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Abstract

A new class of distributed data stores, often referred to as NoSQL key-value

stores, have recently been developed to support large-scale data-centric services.

Cloud service o�erings of these technologies combine their performance and avail-

ability bene�ts with the �exible economic model of Cloud computing. Enterprises

that have invested into Cloud technologies are now raising their expectations from

best-e�ort to guaranteed levels of service. Responding to this need, the research

community is now focusing on data-centric services that support controlled perfor-

mance, predictable reliability, and guaranteed I/O throughput.

In this thesis we describe the architecture of a quality-of-service (QoS) infras-

tructure for achieving controlled application performance over the Apache Cassan-

dra distributed key-value store. We present an implementation of our architecture

and provide results from an evaluation using an extended version of Yahoo Cloud

Serving Benchmark (YCSB) on the Amazon EC2 Cloud. A key focus of this thesis

is on a QoS-aware measurement-driven provisioning methodology. Our evalua-

tion provides evidence that the methodology is e�ective in estimating application

resource requirements and thus in achieving the type of controlled performance re-

quired by data intensive performance-critical applications. While our architecture

is implemented and evaluated in the context of the Cassandra distributed storage

system, its principles are general and can be applied to a variety of NoSQL systems.





Περίληψη

Τα συστήματα υπηρεσιών μεγάλης κλίμακας απαιτούν υψηλή απόδοση, διαθεσι-

μότητα, και αξιοπιστία για να ικανοποιήσουν τις ανάγκες της παγκόσμιας ηλεκτρονι-

κής αγοράς. Η πρόσφατη τάση σχεδίασης νέων υπηρεσιών βασισμένων σε υπολογιστι-

κές υποδομές νέφους (Cloud computing) αποσκοπεί στο συνδυασμό ενός ευέλικτου

οικονομικού μοντέλου με την υψηλή απόδοση και διαθεσιμότητα των τεχνολογιών κα-

τανεμημένου υπολογισμού και αποθήκευσης που εστιάζουν σε περιβάλλοντα νέφους.

Μια τέτοια σημαντική τεχνολογία είναι και οι μη-σχεσιακές (NoSQL) κατανεμημένες

βάσεις δεδομένων, οι οποίες σήμερα χρησιμοποιούνται από παρόχους υπηρεσιών όπως

οι Google, Yahoo, Facebook, κά. Καθώς οι ανάγκες των παρόχων επεκτείνονται στην

προσφορά εγγυήσεων απόδοσης της υπηρεσίας, η ερευνητική κοινότητα επικεντρώνε-

ται σε μηχανισμούς που παρέχουν ελεγχόμενη απόδοση, προβλέψιμη αξιοπιστία, και

εγγυημένη απόκριση ή/και ρυθμοαπόδοση εισόδου / εξόδου.

Στην εργασία αυτή, παρουσιάζουμε ένα σύστημα παροχής ποιότητας υπηρεσιών ε-

στιασμένο στον έλεγχο της απόδοσης εφαρμογών πάνω από το κατανεμημένο NoSQL

σύστημα αποθήκευσης Apache Cassandra. Παρουσιάζουμε την αρχιτεκτονική και υ-

λοποίηση του συστήματος και αναλύουμε τα αποτελέσματα αποτίμησης του χρησιμο-

ποιώντας μια επέκταση του Cloud Yahoo Serving Benchmark (YCSB) σε εικονικές

μηχανές του Amazon EC2. Το σύστημά μας βασίζεται σε μια μεθοδολογία πρόβλε-

ψης της ποιότητας των υπηρεσιών με βάση συστηματικές μετρήσεις. Η πειραματική

αποτίμηση αποδεικνύει ότι η μέθοδος είναι αποτελεσματική για την εκτίμηση των απαι-

τούμενων πόρων για μια εφαρμογή και κατά συνέπεια, για τον έλεγχο της απόδοσης

των εφαρμογών. Η υλοποίηση που παρουσιάζουμε είναι επικεντρωμένη στο Apache

Cassandra, ωστόσο οι βασικές της αρχές είναι γενικές και μπορούν να εφαρμοστούν

και σε άλλα NoSQL συστήματα.
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Chapter 1

Introduction

The new breed of NoSQL distributed storage systems has dramatically changed

the landscape of how information is represented, manipulated, and stored in large-

scale infrastructures today. These systems are currently at the forefront of aca-

demic research and industrial practice, primarily due to their high scalability and

availability features. The demand for inexpensive scalability in data-intensive an-

alytics (web search, data warehouse analysis, etc.) has led to the adoption of

NoSQL systems (contrasted to SQL systems or traditional relational databases).

Such systems implement simple interfaces to non-relational data representations

and are well integrated with data programming platforms such as MapReduce [1].

A number of such platforms are currently implemented in Cloud infrastructures

and o�ered to applications developers as utility services. Managing service perfor-

mance over these systems is an area that attracts signi�cant interest as manifested

by the success of early service o�erings in this space (e.g., Amazon DynamoDB [2]).

In this thesis we present a quality of service (QoS) architecture and prototype

that o�ers managed service performance over a prominent NoSQL system, Apache

Cassandra. Our architecture is able to address the storage con�guration prob-

lem, namely how to appropriately provision initial storage resources for a target

workload given a simple description of its characteristics. The architecture contin-

uously monitors performance and controls resource allocations in order to achieve

stated goals by utilizing storage elasticity mechanisms. It is also able to address

the dynamic adaptation problem by monitoring service performance at runtime

and adjusting to short-term variations by either throttling the application or by

expanding the set of resources assigned to it. Our focus in this thesis is primarily

on the �rst problem: our solution to it is based on a methodology using targeted

measurements to produce a set of tables expressing benchmark performance over

di�erent con�gurations of Cassandra (number, type of servers). Using the pro-

1



2 CHAPTER 1. INTRODUCTION

duced tables, we can estimate the resources required to achieve the service-level

objective (SLO) of an application by interpolation from the baseline measurements.

Our key contributions in the thesis are the following:

• A novel methodology for con�guring Cloud-based Cassandra storage clusters

for speci�c application SLOs.

• A dynamic Quality of Service monitoring and adaptation mechanism to con-

trol short-term workload variations.

• An extensive evaluation of our methodology in Amazon Web Services' EC2

Cloud.

Our exposition proceeds as follows: In Chapter 2, we provide the background for

this thesis. In Chapters 3, and 4, we describe our architecture and implementation

in the context of Apache Cassandra. In Chapter 5, we present our evaluation, and

in the Chapter 6, we discuss related works in this space. Finally, in Chapter 7,

we conclude.



Chapter 2

Background

2.1 SQL versus NoSQL

Relational databases were invented in the 1970s to o�er applications the ability to

store structured data and to retrieve it using a high-level query language(Structured

Query Language, or SQL) allowing construction of powerful queries and operations

on that data. Relational databases guarantee atomicity, consistency, isolation, and

durability (collectively referred to as ACID properties) in data transactions.

The new breed of NoSQL databases trade o� several aspects of the relational

database model for increased scalability and speed. NoSQL systems are also re-

ferred to as "Not only SQL" to emphasize that in many cases o�er SQL-like query

languages. They o�er dynamic schema less data storage, making it unnecessary

to set a prede�ned schema in advance. In addition, they o�er the ability to scale

horizontally by adding servers instead of concentrating more capacity on a single

server as usually is the case in SQL databases. The motivation for NoSQL systems

therefore comes from their design simplicity, control over availability, and higher

performance by relaxing data consistency. By o�ering weaker data consistency

models such as eventual consistency, they trade o� consistency for e�ciency. This

means that given a su�ciently long period of time over which no changes are sent,

all updates can be expected to propagate eventually through the system. Many

NoSQL systems also feature versatile load balancing and high availability mecha-

nisms: data and query load are balanced across servers; when a server goes down, it

can be quickly and transparently replaced with no application disruption through

replication. This attribute o�ers high availability and easier recovery without in-

volving separate applications to manage these tasks. The storage environment

is virtualized from the developer's perspective. Lastly, many NoSQL database

technologies feature advanced caching capabilities, keeping frequently-used data in

3



4 CHAPTER 2. BACKGROUND

system memory as much as possible.

