
Indexes and Algorithms for Measuring the

Connectivity of Linked Data

Michalis Mountantonakis

Thesis submitted in partial fulfillment of the requirements for the

Masters’ of Science degree in Computer Science

University of Crete
School of Sciences and Engineering
Computer Science Department

Voutes University Campus, Heraklion, GR-70013, Greece

Thesis Advisor: Assistant Prof. Yannis Tzitzikas

This work has been performed at the University of Crete, School of Sciences and Engineering,
Computer Science Department.

The work has been supported by the Foundation for Research and Technology - Hellas
(FORTH), Institute of Computer Science (ICS).

University of Crete

Computer Science Department

Indexes and Algorithms for Measuring the Connectivity of Linked
Data

Thesis submitted by
Michalis Mountantonakis

in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science

THESIS APPROVAL

Author:
Michalis Mountantonakis

Committee approvals:
Yannis Tzitzikas
Assistant Professor, University of Crete

Thesis Supervisor

Dimitris Plexousakis
Professor, University of Crete

Committee Member

Kostas Magoutis
Assistant Professor, University of Ioannina

Committee Member

Departmental approval:
Antonis Argyros
Professor, University of Crete

Director of Graduate Studies

Heraklion, June 2016

Indexes and algorithms for measuring the connectivity
of Linked Data

Abstract

Linked Data is a method for publishing structured data that allows them to be in-
terlinked (by using URIs instead of simple values) for assisting their integration. A
big number of such datasets, hereafter sources, has already been published accord-
ing to the principles of Linked data and their number and size keeps increasing.
However, currently it is not evident how connected these datasets are. In particu-
lar, it is difficult (a) to obtain complete information about one particular URI (or
a set of URIs), (b) to discover a dataset which is relevant to another one, (c) to
compute and visualize the degree of connectivity between two or more datasets.
All the aforementioned tasks are important for the integration process in an open
and involving environment.

To alleviate this problem in this thesis, we introduce metrics, indexes and
algorithms which allow the computation and quantification of connectivity among
several datasets. For achieving scalability, we propose (i) a namespace-based prefix
index, (ii) a sameAs catalog for computing the symmetric and transitive closure
of the sameAs relationships encountered in the datasets, (iii) a semantics-aware
element index (that exploits the aforementioned indexes), (iv) a lattice of the
common elements of any set of datasets, and (v) two lattice-based incremental
algorithms for speeding up the computation of the lattice.

We apply and evaluate the proposed approach in the context of a real and
operational semantic warehouse containing information about the marine domain
(where the metrics are used for assessing the quality of the semantic warehouse and
its underlying sources, and for monitoring the quality of the semantic warehouse
after a reconstruction), as well as for three hundred LOD cloud datasets. We
report measurements that have not been carried out in the past (like the number
of common URIs among three or more datasets, the frequency of prefixes, i.a.), we
offer novel services (like finding equivalent URIs, find the most relevant datasets
for a specific dataset, i.a.) and finally we discuss the speedup obtained by the
proposed indexes and algorithms. Finally, we propose an extension of the VoID
ontology for publishing, sharing and exploiting such measurements.

Ευρετήρια και αλγόριθμοι για τη μέτρηση του
βαθμού διασύνδεσης των διασυνδεδεμένων

δεδομένων

Περίληψη

Τα Διασυνδεδεμένα Δεδομένα (Linked Data) είναι ένας τρόπος δημοσίευσης δεδο-
μένων που επιτρέπει τη διασύνδεσή τους (μέσω της χρήσης URIs αντί απλών τιμών)
και διευκολύνει την ολοκλήρωσή τους. ΄Ηδη υπάρχουν χιλιάδες τέτοια σύνολα δεδο-
μένων, στο εξής πηγές, και ο αριθμός και το μέγεθος τους διαρκώς αυξάνεται. Παρά
ταύτα, αυτή τη στιγμή είναι δύσκολο να εκτιμήσει κανείς πόσο συνδεδεμένες είναι
αυτές οι πηγές, και συγκεκριμένα είναι δύσκολη (α) η εύρεση όλων των δεδομένων
που αφορούν ένα συγκεκριμένο URI, (β) η ανακάλυψη μιας πηγής που σχετίζεται με
μία άλλη, (γ) ο υπολογισμός και η οπτικοποίηση του βαθμού διασύνδεσης μεταξύ δύο
ή περισσότερων πηγών. Τα παραπάνω είναι αναγκαία στη διαδικασία ολοκλήρωσης σε
ένα ανοικτό και εξελισσόμενο περιβάλλον.
Για να απαλύνουμε αυτό το πρόβλημα σε αυτήν την εργασία, παρουσιάζουμε μέτρα,

ευρετήρια και αλγορίθμους που επιτρέπουν τη μέτρηση και ποσοτικοποίηση του βαθ-
μού διασύνδεσης πολλών πηγών. Για λόγους κλιμακωσιμότητας προτείνουμε i) ένα
ευρετήριο για τα προθέματα των URIs ii) έναν κατάλογο για σχέσεις ισοδυναμίας
που λαμβάνει υπ’ όψιν του το συμμετρικό και μεταβατικό κλείσιμο των σχέσεων ισο-
δυναμίας που εμφανίζονται στα σύνολα δεδομένων, iii) ένα σημασιολογικό ευρετήριο
στοιχείων (που χρησιμοποιεί τα προαναφερθέντα ευρετήρια), iv) ένα πλέγμα (lattice)
των κοινών στοιχείων που μετράει όλα τα κοινά στοιχεία ενός συνόλου πηγών, και v)
δύο αυξητικούς αλγορίθμους που επιταχύνουν τον υπολογισμό του πλέγματος.
Εφαρμόζουμε και αξιολογούμε την προσέγγιση τόσο στο πλαίσιο μιας συγκεκρι-

μένης σημασιολογικής αποθήκης δεδομένων με πληροφορίες για θαλάσσια είδη (όπου
εκεί τα μέτρα αυτά χρησιμοποιούνται για την αξιολόγηση της αποθήκης και των συ-
νιστωσών πηγών της, καθώς και για τον έλεγχο της ποιότητας της αποθήκης μετά
από ανακατασκευή), καθώς και σε τρακόσες πηγές του νέφους διασυνδεδεμένων δε-
δομένων. Αναφέρουμε τα αποτελέσματα μετρήσεων που δεν έχουν γίνει στο παρελθόν
(όπως το πλήθος της τομής των κοινών URIs μεταξύ τριών ή παραπάνω πηγών, συ-
χνότητα των prefixes , κ.α.), προσφέρουμε νέες υπηρεσίες (όπως εύρεση ισοδύναμων
URIs, εύρεση των κοντινότερων πηγών ως προς μία, κ.α.), και τέλος αξιολογούμε
την επιτάχυνση που επιτυγχάνεται με τα προτεινόμενα ευρετήρια και αλγορίθμους.
Τέλος, προτείνουμε μία επέκταση της οντολογίας VoID που επιτρέπει τη δημοσίευση,
το διαμοιρασμό και την αξιοποίηση τέτοιων μετρήσεων.

Ευχαριστίες

Αρχικά, θα ήθελα να ευχαριστήσω θερμά τον επόπτη καθηγητή μου κ. Γιάννη Τζίτζι-
κα για την άψογη συνεργασία, ορθή καθοδήγηση και ουσιαστική συμβολή του στην
ολοκλήρωση της παρούσας μεταπτυχιακής εργασίας. Επίσης, θέλω να εκφράσω τις
ευχαριστίες μου στον κ. Δημήτρη Πλεξουσάκη και στον κ. Κώστα Μαγκούτη για
την προθυμία τους να συμμετέχουν στην τριμελή επιτροπή.
Ακόμα να ευχαριστήσω το Ινστιτούτο Πληροφορικής του Ιδρύματος Τεχνολογίας

και ΄Ερευνας για την πολύτιμη υποστήριξη σε υλικοτεχνική υποδομή και τεχνογνωσία,
καθώς και για την υποτροφία που μου προσέφερε καθ΄ όλη τη διάρκεια της μεταπτυ-
χιακής μου εργασίας.
Σε αυτό το σημείο θα ήθελα να ευχαριστήσω την αγαπημένη μου ΄Εφη για την

αγάπη και τη στήριξη της και τις όμορφες στιγμές που περνάμε μαζί. Επίσης θέλω να
ευχαριστήσω την οικογένεια μου για την αγάπη, για την υποστήριξη και την συμπα-
ράσταση τους σε κάθε βήμα της ζωής μου. ΄Επειτα να ευχαριστήσω τα παιδιά από το
Ινστιτούτο Πληροφορικής του Ιδρύματος Τεχνολογίας και ΄Ερευνας που ήταν πάντα
πρόθυμοι να με βοηθήσουν σε οποιαδήποτε απορία είχα. Ακόμα, θέλω να ευχαριστήσω
τους φίλους μου για την υποστήριξη τους όλα αυτά τα χρόνια. Τέλος, η εργασία αυτή
είναι αφιερωμένη στον παππού μου Αντώνη, που αποτελεί τον πιο θερμό υποστηρικτή
μου.

στον παππού μου, Αντώνη

Contents

Table of Contents i

List of Tables iii

List of Figures v

List of Algorithms vii

1 Introduction 1

1.1 Connectivity of Semantic Warehouses 3

1.2 Connectivity among several RDF Datasets 4

1.3 Exploitation of Metrics . 5

1.4 Outline of Thesis . 6

2 Context and Related Work 7

2.1 Background . 7

2.2 Context . 7

2.2.1 Context: The Integration Process 9

2.3 Related Work . 13

2.3.1 Quality Aspects . 13

2.3.2 Frameworks/Systems for Quality Assessment 16

2.3.3 Measurements in LOD Scale. 19

2.3.4 Indexes for search and queries. 19

3 Connectivity of Semantic Warehouses 21

3.1 Metrics for Comparing two Sources 23

3.1.1 Matrix of Percentages of Common URIs 23

3.1.2 Matrix of Percentages of Common Literals between two Sources 25

3.1.3 Matrix of the Harmonic Mean of Common URIs and Literals 26

3.2 Metrics for Evaluating the Entire Warehouse 26

3.2.1 Increase in the Average Degree 27

3.2.2 Unique Triples Contribution 28

3.2.3 Complementarity of Sources 29

3.3 Metrics for Evaluating a Single Source 31

i

3.3.1 Detecting Redundancies or other Pathological Cases 31
3.3.2 A Single Metric for Quantifying the Value of a Source . . . 32

3.4 Summary of the Metrics . 33
3.4.1 Computing the Connectivity Metrics using SPARQL queries 33

3.5 Experimental Evaluation . 38
3.5.1 MarineTLO-Warehouse Evolution 38
3.5.2 Datasets Used . 39

3.5.2.1 Real Datasets . 39
3.5.2.2 Synthetic Datasets 39

3.5.3 Inspecting a Sequence of Versions 40
3.5.4 Executive Summary Regarding Evolution 47

4 Connectivity of Several LOD Datasets 51
4.1 The proposed Indexes . 51

4.1.1 Problem Statement . 51
4.1.2 The Proposed Indexes . 53
4.1.3 Prefix Index . 53
4.1.4 SameAs Catalog . 55
4.1.5 Element Index . 57

4.2 The Lattice of Measurements . 61
4.2.1 Lattice Construction . 62
4.2.2 Making the Measurements of the Lattice Incrementally . . 64

4.3 Experimental evaluation . 69
4.3.1 Measurements over the Datasets 69
4.3.2 Efficiency of Measurements 73

5 Publishing and Exchanging metrics 77
5.1 Publishing metrics through VoIDWH ontology 77
5.2 Novel Services . 80

5.2.1 3D Visualization . 80
5.2.2 LODsyndesis Website . 82

5.2.2.1 Queries for Dataset Discovery 83
5.2.2.2 Queries for Object Coreference 84

6 Conclusion 85

Bibliography 87

ii

List of Tables

2.1 Categorizing Existing Tools . 18

3.1 Matrix of common URIs (with their percentages) using Policy [ii]. 24

3.2 Matrix of common URIs (and their percentages) using Policy [iii]. . 25

3.3 Matrix of percentages of common URIs using Policy [iii] and Jaccard
Similarity. 26

3.4 Matrix of common Literals (and their percentages). 26

3.5 Harmonic Mean of Common URIs and Literals. 27

3.6 Average degrees in sources and in the warehouse using policy [ii]. . 27

3.7 Average degrees in sources and in the warehouse using Policy [iii]. 28

3.8 (Unique) triple contributions of the sources using policy [ii]. 29

3.9 (Unique) triple contributions of the sources using Policy [iii]. . . . 29

3.10 Complementarity factor (cf) of some entities. 30

3.11 cf of species that are native to Greece. 30

3.12 (Unique) triple contributions of the sources. 31

3.13 Average degrees in sources and in the warehouse. 32

3.14 The value of a source in the Warehouse (using value0(Si,W)). . . 32

3.15 The value of a source in the warehouse (using value1(Si,W)). . . . 33

3.16 Connectivity Metrics. 34

3.17 Times (in min) needed to compute metrics on various approaches
and policies. 38

3.18 Triples of the synthetically derived versions (versions 1-5). 40

3.19 Triples of the synthetically derived versions (versions 6-9). 40

3.20 Description of how each synthetic warehouse version was derived. . 41

3.21 Average degree increment percentages for the URIs and blanks
nodes of each source in every version. 43

4.1 Classes of Equivalence . 56

4.2 Insert u5 sameAs u6 . 56

4.3 Insert u3 sameAs u7 . 56

4.4 Insert u1 sameAs u3 . 56

4.5 Frequency for a prefix p . 61

4.6 ASKs per combination for the worst case 61

4.7 Subsets of four datasets in normal and binary representation . . . 62

iii

4.8 Datasets Statistics . 69
4.9 Index Creation Statistics . 70
4.10 SameAs Catalog Statistics . 70
4.11 Top-10 Subsets ≥ 3 with the most common rwo 71
4.12 Top-10 datasets with the most rwo existing at least in 3 datasets . 72
4.13 Increase degree percentage for 4 Entities 72

5.1 Buildings’ sizes. 81
5.2 Computing the similarity of sources using sim(Si, Sj). 81
5.3 Queries for Dataset Discovery . 83
5.4 Queries for Object Coreference . 84

iv

List of Figures

1.1 LargeRDFBench Cross Domain Datasets 2

1.2 Lattice of four datasets showing the common Real world Objects . 2

1.3 A 3D Visualization of 287 LOD datasets 3

2.1 Overview of the warehouse. 9

2.2 Some indicative competency queries. 10

2.3 The process for constructing and evolving the warehouse. 11

2.4 Existing frameworks and the dimensions they measure 17

3.1 An overview of the categories of the proposed metrics. 22

3.2 Measurements per source for the real datasets. 42

3.3 Triples of each version. 43

3.4 URIs and Literals. 43

3.5 Average degree of the warehouse in every version. 43

3.6 Value for each Source in every version. 43

3.7 Common URIs % . 44

3.8 Common Literals % . 44

3.9 Normalized Average Degree Increment of each source. 45

3.10 Average Degree Increment of each source. 45

3.11 Unique Triples Percentage of each source. 45

3.12 Complementarity Factor of Astrapogon. 45

3.13 Value of each source per version (using value1(Si,W)). 47

3.14 Measurements per source for the synthetic datasets. 48

4.1 Running Example . 54

4.2 Lattice Nodes Creation Sequence 63

4.3 Lattice Traversal (BFS and DFS) 65

4.4 CheckCost vs extra edges for various m 67

4.5 Common URIs Lattice for MarineTLO Warehouse 68

4.6 # of Pairs, Triads per Threshold 71

4.7 Unique(RWO) - Max Subset per Level 71

4.8 Average Degree for Real World Objects per Level 73

4.9 SameAs Catalog Construction time 74

4.10 Comparison of different approaches 74

v

4.11 Comparison with stable |D| = 17 75
4.12 Execution Time of Lattice creation 75

5.1 The process of computing, publishing and querying metrics. 78
5.2 Schema for publishing and exchanging metrics. 79
5.3 Three snapshots from different points of view of the produced 3D

model. 82

6.1 Results Synopsis . 86

vi

List of Algorithms

1 Same As Catalog Creation . 57
2 Element Index Creation . 59
3 Create Lattice Nodes . 63
4 Create Lattice Edges . 64

vii

viii

Chapter 1

Introduction

Linked Data is a method for publishing structured data that allows them to be
interlinked (by using URIs instead of simple values) for assisting their integration.
A big number of such datasets (or sources), has already been published accord-
ing to the principles of Linked data and their number and size keeps increasing.
However, currently it is not evident how connected these datasets are and even
some basic tasks are nowadays challenging because of the scale and heterogeneity
of the datasets: the LODStats website provides statistics about approximately
ten thousand discovered linked datasets until August 20141, and it keeps grow-
ing. To alleviate this problem in this thesis, we introduce metrics, indexes and
algorithms which allow the computation and quantification of connectivity among
several datasets. Such indexes and measurements are important in a plethora of
tasks: (a) for obtaining complete information about one particular URI (or set of
URIs) enriched with their provenance, (b) for obtaining measurements that are
useful for dataset discovery and dataset selection [21, 51, 53], (c) for assessing the
connectivity between any set of datasets for quality checking and for monitoring
their evolution over time [47], (d) for constructing visualizations [9] that provide
more informative overviews and could also aid dataset discovery.

An example of task (a) follows. Suppose that one user or an application wants
to find all the available data associated with “http://www.dbpedia.org/Aristotle”,
including URIs being sameAs with this entity (i.e., object coreference), coming
from multiple sources. This is not currently possible. With the proposed approach
this is possible, and one can also get the provenance of the returned triples. This
task is not trivial since the sameAs relationships model an equivalence relation and
therefore its transitive closure has to be computed and this presupposes knowledge
of all datasets. Dataset discovery and visualization, i.e. tasks (b) and (d), are
emerging challenges for the web of data, for instance according to [31] “Being
able to discover data from other sources, to rapidly integrate that data with one’s
own, and to perform simple analyses, often by eye (via visualizations), can lead
to insights that can be important assets.” Currently the community uses catalogs

1http://stats.lod2.eu

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: LargeRDFBench Cross Domain Datasets

Figure 1.2: Lattice of four datasets showing the common Real world Objects

that contain some very basic metadata, and diagrams like the Linking Open Data
cloud diagram2, as well as LargeRDFBench3 (an excerpt is shown in Figure 1.1).

These diagrams illustrate how many links exist between pairs of datasets, how-
ever they do not make evident if three or more datasets share any URI or Literal!
Consequently, only upper bounds of intersections can be deduced, e.g. in Fig-
ure 1.1 which shows the intersection of links of multiple datasets, one can easily
understand that since |DBpedia ∩ NewY orkT imes| = 10K, it is implied that
0 ≤ |DBpedia ∩ NewY orkT imes ∩ GeoNames| ≤ 10K but this is rather a very
coarse approximation of the size of the actual intersection. To fill this gap in this
thesis we show how we can make efficiently measurements that involve more than
two datasets.

The results can be visualized as Lattices, like that of Figure 1.2 which shows
the lattice of the four datasets of Figure 1.1. From this lattice one can see the
number of common real world objects in the triads of datasets, e.g. it is evident
that the triad of DBpedia, GeoNames and NYT shares 1,517 real world objects,

2http://lod-cloud.net/
3http://github.com/AKSW/LargeRDFBench

1.1. CONNECTIVITY OF SEMANTIC WAREHOUSES 3

Figure 1.3: A 3D Visualization of 287 LOD datasets

and that there are 220 real world objects shared in all four datasets. Instead,
the classical visualizations of the LOD cloud, like that of Figure 1.1, stops at the
level of pairs. As another example in Figure 1.3, we show a visualization of 287
RDF datasets where each dataset is illustrated as a building and bridges are used
to illustrate sameAs relationships between two datasets where the volume of each
bridge is equal to the number of such relationships. If the transitive closure is
not computed then the visualization will suffer for missing bridges (i.e. missing
connections between datasets) and smaller in size bridges.

As regards dataset discovery, i.e. task (b), apart from visualization the pro-
posed measurements can be directly used for answering queries like “get the K
datasets that are more connected to a particular dataset” (without the proposed
method such queries cannot be answered).

Nextly, for aiding the execution of all these important tasks we propose connec-
tivity metrics, special indexes and algorithms. In subsection 1.1 we introduce what
a Semantic Warehouse is and we show in brief the research questions and our con-
tributions, which include a number of connectivity metrics for assessing the quality
of the connectivity of a Semantic Warehouse. Moreover, we mention which are the
main tasks that can be executed because of the proposed metrics for a warehouse.
Then, in subsection 1.2 we mention that we generalize our approach for more and
bigger datasets and we explain in brief why we need indexes and algorithms for
computing such metrics when the number and size of datasets increase, while we
notice the main tasks that are fulfilled because of the proposed approach. Finally,
in subsection 1.3 we introduce ways to exploit the measurements for executing the
four aforementioned tasks.

1.1 Connectivity of Semantic Warehouses

The spark for this work was the real semantic warehouse for the marine domain
which harmonizes and connects information from different sources of marine infor-
mation4. We use the term Semantic Warehouse (for short warehouse) to refer to a
read-only set of RDF triples fetched (and transformed) from different sources that

4Used in the context of the projects iMarine (FP7 Research Infrastructures, 2011-2014), http:
//www.i-marine.eu and BlueBRIDGE (H2020 Research Infrastructures, 2015-2018), http://

www.bluebridge-vres.eu/

4 CHAPTER 1. INTRODUCTION

aims at serving a particular set of query requirements. We we apply the proposed
metrics Most past works have focused on the notion of conflicts (e.g., [44]), and
have not paid attention to connectivity. In this thesis we introduce and evaluate
upon real and synthetic datasets several metrics for quantifying the connectivity
of a warehouse and we focus on the following questions:

• How to measure the value and quality (since this is important for e-science)
of the warehouse?

• How to monitor its quality after each reconstruction or refreshing (as the
underlying sources change)?

• How to understand the evolution of the warehouse?
• How to measure the contribution of each source to the warehouse, and hence

deciding which sources to keep or exclude?

Regarding our contributions for assessing the connectivity of semantic warehouses:

• We propose “source-to-source” metrics
• We introduce metrics for evaluating the whole warehouse.
• We introduce various single-valued metrics for quantifying the contribution

of a source or the value of the warehouse. To make easier and faster the iden-
tification and inspection of pathological cases (redundant sources or sources
that do not contribute new information) we propose a single-valued metric
that characterizes the overall contribution of a source. This value considers
the contribution (in terms of triples and connectivity) of a source and its
size, and it indicates the degree up to which the source contributes to the
warehouse.

• We propose methods that exploit these metrics for understanding and mon-
itoring the evolution of the warehouse.

The measurements above aid predominantly the execution of task (c): the as-
sessment of connectivity between any set of datasets and secondarily the execution
of task (d): the construction of visualizations, since we visualize the connectivity
between the sources of a Semantic Warehouse.

1.2 Connectivity among several RDF Datasets

Afterwards, we generalize our approach for larger number of datasets that have
been published in the LOD Cloud. However, it is very expensive to perform all
these measurements straightforwardly. There are many datasets and some of them
are very big comparing to a domain-specific semantic warehouse that contains
usually a few number of datasets. Moreover, the possible combinations of datasets
is exponential in number. To tackle this challenge and for achieving scalability,
we introduce a set of indexes (and their construction algorithms) for speeding
up such measurements. We show that with the proposed method it is feasible
to perform such measurements even with one machine! More than one machines
could be included for further speedup but this is not necessary since the task of
measurement is not a daily activity. Nevertheless, the introduced method and its

1.3. EXPLOITATION OF METRICS 5

experimental analysis paves the way for effectively parallelizing the task. In brief
in this thesis:

• we introduce a namespace-based prefix index for speeding up the computation
of the metrics,

• we introduce a sameAs catalog for computing the symmetric and transitive
closure of the sameAs relationships encountered in the datasets s (the algo-
rithm is based on incremental signatures allowing each pair of URIs to be
read only once),

• we introduce a semantics-aware element index (that exploits the previous
two indexes), and two lattice-based incremental algorithms for speeding up
the computation of the intersection URIs of any set of datasets (the lattice
can be used also for the visualization of commonalities if the number of
datasets is low, and as a navigation mechanism if the number of datasets is
high),

• we measure the speedup obtained by the proposed indexes and algorithms
(just indicatively they enable computing the sameAs closure of 300 datasets
in 45 seconds and the lattice of measurements of all possible sets of datasets
that share (i) more than 30 URIs in 3.5 minutes and (ii) more than 20 URIs
in 35 minutes), and we report connectivity measurements for a subset of the
current LOD that comprises 300 datasets.

The measurements above aid the execution of all four tasks, since the indexes
help us in task (a) (i.e., for obtaining information for a URI), the measurements
and algorithms in task (b) (i.e., for discovering datasets and for aiding dataset
selection) and in task (c) (i.e., for the assessment of connectivity between any
set of sources) while the results of the measurements can be used as an input for
constructing more informative visualizations (i.e. task (d)).

1.3 Exploitation of Metrics

Finally, we show ways to exploit, publish and visualize such measurements in order
to be able to execute all the four tasks. More specifically, (a) we propose an ex-
tension of VoID that models all the proposed metrics and we use it for publishing
exchanging an sharing such measurements, (b) we propose an alternative way of
modeling the values of the proposed metrics using 3D models and (c) we show
queries (which are accessible in a running SPARQL endpoint) that can aid dataset
discovery and object coreference. The 3D visualization allows quickly understand-
ing the situation of a warehouse and how the underlying sources contribute and
are connected while it can also be used for modeling the evolution of a warehouse
over time (using animations).

