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ABSTRACT 

 

Yakinthi G. Pavlaki: OVERCOMING HYPOTHETICAL BIAS IN CONTINGENT 

VALUATION SURVEYS 

(Under the direction of Associate Prof. Margarita Genius) 

 

This Ph.D. thesis aims to build econometric models that can overcome hypothetical 

bias in Contingent Valuation surveys. Within 4 interrelated Chapters, this thesis focuses 

on constructing a mixture model and applying stochastic frontier analysis in order to 

include the existence of hypothetical bias. The main idea of the proposed model of the 

present thesis is that in a Contingent Valuation survey there might be two types of 

respondents. The first one refers to respondents that answer sincerely about their WTP 

and the second to respondents that overstate their WTP. 

The first chapter presents a literature review regarding Contingent Valuation Method 

(CVM) and the problem of Hypothetical Bias. Additionally, it analyzes the theoretical 

framework regarding the statistical models that are constructed in Chapter 2 and 3. The 

second and third Chapters present the proposed model that can overcome hypothetical 

bias for the open-ended elicitation format and for the double-bounded dichotomous 

choice elicitation format. The Chapters contain the theoretical background of the 

corresponding format, the stochastic frontier theory, which is applied to model 

hypothetical bias, the mixture models theory that is used in order to allow the existence of 

the 2 classes and the estimation procedure, including the EM algorithm. 

In order to test the validity of the proposed model, simulations took place for 1000 

observations and 1000 replications for several cases. Additionally in Chapter 3, after the 

illustration of the simulation results an empirical application is presented with real CVM 

data. The fourth Chapter deals with the issue of the selection of starting values for the 

EM algorithm. Chapter 4 begins with the literature review about the initialization 

techniques and the importance of the initial values. Furthermore, application of three 

initialization methods were applied to the proposed model for the double-bounded format 
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and a comparison of the initialization techniques took place in order to conclude which 

initialization strategy performs better.  

 

Keywords: Environmental Econometrics, Contingent Valuation Method (CVM), Open-

Ended, Double-Bounded, Hypothetical Bias, Stochastic Frontier Analysis, Composed 

Error, Finite Mixture Models, EM algorithm, Willingness-To-Pay, Initial Values 
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ΠΕΡΙΛΗΨΗ 

 

Ταθίλζε Γ. Παπιάθε: ΓΙΟΡΘΩΝΟΝΣΑ΢ ΣΟ ΠΡΟΒΛΗΜΑ ΣΗ΢ ΤΠΟΘΔΣΙΚΗ΢ 

ΜΔΡΟΛΗΨΙΑ΢ ΢Δ ΔΡΔΤΝΔ΢ ΠΙΘΑΝΟΛΟΓΙΚΗ΢ ΑΠΟΣΙΜΗ΢Η΢  

(CONTINGENT VALUATION) 

(Τπό ηελ θαζνδήγεζε ηεο Αλαπι. Καζεγήηξηαο Margarita Genius) 

 

Η παξνύζα δηδαθηνξηθή δηαηξηβή κειεηά πσο ζα μεπεξαζηεί ην πξόβιεκα ηεο 

Τπνζεηηθήο Μεξνιεςίαο ζε έξεπλεο πνπ πξαγκαηνπνηνύληαη κε ηελ κέζνδν ηεο 

πηζαλνινγηθήο απνηίκεζεο ή Contingent Valuation (CV). Πην ζπγθεθξηκέλα πξνηείλεηαη 

έλα ελαιιαθηηθό κνληέιν, ζηνρεύνληαο νη εθηηκήζεηο πνπ πξνθύπηνπλ λα είλαη 

απαιιαγκέλεο από ην πξόβιεκα ηεο Τπνζεηηθήο Μεξνιεςίαο, πνπ ζύκθσλα κε ηελ 

βηβιηνγξαθία, είλαη βαζηθόο παξάγνληαο πνπ πιήηηεη ηελ αμηνπηζηία θαη ηελ εγθπξόηεηα 

ησλ απνηειεζκάησλ ηεο κεζόδνπ CV. 

Η δηδαθηνξηθή δηαηξηβή απνηειείηαη από ηέζζεξα αιιειέλδεηα θεθάιαηα. ΢ην πξώην 

θεθάιαην παξαηίζεηαη ε ζεσξία πνπ αλαθέξεηαη ζηε κέζνδν CV, ε βηβιηνγξαθηθή 

αλαζθόπεζε γηα ηελ δηάρπζε ηεο κεζόδνπ θαζώο θαη νη θξηηηθέο πνπ έρεη δερηεί ε 

κέζνδνο ζπκπεξηιακβαλνκέλνπ ηνπ πξνβιήκαηνο ηεο Τπνζεηηθήο Μεξνιεςίαο. 

Δπηπιένλ ε βηβιηνγξαθηθή αλαζθόπεζε ηνπ πξώηνπ θεθαιαίνπ αλαθέξεη πνηθίιεο 

έξεπλεο πνπ αλαδήηεζαλ ηελ ύπαξμε ηνπ πξνβιήκαηνο θαζώο επίζεο θαη δηάθνξεο 

κεζόδνπο πνπ έρνπλ πξνηαζεί γηα λα δηνξζσζεί ε Τπνζεηηθή Μεξνιεςία. Δπηπιένλ ζην 

ηέινο ηνπ πξώηνπ θεθαιαίνπ γίλεηαη αλαθνξά ηνπ ζεσξεηηθνύ ππόβαζξνπ ηνπ 

ζηαηηζηηθνύ κνληέινπ πνπ θαηαζθεπάζηεθε ζηελ παξνύζα δηαηξηβή. 

΢ην δεύηεξν θαη ζην ηξίην θεθάιαην παξνπζηάδεηαη ε εθαξκνγή ηνπ πξνηεηλόκελνπ 

ζηαηηζηηθνύ κνληέινπ γηα λα δηνξζσζεί ην πξόβιεκα ηεο Τπνζεηηθήο Μεξνιεςίαο γηα 

ηελ Open-Ended κέζνδν εθκαίεπζεο δεδνκέλσλ θαη γηα ηελ Double-Bounded 

Dichotomous Choice κέζνδν εθκαίεπζεο δεδνκέλσλ ηεο CV κεζόδνπ αληίζηνηρα. Πην 

ζπγθεθξηκέλα, ζηα θεθάιαηα απηά παξνπζηάδεηαη αξρηθά ε ζεσξία ηεο CV κεζόδνπ πνπ 

αληηζηνηρεί ζηελ αληίζηνηρε κέζνδν εθκαίεπζεο, αλαιύεηαη ιεπηνκεξώο ε ζεσξεηηθή 
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βάζε, ε θαηαζθεπή ηνπ ζηαηηζηηθνύ κνληέινπ, θαζώο θαη άιιεο ζεσξίεο πνπ 

εθαξκόζηεθαλ θαηά ηνλ ζρεδηαζκό ηνπ κνληέινπ, πρ. Θεσξία κηθηώλ κνληέισλ- 

Mixture models theory θηι.. ΢ηελ ζπλέρεηα ησλ θεθαιαίσλ απηώλ πξαγκαηνπνηήζεθαλ 

πξνζνκνηώζεηο κε ζθνπό λα εμεηαζζεί πσο ιεηηνπξγεί ην κνληέιν θη αλ αληαπνθξίλεηαη 

ζηνλ αξρηθό ζθνπό ηνπ. Δπηπξνζζέησο ζην ηξίην θεθάιαην παξνπζηάδεηαη θαη κηα 

εκπεηξηθή εθαξκνγή όπνπ ην πξνηεηλόκελν κνληέιν δνθηκάζηεθε ζε πξαγκαηηθά 

ζηνηρεία κειέηεο κε ηελ εθαξκνγή ηεο κεζόδνπ CV. 

Σέινο ην ηέηαξην θεθάιαην πξόθεηηαη γηα επέθηαζε ηνπ ηξίηνπ θεθαιαίνπ θαζώο ν 

ΔΜ αιγόξηζκνο, πνπ εθαξκόδεηαη γηα ηελ εθηίκεζε ηνπ πξνηεηλόκελνπ κνληέινπ, 

αλαθέξεηαη ζηελ βηβιηνγξαθία όηη αληηκεησπίδεη ζνβαξή επαηζζεζία ζηηο αξρηθέο ηηκέο. 

Γηα ηνλ ιόγν απηό, πξνθεηκέλνπ λα πξνηαζεί έλα νινθιεξσκέλν κνληέιν γηα ηελ 

αληηκεηώπηζε ηεο Τπνζεηηθήο Μεξνιεςίαο, έγηλε κηα ζύγθξηζε ηξηώλ δηαθνξεηηθώλ 

κεζόδσλ πξνζδηνξηζκνύ αξρηθώλ ηηκώλ. Οη κέζνδνη πνπ εμεηάζηεθαλ ήηαλ ε 1 ηπραία 

αξρηθνπνίεζε, ε νπνία κέζνδνο εθαξκόζηεθε ζηα θεθάιαηα 2 θαη 3, ε κέζνδνο ησλ 100 

ηπραίσλ αξρηθνπνηήζεσλ θαη ηέινο ν αιγόξηζκνο k-means. Γηα ηελ ζύγθξηζε 

πξαγκαηνπνηήζεθαλ πξνζνκνηώζεηο θαη εθαξκόζηεθαλ δηάθνξα θξηηήξηα πξνεξρόκελα 

από ηελ βηβιηνγξαθηθή αλαζθόπεζε. 