The following table [3] summarizes the main di�erences between SQL and

NoSQL databases.

Feature SQL Databases NoSQL Databases

Types One type (SQL database) with
minor variations.

Many di�erent types includ-
ing key-value stores, document
databases, wide-column stores,
and graph databases.

Development History Developed in 1970s to deal with
�rst wave of data storage appli-
cations.

Developed in 2000s to deal with
limitations of SQL databases,
particularly concerning scale,
replication and unstructured
data storage.

Examples MySQL, Postgres, Oracle
Database

MongoDB, Cassandra, HBase,
Neo4j, etc.

Schemas Structure and data types are
�xed in advance. To store infor-
mation about a new data item,
the entire database must be al-
tered, during which time the
database must be taken o�ine.

Typically dynamic. Records
can add new information on
the �y, and unlike SQL ta-
ble rows, dissimilar data can
be stored together as necessary.
For some databases (e.g., wide-
column stores), it is somewhat
more challenging to add new
�elds dynamically.
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Data Storage Model Individual records (e.g., "em-
ployees") are stored as rows in
tables, with each column stor-
ing a speci�c piece of data about
that record (e.g., "manager,"
"date hired," etc.), much like
a spreadsheet. Separate data
types are stored in separate ta-
bles, and then joined together
when more complex queries are
executed. For example, "of-
�ces" might be stored in one ta-
ble, and "employees" in another.
When a user wants to �nd the
work address of an employee, the
database engine joins the "em-
ployee" and "o�ce" tables to-
gether to get all the information
necessary.

Varies based on NoSQL database
type. For example, key-value
stores function similarly to SQL
databases, but have only two
columns ("key" and "value"),
with more complex informa-
tion sometimes stored within
the "value" columns. Docu-
ment databases do away with the
table-and-row model altogether,
storing all relevant data together
in single "document" in JSON,
XML, or another format, which
can nest values hierarchically.

Scaling Vertically, meaning a single
server must be made increasingly
powerful in order to deal with
increased demand. It is possi-
ble to spread SQL databases over
many servers, but signi�cant ad-
ditional engineering is generally
required.

Horizontally, meaning that
to add capacity, a database
administrator can simply add
more commodity servers or
cloud instances. The NoSQL
database automatically spreads
data across servers as necessary.

Development Model Mix of open-source (e.g., Post-
gres, MySQL) and closed source
(e.g., Oracle Database).

Open-source.

Support Transactions Yes, updates can be con�gured
to complete entirely or not at all.

In certain circumstances and at
certain levels (e.g., document
level vs. database level).

Data Manipulation Speci�c language using Select,
Insert, and Update statements,
e.g. SELECT �elds FROM table
WHERE. . .

Through object-oriented APIs.

Consistency Can be con�gured for strong con-
sistency.

Depends on product. Some
provide strong consistency (e.g.,
MongoDB) whereas others o�er
eventual consistency (e.g., Cas-
sandra).

Table 2.2: SQL vs. NoSQL Summary [3]
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The last few years, the NoSQL storage systems became extremely popular.

So, there are many di�erent implementations and types for NoSQL systems. In

general, we could assume that there are the following categories:

• Wide-Column store or Column Families store: optimized for queries

over large datasets, and store columns of data together, instead of rows. Ex-

amples of wide-column store systems: Cassandra [4], HBase [5], Hypertable,

Accumulo, Amazon SimpleDB, Cloudata, Cloudera, HPCC, etc.

• Document store: each key with a complex data structure known as a doc-

ument. Documents can contain many di�erent key-value pairs, or key-array

pairs, or even nested documents. Examples of document store systems: Mon-

goDB, RethinkDB, CouchDB, ElasticSearch, Couchbase Server, RavenDB,

MarcLogic Server, etc.

• Key-Value store: single item in the database is stored as an attribute

name, or key, together with its value. Examples of key-value store systems:

DynamoDB [6], BigTable [7], Riak, Voltemort, Azure Table Storage, Redis,

FoundationDB, BerkleyDB, LevelDB, etc.

• Graph store: store information about networks, such as social connections.

Examples of graph stores systems: Neo4J, HyperGraphDB, In�nite graph,

InfoGrid, DEX, GraphBase, etc.

In this thesis, we focus on the open-source NoSQL distribute storage system,

Apache Cassandra (more details about the architecture of Apache Cassandra

in section 2.4).

2.2 Quality of service

In computer science, functional requirements de�ne a function of a system or its

component. They deal with what the system should do or what the system pro-

vides to the users and they include implementation and deployment issues. Func-

tional requirements are supported by non-functional requirements which specify

characteristics for detail constraints, targets or control mechanisms for the system.

Quality of Service refers to the important criteria for non-functional requirements.

The goal of the QoS is to provide guarantees on the ability of a system to deliver

predictable results for their clients. The characteristics are some necessary require-

ments in order to understand the behavior of the system or service. It is worth

noting that while QoS in networking is a relatively mature �eld whose numerous
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research results have progressed in many cases into formal protocol speci�cations

and products, storage QoS is a less mature area due to the signi�cantly more chal-

lenging technical issues involved (such as for example non-linear behavior due to

caches and the strong dependance on workload characteristics).

In general, Quality of Service [8] is a combination of several qualities or properties

of a system, such as:

• Availability: represents the percentage that the system is available, operates

without downtimes.

• Reliability: is when a system is consistent, operates correctly and maintains

its performance.

• Response time: is the time a system responds to di�erent types of requests.

More speci�c, response time is a function of load intensity and it usually is

measured as rate of requests per second or number of concurrent requests.

• Throughput: represents the rate that a system processes its incoming re-

quests.

• Security: includes authentication and authorization mechanisms, message

integrity, and con�dentiality of the system.

2.3 Service Level Agreements

An SLA (service-level agreement) is part of the contract between two parties, usu-

ally the service provider and customer in order to de�ne the quality of service.

SLAs have been used in IT organizations, service-oriented architectures environ-

ments and generally in businesses for many years. The main role of the SLA is to

set the expectations, requirements, obligations, quality attributes, and important

aspects of the system or service between the two parties. They usually are not guar-

antee that all promises and constraints are kept but they set the penalties when

the promises are not satis�ed. The SLA speci�cation can be either plain-text doc-

ument or machine-readable format, speci�cally using XML language and it might

be signed by all parties. There are many standards such as WS-Agreement by the

Open Grid Forum and WSLA by IBM [9] specifying SLA requirements and obliga-

tions in machine-readable form. The main di�erence between this speci�cation and

WSLA, is WS-Aggreement extends Web Services standards functionality allowing

the establishment of an agreement. On the other hand, WSLA o�ers a complete

language for the de�ning, monitoring, and evaluating Service Level Agreements.
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2.3.1 WSLA framework

The WSLA framework [10] uses XML language and de�ned as XML schema. The

goal of WSLA is to allow the creation of machine-readable SLAs for services im-

plemented using Web services technologies.

The SLA that has created using WSLA framework usually contains the following

sections [9]:

• A description of all parties.

