?arg: (c) {({ c1, c2}, cc)]
2. [2arg: () {({ f1. c1}, ¢f)]

With ArgQL we can also ask whether specific arguments are stored in the knowledge base. For
example, the query:

Qs. match ?7arg: ({ ’dy;’, d;’}, 'cq’)

return ?arg

3.2. ArgQL Description 37

will return the argument (d) as long as it exists in the knowledge base, or the empty set, otherwise.

Identifying commonalities in arguments’ structure. ArgQL provides built-in mechanisms to iden-
tify sets of arguments with commonalities in their structure, and basically this feature concerns the
premise part of arguments. Presently, it allows to restrict the premise part of an argument with regard
to the premise part of another argument. For example, the following query asks for pairs of arguments
with intersected premises, that is arguments with at least one common premise:

Q¢. match ?7arg;: (?pri, ?c;), ?argp: (?pra[.?pril, ?c;)
return ?arg;, 7arg;

which gives the following two answers:

1. [?arg;: (c) {({ c1, 2}, cc), 2argz: () ({ f1. c1}. ¢)]
2. [2arg;: () ({ f1. c1}, ¢), 2arga: (c) ({ c1, 2}, ¢)]

Note that these two answers are essentially the same but contain the arguments in different order.
This happens because in the first answer, the argument (c) matches the first argument pattern and the
argument (f) matches the second argument pattern, while in the second answer, (f) matches the first
argument pattern and (c¢) matches the second.

Another case that falls in this category, is for example the restriction that the premises of an
argument must be a subset of the premises of another. At a later time this feature can be extended in
various ways, like searching for relevant arguments or even for percentage of relevance, based on a
predefined theoretical model for its computation.

Extracting argument relations. In this current category, we ask to identify relations among argu-
ments, which implicitly exist in the equivalences and conflicts among the propositions that compose
the arguments, according to the definition 16. For this reason, the syntax provides four keywords
rebut, undercut, endorse, back to allow for identifying the respective relations, as well as the gen-
eral keywords attack, support that allow to leave the particular relations unspecified (e.g. with the
attack keyword we ask either for rebut, or for undercut). For example the following query asks for
arguments that support those with conclusion c,, with the endorse type of relation:

Q7. match ?arg; endorse ?arg;: (?prz, ’ci’)
return ?arg;

This query has two answers:

1. [?arg;: (a) ({ a;, a2, a3 }, cq)]
2. [?arg;: (e) ({ e1}, ca)]

38 Chapter 3. ArgQL - Formal Specification

In this query arguments a and e are returned since they both have the same conclusion c,. Note that Qg
has the same results with the one that asks for arguments with conclusion ¢, (case q3) and this is due
to the nature of the endorse relation, which is created when two arguments have the same conclusion.
The same results would also be returned in case we had used the keyword support instead of the
endorse. In this case, if there was a back relation between a different argument, let x and argument a,
then x would also be included in the answers. Similar rationale holds on the attack relations, as well.

Traversing the argument graph. The last, but one of the most useful features of ArgQL, is the
ability to navigate across the graph of arguments. In particular, it provides expressions that act as
path motifs and, combined with the mechanisms for filtering the argument structure, allow to identify
complete paths within the graph and return subgraphs as answers. For example, the following query
returns arguments that are at a distance of 3 attack relations from an argument with conclusion ’c;’:

Qs. match ?7arg; attack/attack/attack ?arg;: (?pry, 'ci’)
return ?arg;

Query Qg gives the results:

1. [?arg;: (d) {({ d}, d2}, cqa)]
2. [?arg;: (b) ({ b1}, cp)]
3. [2arg;: (g) ({ 81}, cg)]

For expressions of the form attack/attack/attack, we can also use the shorthand (attack) *3.
Note that the results include the arguments (b) and (g), which, at first sight, are at distance 1 from
argument (a). This happens because of the bidirectional rebut relation, which cause a cycle between
the involved arguments. More precisely, any path pattern of this type, with an odd number as a length
indicator will give an answer which will include these two arguments.

There may be cases, where the desired path should be of variable length. For example we may
need to express the requirement for paths of length ar least 1, meaning paths of length 1, of length
2 and so on. On the other hand, the way in which argument relations have been defined, create
graphs which may contain cycles of two or more arguments. Inside a cycle, the length of paths is
undetermined, having as a consequence, such requirements like the one described here, to fall into
situations of infinity and execution failure. Therefore, that feature has been designed in a way that
warrants their execution in a limited time. In particular, with ArgQL we can ask for paths with length
at most n, using the expression +n. In this way, regardless of the existing cycles and how many times
the arguments within the same cycle will be visited, the execution will terminate, when the length of
the matching path reaches the number n. For example the following query returns arguments which
lie in distance of at most 3 attack relations from arguments with conclusion c,.

Qy. match ?arg; (attack)+3 ?arg;: (?pry, ’ci’)

3.2. ArgQL Description 39

return ?arg;

and the answer to this query is:

1. [?arg;: (b) ({ b1}, cp)]

2. [?arg;: (c) ({ c1, 2}, ce V]

3. [?arg;: (d) ({ d}, d2}, cq)]

4. [?arg;: (a) {{ a;, az, a3 }, ca)]
5. [?arg;: (8) ({ &1}, cg)]

Arguments (b) and (g) are at distance of 1 and 3 attacks from argument (a), argument (c) is at
distance of 2, argument (d) is at distance of 3 while argument (a) is at distance of 2 attacks from itself.

Although Qg returns all matching arguments, it does not give any further information about the
actual matching paths, like their length for each of the returning arguments or the intermediate argu-
ments and relations. To address this, ArgQL offers the capability to ask for the complete matching
path as an answer. To do this, we introduce the keyword path in the list of return values. We rewrite
Qq, such that it returns the complete path as an answer:

Q’g. match ?arg; (attack)+3 ?arg,: (?prz, ’ca’)

return path(?arg;, ?7arg;)

The keyword path indicates a function, the input of which is the two variables used for the argument
patterns on the left and right side of the same path motif. Any different input will generate parse error.
Due to the existence of cycles, the particular path pattern matches with a wide number of paths in the
data. Below we show an excerpt of the answer including a subset of the matching paths:

1. [?arg;: (b) {({ b1}, cp) - ATTACK - ?args: (a) ({ aj, az, az }, ca)]

2. [?arg;: (8) ({ &1}, cg) - ATTACK - ?args: (a) ({ a1, a2, a3 }, ca)]

3. [?arg;: (a) ({ a1, az, a3 }, ¢,) - ATTACK - _: (g) ({ g1}, ¢;) - ATTACK -
2argy: (a) ({ aj, az, a3 }, ¢4)]

4. [?arg;: (d) ({ d}, d2}, cq) - ATTACK - _: (¢) ({ ¢}, ¢2}, ¢) - ATTACK -
= (b) {{ b1}, cp) - ATTACK - ?argy: (a) {{ a;, az, as }, ca)]

5.[?arg;: (g)({ g1}, cg) -ATTACK - _: (a) ({ a;, az, a3 }, ¢,)] - ATTACK -
= (g)({ g1}, cg) - ATTACK - ?args: (a) ({ a1, a2, a3 }, ca)]

As shown in the results, the first and last arguments for each different path are bound to the variables
assigned to the respective argument patterns. We use the symbol *_’ to denote the intermediate binding
arguments. It is obvious that this answer is considerably more detailed about the matching paths,
compared to the previous one.

40 Chapter 3. ArgQL - Formal Specification

Content rephrasing

ArgQL gives special emphasis to the equivalences. Equivalent propositions are treated as being the
same, which means that, a match succeeds not only if a given proposition satisfies the expressed
condition, but also if any of its equivalents does. This principle manifests itself in the language in
two main ways:

1. In the usage of constant proposition values. Whenever a constant proposition appears in the
query that restricts the search for the premises or the conclusion of an argument, that query will
succeed if it finds arguments that include the proposition itself, or some equivalent one.

2. In the identification of relations between arguments. That principle arises from the definitions
of attack and support relations and the proposition 2. In particular, regarding the support
relation, the definition demands equivalence and not equality between the referred propositions.
As for the attack relation, it is satisfied if there is a conflict between the referred propositions,
or according to Proposition 2, between some of their equivalents.

The following query is an example of the first case. In particular, it asks for arguments with
conclusion prop;, or some equivalent.

Q0. match ?arg: (?pr, ’prop;’)

return ?arg

The answer of this query is the following:

1. [?arg: (a) ({ aj, az, a3 }, ca)],
2. [?arg: (e) ({ e1}, ca)]

The answer includes the arguments (a) and (e) because of the equivalence prop; = ¢, existed in
the argument base. Note that the user need not specify this explicitly, but the language will auto-
matically consider all equivalent propositions during the evaluation of the query. The arguments are
returned unchanged, exactly as they are stored in the knowledge base. Since there is no argument
with conclusion prop;, that value will not appear in the results.

The following query Q. is an example of the second case. In particular, it searches for arguments
that support argument e.

Q;. match ?arg; support ?arg;: ({ei}, ’ca’)

return ?arg;

for which, the answer is: [?arg;: (f) ({ f1. ¢1}, ¢r)], because of the equivalence cf = ¢;

3.3. Formal specification 41

This feature is of great importance in the application domain, because, in spoken human dia-
logues, even the simplest thing can be expressed in many different ways. This way we bring our
query mechanism closer to realistic scenarios and use cases, offering more meaningful searching
capabilities.

3.3 Formal specification

In this section we provide a formal description of ArgQL, including both its syntax and semantics. In
the first part we define the main constructs of the language and we also give the syntax as an EBNF
grammar. In the second part we present the semantics, namely the formal description of how the
constructs that we defined in the first part, are evaluated against the data model of section 3.1, in order
to locate the correct information. Formal semantics have multiple advantages over documentation
written in natural language. They present accurately the behavior of the language, leaving no room
for ambiguities, compared to natural language descriptions and also, like in our case, they can be
used to study formally possible equivalence with other languages, enabling to prove properties, like
soundness and completeness in optimizations etc.

3.3.1 Pattern definitions

ArgQL is based on the idea of pattern matching, an inherently declarative method. Its syntax is mainly
influenced by Cypher [48], the language for the Neo4j database and SPARQL [87], the standard query
language of the Semantic Web and RDF.

The syntax of ArgQL was designed, having in mind the data model defined in section 3.1. In par-
ticular, the most complex and abstract structure in the data model is the argument graph. An argument
graph is decomposed in arguments and relations. Arguments are further decomposed in premises and
conclusion, which are both composed by propositions. Relations are also decomposed in the four dif-
ferent types, which are translated in equivalences or conflicts between some propositions. In ArgQL,
we provide a set of patterns-motifs M, each one designed to match with a particular component in the
data model. Thus, adopting the same rationale, we have patterns that are composed by simpler ones,
and at the same time are part of more complex ones. As a results, M includes patterns that match with
simple propositions (proposition pattern), with the premise part of arguments (premise pattern), with
the conclusion part of arguments (conclusion pattern), with complete arguments (argument patterns),
with relations between arguments (relation pattern), with paths (path pattern) and with complete di-
alogues (dialogue pattern). Like any formal language, we also use variables as parts of the different
patterns, to bind with data. Let V be the set of ArgQL variables which is infinite. In the following we
give formally the definitions for each type of pattern:

Proposition Pattern. A proposition pattern is defined as:

prp = p, where p e P.

42 Chapter 3. ArgQL - Formal Specification

It is the simplest pattern type, and matches with proposition p and all of its equivalent ones. We adopt
the string representation (’quoted”) for the lexicographic recognition of a proposition pattern in the
language.

Argument pattern. Argument patterns are of the most important constructs, since they are used to
match with complete arguments in the argument base. An argument pattern is defined as:

v where v € V a variable
ap =
(premp,conclp) where premp a premise pattern and conclp a conclusion pattern

An argument pattern may be either a single variable v, or be composed by a premise pattern and a
conclusion pattern. In the later case, we use the (-) brackets to represent it. The definitions for the
premise and conclusion pattern follow next.

Premise pattern. This type of pattern is used to match with the set of premises of arguments and it is
always part of an argument pattern. A premise pattern is defined as:

{prp1,...,prp,} where prp; are proposition patterns
premp =
v [for] where v € V a variable and [f,.] a premise filter which is optional

In the first case, the premise pattern is a set of proposition patterns. In this case, the premises
of the matching arguments should have propositions with the specific values defined by the prp;, or
some equivalents. In the second case, the premise pattern consists of a variable, followed by a filter.
The idea is that variable v will get the whole premise set as value, only if it satisfies the premise filter
fpr. The existence of [f,,] is optional. If it does not exist, v matches with the premise set of any
argument, without constraints. A premise filter is defined as follows:

f /{prp1,..prp,} where prp; are proposition patterns
incl =
v where v/ €V and V' = premp’ for some ap’ = (premp’,conclp’)
1 pr=
Fon = Aprp1,..prp,} where prp; are proposition patterns
Jjoin =
2V where v/ € V and v’ = premp’ for some ap’= (premp’,conclp’)

We support 2 types of premise filters, the inclusion (fi,c;) and the join (fjoin). To discern between
them we use the '/ symbol for the f;,; and the dot (.) symbol for the fj,;,. Both are expressed
either with regard to a set of proposition patterns, let s or with a variable v'. In the first case, the filter
expresses that s should be included (f;,¢;) or intersect (fj,i,) with the matching premise set of v. In
the other case, v/ must be the variable that corresponds to the premise pattern of a different argument
pattern ap’. For that case, the filter expresses that the matching premise set of v/ should be included
(finer) or intersect (fjoin) With the matching premise set of v.

3.3. Formal specification 43

Conclusion pattern. This type of pattern is used to match with the conclusion of arguments and it is
also always part of an argument pattern. A conclusion pattern is defined as:

prp where prp proposition pattern
conclp =
v where v € V a variable

In the first case, the conclusion pattern is a proposition pattern and matches with those arguments
for which, the value of their conclusion is the same (or equivalent) to the value of prp. In the second
case, the conclusion pattern is a variable and it will match with the conclusion of any argument.

Since we have defined the premise and conclusion patterns, we now give some examples of
complete argument patterns :

Example 3.3.1. - (2v[/{"p1”}],2c) : matches arguments whose premises include proposition ”p,”
or some equivalent.
-(?,7¢”) : matches arguments with conclusion any equivalent proposition of ”c”

AW[A"p17,7 P27}], 2¢) : matches arguments whose premise intersect with a set equivalent to

9 9

{”p] , pzn}
A{"p1”,"p2"},7c”) : ground arguments are also considered as argument patterns

Relation pattern. A relation pattern is used to detect existing relations between arguments and may
have one of the following six types:

rp = rebut | undercut | attack | endorse | back | support

Note that the attack and support type express the requirement to match any of the specific sub-
relations.

Path pattern. Path patterns are expressions in the language, used to match with complete paths in the
graph. A path pattern is defined as follows:

rp where rp relation pattern

pp’[pp”" where pp’, pp” path patterns

pp'*n where pp’ path pattern and n>0 some integer

pp' +n where pp’ path pattern and n>0 some integer

In the simplest type, a path pattern is a single relation pattern, requiring for paths with length 1
of the particular relation. Generally a path is characterized as a sequence of relations and we use
the delimiter ’/’ between the relations to denote that sequence. We already described the role of
the *n and +n notations, which express the exactly n and at most n repetitions of the included path
pattern. Recall the examples Qg, Q9 as examples for their use. The recursive definition of that pattern

44 Chapter 3. ArgQL - Formal Specification

shows that we can have arbitrary combinations of relation sequences and numerical indicators (e.g.
(attack™2/(support)+2)+3 is an acceptable path pattern). Note that when there is one or more +n
numerical indicators, it gives a number of different path patterns, equal to the proliferation of the
numbers in the ’+ indicators. For instance, the previous example defines the union of 6 different
path patterns, shown in the following list:

attack/attack/support

attack/attack/support/support

attack/attack/support/attack/attack/support

attack/attack/support/support/attack/attack/support/support

attack/attack/support/attack/attack/support/attack/attack/support

attack/attack/support/support/attack/attack/support/support/attack/attack/support/support

Dialogue pattern The last type of pattern is the dialogue pattern. It is defined as:

d ap where ap an argument pattern
p =
pp dp’ where pp a path pattern and dp’ a dialogue pattern

A dialogue pattern can be either a simple argument pattern, or a sequence of alternations between
argument patterns and path patterns. We note in this definition that a path pattern always lies between
two argument patterns and matches with paths, for which the first and last arguments are bindings for
the left and right argument patterns and, additionally, the path between the two matching arguments
is the same with one of the paths indicated by pp.

The general form of an ArgQL query is given in the following definition:

Definition 21 (ArgQL query). An ArgQL query g has the form:
q < match dp,,...,dp,
return xi,...,x,

where dp; dialogue patterns and x; = v, with v € V a variable, or x; = path(v' V"), with v/ v'' € V.

3.3. Formal specification 45

3.3.2 Syntax

In this point we define the concrete syntax of both data and ArgQL in terms of the symbols and

keywords used for their lexicographic representation.
Definition 22 (Data syntax). We denote the syntactic representation of data as a function str, s.t.:

® jfec P, with content text, then str(e) = "text”

e ifee2”, aset of propositions e = {py,...,pn}, then str(e) = {str(p1),...,str(pn)}

e ifecAs.t e=(id,pr,c), where id is the argument identifier, pr € PR, and c € P, then
srt(e) = (id) (str(pr),str(c))

For example, the syntactic representation of an argument a is:
Str(a) — (a) <{”p1”’ . ,”pn”}7”C”>

Table 3.1 shows the complete syntax of ArgQL in EBNF grammatical rules. The highlighted symbols
inside the quotes * * denote tokens of the language. Anything included in (.)? is optional while the
notation (.)* implies zero or more repetitions. The language is not case sensitive, so "attack” and
"ATTACK” are considered the same keyword. Variables are prefixed with *?’, e.g. ?x. For constant

99 99

propositions, we use the quotes ”.” (e.g. ”p”).

query ;= °’MATCH’ (dialoguepattern (’,’ dialoguepattern) *
’RETURN’ returnvalue (’, returnvalue)*
dialoguepattern = argpattern |
argpattern pathpattern dialogue_pattern
argpattern = variable |
(variable:)? *(’ premisepattern ’,” conclusionpattern ’)’
premisepattern = propset | variable (premisefilter)?
premisefilter = [’ (/| .) (propset | variable) ’]’
conclusionpattern = variable | proposition
propset 2= {’ proposition (°,” proposition)*’ } ’
pathpattern = pp(/ pp)*
pp = relation |
'(pathpattern’)’ (’*’ | ’+’) num
returnvalue ;= variable | 'PATH’ ’(’ variable ’, variable ’)’
relation = attack’ | ’rebut’ | 'undercut’ |
support’ | endorse’ | *back’
proposition N Y
variable = 2 Ca’ .| CA L2707 9+

Table 3.1: ArgQL syntax

46 Chapter 3. ArgQL - Formal Specification

3.3.3 Semantics

In this section we describe the formal semantics of ArgQL. Before that, we are going to need some
new notations for the inclusion and intersection relationships between two sets, such that they will
take into account the existing equivalences. In particular, we overload their operators as follows:

XcY : ifVxeX,3JdyeY st x=y (Inclusion operator overload)
Intuitively, a set of propositions X is a subset of Y, iff for all propositions in X, there exists an
equivalentin Y.
For example, for X = {a,b},Y ={b,c,d} and c = a, it holds that X € Y.

XoYistrue : if JdxeXandyeY,st x=y (Intersection operator overload)

Intuitively, two sets X and Y intersect when there is at least one proposition in X for which there is
an equivalentin Y.
For example, for X = {a,b,c},Y ={d,e} and e = ¢, it holds that X ®Y is true.

The semantics of ArgQL are based on the interpretation function /4, which takes as input a pattern
m € M and returns sets of data from A and G4that match m. Moreover, if S = PUPRUA, s.t. PR = 2P,
we also define a variable replacement (1 : V +— S, as a function that maps variables to elements of S.
The definition of I is given in the following list:

e for a proposition_pattern prp = p with p € P the interpretation is proposition p and all its
equivalents as well:

Ix(prp) ={p" | p' € P(A) and p’ = p}

Example 3.3.2. In the data of the example 3.1.1 the interpretation of the proposition pattern
with value "cs’ is I(t) = {cy,e1, prop> } O

o for a premise_pattern premp:
— if premp is a set of proposition patterns premp = {prpi,...,ppra}:
Ix(premp) ={{p1,...pn} | i € 1a(prp:) and {py,... pn} = prem(a) for some a € A}

Intuitively, I4 (premp) returns all sets that match the pattern and constitute the premise of
some argument in A.

Example 3.3.3. In the data of the example 3.1.1, the interpretation of the premise_pattern
premp ={'c;} is:
Iy(premp) = {{e1}} since e; = cy and {e } = prem(e) O

— if premp is of the form v[f], where v eV and f a premise_filter, then

« for £ = fine

3.3. Formal specification 47

- if premp =v [/{sp1,...spm}] a set of proposition patterns, then:

Iy(premp) ={u(v) | u(v) c props(A), u(v) = prem(a) for some a € A and
{s1,...8m} € prem(a) with s; e I4(sp;) and 1 <i<m }

Intuitively, I4 (premp) returns all sets that are premises of some argument in A
which also include all propositions that match with the patterns sp;.

- if premp =v [/V'], with v/ € V a variable, appearing in the premise pattern of
another argument pattern ap’:

Ix(premp) ={u(v) | u(v) € P(A), u(v) = prem(a) for some ac A, u(v') =
prem(a’) for some a’ € Iy (ap’) and p(v') = u(v)}
Intuitively, Iy (premp) returns all sets that are premises of some a and include
all the premises of another argument a” that matches with the ap’. Note that in
the expression ((v') € u(v) we used the overloaded subset operator which was

defined in the beginning of this section.

* for f= fioin:
- if premp =v [.{sp1,...spm}] a set of proposition patterns, then:

Iy(premp) ={u(v) | u(v) < P(A), u(v) = prem(a) for some a € A and s; €
prem(a), with s; € I4(sp;), for some 1 <i<m }

Intuitively, I4 (premp) returns all sets that are premises of some argument in A
and also include at least one propositions from those matching sp;.

- if premp =v [.V'],with v/ € V a variable, appearing in the premise pattern of
another argument pattern ap’:

Ix(premp) ={u(v) | u(v) € P(A), u(v) = prem(a) for some ac A, u(v') =
prem(a’) for some a’ € Iy (ap’) and u(v') @ u(v) is true}
Intuitively, Iy (premp) returns all sets that are premises of some a and intersect
with the premises of another argument a’ that matches with the ap,. Again here,
we used the ® operator which was defined in the beginning of that section to de-
note the intersection between two sets, taking into account also the equivalences.

Example 3.3.4. Let two argument patterns ap; : (?pr1,’ cl.) and apy : (?pra2[.?7pri1],2c).
In the data of the example 3.1.1 we have that:

WCpral2pn]) = AL 1)
Inparticular, u(?pry) ={c1,c2} = prem(c), since ceapy and u(?pry) ={f1,c1} = prem(f)
and it holds that prem(c) ® prem(f) is true. O

e for a conclusion_pattern conclp:

48 Chapter 3. ArgQL - Formal Specification

— if conclp is a proposition_pattern prp, then:
Ix(conclp) = {p e I1(prp) | concl(a) = p for some ac A}

— if t is a variable v, then:
Ix(conclp) = {u(v) e P(A) | u(v) = concl(a), for some ac A}

e for an argpattern ap:

— if ap is a single variable v € V then: Iy (ap) =A

— if ap is of the form (premp,conclp), where premp a premise_pattern and conclp a con-
clusion_pattern, then:

Ir(ap) ={a €A | prem(a) € I1(premp) and concl(a) € I (conclp)}

Example 3.3.5. Recalling the example 3.3.4 for the data in the example 3.1.1, we have that
In(ap1) ={c} and Ix(ap>) = {f}. O

® for a relation pattern:

— Ix(rebut) = {Py,a, = (a1 a2) | a1,a2 € A s.t. concl(a;) ¢ concl(az) }

— Iy(undercut) = {Py,q, = (a1 a2) | a1,a2 € A s.t. concl(a) ¢ p; for some p; € prem(az)}
— Ix(attack) = I (rebut) U I (undercut)

— Ix(endorse) = {Py,a, = (a1 a2) | a1,a2 € A s.t. concl(a;) = concl(az) }

— Is(back) = { Py, 54, = (a1 a2) | a1,a2 € A s.t. concl(a;) = p; for some p; € prem(ay) }

— Ix(support) = I4(endorse) Ul (back)
e for a pathpattern pp.

— if pp is a relation pattern of type rp, then Iy (pp) =14 (rp)
— if pp is of the form pp;/pp,, for pp1, pp2 pathpatterns then
IA(ppl/pPZ) = {Pal—mn = Pal—>am : Pam—»an | Pa1—>am € IA(PPI) and Pam—mn € IA(pPZ)}

— if pp is of the form pp * n, for pp path pattern, which is translated into pp/.../pp (n
times) we have:

e ifn=1,then L(pp*1)=1I1(pp)
e if n> 1, then I4(pp+n) =I4(pp/pp* (n—-1))
— if pp is of the form pp +n, which is translated into a set of pathpatterns Uy_, (pp *k):
Ix((pp) +n) = Ui_y La(pp * k)
o for a dialogue_pattern dp, we have that:

With head(dp) we denote the first argument pattern that appears in the sequence of argument
patterns in the dialogue pattern dp. We have:

3.3. Formal specification 49

— if dp an argument pattern ap, then: I (1) = {P,nqs=a|acls(ap)}
(based on the definition 19 for path)

— ifdpisap pp dp’, then:
I4(dp) ={Puysa, = (a0 ai ... ay... ay) | ao €1s(ap), Paysa, € Ia(pp), ax € Is(head(dp'))
and P, ., € 14(dp’)}

Example 3.3.6. Let a dialogue pattern
dp: ?a; attack/attack ?7a:(?pry, ’c,’) attack ?a;

dp is decomposed into the following patterns: The argpattern ap; = 7aj, the path pattern pp;
= attack/attack and a second dialogue pattern dp, = ?a,:(?prp, ’'c,’) attack ?a;,
Sfor which head(dp>) =?as. We have that:

= Ix(dp2) ={(ab), (ag) }
— Is(head(dp>)) = {a}
- IA(GPI) = {avb)cvdaevf’g}

- IA(PPI) :{(aba)r (aga)! (bag)r (gab)’ (Cba)’ (dCd): (dCb)}

Combining them altogether, we have that Is(dp) = { (a rebut b rebut a rebut b), (a rebut b
rebut a rebut g), (a rebut g rebut a rebut b), (a rebut g rebut a rebut g), (c undercut b rebut a
rebut b), (¢ undercut b rebut a rebut g)}]

Recalling the definition of the match clause of an ArgQL query:
match dp,,...dp,
where dp; dialogue_patterns, we define the semantics of match, as:

IA(match) = {dl,...,dn | d; EIA(dpl),. ..d, EIA(dpn)}

50 Chapter 3. ArgQL - Formal Specification

3.3.4 Results Form

Let the set var(dp) €V, be the set of variables appearing in a dialogue pattern dp. The return
statement of an ArgQL query q has the form:

return xi,...,xy,

where x; = v, with v € V a variable, or x; = path(v,v"), with v,v' € V.

We denote with r € I4 (match) a row of the matching data and with 7, (x;) the projection of the element
x; in r. We also recall the syntactic representation function for data str of the definition 22. It holds
that:

e if x; a variable v that corresponds to an argument pattern ap, then 7,(x;) = v: str(a), where a is
the value of x; in r, for which a € I4 (ap)

¢ if x; a variable v that corresponds to a premise pattern premp, of an argument pattern ap appear-
ing in the query, then 7,(x;) = v : str(pr), where pr = prem(a) for a the argument value of ap
in r, for which a € I4(ap)

® if x; a variable v that corresponds to the conclusion pattern conclp, of an argument pattern ap
appearing in the query, then 7,(x;) = v : str(c), where ¢ = concl(a) for a the argument value of
ap in r, for which a € I (ap)

¢ if x; has the form path(vy,v>), which means that some of the dp; is a path pattern pp which
lies between two argument patterns indicated by the variables vi,v,. Let p € I4(pp) the path
value of pp that appears in r. Assuming that the satisfied path pattern is of the form ry/rp/ ... [rg,
where r1 one of the rebut, undercut, attack, endorse, back, support and that p=(ay as ... ax ags1),
we have that:

e (x;)=vi: (ay)str(ay) ri _: (a)str(az) ... _: (ap)str(ax) ri va: (ager)str(agsr)
Note that the _: notations refer to the intermediate argument patterns generated during transla-

tion.

Finally, we define the answer to the query q as following:

ans(q) < { [T (x1),. ey e (Xn)] | r e Iy(match)}

Chapter 4
Theoretic principles for Query Execution

Contents
4.1 Mappings to the RDF storagescheme 52
4.1.1 Datamappingottt e e e 52
4.1.2 ArgQL to SPARQL Translation 56
4.2 Optimization of the ArgQL-to-SPARQL translation 67
4.2.1 Truncating redundantjoins L 67
4.2.2 Dealing with the equivalence semantics issues 67

In the previous chapter, we gave the formal specification of ArgQL. In the next stage, we deal
with issues related to how ArgQL queries will be actually executed. For several reasons that were
explained in the introduction, we chose, instead of building everything from scratch, to pursue a
transition to some of the standard storage models and take advantage of their well-known capabil-
ities and efficiency. In this work, we show the case of the RDF storage scheme. Since ArgQL is
implementation-agnostic and representation-agnostic, i.e., independent from the specific model used
to represent data, the translation process can be easily regenerated to a different storage scheme (e.g.
relational), based on the methodology that we propose here. This chapter is devoted to present this
translation, while in the next one, we describe how this methodology is incorporated in the implemen-
tation of ArgQL. In particular, in section 4.1 we give all the formal details of the process, along with
examples to enforce the comprehensibility. In the second part of this chapter (section 4.2), we pro-
pose an optimization on top of the proposed translation. The optimization aims at generating shorter
queries than those generated by the initial approach, which by extension, reflects as an improvement
in the efficiency of the execution. That improvement is verified at the experimental evaluation, which

is described in section 5.2.

51

52 Chapter 4. Theoretic principles for Query Execution

4.1 Mappings to the RDF storage scheme

In this section we will define the theoretical ground that supports our ArgQL-to-SPARQL translation.
To do this, we break the process in three main sub-tasks that need to be addressed. At first, in
section 4.1.1 we define the mapping between our data model of section 3.1 and RDFE. We adopt
an ontological scheme to represent concepts in the domain and we show the mappings between the
different elements in our data model and the concepts of this scheme. Next, in section 4.1.2, we define
the translation between the query languages. The translation is presented as a set of rules that describe
each different pattern type of the ArgQL specification, to which graph pattern it corresponds, which
targets the ontological scheme we defined in the previous stage. Finally, in .2, we prove the properties
of soundness and completeness of the proposed methodology. In order to prove these properties, we
use the data and query translations, as well as the formal semantics of ArgQL and SPARQL.

