
Benchmarking Anomaly Detectors on

Streaming Data

Michail Giannoulis

Thesis submitted in partial fulfillment of the requirements for the

Masters’ of Science degree in Computer Science and Engineering

University of Crete
School of Sciences and Engineering

Computer Science Department
Voutes University Campus, 700 13 Heraklion, Crete, Greece

Thesis Advisor: Professor Vassilis Christophides

This work has been performed at the University of Crete, School of Sciences and Engineering,
Computer Science Department.

The work has been partially supported by SAP France.

University of Crete
Computer Science Department

Benchmarking Anomaly Detectors on Streaming Data

Thesis submitted by
Michail Giannoulis

in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science

THESIS APPROVAL

Author:
Michail Giannoulis

Committee approvals:
Vassilis Christophides
Professor, Thesis Supervisor

Ioannis Tsamardinos
Professor, Committee Member

Panagiotis Tsakalides
Professor, Committee Member

Departmental approval:
Antonis Argyros
Professor, Director of Graduate Studies

Heraklion, March 2020

Benchmarking Anomaly Detectors on Streaming Data

Abstract

The experimental evaluation of unsupervised anomaly detection algorithms is a
constant challenge within diverse research areas and applications domains. How-
ever, little is known regarding the strengths and weaknesses of online anomaly
detection methods and the impact of their parameters. This paper elaborates
on the design and development of a benchmark framework to perform an exten-
sive experiment study on tree and nearest-neighbor based methods of top-notch
unsupervised online outlier detectors (including their offline) in streaming man-
ner, across a wide variety of multivariate datasets contaminated by sub and full
space outliers. Initially, we present the semantics and functionalities of the de-
tectors through a comprehensive example. Then, we introduce the benchmark
environment providing a descriptive (meta) analysis of the datasets and imple-
mentation choices of detectors, posing also the set of their hyper-parameters and
candidate values. The fair evaluation of detectors is guaranteed through an ade-
quately analysis of critical methodological questions such as stream simulation and
partitioning, evaluation protocols and metrics, detectors optimization and rank-
ing. Through this study, we ascertain that online detectors not only approximate
very well offline detectors (2.296 vs 2.266, respectively; Ranking value) but also
outperform them under certain conditions. In addition, we surprisingly establish
the robustness of online detectors’ dynamic model on scaling data and subspace
dimensionality. Nevertheless, they shown a decreasing effectiveness while scaling
window parameters. We also examine the fundamentals of a dynamic model high-
lighting the need for a forgetting mechanism. To the best of our knowledge, this is
the most complete online anomaly detection benchmark attempt on multivariate
data.

Πειραματική Αξιολόγηση Ανιχνευτών Ανωμαλιών

σε Ροές Δεδομένων

Περίληψη

Η πειραματική αξιολόγηση των αλγόριθμων ανίχνευσης ανωμαλιών χωρίς επίβλεψη

αποτελεί μια σταθερή πρόκληση σε διάφορους τομείς έρευνας και εφαρμογών. Ωστόσο,

λίγα είναι γνωστά όσον αφορά τα πλεονεκτήματα και τις αδυναμίες των μεθόδων α-

νίχνευσης ανωμαλιών εντός σύνδεσης και το αντίκτυπο των παραμέτρων τους. Η παρο-

ύσα ερευνητική δημοσίευση αποσκοπεί στο σχεδιασμό και την ανάπτυξη ενός πλαισίου

συγκριτικής αξιολόγησης για την εξαγωγή μιας εκτενούς πειραματικής μελέτης πάνω

στις δεντρικές και πλησιέστερου γείτονα μεθόδους των κορυφαίων μη επιτηρούμενων

ανιχνευτών ανωμαλιών εντός σύνδεσης (συμπεριλαμβανομένου και των εκτός σύν-

δεσης) σε συνεχή ροή, μέσα από μια μεγάλη ποικιλία από πολυδιάστατα δεδομένα τα

οποία έχουν μολυνθεί είτε με ανωμαλίες υποχώρου είτε πλήρους διανυσματικού χώρου.

Αρχικά, παρουσιάζουμε τη σημασιολογία και τις λειτουργίες των ανιχνευτών μέσω ε-

νός περιεκτικού παραδείγματος. Στη συνέχεια, εισάγουμε το περιβάλλον πειραματικής

μελέτης το οποίο παρέχει περιγραφική (μέτα) ανάλυση των δεδομένων και τις επιλο-

γές υλοποίησης των ανιχνευτών, θέτοντας επίσης το σύνολο των υπερπαραμέτρων

και των υποψήφιων τιμών τους. Η δίκαιη αξιολόγηση των ανιχνευτών εξασφαλίζεται

μέσω επαρκούς ανάλυσης κρίσιμων μεθοδολογικών ερωτημάτων όπως η προσομοίω-

ση και διαμοιρασμός ροής δεδομένων, τα πρωτόκολλα και οι μετρικές αξιολόγησης, η

βελτιστοποίηση των ανιχνευτών και η κατάταξή τους. Μέσω αυτής της μελέτης, δια-

πιστώνουμε ότι οι ανιχνευτές εντός σύνδεσης όχι μόνο προσεγγίζουν πολύ καλά τους

ανιχνευτές εκτός σύνδεσης (2.296 έναντι 2.266 αντίστοιχα, τιμές κατάταξης) αλλά

τους ξεπερνούν υπό συνθήκες. Επίσης διαπιστώνουμε με έκπληξη την αντίσταση του

δυναμικού μοντέλου των ανιχνευτών εντός σύνδεσης στην κλιμάκωση της διάστασης

των δεδομένων και των υποχώρων τους. Πάραυτα, παρουσιάζουν μειωμένη απόδοση

καθώς κλιμακώνονται οι τιμές των υπερπαραμέτρων των παραθύρων τους. Εξετάζουμε

επίσης τα θεμελιώδη στοιχεία ενός δυναμικού μοντέλου, υπογραμμίζοντας την ανάγκη

μηχανισμού λήθης. Από όσο γνωρίζουμε, αυτή είναι η πιο ολοκληρωμένη προσπάθεια

πειραματικής αξιολόγησης ανιχνευτών ανωμαλιών σε σύνδεση πάνω σε πολυδιάστατα

δεδομένα.

Ευχαριστίες

Καταρχήν, θα ήθελα να ευχαριστήσω τον επόπτη καθηγητή μου κ. Βασίλη Χρι-

στοφίδη για την υπομονή και την καθοδήγησή του καθ΄ όλη τη διάρκεια αυτής της

εργασίας, όπως επίσης και για την εμπιστοσύνη που μου έδειξε δίνοντάς μου την δυ-

νατότητα να εξελιχθώ τόσο σε προσωπικό όσο και σε γνωστικό επίπεδο. Εξίσου

σημαντικό ρόλο επιτέλεσε ο ακαδημαϊκός σύμβουλός μου καθηγητής κ. Ιωάννης

Τζίτζικας, όπου ως αρωγός βρίσκονταν πρόθυμος να με κατευθύνει με τις ουσιαστι-

κές του συμβουλές. Επιπλέον θα ήθελα να ευχαριστήσω τα μέλη της ερευνητικής

ομάδας ΜΧΜ και ιδιαίτερα τον επικεφαλή αυτής, τον καθηγητή κ. Ιωάννη Τσαμαρ-

δίνο για τις συζητήσεις μας και τα πολύτιμα σχόλιά τους. Δεν θα μπορούσα να μην

εκφράσω την ευγνωμοσύνη μου στον επικεφαλή επιστήμονα κ. Ερικ Σιμον, ο οποίος

επισφράγισε τη δυνατότητά μου να βιώσω όλα τα οφέλη και τις υποχρεώσεις που έχει

ένας εργαζόμενος σε μεγάλη εταιρία. Τέλος, θα ήθελα να ευχαριστήσω την οικογένειά

μου για την αστείρευτη αγάπη και υποστήριξή τους. Καθώς η ολοκλήρωση αυτής της

εργασίας συνάμα σηματοδοτεί την ολοκλήρωση μιας πορείας δύο ετών επιμονής, τόλ-

μης, θέλησης και υπομονής, τι καλλίτερο από το να κλείσω ετούτο το κεφάλαιο με ένα

απόφθεγμα του μεγαλύτερου Κρητικού και ΄Ελληνα συγγραφέα Νίκου Καζαντζάκη

Μην καταδέχεσαι να ρωτάς: «Θα νικήσουμε· Θα νικηθούμε·» Πολέμα!

στους γονείς μου

Contents

Table of Contents i

List of Tables iii

List of Figures v

1 Introduction 1

2 Anomaly Detection Algorithms 5

2.1 Categorization of Anomaly Detection 6

2.1.1 Labels . 6

2.1.2 Modes . 6

2.1.3 Types . 6

2.1.4 Windows . 7

2.1.5 Output . 7

2.2 Offline Detectors: KNNW , LOF, iForest 7

2.2.1 Weighted K-Nearest Neighbor (KNNW) 7

2.2.2 Example . 8

2.2.3 Local Outlier Factor (LOF) 9

2.2.3.1 Example . 10

2.2.4 Isolation Forest (iForest) . 11

2.2.4.1 Example . 12

2.3 Online Detectors: MCOD, HST/F, RRCF 13

2.3.1 Micro-cluster Outlier Detector (MCOD) 13

2.3.1.1 Example . 15

2.3.1.2 Real-valued Scoring Function 17

2.3.2 Half Space Trees (HST) . 17

2.3.2.1 Example . 18

2.3.3 HST with Forgetting (HSTF) 20

2.3.4 Robust Random Cut Forest (RRCF) 21

2.3.4.1 Example . 23

2.3.4.2 Shingling Technique 26

2.4 Discussion . 27

i

3 Benchmarking Environment 29
3.1 Benchmark Platform . 30

3.1.1 Extended Macrobase . 30
3.2 Datasets . 31

3.2.1 Real . 32
3.2.1.1 NYC Taxicab . 33

3.2.2 Synthetic . 34
3.2.2.1 HiCS . 35
3.2.2.2 Mulcross . 37
3.2.2.3 Sine Wave . 38

3.2.3 Dataset Profiling . 38
3.2.3.1 AVG Feature Value Range 39
3.2.3.2 Outlier Ratio . 40
3.2.3.3 Feature VR Outlier Correlation 41
3.2.3.4 Irrelevant Features to Outliers 41
3.2.3.5 Discussion . 42

3.3 Algorithms . 43
3.3.1 RRCF Implementation . 43
3.3.2 HST Implementation . 46
3.3.3 Hyper-parameters and Candidate Values 47

3.4 Setup . 48
3.4.1 Software . 49
3.4.2 Hardware . 49

4 Benchmarking Methodology 51
4.1 MQ1: How streams of inliers and outliers can be simulated from

batch datasets? . 51
4.1.1 Stream . 51
4.1.2 Stream Partitioning . 52
4.1.3 Stream Windowing . 52

4.2 MQ2: What are the evaluation protocols and metrics to best assess
the effectiveness of online and offline detectors? 52
4.2.1 Evaluation Protocols . 52
4.2.2 Evaluation Metrics . 53

4.2.2.1 AUC ROC . 53
4.2.2.2 AP . 53
4.2.2.3 Appropriate Metric 54

4.3 MQ3: How we measure effectiveness under optimal conditions per
detector with respect to its hyper parameters? 54

4.4 MQ4: How we rank the effectiveness of detectors across all datasets
of our benchmark? . 55
4.4.1 A Practical Example of L2 55
4.4.2 Ranking Details . 56

4.5 The Benchmark Evaluation Pipeline 56

ii

5 Experimental Evaluation 59
5.1 Online versus Offline effectiveness 59

5.1.1 Results . 60
5.1.2 Insights . 62

5.2 Robustness . 63
5.2.1 Results . 64

5.2.1.1 MAP Across Increasing Data Dimensionality . . . 65
5.2.1.2 MAP Across Subspace Dimensionality 67

5.2.2 Insights . 68
5.3 Sensitivity . 69

5.3.1 Varying Window Hyper-parameters 69
5.3.2 Varying Detector Hyper-parameters 70

6 Conclusions and Future Work 73

iii

iv

List of Tables

2.1 Example dataset of 10 data points, with 9 normal and 1 anomalous. 5

2.2 The model of KNNW over the objects of Table 2.1. 8

2.3 The complexity parameters of the KNNW 9

2.4 The model of LOF over the objects of Table 2.1. 10

2.5 The complexity parameters of the LOF. 11

2.6 The sub sample of 5 objects. 12

2.7 The complexity parameters of the iForest. 13

2.8 The 10 objects of the Table 2.1 in streaming manner. 14

2.9 The model of MCOD over the S0 window objects in Table 2.8. . . 15

2.10 The updated MCOD model over the S1 window objects in Table 2.8. 16

2.11 The complexity parameters of the MCOD. 16

2.12 The sub sample of 3 objects. 18

2.13 The workspace over the objects in Table 2.12. 19

2.14 The complexity parameters of the HST. 20

2.15 The sub sample of 5 objects. 23

2.16 The complexity parameters of the RRCF. 27

2.17 The baseline models of online detectors. 27

3.1 The 10 real world datasets. 33

3.2 The contamination details of real datasets in Table 3.1. 34

3.3 The 7 synthetic datasets. 35

3.4 The contamination details of synthetic datasets in Table 3.3. . . . 35

3.5 Real Dataset Profiling: AVG Feature Value Range. 39

3.6 Synthetic Dataset Profiling: AVG Feature Value Range. 39

3.7 Real Dataset Profiling: Outlier Ratio. 40

3.8 Synthetic Dataset Profiling: Outlier Ratio. 40

3.9 Synthetic Dataset Profiling: Irrelevant Features to Outliers. 42

3.10 The three extracted characteristics by profiling the synthetic datasets. 42

3.11 The three extracted characteristics by profiling the real datasets. . 43

3.12 The fixed values of the hyper-parameters presented in Figure 3.16. 48

3.13 The candidate values of the hyper-parameters presented in Figure
3.16. 48

5.1 Optimized Hyper-parameters of online and offline detectors. 60

v

5.2 (M)AP of online and offline detectors on real datasets. 60
5.3 Leading effectiveness analysis over detectors in Table 5.2. 61
5.4 Leading effectiveness analysis over tree-based detectors in Table 5.2. 62
5.5 Optimized Hyper-parameters of online and offline detectors. 64
5.6 The average (M)AP effectiveness of online and offline detectors over

increasing data dimensionality. 65
5.7 HST (M)AP for subspace outliers of different dimensionality. . . . 67
5.8 HSTF (M)AP for subspace outliers of different dimensionality. . . 67
5.9 RRCF (M)AP for subspace outliers of different dimensionality . . . 68
5.10 MCOD (M)AP for subspace outliers of different dimensionality. . . 68
5.11 (M)AP for increasing window size. 69
5.12 (M)AP for increasing window slide. 70
5.13 (M)AP for increasing maximum depth. 70
5.14 (M)AP for increasing forgetting threshold. 70

vi

List of Figures

2.1 The model of iForest over the objects in Table 2.6. 12
2.2 The model of HST over the objects in Table 2.12 using the workspace

of Table 2.13. 19
2.3 The updated HST model over the T1 window objects in Table 2.8. 20
2.4 The model of RRCF over the objects in Table 2.15. 24
2.5 The updated RRCF model over the first five objects of S1 window. 25
2.6 The final RRCF model over the S1 window objects in Table 2.8. . 26

3.1 The high level architecture of our Experimental Environment. . . . 29
3.2 An extended by online functionalities part of Macrobase architec-

ture presented in [51]. 31
3.3 An extended by online detectors part of Macrobase architecture

presented in [51]. 31
3.4 The eight contextual anomalies over NYC Taxicab. 34
3.5 Number of outliers per subspace dimensionality in HiCS datasets, . 36
3.6 Mulcross 1D projections. 37
3.7 Mulcross 2-d projections. 38
3.8 A collective anomaly over a sine wave. 38
3.9 Real Dataset Profiling: Feature VR Outlier Correlation. 41
3.10 Original RRCF implementation on Sine Wave. 44
3.11 Our RRCF implementation on Sine Wave. 44
3.12 Original RRCF implementation on NYC Taxicab. 45
3.13 Our RRCF implementation on NYC Taxicab. 45
3.14 The AUC ROC of our HST implementation on Mulcross. 46
3.15 The AUC ROC of our HST implementation on Shuttle. 47
3.16 The hyper-parameters of our Experimental Environment. 47

4.1 The benchmark pipeline according to the Figure 3.1. 56

5.1 (M)AP effectiveness of online detectors for subspace outliers of dif-
ferent dimensionality. 66

vii

viii

Chapter 1

Introduction

With sensors pervading our everyday lives, we are seeing an exponential increase
in the availability of streaming data. It is remarkable that in the current era of
smart and connected devices there are more than 12 billion of Internet of Things
(IoT), and it is estimated to exceed 25 billion by 2025 [48]. That estimation looks
achievable considering the release of 5G network, which will enable even more
critical IoT applications including remote healthcare system (clinical remote mon-
itoring and assisted living), traffic and industrial control (Drone/Robot/Vehicle),
remote control of heavy machinery in hazardous environments, thereby improving
worker safety, and even remote surgery [13]. In general, the various applications
opportunities enabled by the IoT are countless and its full potential will only be
realized by ensuring that more smart devices are connected through the Internet.

Analyzing data as they are generated in streams provides valuable insights in
several application settings. In particular, online detection of anomalies is impor-
tant analytic task in several use cases such as preventative maintenance, fraud
prevention, intrusion detection, persons’ or systems’ health monitoring, etc. An
anomaly is an observation that deviate so significantly from other observations as
to arouse suspicion that it was generated by different mechanism [29]. For ex-
ample, an unusual high amount of money spent from a credit card or amount of
traffic generated in a router are considered as anomalies.

Three types of anomalies [12] are widely studied in the literature [53], [30]:
Point, Contextual and Collective. A Point, also called global, anomaly is a data
point that lies far way from the remaining points in a dataset. A Contextual
anomaly, is a data point that deviates from the rest of the data points in a specific
context. Note that that same data point may not be considered as an anomaly if
it occurs in a different context. A Collective anomaly is a set of data points that
as a collection deviates significantly from the entire dataset. Note that individual
data points of this collection are not necessarily anomalous in either a contextual or
global sense. Point anomalies can be found in set oriented datasets while contextual
and collective anomalies on sequence oriented datasets, in which the ordering of
data points matters.

1

In this thesis we are interested in unsupervised methods for detecting anomalies
in multivariate datasets that do not require to label data as normal (or abnormal).
This is motivated by the fact that in the streaming analytics applications men-
tioned above it is either expensive or infeasible to obtain such labels by human
experts. Unsupervised point anomaly detection methods proposed by machine
learning and database communities, can be grouped in two main categories [37]:
Statistical and Proximity based. Statistical methods fit a model of normality us-
ing data sampling. Data points that do not fit this model are considered to be
anomalous. Typical examples of non-parametric statistical methods are tree-based
detectors such as iForest [45], HST [66] and RRCF [26]. Proximity methods on
the other hand, rely on the distances of observations in a metric space. Typical
examples of unsupervised methods are KNNW [56] and MCOD [34] or density-
based detectors such as LOF [10]. Note that iForest, KNNW , and LOF are offline
detectors while HST, RRCF and MCOD online detectors.