• A description of the WSDL interfaces of the web services that the parties

implement.

• A de�nition of the service parameters, their operations, and their metrics.

• Obligations of the agreement.

• The action guarantees that all parties commit to perform.

2.3.2 Web-Service Agreement speci�cation

Web Service-Agreement speci�cation [11](WS-Agreement) is a protocol to estab-

lish an agreement between two parties. This speci�cation developed with Grid

Resource Allocation Agreement Protocol working group (GRAAP-WG) and Web

Service Level Agreement speci�cation(WSLA) [12] by the OGF. As WSLA, it pro-

vides an XML-language and XML Schema for de�ning the structure of the SLA

document.

The SLA document created byWS-Agreement contains the following sections [9]

• A mandatory unique ID for the agreement and optionally a name.

• The context of the agreement.

• The metadata about the agreement, such as template agreement ID, expira-

tion time, etc.

• The service terms that describes the service.

• The guarantee terms that the parties commit to perform.

WS-Agreement produces a contract between customer and provider that spec-

i�es the rights and obligations in order to achieve availability of resources and/or

on service qualities. Each agreement is created based on agreement templates.
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An agreement template is developed using extensible XML language and it de-

scribes what the agreement responder is willing to accept. It is similar document

to agreement but it additional contains the ability to create constraints. Con-

straints describe the structure, the valid ranges, and the values of the terms for

an acceptable agreement for the agreement responder. The agreement also uses

XML language. When two parties �nally create an agreement, the WS-Agreement

de�nes also the type of monitoring needed for the validation of the agreement.

The WS-Agreement model de�nes two di�erent types of services: the agreement

factory and the agreement service. The agreement factory is used to create agree-

ments between a service consumer and provider and for instantiating the associated

service with the agreed Quality of Service. The monitoring of the agreement and

agreement service, through WS-Agreement is out of scope of this thesis. We focus

in agreement factory service that are modeled as web service resource using Web

Services Resource Framework (WSRF) speci�cation. Generally, a web service re-

source is a web service instance that is uniquely identi�ed by an endpoint reference

(EPR). Endpoint references are de�ned in the WS-Addressing speci�cation.

There are two parties in WS-Agreement [13] [11], the service customer or initia-

tor and the service provider or service responder. The service initiator requests the

available templates from the service responder using the WSRF GetResourceProp-

erty method. The WSRF get resource property is a method that the agreement

factory service publishes the agreement templates. The service initiator chooses

a template and then it creates a new agreement o�er from it. An o�er describes

the service to provide the guarantees, obligations and requirements for each party.

After that, the service initiator sends back the o�er to the service provider to create

the service agreement. The service initiator is bound to the o�er. If the service

provider accepts the o�er, then it returns a reference to a new agreement instance,

otherwise it returns an error. In the WS-Agreement speci�cation, there are two

ways to create an agreement in the agreement factory. The synchronous method

(createAgreement) speci�ed by the agreement factory port type and the service

provider has the obligation to accept or reject immediately the o�er. On the other

hand, the asynchronous method (createPendingAgreement) that is speci�ed by the

PendingAgreementFactory port type and the service provider could respond to

service customer at a later time. Figure 2.1 shows the message exchange between

service initiator and service responder using synchronous create of agreement.

All these standards can be straightforwardly leveraged for expressing SLAs over

NoSQL technologies such as Cassandra.
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Agreement Initiator

Choose Template  
Create Offer 

Adjust Offer Values

Agreement Responder

Agreement

GetTemplates()

AgreementERP

Templates[]

CreateAgreement(Offer)

Figure 2.1: The process to create an agreement using synchronous WS-
Agreement [13].

2.4 The architecture of Apache Cassandra

Apache Cassandra [4] [14] is an open-source distributed storage system that de-

signed to handle large amounts of data across many servers, providing high avail-

ability with no single point of failure. Apache Cassandra combines features from

Amazon DynamoDB [2] (in infrastructure), and Google BigTable [7] (especially in

the data model).

Apache Cassandra [15] was developed at Facebook for the Inbox Search from

Avinash Lakshman (one of the authors of Amazon's Dynamo) and Prashant Malik.

In July 2008, it was released as an open source project on Google code. In March

2009, it became an Apache Incubator project and on February 17, 2010 it grad-

uated to a top-level project. Now, it is an Apache Software Foundation project,

under Apache License.

Apache Cassandra [14] has a peer-to-peer distributed architecture that is easy

to set up and maintain. Apache Cassandra o�ers no single-point-of-failure and

continuously availability. There is no master-server and slave-server node. Any

number of commodity servers can be grouped into a Cassandra cluster in any dat-

acenter, without having to worry about the type of machines. Every server accepts

requests from any client. Every server is equal and all nodes communicating with

each other via a gossip protocol. Gossip is a peer-to-peer communication proto-

col in which nodes periodically exchange state information about themselves and

about other nodes they know about. Apache Cassandra's built-for-scale architec-
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ture means that it is capable of handling petabytes of information and thousands

of concurrent users/operations per second (across multiple data centers). When

a node �rst starts up, it looks at its con�guration �le to determine the name of

the Cassandra cluster it belongs to and which nodes, called seeds, to contact to

obtain information about the other nodes in the cluster. Another important aspect

of the gossip process is the heartbeats from the other nodes in the cluster directly

or indirectly. On the other hand, when a node goes down and then comes back,

it may have missed writes for the replica data it maintains. The missed writes are

stored by other replicas for a period of time providing hinted hando� is enabled.

Moreover, in order to know which range of data it is responsible for, a node must

also know its own token and those of the other nodes in the cluster. All the above

parameters are customized in Cassandra's con�guration �le by the programmer or

administrator of the Cassandra cluster.

The Apache Cassandra o�ers column-oriented data model. Unlikely to rela-

tional databases, it is not necessary to model all of the columns of a row. Each

row is not required to have the same set of columns. The keyspace in Cassandra

is the container of the data and it is similar to schema in a relational database.

Each keyspace has one or more column family objects, that are similar to tables in

relation databases. Column families contain columns that are identi�ed by a row

key. It is important to mention that each row in a column family is not required

to have the same set of columns. The columns of a column family are accessed

together. It is not supported joining column families at query time and there are

no foreign keys in Cassandra.

2.4.1 Distribution and replication data

The data of a cluster in Apache Cassandra [14] are distributed across all nodes of the

ring. The data partitioning across all nodes is either random or by lexicographical

ordered (the default is Random Partitioning). Apache Cassandra also provides a

built-in replication mechanism, to store copies of data across di�erent nodes that

participate in the same ring. The copies stored, called replicas, based on the row

key. The total number of replicas across the cluster is referred to as the replication

factor in the con�guration �le of Cassandra server. This means that if any node

in a cluster goes down, one or more copies of that node's data is available on

other machines in the cluster. All replicas are equally important, that means,

there is no primary or master replica. Replication options are provided that also

allow for data to be automatically stored in di�erent physical racks (thus ensuring

extra safety in case of a full rack hardware failure), multiple data centers, and

cloud platforms. Replication ensure reliability and fault tolerance. There are two
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Figure 2.2: Data repartitioning in Cassandra.

di�erent implementations for replica placement strategies [4]: Simple Strategy and

Network Topology Strategy. The default strategy is Simple Strategy that places

the �rst replica on a node determined by the partitioner and the other replicas

are placed on the next nodes clockwise in the ring without considering rack or

data center location. On the other hand,the Network Topology Strategy is used

when there are multiple data centers per cluster. This strategy specify how many

replicas you want in each data center. Cassandra partitions the key space onto

system nodes using consistent caching. When a new node enters the system (e.g.,

Node 7 in Figure 2.2) data movement takes place only between the neighbors of

the new node. For example in the setup of Figure 2.2 (where replication factor is

equal to two), Node 7 will receive data from Nodes 1 and 2 and Node 2 will drop

all data from the key range (between Nodes 6 and 1) no longer served by it.