Λέξειρ Κλειδιά: Πεξηβαιινληηθή Οηθνλνκεηξία, Πηζαλνινγηθή Απνηίκεζε, Αλνηρηνύ-

Σύπνπ κέζνδνο εθκαίεπζεο, Κιεηζηνύ-Σύπνπ κέζνδνο εθκαίεπζεο, Τπνζεηηθή 

Μεξνιεςία, Τπόδεηγκα ΢ηνραζηηθνύ ΢πλόξνπ, Πεπεξαζκέλα Μείγκαηα Καηαλνκώλ 

(Μηθηά κνληέια), ΢ύλζεην ΢θάικα, ΔΜ Αιγόξηζκνο, Πξνζπκία Πιεξσκήο, Αξρηθέο 

Σηκέο 
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Εκηεηαμένη Πεπίλητη 

 

Η παξνύζα δηδαθηνξηθή δηαηξηβή έρεη σο αληηθείκελν ηελ επίιπζε ηνπ πξνβιήκαηνο 

Τπνζεηηθήο Μεξνιεςίαο ζε έξεπλεο κε ηελ κέζνδν Πηζαλνινγηθήο Απνηίκεζεο-

Contingent Valuation (CV). ΢πγθεθξηκέλα κεηαμύ ηεζζάξσλ αιιεινεμαξηώκελσλ 

θεθαιαίσλ, πξνηείλεηαη έλαο ελαιιαθηηθόο ηξόπνο κνληεινπνίεζεο ησλ δεδνκέλσλ 

πξνεξρόκελεο από CV έξεπλεο. Ο ελαιιαθηηθόο ηξόπνο κνληεινπνίεζεο πνπ πξνηείλεηαη 

αλαθέξεηαη ζε δύν ελαιιαθηηθέο κεζόδνπο εθκαίεπζεο ησλ δεδνκέλσλ θαη ζε 

δηαθνξεηηθνύο ηξόπνπο πξνζδηνξηζκνύ ησλ αξρηθώλ ηηκώλ γηα ηελ εθηίκεζε ηνπ 

πξνηεηλόκελνπ κνληέινπ. 

 

Κεθάλαιο 1: Η μέθοδορ Πιθανολογικήρ Αποηίμηζηρ (Contingent 

Valuation Method) και η Υποθεηική Μεπολητία 

 

Σν πξώην θεθάιαην παξνπζηάδεη ηελ κέζνδν Contingent Valuation θαη ηηο θξηηηθέο 

πνπ έρεη δερηεί αλαθνξηθά κε ηηο εθηηκήζεηο ηεο. Πην αλαιπηηθά, θαζώο ηα πεξηζζόηεξα 

πεξηβαιινληηθά αγαζά δελ έρνπλ θάπνηα ηηκή ζηελ αγνξά νη νηθνλνκνιόγνη έρνπλ 

αλαπηύμεη κεζόδνπο γηα λα ηα αμηνινγνύλ. Κάπνηεο κέζνδνη πνπ ρξεζηκνπνηνύληαη είλαη 

νη απνθαιππηόκελεο πξνηηκήζεηο όπνπ βαζίδνληαη ζηηο παξαηεξήζεηο ηεο πξαγκαηηθήο 

ζπκπεξηθνξάο θαη νη δεδεισκέλεο πξνηηκήζεηο πνπ βαζίδνληαη ζε απηά πνπ ηζρπξίδνληαη 

ηα άηνκα όηη ζα έθαλαλ (Bockstael and McConnell, 2007:15). Η κέζνδνο CV αλήθεη ζηηο 

κεζόδνπο δεδεισκέλσλ πξνηηκήζεσλ θαη ζεσξείηαη σο από ηα πην επέιηθηα εξγαιεία 

θαζώο παξέρεη ηελ δπλαηόηεηα λα ζρεδηαζηνύλ πνηθίια ζελάξηα (Carson and Hanemann, 

2005:824). 

Ο εξεπλεηήο πνπ εθαξκόδεη ηελ κέζνδν CV ρξεζηκνπνηεί έλα εξσηεκαηνιόγην πνπ 

απνηειείηαη από ηξία κέξε. Σν πξώην κέξνο απνηειείηαη από γεληθέο εξσηήζεηο ζρεηηθέο 

κε ην αληηθείκελν ηεο έξεπλαο, ην δεύηεξν κέξνο παξνπζηάδεη ην CV ζελάξην θαη ηηο 

πιεξνθνξίεο αλαθνξηθά κε ηελ ππνηηζέκελε πιεξσκή θαη ηέινο ην ηξίην κέξνο αθνξά 
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εξσηήζεηο γηα ηελ ζπιινγή ησλ δεκνγξαθηθώλ ραξαθηεξηζηηθώλ ησλ εξσηώκελσλ 

(Carson and Hanemann, 2005:825). 

Πην αλαιπηηθά, ζην δεύηεξν κέξνο ηνπ εξσηεκαηνινγίνπ ζπγθεληξώλνληαη νη 

πιεξνθνξίεο γηα ηελ πξνζπκία πιεξσκήο (Willingness To Pay-WTP) ή ηελ πξνζπκία 

απνδεκίσζεο (Willingness To Accept-WTA) όπνπ ππάξρνπλ δηαθνξεηηθέο κέζνδνη 

εθκαίεπζεο γηα ηελ ζπγθέληξσζε ησλ απαληήζεσλ. Ολνκαζηηθά θάπνηεο κέζνδνη 

εθκαίεπζεο είλαη ε Αλνηρηνύ Σύπνπ (Open-Ended), όπνπ ε εξώηεζε πξνζπκίαο γηα 

πιεξσκε/απνδεκίσζε είλαη αλνηρηή, θη επηπιένλ ππάξρνπλ θάπνηεο κέζνδνη 

Γεκνςεθίζκαηνο όπνπ δίλεηαη ζηνπο εξσηώκελνπο κηα πξνζθνξά (bid) θαη ν 

εξσηώκελνο θαιείηαη λα απαληήζεη κε έλα Ναη ή Όρη γηα ηελ πξνζθνξά απηή. Δάλ είλαη 

κόλν κία ε εξώηεζε ε κέζνδνο εθκαίεπζεο νλνκάδεηαη Single-Bound Dichotomous-

Choice, εάλ ζηνλ εξσηώκελν δίλνληαη δύν δηαδνρηθέο εξσηήζεηο νλνκάδεηαη Double-

Bounded Dichotomous-Choice θαη ηέινο εάλ αθνινπζεί θαη ηξίηε δηαδνρηθή εξώηεζε ε 

κέζνδνο νλνκάδεηαη Third-Bound Dichotomous-Choice (Arrow et.al., 1993:4). 

Παξ‟ όιε ηελ επξεία ρξήζε ηεο κεζόδνπ CV, έρεη δερηεί θξηηηθή γηα ηελ αμηνπηζηία 

ησλ απνηειεζκάησλ ηεο. Μηα από ηηο βαζηθόηεξεο θξηηηθέο ηεο αλαθέξεηαη ζην 

πξόβιεκα ηεο Τπνζεηηθήο Μεξνιεςίαο. Η Τπνζεηηθή Μεξνιεςία νξίδεηαη σο ηελ 

δηαθνξά πνπ ππάξρεη αλάκεζα ζην ηη δειώλνπλ ηα άηνκα όηη ζα πιήξσλαλ θαη ζην ηη ζα 

πιήξσλαλ πξαγκαηηθά (Loomis, 2014:35). Η Τπνζεηηθή Μεξνιεςία εκθαλίδεηαη ζε δύν 

κνξθέο, Τπεξεθηίκεζε ή Τπνεθηίκεζε ηνπ WTP ή ηνπ WTA. Γηα λα μεπεξαζηεί ην 

πξόβιεκα ηεο Τπνζεηηθήο Μεξνιεςίαο έρνπλ πξνηαζεί πνηθίιεο κέζνδνη, νη νπνίεο 

ρσξίδνληαη ζε δύν βαζηθέο θαηεγνξίεο αλάινγα ην ζε πνην ζεκείν ηεο έξεπλαο 

εθαξκόδνληαη. 

Πην αλαιπηηθά, ππάξρνπλ κέζνδνη πνπ εθαξκόδνληαη εθ ησλ πξνηέξσλ (ex ante), 

δειαδή θαηά ηελ ζπιινγή ησλ δεδνκέλσλ θαη απνζθνπνύλ ζηελ απνθπγή ηεο 

Τπνζεηηθήο Μεξνιεςίαο. Σέηνηεο κέζνδνη είλαη νη “cheap talk”, “solemn oath” θαη 

“scenario adjustments”(Haab et al., 2013:599), όπνπ επηδηώθνπλ κέζσ ελεκέξσζεο γηα 

ηελ ύπαξμε ηνπ πξνβιήκαηνο ή κέζσ όξθσλ λα παξνηξύλνπλ ηνπο εξσηώκελνπο λα 

απαληήζνπλ εηιηθξηλά. Από ηελ άιιε ππάξρνπλ θαη κέζνδνη πνπ εθαξκόδνληαη εθ ησλ 
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πζηέξσλ (ex post), δειαδή θαηά ηελ δηάξθεηα ηεο εθηίκεζεο κέζσ ζηαηηζηηθώλ ηερληθώλ 

(Hofler and List, 2004:213). 

Οη Hofler θαη List(2004) πξόηεηλαλ ηελ ρξήζε ηνπ ππνδείγκαηνο ζηνραζηηθνύ 

ζπλόξνπ (stochastic frontier analysis) γηα λα ζπκπεξηιεθζεί ε δηαθνξά αλάκεζα ζηηο 

πξαγκαηηθέο θαη ζηηο ππνζεηηθέο πξνζθνξέο ζε κηα εθαξκνγή πνπ αθνξνύζε θάξηεο ηνπ 

baseball. ΢ηελ ζπλέρεηα πξνηάζεθε ε ρξήζε ηνπ ππνδείγκαηνο ζηνραζηηθνύ ζπλόξνπ γηα 

ηελ κνληεινπνίεζε ηεο ππεξδήισζεο ζηελ Double-Bounded κέζνδν (Chien et al.,2005). 

Δπηπξνζζέησο νη Kumbhakar, Parmeter θαη Tsionas (2013) πξόηεηλαλ ην κνληέιν 

κεδεληθήο αλαπνηειεζκαηηθόηεηαο (zero inefficiency model) όπνπ ζε έλα δείγκα 

κπνξνύλ λα ππάξρνπλ ηαπηόρξνλα, κε κηα πηζαλόηεηα επηρεηξήζεηο πνπ είλαη 

απνηειεζκαηηθέο θαη επηρεηξήζεηο πνπ είλαη κε απνηειεζκαηηθέο. 