As anomaly detection has been actively area of research for decades, several
experimental studies have been conducted to benchmark the effectiveness of de-
tectors using well-known evaluation protocols and metrics [50], [18], [11], [2], [21],
[1] and [68]. In their majority, they focus on the effectiveness of offline detectors
using multivariate datasets contaminated by point anomalies. These studies lead
to the following main recommendations.

• Use Isolation-based methods, such as iForest, because (i) they can scale up
to large datasets up to 500 dimensions, (ii) they have low space complex-
ity with linear sample and ensemble size, (iii) they have known behaviors
under different data characteristics and they can deal with different types
of anomalies and (iv) they are not too sensitive to their hyper-parameter
tuning.

• Use Proximity-based methods, such as LOF or KNNW for detecting highly
clustered anomalies in medium sized datasets. However, the run-time of
these algorithms is slower, their space complexity is high while their hyper-
parameters like min-neighbors is sensitive to the data size.

For the sake of completeness, we would like to also mention the Numenta bench-
mark (NB) of online anomaly detection over univariate time series [3] contaminated
by contextual outliers. Unfortunately, NB focus explicitly on time series and do
not provide insights for online detectors applicable to multivariate sequential data.

The aforementioned studies provide valuable insights regarding essentially of-
fline anomaly detectors. In this respect, several questions regarding online de-
tectors over multivariate data streams have not yet addressed in the literature.
First, it is left open to what extent online detectors approximate the effectiveness
of offline detectors and under which conditions (e.g., number of outliers in data
streams, number of features irrelevant to the outliers). Second, little evidence
is provided regarding which update mechanisms of detectors models (i.e., micro-
clusters or random trees) are more suited to capture outliers in a data stream and

2

with what computational cost. Third, we are interested to know how sensitive
online detectors are to their hyper-parameters1 (i.e., model or window specific).

More precisely, no previous experimental study has compared using the same
datasets tree-based (i.e., HST/F, RRCF, iForest) with nearest-neighbor based de-
tectors (MCOD, LOF, KNN) in both batch and streaming modes. Moreover, most
of the related benchmarks consider outliers defined over the full feature space of
the datasets. No experiments have been reported regarding the effectiveness of
online detectors on outliers visible only on a subset of the feature space. Last but
not least, unsupervised anomaly detectors have been executed in reported exper-
iments using the default hyper-parameter configurations provided by the original
authors of the algorithms. This choice compromises the reported results as de-
fault hyper-parameters are agnostic of the actual data characteristics especially
for proximity-based detectors.

To address the missing insights, we introduce a general framework for bench-
marking online and offline anomaly detectors over multivariate streaming data, as
well as for ranking their effectiveness in the same collection of datasets. It relies
on a correct and fair benchmarking methodology that guides the design of ex-
periments by taking into account both the datasets and detectors characteristics.
We pay particular attention to the contamination of datasets with real or syn-
thetic outliers that are visible only to a subset of the original feature space. Such
subspace outliers are quite frequent in scientific and industrial monitoring appli-
cations using sensors or IoT devices. The introduced benchmark framework has
been developed in the context of my internship at SAP France [62], and extends
an existing platform for benchmarking offline anomaly detectors [51].

The main contribution of this Master Thesis, is to bring light to the following
questions:

Section 5.1. To what extent online detectors approximate the effectiveness of
offline detectors on real datasets contaminated by subspace or fullspace outliers?
The gist of our findings is that online detectors are quite effective in detecting
increasing rates of subspace outliers in data streams. In particular, proximity-
based detectors like MCOD and tree-based detectors like RRCF prove to be more
efficient than their offline counterparts (LOF and iForest) due to the heavy re-
construction of their models as new data points arising in a stream. For fullspace
outliers less computationally costly mechanisms that update only mass profile
counters employed by HSTF seems to sufficiently work. In addition, RRCF and
HSTF are best for detecting outliers with extreme feature values while MCOD
when adequately tuned can overcome outliers swamping and masking problems
even in high dimensional datasets [76].

Section 5.2. How robust are online and offline detectors against increasing
data and subspace dimensionality? Online detectors (HST/F, RRCF and MCOD)

1Recall that hyper-parameter is an important parameter which cannot be directly estimated
from the data [38].

3

are more robust than offline (LOF, KNN and iForest) detectors against an increas-
ing ratio of features which are irrelevant to the subspace outliers contaminating a
dataset. In particular, MCOD well-tuned to the characteristics of the data stream
archives an optimal effectiveness for every data and subspace dimensionality. On-
line detectors updating the entire structure of their model (MCOD and RRCF) are
more robust than detectors updating only the mass profiles of tree leaves (HST/F)
against subspace outliers of increasing dimensionality. In particular, RRCF ex-
hibits the best effectiveness among all tree-based detectors.

Section 5.3. How sensitive online detectors are to their hyper-parameters?
Online detectors are affected by both model (e.g., min-neighbors, max-distance,
trees, tree-depth) and window (e.g., size and slide) hyper-parameters. Model
hyper-parameters of proximity-based detectors like MCOD (min-neighbors and
max-distance) prove to be harder to optimize than of tree-based detectors like
HST/F and RRCF (number and depth of trees). In addition, MCOD is very
sensitive to the window hyper-parameters, since it is based on the window slide
to forget past points from the models build. Moreover, the introduction to HST
of forgetting mechanism (HSTF) not only improves its effectiveness, but also its
sensitivity w.r.t. the tree-depth hyper-parameter.

The presentation of the thesis is organized as it follows. In Chapter 2, we de-
scribe and discuss our selection of anomaly detectors. In Chapter 3, we introduce
our general benchmarking environment including details of the platform deploy-
ment, datasets, detector design choices and the hard/software characteristics of
the machine under which benchmark took place. In Chapter 4, we introduce the
benchmark methodology representing the manual of our benchmark pipeline. In
Chapter 5, the results and delightful insights of our experiments, are summarized.
Finally conclusions and future work are discussed in Chapter 6.

4

Chapter 2

Anomaly Detection Algorithms

In this chapter, we present several anomaly/outlier detection algorithms, simply
called detectors, that employ either binary or continuous scores to distinguish
abnormal from normal data points. Given the scarcity of labeled data in many
real applications (e.g., Internet of Things), we focus on online state-of-the-art
algorithms as well as the offline ones that they inspired by, relying on unsupervised
outlierness criteria, such as distance, density or tree-based. Other outlierness
criteria that mainly focus on anomaly detection over time series data [27] are out
of the scope of this work.

From online distance-based detectors, MCOD is considered the best in terms
of speed and memory as experimentally proved in the well-known benchmark [69].
From online tree-based detectors, HST is considered the best in terms of speed
[66] and RRCF is considered the best in terms of effectiveness [26] as shown in the
results of their original work. To the best of our knowledge, our work is the first
ever benchmark over these online tree-based detectors.

Object L/W NS S

penny 1.5 3 true

dime 1 3 true

knob 1 4 true

eraser 2.75 6 true

box 1 6 true

block 1.6 6 true

screw 6 3 true

battery 5 3 true

key 4.25 3 false

bead 1 2 true

Table 2.1: Example dataset of 10 data points, with 9 normal and 1 anomalous.

From offline nearest-neighbor detectors, KNNW is a distance-based and LOF

5

is a density-based who inspired MCOD. From offline tree-based detectors, iForest
is considered the one who inspired both HST and RRCF. These offline detectors
have been extensively evaluated and compared in the well-known benchmarks [17],
[18] and [11].

In Table 2.1 we present ten 3D data points, where each data point represent an
object characterized by its Length/Width, Number of Surfaces and Smoothness. A
human expert used his prior knowledge to cluster these objects into three clusters;
Skinny {battery, screw}, Corners {box, block, eraser} and Round {Knob, dime,
bead, penny}. According to that expert, the object key is closer to the Skinny
cluster, but still in distance since its the only not smooth object. Therefore, all
objects are inliers except key which is a real outlier.

In the following sections, we present the concept of anomaly detection from
the algorithmic perspective and we make use of the above dataset as our running
example, in which detectors quote their own belief of anomalies over these objects.

2.1 Categorization of Anomaly Detection

2.1.1 Labels

There are three general methodologies of a detector according to the use of labeled
data for training the algorithms [30]; Supervised, Semi-supervised and Unsuper-
vised learning. Supervised algorithms involve training a model with labeled data
regarding both inliers and outliers. Semi-supervised algorithms involve an inter-
active with an oracle training of a model with a small amount of labeled data
(e.g., of inliers) bolstering a larger set of unlabeled data. Unsupervised algorithms
detect anomalies without the use of preassigned labels for both inliers and outliers.
Supervised methodologies are out of the scope of this work.

2.1.2 Modes

Another important issue for anomaly detection is the mode of a detector, which is
defined according to its outlier constraints in train phase [31]; Novelty and Outlier.
Novelty involves training a model in a no polluted by outliers train phase. Outlier
involves training a model in a polluted by outliers train phase.

2.1.3 Types

There are two types of detector according to its model characteristics [27]; Offline
and Online. Offline called a detector which maintains a static model over data.
In other words, its model never gets updated. Online called a detector which has
a dynamic model over data. In other words, its model gets updated periodically.
Moreover, an offline detector processes all data points at once, when an online
detector process points over windows.

6

2.1.4 Windows

The online type of detectors need a windowing sampling technique to process the
stream data. Count-based windows is a sampling technique refers to splitting data
into chunks, based on the order that data arrives [4]. A count-based window,
simply called window, has two hyper-parameters; size and slide. The window size
indicates the total number of data points in a window, where all windows must
have the same size except probably the last one. The window slide indicates the
step size of the window over data, that is the number of data points that a window
will be shifted. There are two types of windows according to its hyper-parameters
[43]; Sliding and Tumbling. Sliding is a window that slides across a data stream
according to a specific interval, and therefore may contain overlapping data; a
point bay belong to more than one sliding window. Tumbling is a window of data
grouped in a non-overlapping interval, and therefore a data point belongs to only
one window (i.e., window size = window slide).

2.1.5 Output

Detectors may spot either a binary outcome (anomaly or not) or a real-valued
score 8 [36]. The binary outcome is valued in a range of exactly two values; 0 to
indicate inlier and 1 to indicate outlier. The continuous score is valued in a range
of a closed [0, 1] or an open bound (−∞,+∞) interval; the higher the value, the
higher the degree of outlierness.

2.2 Offline Detectors: KNNW , LOF, iForest

There is a plethora of offline detectors using different outlines criteria based on
distance, density or random trees.

2.2.1 Weighted K-Nearest Neighbor (KNNW)

The Weighted KNN (KNNW) is an unsupervised score based variation of the dis-
tance based K Nearest Neighbors (KNN) supervised classifier [56], which computes
the distance of a given data point with respect to the rest points. It considers as
outlier, points that are in substantially higher distance than the rest points (i.e.,
they have few neighbors) [20].

In the training phase it constructs a matrix of distances, called MD. The MD
is a 2D array, where each row represents a data point and each column represent
the distance from a nearest neighbor.

The prediction phase makes use the MD to assign a real-valued score for each
(row) data point. The score of a data point p is computed as the maximum
distance dist over its K (columns) nearest neighbors n, given by the Equation 2.1.
The higher the score, the more probable the point to be an outlier.

7

score(p) = max(dist(p, n(q))) : 1 ≤ q ≤ K (2.1)

The training and predict phase of KNNW take place on the same set of data.
The detector originally designed to run in outlier mode.

The KNNW has two hyper-parameters; K and Metric. The K is the number of
nearest neighbors. The Metric is the name of the distance metric through which
calculates the distance from its neighbors.

The main concern with optimizing KNNW is to select the right number of
neighbors K to be considered.

2.2.2 Example

Let us assume the ten objects of the Table 2.1 and the KNNW detector with K
= 3 and Metric = Euclidean. The KNNW make use all of the 10 objects to first
train its model and then score them using that model.

Object K=1 K=2 K=3

penny 0.0 0.5 1.12

dime 0.0 0.5 1.0

knob 0.0 1.0 1.12

eraser 0.0 1.15 1.75

box 0.0 0.60 1.75

block 0.0 0.60 1.15

screw 0.0 1.0 2.02

battery 0.0 1.0 1.25

key 0.0 1.25 2.02

bead 0.0 1.0 1.12

Table 2.2: The model of KNNW over the objects of Table 2.1.

Table 2.2 illustrates the constructed model of KNNW as a 10x3 MD, where
each row represent an object and each column represent the Euclidean distance
from one out of three nearest neighbors.

Thereafter, the model is used to assign an anomaly score for each of the ten
objects, as the maximum Euclidean distance per row. The descending order of the
anomaly scored objects is as it follows: {key:2.02, screw:2.02, eraser:1.75, box:1.75,
battery: 1.25, block:1.15, knob:1.12, penny:1.12, bead:1.12, dime:1.0}.

8

According to authors in [56], a KNNW model has quadratic training complexity
O(n*n) and linear predict complexity O(n). The description of this parameter is
shown in Table 2.3.

Parameters Description

n Number of data points

Table 2.3: The complexity parameters of the KNNW .

2.2.3 Local Outlier Factor (LOF)

The Local Outlier Factor (LOF) is an unsupervised density based outlier detector,
which computes the local density deviation of a given data point with respect to
its neighbors. It considers as outlier, points that have substantially lower density
than its neighbors [10].

In the training phase it constructs a matrix of densities, called MD. The MD is
a 2D array, where each row represents a data point and each column represent the
local reachability density (LRD) ratio of that point to a nearest neighbor point.
To get the LRD of a data point a, we first calculate the reachability density of a to
all its K neighbors and take the average of that number. The LRD is then simply
the inverse of that average. By intuition the local reachability density tells how
far we have to travel from our point to reach the next point or cluster of points.
The lower it is, the less dense it is, the longer we have to travel. The formula of
LRD is given in Equation 2.2.

lrd(a) = 1/(sum(rd(a, n))/K) (2.2)

The reachability distance is simply the maximum of the actual distance of two
points and the k-distance of the second point. Basically if a point a is within the
K neighbors of point b, the rd(a,b) will be the k-distance of b. Otherwise, it will
be the actual distance of a and b. The k-distance is the actual distance of a point
to its Kth neighbor. The formula or RD is given in Equation 2.3.

rd(a, b) = max{kd(b), d(a, b)} (2.3)

The prediction phase makes use the MD to assign a real-valued score for each
(row) data point. The score of a data point p is computed as the average of the
LRD ratios over its K (columns) nearest neighbors, given by the Equation 2.4.
The higher than 1 the score is, the more probable the point to be an outlier. An
approximately to 1 score indicates inlier.

score(p) = sum(lrdratio(n(q)))/K : 1 ≤ q ≤ K (2.4)

The training and predict phase of LOF take place on the same set of data. The
detector originally designed to run in outlier mode.

9

The LOF has two hyper-parameters; K and Metric. The K is the number of
nearest neighbors. The Metric is the name of the distance metric through which
calculates the distance from its neighbors.

The main concern with optimizing LOF is to select the right number of neigh-
bors K to be considered.

2.2.3.1 Example

Let us assume the ten objects of the Table 2.1 and the LOF detector with K = 3
and Metric = Euclidean. The LOF make use all of the 10 objects to first train its
model and then score them using that model.

Object K=1 K=2 K=3

penny 0.98 1.09 1.21

dime 1.02 1.12 1.24

knob 1.22 1.20 0.91

eraser 1.47 1.0 1.0

box 1.47 1.0 1.0

block 1.47 1.0 1.0

screw 1.61 1.0 1.0

battery 2.17 1.0 1.0

key 2.17 1.0 1.0

bead 0.82 0.81 0.90

Table 2.4: The model of LOF over the objects of Table 2.1.

Table 2.4 shows the constructed model of LOF as a 10x3 MD, where each row
represent an object and each column the LRD ratio of one out of three nearest
neighbors.

Thereafter, the model is used to assign an anomaly score for each of the ten
objects, as the average LRD ratio per row. The descending order of the anomaly
scored objects is as it follows: {key:1.39, battery:1.39, knob:1.20, screw:1.20,
eraser:1.16, box:1.16, block:1.16, dime:1.12, penny:1.10, bead:0.84}.

According to authors in [10], a LOF model has quadratic training complexity
O(n*n) and linear predict complexity O(n). The description of this parameter is
shown in Table 2.5.

10

Parameters Description

n Number of data points

Table 2.5: The complexity parameters of the LOF.

2.2.4 Isolation Forest (iForest)

The Isolation Forest (iForest) is an unsupervised tree-based ensemble outlier de-
tector, which isolates outliers directly without relying on an explicit distance or
density metric. It considers as outlier, points that are in substantially shallower
average trees depth [45].

In the training phase it constructs a forest of a Trees number of isolation trees,
called IF, using bootstrapping of size Max Samples. An isolation tree, called IT, is
a collection of internal and external nodes stored in a full binary tree. Each internal
node stores a random and uniformly selected feature and a random and uniformly
selected value from its value range. Each external node stores the number of data
points that fells into, called size, and the number of internal nodes in the path
from root to this node, called actual depth, which is limited up to Max Depth.

The prediction phase makes use the IF model to assign a real-valued score
for each data point. The score of a data point p is computed by the formula of
Equation 2.5. The closer to 1 the score is, the more probable the point to be an
outlier. The much smaller than 0.5 score indicates inlier.

score(p, n) = 2−E(h(p))/c(n) (2.5)

In that scoring formula, n is the max samples size, E(h(p)) is the average of h(p)
and c(n) is used for normalization, given by the Equation 2.6.

c(n) = 2 ∗ (ln(n− 1) + 0.5772156649)− 2 ∗ ((n− 1)/n (2.6)

The h(p) is derived as the actual depth of the external node that p is terminated
to. When p is terminated to an external node, in which the size is larger than
one, the return value is plus an adjustment c(size).

The training and predict phase of iForest can take place either on the same
either on different set of data. In case of different sets, a train set used for the train-
ing phase and a test set used for the predict phase, where each set is a collection
of data points. The detector originally designed to run in outlier mode.

The iForest has three hyper-parameters; Trees, Max Samples and Max Depth.
The Trees is the number of tree detectors. The Max Samples is the number of
data points that are used to build a tree model. The Max Depth is the maximum
depth that an external node can reach.

The main concern with optimizing a non-deterministic iForest model is to
select a correct value for Max Depth and Trees. Authors are aware of this, so they

11

suggested the ceil(log2(n)) as a dynamic max depth of a tree and a high number
of tree detectors.

2.2.4.1 Example

Let us assume the ten objects of the Table 2.1 and the iForest detector with Trees
= 1, Max Samples = 5 and Max depth = 2. The iForest make use all of the 10
objects to first train its model on a sub sample of 5 objects and then score all of
the 10 objects using that model.

Object L/W NS S

dime 1 3 true

knob 1 4 true

box 1 6 true

battery 5 3 true

bead 1 2 true

Table 2.6: The sub sample of 5 objects.

In Table 2.6 we show the sub sample of five objects selected via bootstrapping
on the full data set defined in Table 2.1.

Figure 2.1: The model of iForest over the objects in Table 2.6.