More specifically, we have published the measurements in datahub.io5 using
VoID [37] and VoIDWH [47] vocabularies, a set of queries for dataset discovery
and object coreference are available in www.ics.forth.gr/isl/LODsyndesis/,

5http://datahub.io/dataset/connectivity-of-lod-datasets

6 CHAPTER 1. INTRODUCTION

while a prototype that exploits these measurements and provides an interactive 3D
visualization is already accessible at www.ics.forth.gr/isl/3DLod/ (by clicking
on a dataset the user can see the connected datasets).

1.4 Outline of Thesis

The rest of this thesis is organized as follows:
Chapter 2 discusses the context and describes related work and what distin-

guishes the current one.
Chapter 3 introduces the quality metrics and demonstrates their use for seman-

tic warehouses while it reports measurements over a real and operational semantic
warehouse containing information about the marine domain.

Chapter 4 states the problem for LOD Cloud datasets, introduces the indexes
and their construction algorithms while it shows how to exploit properties from
lattice theory for computing the metrics for any set of datasets. Then, it reports
measurements and experimental results over 300 datasets of the entire LOD cloud,
and discuss the speedup obtained with the introduced indexes and algorithms.

Chapter 5 shows how one can publish, exchange and visualize the metrics.
Finally, Chapter 6 concludes and identifies directions for future research.

Publications Derived by this Thesis

Parts of this work were published predominantly in Proceedings of the Very Large
Databases Endowment (VLDB) [48] and International Journal on Semantic Web
and Information Systems (ISJWIS) [47], and secondarily (a) in the International
Workshop on Dataset Profiling & Federated Search for Linked Data [46], (b) in
the Extended Semantic Web Conference (ESWC) [65] and (c) in the International
Workshop on Linked Web Data Management (LWDM) [64].

Chapter 2

Context and Related Work

2.1 Background

The Resource Description Framework (RDF) [38] is a graph-based data model for
linked data interchanging on the web. RDF uses Triples in order to relate Uni-
form Resource Identifiers (URIs) or anonymous resources (blank nodes) where
both of them denote a Resource, with other URIs, blank nodes or constants
(Literals). Let U be the set of all URIs, B the set of all blank nodes, and L the
set of all Literals. A triple is any element of T = (U ∪B)×U × (U ∪L∪B), while
an RDF graph (or dataset) is any finite subset of T . Linked Data [11] refers to
a method of publishing structured data, so that it can be interlinked and become
more useful through semantic queries, founded on HTTP, RDF and URIs . The
linking of datasets is essentially signified by the existence of common URIs, refer-
ring to schema elements (defined through RDF Schema 1 and OWL 2), or data
elements. Since we focus on the second, hereafter we will consider only URIs that
are either subjects or objects of triples whereas we ignore properties, since they
are schema elements. However, we also consider sameAs-triples, where sameAs is
a built-in OWL property for linking an individual to an individual meaning that
both are equivalent i.e. they refer to the same real world object.

2.2 Context

The spark for this work was the recently completed iMarine project (and the
ongoing BlueBRIDGE project) that offers an operational distributed infrastructure
that serves hundreds of scientists from the marine domain. As regards semantically
structured information, the objective was to integrate information from various
marine sources, specifically from:

• WoRMS [5]: it is a marine registry containing taxonomic information and

1http://www.w3.org/TR/rdf-schema/
2http://www.w3.org/TR/owl2-overview/

7

8 CHAPTER 2. CONTEXT AND RELATED WORK

lists of common names and synonyms for more than 200 thousand species in
various languages.

• Ecoscope [1]: it is knowledge base containing geographical data, pictures
and information about marine ecosystems.

• FishBase [2]: is a global database of fish species, containing information
about the taxonomy, geographical distribution, biometrics, population, ge-
netic data and many more.

• FLOD [3]: is a network of marine linked data containing identification in-
formation using different code lists.

• DBpedia [12]: is a knowledge base containing content that has been con-
verted from Wikipedia, that by the time of writing this thesis, the English
version contained more than 20 million resources.

The integrated warehouse3 is operational and it is exploited in various applica-
tions, including the gCube infrastructure [13], or for enabling exploratory search
services (e.g., X-ENS [22] that offers semantic post-processing of search results). For
the needs of the iMarine and BlueBRIDGE projects, the materialized (warehouse)
integration approach was more suited because it offers (a) flexibility in transfor-
mation logic (including ability to curate and fix problems), (b) decoupling of the
release management of the integrated resource from the management cycles of the
underlying sources, (c) decoupling of access load from the underlying sources, and
(d) faster responses (in query answering but also in other tasks, e.g., in entity
matching). Below we list the main functional and non functional requirements for
constructing such warehouses.

Functional Requirements

• Multiplicity of Sources. Ability to query SPARQL endpoints (and other
sources), get the results, and ingest them to the warehouse.

• Mappings, Transformations and Equivalences. Ability to accommodate schema
mappings, perform transformations and create sameAs relationships between
the fetched content for connecting the corresponding schema elements and
entities.

• Reconstructibility. Ability to reconstruct the warehouse periodically (from
scratch or incrementally) for keeping it fresh.

Non Functional Requirements

• Scope control. Make concrete and testable the scope of the information that
should be stored in the warehouse. Since we live in the same universe, every-
thing is directly or indirectly connected, therefore without stating concrete
objectives there is the risk of continuous expansion without concrete objec-
tives regarding its contents, quality and purpose.

3The warehouse can be accessed from https://i-marine.d4science.org/.

2.2. CONTEXT 9

• Connectivity assessment. Ability to check and assess the connectivity of the
information in the warehouse. Putting triples together does not guarantee
that they will be connected. In general, connectivity concerns both schema
and instances and it is achieved through common URIs, common literals
and sameAs relationships. Poor connectivity affects negatively the query
capabilities of the warehouse. Moreover, the contribution of each source to
the warehouse should be measurable, for deciding which sources to keep or
exclude (there are already hundreds of SPARQL endpoints).

• Provenance. More than one level of provenance can be identified and are
usually required, e.g., warehouse provenance (from what source that triple
was fetched), information provenance (how the fact that the x species is
found in y water area was produced), and query provenance (which sources
and how contributed to the answer of this query).

• Consistency and Conflicts. Ability to specify the desired consistency level
of the warehouse, e.g., do we want to tolerate an association between a
fish commercial code and more than one scientific names? Do we want to
consider this as inconsistency (that makes the entire warehouse, or parts of
it, unusable), or as resolvable (through a rule) conflict, or as a normal case
(and allow it as long as the provenance is available).

2.2.1 Context: The Integration Process

For making clear the context, here we describe in brief the steps of the process
that we follow for creating the warehouse. Figure 2.1 shows an overview of the
warehouse contents, while Figure 2.3 sketches the construction process. For the
construction (and the update) of the warehouse, we have used the tool MatWare
[65], that automates the entire process.

MarineTLO

FLOD ECOSCOPE
WoRMS

(part of)

�����������

�		��

���������������

�		��

��	�����������

�		��

DBpedia

(part of)

FishBase

(part of)

Ecoscope

sameAs Links

FLOD

sameAs Links

WoRMS

sameAs Links

DBpedia

sameAs Links

Fishbase

sameAs Links

Figure 2.1: Overview of the warehouse.

10 CHAPTER 2. CONTEXT AND RELATED WORK

(1) Define the requirements. The first step is to define requirements in terms of
competency queries. It is a set of queries (provided by the community) indicating
the queries that the warehouse is intended to serve. Figure 2.2 displays the textual
description for some indicative competency queries as they were supplied by the
communities. The full list of the competency queries is web accessible4.

#Query For a scientific name of a species (e.g. Thunnus Albacares or Poromitra Crassiceps),

find/give me

Q
�

the biological environments (e.g. ecosystems) in which the species has been introduced and more

general descriptive information of it (such as the country)

Q
�

its common names and their complementary info (e.g. languages and countries where they are

used)

Q
�

the water areas and their FAO codes in which the species is native

Q
�

the countries in which the species lives

Q
�

the water areas and the FAO portioning code associated with a country

Q
�

the presentation w.r.t Country, Ecosystem, Water Area and Exclusive Economical Zone (of the

water area)

Q
�

the projection w.r.t. Ecosystem and Competitor, providing for each competitor the identification

information (e.g. several codes provided by different organizations)

Q
�

a map w.r.t. Country and Predator, providing for each predator both the identification information

and the biological classification

Q
�

who discovered it, in which year, the biological classification, the identification information, the

common names - providing for each common name the language, the countries where it is used

in.

Figure 2.2: Some indicative competency queries.

It is always a good practice to have (select or design) a top-level schema/ontolo-
gy as it alleviates the schema mapping effort (avoiding the combinatorial explosion
of pair-wise mappings) and allows formulation of the competency queries using
that ontology (instead of using elements coming from the underlying sources, which
change over time). For our case in iMarine, we used theMarineTLO [63] ontology.

(2) Fetch. The next step is to fetch the data from each source and this requires us-
ing various access methods (including SPARQL endpoints, HTTP accessible files,
JDBC) and specifying what exactly to get from each source (all contents or a spe-
cific part). For instance, and for the case of the iMarine warehouse, we fetch all
triples from FLOD through its SPARQL endpoint, all triples from Ecoscope ob-
tained by fetching OWL/RDF files from its Web page, information about species
(ranks, scientific and common names) fromWoRMS by accessing a specific-purpose
service, called Species Data Discovery Service (SDDS) (provided by gCube infras-
tructure [13]), information about species from DBpedia’s SPARQL endpoint, and
finally information about species, water areas, ecosystems and countries from the
relational tables of FishBase.

(3) Transform and (4) Ingest. The next step is to transform and ingest the

4http://www.ics.forth.gr/isl/MarineTLO/competency_queries/MarineTLO_Competency_

Queries_Version_v4.pdf

2.2. CONTEXT 11

1. Define requirements in terms
of competency queries

2. Fetch the data from the selected sources
(SPARQL endpoints, services, etc)

Queries

3. Transform Data

5. Inspect the connectivity of the Warehouse

6. Formulate rules creating sameAs relationships

7. Apply the rules to the warehouse

Rules for
Instance
Matching

sameAs triples
8. Ingest the sameAs relationships

to the warehouse

10. Test and evaluate the Warehouse (using
the competency queries and the conn. metrics)

creates

Warehouse

Triples

uses

uses

Input for

uses

MatWare

MatWare

MatWare

MatWare

MatWare

MatWare

4. Ingest to the Warehouse

MatWare

MatWare +

9. Creation and Ingestion of VoID triples

MatWare

Figure 2.3: The process for constructing and evolving the warehouse.

fetched data. Some data can be stored as they are fetched, while others have to be
transformed, i.e., a format transformation and/or a logical transformation has to
be applied for being compatible with the top-level ontology. For example, a format
transformation may be required to transform information expressed in DwC-A [69]
(a format for sharing biodiversity data) to RDF. A logical transformation may be
required for transforming a string literal to a URI, or for splitting a literal for using
its constituents, or for creating intermediate nodes (e.g., instead of (x,hasName,y)
to have (x,hasNameAssignment,z), (z,name,y), (z,date,d), etc.). This step
also includes the definition of the required schema mappings that are required for
associating the fetched data with the schema of the top level ontology. Another
important aspect for domain specific warehouses is the management of provenance
[65]. In our case we support what we call “warehouse”-provenance, i.e., we store
the fetched (or fetched and transformed) triples from each source in a separate
graphspace (a graphspace is a named set of triples which can be used for restricting
queries and updates in a RDF triple store). In this way we know which source has
provided what facts and this is exploitable also in the queries.

As regards conflicts (e.g., different values for the same properties), the adopted
policy in our case is to make evident the different values and their provenance, in-
stead of making decisions, enabling thereby the users to select the desired values,
and the content providers to spot their differences. The adoption of separate
graphspaces also allows refreshing parts of the warehouse, i.e., the part that cor-
responds to one source. Furthermore, it makes feasible the computation of the
metrics that are introduced in the next section.

(5) Inspect/Test the Connectivity. The next step is to inspect and test the
connectivity of the “draft” warehouse. This is done through the competency queries

12 CHAPTER 2. CONTEXT AND RELATED WORK

as well as through the metrics that we will introduce. The former (competency
queries) require manual inspection, but automated tests are also supported. In
brief, let q be a query in the set of competency queries. Although we may not
know the “ideal” answer of q, we may know that it should certainly contain a
particular set of resources, say Pos, and should not contain a particular set of
resources, say Neg. Such information allows automated testing. If ans(q) is the
answer of q as produced by the warehouse, we would like to hold Pos ⊆ ans(q)
and Neg ∩ ans(q) = ∅. Since these conditions may not hold in a real dataset or
warehouse (due to errors, omissions, etc.), it is beneficial to adopt an IR-inspired
evaluation, i.e., compute the precision and recall defined as: precision = 1 −
|Neg∩ans(q)|

|ans(q)| , recall = |Pos∩ans(q)|
|Pos| . The bigger the values we get the better (ideally

1). The better we know the desired query behaviour, the bigger the sets Pos and
Neg are, and consequently the more safe the results of such evaluation are.

(6) Formulate rules for Instance Matching. Based also on the results of the
previous step, the next step is to formulate rules for instance matching, i.e., rules
that can produce sameAs relationships for obtaining the desired connections. For
this task we employ the tool SILK5 [67].

(7) Apply the rules and (8) Ingest the derived SameAs relationships.
Then, we apply the instance matching rules (SILK rules in our case) for producing,
and then ingesting to the warehouse, sameAs relationships.

(9) Create and Ingest VoID triples.

For publishing and exchanging the characteristics of the warehouse (e.g., num-
ber of triples, endpoint, publisher, etc.), as well as the several metrics that we will
introduce, we create and ingest to the warehouse triples based on an extension
of VoID [37] that is described in [46] (VoID is an RDF-based schema that allows
metadata about RDF datasets to be expressed).

(10) Test/Evaluate the Warehouse. Finally, we have to test the produced
repository and evaluate it after ingesting the produced sameAs relationships. This
is done through the competency queries and through the metrics that we will
introduce.

Above we have described the steps required for the first time. After that, the
warehouse is reconstructed periodically for getting refreshed content using Mat-
Ware. The metrics that we will introduce are very important for monitoring the
warehouse after reconstructing it. For example by comparing the metrics in the
past and new warehouse, one can understand whether a change in the underlying
sources affected positively or negatively the quality (connectivity) of the ware-
house.

5http://wifo5-03.informatik.uni-mannheim.de/bizer/silk/

2.3. RELATED WORK 13

2.3 Related Work

Data quality is commonly conceived as fitness of use for a certain application or use
case [41,68]. The issue of data quality, especially for the case of a data warehouse,
is older than the RDF world, e.g., the database community has studied it in
the relational world [8, 58]. Connectivity, as defined in the Introduction, can be
considered as a dimension of data quality in the context of a Semantic Warehouse.
Recall that a Semantic Warehouse refers to a read-only set of RDF triples fetched
and transformed from different sources that aims at serving a particular set of
query requirements. Thereby, in this context connectivity is an important aspect
of data quality aiming to measure the degree up to which the contents of the
warehouse are connected (and thus satisfy its query requirements).

Fürber and Hepp [23] investigated data quality problems for RDF data orig-
inating from relational databases, while a systematic review of approaches for
assessing the data quality of Linked Data is presented by Zaveri et al. [72]. In that
work, the authors surveyed 21 approaches and extracted 26 data quality dimen-
sions (such as completeness, provenance, interlinking, reputation, accessibility, and
others) along with the corresponding metrics.

Below, we first (in §2.3.1) discuss some quality aspects that are especially
useful for the case of a Semantic Warehouse, we report approaches that have tried
to address them and we place our work in the literature. In §2.3.2 we compare
(based on different perspectives) several frameworks and systems that automate
quality assessment for the RDF world. Then, in §2.3.3 we show state-of-the-art
approaches for performing experiments in LOD scale, and finally, in §2.3.4 we
discuss engines that use indexes for searching or query answering.

2.3.1 Quality Aspects

Completeness. Completeness refers to the degree up to which all required infor-
mation is presented in a particular dataset [72]. In the RDF world, completeness
can be classified (according to Zaveri et al. [72]) as: schema completeness (de-
gree to which the classes and properties of an ontology are represented), property
completeness (measure of the missing values for a specific property), population
completeness (percentage of all real-world objects of a particular type that are
represented in the datasets), and interlinking completeness (degree to which in-
stances in the dataset are interlinked).

The problem of assessing completeness of Linked Data sources was discussed
by Harth and Speiser [26]. Darari et al. [16] introduce a formal framework for
the declarative specification of completeness statements about RDF data sources
and underline how the framework can complement existing initiatives like VoID.
They also show how to assess completeness of query answering over plain and
RDF/S data sources augmented with completeness statements, and they present
an extension of the completeness framework for federated data sources.

14 CHAPTER 2. CONTEXT AND RELATED WORK

Provenance. Provenance focuses on how to represent, manage and use informa-
tion about the origin of the source to enable trust, assess authenticity and allow
reproducibility [72]. Hartig [28] presents a provenance model for Web data which
handles both data creation and data access. The author also describes options to
obtain provenance information and analyzes vocabularies to express such informa-
tion. Hartig and Zhao [29] propose an approach of using provenance information
about the data on the Web to assess their quality and trustworthiness. Specifically,
the authors use the provenance model described in [28] and propose an assessment
method that can be adapted for specific quality criteria (such as accuracy and
timeliness). This work also deals with missing provenance information by asso-
ciating certainty values with calculated quality values. In [30], the same authors
introduce a vocabulary to describe provenance of Web data as metadata and dis-
cuss possibilities to make such provenance metadata accessible as part of the Web
of Data. Furthermore, they describe how this metadata can be queried and con-
sumed to identify outdated information. Given the need to address provenance,
the W3C community has standardised the PROV Model6, a core provenance data
model for building representations of the entities, people and processes involved
in producing a piece of data or thing in the world. The PROV Family of Docu-
ments7 [45] defines the model, corresponding serializations and other supporting
definitions to enable the inter-operable interchange of provenance information in
heterogeneous environments such as the Web.

Amount-of-data. Amount-of-data is defined as the extent to which the volume
of data is appropriate for the task at hand [10, 72]. This dimension can be mea-
sured in terms of general dataset statistics like number of triples, instances per
class, internal and external links, but also coverage (scope and level of detail) and
metadata “richness”. Tsiflidou and Manouselis [61] carried out an analysis of tools
that can be used for the valid assessment of metadata records in a repository. More
specifically, three different tools are studied and used for the assessment of meta-
data quality in terms of statistical analysis. However, such works do not consider
the characteristics of RDF and Linked Data. Auer et al. [7] describe LODStats,
a statement-stream-based approach for gathering comprehensive statistics (like
classes/properties usage, distinct entities and literals, class hierarchy depth, etc.)
about RDF datasets. To represent the statistics, they use VoID and the RDF Data
Cube Vocabulary. The RDF Data Cube Vocabulary8 [14] provides a means to pub-
lish multi-dimensional data (such as statistics of a repository) on the Web in such
a way that it can be linked to related datasets and concepts. Hogan et al. [35] per-
formed analysis in order to quantify the conformance of Linked Data with respect
to Linked Data guidelines (e.g., use external URIs, keep URIs stable). They found
that in most datasets, publishers followed some specific guidelines, such as using
HTTP URIs, whereas in other cases, such as providing human readable metadata,

6http://www.w3.org/TR/2013/NOTE-prov-primer-20130430/
7http://www.w3.org/TR/prov-overview/
8http://www.w3.org/TR/2013/PR-vocab-data-cube-20131217/

2.3. RELATED WORK 15

the result were disappointing since only a few publishers created metadata for their
datasets.

Accuracy. Accuracy is defined as the extent to which data is correct, that is,
the degree up to which it correctly represents the real world facts and is also
free of errors [72]. Accuracy can be measured by detecting outliers, conflicts,
semantically incorrect values or poor attributes that do not contain useful values
for the data entries. Fürber and Hepp [24] categorize accuracy into semantic and
syntactic accuracy. Semantic accuracy checks whether the data value represents
the correct state of an object, whereas syntactic accuracy checks if a specific value
violates syntactical rules. For measuring accuracy, the authors used three rules
and four formulas, whereas the results were evaluated by using precision and recall
measures. They managed to detect syntactic and semantic errors such as invalid
country combinations, rules for phone numbers and so forth. ODCleanStore [40,44]
names conflicts the cases where two different quads (e.g., triples from different
sources) have different object values for a certain subject and predicate. To such
cases conflict resolution rules are offered that either select one or more of these
conflicting values (e.g., ANY, MAX, ALL), or compute a new value (e.g., AVG).
Finally, Knap and Michelfeit [39] describe various quality metrics for scoring each
source based on conflicts, as well for assessing the overall outcome.

Relevancy. Relevancy refers to the provision of information which is accordant
with the task at hand and suitable to the users’ query [72]. The existence of
irrelevant data can have negative consequences for the query performance, while it
will be difficult for the user to explore this data, since the user expects to receive
the correct information. Zaveri et al. [71] divide relevancy (for DBpedia) into the
following sub-categories: (i) extraction of attributes containing layout information,
(ii) image related information, (iii) redundant attribute values, and finally (iv)
irrelevant information. The existence of a number of different properties for a
specific subject-object pair is an example of redundant information.

Dynamics / Evolution. Dynamics quantifies the evolution of a dataset over a
specific period of time and takes into consideration the changes occurring in this
period. Dividino et. al [20] lists probably all works related to the dynamics of
LOD datasets. A related quality perspective, identified by Tzitzikas et al. [66], is
that of the specificity of the ontology-based descriptions under ontology evolution,
an issue that is raised when ontologies and vocabularies evolve over time.

Interlinking. Interlinking refers to the degree to which entities that represent the
same concept are linked to each other [72]. This can be evaluated by measuring the
existence of sameAs links and chains, the interlinking degree, etc. Zaveri et al. [71]
classify interlinking into two different categories: (i) external websites (checking
whether there are links among sources which are not available), and (ii) interlinks
with other datasets (trying to detect incorrect mappings and links which do not
provide useful information).

16 CHAPTER 2. CONTEXT AND RELATED WORK

Our Placement: Connectivity

We use the term connectivity to express the degree up to which the contents
of the semantic warehouse form a connected graph that can serve, ideally in a
correct and complete way, the query requirements of the semantic warehouse,
while making evident how each source contributes to that degree. The proposed
connectivity metrics reflect the query capabilities of a warehouse as a whole (so
they are important for evaluating its value), but also quantify the contribution of
the underlying sources allowing evaluating the importance of each source for the
warehouse at hand. Connectivity is important in warehouses whose schema is not
small and consequently the queries contain paths. The longer such paths are, the
more the query capabilities of the warehouse are determined by the connectivity.

In the related literature, the aspect of connectivity is not covered sufficiently
and regards mainly the existence of sameAs links and chains (e.g., [71]). If we would
like to associate connectivity with the existing quality dimensions, we could say
that it is predominantly interlinking and secondly relevancy and amount-of-data.
Of course, it can be exploited together with approaches that focus on completeness
(e.g., [16]), provenance (e.g., [29]), accuracy, (e.g., [39]), etc. Regarding relevancy,
we should stress that, by construction, a Semantic Warehouse as created by the
proposed process (see Figure 2.3) does not contain irrelevant data since the data
has been fetched based on the requirements defined in terms of competency queries.
Furthermore, the proposed metrics can even detect redundant sources and sources
containing data which are not connected with data found in the other sources.
Compared to existing approaches on amount-of-data (like LODStats [7]), the pro-
posed connectivity metrics can be used to gather statistics that regard more than
one source (like common URIs, common literals, etc.) Finally, as regards dynam-
ics/evolution, existing works (e.g., [20]) concern atomic datasets, not warehouses
comprising parts of many datasets.

2.3.2 Frameworks/Systems for Quality Assessment

Here, we discuss frameworks/systems that automate quality assessment. At first
we give a brief description of each framework/system and what quality aspects it
can handle, and then we compare them regarding several aspects.

ODCleanStore [39,40,44] is a tool that can download content (RDF graphs) and
offers various transformations for cleaning it (deduplication, conflict resolution),
and linking it to existing resources, plus assessing the quality of the outcome in
terms of accuracy, consistency, conciseness and completeness.

Sieve [43] is part of the Linked Data Integration Framework (LDIF) [4] and
proposes metrics for assessing the dimensions in terms of schema completeness,
conciseness and consistency. The role of this tool is to assess the quality by decid-
ing which values to keep, discard or transform according to a number of metrics
and functions which are configurable via a declarative specification language.

2.3. RELATED WORK 17

RDFUnit [42] measures the accuracy and the consistency of a dataset contain-
ing Linked Data. More specifically, it checks the correct usage of vocabularies
according to a number of constraints (e.g., cardinality restriction on a property).
One can use some custom SPARQL queries to quantify the quality of a specific
dataset for the aforementioned aspects.

LinkQA [25] uses a number of metrics to assess the quality of Linked Data
mappings regarding the dimensions of interlinking and completeness. This tool
can be used for detected pathological cases, such as bad quality links, before they
are published.

Luzzu [18] is a framework for assessing the quality of Linked data for 10 dif-
ferent dimensions, such as availability, provenance, consistency and so forth. In
particular, by using this tool one can perform quality evaluation either by using
some of the 25 available metrics or by defining his own metrics.