΢ηελ παξνύζα δηαηξηβή πξνηείλεηαη έλα κηθηό κνληέιν ππνδείγκαηνο ζηνραζηηθνύ 

ζπλόξνπ (mixture stochastic frontier model) ώζηε λα κνληεινπνηεζεί ε ύπαξμε 

Τπνζεηηθήο Μεξνιεςίαο ζπλδπάδνληαο ηηο πξνηάζεηο ησλ Chien, Huang θαη Shaw 

(2005) θαη ησλ Kumbhakar, Parmeter θαη Tsionas (2013). Σέινο ην κνληέιν ην νπνίν 

πξνηείλεηαη παξνπζηάδεηαη γηα δύν κεζόδνπο εθκαίεπζεο, ηελ Open-Ended θαη ηελ 

Double-Bounded. 

 

Κεθάλαιο 2: Εθαπμογή ηος ςποδείγμαηορ ζηοσαζηικού ζςνόπος 

(stochastic frontier analysis) και μικηών (mixture) μονηέλυν ζηην 

μέθοδο CV για ηην Ανοισηού ηύπος (Open-Εnded) μέθοδο εκμαίεςζηρ. 

 

΢ην δεύηεξν θεθάιαην ηεο παξνύζαο δηαηξηβήο παξνπζηάδεηαη ην πξνηεηλόκελν 

κνληέιν γηα ηελ πεξίπησζε όπνπ ε κέζνδνο εθκαίεπζεο ηνπ WTP είλαη ε Open-Ended. 

΢ηελ πεξίπησζε απηή ν εξσηώκελνο θαιείηαη λα απαληήζεη ζε κηα αλνηρηή εξώηεζε 

πόζν ζα ήηαλ δηαηεζεηκέλνο λα πιεξώζεη γηα ηελ αιιαγή πνπ παξνπζηάδεη ην ππνζεηηθό 

ζελάξην. 

Η Open-Ended κέζνδνο έρεη θάπνηα πιενλεθηήκαηα θαη κεηνλεθηήκαηα. Αξρηθά, έλα 

πιενλέθηεκα είλαη όηη ην WTP εθκαηεύεηαη απεπζείαο (Loomis, 1990:79). Δπηπιένλ ε 

κέζνδνο απηή παξέρεη πεξηζζόηεξεο πιεξνθνξίεο αλαθνξηθά κε ηηο πξνηηκήζεηο ηνπ 
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εξσηώκελνπ θη επηπιένλ πξνζαξκόδεηαη επθνιόηεξα όηαλ κηα έξεπλα πξαγκαηνπνηείηαη 

ζε πεξηζζόηεξα ρώξεο (Håkansson, 2008:186). Από ηελ άιιε ε κέζνδνο παξνπζηάδεη θαη 

θάπνηα κεηνλεθηήκαηα, όπσο όηη πξόθεηηαη γηα κηα δύζθνιε δηαδηθαζία θαζώο ηα άηνκα 

δπζθνιεύνληαη λα πξνζδηνξίζνπλ ην πνζό πνπ ζα ήηαλ δηαηεζεηκέλνη λα πιεξώζνπλ κε 

απνηέιεζκα είηε λα κελ απαληνύλ θαζόινπ είηε απαληνύλ ππνηηκώληαο ην πνζό πνπ ζα 

ήηαλ δηαηεζεηκέλνη λα πιεξώζνπλ (Loomis, 1990:79). 

Γηα ηελ θαηαζθεπή ηνπ κνληέινπ ρξεζηκνπνηήζεθε ε ζεσξία ηνπ ππνδείγκαηνο 

ζηνραζηηθνύ ζπλόξνπ ππό ηελ ππόζεζε όηη ε Τπνζεηηθή Μεξνιεςία εκθαλίδεηαη ζε 

κνξθή Τπεξεθηίκεζεο ηνπ WTP. Γηα λα εληαρζεί ζην απιό κνληέιν γξακκηθήο 

παιηλδξόκεζεο ε ππεξεθηίκεζε πξνζηίζεηαη ζηνλ δηαηαξαθηηθό όξν, όπνπ θαηαλέκεηαη 

ζύκθσλα κε ηελ θαλνληθή θαηαλνκή, έλα επηπιένλ ζθάικα πνπ νλνκάδεηαη 

κνλόπιεπξνο (one-sided) όξνο ζθάικαηνο θαζώο θαηαλέκεηαη ζύκθσλα κε ηελ εκη-

θαλνληθή θαηαλνκή (Kumbhakar and Lovell, 2000:140). 

Σν γεγνλόο όηη κπνξεί ζε έλα δείγκα λα ππάξρνπλ εξσηώκελνη πνπ δελ απαληνύλ 

εηιηθξηλά, δελ ζεκαίλεη όηη δελ ππάξρνπλ θαη θάπνηνη πνπ όλησο δίλνπλ ηελ εηιηθξηλή 

ηνπο απάληεζε. Γηα ηνλ ιόγν απηό, ρξεζηκνπνηώληαο ηελ ζεσξία ησλ κηθηώλ κνληέισλ 

θαη ηελ ηδέα ησλ Kumbhakar et al. (2013:67), γίλεηαη ε ππόζεζε όηη ζην δείγκα ππάξρνπλ 

δύν νκάδεο ηαπηόρξνλα, απηνί πνπ απαληνύλ εηιηθξηλά θη απηνί πνπ ππεξδειώλνπλ, κε 

ηελ πηζαλόηεηα λα αλήθεη θάπνηνο ζηελ νκάδα 1 λα είλαη ε 𝑝1 θαη ε πηζαλόηεηα λα 

αλήθεη θάπνηνο ζηελ νκάδα 2 λα είλαη ε 𝑝2 = 1 − 𝑝1.  

Γηα ηελ εθηίκεζε ηνπ κηθηνύ κνληέινπ ρξεζηκνπνηείηαη ν αιγόξηζκνο ΔΜ ν νπνίνο 

ρεηξίδεηαη ην πξόβιεκα κεγηζηνπνίεζεο σο πξόβιεκα πνπ ιείπνπλ παξαηεξήζεηο 

(missing values), όπνπ νη παξαηεξήζεηο πνπ ιείπνπλ ζηελ πξνθεηκέλε πεξίπησζε είλαη νη 

πιεξνθνξίεο αλαθνξηθά κε ην ζε πνηα νκάδα αλήθεη ν θάζε εξσηώκελνο. Ο αιγόξηζκνο 

ΔΜ απνηειείηαη από δύν βήκαηα, ην βήκα Δ πνπ αλαθέξεηαη ζηελ πξνζδνθία θαη ην 

βήκα Μ πνπ αλαθέξεηαη ζηελ κεγηζηνπνίεζε (McLachlan and Peel, 2000:48). 

΢ηελ ζπλέρεηα αθνινύζεζαλ πξνζνκνηώζεηο 1000 επαλαιήςεσλ θαη 1000 

παξαηεξήζεσλ γηα έλα εύξνο πεξηπηώζεσλ ώζηε λα εμεηαζηεί ε εγθπξόηεηα ηνπ 

κνληέινπ. Δπηπιένλ αλαθνξηθά κε ηελ πηζαλόηεηα λα αλήθεη ν εξσηώκελνο ζηελ νκάδα 

1(απαληνύλ εηιηθξηλά) θαη ζηελ νκάδα 2 (ππεξδειώλνπλ) εμεηάζηεθαλ δύν δηαθνξεηηθέο 
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πεξηπηώζεηο. ΢ηελ κηα πεξίπησζε ζεσξήζεθε όηη ε πηζαλόηεηα λα αλήθεη θάπνηνο ζε κία 

νκάδα είλαη ζηαζεξή γηα όινπο όζνπο αλήθνπλ ζηελ νκάδα απηή, ελώ ε δεύηεξε 

πεξίπησζε πνπ εμεηάζηεθε ππνζέηεη όηη ε πηζαλόηεηα λα αλήθεη θάπνηνο ζε κηα νκάδα 

είλαη δηαθνξεηηθή γηα θάζε εξσηώκελν θαζώο ε πηζαλόηεηα εμαξηάηαη από κηα 

κεηαβιεηή. Δπηπιένλ, θαηά ηελ δηάξθεηα ηεο εθηίκεζεο δόζεθε ηδηαίηεξε πξνζνρή ζηνλ 

πξνζδηνξηζκό ησλ αξρηθώλ ηηκώλ θαη αθνινπζήζεθαλ θάπνηα βήκαηα γηα ηνλ 

πξνζδηνξηζκό ηνπο. 

Σα απνηειέζκαηα ησλ πξνζνκνηώζεσλ θαη γηα ηηο δύν πεξηπηώζεηο πξνζδηνξηζκνύ 

ηεο πηζαλόηεηαο έδεημαλ όηη ην πξνηεηλόκελν κνληέιν είλαη ζε ζέζε λα δηνξζώζεη ην 

πξόβιεκα ηεο Τπνζεηηθήο Μεξνιεςίαο θαζώο νη εθηηκεηέο ησλ παξακέηξσλ είλαη πνιύ 

θνληά ζηηο αιεζηλέο ηηκέο θη επηπξνζζέησο ε Μεξνιεςία είλαη πνιύ θνληά ζην κεδέλ. 

Δπηπιένλ, γηα ιόγνπο ζύγθξηζεο, ηα δεδνκέλα εθηηκήζεθαλ θαη κε ην απιό κνληέιν 

εθηίκεζεο, πνπ δελ ιακβάλεη ππόςε ηελ ύπαξμε Τπνζεηηθήο Μεξνιεςίαο θαη από ηελ 

ζύγθξηζε ησλ δύν κνληέισλ πξνέθπςε όηη ην απιό κνληέιν δελ εθηηκά ην ίδην θαιά ηηο 

παξακέηξνπο θαη ε Μεξνιεςία πνπ πξνθύπηεη είλαη αξθεηά πςειή. 