Figure 2.1 depicts the constructed IT, by recursively partitioning the data
space defined in Table 2.6. On the first partition, the feature S selected with value
0.67 and on the second partition, the feature NS selected with value 3.58. In the
external node of depth 1, no object fell into. In the external nodes of depth 2,

12

three objects {dime, battery, bead} fell into the left node and two object {knob,
box} fell into the right node.

Thereafter, the model is used to assign an anomaly score for each of the ten
objects of Table 2.1, using c(5) = 2.3270 and c(3) = 1.2074. If we take a look
to the object penny, it terminates to the external node of depth 2 and size 3. So
score(penny) = 2−(2+c(3))/c(5) = 2−(2+1.2074)/2.3270 = 2−1.3783 = 0.38. The score of
the rest objects computed in the same way. The descending order of the anomaly
scored objects is as it follows: {key:0.74, knob:0.53, eraser: 0.53, box: 0.53, block:
0.53, screw: 0.38, battery: 0.38, penny: 0.38, dime: 0.38, bead: 0.38}

According to authors in [45], an iForest model has linear training complexity
O(t*m*h) and linear predict complexity O(n*t*h). The description of the param-
eters is shown in Table 2.7.

Parameters Description

t Number of trees

m Number of sub sample

h Max height of a tree

Table 2.7: The complexity parameters of the iForest.

2.3 Online Detectors: MCOD, HST/F, RRCF

There are several online detectors using different outlierness criteria. In this work,
we focus on distance and random tree based online detectors. In opposed to offline,
online detectors use a window technique to process the data points over a stream
such as sliding and tumbling windows.

In Table 2.8 we make use the objects of Table 2.1 in streaming manner and
therefore we partition objects into sliding and tumbling windows. In our example,
objects grouped in sliding windows of size = 8 and slide = 2 as well as tumbling
windows of size = 5. So, online detectors will be applied on two sliding (S0, S1)
or two tumbling (T0, T1) windows.

2.3.1 Micro-cluster Outlier Detector (MCOD)

The Micro Cluster Outlier Detection (MCOD) is a distance based detector, that
captures the data neighboring regions over a stream using micro-clusters to elim-
inate the need for range queries; distance re-calculation between all points would
be very expensive, especially when carried out on large datasets. MCOD processes
a stream using sliding windows, through which reconstructs its model [34].

In the training phase it constructs a number micro-cluster lists and a proceeding
list. Micro-cluster is a list, called MC, composed of no less than K+1 data points,

13

Object Sliding W Tumbling W

penny 0 0

dime 0 0

knob 0,1 0

eraser 0,1 0

box 0,1 0

block 0,1 1

screw 0,1 1

battery 0,1 1

key 1 1

bead 1 1

Table 2.8: The 10 objects of the Table 2.1 in streaming manner.

where each point can only belong to one MC. According to the triangular inequality
in metric space, the distance between every pair of data points in a MC is no be
greater than R. The rest points are stored in proceeding list called PD.

The prediction phase make use of the MC and PD lists to assign a score for
each data point. A data point p is an outlier when its actual distance from the
center of any MC is higher than R/2 or the potential MC that belongs to has less
than K+1 points. The binary score is calculated by the Equation 2.7. The score
1 indicates outliers and score 0 indicates inliers.

score(p) = (dist(p,MC) <
R

2
or cardinal(MC(p, PD)) < (K + 1)) ? 1 : 0 (2.7)

In the update phase points can be added and/or removed from MC and PD
lists. When a window slides, a number of data points gets expired. That may
dissolve a MC, with the remaining points to be stored in PD list. In every window,
the points in PD list are processed as new data points. A new point can: i) be
enough to form a new MC when there at least K more data points within R
distance in PD list. ii) be added to the closest MC when the distance from its
center is within R/2. iii) remain to the PD list.

The training, predict and update phase of the MCOD take place on the same
set of data, which is a collection of sliding windows. The points of the sliding
windows are first used to train/update the model and then to be scored by that
trained/updated model. The detector originally designed to run in outlier mode.

14

The MCOD has two hyper-parameters; Max distance, Min neighbors and Met-
ric. The Max Distance (R) corresponds to the actual radius R of a micro cluster.
The Min Neighbors (K) correspond to the minimum number of neighbors K of
data points that a cluster need to be constructed. Metric, is the name of the
distance metric through which calculates the distances. MCOD is additionally get
affected by the hyper-parameters of sliding windows.

MCOD is a very difficult detector to optimize, because is highly dependent on
the data characteristics. A wrong set of hyper-parameters can cause many false
positives/negatives. MCOD with high R on a dataset with small feature value
range, will classify all points as inliers. On the other hand, MCOD with low R
on a dataset with high feature value range, will classify all points as outliers. In
addition, MCOD with a very high K may not capture a small cluster of data and
on the other hand with a very low K may capture many false positives.

2.3.1.1 Example

Let us assume the ten objects of the Table 2.8 and MCOD detector with Min
Neighbors = 1, Max Distance = 2.0 and Metric = Euclidean. The MCOD make
use the S0 window to first train its model then predicts using that model and
thereafter the S1 window to first update its model and then predict using the
updated model.

Object List Type

penny MC1

dime MC1

knob MC1

eraser MC2

box MC2

block MC2

screw MC3

battery MC3

Table 2.9: The model of MCOD over the S0 window objects in Table 2.8.

We compute the Euclidean distance between all objects. Table 2.9 presents the
constructed model of MCOD as the lists MC1, MC2 and MC3. We observe that
there are no objects in PD list, and therefore all the eight objects distributed in
MC clusters. The MC1 constructed, because three objects {penny, dime, knob}
found in no more 2.0 distance between them. The MC2 and MC3 constructed for
the same reasons.

15

Thereafter, the model is used to assign an anomaly score for each object of this
window. All the objects of PD list scored by 1 and the rest by 0. The descending
order of the anomaly scored objects is as it follows: {screw:0, battery:0 penny:0,
dime:0, knob:0, eraser:0, box:0, block:0}.

Object List Type

knob MC1

eraser MC2

box MC2

block MC2

screw MC3

battery MC3

key PD

bead MC1

Table 2.10: The updated MCOD model over the S1 window objects in Table 2.8.

In Table 2.10 we show the re-constructed model of MCOD as the lists MC1,
MC2, MC3 and PD. We observe that two objects {penny, dime} expired from
MC1, but the presence of the new object {bead} reconstructs the dissolved MC1.
The MC2 and MC3 lists remains the same. The new object {key} stored in PD
list, because in its closest cluster MC3 the object {eraser} is in distance 2.1 which
is higher than the 2.0.

Thereafter, the updated model is used to assign an anomaly score for each
object of this window. The descending order of the anomaly scored objects is as
it follows: {key:1, screw:0, battery:0, bead:0, knob:0, eraser:0, box:0, block:0}.

According to authors in [69], an MCOD model has linear time complexity O((1-
c)*w*log((1-c)*w)+k*w*log(k))) and linear space complexity O(c*w+(1-c)*k*w).
Therefore, MCOD is faster than LOF and KNNW , but still quite slow. The de-
scription of these parameters is shown in Table 2.11.

Parameters Description

c Number of classes

k the number of nearest neighbors

w The number of data points in a window

Table 2.11: The complexity parameters of the MCOD.

16

2.3.1.2 Real-valued Scoring Function

MCOD uses a binary outcome scoring function, resulting 0 for inliers and 1 for
outliers. We investigate a way to assign a real valued score to the predicted out-
liers and therefore to result different outlier degrees. According to the original
MCOD implementation [35], a prediction for a point p is computed by the for-
mula: prediction(p) = succeeding neighbors(p) + preceding neighbors(p) < min
neighbors ? 1 : 0. Neighbors of p, are the data points within distance R/2. The
preceding neighbors of p, are the neighbors of p, Pp, that will expire before p, and
the succeeding neighbors of p, Sp, that will persist during the entire lifetime of p.
When a p predicted as an outlier po, we update its score from 1 into a real-valued
score given by the formula 2.8.

min neighbors - (succeeding neighbors(po) + preceding neighbors(po)) (2.8)

2.3.2 Half Space Trees (HST)

The Half Space Trees (HST) is an ensemble tree-based detector, that learns the
sketch of a stream. It captures the density changes of adding a point in the
sketch by profiling its mass. HST processes a stream using tumbling windows,
through which update its model [66] without any time-fading mechanism (i.e.,
always remembers points).

In the training phase it constructs a forest of a Trees number of trees, called
HST, using bootstrapping of size Max Samples and a workspace per tree. Workspace
is a random perturbation of an original feature space. It consists of a set of work
ranges; a different work range for every feature. A work range wr of a feature f is
given by the formula in Equation 2.9.

wr(f) = Sf ± 2 ∗max(Sf, fmax− Sf) (2.9)

In that equation the Sf is a real number, randomly and uniformly selected from
the actual value range [fmin, fmax] of the f. HST considers perfect binary trees,
where each internal node has exactly two child nodes and all external nodes are in
the same depth. An internal node stores a random and uniformly selected feature
and the middle value of its work range. An external node stores the number of
points that fells into, called mass, and the number of internal nodes in the path
from root to this node, called actual depth, which is equal to Max Depth.

The prediction phase makes use the HST model to assign a score for each data
point. The score of a point p is the sum of scores obtained from each T in the
HST, given by the Equation 2.10.

scoreHST (p) = sum(score(p, t)) : 1 ≤ t ≤ T (2.10)

17

The score of p in a T is computed by the formula in Equation 2.11. In that
equation, Node is the terminal node that p fells into and r, k correspond to its
mass and actual depth respectively. The lower the mass profiles that a point ends
up into, the lower the score that is assigned to and therefore the more probable to
be an outlier. A high score indicates an inlier.

score(p, t) = Node.r ∗ 2Node.k (2.11)

In the update phase, the data points in a tumbling window increase the mass
profiles of each T in HST. The mass profile of an external node in T gets increased
by one for every point that fells into. The HST model never forgets, and therefore
mass profiles can never get reduced.

The training, predict and update phase take place on different set of data. A
train set is used only for the training phase, and a test set is used for both predict
and update phases. Each set is a collection of tumbling windows. In the test set,
HST uses each tumbling window to first score all points and then to update its
Model. The detector originally designed to run in novelty mode.

The HST has three hyper-parameters; Trees, Max Depth and Max Samples.
The Trees, is the number of tree detectors. The Max Depth is the maximum level
that an external node can reach. The Max Samples, is the number of points that
are used to build a tree model. HST is additionally get affected by the hyper-
parameters of tumbling windows.

HST is important to be optimized. HST with small number of trees can cause
unstable effectiveness, because of the non-deterministic construction of the perfect
binary trees. HST with high max depth can cause false positives, because of the
high number of low mass external nodes.

2.3.2.1 Example

Let us assume the ten objects of the Table 2.8 and HST detector with Trees = 1,
Max Samples = 3 and Max depth = 2. The HST make use of the T0 window to
train its model on a sub sample of 3 objects and thereafter the T1 window to first
score and then update its model.

Object L/W NS S

penny 1.5 3 true

eraser 2.75 6 true

box 1 6 true

Table 2.12: The sub sample of 3 objects.

In Table 2.12 we present the three objects selected via bootstrapping on T0
window defined in Table 2.8.

18

Feature WR Min WR Max

L/W -1.56 4.68

NS -5.38 16.14

S -1 3

Table 2.13: The workspace over the objects in Table 2.12.

Moreover, in Table 2.13 we present the features work range according to the
sub sample of Table 2.12.

Figure 2.2: The model of HST over the objects in Table 2.12 using the workspace
of Table 2.13.

Figure 2.2 illustrates the constructed model of HST, by recursively partitioning
the data space defined in Table 2.12 using the workspace defined in Table 2.13.
On the first partition, the feature S selected with value 1, on the second partition
the feature NS selected with value 5.38 and on the third partition the feature
L/W selected with value 1.56. All the external nodes are located in depth 2. No
objects fell under the external nodes of the second partition. All the three objects
fell under the external objects of the third partition; {penny, box} on the left
and {eraser} on the right. Thereafter, the model is used to assign an anomaly
score for each object in the T1 window of Table 2.8. If we take a look to the
object block, it terminates to the depth (k) 2 and mass (r) 2 external node. So
scoreHST (block) = score(block, T) = 1 ∗ 22 = 4. The score for the rest objects is
computed in the same way. The descending order of anomaly scored objects is as
it follows: {key:0, block:4, screw:4, battery:4, bead:8}.

19

Figure 2.3: The updated HST model over the T1 window objects in Table 2.8.

In Figure 2.3 we illustrate the updated HST model, using the objects of the
T1 window in Table 2.8. We observe that almost all the mass profiles have been
updated. One object fell under the left external node of the second partition;
{key}. Four objects fell under the external nodes of the third partition; {bead} on
the left and {block, screw, battery} on the right.

According to to authors in [66], an HST model has linear training complexity
O(t∗ (2h+1−1)), that is because in the worst case scenario each data point end up
to a different leaf. It has linear update complexity O(t * h * w), because every new
point requires updating a mass profile of each tree. It has linear predict complexity
O(w * t * h), because every new point traverses each tree up to an external node.
Therefore, complexities are amortized (constant) when h, t and w are set. The
description of these parameters is shown in Table 2.14.

Parameters Description

t Number of trees

h Max height of a tree

w Number of data points in a window

2h+1 − 1 Number of nodes in a perfect binary tree

Table 2.14: The complexity parameters of the HST.

2.3.3 HST with Forgetting (HSTF)

The Half Space Trees with forgetting (HSTF) is our variation of the original HST
[66], in which a forgetting mechanism has been integrated to the update phase.
This forgetting mechanism is inspired by RRCF [26]. As we mentioned earlier

20

HST never decreases its mass profiles and therefore never forget a learned data
point.

HSTF uses an aging mechanism to forget the oldest points. More specific when
the overall mass of a tree in forest exceed a forget threshold, the mass profile of the
K oldest external nodes in the tree will be decremented by one. An external node
is called old when its mass profile has not been updated by the newest tumbling
window. The K parameter correspond to the window size.

The phases of HST are all extended by HSTF. In the training phase, all the
external nodes with zero mass profile are characterized as old leaves. The rest
as not old leaves. In the updating phase, we have two categories of incremental
update; insert and forget. The insertion of a new window of data points, will
characterize as not old the external nodes that their mass profile has been updated
and the rest external nodes as old. The forget update, decreases by one the (non-
zero) mass profiles of K uniformly selected old leaves. Note that the forget of a
point is only applied after a point insertion.

HSTF extends HST by one hyper-parameter; Forget Threshold. The Forget
Threshold is the total mass profile of a tree that has to be reached (at least) so
that the forgetting mechanism is activated.

In HSTF the value of Forget Threshold has to be correlated with the window
size and therefore suggested values are; 125, 256, 512, 1024, 2048, 3072, etc. More-
over, we suggest the forget threshold to be the double (or more) than the window
size, because the mass profiles must get increased enough before start decreas-
ing them. It is also noticeable that the value of the forget threshold, adjusts the
speed that HSTF gets adapted to the data changes. The lower the value of forget
threshold, the faster a high mass profile can end up into a low mass profile.

HSTF has the exact same complexity as the HST. That is because the addition
of a forgetting mechanism, does not affect the linear complexity over the different
phases.

2.3.4 Robust Random Cut Forest (RRCF)

The Robust Random Cut Forest (RRCF) is an ensemble tree-based detector, that
learns the sketch of a stream. It captures the differential effect of adding/removing
a point from the sketch by profiling its collusive displacement. RRCF processes
a stream using sliding windows, through which reconstruct its model including a
time-decaying mechanism (i.e., forgetting points) [26].

In the training phase it constructs a forest of a Trees number of full binary trees,
called RRCF, using bootstrapping of size Max Samples. A full binary tree, called T,
is a collection of internal and external nodes, where each internal node has exactly
two child nodes and the external nodes may be in different depth. An internal
node stores a random and proportionally to the value range selected feature and
a value selected randomly and uniformly from its value range. Additionally, each
internal node has a bounding box; a data structure that stores the actual value
range [fmin, fmax] of each feature f from the data points traversed by this internal

21

node. An external node stores a features set of the data point that fells into, the
number of point’s replicas and a unique index that indicates its age in tree. Note
that, the maximum depth of a T depends on the number of the unique data points.

In the update phase, the data points in a sliding window reconstruct the struc-
ture of each T in RRCF. The tree reconstruction can be cause by two tasks; Insert
a new point and remove the oldest point (FIFO). A point p traverses the internal
nodes of a tree as long as is within their bounding boxes. If p reach an internal
node Ni that does not fit into its bounding box, then a new constructed external
node Np in which p terminates and the Ni will become the two child nodes of a
new internal node that is thereafter connected to the rest tree. Else, p traverses
successfully all internal nodes until reach to an external node Ne. If the feature set
of p is the same with the one in Ne, then the number of replicas in Ne is increased
by one. Else, a new constructed external node Np in which p terminates and Ne
will be the new child nodes of a new internal node that is thereafter connected to
the rest tree. Furthermore, the oldest external node of a tree gets removed, if the
total number of external nodes in tree exceed the Forget Threshold size. When
an external node Ne gets removed, then the internal parent node Ni also gets
removed and replaced by its sibling node Ns.

The prediction phase makes use the RRCF model to assign a score for each
data point. In order to compute the score of a point p, it is mandatory for p to
already be inserted in RRCF. The score of a point p is the average of the collusive
displacement (CoDisp) obtained from each T in RRCF, given by the Equation
2.12.

scoreRRCF (p) = avg(coDisp(p, t)) : 1 ≤ t ≤ T (2.12)

The collusive displacement of p in T is the maximal displacement given by the
formula in Equation 2.13. The disp(p, d) is the ratio between the total size of
external nodes under the sibling and the current node that p traversed through
in each depth d. The higher the collusive displacement of a point, the higher the
score that is assigned to and therefore the more probable to be an outlier. A low
score indicates inlier.

coDisp(p, t) = max(disp(p, d)) : 1 ≤ d ≤ D (2.13)

The training, update and predict phase take place on different set of data. A
train set is used only for the training phase, and a test set is used for both update
and predict phases. Each set is a collection of sliding windows. In the test set,
each point of the sliding windows, is used to first update the model and then to
assign a score using that updated model. The detector originally designed to run
in both novelty and outlier mode.

RRCF has three hyper-parameters: Trees, Forget Threshold and Max Samples.
The Trees, is the number of tree detectors. The Forget Threshold is the total
number of leaf nodes that has to be reached (at least) so that the forgetting
mechanism is activated. The Max Samples, is the number of points that are used

22

to build a tree model. RRCF additionally get affected by the hyper-parameters of
sliding windows.

RRCF is easier to get optimized than the rest online detectors. It is also
noticeable that RRCF implementation can support up to Max Leaves number of
leaf nodes depending on how powerful the setup is, 5.000 by default. That means
that when the total number of leaf nodes exceed this limit, then the forgetting
mechanism is being automatically activated to prevent data points leak.

2.3.4.1 Example

Let us assume the ten objects of the Table 2.8 and RRCF detector with Trees
= 1, Max Samples = 5 and Forget Threshold = 6. The RRCF make use of the
S0 window to train its model on a sub sample of 5 objects and thereafter the S1
window to both update its model and score on each data point.