2.4.2 Read and write operations

Any node may read or write data into the Cassandra cluster([4],[14]). When a

client connects to a node and issues a read or write request, that node serves as

the coordinator for that particular client operation. The basic role of coordinator

is to act as a proxy between client and nodes or replica nodes that own the data

being requested.
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Furthermore, in the implementation of Apache Cassandra there is a utility

which is a command line interface, named nodetool, that helps to manage a clus-

ter. The nodetool utility has a number of options, for display statistics for every

keyspace and column family, display compaction statistics, for telling a live node

to decommission itself (streaming its data to the next node on the ring), enable

or disable gossip protocol or thrift server, �ush memtables to disk, enable/disable

row cache or key cache capacity, etc.

Write operations

A responsible Cassandra cluster �rst writes the new record into a stable commit log

(synchronously, or by explicit user choice, asynchronously) and then appends it to

an in-memory bu�er (memtable). When memtables reach a certain size (or at regu-

lar intervals) they are written to ordered SSTable �les on disk. Write performance

is normally una�ected by SSTable creation activity, unless write tra�c exceeds the

ability of a Cassandra node to bu�er while writing to disk. Cassandra performs a

number of background operations that may at times a�ect a node's response time,

namely compactions that merge SSTables into fewer and larger �les. Taking write

intensity of a workload into account, one has to factor in (amortize) the periodic

costs of compaction into the average cost of writes.

Read operations

The Cassandra read path starts at the client. A client can send operations to any

node in the cluster and becomes the coordinator for that operation. The coordi-

nator node contacts a con�gurable number of replicas to perform the read or write

operation. A read �rst looks up a row cache, then a key cache, and then (if it

misses in both caches) it tries to locate the key/value pair in the node's underlying

storage system. In the worst case, a number of SSTables will have to be brought in

memory to �nd the requested key. The cost of this path involves a number of net-

work hops (depending on whether the coordinator is also one of the replicas serving

the key sought) and disk accesses (none if we have a hit in the row cache), one or

more if we either hit in the key cache or have to bring in indices from SSTables on

disk. The use of compactions and Bloom �lters narrows down the choice among

SSTables, reducing I/O operations. Disk accesses in Cassandra go to a local �le

system.
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Row and key caches

Cassandra's built-in key and row caches can provide very e�cient data caching.

Several Cassandra's clients use these two types of caches in order to improve read

performance. The key cache holds the location of keys in memory on a per-column

family basis. Each hit on a key cache can save one disk seek per SSTable. Unlike

the key cache, the row cache holds the entire contents of the row in memory. Row

cache is the best choice when you have data that is frequently accessible. Row

caching saves the system from performing any disk seeks when fetching a cached

row. Figure 2.3 depicts the path of two read operations. The one read operation

hits the row cache, returning the requested row. The second read operation requests

a row that is not present in the row cache but is present in the key cache. After

accessing the row in the SSTable, the system returns the data and populates the

row cache with this read operation.

Figure 2.3: Two read operations in Apache Cassandra [4].

2.4.3 Apache Thrift

Cassandra's client API is built in the top of Apache Thrift API. Apache Thrift [16]

is a library that o�ers the ability for creating high-performance services that can

be called from multiple languages. It o�ers the ability to generate code to be

used to easily build remote procedure calls (RPCs) for clients and servers that
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communicate seamlessly across di�erent programming languages. For that reason,

Apache Thrift API creates a set of �les that are used to create clients and servers.

In addition, Apache Thrift is e�cient through a unique serialization mechanism,

in order to achieve interoperability. In more details, there is a software stack

for creating clients and servers. Figure 2.4 depicts this stack. The top level of

the stack is the generated code produced by Thrift de�nition �le. In the two

below levels, the Apache Thrift generated code results to Thrift services and data

structures. Moreover, the protocol and transport are part of the Apache Thrift

runtime library. Apache thrift also includes an infrastructure to tie the protocols

and transports together.

Code

Service Client

Service write/read

Underlying I/O

TProtocol

TTransport

Client

Code

Service Processor

Service write/read

Underlying I/O

TProtocol

TTransport

Server

Generated Code

Figure 2.4: The software stack for creating clients and servers using Apache Thrift.

2.5 Load generator: YCSB

In this thesis, we use Yahoo! Client Serving Benchmark as a load generator. Ya-

hoo! Client Serving Benchmark (YCSB) [17] is a framework and includes a common
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set of workloads for evaluating the performance of di�erent �key-value� stores, e.g.

Cassandra, HBase, MongoDB, etc. This project comprises with a client, which is

a workload generator and core workloads, that is a set of workload scenarios to be

executed by the generator. YCSB performs 1KB accesses with con�gurable read

or write ratio using Zipf or uniformly-random probability distributions.

Especially, in uniform distribution the items are uniformly random. That

means, all rows are equally likely to be chosen. On the other hand, in Zip�an

distribution the items are chosen according to the Zipf's distribution. That means

some records will be extremely popular (which is the head of the distribution) while

most records will be unpopular (that is the tail of the distribution).

In the core package of YCSB [17] there is a variation of di�erent types of

workloads. In these types of workloads, there is a table of records with a number

of �elds. Each record is identi�ed by the row key, which is a string like user234123.

Each �eld is named �eld0, �eld1 and so on. The values of each �eld are a random

string of ASCII characters of length L.
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Architecture

Our architecture for service-level management over the Cassandra distributed stor-

age system is depicted in Figure 3.1. In the Figure 3.1, the existing components

are with solid boxes and the dotted boxes denote our extensions. In this chapter,

we describe the main aspects of our infrastructure, for monitoring, auto elastic-

ity and provisioning. For these reasons, we developed a run-time adaptation to

user-speci�ed performance goals. The QoS controller is the core component of this

architecture. Its key functionalities are to:

• setup SLAs with application clients, requesting their column families pro�les

(data set size and a coarse characterization of their degree of locality, such

as random, zipf-like, etc. per column family) and performance requirements

(currently focusing on satisfying response-time targets at certain throughput

rates)

• e�ect initial resource allocations for the application

• periodically collect monitored response-time and throughput metrics from

Cassandra clients and plan and e�ect changes in resource allocations to better

align with requested targets

• perform admission control by estimating overall resource utilization and level

of satisfaction of requirements for current commitments.

In this thesis, we primarily focus on the problem of initial resource allocation.

We describe a provisioning policy based on predictions of service capacity require-

ments for applications. Our methodology relies on a set of performance tables

(such as Table 3.1) of measured performance results (throughput and response

time) produced by a con�gurable load generator. We use as load generator the

Yahoo Client Serving Benchmark (YCSB) [17], 2.5 con�gured to produce a speci�c

17
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Figure 3.1: The Cassandra QoS architecture.

access pattern, I/O size, and read/write ratio (collectively termed a workload W )

and server (VM) type (S).