4.1.1 Data mapping

We now show the mapping between our data model and RDF. In order to express data in RDF, we
need to define a scheme with the basic concepts of the referred domain. To this end, we use the
conceptualization of AIF, described in section 2.1.4. We ended up in this choice for three main

reasons:

o AIF has become a standard language in the area of argumentation for representing arguments
and dialogues. The goal of AIF, is to provide an interlingua for the different argument rep-
resentations, that will enhance the mapping among the various theoretic argumentation frame-
works, as well as the interoperability among the multitude of argumentation tools existing in the
area. A mapping from our model to the AIF/RDF representation, would naturally make ArgQL
compliant with all those models and by extension the community of the Argument Web [22],
increasing that way its usability.

o Although the concepts of AIF and its extension AIF+ (sections 2.1.4 and 2.1.4) are relatively
simple in their representation, they carry quite rich semantics, that are able to represent the
greatest portion of the proposed argumentation models and as a result, there is a significant
correspondence with the concepts of our data model, as well.

* We take advantage of the AIFdb Corpora!, a quite large corpora that includes argumentative
data, gathered by a number of argumentation tools, which are structured in AIF format [67],
allowing us to test an implementation of ArgQL on existing data sets.

In this part, we type the classes and the relations of AIF, according to the names used in AIFdb
Corpora. We recall Vy;p, =IURAUCAUPAULUYAUTAUMA the set of the various class types in
the AIF+ model. The mapping is defined at the level of the language £ =< P, Cn > and it is presented

! http://corpora.aifdb.org/

4.1. Mappings to the RDF storage scheme 53

in table 4.1. In the table we define a set of mapping rules, that associate the elements of £ with the
respective concepts in the AIF conceptualization. In particular, the first column (Rule) includes the
name of the mapping rule. The second column (Element in L) includes the particular element x in
L that is being mapped. The third column (AIF graph) is a semi-formal description of the graph to
which x is mapped, which is essentially an AIF-graph of the definition 6 of section 2.1.4. With the
notation % in the third column, we refer to the instance from the AIF classes, to which x is mapped,
namely X € Vy;r,. Furthermore, the part after the : describes any additional instances and relations
between them, that represent the AIF-graph to which x is mapped. As a result, any x % x denotes
an edge of type ¢ between the nodes x,y € V4;r.. Finally, the last column includes the representation
of that AIF-graph in RDF. We denote as ||x|| the RDF representation of the AIF graph described in
the third column. By the definition 7 of section ?? according to which an RDF graph G consists of a
set of triples, we have that |x| ¢ G. Recalling also the set U of the RDF’s identifiers, URIs, we use
the function u : V4;ry — U to assign RDF identifiers to the resources generated during the mapping
process. Figure 4.1 illustrates the AIF-graphs generated by the mapping.

I-node claimText

pval
lllocutionary
(a) content

illocutionary-
content

start/end-

) ! end/start-
premise locution

locution

(b)

anchor

pren;lse‘/ conclusion/ illocutionary-
conclusion premise
I-node CA-node I-node content
b1 f b2
() (d)

Figure 4.1: AIF graphs

ry states that a proposition p € P is mapped to an I-node instance, denoted as p € I, for which
the claimText value is p. The rule r; states that an argument a in £ is associated to an instance of
the RA-node class, namely it holds that @ € RA. For the RA-node instance 4, there are n incoming

edges of type premise from the I-nodes py,...,p, € I and an outgoing edge of type conclusion to

54

Chapter 4. Theoretic principles for Query Execution

Rule Elementin £ AIF graph RDF representation
pel: R
(}’1) peP . claimText » “pH = (u(p) type I-node),
u(p) claimText
(fig. 4.1a) (u(P) r)
(r2) a={{p1,---,Pun}:c) 4€RA : la| = (u(p1) premise u(a)) ...

S.t. CEC”({p17"'7pn})

(r3) cf=(p1,p2)
s.t. p1tp2

(ra) e=(p1,p2)
S.t. p1=p2

. Dpremise
pr——a, ...

. Dpremise
pn a,

.~ conclusion

o

(fig. 4.1b)

~
CFeCA:

~ . premise

cf ——
conclusion

~ . conclusion .
_—

premise

(fig. 4.1c)

éeMA :
illocContent
yay — P1»
illocContent
yay ——————>p2
locution
yay — locy
locution
yay — locy

startLocution
locy ,
endLocution
endLocution
locy
startLocution
anchor
ta ——yas ,
illocContent
yaz ——m>e€,

and yay,yas,yaz € YA,
loci,locpeLandteT
(fig. 4.1d)

(u(pn) premise u(a))
(u(¢&) conclusion u(a)),
(u(a) type RA-node)

lef|, = (u(CF) premise u(p1),
(M(C]f) premise u(p>)),

(u(cf) conclusion u(py)),

(u(cAf) conclusion u(p,)),
(u(cf) type CA-node)

le| = (u(yay) illocContent u(py)),
(u(yay) illocContent u(p3)),
(u(yay) type YA-node),
(u(yaz) type YA-node),
(u(yay) locution u(locy)),
(u(yay) locution u(locy)),
(u(locy) type L-node),
(u(locy) type L-node),

(u(ta) type TA-node),

(u(ta) startLocution u(locy)),
(u(ta) endLocution u(locy)),
(u(ta) startLocution u(locy)),
(u(ta) endLocution u(locy)),
(u(ya3) type YA-node),

(u(ta) anchor u(yas)),
(u(yas) illocContent u(é)),
(u(é) type MA-node)

Table 4.1: Mapping rules

the respective I-node ¢ € I. The rule 73 says that a conflict ¢ between two propositions p; and p», is

mapped to an AIF conflict represented as a CA-node instance. That means ¢ € CA, and the I-nodes

D1, P2 €I connect with ¢ via premise and conclusion edges. Note that the property of symmetry of the

conflict in our data mode, is preserved in the generated graph. Similar rationale holds also for rule

4.1. Mappings to the RDF storage scheme 55

r4, which represents the translation for the equivalence between two propositions pp, p». In this case,
new instances are created of the classes YA, L and 7, which are required to represent the notion of
equivalence (case of default rephrase in AIF+ of section 2.1.4).

Given all the above, we have that an argument base A of the definition 17 is transformed to an
RDF graph, according to the following definition.

Definition 23 (Argument Base to RDF graph). Given an argument base A of a finite set of arguments
and the mapping ||| to an RDF graph, we have that:
|A] = Ugealal U Ucecraylel U Ueeeqqay lel
where cf{A) and eq(A) finite sets of conflicts and equivalences between the propositions in the
arguments of A, respectively.

Notations: With df(iy,valy,ip,valy) we will refer to the AIF’s default rephrase, between iy, i,, with
claimText values valy, valy, respectively. With ca(iy,iy), we will refer to the conflict application
between the two I-nodes i1, 1>.

Next, we make some observations about the mapping as defined above and discuss them in two
main axes: information preservation and mapping reversibility.

Information preservation

A common risk when transforming data to a different format is the possibility of information loss.
One of the highest priorities in such a process is the assurance of data integrity, which means that,
apart from reproducing the content in its entirety, it also crucial to retain any preexisting properties.
The proposed mapping satisfies this requirement and we justify this observation for each particular
case of table 4.1.

The case of propositions is obvious. Each p € P produces an I-node. The content of p is trans-
ferred in the claimText property of i and there are no particular properties related to propositions
that should be transferred to the AIF representation. Concerning the second case, any argument a
generated in £ has an equivalent RA-node, which has a number of incoming edges from I-nodes
that corresponds to the propositions in prem(a) and an outgoing edge to an I-node that correspond
the proposition concl(a). There is also an analogy between the semantics of Cn and the RA-node
class, since they both express the general notion inference, without restricting it to some of the modus
ponens, defeasible etc.. Finally, any relation of conflict and equivalence has its own representation
in AIF model. It is also noticeable that the property of symmetry is preserved between the I-nodes
that correspond to the involved propositions. This is achieved by using the same types of edges for
both directions (the edges premise/conclusion for the conflict and the edges start/end-locution for the

equivalence).

56 Chapter 4. Theoretic principles for Query Execution

Mapping reversibility

An interesting question considering the proposed mapping, is whether it can also be applied back-
wards, which means, if for any AIF graph described in the right part of a rule (columns 3, 4), there
is an equivalent element of the left part in £ (column 2). Again here, the answer to this question
depends on whether there is semantic correspondence between the two models.

Regarding the rule r|, any I-node with a particular value in its claimText property, can be associ-
ated to a proposition in P with the same value. The same holds for r,. In particular, any argument
expressed as an instance of RA can also be an argument of £ since, as we mentioned above, both
Cn nor RA-node generalize the inference relation and any particular rule of inference, like defeasible,
deductive, modus ponens etc. constitutes special case. On the other hand, we are not able to answer
about the reversibility of r3 and r4. This is because, unlike in £, the semantics of CA and default
rephrase have not been formally defined. Thus we can not deduce that for any expressed conflict or
default rephrase in AIF, the conditions in definitions 12 and 13 pf section 3.1 are satisfied.

4.1.2 ArgQL to SPARQL Translation

After we showed the mapping between the argumentation data model described in section 3.1 and the
RDF scheme, we now present in a formal way the translation between the associated query languages,
namely ArgQL and SPARQL. The translation is shown in a declarative way. The general idea is that
each different pattern of ArgQL is translated to a particular graph pattern of SPARQL and, as the
different ArgQL patterns are combined from the simpler to the most general ones, the respective graph
patterns are also combined and they progressively build the final SPARQL query. Key challenges
throughout the process is to define properly these graphs patterns, as well as to make the appropriate
joins, to ensure the correctness of the results. In the appendix .2 we prove that the proposed translation
indeed succeeds the expected results.

In order to define the process formally, we adopt some notations. The basic symbol which rep-
resents the translation between the two languages is the (-). In particular, recalling the set M of
the available ArgQL patterns and assuming m € M we denote as (m)) the SPARQL graph pattern, to
which m corresponds. One of the most crucial parts in the process is the way that variables are being
used. Variables that appear in the ArgQL query will remain also in SPARQL, but will be put in those
positions such that they will get the respective values. Beyond that, new variables will have to be cre-
ated in the SPARQL query, which, in most of the cases, are used for the URI identifiers, and which
are necessary in order to make the required joins. For the sake of simplicity and disambiguation, we
assume that the sets V and W that correspond to the ArgQL and SPARQL variables respectively, are
disjoint. For the SPARQL variables, we will use the representation w, € W. Subscript ¢ will be used
to indicate the resource type identified by the matching URIs and can be one of (i, ra, ca, ma, pa),
indicating the URIs of an I-node instance, an RA-node instance, a CA-node instance, an MA-node
instance and a PA-node instance, respectively. By the notation gp.w we access the variable w of the

graph pattern gp.

4.1. Mappings to the RDF storage scheme 57

In order to express in the rules that two graph patterns join on some variable, we adopt the
following convention. Let gp be a graph pattern, that includes variable w and also uses the graph
pattern gp’ in its definition. Assume also that gp’ includes variable w'. In order to express that gp
and gp’ join on variables w and w’, we write is as a subscript on gp’, in which we denote the equality
between the variables. In the particular we write:

gpP=...W...8P
A convention here is that the first (left) variable in the equality of the subscript (w’), must always be

the one defined in the graph pattern to which the subscript it attached gp’. Furthermore, if we want

/

to express that they join on more than one variables, we will write it as gp,,

W= again with
the left variables in all of the equalities having been defined in gp’. Finally, we use the symbol A,
to denote the conjunction between graph patterns (the AND in SPARQL terminology) and the v to
denote their disjunction (UNION).

The complete translation of ArgQL into SPARQL is presented in tables 4.2, 4.3, 4.4 and 4.5. In
particular, these tables include a set of transformation rules that define the translation of the various
ArgQL pattern types. Afterwards, we explain it informally along with some examples to enhance the
comprehensibility of the process.

The first two rules (rs, rg) have an auxiliary role in the translation process. In particular, the
requirement to match with some equivalence or conflict is quite often in ArgQL and that requirement
is transferred to SPARQL, as well. For simplicity, in order to avoid repeating their translation code
in multiple rules, we record them as separate rules, and we will use them through their notation,
anywhere needed. Therefore, only for the translation purposes, we assume two additional patterns,
conflict pattern and equivalence pattern and their translation is given in those two rules. About rs,
the translation creates a graph pattern that will match any existing conflict between the two I-nodes
matching with w;; and w;j,. In addition, the translation for r¢ will match any default rephrase (as the
notion of equivalence in the AIF specification is called) between the I-nodes matching with w;; and
wip of the respective graph pattern.

Rule r7 is the translation of a proposition pattern with of a proposition p € P and the resulting
graph pattern expresses the matching to any I-node with the value p in the claimText property. We
also define the (prp)).{eqp)) for the graph pattern that retrieves the default rephrase of the I-node to
which the (prp)) is expected to match.

Rule rg defines the translation of a premise pattern. We discriminate the two different forms of
a premise pattern, namely the case of the set of proposition patterns and the form v, [f,], because
they are translated to different graph patterns. About the (rg;) we have that, for each of the I-
nodes corresponding to the proposition patterns prp;, we must also retrieve the equivalents to check
whether they are premises of the particular ra. For this reason, we also include the (egp)) of the rule
re indicating the one of the two instances (i;) must be the one in prp;, and the other (i), must be the
equivalent and check which of these (union) is a premise of w,,. In addition, the not exists part of the
translation describes that there must not be some other I-node which will be different from these in

the given set, that is also a premise of w,,, because the filter requires from the matching premises to

58 Chapter 4. Theoretic principles for Query Execution

(rs) Conlflict pattern conflp
{(conflp)) = (W, type CA-node) N (Weq premise wii) A (Weq conclusion wiy) A (Weq premise wip)
A (Weq conclusion wy)

(r¢) Equivalence pattern egp

(eqp) = (Wya1 illocutionaryContent wi1) A (Wyq2 illocutionaryContent wy>)

A (Wyq1 type YA-node) N (Wyqo type YA-node) N (Wyq1 locution wipe1) A (Wyap locution wipea) A
(Wioe1 type L-node) A (Wyoep type L-node) N (wy, type TA-node) N (wyy startLocution wiye1) A
(Wrq endLocution wyye1) A (Wyg StartLocution wi,e) A (Weq endLocution wy,e) A

(Wya2 illocutionaryContent wi) A (vya3 type YA-node) A (Wi, anchor wy.z) A

(Wya3 illocutionaryContent Wy,q) A (Wpq type MA-node)

(r7) Proposition pattern prp = p with p € P
(prp)) = (w; type I-node) A (w; claimText p)

{prp).(eqp) = (prp) A (eaph,=(pry.w
(rg) Premise pattern premp of an argument pattern ap
(rs.1) prempisaset {prpi,...,prp,}, where prp; proposition patterns of rule r-

(premp)=[A\ ((prp;) A (prp;)w; premise wei)) V

J=1

((prpj)-Qeap) A ({prp;)-(eqp)-wir premise wyq) A)] A

n
NOT EXISTS ((/\Wx £ (prpj).wi) A (wy premise wy,)) A (Wyrq type RA-node)
j=1

(r32) premp is of the form v, [f,,], where v, € V and f,, a premise filter
(premp)) = (w; type I-node) A (w; claimTextv,) A (w;premise wy,) A

(Wﬂl type RA-nOd@) A <<fpr>>wra
(r9) Premise filter f,, coming from the premise_pattern premp = v, f,.], with v, € V such that:

fpr=CI ")) (proposition_set | variable)

(ro.1) for fpr =[/{sp1,...,5pm}] an inclusion filter based on a set of proposition patterns sp ;.

m

o) = A [(4523 A (Usps)wi premise wia)) V

((sp7)-Geap) A ((sp;)-(eap)-wir premise wya))]

Table 4.2: ArgQL to SPARQL Translation

4.1. Mappings to the RDF storage scheme 59

(r9) Premise filter f,, coming from the premise_pattern premp = v, f,.], with v, € V such that:
Jpr=CrI
(r92) for f, = [/v2], an inclusion filter based on a different premise pattern premp; = va [fpr2]
of the rule (r7.2)
(fpr) = NOT EXISTS { (w; premise {premp;).wyq) N
NOT EXISTS { (w; premise wy,) \/
((eap)i =w; A ({egp).wir premise wy,)) I

(ro3) for fpr = [.{sp1,...,5pm}] ajoin filter based on a set of proposition patterns sp; of the
rule ry.

(fpr)= \m/ [((spi) A ((spj).wi premise wyq)) \VJ

J=1

’) (proposition_set | variable)

({spi)-(eap) A ((sp;)-Geap)-wi premise wy)))]

(r94) for fpr = [.vp2], a join filter based on a different premise pattern premp; = v2[fpr2] of
the rule (r;.2)

(for) = ({premp2).w; premise wya) \/
((€apD=(prempsym A ((eqp)-wia premise wq))

rip) Conclusion pattern conclp
p
(r10.1) for conclp a proposition pattern of rg, let prp

(conclp) = ({prp) A (Wya conclusion (prp).w;)) V
((prp)-(eqp) N (Wyq conclusion {prp).(eqp).wiz) A (Wyq type RA-node))

(r102) for conclp a variable v, € V, then:
(conclp)) = (w; type I-node YA (w; claimText v.) A (wyq conclusion w;) A
(Wyq type RA-node)

(r11) Argument pattern ap =< premp,conclp >, with premp premise pattern of rg and conclp a con-
clusion pattern of rg.

{ap)= (premp) n (conclp)y,,(premp).v..

(r12) Relation pattern rp between two arbitrary argument patterns ap; =< prempy,cp; > and ap, =<
prempy,cpa >, with premp|, premp, premise patterns and cpy, cp, conclusion patterns.

(r12.1) for rp a rebut relation

Table 4.3: ArgQL to SPARQL Translation

60

Chapter 4. Theoretic principles for Query Execution

(r12) Relation pattern rp between two random argument patterns ap; =< prempy,cpi > and ap, =<

prempy,cpa >, with premp|, premp, premise patterns and cp1, cp, conclusion patterns.

(r12.1) for rp a rebut relation
(rebut) = (ap1) & (ap2) A [(oo, =gempon s watempon) V
((eaPDwn=(cpzyamn A CconfpY=(epryom : wo=(eap)amn) V
((eapDui=tepiyoms A (confpD=(eaphomes : womtepyon) V
(Keapthw=gepryms A €eaP2hw=(epaons A CCOMAPNi=(eap e s wo=teapsyoma) |
(r12.2) for rp an undercut relation.
(undercut) = (apy) A {ap2)) A [((conflpYw,=(ep,ywi, wa=(prempsyo) V
((eap M= prempsyw; N cORD N =(epr)i, wir=(eap) i) \
((eapDn=(epryam A ((Conﬂp>>w,~.:<<eqp>>.w,-2,w,-2:<<premp2>>_wi) V
(<<€qp1>> feprywi €2 hwii=(prempa) v N KON N =(eqpr) vz, wio=(eqpa) e)]
(r12.3) for rp an attack relation.
(attack)) = (rebut)) UNION (undercut))
(r12.4) for rp an endorse relation.
(endorse) = (ap1) A {ap2)) A [({ap1).wra conclusion {cpy).wi) V
({ap2)-wra conclusion (cp1).wi) N (€ap Y =(cpr)wimwn=(cpa)wi |

(r12.5) for rp a back relation
(back) = (ap1) A {ap2) A (({ap2)-wya premise (cpi).wi) V

(eapDus=(eprys A (Rap2)wia premise (eqp).wi))

(r12.6) for rp a support relation
(support)) = (endorse)) UNION {(back))

(r13) pathpattern pp between two argument patterns ap; =< pry,cpy > and ap, =< pry,cps >

(r13.1) for pp arelation pattern r (pp)) = (r)
(r13.2) for pp = pp1/pp2, where pp1, pp» pathpatterns, we have:
{pp1/pp2) = (pP1) A LPP2) (ap) Yowra= (o1)-(apa) wra
(r13.3) for pp = pp *n, written as pp/.../pp (n repetitions):
if n=1, then (pp*n) = (pp)
if n> 1, then (pp*n)) = {pp / pp*(n-1)))

Table 4.4: ArgQL to SPARQL Translation

4.1. Mappings to the RDF storage scheme 61

(r13) pathpattern pp between two argument patterns ap; =< pry,cpy > and ap, =< pry,cps >

(r13.4) for pp = pp + n, which means, “at most n repetitions of pp”:

{pp+n) = Ui, (pp*k) = {pp*I)) UNION .. UNION {pp*n))

(r14) for dialogue pattern dp:

if dp = ap, where ap an argument pattern, then: (dp)) = (ap))

if dp=ap pp dp’, with head(dp’) the first argument pattern appearing in the sequence
defined by dp’, we have:

{(dp) = (ap) A (PP) (apy)wra=(apo)wea : (aps)wra=(head(dp'y)wra §dP")

Table 4.5: ArgQL to SPARQL Translation

be exactly equal to this set.

Example 4.1.1. Assuming that the premise pattern premp of an argument pattern is the set {' p1,’ p},

we have that:
(premp) = (% rdf:type aif:I-node). (% aif:claimText 'p}) . «’p1’ M
{ (%, aif:premise ?ra)}
UNION { (%, rdf:type aif:I-node). (%, aif:claimText 'p!)
(?ya; aif:illocutionaryContent ?ii).(?ya; rdf:type YA-node).
(?yay aif:locution ?locy).(?oc, rdf:type L-node). (i, rdf:type aif:I-node).
(?iy aif:claimText i3).(?yay rdf:type aif:YA-node). (?ya, aif:illocutionaryContent 7).
(?yap aif:locution ?ocy).(Noc, rdf:type aif:L-node).(?ta; rdf:type aif:TA-node).
(?Nocy aif:startLocution ta;).(?ta; aif:endLocution locy).
(?yasz rdf:type aif:YA-node). (?yaz aif:anchor ta;).
(?yaz aif:illocutionaryContent ?maj).(?ma; rdf:type MA-node). ((eqr))
(?p aif:premise ?ra)}
(%4 rdf:type aif:I-node). (i, aif:claimText 'p}). ((’p2°))
{ (Y4 aif:premise ?ra)}
UNION { (%4 rdf:type aif:I-node). (%, aif:claimText 'p}).
(?7yay aif:illocutionaryContent ?i4).(?yas rdf:type YA-node).
(?yay aif:locution ?ocs3).(?Nocy rdf:type L-node). (lis rdf:type aif:I-node).
(?is aif:claimText ig).(?yas rdf:type aif:YA-node). (?yas aif:illocutionaryContent ?%is).
(?yas aif:locution ?locy).(?ocy rdf:type aif:L-node).(tap rdf:type aif:TA-node).
(MNocy aif:startLocution ?tay). (Mar aif:endLocution locy) .
(?yag rdf:type aif:YA-node). (?yag aif:anchor tay).
(?yag aif:illocutionaryContent ?ma,).(?ma, rdf:type MA-node). (((eqz >>)

62 Chapter 4. Theoretic principles for Query Execution

(%s aif:premise ?ra)}

FITER NOT EXISTS { FILTER(?x != %;). FILTER(?x != %;). (x aif:Premise ?ra) } ({premp))

Considering the rg, in correspondence with ArgQL where the part v, will match with the set of ar-
guments’ premises, its translation will express that w;s will bind with I-nodes which will be premises
of the w,,. Note that variable v, from ArgQL is reused, so that it will get the string values of the
property claimText. The filter part f,, is translated separately, but it has to join on the variable w,,
such that any restrictions in the filter will pertain to the particular ra.

We will now discuss about r9 which defines the translation of the different types of premise filters.
Rule rg | translates the filter that requires a particular set to be included in the premises of the required
argument. That case is reduced to the rule rg.1, since we also search here whether any equivalents
of the propositions are included in the premises. Rule rg, translates the filter that demands all of
the premises of another argument to be included in the current one. SPARQL does not provide a
way to express the “for all” case directly. To avoid this problem, we paraphrase it and write the
query as: “there is no I-node in the premises of the matching RA-node of { premp,)).w,,, which is
not included in the premises of the matching RA-node of the current w,,”. The translation must also
take into account the case in which, the two sets do not include the same, but equivalent propositions
and this is shown in the last two cases of the disjunction. Rule rg 3 translates the filter in which at
least one of the propositions has to be included in the premises of the required arguments. This is
expressed as a disjunction between the individual proposition patterns of the given set. The rest is
similar with the rule ry 1, except from the fact that, the disjunction here means that at least one of the
given propositions (or some equivalent) must be included in the premises of the required argument.
Finally, rule r9 4 requires a join between the premise patterns or their equivalents.

Rule ryp translates the conclusion pattern. Again here we check separately its two forms, that is,
the case of a constant proposition pattern, or a variable respectively. The first case is shown in the rule
r10.1 and the translation makes a join with the equivalence pattern in order to check whether there is
an equivalent I-node that is a conclusion to the particular ra. The second form of the pattern is shown
in the rule r19». Here a new variable is created for the I-node uri, while variable v, which comes from
the ArgQL query will get the value of claimText property of the matching I-nodes.

Rule rq; translates a complete argument pattern. The resulted graph pattern is simply a join of the
translations of the respective premise and conclusion patterns on the variable w,,. Note that when the
argument pattern is a single variable it is translated as if it was the argument pattern (?pr, ?c).

Example 4.1.2. Let the argument pattern ap = (?pr[/?pr;],' cval’). We assume that it has been
verified by the parser, that variable ?pr, belongs to the premise pattern of a different argument
pattern and that this argument pattern has been translated and has been assigned the variable ra’
for the respective RA-node. We have that:

{ap) = (% rdf:type aif:I-node). (% aif:claimText ?pr).
(?iy aif:premise ?ra)

{FILTER NOT EXISTS { (%x aif:Premise ?rd’)

4.1. Mappings to the RDF storage scheme 63

FILTER NOT EXISTS { (?x aif:premise ?ra) } }

} UNION {

FILTER NOT EXISTS { (?x aif:Premise ?rd’).

(?ya; aif:illocutionaryContent ?x).(?ya; rdf:type YA-node).

(?ya; aif:locution ?ocy).(?oc; rdf:type L-node). (i, rdf:type aif:I-node).

(?iy aif:claimText iy).(?yay rdf:type aif:YA-node). (?ya, aif:illocutionaryContent ?i).

(?yay aif:locution ?locp). (Nocy rdf:type aif:L-node). (?ta; rdf:type aif:TA-node).

(MNocy aif:startLocution ?ta;).(?a; aif:endLocution locy).(?yaz rdf:type aif:YA-node).

(?yaz aif:anchor tay).(?yas aif:illocutionaryContent ?maj).

(?ma; rdf:type MA-node).

FILTER NOT EXISTS { ?i, aif:Premise ?ra) } }

} ((fpr)
{(%3 rdf:type aif:I-node).(%i; aif:claimText ’cval’). ({(’cval’))
(?ra aif:conclusion %4) }

UNION { (?yas aif:illocutionaryContent ?i3).(?yas rdf:type YA-node).

(?yay aif:locution ?ocsz).(?ocy rdf:type L-node). (?iy rdf:type aif:I-node).

(?y aif:claimText is).(?yas rdf:type aif:YA-node).(?yas aif:illocutionaryContent ?%i).

(?yas aif:locution ?locy).(?ocy rdf:type aif:L-node).(?ta, rdf:type aif:TA-node).

(?ocy aif:startLocution tay). (?tap aif:endLocution locy).(lyag rdf:type aif:YA-node).

(?yag aif:anchor tap).(?yag aif:illocutionaryContent ?ma).

(?ma, rdf:type MA-node). (« eqp >>)
(?ra aif:conclusion ?i3) } ((conclp)))
(?ra rdf:type RA-node) . (« ap)))

Rule ry, translates the relation pattern. The ArqQL semantics of this pattern type say that, for
example a rebut relation will match any path P, 4, = (a1 rebut a») existing in the data. This feature
must also be preserved in their translation and it justifies the decision why the two argument patterns
on the left and right side must be arbitrary. Each of the four types generates a different graph pattern,
thus they are examined separately. Rebut relation is translated by rule rj>.;. The translation asks
for matching conflicts (CA) between the two I-nodes which are conclusions of the ra; and ra, that
constitute matches of ap; and ap, respectively, or between their equivalents. As a result, we create
two joins between the two conclusion patterns and the equivalence pattern to retrieve their equivalents,
and then, with the four unions, we check whether there is some ca instance among any of the four
combinations. Undercut relation pattern is translated by the rule rj2,. Here, the generated graph
pattern asks for conflicts between cp; and the general I-node variable that corresponds to the premise
pattern v, of ap, or some equivalent to it. The translation of artack is then defined as the union of
the rebut and undercut patterns (rule rj3). Rule rip4 translates the endorse relation. In particular
it checks whether cp; or its equivalent is also conclusion to ap, or vice versa, whether cp, or its
equivalent is also conclusion to ap;. About back relation (ri55), the generated graph pattern must

64 Chapter 4. Theoretic principles for Query Execution

check whether the conclusion of ap; or its equivalent belongs at the same time, to the premises of
apy. The translation of support is then defined as the union of the endorse and back patterns (rule
r12.6)-

Rule ri3 realizes the translation of path patterns. The first sub-rule ri3; which refers to the
simplest case that the path pattern is a single relation, the translation of the path pattern is equal to the
graph pattern generated by the particular relation pattern. Rule 735 captures the case in which the
path pattern is a sequence of relation patterns. Thus, the generated graph pattern is the conjunction
of the translation of the individual relations in the sequence, with the additional constraint, that the
Wy variable of the ap; from pp, must be the same with the w,, variable of the ap; from pp;. The
reason for preferring that way over the choice of translating it directly to the respective property path
of SPARQLI.1 [52], is that we are able to retrieve the values for the intermediate arguments and,
based on these values, we can build and return the paths in the final query. In the alternative choice
we wouldn’t have this capability. Rule ry3 3 is just a different way to write a sequential path pattern,
so it holds whatever we discussed in case r;3.2. About the rule ry34, the symbol +n expresses all
the different paths with length from 1 to n. So it is translated as the union of the translations of the
individual path patterns.

Rule r14 translates complete dialogue patterns, as the conjunction of the sequences of alternations
between the translated argument patterns and path patterns. Here we have to add the restriction that
the first and last argument patterns of the sequence defined by the path pattern pp, must be the ones
appearing in the query, so we impose equality in the respective w,, variables.

Finally, taking into account that the general form of a complete ArgQL query is:

g <« match dp; , ..., dp, return varlist

The equivalent SPARQL of q, denoted as g+ € Qs, where Qg is the infinite set of SPARQL queries
has the following general form:

g* < Select * Where AL, {dpi)

We use the select * because during the translation process, new variables have been created the
values of which are later necessary to transform the results back to the expected format.

In the example 4.1.3 we show the translation of a complete ArgQL query. We use that example,
not so much for the understanding of the translation, but basically to emphasize the expressive use-
fulness of ArgQL and also to verify our initial claim that, the same query may be quite struggling to
be written and understood with one of the standard languages and much easier with ArgQL.

Example 4.1.3. Let the ArgQL query
q < match ?al attack/attack ?a2: < ?pr;, ’cval’ > ,
?a3:<?pry[/?pr;], ?c>
return 7al, 7a3
which asks for arguments that are of distance of two attack relations from arguments with conclusion

‘cval’, and at the same time, those arguments the premises of which is a superset of the arguments’

4.1. Mappings to the RDF storage scheme 65

premises which have the conclusion 'cval’. The query includes three argument patterns, let api, ap,
and aps, that correspond to the three variables ?ay,%a,, a3 respectively, and the path pattern (pp)
attack/attack. We also imply the argument pattern ap, that will match to the intermediate arguments
between the two attack relations in the sequence. The SPARQL equivalent g* is given below:

prefix rdf:<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>

prefix aif:<http://www.arg.dundee.ac.uk/aif#>

SELECT *

FROM <http://aif.db>

WHERE {

(7, rdf:type aif:I-node). (?iy aif:claimText ?xt;).(?; aif:Premise ?ra;).