Object L/W NS S

knob 1 4 true

eraser 2.75 6 true

box 1 6 true

block 1.6 6 true

battery 5 3 true

Table 2.15: The sub sample of 5 objects.

In Table 2.15 we present the five objects selected via bootstrapping on S0
window defined in Table 2.8.

23

Figure 2.4: The model of RRCF over the objects in Table 2.15.

Figure 2.4 illustrates the constructed model of RRCF, by recursively parti-
tioning the data space defined in Table 2.15. On the first partition (Part0), the
feature L/W selected with value 1.56, because that feature has the larger value
range according to its bounding box. In the same way, the feature NS with value
5.38 selected for the second partition (Part1). On the third partition (Part2), the
feature L/W selected with value 3.45. The feature L/W with value 1.8 selected
for the fourth partition (Part3). Furthermore, the external nodes are located in
depth 2 and 3. Two objects fell under the external nodes of the second partition;
{knob} on the left and {box} on the right. One object fell under the right external
node of the third partition; {battery}. Two objects fell under the external nodes
of the fourth partition; {block} on the left and {eraser} on the right. Note that r
indicates the replicas of the object and i indicates its unique index.

Thereafter, we first update the RRCF model and then predict for each object
in the S1 window of Table 2.8. If we take a look to the first object of the S1
window knob, we can observe that is already in the left external node of the
second partition (part1). So, knob updates the RRCF model by increasing the
number of replicas (r) of its external node from 1 to 2. The knob terminates in
depth 2, so two displacements need to be computed; disp(knob, 2) = 1/2 = 0.5
and disp(knob, 1) = 3/3 = 1. The final score of knob is scoreRRCF (knob) =
coDisp(knob, T) = 1. In the same way each of the objects {eraser, box, block}
increase the r value of the external node that terminates into and assigned by
the scores; scoreRRCF (eraser) = 3/4 = 0.75, scoreRRCF (box) = 4/4 = 1 and
scoreRRCF (block) = 2/2 = 1.

24

Figure 2.5: The updated RRCF model over the first five objects of S1 window.

The next object in the S1 window is the screw. The object screw is not already
in the current model and therefore the construction of a new external node i=6 is
necessary. We notice two things: a) it will terminate on the right side of the third
partition under which external node i=5 located and b) it will exceed the L/W
max bounding box value of the first (part0) and third (part2) partitions. So, the
insertion of the object screw first extends the third’s partition right side by a new
fifth partition (part4) under which the external nodes i=5 and i=6 will co-located
and then updates the bounding boxes of its path. The feature L/W with value 5.8
has been selected for the fifth partition. After the insertion, the total number of
external nodes is equal to 6, and therefore the forgetting mechanism gets activated.
In the deletion process, the i=1 external node is going to be deleted as well as its
parent node, which is going to be replaced by its i=2 sibling external node. The
updated RRCF model according to the first five objects {knob, eraser, box, block,
screw} of the S1 window is illustrated in Figure 2.5. According to that model, the
assigned score of screw is scoreRRCF (screw) = 4/2 = 2.

25

Figure 2.6: The final RRCF model over the S1 window objects in Table 2.8.

In the same way, each of the rest three objects of the S1 window {battery, key,
bead}, update the model and assigned by a score; scoreRRCF (battery) = 4/3 =
1.33, scoreRRCF (key) = 2/1 = 2 and scoreRRCF (bead) = 2/1 = 2. In total, the
RRCF model has been updated eight times as much as the number of objects in S1
window. The final model is illustrated in Figure 2.6. The descending order of all
the anomaly scored objects is as it follows: {key:2, screw:2, bead:2, battery:1.33,
block:1, box:1, knob:1, eraser:0.75}.

According to authors in [26], an RRCF model has linear training complexity
O(t ∗ (2 ∗ n− 1)), that is because in worst case scenario each data point end up to
a different leaf. It has linear update complexity O(t ∗ log2(n)), because in worst
case scenario each new data point is a new leaf at the maximal height updating
the entire sub tree. It has linear predict complexity O(t ∗ log2(n)), because every
new point traverses each tree up to an external node. Therefore, complexities are
amortized when t and n are set. The description of these parameters is shown in
Table 2.16.

2.3.4.2 Shingling Technique

RRCF uses a technique that turns out to be useful for detecting outliers over
univariate streams, called shingling. This technique groups X points into a new
shingle point of X features. We need two assumptions for the correctness of the
technique; The shingle size is equal to the window size and the window slide must
be one. A shingle encapsulates a typical shape of a curve; a departure from a

26

Parameters Description

t Number of trees

n Maximum number of data points in a tree

2 * n - 1 Number of nodes of a perfect binary tree with n leaves

log2(n) Minimal height of a perfect binary tree with n leaves

Table 2.16: The complexity parameters of the RRCF.

typical shape could be an outlier. A very small shingle size may catch naturally
varying noise in the signal and trigger false alarms. On the other hand, a very
large shingle size may increase the time it takes to find an alarm or even miss the
alarm.

Let us assume a sliding window of size = shingle size = 4 and slide = 1. Also a
stream S = {p1, p2, p3, p4 ,p5}. The first window = {p1, p2, p3, p4} used by the
shingling technique to construct the first 4D shingle point. The second window
= {p2, p3, p4, p5} used by the shingling technique to construct the second 4D
shingle point, and so on. RRCF model gets applied on each shingle point.

2.4 Discussion

Online detectors are essentially incremental versions of offline detectors that are
able to analyze data streams. According to their original authors, HST and RRCF
are tree-based online detectors inspired by iForest while MCOD is a distance-based
online detector inspired by KNNW and LOF. These offline detectors are considered
as baseline algorithms of the corresponding online detectors (see Table 2.17).

Online Detector Model Baseline

HST/F iForest

RRCF iForest

MCOD LOF, KNNW

Table 2.17: The baseline models of online detectors.

27

28

Chapter 3

Benchmarking Environment

In this chapter, we propose a benchmarking framework general enough to ex-
perimentally evaluate and rank the effectiveness of online and offline detectors
presented in Chapter 2. To assess the impact of various factors on effectiveness
we use a dozens of real and synthetic datasets. These datasets exhibit different
characteristics in terms of inlier and outlier points and are widely used in empiri-
cal evaluations of anomaly detection algorithms [72], [17], [18] and [11]. Moreover,
we describe critical choices made in the implementation of the tree-based online
algorithms (HST/F and RRCF) that we implemented from scratch as well as the
third-party detectors (KNNW , LOF, iForest) integrated in our platform. Finally,
we present the machine characteristics under which all experiments have been
conducted.

Figure 3.1: The high level architecture of our Experimental Environment.

The architecture of our experimental environment as a generalized benchmark

29

framework applicable to both online and offline detectors on any number of con-
taminated streams, is illustrated in Figure 3.1. The data components are colored
grey and the functionalities are grouped by different colors denoting the different
methodological questions that belong to (see Chapter 4); MQ1 is colored yellow,
MQ2 is colored green, MQ3 is colored blue and MQ4 is colored red. The dotted
rectangles, indicate iterations for the grouped components.

3.1 Benchmark Platform

Instead of implementing from scratch a new benchmark platform, we decided to use
an already implemented platform and extend it according to our generalized archi-
tecture presented in Figure 3.1. There are two published implemented benchmark
platforms that could fit to our needs under proper extensions, namely, Macrobase
and Numenta NAB.

Macrobase originally introduced, by Stanford university, as an analytic moni-
toring engine, specialized for one task: finding and explaining unusual or interest-
ing trends in data [5]. Later, a master student intern in SAP company, reviewed
the Macrobase functionalities and developed a benchmarking platform to evaluate
Percentile, MAD, FastMCD, LOF as well as iForest from offline and MCOD from
online anomaly detection algorithms over ten real and synthetic datasets [51]. That
Macrobase benchmark platform is published under Apache 2.0 license in GitHub
[52], so it is easy for someone to use its source code or data as part of an open
source project for commercial or private use.

Numenta Anomaly Benchmark (NAB) introduced, by Numenta company, as
a benchmark platform for online anomaly detection in univariate time series data
[39]. It consists of the benchmark itself and mostly real datasets. All NAB datasets
are univariate contaminated by collective and contextual anomalies. The platform
mainly focuses on the evaluation of anomaly detectors over time series. That is
because, originally developed for evaluation of Numenta HTM algorithm [3]. NAB
is published under AGPL 3.0 license in GitHub [40], so it is difficult for someone
to use its source code or data as part of some closed source product or project
with different license.

3.1.1 Extended Macrobase

To this direction we make use Macrobase instead of Numenta NAB, since the of-
fline evaluation pipeline as well as logging functionalities are already implemented
according to our needs (see [51]). During my internship in SAP company as a
master student, we developed the online evaluation pipeline of Macrobase, includ-
ing architecture extensions such as a streaming generator, window types as well
as window manager illustrated in Figure 3.2 and online detectors (HST/F and
RRCF) illustrated in Figure 3.3.

30

Figure 3.2: An extended by online functionalities part of Macrobase architecture
presented in [51].

Figure 3.3: An extended by online detectors part of Macrobase architecture pre-
sented in [51].

During this internship, we developed an extended Macrobase platform which
supports online and offline detector evaluation over real and synthetically con-
taminated stream data. Our extended version of Macrobase, the online detectors
presented in Section 3.3 and the datasets presented in Section 3.2, are all publicly
available in our GitHub repository [23] under Apache 2.0 license.

3.2 Datasets

We have used in our experiments in total 10 real and 7 synthetic datasets for
either testing the sanity of the implemented online detectors (see Section 3.3)
or to evaluated their effectiveness in conjunction with their counterpart offline

31

detectors (see Chapter 5). The bulk of our experimental evaluation lies on real
data which in their majority outliers have been synthetically generated. Moreover,
we used datasets with synthetically generated both inliers and outliers to simulate
the effect of particular factors (i.e, dimentionality, outlier ratio, window size and
speed, etc.) on the effectiveness of detectors.

There are four well-known ways to synthetically simulate anomalies, in a dataset
that no expert already defined data points as real anomalies. In Minority, anomaly
considered a data point that belong to a class with the smallest or a small num-
ber of data points. A Statistical anomaly, is generated according to a statistical
distribution. In Density, anomaly is a data point thrown far away from the dense
regions. An Implanted anomaly, is a data point in which a set of its values replaced
by noise.

Besides that, the nature of an anomalous point may differ with respect to
the gap between the cardinal of its full feature space and the actual space in
which considered anomalous. Fullspace anomaly, is a data point that considered
anomalous according to the values of its full feature set. Otherwise is Subspace
anomaly. Our experimental interest focuses on datasets contaminated by subspace
outliers, since detectors gets applied on full data dimensionality.

3.2.1 Real

Table 3.1 depicts the number of samples and features of the real world datasets
used in our experiments. These datasets have been originally introduced and
made freely available on UCI [19] and OpenML [70] repositories, for the problem
of multi-class classification. The samples and features information in the original
repositories, may slightly differ from the ones presented in our table. That is
because, to evaluate a plethora of detectors we had to contaminate these datasets
and therefore transform them from multi-class to binary-class.

To this direction we used the already contaminated versions of these real
datasets, from open-source published repositories; GLOSS {Arrhythmia, Diabetes,
Glass, Hypothyroid, Ionosphere and Pendigits} [65], ODDS {MNIST, Shuttle} [58],
DATAHUB {Electricity} [47] and Numenta NAB {NYC Taxicab} [3]. Note that,
datasets are not normalized and that in Electricity dataset the first ten thousand
data points were enough.

In general, a dataset can be classified in one of the total four clusters according
to its sample-feature high/low combinations. Empirically, as high we consider more
than 5000 samples or 20 features. The dataset {MNIST} classified to the cluster
of high both samples and features. The datasets {Glass, Diabetes} classified to
the cluster of low both samples and features. In the cluster of high samples and
low features classified the datasets {Pendigits, Electricity, NYC Taxicab}. The
datasets {Arrhythmia, Hypothyroid, Ionosphere} classified to the cluster of low
samples and high features. We observe that our selected datasets belong to all the
possible combinations, which explains our interest on them.

We further investigate the contamination of these datasets in three directions;

32

Dataset Samples Features

Arrhythmia 452 279

Diabetes 768 8

Glass 214 9

Hypothyroid 3772 29

Ionosphere 351 34

Pendigits 10992 16

MNIST 7603 100

Electricity 10000 8

NYC Taxicab 10320 1

Shuttle 46464 9

Table 3.1: The 10 real world datasets.

Ratio, Type and Nature of outliers. Table 3.2 depict these characteristics. We
observe a variability of the type and nature of outliers over these datasets, while
the outlier ratio is low (no more than 9%) in the majority of datasets with the
exception to Electricity in which the outlier is almost balanced to the inlier ratio
(on/off electricity signal).

It is noticeable that all the selected real datasets are contaminated by point
anomalies, except NYC Taxicab which is contaminated by contextual anomalies.
To the best of our knowledge, any of the presented detectors that is going to be
applied on contextual anomalies will miss at least an event, since these detectors
originally designed for point anomalies.

3.2.1.1 NYC Taxicab

NYC Taxicab is a univariate time series of data collected over a 7-month period
(from 7/14 - 1/15) capturing the activity of taxi ridership passengers aggregated
over a 30-minute time window. An expert according to its knowledge of holidays
and events in NYC, defined as real anomalies the data points that fell into any
of the eight different events: Independence Day (7/4/14 - 7/6/14), Labor Day
(9/1/14), Labor Day Parade (9/6/14), NYC Marathon (11/02/14), Thanksgiving
(11/27/14), Christmas (12/25/14), New Year’s Day (1/1/15), North American
Blizzard (1/26/15 - 1/27/15). The rest data points considered normal. The re-
sulted outlier ratio is shown in Table 3.2.

33

Dataset Ratio Type Nature

Arrhythmia 5.09 Implanted Subspace

Diabetes 5.08 Implanted Subspace

Glass 5.14 Implanted Subspace

Hypothyroid 5.01 Implanted Subspace

Ionosphere 5.13 Implanted Subspace

Pendigits 5.00 Implanted Subspace

MNIST 9.03 Minority Fullspace

Electricity 56.67 Real Fullspace

NYC Taxicab 5.19 Real Fullspace

Shuttle 7.15 Minority Fullspace

Table 3.2: The contamination details of real datasets in Table 3.1.

Figure 3.4: The eight contextual anomalies over NYC Taxicab.

In Figure 3.4 we illustrate the time points of the NYC Taxicab, where the X-
axis represent the data points and Y-axis their feature value. The orange colored
areas indicate each of the 8 anomalous events.

3.2.2 Synthetic

Table 3.3 depicts the seven synthetic datasets we used in our experiments along
their respective number of samples and features. We observe a high variability in
the number of features (from 1 to 100) of our datasets while the number of samples
is relatively the same (∼1000) in all datasets with the exception of Mulcross which
contains 2 orders of magnitude more samples. Note that, datasets are standardized
but not normalized.

The ratio, type and nature of outliers synthetically generated along with out-
liers, is represented in Table 3.4. We observe that their majority, synthetic outliers
lies only to a subset of the feature space of datasets. In the following sections we

34

Dataset Samples Features

HiCS20(2,3,4,5)SD 875 20

HiCS40(2,3,4,5)SD 875 40

HiCS60(2,3,4,5)SD 875 60

HiCS80(2,3,4,5)SD 875 80

HiCS100(2,3,4,5)SD 875 100

Mulcross 262.144 4

Sine wave 1730 1

Table 3.3: The 7 synthetic datasets.

further detail synthetic datasets generation.

Dataset Ratio Type Nature

HiCS20(2,3,4,5)SD 2.0 Density Subspace

HiCS40(2,3,4,5)SD 2.0 Density Subspace

HiCS60(2,3,4,5)SD 2.0 Density Subspace

HiCS80(2,3,4,5)SD 2.0 Density Subspace

HiCS100(2,3,4,5)SD 2.0 Density Subspace

Mulcross 10.0 Density Subspace

Sine wave 1.16 Real Fullspace

Table 3.4: The contamination details of synthetic datasets in Table 3.3.

It is noticeable that all the selected synthetic datasets are contaminated by
point anomalies, except Sine wave which is contaminated by collective anomalies.
To the best of our knowledge, any of the presented detectors that is going to be
applied on collective anomalies can only detect the start and the end of a collective
anomaly, since these detectors originally designed for point anomalies.

3.2.2.1 HiCS

HiCS is a multivariate synthetic dataset with highly correlated features, originally
introduced for benchmarking binary classifiers [32]. Several HiCS datasets have
been released of varying data dimensionality: 10-d, 20-d, 30-d, 40-d, 75-d and 100-
d. Each of these HiCS variation, is contaminated in a systematic way throwing

35

points far away from dense regions over 2-d, 3-d, 4-d and 5-d feature subsets, thus
introducing density-based subspace outliers. LOF has been applied exhaustively
on each of these subspaces of interest to score the data points. Moreover, subspace
dimensionality has different frequency of feature subsets, but there are 5 outliers
hidden in each feature subset. Specifically, in 100-d the frequency of the 2-d
subspaces is 8 (i.e., 40 outliers hidden in 2-d subspaces). Also, the frequency of
3-d as well as 4-d subspaces is 6 and the frequency of 5-d subspaces is 4. Note that
subspace dimensionality is disjoint to each other, since each feature belong to the
feature subsets of only one subspace dimensionality (e.g., 2-d).

In our experiments we focus on the 100-d HiCS dataset. We removed outliers
that are visible to more than one subspace and then we generated five dataset
variations with 20-d, 40-d, 60-d, 80-d and 100-d dimensions that contain exactly
the same outliers in 2-d, 3-d, 4-d and 5-d subspaces (see constant outlier ration
in 3.4). Our aim was to increase the irrelevant feature ratio as we increase the
dimensionality of datasets. In the 20-d dataset all features belong to at least one
of the subspaces outliers are visible i.e., they are relevant to the subspace outliers
of the dataset. As the same outliers are contained in all datasets, in the 100-d
dataset we have 20 relevant and 80 irrelevant features.

Figure 3.5: Number of outliers per subspace dimensionality in HiCS datasets,

The number of outliers per subspace dimensionality in our variation of HiCS
datasets is shown in Figure 3.5. More precisely, per dataset we have included
18 outliers visible in exactly one 2-d, 3-d, 4-d or 5-d subspace. The difficulty
of detecting outliers visible in these subspace is varying. Clearly, a combination
of 5 features is much harder to be found, than a combination of 2 features. This
difficulty increases as the number of irrelevant features increases from 20-d to 100-d
HiCS datasets.

36

3.2.2.2 Mulcross

Mulcross is a Gaussian mixture distribution of inlier and outlier data samples
[59], where each sample has 4 features. The dataset has been generated using
the same parameters as proposed in [45]: inliers are samples of 1 large Gaussian
distribution and outliers are samples of two smaller Gaussian distributions, with
the distance between the center of normal and anomaly distributions to be in
distance 2. Mulcross is widely known for its cluster instead of uniformly distributed
(scatter) anomalies. The resulted outlier ratio is shown in Table 3.4.