΢ε θάπνηεο πεξηπηώζεηο όπνπ ε αιεζηλή ηηκή ηεο παξακέηξνπ πνπ αλαθέξεηαη ζηνλ 

βαζκό ππεξδήισζεο είρε κηθξόηεξεο ηηκέο, παξαηεξήζεθε όηη ην πξόγξακκα 

δπζθνιεύηεθε λα δηαθξίλεη ηηο δύν νκάδεο. Όζν κεγαιύηεξνο ήηαλ ν βαζκόο 

ππεξδήισζεο ηόζν επθνιόηεξα ην πξόγξακκα κπνξνύζε λα δηαθξίλεη ηηο δύν νκάδεο. 

Δπηπιένλ ζηηο πεξηπηώζεηο πνπ δπζθνιεπόηαλ ην πξόγξακκα λα δηαθξίλεη ηηο δύν νκάδεο 

είρε σο απνηέιεζκα λα παξνπζηάδνληαη πεξηζζόηεξεο επαλαιήςεηο κε πξνβιήκαηα ζην 

πξνζδηνξηζκό ησλ ηππηθώλ απνθιίζεσλ θάπνησλ παξακέηξσλ. 

Δλ ζπληνκία, ηα απνηειέζκαηα από ηηο πξνζνκνηώζεηο γηα ην Open-Ended κνληέιν 

νδεγνύλ ζην ζπκπέξαζκα όηη ην κνληέιν είλαη θαηάιιειν γηα λα δηνξζώζεη ην πξόβιεκα 

ηεο Τπνζεηηθήο Μεξνιεςίαο αξθεί ην κνληέιν λα κπνξεί λα δηαθξίλεη ηηο δύν νκάδεο. 

΢ηελ ζπλέρεηα ηεο δηαηξηβήο παξνπζηάδεηαη ην κνληέιν πνπ πξνηείλεηαη γηα ηελ Double-

Bounded κέζνδν εθκαίεπζεο ησλ δεδνκέλσλ. 
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Κεθάλαιο 3: Εθαπμογή ηος ςποδείγμαηορ  ζηοσαζηικού ζςνόπος 

(stochastic frontier analysis) και μικηών (mixture) μονηέλυν ζηην 

μέθοδο CV για ηην Double-Bounded μέθοδο εκμαίεςζηρ. 

 

΢ην ηξίην θεθάιαην ηεο παξνύζαο δηαηξηβήο παξνπζηάδεηαη ην πξνηεηλόκελν κνληέιν 

γηα ηελ πεξίπησζε όπνπ ε κέζνδνο εθκαίεπζεο ηνπ WTP είλαη κε ηελ κέζνδν ηνπ 

δεκνςεθίζκαηνο θαη πην ζπγθεθξηκέλα ε Double-Bounded. ΢ηελ πεξίπησζε απηή ν 

εξσηώκελνο θαιείηαη λα απαληήζεη κε έλα Ναη ή Όρη ζηελ εξώηεζε γηα ην αλ ζα ήηαλ 

δηαηεζεηκέλνο λα πιεξώζεη γηα ηελ αιιαγή πνπ παξνπζηάδεη ην ππνζεηηθό ζελάξην κηα 

ζπγθεθξηκέλε πξνζθνξά. ΢ηελ ζπλέρεηα, εάλ έρεη απαληήζεη κε Ναη ζηελ πξώηε 

πξνζθνξά ηνπ παξνπζηάδεηαη κηα δεύηεξε πξνζθνξά, κεγαιύηεξε από ηελ πξώηε θαη 

θαιείηαη μαλά λα απαληήζεη κε Ναη ή Όρη. ΢ηελ πεξίπησζε πνπ έρεη απαληήζεη Όρη ζηελ 

πξώηε πξνζθνξά ηόηε ε δεύηεξε πξνζθνξά πνπ δίλεηαη ζηνλ εξσηώκελν είλαη κηθξόηεξε 

ηεο πξώηεο πξνζθνξάο θαη θαιείηαη μαλά λα απαληήζεη κε Ναη ή Όρη. 

Η κέζνδνο Double-Bounded πξνηείλεηαη σο ε κέζνδνο πνπ ζα πξέπεη λα 

ρξεζηκνπνηνύλ νη εξεπλεηέο θαζώο ε ρξήζε κεζόδνπ δεκνςεθίζκαηνο έρεη πνιιά 

πιενλεθηήκαηα (Arrow et al., 1993: 21). Αξρηθά είλαη πην ξεαιηζηηθή δεδνκέλνπ όηη ε 

παξνρή δεκόζησλ αγαζώλ είλαη ζπλήζσο κε κεζόδνπο δεκνςεθίζκαηνο ζπλεπώο είλαη 

θάηη πην νηθείν ζηνπο εξσηώκελνπο θη επηπξνζζέησο δελ έρνπλ ζηξαηεγηθό ιόγν λα 

απαληήζνπλ κε εηιηθξηλά. Καζώο δελ απαηηεί πνιύ ζθέςε θαη πξνζπάζεηα γηα λα 

απαληεζνύλ νη εξσηήζεηο ζπλεπώο είλαη ιηγόηεξνη εθείλνη πνπ δελ απαληνύλ. Δπηπιένλ ε 

κέζνδνο απηή κνηάδεη κε ηελ ιεηηνπξγία ηεο αγνξάο όπνπ ηα άηνκα βιέπνπλ ηηο ηηκέο θαη 

απνθαζίδνπλ αλ ζα αγνξάζνπλ ή όρη. Από ηελ άιιε, ε κέζνδνο απηή παξνπζηάδεη θαη 

θάπνηα κεηνλεθηήκαηα. Έλα κεηνλέθηεκα είλαη όηη νη εθηηκήζεηο γηα ηελ πξνζπκία 

πιεξσκήο κπνξεί λα επεξεάδνληαη από ππνζέζεηο γηα ηελ ζπλάξηεζε ρξεζηκόηεηαο ή 

γηα ηελ θαηαλνκή ησλ ζθαικάησλ (Loomis, 1990:79). Δπηπιένλ έλα βαζηθό κεηνλέθηεκα 

ηεο κεζόδνπ είλαη όηη νη εξσηώκελνη επεξεάδνληαη από ηελ πξώηε πξνζθνξά κε 

απνηέιεζκα λα απνδέρνληαη θαη ηελ δεύηεξε πξνζθνξά. 

Από ηηο απαληήζεηο πνπ δίλεη ν εξσηώκελνο ζηηο πξνζθνξέο πξνθύπηεη έλα 

ζπκπέξαζκα αλαθνξηθά κε ην πνπ αλήθεη ην ε πξνζπκία πιεξσκήο-WTP ηνπ 
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εξσηώκελνπ. Πην αλαιπηηθά εάλ ν εξσηώκελνο έρεη πεη Ναη θαη ζηηο δύν πξνζθνξέο ηόηε 

ην WTP ηνπ αηόκνπ είλαη κεγαιύηεξν από ηελ πςειόηεξε πξνζθνξά. Σν αληίζεην ηζρύεη 

εάλ ην άηνκν έρεη πεη Όρη θαη ζηα δπν πξνηεηλόκελα πνζά θαζώο ζπκπεξαίλεηαη όηη ην 

WTP ηνπ εξσηώκελνπ είλαη κηθξόηεξν από ηελ ρακειόηεξε πξνζθνξά. ΢ηελ πεξίπησζε 

όπνπ νη απαληήζεηο ηνπ αηόκνπ είλαη Ναη ζηελ πξώηε εξώηεζε θαη Όρη ζηελ δεύηεξε ή 

Όρη ζηελ πξώηε θαη Ναη ζηελ δεύηεξε, πξνθύπηεη έλα δηάζηεκα, όηη δειαδή ην WTP ηνπ 

αηόκνπ είλαη κεηαμύ ησλ δύν πξνζθνξώλ. 

Γηα ηελ θαηαζθεπή ηνπ κνληέινπ, όπσο έρεη ήδε αλαθεξζεί, ρξεζηκνπνηήζεθε ε 

ζεσξία ηνπ ππνδείγκαηνο ζηνραζηηθνύ ζπλόξνπ γηα ηελ πεξίπησζε όπνπ ε Τπνζεηηθή 

Μεξνιεςία εκθαλίδεηαη ζε κνξθή Τπεξεθηίκεζεο ηνπ WTP. Γηα λα εληαρζεί ζην 

κνληέιν ιαλζάλνπζαο κεηαβιεηήο ε ππεξεθηίκεζε αθνινπζήζεθε ε ίδηα κεζνδνινγία κε 

απηή ηνπ θεθαιαίνπ 2. Δπηπιένλ όπσο θαη ζην θεθάιαην 2, κειεηήζεθαλ δύν 

δηαθνξεηηθέο πεξηπηώζεηο αλαθνξηθά κε ηελ πηζαλόηεηα λα αλήθεη θάπνηνο ζε κηα 

νκάδα. ΢ηελ κηα πεξίπησζε ζεσξήζεθε όηη ε πηζαλόηεηα λα αλήθεη θάπνηνο ζε κία 

νκάδα είλαη ζηαζεξή γηα όινπο όζνπο αλήθνπλ ζηελ νκάδα απηή, ελώ ζηε δεύηεξε 

πεξίπησζε ε πηζαλόηεηα λα αλήθεη θάπνηνο ζε κηα νκάδα είλαη δηαθνξεηηθή γηα θάζε 

εξσηώκελν θαζώο ε πηζαλόηεηα εμαξηάηαη από κηα κεηαβιεηή. 