(7, rdf:type aif:I-node). (?ip aif:claimText ?txt;). (?ra; aif:Conclusion ?iy).

(?ray rdf:type aif:RA-node). ({ap1))
(75 rdf:type aif:I-node).(?is aif:claimText ?pri).(?is aif:Premise ?rasz).

(g rdf:type aif:I-node).(?ig aif:claimText ’cval’).

{ (a3 aif:Conclusion ?ig). }

UNION { (?ya; aif:IllocutionaryContent ?ig).(?ya; aif:Locution ?loc;).

(MNocy rdf:type aif:L-node).(?i; rdf:type aif:I-node).(?i; aif:claimText ?txts).

(?yap aif:I1locutionaryContent ?i7).(?yay aif:Locution ?loc;).

(?Nocy rdf:type aif:L-node).(?ta; rdf:type aif:TA-node).

(MNocy aif:StartLocution ?ta;).(?ta; aif:EndLocution ?loc,).(?yaz aif:Anchor ?ta;).

(?yasz aif:I1locutionaryContent ?mai).(?ma; rdf:type aif:MA-node).

(?raz aif:Conclusion ?%i7).}

(?raz rdf:type aif:RA-node). ((ap2))
(73 rdf:type aif:I-node). (?i3 aif:claimText xt3).(?i3 aif:Premise ?ra;).

(74 rdf:type aif:I-node). (?iy aif:claimText xty).(?ra, aif:Conclusion ?is).

(?ray rdf:type aif:RA-node). ({apx))
{ (Qca; rdf:type aif:CA-node). (%, aif:Premise ?ca;).(?ca; aif:Conclusion ?%i).

} UNION { (?ca; rdf:type aif:CA-node).(?i, aif:Premise 7cai).

(?ca; aif:Conclusion ?%i3). } ({attacky)
{ (Qcap rdf:type aif:CA-node). (%4 aif:Premise ?cay).(cay aif:Conclusion ?ig).

} UNION { (?cap aif:Conclusion ?i7).} } UNION { (?ca, rdf:type aif:CA-node).

(%4 aif:Premise %cay).(%cay aif:Conclusion %is). } ({attack/attack)
(lig rdf:type aif:I-node).(?ig aif:claimText ?pry).(lig aif:Premise ?ray).

{ FILTER NOT EXISTS { ?x aif:Premise ?ra3z) FILTER NOT EXISTS { ?x aif:Premise ?ray) } }

} UNION {

FILTER NOT EXISTS { ?x aif:Premise ?ras).

(?yay aif:illocutionaryContent ?x).(?yay rdf:type YA-node).(?yas aif:locution ?locsz).

(Nocy rdf:type L-node).(?ig rdf:type aif:I-node).(?is aif:claimText ijp).

66 Chapter 4. Theoretic principles for Query Execution

(?yas rdf:type aif:YA-node).(?yas aif:illocutionaryContent ?ig).(?yas aif:locution ?locy) .

(Nocy rdf:type aif:L-node).(a, rdf:type aif:TA-node).(?locy aif:startLocution ?tay) .

(?tay aif:endLocution locy) . (?yag rdf:type aif:YA-node). (?yag aif:anchor ta,).

(?yag aif:illocutionaryContent ?maj).(?may rdf:type MA-node).

FILTER NOT EXISTS { ?ig aif:Premise ?ras) } } {pr2[/?pri1)
} FILTER (?raz!=?ra4)

(?ig rdf:type aif:I-node).(?ig aif:claimText ?c).(?raq aif:Conclusion ?igy).

(?raq rdf:type aif:RA-node).} ((ap3))

We prove that the ArgQL-to-SPARQL translation is sound and complete with respect to the se-
mantics of ArgQL defined in section 3.3.3 and the semantics of SPARQL of section 2.3.2 in the
following theorem:

Theorem 8. Given A an argument base, M the set with the available patterns of ArgQL,

|| and -)
the mappings for the data model and ArgQL patterns respectively, I4(-) the interpretation function of
ArgQL patterns in the argument base A and E¢(+) the evaluation function of SPARQL graph patterns
in an RDF graph G, we have that for any ArgQL pattern m € M, it holds that

[a(m)| = Epay({m))

Intuitively, the theory says that, if we apply the SPARQL semantics on the graph pattern {(m))
generated by the translation of a particular ArgQL pattern m, against the translated argument base
|A|, we will get the same results with those generated by translating the data that resulted from the
application of ArgQL semantics on m against the original argument base (|4 (1)). The proof of the
theorem is given in the appendix .2. We give here a sketch of the proof: for all the different types of
m and for all the different forms each type may get, we must show that both [[Is(m)| € &4 ((m))
and &4 ((m)) [Ia(m)] are true.

4.2. Optimization of the ArgQL-to-SPARQL translation 67

4.2 Optimization of the ArgQL-to-SPARQL translation

The proposed translation of section 4.1.2 is essentially a translation of ArgQL semantics into SPARQL
combined with the definition of data mappings of section 4.1.1. Although in a theoretical level, the
particular approach makes it straightforward to prove soundness and completeness, when applying
the rules of tables 4.2-4.5 on the algorithms that implement this translation, we realize that it results to
non optimal queries. With the term optimal we mean the minimum possible number of conjunctions
and joins required to express the particular information requirement expressed by the query. Incre-
ments in the length of the query, cost in performance of the final query. Therefore, we have to find
ways to optimize the generated query. In this section, we detect the points within the process that
are able to accommodate improvements, and we suggest some ways of optimization that reduce the
length of the generated SPARQL query, but without affecting the correctness of the results.

4.2.1 Truncating redundant joins

Our first observation is that, during the translation process, there is a point, for which, the defined
translation rules result to redundant joins in the final query, which are useless for the location of the
correct information. That point is the case of path patterns. According to the semantics of ArgQL, a
path pattern matches all paths consisted of the particular relation sequence, regardless of which is the
first or last argument. To translate this in SPARQL, we temporarily disregard the argument patterns
ap and ap; explicitly appearing in the query, and we assume that the path pattern lies between two
random (general) argument patterns, let ap] and ap),. These random argument patterns are translated
separately, and the graph patterns they generate, join later with the translated ap; and ap; on the
respective wy, variables. ({ap;)) with (ap}) and (ap,) with {ap})). The optimization we suggest
here, is to detour the assumption of the random argument patterns and translate directly the ap; and
aps, such that the translated path pattern will find only those paths for which the starting and ending
arguments are matches of ap; and ap;. It is easy to understand intuitively and also show formally
that, withdrawing the particular parts in the query, has no effect in the matching results.

4.2.2 Dealing with the equivalence semantics issues

The second point we detect that largely afflicts the efficiency of the query, is when querying about
equivalence. This happens for two main reasons.

First of all, the equivalence factor contributes largely to the length of the final SPARQL query.
We already saw that each equivalence pattern is translated to 17 triple patterns (rule r¢), and since
there are many points in the query in which the equivalence has to be checked, it is inevitable that the
particular piece will be repeated several times in the SPARQL query. Furthermore, it also generates a
wide number of unions, in order to check for the different cases of equivalence. To give an indicative
example of this number, we will show the worst such case which is the attack relation. As shown
in the rule r» 3, an attack relation can be either a rebut, or an undercut and by the rules rj»; and

68 Chapter 4. Theoretic principles for Query Execution

r12.2, we see that each of them uses 4 unions to catch all possible pattern types taking also into
account the equivalences. Now consider the path pattern (attack)+n, which asks for all the different
paths of length / to n consisting of the attack relation. The translation of only this simple path
pattern of the ArgQL query, uses 9*n unions (e.g. the (attack)+3 uses 27) in which the translation of
the equivalence pattern appears several times. It is easy to imagine how much the length increases
with any new component inserted to the ArgQL query (we show such representative numbers in
the experimental evaluation of section 5.2). In all these joins and unions, the number of variables
proliferates analogously, which makes the execution of this SPARQL query extremely slow, and
sometimes even unable to be executed or process the results. In addition, the wide number of unions
and joins, toughens the comprehensibility of the generated query, as well.

The second problem with the current approach is that, the syntax of SPARQL does not allow to
express the transitivity property of the equivalence relation. For example we know from the theory
of section 3.1 that if x =y and y = z, then x = z. With SPARQL, there is no mechanism to express
this inference, unless we write it explicitly in the query, which was initially our suggestion as shown
in the translation tables above. In this way though, we only capture limited transitivity steps and in
particular only as many as written in the query. This creates the risk of losing information by ignoring
existing equivalences in the translated argument base.

In order to resolve the aforementioned problems, we were inspired by the approach proposed in
[123]. The general idea is that, the values of the propositions shift to a different range and are assigned
values from a set C. According to this new assignment, which is called canonical assignment, it holds
that all equivalent propositions in £ share a common value, called canonical identifier. In the RDF
representation, these identifiers replace the values of the respective I-nodes.

Canonical assignment is formally defined as follows:

Definition 24 (Canonical assignment). Given C a set of canonical identifiers, the canonical assign-
ment is defined as the function can: P ~ C such that can(p,) = can(p2) if and only if pi = pa.

With this shift to the range C, any time we want to query about equivalent propositions, it suffices
to search by their canonical identifiers. The problems stated above, basically regard the effectiveness
of the proposed methodology for execution and in particular, are caused by the defined translation
and from the expressiveness limitations of SPARQL. Therefore, in the remainder of this chapter, we
are going to show how this idea is incorporated into this process and in particular, which parts of the
data mappings and query translation are affected, and how.

This approach constitutes a solution to the problems stated above. Regarding the first problem,
as it will become apparent later in section 5.2.2, the size of the generated query is significantly di-
minished after this optimization. This happens because all those pieces of the query that correspond
to the equivalence pattern, as well as all of the relevant unions, will be truncated from the SPARQL
query and will be replaced by simple equality conditions of the canonical elements. In addition, the
transitivity issue described in the second problem is also resolved, since all of the equivalent propo-

sitions share a common canonical identifier. Thus, searching by this for the satisfaction of some

4.2. Optimization of the ArgQL-to-SPARQL translation 69

condition, it will succeed if it becomes true for any of the equivalents.

Data and query mappings under canonical assignment

We now show how the canonical assignment idea is incorporated in the process of data mapping and
query translation and that this incorporation preserves the properties for soundness and completeness.

Regarding the data mapping, the canonical assignment replaces the value of a proposition p with
can(p), therefore it only affects the mapping rule r| of the table 4.1 that concerns the case of proposi-
tion. Generally, we use the notation x| to denote the mapping that takes into account the canonical
assignment. In the case of proposition the data mapping becomes:

Ipl¢ = (u(p) rdf:type aif:I-node), (u(p) aif:claimText can(p))

The mapping for the rest of the cases remains the same, except the last one, which is totally omitted,
since the information about equivalences is now kept in the canonical identifiers. For these cases, we
have that x| = ||x|.

Table 4.6 shows how the ArgQL-SPARQL translation is modified. We rewrite the rules of the
tables 4.2, 4.3, 4.4 and 4.5 that are affected, using intonation for their new version. Notation {(x))¢ is
used to indicate the translation that takes into account the canonical assignment. For the rest of the
rules that do not appear in the table, we assume that {x))° = (x)). The idea is that we eliminate the
equivalence pattern from everywhere it appears in the process. The search is only performed by the
canonical identifier and, after the data have been matched, the content of the propositions that satisfy
the various patterns can be found in the database table in which they are saved, using their retrieved
URL

In the first rule 75, instead of using the initial value of the proposition pattern, we use the canonical
identifier. In rule r{ | the parts that search for equivalence propositions with the ones defined by the
proposition patterns prp;, being premises of the matching w,, are totally eliminated with respect
to rg;. The same holds for rg,, ry,.rg5 and ry,. In rule r{,, the part that asks for equivalent
propositions being conclusion of the matching wy, is omitted. Rules r{, ; and rj, are based on
the idea that if there is a conflict between two particular canonical identifiers, it is inferred that the
conflict holds for all of the equivalents, as well. Thus, for the case of rebut, the conflict regard the
canonical identifiers of the two conclusions, while in the case of undercut, the conflict concerns the
conclusion of the first and some premise of the second argument patterns. Finally, the rules 71> 4 and
r12.5 expresses that it suffices the two conclusions or the conclusion of the first with the premise of the
second argument pattern to have the same canonical identifier, in order to have an endorse, or back
relation, respectively.

The following example shows the translation with the canonical assignment of the query in the ex-
ample 4.1.3. With this example we want to emphasize the degree of improvement that the underlying
approach causes to the length of the generated query.

70 Chapter 4. Theoretic principles for Query Execution

(y) (prp)° = (w; type I-node) A (w; claimText can(p))

n

(r31) (premp)° /\((prpi) A ((prp;)©.wi premise wyq)) A

NOT EXISTS {(/\wx (prp;)c.wi) A (wy premise wy,)}
j=1

m

(ro 1) (for)© /=\1 ((spi)¢ A ({spj).wi premise wy,))

(ro,) (fpr)S = NOT EXISTS { (w; premise { premp). wyq) A
NOT EXISTS { (w; premise wy,) } }

<3

(r63) {for) =V ({spi) A ({spj) - wi premise wra))

1

J
(r6.4) for)© = ((premp2)°.w; premise wy,)
(Fl0.1) (eonelp)© = (prp)¢ A (wyq conclusion (prp).w;)

(F151) (rebut)c = (api) A ap2)¢ A (wy claimText {cpy) .val)) A
(wy claimText (cp2)©.val) A {conflp)© v, =w,, wo=w,

(Here the ((cp))©.val refers to the object of claimText property of the main I-node of ¢p,
and can be either a variable, or the constant value of the canonical identifier, depending on the
particular form of cp.

(rl5,) (undercut)‘ = (ap) A {ap2)¢ A (wy claimText (cpy)€.val)) A

(wy claimText (prempy)©.val) {conflp)© . =w,, wir=w,
(r124) (endorse)’ = {ap1)° A (ap2) A ({epr)©.val = (cp2))©.val)

(rias) (back) = (apr)® A {ap2)® A ((ep1)©.val = (premp;))©.val)

Table 4.6: Query Translation with canonical assignment

Example 4.2.1. Let the ArgQL query of the example 4.1.3. The SPARQL equivalent g* is the follow-
ing:
prefix rdf:<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>

prefix aif:<http://www.arg.dundee.ac.uk/aif#>
SELECT *

4.2. Optimization of the ArgQL-to-SPARQL translation 71

FROM <http://aif.db>

WHERE {

(%, rdf:type aif:I-node). (?iy aif:claimText xt;).(?; aif:Premise ?ra;).

(7 rdf:type aif:I-node). (?ip aif:claimText ?txt;). (?ra; aif:Conclusion ?i;).

(?ra; rdf:type aif:RA-node). ((ap1)°)
(?is rdf:type aif:I-node). (s aif:claimText ?pri).(?is; aif:Premise ?ra3).

(g rdf:type aif:I-node).(?ig aif:claimText can(’cval’)). (?ra3 aif:Conclusion ?ig).

(?ra3 rdf:type aif:RA-node). ({ap2))
(%3 rdf:type aif:I-node).(?i3 aif:claimText ?txt3).(?i3 aif:Premise ?ray).

(74 rdf:type aif:I-node). (?iy aif:claimText ?txt4).(?rap, aif:Conclusion ?i4).

(ray rdf:type aif:RA-node). « apx))
{ Q%a, rdf:type aif:CA-node).(%; aif:claimText %xtp).(%ig aif:claimText %txiy).

(77 aif:Premise ?cay).(?ca; aif:Conclusion ?ig).

} UNION { (?ca; rdf:type aif:CA-node).(?; aif:claimText %xtp).(%g aif:claimText %txt3).

(%7 aif:Premise ?ca;).(%ca; aif:Conclusion ?%ig). } ((attack)©)
{ (cap rdf:type aif:CA-node).(liy aif:claimText xty). (%9 aif:claimText can(’cval’)).

(g aif:Premise ?cap).(?cay aif:Conclusion %iig).

} UNION { (?cap rdf:type aif:CA-node).(?iy aif:claimText ?%xty).(2ij9 aif:claimText ?pri).

(%iy aif:Premise %ca;).(%ca; aif:Conclusion %jp). } } ((attack/attack)
(2?1 rdf:type aif:I-node). (%} aif:claimText ?pry). (21 aif:Premise ?ray).

FILTER NOT EXISTS { ?x aif:Premise ?ras)

FILTER NOT EXISTS { ?x aif:Premise ?ray) } } { pro[/?pri1)
FILTER (?raz!=7ray)

(7o rdf:type aif:I-node). (%, aif:claimText ?c).(?ras aif:Conclusion ?ij;).

(?ra4 rdf:type aif:RA-node).} ((ap3)©)

The following theorem expresses that the approach of canonical assignment does not violate the
soundness and completeness of the translation process.

Theorem 9. For any ArgQL pattern m € M, its translation to SPARQL under the canonical assign-
ment method, is sound and complete, which means that: |[Ia(m) | = & e ({m)°)

The proof of theorem 9 is trivial and it follows similar methodology with the proof of theorem 10.
For convenience we are going to omit it in this document.

72

Chapter 5
Implementation and Evaluation

Contents
51 Implementationttt tenteneeneennsensos 73
5.1 Overview . . .o .o 73
5.1.2 Parsing 74
5.1.3 Resultscollection 78
5.14 ArgQLendpoint 82
52 Evaluationttt ittt ittt 85
5.2.1 Experimentalsetup 85
5.22 Resultsand Discussion 87

5.1 Implementation

In this section, we show the feasibility of ArgQL in real application domains by describing the pro-
cess of its execution and the steps from the point of query composition, towards the retrieval of the
respected results. In particular, after we give a general overview of the different components between
which the data flow, as well as the different forms they may get (section 5.1.1), we will move to the
description of the most important algorithms within the process (sections 5.1.2, 5.1.3) and finally we
will present the ArgQL endpoint (section 5.1.4) which is a web-based application, which allows the
testing and execution of queries on real data.

5.1.1 Overview

Figure 5.1 gives in an illustrative way the query execution cycle. Initially, the ArgQL query incurs
lexicographic and syntactical recognition by the parsing component. The parser takes as input a query
and transforms it in an intermediate structure, Query Intermediate Data (QID), that constitutes a
conceptual representation of the query and it is described later in that section. The RDF management
component, takes as input that structure and also the translation rules defined in section 4.1.2 and

73

74 Chapter 5. Implementation and Evaluation

generates the final SPARQL query q*. Then, the SPARQL query is executed, and finally, the retrieved
RDF results are given to a set of algorithms to transform them back into the format expected by the
initial ArgQL query, taking also into account the intermediate structure of the previous stage.

QID - Intermediate
form of data RDF
manage- Tragnslation
ment rules
dp;
ArgQL g o = = = SPARQL
query q § Generation
dp, .. SPARQL
oo .— oo query a*
m
(%}
Ar:%wer Results é" £ § 8 P
q Collection £ 3 =53
@ Ol
=

Figure 5.1: Data flow of the query execution process

5.1.2 Parsing

The ANTLR parser generator

ANother Tool for Language Recognition (ANTLR) [75] is a tool that allows for generating the parser
for a specified language, from specifications in an EBNF-like syntax. The source code of the parser
can be in one of the C, C++, Java, Python, C# or Objective-C programming languages. Extended
Backus-Naur Form (EBNF) is a commonly used notation for context-free grammars. Roughly, ANTLR
distinguishes three compilation phases; the lexical analysis phase, the parsing phase and tree walking
phases. During the lexical analysis phase, the characters from the input file or stream are grouped
into a stream of words or tokens. The token stream is used as input to the parsing phase where a tree
of tokens is created, called Abstract Syntax Trees (AST). An AST is a finite, labelled tree, where each
node represents a programming language construct and the children of each node represent the com-
ponents of that construct. Finally, a tree walker is used to process the AST that has been produced
by the parser. Figure 5.2 gives an example of a EBNF grammar supported by ANTLR, as well as the

AST created for a statement recognized by this grammar.

5.1. Implementation 75

expression +
: operand ("+" operand)* A

ope rand
¢ ("-")7 operand A
| "(" expression ")"
| value a b
| identifier

Figure 5.2: Example of an EBNF specification and an AST for the statement 1 + -(a + b)”

SPARQL query generation

Before moving to the description of the parsing process, we first need to describe QID, the interme-
diate structure we referred in the previous paragraph, and then we will show how it is created by
the parsing code. QID consists of a list of elements - dpList - that represent the dialogue patterns
appearing in the query. Each such element dp; in dpList can have two different forms: it may either
be an argument pattern object, or a ppList, that is, a list of path patterns. In the latter case, a ppList
represents a specific path pattern expression in the query and includes all the different alternative
path patterns which are created by the combination of the * and + numeric indicators. Each path
pattern pp; in ppList, consists of a sequence of objects that correspond to relation patterns rpy. Each
relation pattern includes two argument patterns for the source and the destination arguments of the
matching relation. In the following, we give an example of the QID structure, a particular ArgQL
query generates.

Example 5.1.1. Let the match clause of a query gq:
match ?a; (attack)+3 Yay:(?pry, "¢’), 2az:(?pr2[/?pri], ¢)

»_»

In this query we have three argument patterns apy =?ay, ap, =?ay:(?pry, "c”), ap3 =?az:(?pr2[/?pr;],
?c) and a path pattern pp = (attack) + 3 between ap, and ap.

The QID structure for q consists of a dpList with two elements dp| and dp;. The first one, dp
will contain a ppList which will include three elements pp;, that correspond to the three alternative

path patterns, that pp generates. In particular:
- pp1: [apy attack aps]
- pp2: [apy attack _apy], [-apy attack ap; |
- pp3: lapy attack _apy), [_apy attack _ap,), [_ap, attack ap,]
Each element in a pp; corresponds to a relation pattern object, which contains two argument patterns

and its type (attack) and the _ap, and _ap, are random arguments, generated during the process (not
existed in q) and will bind to the intermediate arguments in the path.

The second one dp; corresponds to the argument pattern laps.

76 Chapter 5. Implementation and Evaluation

Recall the grammatical rules shown in figure 5.3 that recognize the general form of an ArgQL
query and the path pattern expressions. We restrict ourselves only to the particular set of rules, be-
cause we are not interested to overload the reader with too many technical details of the code, but to
give a general idea of the generation of QID, and how it is used to create the final SPARQL query.
Thus, the rules for argpattern, returnvalue and relation are omitted. We use capitalized and under-
lined text font to denote the names of the rules. Observe that the rule pathpattern is recursive, such
that it will be able to recognize any combinations of pathpatterns, including the sequence character
’/’, or the numerical indicators * and +.

QUERY = ‘MATCH’ DIALOGUEPATTERN (, DIALOGUEPATTERN)*
‘RETURN’ RETURNVALUE (, RETURNVALUE)*

DIALOGUEPATTERN := ARGPATTERN (PATHPATTERN ARGPATTERN) *

PATHPATTERN == PP (‘/ PP)*
PP ::= RELATION |

‘(* PATHPATTERN *)*
‘(* PATHPATTERN)+

n
n

Figure 5.3: Part of the EBNF for ArgQL

To describe the parsing algorithm, we adopt the approach of ANTLR. In particular, ANTLR
allows to embed code inside the EBNF language specification, in order to define the functionality
triggered at the recognition of a particular construct in the specified language. Thus, in figure 5.4 we
show in pseudo-code, the algorithms that are embedded in the rules of fig 5.3 and are responsible to
generate QID, as well as the algorithm for the composition of the final SPARQL query from QID.
Each rule returns a particular value to the parent node in the parse tree and this value is accessed with
the dot(.) character by the caller. For example if a rule r| returns a value a and the rule r, uses ry,
then r, obtains access to the return value of r, with the notation r.a.

We start describing the process with the rule pp. Note that both pp and pathpattern rules return
a ppList object to the higher levels of the parsing tree. In the simplest case in which pp is a simple
relation pattern (line 12) a new ppList is defined (line 13) and then (lines 14-16) a new path pattern
with a single relation pattern of the specific type is also created and added to the new ppList which
is returned by the rule. If pp is of the form (pathpattern)*n (line 20), then all the path patterns in
the ppList returned by the rule are multiplied n times. For example, in the multiplyPath method, if
p=attack/support and n=3, then p will become attack/support/attack/support/attack/support. If pp is
of the form (pathpattern)+n (line 29), then what must happen, is that each path pattern p in ppList
returned by the pathpattern rule, has to generate n new path patterns, such that each new path pattern
i will be the same as i-1 appended by p. For example, let ppList containing two path patterns attack
and attack/attack and let n=3. The new ppList will contain 6 elements which will have arisen by the

creation of the 3 new path patterns for each one existed initially in ppList.

5.1. Implementation

77

Creation of QID structure
1. PATHPATTERN [returns list of path patterns: ppList]:
2 PP { leftList <- PP.ppList}
3 (‘7 Pp{
4 rightList « PP.ppList
5. newAP « create new general Argument pattern
6 updatelLast(leftList, newAP)
7 updateFirst(rightList, newAP)
8 leftList « concat(leftList, rightList)
9. 1)* return leftList;
10.
11. PP [returns list of path patterns: ppList] :
12. RELATION{
13. newPathlList « create new path list
14. newPP « create new pathpattern
15. add RELATION.rp to newPP
16. add newPP to newPathList
17.
18. return newPathlList;
19. }|
20. (' PATHPATTERN')' "*'n {
21. ppList < PATHPATTERN.ppList;
22.
23. foreach p in pathList loop
24. multiplyPath(p, n);
25. end loop
26.
27. return pathlList
28. 1|
29. '(' PATHPATTERN')' +n {
30. pplList < PATHPATTERN.ppList
31. newPathlList « create new path list
32.
33. foreach p in ppList loop
34. foreachi<nloop
35. ifi==
36. add p to newPathlList;
37. else
38. previousPP « get latest path pattern
from newPathList
39. newPath « appendPath(previousPP, p)
40. add newPath to newPathList
41. i++;
42. end loop
43. end loop
44, return newPathList
45. }

46. DIALOGUEPATTERN [returns DialoguePattern:dp] :

47. ARGPATTERN {

48. ap1 « ARGPATTERN.ap

49. 1

50. (PATHPATTERN {

51. ppList <~ PATHPATTERN.ppList

52. }

53. ARGPATTERN {

54. ap2 « ARGPATTERN.ap

55. updateFirst(pplList, ap1)

56. updatelLast(pplList, ap2)

57. Por

58. {

59. if ppList not empty then

60. dp « pplist

61. else dp «ap1l

62. }

63.

64. QUERY:

65. ‘MATCH ‘ DIALOGUEPATTERN {

66. add dialoguepattern.dp to list of dialogue patterns }

67. (‘,” DIALOGUEPATTERN {

68. add dialoguepattern.dp to list of dialogue patterns }

69.)*

70. ‘RETURN’ RETURNVALUE (‘,” RETURNVALUE)*
Algorithm SparglQueryCreation

1. Input: dpList - list of dialoguePatterns

2. Output: q —sparql query

3.

4. foreach dp in dpList loop

5. if dpis argpattern ap then

6. append q with the translation of ap

7. else if dp is a ppList then

8. append q with the translation of the first ap

9. foreach p in ppList loop

10. foreach relation pattern rp in p loop

11. append g with the translation of rp

12. append g with the translation of the ap2 of rp

13. end loop

14.

15. if ppList has more than one pathpatterns

16. append q with the disjunctive UNION

17. end loop

18. end loop

Figure 5.4: Pseudo-code for the most general parsing points and the generation of the SPARQL

query

Now, we move on the description of the pathpattern rule, which also returns a ppList object.

The rule recognizes sequences of expressions of the rule pp. The idea here is that, anytime that

the parser recognizes the character ’/’, the ppList objects returned by the individual pp rules, must

be concatenated. To do this, a new random argpattern newAP is created in line 5. The function

78 Chapter 5. Implementation and Evaluation

updateLast in line 6 sets newAP as a terminating argument pattern in all path patterns included in the
leftList (in the last relation pattern object of every path pattern in the list, newAP is set as a destination
argpattern). Similarly, the function updateFirst in line 7 sets newAP as a starting argument pattern
in all path patterns included in the rightList (in the first relation pattern object of every path pattern
in the list, newAP is set as a source argpattern). The function concat in line 8, concatenates every
element in the leftList with all elements in the rightList, thus the number of elements in the resulting
ppList will be equal to the proliferation of the number of elements in the two individual lists.

Finally, in the rules dialoguepattern and query (lines 46, 61), the final QID structure is created
and in particular, apl is set as a starting argument pattern(line 56) in all path patterns included in
ppList, returned by the rule pathpattern, while ap2 is set as their terminating argument pattern (line
56). Then, the dp, which is created in lines 59-61, is returned to the rule guery, so that it will be added
to the final dpList.

After having created the QID structure, it is given as input to the SparqlQueryCreation algorithm
to generate the graph pattern in the where clause of the SPARQL query. In particular, the algorithm
iterates the dpList structure and, in case that the current dp is a single argument pattern, the query is
appended with its translation while if it is a ppList, it iterates the list of path patterns, and for each
path pattern, it traverses the sequence of relation patterns and appends the query with the translations
of the relation patterns and the intermediate argument patterns (lines 11-12), in an alternating way. If
ppList has more than one path patterns, it means that they must be added as alternatives in the query,
thus their translation is included in a UNION statement.

5.1.3 Results collection

In this section we describe the algorithms for the result collection and in particular, the transformation
from the RDF results of the generated SPARQL query, to the form expected by the ArgQL query. The
algorithms are presented in figures 5.5 and 5.6. The main algorithm is the collectResults in figure 5.5.
The algorithm has three inputs: 1) the RDF results, which are given as rows of data that constitute the
binding values of the involved RDF variables. 2) the QID structure generated during the parsing, and
3) the list with the elements in the refurn clause of the ArgQL query. An element in the return clause
may be either a variable (indicating data of one of the types argument, premise, conclusion), or have
the form path(vy, v;) indicating a path value. The output of the algorithm is a list of rows that will
include the values of the return elements (and more precisely, all the possible combinations between
the matching data of the return elements).

The general idea of the algorithm is that, the RDF data is parsed row by row (line 6) and, taking
into account the QID structure, creates progressively the answer to the ArgQL query, as it is expressed
in the list of return elements in the query. An important thing to mention is that, there is no one-to-
one correspondence between the RDF rows and the rows for the answer of ArgQL. Instead, the data
required to create an ArgQL row answer, is more likely to exist in more than one RDF rows. That
possibility basically regards the case of arguments and in particular the premises of an argument. If

5.1. Implementation 79

the argument pattern contains a premise variable that is going to get the entire set of premises as its
value, the number of RDF rows that will include the data for an argument value, will be equal to the
number of the premises for the matching argument. As a result, for any new RDF row that is read,
the algorithm either creates a new ArgQL row, or updates the already existing one with the new data.