Figure 3.6: Mulcross 1D projections.

In Figure 3.6, we illustrate the data points of Mulcross dataset from each of its
1D subspace. The outliers are colored red and inliers colored black. We observe
that subspaces {1} and {2} are less informative than {3} and {4}, since outliers
are not separated from inliers.

Furthermore, in Figure 3.7 we illustrate the data points of Mulcross from each
of its 2-d subspace, constructing a 4x4 table. Each cell represents a 2-d subspace
of different features combination, in which normal and anomalous data points are
illustrated. We observe that the 2-d subspaces {1, 2} and {2, 1} are less informative
than the rest, since each of its features are already considered less informative.

37

Figure 3.7: Mulcross 2-d projections.

3.2.2.3 Sine Wave

Sine wave is a univariate time series which composes a sine wave, with a dip of 20
time points [26]. The dip is artificially started at the point 1235, considered as a
collective anomaly since the individual instances are not outlier themselves. The
resulted outlier ratio is shown in Table 3.4.

Figure 3.8: A collective anomaly over a sine wave.

In Figure 3.8 we illustrate the time points of the Sine wave, where the X-axis
represent the data points and Y-axis their feature value. The orange colored area
indicates the anomalous data points.

3.2.3 Dataset Profiling

In this section we present a numerous of dataset characteristics, extracted from
our real and synthetic datasets, based on our empirical understanding of the weak-
nesses of detectors presented in Chapter 2. We know that nearest-neighbor de-
tectors are highly affected by the actual feature values, because the outlierness
degree of a data point is extracted according to a distance metric. In addition,

38

we know that tree-based detectors are highly affected by the number of features
and their correlation with true outliers, because the outlierness degree of a data
point is extracted according to its tree model structure. So, we dive into a deeper
analysis, resulting four new categorical characteristics extracted using if-then rules
and capturing monotonic patterns over datasets.

3.2.3.1 AVG Feature Value Range

For each dataset, we first compute the value range of each feature and then result
the average over all of its features. An average feature value range is considered
low if ≤ 100, otherwise high.

Dataset AVG Feature VR

Arrhythmia 30788354

Diabetes 177

Glass 4

Hypothyroid 64

Ionosphere 2

Pendigits 100

MNIST 182

Electricity 1

Table 3.5: Real Dataset Profiling: AVG Feature Value Range.

From our real datasets, in Table 3.5 we observe that {Glass, Hypothyroid,
Ionosphere, Pendigits} characterized with low and the rest {Arrhythmia, Diabetes,
MNIST} with high average feature value range.

Dataset AVG Feature VR

HiCS20(2,3,4,5)SD 1.027

HiCS40(2,3,4,5)SD 1.027

HiCS60(2,3,4,5)SD 1.027

HiCS80(2,3,4,5)SD 1.027

HiCS100(2,3,4,5)SD 1.027

Table 3.6: Synthetic Dataset Profiling: AVG Feature Value Range.

39

From our synthetic datasets, in Table 3.6 we observe that all of our HiCS
variations characterized with low average feature value range.

3.2.3.2 Outlier Ratio

The ratio of outliers (OR) is given by the following formula:

OR = #outliers/#inliers + #outliers (3.1)

Dataset OR

Arrhythmia 5.09

Diabetes 5.08

Glass 5.14

Hypothyroid 5.01

Ionosphere 5.13

Pendigits 5.00

MNIST 9.03

Electricity 56.67

Table 3.7: Real Dataset Profiling: Outlier Ratio.

OR is considered as low if ≤ 30%, otherwise high. As we can see in Table
3.7 Arrhythmia, Diabetes, Glass, Hypothyroid, Ionosphere, Pendigits and MNIST
have low OR while Electricity has a high OR.

Dataset OR

HiCS20(2,3,4,5)SD 2.0

HiCS40(2,3,4,5)SD 2.0

HiCS60(2,3,4,5)SD 2.0

HiCS80(2,3,4,5)SD 2.0

HiCS100(2,3,4,5)SD 2.0

Table 3.8: Synthetic Dataset Profiling: Outlier Ratio.

The outlier ratio per synthetic dataset is shown in Table 3.8. We observe that
all of our HiCS variations have low outlier ratio.

40

3.2.3.3 Feature VR Outlier Correlation

For each dataset, we compute the percentage of true outliers that have at least,
in one of their feature values, a value corresponding to the max value of an HVR
feature (we say that these outliers described by those features). A feature that its
value range is ≥ 100 characterized high value range HVR feature, otherwise low
value range LVR feature. The correlation between the feature value range and
true outliers is low, if the number of outliers described by HVR features is ≤ 30%,
otherwise high.

Figure 3.9: Real Dataset Profiling: Feature VR Outlier Correlation.

In Figure 3.9 we illustrate for each real dataset, the percentage of true outliers
that are correlated with HVR and LVR features. X-axis represent the datasets and
Y-axis the number of features. We observe that {Arrhythmia, Diabetes, Glass,
Hypothyroid, Ionosphere, MNIST, Electricity} have low and {Pendigits} has high
feature value range outlier correlation.

3.2.3.4 Irrelevant Features to Outliers

For each dataset we first calculate the number of relevant and irrelevant features
w.r.t. the outlier subspaces they contain and then we compute the ratio of irrel-
evant feature according to the formula 3.2. Recall that relevant is a feature that
belong to at least one subspace, with the rest features to be considered as irrel-
evant. The higher the irrelevant features ratio, the higher the feature irrelevance
to outliers.

41

Dataset Features Relevant Irrelevant IFR

HiCS20(2,3,4,5)SD 20 20 0 0.00

HiCS40(2,3,4,5)SD 40 20 20 0.50

HiCS60(2,3,4,5)SD 60 20 40 0.67

HiCS80(2,3,4,5)SD 80 20 60 0.75

HiCS100(2,3,4,5)SD 100 20 80 0.80

Table 3.9: Synthetic Dataset Profiling: Irrelevant Features to Outliers.

IFR = #irrelevant/#relevant + #irrelevant (3.2)

In Table 3.9 we observe that as we increase the data dimensionality we increase
the ratio of irrelevant features (IFR) to the subspace outliers and thus the task of
detecting them becomes harder.

3.2.3.5 Discussion

The average value range (AVR), outlier ratio (OR) and irrelevant features ratio
(IFR) are the three extracted characteristics that will help us to understand the
effectiveness of detectors over synthetic datasets. In Table 3.10 we aggregate these
characteristics per synthetic dataset.

Dataset AVR OR IFR

HiCS20(2,3,4,5)SD low low -

HiCS40(2,3,4,5)SD low low low

HiCS60(2,3,4,5)SD low low moderate

HiCS80(2,3,4,5)SD low low high

HiCS100(2,3,4,5)SD low low very high

Table 3.10: The three extracted characteristics by profiling the synthetic datasets.

42

Dataset AVR OR VOC

Arrhythmia high low high

Diabetes high low low

Glass low low low

Hypothyroid low low low

Ionosphere low low low

Pendigits low low low

MNIST high low high

Electricity low high low

Table 3.11: The three extracted characteristics by profiling the real datasets.

The average value range (AVR), outlier ratio (OR) and feature value range
outlier correlation (VOC), are the three extracted categorical characteristics that
are going to be used for the effectiveness explanation of detectors over real datasets.
In Table 3.11 we aggregate these characteristics per dataset.

3.3 Algorithms

We have implemented from scratch in Java 8 the two tree-based detectors: HST/F
and RRCF (see Chapter 2). We have integrated in our platform the original
implementation in java 8 of the distance-based online outlier detection MCOD [35].
For all of the offline detectors we used the python implementation of KNNW , LOF,
iForest from the scikit-learn library version 0.21.2 [54]. In the following subsections
we detail the sanity test we used to quantify how well our implementations of HST
and RRCF approximate the original ones and introduce candidate values for the
hyper-parameters of all detectors.

3.3.1 RRCF Implementation

The original implementation of RRCF is not open-source available [26]. Neverthe-
less, there exists an open-source RRCF implementation but in python [6] on which
we have based our implementation in java 8. The correctness of our implementa-
tion is verified through a sanity test, in which we run our implemented detector 30
times and we use the hyper-parameter values as proposed by RRCF authors [26].

Our RRCF implementation is first tested on the Sine Wave dataset (see Section
3.3). Our goal goal is to determine if the beginning and the end of the synthetically
injected collective anomaly can be spotted. The dataset is treated as a stream,
scoring a new point at timestamp 1000+1 with the model built up until time 1000.

43

The hyper-parameters of this experiment are trees = 100, forget threshold = 512,
window size = 4, window slide = 1.

Figure 3.10: Original RRCF implementation on Sine Wave.

In Figure 3.10 we illustrate the anomaly scores of the original RRCF implementa-
tion and in Figure 3.11 the anomaly scores of our implementation. In both figures
the red curve represent the anomaly score distribution over the sine wave dataset.
In our implementation the orange area represents the outliers. We observe that
the anomaly score distribution of the original and our implementation, both result
their peaks around the point 235 and 255. These points represent the end and
the start of the collective anomaly respectively. Therefore, we conclude that both
implementations capture the anomaly equally well.

Figure 3.11: Our RRCF implementation on Sine Wave.

We continue the evaluation of our RRCF implementation using the taxi ridership
data from the NYC Taxicab dataset, presented in Section 3.1. The goal is to
determine whether contextual anomalies can be spotted this time. We treat this
dataset as a stream, scoring a new data point at time 3740+1 with the model built
up until 3740. The hyper-parameters of this experiment are trees = 200, forget
threshold = 3072, window size = 48, window slide = 1.

44

Figure 3.12: Original RRCF implementation on NYC Taxicab.

Figure 3.12 illustrates the anomaly scores of the original RRCF implementation
and Figure 3.13 the anomaly scores of our implementation. In both figures the red
curve represents the anomaly score distribution over NYC Taxicab. The blue curve
represents the data points of the NYC Taxicab dataset. In our implementation,
the orange area represents the anomalous events; NYC marathon, thanksgiving,
Christmas, new year and snowstorm.

Figure 3.13: Our RRCF implementation on NYC Taxicab.

We observe that our implementation approximates the original, since all the anoma-
lous events captured except thanksgiving event, which is not captured by any im-
plementation. The miss of that event, indicates the importance of the proper
shingle size selection for its featuraization technique.

We stretched our RRCF implementation in comparison to the original one, on
both synthetic and real datasets. We observe that both implementation perform
equally good, with small differences to focus on the non-deterministic nature of
RRCF.

45

3.3.2 HST Implementation

The original HST implementation is open-source available in Matlab [67]. An
open-source implementation in python is also available [42]. These implementa-
tions guided our implementation of the HST in java 8. The correctness of our
implementation is verified through a sanity test, in which we run our implemented
detector 30 times and we use the hyper-parameter values; trees = 25, max depth
= 15 and window size = 250, as proposed by the authors [66].

Our HST implementation is first tested on the Mulcross dataset, presented in
Section 3.3. The goal is to determine if the (injected) cluster anomalies can be
spotted. The dataset is treated as a sequence of data points, scoring a new data
point at the time 183.500+1 with the data structure built up until time 183.500.
Therefore, the train size is 183.500 and the sample size is 131.072 data points.

Figure 3.14: The AUC ROC of our HST implementation on Mulcross.

The authors of the original HST implementation reported AUC ROC 0.998
(i.e., 99.8%) on Mulcross dataset. Through our implementation we resulted 0.986
(i.e., 98.6%), as shown in Figure 3.14. Therefore, we observe that both implemen-
tation perform equally good.

We continue the evaluation of our HST implementation using the shuttle
dataset, presented in Section 3.1. The goal is to determine if our implementa-
tion can spot the scatter anomalies. The dataset is treated as a sequence of data
points, scoring a new data point at time 34.367+1 with the data structure built up
until time 34.367. Therefore, the train size is 34.367 and the sample size is 24.548
data points. The authors of the original HST implementation reported AUC ROC
0.99 (i.e., 99.9%). Through our implementation we resulted 0.988 (i.e., 98.8%), as
shown in Figure 3.15. Therefore, we observe that both implementation perform
equally good.

46

Figure 3.15: The AUC ROC of our HST implementation on Shuttle.

We observed that the efficiency of our implementation is almost equal to the
efficiency of original HST implementation, with small differences due to the non-
deterministic nature of HST.

3.3.3 Hyper-parameters and Candidate Values

We are in front of a multivariate optimization problem, since detectors have plenty
of hyper-parameters especially the online ones that additionally get affected by
the window parameters. In Figure 3.16 we illustrate the relation between outlier
detectors, dataset and window techniques. We observe that offline detectors have
direct access on a dataset, when online detectors access to a dataset through a
window technique.

Figure 3.16: The hyper-parameters of our Experimental Environment.

Some of these hyper-parameters have fixed values. The fixed ones are presented

47

in Table 3.12. We observe fixed values in the form of percentage, refers to the total
number of data points in a dataset.

Hyper-parameter Fixed Value

train size 50%

max samples 40%

val size 10%

test size 50%

size 128

slide 64

metric Euclidean

max depth ceil(log2(max samples))

max leaves 5000

Table 3.12: The fixed values of the hyper-parameters presented in Figure 3.16.

The rest of the hyper-parameters needs to be optimized. The value range
(candidate values) of these hyper-parameters is shown in Table 3.13. We observe
that each hyper-parameter corresponds to one or more detectors. The range of
the candidate values, selected empirically to reassure the existence of at least an
optimal value per detector.

Hyper-parameter Value Range Detectors

trees 25, 50, 100 HST, HSTF, RRCF, iForest

forget threshold 64, 128, 256, 512, max samples HSTF, RRCF

max distance {0.1 up to 4}x300 MCOD

min neighbors {1 up to 64}x300 MCOD

neighbors 5, 10, 15, 20, 30, 50, 100, 150 LOF, KNNW

Table 3.13: The candidate values of the hyper-parameters presented in Figure 3.16.

3.4 Setup

In this section we present the software and hardware settings of our machine, under
which we run all of our experiments.

48

3.4.1 Software

From the perspective of software, we used Java and Python and windows as an
operating system. The versions of these components are shown in the following
list.

• Operating System (OS): Windows 10 Pro x64 bit

• Java Version: 1.8

• Python Version: 3.7.4

• Sci-kit Learn Version: 0.21.3

3.4.2 Hardware

From the perspective of hardware, a powerful personal computer was enough for
our experiments. The characteristics of that machine are shown in the following
list.

• Processor: Intel(R) Core(TM) i7-4770K CPU @ 3.50GHz

• Installed memory (RAM): 32.0 GB DDR3 1600MHz

• Disk Drive (SSD): 500 GB OCZ-VERTEX3

49

50

Chapter 4

Benchmarking Methodology

In this chapter we address the main methodological questions in order to bench-
mark in a correct and fair way online as well as offline detectors. In Section 4.1,
we explain how we can generate sequences of windows whose data points are ran-
domly sampled from the batch datasets of our benchmark (see Section 3.2). In
Section 4.2, we investigate the metrics as well as the protocols that we can be used
to fairly compare the effectiveness of online detectors on windows with the offline
detectors running on batch datasets. In Section 4.3, we present a greedy opti-
mization technique to tune the hyper-parameters of algorithms in order to ensure
that detectors may achieve an optimal effectiveness per dataset. In Section 4.4,
we introduce a distance metric to compare the effectiveness of detectors across all
datasets of our benchmark. In Section 4.5, we illustrate how our methodological
choices are taken into account by the architecture of our benchmarking platform
(see Figure 3.1).

4.1 MQ1: How streams of inliers and outliers can be
simulated from batch datasets?

The key idea to answer this question is to associate the data points contained in
a window in the stream with random samples of a batch dataset. To this end,
we stratify outliers over inliers using a step related to the outlier ratio of the
batch dataset. Hence we are able to guarantee that if step ≤ window size, then
each window is going to have similar number of outliers. Besides that, outliers
get shuffled before stratification to spread the outliers of different difficulty over
windows and therefore to avoid scenarios where all the hard or easy detectable
outliers, gathered in a window.

4.1.1 Stream

We consider a data stream in our benchmark, denoted as S, as a sequence of
stratified outliers over inliers. In a first step we consider two shuffled sets per

51

batch dataset: inliers I and outliers O. Next, we create a queue Q which contains
all the points of O stratified in the points of I, using a step size = int (number of
data points / number of outliers). That queue represents our data stream.

4.1.2 Stream Partitioning

A stream S gets partitioned into two large sequences; train and test. The train
contains the first train size data points of S, which is further partitioned into sub
sample sequence using the first max samples points and validation sequence using
the rest val size points. The test contains the rest test size data points of S. The
hyper-parameters test, train, val size as well as max samples introduced in Table
3.16.

4.1.3 Stream Windowing

Stream partitions gets processed sequentially in window/s by an online detector
or at once in a single large window by an offline detector. The stream partition
sub sample is used by an online as well as offline detector to train a model. Both
online and offline detectors use their model to predict scores on stream partitions
validation and test, when online detector additionally updates its model.

4.2 MQ2: What are the evaluation protocols and met-
rics to best assess the effectiveness of online and
offline detectors?

To address this question we rely on the binary or real-valued anomaly scores,
returned by an online as well as offline detector. The crux is to choose the suitable
protocol to traverse its anomaly scored points and the metrics to evaluate its
effectiveness based on these scores.

4.2.1 Evaluation Protocols

We consider two evaluation protocols inspired from supervised learning and regres-
sion analysis of time series. The first protocol evaluates in one step the effectiveness
of detectors after the last window of data stream by considering the scores of points
obtained in all windows. The second protocol evaluates the effectiveness of detec-
tors in each window and average their effectiveness after the processing of the last
window.

The protocol 1 estimates the effectiveness of a detector, by applying an evalu-
ation metric to the entire validation or test partition at once. It is influenced by
K-Fold Cross Validation [71].

The Protocol 2 estimates the average effectiveness of a detector, by applying
an evaluation metric to the windows of a validation or test partition per se. It is
influenced by Forward Chaining Cross Validation [7].

52

Both evaluation protocols are equally good for evaluating the effectiveness of
offline detectors, as for static models not updated in windows they result in the
same scoring of inliers and outliers. On the other hand, as the models build
by online detectors get updated in each window, only protocol 2 can capture
the variance of effectiveness across all the windows required to process a stream
partition.

4.2.2 Evaluation Metrics

The effectiveness of a score-based detector can be assessed by two metrics; AUC
ROC and AP. The former measures how well the score of outliers is separated
from the score of inliers, separability can be achieved even if inliers are higher
scored than outliers. The latter measures whether outliers obtain a high score
compared to inliers. In addition, we should stress that score-based detectors can
be evaluated without the need to normalize its scores (e.g., between [0,1]). That
is particularly useful for protocol 2 in which points may obtain different scoring
degrees according to the window they have processed, since the more windows the
more model updates and therefore the more reliable anomaly scores.