΢ηελ ζπλέρεηα πξαγκαηνπνηήζεθαλ πξνζνκνηώζεηο 1000 επαλαιήςεσλ γηα 1000 

παξαηεξήζεηο γηα ηελ δεκηνπξγία δεδνκέλσλ κε ηελ ύπαξμε ππεξδήισζεο ώζηε λα 

εμαζθαιηζηεί ε ύπαξμε Τπνζεηηθήο Μεξνιεςίαο θη έπεηηα αθνινύζεζε εθηίκεζε κε ην 

πξνηεηλόκελν κνληέιν ώζηε λα εμεηαζηεί ε εγθπξόηεηα θαη ε ηθαλόηεηα ηνπ κνληέινπ 

γηα ηελ δηόξζσζε ηνπ πξνβιήκαηνο. Σα απνηειέζκαηα ησλ πξνζνκνηώζεσλ θαη γηα ηηο 

δύν πεξηπηώζεηο πξνζδηνξηζκνύ ηεο πηζαλόηεηαο έδεημαλ όηη ην πξνηεηλόκελν κνληέιν 

δηνξζώλεη ζε ηθαλνπνηεηηθό βαζκό ην πξόβιεκα ηεο Τπνζεηηθήο Μεξνιεςίαο. Πην 

ζπγθεθξηκέλα νη εθηηκήζεηο ησλ παξακέηξσλ είλαη πνιύ θνληά ζηηο αιεζηλέο ηηκέο γηα 

όιεο ηηο πεξηπηώζεηο πνπ εμεηάζηεθαλ θαη ε Μεξνιεςία πνπ ππνινγίζηεθε είλαη πνιύ 

θνληά ζην κεδέλ. Δπηπιένλ θαζώο ηα δεδνκέλα εθηηκήζεθαλ θαη κε ην απιό κνληέιν 

εθηίκεζεο πνπ δελ ιακβάλεη ππόςε ηελ ύπαξμε Τπνζεηηθήο Μεξνιεςίαο, από ηελ 

ζύγθξηζε ησλ απνηειεζκάησλ πξνέθπςε όηη γηα όιεο ηηο πεξηπηώζεηο εάλ δελ ιεθζεί 

ππόςε θαηά ηελ εθηίκεζε ε ύπαξμε ηεο ππεξδήισζεο από ηνπο εξσηώκελνπο, ην απιό 
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κνληέιν επηζηξέθεη εθηηκήζεηο πνπ δελ είλαη ηόζν θνληά ζηηο αιεζηλέο ηηκέο θαη ε 

Μεξνιεςία είλαη πνιύ κεγαιύηεξε.  

Δπηπιένλ ζην θεθάιαην 3 αθόηνπ νινθιεξώζεθαλ νη πξνζνκνηώζεηο, 

πξαγκαηνπνηήζεθε κηα εκπεηξηθή εθαξκνγή ηνπ πξνηεηλόκελνπ κνληέινπ ζε αιεζηλά 

δεδνκέλα από έξεπλα κε ηελ κέζνδν CV. Πην αλαιπηηθά, γηα ηελ πινπνίεζε ηεο 

εκπεηξηθήο εθαξκνγήο ην πξνηεηλόκελν κνληέιν ηξνπνπνηήζεθε, θαζώο ηα δεδνκέλα δελ 

παξνπζίαδαλ ππεξδήισζε αιιά ππνδήισζε ηνπ WTP. ΢πλεπώο ηα δεδνκέλα 

εθηηκήζεθαλ γηα ηελ πεξίπησζε όπνπ ε Τπνζεηηθή Μεξνιεςία ππάξρεη ππό ηελ κνξθή 

ππνεθηίκεζεο ηνπ WTP θαη γηα ηελ πεξίπησζε όπνπ ε πηζαλόηεηα ππνδήισζεο δελ είλαη 

ίδηα αιιά δηαθέξεη αλάκεζα ζηνπο εξσηώκελνπο θαζώο εμαξηάηαη από θάπνηεο 

κεηαβιεηέο. 

Σν δείγκα αλαθέξεηαη ζε 1827 παξαηεξήζεηο θαη ηα δεδνκέλα είλαη δηαζέζηκα ζην 

παθέην “Ecdat” ηεο γιώζζαο πξνγξακκαηηζκνύ R ζην όλνκα “kakadu” ηα νπνία 

δεδνκέλα πξνέξρνληαη από ην άξζξν ηεο Werner (1999) (Croissant and Graves, 2020:84-

85). Σα απζεληηθά ζηνηρεία πξνέξρνληαη από έλα άξζξν ησλ Carson, Wilks θαη Imber ηνπ 

1994 όπνπ πξαγκαηνπνίεζαλ κηα έξεπλα ην 1990 ζηελ Απζηξαιία κε ηελ κέζνδν CV γηα 

ην εάλ ζα πξνρσξήζεη ε ίδξπζε νξπρείσλ ζηελ δηαηεξεηέα πεξηνρή ηνπ Kakadu ή αλ ζα 

πξέπεη λα εληαρζεί θη ε πεξηνρή απηή ζην εζληθό πάξθν ηνπ Kakadu. 

Οη αλεμάξηεηεο κεηαβιεηέο πνπ ρξεζηκνπνηήζεθαλ γηα ηελ εξκελεία ηνπ WTP θαζώο 

θαη νη κεηαβιεηέο πνπ επεξεάδνπλ ηελ πηζαλόηεηα είλαη εθείλεο πνπ ρξεζηκνπνίεζε θαη 

βξήθε όηη είλαη ζηαηηζηηθά ζεκαληηθέο ζηελ έξεπλα ηεο ε Werner. Από ηελ εθηίκεζε ηνπ 

κνληέινπ κε ην πξνηεηλόκελν κνληέιν εληνπίζηεθε όηη όλησο ήηαλ ππνεθηηκεκέλν ην 

WTP. Δπηπιένλ εθόζνλ εθηηκήζεθε ην απιό κνληέιν θαη ην πξνηεηλόκελν κηθηό κνληέιν 

ζπγθξίζεθαλ ηα δύν κνληέια εθαξκόδνληαο ηα θξηηήξηα BIC θαη AIC όπνπ έδεημαλ όηη 

ην πξνηεηλόκελν κηθηό κνληέιν είλαη θαηαιιειόηεξν θαζώο νη κεηαβιεηέο πνπ 

πξνζηέζεθαλ ζην κηθηό κνληέιν πεξηγξάθνπλ κε θαιύηεξν ηξόπν ηελ πξνζπκία 

πιεξσκήο. 

΢πλνςίδνληαο από ηα απνηειέζκαηα ησλ πξνζνκνηώζεσλ θαη ηεο εκπεηξηθήο 

εθαξκνγήο ζπκπεξαίλεηαη όηη πξνηεηλόκελν κνληέιν κπνξεί λα δηνξζώζεη ην πξόβιεκα 

ηεο Τπνζεηηθήο Μεξνιεςίαο είηε είλαη ππό ηελ κνξθή ππεξεθηίκεζεο ηνπ WTP είηε ππό 
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ηελ κνξθή ππνεθηίκεζεο ηνπ WTP. Σέινο ην ηέηαξην θεθάιαην ηεο παξνύζαο δηαηξηβήο 

εκβαζύλεη ζην ζέκα ηνπ πξνζδηνξηζκνύ ησλ αξρηθώλ ηηκώλ θαη πην ζπγθεθξηκέλα 

ζπγθξίλεη 3 δηαθνξεηηθέο ηερληθέο ώζηε λα πξνζδηνξηζηεί πνηνο ηξόπνο πξνζδηνξηζκνύ 

ησλ αξρηθώλ ηηκώλ ιεηηνπξγεί θαιύηεξα γηα ηελ δηόξζσζε ηνπ πξνβιήκαηνο ηεο 

Τπνζεηηθήο Μεξνιεςίαο. 

 

Κεθάλαιο 4: ΢ύγκπιζη διαθοπεηικών μεθόδυν απσικών ηιμών για ηην 

Double-Bounded μέθοδο εκμαίεςζηρ ηος μικηού (mixture) μονηέλος. 

 

΢ηελ παξνύζα δηαηξηβή ην πξνηεηλόκελν κηθηό κνληέιν εθηηκάηαη κε αιγόξηζκν ΔΜ, 

ν νπνίνο αιγόξηζκνο παξνπζηάδεη θάπνηα κεηνλεθηήκαηα. Σν πξώην κεηνλέθηεκα είλαη 

όηη απαηηεί θαιέο αξρηθέο ηηκέο θαη ην δεύηεξν κεηνλέθηεκα είλαη όηη ππάξρεη πεξίπησζε 

ν αιγόξηζκνο λα παγηδεπηεί ζε ηνπηθά κέγηζηα (Panić et al., (2020:1). Καζώο ινηπόλ, ν 

πξνζδηνξηζκόο αξρηθώλ ηηκώλ είλαη πνιύ ζεκαληηθόο γηα ηνλ αιγόξηζκν ΔΜ, ζην 

θεθάιαην απηό εμεηάδεηαη ην ζέκα απηό ιεπηνκεξώο θαη ζπγθεθξηκέλα δνθηκάδνληαη θαη 

ζπγθξίλνληαη δηαθνξεηηθνί ηξόπνη αξρηθνπνίεζεο αλαθνξηθά κε ην πσο ρσξίδνληαη νη 

παξαηεξήζεηο ζε δύν νκάδεο. ΢ηελ βηβιηνγξαθία έρνπλ πξνηαζεί πνιιέο ηερληθέο ώζηε 

λα επηιέγνληαη νη αξρηθέο ηηκέο, πνιιέο εθ ησλ νπνίσλ βαζίδνληαη ζηελ 

νκαδνπνίεζε/θαηεγνξηνπνίεζε (clustering). Η θαηεγνξηνπνίεζε ρξεζηκνπνηεί πνιιέο 

ηερληθέο ώζηε λα ρσξηζηνύλ ηα δεδνκέλα ζε ππννκάδεο κε γλώκνλα λα κνηάδνπλ όζν ην 

δπλαηόλ πεξηζζόηεξν όζνη αλήθνπλ ζηελ ίδηα νκάδα (Mann and Kaur, 2013:43-44). 