SWIQA [24] is a framework for the validation of the values of semantic resources
based on a set of rules. This framework allows the calculation of quality scores
for various dimensions, such as completeness, timeliness and accuracy, in order to
identify possible problems with the data values. Moreover, it is also applicable on
top of relational databases with the support of wrapping technologies (i.e., D2RQ).

Finally, MatWare [65] is a tool that automates the process of constructing
semantic warehouses by fetching and transforming RDF triples from different
sources. MatWare computes and visualizes the connectivity metrics that are pro-
posed in this thesis.

Figure 2.4 illustrates the dimensions that the aforementioned approaches and
MatWare measure.

Figure 2.4: Existing frameworks and the dimensions they measure

Table 2.1 categorizes the aforementioned frameworks according to various as-
pects like data format, number of sources, output kind, output format, com-
putability and extensibility. Firstly, LinkQA [25] takes as an input a set of
Linked data Mappings and produces an HTML page containing the results of
the measures which were computed through a Java Application. On the con-
trary, the input of Luzzu [18] is a specific dataset and the output is produced in

18 CHAPTER 2. CONTEXT AND RELATED WORK

RDF format by using the Dataset Quality Ontology [17] and the Quality Prob-
lem Report Ontology (QPRO)9. In particular, they use qpro:QualityReport and
qpro:QualityProblem in order to represent problems that emerged during the as-
sessment of quality on a specific dataset. It is a common point with our approach,
since MatWare can produce the results in RDF format by using an extension of
VoID [46]. Concerning ODCleanStore [39, 40,44], a common point with MatWare
is that it computes the metrics for aggregated RDF data (not only for a specific
source) and it produces the results in HTML and RDF. Regarding Sieve [43], it re-
lies on a set of configurable metrics in order to assess the quality of an integrated
dataset while the results are produced in the form of Quads. On the contrary,
SWIQA [24] and RDFUnit [42] offer generalized SPARQL query templates for as-
sessing the quality of the data, therefore, these metrics are domain-independent.
Finally, compared to other tools, MatWare [65] offers a variety of output formats,
including 3D visualization, whereas it can also be used for any domain.

LinkQA
[25]

Luzzu
[18]

ODClean-
Store [39]

Sieve [43] SWIQA
[24]

RDFUnit
[42]

MatWare
[65]

Input RDF/XMLRDF/XMLRDF/XMLRDF/XML RDF/XMLRDF/XMLRDF/XML
Num of Sources Set of

Mappings
One
Source

Collection
of Quads

One (in-
tegrated)
Source

One
Source

One
Source

Set of
Sources

Output Kind Numeric
values

Numeric
values

Numeric
values

Numeric val-
ues

Numeric
values

Numeric
values

Numeric
values, 3D

Output Format HTML RDF RDF,
HTML

Quads HTML RDF,
HTML

RDF,
HTML,
3D

Computability JAVA JAVA JAVA JAVA SPARQL SPARQL JAVA,
SPARQL

Extensible Yes Yes Yes Yes Yes Yes Yes

Table 2.1: Categorizing Existing Tools

Moreover, we could mention systems for keyword searching over RDF datasets.
Such systems can be very helpful for creating domain independent warehouses
and offering user-friendly search and browsing capabilities. However, they are not
closely related with semantic warehouses, since they aim at collecting everything,
and do not have strict requirements as regards quality of data and query answering.
Additionally, they do not measure quality aspects. For instance, the Semantic Web
Search Engine (SWSE) [32] adapts the architecture of the common Web search
engines for the case of structured RDF data (it offers crawling, data enhancing,
indexing and a user interface for search, browsing and retrieval of RDF data).
Swoogle [19] is a crawler-based indexing and retrieval system for the Semantic Web
that uses multiple crawlers to discover Semantic Web Documents (SWDs) through
meta-search and link-following, analyzes SWDs and produces metadata, computes
ranks of SWDs using a rational random surfing model, and indexes SWDs using
an information retrieval system. Sindice [52] is an indexing infrastructure with
a Web front-end and a public API to locate Semantic Web data sources such as

9http://butterbur04.iai.uni-bonn.de/ontologies/qpro/qpro

2.3. RELATED WORK 19

RDF files and SPARQL endpoints. It offers an automatic way to locate documents
including information about a given resource, which can be either a URI or full-text
search. Finally, Watson [15] is a Semantic Web search engine providing various
functionalities not only to find and locate ontologies and semantic data online, but
also to explore the content of these semantic documents.

2.3.3 Measurements in LOD Scale.

Regarding approaches for performing such measurements in LOD Scale, the au-
thors of [56] indexed thirty eight billion triples from over six hundred thousand
documents, for cleaning them and providing statistics about the cleaned data.
They index the resources and the namespaces, allowing one to find the documents
in which a resource or a namespace belongs. A key difference with our approach is
that even though we index the resources and the namespaces, we take into account
the semantics, specifically the sameAs relationships. As regards the measurements
we focus on connectivity, while [56] focuses on other aspects (like validity of doc-
uments). Moreover, they do not compute common URIs between three or more
datasets. The authors of [49] created a portal for link discovery, called LinkLion,
which contains mappings between pairs of 462 datasets. In that repository, one
can find relationships between any pair of datasets. Similarly to our work, one can
find relationships (e.g. sameAs) between two datasets and each dataset is repre-
sented as a whole. Comparing to our approach, they take into account only pairs
of datasets and they do not index the URIs.

The authors in [57] focused on crawling a large number of datasets and on pro-
viding statistics for them. They categorize the datasets into eight different domains
such as publications, geographical etc. Concerning connectivity, they provide mea-
surements like the degree distribution of each dataset (how many datasets links to
a specific dataset). Another work that analyzes a big number of linked datasets
is LODStats [7]. In particular, they retrieve a number of documents and pro-
vide useful statistics about each document like the number of triples, number of
sameAs links and so forth. Comparing our work with the previous two approaches,
we focus on connectivity of datasets URIs (meaning that we provide more refined
measurements) and we measure the connectivity among two or more datasets. Fi-
nally, the work [60] focuses only on features of the semantic web schemas, not on
datasets.

2.3.4 Indexes for search and queries.

The work described in [33] proposes an object consolidation algorithm which analy-
ses inverse functional properties in order to identify and merge equivalent instances
in an RDF dataset. They build also an index for the sameAs relationships in order
to find all the URIs for a real world object. This index is used in YARS2 [27], a
federated repository that queries linked data coming from different datasets. The
system uses a number of indexes, such as a keyword index and a complete index on

20 CHAPTER 2. CONTEXT AND RELATED WORK

quads in order to allow direct lookups on multiple dimensions without requiring
join. YARS2 is part of the Semantic Web Search Engine (SWSE) [34] which aims
at providing an end-to-end entity-centric system for collecting, indexing, querying,
navigating, and mining graph-structured Web data. Another popular system is
Swoogle [19] which is a crawler-based indexing and retrieval system for the seman-
tic web. It analyzes a number of documents, and provides an index for URIs and
character N-Grams for answering user’s queries or compute the similarity among
a set of documents. A lookup index over resources crawled on the Semantic Web
is presented in [62]. In particular, they provide an index containing for each URI
the documents it occurs, a keyword index and an index that allows lookup of re-
sources with different URIs identifying the same real world object. The work [50]
describes an engine for scalable management of RDF data, called RDF-3X which is
an implementation of SPARQL [55]. This system maintain indexes for all possible
permutations of an RDF triple members (s p o) in six separate indexes while they
store only the changes between triples instead of full triples. Comparing to our
work, we mainly focus on finding how connected are the different subsets of the
LOD Cloud, how to perform fast such measurements and how these measurements
can be visualized while the focus of aforementioned work is not on speeding up
measurements but on answering fast different types of user queries.

Chapter 3

Assessing the Connectivity of
Semantic Warehouses

Def. 1 We use the term connectivity metric (or connectivity measure) to refer to
a measurable quantity that expresses the degree up to which the contents of the
semantic warehouse form a connected graph that can serve, ideally in a correct and
complete way, the query requirements of the semantic warehouse, while making
evident how each constituent source contributes to that degree. ⋄

They include measures of similarity between two sources in the form of per-
centages (e.g. regarding common URIs), natural numbers (e.g. cardinalities of
intersections), matrices of measures, means of other measures, as well as relative
measures (e.g. increase of average degrees, unique contribution and others). We
use the term metric as it is used in software engineering (i.e. software metrics) and
computer performance (i.e. computer performance metrics), and for being consis-
tent with past works [46,64]. What we call metrics could be also called measures
and they should not be confused with distance functions.

Such measures can assist humans on assessing in concrete terms the quality
and the value offered by the warehouse. In addition they provide a summary of
the contents of the warehouse which can be exploited by external applications in
the context of distributed query answering.

To aid understanding in the sections that follow, after defining each metric
we show the values of these metrics as computed over the MarineTLO-based ware-
house which is built using data from five marine-related sources: FLOD, WoRMS,
Ecoscope, DBpedia, and FishBase (cf. Figure 2.1). Since the warehouse is real
and operational1, this way of presentation also allows the reader to see how the
metrics behave in a real setting.

This section is organized as follows: §3 introduces notations and discusses ways
for comparing URIs, §3.1 introduces metrics for comparing pairs of sources, §§3.2

1In the evaluation of related tools, like Sieve [43] and ODCleanStore [44], real datasets have
been used but not “real” operational needs. In our evaluation we use an operational warehouse
with concrete (query) requirements which are described by the competency queries.

21

22 CHAPTER 3. CONNECTIVITY OF SEMANTIC WAREHOUSES

introduces metrics for quantifying the value of the entire warehouse, §3.3 introduces
metrics for quantifying the value of one source (in the context of one warehouse).
An overview of the categories of the various metrics and measurements is given in
Figure 3.1.

Figure 3.1: An overview of the categories of the proposed metrics.

Notations and Ways to Compare URIs

At first we introduce some required notations. Let S = S1, . . . Sk be the set of
underlying sources. Each contributes to the warehouse a set of triples (i.e., a set of
subject-predicate-object statements), denoted by triples(Si). This is not the
set of all triples of the source. It is the subset that is contributed to the warehouse
(fetched mainly by running SPARQL queries). We shall use Ui to denote the URIs
that appear in triples(Si). Hereafter, we consider only those URIs that appear
as subjects or objects in a triple. We do not include the URIs of the properties
because they concern the schema and this integration aspect is already tackled
by the top level schema. Let W denote triples of all sources of the warehouse.
In general, the set of all triples of the warehouse, say WAll, is superset of W
(i.e., WAll ⊃ W = ∪ki=1triples(Si)) because the warehouse apart from the triples
from the sources, contains also the triples representing the top-level ontology, the
schema mappings, the sameAs relationships, etc.

On Comparing URIs. For computing the metrics that are defined next, we need
methods to compare URIs coming from different sources. There are more than one
method, or policy, for doing so. Below we distinguish three main policies:

3.1. METRICS FOR COMPARING TWO SOURCES 23

i Exact String Equality. We treat two URIs u1 and u2 as equal, denoted by
u1 ≡ u2, if u1 = u2 (i.e., strings equality).

ii Suffix Canonicalization. Here we consider that u1 ≡ u2 if last(u1) = last(u2)
where last(u) is the string obtained by a) getting the substring after the last
”/” or ”#”, and b) turning the letters of the picked substring to lowercase
and deleting the underscore letters as well as space and special characters
that might exist. According to this policy:
http://www.dbpedia.com/Thunnus_Albacares ≡
http://www.ecoscope.com/thunnus_albacares

since their canonical suffix is the same, i.e., thunnusalbacares. Another
example of equivalent URIs:
http://www.s1.com/entity#thunnus_albacares ≡
http://www.s2.org/entity/thunnusAlbacares.

iii Entity Matching. Here consider u1 ≡ u2 if u1 sameAs u2 according to the
entity matching rules that are (or will be eventually) used for the warehouse.
In general such rules create sameAs relationships between URIs. In our case
we use SILK for formulating and applying such rules.

Note that if two URIs are equivalent according to policy [i], then they are
equivalent according to [ii] too. Policy [i] is very strict (probably too strict
for matching entities coming from different sources), however it does not pro-
duce any false-positive. Policy [ii] achieves treating as equal entities across dif-
ferent namespaces, however false-positives may occur. For instance, Argentina
is a country (http://dbpedia.org/resource/Argentina) but also a fish genus
(http://dbpedia.org/resource/Argentina_(fish)). Policy [iii] is fully aligned
with the intended query behavior of the warehouse (the formulated rules are ex-
pected to be better as regards false-negatives and false-positives), however for
formulating and applying these entity matching rules, one has to know the con-
tents of the sources while it requires human effort. Consequently one cannot apply
policy [iii] the first time, instead policies [i] and [ii] can be applied automatically
(without any human effort). Policy [ii] should be actually used for providing hints
regarding what entity matching rules to formulate. Below we define and compute
the metrics assuming policy [ii], i.e., whenever we have a set operation we assume
equivalence according to [ii] (e.g., A ∩ B means { a ∈ A | ∃ b ∈ B s.t. a ≡[ii] b}).
Then (after applying the entity matching rules), we compute the metrics according
to Policy [iii], which is actually the policy that characterizes the query behavior of
the final and operational warehouse.

3.1 Metrics for Comparing two Sources

3.1.1 Matrix of Percentages of Common URIs

The number of common URIs between two sources Si and Sj , is given by |Ui∩Uj|.
We can define the percentage of common URIs (a value ranging [0, 1]), as follows:

24 CHAPTER 3. CONNECTIVITY OF SEMANTIC WAREHOUSES

curii,j =
|Ui ∩ Uj |

min(|Ui|, |Uj |)
(3.1)

In the denominator we use min(|Ui|, |Uj |) although one could use |Ui∪Uj | that
is used in the Jaccard similarity. With Jaccard similarity the integration of a
small triple set with a big one would always give small values, even if the small set
contains many URIs that exist in the big set, while the Jaccard similarity reveals
the overall contribution of a source. We now extend the above metric and consider
all pairs of sources aiming at giving an overview of the warehouse. Specifically,
we compute a k × k matrix where ci,j = curii,j. The higher values this matrix
contains, the more glued its “components” are.

For the warehouse at hand, Table 3.1 shows the matrix of the common URIs
(together with the corresponding percentages). We notice that the percentages
range from 0.3% to 27.39%, while in some cases we have a significant percentage
of common URIs between the different sources. The biggest intersection is between
FishBase and DBpedia.

❅
❅Si

Sj FLOD WoRMS Ecoscope DBpedia FishBase

FLOD 173,929 (100%) 239 (0.3%) 523 (8.98%) 631 (0.9%) 887 (2.54%)

WoRMS 80,485 (100%) 200 (3.43%) 1,714 (2.44%) 3,596 (10.28%)

Ecoscope 5,824 (100%) 192 (3.3%) 225 (3.86%)

DBpedia 70,246 (100%) 9,578 (27.39%)

FishBase 34,974 (100%)

Table 3.1: Matrix of common URIs (with their percentages) using Policy [ii].

However, note that we may have 3 sources, such that each pair of them has a
high curi value, but the intersection of the URIs of all 3 sources is empty. This is
not necessarily bad, for example, consider a source contributing triples of the form
person-lives-placeName, a second source contributing placeName-has-postalCode,
and a third one contributing postCode-addressOf-cinema. Although these three
sources may not contain even one common URI, their hosting in a warehouse
allows answering queries: “give me the cinemas in the area where the x per-
son lives”. On the other hand, in a case where the three sources contribute
triples of the form person-lives-placeName, person-worksAt-Organization and
person-owns-car, then it would be desired to have common URIs in all sources,
since that would allow having more complete information for many persons. Fi-
nally, one might wonder why we do not introduce a kind of average path length
or diameter for the warehouse. Instead of doing that, we inspect the paths that
are useful for answering the queries of the users, and this is done through the
competency queries.

3.1. METRICS FOR COMPARING TWO SOURCES 25

Measurements after Adding the Rule-derived ‘sameAs’ Relation-
ships and Applying the Transformation Rules

So far in the computation of the above metrics we have used policy [ii] (suffix
canonicalized URIs) when comparing URIs. Here we show the results from com-
puting again these metrics using policy [iii] and after adding the triples as derived
from the transformation rules (described in §2.2.1). Moreover, extra URIs have
been produced due to transformation rules (e.g., in order to assign a URI to a
species name). As a result, now when comparing URIs, we consider the sameAs

relationships that have been produced by the entity matching rules of the ware-
house. In the current warehouse we have used 11 SILK rules. An indicative SILK
rule is the following: “If the value of the attribute “preflabel” of an Ecoscope in-
dividual (e.g., Thunnus albacares) in lower case is the same with the attribute
“label” in latin of a FLOD individual (e.g., ‘thunnus albacares’@la), then these
two individuals are the same (create a sameAs link between them)”. We should
also note that in policy [ii], we have considered the triples as they are fetched from
the sources. Computing the metrics using policy [iii], not only allows evaluating
the gain achieved by these relationships, but it also reflects better the value of the
warehouse since query answering considers the sameAs relationships.

Table 3.2 shows the matrix of the common URIs after the rule-derived rela-
tionships and the execution of the transformation rules (together with the corre-
sponding percentages). We can see that, compared to the results of Table 3.1,
after considering the sameAs relationships the number of common URIs between
the different sources is significantly increased (more than 7 times in some cases).

Furthermore, Table 3.3 shows the Jaccard similarity between the pairs of
sources. If we compare the results between these two tables, we can see that the
percentages when using Jaccard similarity table have been reduced remarkably.

❍❍❍❍Si

Sj FLOD WoRMS Ecoscope DBpedia FishBase

FLOD 190,749 (100%) 1,738 (2.64%) 869 (11.2%) 4,127 (5.46%) 6,053 (17.31%)

WoRMS 65,789 (100%) 809 (10.43%) 1,807 (2.75%) 4,373 (12.5%)

Ecoscope 7,759 (100%) 1,117 (14.4%) 2,171 (27.98%)

DBpedia 75,518 (100%) 10,388 (29.7%)

FishBase 34,973 (100%)

Table 3.2: Matrix of common URIs (and their percentages) using Policy [iii].

3.1.2 Matrix of Percentages of Common Literals between two
Sources

The percentage of common literals, between two sources Si and Sj can be computed
by:

coliti,j =
|Liti ∩ Litj |

min(|Liti|, |Litj |)
(3.2)

26 CHAPTER 3. CONNECTIVITY OF SEMANTIC WAREHOUSES

❍❍❍❍Si

Sj FLOD WoRMS Ecoscope DBpedia FishBase

FLOD 1 0.68% 0.44% 1.56% 2.69%

WoRMS 1 1.11% 1.29% 4.5%

Ecoscope 1 1.36% 5.35%

DBpedia 1 10.31%

FishBase 1

Table 3.3: Matrix of percentages of common URIs using Policy [iii] and Jaccard
Similarity.

To compare 2 literals coming from different sources, we convert them to lower
case, to avoid cases like comparing “Thunnus” from one source and “thunnus”
from another. Additionally, we ignore the language tags (e.g., “salmon”@en ≡
“salmon”@de). Table 3.4 shows the matrix of the common literals (together with
the corresponding percentages). We can see that, as regards the literals, the per-
centages of similarity are even smaller than the ones regarding common URIs. The
percentages range from 2.71% to 12.37%.

❍❍❍❍Si

Sj FLOD WoRMS Ecoscope DBpedia FishBase

FLOD 111,164 (100%) 3,624 (7.1%) 1,745 (12.37%) 5,668 (5.1%) 9,505 (8.55%)

WoRMS 51,076 (100%) 382 (2.71%) 2,429 (4.76%) 4,773 (9.34%)

Ecoscope 14,102 (100%) 389 (2.76%) 422 (2.99%)

DBpedia 123,887 (100%) 14,038 (11.33%)

FishBase 138,275 (100%)

Table 3.4: Matrix of common Literals (and their percentages).

3.1.3 Matrix of the Harmonic Mean of Common URIs and Liter-
als

We can define a single metric by combining the previous two metrics. More specif-
ically, we can define the harmonic mean of the above two metrics.

cUrisLiti,j =
2 ∗ curii,j ∗ coliti,j
curii,j + coliti,j

(3.3)

Table 3.5 presents the results of this metric.

3.2 Metrics for Evaluating the Entire Warehouse

Here we introduce metrics that measure the quality of the entire warehouse.

3.2. METRICS FOR EVALUATING THE ENTIRE WAREHOUSE 27

❍❍❍❍Si

Sj FLOD WoRMS Ecoscope DBpedia FishBase

FLOD 1 1.61% 10.44% 1.53% 3.93%

WoRMS 1 4.45% 11.02% 21.86%

Ecoscope 1 3.08% 3.82%

DBpedia 1 15.85%

FishBase 1

Table 3.5: Harmonic Mean of Common URIs and Literals.

3.2.1 Increase in the Average Degree

Now we introduce another metric for expressing the degree of a set of nodes, where
a node can be either a URI or a blank node2. Let E be the entities of interest (or
the union of all URIs and blank nodes).

If T is a set of triples, then we can define the degree of an entity e in T as:
degT (e) = |{(s, p, o) ∈ T | s = e or o = e}|, while for a set of entities E we can
define their average degree in T as degT (E) = avge∈E(degT (e)). Now for each
source Si we can compute the average degree of the elements in E considering
triples(Si). If the sources of the warehouse contain common elements of E, then
if we compute the degrees in the graph of W (i.e., degW (e) and degW (E)), we
will get higher values. So the increase in the degree is a way to quantify the
gain, in terms of connectivity, that the warehouse offers. Furthermore, we can
define a normalized metric for average degree increment i.e., a metric whose value
approaches 1 in the best case, and 0 in the worst. To this end, we define

DegIncr(Si,W) =
degW (Ui)− degSi

(Ui)

degW (Ui)
(3.4)

For each source Si, Table 3.6 shows the average degree of its URIs and blank
nodes, and the average degree of the same URIs and blank nodes in the warehouse
graph. It also reports the increment percentage, and the normalized metric for the
average degree increment. The last row of the table shows the average values of
each column. We observe that the average degree is increased from 9.39 to 15.29.

Si avg degSi
(Ui) avg degW (Ui) Increase % DegIncr(Si,W)

FLOD 5.82 6.8 16.84% 0.14

WoRMS 4.14 4.24 2.46% 0.02

Ecoscope 21.37 47.56 122.52% 0.55

DBpedia 6.9 6.99 1.36% 0.01

FishBase 8.75 10.89 24.46% 0.19

AVERAGE 9.39 15.29 62.89% 0.38

Table 3.6: Average degrees in sources and in the warehouse using policy [ii].

2In our case the size of blank nodes in the warehouse is much bigger than the size of unique
triples (about twice).

28 CHAPTER 3. CONNECTIVITY OF SEMANTIC WAREHOUSES

Measurements after Adding the Rule-derived ‘sameAs’ Relation-
ships and Applying the Transformation Rules

Table 3.7 shows the average degree of the URIs and blank nodes of each source
Si, and the average degree of the same URIs and blank nodes in the warehouse
graph, when policy [iii] is used. It also reports the increment percentage, and the
normalized metric for the average degree increment. The last row of the table
shows the average values of each column. We can see that the average degree, of
all sources, after the inclusion of the sameAs relationships is significantly bigger
than before. In comparison to Table 3.6, the increase is from 2 to 9 times bigger.
This means that we achieve a great increase in terms of the connectivity of the
information in the warehouse.

Si avg degSi
(Ui) avg degW (Ui) Increase % DegIncr(Si,W)

FLOD 5.82 52.01 739.64% 0.89

WoRMS 4.14 8.19 97.94% 0.49

Ecoscope 21.37 90.52 323.51% 0.76

DBpedia 6.9 42.97 523.23% 0.84

FishBase 8.71 18.99 117.19% 0.54

AVERAGE 9.39 42.53 353% 0.78

Table 3.7: Average degrees in sources and in the warehouse using Policy [iii].

3.2.2 Unique Triples Contribution

We now define metrics for quantifying the complementarity of the sources. The
“contribution” of each source Si can be quantified by counting the triples it has
provided to the warehouse, i.e., by |triples(Si)|. We can also define its “unique
contribution” by excluding from triples(Si) those belonging to the triples returned
by the other sources. Formally, for the k sources of the warehouse, we can define:

triplesUnique(Si) = triples(Si) \ (∪1≤j≤k,j 6=itriples(Sj)) (3.5)

It follows that if a source Si provides triples which are also provided by other
sources, then we have triplesUnique(Si) = ∅. Consequently, and for quanti-
fying the contribution of each source to the warehouse, we can compute and
report the number of its triples |triples(Si)|, the number of the unique triples
|triplesUnique(Si)|, the unique contribution of each source as:

UniqueTContrib(Si) =
|triplesUnique(Si)|

|triples(Si)|
(3.6)

Obviously, it becomes 0 in the worst value and 1 in the best value. To count
the unique triples of each source, for each triple of that source we perform suffix
canonicalization on its URIs, convert its literals to lower case, and then we check if
the resulting (canonical) triple exists in the canonical triples of a different source.
If not, we count this triple as unique. Let triplesUniques be the union of the

3.2. METRICS FOR EVALUATING THE ENTIRE WAREHOUSE 29

unique triples of all sources, i.e., triplesUniques = ∪itriplesUnique(Si). This set
can be proper subset of W (i.e., triplesUniques ⊂ W), since it does not contain
triples which have been contributed by two or more sources.

Table 3.8 shows for each source the number of its triples (|triples(Si)|), the
number of unique triples (|triplesUnique(Si)|), and the unique triples contribution
of that source (UniqueTContrib(Si)). We can see that every source contains a very
high (> 99%) percentage of unique triples, so we can conclude that all sources are
important.