4.2.2.1 AUC ROC

The goodness of a score-based detector on how well outliers are separated from
inliers according to scores of points. This property can be measured using the
Area Under the Curve ROC (AUC ROC) as proposed in [22]. Receiver Operating
Characteristic (ROC) is a two dimensional plot of false positive rate FPR in x-
axis and true positive rate TPR in y-axis, for different score thresholds. The
higher the AUC ROC the more probable our model to correctly classify the scored
data points under outlier and inlier classes. The 0.5 value indicates a random
classification and 1.0 value indicates perfect. A model with perfect discrimination,
no overlap between outliers and inliers, passes through the upper left corner.

The algorithm, first rank data points in descending score order. Then, a ROC
curve is initialized starting from (0,0). For each data point, if its true class is outlier
then ROC cursor moves up by 1/outliers, otherwise moves right by 1/inliers. The
best threshold to distinguish outliers from inliers, correspond to the score of the
point received the highest TPR/FPR value in ROC. The AUC correspond to the
area under the constructed ROC.

4.2.2.2 AP

The goodness of a score-based detector on how high outliers are ranked in com-
parison to inliers according to scores of points. This property can be measured
using the Average Precision (AP) as proposed in [74]. The higher the AP the
less overlap exist between the lists of scored outliers and inliers. The 0.0 value
indicates that all inliers scored higher than true outliers and 1.0 value indicates
that all true outliers scored higher than inliers.

53

The algorithm, first rank data points in descending score order. For each data
point, if its true class is outlier then it calculates the current AP, otherwise current
AP is set to zero. AP is computed as the average of all AP over the number of
true outliers.

4.2.2.3 Appropriate Metric

The AP is more informative than AUC ROC when evaluating score-based classifiers
on imbalanced (e.g., anomaly contaminated) datasets. This is a claim supported by
many researchers in already published works [61], [15], [46], [44] and [9]. Therefore,
AP looks a better option than AUC ROC.

4.3 MQ3: How we measure effectiveness under opti-
mal conditions per detector with respect to its hy-
per parameters?

Clearly, throughway tuning of their hyper-parameters will enable detectors to ex-
hibit an optimal effectiveness during the validation phase. Random search (RS)
is a family of numerical optimization methods that do not require the gradient
of the problem to be optimized [57]. Such optimization methods are also known
as direct-search, derivative-free, or black-box methods. RS can hence be used on
functions that are not continuous or differentiable [25].

Moreover, according to the isolation requirement [28] and [33], the optimization
phase should take place on an additional validation data partition, with the data
in test partition to remain unseen. Therefore, there are three steps that we need
to apply in order to result the final model of a deterministic or not detector. These
steps are described as it follows:

1. Generate C configuration settings by random searching (RS) on the candi-
date hyper-parameter values of a detector presented in Section 3.3.3.

2. Train C models, a model per configuration, and evaluate their effectiveness
using AP on the validation stream partition.

3. Return the best configuration, corresponding to the model with the maxi-
mum evaluated effectiveness over the C models.

These steps are being repeated 100 times for non-deterministic detectors (iForest,
HST/F and RRCF). The final model corresponds to the, best configuration, model
that is closer to the average effectiveness of 100 runs.

Important Remark. It is also noticeable that commonly in other experimental
works, such as [17], [18] and [11], we observe the usage of many default algorithm
hyper-parameters using the excuse ”recommended by the authors”. Driven by that

54

observation, we highlight that the hyper-parameter optimization is not matter of
preference but matter of a fair evaluation between algorithms.

4.4 MQ4: How we rank the effectiveness of detectors
across all datasets of our benchmark?

Our answers to the previous methodological questions aim to ensure a fair com-
parison of different detectors on the same dataset. The final question that arises is
how to consistently rank the effectiveness of different detectors across all datasets
of our benchmark. To this end, we consider the performance vectors va and vb of
two detectors a and b across all datasets. Then we consider the Euclidean norm
(L2) [64], to compute the length of the line segment connecting the va to vb and
vice versa as follows:

L2(va, vb) =

√√√√ S∑
i=1

(vai− vbi)2 (4.1)

For each detector, we calculate the L2 distance between its PV and the OPV.
Performance Vector (PV) is a vector of S evaluated performances of a detector,
where S is the number of datasets. Optimum PV (OPV) is the performance vector
of S maximum, according to the evaluation metric, performances. Thereafter,
detectors ranked in ascending order according to their calculated distances, in
which the lower the L2 the better the detector is. We should stress that L2 is a
fair distance metric to rank detectors, since the actually order of performances in
a PV, does not affect the final ranking of the detectors. In other words, detectors
are not favored by the order of the dataset performances.

We recommend the usage of Euclidean distance, since it gives the shortest
or minimum distance between two points (performance vectors). Manhattan dis-
tance [63], on the other hand, gives priority to the distance between points only
along with the grids, but this requirement does not add any value to the ranking
comparison.

4.4.1 A Practical Example of L2

Let us assume three datasets, two detectors and the AP as the performance eval-
uation metric. Consider the following performance vectors:

• PV1 = [0.23, 0.18, 0.45].

• PV2 = [0.33, 0.15, 0.35].

• OPV = [1.00, 1.00, 1.00].

L2(PV1, OPV) = 1.252 while L2(PV2, OPV) = 1.262. We observe that none
of these results is absolute zero, since L2(OPV, OPV) = 0. But, the L2 of the first

55

detector is closer to zero than the second detector and therefore the first detector
is the best.

4.4.2 Ranking Details

The rank of detectors using statistical metrics like Friedman test [16] does not
guarantee a reliable ranking on small PV size ≤ 15 [41]. On the other hand,
distance metrics (such as L2) are highly recommended to be used on small PV
size [49].

4.5 The Benchmark Evaluation Pipeline

The components of our general benchmark framework, illustrated in Figure 3.1, are
grouped based on the four previous methodological questions MQs. The proper
sequence of these components formulate the benchmark pipeline of online and
offline detectors over contaminated streams.

Figure 4.1: The benchmark pipeline according to the Figure 3.1.

The pipeline of our benchmark is illustrated in Figure 4.1. Methodologies are
black colored, iterations are blue colored and intermediate results are colored grey.
A benchmark process of D detectors over S simulated streams, can be done in the
following eight steps:

1. Apply the MQ1 to simulate a contaminated stream.

2. Split stream into train and test partition.

56

3. Split train into subsample and validation partition.

4. Apply MQ3 to optimize the hyper-parameters of a detector on the validation
partition and result its final model.

5. Apply MQ2 to evaluate the effectiveness of its final model on the test parti-
tion and result that effectiveness.

6. Repeat D times the steps 4 and 5.

7. Repeat S times all of the above steps.

8. Apply the MQ4 to rank the D detectors according to their S effectiveness.

57

58

Chapter 5

Experimental Evaluation

In this chapter we present three major experiments aiming to provide insights
regarding the following questions: (1) What is the effectiveness of online and
offline detectors on real data? (2) What is the robustness of online and offline
detectors against increasing data and subspace dimensionality? (3) How sensitive
the online detectors are with respect to their hyper-parameters?

To answer these questions we rely on the benchmarking environment presented
in Section 3.1 and evaluation methodology introduced in Section 4. We have
designed three comprehensive series of experiments providing evidence regarding
(a) which data characteristics favor the effectiveness of online and offline detectors
(see Section 5.1); (b) how well they scale as we increase the dimensionality of data
and subspace (see Section 5.2); and (c) how sensitive they are in tuning hyper-
parameters such as the number and depth of random trees, the size and speed
of windows (see Section 5.3). In total, over than 50.000 experimental runs were
performed, because of the model optimization especially of the non-deterministic
detectors.

5.1 Online versus Offline effectiveness

The objective of this experiment is to quantify how well the effectiveness of on-
line approximate offline detectors on real datasets contaminated by sub/full space
outliers. To this end, we benchmark four online detectors {HST, HSTF, RRCF,
MCOD} and three offline detectors {LOF, KNNW , iForest} using eight real datasets.
Six of them {Arrhythmia, Diabetes, Glass, Hypothyroid, Ionosphere, Pendigits}
are contaminated by subspace outliers and two {MNIST, Electricity} by fullspace
outliers.

Table 5.1 depicts the hyper-parameters of the detectors as they have been
optimized per real dataset. We can easily observe that the effectiveness of nearest-
neighbor detectors and in particular of the online one (MCOD) heavily depends
on the selection of hyper-parameters R and K per dataset.

59

Dataset KKNNW
KLOF Trees Forget T. Depth R KMCOD

Arrhythmia 5 5 100 180 2 2.279 7

Diabetes 5 5 100 347 8 1.152 48

Glass 5 5 100 96 6 0.374 1

Hypothyroid 5 5 100 1508 10 3.922 30

Ionosphere 5 5 100 140 7 0.689 54

Pendigits 5 5 100 4396 12 2.101 26

MNIST 150 150 100 3041 11 3.475 16

Electricity 150 5 100 4000 11 0.415 28

Table 5.1: Optimized Hyper-parameters of online and offline detectors.

5.1.1 Results

Table 5.2 illustrates the resulted (M)AP of all online and offline detectors on the
eight real datasets featuring different outlier types and ratios. The leading detector
per dataset is noted in bold. Online outperform offline detectors on 4/8 datasets
(Arrhythmia, Diabetes, MNIST and Electricity) while the inverse behavior is ob-
served on 3/8 datasets (Glass, Ionosphere and Pendigits). There is also a tie in
the effectiveness of online and offline detectors in one dataset (Hypothyroid).

Dataset HST HSTF RRCF MCOD LOF KNNW iForest

Arrhythmia 0.151 0.157 0.085 0.087 0.069 0.082 0.092

Diabetes 0.081 0.076 0.098 0.083 0.094 0.089 0.057

Glass 0.060 0.060 0.087 0.088 0.127 0.102 0.061

Hypothyroid 0.082 0.084 0.108 0.081 0.108 0.083 0.059

Ionosphere 0.070 0.110 0.112 0.142 0.154 0.089 0.077

Pendigits 0.118 0.128 0.293 0.077 0.691 0.524 0.130

MNIST 0.668 0.676 0.285 0.122 0.374 0.402 0.319

Electricity 0.744 0.720 0.651 0.780 0.534 0.505 0.509

Table 5.2: (M)AP of online and offline detectors on real datasets.

According to (M)AP presented in Table 5.2, online and offline detectors are
ranked from best to worst (see Section 4.4), as follows: {LOF:2.160, KNNW :2.231,

60

HSTF:2.241, HST:2.261, RRCF:2.281, MCOD:2.400, iForest:2.407}. We observe
that online tree-based detectors (HST/F and RRCF) actually outperform offline
detectors (iForest). This is not true for nearest-neighbor algorithms where offline
detectors (LOF, KNNW) outperform online detectors (MCOD). In average, we
observe that in real datasets of our benchmark, offline detectors are slightly bet-
ter ranked (average range value 2.266) than online detectors (average rank value
2.296). In other words, online approximate very well the offline detectors.

In Table 5.3 we summarize the main characteristics of the real datasets (see
Section 3.2.3) along with the online and offline detectors exhibiting the leading
effectiveness (MAP) per dataset. In this analysis, we focus on the outlier ratio
(OR) and on the average feature value range (AVR), since these two data charac-
teristics provide sufficient insights to understand the behavior of nearest-neighbor
in comparison with tree-based detectors.

Dataset AVR OR Best Detector

Arrhythmia high low HSTF

Diabetes high low RRCF

Glass low low LOF

Hypothyroid low low LOF

Ionosphere low low LOF

Pendigits low low LOF

MNIST high low HSTF

Electricity low high MCOD

Table 5.3: Leading effectiveness analysis over detectors in Table 5.2.

In low average feature value range datasets (Glass, Hypothyroid, Ionosphere
and Pendigits) LOF is on average 86% more effective than online detectors. This
is due to the fact that nearest-neighbor detectors are better on capturing outliers
close to inliers, since a well-tuned model learns very well the actual distances
between data points. Moreover, in a high outlier ratio dataset (Electricity) MCOD
is 60% more effective than offline detectors. This is due to the fact that online
detectors better separate outliers from inliers on high contamination in data using
a windowing sampling technique. Specifically, MCOD outperform LOF, because
it is favored by its model reconstruction (i.e., PD list and Micro-clusters update).
Furthermore, in high average feature value range datasets (Arrhythmia, Diabetes
and MNIST) HSTF and RRCF outperform offline detectors. On average, HSTF
is 36% and RRCF is 13% more effective over subspace (Arrhythmia, Diabetes)
outliers while HSTF is 60% more effective and RRCF is 25% less effective over

61

fullspace (MNIST) outliers. This is due to the fact that tree-based detectors better
capture extreme feature value outliers, since their feature structure isolates more
easily points with such extreme values.

Continuing our analysis, we investigate the conditions under which tree-based
detectors exhibit the best effectiveness. Table 5.4 details the effectiveness of leading
tree-based detectors per dataset by considering the outlier ratio (OR), the feature
value range outlier correlation (VOC) and nature of outliers (Nature).

Dataset VOC OR Nature Best Tree-based Detector

Arrhythmia high low subspace HSTF

Diabetes low low subspace RRCF

Glass low low subspace RRCF

Hypothyroid low low subspace RRCF

Ionosphere low low subspace RRCF

Pendigits low low subspace RRCF

MNIST high low fullspace HSTF

Electricity low high fullspace HST

Table 5.4: Leading effectiveness analysis over tree-based detectors in Table 5.2.

In datasets contaminated by subspace outliers (Diabetes, Glass, Hypothyroid,
Ionosphere and Pendigits) RRCF is on average 47% more effective than HST/F
detectors. This is due to the fact that model reconstruction allows to periodically
update the structure of trees with feature subsets that are more relevant (i.e.,
contained) to the subspaces in which outliers were introduced. In datasets con-
taminated by fullspace outliers (MNIST, Electricity) or with a high feature value
range outlier correlation dataset (Arrhythmia), HST/F is on average 42% more
effective than RRCF. This is due to the fact that models (eventually with a forget-
ting mechanism) that periodically update only the leaves of trees (i.e., the mass
profiles) can effectively isolate outliers defined in the full feature set. Furthermore,
in a high outlier ratio dataset (Electricity) HST is 3% better than HSTF. This is
attributed to the fact that updates on the tree leaves due to the forgetting mech-
anism may accidentally damage the mass profiles of inlier feature regions and so
may cause more false positives.

5.1.2 Insights

According to our previous analysis, we conclude that online not only approximate
very well offline detectors, but they may also outperform them under specific

62

conditions. This is a surprising result given that dynamic models of online detector
are built over samples of the datasets used to build the static models of offline
detectors.

1. Outlier Ratio (OR). Online detectors (HST/F, RRCF and MCOD) are more
robust than offline in high outlier ratios.

2. Average Feature Value Range (AVR). Tree-based online detectors (HST/F,
RRCF) are particularly effective to isolate outliers with extreme feature val-
ues.

(a) Fullspace Outliers (FO). Detectors (HSTF) updating only the mass pro-
files in the leaves of the trees (i.e., with low computational cost) are
sufficient to detect fullspace outliers.

(b) Subspace Outliers (SO). Detectors (RRCF) updating the entire tree
structure (i.e., with a high computational cost) are needed to detect
subspace outliers.

Online (MCOD) and offline (LOF, KNN) nearest-neighbor detectors can
effectively identify outliers whose feature values are close to the inliers.

5.2 Robustness

In this experiment we evaluate the scalability of online and offline detectors against
increasing data and subspace dimensionality, with constant outlier ratio. To this
end, we benchmark four online detectors {HST, HSTF, RRCF, MCOD} and three
offline detectors {LOF, KNNW , iForest} using 20 synthetic datasets. The 5 data
dimensionality variations {HiCS20, HiCS40, HiCS60, HiCS80, HiCS100}, where
each of them contaminated by four variations of only 2-d, only 3-d, only 4-d and
only 5-d subspace outliers (see Section 3.2.2.1).

Table 5.5 depicts the hyper-parameters of the detectors as they have been
optimized per synthetic dataset. We can easily observe again (as in Table 5.1) that
an optimal MCOD effectiveness strongly depends on hyper-parameters tuning per
dataset.

63

Dataset KKNNW
KLOF Trees Forget T. Depth R KMCOD

HiCS202D 5 10 100 350 9 1.509 40

HiCS203D 5 10 100 350 9 1.527 35

HiCS204D 5 10 100 350 9 1.877 33

HiCS205D 5 10 100 350 9 2.033 49

HiCS402D 10 10 100 350 9 2.599 33

HiCS403D 10 10 100 350 9 2.533 17

HiCS404D 10 10 100 350 9 2.710 45

HiCS405D 10 10 100 350 9 2.563 43

HiCS602D 10 20 100 350 9 3.236 20

HiCS603D 10 20 100 350 9 2.599 33

HiCS604D 10 20 100 350 9 3.514 48

HiCS605D 10 20 100 350 9 3.375 53

HiCS802D 5 5 100 350 9 3.875 47

HiCS803D 5 5 100 350 9 3.546 55

HiCS804D 5 5 100 350 9 3.661 34

HiCS805D 5 5 100 350 9 3.447 28

HiCS1002D 15 15 100 350 9 4.349 17

HiCS1003D 15 15 100 350 9 4.262 47

HiCS1004D 15 15 100 350 9 4.348 37

HiCS1005D 15 15 100 350 9 4.615 51

Table 5.5: Optimized Hyper-parameters of online and offline detectors.

5.2.1 Results

Table 5.6 reports the (M)AP of all online and offline detectors over the five syn-
thetic datasets of increasing data dimensionality (20-d, 40-d, 60-d, 80-d and 100-d).
Specifically, each detector is applied four times on every of these datasets, since we
have four subspaces (2-d, 3-d, 4-d and 5-d) contamination variations per dataset,
and then we report the average of the (M)AP for each subspace dimensionality.
The best effectiveness of online and offline detectors per dataset has been noted in
bold.

64

Dataset HST HSTF RRCF MCOD LOF KNNW iForest

HiCS20 0.020 0.020 0.038 0.164 0.173 0.153 0.090

HiCS40 0.031 0.034 0.047 0.131 0.073 0.055 0.048

HiCS60 0.024 0.030 0.038 0.120 0.043 0.040 0.038

HiCS80 0.032 0.032 0.044 0.116 0.050 0.046 0.040

HiCS100 0.036 0.039 0.043 0.120 0.055 0.058 0.034

Table 5.6: The average (M)AP effectiveness of online and offline detectors over
increasing data dimensionality.

As we can see in Table 5.6, proximity-based detectors (LOF, KNNW and
MCOD) outperform tree-based detectors (iForest, RRCF and HST/F) regard-
less of the data dimensionality. This is due to the fact that in these datasets the
latter struggle to isolate outliers in low average feature value range (see Section
5.1.2). MCOD is one order of magnitude more effective than tree-based ones in
each HiCS dataset. This behavior also observed in LOF and KNNW , but only
at the 20-d dataset. On average, LOF is 11% better than KNNW , because the
introduced subspace outliers are density-based (see Section 3.2.2.1). On the other
hand, RRCF is on average 30% more effective than HST/F, due to the updates
in the feature structure of trees (see Section 5.1.2). As a matter of fact, HST
exhibits the worst effectiveness, due to updates only on the mass profile in the
leaves of the trees and the absence of a forgetting mechanism (unlike HSTF see
Section 2.3.3). Specifically, we observe that HSTF is 10% better than HST. In the
following section, we detail the (M)AP of online and offline detectors for 2-d, 3-d,
4-d, 5-d subspace outliers across all HiCS datasets.