Γηα ηελ παξνύζα έξεπλα πινπνηήζεθαλ ηξεηο κέζνδνη αξρηθνπνίεζεο. Η πξώηε 

κέζνδνο αλαθέξεηαη ζε ηπραία αξρηθνπνίεζε πνπ πξαγκαηνπνηήζεθε 1 θνξά (1 random 

initialization), ε νπνία είλαη ε κέζνδνο πνπ εθαξκόζηεθε ζηα θεθάιαηα 2 θαη 3. ΢ηελ 

ζπλέρεηα εθαξκόζηεθε κηα επέθηαζε ηεο πξνεγνύκελεο κεζόδνπ θαζώο 

πξαγκαηνπνηήζεθε ε ηπραία αξρηθνπνίεζε 100 θνξέο (100 random initializations) θαη 

ζηε ζπλέρεηα επηιέρζεθαλ σο αξρηθέο ηηκέο νη εθηηκήζεηο όπνπ αλάκεζα ζηηο 100 

επαλαιήςεηο παξνπζίαζαλ ηελ κεγαιύηεξε log-likelihood. Σέινο ε ηξίηε κέζνδνο 

αξρηθνπνίεζεο πνπ εθαξκόζηεθε είλαη ν αιγόξηζκνο θαηεγνξηνπνίεζεο k-means. 
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Λίγα ιόγηα γηα ηελ θάζε κέζνδν, ε 1 ηπραία αξρηθνπνίεζε είλαη από ηηο πην επξέσο 

ρξεζηκνπνηνύκελεο κεζόδνπο γηα λα πξνζδηνξηζηνύλ αξρηθέο ηηκέο γηα ηνλ αιγόξηζκν 

ΔΜ (Biernachi et al., 2003:566). Με ηελ κέζνδν απηή ηα δεδνκέλα ρσξίζηεθαλ ζε δύν 

νκάδεο κε αλαινγία 50:50 κέζσ ηπραίσλ ιήςεσλ πνπ γίλνληαη από κηα νκνηόκνξθε 

θαηαλνκή. Οη ηπραίεο ιήςεηο από κία νκνηόκνξθε θαηαλνκή είλαη κηα γλσζηή 

δηαδηθαζία γηα ηνλ πξνζδηνξηζκό αξρηθώλ ηηκώλ (Hipp and Bauer, 2006:41, Shireman et 

al., 2017:284). 

Η ηπραία αξρηθνπνίεζε πνπ γίλεηαη πεξηζζόηεξεο θνξέο, ζηελ πεξίπησζε ηεο 

παξνύζαο έξεπλαο 100, είλαη κηα επέθηαζε ηεο πξνεγνύκελεο κεζόδνπ πνπ νπζηαζηηθά 

επαλαιακβάλεηαη ε δηαδηθαζία πεξηζζόηεξεο από κηα θνξέο. Η κέζνδνο απηή είλαη 

γλσζηή σο “search/run/select” (Biernachi et al., 2003:563-66). ΢πλήζσο γηα ηελ επηινγή 

ησλ αξρηθώλ ηηκώλ αλάκεζα ζηηο επαλαιήςεηο γίλεηαη κέζσ θξηηεξίσλ όπσο ην BIC 

(Shireman et al., 2017:284). Η κέζνδνο απηή ζπλήζσο ζπλδπάδεηαη κε κηα κέζνδν πνπ 

νλνκάδεηαη ζύληνκεο εθηηκήζεηο ΔΜ (short runs of EM) όπνπ δελ επηηξέπεηαη ζηνλ 

αιγόξηζκν λα θηάζεη ζε ζύγθιηζε αιιά αλαθόπηεηαη ε δηαδηθαζία κεγηζηνπνίεζεο 

(Biernachi et al., 2003:567). 

Ο αξηζκόο ησλ ηπραίσλ αξρηθνπνηήζεσλ πνπ πξνηείλεηαη από ηελ βηβιηνγξαθία είλαη 

γύξσ ζηηο 1000, θάηη ην νπνίν είλαη πξαθηηθά αδύλαην, γηα ηνλ ιόγν απηό ζπλεζίδεηαη λα 

πινπνηνύληαη 100 (Shireman et al., 2017:284). Δπηπιένλ θαζώο αλαθόπηεηαη ν 

αιγόξηζκνο πξνηνύ θηάζεη ζε ζύγθιηζε, γίλεηαη ιόγνο ζηηο πόζεο επαλαιήςεηο ζα ήηαλ 

ηδαληθό λα ζηακαηήζεη. ΢ηελ βηβιηνγξαθία δελ ππάξρεη έλαο γεληθόο θαλόλαο, ζπλήζσο 

αλαθέξνληαη ζε 10 θαη 20 επαλαιήςεηο. ΢ηελ παξνύζα έξεπλα επηιέρζεθαλ 20 

επαλαιήςεηο όπνπ είλαη ν αξηζκόο επαλαιήςεσλ πνπ επηιέγεη απηόκαηα ην πξόγξακκα 

Stata (StataCorp, 2021:4). 

Σέινο ε ηξίηε κέζνδνο αξρηθνπνίεζεο είλαη ν αιγόξηζκνο k-means όπνπ είλαη έλαο 

πνιύ γλσζηόο αιγόξηζκνο γηα δηαρσξηζκό δεδνκέλσλ ζε νκάδεο, όπνπ ν αξηζκόο ησλ 

νκάδσλ πξνζδηνξίδεηαη από ηνλ εξεπλεηή εθ ησλ πξνηέξσλ. Η βαζηθή ηδέα ηεο κεζόδνπ 

απηήο είλαη όηη νη δηαθνξέο κεηαμύ ησλ ζηνηρείσλ πνπ αλήθνπλ ζηελ ίδηα νκάδα έρνπλ 

ειαρηζηνπνηεζεί (Kassambara, 2017:36-37). Βαζηθό πιενλέθηεκα απηήο ηεο κεζόδνπ 
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είλαη όηη είλαη κηα απιή θαη γξήγνξε κέζνδνο όκσο ην βαζηθό ηεο κεηνλέθηεκα είλαη όηη 

πξέπεη λα είλαη εθ ησλ πξνηέξσλ γλσζηόο ν αξηζκόο ησλ νκάδσλ (Kassambara, 2017:46). 

Γηα ηελ ζύγθξηζε απηώλ ησλ 3 εξγαιείσλ θαηεγνξηνπνίεζεο πξαγκαηνπνηήζεθαλ 

πξνζνκνηώζεηο ώζηε λα εθαξκνζηνύλ θάπνηα θξηηήξηα ζύγθξηζεο. Οη πξνζνκνηώζεηο 

έγηλαλ κε 500 επαλαιήςεηο θαη 1000 παξαηεξήζεηο, γηα ηηο ίδηεο πεξηπηώζεηο γηα ην 

Double-Bounded κηθηό κνληέιν πνπ πξνηείλεηαη, γηα ηελ πεξίπησζε όπνπ ε πηζαλόηεηα 

είλαη ζηαζεξή γηα όζνπο αλήθνπλ ζηελ ίδηα νκάδα. 

Αξρηθά κηα πξώηε ζύγθξηζε πξαγκαηνπνηήζεθε αθόηνπ νινθιεξώζεθαλ νη 

εθηηκήζεηο γηα όιεο ηηο πεξηπηώζεηο θαη κεζόδνπο αλαθνξηθά κε ηνπο εθηηκεηέο θαη ηελ 

Μεξνιεςία. ΢ηελ ζπλέρεηα εθαξκόζηεθαλ θάπνηα θξηηήξηα απόδνζεο πνπ πξνηείλνληαη 

από ηελ βηβιηνγξαθία γηα ζύγθξηζε κεζόδσλ αξρηθνπνίεζεο. Πην ζπγθεθξηκέλα, έλα 

θξηηήξην είλαη ν ρξόλνο πνπ απαηηείηαη γηα λα νινθιεξώζεη ην πξόγξακκα ηηο 

επεμεξγαζίεο (Meilă and Heckerman, 2001:16). Έλα δεύηεξν θξηηήξην είλαη ν ζπλνιηθόο 

αξηζκόο επαλαιήςεσλ πνπ απαηηνύληαη γηα λα θηάζεη ν αιγόξηζκνο ζε ζύγθιηζε θαη 

επίζεο ε ηθαλόηεηα λα βξεη ην νιηθό κέγηζην, όπνπ γηα ην θξηηήξην απηό πξέπεη νη 

εθηηκεηέο λα ηθαλνπνηνύλ θάπνηεο ζπλζήθεο (Karlis and Xekalaki, 2003:580-81). 

Αθόκε έλα θξηηήξην όπνπ εθαξκόζηεθε είλαη ν δείθηεο ARI (Adjusted Rand Index) 

όπνπ κεηξάεη πόζν θαιά ρσξίζηεθαλ ηα ζηνηρεία από ηελ κέζνδν θαηεγνξηνπνίεζεο 

(Maruotti and Punzo, 2021:455-56) θαη επηπιένλ πξνζηέζεθαλ ζηελ ζύγθξηζε ν αξηζκόο 

ησλ επαλαιήςεσλ πνπ αθαηξέζεθαλ ιόγσ πξνβιεκάησλ ζηνλ ππνινγηζκό ηεο ηππηθήο 

απόθιηζεο θάπνησλ παξακέηξσλ. 

Δθαξκόδνληαο ηα παξαπάλσ θξηηήξηα πξνέθπςαλ θάπνηα ελδηαθέξνληα 

ζπκπεξάζκαηα θαζώο όιεο νη κέζνδνη αξρηθνπνίεζεο θέξλνπλ εηο πέξαο κε επηηπρία ηνλ 

αξρηθό ζθνπό ηεο δηόξζσζεο ηνπ πξνβιήκαηνο ηεο Τπνζεηηθήο Μεξνιεςίαο. 

Λακβάλνληαο όκσο ππόςε ηα θξηηήξηα πνπ εθαξκόζηεθαλ, ε ζύγθξηζε έδεημε όηη ε 

κέζνδνο κε ηηο 100 ηπραίεο αξρηθνπνηήζεηο ιεηηνπξγεί θαιύηεξα ζε ζρέζε κε ηηο άιιεο 

δύν κεζόδνπο όκσο έλα βαζηθό κεηνλέθηεκα απηήο ηεο κεζόδνπ είλαη όηη απαηηεί πνιύ 

ρξόλν. 