Algorithm: collectResults Algorithm: createRowID

1. Input: 1.rdfResults — RDF results 1. Input: 1. rdfRow —row from RDF results
2 2. dplist - list of dialoguePatterns 2. 2. dplList - list of dialoguePatterns
3. 3. returnElements — list of return elements in ArgQL 3. Output: rowlD —identifier of a result row
4. Output: argglRowList — list that contains rows of 4.

argumentative data based on returnVars 5. for dpindplList loop
5 6. if dp is argpattern then
6. foreach rdfRow in rdfResults loop 7. arglD « get uri from rdfRow for w,, variable
7. rowlID « createRowID(rdfRow, dplList) 8. append row!D with arglD
8 9. else if dp is a pathpattern then
9 if row with rowID exists then 10. longestPP « find longest pathpattern from pathList
10. row « get existing row 11. arglD1 « get uri from rdfRow based on the w,,
11. else row « create new row to argq/RowList variable of the first argpatternin rp
12. 12. append rowID with arg/D1
13. foreach elem in returnElements loop 13.
14. if type of elem is argPattern then 14. foreach relation pattern rp in longestPP loop
15. resvalue « createArgValue(elem, rdfRow) 15. append row!D with the type of rp
16. if type of elem is pathPattern then 16. arglD2 « get uri from rdfRow based on the
17. resvalue « createPathValue(elem, rdfRow) W, variable of the second argpattern in rp
18. if type of elem is premisePattern then 17. append rowlID with argiD2
19. resvalue « createPremiseValue(elem, rdfRow) | 18. end loop
20. if type of elem is conclusionPattern then 19. end loop
21. resvalue « createConclusionValue(elem, rdfRow)
22.
23. update row with resvalue
24. end loop
25. end loop

Figure 5.5: Pseudo-code for the transformation between RDF results into argumentative results

In order to decide between the two choices, we maintain the idea of row ids. Each rdfRow from
the RDF results is marked with an identifier, which essentially constitutes an instantiation of the
dpList by the data of the rdfRow. That identifier, indicates also a particular row in the results of
the ArgQL query. For each new rdfRow, we create the identifier (line 7) and if it has not been met
before, a new row is created in the ArgQL results, otherwise, the existing one is retrieved in order to
be updated with the data from rdfRow (lines 9-11). The returned data of the query are created in the
loop between the lines 13-24. In particular, the list of the return elements is iterated, and according to
whether an element is a variable of type argument, premise, conclusion, or it is the construct path(vy,
vp), one of the methods createArgValue, createPremiseValue, createConclusionValue or createPath-
Value is called to generate the respective value from data of the rdfRow and then, the result row is
updated with that value.

The algorithm that creates the row identifier is also given in figure 5.5 (createRowlID). It has two
input values: a) the current rdfRow from the result set and b) the QID structure while the returned
output is the row identifier. Roughly, the idea is that for each of the elements in dpList, if they

80 Chapter 5. Implementation and Evaluation

correspond to an argument pattern ap, then we get the uri value bound to the related variable w,, from
the rdfRow and append the rowID with that value (lines 7-8), otherwise, if it includes a ppList, we
get the last pathpattern (largest one - line 10) and we append the rowlD alternatively, with the uri
values of the w,, of the intermediate argument patterns and with the character identifying the relation
pattern type. The algorithm is better explained in the following example:

Example 5.1.2. Let a dpList with two dialogue pattern objects: dp, defines an argument pattern
ap and dp; is created by the expression ap; (attack)+2 aps, thus it contains a ppList with two path
patterns: ppi : (apy attack aps) and pp; : (apy attack _ap, attack aps). Let also an rdfRow with
matching RDF data of the translated dp, and dp,. Assuming u, being the matching uri of w,, of
api, up the matching uri of w,q of apa, us the matching uri of w,, of aps and u, the matching uri of
Wyq Of _apy, the row identifier generated by the algorithm will be the "uy,uyAus” if a solution for ppy
is found, or "uy,urAuAus” if a solution of pp, is found. The letter A indicates the type of relation
(attack). For example if the relation was undercut, we would use the letter U.

Figure 5.6 shows the algorithms for the creation of an argument value (createArgValue) and a path
value (createPathValue), from an rdfRow. The two other algorithms for the premise and conclusion
are trivial and we omit them here.

The algorithm createArgValue receives an argument pattern and an rdfRow as input and returns
an argument value (more precisely, part of the argument value) created by the data in rdfRow. We
assume that each value is assigned with an identifier arglD which is created by the uri of the referred
wyq (line 6). Each argument pattern includes a list in which the created argument values are kept. In
lines 7-9, we check whether there is an argument value with argID and if it doesn’t, a new one is
created, otherwise, we retrieve the existing. In the code between the lines 11-27, the premise part
of the argument is created. In particular, in case that the premise pattern is a variable v, we get the
respective uri and the claimtText value for the I-node based on the variables w; and v (lines 12-13),
respectively, a new proposition is created with those values (line 14) which is added to the set of
premises of the argument value. In the other case that the premise pattern is a set of proposition
patterns (line 16), that set is iterated and for each of the proposition pattern, we check whether the
wj variable has value (line 18), or the wy, of the equivalence pattern (line20), which means that an
equivalent I-node to the one expressed in the query has been found in the premise set and the new
proposition is added to the premises (line 25). Note that in this case, one single rdfRow, contains the
complete value of an argument. The conclusion part of the argument is created in the code between
29-41. Again here, if the conclusion pattern is a variable v (line 29), the id and the value of the
proposition are assigned to the variables w; and v while in the case that it is a proposition pattern, it
has to be checked whether there is a value for variable w;; (line 34) of the w;; of the equivalent pattern
(line 36). Finally the values list is updated with the new argument value.

The algorithm createPathValue receives a dialogue pattern and an rdfRow as input, and returns
a path value as output. In order to know which of the alternative path patterns in ppList of the dp is
satisfied by the rdfRow, it suffices to check only the longest path pattern(line 6). In the loop between

5.1. Implementation

81

Algorithm: createArgValue

CONOUNPEWONR

21.
22.

23.

propValue
24.
25.
26.
27.
28.
29.
30.

31.

32.

Input: 1. ap — Argument pattern

2. rdfRow - row from RDF results

Output: argValue — generated argument value

// values is a list of arguments which are answers to ap
arglD « get uri from rdfRow based on the w,, variable
if argID exists in values then

argValue « retrieve argument with argl/D

else argValue « create new argument with arg/D

if premisepattern of ap is variable v then

proplD « get uri from rdfRow based on variable w;
propValue « get value from rdfRow based on

variable v

prop « new proposition with propID and propValue
add prop to premises of argValue.
else if premise pattern is prpset (set of proposition

patterns) then

for prp in prpset loop
if w;; has value in rdfRow then
prop < new proposition with prop/D and

prp value
20.

else if w;, has value in rdfRow then // an

equivalent proposition found

proplD « get uri from rdfRow based on w;,

(variable for equivalent I-node)

propValue « get text value from rdfRow

based on text variable for the equivalent I-node

prop < new proposition with prop/D and

end if
add prop to premises of argValue.
end if
set premises to argValue

if conclusionpattern of ap is variable v then
proplD « get uri from rdfRow based on the w;

variable

propValue « get value from rdfRow based on

variable v

prop « new proposition with propID and propValue

. else if conclusionpattern of ap is a proposition pattern prp

then
if w;; variable of prp has value in rdfRow then

prop < new proposition with propID and prp value

else if wj, has value in rdfRow then
proplD « get uri from rdfRow based on the w;,

propValue « get text value from rdfRow based on

text variable for the equivalent I-node

39. prop < new proposition with propID and propValue

40. end if

41. set prop as a conclusion of argValue

42. endif

43. update values with argValue.

Algorithm: createPathValue

1. Input: 1. dp — dialogue pattern

2. 2. rdfRow - row from RDF results

3. Output: path— generated path value

4.

5. path « create new empty path

6. longestPP « find longest pathpattern from pplList of dp

7.

8. foreach relation pattern rp in longestPP loop

9. arglD1 « get uri from rdfRow based on the w,,
variable of ap1in rp

10. arglD2 « get uri from rdfRow based on the w,,
variable of ap2 in rp

11.

12. argl « createArgValue(ap1, rdfRow);

13. arg2 « createArgValue(ap2, rdfRow);

14. relation < new relation with type of rp , source
argument argl and destination argument arg2

15.

16. add relation to path

17. end loop

Figure 5.6: Pseudo-code for the transformation between RDF results into argumentative results

the lines 8-16, the longestPP is crossed and for each relation pattern in the sequence, the argument

values arg| and arg; of the included argument patterns ap; and ap; are created by calling the method

createArgValue (lines 12-13), which was described above, and also a new relation value with arg; and

arg» being the source and destination arguments (line 14). Finally, the new relation value is added to

the returned path value.

82 Chapter 5. Implementation and Evaluation

5.1.4 ArgQL endpoint

One of the outcomes of this work is a web application that demonstrates an endpoint for ArgQL,
where someone is able to test his own queries against the AIFdb dataset. Figure 5.7 illustrates a
snapshot of the main page of the application.

The query is written inside the input form with the titular label ArgQL query. The query is
submitted for execution when pressing the Execute button. The text area on the right which has the
label Generated SPARQL query is an output form in which, after the query has been translated and
executed, prints the SPARQL query generated by the suggested translation of section 4.1.2. The
results of the ArgQL query are shown in the Oufput area at the bottom of the page. Finally, the set
of radio buttons with the choices Normal and Optimized, are used to set whether the query will be

translated based on the optimization suggested in section 4.2, or not.

ArgQL EndPoint
ArgQL query Generated SPARQL query
match ?a: < ?pr, "This is about creating a university that rivals the world's prefix rdf:<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
best university.” > prefix aif:<http://www.arg.dundee.ac.uk/aif#>
return ?a SELECT *
FROM <http://aif.db>
WHERE {
?_i1 rdf:type aif:l-node.
?_i1 aif:claimText ?pr.
© Normal ?_i1 aif:Premise ?_ral.
?_i2 rdf:type aif:l-node.
Optimized

?_i2 aif:claimText "This is about creating a university that rivals the

‘ Execute '

Output

(1) [?a:(ID-593)<{"This would put Oxford and Cambridge way way behind and would put us in a strong position to rival Harvard. “, "Harvard is the world's
number one university."}, ""This is about creating a university that rivals the world's best university."">]

Figure 5.7: Snapshot of the ArgQL endpoint

The menu bar on the top of the page, has multiple choices. The Home choice is quite trivial
and returns to the main page. The AIFdb redirects to the link of the AIFdb dataset, and in particular
to the "http://corpora.aifdb.org/”, where someone can find the data in several forms, including their
schematic representation. The Examples option opens a list of preset queries, which has been created
to facilitate the utilization of the application, as well as the familiarization with the syntax of ArgQL.
The list captures the whole spectrum of the supported queries . Figure 5.8 shows a snapshot of that
list. For each query, there is a description of the informational requirement it expresses and when
pressing on the glass icon, a preview of the query is revealed. With the Select button, the query at the
selected choice of the radio button list is appeared in the ArgQL query text area of the main page. The

5.1. Implementation 83

Gihub choice redirects to the source code of the implementation described in the chapter. Finally, the
Formal Specification leads to material that contains the formal documentation of ArgQL.

Q7. Instant argument
Check whether an instant arg (orarg with equal propositions) exist in the
know/ledge base. Q

© Q8. Simple relations
Search for arguments explicitly related with one of the available relations (rebut, undercut,
attack, endorse, back, support). Q

Q9. §
Searchil n the example, proposition
‘everyc m } "concl" > eryday" is equivalent with the
“all can¢ = n 2 lusion of the argument. Q.

Query preview

- Qito.
Express graph of arguments Q

~Q11. Path patterns: * numeric indicator
The path*n numeric indicator in the path pattern implies n repetitions of the path Q
~1Q12. Path patterns: + numeric indicator
The path+n numeric indicator in the path pattern implies up to n repetitions of the path Q.
1 Q13. Path patterns: combinations
A path pattern can be expressed as an arbitrary number of combinations of explicit path
patterns and of paths with numerical indicators. Q
) Q14. Sequence of dialogue patterns
Search for more than one types of dialogue patterns. Q

R3 112:RNAN/AraN /endnnint htmlid

Figure 5.8: Snapshot of the ArgQL endpoint - List of predefined queries

Like any other language, declarative or procedural, ArgQL also supports a mechanism for lexico-
graphic and syntactic validation. When something is not recognized as lexicographically or syntacti-
cally correct, the proper messages are appeared on theOutput form. Fig. 5.9 shows an error example,
where the user does not close the argument pattern with th) character, and the error message printed
in the output.

Technologies used

We used several web technologies to implement the ArgQL endpoint. First of all, for the interface
(menus, text fields buttons etc.), we used Bootstrap', a free and open-source CSS framework, on top
of html, which provides a set of pre-designed components to build a polished web page. To manage
the responsive behavior of these components (press of buttons, event handing etc) we used jQuery?, a
fast, small, and feature-rich JavaScript library. The methods for query execution and by extension, the
translation of the initial query to SPARQL, have been implemented as a RESTful web services api®.
Representational state transfer (REST) is a software architectural style that defines a set of constraints
to be used for creating Web services. It is mainly used to develop lightweight, fast, scalable and

! https://getbootstrap.com/
2https://api.jquery.com/
3 https://www.tutorialspoint.com/restful/index.htm

84 Chapter 5. Implementation and Evaluation

Formal Specification

ArgQL EndPoint

ArgQL query Generated SPARQL query

match ?a: < ?pr, 7¢
return ?a

© Normal
Optimized

‘ Execute ‘

Output

Syntax Error

line 2:0 missing '>' at ‘return’

Figure 5.9: Snapshot of the ArgQL endpoint - Error messages

easy to maintain web services, that often use HTTP as a means for communication. Thus, RESTful
applications use HTTP requests to post data (create or update), read data (making queries) and delete
data. REST is not a standard in itself, but instead is an architectural style that uses standards like
HTTTP, XML/HTML/JSON to encode data of the HTTP requests and responses. Finally, we used
the Apache Tomcat*, an open source Web server tool developed by the Apache Software Foundation
(ASF), in order to host the web page of the endpoint and the RESTful web services.

4http://tomcat.apache.org/

5.2. Evaluation 85

5.2 [Evaluation

In this section, we present an extensive experimental evaluation of the suggested methodology for the
ArgQL query execution. Our analysis has four main objectives: (i) To provide a numerical estimation
of the size of the generated SPARQL queries, as well as to show the growth rate of these numbers,
when adding different types of patterns to the initial ArgQL query (sec. 5.2.2). We present those
numbers for both translation versions: with and without the optimization. (ii) To show how the
suggested optimization affects the execution times in the different query categories(see list in sec.
5.2.2). (iii) To evaluate the extent to which, the addition of a particular type of pattern changes the
execution time (sec. 5.2.2). The particular measurement is tested on the optimized translation version.
(iv) To estimate the scalability of the generated queries (also for the optimized version) in increasing
volumes of data (sec. 5.2.2).

5.2.1 Experimental setup

Software

For the RDF data management (e.g. storage of datasets and query execution), we worked with the
open source version of the Virtuoso Universal Server® (v7.2.4.3217) [42], in which, the RDF triples
actually reside in a relational database. On top of that, we used the Java programming language
(version 9) to develop the algorithms that realize the translation and we used the API of the Jena open
source framework® for the communication with Virtuoso. The ArgQL parser is generated (also in
Java) from a context-free grammar, using the tool ANTLR v4 [75]. Roughly, ANTLR takes as input
a grammar that specifies a language and, adopting the left recursion approach, it generates source
code for the recognizer of that language. In respect to the optimization methodology, we maintain
a relational database scheme to keep the associations between the RDF literals and the canonical
IRIs. To do this, we used MySQL’, which is an open-source relational database management system
(version 8.0.4) and we used the jdbc api [45] to manage the database from our main Java program.

Environment

All experiments were performed on a machine which uses an Intel(R) Core(TM) 17-3770 CPU at
3.40 GHz, with 16.0 GB of RAM,, with a single 7200 RPM 930GB hard drive, running Windows
10 Enterprise, version 1803 (OS build 17134.885). From the total amount of memory, we dedicated
8GB for Virtuoso.

5https://Virtuoso.openlinksw.coml
6https:// /jena.apache.org/
7https://dev.mysql.com

86 Chapter 5. Implementation and Evaluation

Datasets and Queries

For our experimental evaluation we used the AIFdb dataset®. AIFdb is a corpus of argumentative
data, gathered from several argumentation tools, such as DGEP [25], the AnalysisWall [23] and
ArguBlogging [27]. Table 5.1 gives some indicative sizes that characterize the dataset.

Parameter AIFdb Sizes
Size on disk 420MB
Number of triples 1.1IM
Number of I-nodes 46047
Number of RA-nodes 14208

Number of conflicts(CA-nodes) 13003
Number of default rephrases 2134
Cycles yes

Table 5.1: Statistical description of AIFdb corpora

The AIFdb dataset consists of 10427 RDF files, that occupy 420MB of disk space. Those files con-
tain data structured in the AIF conceptual scheme. In terms of triples quantity, it includes 1.1 million
of them. Some other interesting sizes concern the numbers of instances of some particular concepts
in AIF, like the number of I-node instances (46047), the number of RA-node instances (14208), the
number of conflict application (CA) instances (13003) and the number of default rephrases (2134).
Moreover, the dataset includes cycles, which essentially means that, inside a cycle, the length of a
path is infinite. This information is crucial in application domains that deal with the problem of graph
traversal. Given that there is a great analogy between the concepts of our argumentation model and
the AIF, the particular dataset was inherently suitable to evaluate the applicability of ArgQL beyond
the theoretical boundaries.

We used the following 10 ArgQL queries to perform the experiment tests.

Q1. match ?a
Q2. match ?a
Q3. match ?a: (?pr[/{”p;”}], 2c) return ?a

: (?pr, ¢) return ?a

:

o
Q4. match ?a: (?pr[.{"p;”}], ?c) return ?a

x

A

?pr, "value”) return ?a

Q5. match ?a
Q6. match ?a

?pry, 2c1), b: (?pra[/?pry], 2c,) return ?a
pr1, 2¢1), ?b: (?pra[.?pry], 2co) return ?a
Q7. match ?a: ({"p,;”}, "concl”) return ?a
Q8. match ?a attack ?b return path(?a, ?b)
Q9. match ?a attack/attack 7o return path(?a, ?b)
Q10. match ?a (attack)+2 7o return path(?a, ?b)

8http://corpora.aifdb.org/

5.2. Evaluation 87

QI is used to evaluate the efficiency in the face of the requirement to return all arguments in the
knowledge base. Q2, Q3, Q4 and Q7 are expected to give similar performance results, since they all
search for particular arguments, by filtering their internal structure with constant proposition values.
Q5 and Q6 are used to evaluate the performance when searching for combinations of arguments,
while Q8, Q9 and Q10 are used to evaluate the effectiveness of locating complete paths in the graph.

5.2.2 Results and Discussion
Size of the generated queries

The objective of this measurement is to give an insight about the sizes of the queries, that the transla-
tion described in chapter 4 generates. We did this by reducing the query to the graph pattern inside
the where clause of SPARQL and counting the number of joins and unions contained. The table 5.2
collects those sizes. The characters 'J’ and *U’ are used for the number of Joins and Unions, respec-
tively. We give the results for both versions of translation, with and without the optimization of the
canonical URIs (Normal and Optimized).

Q1 | Q2/Q3 Q4 Q5]0Q6|Q7|Q8|Q9 | Q10

Normal J 7 1222525 |16 | 30 | 37 | 94 | 166 | 253
Uuj| 0 1 1 1 0 3 2 8 14 | 24
Optimized J 7 7 |10 10|16 | 14 | 7 | 25 | 43 68

Ul o0 0 0 0 0 0 0 1 2 4

Table 5.2: Sizes of the generated SPARQL in number of JOINS and UNIONS

With a first glance, we draw the (obvious) conclusion that, as the queries become more complex,
from Q1 to Q10, the generated graph patterns are getting bigger, for both normal and optimized case.
QI is the simplest query and has the smallest generated size. Regarding the Q2-Q4, we observe that
they generate queries of similar sizes. We also observe about them, that the number of unions for
all is equal to 1. This happens because of the fact that in the particular use cases, they include 1
constant proposition pattern and the union is used to check for equivalent values. Notice also that
the queries Q8-Q10, which express the requirement of graph traversal, the numbers are increased
significantly. The results in the table also confirm that the queries generated with the optimization,
are much smaller than the ones generated without it, in both numbers of joins and joins. Especially
for the most complex cases, we observe that the difference is noticeable big. As we will see in the
next experiment, that difference has impact on the execution times. The only cases, in which the
sizes are equal between the normal and the optimized version, are for the queries Q1 and Q5 and this
happens because these are the only cases that are not affected by the equivalence factor.

In the second part of this measurement, we discuss how much, each particular component of the
ArgQL specification contributes to the size of the generated query. We concluded that the factors
mostly affecting the size are the following five: i) number of proposition patterns ii) number of
argument patterns iii) number of dialogue patterns that have the form of a path pattern between two

88 Chapter 5. Implementation and Evaluation

argument patterns iv) length of a path pattern and v) number used in the "+’ indicator of a path pattern
expression. To conduct this analysis, for each of the five cases, we started with one of the queries in
the list above, and by increasing the numbers by one, we count the number of joins and unions of the
generated queries, again for both normal and optimized versions. Certainly, the presented numbers
concern those very specific cases and a query could contain arbitrary combinations of them, that
would give completely different numbers. However, the aim here is to give a general intuition about
which components are the ones that contribute more to the size. The results of this analysis are shown
in figure 5.10. The five charts depicted, correspond to the five cases discussed before. Regarding the
abbreviations used, JN stands for the number of joins in the normal case, UN stands for the number
of unions in the normal case, JO is the number of joins in the optimized case and UO stands for the
number of unions in the optimized case.

100 100 400
90 90 350

300

60 60 250
50 50 200
40 40 150

100
10 10 50

0 0 0
2 3 4 5 1 2 3 4 1 2 3 4

(a) Number of proposition patterns (b) Number of argument patterns (c) Number of dps: path patterns

| \ JO e UO e N e UN JO e UO s N e UN JO e UO
700 1600
600 1400
500 1200
400 1000
800

300
600
200 400
100 200
0 0
1 2 3 4 1 2 3 4
(d) Length of path pattern (e) Number of + indicator
e | e UN JO e UO e N e UN JO e UO

Figure 5.10: Estimation about how the size of the SPARQL query is affected when adding con-
structs in the ArgQL query

About the first case (number of proposition patterns) the results are shown in diagram (a). We start
with the query Q7 and gradually add proposition patterns in the premises of the argument pattern. We
notice a linear and steady increment for all of the four sizes and this is normal, since, independently
of the proposition pattern, the graph pattern to which it corresponds has fixed size in both normal and
optimized versions. In the normal version, each new proposition pattern contributes with 18 joins
and 1 union, while in the optimized case it only contributes with 3 joins and zero unions. This is the
reason why the blue line (JN) lies so much higher than the other three. Note also that a query with
only five proposition patterns can generate a SPARQL with 90 joins in the normal case.

5.2. Evaluation 89

About the second case (number of argument patterns) the results are shown in diagram (b). We
start with the query Q2 and gradually add argument patterns of the same form. Thus, the linear and
steady increment of the 4 sizes is also normal, here. In the normal version, each new argument pattern
contributes with 22 joins and 1 union (since it contains a proposition pattern), while in the optimized
version, it contributes with 7 joins and zero unions. A query with four argument patterns can also
generate a SPARQL so elongated as 90 joins.

About the third case (number of path patterns) the results are shown in diagram (c). We start with
the query Q8 and gradually increase the number of dialogue patterns by one of the same type (path
pattern containing a single attack relation pattern). Thus, the linear and steady increment of the 4
sizes is also normal, here. In the normal version, each new such path pattern contributes with 94 joins
and 4 unions, while in the optimized version, it contributes with 19 joins and zero unions.

About the fourth case (length of path patterns) the results are shown in diagram (d). We start with
the query Q8 and gradually increase the length of the path pattern by one each time which is of the
same type. We also notice here a linear increment in the 4 sizes and this is because each new relation
pattern in the sequence of the path pattern generates a fixed sized graph pattern (one new intermediate
argument pattern and the translation of the relation pattern). In particular, in the normal version, the
size is increased by 140 joins and 7 unions, because for each attack relation pattern, we check all
the possible cases between the two conclusion patterns (in case of rebut) and all the possible cases
between the conclusion pattern of the first and the premise pattern of the second (in case of undercut).
In the optimized version, it contributes with 18 joins and 1 union (only for the check between rebut
and undercut).

About the fifth case (number in the ’+ indicator), the results are shown in diagram (e). Again
here, in the query Q10 we start with the number 1 (equal to Q8) and we increase it by one each time.
In this case, the increment is linear but it is not steady and this is because, as the number increases, the
size of the generated graph pattern becomes longer. Roughly, if x is the length of the graph pattern of
the included relation pattern r, then the length of the expression (r)+n will be given by the following:

n
[=>ix
i=0

The [here refers to both JN and JO sizes. This case is the most costly in the sense that it causes
the longest queries among the five factors. Note that for a simple query that uses the particular
path pattern expression with the number 4, the generated query in the normal case exceeds the 1400
number of joins and the 70 number of unions, while in the optimized case, those numbers are 187
and 13, respectively. Thus, the outcome of this case constitutes one more tactile argument in favor of
the optimized translation.

Optimization efficiency

General Remark. In the following experiments, we evaluate the execution time of the queries. That
time is essentially the total of the individual times of all the steps in the execution cycle: 1) the time

90 Chapter 5. Implementation and Evaluation

to parse and translate to SPARQL, 2) the execution time of SPARQL in virtuoso and 3) the time
to collect RDF data and transform them to argumentative form. Each experiment was repeated ten
times with the best and worst results discarded and the remaining eight numbers averaged. In all
of our experiments, the results were very similar among these eight runs and thus, the confidence
intervals were too small.

In this part of our experimental analysis, we compare the execution time between the initial trans-
lation and the optimized one. In particular, we examine in which cases the suggested optimization
succeeds better, similar, or worse execution time, and how much exactly is that time. The outcomes
of the experiment are presented in figure 5.11. For each query, we give 4 numbers. With the blue and
the green columns (normal-exec, optimized-exec), we represent the execution time of the SPARQL
query, (without the parsing and collect time) for the normal and optimized approaches respectively,
while with the red and purple columns (normal-total, optimized-total), we give the total execution
time until the results are returned to the ArgQL query. We made this separation so that we can con-
strue and understand better which steps affect the execution time more and detect the bottlenecks
within the execution cycle for each case.

mnormal - exec ® normal-total optimized-exec m optimized - total

21410

15718
15808

15437

15340

3691
2546

I 3246

2419

=)

I 15248

TIME (MS)

I 105
4062

45
m 1157
m 1157

6

9
m 602
B 602

46

60
. 1049
1049

41

49
4600

4659
- 2112
I 9620
286
9828
3990
3990
7
3154
3139
1517

. 2302
I 15510
]

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Qs Q9 Q10

Figure 5.11: Effect of the optimization in the execution time

About Q1, we observe similar execution times of the generated query between the two cases, but
a significant difference in the total times, with the optimized one to be greater. This is the only case
in which the optimized version is slower and this happens because of the great number of results (all
arguments in the knowledge base) and because, at collect time, the values for all of the propositions
in the results must be retrieved from the database used to store the information for the canonical URIs.
The next three queries Q2-Q4 have all similar results. In particular, for all of them, the optimization
succeeds much better execution and total time, but generally those queries are fast in both cases. The
query Q5, as we mentioned also in the previous section, does not take into account the equivalence
factor, thus it was expected that they would give similar results in the two cases. We notice that this

5.2. Evaluation 91

query is executed in about 4,5 seconds but it gives a great volume of results, which at collect time
was too expensive to process. For that reason, we used the limit option of SPARQL, and we reduced
the number of results to 200, such that we would be able to manage them. Even with that limitation,
we observe that it takes about 15 secs to return the results to the ArgQL query. Note that in this
query, the double negation (NOT EXISTS), caused a great delay in the execution of the particular
query. Therefore, we replaced one of the two NOT EXIST filters with the NOT IN and we succeeded
a satisfying execution time. The next query (Q6), which expresses the requirement of join between
the premises of two arguments, has a bit faster execution time in the optimized version, but the total
times are almost the same. A significant improvement is observed in the execution time of Q7. This is
because that query highly depends on the equivalence factor which means that, the more proposition
patterns appear in the particular query, the greater the difference between the two versions will be.
A considerable improvement in the optimized approach is observed also for the remaining queries
Q8-Q10 and generally for queries that search for complete paths in the graph. Note that for all those
queries we ask for any path in the knowledge base, that confronts to the referred path pattern. Given
also the existence of cycles, the SPARQL query returns a huge volume of data which is also for this
case, difficult to process and transform at collect time. Therefore, we also used here the expression
limit 1000 to restrict them. As a result we see that without the optimization, the total time was ~ 3
seconds for Q8 and ~ 15 seconds for Q9 and Q10, whilst with the optimization, the total time is a bit
smaller for Q8 (~ 2 seconds) and much smaller for Q9 and Q10 (~ 3 seconds).

Overall, we conclude that in most of the cases, the optimization improves significantly the execu-
tion time, especially for the queries that use constant propositions to filter the structure of argument
and for those that search for relations or sequences of relations between arguments. However, when
the queries must return a great number of results, the extra step of retrieving the text values from the
database of canonical elements during the results transformation, causes a small delay in the process.
That issue was resolved by using the limit option of the SPARQL such that the results are retrieved
and processed in portions.

Time efficiency

In this section of our experimental analysis, we assess how the various components in the ArgQL syn-
tax affect the execution time. In particular, we focus on the factors described in the first experiment
of the evaluation. Therefore, we are going to discuss the temporal burden in the following cases: 1)
when a new proposition pattern is added 2) when a new dialogue pattern is added (single argument
pattern or a path pattern), 3) when the length of a path pattern is increased and 4) when the number
n in the path pattern expression (r)+n is increased. The aim of this experiment is to give an idea
about the restrictions of the particular implementation of ArgQL, against its syntax. The outcomes
are presented in figure 5.12. The translation version we evaluate here is the optimized one. All of the
following experiments concern the total execution time (including the time for parsing, translation,
execution and results collection). For the current experiment, we set the threshold for the response

92 Chapter 5. Implementation and Evaluation

time, between 20-30 seconds. The waiting time above that threshold can be considered as non toler-
able. As a result, we increased the numbers of the referred factors, until the execution time reaches
that threshold and we discuss for each case the rate of increment.

3000 25000
2500 20000
2 2000 £ 15000
~— Q
g 1500 £ 10000
£ 1000 =
. 5000
500
0
0
0 2 4 6 8 10
0 5 10 15 20

b) No of dial tt
(a) No of proposition Patterns (b) No of dialogue patterns

—@— argpatterns —@— Pathpatterns

30000 25000
25000 20000
“» 20000 m
£ £ 15000
© 15000 <
E 10000 E 10000
5000 5000
0 0
0 2 4 6 8 10 0 2 4 6 8 10
(c) Length of path pattern (d) Number in + indicator
—8—rebut —@—attack back —@—support —8—rebut —@—attack back —@—support

Figure 5.12: Estimation about how the execution time of the SPARQL query is affected, when
adding constructs in the ArgQL query

To create the first diagram (a) we start with the query Q2, that contains one proposition pattern in
the conclusion part and then, we gradually add proposition patterns in the premise part. We observe
in the diagram that, for a number of proposition patterns greater than 12 in the same query, the
execution time gets increasingly big, while for more than 16 proposition patterns, it exceeds the
predefined threshold.

In the second chart (b) we merge the cases where a dp is a single argument pattern with the case
where it includes a path pattern, in the same diagram. We observe that the maximum number of path
patterns a query can “tolerate” is three, while the maximum number of single argument patterns is 10.
Above those numbers, the queries exceeded the temporal threshold.