Workload: W ; Server type: S
````````````̀# Clients

# Servers
1 2 3 4 . . .

clients1 r1, t1 r2, t2 r3, t3 r4, t4 r5, t5
clients2 r1, t1 r2, t2 r3, t3 r4, t4 r5, t5
clients3 r1, t1 r2, t2 r3, t3 r4, t4 r5, t5
. . . r1, t1 r2, t2 r3, t3 r4, t4 r5, t5

Table 3.1: Response time, throughput for variable load levels, service capacities
(for given workload, server types).

Given an application's access pattern and desired load level, we can determine

the number of servers of a given type required to achieve the desired throughput

without exceeding a response time threshold. When the desired application char-

acteristics or load levels do not exactly match a table entry we apply interpolation

from neighboring table entries.
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Each Cassandra client (usually embedded into an application) performs per-

thread measurements of current throughput and of response time and computes

exponentially-weighted moving averages (EWMAs) of response-time values using

the following formula, where r(T) is the response time sampled at time T and

α=0.125.

EWMA(T ) = (1− α) ∗ EWMA(T − 1) + α ∗ r(T )

Each process computes response time EWMA and aggregate throughput across

all its threads and communicates both to the QoS controller. The QoS controller

combines the reported metrics across YCSB processes belonging to the same user.

For a particular user, the total value of throughput across YCSB processes are the

sum of the separate YCSB processes for the speci�c cassandra cluster and the total

value of response time is the average of the EWMA response time of the YCSB

processes.

The QoS controller is able to simultaneously interface and control multiple

independent users (representing di�erent workoads or di�erent clusters). Since

multiple applications executing over the same Cassandra cluster cannot normally be

isolated in terms of elasticity policies (e.g., allow application A grow the Cassandra

cluster by one server while application B sees its previous con�guration), our design

assigns each application to its own independent Cassandra cluster (still allowing

Cassandra servers to share Cloud VMs) as shown in Figure 4.1. Finally, for high

availability we support a primary-backup scheme using a shadow QoS controller to

replicate the state of the primary. Details of this approach are beyond the scope

of this thesis.
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Chapter 4

Implementation

Our implementation is based on Apache Cassandra version 1.0.10. On the other

hand, YCSB (version 0.1.4) is used as the canonical example of an application

throughout this section. But we would like to mention that the architecture is

general and applies to any application that can run over the Cassandra client

library. Our implementation extends YCSB Cassandra Client version 1.0.10 (here-

after referred to as CassandraClient10). A YCSB application accesses a single

Cassandra cluster and column family and involves multiple concurrently executing

load-producing threads. Each thread uses a unique CassandraClient10 object. On

the other hand, the Cassandra server-side code is unmodi�ed. For simplicity rea-

sons, we assume single datacenter and rack, one column family per cluster, single

seed node (simple snitch), random partitioner, and replication factor one. Mor-

ever, key cache is disabled and we set enable only row cache. In Figure 3.1 solid

boxes denote existing components while dotted boxes denote our extensions and

our implementation.

To support our enhanced functionality (QoS attributes of multiple users access-

ing di�erent CFs and clusters), we have added the following YCSB command-line

arguments:

• �-rt� : desired response time for read/write requests.

• �-throughput� : desired throughput for read/write requests.

• �-QoS Port� : RMI connection port between YCSB user and QoSController.

• �-QoS Name, IP� : RMI connection name between YCSB user and QoSCon-

troller.

• �-QoS IP� : RMI connection IP address between YCSB user and QoSCon-

troller.

21
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• �-dataPort� : RMI port for data connection between YCSB user and Cassan-

dra cluster (each user is mapped to a separate cluster).

• �-cf� : column family name for the cluster.

• �-distribution� : the statistical distribution of requests, which can be �uni-

form� for uniformly random or �zip�an� for Zipf distribution in order to have

locality.

Figure 4.1: Relationships between application processes, QoS controller, Cassandra
clusters, and the Cloud infrastructure. The shadow QoS controller forms a primary-
backup pair with the main QoS controller for high availability.

In the following sections of this chapter, we present our implementation about

monitoring, elasticity, caching and QoS controller process.

4.1 Monitoring

We modi�ed the Cassandra Thrift implementation depicted in Figure 3.1 to times-

tamp read and write operations. As we mentioned above, the YCSB application

has a number of concurrently threads, that is clients and each client has a unique

CassandraClient10 object and has a Cassandra Thrift implementation. Each Cas-

sandraClient10 computes read or write latency (in ms) and read or write through-

put (MB/s) (using the Cassandra Thrift timestamps). These values are stored

them into a per-thread CassandraQoS object (that is per thread). The role of

CassandraQoS object is to compute the EWMA of response times and estimates

throughput by dividing the bytes transferred for completed operations over a given

time period. That means, each thread has information about read or write latency
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(EWMA response time) and read or write throughput of its requests.

Moreover, we have extended the YCSB implementation and we have added a

StatGathering thread that periodically (every 30 seconds) collect from all Cassan-

draQoS objects their response-time EWMAs and throughput values. StatGathering

computes the average of EWMAs and aggregate throughput across YCSB threads.

These values are the total EWMAs response-time and throughput per YCSB appli-

cation. QoSController collects those numbers from each YCSB process via periodic

(every 30 seconds) RMI calls.

4.2 QoS controller

The QoSController is a separate process executing on a dedicated node. The

QoSController maintains a separate thread for di�erent cassandra clusters. To

enable the QoS controller to simultaneously control independent YCSB workloads

we:

• Allow each YCSB process to have access to a di�erent Cassandra server

cluster. To allow sharing of VMs across clusters, network ports (data and

JMX) used by a cluster are set per YCSB process.

• Give each YCSB process a separate RMI connection to the QoSController.

Each YCSB process communicates with the QoSController over its assigned

RMI name, IP, and port, and passes to it con�guration information followed by

the user's SLA. Con�guration information includes parameters of its Cassandra

cluster, which are the following:

• Name of cluster

• Initial number of Cassandra servers based on the provision tables and user's

SLA

• Maximum number of Cassandra servers for that cluster

• IP addresses of all Cassandra servers

• The number and the IP of seeds Cassandra servers

• The data port for (write and read operations)

• The JMX port for monitoring and managing Cassandra servers
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We would like to mention that Cassandra cluster initialized for a speci�c YCSB

process takes as parameters the ports all servers should listen to, e.g. data port

9160, JMX port 7199 for Cluster0; data port 9161, JMX port 7198 for Cluster1; etc.

The QoSController starts JMX MBeans connections (in particular ports) to

each Cassandra server in a cluster. For read-only workloads, QoSController, through

JMX's connections, disables key cache and sets row cache capacity at 500MB

per server. Furthermore, it collects periodically (every 30 seconds) statistics on

row cache capacity, its current size, and its hit ratio per cassandra server. When

row caches �ll up (past a ramp up phase after an elasticity action), the QoSCon-

troller goes over a 10 minute period during which it checks I/O response times and

throughput (20 times) for compliance with the user-speci�ed SLO. For a speci�c

cluster, the QoSController thread collects EWMAs responses-time and throughput

from YCSB processes. Then it calculates the average of EWMAs and aggregate

throughput across YCSB processes.

As we already mention ( 2.4.2) the write path does not use row or key caching.

For that reason, QoS controller checks I/O response times and throughput for a

period over a 10 minutes (that is 20 times) for check the compliance of the user's

SLO. We use the same formula, as read requests, in order to calculate the total

response time and throughput at a speci�c time in write requests. If the SLO is

violated, it decides to start a new server to further distribute the load in the cluster.

That means, the elasticity policy is time based.

4.3 Elasticity

When the QoSController starts a new server in a cluster, it initiates a JMX con-

nection to that server and uses it to set speci�c attributes for that server such as

row cache capacity and to get information about the server it will stream data from