5.2.1.1 MAP Across Increasing Data Dimensionality

Moreover, in Table 5.6 we can observe that the effectiveness of LOF, KNNW

and iForest gets decreased while increasing the data dimensionality. This is due
to the fact that their ability to separate outliers from inliers depends both on
the data dimensionality and on the ratio of irrelevant features. As by increasing
data dimensionality all pairs of data points become almost equidistant (distance
concentration), LOF and KNNW struggle to separate outliers from inliers. In
the experiment reported in [75] this effect has been observed at 100-d, while in
our experiment started earlier even at 40-d. This is due to the fact that HiCS
datasets are contaminated by subspace instead of fullspace outliers. iForest fails
to isolate subspace outliers through a lower ratio of relevant features, since by
increasing the number of features which are irrelevant to the outliers, the noise in
tree structures constructed by uniformly sampling features gets increased. In the
experiment reported in [60] this effect has been observed with the addition of 30

65

irrelevant features, while in our experiment started earlier even with the addition
of 20 irrelevant features due to the contamination of HiCS datasets with subspace
outliers.

Figure 5.1: (M)AP effectiveness of online detectors for subspace outliers of different
dimensionality.

The effectiveness of MCOD, RRCF and HST/F remains stable while increasing
data dimensionality. This is mainly due to the usage of data sub-sampling and
incremental model updates. Unlike offline detectors working in one large window,
online detectors process data in several small windows. These windows are fed in
our benchmark with stratified outliers over shuffled inliers (see Section 4.1.3). It is
well known that processing data in sub-samples reduces both the outlier swamping
and masking effects [45] and [76], that may incur as we increase the dataset dimen-
sionality. In addition, using windows of size not multiple times larger to the data
dimensionality, as in the case of one large window, a better separability (almost
linear in 100-d HiCS) between points is being achieved [14]. For these reasons,
we observe in Figure 5.1 that online detectors can identify subspace outliers of a

66

specific dimensionality (e.g., 2-d) similarly well across all HiCS datasets (i.e., 20-d,
40-d, 60-d, 80-d and 100-d). Note that, the small discrepancies in detectors effec-
tiveness is attributed to the non-deterministic nature (for HST/F and RRCF) and
hyper-parameter optimization (for MCOD, HST/F and RRCF) of the detection
algorithms.

In addition, due to the incremental model updates they perform, online de-
tectors better adapt to the data characteristics of the windows they process. As
we can see in Figure 5.1, 2-d and 3-d (low dimensional) subspace outliers are well
captured by all online detectors: HST/F, RRCF and MCOD. On the other hand,
4-d and 5-d (high dimensional) subspace outliers are best captured only by MCOD
and RRCF. Clearly, as HD subspace outliers are harder to be detected than LD
subspace outliers (see Section 3.2.2.1), the model update and forgetting mecha-
nisms implemented by MCOD and RRCF are crucial for their good effectiveness.
In the following subsection, we will detail the contribution of the model updates
of each detector, on capturing outliers of different subspace dimensionality.

5.2.1.2 MAP Across Subspace Dimensionality

The (M)AP of HST, HSTF, RRCF and MCOD for subspace outliers of different
dimensionality (2-d, 3-d, 4-d and 5-d) is presented in Tables 5.7, 5.8, 5.9 and 5.10
respectively. The AVG column in these tables, indicates per subspace dimension-
ality the average (M)AP across all HiCS datasets.

HST 20D 40D 60D 80D 100D AVG

2D 0.023 0.049 0.028 0.032 0.052 0.037

3D 0.019 0.036 0.023 0.049 0.059 0.037

4D 0.015 0.022 0.023 0.019 0.017 0.019

5D 0.018 0.018 0.020 0.028 0.019 0.021

Table 5.7: HST (M)AP for subspace outliers of different dimensionality.

HSTF 20D 40D 60D 80D 100D AVG

2D 0.020 0.048 0.032 0.031 0.058 0.038

3D 0.023 0.040 0.023 0.039 0.062 0.038

4D 0.015 0.021 0.044 0.038 0.020 0.028

5D 0.017 0.025 0.021 0.020 0.022 0.021

Table 5.8: HSTF (M)AP for subspace outliers of different dimensionality.

67

RRCF 20D 40D 60D 80D 100D AVG

2D 0.039 0.059 0.053 0.044 0.047 0.049

3D 0.033 0.044 0.032 0.041 0.036 0.037

4D 0.048 0.049 0.033 0.046 0.042 0.044

5D 0.031 0.034 0.033 0.043 0.044 0.037

Table 5.9: RRCF (M)AP for subspace outliers of different dimensionality

MCOD 20D 40D 60D 80D 100D AVG

2D 0.203 0.143 0.156 0.167 0.151 0.164

3D 0.147 0.115 0.082 0.066 0.108 0.104

4D 0.131 0.149 0.142 0.158 0.139 0.144

5D 0.173 0.115 0.099 0.073 0.081 0.109

Table 5.10: MCOD (M)AP for subspace outliers of different dimensionality.

MCOD outperforms by one order of magnitude the other online detectors on
finding true outliers in any subspace dimensionality. This is due to the fact that
MCOD benefit from re-computing the actual (L2) distances between points in sub-
samples but also from updating both the content (i.e., with inliers) and the number
of micro-clusters (i.e., deleting old and inserting new). Then, tree-based online
detectors exhibit a similar effectiveness across subspaces of different dimensionality.
RRCF is slightly better than HST/F as it updates its tree model with feature
subsets that are more relevant to the subspaces of outliers contained in a window.
This is not the case of HST/F that updates only the mass profiles of its constant
feature regions. Clearly, the activation of a forgetting mechanism allows HSTF
to capture not only 2-d and 3-d subspace outliers as HST, but also 4-d subspace
outliers. Both however, face difficulties in finding 5-d subspace outliers.

5.2.2 Insights

According to our previous analysis, we conclude that online detectors exhibit a
robust effectiveness when increasing data and subspace dimensionality.

1. Irrelevant Features Ratio (IFR). Online detectors (HST/F, RRCF and MCOD)
are more robust than offline (LOF, KNN and iForest) detectors against an
increasing ratio of irrelevant features. In particular, MCOD well-tuned to
the characteristics of the data stream archives an optimal effectiveness for
every data and subspace dimensionality.

68

2. Subspace Outliers Dimensionality (SOD). Online detectors updating the en-
tire structure of their model (MCOD and RRCF) are more robust than
detectors updating only the mass profiles of tree leaves (HST/F) against
subspace outliers of increasing dimensionality. In particular, RRCF exhibits
the best effectiveness among all tree-based detectors.

5.3 Sensitivity

In this category of experiments we evaluate the sensitivity of online detectors
regarding the tuning of hyper-parameters such as the Window Size and Slide
(Section 5.3.1) or the Forgetting Threshold and Maximum Depth (Section 5.3.2).

We benchmark four tree-based online detectors {HST, HSTF, RRCF, MCOD}
against the real dataset Hypothyroid contaminated by subspace outliers. The
remaining hyper-parameters are optimized as depicted in Table 5.1.

5.3.1 Varying Window Hyper-parameters

The objective of this experiment is to trace the effectiveness of tree-based online
detectors by increasing their window size and slide hyper-parameters. Table 5.11
illustrates the (M)AP of the tumbling window based detectors (HST, HSTF) by
varying the window size. The best detector per window size is noted in bold. We
observe that the effectiveness of both HST and HSTF decrease while increasing
window size. This is due to the fact that the outlier over inlier ratio gets also
decreased and therefore the effectiveness of detectors becomes more prone to false
positives.

Size HST HSTF

128 0.082 0.084

256 0.071 0.071

512 0.060 0.062

Table 5.11: (M)AP for increasing window size.

Table 5.12 presents the (M)AP of the sliding window based detectors (RRCF
and MCOD) by varying the window slide. The best detector per window slide
is noted in bold. We observe that the effectiveness of both RRCF and MCOD
decrease while increasing the window slide. This is due to the fact that less win-
dows are needed to process the stream and as a result fewer model updates are
performed. Therefore, the average effectiveness of detectors is affected by both
false positives and negatives rates. We finally observe that RRCF is less sensitive
to the window slide than MCOD in tumbling mode (slide = size = 512). This is
due to the fact that MCOD is based on the window slide to forget past points.

69

Slide RRCF MCOD Size

64 0.108 0.081 512

128 0.085 0.066 512

256 0.082 0.066 512

512 0.092 0.062 512

Table 5.12: (M)AP for increasing window slide.

5.3.2 Varying Detector Hyper-parameters

The objective of this experiment is to trace the effectiveness of tree-based online
detectors when increasing their forgetting threshold and maximum depth hyper-
parameters. Table 5.13 reports the resulted MAP of HST and HSTF over increas-
ing maximum depth values. Also, Table 5.13 depicts the MAP of RRCF and HSTF
using 5 and 11 as maximum depth over increasing forgetting threshold values.

Max Depth HST HSTF

5 0.085 0.089

10 0.084 0.081

11 0.082 0.084

15 0.086 0.078

Table 5.13: (M)AP for increasing maximum depth.

Forget Threshold HSTF11 HSTF5 RRCF

60% 0.085 0.082 0.130

70% 0.085 0.085 0.125

80% 0.083 0.077 0.120

Table 5.14: (M)AP for increasing forgetting threshold.

We observe that HSTF reaches an effectiveness peak when the maximum depth
equals to 5 (see Table 5.13). We also observe that its effectiveness over increasing
the forgetting thresholds is relatively stable when the maximum depth equals to 11.
(see Table 5.14). This is due to the fact that 5 is a relatively low depth w.r.t. the
number of data points in the selected dataset (Hypothyroid) and therefore a tree
model cannot split the data space into the required mass regions. Furthermore, we

70

observe that HSTF11 and RRCF exhibit a decreasing effectiveness when increasing
the forgetting threshold. This is due to the fact until starting forgetting, HSTF
continuously increases the mass profiles in the tree leafs and RRCF continuously
inserts the new data points in the trees while reconstructs their feature structure
whenever is needed (i.e., for outliers).

71

72

Chapter 6

Conclusions and Future Work

In this thesis we introduced a novel framework for benchmarking online in contrast
to offline anomaly detectors. We have payed particular attention in understand-
ing which detector is more suited for a dataset with specific characteristics (e.g.,
high ratio of irrelevant features, low average feature value range, sub/full space
contamination, etc.). To this end, we have addressed several methodological ques-
tions that allow us to fairly measure the effectiveness of different online and offline
detectors over the same set of benchmark datasets. We introduced the stream
simulation and its partitioning, showing that the key point is on stratification of
outliers over inliers. We showed the importance of tuning the hyper-parameters
of online and offline algorithms using few initial windows and adopted an evalu-
ation protocol influenced by Forward Chaining Cross Validation that average the
precision of detectors across several windows. Last but not least, we exploited
the Euclidean Distance (L2-norm) as a ranking metric of detectors executed over
several datasets.

More precisely, we measured the (mean) average precision, robustness and sen-
sitivity of 7 top-notches online and offline detectors on real and synthetic datasets
contaminated with subspace and fullspace outliers. The gist of our findings is
that online detectors are quite effective in detecting increasing rates of subspace
outliers in data streams. In particular, proximity-based detectors like MCOD and
tree-based detectors like RRCF prove to be more efficient than their offline counter-
parts due to the heavy reconstruction of their models as new data points arising in
a stream. For fullspace outliers less computationally costly algorithms that update
only the mass profiles of tree leafs seems to work. In addition, RRCF and HSTF
are best for detecting outliers with extreme feature values (due to their feature
structure) while MCOD when adequately tuned can overcome outliers swamping
and masking problems even in high dimensional datasets, since according to [76]
the accuracy of the anomaly detection depends on the estimation resolution of the
data density and thus the k-NN distance.

More precisely, the effectiveness of online detectors is more robust than offline
detectors when increasing the ratio of irrelevant features in datasets contaminated

73

with subspace outliers. In addition, MCOD and RRCF shown to be more robust
than HST/F against increasing subspace dimensionality of outliers. Despite its
great effectiveness, MCOD is shown to be quite sensitive to its hyper-parameter
tuning like the size and slide of windows.

Our benchmarking platform is available for download as an open source code
project [23]. It relies on a generic architecture that can easily incorporate addi-
tional datasets and detectors to conduct new experiments. We could for instance
include more online detectors such as RST [73] (another variation of HST) and
LODA [55] (a lightweight online detector) as well as additional datasets of high
data dimensionality (exceeding 200-dimensions) and volume (dozens of Gigabytes)
[8] that due to time constraints haven’t be considered in our work.

The main limitations of our work are related to the completeness of our meta-
analysis and the trade-off between the effectiveness and efficiency of the detectors
included in our benchmark. More precisely, the meta-characteristics of datasets
are chosen empirically based on the experiments regarding the effectiveness and
robustness of detectors, using if-then rules fitting to the size, dimensionality and
contamination ratio and value range of our datasets. Although our chosen meta-
characteristics (e.g., AVR) are applicable to any new dataset, we may need to
re-calibrate their if-then rules (e.g., low and high) when the new dataset has out-
range size, dimensionality or contamination values (e.g., 1000-d dataset).

Additionally, more thorough experiments are needed to study the trade-off
between the MAP and execution time of detectors. Although, we introduced the
complexity of detectors for scoring, training and updating their model, we have
not conducted stress tests to measure their actual execution time. We plan to
benchmark the time required by detectors to update their model and score points
against increasing data dimensionality and window size, slide according to their
complexity parameters.

Based on our findings we hope to encourage more researchers to address the
challenges of online detectors. It is clear that a lot of space remains for improving
existing online detectors. In the sequel, we provide some preliminary ideas under
three research directions:

• It is remarkable that the feature selection of all tree-based detectors is ran-
dom and uniformly, except RRCF that uses a proportionally to the (dataset)
min/max feature value range technique. But when the min/max values are
the same for all features (e.g., normalized data), then that technique fails
(returned into uniform selection). Depth-based methods are very powerful,
but there is a need for a new feature selection method to be plugged in. A
useful work to that direction proposed [24], in which they estimate one-class
Gini index to select the split feature and value, assuming uniform as the
theoretical distribution of the outliers.

• The necessity for model reconstruction and forgetting mechanism is indis-
putable for a dynamic model (see RRCF and MCOD). MCOD uses the slide

74

of the sliding windows as its forgetting mechanism (i.e., delete data from PD
list and Micro-clusters), and therefore there are not much to suggest on that.
On the other hand, RRCF forgets by the deletion of internal and external
nodes. But that is an error prone task from the perspective of false positives
and false negatives. Our suggestion focus on the deletion of entire trees as a
forgetting mechanism, instead of nodes.

• Another way to update a dynamic model of an online detector, shown in
HST. They do not reconstruct the tree models, but they simply apply learn
(i.e., increase the mass profiles of nodes) updates. We improved their idea by
adding also forget (i.e., decrease mass profiles of nodes) updates, proving the
need of forgetting mechanism even in that case of model updates. The idea
of mass updates is very simple. We suggest researchers to be experimented
with different criteria (such as angle or density) to estimate the goodness of
a feature region.

• Closing, online distance-based detectors such as MCOD are much more de-
pendent on their hyper-parameters than tree-based ones. We also showed
that from tree-based detectors RRCF has the less hyper-parameters. Essen-
tially, the max height on HST/F indicates the depth (same) for all feature
regions and the forget threshold on RRCF indicates the max number of leaf
nodes.

Acknowledgements

This project was partially supported by SAP company (France, Paris 92309 Lev-
allois Perret, +33 1 46 17 70 00).

75

76

Bibliography

[1] Charu C. Aggarwal and Saket Sathe. Outlier Ensembles - An Introduction.
Springer, 2017. isbn: 978-3-319-54764-0. doi: 10.1007/978-3-319-54765-
7. url: https://doi.org/10.1007/978-3-319-54765-7.

[2] Charu C. Aggarwal and Saket Sathe. “Theoretical Foundations and Al-
gorithms for Outlier Ensembles.” In: SIGKDD Explorations 17.1 (2015),
pp. 24–47. doi: 10.1145/2830544.2830549. url: https://doi.org/

10.1145/2830544.2830549.

[3] Subutai Ahmad et al. “Unsupervised real-time anomaly detection for stream-
ing data.” In: Neurocomputing 262 (2017), pp. 134–147. doi: 10.1016/j.
neucom.2017.04.070. url: https://doi.org/10.1016/j.neucom.2017.
04.070.

[4] Tyler Akidau et al. “The Dataflow Model: A Practical Approach to Balancing
Correctness, Latency, and Cost in Massive-Scale, Unbounded, Out-of-Order
Data Processing.” In: PVLDB 8.12 (2015), pp. 1792–1803. doi: 10.14778/
2824032.2824076. url: http://www.vldb.org/pvldb/vol8/p1792-

Akidau.pdf.

[5] Peter Bailis, Deepak Narayanan, and Samuel Madden. “MacroBase: Analytic
Monitoring for the Internet of Things.” In: CoRR abs/1603.00567 (2016).
arXiv: 1603.00567. url: http://arxiv.org/abs/1603.00567.

[6] Matthew Bartos, Abhiram Mullapudi, and Sara C. Troutman. “rrcf: Imple-
mentation of the Robust Random Cut Forest algorithm for anomaly detec-
tion on streams.” In: J. Open Source Software 4.35 (2019), p. 1336. doi:
10.21105/joss.01336. url: https://doi.org/10.21105/joss.01336.

[7] Christoph Bergmeir and José Manuel Benıétez. “On the use of cross-validation
for time series predictor evaluation.” In: Inf. Sci. 191 (2012), pp. 192–213.
doi: 10.1016/j.ins.2011.12.028. url: https://doi.org/10.1016/j.
ins.2011.12.028.

[8] Sanjay Sharma Bhagyashri Karkhanis. “Outlier Detection in High Dimen-
sional Data Streams to Detect Lower Subspace Outliers Effectively.” In:
IJERT 08 (2019). doi: 2278 - 0181. url: https : / / www . ijert . org /

outlier-detection-in-high-dimensional-data-streams-to-detect-

lower-subspace-outliers-effectively.

77

[9] Paula Branco, Luıés Torgo, and Rita P. Ribeiro. “A Survey of Predictive
Modelling under Imbalanced Distributions.” In: CoRR abs/1505.01658 (2015).
arXiv: 1505.01658. url: http://arxiv.org/abs/1505.01658.

[10] Markus M. Breunig et al. “LOF: Identifying Density-Based Local Outliers.”
In: SIGMOD Rec. 29.2 (May 2000), pp. 93–104. issn: 0163-5808. doi: 10.
1145/335191.335388. url: https://doi.org/10.1145/335191.335388.

[11] Guilherme O. Campos et al. “On the Evaluation of Unsupervised Outlier
Detection: Measures, Datasets, and an Empirical Study.” In: Data Min.
Knowl. Discov. 30.4 (July 2016), pp. 891–927. issn: 1384-5810. doi: 10.

1007/s10618-015-0444-8. url: https://doi.org/10.1007/s10618-015-
0444-8.