Si |triples(Si)| |triplesUnique(Si)| UniqueTContrib(Si)

FLOD 665,456 664,703 99.89%

WoRMS 461,230 460,741 99.89%

Ecoscope 54,027 53,641 99.29%

DBpedia 450,429 449,851 99.87%

FishBase 1,425,283 1,424,713 99.96%

Table 3.8: (Unique) triple contributions of the sources using policy [ii].

Measurements after Adding the Rule-derived ‘sameAs’ Relation-
ships and Applying the Transformation Rules

As regards the unique contribution of each source using Policy [iii], Table 3.9 shows
the number of the triples of each source (|triples(Si)|), the number of unique triples
(|triplesUnique(Si)|), and the unique triples contribution (UniqueTContrib(Si)).
We observe that the values in the first column are increased in comparison to
Table 3.8. This is because of the execution of the transformation rules after the
ingestion of the data to the warehouse, which results to the creation of new triples
for the majority of sources. Finally we observe that, in general, the unique triples
contribution of each source is decreased. This happens because the transformation
rules and the same-as relationships have turned previously different triples, the
same.

Si |triples(Si)| |triplesUnique(Si)| UniqueTContrib(Si)

FLOD 810,301 798,048 98.49%

WoRMS 528,009 527,358 99.88%

Ecoscope 138,324 52,936 38.27%

DBpedia 526,016 517,242 98.33%

FishBase 1,425,283 1,340,968 94.08%

Table 3.9: (Unique) triple contributions of the sources using Policy [iii].

3.2.3 Complementarity of Sources

We now define another metric for quantifying the value of the warehouse for the
entities of interest. With the term “entity” we mean any literal or URI that
contains a specific string representing a named entity, like the name of a fish or

30 CHAPTER 3. CONNECTIVITY OF SEMANTIC WAREHOUSES

country. The set of triples containing information about the entity of interest can
be defined as triplesW (e) = |{< s, p, o >∈ W | s = e or o = e}|. Specifically
we define the complementarity factor for an entity e, denoted by cf(e), as the
percentage of sources that provide unique material about e. It can be defined
declaratively as:

cf(e) =
|{ i | triplesW (e) ∩ triplesUnique(Si) 6= ∅}|

|S|
(3.7)

where S is the set of underlying sources.
Note that if |S| = 1 (i.e., we have only one source), then for every entity e we

will have cf(e) = 1.0 . If |S| = 2, i.e., if we have two sources, then we can have
the following cases:
− cf(e) = 0.0, if both sources have provided the same triple (or triples) about e
or no source has provided any triple about e,
− cf(e) = 0.5, if the triples provided by the one source (for e) are subset of the
triples provided by the other, or if only one source provide triple(s) about e,
− cf(e) = 1.0, if each source has provided at least one different triple for e (of
course they can also have contributed common triples). Consequently for the
entities of interest we can compute and report the average complementarity factor
as a way to quantify the value of the warehouse for these entities.

Table 3.10 shows (indicatively) the complementarity factors for a few entities
which are important for the problem at hand. We can see that for the entities
“Thunnus” and “Shark” each source provides unique information (cf = 1.0). For
the entity “Greece” and “Astrapogon” we obtain unique information from three
sources (cf = 3/5 = 0.6). The fact that the complementarity factor is big means
that the warehouse provides unique information about each entity from many/all
sources. Moreover, Table 3.11 shows the average complementarity factor of the
species that are native to Greece. One can observe that there are no species with
very small complementarity factor, which means that at least 2 sources provide
unique information for each species cf(e) ≥ 0.4. Indeed, exactly 2 sources provide
unique information for 116 species, while for 35 species we get unique data from all
the sources. In general the average complementarity factor for all species that are
native in Greece is approximately 0.63 (3.15/5) (meaning that at least 3 sources
contain unique information for such species).

Kind of Entity cf(·)

Thunnus 1.0 (5/5)

Greece 0.6 (3/5)

Shark 1.0 (5/5)

Astrapogon 0.6 (3/5)

Table 3.10: Complementarity factor
(cf) of some entities.

cf(·) No. of Species

0.2 (1/5) 0

0.4 (2/5) 116

0.6 (3/5) 180

0.8 (4/5)) 113

1.0 (5/5) 35

Average: 0.63 (3.15/5) Sum: 444

Table 3.11: cf of species that are na-
tive to Greece.

3.3. METRICS FOR EVALUATING A SINGLE SOURCE 31

3.3 Metrics for Evaluating a Single Source

In this section we focus on metrics for quantifying the value that a source brings to
the warehouse. Such metrics should also allow identifying pathological cases (e.g.,
redundant or irrelevant sources). In particular, §3.3.1 provides examples of such
cases and introduces rules for identifying them, while §3.3.2 introduces a single-
valued metric based on these rules for aiding their identification by a human.

3.3.1 Detecting Redundancies or other Pathological Cases

The metrics can be used also for detecting various pathological cases, e.g., sources
that do not have any common URI or literal, or “redundant sources”. To test
this we created three artificial sources, let us call them Airports, CloneSource and
AstrapogonSource. The Airports source contains triples about airports which were
fetched from the DBpedia public SPARQL endpoint, the CloneSource is a subset
of Ecoscope’s and DBpedia’s triples as they are stored in the warehouse, and the
AstrapogonSource contains only 1 URI and 4 triples for the entity Astrapogon. In
the sequel, we computed the metrics for 8 sources.

Table 3.12 shows the unique triples and Table 3.13 shows the average degrees.
The metrics were calculated according to policy [iii]. As regards Airports, we
can see that its unique contribution is 100% (all the contents of that source are
unique). As regards CloneSource we got 0 unique contributions (as expected,
since it was composed from triples of existing sources). Finally, concerning the
AstrapogonSource, we noticed that although the number of triples contribution is
very low, all its triples are unique.

Si |triples(Si)| |triplesUnique(Si)| UniqueTContrib(Si)

FLOD 810,301 798,048 98.49%

WoRMS 528,009 527,358 99.88%

Ecoscope 138,324 17,951 12.9%

DBpedia 526,016 505,013 96%

FishBase 1,425,283 1,340,968 94.08%

AstrapogonSource 4 4 100.00%

CloneSource 56,195 0 0%

Airports 31,628 31,628 100%

Table 3.12: (Unique) triple contributions of the sources.

Rules for Detecting Pathological Cases. It follows that we can detect patho-
logical cases using two rules: (a) if the average increase of the degree of the entities
of a source is low, then this means that its contents are not connected with the con-
tents of the rest of the sources (this is the case of Airports where we had only 0.1%
increase), (b) if the unique contribution of a source is very low (resp. zero), then
this means that it does not contribute significantly (resp. at all) to the warehouse
(this is the case of CloneSource where the unique contribution was zero).

32 CHAPTER 3. CONNECTIVITY OF SEMANTIC WAREHOUSES

Si avg degSi
(Ui) avg degW (Ui) Increase % DegIncr(Si,W)

FLOD 5.82 52.01 739.64% 0.89

WoRMS 4.14 8.19 97.94% 0.49

Ecoscope 21.37 90.52 323.51% 0.76

DBpedia 6.9 42.97 523.23% 0.84

FishBase 8.71 18.99 117.19% 0.54

AstrapogonSource 4.0 57 1325% 0.93

CloneSource 6.47 60.39 833.08% 0.89

Airports 7.55 7.56 0.1% 0.001

AVERAGE 8.12 42.23 420.07% 0.8

Table 3.13: Average degrees in sources and in the warehouse.

3.3.2 A Single Metric for Quantifying the Value of a Source

To further ease the inspection of pathological cases (and the quantification of the
contribution of each source), we can define a single (and single-valued) measure.
One method is to use the harmonic mean of the unique contribution, and the
increment in the average degree (the harmonic mean takes a high value if both
values are high). Therefore, we can measure the harmonic mean of the above two
metrics and define the value of a source Si, denoted by value0(Si,W), as:

value0(Si,W) =
2 ∗ UniqueTContrib(Si) ∗DegIncr(Si,W)

UniqueTContrib(Si) +DegIncr(Si,W)
(3.8)

Table 3.14 shows these values for all sources of the warehouse, including the
artificial ones, in decreasing order. We can see that the problematic sources have a
value less than 0.04 while the good ones receive a value greater than 0.2. However,
AstrapogonSource has the highest score although it contains only 4 triples. The
two reasons why this source seems the best according to this metric are that all
the triples are unique and the only instance that it contains has a lot of prop-
erties in other sources. Therefore, the degree increment of this source is almost
1. Consequently this metric makes evident the contribution of each source to the
warehouse.

Si UniqueTContrib(Si) DegIncr(Si,W) value0(Si,W)

AstrapogonSource 1 0.93 0.9637

FLOD 0.9849 0.89 0.935

DBpedia 0.96 0.84 0.896

FishBase 0.9408 0.54 0.686

WoRMS 0.9988 0.49 0.6575

Ecoscope 0.129 0.76 0.2206

Airports 1 0.001 0.02

CloneSource 0 0.89 0

Table 3.14: The value of a source in the Warehouse (using value0(Si,W)).

Although the above metric is good for discriminating the good from the not
as good (or useless) sources, it ignores the number of triples that each source
contributes. This is evident from Table 3.14 where AstrapogonSource gets the

3.4. SUMMARY OF THE METRICS 33

highest score. In general, a source with a small number of triples can have big
values in the above two metrics.

For tackling this issue, we need an analogous metric for the size of a specific
source in the warehouse, specifically we can define SiSizeInW (Si,W) = |triples(Si)|

|triples(W)|
. We can now compute the harmonic mean of these three metrics and define the
value of a source Si, denoted by value1(Si,W), as

value1(Si,W) =
3

1
UniqueTContrib(Si)

+ 1
DegIncr(Si,W) +

1
SiSizeInW (Si,W)

(3.9)

Table 3.15 shows these values for all sources of the warehouse, including the arti-
ficial ones, in decreasing order. Now we can see that FishBase is the most useful
source, and the score of AstrapogonSource is very low (almost 0).

Consequently, the first metric can be used for deciding whether to include
or not a source in the warehouse, while second for inspecting the importance of
source for the warehouse. In case of adding a huge out-of-domain source in our
warehouse while there exist a lot of useful sources which are much smaller, the
values of the useful sources will remain almost stable for the first metric. On the
contrary, their values will be decreased for the second metric. Regarding, the value
of the out-of-domain source, it will be low in both metrics, since the increase of the
average degree for this source will be almost 0. Therefore, both metrics will show
that the new source should be removed from the warehouse, however, the second
metric will not show the real value for each of the remaining sources in this case.

Si UniqueTContrib(Si) DegIncr(Si,W) SiSizeInW (Si,W) value1(Si,W)

FishBase 0.9408 0.54 0.405 0.5572

FLOD 0.9849 0.89 0.2304 0.463

DBpedia 0.96 0.84 0.1496 0.3364

WoRMS 0.9988 0.49 0.1501 0.3091

Ecoscope 0.129 0.76 0.0393 0.0869

Airports 1 0.001 0.0089 0.0027

AstrapogonSource 1 0.93 0.000001 0.000001

CloneSource 0 0.89 0.0089 0

Table 3.15: The value of a source in the warehouse (using value1(Si,W)).

3.4 Summary of the Metrics

Table 3.16 shows all the definitions of the metrics that were described in this
section.

3.4.1 Computing the Connectivity Metrics using SPARQL queries

Here we show how the values of the connectivity metrics can be computed using
SPARQL queries (this corresponds to the process “2. Compute Metrics” of Fig-
ure 5.1). Some of the SPARQL queries contain some specific rules (e.g., define

34 CHAPTER 3. CONNECTIVITY OF SEMANTIC WAREHOUSES

Metric Name Metric Definition Kind

Common URIs between two sources
Si and Sj

= |Ui ∩ Uj | natural num-
ber

Percentage of common URIs between
Si and Sj

curii,j =
|Ui∩Uj|

min(|Ui|,|Uj|)
degree of simi-
larity

Common literals between Si and Sj = |Liti ∩ Litj | natural num-
ber

Percentage of common literals be-
tween Si and Sj

coliti,j =
|Liti∩Litj |

min(|Liti|,|Litj |)
degree of simi-
larity

Harmonic mean of common URIs and
literals

cUrisLiti,j =
2∗curii,j∗coliti,j
curii,j+coliti,j

mean

Increase in the average degree DegIncr(Si,W) = degW (E)−degS(E)
degS (E)

relative mea-
sure

Unique triples of Si triplesUnique(Si)
= triples(Si) \ (∪1≤j≤k,j 6=itriples(Sj))

relative mea-
sure

Unique triples contribution of a
source

UniqueTContrib(Si) =
|triplesUnique(Si)

|triples(Si)|
relative mea-
sure

Value of a source value1(Si,W) = 3
1

UT
+ 1

DI
+ 1

SW

where
UT = UniqueTContrib(Si),
DI = DegIncr(Si,W),
SW = SiSizeInW (Si,W)

mean

Complementarity factor of an entity
e

cf(e)=
|{ i | triplesW (e)∩triplesUnique(Si) 6=∅}|

|S|
percentage

Table 3.16: Connectivity Metrics.

3.4. SUMMARY OF THE METRICS 35

input:same-as "yes") these rules are used by Virtuoso3 for enabling inference
for triples containing owl:sameAs relations.
Common URIs. The metric Common URIs over two sources Si and Sj, can be
computed with the following query:

SELECT COUNT (DISTINCT ?o)

WHERE { GRAPH :Si {{?s1 ?p1a ?o} UNION {?o ?p1b ?o1}} . FILTER(isURI(?o))

GRAPH :Sj {{?s2 ?p2a ?o} UNION {?o ?p2b ?o2}} }

In the context of the warehouse, this metric should be computed over all pairs of
sources, i.e., all (Si, Sj) such that Si, Sj ∈ S and i 6= j. Note that this metric is
symmetric, i.e., the value of the pair (Si, Sj) is equal to the value of (Sj , Si).

Regarding policy [iii], one can use the following query in order to collect all the
matching pairs between 2 sources.

DEFINE input:same-as "yes"

SELECT DISTINCT (bif:concat(?o,’\t’,?s)) as ?matchingPair

FROM :Si

FROM :Sj

FROM :SameAs

WHERE {

GRAPH :SameAs {{?s ?p ?o} UNION {?o ?p ?s} }

.GRAPH :Si

{{?s ?p1 ?o1} UNION {?o1 ?p1 ?s} .filter(isURI(?s))}

.GRAPH :Sj

{{?o ?p2 ?o2} UNION {?o2 ?p2 ?o} } . filter(isURI(?o)) }

Common Literals. The Common Literals between two sources Si and Sj can be
computed in a similar manner, i.e.:

SELECT COUNT DISTINCT ?o

WHERE { graph :Si { ?s ?p ?o} . FILTER(isLiteral(?o))

graph :Sj { ?a ?b ?o} }

Again, this metric should also be computed over all pairs (Si, Sj) of the warehouse.

Unique Triples Contribution. To compute the unique triple contribution of a
source, say S1, to the warehouse S = S1, . . . , Sk, we have to count the number of
triples of S1 that do not intersect with the triples of any of the other sources of S
(i.e., with none of the sources in S2 ... Sn). This can be done using the following
query:

SELECT COUNT(*)

WHERE { graph :S1 { ?s ?p1 ?o} .

FILTER NOT EXISTS { graph :S2 { ?s ?p2 ?o} } .

...

...

FILTER NOT EXISTS { graph :Sn { ?s ?pn ?o} } }

3http://virtuoso.openlinksw.com/

36 CHAPTER 3. CONNECTIVITY OF SEMANTIC WAREHOUSES

On the contrary, concerning policy[ii] one can use the following SPARQL query
in order to get the suffixes of the subject and object of each triple for every source.
After that, one can use the produced sets in order to calculate the unique triples
for each source.

SELECT bif:lower(bif:regexp_substr(’[^#|/]+$’,?s,0)) as ?s

bif:lower(bif:regexp_substr(’[^#|/]+$’,?o,0)) as ?o

FROM :Si

WHERE {?s ?p ?o}

Complementarity Factor. This metric is computed for a specific entity over all
sources of the warehouse. In particular, the complementarity factor of an entity e
is increased for each source Si ⊆ S that contains at least one unique triple having
the entity e. This means that if all sources in S contain unique triples for e, then its
complementarity factor will be 1.0. The query below gives the complementarity
factor of an entity e over S. Notice that the WHERE clause contains n graph
patterns. In the SELECT statement n denotes the number of sources and it is
provided by the user. Each graph pattern i returns 1, if Si contains unique triples
for the entity e, otherwise it returns 0.

SELECT (?CF1+ .. + ?CFn)/n AS ?CF

WHERE { { SELECT xsd:integer(COUNT(*)>0) as ?CF1

WHERE { { graph :S1 { ?s ?p1 ?o } }

FILTER NOT EXISTS { graph :S2 { ?s ?p2 ?o} } .

...

FILTER NOT EXISTS { graph :Sn { ?s ?pn ?o} }

FILTER (regex(?s, e,’i’) || (regex(?o, e,’i’))) } }

...

...

{ SELECT xsd:integer(COUNT(*)>0) as ?CFn

WHERE { { graph :Sn { ?s ?pn ?o } }

FILTER NOT EXISTS { graph :S1 { ?s ?p1 ?o } } .

...

FILTER NOT EXISTS { graph :Sn-1 { ?s ?pn-1 ?o } }

FILTER (regex(?s, e,’i’) || (regex(?o, e,’i’))) } }

}

Increase in the Average Degree. Let E be a set of entities coming from a
source Si. To compute the increase in the average degree of these entities when
they are added into the warehouse, the following query computes both average
values (before and after the addition to the warehouse) and reports the increase.
Note that that above query considers the “entity matching” policy [iii].

DEFINE input:same-as "yes"

SELECT ((?avgDW-?avgDS)/?avgDS) as ?IavgD

WHERE { { SELECT xsd:double((count(?in)+count(?out)))

/xsd:double(count (distinct ?e)) as ?avgDS

FROM :Si

WHERE{ ?e rdf:type :E.

{?e ?in ?o} UNION {?o1 ?out ?e} } }

3.4. SUMMARY OF THE METRICS 37

{ SELECT xsd:double((count(?in)+count(?out)))

/xsd:double(count (distinct ?e)) as ?avgDW

FROM :W

WHERE { ?e rdf:type :E .

{ ?e ?in ?o} UNION {?o1 ?out ?e} } }

}

Regarding the average degree of all the URIs and blank nodes of a source, one
can use the following query.

SELECT xsd:double(count(?incomingProperties)+count(?outgoingProperties))

/xsd:double(count (distinct ?node)) as ?sourceDegree

FROM :Si

WHERE{

{?node ?outgoingProperties ?o .

FILTER (?outgoingProperties!=<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>)}

UNION

{?o1 ?incomingProperties ?node .

FILTER (?incomingProperties!=<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>)}

FILTER(isURI(?node) || isBlank(?node))}

Finally, for the average degree of the URIs and blank nodes of a source in
the warehouse, one can use the following two queries for URIs and blank nodes,
respectively. We use a temporary graph to store all the URIs of each graph, since
this way was proved more efficient in order to measure the degree of each source
in the warehouse. Moreover, one can find the average degree of the union of its
URIs and blank nodes by using the following formula:

avgdegW (UW ∪BNW) =
avgdegW (UW) ∗ |UW |+ avgdegW (BNW) ∗ |BNW |

|UW |+ |BNW |
(3.10)

The following SPARQL queries can be used for computing the average degree for
entities that are URIs and blank nodes respectively.

DEFINE input:same-as "yes"

SELECT xsd:double(count(?incomingProperties)+count(?outgoingProperties))

/xsd:double(count (distinct ?node))) as ?avgURIsDegree

count (distinct ?node) as ?URIs

FROM :Wi

WHERE { GRAPH :temp

{?node a :SiURI} .

{{?node ?outgoingProperties ?o .

FILTER(?outgoingProperties!=<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>)}

UNION

{?o1 ?outgoingProperties ?node .

FILTER(?incomingProperties!=<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>}} }}

DEFINE input:same-as "yes"

SELECT xsd:double(count(?incomingProperties)+count(?outgoingProperties))

/xsd:double(count (distinct ?node))) as ?avgBnodesDegree

38 CHAPTER 3. CONNECTIVITY OF SEMANTIC WAREHOUSES

count (distinct ?node) as ?Bnodes

FROM :Wi

WHERE{

{?node ?outgoingProperties ?o .

FILTER(?outgoingProperties!=<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>)}

UNION {?o1 ?incomingProperties ?node .

FILTER(?incomingProperties!=<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>)}

{SELECT distinct ?node

WHERE { graph :Si

{{?node ?p ?o } UNION {?o ?p ?node}}

.FILTER(isBlank(?node))}}}

Time efficiency

Table 3.17 shows the query execution times (in minutes) for computing the metric
Common URIs for each of the three policies, i.e., (i) Exact String Equality, (ii)
Suffix Canonicalization and (iii) Entity Matching. The first row corresponds to the
pure SPARQL approach that was presented earlier. The second row corresponds
to a hybrid approach, where more simple queries are used for getting the resources
of interest (i.e., the two sets of URIs, one for each source Si, Sj), and Java code
is used for computing their intersection. We observe that the hybrid approach is
faster than the pure SPARQL, as the comparisons are implemented faster in Java.
In general, we have observed that the hybrid approach loses in time efficiency when
the implemented queries return a big amount of data (as in the case of Unique
Triples Contribution), while it is faster (than pure SPARQL) in comparisons.

Common URIs
Computation Method Policy [i] Policy [ii] Policy [iii]

pure SPARQL 7 20 8
hybrid 3 4 4

Table 3.17: Times (in min) needed to compute metrics on various approaches and
policies.

Regarding policy [ii], the pure SPARQL approach becomes less efficient, as
the string comparisons cost more when implemented over the endpoint. When
adopting policy [iii], both approaches are increased by 1 minute. This uniform
increase is reasonable as an additional graph that contains the triples with the
sameAs properties is taken into account.

3.5 Experimental Evaluation

3.5.1 MarineTLO-Warehouse Evolution

The objective here is to investigate how we can understand the evolution of the
warehouse and how we can detect problematic cases (due to changes in the remote

3.5. EXPERIMENTAL EVALUATION 39

sources, mistakes in the equivalence rules, addition of a redundant or a “useless”
source etc). Let v denote a version of the warehouse and v′ denote a new version
of the warehouse. A number of questions arise:
• Is the new version of the warehouse better than the previous one? From

what aspects, the new warehouse is better than the previous one, and from
what aspects it is worse?

• Can the comparison of the metrics of v and v′, aid us in detecting problems
in the new warehouse, e.g., a change in an underlying source that affected
negatively the new warehouse?

It is also useful to compare a series of versions for:
• understanding the evolution of the entire warehouse over time
• understanding the evolution of the contribution of a source in the warehouse

over time
To tackle these questions, we first (in §3.5.2) describe the datasets (real and syn-
thetic) that were used, and then (in §3.5.3) we focus on how to inspect a sequence
of versions. Finally §3.5.4 summarizes the drawn conclusions.

3.5.2 Datasets Used

To understand the evolution we need several series of warehouse versions. To this
end, we used both real and synthetically derived datasets.

3.5.2.1 Real Datasets

We used 3 real versions of the MarineTLO-based warehouse. Specifically we con-
sidered the following versions:
• MarineTLO-based warehouse version 2 (July 2013): 1,483,972 triples
• MarineTLO-based warehouse version 3 (December 2013): 3,785,249 triples
• MarineTLO-based warehouse version 4 (June 2014): 5,513,348 triples

3.5.2.2 Synthetic Datasets

We created a series of synthetic datasets in order to test various aspects, e.g., source
enlargements, increased or reduced number of sameAs relationships, addition of
new sources (either relevant or irrelevant to the domain), addition of erroneous
data, etc.

Tables 3.18 and 3.19 show the 9 different versions and their size in triples,
while Table 3.20 shows the changes from version to version. For each version from
1 to 4, we add new “useful” data, allowing in this way to check not only how the
integration of the warehouse is affected by the new useful data, but also to observe
the extent up to which the value of a source is changed every time. Versions 5, 6,
contain “not so good” sources, hence we would expect to see low values for these
two sources. Specifically, version 5 includes a source from a different domain, while
version 6 contains a redundant source (this source includes triples from Fishbase
and WoRMS). Concerning version 7, we have created a possible error that one

40 CHAPTER 3. CONNECTIVITY OF SEMANTIC WAREHOUSES

could face. In particular, we have replaced in the prefix of DBpedia’s URIs ′/′ with
′#′, whereas in version 8, we have used an invalid SILK Rule in order to produce
some wrong sameAs relationships. Taking all these into account, we expect that
the following experiments will allow us to detect all the above errors and will show
the real importance of each source in every version.

V1 V2 V3 V4 V5

FLOD 904,238 904,238 904,238 904,238 904,238

WoRMS 62,439 62,439 1,383,168 1,383,168 1,383,168

Ecoscope 61,597 61,597 61,597 61,597 61,597

DBpedia 394,373 394,373 394,373 394,373 394,373

FishBase - - - 2,332,893 2,332,893

Clone Source - - - - -

Airports - - - - 121,113

All 1,422,637 1,422,637 2,743,376 5,076,269 5,197,382

Table 3.18: Triples of the synthetically derived versions (versions 1-5).