The third chart (c) presents the execution time for different lengths of paths and of different types
depending on the relation patterns existing in the sequence. Here, we present four of the six supported
relations: rebut, attack, back and support. The other two (undercut, endorse) have very similar results
with the rebut and back respectively and therefore they were omitted. In general, we notice that
longer path patterns (length of eight or more) of the rebut and back relation type (and by extension
undercut and endorse) can be supported, while for paths patterns that consist of the abstract relations
support and attack, we can only have path pattern of length three and four, respectively. This was

12

12

5.2. Evaluation 93

expected since in the abstract relations, more cases need to be checked and as we showed in the
first experiment, the size of the query is greater for these cases. As a result, if there is a need to
express long path patterns, we recommend using the more specific types of relations and avoid the
most general ones.

The fourth chart (d) shows the changes in the execution time when the number n increases in the
(r)+n path pattern expression. We examine the execution times for all of the different types that r may
get (again here the undercut and endorse are omitted for the same reasons as before). We see that
regarding the attack case, the maximum number we can use is three, ((attack)+3) while for the back
relation, that number can be even 10 (ten alternative sequences of back type can be supported). This
is easily explained, since in the optimized version that we examine, the back relation is expressed
with just an equality check between the canonical values that correspond to the involved conclusions.

Scalability

One of the most crucial issues when processing data, is the extent to which the proposed method-
ologies scale in increasing volumes of data. This is what we investigate in this set of experiments:
how efficient ArgQL remains, when the sizes of the target data increases. To realize the analysis,
we started with the initial dataset that consisted of ~ 1.1M tuples according to the table 5.1 and then
we multiplied this by 5 and by 10, creating that way two new datasets of ~ 5.5M and ~ 11M tuples,
respectively. For each of the three datasets, we ran the queries Q1-Q10 and measured the execution
time in the way that we described above (averaged of eight execution times). Figure 5.13 reports our
results.

At a first glance, we notice a negligible increment to the execution times across the three data sets
for most of the queries. In particular, the analysis showed that queries Q1, Q2, Q3, Q4, Q6, Q7 and
Q8 scale well in the particular sizes that we used, creating the prospect of similar scalability results,
for even larger data sets. On the other hand, queries Q5, Q9 and Q10 seem not to be so scalable.
Regarding Q5, we already discussed the reasons why it exhibits such a high execution time and this
is because of the double negation, which has a great impact to the performance especially in big
volumes of data. Thus, we observe that in the largest data set, a query of this type, may take even one
minute to be executed.

About the queries Q9 and Q10, we discern two cases for each one. In the first case, the queries
Q9 and Q10 are translated as ”search for any path matching to the particular pattern” and this is
expressed with the use of single variables as argument patterns, which, according to the semantics,
match any argument in the knowledge base. In the second case, we assume two new queries Q9 and
Q10’, which are of the same type as Q9 and Q10, but differ in that, at least one of the two argument
patterns are restricted to locate particular arguments. For example, they express queries like “’search
for paths that match to the defined path pattern, terminating to (or beginning with) arguments with a
particular conclusion.” We observe that in the first case, the queries Q9 and Q10 are not that scalable.
In particular Q9 takes about 2.5 minutes to be executed in the largest dataset, while Q10 fails to

94 Chapter 5. Implementation and Evaluation

Q1 Q4

IS
o
=)
=}

TIME(MS)
o638
\ Qo
~
TIME(MS)
8 &
\ yol
Y
TIME(MS)
wv
o

100000

50000 //’
5 10

.
S
S

TIME(MS)

0

0 15 0 0
0 5 10 15 0 5 10 15
MULTIPLE OF DATA SIZE 0 5 10 15
MULTIPLE OF DATA SIZE MULTIPLE OF DATA SIZE MULTIPLE OF DATA SIZE
Qs Q6 Q7 Qs
N 80000 4000 60 2000
ﬁ 60000 2 3000 24 g 1500
g 40000 T 2000 o T 1000
£ 20000 Z 1000 22 2 o
0 0 0 " 0
0 5 10 15 0 5 10 15 0 5 10 15 0 s 10 15
MULTIPLE OF DATA SIZE MULTIPLE OF DATA SIZE MULTIPLE OF DATA SIZE MULTIPLE OF DATA SIZE
Q9 Q10
—#—Q9 ——Q9' —4—Q10 —@—Q10'
200000 5000
2 150000 — 4000
S 3
g 100000 2 3000
2 50000 S 2000 @
0 = 1000
0 5 10 15 0
MULTIPLE OF DATA SIZE 0 5 10 15

MULTIPLE OF DATA SIZE
Figure 5.13: Scalability in data size

be executed even in the medium data set. The explanation for this delay, lies in the large number
of data that the SPARQL engine has to combine in order to generate the answer (wide number of
variables and many result rows). On the contrary, queries Q9 and Q10’ seem to be quite scalable
and in particular, Q9’ takes about 2.5 seconds to be executed in the largest dataset, while Q10° needs
about 4.5 seconds. This happens because of the small number of result rows of SPARQL having as
consequence the query to return the answer fast.

Overall, we can say that the particular implementation of ArgQL to the specific dataset, scales
well for most of the simple cases. The only cases in which the results are not that satisfying, are
when we search for long paths without doing any further restriction on this search. For these cases, it
is recommended to restrict the required matching paths in one of the source or destination argument
patterns. Of course, as the queries become more complex, it is inevitable that the scalability will
be affected, as well. In the future we may need to improve more our implementation, so that any
problematic case revealed by this experiment to improve in performance in large volumes of data.

Note also that the two new datasets are just copies of the initial one. This means that, although
the size is multiplied, the topology of the generated data remains the same. By topology, we mean the
structure of the data, the length of the existing paths etc. However, the existence of cycles in the graph
of arguments, allowed us to test paths patterns of various lengths, and that way we were exempted by
the need to create synthetic data in order to test our queries in data of different topology.

Chapter 6
Conclusions and Future Directions

Contents
6.1 Synopsisof Contributionsttt ensens 95
6.2 Directions for Future Work and Research 96
6.2.1 Extensionsinthe Language 97
6.2.2 Implementation 99

We conclude this thesis by summarizing its main contributions and by making a discussion about

the research directions in which this work can be continued.

6.1 Synopsis of Contributions

In this thesis, we were incited by the challenge to study and formalize the process of information
searching from structured dialogues. Based on the claim that the problem is associated with a set
of very specific and concrete information requirements, we were impelled to isolate and bring them
together in the formal specification of a query language. That motive lead us to ArgQL, a query
language which, as far as we concern, constitutes the first language designed for this purpose. The
particular aim of ArgQL, was to provide a simple and quite elegant machinery to search for pieces of
data within collections of structured dialogues, by offering pure syntax and built-in, dialogue-related
terminology.

At first, we recorded the types of queries supported by ArgQL and the set of information require-
ments they would cover. The initial version of the language, presented in this document, captures
a subset of the requirements described in the motivation section. In particular, we cover 4 general
categories of queries: a) Locating individual arguments b) Identifying commonalities in argument’s
structure, c) Extracting argument relations and d) Traversing the argument graph. Of course, even
in these categories, the capabilities offered by ArgQL are not exhaustive. Instead, all of them can
be extended with more functionality in later versions of the language. We will talk about possible

extensions in the next section.

95

96 Chapter 6. Conclusions and Future Directions

Subsequently, we defined the theoretic principles that surround the data model, according to
which the target data are structured. To do this, we addressed to the formal models in the area of
Computational Argumentation, since this area, for many years studies the way of human reasoning
while arguing and its computational models are based on representations which are rich with seman-
tics in the domain. We designed our data model to be as general as possible, so that it would be
compatible with the majority of all these models and this was verified by the latter comparison with
the AIF conceptualization, an ontology designed exactly for this reason: to represent as more as
possible of the semantics of the different argumentation models.

In chapter 3 we gave the formal definition of ArgQL and its main constructs. In particular, we
designed ArgQL as a declarative language, the functionality of which is based on the idea of pattern
matching. Its formal specification includes a set of patterns, which range from simple ones, to more
complex, composed by others. After having defined formally the different types of patterns, we
present the syntax of ArgQL as an EBNF grammar. We closed the chapter of the formal specification,
by defining the semantics of the language. ArgQL semantics are based on an interpretation function
that describes, each different type of pattern, to which sets of elements from the data model will
match. This function behaves recursively as the patterns are composed from the simpler, to the most
complex ones.

In the remainder of this thesis, we dealt with issues that regard the implementation of ArgQL. In
particular, we adopted the approach of translating the language to some of the standard query lan-
guages and take advantage of their efficiency, as well as of existing data-sets stored in the respective
format. We show the case of RDF/SPARQL, since it is the standard representation and query lan-
guages in Semantic Web, which is also our domain of interest. Regarding the mapping of the data
models, we chose the AIF ontology to create the RDF data and we showed each element of our data
model, to which concepts of AIF correspond. As for the query translation, we broke the process
in a set of rules, such that, each rule describes the translation of a particular type of pattern. The
soundness and completeness of the process is also formally proven. Given that the proposed transla-
tion generated non-optimal queries, we also suggested an optimization, which was essentially based
on the elimination of the equivalence factor from anywhere appearing in the query. In the majority
of the queries, the optimization indeed succeeded better performance and this was confirmed in the
experimental evaluation that followed.

Finally, one equally significant outcome of this work, was the ArgQL endpoint, which gives the
opportunity for someone to test ArgQL queries in real data-sets and familiarize himself with the
language.

6.2 Directions for Future Work and Research

ArgQL featured new aspects and challenges in the problem of information seeking in argumentative
dialogues and through this new research mantle, a number of problems are emitted that still remain
open and would be worthy to investigate. In this section we outline some directions for the continua-

6.2. Directions for Future Work and Research 97

tion of this work.

6.2.1 Extensions in the Language

Although ArgQL already covers a wide variety of information needs related to the domain, there still
exist interesting things to ask from a dialogue, which are not supported by its current version. We
propose here some possible extensions.

Meta-data and keyword searching enrichment

Apart from its main informational content, a dialogue is also characterized by its meta-information,
that corresponds to the context in which it was created. We refer to information like its main topic or
sub-topics, information about who expressed an opinion (provenance, trustworthiness etc), temporal
aspects like when it was expressed and with which events it concurred etc. An interesting extension
would be to enrich the ArgQL syntax such that it will support also the querying of such informa-
tion. For example someone will be able to ask for arguments by a particular person, or of a specific
topic or subtopic, or even query about trustworthiness of the resource. In such a case, the semantics
and the implementation would have to be adjusted to these new features, as well. This extension,
although straightforward, would highly strengthen the usefulness of the language and would broaden
its expressive scope to more meaningful and realistic searching use cases.

The practicality of the current version of ArgQL is a bit handicapped by a particular factor: the
constant proposition values. In real scenarios, it would be almost impossible for the query writer to
know exactly the propositions, with which he wants to make the search. Since our target scenario is
the web and such cases demand practical solutions, one more idea in order to tackle that issue, is to
incorporate facilities that allow “smart” searching within the textual content of argument, such as ad-
vanced keyword-searching and content-based searching, imprecise textual mappings (e.g., taking into
account synonyms, or typos in the text), exploratory/navigational capabilities etc. The requirements
about implementing this extension would be mainly focused on including the appropriate syntax and

of course, to add it in the implementation.

Querying about argument validity

One of the most valuable extensions to investigate is the integration of mechanisms for computing
the validity of the arguments and also enable for querying about it. In the area of Computational
Argumentation, there is a variety of models that deal with the evaluation of the acceptability and the
persuasiveness of arguments and it would be quite interesting to examine the case of incorporating
some of them in the specification of ArgQL.

The graph view of our data, allows us to concern the semantics of Dung [38] for this feature and
support queries about the acceptability of arguments. The different types of extensions could also
be taken into account during this process. That feature, combined with the rest of the functionality

98 Chapter 6. Conclusions and Future Directions

supported so far, would give the opportunity to express hybrid queries like ”’Is an argument with
a particular conclusion accepted under the extension X?” or “Find the acceptable arguments which
have common premises with a particular argument” etc.

Apart from the semantics of Dung though, there are many more models that compute numer-
ically the acceptance of arguments. For example argumentation systems that use weighted argu-
ments (e.g. [5-7,40]) or weighted attacks (e.g. [36,41]) can offer useful algorithms to incorporate in
ArgQL. Queries of this category would be like: “Find arguments with acceptability degree greater
than 0.7” etc. The notion of persuasiveness (or impact) of an argument includes the parameter of
the audience. A potential extension would be of this kind. In particular, inluding methods of ar-
gumentation frameworks that evaluate the persuasiveness of arguments from the audience’s point of
view [16,55,58,59,83], could also give interesting queries like: ’Find the most convincing arguments
for an audience with particular profile characteristics”.

The feature for acceptability is associated with various sub-problems. Giving the opportunity
for the query writer to determine the scope in which it will be computed and in particular to decide
whether it will perform in a sub-graph given in the query, or if it will happen in the entire data-set
each time is one of them. Another decision regards the time in which that computation would be
performed. For example whether acceptance would be computed once in periodical intervals and
would be kept offline as part of the information in the data model, or whether it would be computed
on the fly, at query time and whenever asked.

Ranking and Grouping results

A part within the specification of ArgQL which can also accommodate extensions is the way in which
the results are returned.

The significance of the language would be intensified if we provided mechanisms to rank the
returning results. For example if giving the opportunity to determine the ranking method by choos-
ing among a set of available options like : strength of arguments, creation date, trustworthiness of
the resource, relevance to the audience etc. Ideas for this feature can also be found in the area of
strategic argumentation [60, 110, 113], the studies of which focus on selecting the best argument to
communicate, based on the standing conditions and the state of the dialogue.

Finally, like most of the common query languages, we could provide the capability of grouping
the returning results, again according to specific criteria, like resource, date, su-topic etc.

Argument Relevance

One more useful idea is to extend ArgQL with the capability to search for relevant arguments. For
example given a specific argument, ask for arguments with a particular degree of relevance. There are
many different strands to the concept of relevance. It can be computed based on the commonalities in

the arguments’ structure, (e.g. two arguments with a number of common (or equivalent) premises, or

6.2. Directions for Future Work and Research 99

arguments being mutually supporting, could be considered as relevant), but it could also be computed
according to the topics and sup-topics they touch upon.

To some extent, the current version of ArgQL supports this feature via the inclusion and jointness
filters of the premise pattern. However they represent a kind of simplified concept of relevance. In
case we want to seriously incorporate this feature in the language we should define a model for
relevance in the data model (probably based on works like [54,63,118]) and then extend the language
to ask for relevant arguments, based on this model.

6.2.2 Implementation

Finally, we suggest some directions for future work that concern the implementation of ArgQL. First
of all, the proposed implementation can be further optimized, in order to tackle limitations revealed at
the experimental evaluation, like supporting longer paths, increasing the number of dialogue patterns
in the same query, improving the scalability of the language in the cases that it was not that scalable
etc. Furthermore, in order to take advantage of other existing data-sets but most importantly to reach
closer to our initial vision of ArgQL being a generic query language for argumentation, it is necessary
to translate it to more query languages (like SQL, Cypher, etc) and provide complete libraries that
will include all of these mappings. It would also be useful to conduct an experimental evaluation with
real users, in order to estimate the easiness for expressing a query in ArgQL compared to other query
languages.

100

Bibliography

[1] Discoursedb: The user-powered database of political commentary.

[2] Araucaria: Software for Puzzles in Argument Diagramming and XML. Technical report, De-
partment of Applied Computing. University of Dundee Technical Report., 2001.

[3] Convinceme, 2012.

[4] Leila Amgoud, Sihem Belabbes, and Henri Prade. A formal general setting for dialogue pro-
tocols. In International Conference on Artificial Intelligence: Methodology, Systems, and
Applications, pages 13-23. Springer, 2006.

[5] Leila Amgoud and Jonathan Ben-Naim. Axiomatic foundations of acceptability semantics. In
Fifteenth International Conference on the Principles of Knowledge Representation and Rea-

soning, 2016.

[6] Leila Amgoud and Jonathan Ben-Naim. Evaluation of arguments in weighted bipolar graphs.
International Journal of Approximate Reasoning, 99:39-55, 2018.

[7] Leila Amgoud, Jonathan Ben-Naim, Dragan Doder, and Srdjan Vesic. Acceptability semantics
for weighted argumentation frameworks. In IJCAI, volume 2017, pages 56-62, 2017.

[8] Leila Amgoud and Claudette Cayrol. On the acceptability of arguments in preference-based
argumentation. In Proceedings of the Fourteenth Conference on Uncertainty in Artificial In-
telligence, UAT’98, pages 1-7, San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers
Inc.

[9] Leila Amgoud and Florence Dupin De Saint Cyr. Measures for persuasion dialogs: A prelimi-
nary investigation. Frontiers in Artificial Intelligence and Applications, 172:13, 2008.

[10] Susan Armstrong, Alexander Clark, Er Clark L, Maria Georgescul, Vincenzo Pallotta, Andrei
Popescu-behs, Martin Rajman, Maria Georgescul, Marianne Starlander, Ereti. Unige. Ch, Gio-
vanni Coray, Giovanni Coray, Vincenzo. Pallotta Epfl. Ch, David Portabella, and David Porta-
bella. Natural language queries on natural language data: a database of meeting dialogues,
2003.

[11] Katie Atkinson, Pietro Baroni, Massimiliano Giacomin, Anthony Hunter, Henry Prakken,
Chris Reed, Guillermo Simari, Matthias Thimm, and Serena Villata. Towards artificial ar-
gumentation. Al magazine, 38(3):25-36, 2017.

101

102

Bibliography

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

Katie Atkinson, Trevor Bench-capon, and Peter Mcburney. Computational representation of
practical argument. Synthese, 152:2006, 2005.

Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. Review: An introduction to
argumentation semantics. Knowl. Eng. Rev., 26(4):365-410, December 2011.

Amine Bayoudhi, Hatem Ghorbel, and Lamia Hadrich Belguith. Question answering system
for dialogues: A new taxonomy of opinion questions. In Proceedings of the 10th International
Conference on Flexible Query Answering Systems - Volume 8132, FQAS 2013, pages 67-78,
New York, NY, USA, 2013. Springer-Verlag New York, Inc.

T. J. M. Bench-Capon. Deep models, normative reasoning and legal expert systems. In Pro-
ceedings of the 2Nd International Conference on Artificial Intelligence and Law, ICAIL ’89,
pages 37-45, New York, NY, USA, 1989. ACM.

Trevor JM Bench-Capon. Persuasion in practical argument using value-based argumentation
frameworks. Journal of Logic and Computation, 13(3):429-448, 2003.

Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific American,
284(5):34-43, May 2001.

Philippe Besnard and Anthony Hunter. Towards a logic-based theory of argumentation. In
In Proceedings of the Seventeenth National Conference on Artificial Intelligence (AAAI’2000,
pages 411-416. MIT Press, 2000.

Philippe Besnard and Anthony Hunter. A logic-based theory of deductive arguments, 2001.
Philippe Besnard and Anthony Hunter. Elements of Argumentation. The MIT Press, 2008.

Floris Bex, Thomas Gordon, John Lawrence, and Chris Reed. Interchanging arguments be-
tween Carneades and AIF, pages 390-397. Frontiers in artificial intelligence and applications.
IOS Press, 2012.

Floris Bex, John Lawrence, Mark Snaith, and Chris Reed. Implementing the argument web.
Commun. ACM, 56(10):66—73, October 2013.

Floris Bex, John Lawrence, Mark Snaith, and Chris Reed. Implementing the argument web.
Communications of the ACM, 56(10):66-73, 2013.

Floris Bex, Sanjay Modgil, Henry Prakken, and Chris Reed. On logical specifications of the
argument interchange format. Journal of Logic and Computation, 23(5):951-989, 2012.

Floris Bex and Chris Reed. Dialogue templates for automatic argument processing. In
COMMA, pages 366-377, 2012.

Bibliography 103

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

Floris Bex and Christopher Reed. Schemes of inference, conflict, and preference in a compu-
tational model of argument. Studies in Logic, Grammar and Rhetoric, 23(36):39-58, 2011.

Floris Bex, Mark Snaith, John Lawrence, and Chris Reed. Argublogging: An application for
the argument web. Web Semantics: Science, Services and Agents on the World Wide Web,
25:9-15, 2014.

Elizabeth Black and Anthony Hunter. An inquiry dialogue system. Autonomous Agents and
Multi-Agent Systems, 19(2):173-209, 2009.

Katarzyna Budzynska and Magdalena Kacprzak. A logic for reasoning about persuasion. Fun-
damenta Informaticae, 85(1-4):51-65, 2008.

Elena Cabrio and Serena Villata. Five years of argument mining: a data-driven analysis. In
1JCAI, pages 5427-5433, 2018.

Dan Cartwright and Katie Atkinson. Political engagement through tools for argumentation. In
Proceedings of the 2008 Conference on Computational Models of Argument: Proceedings of
COMMA 2008, pages 116—127, Amsterdam, The Netherlands, The Netherlands, 2008. IOS
Press.

Dan Cartwright and Katie Atkinson. Using computational argumentation to support e-
participation. Intelligent Systems, IEEE, 24(5):42-52, 2009.

C. Cayrol and M. C. Lagasquie-Schiex. On the acceptability of arguments in bipolar argumen-
tation frameworks. In Lluis Godo, editor, Symbolic and Quantitative Approaches to Reasoning
with Uncertainty, pages 378-389, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

Carlos Chesiievar, Jarred McGinnis, Sanjay Modgil, Iyad Rahwan, Chris Reed, Guillermo
Simari, Matthew South, Gerard Vreeswijk, and Steven Willmott. Towards an argument inter-
change format. Knowl. Eng. Rev., 21(4):293-316, December 2006.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel
Kuksa. Natural language processing (almost) from scratch. Journal of machine learning
research, 12(Aug):2493-2537, 2011.

Sylvie Coste-Marquis, Sébastien Konieczny, Pierre Marquis, and Mohand Akli Ouali.
Weighted attacks in argumentation frameworks. In Thirteenth International Conference on

the Principles of Knowledge Representation and Reasoning, 2012.

Brickley Dan and Guha R. V. Rdf vocabulary description language 1.0: Rdf schema.
http://www.w3.org/TR/rdf-primer/, 2004.

104 Bibliography

[38] Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artif. Intell., 77(2):321-357, September
1995.

[39] Phan Minh Dung, Robert A Kowalski, and Francesca Toni. Assumption-based argumentation.
In Argumentation in Artificial Intelligence, pages 199-218. Springer, 2009.

[40] Paul E Dunne, Anthony Hunter, Peter McBurney, Simon Parsons, and Michael Wooldridge.
Inconsistency tolerance in weighted argument systems. In Proceedings of The 8th Interna-
tional Conference on Autonomous Agents and Multiagent Systems-Volume 2, pages 851-858.
International Foundation for Autonomous Agents and Multiagent Systems, 2009.

[41] Paul E Dunne, Anthony Hunter, Peter McBurney, Simon Parsons, and Michael Wooldridge.
Weighted argument systems: Basic definitions, algorithms, and complexity results. Artificial
Intelligence, 175(2):457-486, 2011.

[42] Orri Erling and Ivan Mikhailov. Rdf support in the virtuoso dbms. In Networked Knowledge-
Networked Media, pages 7-24. Springer, 2009.

[43] Valentinos Evripidou and Francesca Toni. Quaestio-it.com: a social intelligent debating plat-
form. Journal of Decision Systems, 23(3):333-349, 2014.

[44] Xiuyi Fan and Francesca Toni. Assumption-based argumentation dialogues. In Twenty-Second
International Joint Conference on Artificial Intelligence, 2011.

[45] Maydene Fisher, Jon Ellis, and Jonathan C. Bruce. JDBC API Tutorial and Reference. Pearson
Education, 3 edition, 2003.

[46] UC Berkeley’s Center for NewMedia. Opinion space.

[47] John Fox, Paul Krause, and Morten Elvang-Ggransson. Argumentation as a general frame-
work for uncertain reasoning. In Uncertainty in Artificial Intelligence, 1993, pages 428-434.
Elsevier, 1993.

[48] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker, Victor
Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and Andrés Taylor. Cypher: An
evolving query language for property graphs. In Proceedings of the 2018 International Con-
ference on Management of Data, pages 1433-1445. ACM, 2018.

[49] Manola Frank and Miller Eric. RDF primer. http://www.w3.org/TR/rdf-primer/, 2004.

[50] K. Freeman, University of Oregon. Dept. of Computer, Information Science, and A. Farley.
Toward Formalizing Dialectical Argumentation. Number no. 13 in CIS-TR / Department of
Computer and Information Science, University of Oregon. Department of Computer and Infor-
mation Science, University of Oregon, 1993.

Bibliography 105

[51] Alejandro J. Garcia and Guillermo R. Simari. Defeasible logic programming: An argumenta-
tive approach. Theory Pract. Log. Program., 4(2):95-138, January 2004.

[52] Steve H. Garlik, Andy Seaborne, and Eric Prud’hommeaux. SPARQL 1.1 Query Language.
http://www.w3.org/TR/sparql11-query/.

[53] Thomas F Gordon, Henry Prakken, and Douglas Walton. The carneades model of argument
and burden of proof. Artificial Intelligence, 171(10):875-896, 2007.

[54] Diana Grooters and Henry Prakken. Two aspects of relevance in structured argumentation:
Minimality and paraconsistency. Journal of Artificial Intelligence Research, 56:197-245,
2016.

[55] Davide Grossi and Wiebe Van Der Hoek. Audience-based uncertainty in abstract argument
games. In Twenty-Third International Joint Conference on Artificial Intelligence, 2013.

[56] Thomas R Gruber. Toward principles for the design of ontologies used for knowledge sharing?
International journal of human-computer studies, 43(5-6):907-928, 1995.

[57] Wael Hamdan, Rady Khazem, Ghaida Rebdawi, Madalina Croitoru, Alain Gutierrez, and
Patrice Buche. On ontological expressivity and modelling argumentation schemes using cogui.
In International Conference on Innovative Techniques and Applications of Artificial Intelli-
gence, pages 5—18. Springer, 2014.

[58] Anthony Hunter. Making argumentation more believable. In AAAI, volume 4, pages 269-274,
2004.

[59] Anthony Hunter. Towards higher impact argumentation. In AAAI, pages 275-280, 2004.

[60] Anthony Hunter. Modelling uncertainty in persuasion. In International Conference on Scal-
able Uncertainty Management, pages 57-70. Springer, 2013.

[61] Anthony Hunter. A probabilistic approach to modelling uncertain logical arguments. Inferna-
tional Journal of Approximate Reasoning, 54(1):47-81, 2013.

[62] H. Jakobovits and D. Vermeir. Robust semantics for argumentation frameworks. Journal of
Logic and Computation, 9:215-261, 1999.

[63] William Jiménez-Leal and Christian Gaviria. Similarity, causality and argumentation. In Pro-
ceedings of the Annual Meeting of the Cognitive Science Society, volume 35, 2013.

[64] Paul Krause, Simon Ambler, Morten Elvang-Goransson, and John Fox. A logic of argumenta-
tion for reasoning under uncertainty. Computational Intelligence, 11(1):113-131, 1995.

106

Bibliography

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

(78]

Werner Kunz and Horst WJ Rittel. Issues as elements of information systems, volume 131.
Citeseer, 1970.

John Lawrence, Floris Bex, Chris Reed, and Mark Snaith. Aifdb: Infrastructure for the argu-
ment web. In COMMA, pages 515-516, 2012.

John Lawrence and Chris Reed. AIFdb Corpora, pages 465-466. Frontiers in artificial intelli-
gence and applications. IOS Press, 2014.

John Lawrence and Chris Reed. Argument mining using argumentation scheme structures. In
COMMA, pages 379-390, 2016.

Marco Lippi and Paolo Torroni. Argument mining: A machine learning perspective. In In-
ternational Workshop on Theory and Applications of Formal Argumentation, pages 163—176.
Springer, 2015.

Christopher Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven Bethard, and David
McClosky. The stanford corenlp natural language processing toolkit. In Proceedings of 52nd
annual meeting of the association for computational linguistics: system demonstrations, pages

55-60, 2014.

Christopher D Manning, Christopher D Manning, and Hinrich Schiitze. Foundations of statis-
tical natural language processing. MIT press, 1999.

Sanjay Modgil. Reasoning about preferences in argumentation frameworks. Artificial Intelli-
gence, 173(9):901-934, 2009.

Jann Miiller and Anthony Hunter. Deepflow: Using argument schemes to query relational
databases. In Computational Models of Argument - Proceedings of COMMA 2014, Atholl
Palace Hotel, Scottish Highlands, UK, September 9-12, 2014, pages 469—470, 2014.

University of Liverpool. Parmenides.
Terence Parr. The definitive ANTLR 4 reference. Pragmatic Bookshelf, 2013.

Simon Parsons, Katie Atkinson, Karen Zita Haigh, Karl N Levitt, Peter McBurney, Jeff Rowe,
Munindar P Singh, and Elizabeth Sklar. Argument schemes for reasoning about trust. COMMA,
245:430, 2012.

Simon Parsons and Anthony Hunter. A review of uncertainty handling formalisms. In Appli-
cations of uncertainty formalisms, pages 8-37. Springer, 1998.

Simon Parsons, Carles Sierra, and Nick Jennings. Agents that reason and negotiate by arguing.
Journal of Logic and computation, 8(3):261-292, 1998.

Bibliography 107

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and complexity of sparql.
ACM Trans. Database Syst., 34(3):16:1-16:45, September 2009.

John L. Pollock. Defeasible reasoning. Cognitive Science, 11:481-518, 1987.

Martin Potthast, Lukas Gienapp, Florian Euchner, Nick Heilenkotter, Nico Weidmann, Hen-
ning Wachsmuth, Benno Stein, and Matthias Hagen. Argument search: Assessing argument
relevance. 2019.

Henry Prakken. Coherence and flexibility in dialogue games for argumentation. Journal of
logic and computation, 15(6):1009-1040, 2005.

Henry Prakken. Formal systems for persuasion dialogue. The knowledge engineering review,
21(2):163-188, 2006.

Henry Prakken. An abstract framework for argumentation with structured arguments. In
IN INFORMATION TECHNOLOGY AND LAWYERS: ADVANCED TECHNOLOGY IN THE,
pages 61-80. Springer, 2009.

Henry Prakken and Giovanni Sartor. Argument-based extended logic programming with de-
feasible priorities. Journal of applied non-classical logics, 7(1-2):25-75, 1997.

Henry Prakken and Gerard Vreeswijk. Logics for defeasible argumentation.

Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for RDF. W3C Recom-
mendation, 2008.

Iyad Rahwan, Bita Banihashemi, Chris Reed, Douglas Walton, and Sherief Abdallah. Repre-
senting and classifying arguments on the semantic web. The Knowledge Engineering Review,
26(4):487-511, 2011.

Iyad Rahwan and Chris Reed. The argument interchange format. In Argumentation in artificial
intelligence, pages 383—402. Springer, 2009.

Iyad Rahwan and PV Sakeer. Towards representing and querying arguments on the semantic
web. Frontiers In Artificial Intelligence And Applications, 144:3, 2006.

Iyad Rahwan and Guillermo R. Simari. Argumentation in Artificial Intelligence. Springer
Publishing Company, Incorporated, 1st edition, 2009.

Iyad Rahwan, Fouad Zablith, and Chris Reed. Laying the foundations for a world wide argu-
ment web. Artif. Intell., 171(10-15):897-921, July 2007.

Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems. McGraw-Hill,
Inc., New York, NY, USA, 2nd edition, 2000.

108

Bibliography

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

Chris Reed and Glenn Rowe. Araucaria: Software for argument analysis, diagramming and
representation. International Journal of Al Tools, 14:961-980, 2004.

Chris Reed and Glenn Rowe. Araucaria: Software for argument analysis, diagramming and
representation. International Journal on Artificial Intelligence Tools, 13(04):961-979, 2004.

Chris Reed and Douglas Walton. Argumentation schemes in dialogue. 2007.

Chris Reed, Simon Wells, Katarzyna Budzynska, and Joseph Devereux. Building arguments
with argumentation: the role of illocutionary force in computational models of argument. In
COMMA, pages 415426, 2010.

Chris Reed, Simon Wells, Joseph Devereux, and Glenn Rowe. Aif+: Dialogue in the argument
interchange format. In COMMA, 2008.

Raymond Reiter. A logic for default reasoning. Artificial intelligence, 13(1-2):81-132, 1980.

Ruty Rinott, Lena Dankin, Carlos Alzate Perez, Mitesh M. Khapra, Ehud Aharoni, and Noam
Slonim. Show me your evidence - an automatic method for context dependent evidence de-
tection. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, pages 440—450, Lisbon, Portugal, September 2015. Association for Computational
Linguistics.

Nicolds D Rotstein, Alejandro Javier Garcia, and Guillermo Ricardo Simari. Reasoning from
desires to intentions: A dialectical framework. In PROCEEDINGS OF THE NATIONAL CON-
FERENCE ON ARTIFICIAL INTELLIGENCE, volume 22, page 136. Menlo Park, CA; Cam-
bridge, MA; London; AAAI Press; MIT Press; 1999, 2007.

Sonia Vivian Rueda, Alejandro Javier Garcia, and Guillermo Ricardo Simari. Argument-based
negotiation among bdi agents. Journal of Computer Science & Technology, 2, 2002.

Universite Paul Sabatier. Practical first-order argumentation.

David C Schneider, Christian Voigt, and Gregor Betz. Argunet-a software tool for collaborative
argumentation analysis and research. 2007.

Jodi Schneider, Tudor Groza, and Alexandre Passant. A review of argumentation for the social
semantic web. Semant. web, 4(2):159-218, April 2013.

Christian Stab, Johannes Daxenberger, Chris Stahlhut, Tristan Miller, Benjamin Schiller,
Christopher Tauchmann, Steffen Eger, and Iryna Gurevych. ArgumenText: Searching for
arguments in heterogeneous sources. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Demonstrations, pages

21-25, New Orleans, Louisiana, June 2018. Association for Computational Linguistics.

Bibliography 109

[107] Reid Swanson, Brian Ecker, and Marilyn Walker. Argument mining: Extracting arguments
from online dialogue. In Proceedings of the 16th annual meeting of the special interest group
on discourse and dialogue, pages 217-226, 2015.

[108] Yuqing Tang, Kai Cai, Elizabeth Sklar, Peter McBurney, and Simon Parsons. A system of
argumentation for reasoning about trust. In Proceedings of the 8th European Workshop on
Multi-Agent Systems, Paris, France, 2010.

[109] Alfred Tarski and J. H. Woodger. Logic, semantics, metamathematics; papers from 1923 to
1938. Journal of Philosophy, 55(8):351-352, 1958.

[110] Matthias Thimm. Strategic argumentation in multi-agent systems. KI-Kiinstliche Intelligenz,
28(3):159-168, 2014.

[111] Stephen E. Toulmin. The Uses of Argument. Cambridge University Press, July 2003.

[112] Cassia Trojahn, Paulo Quaresma, and Renata Vieira. Conjunctive queries for ontology based
agent communication in mas. In Proceedings of the 7th International Joint Conference on Au-
tonomous Agents and Multiagent Systems - Volume 2, AAMAS °08, pages 829-836, Richland,
SC, 2008. International Foundation for Autonomous Agents and Multiagent Systems.

[113] Thomas L van der Weide, Frank Dignum, J-J Ch Meyer, Henry Prakken, and GAW Vreeswijk.
Multi-criteria argument selection in persuasion dialogues. In International Workshop on Argu-
mentation in Multi-Agent Systems, pages 136—153. Springer, 2011.

[114] Tim Van Gelder. The rationale for rationale. Law, probability and risk, 6(1-4):23-42, 2007.

[115] Bart Verheij. Deflog: on the logical interpretation of prima facie justified assumptions. Journal
of Logic and Computation, 13(3):319-346, 2003.

[116] Gerard A.W. Vreeswijk. Abstract argumentation systems. Artificial Intelligence, 90(1-2):225
—-279, 1997.

[117] Henning Wachsmuth, Martin Potthast, Khalid Al-Khatib, Yamen Ajjour, Jana Puschmann,
Jiani Qu, Jonas Dorsch, Viorel Morari, Janek Bevendorff, and Benno Stein. Building an Argu-
ment Search Engine for the Web. In 4th Workshop on Argument Mining (ArgMining 2017) at
EMNLP, pages 49-59. Association for Computational Linguistics, September 2017.

[118] Douglas Walton. Relevance in argumentation. Routledge, 2003.

[119] Douglas Walton. Argumentation theory: A very short introduction. In Argumentation in
artificial intelligence, pages 1-22. Springer, 2009.

[120] Douglas Walton and Erik CW Krabbe. Commitment in dialogue: Basic concepts of interper-
sonal reasoning. SUNY press, 1995.

110

Bibliography

[121]

[122]

[123]

[124]

[125]

[126]

[127]

Douglas Walton, Christopher Reed, and Fabrizio Macagno. Argumentation schemes. Cam-
bridge University Press, 2008.

Douglas N. Walton. Argumentation Schemes for Presumptive Reasoning. L. Erlbaum Asso-
ciates, 1996.

Guohui Xiao, Dag Hovland, Dimitris Bilidas, Martin Rezk, Martin Giese, and Diego Cal-
vanese. Efficient ontology-based data integration with canonical iris. In European Semantic
Web Conference, pages 697-713. Springer, 2018.

Dimitra Zografistou, Giorgos Flouris, Theodore Patkos, and Dimitris Plexousakis. Implement-
ing the argql query language. In Computational Models of Argument - Proceedings of COMMA
2018, Warsaw, Poland, 12-14 September 2018, pages 241-248, 2018.

Dimitra Zografistou, Giorgos Flouris, Theodore Patkos, and Dimitris Plexousakis. A language
for graphs of interlinked arguments. ERCIM News, 2019(118), 2019.

Dimitra Zografistou, Giorgos Flouris, and Dimitris Plexousakis. Argql: A declarative lan-
guage for querying argumentative dialogues. In International Joint Conference on Rules and
Reasoning, pages 230-237. Springer, 2017.

Zotero-Group. Debategraph: The global debate map, 2011.

1. Code 111

1 Code
.1.1 RDF data

At this point we present the RDF code for each of the AIF+ graphs in the table 4.1. We define the
namespaces aif: "http://www.arg.dundee.ac.uk/aif#” and the common one rdf: " http://www.w3.0rg/1999/02/22-
rdf-syntax-ns#”

|p| = <NamedIndividual rdf:about=u(p)>
<rdf:type rdf:resource=aif:I-node/>

Proposition p € P
<aif:claimText> p </aif:claimText>
</NamedIndividual>
lal = lpr]u--ulpafulcfu

<NamedIndividual rdf:about= u(d)>

Argument a = ({pl,...,pn},c) <rdf:type rdf:resource="aif:RA-node"/>

with py,...,pu,c€P
and ceCn({p1,...,pn})

<aif:premise rdf:resource=u(p;)/>

<aif:premise rdf:resource=u(p,)/>
<aif:conclusion rdf:resource=u(¢))/>
</NamedIndividual>

le| = <NamedIndividual rdf:about=u(cf)
<rdf:type rdf:resource=aif:CA-node/>

Conflict ¢ = (pl,pz) <aif:premise rdf:resource=u(p;) />

with pi1, p2 € P and py 4 pa <aif:conclusion rdf:resource=u(p;) />

<aif:premise rdf:resource=u(p,) />
<aif:conclusion rdf:resource=u(p,) />
</NamedIndividual>

Table 1: Data mapping RDF

112 Bibliography

legl = lpilvlp2fuv
<NamedIndividual rdf:about=u(ya;)
<rdf:type rdf:resource=aif:YA-node/>
<aif:illocContent rdf:resource=u(p;) />
<aif:locution rdf:resource=u(locy) />
</NamedIndividual>
<NamedIndividual rdf:about=u(loc;)
<rdf:type rdf:resource=aif:L-node/>
<aif:locution rdf:resource=u(ya;) />
</NamedIndividual>
<NamedIndividual rdf:about=u(yas)
<rdf:type rdf:resource=aif:YA-node/>
<aif:illocutionaryContent rdf:resource=u(p,)

/>
<aif:locution rdf:resource=u(loc;) />
</NamedIndividual>
<NamedIndividual rdf:about=u(loc;)
Equivalence eq = (p1,p2) <rdf:type rdf:resource=aif:L-node/>
with py,p2 € P and p; = pa <aif:locution rdf:resource=u(yas) />
</NamedIndividual>

<NamedIndividual rdf:about=u(t)
<rdf:type rdf:resource=aif:T-node/>
<aif:startlocution rdf:resource=u(locy) />
<aif:endLocution rdf:resource=u(loc;) />
<aif:startLocution rdf:resource=u(loc;) />
<aif:endLocution rdf:resource=u(loc;) />
</NamedIndividual>
<NamedIndividual rdf:about=u(ya))
<rdf:type rdf:resource=aif:YA-node/>
<aif:anchor rdf:resource=u(r) />
<aif:illocutionaryContent rdf:resource=u(ma)
/>
</NamedIndividual>
<NamedIndividual rdf:about=u(éy)
<rdf:type rdf:resource=aif:MA-node/>
</NamedIndividual>

Table 2: Data mapping RDF

.2. Proofs 113

.2 Proofs

Lemma 1. Given a conflict pattern confip, it holds that {||¢| | c € cf(A)} = Eja({confip))

Proof. In order to prove that {[[¢[| cecf(A) }= &4 ({confip))), we need to show that {||¢[|cecf(A)}
< Eja((confip)) (1) and &4y ({conflp)) < {[l¢] [c € cf(A)} (2.

(1) Take a conflict ¢ = (p1,p2) € cf(A). From table 4.1, we have that:

[él= { (u(é) type CA-node), (u(é) premise u(py)), (u(é) conclusion u(py)), (u(é) premise u(p»)), (u(é)

conclusion u(p)) }

Obviously, recalling the definition of |A|| we have that |¢| € |A|. Moreover from table 4.2 (rule
r5), we have that:

(conflp)) = (., type CA-node) A (weq premise wii) A (Weq conclusion wiy) (Weq premise wip) A
(Weq conclusion wy)

Given the above, for 6 = {(wi1,u(p1)), (W2, u(p2)), (Wea,u(8)) }, we get that 6 € g4 ({confip))
and o ({conflp))) = ||, and therefore by the definition of £g: [¢[€ £j4({confip)). Thus (1) holds.

(2) For the opposite direction, take a set of triples g € &4 ({confip))). By the definition of {conflp))
given above, it is obvious that g is of the form:

g = { (u(ca) type CA-node), (u(ca) premise u(iy)), (u(ca) conclusion u(iy)) , (u(ca) premise u(iy)),

(u(ca) conclusion u(iy))}

where u., is a uri of a CA instance, and u(i1), u(i») are the uris of two I-node instances. Moreover
gclal.

According to table 4.1, the |A|, created by the translation of A can only contain g if there is a
conflict ¢ € ¢f(A), such that ¢ = (p1,p2) where u(p;) = u;; and u(p,) = up. We note that ||é]| = g,
therefore g € {|¢| | c € cf(A)} and thus (2) holds. O

We recall the notation ca(iy,iy) in section 4.1.1, with which we refer to the conflict application
between the two I-nodes ij, ;.

Lemma 2. Given an equivalence pattern eqp, it holds that {|é] | e € eq(A)} = Eja)({eqp))

Proof. In order to prove that {|é] | e € eq(A) }= €4 ({egp)), we need to show that {[é] | e € eq(A)}
< Epay({egph) (1) and Epx ({egp) < {[[8] | e € eq(A) } (2).

(1) Take an equivalence e = (p1, p2) € eq(A). From table 4.1, we have that:

léll = (u(yay) illocutionaryContent u(py)), (u(yaz) illocutionaryContent u(p52)), (u(yai) type YA-node),
(u(yay) type YA-node), (u(yay) locution u(locy)), (u(yay) locution u(locy)), (u(locy) type L-node), (u(loc;)
type L-node), (u(ta) type TA-node), (u(ta) startLocution u(locy)), (u(ta) endLocution u(locy)), (u(ta) start-
Locution u(locy)), (u(ta) endLocution u(locy)), (u(yas) type YA-node), (u(ta) anchor u(yas)), (u(yas)
illocutionaryContent u(é)), (u(é) type MA-node)

114 Bibliography

Obviously, recalling the definition of |A| we have that |é| € ||A|. Moreover from table 4.2 (rule
r¢), we have that:

(egp) = (wya1 illocutionaryContent wii) A (wyq illocutionaryContent wip) A (Wyq1 type YA-node) A (Wya2
type YA-node) N (Wyq1 locution wise1) A (Wyaa locution wiger) A (Wiger type L-node) A (Wioep type L-node) A
(wiq type TA-node) A (wyq startLocution wise1) A (Wiq endLocution wi,e1) A (Wi StartLocution wien) A (Wig
endLocution wio2) N (Wyqo illocutionaryContent wip) A (vya3 type YA-node) A (Wi, anchor wyez) A (Wya3

illocutionaryContent Wy,q) A (Wmq type MA-node)

Given the above, for 6 = {(wi1,u(p1)), (Wi2,u(p2)), (Wyar,u(yar)), (Wya2,u(yaz)), (wya3, u(yas)),
(Wioe,u(loct)); Wioe,, u(loca)), (Wia,u(ta)), (Wma,u(ma)) }, we get that o € g4 ({egp)) and
o ({eqp)) =[], and therefore by the definition of £g: [€] € &4 ({egp)). Thus (1) holds.

(2) For the opposite direction, take a set of triples g € £|,({egp)). By the definition of {egp)

given above, it is obvious that g is of the form:

g = { (u(yar) illocutionaryContent u(iy))), (u(yaz) illocutionaryContent u(iz))), (u(yay) type YA-node),
(u(yay) type YA-node), (u(yay) locution u(locy)), (u(yay) locution u(locy)), (u(locy) type L-node), (u(loc;)
type L-node), (u(ta) type TA-node), (u(ta) startLocution u(locy)), (u(ta) endLocution u(locy)), (u(ta) start-
Locution u(locy)), (u(ta) endLocution u(locy)), (u(yas) type YA-node), (u(ta) anchor u(yas)), (u(yas)
illocutionaryContent u(ma)), (u(ma) type MA-node) }

where u(iy), u(iz) , uma, u(yay), u(yaz), u(yas), u(locy), u(locy),u(ta) are uris for instances of
I-,MA- YA-,L-TA-nodes respectively. Moreover g C |A].

According to table 4.1, the |A
equivalence e € eq(A), such that e = (p1, p2) where u(py) = u(iy), u(p>) = u(iz) and u(é) = u(ma).
We note that |é| = g, therefore g € {|é| | ¢ € eq(A)} and thus (2) holds.

, created by the translation of A can only contain g if there is an

O]

We recall the notation df(iy,valy,ir,valy) in section 4.1.1, with which we refer to the default
rephrase, between iy, i, with claimText values valy, val, respectively.

Theorem 10. Given A an argument base, M the set with the available patterns of ArgQL,

|| and (-)
the mappings for the data model and ArgQL patterns respectively, I4(-) the interpretation function of
ArgQL patterns in the argument base A and E¢(+) the evaluation function of SPARQL graph patterns
in an RDF graph G, we have that for any ArgQL pattern m € M, it holds that

[a(m)| = Ejay({m))

Proof. The proof works recursively for the different pattern types by decomposing the most general
patterns to the ones that construct them. To this end, we follow a bottom-up approach, starting from
the base type, which is the proposition pattern and building the proof upwards until we reach the most
general case, which is the dialogue pattern.

.2. Proofs 115

In order to prove the equivalence |I4(m)| = £j4({m})) for a particular pattern type m € M, we must
both show that [I (m)| € &4 ({m)) (1) and Epay((m)) € [La(m)] (2).

Proposition pattern

Let prp be a proposition pattern of proposition p € P. By the semantics of section 3.3.3, we have that
Iy(prp) ={p" € props(A) | p' = p}

for which it holds that |1y (prp)| ={|p|l | p € La(prp)}

Moreover from table 4.2 (rule r7), we have that:
(prp)) = (w; type I-node) A (w; claimText p) and
(prp)-(eap) = (prp) ~ (eap) =(prpy.m:

For the given pattern type we broke its translation in two different cases as shown before. The
precise translation of a proposition pattern, would be the following:

{(prp) UNION (prp).{eqp)

as they were defined above.
From the SPARQL semantics, we have that

Eja|({prp) UNION (prp).(eqp)) = Ejaj(pro)) v Ejaj((prr)-(eap))
thus, it suffices to show that:

[LaCprp) | = Ejaj((prp)) © €14y ((prp)-(eqp))

which means that both of the [I4(prp)| € Eja ({prp)) U Eja((prp)-(egp)) (1) and
Eja|prp)) v Eja (prp)-(eqp)) € [1a(prp) || (2) must be satisfied.

(1) For the left to right direction, we assume a proposition p € I4(prp). We discern the cases that
prp = p,or prp = p’ for some p’ = p. In particular:

a) If prp = p then from table 4.1, we have that:

121= { (u(p) type I-node), (u(p) claimText p)}

Recalling the definition of |A| we have that |p| c |A].
Given the above, for o = {(w;,u(p))}, we get that o € g4 ({prp)) and o({prp)) = ||p|, and
therefore by the definition of &g: ||p| € &4 ({prp)) L Eja) ((prp)-(eqp)). Thus (1) holds.

b) If prp = p’ for some p’ = p, it means that there exist some e = (p, p’) € eq(A). From table 4.1,
we have that

|p'|= { (u(p’) type I-node), (u(p') claimText p')}

Recalling the definition of |A |, we have that | p’| u|é] < ||A].

116 Bibliography

Given the above, for 6 = {(wi,u(p")), ((eqp)-wir,u(p)), ({eqp)-wma,u(é))}, we get that
o €€ ({prp)-(eqp)) and o ({prp).(eqp)) = | p| U e[and therefore by the definition of &g: Ip’||u
lell € Ejay({prp)) © Eja)((prp)-{eqp)). Thus (1) holds also for this case.

(2) For the opposite direction, take a set of triples g € 4 ({prp)) U Ejay((prr)-(eqp)). We
discern two cases:

a) If g € £4) ({prp)), then g will be of the form:
g = { (u(i) type I-node), (u(i) claimText p') }

where u(7) the uri of an I-node instance i. Moreover g € |A|. The |A

, created by the translation of
A can only contain g if there is a proposition p € P(A), the value of which is txtVal, where u(p) = u(i).
We note that | p|| = g, therefore g € |4 (prp)|. Thus (2) holds.

b) If g € Ej4) ({prp)-(eqp)), then g will be of the form:
g = { (u(i) type I-node), (u(i) claimText p), df(i,p,i’,p’) }

where u(i),u(i") are uris of two I instances i and i’ and df (i, p,i’, p") is a default rephrase between
them. Moreover g C ||A].

The ||A||, created by the translation of A can only contain g if there is a proposition p € props(A),
where u(p) = u(i) and also if there is an equivalence e = (p, p'), such that |é| =d f (i, p.i’, p'), u(p’) =
u(i") where p’ € props(a) a second proposition. We have that both p, p’ € I4(prp). We note that
[Pl ulé] = g. therefore g € [[Ls(prp)|. Thus (2) holds.

Conclusion pattern

We discern the cases where a conclusion pattern conclp is a proposition pattern or it is a variable.

- If conclp is a constant proposition pattern prp of a proposition p € P, by the semantics of section
3.3.3, we have that:

Ix(conclp) = {cels(prp) | concl(a) = c for some ac A}

Moreover, from table 4.3 (rule rjo.1), we have that:

{conclp) = ((prp) A (wra conclusion (prp).wi) UNION (prp).(eqp)wy=w; A (Wra conclusion w;))
A (Wyq type RA-node)

We decompose and rewrite (conclp)) into smaller graph patterns as follows:
gp1 = (prp) A (Wyq conclusion (prp)).w;) A (wy, type RA-node)

gp2 = (prp)-(eqphwp=w; N (Wrq conclusion wi)A (W, type RA-node)

such that (conclp)) = gpy UNION gp>

.2. Proofs 117

From the SPARQL semantics, we have the following:
- 6 €€a(gp1 UNION gp>) = 0 € €a(gp1) or 6 € €a(gp2)
- E|a|(8P1 UNION gp1) = Eja)(gp1) Y E|a)(8p2)

(1) For the left to right direction, take a proposition ¢ € I (conclp). This means that Ja € A :
concl(a) =cand p =c, or p =c. According to the table 4.1, by breaking the case of an argument into
its components prem(a) and concl(a), we have that:

|concl(a)| = {|c| u{(u(a) conclusion u(¢)),(u(a) type RA-node)}}

Obviously, and given that |I4(conclp)| = {||c|| | ¢ € Is(conclp)} we have that |concl(a)| €
|Z4 (conclp)|| and also, recalling the definition of |A||, we have that: ||concl(a)| < |A]

Given the above and according to the proof of the previous case (proposition pattern), if ¢ = p,
then for o = { ({prp).wi,u(é)), (W, u(a@)) }, we get that

o €€y (gp1) and

o(gp1) ={|c|v{(u(a) conclusion u(¢)),(u(a) type RA-node)}}

and therefore by the definition of &g |c| € &4 (gp1)- Thus (1) holds.

On the other hand, if ¢ = p, such that e = (¢,p) € eq(A), then for o = { ((prp).(eqp).wir,u(¢é)),
({prp)-wi,u(p)), ({pro)-(eap)-Wma;u(8)), (wra,u(@)) }, we get that

O €&y (gpz) and
0 (gp2) = {lp|ule|v{(u(a) conclusion u(2)), (u(a) type RA-node)}

and therefore by the definition of £g:
{llplullellu (u(a) conclusion u(¢))u (u(a) type RA—node)} € E4)(gp2). Thus (1) holds.

(2) For the opposite direction, take a set of triples g € £4({conclp)). Because of the existence
of UNION, we discern two cases:

a) If g € gpy, then g will be of the form:
g = { (u(i) type I-node), (u(i) claimText p), (u(ra) conclusion u(i), (u(ra) type RA-node)}

where u(i) is a uri of an I-node instance i and u(ra) is the uri of an RA-node instance. Moreover,
g < |A|. |A|. created by the translation of A can only contain g if there is a proposition p € P(A),
where u(p) = u(i), and also, since there is the triple (u(ra) conclusion u(i)), it also means that
p =concl(a) for some a € A, for which u(d) =u(ra). As aresult we infer that {|| p| u (u(a) conclusion
u(p),(u(ra) type RA-node) } = g, therefore g € |I5(conclp)||. Thus (2) holds.

b) If g € gp», then g will be of the form:

g = { (u(i) type I-node), (u(i) claimText p), df(i,p,i’,c) (u(ra) conclusion u(i’)), (u(ra) type RA-node)

118 Bibliography

where u(i),u(i") are uris of two I instances i and i’, u(ra) is the uri of an RA-node instance and
df(i,p,i’,c) is a default rephrase between i and i’. Moreover, g € |A||. ||A

, created by the translation
of A can only contain g if the following are satisfied by A:

- There is a proposition p € props(A), where u(p) = u(i) and value cval

- There is an equivalence e = (p,¢), such that |é| =d f (i, p,i’,c), u(¢) =u(i") where c € props(a)
a second proposition with value cval’.

- For proposition c, it also holds that ¢ = concl(a), for some a € A, for which u(a) = u(ra).

As aresult we infer that {||é| U é]| U (u(d) conclusion u(é)} = g, therefore g € |14 (conclp)|. Thus
(2) holds.

- If the conclusion pattern is a variable v, we have:

Is(conclp) ={u(v) e props(A) | u(v) = concl(a), for some ac A}

Moreover, from table 4.3 (rule r;o.2), we have that:

{conclp)) = (w; type I-node) A (w; claimText v.) A (W, conclusion w;) A (wy, type RA-node)

(1) For the left to right direction, take a proposition ¢ € Iy (conclp). This means that 3a €A : concl(a) =
¢ According to table 4.1, we have that:

|concl(a)| = {|c]|u{(u(a) conclusion u(¢)),(u(a) type RA-node)}}

Obviously we have that |concl(a)|| € ||Is(conclp)| and also, recalling the definition of |A|, we
have that: |concl(a)| c |A]

Given the above, for o = { (w;,u(¢)), (v,c), (wq,u(@)) }, we get that

o € ga({conclp)) and
o ({(conclp))) ={|c| v (u(@) conclusion u(¢))u (u(a) type RA-node)}

and therefore by the definition of Eg: |concl(a)|| € &4 ({conclp}). Thus (1) holds.
(2) For the opposite direction, take a set of triples g € &4 ({concip)). By the definition of {concip))
given above, it is obvious that g will have the following form:

g = { (u(i) type I-node), (u(i) claimText c), (u(ra) conclusion u(i)), (u(ra) type RA-node)}

where u(i) the uri of an I instance i and u(ra) is the uri of an RA-node instance. Moreover,
g< Al

According to table 4.1, the |A|, created by the translation of A can only contain g if there is a
proposition ¢ € P(A), such that u(¢) = u(i), and also, since there are the triples (u(ra) conclusion

u(i)), (u(ra) type RA-node), it also means that ¢ = concl(a) for some a € A, for which u(a) = u(ra).

.2. Proofs 119

As a result we infer that {|é| u (u(a) conclusion u(¢) v (u(ra) type RA-node)} = g, therefore g €
|14 (conclp)||. Thus (2) holds.

Premise pattern

We discern the cases where a premise pattern premp is a set of proposition patterns or it has the form
v[fpr], where v eV and f,,, is a premise filter.

- If premp is a set of proposition patterns s = { prp1,..., prp,}, of propositions py,..., p,, respec-
tively, then, by the semantics of section 3.3.3, we have:

Iy (premp) ={{p},...py} | pi € Ia(prp;) and {p},...p,} = prem(a) for some ac A}
Moreover, from table 4.3 (rule r9.1), we have that:

(premp)= [/n\I ((prpi) A ({prp;).wi premise v,a)) UNION (prp;)-(eaphu=; (wij premise wr))|
i

A NOT EXISTS ((/\wx {prpj)-wi) A (wy premise wy,)) A (Wrq type RA-node)
Jj=1

We decompose ((premp)) into smaller graph patterns and rewrite it as follows (using the distribu-
tive property: (avb)ac=(anrc)Vv(bnac)):

gp} = <<prpj>> A (((prpj».w,- premise Wyq) A (Wrq type RA-node)
gp? = <<prpj>>'<<eqp>>wi2=Wij (Wij premise Wra) A (Wrq type RA-node)
gpj = gp; UNION gp;

n
expr = NOT EXISTS ((Awx # (prp;).wi) A (w, premise w,))
j=1

such that (premp)) [/\ gpj UNION gp;] A expr

From the SPARQL semantlcs we have the following:

- o cea(gp;) = o cealgp)) or o e a(gp?)

- E1a)(gpj) = Eay(8P}) L E1a)(8p3)

-0 kEsexpr =; 0 =5 NOT EXISTS (/\wx {prpj).wi) A (wy premise wm)) =/

o tts (wy % (prp1).wi and ... and wy # (prp,).w; and (wy premise w,,))

- E|aj(premp) = {{o(gp1), ..., 6(gpn)} | 0 € (€a(gp1) m---M€a(gpn)) and it is not the case that
O Egexpr}

(1) For the left to right direction, take a set of propositions {p{,...,p)} € la(premp). This means that
JaeA: prem(a) ={p},...,p,}. According to table 4.1 by breaking the case of an argument into its

120 Bibliography

components prem(a) and concl(a), we infer that:

 (u(p}) premise u(@)), ... |pyl, (u(p,) premise u(a)), (u(a) type RA-

| prem(a)| = { [p}
node)}

Obviously, assuming that |2y (premp) || = {{[p} [, (u(p}) premise u(a)),.... |, | (u(p}) premise
u(@)), (u(a) type RA-node) } [{p},...,py} € la(premp)}

we infer | prem(a)| € |Is(premp) | and also, recalling the definition of |A
|A].

, we have that || prem(a)|| €

For each of the p € prem(a), it holds that either p’. = p;, or p; = p;. In the first case, for o = {
(Lprpjh-wi, u(p;)), (wea,u(a)) }, we get that o € gy (gp}) while in the other case, for ¢ = {
(prpj)wi u(B)), (prp;)-(eap)-wia, u(p})), (Wra,u(@)) } we get that & € £ (gp3). As a result,
for both cases, there is some 6: © € €4)(gp;). Given that Vp'; € prem(a), there is some o that
satisfies the respective gp; and in which there exists the pair (w,,,u(d)) we infer that for this o:
G € €u)(gp1) x4 €4 (gpn). Furthermore, since prem(a) € Ix(premp), according to the ArgQL
semantics, we have that: Vp'; € prem(a), p’; € Ix(prp;) for 1 < j <n of the premp. Consequently,
according to the proof of the proposition pattern case, we have that Vp’: | p}|| € &4 ({prp;)). This
can be written differently as: it is not the case that 3%: (u(%) premise u(a)), for which there is no
tuple ({prp;).wi, u(£)) in the o mapping. In this way we show that ¢ =g expr.

Given the above, we get that 6 € g4 ({premp))) and therefore by the definition of &£g:

|prem(a)|| € £ 4y ({premp)). Thus (1) holds.

(2) For the opposite direction, take a set of triples g € &4 ({premp))). By the definition of {premp)
given above, it is obvious that g will be:

g=1{81,---,8n}, such that g; € &4 (gp,) which also satisfies the expr part.

For each g;, we discern two cases:

a)if gj e &) (gp}), then g will be of the form:

gj = (u(i;) type I-node), (u(ij) claimText p;), (u(i;) premise u(ra)), (u(ra) type RA-node)

where u(i;) is the uri of an I-node instance, and u(ra) the uri of an RA-node instance. Moreover
gj < |A].

According to table 4.1, the |A
proposition p;, where u(p;) = u(i;), for which it holds that p; € prem(a), for some argument a € A,

, created by the translation of A can only contain g; if there is a

for which u(a) = u(ra).

b) Respectively, if g; € £ (gp?), then g; will be of the form:

g = { (u(ij) type I-node), (u(i;) claimText pj), df(ij, pj, i, p}), (u(i;) premise u(ra)), (u(ra) type RA-
node)}

where u(i;),u(i}) are uris of two I-node instances i;,’, u(ra) the uri of an RA-node instance and
dfij, pj i, p}) is a default rephrase between i; and i;. Moreover g < [A.

.2. Proofs 121

|A]|, created by the translation of A can only contain g if the following are satisfied by A:

- There is a proposition p; € props(A), where u(p;) = u(i;) and value val;

- There is an equivalence e = (p;, p};), such that | &| = df(ij,val},i},cval’), u(;;;) = u(i’;) where

P’ € props(A) a second proposition with value val’.
- For proposition p’, it also holds that p’; € prem(a), for some a € A, for which u(a) = u(ra).