to balance the ring. The new cassandra server receives data from the cassandra

server that has the majority of the data in the ring in order to balance the load.

When data streaming is complete, the new server transitions into normal mode in

the cluster (from joining mode during bootstrapping phase) and is ready to receive

client requests. At that point, a cleanup thread in the QoSController deletes keys

from o�oaded nodes using the JMX cleanup API.

A challenge we faced early on was that the standard version of YCSB (as of

version 0.1.4) does not take elasticity into account: it statically binds to an initial

set of Cassandra servers and cannot dynamically redistribute load to an expanding
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cluster. In our implementation, we check in YCSB whether a new server has been

inserted in the cluster (ring) before each read or write operation (by checking the

host attribute in the list of properties) and if so we include the new server. When

the new server is at normal mode the QoSController informs, through RMI the

YCSB's clients. Each CassandraClient10 client stores data structures of all clients

of this cluster, structures of all TCP protocols and TCP transports for all servers in

order to use them when elasticity takes place. In addition, each CassandraClient10

re-selects the Cassandra server to which it binds to and sends its requests. To

spread the client load uniformly over the servers we map each client to a server by

taking the modulo of the client identi�er over the total number of servers. This

dynamic reassignment of clients to servers is performed each time a new Cassandra

server enters the cluster.

4.4 Caching

At the Cassandra server side, we use �xed-size row caches per column family, set

using the JMX setCapacity method exported by storage servers. In addition, we

use the same JMX method to disable key cache per server. In our earlier versions

of our implementation using JVM heap for cache memory we were careful regulat-

ing these caches to avoid exceeding a certain fraction of the total heap size. Our

experience indicates that exceeding that limit triggers frequent garbage collection

(GC) activity and leads to automatic cache-size reduction by Cassandra.

Our current implementation con�gures Cassandra servers to use o�-JVM heap

memory (and thus not GC'ed) for its caches (row cache, key cache, and memtable).

We thus avoid some of the cache-related memory pressure e�ects that impact Cas-

sandra performance in unpredictable ways. We do not however fully prevent such

activity, which is inherent in Java implementations of data-intensive distributed

systems.
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Chapter 5

Evaluation

We evaluated our system on the Amazon Web Services (AWS) EC2 Cloud using

two di�erent Cassandra clusters. The �rst cluster (referred to as small) consists of

7 servers of type AWS m1.small featuring 1 virtual core with Intel Xeon processors,

1.7GB DRAM, 160GB local (instance) storage. The second cluster (medium) con-

sists of up to 5 servers of type AWS m1.medium featuring 1 virtual core with Intel

Xeon processors, 3.75GB DRAM, 410GB local storage. In both cases, the server

operating system is Linux Ubuntu 10.4.1 LTS, 64 bits. The Cassandra software

version (baseline) is 1.0.10 using the OpenJDK 1.6.0-24 Java runtime environment

with heap size of 1GB.

Our evaluation workload is the Yahoo Cloud Serving Benchmark (YCSB) ver-

sion 0.1.4. The YCSB workload executes on an EC2 instance of type AWS m1.large

(2 virtual CPUs, 7.5 GB DRAM, 840GB local storage). The QoSController process

executes on a dedicated AWS m1.small EC2 instance. In addition, we have used

the Random Partitioner (the default partitioning strategy using consistent hash-

ing) for mapping rows to Cassandra servers and set the replication factor to one.

For simplicity, we have one datacenter, one rack per cluster, and have disabled the

key cache to focus on the characteristics of the row cache alone.

To exhibit our QoS-aware provisioning methodology we focus on two distinct

types of applications: those that exhibit locality in table accesses and those that

do not. We model both by con�guring YCSB to produce accesses based on:

• a Zipf probability distribution. According to the Zipf distribution, some

records are extremely popular while most records are unpopular.

• a uniformly-random probability distribution.

27
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In the �rst part of our evaluation we produce instances of Table 3.1 by progres-

sively expanding I/O path parallelism between the application and storage servers

(via elasticity actions) as much as needed to match the selected workloads (no

SLO is set in this phase). Our evaluation considers AWS m1.small and m1.medium

types; our methodology however extends to coverage of other VM types. We use

our extended version of the YCSB benchmark con�gured for 128, 256, and 512 con-

current client threads to produce read-only uniformly-random or Zipf workloads.

In a real setting, the QoS controller would build a larger set of tables for better

coverage. However the current set of points are su�cient for demonstrating our

approach. YCSB is initially setup over a Cassandra cluster of two servers. Pro-

gressively, the QoS controller grows the cluster to �ve (medium) or seven (small)

servers1.

5.1 Zip�an distribution

In the �rst set of experiments, we con�gure YCSB to produce a workload of Zipf-

distributed reads to 15 million 1KB records (a 15GB dataset). The QoS controller

sets the row cache size to 500MB per Cassandra server on the initial cluster. The

server row cache capacity is periodically checked (every 30 secs) through the JMX

getSize method exported by storage servers. The QoS controller maintains the

cluster size until all server row caches have �lled up and then on for about 10 min.

At that point the QoS controller triggers an elasticity action. In this phase, the

QoS controller is con�gured to scale the system continuously as long as there is

performance bene�t from doing so.

Figures 5.1�5.3 depict EWMA response time (a) and throughput (b) in the

small cluster with 128, 256, and 512 concurrent client threads. Figures 5.4�5.6

depict EWMA response time (a) and throughput (b) for the medium cluster. The

horizontal bars designate periods of data streaming during which a new (boot-

strapping) node receives data from o�oaded nodes. The sharp throughput drops

in Figure 5.4b, 5.5b, and 5.6b are due to brief freezes observed in the Cassandra

VMs (we are unaware of the cause of these freezes). Tables 5.1 and 5.2 summarize

our results for the small and medium clusters respectively (at steady state) for

128, 256, and 512 concurrent client threads. As cluster size grows, performance

bene�ts come from increased I/O path parallelism as well as to the larger aggre-

gate cache capacity available (each new server adds 500MB of cache in the cluster).

Bootstrapping has a performance hit, but this is typically small due to throttling

1Our goal in sizing the two clusters was to provide comparable performance at their maximum
capacity. Since m1.medium VMs are more powerful than m1.small, �ve m1.medium VMs are
su�cient to match and exceed the maximum performance possible with seven m1.small VMs.



5.1. ZIPFIAN DISTRIBUTION 29

on streaming throughput applied by Cassandra.

Figures 5.8 and 5.9 show that the throughput increases and response time

reduces proportionally with the number of Cassandra servers in both two clusters.

As anticipated, the medium cluster can achieve a certain level of performance with

fewer servers compared to small. For example, a response time of 34ms for 512

client threads is achievable with either 7 m1.small VMs or with 4 m1.medium VMs.

Similarly, for the same load and service capacity level the medium cluster achieves

a higher level of throughput (up to 45%) compared to small. Figure 5.7 depict

the response time vs. o�ered-load relationships in the two clusters with growing

service capacities. We also observe that results with the small cluster exhibit

higher variation compared to the medium cluster; additionally, variation grows

within the small cluster with increasing load level. This can be attributed to the

fact that average CPU utilization is lower (and thus more CPU cycles available to

absorb spurious activity) in the medium cluster vs. the small cluster.
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Figure 5.1: AWS m1.small, Zipf distribution, 1 client with 128 threads.
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Figure 5.2: AWS m1.small, Zipf distribution, 1 client with 256 threads.
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Figure 5.3: AWS m1.small, Zipf distribution, 1 client with 512 threads.
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Figure 5.4: AWS m1.medium, Zipf distribution, 1 client with 128 threads.
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Figure 5.5: AWS m1.medium, Zipf distribution, 1 client with 256 threads.
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Figure 5.6: AWS m1.medium, Zipf distribution, 1 client with 512 threads.

Zipf-100% Reads: Amazon m1.small
````````````# Clients