V6 V7 V8 V9

FLOD 904,238 904,238 904,238 904,238

WoRMS 1,383,168 1,383,168 1,383,168 1,383,168

Ecoscope 61,597 61,597 61,597 61,597

DBpedia 394,373 488,989 645,228 782,469

FishBase 2,332,893 2,332,893 2,332,893 2,332,893

Clone Source 1,036,194 - - -

Airports - - - -

All 6,112,463 5,170,885 5,327,124 5,464,365

Table 3.19: Triples of the synthetically derived versions (versions 6-9).

3.5.3 Inspecting a Sequence of Versions

Here we discuss how one can inspect a sequence comprising more than two versions.
Suppose that we have n versions, v1, v2, . . . , vn. We can get the big picture by
various plots each having in the X axis one point for each warehouse version.
Below we describe several useful plots.

i For each vi we plot |triples(Wvi)|. Figure 3.3 shows the resulting plot for
the real datasets.

ii For each vi we plot |UWvi| and |LitWvi| where UWvi is the set of all URIs
and LitWvi is the set of all Literals in the warehouse of that version. Figure
3.4 shows the resulting plot for the real datasets.

iii For each vi we plot the average degree of the URIs of the warehouse degW (UWvi)
and the average degree of the blank nodes and URIs of the warehouse

3.5. EXPERIMENTAL EVALUATION 41

Version Description

1 Low number of sameAs relationships

2 Addition of more sameAs relationships

3 Increase of WoRMS triples

4 Addition of a new source (FishBase)

5 Addition of an out-of-domain source (Airports)

6 Deletion of Airports source and addition of a redundant source (CloneSource)

7 Deletion of CloneSource and update of DBpedia where the policy of its URIs
changed.

8 Update of DBpedia and production of 4000 wrong sameAs relationships due
to an invalid SILK rule

9 The final version without errors

Table 3.20: Description of how each synthetic warehouse version was derived.

degW (UWvi ∪ BNWvi). Figure 3.5 shows the resulting plot for the real
datasets.

iv For each vi and for each source Sj we plot value1(Si,W) as defined in §3.3.2
(one diagram with k plots one for each of the k sources). Figure 3.6 shows
how the contribution of the sources in the warehouse evolves, for the real
datasets.

v For each source Si and version j we plot:

(a) The Jaccard similarity between the set of triples in (Si)j−1 and (Si)j
(e.g., see the 1st column of Figure 3.2)

(b) The normalized number of the triples in every version, defined as the
division of the number of a source’s triples with the number of the
biggest source’s triples in the warehouse (e.g., see the 2nd column of
Figure 3.2):

NormalizedTriples(Si)j =
|triples(Si)j |

maxm∈1..k |triples(Sm)j |
(3.11)

(c) The normalized average degree defined as the division of the average
degree of a source by the maximum average degree among all the sources
in the warehouse (e.g., see the 3rd column of Figure 3.2):

NormalizedAverageDegree(Si)j =
avgdegSi

(Ui)

maxm∈1..k avgdegSm(Um)
(3.12)

(d) The value in each version, as it has defined in §3.3.2 (e.g., see the 4th
column of Figure 3.2):

The first three (i-iii) concern the warehouse per se, while (iv) and (v) show how
the contribution of the source in the warehouse evolves. Regarding the results, for

42 CHAPTER 3. CONNECTIVITY OF SEMANTIC WAREHOUSES

Figure 3.2: Measurements per source for the real datasets.

3.5. EXPERIMENTAL EVALUATION 43

the Jaccard distance one can observe that the source WoRMS completely changed
from version to version. On the other hand, DBpedia had the smallest change
among all sources. Concerning the value of the normalized triples, the addition
of Fishbase and the increase in the number of triples of WoRMS had a huge
impact in the normalized triple value of the other sources. Moreover, DBpedia,
has the biggest average degree in all versions while Fishbase and WoRMS have a
consecutive increase in their values from version to version. Finally, Table 3.21
shows the average degree increment of the URIs and blank nodes of each source
for the 3 different versions of the real datasets.

Figure 3.3: Triples of each version. Figure 3.4: URIs and Literals.

Figure 3.5: Average degree of the
warehouse in every version.

Figure 3.6: Value for each Source in
every version.

❍❍❍❍❍Source

Vi
Version2 Version 3 Version 4

FLOD 465.59% 793.64% 797.61%

WoRMS 548.67% 97.82% 103.61%

Ecoscope 108.97% 325.58% 396.84%

DBpedia 271.84% 522.75% 505.65%

FishBase —- 117.02% 58.43%

Table 3.21: Average degree increment percentages for the URIs and blanks nodes
of each source in every version.

44 CHAPTER 3. CONNECTIVITY OF SEMANTIC WAREHOUSES

Results over the Synthetic Datasets

Common URIs/Literals. Concerning common URIs, Figure 3.7 shows how the
percentages of common URIs (according to policy [iii]) changed from version to
version among DBpedia and all the other sources. As we can see, the percentages
increased in version 2 comparing to version 1, because of the production of the
sameAs relationships. On the contrary, in version 7 the percentages of common
URIs were heavily reduced, since the change in DBpedia’s URIs affected negatively
the production of the sameAs relationships. Moreover, the percentages increased
in version 8, predominantly because of the wrong sameAs relationships while in
the last version, the increase in the common URIs percentage between DBpedia
and FishBase is remarkable.

Regarding common Literals, as we can see in Figure 3.8 the percentages didn’t
change so much from version to version. However, it is clear that the highest
percentage exists between DBpedia and FishBase, exactly as it happened with
common URIs percentage. Therefore, it is obvious that DBpedia shares more
common information with FishBase than with all the other sources.

Figure 3.7: Common URIs % Figure 3.8: Common Literals %

Average Degree Increment. Figure 3.9 shows the normalized increment degree
percentage of each source. As we can see, it is evident that a source containing
useful data has a positive effect on the percentages of all the other sources. For
instance, when we added the source FishBase (in version 4), the percentages of
all the other sources were notably increased, while when we added the Airports
source (version 5), the percentages remained almost the same.

In version 7, the change of the URI policy in DBpedia reduced the sameAs

relationships in the warehouse. As a result, it affected negatively the percentages
of all the sources (predominantly those from DBpedia). Despite the fact that there
are considerable benefits to see big values in this measure, sometimes there is also
an important drawback that cannot be ignored. For instance, in version 8, as we
can see better in Figure 3.10, the percentages were highly increased because of
an invalid SILK rule which produced 4, 000 wrong sameAs relationship, leading to
significant negative consequences for the warehouse. For instance, the queries will
return a lot of imprecise results. Therefore, having big values for integration has
no meaning if the precision is low.

3.5. EXPERIMENTAL EVALUATION 45

Figure 3.9: Normalized Average Degree
Increment of each source.

Figure 3.10: Average Degree Increment
of each source.

Unique Triples Percentage. As regards unique triples, Figure 3.11 shows the
unique triples percentage of each source. The addition of CloneSource in version
6 had as a result the reduction of WoRMS and FishBase percentages. In fact,
CloneSource shared a lot of triples with these two sources. Therefore, through this
diagram one can easily observe that CloneSource is redundant, while one can see
the remarkable change in the unique triples percentage of WoRMS because of the
addition of FishBase in version 4.

Figure 3.11: Unique Triples Percentage
of each source.

Figure 3.12: Complementarity Factor of
Astrapogon.

Complementarity Factor. Regarding complementarity factor, Figure 3.12 shows
how the updates affected the complementarity factor of a specific entity. In ver-
sions 1-3, only 2 (out of 4) sources provided unique triples about “Astrapogon”.
In version 4, the complementarity factor of this entity increased because FishBase
contained unique data about it. On the other hand, the out-of-domain source
that we added in version 5 had negative impact for this measure. It is worth-
mentioning that the CloneSource, which included all the triples about Astrapogon
fromWoRMS and FishBase, heavily reduced the complementarity factor in version
6. Finally, the addition of the new triples of DBpedia and the deletion of Clone-
Source had considerable advantages for the value of this measure. Therefore, in
the last 3 versions, 4 sources (out of 5) provided unique data about “Astrapogon”.

46 CHAPTER 3. CONNECTIVITY OF SEMANTIC WAREHOUSES

Value of Sources. Figure 3.13 depicts the values of each source in all differ-
ent versions. Initially, there is no doubt that in the first two versions the most
important source was FLOD, since it had high values for the average degree in-
crement and the unique triples percentage, and was consisted of a large number of
triples. Furthermore, we can see that in version 2 the value of each source was in-
creased because of the production of the sameAs relationships. Regarding version
3, the increment of the size of WoRMS had negative effects on the values of the
other sources. Therefore, the value and possibly the ranking of the sources can
be affected when we add to the warehouse a bigger source with useful triples. In
this way, FishBase value surpassed all the other sources values in version 4. Con-
cerning version 5, the new source (Airports) that we added seemed to be useless
because of the low average degree increment percentage. This is rational, because
it provided information which is useless for our warehouse. In version 6, we added
a source (CloneSource) containing approximately 1, 500 new triples and a lot of
triples which were already existed in the warehouse and specifically, in FishBase
and WoRMS. Indeed, despite the fact that this source was consisted of a lot of
triples, its value was the lowest. Moreover, by adding these triples, the values of
the sources sharing common triples with CloneSource were affected, too. In fact,
the reduction of the value of FishBase is remarkable although the contents of this
source were exactly the same as in version 5. As regards version 7, DBpedia was
affected negatively because of the change in the policy of it’s URIs. In version
8, DBpedia and FishBase were mostly benefited by the production of the wrong
sameAs relationships, since their normalized average degree increased to a great
extent comparing to the other sources. Finally, it is worth mentioning that the
value of DBpedia increased in version 9, since there was added a large number of
unique triples for this source.

Measurements per Source. Finally, Figure 3.14 shows the values of several
metrics for each source (regarding the synthetic datasets). Specifically, the 1st
column shows the Jaccard distance between the versions, the 2nd column shows
the normalized value of the triples in each version, the 3rd column shows the
normalized average degree in each version, and the 4th column shows the value
in each version. Firstly, one can easily see the change in the Jaccard distance
of DBpedia from version 6 to version 7. In this case, the change of the policy of
DBpedia’s URI had a negative consequence for the value of DBpedia. By observing
this figure, one can realize that the aforementioned problem possibly occurred
because of this sudden change in DBpedia’s Jaccard distance. As regards the
values of the normalized triples, FLOD had the biggest decrease because of the
insertion or the increase of other sources. The most remarkable figures concerns
the value of each source. We can observe the variations in each source’s value due
to the pathological case that we saw previously.

3.5. EXPERIMENTAL EVALUATION 47

Figure 3.13: Value of each source per version (using value1(Si,W)).

3.5.4 Executive Summary Regarding Evolution

Taking all the aforementioned into consideration, we managed through the above
experiments to meet the main objectives. In particular, through the real datasets
we saw the evolution of a real warehouse. Indeed, by observing the changes in
the Average Degree Increment percentage, we concluded that the average Degree
percentage of the warehouse URIs increased from version to version. However,
by taking into account not only the URIs but also the blank nodes, we observed
that the percentage decreased from version to version. Additionally, through the
single-valued metric Value, we saw the most important sources in every version
and the contribution of each source in the warehouse over time.

As regards the synthetic datasets, we managed to detect a number of problem-
atic cases. Particularly, we found the problematic cases in versions 5,6,7,8 predom-
inantly through Value, Average Degree Increment percentage and Unique Triples
percentage. Specifically, we identified that Airports source was out-of-domain, be-
cause both Value and Average Degree Increment percentage of this source were very
low. On the contrary, in version 6, it was easy to understand that CloneSource
was redundant, since, its Value and Unique Triples percentage were very low. In
addition to this, it was remarkable that the values of the sources sharing common
triples with this source were affected to a great extent. In particular, the Unique
Triples percentage of these sources decreased greatly.

Concerning version 7, the large decrease in the Average Degree Increment per-
centage of DBpedia and in the common URIs percentage between DBpedia and
each of the remaining sources indicated that probably either the schema or the
policy of this source’s URIs changed. However, such a large decrease can be also

48 CHAPTER 3. CONNECTIVITY OF SEMANTIC WAREHOUSES

Figure 3.14: Measurements per source for the synthetic datasets.

3.5. EXPERIMENTAL EVALUATION 49

arisen when the content of a source changed while neither the schema nor the
policy of URIs changed (e.g., information about some fishes has been removed).
For being sure that this decrease arose due to schema or URIs policy, one can
measure the common URIs percentage between the pairs of sources with policy
[ii]. Of course, there is also the case where two different instances refer to the
same real-world object but their suffixes are completely different. In such cases,
policy [ii] cannot be used for understanding their sameAs relationship.

Finally, in version 8, the huge increase in the Average Degree Increment per-
centage was unexpected. Indeed, the production of more and more sameAs rela-
tionships always improves the Average Degree Increment percentages. However, if
the percentages are far higher than the previous versions, it is highly possible that
there have been produced a lot of wrong sameAs relationships, probably due to an
invalid SILK rule.

50 CHAPTER 3. CONNECTIVITY OF SEMANTIC WAREHOUSES

Chapter 4

Measuring the Connectivity of
Several LOD Datasets

In chapter 3, we described connectivity metrics for evaluating semantic Ware-
houses. In this section, we show how to compute the connectivity metrics for any
combinations of LOD Cloud datasets. Comparing to a semantic warehouse which
usually contains a small number of datasets, it is prohibitively expensive to com-
pute the metrics either in a straightforward way or by using SPARQL queries. For
this reason we propose indexes and algorithms for computing fast such measure-
ments. At first, we formulate the problem and we show the proposed indexes and
algorithms. Then, we report interesting measurements for 300 LOD cloud datasets
and we discuss the speedup obtained by the proposed techniques.

4.1 Indexes for Measuring the Connectivity of RDF
Datasets

At first we formulate the problem and afterwards we describe the semantics-aware
element index and detail the steps for creating it.

4.1.1 Problem Statement

Let D = {D1, . . . ,Dn} be a set of RDF datasets (or sources). For each Di we shall
use triples(Di) to denote its triples (triples(Di) ⊆ T), and Ui to denote the URIs
that occur as subjects or objects in these triples. As running example we will use
four datasets each containing six URIs as shown in Figure 4.1 (upper-left corner).

Common URIs in Datasets.
Let P(D) denote the powerset of D, comprising elements each being a subset of D,
i.e. a set of datasets. Our objective is to find the common URIs in every element
of P(D), meaning that for each set of datasets B ∈ P(D) we want to compute
cu(B) defined as:

cu(B) = ∩Di∈B Ui (4.1)

51

52 CHAPTER 4. CONNECTIVITY OF SEVERAL LOD DATASETS

Datasets containing a particular URI.
Another objective is to find all datasets that contain information about one par-
ticular URI u, i.e. to compute

dsets(u) = {Di ∈ D | u ∈ Ui} (4.2)

Considering Equivalence Relationships.
So far we have ignored the sameAs relationships. Below we shall see how to seman-
tically complete the previous definitions. Let sm(Di) be the sameAs relationships
of a dataset Di, i.e.:

sm(Di) = {(u, u
′) | (u, sameAs, u′) ∈ triples(Di)} (4.3)

If B is a set of datasets, i.e. B ∈ P(D), we will denote with SM(B) the union of the
sameAs relationships in the datasets of B, i.e. SM(B) = ∪Di∈B sm(Di). Notice
that our running example includes five sameAs relationships, shown in Figure 4.1
(upper-right). If R denotes a binary relation, we shall use C(R) to denote the
transitive and symmetric closure of R. Consequently, C(sm(Di)) stands for the
transitive and symmetric closure of sm(Di), while C(SM(B)) is the transitive and
symmetric closure of the sameAs relationships in all datasets in B. The number of
real world objects (in abbreviation rwo) in a dataset Di is the number of classes of
equivalence of C(sm(Di)), plus those URIs of Ui that do not occur in C(sm(Di) (for
not counting some URIs more than once), e.g. if Utemp = {u1, u2, u3, u4, u5} and
we have two sameAs relationships, u1∼u3 and u1∼u4, then their closure derives
the following classes of equivalence Utemp/∼ =

{

{u1, u3, u4}, {u2}, {u5}
}

. The
number of real world objects in a set of datasets B is defined analogously.

We can now define the equivalent URIs (considering all datasets in B) of a
URI u (and of a set of URIs U) as:

Equiv(u,B) = { u′ | (u, u′) ∈ C(SM(B))} (4.4)

Equiv(U,B) = ∪u∈UEquiv(u,B) (4.5)

We are now ready to “semantically complete” the definitions (4.1) and (4.2):
Datasets containing a particular (or equivalent) URI.
The set of datasets that contain information about u (or a URI equivalent to u)
is defined as:

dsets∼(u) = {Di ∈ D | ({u} ∪Equiv(u,D)) ∩ Ui 6= ∅} (4.6)

Obviously, it holds dsets(u) ⊆ dsets∼(u).
Common (or equivalent) URIs in Datasets.
The common or equivalent URIs in the datasets in B are defined as:

cu∼(B) = { u ∈ U | dsets∼(u) ⊇ B} (4.7)

Obviously it holds cu(B) ⊆ cu∼(B). Now the real world objects that are in
common in the datasets in B are the classes of equivalence of cu∼(B), i.e. the set

4.1. THE PROPOSED INDEXES 53

cu∼(B)/∼. Therefore we define the number of common real world objects in the
datasets of B as:

co∼(B) = |cu∼(B)/∼| (4.8)

In a nutshell, in this section we focus on how to compute efficiently formulas 4.6
and 4.8, for any u ∈ U and B ⊆ D respectively.

4.1.2 The Proposed Indexes

Figure 4.1 illustrates the proposed indexes over our running example. Let U =
U1 ∪ . . . ∪ Un (n = 4 in our example). We propose three indexes:
• PrefixIndex: It is a function pi : Pre(D) →P(D) where Pre(D) is the set of
prefixes of the datasets in D, i.e. Pre(D) = { pre(u) | u ∈ Ui,Di ∈ D}, e.g. see
step 1 of Fig. 4.1.
• SameAsCat: For each u that participates to SM(D) this catalog stores a unique
id. All URIs in the class of equivalence of u are getting the same id. Let SID
denotes this set of identifiers. The SameAsCat is essentially a binary relation
⊆ U × SID, e.g. see step 2 of Fig. 4.1.
• ElementIndex: For each element of U∪SID this index stores the datasets where
it appears, i.e. it is a function ei : U ∪SID→ P(D) where ei(u) = dsets∼(u), e.g.
see step 3 of Fig. 4.1.
The rationale and the construction method for each one is given below.

4.1.3 Prefix Index

Rationale: Most data providers publish their data by using prefixes indicating
their company or university (e.g., DBpedia URIs starts with prefix http://dbpedia.org).
A PrefixIndex can greatly reduce the cost of finding common URIs. First, there
is no need to compare URIs containing different namespaces. Second, if a prefix
p exists in only one dataset, it is not possible for the URIs starting with p to be
found in another dataset.

Construction Method: For getting the prefixes of a dataset stored in a triple-
store, one can either submit a SPARQL query or scan each Ui once. We also count
the frequency of each prefix in the dataset. If nm is a namespace, pi(nm) is the
set of ids of the datasets that contain it. This set is stored in ascending order
with respect to the frequency, e.g. in our running example we can see that for the
prefix dbp the dataset DBpedia contains the most URIs. Consequently, the ID of
this source (i.e. 2) is in the last position of pi(dbp). This ordering is beneficial for
reducing the ASK queries as we shall see later in §4.1.5.

Moreover, PrefixIndex enables a fast method for finding the upper bound of
|dsets(u)| for a particular u (since dsets(u) ⊆ pi(pre(u))), e.g. in our running
example a URI starting with prefix en wiki can be possibly found in 4 datasets,
because all the datasets contain this prefix. However, a URI with prefix yg can
appear only in one dataset since this prefix appears only in Yago.

54 CHAPTER 4. CONNECTIVITY OF SEVERAL LOD DATASETS

Figure 4.1: Running Example

4.1. THE PROPOSED INDEXES 55

The following query returns the distinct prefixes for the URIs starting with
http://.

select distinct ?prefix from <GraphSpace>

where { {?s ?p ?o} union {?o ?p ?s}

. BIND(bif:regexp_substr(’^http://(.*?)(/)’,?s,0)

as ?prefix)

. filter(isURI(?s)) }

For getting the count of each distinct prefix for the URIs starting with http://,
one can use the query below.

select ?prefix count(distinct ?s)

from <GraphSpace>

where { {?s ?p ?o} union {?o ?p ?s}

. BIND(bif:regexp_substr(’^http://(.*?)(/)’,?s,0)

as ?prefix)

. filter(isURI(?s))

} group by(?prefix)

4.1.4 SameAs Catalog

Rationale: It is required for formulas 4.6, 4.7 and 4.8 as explained in §4.1.1.
Construction Method: We introduce a signature-based algorithm where each
class of equivalence will get a signature (id) and the signature is constructed in-
crementally during the computation. After the completion of the algorithm, all
URIs that belong to the same class of equivalence will have the same identifier.
The algorithm assigns to each pair (u, u′) ∈ SM(B) an identifier according to the
following rules:

1. If both URIs have not an identifier, a new identifier is assigned to both of
them. E.g. Table 4.1 contains two classes of equivalence and four URIs. In
the next step, a new sameAs pair containing two URIs without identifier is
inserted resulting to a new class of equivalence which is shown in Table 4.2.

2. If u has an identifier while u′ has not, u′ gets the same identifier as u. Table
4.3 shows such an example where a new URI (u7) takes the identifier of an
existing one (u3).

3. If u′ has an identifier while u has not, u gets the same identifier as u′

4. If both URIs have the same identifier, the algorithm continues
5. If the URIs have a different identifier, these identifiers are concatenated to

the lowest identifier. In case of Table 4.4, both URIs exist in the SameAsCat
and have a different identifier. For this reason, the classes of equivalence of
these identifiers are merged.

We can say that the algorithm constructs incrementally chains of sameAs URIs
where each URI becomes a member of a chain if and only if there is a sameAs

relationship with a URI which is already member of this chain. Its correctness is
based on the following proposition.

Proposition 1 If (a, b) ∈ SM(B) and (a, c) ∈ SM(B) then (b, c) ∈ C(SM(B)).

56 CHAPTER 4. CONNECTIVITY OF SEVERAL LOD DATASETS

Proof. 1 Firstly, (b, a) ∈ C(SM(B)) because of symmetry. By taking the transi-
tive closure of (b, a), (a, c), we get that (b, c) ∈ C(SM(B)).

Its benefit is that it needs only one pass for each sameAs pair in order to
compute the transitive and symmetric closure, and its time complexity is O(n),
where n is the number of sameAs pairs. However, it is needed to keep in memory
chains of sameAs in order to connect such chains with new sameAs relationships.
Indeed the space complexity is O(m), where m is the number of unique URIs
that occur in sameAs pairs, since in the worst case each URI is saved both in
SameAsCat and in classes of equivalence until the end of the algorithm. Regarding
the size of the catalog we store for each URI a distinct arbitrary number. Since
each real world object is represented by exactly one identifier, the number of unique
identifiers in the SameAsCat is equal to the number of unique real world objects of
SM(B). In our running example, the sameAs catalog is shown in Figure 4.1 (step
2).

ID URIs

1 u1, u2
2 u3, u4

Table 4.1: Classes of Equivalence

ID URIs

1 u1, u2
2 u3, u4
3 u5,u6

Table 4.2: Insert u5 sameAs u6

ID URIs

1 u1, u2
2 u3, u4,u7

3 u5, u6

Table 4.3: Insert u3 sameAs u7

ID URIs

1 u1, u2,u3,u4,u7

2 u3, u4, u7
3 u5, u6

Table 4.4: Insert u1 sameAs u3

Algorithm 1 shows in details how to find the classes of equivalence of each
URI and how to produce the sameAs catalog. With Left(r) we denote the set
of elements that occur in the left side of a binary relation or function r, with
Right(r) the set of elements that occur in the right side of r and with [u] the
class of equivalence of u. Firstly, it reads a number of pair of URIs {u, u′}. When
both URIs have not an identifier, a new identifier is assigned to both of them
(lines 4-5) and a new class of equivalence is created (line 6). If u has an identifier
while u′ has not, u′ gets the same identifier as u (lines 9-10) while u′ is added in
[u]. Analogously, for the case when u′ has an identifier while u has not (lines 12-
13). When the URIs have a different identifier (i.e., they are members of different
classes of equivalence), their classes of equivalence are merged (line 15) while each
URI of the resulted class of equivalence gets the lowest identifier (lines 16-18). On
the contrary, if both URIs have the same identifier (i.e., they are members of the
same class of equivalence), the algorithm continues with the next pair. In our
implementation we use two HashMaps: the first for each URI (key) it keeps its
signature (value), while the second for each signature (key) it keeps the set of URIs

4.1. THE PROPOSED INDEXES 57

that have this signature (value). In case of executing rule 5, the URIs of the two
signatures of the second HashMap are merged in the lowest signature, while the
entry of the highest signature is removed. The signature of URIs having previously
the highest signature (of the two) should also be updated in the first HashMap.