All the above are satisfied for all 1 < j <n. Since all the different g; join on the same u(ra) = u(a),
it means that all of the respective p; or p;- are premises of the same a € A. Moreover, we also have that
expr is satisfied by g, which means that there is no other I-node x for which (u(x) premise u(ra)), which
is different than the I-nodes matching to the different gp ;s indicated in (premp})). By extension, there
must not exist no other p, € props(A), such that p, € prem(a), because if there was, the | prem(a)|
would also have created the triple (u(p,) premise u(a)) in ||A|.

Concluding, we infer that | prem(a)|| = g and therefore g € |Is(premp)|. Thus (2) holds.

- If premp has the form v[f,,.], where v € V and f,, is a premise filter. We will show the proof for
all the different forms f,, may get. Thus we have:

* If premp =v [/{sp1,..,Spm}], With sp; proposition pattern of propositions s;.
By the semantics of section 3.3.3, we have that:

Is(premp) = {u(v) | u(v) < props(A), u(v) = prem(a) for some a € A and {sy,...s,} S
prem(a) with s; € [y(sp;) and 1 <i<m }

Moreover, from table 4.2 (rules rg.2 and r9.1), we have that:

(premp) = (wi type I-node) A (w; claimText v,) A (w; premise wra) A (Wya type RA-node) A (for)u,
() /\ [((sps) A (Gsp)i premise wia)) V' ((sps)-leqp)uiammy A (i premise w,a))|
We decompose (f,,,)) into smaller graph patterns and rewrite it as:

(For) /\ 8pj

where gp; = (gp} UNIOng?)

&9} = (5p7) A ((sp;)-wi premise wra))

8P} = (sp;)-(eapwin=w,; A (wij premise wya)

122

Bibliography

Overall we have that

{(premp)) = gp A (fpr)

where gp = (w; type I-node) A (w; claimText v,) A (w; premise wyq) A (Wyq type RA-node)
From the SPARQL semantics, we have the following:

- o eea(gpj) =0 cealgpl) or o e ea(gp?)

- E1a)(8p)) = Ejay(8py) U Ejay(gp3)

-o((fprh) =0 (gp1) -0 G(8Pm)

- Eay(premp) = {o(gp) o ((fpr)) | 0 € (€a(gp) x€a(gp1) % 1 €a(gpn)) }

a) For the left to right direction, take a set of propositions {pi,...,p,} € Is(premp). This
means that 3a € A : prem(a) = {pi,...,pn}. In addition, for s € Is(sp1), ..., s}, € Ia(spm),
it also holds {s},...,s),} € prem(a), and without loss of generality, we have that prem(a) =
{pla"'aslla"vs;m"vpn}'

From the table 4.1, we get that

|prem(a)| = { |p1ll, (u(p1) premise w(@)), .., |si|, (u(s}) premise u(@)), .. .|| (u(s],)
premise u(Q)), ..., |pul, (u(pn) premise u(a)), (u(a) type RA-node) }

, and also, recalling the definition of |A

Obviously, we have that | prem(a)| € |Is(premp)

)l

we have that |prem(a)| c |A].

Let n different ¢ mappings of premp, such that:

o1 ={(wi, u(p1), ¥ p1), (Wra, u(@)), mape, ((fpr))}

O ={(wi, u(Pn), (v Pn), (Wra, u(@)), mape,((fpr))}
mape,({fpr)) = {mapsy,...,mapsn, (wra,u(@))}

where for 1 < j <m, map,; is the respective mapping for gp;, depending on whether o; €
€|kB| (gpj-) or O; € §|kp| (gp?) (similar to the previous case where the premise pattern was
a set of proposition patterns). In particular it holds that either map,; = ((sp;).wi, u(s})) or

mapsj = { ((sp;)-wi, u(s)), (sp;)-{eap)-wia, u(s)) }

Given the above, we get that ©7,..., 0, € €4 (premp) and
|prem(a)|| € o1 ({premp)) u---u c,({premp))) and therefore, by the definition of £g:

.2. Proofs 123

|prem(a)|| € €4y ({premp)). Thus (1) holds.

2) For the opposite direction, take a set of triples g € 4| ({premp))). By the definition of
{premp)) g will be of the form

g = {(u(i) type I-node), (u(i) claimText p), (u(i) premise u(ra)), gy, }
where u(i) is the uri of an I-node instance, u(ra) the uri of an RA-node instance, and
gfpr :gl7gm

For each g, we discern two cases:

a)if gj € &y (gp}), then g will be of the form:
g = { (u(iy) type I-node), (u(i;) claimText s;), (u(i;) premise u(ra)),}
where u(i;) is the uri of an I-node instance, and u(ra) the uri of an RA-node instance. Moreover
gj <Al
According to table 4.1, the |A||, created by the translation of A can only contain g if there is
a proposition s, where u(s;) = u(i;), for which it holds that s; € prem(a), for some argument
a € A, for which u(a) = u(ra).
b) Respectively, if g; € €| 4 (gp?), then g; will be of the form:
g = { (u(ij) type I-node), (u(i;) claimText s;), dffij, s, i}, s7), (u(i;) premise u(ra))}
where u(i;),u(i’;) are uris of two I-node instances i;, %, u(ra) the uri of an RA-node instance
and df{ij, s, i’, s;) is a default rephrase between i; and 7. Moreover g C [A].
|A]|, created by the translation of A can only contain g if the following are satisfied by A:

- There is a proposition s; € props(A), where u(s;) = u(i;) and value val;

- There is an equivalence e = (s;,s), such that || = df(ij,s;,i},s"), u(sz.) = u(i’;) where
s'; € props(A) a second proposition with value val’.

- For proposition s’, it also holds that s’; € prem(a), for some a € A, for which u(d) = u(ra).
All the above are satisfied for all 1 < j <m. Since all the different g; join on the same u(ra) =

u(a), it means that all of the respective s; or s} are included in the premises of the same a € A,

otherwise, {s1,...,5,} € prem(a) for s; or s’.

Concluding, we infer that prem(a) € Iy(premp) and since g € |prem(a)| we get that g c
|1a(premp)||. Thus (2) holds.

124

Bibliography

® If f,r = finet = [/v2], where v, € V the main variable appearing in a different premise pattern

premp, of an argument pattern ap,.
By the semantics of section 3.3.3, we have that:

Iy(premp) = {u(v) | u(v) cP(A), u(v) = prem(a) for some a€ A, u(v') = prem(a’) for some
a'ely(ap") and u(v') € pu(v)}

Moreover, from table 4.2 (rules rg.2 and r9.2), we have that:
(premp)) = (w; type I-node) A (w; claimText v,) A (w; premise wya) A (Wrq type RA-node) A (for),
{(fpr) = NOT EXISTS { (w; premise { prempy)).wya) A
NOT EXISTS { (wi premise wya) V/ ((eqp)wi-w; A ((eqp)).win premise wra)) } }
For gp = (w; type I-node) A (w; claimText v,) A (w; premise wyq) A (W type RA-node)
we have that
(premp)) = gp A (fpr)
- Eja(premp) = {c(gp) | o s (fpr) }

a) For the left to right direction, take a set of propositions { p1, ..., pu} € Is(premp). This means
that Ja € A : prem(a) ={p1,...,pn}. In addition it also means that ap’ has been evaluated and
Ja’ e Ix(ap’), s.t. u(v') = prem(a") and prem(a’) = prem(a) (here we have c instead of). In
other words, Vx € prem(a’), it holds that x € prem(a) or 3x" € prem(a’), s.t. x=x'.

From the table 4.1 we get that

|prem(a)| = { |p1l,(u(p1) premise u(a)), ..., | pal, (u(B) premise u(a)), (u(a) type RA-
node)}

Obviously, we have that | prem(a)| € |Is(premp) |, and recalling the definition of |A|, we also
have that | prem(a)| < |A].

Let n different ¢ mappings of premp, such that:

01 = {(Wi> u(ﬁl)v (V7 pvall)7 (Wraa u(aA))}

On = {(Wiv M(pAn)v (V’ pvalﬂ)’ (Wm’ ”(d))}

where 1 <i<n, pval; is the text value of proposition p; and

.2. Proofs 125

The condition that holds in prem(a), namely that Vx € prem(a’), it holds that x € prem(a) or
s.t. (u(%)
premise u(a')), it also holds that (u(%) premise u(a)) or there is a d f(%,x,x',x") and for x’,
it also holds that (u(x") premise u(a)). This is exactly what the filter in {f,)) expresses (the
VxP(x) is alternatively written as A x~P(x)), as a result it holds that for 1 <i<n, o; s (fr)

3x" € prem(a’), s.t. x =X, is preserved in the

Given the above, we get that o1,..., 0, € €4 (premp) and
o1 ({premp))u---uc,({premp))) = | prem(a)| and therefore, by the definition of £g:

|prem(a)|| € £ 4y ({premp)). Thus (1) holds.

2) For the opposite direction, take a set of triples g € &4 ({premp))). By the definition of
{(premp)) g will be of the form

g ={(u(i) type I-node), (u(i) claimText val), (u(i) premise u(ra)), (u(ra) type RA-node) }
where u(i) is the uri of an I-node instance, u(ra) the uri of an RA-node instance, and g & { fp,))

According to table 4.1, the |A|, created by the translation of A can only contain i if there is a
proposition p, where u(p) = u(i), for which it holds that p € prem(a), for some argument a € A,
for which u(a) = u(ra). Furthermore, since the (f,,)) is satisfied, it means that there is some
ra’, such that Vi, s.t. (u(iy) premise u(ra’)) , there is also the triple (u(iy) premise u(ra))
can only

or (u(x") premise u(ra)) given that there is a d f (iy,x,i,,x') in |A|. Again here,

s bxo

contain ra’ if 3a’ € A, for which u(a’) = u(ra). For this ¢’ it must hold that Yx € prem(a’), such
that u(£) = u(iy), it also holds that x € prem(a), or 3x’, s.t. x’ = x and x" € prem(a), for which
u(x") = u(i'). As aresult prem(a’) € prem(a).

Concluding, we infer that prem(a) € Iy(premp) and since g < |prem(a)| we get that g C
|14 (premp)||. Thus (2) holds.

o If premp =v [.{sp1,..,spm}], With sp; proposition pattern of propositions s;.
By the semantics of section 3.3.3, we have that:

Is(premp) = {u(v) | u(v) c P(A), u(v) = prem(a) for some a € A and s; € prem(a), with
si€ly(sp;), for some 1 <i<m}

Moreover, from table 4.2 (rules rg.2 and r9.3), we have that:
(for)= \/ [(spi) A ({spj).wi premise wy,)) \VJ (<<spj>).<<eqp)>wizzwij A (wjj premise Wya))]

We decompose (f,,)) into smaller graph patterns and rewrite it as follows:

126

Bibliography

(premp)) = gp A fpr) Where
gp = (wj type I-node) A (w; claimText v,) A (w; premise wy,) A (W, type RA-node)
<<fpr>> = \/1 8Dj

j:

gpj = (gpj UNION gp?)
gpj = (sp) A ({sp;)-wi premise wra))
gr; = (sp;)-(eapwin-w, A (wij premise wya)
From the SPARQL semantics, we have the following:
- o eea(gp)) = o eea(gp)) or o eex(gp3)
- Elai(gpi) = Ejay(gp}) Y Ejay(gp3)

-Eaj(premp) = {{o(gp) o ({fp:)} | 0 €(€a(gp) ™€a(gpn)) or ... or o € (€4(gP) M €4 (8Pn))

}

a) For the left to right direction, take a set of propositions { p1, ..., pu} € Ia(premp). This means
that 3a € A: prem(a) = {p1,...,ps}. In addition, 35’ € 4 (sp;) for some 1 < j <m, such that
s j € prem(a). Without loss of generality, we have that prem(a) = {p1,..,s%, .., pn}.

From the table 4.1 we get that

[prem(a)| = { [p1]l, (u(p1) premise u(@)), ... [}, (u(s}) premise u(@)). ..., (u(Pn)

premise u(Q)), (u(a) type RA-node) }

Pnl

Obviously, we have that | prem(a)| € |Is(premp)

, and also, recalling the definition of |A

)

we have that |prem(a)| c |A].

Let n different o mappings of premp, such that:

0] = {(Wiv M(pAl)v (V’ pl)v (Wmv M(d))a mapGl(<<fpr>>)}

On = {(Wi, u(Pn)s (v Pn), (Wra, u(a)), mapo,(<<fpr>>)}

It holds that each mape, ((f,+)) can be at least one of the following:

map,(<<fpr>>)= (mapsl’ (Wraa”(d)))

or

.2. Proofs 127

or
mapg, (<<fpr>>)= (mapsm, (Wra’”(d)))

where for 1 < j <m, mapy; is the respective mapping for gp;, depending on whether o; €
€|kB| (gp}-) or O; € §|kp| (gp?) (similar to the previous case where the premise pattern was
a set of proposition patterns). In particular it holds that either map,; = ((sp;).wi, u(s;)) or

mapy; = { ({sp;)wis u($)). ({sp;)-Geqp)-wiz, u(s))) }-

Given the above, we get that o7, ...,0, € €4 (premp) and
| prem(a)| < o1 ({premp)))u---u o, ({premp)) and therefore, by the definition of &g:

|prem(a)|| € €4y ({premp)). Thus (1) holds.

2) For the opposite direction, take a set of triples g € &4 ({premp})). By the definition of
(premp)) g will be of the form

g = {(u(i) type I-node), (u(i) claimText val), (u(i) premise u(ra)), gy, }

where u(i) is the uri of an I-node instance, u(ra) the uri of an RA-node instance, and

gfpr:gl or ... or gm

For each g;, we discern two cases:

a)if gje &y (gp}), then g will be of the form:

gj = { (u(ij) type I-node), (u(i;) claimText s;), (u(ij) premise u(ra))}

where u(i;) is the uri of an I-node instance, and u(ra) the uri of an RA-node instance. Moreover
< Al

According to table 4.1, the |A[|, created by the translation of A can only contain g; if there is a
proposition s; € props(a), where u(s;) = u(i;), for which it holds that s; € prem(a), for some
argument a € A, such that u(a) = u(ra).

b) Respectively, if g; € £ 4 (gp?), then g; will be of the form:

gj = { (u(ij) type I-node), (u(ij) claimText s;), df(ij, sj, i’ %), (u(i;) premise u(ra))}

where u(i;),u(i’;) are uris of two I-node instances i;,i’, u(ra) the uri of an RA-node instance
and df(ij, s;, i, s) is a default rephrase between i; and . Moreover g; < |A].

|Al|, created by the translation of A can only contain g if the following are satisfied by A:

- There is a proposition s; € props(A), where u(s5) = u(i;)

128

Bibliography

- There is an equivalence e = (s;,s";), such that [é]| = d f(ij,s;,i},s"), u(xz) = u(i;) where
s'; € props(A) a second proposition

- For proposition s, it also holds that s € prem(a), for some a € A, for which u(a) = u(ra).

As a result, we have that there is at least one proposition s; € props(A) for which s; € prem(a)

/ =
or s € prem(a), for s; = s’

Concluding, we infer that prem(a) € Iy(premp) and since g < |prem(a)| we get that g c
|Za(premp)|. Thus (2) holds.

if premp =v [V'],with V' € V a variable, appearing in the premise pattern of another argument
pattern ap’.

By the semantics of section 3.3.3, we have that:

Is(premp) = {u(v) | u(v) cP(A), u(v) = prem(a) for some a€ A, u(v') = prem(a’) for some
a €ls(ap’) and u(v') o pu(v) is true}

Moreover, from table 4.2 (rules rg.2 and r9.4), we have that:

(premp)) = (w; type L-node) A (w; claimText vy) A (i premise wra) A (wrq type RA-node) A (forhun
{for) = ((premp2).wi premise wya) V/ ((€qpYir=(premps)yw; ((eap)-wiz premise wra))
We decompose (f,,)) into smaller graph patterns and rewrite it as follows:

(premp)) = gp A (fpr)

where

gp = (wj type I-node) A (w; claimText v,) A (w; premise wy,) A (W, type RA-node)

(fpr) = gp1 UNION gp>

gp1 = ({premp2)).w; premise w,)

gP2 = (eqphir=(prempr)ywi N ({eqph)-wi premise wy,)

From the SPARQL semantics, we have the following:

-ea({(for)) ={o | o eea(gpr) or ceea(gpa)}
- ea({premp))) = {o | o € (ea(gp) mea((fpr)))}
-Ea((fpr)) = Eay(gp1) © Ejay(gp2)

.2. Proofs 129

- Ejay((premp))) = {o(gp) v o ((fpr)) | 0 € ea({premp)) }

a) For the left to right direction, take a set of propositions { p1,..., pu} € Is(premp). This means
that JacA: prem(a) ={p1,...,pn}. It also means that ap’ has been evaluated and 3a’ € I (ap’),
s.t. w(v') = prem(a’) and prem(a") ® prem(a) is true (here we have ® instead of N). In other

words, 3x € prem(a’), such that x € prem(a) or 3x" : x = x" and x’ € prem(a’).
From the table 4.1, we get that

| prem(a)| = { |pil, (u(p1) premise u(a)), ..., |x|,(u(£) premise u(a)), ..., |pal, (u(pn)
premise u(d)), (u(@) type RA-node)}

Obviously, we have that | prem(a)|| € |14 (premp)|, and recalling the definition of |A[|, we also
have that |prem(a)| c |A].

Let n different o mappings of (premp)), such that:

O] = {(Wi7 ”(pAl)v (V’ pvall)’ (Wm’ ”(d))v map01(<<fpr>>)}

S = {(wi, u(Pn), (v, pvaly), (Wra, u(@)), mape,({fpr))}

where 1 <i<n, pval; is the text value of proposition p; and
map,((fpr)) = {({prempa)).wi, u(%)), (wra,u(@))} or

mape,({fpr)) = {({prempa).wi, u(x')), ({eqp).-win, u(%), (wpa,u(a))}
depending on whether o; € €k (gp1) or O; € gk (gp2)-

Given the above, we get that G1,..., 0, € €4 (premp) and
| prem(a)|| < o1 ({premp))) u---u o, ({premp))) and therefore, by the definition of £g:

| prem(a)| c &) ({premp))). Thus (1) holds.

2) For the opposite direction, take a set of triples g € &4 ({premp))). By the definition of
(premp)), g will be of the form

g = {(u(i) type I-node), (u(i) claimText p), (u(i) premise u(ra)), gy, }

where u(7) is the uri of an I-node instance, u(ra) the uri of an RA-node instance. Regarding
gf,, we discern two cases:

a)If g, € &) (gp1), then it will have the form:

130

Bibliography

gf, = 1 (u(iy) type I-node), (u(iy) claimText x), (u(i,) premise u(ra))}

where u(i,) is the uri of an I-node instance, for which, we have o ({ premp,)).w;) = u(i,) and
u(ra) the uri of the RA-node instance above. It will also hold that, ((u(iy) premise u(ra")) €
Ejaj({premp,))). Moreover g < [A].

According to table 4.1, the |A
is a proposition x € props(A), where u(%) = u(i,), for which it holds that x € prem(a), for

, created by the translation of A can only contain i, if there

some argument a € A, such that u(4) = u(ra) and also x € prem(a’), for some a’ € A, such that
u(a') = u(ra").

b) Respectively, if g7, € £j4(gp1), then it will have the form:
s, = { (u(iy) type I-node), (u(iy) claimText x), df{iy, x, iy, X'), (u(iy) premise u(ra))}

where u(i,),u(i.) are uris of two I-node instances iy, i, u(ra) the uri of an RA-node instance
and df(iy, x, i\, x') is a default rephrase between i, and i,. It will also hold that, ((u(i.) premise
u(ra’)) € Ejay({premp,))). Moreover g [A].

|A|, created by the translation of A can only contain g if the following are satisfied by A:
- There is a proposition x € props(A), where u(%£) = u(iy) and value val,
- There is an equivalence e = (x,x"), such that | &] = d f (iy, val, i, val’), u(x") = u(i’) where
x" € props(A) a second proposition with value val;.

- For proposition x', it holds that x" € prem(a), for some a € A, for which u(a) = u(ra) and
also x’ € prem(a"), for some a’ € A, for which u(a’) = u(ra’).

As a result, we have that prem(a) N prem(a’), which means that prem(a) € I (premp) and
prem(a’) € I (premp,) and since g C | prem(a)|| we get that g C |Iy(premp)||. Thus (2) holds.

Argument pattern

We now move to the case of an argument pattern ap = (premp, conclp), where premp and conclp,

premise and conclusion patterns respectively. By the semantics of section 3.3.3 we have that:

Ix(ap) ={a €A | prem(a) € Is(premp) and concl(a) € I(conclp)}
Moreover, from table 4.3 (rule r;1), we have that:

(ap)= (premp),, AN {(conclp),,, N (W type RA-node)

(The case where an argument pattern is a single variable will not be examined separately, since it

is equivalent with the case (?pr, ?c), (no filters in the premise pattern) so the proof for these two cases

remains the same.)

.2. Proofs 131

(1) For the left to right direction, take an argument a € I4(ap). This means that prem(a) €
Iy(premp) and concl(a) € Iy (conclp). According to the table 4.1, we have that:

lal = {[prem(a)| v conci(a)| v {(u(a) type RA-node)}}

Obviously, given that ||I4(ap)| = {|ai| | @i € Ix(ap) }, we have that ||a| € |I4(ap)| and that ||a| €
|A|. By the proofs of the premise and conclusion patterns, we showed that, regardless their particular
form, it holds that |prem(a)| € &) ({premp)) and |concl(a)|| € Ejay({conclp)).

Given the above, for 6 = {w,,,u(a@)}, we get that 6 € €4 ({ap))) and therefore, by the definition
of &g: ||la] € &jaj({ap)). Thus (1) holds.

(2) For the opposite direction, take a set of triples g € & ({ap))). By the definition of {ap)) given
above, we get that g will be of the form:

8 = {81vg20{(u(ra) type RA-node)} }

where u,, is a uri of a RA instance, g1 € s ({premp))) and g; € I ({conclp))) Moreover g c |A].

According to table 4.1, the |A|, created by the translation of A can only contain g if there is
an argument a € A, where u(a) = u(ra), for which prem(a) € I4(premp) (by the proof of premise
pattern) and concl(a) € Iy (conclp) (by the proof of premise pattern). We note that |@| = g, therefore
g€ [Ia({ap))| and thus (2) holds.

Relation pattern

We assume a relation pattern, relp. We have to show that for each of the six different types of
relp (rebut, undercut, attack, endorse, back, support), it holds that |[Is(relp)| € &4 ({relp))(1) and
Eaj((relp)) € [[Ia(relp)||(2). Recall that each relation pattern appears between two random argu-
ment patterns ap; =< prempy,cpy > and apy =< prempy,cp; >, with premp1, premp, premise patterns
and cp1, cp> conclusion patterns, respectively. So we have:

® (Rebut) By the semantics of section 3.3.3, we have that:
Is(rebut) = {P,,q, = (a1 a2) | a1,a2 € A s.t. concl(a;) ¢ concl(az) }
Moreover, from table 4.3 (rule (r2.1)), we have that:

(rebut) = (ap1)) A {ap2) A [({confiph, =(epyywiwa=(epr)m) V
(<<eqp>>Wi1=<<c‘P2)>-Wi A <Conﬂp»wz'l:«cl’l»wivWi2=<<e‘1P>)-Wi2) \Y%
(Cearwu=(eprym » €cOnfiD N =geapy iz, wir=(epryow:) V

(<<eqp1>>Wi1=<<L'P|>>»Wi A «eqp2>>wi|=<<cllz)>-wi A <<conﬂp>>wi]:«eqpl>>'W[2~,Wi2:<<e‘1172>>~wi2)]

We decompose and rewrite ((rebut)) into smaller graph patterns and rewrite it as:

132 Bibliography

(rebut)) = gp1 UNION gp, UNION gp3 UNION gp4 such that

gp1 = (ap1) A {ap2)) A (conflp), =(epy)i, win=(cpa)wi
8p2 = <<(1p| >> A <<Clp2>> A <<eqp>>w,-1:((cp2>>.w,- A <<C0nﬂp>>w;1:<<cp1)).wi,w[zz«eqp}}.w[z
8P3 = <<ap1 >> A <<ap2>> A <<eqp>>w,-1:((cp1>>.w,- A <<Conﬂp>>w,-1:<<eqp>>.w,-2, win=(cpy)).wi

gps = {api) A (apa) A (eapi Vv =epryowi N €€aP2)iy =(cpaywi N CCORAP Y =(eapr Y owin, win=(eqpn) win
By the SPARQL semantics, we have the following:
-0 cgs(rebut) = o cep(gpr) or 6 € es(gpr) or o €€s(gps) or o € €a(gpa)

- E|ay(rebut) = Ejx(gp1) Y Eja)(8p2) Y Eay(8P3) Y Ejay(gpa)

(1) For the left to right direction take a relation r € I4(rebut). This means that r = (a; ay),
where aj,a; € A. Analyzing he proposition 2 of section 3.1, we infer that there is a rebut
relation between a; and a; in one of the four cases bellow:

a) concl(ay) ¢ concl(ay)

b) concl(ay) + x and x = concl(az)

¢) concl(ay) =x and x ¢ concl(ay)

d) concl(a;) =x and concl(ay)=yand x4y

According to the table 4.1, in each of these cases, r is translated as follows:

a) |r| = {|a1ll,|azll, |c|}, where c € cf(A) and ¢ = (concl(ay),concl(ay)).

b) |Irl = {llarl, laz], lc], lle
(x,concl(ay)).

}, where ¢ € cf(A) with ¢ = (concl(ay),x) and e € eq(A) with e =

o) |rll = {|a1ll |azll, el |c|} where e € eq(A) with e = (concl(a),x) and ¢ € cf(A) with ¢ =
(x,concl(az)).

A [Irl = {larl; lazl, lev], lez], lcll}, where er,e2 € eq(A) with ey = (concl(a1),x), €2 = (concl(az),y)

and c € cf(A) with ¢ = (x,y).

Obviously, given that ||I4 (rebut)|| = { ||r;| | ri € Ia(r;) }, we have that || r| € |14 (rebut)| and that
|r| € |A|. Furthermore, by the proof of an argument pattern above and given that ap;, ap, are

random argument patterns which match any argument, we have that |a;[€ &4 ({ap1)) and
laz | € Epay({ap2))

a) If r belongs to the case (a), then for 6 = {({ap1). wra, u(dy)), ({ap2)) - wra, u(dz)), ({conflp)).wii,
u(¢r)), ((conflp) . win, u(&)), ({conflp).weq, u(é)) }, where ¢; = concl(ay) and c; = concl(az),

.2. Proofs 133

we get that 0 € gy (gp1) which generates a ca(¢y,¢) and therefore, by the definition of £g:
I7]l € Eay (gp1) and |r|| € €4y ({rebut)). Thus (1) holds.

b) If r belongs to the case (b), then for

o ={((ap1)-wra, u(dr)), ((ap2)-wra, u(@2)),((conflp))-wir, u(¢1)), ((confip)).wiz, u(£)), ({egqp)-wir,
u(62)), ((eqp)-wiz, u(x)), ({conflp))-wea, u(2)), ({eqp)-Wima, u(é)) }

where ¢| = concl(ay) and c; = concl(ay), we get that & € £, (gp2), which generates a ca(%, ¢})
and adf(¢2,c2,%,x) and therefore, by the definition of £g: |r| € &4 (gp2) and | 7| € Ej) ((rebut)).
Thus (1) holds.

c¢) If r belongs to the case (c), then for

o ={((ap1)-wra, u(d@r)), ((ap2)-wra, u(d2)),((eqp))-wir, u(¢1)), ((eqp)-wi, u(x)), ({confip)).wir,
u(62)), ({confip)).wiz, u(%)), ((confip)) -wea, u(2)), ({eqp)-Wma, u(é)) }

where ¢ = concl(ay) and ¢z = concl(az), we get that o € €4 (gp3), which generates a ca(,¢1)
and adf(¢2,c2,%,x) and therefore, by the definition of £g: || € &4 (gp3) and [7| € o) ({rebut)).
Thus (1) holds.

d) If r belongs to the case (d), then for

o ={({ap1)-wra, u(dr)), ((ap2)-wra, u(dz)), ({eqp1)-wir, u(¢r)), ({eqp1).wir, u(x)),
({egp2))-wir, u(2)), ((egqpa).win, u(9)), ({conflp).wir, u(x)), ({confip)).wi, u(¥)),
((eqp1) - Wma> u(€1)), ({eqp2))- Wma> u(€2)), ({confip)).wea, u(¢)) }

where ¢ = concl(ay) and c3 = concl(az), we get that 6 € €4 (gp4), which generates ad f(¢1,¢1,%,¢x),
a df(¢,c2,9,y) and a ca(%,y) and therefore, by the definition of &g: |r| € &4 (gps) and
|7[€ Ejay ({rebut))). Thus (1) holds.

(2) For the opposite direction, take a set of triples g € &4 ({rebut))). By the definition of
((rebut)) we have one of the four cases:

a) If g € &4 ((gp1), then g will be of the form:

g=1{g1 8 calir,i))}

where g1 € &4 ({ap1)), g2 € Ejaj({ap2) and ca(iy,iz) a conflict application between two I-
nodes ij,i. We showed from the previous case (argument pattern) that g € |I4(ap;)| with g;
= ||a1|| and g; € |14 (ap2)| with g, = |az|, where ay,a; € A. In addition, given that the conflict
pattern is between the variables ({(cpi).w; and (cp2)).w;, the ||A|, created by the translation of
A, can only contain ca(iy,iz) if i} = concl(ay), iy = concl(ay) and concl(ay) ¢ concl(ay). Thus,
we infer that there is a rebut relation r between a; and a, (case a). We note that g = | r|, and
therefore, g € |1y (rebut)|. Thus (2) holds.

134

Bibliography

b) If g € &4 ({gp2), then g will be of the form:

g={g1 & df(i1,c1,i2,¢2), ca(ir,i3))}

where g1 € &4 ((ap1), g2 € Eja)({ap2)), ca(ir, i) a conflict application between two I-nodes
i1,ip and df(ij,c,ip,x) a default rephrase between the I-nodes i,i3. We showed from the
previous case (argument pattern) that g; € |Is(ap;)| with g; = |a;|| and g € | I4(ap2)| with
g2 = |az||, where ay,a; € A. In addition, given that one of the two variables in the equivalence
pattern is (cp;)).w; and that one of the two variables of the conflict pattern is the {(cp;)).w;, and
that there is a join between them, we infer the following:

— |A|, created by the translation of A, can only contain df(ij,c,iz,x) if ij = ¢ with ¢ =
concl(ay), iy =% and c = x for c,x € P.

— ||A|| can only contain ca(is, i3) if i» = £, i3 = concl(ay) and concl(ay) 4 x

Thus, we infer that there is a rebut relation r between a; and a; (case b). We note that g = | 7|,
and therefore, g € |I4(rebut)|. Thus (2) holds.