# Servers
2 3 4 5 6 7

128 23.4, 5.5 19.7, 6.7 15.6, 7.7 14, 8.8 12.2, 10.2 10.7, 11.6
256 49.5, 5.5 37.9, 6.9 32.3, 8.5 25, 9.6 22.4, 11.1 18, 11.1
512 102.2, 5.2 76.1, 6.6 61, 8 51.4, 9.8 44, 10.9 34.6, 12.2

Table 5.1: Response time (ms), throughput (MB/sec) for Zipf access pattern on
Amazon's m1.small.

Zipf-100% Reads: Amazon m1.medium
````````````# Clients

# Servers
2 3 4 5

128 13.53, 9.27 11.73, 11.85 8.93, 14.7 5.89, 15.9
256 25.73, 10 19.64, 11.67 16.57, 14.88 12.02, 16.20
512 58.44, 9.33 44.63, 11.95 34.36, 15 25.77, 17.95

Table 5.2: Response time (ms), throughput (MB/sec) for Zipf access pattern on
Amazon's m1.medium.
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Figure 5.7: Response time (ms) vs. o�ered load for di�erent cluster capacities in
the Zipf workload.
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Figure 5.8: Response time (ms), throughput (MB/sec) for Zipf on Amazon's
m1.small, having 128, 256, and 512 concurrent client threads.
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Figure 5.9: Response time (ms), throughput (MB/sec) for Zipf on Amazon's
m1.medium, having 128, 256, and 512 concurrent client threads.
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Figure 5.10: AWS m1.small, Uniformly random distribution, 1 client with 128
threads.

5.2 Uniformly random distribution

Similarly to the case of the Zipf distribution, we con�gure YCSB to produce a

workload of uniformly-random reads over the same 15GB dataset with 128, 256,

and 512 concurrent client threads. Figures 5.10�5.12 depict EWMA response time

(a) and throughput (b) in the small cluster con�gured to scale continuously as

long as there is performance bene�t from doing so. Figures 5.13�5.15 depict EWMA

response time (a) and throughput (b) in the medium cluster. Tables 5.3 and 5.4

summarize our results from these experiments (at steady state). The throughput

drop at Figures 5.14b and 5.15b is due to brief freeze of the Cassandra VMs

and it is Cloud related. Figure 5.16 depicts the response time vs. o�ered-load

relationships in the both cluster. Similar to the Zipf distribution, Figures 5.17

and 5.18 show that throughput increases and EWMA response time decreases

with growing cluster size, although less so (up to 20%) due to smaller bene�t from

caching in this case (18% hit ratio vs. 60% for Zipf). The medium cluster can

(just as in the case of Zipf) achieve a given level of performance with fewer servers

compared to small: a response time of 45ms for 512 client threads is achievable

with either 7 m1.small VMs or with 4 m1.medium VMs. Similarly, the medium

cluster achieves a higher level of throughput compared to small for the same load

level.

5.3 Validation of the methodology

At the initial stage of the YCSB benchmark the user sets up an SLA for the CF

created and accessed by YCSB. In the SLA the user speci�es the dataset size

(15GB), degree of locality (zipf), the requested maximum average response time
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Figure 5.11: AWS m1.small, Uniformly random distribution, 1 client with 256
threads.
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Figure 5.12: AWS m1.small, Uniformly random distribution, 1 client with 512
threads.

0 

10 

20 

30 

40 

0 20 40 60 80 100 120 

R
e

sp
o

n
se

 t
im

e
 (

m
se

c)
 

Time (min) 

(a) Response time

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

0 20 40 60 80 100 120 

Th
ro

u
gh

p
u

t 
(M

B
/s

e
c)

 

Time (min) 

(b) Throughput

Figure 5.13: AWS m1.medium, Uniformly random distribution, 1 client with 128
threads.
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Figure 5.14: AWS m1.medium, Uniformly random distribution, 1 client with 256
threads.
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Figure 5.15: AWS m1.medium, Uniformly random distribution, 1 client with 512
threads.

Uniform-100% Reads: Amazon m1.small
````````````# Clients

# Servers
2 3 4 5 6 7

128 25.4, 4.8 22.2, 6.1 17.6, 7.1 15.8, 8.2 12.8, 9.5 12.2, 10.4
256 51.3, 5.2 51.1, 4.9 40.9, 6.5 33.2, 7.8 26.6, 9.4 22.7, 10.7
512 116.9, 4.4 83.1, 5.6 70.3, 7.7 54.7, 9.2 44.2, 10.6 44.5, 10.6

Table 5.3: Response time (ms), throughput (MB/sec) for Uniform access pattern
on Amazon's m1.small.
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Uniform-100% Reads: Amazon m1.medium
````````````# Clients

# Servers
2 3 4 5

128 15.69, 8.78 11.8, 11.18 10.16, 13.06 7.52, 14.75
256 28.79, 9.05 24.64, 11.24 19.39, 13.51 14.77, 15.22
512 60.5, 8.64 48.8, 11.08 45.99, 12.77 28.44, 14.8

Table 5.4: Response time (ms), throughput (MB/sec) for Uniform access pattern
on Amazon's m1.medium.
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Figure 5.16: Response time (ms) vs. o�ered load for di�erent cluster capacities in
the Uniform workload.
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Figure 5.17: Response time (ms), throughput (MB/sec) for Uniform on Amazon's
m1.small, having 128, 256, and 512 concurrent client threads.



5.3. VALIDATION OF THE METHODOLOGY 37

0 

10 

20 

30 

40 

50 

60 

2 3 4 5 

R
e

sp
o

n
se

 t
im

e
 (

m
se

c)
 

Number of Servers 

128 Clients 256 Clients 512 Clients 

(a) Response time

0 

4 

8 

12 

16 

2 3 4 5 

Th
ro

u
h

p
u

t 
(M

B
/s

e
c)

 

Number of Servers 

128 Clients 256 Clients 512 Clients 

(b) Throughput

Figure 5.18: Response time (ms), throughput (MB/sec) for Uniform on Amazon's
m1.medium, having 128, 256, and 512 concurrent client threads.

for read operations (40ms), an upper limit on throughput (384 threads), and row

size (1KB). The QoS controller uses Table 5.1 to estimate the capacity to achieve

the requested SLA. It uses weighted-average interpolation to produce the new row

for 384 threads shown in Table 5.5. Other approaches to estimation have been ex-

plored in the past [18, 19]; a more thorough exploration of such techniques however

is outside the scope of this thesis.

Using the predictions of Table 5.5, the QoS controller provisions a 5-node Cas-

sandra cluster of EC2 m1.small type VMs, creates a CF on it and periodically

monitors the achieved response time and throughput. Figure 5.19 shows that re-

sponse time and throughput closely approximate the levels predicted by Table 5.5.

Although average response time is below 40ms, throughput is slightly higher than

expected (10.55 vs 9.72 MB/s). Since the user-requested SLA is achieved, the QoS

controller does not trigger any further elasticity actions.

Although we have focused on read-only workloads in this thesis, we provide

some insight to the characteristics of write workloads. Figure 5.20 depicts YCSB

response time and throughput in an identical setup to the one used in Figure 5.19

(384 threads, 5 servers). We observe that response time is higher (61ms vs. 37.3ms)

while throughput is lower (4.9MB/s vs. 10.6MB/s) with both metrics exhibiting

more noise compared to the read-only workload. Cassandra's default write policy

(unstable writes to commit log and memtable with periodic syncs to disk) largely

decouples write performance from the disk device. However interference with fre-

quent memtable/SSTable compaction activity (especially intensive in a 100% write

workload) hurts performance due to increased I/O activity as well as increased

CPU needs.
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Zipf-100% Reads: Amazon m1.small
````````````# Clients

# Servers
2 3 4 5 6 7

256 49.5, 5.5 37.9, 6.9 32.3, 8.5 25, 9.6 22.4, 11.1 18, 11.1
384 75.9, 5.3 57, 6.7 46.6, 8.2 38.2, 9.7 33.2, 11 26.3, 11.7

512 102.2, 5.2 76.1, 6.6 61, 8 51.4, 9.8 44, 10.9 34.6, 12.2

Table 5.5: The row on 384 clients is a weighted average of the rows on 256 and 512
clients.
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Figure 5.19: Zipf read-only distribution, 1 client with 384 threads, 5 servers.
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Figure 5.20: Zipf write-only distribution, 1 client with 384 threads, 5 servers.