Algorithm 1 Same As Catalog Creation

Input: SM(B)
Output: A catalog containing for each class of equivalence a signature.
1: ID ← 1
2: for all (u, u′) ∈ SM(B) do
3: if u /∈ Left(SameAsCat) and u′ /∈ Left(SameAsCat) then
4: SameAsCat(u)← ID
5: SameAsCat(u′)← ID
6: [u]← {u, u′}
7: ID ← ID + 1
8: else if u ∈ Left(SameAsCat) and u′ /∈ Left(SameAsCat) then
9: SameAsCat(u′)← SameAsCat(u)

10: [u]← [u] ∪ {u′}
11: else if u /∈ Left(SameAsCat) and u′ ∈ Left(SameAsCat) then
12: SameAsCat(u)← SameAsCat(u′)
13: [u′]← [u′] ∪ {u}
14: else if Right(SameAsCat(u)) 6= Right(SameAsCat(u′)) then
15: [u]← [u] ∪ [u′]
16: minID ← min(Right(SameAsCat(u)), Right(SameAsCat(u′)))
17: for all uj ∈ [u] do
18: SameAsCat(uj)← minID

19: return SameAsCat

Alternatively, one can use Tarjan’s connected components (CC) algorithm [59]
that uses Depth-First Search (DFS). The input of CC algorithm is a graph which
should be created before running the algorithm. For this reason, we read all the
sameAs pairs once O(n) (i.e., each sameAs represents an edge) in order to construct
the graph. The time complexity of CC algorithm is O(m+n). Regarding the space,
the creation of graph requires space n + 2m because the graph is undirected and
we should create bidirectional edges while the CC algorithm needs space O(m),
since in the worst case it needs to keep in DFS stack all the nodes (i.e., unique
URIs). However, the graph should be loaded in memory in order to run the CC
algorithm, thereby the total space needed is O(n +m). In §4.3.1 we compare the
execution time of the two aforementioned approaches.

4.1.5 Element Index

Rationale: ElementIndex is essentially a function ei : U ∪ SID → P(D) where
ei(u) = dsets∼(u) which is needed for finding fast the datasets to which a URI

58 CHAPTER 4. CONNECTIVITY OF SEVERAL LOD DATASETS

appears. To reduce its space we can avoid storing URIs that occur in only one
dataset (this information can be obtained by the PrefixIndex).

We can identify two basic candidate data structures for this index: (1) a bit
array of length |D| that indicates the datasets to which each element belongs
(each position in the bit string corresponds to a specific dataset), or (2) an IR-like
inverted index [73], in which for each URI store the ID of the datasets (a distinct
arbitrary number). A bitmap index for each element of U∪SID keeps a bit array of
length |D|, therefore its total size is |U∪SID|∗|D| bits. An inverted index for each
element of U ∪ SID keeps a posting list of dataset identifiers. If ap is the average
size of the posting lists, then the total size is |U ∪ SID| ∗ ap ∗ log |D| bits (where
log |D| corresponds to the required bits for encoding |D| distinct identifiers). If we
solve the inequality Bitmap ≤ InvertedIndex, we get that the size of bitmap is

smaller than the size of inverted index when ap > |D|

log |D|
.

Construction Method: Algorithm 2 creates the element index while considering
the aforementioned indexes (this algorithm can be used for both types of data
structures). With Left(r) we denote the set of elements that occur in the left
side of a binary relation or function r, and with [u] the class of equivalence of u.
Figure 4.1 (middle-right) shows the resulted index for our running example. The
combination of the first and the second column of the element index represents the
inverted index of the running example, while the combination of the first and the
third represents the element index with a bit array of length n (instead of datasets
IDs).

Returning to Algorithm 2, at first, if a URI u (of a dataset Di) belongs to
the SameAsCat (assuming that each class of equivalence involves URIs that occur
in different datasets) it is added to the element index an entry comprising the
identifier of u (taken by the SameAsCat) and the dataset ID of Di (lines 3-5).
For instance, URI yq:Aristotle exists in SameAsCat(see Figure 4.1), thereby, its’
identifier and dataset ID is added to the element index. When the identifier already
exists in the element index, the corresponding entry is updated by adding only the
dataset ID (line 7). When u does not exist in the SameAsCat, the next step is
to check if u already belongs to the element index (because it was encountered
previously). Then the index entry of u is updated by adding the dataset ID (lines
8-9).

The last step (if the two previous failed) corresponds to URIs that neither
belongs to Left(SameAsCat) nor to Left(ei). In this step, we exploit PrefixIndex
by using the function pi for taking the datasets containing the namespace nm of
u (line 12). One approach is to add ei([uj]) ← {i} if the nm of uj exists in two
or more datasets. In this way, at the end the ei could contain URIs that occur in
one Di. For this reason, such URIs should be deleted at the end (an extra step is
required). Alternatively, one can perform an extra check for ensuring that a URI
exists in at least two datasets and this is what is described in lines 12-17.

Let ask(u,Dk) = ”ASK Dk { u ?p ?o } ∪ { ?s ?p u }” be an ASK query
for a URI u and answer(ask(u,Dk)) a function which returns either true or

4.1. THE PROPOSED INDEXES 59

false. At first, we find which datasets contain URIs containing the namespace
nm. In particular, we read the datasets IDs that pi(nm) returned in reverse
order and we send ASK queries only to a dataset Dk that contain more URIs
containing nm (starting from the Dk with the most URIs for nm). In case of
answer(ask(u,Dk)) = true, a new entry is added to ei which is composed of u
and the IDs i and k. For instance, the prefix en wiki can be found in all datasets.
However, for the URI en wiki:san diego of dataset NYT (with ID 1), we do not send
a query since NYT dataset contains the most URIs for en wiki prefix. For the same
URI en wiki:san diego of dataset Yago (with ID 3) the first step is to send an ASK
query to NYT source. In this case answer(ask(en wiki:san diego,NY T)) = true,
therefore we create a new entry to ei for this URI and we add both the IDs of
NYT and Yago. On the contrary, for URIs starting with prefixes that exist only in
one dataset (e.g., yg:Socrates), the algorithm continues without sending any ASK
query (see §4.1.3). The approach with the ASK queries is the only one that can
be used if the data cannot fit in memory. On the contrary, when the required
memory space is available it is faster to keep the URIs until the end (and then
remove them that do not occur in ≥ 2 datasets).

Algorithm 2 Element Index Creation

Input: A set of URIs Ui for each dataset, the SameAsCat and the PrefixIndex
Output: An element index ei of real world objects that exist in ≥ 2 datasets
1: for all Di ∈ D do
2: for all uj ∈ Ui do
3: if uj ∈ Left(SameAsCat) then
4: if [uj] /∈ Left(ei) then ⊲ signature of uj
5: ei([uj])← {i}
6: else
7: ei([uj])← ei([uj]) ∪ {i}

8: else if uj ∈ Left(ei) then
9: ei(uj)← ei(uj) ∪ {i}

10: else if uj /∈ Left(SameAsCat) ∪ Left(ei) then
11: nm← namespace(uj)
12: for all Dk ∈ pi(nm) in reverse order do
13: if Dk = Di then
14: break
15: if answer(ask(uj ,Dk)) = true then
16: ei(uj)← {i, k}
17: break
18: return ei

Algorithm 2 reads each u ∈ Ui once for all Di ∈ D, thereby the complexity
is O(y) where y is the sum of |Ui|. Alternatively, one can use a straightforward
method (sf) that finds the intersections of all subsets in P(D). In a straightforward

60 CHAPTER 4. CONNECTIVITY OF SEVERAL LOD DATASETS

method, the URIs are sorted lexicographically in order to perform binary searches
for finding the common URIs of any subset. In particular, for each subset B ∈
P(D), for all the URIs (e.g., U1) of the smallest dataset (regarding the size of URIs)
one or more binary searches are performed, starting from the second smallest
dataset (e.g., U2) and so forth. Regarding the complexity, in case of having n
datasets inside the subset B, in the worst case we should perform for each URI
in U1 a binary search for each of the n − 1 remaining datasets. For all subsets
of D the complexity becomes exponential, since there exists 2|D| possible subsets,
thereby the cost is O(2|D|n log n). In §4.3.1, we show experiments for comparing
the execution time of the index approaches and the straightforward method.

Ordering the Prefix Index for Reducing the ASK Queries

In Algorithm 2 we send ASK queries only to the datasets containing more URIs
than Di for prefix p. Here, we describe a) how different combinations of the
dataset IDs sequence in prefix index produce different numbers of ASK queries
and b) why the proposed ordering reduces the number of ASK queries. Let Up =
{u ∈ Ui | namespace(u) = p } and U ′

i = Ui ∩ Up. Let pos return the dataset ID
of specific position for a prefix p list, i.e. it is a function pos : Z→ Z>0 and let n
be the number of the different datasets having |U ′

i | > 0.

Suppose that we store the dataset IDs for each prefix randomly. It means that
we do not take into account the frequency of the URIs of a prefix in each dataset.
In the example of Table 4.5 we can see the size of each U ′

i for a prefix p. Table
4.6 shows the number of ASK queries for the worst case in which for each pair
〈Di,Dj〉 we should check ∀ ui s.t. ui ∈ U ′

i the result of answer(ask(ui,Dj)).
The formula that we use in Table 4.6 follows: Asks = |U ′

pos(0)| ∗ (n−1)+ |U ′
pos(1)| ∗

(n− 2) + ...+ |U ′
pos(n−1)| ∗ 0.

Concerning the sequence 〈D1,D2,D3〉, in the worst case the number of ASK
queries is: Asks = |U ′

1| ∗ 2 + |U ′
2| = 2, 005, 000 ASK queries. In particular, we

send 2 ∗ |U ′
1| Ask queries in order to check for each URI u1, where u1 ∈ U ′

1, if
answer(ask(u1,D2)) = true or answer(ask(u1,D3)) = true. Then, for each u2
we send |U ′

2| Ask queries (e.g., for each u2 ∈ U ′
2 we check if answer(ask(u2,D3)) =

true). Concerning the sequence 〈D2,D3,D1〉, for the worst case the number of
ASK queries is: Asks = |U ′

2|∗2+|U
′
3| = 20, 000 ASK queries. In the aforementioned

sequence the datasets are in ascending order w.r.t. the frequency of URIs starting
with p in Di (the order that we follow in PrefixIndex).

Additionally, the fact that we start to send ASK queries for a URI containing
a prefix p from the dataset with the most URIs starting with p makes it more
possible the answer of first ASK query to be true. In fact, the dataset containing
the most URIs for a prefix is usually the dataset of the publisher of this prefix’
URIs.

4.2. THE LATTICE OF MEASUREMENTS 61

U ′
i Freq. of p

U ′
1 1,000,000

U ′
2 5,000

U ′
3 10,000

Table 4.5: Frequency for a prefix p

Position 0,1,2 ASKs

D1,D2,D3 2,005,000
D1,D3,D2 2,010,000
D2,D1,D3 1,010,000
D2,D3,D1 20,000
D3,D1,D2 1,020,000
D3,D2,D1 25,000

Table 4.6: ASKs per combination for
the worst case

4.2 The Lattice of Measurements

After the creation of the element index, we can compute the commonalities between
any subset of datasets in D. For (a) speeding up the computation of the intersec-
tions of URIs and (b) visualizing these measurements (for aiding understanding),
we propose a method that is based on a lattice (specifically on a meet-semilattice).
If the number of datasets is not high, the lattice can be shown entirely, otherwise
(i.e. if the number of datasets is high) it can be used a navigation mechanism, e.g.
the user could navigate from the desired dataset (at the bottom layer) upwards, as
a means for dataset discovery. Specifically, we propose constructing and showing
the measurements in a way that resembles the Hasse Diagram of the poset, par-
tially ordered set, (P(D),⊆). The lattice can be represented as a Directed Acyclic
Graph G = (V,E) where the edges point towards the direct supersets, i.e. each
directed edge starts from a set B and points to a superset B′, where B ⊂ B′ and
|B| = |B′|−1 (i.e. there exists exactly one element of B′ which is not an element of
B). The empty set is the unique source node of G (i.e., node with zero in-degree)
and the set containing all the datasets (i.e. D) is the unique sink node of G (i.e.,
node with zero out-degree). A lattice of D datasets contains |D|+1 levels while
the value of each level k (0 ≤ k ≤ |D|) indicates the number of datasets that each
subset of level k contains (e.g., level 2 corresponds to pairs). For computing the

measurements that correspond to each node (of the 2|D| nodes), one could follow
a straightforward approach, i.e. scan the entire element index once per each node,
but that would require exponential in number scans, hence prohibitively expensive
for high number of datasets. To tackle this problem, below we introduce (i) a top-
down and (ii) a bottom-up lattice-based incremental algorithm that both require
only one scan of the element index for computing the commonalities between any
set of datasets. We should stress that it is not required to compute the entire
lattice, one can use the proposed approach for computing only the desired part of
the lattice and its incremental nature can offer significant speedups (as we shall
see in §4.3.2).

62 CHAPTER 4. CONNECTIVITY OF SEVERAL LOD DATASETS

Level Subsets

0 0000:{}
1 1000:{D1},0100:{D2} 0010:{D3},0001:{D4}
2 1100:{D1,D2},1010:{D1,D3},1001:{D1,D4}

0110:{D2,D4},0101:{D2,D4},0011:{D3,D4}
3 1110:{D1,D2,D3},1101:{D1,D2,D4}

1011:{D1,D3,D4},0111:{D12,D3,D4}
4 1111:{D1,D2,D3,D4}

Table 4.7: Subsets of four datasets in normal and binary representation

4.2.1 Lattice Construction

Here we describe how to build the nodes and the edges of the lattice of |D| datasets.
In the following algorithms, each subset is represented as a binary number b. Each
dataset is associated with a position in these numbers, and a ′1′ in that position
signifies its presence, e.g. the set of datasets {D3,D4} is represented by b = 0011.
Table 4.7 shows how each subset of a power set of four datasets can be represented
as a binary number.

Algorithm 3 finds all the subsets of |D| datasets recursively. The algorithm
starts by adding the empty set (lines 6-7) and continues with the next level by
using an iteration. In each iteration a “0” is replaced by a “1” (line 10) which
means that a new dataset is added (line 11). Moreover, when a new subset (e.g.,
subset with b = 1100) is found, the algorithm keeps stable the binary number until
the position of the last “1” (e.g., b=1100) and recursively finds all the supersets
of this subset (lines 12-13). In particular, the main notion is that each recursion
cycle ends only if all the supersets of a specific subset have been produced until
that time. The complexity of this algorithm is O(2|D|) since each subset is found
once. Figure 4.2 shows the exact sequence of the creation of the power set by
using Algorithm 3. A directed edge from a lower level to a higher level shows a
recursive call, while a dashed directed edge indicates the end of a recursive call.
On the contrary, a directed edge connecting two nodes of the same level represents
an iteration.

Afterwards, by using Algorithm 4, we can find the incoming edges for all nodes
of the lattice by replacing each position having a ’1’ with a ’0’ without changing the
values of the other positions. The input is all the subsets of the power set which
were computed by Algorithm 3. The algorithm reads all the nodes (lines 3-4) and
for each node replaces each position having a ’1’ with a ’0’ without changing the
values of the other positions (lines 8-10). For example, the incoming edges of the
subset with b = 0111 are 0011 0101 and 0110. The complexity of this algorithm is
O(2|D|) since each subset is read once.

Finally, we can optimize Algorithm 3 based on the following observation. Let
k be a level where k = 0, ..., (|D| + 1)/2 where |D| corresponds to the number of
datasets. Moreover, let k′ be a level where k′ = |D| − k. The number of subsets

for the level k′ is binomialCoefficientk′ =
|D|!

k′!(|D|−k′)!
= |D|!

(|D|−k)!(|D|−(|D|−k))!
=

4.2. THE LATTICE OF MEASUREMENTS 63

Algorithm 3 Create Lattice Nodes

Input: |D|: the number of datasets
Output: All the subsets for each level of the lattice
1: char bitArray[D]
2: for i ← 0 to |D − 1| do
3: bitArray[i]← 0

createLatticeNodes(bitArray,0,0)
4:

5: function createLatticeNodes(char[] bitArray, int stableDigits, int level)
6: if (level = 0) then
7: subsets(level)← subsets(level) ∪ bitArray

8: level ← level + 1
9: for i ← stableDigits to |bitArray.size− 1| do

10: bitArray[i]← 1
11: subsets(level)← subsets(level) ∪ bitArray
12: if (i+ 1 < |bitArray.size|) then
13: createLatticeNodes(bitArray,i+1,level)

14: bitArray[i]← 0

Figure 4.2: Lattice Nodes Creation Sequence

64 CHAPTER 4. CONNECTIVITY OF SEVERAL LOD DATASETS

Algorithm 4 Create Lattice Edges

Input: All the subsets of the lattice
Output: Finds all incoming edges for each subset of the lattice
1: function Create Lattice Edges(subsets)
2: level ← 1
3: while level ≤ subsets.levels do
4: for all Bi ∈ subsets(level) do
5: char[] bitArray ← Bi

6: for i ← 0 to |bitArray.size− 1| do
7: if bitArray[i] = 1 then
8: bitArray[i]← 0
9: edges(Bi)← edges(Bi) ∪ bitArray

10: bitArray[i]← 1

11: level ← level + 1
return edges

|D|!

(|D|−k)!k!
= binomialCoefficientk. This means that k and k′ always contain the

same number of subsets. For instance, in Figure 4.3, for k = 1 and k′ = |D| − k =
4 − 1 = 3, levels k and k′ contain four nodes. Moreover, the complement of each
node of k produces a node of k′. For example, in Figure 4.3, all the nodes of the
third level {0111, 1011, 1101, 1110} can be produced from the complement of first
level’s nodes {1000, 0100, 0010, 0001} and the node of the fourth level {1111} can
be produced from the complement of the node of level zero {0000}. Therefore,
there is no need to explore the last (|D|+ 1)/2 levels, since they can be produced
from the first (|D|+ 1)/2 levels.

4.2.2 Making the Measurements of the Lattice Incrementally

For a subset B, let directCount(B) denote its frequency in the element index, i.e.
directCount(B) = | { u ∈ Left(ei) | ei(u) = B } |.
We can compute these counters by scanning the element index once (in our running
example, the outcome is shown in Step 4 of Figure 4.1). Now let Up(B) = {B′ ∈
P(D) | B ⊆ B′, directCount(B′) > 0}. The key point is that for a subset B, the
sum of the directCount of Up(B) gives the intersection of the real world objects
of the datasets in B, i.e.

co∼(B) =
∑

B′∈Up(B)

directCount(B′) (4.9)

because the URIs belonging to the intersection of a superset certainly belong to
the intersection of each of the subsets of this superset, as stated by the following
proposition.

4.2. THE LATTICE OF MEASUREMENTS 65

Figure 4.3: Lattice Traversal (BFS and DFS)

Proposition 2 Let F and F ′ be two families of sets. If F ⊆ F ′ then ∩S
S∈F ′

⊆ ∩S
S∈F

.

(The proof can be found in [36].)

Now we will describe the two different ways for computing the entire lattice or
a part of it.

The top-down approach starts from the maximum level having at least one
subset B such that B ∈ Left(directCount). At first, we add B to Up(B) if
B ∈ Left(directCount) and then we compute co∼(B). Afterwards, the list Up(B)
of the current node is “transferred” to each subset B′ of the lower level since
B′ ⊆ B implies Up(B) ⊆ Up(B′). For example, if 1110 ∈ Up(1110) then
surely 1110 ∈ Up(1100). After finishing with the nodes of the current level,
we continue with the nodes of the previous level, and so on. We avoid passing
from subsets having co∼(B) = 0 by starting from the maximum level having at
least one subset B where B ∈ Left(directCount) (i.e., all the nodes being in a
greater level have co∼(B) = 0) and by creating a node B for the remaining levels
only if |Up(B)| > 0. As an example, in Figure 4.3 the second (middle) box of
each node indicates the order by which it is visited. As we can see, we start
from the maximum level (e.g., level 4) and we continue with the triads and finally
with the pairs. The dashed edges represent the edges that are created by the
algorithm. In our running example (see Figure 4.1), we can observe in Step 6 the
final intersection value of each nodes and all the Up(B) for each subset B. For
instance, we observe that the Up(1001) are the subsets 1111, 1011 and 1001. If
we sum their directCount, we find co∼(1001), which is 5.

The time complexity of this algorithm is O(|V |+ |E|), where |V | is the number

of vertices (|V | = 2|D|) and |E| the number of edges, and it holds that |E| =

|D| ∗ 2(|D|−1). As regards memory requirements, this algorithm will create all
edges for each node and it has to keep in memory each subset B (and Up(B)) of a

specific level k (the number of nodes Vk of level k is given by Vk =
(|D|

k

)

) because
the traversal is BFS (breadth-first search).

66 CHAPTER 4. CONNECTIVITY OF SEVERAL LOD DATASETS

In the bottom-up approach we first assign the Up(B) to each subset B of
level two (the level that contains nodes of each pair of datasets) and we continue
upwards. However, and in order to reduce the main memory requirements, instead
of covering entirely each level before going to its upper level, we follow a kind of
Depth-First Search (DFS). We will call it DFS although we could also call it
“Height First Search” since it starts from the leaves and goes towards the root.
The visiting order of the nodes of the example of Figure 4.3 is shown in the
third (bottom) box of each node. Again, the co∼(B) of a node is computed by
adding the directCount of Up(B). However, a part of the list (or the whole list)
Up(B) of the current node is “transferred” to each superset B′ (where B′ ⊃ B)
of the next level that has not been visited yet. In this way, we visit once each
node and this lead to a total cost of one incoming edge per node, i.e. |V | edges

(|V | = 2|D| for the whole lattice) instead of the |D|∗2(|D|−1) edges of the top-down
approach. Moreover, we avoid again passing from subsets having co∼(B) = 0
since we know that when co∼(B) = 0 and B ⊂ B′ then co∼(B

′) = 0 (i.e. see
Prop. 2). The time complexity of this algorithm is O(|V |), where |V | is the
number of vertices. Indeed, it passes once from each node and it creates one edge
per node (|V | + |V |). Moreover, it needs space O(d) where d is the maximum
depth of the lattice (in our case d is the maximum level having at least one B
where co∼(B) > 0). However, we should take into account the cost of checking
which of the elements of Up(B) belong to Up(B′) since we cannot transfer all the
Up(B) to B′ (because B′ ⊇ B 6⇒ Up(B) ⊆ Up(B′)), e.g. in our running example
1110 ∈ Up(0110) but 1110 /∈ Up(0111).

Cost analysis. If Bi in Left(directCount), let bits1(Bi) be the number of
1’s in Bi (e.g. bits1(1110) is 3), and obviously 2 ≤ bits1(Bi) ≤ |D|. Each such
Bi belongs to the Up(B) of 2bits1(Bi) − 1 subsets (we subtract 1 for the empty
set). Since for each such Bi, we have to perform 2bits(Bi) checks (i.e., one check
when traversing the list of directCount nodes and |2bits1(Bi) − 1| checks when
traversing the lattice), it follows that the total cost of such checks is checkCost =
|
∑C

i=1 2
bits1(Bi)|, where C is the number of nodes occurring in Left(directCount),

i.e. C = |{ei(u) | u ∈ U ∪ SID}|. It is essentially the cardinality of the codomain
of ei and obviously, C ≤ |U ∪ SID| (as we shall see in the experiments C ≃ 0.1%
of |U ∪ SID|).
Comparison. Both algorithms pass from all nodes having co∼(B) > 0. The top-
down approach requires creating |D|/2 times more edges, however the bottom-up
approach has the additional checkCost.

Proposition 3 If the frequency of URIs to datasets follows a power-law distribu-
tion (specifically if we group and order in descending order the directCount nodes
according to their number of bits, and assume that the number of nodes of the n-th
category (2 ≤ n ≤ |D|) is given by f(n) = k ∗ (m/2)n−2, where k is the number
of such nodes having bits1(B) = 2, m/2 is the reduction factor (1 < m ≤ 2),
and assume k = |D2|/4), then the bottom-up approach is more efficient than the

top-down if |D|2 ∗ m|D|−1−1
m−1 < (|D| − 2) ∗ 2|D−1|.

4.2. THE LATTICE OF MEASUREMENTS 67

Figure 4.4: CheckCost vs extra edges for various m

Proof sketch: The bottom-up approach is better than the top-down when checkCost <
extra edges of the top-down. If we subtract the edges of the bottom-up approach
(i.e., 2|D|) from the edges of the top-down approach (i.e., |D| ∗ 2|D|−1) we get

(|D|−2)∗2(|D|−1). Now let calculate checkCost for the assumed power-law distri-
bution. The n-th category (each node Bn of the n-th category has bits1(Bn) = n)
of nodes has k∗(m/2)|bits1(Bn)|−2 nodes and k∗(m/2)|bits1(Bn)|−2∗2|bits1(Bn)| checks.

The corresponding sum (i.e., of checks) leads to checkCost = 4k ∗ m|D|−1−1
m−1 . By

assuming k = |D2|/4 (which is quite reasonable based on our experiments) we get
the inequality of the proposition.

As it is shown in Figure 4.4, it follows that (a) form ≈ 1 (i.e., nodes are reduced
by half as categories grow), the bottom-up approach is better that the top-down
when |D| > 6, (b) for m = 2 (i.e., each category has the same number of nodes)
top-down is always better, whereas (c) for m = 1.6 the bottom-up traversal is more
efficient than the top-down for |D| ≥ 17. The experiments in §4.3.2 are explained
by this analysis, and we identify the same trade-off form = 1.6. As regards memory
requirements, the top-down approach needs significantly more space since it keeps

in the worst case in memory the nodes of a specific level k (i.e.,
(|D|

k

)

nodes) whose
number can be huge for big lattices while the bottom-up at most |D| nodes (i.e.,
maximum depth is |D|). Finally, an alternative straightforward, but less efficient,
way to compute the lattice is to use a directCount scan (dcs) approach for each
subset. The complexity of dcs is O(|V | ∗ C) (exponential in number directCount
scans).