) If g € &4 ({gPp3)), then g will be of the form:

g ={ g1 & df(ir,valy,ir,valy), ca(iz,i3))}

where g1 € Ej4)({ap1), g2 € Ejaj((ap2)), ca(ir,iz) a conflict application between two I-nodes
i1,ip and df(ir,c,i3z,x) a default rephrase between the I-nodes i,i3. We showed from the
previous case (argument pattern) that g; € |Ia(ap)| with g1 = |ai|| and g2 € |l (ap2)| with
g2 = ||laz|, where a;,a; € A. In addition, given that one of the two variables in the equivalence
pattern is (cpi)).w; and that one of the two variables of the conflict pattern is the {cp2)).w;, and
that there is a join between them, we infer the following:

— |A| can only contain ca(i, i) if i = concl(az), iz = £, concl(ay) ¢ x, for x € P.
— ||A|, created by the translation of A, can only contain df(iz,x,i3,¢) if i =%, i3=¢ ¢ =

concl(ay) and ¢ = x, for c,x € P.

Thus, we infer that there is a rebut relation r between a; and a; (case c). We note that g = ||r|,
and therefore, g € |14 (rebut)|. Thus (2) holds.

d) If g € £j4|({(gpa)), then g will be of the form:

g =181 &, df(i1,c1,iz,x), df(i3,c2,i4,y), ca(iz,ia))}

where g1 € 4 1({ap1), g2 € Eja({ap2)), df(ir,c1,i2,x) a default rephrase between the I-
nodes iy,i, df(i3,¢2,i4,y) a default rephrase between the I-nodes i3,i4 and ca(iz,is4) a conflict
application between the iy,is. We showed from the previous case (argument pattern) that g €

.2. Proofs 135

|I4(ap2)| with g2 = |az|, where a;,a; € A. In addition, given

that one of the two variables in the equivalence pattern egp; is {(cpi)).w;, that one of the two

|24 (ap1)|| with gy = [ai] and g5 €

variables in the equivalence pattern egp; is {(cp2)).w; and that the conflict pattern joins with the
variables (egp1).wi and (egp2)).wip, we infer the following:

— |A|, created by the translation of A, can only contain df(ij,c1,iz,x) if ij =&, ¢) =

concl(ay), iy =% and ¢y = x for x,c¢; € props(A)

— ||A| can only contain d f(i3,c2,ia,y) if i3 = & ¢2 = concl(ay), ia =y and ¢ = y for 3,y €
props(A)

— |A| can only contain ca(iz,is) ifiy =%, is=Jand x ¢y

Thus, we infer that there is a rebut relation r between a; and a; (case d). We note that g = | r|,
and therefore, g € |I4(rebut)|. Thus (2) holds.

® (Undercut) By the semantics of section 3.3.3, we have that:
Is(undercut) = {Py,~a, = (a1 a2) | a1,az € A s.t. concl(ay) ¢ p; for some p; € prem(az) }
Moreover, from table 4.3 (rule (r2.2)), we have that:
(undercut)) = (ap1) A {apa)) A [((confip), = (epyyows, wo=(prempryos;) V
(Geap s =gprempsy s A cOMAD Y sy=(epy s wir=(eaphom) V

{
(<<eqp>>wi1=<<CPl>><Wi A <<conﬂp>>wi1=<<eq}7>>-wiz-,Wi2=<<17’€m172>>~wi) \%

((eartDwi=gepryomi A §€ap2 Vs =(premppyons N §CONAPY iy ~eapr Yo, wir=(eapa) wia) |
We decompose and rewrite (undercut)) into smaller graph patterns as follows:
(undercut)) = gp1 UNION gp, UNION gp3 UNION gp4
such that
gp1 = {ap1) A {ap2)) A (conflp), ~cprywi. wio=(prempa) w;
gp2 = {api) A {ap2}) A (eapw,=(prempyywi N CCOMAP v =(epy) i, wir=(eaphwia
gp3 = {api) A {ap2) A (eaphw,=cprywi A CcOnfip D, =(eqp) wia, wir=(premp) wi
gpa = {api) A {ap2)) A (eqpi Dy =(epyywi N €€dP2 i =(prempaywi N KCORAP Yy =(eqpy) wia, wir=(eapa) win
From the SPARQL semantics, we have the following:

- o cgs(undercut) = o € €4(gp1) or o € €4(gp2) or G € €4(gp3) or o € €4(gpa)

136 Bibliography

- & a| (undercut) = €5 (gp1) U Eja|(8p2) U Ea|(8p3) U Ea)(gpa)

(1) For the left to right direction, we assume r € I (undercut). This means that
r =Py .4, = (a1 az), where ay,a; € A. Taking into account the proposition 2 of section 3.1, we
infer that there is an undercut relation between a; and a, in one of the four cases bellow. We

assume some p € prem(ay), then:

a) concl(ay) ¢ p

b) concl(ay) ¢ xand x = p

¢) concl(ay) =xandx ¢ p

d) concl(a;)=xand p=yandx ¢y

According to the data mapping of table 4.1 we have for each of these cases that:

a) [= {llarl, a2,]}, where c € cf(A) and ¢ = (concl(ar), p).

b) || ={llail,]azl,]cl,lell}, where ¢ € cf(A) with ¢ = (concl(a;),x) and e € eq(A) with e =
(x,p)

o) |rll = {|a1ll, |azll, el |c|}, where e € eq(A) with e = (concl(a;),x) and ¢ € cf(A) with ¢ =
(x,p)

d) 7] = {llar] lazl, ler], [e2]; €]}, where er, ez € eq(A) with ey = (concl(ar),x), e2 = (p,y)

and c € cf(A) with ¢ = (x,y).

Obviously, given that Iy (undercut)| = { | ri|| | ri € Ia(r;) }, we have that ||| € |14 (undercut)|
and that || c |A|. Furthermore, by the proof of an argument pattern above and given that ap;,
ap; are random argument patterns which match any argument, we have that |a; | € &4 ({ap1))

and |az| € Eja) ((ap2))

a) If r belongs to the case (a), then for 6 = {({ap1). wra, u(dy)), ({ap2)) - wrq, u(@z)), ({conflp)).wii,
u(ér)), ((conflp).win, u(p)), ({conflp) . weq, u(é)) }, where ¢; = concl(ay), we get that o €
€4 (gp1) which generates a ca(¢1, p) and therefore, by the definition of Eg: || € £j4)(gp1)
and |r| € &4 ({undercut))). Thus (1) holds.

b) If r belongs to the case (b), then for

o ={((ap1)-wra, u(dr)), ({ap2)-wra, u(@2)),((conflp))-wir, u(¢1)), ((confip)).wiz, u(%)), ({egp)-wir,
u(p)), ({eqp))-wiz, u(x)), ({conflp)-wea, u(€)), ((eqp) - wia, u(2)) }

where ¢ = concl(ay), we get that o € €4 (gp2), which generates a ca(%,¢1) and ad f(p, p,%,x)
and therefore, by the definition of &g: || € £4|(gp2) and |r| €) ((undercut)). Thus (1)
holds.

.2. Proofs 137

c¢) If r belongs to the case (c), then for

o ={((ap1)-wra, u(d@r)), ((ap2)-wra, u(d2)),((eqp))-wir, u(¢1)), ((egp)-wia, u(x)), ({confip)).wir,
u(p)). ((confp).wi, u(£)), ({conflp).wea, u(2)). ({eqp)-wima. u(é)) }

where ¢ =concl(ay), we get that & € €4 (gp3), which generates a ca(%,¢1) and ad f(p, p,%,x)
and therefore, by the definition of £g: || € 4 (gp3) and |r| € £ 4 ({rebut)). Thus (1) holds.

d) If r belongs to the case (d), then for

o ={({ap1)-wra, u(dr)), ((ap2)-wra, u(@2)), ({egp1)-wir, u(¢r)), ({egp1)-wir, u(x)),
((egp2))-wir, u(p)), ((egp2)-wir, u(¥)), ({confip).wir, u(%)), ({conflp)).wir, u(¥)),
({eqp1) Wima» u(€1)), ((eqp2) Wma, u(€2)), ({confip).wea, u(¢)) }

where ¢ = concl(ay), we get that 6 € €4 (gpa), which generates ad f(¢1,¢1,%,x), ad f(¢2,¢2,9,y)
and a ca(%,¥) and therefore, by the definition of £g: |r| € &4 (gpa) and || € &4 ((undercut)).
Thus (1) holds.

(2) For the opposite direction, take a set of triples g € &4 ({undercut))). By the definition of
(undercut)) we have one of the four cases:

a) If g € &4 ((gp1), then g will be of the form:

g =181 g2 calir,iz))}

where g1 € Ej41({ap1)), g2 € Ejaj({ap2)) and ca(iy,iz) a conflict application between two I-
nodes ij,i,. We showed from the previous case (argument pattern) that g € |I4(ap;)| with g;
= ||la;| and g; € |[Is(ap2)| with g2 = |az |, where a;,a; € A. In addition, given that the conflict
pattern is between the variables (cp;)).w; and (premp;)).w;, the |A|, created by the translation
of A, can only contain ca(iy,iy) if ij = concl(ay), iy = p, for p € prem(ay) and concl(ay) ¢ p.
Thus, we infer that there is an undercut relation r between a; and a, (case a). We note that
g = ||r|, and therefore, g € |I4 (udnercut)|. Thus (2) holds.

b) If g € &4/ ({gp2)), then g will be of the form:

8= {glr 82, df(ilaplai27x)’ ca(i27i3))}

where g1 € &4 ((ap1), g2 € Eja)({ap2), ca(ir, i) a conflict application between two I-nodes
i1,ip and df (i1, p1,i2,x) a default rephrase between the I-nodes i,i3. We showed from the
previous case (argument pattern) that gy € |[Iy(ap;)| with g = |a;| and g € ||[Is(ap2)| with
22 = |az||, where ay,a; € A. In addition, given that one of the two variables in the equivalence
pattern is (premp;)).w; and that one of the two variables of the conflict pattern is the {cp;)).wi,
and that there is a join between them, we infer the following:

138

Bibliography

— |A|, created by the translation of A, can only contain df(i,p,iz,x) if i; = p, for p €
prem(ay) ip =X and p = x for x € P.

— |A| can only contain ca(i,i3) if i =%, i3 = &1, ¢; = concl(a;) and ¢; # x

Thus, we infer that there is an undercut relation r between a; and a, (case b). We note that
g = ||r|, and therefore, g € |14 (undercut)|. Thus (2) holds.

) If g € &4 ({gp3)), then g will be of the form:

g ={ g1 g2 df(ir,valy,i,valy), ca(iz,i3))}

where g1 € &4 ({ap1), g2 € Eja)({ap2), ca(ir, i) a conflict application between two I-nodes
i1,ip and df (iy,valy,ip,valy) a default rephrase between the I-nodes i,,i3. We showed from the
previous case (argument pattern) that gy € ||Is(ap;1)| with gy = |a;| and g € ||Is(apz)| with
g2 = ||az|, where a;,a; € A. In addition, given that one of the two variables in the equivalence
pattern is {(cp;)).w; and that one of the two variables of the conflict pattern is the (premps).wi,
and that there is a join between them, we infer the following:

— |AJl, created by the translation of A, can only contain df(ij,c1,i2,x) if i1 =&, ¢1 =

concl(ay), iy =% and ¢y = x, for ¢, x e P.

— |A| can only contain ca(i,i3) if ir =%, , i3 = p, for p € prem(ay) and p } x

Thus, we infer that there is a rebut relation r between a; and a; (case c). We note that g = ||r|,
and therefore, g € |I4(rebut)|. Thus (2) holds.

d) If g € £j4|({(gpa), then g will be of the form:

g =181 &, df(i1,c1,iz,x), df (i3, p,ia,y), ca(in,is))}

where g1 € Ej4((ap1), g2 € Ejaj({ap2)), df(ir,c1,i2,x) a default rephrase between the I-
nodes iy,ip, df (i3, p,is,y) a default rephrase between the I-nodes i3,i4 and ca(i,is) a conflict
application between the i»,is. We showed from the previous case (argument pattern) that g; €
|Za(ap1)| with g1 = |la; | and g2 € ||Is (ap2) | with g2 = |a2|, where a;,a; € A. In addition, given
that one of the two variables in the equivalence pattern egp; is {cpi)).w;, that one of the two
variables in the equivalence pattern egps is (premps)).w; and that the conflict pattern joins with
the variables (egp;)).wi» and {egp>).wi, we infer the following:

- [A

concl(ay), iy =% and ¢y = x, for ¢, x e P.

, created by the translation of A, can only contain df(ij,cy,iz,x) if iy =&, ¢1 =

— |A| can only contain df (i3, p,is,y) if i3 = p, for p € prem(ay), is=9 and p=y, fory e P.

— |A| can only contain ca(iz,is) if iy =x,is=yand x4y

.2. Proofs 139

Thus, we infer that there is an undercut relation r between a; and a, (case d). We note that
g = ||, and therefore, g € |4 (undercut)|. Thus (2) holds.

® (Attack) Regarding the attack relation pattern, we recall that:
Ix(attack) = I (rebut) I (undercut)
The graph pattern generated by its translation, according to the rule r,.3 is:

(attack)= (rebut)) UNION {(undercut))

(1) For the left to right direction, we assume r € Iy (attack). This means that r € [y (rebut) or r €
Is(undercut). According to the previous two cases, we will have that ||r| € & (rebut) or |r| €
&|a| (undercut), which, according to the semantics of UNION means that ||r| € &5 (attack)
and as a result | I4 (artack)| < E({attack)), |Ka|)

(2) The opposite direction is equally trivial.

® (Endorse) By the semantics of section 3.3.3, we have that:
Is(endorse) = {Py ~a, = (a1 a2) | a1,a2 € A s.t. concl(a;) = concl(ay) }
Moreover, from table 4.3 (rule (r2.4)), we have that:
(endorse) = (ap1) A (aps) A [({apy)wia conclusion (epa)wy) V
((ap2)-wra conclusion (cp1).wi) NV (€qpV,=(cp,) wiwia=(cps) i |
We decompose and rewrite (endorse)) into smaller graph patterns and rewrite it as:
such that ((endorse)) = gp1 UNION gp, UNION gp3
such that gp1 = (ap1) A (ap2)) A ({apt)-wra conclusion {cp2).wi)
gp2 = {ap1) A {ap2)) A ({ap2).wra conclusion (cpy).wi)
gp3 = (ap1) A {ap2)) A (eap M, =(cpr Y wiwin=(cpa)wi)
From the SPARQL semantics, we have the following:
- o c¢ep(endorse) = o cex(gpy) or o € €x(gpa) or o € €a(gps) or G € €a(gps)

- E|a|(endorse) = E x| (8P1) U Eja|(8P2) U Ea|(8P3)

140 Bibliography

(1) For the left to right direction we assume r € I4 (endorse). This means that r = (a; az), where
ay,ap € A. Otherwise, it holds that either concl(ay) = concl(az), or concl(ay) = concl(ay).

Each of these two cases, according to the data mapping tables 4.1, is translated as follows:

a) ||r| = {|la1ll, a2}, where concl(ay) = concl(ay).

b) ||| = {|la1],laz], |le]|}, where e € eq(A) and e = (concl(ay),concl(ay)).

Obviously, given that ||I5(endorse)| = { |ri|| | i € Ia(r;) }, we have that |r| € |Is(endorse)|
and that | r| ¢ |A|. Furthermore, by the proof of an argument pattern above and given that ap;,
ap, are random argument patterns which match any argument, we have that [a; || € &4 ({ap1)

and |laz| € £a) ((ap2))

a) If r belongs to the case (a), then for 67 = {({ap1))-Wra, u(d1)), ({ap2)) - Wra, u(@2)), ({cp2).wi,
u(ér)) }, where ¢ = concl(ay), we get that o € g|a(gp1), while for 03 = {({ap1) - wra, u(dy)),
({ap2) - wra, u(d2)), ({ep1)).wi, u(¢z)) } where ¢z = concl(az), we get that 6 € €4 (gp2) and
therefore, by the definition of Eg: ||r[€ £14 (gp1) V&4 (gp2) and || € Ej4) ({endorse))). Thus
(1) holds.

b) If r belongs to the case (b), then for
o= {(«apl >>'Wra7 M(dl))’ (<<ap2>>'wra’ M(JZ)L (<<eqp>>'wil’ Lt(é\l)) s (<<eqp>>'wi27 u(62)) ’ («eqp»-wma’
u(é)) }

where ¢ = concl(ay) and ¢; = concl(ay) we get that o € €| (gp3), which generates ad f (¢1,¢1,¢2,¢2)
and therefore, by the definition of £g: [r| € €4 (gp3) and || € Ej4({endorse))). Thus (1)
holds.

(2) For the opposite direction, take a set of triples g € 4| ({endorse))). By the definition of
(endorse)) we have one of the four cases:

a) If g € &4 ({gp1), then g will be of the form:

g ={ g1 & (u(ray) conclusion u(i))}

where g1 € Eja)({ap1), g2 € Ejaj({ap2)), u(ray) is the uri of an RA-node instance, and u(i)
is the uri of an I-node instance. We showed from the previous case (argument pattern) that
g1 € [Ia(apr)| with gy = |la1] and g € |14 (ap2)| with g = [a;
will also hold that u(d)) = u(ra;) and u(é&) = u(i), for ¢y = concl(ay). As a result given that

, where a;,a; € A. Moreover, it

there is the triple (u(dy) conclusion u(cy)) we get that concl(a;) = concl(ay), which means
that there is an endorse relation between a;,as (case a). We note that g = |r|, and therefore,
g € ||Ia(endorse)|. Thus (2) holds.

b) If g € €14 ({gp2)). then the proof goes accordingly:

.2. Proofs 141

) If g € 141 ({gp3), then g will be of the form:

g =181 & df(i1,c1,i2,c2)}

where g1 € Ej4)((ap1)), g2 € Ejay({ap2)) and df (i1, c1,i2,c2) a default rephrase between the
I-nodes ip,i3. We showed from the previous case (argument pattern) that g; € |4 (ap;)| with
g1 = |ai| and g; € |14 (ap>)| with g2 = |az |, where a;,a; € A. In addition, given that one of the
two variables in the equivalence pattern is {cpi)).w; and the other is the (cp2)).w; we get that
|Al|, created by the translation of A, can only contain d f(i1,c1,i2,c2) if i1 = ¢4, ¢1 = concl(ay),

ir =&, cp =concl(ay) and ¢ = ¢, for ¢p, ¢ € P.

As aresult, we infer that there is an endorse relation r between a; and a, (case b). We note that
g = ||r|, and therefore, g € |I4 (endorse)|. Thus (2) holds.
® (Back) By the semantics of section 3.3.3, we have that:
Is(back) = { Py, »a, = (a1 a2) | a1,a2 € A s.t. concl(a;) = p; for some p; € prem(ay) }
Moreover, from table 4.3 (rule (r2.5)), we have that:
{back) = (ap1) A (ap2)) A (({ap2).wra premise {cpi).wi) V
{eapYuy=(epyan A (§ap2))wia premise (eqp).wir))
We decompose and rewrite ((back)) into smaller graph patterns and rewrite it as:
(back) = gp1 UNION gp>
such that
gp1 = {ap1) A {ap2) A ((ap2)-wra premise (cp1).wi)
g2 = (ap1) A (ap2) A (eap), =(ep, yw; A (§ap2)) - wra premise {eqp)).wiz)
From the SPARQL semantics, we have the following:
- o cgs(back) = o ees(gpr) or o eea(gpa)
- Eja(back) = E4)(8p1) U Ea)(8P2)

(1) For the left to right direction, we assume r € I (back). This means that
r =P, 4, = (a1 az), where ay,a; € A. More precisely, there is a back relation between a; and
ap in one of the following two cases:

a) concl(ay) € prem(ay)
b) concl(ay) = p, for p € prem(ay)

142 Bibliography

According to the data mapping of table 4.1, for each of these cases, we have that:

a) |r| = {|a1ll,|az||} and for ¢; = concl(ay) it holds that (u(¢y) premise u(dy)) € |az|.

b) [r| = {larll [az]. e

}, where e € eq(A) with e = (concl(ay), p).

Obviously, given that |14 (back)| = { ||r|| | ri € Ia(r;) }, we have that |r| € ||Is(back)| and that
|r| c |A]|. Furthermore, by the proof of an argument pattern above and given that ap;, ap, are
random argument patterns which match any argument, we have that |a;| € £4j({ap1)) and

laz|| € Ejap((ap2))

a) If r belongs to the case (a), then for o = {({ap1) - wra, u(dr)), ({ap2)-wra, u(d)), ({cp1).wi,
u(¢1)) }, where ¢y = concl(ay), we get that o € g4 (gp1) and therefore, by the definition of
Eg: 7] € Ejay (gp1) and 7| € €4 ({back)). Thus (1) holds.

b) If r belongs to the case (b), then for

o ={((ap1)-wra, u(d@r)), ((ap2)-wra, u(@2)), ((eqp)-wir, u(c1)) . ((eqp)-wiz, u(p)) . ((eqp))-Wma,
u(@)) }

where ¢ = concl(ay) and p € prem(ay) we get that 6 € €4 (gp2), which generates ad f(¢1,¢1, p, p)
and therefore, by the definition of £g: |r| € &4 (gp2) and || €) ((back)). Thus (1) holds.

(2) For the opposite direction, take a set of triples g € & ({back))). By the definition of
{(back)) we have one of the two cases:

a) If g € &4 ((gp1), then g will be of the form:

g =181 g (u(ray) premise u(i))}

where g1 € Eja)({ap1), g2 € Ejaj({ap2)), u(raz) is the uri of an RA-node instance, and u(i)
is the uri of an I-node instance. We showed from the previous case (argument pattern) that
g1 € [Ia(apy)|| with g1 = |a1|| and g3 € ||[I4(ap2)| with g = |az|, where a;,a; € A. Moreover,
it will also hold that u(d>) = u(ray) and u(p) = u(i), for p € prem(az). As a result given that
there is the triple (u(d>) premise u(p)) we get that concl(a;) = p, which means that there is a
, and therefore, g € |14 (back)|. Thus

back relation between ay,a; (case b). We note that g = | r
(2) holds.

b) If g € €141 ({gp2). then g will be of the form:

g =181 8. df(i1,c1,i2,p), (ray premise u(i)) }

where g1 € Ej4 ({ap1), g2 € Ejaj({ap2)), u(raz) is the uri of an RA-node instance, and u(i>)
is the uri of an I-node instance and d f (i1, ¢, i, p) a default rephrase between the I-nodes iy, is.
We showed from the previous case (argument pattern) that g; € |I4(ap;)| with g; = |la;| and

.2. Proofs 143

g2 € |[Ia(ap2)| with g2 = |az|, where a;,a; € A. In addition, given that one of the two variables
in the equivalence pattern is {(cp1)).w; and that (ray premise u(iy)) € G we get that |A||, created
by the translation of A, can only contain df(iy,cy,iz,p) if iy = &, ¢1 = concl(ay), iy = p and
c1 = p and can only contain the triple (ra; premise u(ip)), if p € prem(ay).

As a result, we infer that there is a back relation r between a; and a, (case b). We note that
g = ||, and therefore, g € |14 (back)|. Thus (2) holds.
® (Support) Regarding the support relation pattern, we recall that:
Is(support) = Is(endorse) Ul (back)
The graph pattern generated by its translation, according to the rule r;.6 is:

(support)) = (endorse)) UNION {(back))

(1) For the left to right direction, we assume r € I4 (support). This means that r € Iy (endorse)

or relIs(back). According to the previous two cases, we will have that || 7| € £ 4| ({endorse))) or

I7]l € Ejay ({back)), which, according to the semantics of UNION means that || 7| € &4 ({support))
and as a result ||[Iy (support)|| € €4 ({support))

(2) The opposite direction is equally trivial.

Path pattern

We assume a path pattern, pp. We have to show that for all its different types, it holds that || I4(pp)|| €
Eja({pp))(1) and Ej4 ({pp)) € [1a(pp)|I(2). As a result we have the following cases:

e If pp is a simple relation pattern relp, then the proof was given before.

e If pp is of the form pp;/pp>, with ppy, pp, path patterns, we recall that:
Ia(pp1/pp2) = {Pay~a, = Pay=ay * Pay—a, | Pay—a, €1a(pp1) and Py, —a, € 1a(pp2) }
The graph pattern generated by its translation according to the rule (r;3.2) is:
{pp1/pp2) = {PP1) A CPP2) (apr)wra=(1)-(ap2) wra

(1) For the left to right direction, we assume p € I4(pp). Given that pp lies between two
random argument patterns ap; and ap, and according to the definition 20, we have that:

p=(ai ... aj ... a,), for which p; = (a;... a;) e 4(pp:) and
p2=(aj ... an) €Ix(pp2).

144

Bibliography

The translation of p into RDF is |p| = {|ai| ... |4aj],...,|ax|} and we need to show that

Ipill = {larl,- - la;l} € Ejay(Cpp1)) and [p2f = {lirjll,---; |7l } € Ejay({pp2)). The proof
proceeds depending on the type of pp; and pp,. If any of them is a relation pattern, then
the proof is reduced to the previous case. If it is of the current type, the proof proceeds in a
recursive way until it reaches the relation pattern case, while if it is of any of the following

types, they are shown bellow.

(2) For the opposite direction, take a set of triples g € &4 ({pp1/pp2))). By the definition of
(pp1/pp2)) we have that g will be of the form:

g§=81,82

where g1 € &4 ({pp1)) and g2 €)4 ({pp2))). Based on the particular type of pp; and ppa,
the proof proceeds respectively.

If pp is of the form pp * n, for n > 1, we have:

—ifn=1,then I4(pp*1) =11 (pp)
— ifn> 1, then I1(pp *n) =1 (pp/pp*(n—1))

The graph pattern generated by its translation according to the rule (r3.3) is:

— if n =1, then (pp*n)) = (pp)
— if n> 1, then {(pp*n)) = (pp/pp*(n-1))

(1) For the left to right direction, we have:

-if n=1, then we have to show thatif pe 4 (pp* 1), then | p| € 14 ({pp))), which also depends
on the particular form of pp.

-if n > 1, then we have to show that if p € Iy(pp * n), then |p| € £ 4y ({pp*n))). But since
pp*n=pp/pp*(n-1), this case is reduced to the previous case (pp = pp1/pp2), where

ppi =ppand ppr =pp*(n—-1).

(2) For the opposite direction, take a set of triples g € & ({pp*n))). By definition of (pp*n))
we have:

-if n =1, then {(pp*n)) = {pp)), and the continuity depends on the type of pp.

- if n> 1, then (pp/pp*(n-1))) and the case is reduced to the previous case (pp = pp1/pp2),
where ppi = pp and pp> = pp* (n—1).

.2. Proofs 145

e If pp is of the form pp +n, we have:
I (() + 1) = U 1a((2) * k)

The graph pattern generated by the translation of this path pattern, according to the rule (r3.4)
is:

(pp+n) =Ui_ {pp*k) = {pp* 1)) UNION .. UNION (pp *n))

(1) For the left to right direction, we assume p € I (pp+n). This is translated as p e I4 (¢ * 1) or
pels(t*2) .. or pela(t+n). We have to prove that | p| € 4 ({pp*1) or [p|| € Ejay (pp*2))
.. or || p| € Ea ({pp*n)). According to the semantics of UNION in SPARQL, this means that
Ip| € Ejay({pp+n)) and that | Is(pp +n)|| € Ej4y({pp+n)). Each of these n cases are reduced
to the previous type of path pattern (pp * n).

(2) For the opposite direction, take a set of triples g € &4 ({pp+n)). By definition of (pp+n)),
this means that it will for g will hold one of the following:

g € Ejay ({pp*1)), or

g €Eja) ({pp*2)), or

g €& ((ppn))

Depending on which of the n cases holds, the proof is reduced to the previous case where
pp=pp*n.

Summing up, we see that all cases result to a sequence of relation patterns, the proof of which
was given in the first case.

Dialogue pattern

We assume a path pattern, dp. We have to show that for both of its different forms, it holds that
[2a(dp)| € Ejay({dp)) (1) and &4y ({dp)) < [1a(dp)] (2).

e If dp an argument pattern ap, then: I4(t) = {P,,=a|acly(ap)}

The graph pattern generated by its translation according to the rule (r14.1) is {(dp)) = {ap)) and
the proof for both directions is the same to the case of argument pattern.

e Ifdp=ap pp dp’, where ap an argument pattern, pp a path pattern and dp’ another dialogue
pattern, we have:

146

Bibliography

Ix(t) = {Paysa, = (a0 a1 ... ax... ay) | ao € Ia(ap), Pay>a, € Ia(pp), ax € Is(head(dp’)) and
Pax—>a,, EIA(dp,)}

The graph pattern generated by its translation according to the rule (r14.2) is:

(dp) = Cap) A (pP) (apr) wra=(apo)wwra : (apa)wra=(head(dp’)) N §dD")

(1) For the left to right direction, we assume d € I4(dp). This means that:

d=(ajy ... ax... a,). The RDF representation of d is:

ldl = (e, Jacll;- - an] },

For this sequence we have the following:

- a1 €Ia(ap), and we showed that |a;|| € E4) ({ap))

-p1=(ai ... ay) € la(pp) and we showed that | p1 | = {[a1],...|lax[} € &4 ({pP))
- ay € Iy(head(dp')) and we showed that | a.| € 5 ({head(dp’))) and finally

- p2 = (ay ... ay) € I4(dp’) and the proof for ||p2| = {|ax],---|an|} € Ejaj({dp’)) proceed
recursively, depending on the type of dp’.

From the above cases, we infer that |d|| € 14 ({dp))) and thus [[I4(dp)| € €4y ({dp))

(2) For the opposite direction, take a set of triples g € &4 ({dp})). By definition of {(dp), it
means that g will have the following form:

8=281,82,83
such that g1 € &4 ({ap)) g2 € Ea) ({pp)) and g3 € Ejay ({dp’)). Tt holds that:

- By the case of argument pattern we have that g; has been created by an argument a € A, for
which a € I (()ap)

- By the case of proposition pattern, we have that g, corresponds to a path p = (a; ... a,), for
which p e Iy (pp) and ay € Iy (head(dp"))

- We need to show that g3 corresponds to a path p’ = (a, dots a,) such that p’ € I,(dp"). To
prove this, the process proceeds recursively, depending on the type of dp’.

As aresult, we infer that g € |Iy(dp)| and thus E4 ({ap)) € [1a(dp)|

Appendix A
Publications

Publications

The research activity related to this thesis has so far produced the following publications (ordered by
publication date)

(1) Dimitra Zografistou, Giorgos Flouris, and Dimitris Plexousakis. Arggl: A declarative language
for querying argumentative dialogues. In International Joint Conference on Rules and Reason-
ing (RuleML), pages 230-237. Springer, 2017. (Best Doctoral Consortium Paper)

(2) Dimitra Zografistou, Giorgos Flouris, Theodore Patkos, and Dimitris Plexousakis. Imple-
menting the argql query language. In Computational Models of Argument - Proceedings of

COMMA 2018, Warsaw, Poland, 12-14 September 2018, pages 241-248, 2018.

(3) Dimitra Zografistou, Giorgos Flouris, Theodore Patkos, and Dimitris Plexousakis. A language
for graphs of interlinked arguments. ERCIM News, 2019 (118), 2019.

(4) Towards submitting the complete work to the Journal Argument and Computation

147

148

Appendix B
Acronyms

AIF Argument Interchange Format
ArgQL Argumentation Query Language
AML Argumentation Markup Language
ANTLR ANother Tool for Language Recognition
AST Abstract Syntax Trees

BDI Beliefs Desires Intentions

EBNF Extended Backus-Naur Form
IBIS Issue-Based Information Systems
NLP Natural Language Processing

QID Query Intermediate Data

RDF Resource Description Framework

SPARQL Protocol and RDF Query Language

149