Από ηελ παξνύζα δηδαθηνξηθή έξεπλα, πξνηείλεηαη γηα ηελ δηόξζσζε ηνπ 

πξνβιήκαηνο Τπνζεηηθήο Μεξνιεςίαο ε εθαξκνγή ελόο κηθηνύ (mixture) κνληέινπ 



 
xxvi 

 

όπνπ ιακβάλεηαη ππόςε θαηά ηελ εθηίκεζε ε πηζαλόηεηα ππεξδήισζεο ηνπ WTP. Γηα 

ηηο αξρηθέο ηηκέο ηνπ κνληέινπ, εάλ δελ ππάξρεη πίεζε ρξόλνπ, λα εθαξκόδνληαη νη 100 

ηπραίεο αξρηθνπνηήζεηο, εηδάιισο νη άιιεο δύν κέζνδνη αξρηθνπνίεζεο πξνηείλνληαη 

εμίζνπ θαζώο ε δηαθνξά ζηελ απόδνζε ησλ ηξηώλ κεζόδσλ είλαη πνιύ κηθξή. 
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Chapter 1 

Contingent Valuation and Hypothetical Bias  

 

Introduction  

Most environmental goods are not traded in markets and as a result economists have 

developed methods for their valuation. Methods such as revealed preference which is 

based on observations of actual behavior and stated preference which is based on 

hypothetical behavior (Bockstael and McConnell, 2007:15), have been applied to value 

environmental goods. 

One of the stated preference approaches is the Contingent Valuation Method (CVM) 

(Carson and Hanemann, 2005:824). The CVM is considered as a flexible tool because it 

provides the possibility of creating several experimental scenarios (Carson and 

Hanemann, 2005:824). 

As mentioned in Du Preez, Menzies, Sale and Hosking (2012:3), over time CVM 

became the most widely used method for valuing goods that are not available in a market. 

The CVM is a tool that is usually used to value potential effects of policy changes in the 

case where market-base valuation of the effect is impossible. “The results of these 

analyses are often intended to inform policy decisions, which are made within the context 

of formal policymaking institutions” (Calson et al., 2016:460). 

Although CVM is a broadly accepted method, there are several problems that the 

researchers have to deal with and the reliability of the method has been questioned since 

a heated debate has been triggered through the years. As the application of CVM spread 

to deal with the valuation of a number of goods many problems appeared. 

Namely the most popular  problems are problems such as non-response bias (Berg, 

2005:865), starting point bias (Boyle et al., 1985:189), information bias (Ajzen et 

al.,1996:44),  psychological biases (Bateman et al., 1995:166), question order bias 

(Kartman et al., 1996:532), and hypothetical bias (Loomis, 2014:35). 
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In this thesis the focus is on overcoming one of the critiques namely the existence of 

Hypothetical Bias. “Hypothetical bias can be defined as the difference between what a 

person indicates they would pay in the survey or interview and what a person would 

actually pay” (Loomis, 2014:35). 

Hypothetical bias is a major issue of the CVM and as Haab, Interis, Petrolia and 

Whitehead mention (2013:595) “In short, we find promise for the curious researcher that 

the CVM debate is not settled, important questions remain, and that a critical examination 

of the CVM literature will provide fertile ground for future research”. 

Many techniques have been devised to overcome hypothetical bias. The approaches 

that have been used are separated in two main categories. The first category is ex ante 

and the second one is ex post approaches (Loomis, 2014:34). This thesis aims to deal 

with the problem of hypothetical bias by using an ex post approach. More specifically, by 

using stochastic frontier analysis as in the case of Hofler and List (2004) where they 

applied the approach for Open-Ended auctions. 

Additionally in this thesis the method is going to be applied to the Double-Bounded 

Dichotomous Choice (DC) model while introducing also elements from latent class 

models theory since we will be dealing with mixture models of two classes (Normal error 

and composed Normal-Half-normal error). 

This thesis is inspired by the work of Chien, Huang and Shaw (2005) related to the 

estimation of a model when yea-saying bias is present and the work of Kumbhakar, 

Parmeter and Tsionas (2013) that propose a model that can be applied when both efficient 

and inefficient firms are present in a sample with a given probability. Consequently in 

this thesis mixtures will be added, since we have both overstating respondents and 

respondents that answer sincerely, in order to combine the two basic ideas that inspired 

this thesis. 

Furthermore, we use the results of Tsay et al. (2013) who provide a closed-form 

approximation for the cumulative distribution function of a composed Normal-Half-

normal error. Finally, in the present thesis we use the EM algorithm estimation procedure 

(McLachlan and Peel, 2000).  
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1.1. The Contingent Valuation Method (CVM) 

1.1.1. The method 

Neoclassical theory was faced with the problem that most environmental goods don‟t 

have a price, since they are not generally purchased in markets like other common goods. 

In order to overcome this problem several valuation methods have been proposed in the 

literature, one such method being the CVM (Vatn, 2005:302). 

The CVM is one of the most commonly used methods to value non-marketed 

resources, such as wildlife, recreation and environmental quality (Hanemann et.al., 

1991:1255). A basic principle in a survey using CVM is that people are rational and 

additionally, people know their preferences for a particular good relative to other goods 

and they can translate their preferences into money (Green and Tunstall, 1999:242-43).  

In an investigation using the CVM approach, the researcher uses a questionnaire that 

presents a hypothetical environmental change to respondents. In the case of an 

environmental  improvement the respondent is asked to state the maximum amount of 

income he/she would be willing to pay (WTP) for the improvement or alternatively the 

minimum amount of income he/she would be willing to accept (WTA) to forego the 

improvement. The aims and the needs of each research are the determinants of the design 

of the questionnaire. Typically the questionnaire consists of three parts, the beginning, 

the middle and the end (Green and Tunstall, 1999:238). 

The first part is an introduction about the general subject of the research followed by 

general questions. The second part concerns the CVM scenario, the purpose of the 

scenario, how it will be implemented, how it will be financed and afterwards the WTP or 

WTA questions. Finally in the third part personal questions are made so that the 

researcher gathers the demographic characteristics of the respondents (Carson and 

Hanemann, 2005:825). 

More analytically, the first part, which contains the introductory questions, aims to 

help the respondents understand the purpose of the research. As Green and Tunstall 

(1999:239) mention, the language that the researchers use must be clear and furthermore 

the researchers must give attention to every detail in order to ensure that the respondents 
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will understand the questions and answer correctly. Furthermore, the description of the 

good that is evaluated is very crucial because a wrong description may mislead the 

respondents‟ answers with a significant impact on the validity of the research. Boyle and 

Bergstrom (1999:193) mention that several studies have proven that more information or 

less information in the description of the good may have statistically significant effects in 

surveys using CVM. 

The second part of the questionnaire, which refers to the valuation scenario, contains 

the questions for eliciting WTP or WTA. This part consists of two components, the first 

one is an introduction which informs the respondents that they can freely express their 

opinion about the scenario and emphasizes the importance of the respondents‟ 

participation (Green and Tunstall, 1999:245-46). Furthermore, in this part the researcher 

should inform the respondents that they should have in mind their disposable income. 

Arrow et al. (1993:9-14) mentioned that one of the problems that concerned the National 

Oceanic and Atmospheric Administration-NOOA Panel was that the majority of previous 

applications of CVM, respondents were not reminded to have in mind their budget 

constrain while answering, so respondents may answer without thinking carefully. The 

other component refers to the WTP/WTA questions. Finally, the third part of the 

questionnaire is related to the collection of the socioeconomic information of the 

respondents. 

The WTP or WTA questions are the most essential part of the questionnaire. There are 

several elicitation methods to design in a different way the CVM questions. Mitchell and 

Carson (1989:98) present 9 CV elicitation methods that could be categorized in two 

groups, whether respondents are given a single WTP question or an iterated series of 

WTP questions. Namely the single question methods are, the Open-Ended (OE) or the 

Direct question, the Payment Card, the Sealed bid auction, the Take-it-or-leave-it offer, 

the spending question offer and the Interval checklist. On the other hand, the iterated 

series questions methods are the Bidding game, the Oral auction and the Take-it-or-leave-

it offer with follow-up. 

For the first CV surveys the Bidding game format was used and the respondents were 

called to answer with a yes or no if they are willing to pay a certain amount. If they 
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answered yes then a bigger amount was given, alternatively a smaller if they answered 

no. This process continued until the respondent switched answer form yes to no (or from 

no to yes) (Carson and Haneman, 2005:870). 

Due to concerns about the starting bid of the Bidding game method, led researchers to 

apply simpler approaches such as Single closed-ended questions, known as the 

referendum, Single-bound (1DC) or binary discrete-response format and the Double-

bounded (2DC) approach where a double sampling framework, with a second binary 

discrete choice question depending on the answer at the first was applied (Carson and 

Haneman, 2005:871). Additionally, in 2002 Cooper, Hanemann and Signorello, proposed 

another elicitation approach called the one-and-one-half-bound (OOHB). 

Besides the fact that there is a variety of elicitation methods a researcher can choose, 

the NOAA Panel (Arrow et al., 1993:4) suggests that the elicitation method researchers 

should use is a referendum method such as 1DC and 2DC. Furthermore, one other main 

guideline that has been given by the NOAA Panel refers to Single-bound DC and 

suggests that the sample size might have to be at least 1000 respondents and generally 

that WTP format is preferred to WTA (Bateman et al., 1995:162). 

A few words for some of the elicitation formats, firstly, the Open-Ended method is “a 

form of an open-ended question asking what is the maximum amount they would be 

willing to pay for the program in question” (Arrow et.al., 1993:4). On the other hand, the 

Single-Bound Dichotomous Choice, the Double-Bound Dichotomous Choice and the 

Third-Bound Dichotomous Choice are in a form of a hypothetical referendum in which 

each respondent has to answer if he is willing to pay a certain amount of money with a 

“Yes” or “No”(Arrow et al., 1993:4). 

More specifically, the Single-Bound Dichotomous Choice method includes only one 

question-bid in which the respondents may answer with yes or no if they agree or 

disagree about paying a given amount of money in order to ensure an environmental 

improvement. To continue with, the Double-Bounded Dichotomous Choice method 

includes an extra follow-up question depending on the answer given to the first question. 