Computing a Part of the Lattice. Here we describe how one can compute
only parts of the lattice.
• Single Node. For computing a specific nodeB, we can scan all Bi ∈ Left(directCount)
and sum all the directCount(Bi) if Bi ∈ Up(B). Its complexity is O(C).

• Threshold-based Nodes. For computing only the co∼(B) of subsets that satisfy
a specific threshold (e.g., co∼(B) ≥ 20), it is beneficial to use the bottom-up
approach. Indeed, fewer nodes will be created since we can exploit Prop. 2 to
avoid creating nodes that are impossible to satisfy the threshold.

• Lattice of a subset of Datasets. For computing only the nodes of the lattice that
contain datasets only from a particular subset D′ (D′ ⊂ D), the previous analysis
as regards the two types of traversal holds also in this case. The only difference

68 CHAPTER 4. CONNECTIVITY OF SEVERAL LOD DATASETS

is that here instead of using the original directCount we use directCount(B,D′)
defined as directCount(B,D′) = | { u ∈ Left(ei) | B = ei(u) ∩D′}| which can
be produced by scanning once the element index.
• All Nodes containing a particular dataset. For computing only the nodes of the
lattice that contain a particular subset Di (Di ∈ D), we follow a similar approach,
i.e. instead of using the original directCount we use directCount(B,Di) defined
as directCount(B,Di) = | { u ∈ Left(ei) | ei(u) = B and Di ∈ B } |.

Finally, Figure 4.5 presents the lattice concerning the common URIs for the
MarineTLO warehouse. One can see that the number of common URIs of DBpedia,
FishBase, and Ecoscope are more than the number of common URIs among the
subsets of the same level, while 74 common URIs are included in all datasets.

Figure 4.5: Common URIs Lattice for MarineTLO Warehouse

4.3. EXPERIMENTAL EVALUATION 69

Domain |D| |Triples| |URIs|

Cross Domain (CD) 19 293,129,862 103,281,343
Geographical (GEO) 14 155,591,494 34,169,442
Life Sciences (LF) 17 66,684,349 9,725,521
Government (GOV) 45 61,189,128 6,896,850
Publications (PUB) 76 53,930,138 10,932,689
Media (MED) 9 15,267,271 4,434,038
Linguistics (LIN) 8 9,128,072 2,059,465
Social Networking (SN) 96 2,451,093 561,686
User Content (UC) 16 1,059,255 308,193
All 300 658,430,662 172,369,227

Table 4.8: Datasets Statistics

4.3 Experimental evaluation

Here we report the results of two kinds of experiments: a) interesting measurements
over the entire LOD, and b) measurements that quantify the speedup obtained by
the introduced techniques. We used a single machine having an i7 core, 8 GB
main memory and 1TB disk space, and the triplestore Openlink Virtuoso1 Version
06.01.3127 for uploading the datasets and for sending SPARQL ASK queries.

Datasets. The set of datasets that was used in the experiments contains 300
datasets which were collected from the following resources: (a) the dump of the
data which were used in [57], (b) online datasets from datahub.io website, and
(c) subsets of (i)DBpedia version 3.9, (ii) Wikidata, iii) Yago and iv) Freebase.
Table 4.8 shows the number of datasets, triples and URIs for each domain (in
descending order w.r.t. their size in triples). Most datasets are from the social
networking domain, however, most of them contain a small number of triples and
URIs. On the contrary, 68% of triples and 79.7% of URIs are part of cross domain
and geographical datasets although their union contains 33 (of 300) datasets. The
selected set of datasets is quite representative and adequately large for the needs
of this thesis (658 million triples, powerset of |D| = 300 containing 2300 elements)
given that the parallelization of the process is beyond the scope of this thesis.

4.3.1 Measurements over the Datasets

Statistics derived by the Indexes. Table 4.9 synopsizes some interesting statis-
tics for the datasets and the creation of the element index. Firstly, according to
the prefix index, each dataset’s URIs contains on average 212 different prefixes.
Element index contains 6.2 million real world objects (rwo). As one can see, there
are 3,293,248 rwo (2.3% of all the rwo) which are part of three or more datasets.
This percentage corresponds to 12,296,650 URIs (8% of unique URIs). The num-
ber of unique B having directCount(B) > 0 are 5,399, i.e. 0.1% of ei size. We

1http://virtuoso.openlinksw.com/

70 CHAPTER 4. CONNECTIVITY OF SEVERAL LOD DATASETS

Category Value

Prefix Index Size 63,803
Unique Real World Objects 141,269,960
Element Index Size (rwo) 6,242,344
Element Index Size (URIs) 17,840,499
Asks Number 6,684,242
rwo in 3 or more Di 3,293,248
URIs corresponding to rwo in 3 or more Di 12,296,650
Num. of Lattice Nodes (threshold ≥ 30) 130,525,631
Num. of Lattice Nodes (threshold ≥ 20) 1,541,968,012

Table 4.9: Index Creation Statistics
Category Value

SameAs Triples 13,158,621
SameAs Catalog Size 18,789,593
SameAs Triples Inferred 19,450,107
Pairs sharing at least 1 real world object 6,708
New Pairs discovered due to SameAs Alg. 2,393
Triads sharing at least 1 real world object 74,432
New Triads discovered due to SameAs Alg. 48,658
SameAs Unique IDs 6,218,958

Table 4.10: SameAs Catalog Statistics

used the aforementioned directCounts for computing the co∼(B) of 130 million
lattice nodes (all pairs, triads, quads, quintets and each subset B where |B| ≥ 6
and co∼(B) ≥ 30) in 3.5 minutes and the co∼(B) of 1.5 billion nodes (having
co∼(B) ≥ 20) in 35 minutes by using the bottom-up traversal that described in
§4.2.2. Finally, we excluded from this computation URIs belonging to rdf , rdfs,
owl and popular ontologies such as foaf .

Gain from transitive and symmetric closure computation. Regarding the
sameAs catalog, Table 4.10 shows some statistics derived by the computation of
transitive and symmetric closure. The computation of closure had as a result
2,393 new pairs (35.6% of the number of all connected pairs) and 48,658 new
triads (65.3%) that have at least one common real world object (without taking
into account URIs belonging in popular ontologies). Moreover, the algorithm found
more than 19 million new sameAs relationships. Indeed, the increase percentage of
sameAs triples was 147.8%. The unique URIs of the sameAs catalog are 18,789,593
while the different rwo are 6,218,958. It means that on average there are 3 URIs
for a specific real world object. Finally, Figure 4.6 shows how many pairs exist for
a number of rwo threshold (e.g., threshold 10 means that two datasets shares at
least 10 rwo) and the analogous measurement for the triads.

Common real world objects among three or more datasets. Table 4.11
shows the ten subsets of size three or more having the most common real world
objects (e.g., in descending order according to the number of common rwo). The

4.3. EXPERIMENTAL EVALUATION 71

Figure 4.6: # of Pairs, Triads per
Threshold

Figure 4.7: Unique(RWO) - Max Subset
per Level

Datasets of subset B co
∼
(B)

1: {DBpedia,Freebase,Yago} 2,709,171
2: {DBpedia,Freebase,Wikidata} 1,950,319
3: {DBpedia,Yago,Wikidata} 1,435,713
4: {Yago,Freebase,Wikidata} 1,434,407
5: {DBpedia,Yago,Freebase,Wikidata} 1,434,404
6: {DBpedia,GADM,Freebase} 107,968
7: {DBpedia,GeoNames,Freebase} 98,985
8: {DBpedia,GADM,Wikidata} 96,968
9: {GADM,Freebase,Wikidata} 96,968
10: {DBpedia,GADM,Freebase,Wikidata} 96,968

Table 4.11: Top-10 Subsets ≥ 3 with the most common rwo

most connected triad contains three cross domain datasets. Particularly, the subset
comprising of the datasets DBpedia, Freebase and Yago shares 2.7 million of rwo
while the quad that contains also Wikidata (apart from these datasets) contains
1.43 million of rwo. Afterwards, combinations of cross-domain and geographical
datasets follows. The first triad that does not contain one of the aforementioned
datasets includes three datasets from the publication domain (d-nb.info, bnf.fr,
id.loc.gov) which share approximately 21 thousand rwo.

Figure 4.7 shows the unique real world objects and the maximum subset (e.g.,
subset with the most common rwo) per lattice level for each domain. The mix
corresponds to subsets that possibly contain datasets from more than one domain.
The most connected domain from level 3 to 6 is the cross domain whereas in the
remaining levels (from 7 to 15) the domain with the most common rwo is the social
networking domain. Moreover, regarding combinations with datasets from differ-
ent domains, there exist 8 datasets that shares approximately hundreds of rwo and
15 datasets sharing over a hundred of rwo. Most of these rwo predominantly refer
to geographical places and to popular persons. Generally, cross domain datasets
take part in the most combinations with datasets from different domains.

Top datasets containing frequent real world objects. Regarding the datasets

72 CHAPTER 4. CONNECTIVITY OF SEVERAL LOD DATASETS

Dataset Di rwo in ≥ 3 Di (% of Di rwo)

DBpedia 3,246,415 17.3%
Freebase 3,237,604 11.3%
Yago 2,712,930 48.0%
Wikidata 1,952,222 7.3%
GADM Geovocab 108,503 9.4%
GeoNames 102,747 0.4%
d-nb.info 65,076 4.2%
LinkedGeoData (LGD) 43,265 0.6%
Opencyc 34,313 26%
LMDB 30,225 2.3%

Table 4.12: Top-10 datasets with the most rwo existing at least in 3 datasets

URI Di Deg. Overall Deg. Incr. %

nyt:jordan michael 11 108 881%
yago:Socrates 12 102 702%
dbpedia:Aristotle 42 145 245%
dbtropes:JamesBond 41 85 107%

Table 4.13: Increase degree percentage for 4 Entities

having the most real world objects in a subset of three or more datasets, DBpedia is
the biggest dataset as we can observe in Table 4.12 (in ascending order with respect
to the number of rwo in three or more datasets). It is rational that DBpedia is first
in this category since it is the biggest hub of the LOD Cloud while the three other
popular cross domain datasets follow. The other datasets are predominantly from
the geographical domain while there exist datasets from the publications, media
and lifescience domain containing more than ten thousand of such rwo objects.
Additionally, 129 of 300 datasets (43%) contains at least hundreds of rwo that can
be found in three or more datasets. Moreover, we can see the percentage of the rwo
of each dataset that exist in three or more datasets. It is worth mentioning that
GeoNames and LinkedGeoData have the lowest percentages regarding the datasets
of Table 4.12 while the cross domain datasets the bigger ones.

Degree increase of entities due to connectivity. Table 4.13 shows for
each of the four URIs (a) the dataset degree (incoming and outgoing properties
of the URI in publisher’s dataset), (b) the overall degree (incoming and outgoing
properties of the URI in all the datasets) and (c) the increase percentage of the
degree. In particular, for the URI “dbpedia:Aristotle” in DBpedia there are 42
distinct triples containing this entity. After the integration of information, there
is a 245% increase in the degree of this URI, since there exists 145 distinct triples
containing data about the entity Aristotle.

Average degree of real world objects per level. Finally, we compute the
average degree of a number of real world objects according to the exact number
of datasets that they exist. In particular, we collect 90 random rwo for each level

4.3. EXPERIMENTAL EVALUATION 73

Figure 4.8: Average Degree for Real World Objects per Level

(e.g., 90 rwo existing exactly in one source, in two datasets and so on). In Figure
4.8 we can observe that as the number of datasets (in which rwo occurs) grows,
the average degree increases to a great extent. The average degree of rwo of level
two is two times higher than the degree of rwo of level one. It is worth noting
that the average degree of rwo existing in eight datasets is 889 (148 times higher
than degree of rwo of level one) while for rwo that are part of eleven datasets
the average degree is 9,483. It means that these rwo have 10 times higher degree
comparing to rwo of level eight and 1,580 times higher degree comparing to the
rwo of level one. Therefore, most rwo existing in many datasets are very popular
and are part of a big number of triples. Most of these rwo predominantly refers
to geographical places and to popular persons.

4.3.2 Efficiency of Measurements

Here we focus on measuring the speedup obtained by the introduced indexes and
their construction.

Savings by Prefix Index. Regarding the prefix index, the 89% of prefixes
exist only in one dataset. However, this percentage corresponds only to the 10.8%
of distinct URIs while the 11% of the prefixes to the 89.2% of URIs. In any
implementation (e.g., index approach with or without ASK queries), the URIs
starting with a prefix existing in one dataset can be ignored, therefore there is no
need to compare these URIs with others (e.g., by sending an ASK query or by
keeping them until the end). In our case, we ignored 16,689,866 URIs and we send
ASK queries for a URI of a specific dataset only to the other datasets having more
URIs for each prefix (see subsection 4.1.5). For this reason (e.g., the optimized
sequence of datasets in prefix index) 6.68 million ASK queries (1 ASK query per
19 URIs having a prefix that can be found in two or more datasets and does not
belong to a sameAs relationship) sent where in any random case the number could
be much bigger.

74 CHAPTER 4. CONNECTIVITY OF SEVERAL LOD DATASETS

Figure 4.9: SameAs Catalog
Construction time

Figure 4.10: Comparison of dif-
ferent approaches

SameAs Signature-Based vs Connected Components Algorithm. Here
we compare the signature-based algorithm (SBA) versus Tarjan’s connected com-
ponents (CC) algorithm [59] that uses Depth-First Search (DFS) and was described
in §4.1.4. We performed experiments for 3 to 9 million randomly selected sameAs

relationships and the results are shown in Figure 4.9. As one can see, the ex-
periments confirmed our expectations since the signature-based algorithm is much
faster than the combination of the creation of graph and CC algorithm while it
is even faster than the CC algorithm as the number of sameAs pairs increases.
Regarding the space, for 10 million or more pairs it was infeasible to create and
load the graph due to memory limitations. For this reason we failed to run the
CC algorithm, however, one can use techniques like those presented in [6] to over-
come this limitation. The signature-based algorithm needed only 45 seconds to
compute the closure of more than 13 million of sameAs pairs (which were used in
the experiments).

Index Approach vs Straightforward Method. Here we compare the ex-
ecution time of the following three methods that described in §4.1.5: (a) an index
approach without ASK queries (Index) (b) an index approach with ASK queries
(Index+ASK) and (c) a straightforward method (sf). For the index approaches we
include in the execution time the creation of the prefix index and the calculation
of lattice nodes by using the bottom-up approach that described in §4.2. Figure
4.10 shows the execution time in minutes for the aforementioned approaches for
varying number of |D|. The datasets of this experiment belong to the publications
domain and the number of URIs is approximately nine millions. As the number
of datasets grows, the execution time of the sf method increases exponentially.
On the contrary, the execution time of the Index approach ranges from 17 to 23
seconds. The Index+ASK approach needs more time comparing to the other two
approaches for 10-16 datasets. However, it is faster than the sfmethod for |D| > 16
since its execution time does not increase so much when new datasets are added.
In another experiment that is shown in Figure 4.11, we report the efficiency for
various values of |URIs| but with stable number of |D| = 17. The number of URIs
for these 17 datasets varies from 8,000 to 1,000,000. As one can see, the execution
time of both sf and Index+ASK methods increases linearly as the number of URIs
grows. In this experiment, the number of ASK queries increased linearly when

4.3. EXPERIMENTAL EVALUATION 75

Figure 4.11: Comparison with
stable |D| = 17

Figure 4.12: Execution Time of
Lattice creation

more URIs added. Indeed, the execution time of Index+ASK approach highly
depends on the number of ASK queries and their response time. Consequently,
in case of adding millions of URIs having a prefix that can be found only in one
dataset, the number of ASK queries will not be increased. Therefore, the execution
time will be increased less than linearly in that case. Finally, the Index approach
is again very fast and its execution time ranges from 5 to 27 seconds. In these
experiments it is evident that the Index approach is always faster than the other
approaches. Indeed, all the data fit in memory, thereby, it is more efficient to store
to the index all the URIs and remove the URIs that exists in one dataset in the
end. However, in the experiments of §4.3.1, where the data was infeasible to fit in
memory, we used the Index+ASK approach.

Computation of power set intersections. Here we compare the perfor-
mance of the two lattice incremental algorithms and the directCount scan (dcs)
approach for each subset which described in §4.2.2. We selected 24 datasets that
are highly connected (i.e., each subset of lattice has co∼(B) > 0) and the number of
directCount nodes for the lattice of these 24 datasets is approximately 1,000 (from
over 4 million rwo). In Figure 4.12, we can see that each incremental approach
is faster than the dcs approach. Concerning the incremental approaches, one can
clearly see the trade-off between the two approaches. Indeed, for lower number of
datasets the top-down approach is faster, since the cost of edges creation is lower
than the cost for checking the Up(B) of each subset B. As the number of datasets
grows (for ≥ 17 datasets), the bottom-up approach is faster, since the number
of edges (and their cost) increases greatly comparing to the cost of checking the
Up(B). Moreover, for |D| ≥ 25, it was infeasible to use the top-down approach
due to memory limitations while with the bottom-up approach we computed the
co∼(B) for more than 230 subsets as mentioned in §4.3.1.

76 CHAPTER 4. CONNECTIVITY OF SEVERAL LOD DATASETS

Chapter 5

Publishing and Exchanging
metrics

Here we discuss how the proposed metrics can be published and exploited. The
entire life cycle of these metrics is illustrated in Figure 5.1. In brief, at first
(i.e., step 1) we create the indexes (in case of LOD Cloud Datasets). Then, the
metrics can be computed (i.e., step 2) using SPARQL queries (i.e., for the semantic
warehouses) or Java code by using the proposed indexes and algorithms (i.e., for the
LOD Cloud datasets). Afterwards, the resulting measurements can be represented
using an extension of VoID (which is briefly described later) and can be published
in datahub.io or in an SPARQL endpoint (i.e., step 3). Finally, we can query and
exploit these measurements for a number of tasks (i.e., step 4). In this section,
we focus on steps 3 and 4 of Figure 5.1. More specifically, in §5.1 we describe the
proposed extension of VoID while in §5.2 we introduce a website having links to
novel services that exploit these metrics for the aforementioned tasks.

5.1 Publishing metrics through VoIDWH ontology

For publishing and exchanging these metrics we have used VoID [37]. VoID is an
RDF-based schema that allows expressing metadata about RDF datasets. It is
intended as a bridge between the publishers and the users of RDF data by making
the discovery and the usage of linked datasets an effective process. Note also that,
according to [57], about 15% of LOD datasets use VoID. The design of VoID
has been driven by representing a number of both domain-dependent features
(e.g., which type of data it contains) and domain-independent ones (e.g., who
published it). Conceptually, it has been built around the notions of void:Dataset,
void:Linkset and RDF Links. A void:Dataset is a set of RDF triples that are
published, maintained or aggregated by a single provider. A void:Linkset is a
collection of RDF Links between two datasets. An RDF Link is an RDF triple
whose subject and object are described in different void:Dataset. Based on Dublin
Core [54], VoID provides properties that can be attached to both void:Dataset and

77

78 CHAPTER 5. PUBLISHING AND EXCHANGING METRICS

Figure 5.1: The process of computing, publishing and querying metrics.

5.1. PUBLISHING METRICS THROUGH VOIDWH ONTOLOGY 79

void:Linkset to express metadata.

Apart from VoID, we have also used a particular extension [46], which is suffi-
cient for describing our metrics. In brief, we could say that this extension allows
the values of the various metrics to be expressed in a machine processable (and
query-able) manner. If such information is exposed in a machine-readable format,
it could be exploited in various ways, e.g.:

• For producing visualizations that give an overview of the LOD Cloud or
contents of a warehouse.

• For comparing different warehouses and producing comparative reports.
• For aiding the automatic discovery of related data since software services/a-

gents based on these metrics could decide which SPARQL endpoints to query
based on time/cost constraints.

• For crediting good sources since these metrics make evident, and quantifiable,
the contribution of a source to the warehouse.

An illustration of the main concepts we are using from VoID and its extension
is depicted in Figure 5.2.

Measurement Metric

void:Dataset

producesValue

rdfs:isDefinedBy

Configuration
accordingTo

carriedOutBy

dcterms:datedcterms:Event

Typology
of metrics

xsd:date

usesMetric

URI Equivalence Entity
Configuration

usesSPARQLquery
rdfs:Literal

rdfs:Resource

rdfs:isDefinedBy

rdfs:Literal

dcterms:Agent

subsetOf

Namespaces
rdfs : http://www.w3.org/2000/01/rdf-schema#
void: http://rdfs.org/ns/void#
dcterms : http://purl.org/dc/terms/
xsd: http://www.w3.org/2001/XMLSchema/

Figure 5.2: Schema for publishing and exchanging metrics.

We can see that there is the notion of measurement which is actually a spe-
cialization of event and therefore inherits the property date. A measurement is
carried out by an agent using a specific metric according to one (or more) config-
urations over one (or more) datasets (atomic or composite) and produces a value
(i.e., literal).

Each metric is an individual which means that it is assigned a URI and is
defined by a resource (e.g., the DOI of the scientific paper that defined that
metric). The notion of configuration concerns issues that explain how the mea-
surement was done. Furthermore we use two specializations of the configuration
class; the first concerns the way URI equivalence is defined, while the second

80 CHAPTER 5. PUBLISHING AND EXCHANGING METRICS

concerns how the entities of interest are defined. Regarding the latter the cur-
rent modeling allows someone to specify the desired set of entities by provid-
ing a SPARQL query that returns them. The extension is accessible at http:

//www.ics.forth.gr/isl/VoIDWarehouse, as well as in Linked Open Vocabular-
ies (LOV)1. More information about the exploitation of this extension for describ-
ing the MarineTLO-based warehouse can be found in [46].

5.2 Novel Services

In this section, we introduce ways to exploit measurements. In brief, we introduce
a 3D visualization that exploit such metrics, and a website containing answer-
able queries that can be used for dataset discovery and for obtaining complete
information about a URI (i.e., object coreference).

5.2.1 3D Visualization

Since there are many parameters the problem of understanding can be quite com-
plex. To further alleviate the difficulty, below we propose a 3D visualization that
can aid the user to get an overview.

We have adopted a quite familiar metaphor, specifically that of a urban area.
The main idea is to visualize each source of the warehouse as a building, while
the proximity of the buildings is determined by their common URIs and literals
(note that the number of sameAs relationships between their URIs could also
be considered). Finally, the number of sameAs relationships created by instance
matching, can be visualized as bridges (or strings) between the buildings.

In particular, each source Si corresponds to a building bi. The volume of the
building corresponds to |triples(Si)|. Since |triples(Si)| ≈ (|Ui|+ |Liti|+ |BNi|) ∗
Deg(Ui), (where BNi denotes the set of blank nodes of the source i) we decided to
set the height of the building analogous to |Ui|+ |Liti|+ |BNi|, and the footprint
of the building analogous to degSi

(Ui). Specifically, assuming square footprints:

height(bi) = |Ui|+ |Liti|+ |BNi| (5.1)

width(bi) =
√

degSi
(Ui) (5.2)

In this way, the volume of the building bi approximates |triples(Si)|; if its degree
is low it will become a high building with a small footprint, whereas if its degree
is high then it will become a building with big footprint but less tall. For getting
building sizes that resemble those of a real urban area, a calibration is required,
specifically we use an additional parameter K, through which we can obtain the
desired average ratio of height/width of the buildings. The new formulas are:

height(bi) = (|Ui|+ |Liti|+ |BNi|)/K (5.3)

1http://lov.okfn.org/dataset/lov/details/vocabulary_voidwh.html

5.2. NOVEL SERVICES 81

width(bi) =
√

degSi
(Ui) ∗K (5.4)

Urban building usually have height > width, so one approach for setting auto-
matically the value for K is to select the smallest K such heightavg > widthavg
(if one prefers to have 3 floor buildings he can select the smallest K such that
havg > 3∗widthavg). In our case for a desired ratio of around 5, we used K = 500.
Table 5.1 shows the building sizes of warehouse version 4.

Si |triples(Si)| |Ui| |Liti| |BNi| avg degSi
(Ui) Height Width

FLOD 904,691 159,042 115,573 27,812 6.28 604,8 167.9

WoRMS 1,382,748 51,649 217,759 271,352 4.43 1081.2 67.2

Ecoscope 61,597 6,145 14,122 896 10.78 42.3 163.7

DBpedia 782,479 114,556 130,287 32,890 6.90 555,5 144.6

FishBase 2,332,739 35,089 146,394 490,940 5.99 1344.9 68.9

CloneSource 641,586 47,794 46,716 54,932 9.86 298.9 135.6

Airports 88,714 12,027 25,901 0 7.55 75.9 62.5

Table 5.1: Buildings’ sizes.

Each building has a location, i.e., x and y coordinates. The more common
URIs and literals two source have, the closer the corresponding buildings should be.
Below we describe the approach for computing the locations of the buildings. We
can define the similarity between two sources (based on their common URIs/literals
and sameAs relationships), denoted by sim(Si, Sj), as follows:

sim(Si, Sj) =
1

2
(
|Ui ∩ Uj |

min(|Ui|, |Uj |)
+

|Liti ∩ Litj |

min(|Liti|, |Litj |)
) (5.5)

❅
❅Si

Sj FLOD WoRMS Ecoscope DBpedia FishBase CloneSource Airports

FLOD 1 0.0870 0.1007 0.03884 0.1330 0.0955 0.0516
WoRMS 1 0.0381 0.0914 0.3207 0.7971 0.0003
Ecoscope 1 0.0264 0.0337 0.0248 0.0059
DBpedia 1 0.1999 0.1436 0.0051
FishBase 1 0.5220 0.0155

CloneSource 1 0.00002
Airports 1

Table 5.2: Computing the similarity of sources using sim(Si, Sj).