[12] Varun Chandola, Arindam Banerjee, and Vipin Kumar. “Anomaly detection:
A survey.” In: ACM Comput. Surv. 41.3 (2009), 15:1–15:58. doi: 10.1145/
1541880.1541882. url: https://doi.org/10.1145/1541880.1541882.

[13] Paolo Collela. 5G and IoT: Ushering in a new era. https://www.ericsson.
com/en/about-us/company-facts/ericsson-worldwide/india/authored-

articles/5g-and-iot-ushering-in-a-new-era. 2020.

[14] Thomas M. Cover. “Geometrical and Statistical Properties of Systems of Lin-
ear Inequalities with Applications in Pattern Recognition.” In: IEEE Trans.
Electronic Computers 14.3 (1965), pp. 326–334. doi: 10.1109/PGEC.1965.
264137. url: https://doi.org/10.1109/PGEC.1965.264137.

[15] Jesse Davis and Mark Goadrich. “The relationship between Precision-Recall
and ROC curves.” In: Machine Learning, Proceedings of the Twenty-Third
International Conference (ICML 2006), Pittsburgh, Pennsylvania, USA, June
25-29, 2006. Vol. 148. ACM International Conference Proceeding Series.
ACM, 2006, pp. 233–240. doi: 10.1145/1143844.1143874. url: https:
//doi.org/10.1145/1143844.1143874.

[16] Janez Demsar. “Statistical Comparisons of Classifiers over Multiple Data
Sets.” In: J. Mach. Learn. Res. 7 (2006), pp. 1–30. url: http://jmlr.org/
papers/v7/demsar06a.html.

[17] Remi Domingues et al. “A comparative evaluation of outlier detection algo-
rithms: Experiments and analyses.” In: Pattern Recognit. 74 (2018), pp. 406–
421. doi: 10.1016/j.patcog.2017.09.037. url: https://doi.org/10.
1016/j.patcog.2017.09.037.

[18] Rmi Domingues et al. “A Comparative Evaluation of Outlier Detection Algo-
rithms.” In: Pattern Recogn. 74.C (Feb. 2018), pp. 406–421. issn: 0031-3203.
doi: 10.1016/j.patcog.2017.09.037. url: https://doi.org/10.1016/
j.patcog.2017.09.037.

[19] Dheeru Dua and Casey Graff. “UCI Machine Learning Repository.” In:
(2017). url: http://archive.ics.uci.edu/ml.

78

[20] Sahibsingh A. Dudani. “The Distance-Weighted k-Nearest-Neighbor Rule.”
In: IEEE Trans. Systems, Man, and Cybernetics 6.4 (1976), pp. 325–327.
doi: 10.1109/TSMC.1976.5408784. url: https://doi.org/10.1109/
TSMC.1976.5408784.

[21] Andrew Emmott et al. A Meta-Analysis of the Anomaly Detection Problem.
2015. arXiv: 1503.01158 [cs.AI].

[22] Tom Fawcett. “An introduction to ROC analysis.” In: Pattern Recognit.
Lett. 27.8 (2006), pp. 861–874. doi: 10.1016/j.patrec.2005.10.010. url:
https://doi.org/10.1016/j.patrec.2005.10.010.

[23] Michail Giannoulis. Macrobase - Benchmarking Online and Offline Anomaly
Detectors in Streaming Manner. https://github.com/mgiannoulis. 2020.

[24] Nicolas Goix et al. “One Class Splitting Criteria for Random Forests.” In:
CoRR abs/1611.01971 (2016). arXiv: 1611.01971. url: http://arxiv.
org/abs/1611.01971.

[25] Oleg N. Granichin, Zeev Volkovich, and Dvora Toledano-Kitai. Random-
ized Algorithms in Automatic Control and Data Mining. Vol. 67. Intelligent
Systems Reference Library. Springer, 2015. isbn: 978-3-642-54785-0. doi:
10.1007/978-3-642-54786-7. url: https://doi.org/10.1007/978-3-
642-54786-7.

[26] Sudipto Guha et al. “Robust Random Cut Forest Based Anomaly Detection
on Streams.” In: Proceedings of the 33nd International Conference on Ma-
chine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016.
Vol. 48. JMLR Workshop and Conference Proceedings. JMLR.org, 2016,
pp. 2712–2721. url: http://proceedings.mlr.press/v48/guha16.html.

[27] Manish Gupta et al. “Outlier Detection for Temporal Data: A Survey.” In:
IEEE Trans. Knowl. Data Eng. 26.9 (2014), pp. 2250–2267. doi: 10.1109/
TKDE.2013.184. url: https://doi.org/10.1109/TKDE.2013.184.

[28] Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman. The Elements
of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition.
Springer Series in Statistics. Springer, 2009. isbn: 9780387848570. doi: 10.
1007/978-0-387-84858-7. url: https://doi.org/10.1007/978-0-387-
84858-7.

[29] D. M. Hawkins. Identification of Outliers. Monographs on Applied Probabil-
ity and Statistics. Springer, 1980. isbn: 978-94-015-3996-8. doi: 10.1007/
978-94-015-3994-4. url: https://doi.org/10.1007/978-94-015-
3994-4.

[30] Victoria J. Hodge and Jim Austin. “A Survey of Outlier Detection Method-
ologies.” In: Artif. Intell. Rev. 22.2 (2004), pp. 85–126. doi: 10.1023/B:
AIRE.0000045502.10941.a9. url: https://doi.org/10.1023/B:AIRE.
0000045502.10941.a9.

79

[31] Nathalie Japkowicz, Catherine Myers, and Mark A. Gluck. “A Novelty De-
tection Approach to Classification.” In: Proceedings of the Fourteenth In-
ternational Joint Conference on Artificial Intelligence, IJCAI 95, Montréal
Québec, Canada, August 20-25 1995, 2 Volumes. Morgan Kaufmann, 1995,
pp. 518–523. url: http://ijcai.org/Proceedings/95-1/Papers/068.
pdf.

[32] Fabian Keller, Emmanuel Müller, and Klemens Böhm. “HiCS: High Contrast
Subspaces for Density-Based Outlier Ranking.” In: IEEE 28th International
Conference on Data Engineering (ICDE 2012), Washington, DC, USA (Ar-
lington, Virginia), 1-5 April, 2012. IEEE Computer Society, 2012, pp. 1037–
1048. doi: 10.1109/ICDE.2012.88. url: https://doi.org/10.1109/
ICDE.2012.88.

[33] Ron Kohavi. “A Study of Cross-Validation and Bootstrap for Accuracy Esti-
mation and Model Selection.” In: Proceedings of the Fourteenth International
Joint Conference on Artificial Intelligence, IJCAI 95, Montréal Québec,
Canada, August 20-25 1995, 2 Volumes. Morgan Kaufmann, 1995, pp. 1137–
1145. url: http://ijcai.org/Proceedings/95-2/Papers/016.pdf.

[34] Maria Kontaki et al. “Continuous monitoring of distance-based outliers over
data streams.” In: Proceedings of the 27th International Conference on Data
Engineering, ICDE 2011, April 11-16, 2011, Hannover, Germany. IEEE
Computer Society, 2011, pp. 135–146. doi: 10.1109/ICDE.2011.5767923.
url: https://doi.org/10.1109/ICDE.2011.5767923.

[35] Maria Kontaki et al. Distance-based outlier detection in data streams - Repos-
itory. http://infolab.usc.edu/Luan/Outlier. 2011.

[36] Hans-Peter Kriegel et al. “Interpreting and Unifying Outlier Scores.” In:
Proceedings of the Eleventh SIAM International Conference on Data Mining,
SDM 2011, April 28-30, 2011, Mesa, Arizona, USA. SIAM / Omnipress,
2011, pp. 13–24. doi: 10.1137/1.9781611972818.2. url: https://doi.
org/10.1137/1.9781611972818.2.

[37] Zimek. Kriegel Kroger. Outlier Detection Techniques. https://www.dbs.
ifi.lmu.de/~zimek/publications/KDD2010/kdd10-outlier-tutorial.

pdf. 2010.

[38] Max Kuhn and Kjell Johnson. Applied predictive modeling. Springer, 2013.
isbn: 978-1-4614-6849-3. doi: 10.1007/978-1-4614-6849-3. url: https:
//doi.org/10.1007/978-1-4614-6849-3.

[39] Alexander Lavin and Subutai Ahmad. “Evaluating Real-time Anomaly De-
tection Algorithms - the Numenta Anomaly Benchmark.” In: CoRR abs/1510.03336
(2015). arXiv: 1510.03336. url: http://arxiv.org/abs/1510.03336.

[40] Alexander Lavin and Subutai Ahmad. The Numenta Anomaly Benchmark
(NAB). https://github.com/numenta/NAB. 2015.

80

[41] Erich Leo Lehmann and Joseph P. Romano. Testing Statistical Hypotheses,
Third Edition. Springer texts in statistics. Springer, 2008. isbn: 978-0-387-
98864-1.

[42] Anthony Li. Fast Anomaly Detection for Streaming Data - Repository. https:
//github.com/yli96/HSTree. 2018.

[43] Jin Li et al. “Semantics and Evaluation Techniques for Window Aggregates
in Data Streams.” In: Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, Baltimore, Maryland, USA, June 14-16,
2005. ACM, 2005, pp. 311–322. doi: 10 . 1145 / 1066157 . 1066193. url:
https://doi.org/10.1145/1066157.1066193.

[44] Ariel Linden. “Measuring diagnostic and predictive accuracy in disease man-
agement: an introduction to receiver operating characteristic (ROC) analy-
sis.” In: Journal of Evaluation in Clinical Practice 12.2 (Apr. 2006), pp. 132–
139. doi: 10.1111/j.1365-2753.2005.00598.x. url: https://doi.org/
10.1111%2Fj.1365-2753.2005.00598.x.

[45] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. “Isolation Forest.” In: Pro-
ceedings of the 8th IEEE International Conference on Data Mining (ICDM
2008), December 15-19, 2008, Pisa, Italy. IEEE Computer Society, 2008,
pp. 413–422. doi: 10.1109/ICDM.2008.17. url: https://doi.org/10.
1109/ICDM.2008.17.

[46] Jorge M. Lobo, Alberto Jiménez-Valverde, and Raimundo Real. “AUC: a
misleading measure of the performance of predictive distribution models.”
In: Global Ecology and Biogeography 17.2 (Mar. 2008), pp. 145–151. doi:
10.1111/j.1466-8238.2007.00358.x. url: https://doi.org/10.1111%
2Fj.1466-8238.2007.00358.x.

[47] A. Bifet M. Harries J. Gama. Electricity Dataset. https://datahub.io/
machine-learning/electricity. 2014.

[48] Matt. Vertatique How Many Billion IoT Devices by 2020? http://www.

vertatique.com/50-billion-connected-devices-2020. 2020.

[49] Hasan Önder. “A Comparative Study of Permutation Tests with Euclidean
and Bray-Curtis Distances for Common Agricultural Distributions in Regres-
sion.” In: Journal of Applied Animal Research 34.2 (2008), pp. 133–136. doi:
10.1080/09712119.2008.9706957. eprint: https://doi.org/10.1080/
09712119.2008.9706957. url: https://doi.org/10.1080/09712119.
2008.9706957.

[50] Gustavo Henrique Orair et al. “Distance-Based Outlier Detection: Consolida-
tion and Renewed Bearing.” In: PVLDB 3.2 (2010), pp. 1469–1480. doi: 10.
14778/1920841.1921021. url: http://www.vldb.org/pvldb/vldb2010/
pvldb%5C_vol3/I09.pdf.

81

[51] Aleksas Pantechovskis. “Determining Criteria for Choosing Anomaly De-
tection Algorithm.” Master’s Thesis. LT-44404 Kaunas: Vytautas Magnus
University Faculty of Informatics Department of Applied Informatics, 2019.

[52] Aleksas Pantechovskis. Macrobase. https://github.com/anomaly-detection-
macrobase-benchmark/macrobase. 2019.

[53] Animesh Patcha and Jung-Min Park. “An overview of anomaly detection
techniques: Existing solutions and latest technological trends.” In: Comput.
Networks 51.12 (2007), pp. 3448–3470. doi: 10.1016/j.comnet.2007.02.
001. url: https://doi.org/10.1016/j.comnet.2007.02.001.

[54] Fabian Pedregosa et al. “Scikit-learn: Machine Learning in Python.” In: J.
Mach. Learn. Res. 12 (2011), pp. 2825–2830. url: http://dl.acm.org/
citation.cfm?id=2078195.

[55] Tomás Pevný. “Loda: Lightweight on-line detector of anomalies.” In: Mach.
Learn. 102.2 (2016), pp. 275–304. doi: 10.1007/s10994-015-5521-0. url:
https://doi.org/10.1007/s10994-015-5521-0.

[56] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. “Efficient Algo-
rithms for Mining Outliers from Large Data Sets.” In: SIGMOD Rec. 29.2
(May 2000), pp. 427–438. issn: 0163-5808. doi: 10.1145/335191.335437.
url: https://doi.org/10.1145/335191.335437.

[57] LA Rastrigin. “The convergence of the random search method in the ex-
tremal control of a many parameter system.” In: Automaton & Remote Con-
trol 24 (1963), pp. 1337–1342.

[58] Shebuti Rayana. ODDS Library. http://odds.cs.stonybrook.edu. 2016.

[59] David M. Rocke and David L. Woodruff. “Identification of Outliers in Mul-
tivariate Data.” In: Journal of the American Statistical Association 91.435
(1996), pp. 1047–1061. doi: 10.1080/01621459.1996.10476975. eprint:
https://www.tandfonline.com/doi/pdf/10.1080/01621459.1996.

10476975. url: https://www.tandfonline.com/doi/abs/10.1080/

01621459.199.10476975.

[60] Jeremy Rogers and Steve R. Gunn. “Identifying Feature Relevance Using
a Random Forest.” In: Subspace, Latent Structure and Feature Selection,
Statistical and Optimization, Perspectives Workshop, SLSFS 2005, Bohinj,
Slovenia, February 23-25, 2005, Revised Selected Papers. Vol. 3940. Lecture
Notes in Computer Science. Springer, 2005, pp. 173–184. doi: 10.1007/

11752790_12. url: https://doi.org/10.1007/11752790%5C_12.

[61] Takaya Saito and Marc Rehmsmeier. “The Precision-Recall Plot Is More In-
formative than the ROC Plot When Evaluating Binary Classifiers on Imbal-
anced Datasets.” In: PLOS ONE 10.3 (Mar. 2015), e0118432. doi: 10.1371/
journal.pone.0118432. url: https://doi.org/10.1371%2Fjournal.
pone.0118432.

82

[62] SAP Computer Software Company. SAP France. 1972. url: https://www.
sap.com/corporate/en/company/office-locations/france.html.

[63] “Manhattan Distance.” In: Encyclopedia of GIS. Ed. by Shashi Shekhar and
Hui Xiong. Springer, 2008, p. 631. doi: 10.1007/978-0-387-35973-1_733.
url: https://doi.org/10.1007/978-0-387-35973-1%5C_733.

[64] “Euclidean Distance.” In: Encyclopedia of GIS. Ed. by Shashi Shekhar, Hui
Xiong, and Xun Zhou. Springer, 2017, p. 556. doi: 10.1007/978-3-319-
17885-1_100372. url: https://doi.org/10.1007/978-3-319-17885-
1%5C_100372.

[65] Bas van Stein, Matthijs van Leeuwen, and Thomas Bäck. “Local Subspace-
Based Outlier Detection using Global Neighbourhoods.” In: CoRR abs/1611.00183
(2016). arXiv: 1611.00183. url: http://arxiv.org/abs/1611.00183.

[66] Swee Chuan Tan, Kai Ming Ting, and Fei Tony Liu. “Fast Anomaly Detec-
tion for Streaming Data.” In: IJCAI 2011, Proceedings of the 22nd Inter-
national Joint Conference on Artificial Intelligence, Barcelona, Catalonia,
Spain, July 16-22, 2011. IJCAI/AAAI, 2011, pp. 1511–1516. doi: 10.5591/
978-1-57735-516-8/IJCAI11-254. url: https://doi.org/10.5591/978-
1-57735-516-8/IJCAI11-254.

[67] Swee Chuan Tan, Kai Ming Ting, and Fei Tony Liu. Mass Estimation. http:
//mass-estimation.sourceforge.net/. 2014.

[68] Kai Ming Ting et al. “Defying the gravity of learning curve: a characteristic
of nearest neighbour anomaly detectors.” In: Mach. Learn. 106.1 (2017),
pp. 55–91. doi: 10.1007/s10994-016-5586-4. url: https://doi.org/10.
1007/s10994-016-5586-4.

[69] Luan Tran, Liyue Fan, and Cyrus Shahabi. “Distance-based Outlier De-
tection in Data Streams.” In: PVLDB 9.12 (2016), pp. 1089–1100. doi:
10.14778/2994509.2994526. url: http://www.vldb.org/pvldb/vol9/
p1089-tran.pdf.

[70] Joaquin Vanschoren et al. “OpenML: networked science in machine learn-
ing.” In: SIGKDD Explorations 15.2 (2013), pp. 49–60. doi: 10 . 1145 /

2641190.2641198. url: https://doi.org/10.1145/2641190.2641198.

[71] Sudhir Varma and Richard Simon. “Bias in error estimation when using
cross-validation for model selection.” In: BMC Bioinform. 7 (2006), p. 91.
doi: 10.1186/1471-2105-7-91. url: https://doi.org/10.1186/1471-
2105-7-91.

[72] Hongzhi Wang, Mohamed Jaward Bah, and Mohamed Hammad. “Progress
in Outlier Detection Techniques: A Survey.” In: IEEE Access 7 (2019),
pp. 107964–108000. doi: 10.1109/ACCESS.2019.2932769. url: https:

//doi.org/10.1109/ACCESS.2019.2932769.

83

[73] Ke Wu et al. “RS-Forest: A Rapid Density Estimator for Streaming Anomaly
Detection.” In: 2014 IEEE International Conference on Data Mining, ICDM
2014, Shenzhen, China, December 14-17, 2014. IEEE Computer Society,
2014, pp. 600–609. doi: 10.1109/ICDM.2014.45. url: https://doi.

org/10.1109/ICDM.2014.45.

[74] Ethan Zhang and Yi Zhang. “Average Precision.” In: Encyclopedia of Database
Systems. Springer US, 2009, pp. 192–193. doi: 10.1007/978-0-387-39940-
9_482. url: https://doi.org/10.1007/978-0-387-39940-9%5C_482.

[75] Arthur Zimek, Erich Schubert, and Hans-Peter Kriegel. “A survey on unsu-
pervised outlier detection in high-dimensional numerical data.” In: Statisti-
cal Analysis and Data Mining 5.5 (2012), pp. 363–387. doi: 10.1002/sam.
11161. url: https://doi.org/10.1002/sam.11161.

[76] Arthur Zimek et al. “Subsampling for efficient and effective unsupervised
outlier detection ensembles.” In: The 19th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD 2013, Chicago, IL,
USA, August 11-14, 2013. ACM, 2013, pp. 428–436. doi: 10.1145/2487575.
2487676. url: https://doi.org/10.1145/2487575.2487676.

84