Chapter 6

Related Work

Distributed data stores (often referred to as key-value stores) that implement dis-

tributed tabular structures with con�gurable access semantics have recently been

developed as research prototypes as well as commercial systems to support a num-

ber of rapidly-growing large-scale data-centric enterprises. Examples of such sys-

tems include Dynamo [6], Bigtable [7], and their open-source variants Cassandra [4]

and HBase [5]. Cloud service o�erings of these technologies are currently widely

available, o�ering a broad range of performance and dependability characteristics.

As enterprises that have invested into Cloud computing are now raising their

expectations from best e�ort to guaranteed levels of service, Cloud providers are

beginning to o�er versions of their data-centric services that support controlled per-

formance, reliability, etc. Recently Amazon Web Services (AWS) announced two

new versions of existing services that o�er guaranteed read/write I/O throughput

on a key-value store (this service is branded DynamoDB) and provisioned I/O

throughput over its elastic block storage (service branded provisioned IOPS ).

Providing quality of service over distributed storage has been an active area of

research for at least two decades. Work at HP labs (a retrospective by John Wilkes

provides a good overview of this work [20]) addressed a wide range of concerns,

from speci�cations of workloads, QoS goals, and device capabilities, to mappings

of workload onto underlying storage resources, and to run-time management of

storage I/O �ows.

Work by Goyal et al. [21] in the context of the CacheCOW system contributed

algorithms for dynamically adapting storage cache space allocated to di�erent

classes of service depending on observed response time, temporal locality of ref-

erence, and the arrival pattern for each class. The focus of this work was on cen-

39
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tralized storage controllers rather than distributed servers typically used in NoSQL

systems. More recently, Magoutis et al. [22] presented a self-tuning storage man-

agement architecture that allows applications and the storage environment to ne-

gotiate resource allocations without requiring human intervention. The authors of

this work aim to maximize the utilization of all storage resources in a storage area

network subject to fairness (rather than user-de�ned service-level objectives, as we

do in this thesis) in the allocation of resources to applications.

With AWS being the current industry leader in guaranteed performance over

distributed Cloud storage, it is worth taking a deeper look into their published

and commercial work. Their SOSP paper [6] describes their (internal at the time)

Dynamo key-value data store service which o�ered service-level agreements (SLA)

on the response-time of put/get operations (e.g., service-side completion within

300ms) o�ered by the service measured on the 99.9th percentile of the total num-

ber of requests, assuming the client does not exceed a peak level of load (e.g., 500

requests / sec). The recently introduced DynamoDB [2] is based on the published

design of Dynamo with the introduction of new technologies such as solid-state

storage (SSD) to address reliability issues.

DynamoDB departs from the original Amazon design in its SLA speci�cation.

Namely, a user speci�es performance requirements on a database table in terms of

request capacity or number of 1KB read or write operations (also known as units

of read or write capacity) desired to be executed per second. DynamoDB allocates

dedicated resources to tables to meet performance requirements, and automati-

cally partitions data over a su�cient number of servers to meet request capacity. If

throughput requirements change, the user can update a table's request capacity on

demand. Average service-side latencies for Amazon DynamoDB are reported to be

in the single-digit milliseconds range [2]. Applications whose request throughput

exceeds their provisioned capacity may be throttled. DynamoDB does not seem

to provide any guarantees on the response time o�ered nor on the distribution of

requests on which their o�ered performance is evaluated (e.g., 99.9th percentile

over some time range).

Two of the most widely deployed NoSQL distributed storage systems are HBase [5]

and Cassandra [4]. HBase tables contain rows of information indexed by primary

key. The basic unit of data is the column, which consists of a key and a value.

Sequences of columns (an arbitrary number) collectively form a row. A number

of logically-related columns can be grouped into column families (CFs), which are

kept physically close in both memory and disk. HBase partitions data using a

distributed multi-level tree that splits each table into Regions and stores Region
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data in the HDFS distributed �le system using a scheme similar to LSM trees [23].

Cassandra is an open source clone of Dynamo, combining some features (such

as column families, and storage management based on LSM trees over local stor-

age) from HBase. Each node in a Cassandra cluster maps to a speci�c position on

a ring via a consistent hashing scheme [4]. Similarly, each row maps to a position

on the ring by hashing its key using the same hash function. Each node is in charge

of storing all rows whose keys hash between this node's position and the position

of the previous n nodes on the ring when replicating n times. Cassandra lever-

ages an LSM-tree like scheme similar to that used by HBase to store data except

that individual �les (called SSTables) are stored in each node's local �le system as

opposed to a distributed �le system. When reading a row stored in one or more

SSTables, Cassandra uses a row-level column index (and optionally a Bloom �lter)

to �nd the necessary blocks on disk.

The idea of measurement-based performance modeling has been previously pro-

posed by Anderson [18] in the context of storage system design and con�guration of

RAID arrays [20]. Complex performance evaluations of systems have been studied

by Westermann et al. [24, 19], including methods for predicting application per-

formance based on statistics over a space of measurement data. Our methodology

is closely related to these approaches as we rely on a guided exploration of system

con�guration space under di�erent workload assumptions. We di�er from them on

our focus on service-level management of scalable and elastic NoSQL technologies

such as Cassandra.
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Chapter 7

Conclusions and Future Work

In this thesis, we describe a QoS infrastructure geared towards scalable NoSQL stor-

age systems and current implementations of the infrastructure within the Apache

Cassandra. Our evaluation of the Cassandra-based implementation controls of

server-side caching as an e�ective solution to regulating application response time

when the application exhibits strong data-access locality. Control over I/O path

parallelism via elasticity mechanisms is a complementary and e�ective solution for

matching user performance requirements. The impact of elasticity actions on per-

formance varies depending on their intensity and the hardware characteristics of

the underlying platform, warranting further investigation.

Moreover, we presented a methodology for QoS-aware provisioning of Cassan-

dra clusters based on application SLAs. Our evaluation demonstrates that the

methodology is e�ective in predicting server capacity requirements given simple

application workload descriptions. Part of the simplicity of our approach stems

from the scalability and elasticity mechanisms built into NoSQL systems such as

Cassandra; we believe that our work is more broadly applicable to such systems.

A full exposition of write-intensive workloads and the handling of interference

between workloads feature prominently on this list. Based on our experience with

write workloads we believe that our methodology can straightforwardly extend to

them. Workload interference has been deemed to be an important parameter in the

past [20], especially over disk drives. We believe that with the proliferation of �ash

drive (SSD) technology, the importance of interference at the disk-drive level is less

critical today than it was ten years ago. However, contention for other resources

(CPU, memory) still needs to be taken into account in provisioning concurrent

workloads over Cassandra clusters.
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