From sim(Si, Sj) we can compute the distance as follows:

dist(Si, Sj) =
1

sim(Si, Sj)
(5.6)

Then we adopt a force-directed placement algorithm (similar in spirit with that
of [70]) for computing x and y coordinates. Let ≡i,j denote the set of sameAs
relationships between the URIs of Si and Sj . Each ≡i,j can be visualized as a
bridge that connects bi and bj . The volume of the bridge can be analogous to

82 CHAPTER 5. PUBLISHING AND EXCHANGING METRICS

| ≡i,j |. Three snapshots from different points of view of the produced 3D
model are shown in Figure 5.3. The model can give an overview of the situation
in a quite intuitive manner. The relative sizes of the buildings allow the user
to understand the relative sizes in triples of the sources. The proximity of the
buildings and the bridges make evident the commonalities of the sources, while
the side size of each building indicates the average degree of the graph of each
source. Furthermore, the user can navigate into the model using a Web browser,
in this example through the following address http://62.217.127.128:8080/

warehouseStatistics/Statistics.html.

Figure 5.3: Three snapshots from different points of view of the produced 3D
model.

5.2.2 LODsyndesis Website

We provide a website http://www.ics.forth.gr/isl/LODsyndesis/ that con-
tains links to (a) datahub.io2 where we have published the measurements, (b) a
page that lists queries that are now answerable, (c) a running SPARQL endpoint
on which one can run such demo queries or his own queries, (d) a link to an on-
going interactive 3D visualization http://www.ics.forth.gr/isl/3DLod/ that
exploits some of the measurements. Below we show some of these queries.

2http://datahub.io/dataset/connectivity-of-lod-datasets

5.2. NOVEL SERVICES 83

Number Query

Query 1 Give me the top-K most connected datasets to my dataset
Query 2 Give me all the connected sources with FishBase, and how many URIs

these datasets share with datasets from the geographical domain
Query 3 Give me all pairs of sources that were not connected, but now they are

connected due to closure and the number of their common RWO
Query 4 Give me the increase of the commonalities of all pairs of sources due to

closure in descending order
Query 5 Give me the K datasets that maximize the pluralism factor of the entities

in my dataset
Query 6 Give me the connected triads from datasets coming from three different

domains

Table 5.3: Queries for Dataset Discovery

5.2.2.1 Queries for Dataset Discovery

Here we provide more information about the queries that can be used for dataset
discovery, while Table 5.3 shows six queries that can be used for this task. Below,
we provide details for some of these queries.

Regarding Query 1, suppose that you publish a dataset and for connecting it to
the rest datasets of the LOD you establish relationships with DBpedia (by having
triples that refer to URI’s from DBpedia). Now suppose that you would like to
find related datasets (about the same real world objects) either for constructing a
warehouse or for mediator-based query answering. Specifically, suppose that you
would like to find the ”K” more connected datasets (to your own). Without the
proposed approach, you would get that only 1 dataset is connected to your dataset
(i.e. only DBpedia). With the proposed indexes and measurements (that include
the computation of the transitive closure of sameAs relationships), you could get
much more datasets, i.e. datasets that you could not easily discover because they
could have in common only few, or even none, URIs with your dataset. Moreover,
the impact of the computation of transitive closure of sameAs relationships is shown
in Queries 3 and 4, where we can see that the 19 million more sameAs relationships
resulted to more than two thousand more connected datasets while for some pairs
that were already connected, the increase of the number of their common rwo due
to closure was huge.

We should also note that sometimes it is important to collect information
about the same real world entity from several sources in order to verify or clean
that information and eventually produce a more accurate or correct consolidated
dataset or “widen” the information for a URI (i.e. to get more property-value
pairs for that URI). Technically this reduces to constructing a dataset with high
complementarity factor (or pluralism factor), i.e. a consolidated dataset where
the number of datasets that provide information about each entity is high. For
example, suppose that one would like to do this for the entities of a particular
dataset, say D1. To such tasks it is important to be able to answer queries, like

84 CHAPTER 5. PUBLISHING AND EXCHANGING METRICS

Number Query

Query 7 Give me all the datasets that contain information about
http://dbpedia.org/resource/Aristotle

Query 8 Give me all the equivalent URIs of
http://dbpedia.org/resource/Aristotle

Query 9 Give me all the datasets from the publication domain containing infor-
mation about yago:Socrates

Query 10 Give me all the URIs that are equivalent with the URIs of my dataset
Query 11 Give me the datasets that contain information for both Aristotle and

Socrates
Query 12 Give me all the common RWO between Wikidata, DBpedia and Yago

Table 5.4: Queries for Object Coreference

Query 5, of the form: Give me the K datasets that maximize the pluralism factor
of the entities in D1. To find the sought datasets, it is important to compute the
commonalities of all sets of K datasets that include D1. Specifically, we need all
nodes of the lattice that contain K datasets and one of these is D1. Only the
returned datasets can maximize the number of entities that have complementarity
factor equal to K.

5.2.2.2 Queries for Object Coreference

Here we provide more information about the queries that can be used for object
coreference, while Table 5.4 shows six queries that can be used in this case. In
particular, we transform the sameAs catalog and the element index to RDF triples
for achieving our target. Regarding the Queries, indicatively we can find which
datasets contain information for an entity of interest, such as Aristotle (i.e., Query
7), the equivalent URIs for a given entity (i.e., Query 8) while we can find which
of the URIs of our dataset are equivalent with URIs from coming from different
datasets (i.e., Query 10). Moreover, one can find which datasets from specific
domains (i.e., Query 9) contain information about an entity of interest.

Chapter 6

Conclusion

In this thesis, we proposed metrics, indexes and algorithms, for computing and
quantifying the connectivity among several datasets. The proposed metrics can
help us (a) obtain complete information about one particular URI (or a set of
URIs), (b) discover a dataset which is relevant to another one, (c) compute and
visualize the degree of connectivity between two or more datasets. At first, we
applied and evaluated the approach in the context of domain specific semantic
warehouses (in our case for a warehouse for the marine domain). In this case,
the metrics were used for assessing the quality of the semantic warehouse and its
underlying sources, and for monitoring the quality of the semantic warehouse after
a reconstruction. The main metrics proposed are: (a) the matrix of percentages of
the common URIs and/or literals, (b) the complementarity factor of the entities
of interest, (c) the table with the increments in the average degree of each source,
(d) the unique triple contribution of each source, and (e) a single-valued metric
for quantifying the value of a source.

The values of (a),(b),(c) allow valuating the warehouse, while (c),(d) and (e)
mainly concern each particular source. In addition we introduced metrics and
plots suitable for monitoring the evolution of a warehouse.

Regarding experiments in larger number of datasets, since it would be pro-
hibitively expensive to compute measurements that involve more than two datasets
without special indexes, in this thesis we introduced a namespace-based prefix in-
dex, a sameAs catalog for computing the symmetric and transitive closure of the
sameAs relationships encountered in the datasets, a semantics aware element in-
dex (that exploits the aforementioned indexes) and two lattice-based incremental
algorithms for speeding up the computation of the intersection URIs of any set of
datasets. We showed that with the proposed algorithm it takes only 45 seconds to
compute the reflexive and transitive closure for 13 millions of sameAs relationships.
As regards the computation of intersections we showed that the combination of
the element index and the bottom-up incremental lattice-based algorithm is much
faster (even 100 times faster for 20 datasets) than a straightforward method whose
time complexity increases exponentially as the number of datasets and their size

85

86 CHAPTER 6. CONCLUSION

Figure 6.1: Results Synopsis

increase. We exploited the introduced indexes for making various measurements
over the entire LOD. A few indicative are illustrated in Figure 6.1. The measure-
ments showed that a dataset contains on average URIs with 212 different prefixes,
and that 89% of the prefixes are used in 10.8% of URIs and occur in only one
dataset. Concerning sameAs relationships, for a real world object exist on average
3 URIs. The transitive and symmetric closure of the sameAs relationships of all
datasets yielded more than 19 million new sameAs relationships, and this increases
the connectivity of the datasets: 35.6% of the 6,636 connected pairs of datasets
are due to these new relationships. Regarding the rwo of element index, 60% of
them exist in ≥ 3 datasets.

The measurements also reveal the “sparsity” of the current LOD cloud and
make evident the need for better connectivity. Only 2.3% of real world objects
(in number 3,293,248 real world objects) are part of three or more datasets. Most
of these real world objects (belonging in ≥ 3 datasets) are part of cross domain
datasets such as DBpedia and geographical datasets like GeoNames. Additionally,
many datasets from the social networking domain are highly connected.

Finally, we proposed an extension of VoID for publishing, sharing and exploit-
ing such measurements and we provided links to novel services that exploit the
measurements.

Regarding future work, there are several topics that are worth investigating.
One is to generalize the lattice-based approach for measuring other kinds of RDF
features (such as common literals and triples). Another is to exploit the derived
measurements for better visualizations and monitoring services of the LOD Cloud.
An interesting direction is to investigate how to make the lattice of measurements
adaptive, i.e. to avoid computing all measurements but be able to build those parts
of the lattice that are more important and/or users/applications pose queries (in a
way similar in spirit with [74] for data series). Another direction is to investigate
the speedup that can be achieved by parallelizing the measurements in a MapRe-
duce context, or by developing methods for approximate measurements. Finally, it
would be also interesting to run the measurements for billions of triples and URIs
(identically for the whole LOD Cloud).

Bibliography

[1] Ecoscope - Knowledge Base on Exploited Marine Ecosystems. http://www.

ecoscopebc.ird.fr/.

[2] FishBase. http://www.fishbase.org/.

[3] FLOD - Fisheris Linked Open Data. http://www.fao.org/figis/flod/.

[4] Linked Data Integration Framework (LDIF). http://www4.wiwiss.

fu-berlin.de/bizer/ldif/.

[5] WoRMS - World Register of Marine Species. http://www.marinespecies.

org/.

[6] Charu Aggarwal, Yan Xie, and Philip S Yu. Gconnect: A connectivity in-
dex for massive disk-resident graphs. Proceedings of the VLDB Endowment,
2(1):862–873, 2009.

[7] Sören Auer, Jan Demter, Michael Martin, and Jens Lehmann. LODStats - an
Extensible Framework for High-Performance Dataset Analytics. In Knowledge
Engineering and Knowledge Management, pages 353–362. Springer, 2012.

[8] Donald P Ballou and Giri Kumar Tayi. Enhancing data quality in data
warehouse environments. Communications of the ACM, 42(1):73–78, 1999.

[9] Nikos Bikakis and Timos K. Sellis. Exploration and visualization in the web of
big linked data: A survey of the state of the art. In EDBT/ICDT Workshops,
volume 1558, 2016.

[10] Christian Bizer. Quality-Driven Information Filtering in the Context of Web-
Based Information Systems (PhD Thesis). PhD thesis, Freie Universität
Berlin, Germany, 2007.

[11] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data-the story
so far. Semantic Services, Interoperability and Web Applications: Emerging
Concepts, pages 205–227, 2009.

87

88 BIBLIOGRAPHY

[12] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian
Becker, Richard Cyganiak, and Sebastian Hellmann. Dbpedia-a crystalliza-
tion point for the web of data. Web Semantics: science, services and agents
on the world wide web, 7(3):154–165, 2009.

[13] Leonardo Candela, Donatella Castelli, and Pasquale Pagano. Making virtual
research environments in the cloud a reality: the gcube approach. ERCIM
News, 2010(83):32, 2010.

[14] Richard Cyganiak, Simon Field, Arofan Gregory, Wolfgang Halb, and Jeni
Tennison. Semantic Statistics: Bringing Together SDMX and SCOVO.
LDOW, 628, 2010.

[15] Mathieu d’Aquin and Enrico Motta. Watson, more than a semantic web
search engine. Semantic Web, 2(1):55–63, 2011.

[16] F. Darari, W. Fariz, W. Nutt, G. Pirro, and S.Razniewski. Completeness
Statements about RDF Data Sources and their Use for Query Answering. In
The Semantic Web–ISWC 2013, pages 66–83. Springer, 2013.

[17] Jeremy Debattista, Christoph Lange, and Sören Auer. daq, an ontology for
dataset quality information. Linked Data on the Web (LDOW), 2014.

[18] Jeremy Debattista, Santiago Londoño, Christoph Lange, and Sören Auer.
Luzzu-a framework for linked data quality assessment. arXiv preprint
arXiv:1412.3750, 2014.

[19] Li Ding, Tim Finin, Anupam Joshi, Rong Pan, R Scott Cost, Yun Peng, Pa-
van Reddivari, Vishal Doshi, and Joel Sachs. Swoogle: a search and metadata
engine for the semantic web. In Proceedings of the thirteenth ACM interna-
tional conference on Information and knowledge management, pages 652–659.
ACM, 2004.

[20] Renata Dividino, Thomas Gottron, Ansgar Scherp, and Gerd Gröner. From
Changes to Dynamics: Dynamics Analysis of Linked Open Data Sources.
In PROFILES’14: Proceedings of the Workshop on Dataset ProfiIling and
Federated Search for Linked Data, 2014.

[21] Mohamed Ben Ellefi, Zohra Bellahsene, Stefan Dietze, and Konstantin
Todorov. Dataset recommendation for data linking: an intensional approach.
In ESWC, 2016.

[22] P. Fafalios and Y. Tzitzikas. X-ENS: Semantic Enrichment of Web Search
Results at Real-Time. In SIGIR’13, pages 1089–1090, Dublin, Ireland, 2013.
ACM.

[23] Christian Fürber and Martin Hepp. Using sparql and spin for data quality
management on the semantic web. In Business Information Systems, pages
35–46. Springer, 2010.

BIBLIOGRAPHY 89

[24] Christian Fürber and Martin Hepp. Swiqa-a semantic web information quality
assessment framework. In ECIS, volume 15, page 19, 2011.

[25] Christophe Guéret, Paul Groth, Claus Stadler, and Jens Lehmann. Assess-
ing linked data mappings using network measures. In The Semantic Web:
Research and Applications, pages 87–102. Springer, 2012.

[26] Andreas Harth and Sebastian Speiser. On completeness classes for query
evaluation on linked data. In AAAI. Citeseer, 2012.

[27] Andreas Harth, Jürgen Umbrich, Aidan Hogan, and Stefan Decker. YARS2: A
federated repository for querying graph structured data from the web. In The
Semantic Web, 6th International Semantic Web Conference ISWC , Busan,
Korea, pages 211–224, 2007.

[28] Olaf Hartig. Provenance information in the web of data. In LDOW, 2009.

[29] Olaf Hartig and Jun Zhao. Using web data provenance for quality assessment.
CEUR Workshop Proceedings, 2009.

[30] Olaf Hartig and Jun Zhao. Publishing and Consuming Provenance Metadata
on the Web of Linked Data. In Provenance and Annotation of Data and
Processes, pages 78–90. Springer, 2010.

[31] James Hendler. Data integration for heterogenous datasets. Big data,
2(4):205–215, 2014.

[32] A. Hogan, A. Harth, J. Umbrich, S. Kinsella, A. Polleres, and S. Decker.
Searching and Browsing Linked Data with SWSE: The Semantic Web Search
Engine. Web Semantics: Science, Services and Agents on the World Wide
Web, 9(4), 2011.

[33] Aidan Hogan, Andreas Harth, and Stefan Decker. Performing object consol-
idation on the semantic web data graph. In Proceedings of the WWW2007
Workshop I3,Banff, Canada, 2007.

[34] Aidan Hogan, Andreas Harth, Jürgen Umbrich, Sheila Kinsella, Axel Polleres,
and Stefan Decker. Searching and browsing linked data with swse: The se-
mantic web search engine. Web semantics: science, services and agents on
the world wide web, 9(4):365–401, 2011.

[35] Aidan Hogan, Jürgen Umbrich, Andreas Harth, Richard Cyganiak, Axel
Polleres, and Stefan Decker. An empirical survey of linked data conformance.
Web Semantics: Science, Services and Agents on the World Wide Web, 14:14–
44, 2012.

[36] Thomas Jech. Set theory. Springer Science & Business Media, 2013.

90 BIBLIOGRAPHY

[37] Michael Hausenblas Keith Alexander, Richard Cyganiak and Jun Zhao. De-
scribing linked datasets with the void vocabulary, w3c interest group note,
2011.

[38] Graham Klyne and Jeremy J Carroll. Resource description framework (rdf):
Concepts and abstract syntax. 2006.

[39] Tomáš Knap and Jan Michelfeit. Linked Data Aggregation Algorithm: In-
creasing Completeness and Consistency of Data, http://www.ksi.mff.cuni.
cz/~knap/files/aggregation.pdf.

[40] Tomáš Knap, Jan Michelfeit, Jakub Daniel, Petr Jerman, Dušan Rychnovskỳ,
Tomáš Soukup, and Martin Nečaskỳ. ODCleanStore: a Framework for Man-
aging and Providing Integrated Linked Data on the Web. In Web Information
Systems Engineering-WISE 2012, pages 815–816. Springer, 2012.

[41] Shirlee-ann Knight and Janice M Burn. Developing a framework for assessing
information quality on the world wide web. Informing Science: International
Journal of an Emerging Transdiscipline, 8(5):159–172, 2005.

[42] Dimitris Kontokostas, Patrick Westphal, Sören Auer, Sebastian Hellmann,
Jens Lehmann, Roland Cornelissen, and Amrapali Zaveri. Test-driven evalu-
ation of linked data quality. In Proceedings of the 23rd international conference
on World Wide Web, pages 747–758. ACM, 2014.

[43] Pablo N Mendes, Hannes Mühleisen, and Christian Bizer. Sieve: Linked
Data Quality Assessment and Fusion. In Proceedings of the 2012 Joint
EDBT/ICDT Workshops, pages 116–123. ACM, 2012.

[44] Jan Michelfeit and Tomas Knap. Linked Data Fusion in ODCleanStore. In
International Semantic Web Conference (Posters & Demos), 2012.

[45] Paolo Missier, Khalid Belhajjame, and James Cheney. The w3c prov family of
specifications for modelling provenance metadata. In Proceedings of the 16th
International Conference on Extending Database Technology, pages 773–776.
ACM, 2013.

[46] M. Mountantonakis, C. Allocca, P. Fafalios, N. Minadakis, Y. Marketakis,
C. Lantzaki, and Y. Tzitzikas. Extending void for expressing the connectivity
metrics of a semantic warehouse. In 1st International Workshop on Dataset
Profiling & Federated Search for Linked Data (PROFILES’14), Anissaras,
Crete, Greece, May 2014.

[47] M. Mountantonakis, N. Minadakis, Y. Marketakis, P. Fafalios, and Y. Tz-
itzikas. Quantifying the connectivity of a semantic warehouse and under-
standing its evolution over time (accepted for publication). International
Journal on Semantic Web and Information Systems (IJSWIS), 2016.

BIBLIOGRAPHY 91

[48] M. Mountantonakis and Y. Tzitzikas. On measuring the lattice of common-
alities among several linked datasets. Proceedings of the VLDB Endowment,
2016.

[49] Markus Nentwig, Tommaso Soru, Axel-Cyrille Ngonga Ngomo, and Erhard
Rahm. Linklion: A link repository for the web of data. In The Semantic Web:
ESWC 2014 Satellite Events, pages 439–443. Springer, 2014.

[50] Thomas Neumann and Gerhard Weikum. The rdf-3x engine for scalable man-
agement of rdf data. The VLDB Journal, 19(1):91–113, 2010.

[51] Damla Oguz, Belgin Ergenc, Shaoyi Yin, Oguz Dikenelli, and Abdelkader
Hameurlain. Federated query processing on linked data: a qualitative survey
and open challenges. Knowledge Eng. Review, 30(5):545–563, 2015.

[52] Eyal Oren, Renaud Delbru, Michele Catasta, Richard Cyganiak, Holger Sten-
zhorn, and Giovanni Tummarello. Sindice.com: a Document-Oriented Lookup
Index for Open Linked Data. Int. J. Metadata Semant. Ontologies, 3(1):37–
52, 2008.

[53] Peng Peng, Lei Zou, M Tamer Özsu, Lei Chen, and Dongyan Zhao. Processing
sparql queries over distributed rdf graphs. The VLDB Journal, pages 1–26,
2015.

[54] A. Powell, M. Nilsson, A. Naeve, and P. Johnston. Dublin core metadata
initiative - abstract model, 2005. White Paper.

[55] Eric Prud’ Hommeaux, Andy Seaborne, et al. Sparql query language for rdf.
W3C recommendation, 15, 2008.

[56] Laurens Rietveld, Wouter Beek, and Stefan Schlobach. Lod lab: Experiments
at lod scale. In Proceedings of the International Semantic Web Conference
(ISWC). Springer, 2015.

[57] Max Schmachtenberg, Christian Bizer, and Heiko Paulheim. Adoption of
the linked data best practices in different topical domains. In The Semantic
Web–ISWC, pages 245–260. Springer, 2014.

[58] Graeme G Shanks and Peta Darke. Understanding Data Quality and Data
Warehousing: A Semiotic Approach. In Third Conference on Information
Quality (IQ’98), pages 292–309, 1998.

[59] Robert Tarjan. Depth-first search and linear graph algorithms. In Twelfth
Annual Symposium on Switching and Automata Theory, pages 114–121. IEEE,
1971.

[60] Yannis Theoharis, Yannis Tzitzikas, Dimitris Kotzinos, and Vassilis
Christophides. On graph features of semantic web schemas. Knowledge and
Data Engineering, 20(5):692–702, 2008.

92 BIBLIOGRAPHY

[61] E. Tsiflidou and N. Manouselis. Tools and Techniques for Assessing Metadata
Quality. In 7th Metadata and Semantics Research Conference (MTSR’13),
2013.

[62] Giovanni Tummarello, Eyal Oren, and Renaud Delbru. Sindice.com: Weav-
ing the open linked data. In Proceedings of the International Semantic Web
Conference (ISWC), volume 4825, pages 547–560, 2007.

[63] Y. Tzitzikas, C. Alloca, C. Bekiari, Y. Marketakis, P. Fafalios, M. Doerr,
N. Minadakis, T. Patkos, and L. Candela. Integrating Heterogeneous and
Distributed Information about Marine Species through a Top Level Ontol-
ogy. In Proceedings of the 7th Metadata and Semantic Research Conference
(MTSR’13), Thessaloniki, Greece, November 2013.

[64] Y. Tzitzikas, N. Minadakis, Y. Marketakis, P. Fafalios, C. Alloca, and
M. Mountantonakis. Quantifying the connectivity of a semantic warehouse. In
4th International Workshop on Linked Web Data Management (LWDM’14),
Athens, Greece, 2014.

[65] Y. Tzitzikas, N. Minadakis, Y. Marketakis, P. Fafalios, C. Allocca, M. Moun-
tantonakis, and I. Zidianaki. Matware: Constructing and exploiting domain
specific warehouses by aggregating semantic data. In 11th Extended Semantic
Web Conference (ESWC’14), Anissaras, Crete, Greece, May 2014.

[66] Yannis Tzitzikas, Mary Kampouraki, and Anastasia Analyti. Curating the
Specificity of Ontological Descriptions under Ontology Evolution. Journal on
Data Semantics, pages 1–32, 2013.

[67] Julius Volz, Christian Bizer, Martin Gaedke, and Georgi Kobilarov. Silk -
A Link Discovery Framework for the Web of Data. In Proceedings of the
WWW’09 Workshop on Linked Data on the Web, 2009.

[68] Richard Y Wang and Diane M Strong. Beyond accuracy: What data quality
means to data consumers. Journal of management information systems, pages
5–33, 1996.

[69] JohnWieczorek, David Bloom, Robert Guralnick, Stan Blum, Markus Döring,
Renato Giovanni, Tim Robertson, and David Vieglais. Darwin core: An evolv-
ing community-developed biodiversity data standard. PLoS One, 7(1):e29715,
2012.

[70] Stamatis Zampetakis, Yannis Tzitzikas, Asterios Leonidis, and Dimitris
Kotzinos. Star-like auto-configurable layouts of variable radius for visualizing
and exploring RDF/S ontologies. Journal of Visual Languages & Computing,
23(3):137 – 153, 2012.

BIBLIOGRAPHY 93

[71] Amrapali Zaveri, Dimitris Kontokostas, Mohamed A Sherif, Lorenz Bühmann,
Mohamed Morsey, Sören Auer, and Jens Lehmann. User-driven quality eval-
uation of dbpedia. In Proceedings of the 9th International Conference on
Semantic Systems, pages 97–104. ACM, 2013.

[72] Amrapali Zaveri, Anisa Rula, Andrea Maurino, Ricardo Pietrobon, Jens
Lehmann, and Sören Auer. Quality assessment for linked data: A survey.
Semantic Web Journal, 7(1):63–93, 2016.

[73] Justin Zobel and Alistair Moffat. Inverted files for text search engines. ACM
computing surveys, 38(2):6, 2006.

[74] Kostas Zoumpatianos, Stratos Idreos, and Themis Palpanas. Indexing for in-
teractive exploration of big data series. In Proceedings of the ACM SIGMOD,
pages 1555–1566. ACM, 2014.