In the case of a WTP question, if the respondent has responded to the first question with a 

“yes” then, for the second question, the second bid will be bigger than the first bid. On 
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the other hand, if the answer to the first bid is “no” then the second bid will be a smaller 

amount (Hanemann et.al., 1991:1255-56). 

In Iterative Bidding method, after the DC questions an open-ended questions follows 

which gives to respondents the freedom to move up or down from the given WTP starting 

point (Bateman et al., 1995:161-1640). Finally, in the one-and-one-half-bound (OOHB) 

approach, two prices are given up front to the respondents and the researcher informs 

them that although the exact cost of the good is unknown, it lies within the two prices. 

Afterwards one of the two prices is randomly selected and the respondents are asked if 

they are willing to pay the given price, whether a follow-up question will ensue depends 

on the selected initial price and the answer to the first question, since the WTP amounts 

must be consistent to the stated price range (Cooper et al., 2002:742). 

In this thesis the main elicitation methods that will be examined are the Double-

Bounded Dichotomous Choice method as well as the open-ended elicitation method. 

 

1.1.2. The diffusion of the method 

The method was proposed in 1963 by Robert Davis in his Ph.D. thesis at Harvard 

University.  The use of the method started in the beginning of the „70s and expanded after 

the „80s in the US (Loomis, 1999:613), in Europe as well and from the „90s all over the 

world (Bonnieux and Rainelli, 1999:585-86). The initial versions of CVM proposed by 

Davis in 1963 and Randall et al. in 1974 focused on incentives and free-rider issues 

(Green et al., 1998:86). 

More analytically, Davis applied an Open-Ended protocol and Randall on the other 

hand applied a sequential bidding protocol. Randall et al. presented a number of 

arguments for the use of sequential bidding instead of Open-Ended. More specifically 

they mentioned that the referendum task was simpler and less affected by 

misinterpretations. Although there were many arguments in favor of sequential bidding 

protocol, the Open-ended protocol was the most commonly used protocols in the early 

„80s (Green et al., 1998:87). 
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The CVM has been widely used for valuation of environmental changes in many 

countries in the past years. The reasons for the broad acceptance of CVM are several. 

Firstly, from the mid-seventies until the decade of 1990 there was an increasing use of the 

method which led to a substantial number of publications, for example “the article by 

Randall et al., in 1974 in the first issue of the Journal of Environmental Economics and 

Management, which introduced more differentiation of contingent valuation surveys from 

opinion polls by using photographs to help describe the valuation scenario” (Haab et al., 

2013:594). 

Second, another important reason for the acceptance of CVM was the publication of 

the book by Mitchell and Carson in 1989 which “first integrated economic theory, survey 

research methods, and social science measurement issues” (Haab et al., 2013:594). Last 

but not least, the Exon Valdez oil spill, which turned the awareness of numerous 

economists and many institutions as well towards CVM (Haab et al., 2013:594). 

In 1993 the US National Oceanic and Atmospheric Administration (NOAA) created a 

“blue ribbon panel” that gave guidelines for researches using CVM and afterwards 

numerous critiques came along from researchers such as Hausman (Haab et al., 

2013:594). 

 

1.2. Hypothetical Bias 

1.2.1. The beginning of the debate over CVM 

CVM is a broadly accepted method, although there are several problems that the 

researchers have to deal with. Sugden (1999:139) mentions that even if the respondents 

answer the CV questions honestly, major problems can arise. For example, the design of 

the scenario, especially for a public good, is not that easy. 

The respondents on the other hand, as Green and Tunstall (1999:209-11) mention, are 

also facing difficulties in their attempt to give the right answers. Namely the respondents 

deal with memory problems, communication problems which lead to difficulties in 

understanding, lack of knowledge regarding the good that is evaluated in the valuation 
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exercise and finally, as Milon (1989:294) mentions, respondents have to deal with their 

strategic incentives. 

Since 1993 a debate has started questioning the validity of the CVM. As a 

consequence of the Exxon Valdez oil spill a conference took place and brought the 

attention towards CVM (Haab et al., 2013:594). The conclusion of the conference was 

that CVM was unreliable (Carson, 2012:30). In 1993 the National Oceanic and 

Atmospheric Administration (NOAA) assembled a panel in order to evaluate the CVM. 

The NOAA panel gave a number of guidelines for the method and these guidelines 

triggered the debate. In 1994, many articles were published in the Journal of Economic 

Perspectives criticizing the method (Haab et al., 2013:594). 

In 1994 Portney first criticized the guidelines that the NOAA panel had highlighted for 

the method. Portney mentioned that these guidelines created a lot of displeasure to many 

supporters of CV since the surveys became more complicated and more expensive and 

furthermore these guidelines may lead to underestimating lost existence values (Portney, 

1994:9-10). On the other hand, CV still had supporters and Hanemann was an avid 

supporter of the method. Hanemann in his article “Valuing The Environment Through 

Contingent Valuation” (1994) summarizes that a researcher will receive reliable results 

by using CVM when surveys are properly designed (Hanemann, 1994:21).  

Diamond and Hausman (1994) disputed the method and they stated the problem of 

reliability and also the existence of biases (Diamond and Hausman, 1994: 45-6). In their 

critique they mention as well that the CVM is unable to measure the preferences that are 

attempted to be measured in a particular survey (Diamond and Hausman, 1994:46). But 

although “Diamond and Hausman raised a number of important issues, their negative 

opinion has done little to quell the demand for contingent valuation research” (Haab et 

al., 2013:594). 

The debate over the validity of the method was settled down until the BP Deepwater 

Horizon oil spill in 2010 took place, where the damage from the oil spill had to be 

evaluated. So in 2012 the debate started again. Kling, Phaneuf and Zhao (2012) mention 

that since the first debate, stated preference techniques, such as CV, have been enriched 

by new developments in theory and the contribution of the knowledge from behavioral 
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economics, so researchers should take into account all the progress that has taken place 

since 1994 (Kling et al., 2012: 21-2). Carson defended the CVM and remarked that like 

all the economic techniques CVM is not perfect but there is no other alternative to 

evaluate some goods, while he also pointed out that the method had a successful progress 

the last twenty years (Carson, 2012:40). 

On the other hand, Hausman (2012:43) stated that there is no progress in the past 

twenty years and that the method has to deal with serious problems (Haab et al., 

2013:594-5). Hausman criticized strongly the method and he mentioned three important 

problems that need to be solved. The first problem is the difference between the two 

measures WTP and WTA, the second problem is the lack of scope effects and the third 

problem is Hypothetical bias (Hausman, 2012:43). 

 

1.2.2. The problem of Hypothetical Bias 

In hypothetical surveys or referenda, the participants tend to express higher values of 

money for goods than the participants that are dealing with a similar choice involving real 

money payments (Foster and Burrows, 2017:270). A main concern about the CVM 

results is that they are based on respondents‟ answers to the CVM scenario and the 

answers are based on the fact that the respondents know that the scenario is hypothetical. 

If they knew that the scenario was about to be implemented their answers would be 

different. As is mentioned in Haab, Interis, Petrolia and Whitehead (2013:596)  

“What people say is different from what they do”. 

More specifically, because the supply of the good that is examined in the scenario is 

hypothetical, and so is the amount of payment that the respondents agree to pay, the 

reliability and the validity of the CVM results have been the matter of a debate  (Aadland 

and Caplan, 2006:563). 

Hypothetical bias indicates that there is an unwanted difference between what the 

respondents answer about the maximum they would be willing to pay and what they 

would actually pay. This fact leads to researchers obtaining less reliable results when 

applying CVM if the presence of this potential gap is ignored. 
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Hypothetical bias can take two different forms and it can lead to overestimation or 

underestimation. In the case of overestimation the hypothetical estimates are higher than 

the real ones. In case of WTA there are more no-saying answers (i.e respondents 

overstate the amount of compensation) while for WTP yea-saying answers (i.e 

respondents overstate how much they are willing to pay). The other case of Hypothetical 

Bias is underestimation where the hypothetical estimates are smaller than the real ones. In 

case of a WTA survey we have more yea-saying answers and in a WTP no-saying 

answers. 

As Murphy et al. (2005:313-14) discuss there are two dominating questions regarding 

hypothetical bias, “what is the magnitude of hypothetical bias associated with the Stated 

Preference valuation approach” and “what factors are responsible for this bias”. 

Bateman et al. (1995:164-65) refers that one reason why respondents may understate 

their WTP, especially in Open-Ended elicitation format, is because of the “free ride” 

problem. More specifically, the respondent might pretend that his interest for the good 

that is evaluated is lower when he expects that the good will be provided anyway. 

Additionally, another reason might be that the respondents believe that the costs of the 

project will be shared per capita so they respond by giving the expected cost if it is below 

WTP or they respond zero if it is not. Another reason is unfamiliarity with the Open-

Ended format questions which leads to risk-averse strategies in regard to their answers. 

Finally, if the good is not well described, respondents are dealing with unfamiliar 

situations leading their states to be biased (Bateman et al., 1995:165). 

On the other hand, one reason why respondents may overstate their WTP is because 

respondents might answer positively in order to satisfy the interviewer. Respondents 

believe that the positive answer is the answer that the interviewer would like to hear so 

they say yes (Bateman et al., 2006:6). Additionally, yea-saying bias can be motivated by 

the “warm glow” effect which means that the respondents by answering positively may 

feel satisfaction that they have contributed for the good that is evaluated. Furthermore, 

overstating WTP may be triggered by the fact that respondents feel social pressure during 

the survey. People tend to be sensitive to public opinion in their community so they 
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answer positively in order to be part of a community with a high public spirit which 

means contribution for providing public good (Chien et al.,2005:364). 

An important parameter that plays a crucial role in the issue of hypothetical bias is the 

problem of incentives. Due to strategic behavior by respondents, the WTP amount would 

either be higher or lower. Furthermore researchers explored if the incentives for strategic 

behavior could be connected to the elicitation method, since the estimates obtained by 

different elicitation method had quite large differences (Carson and Hanemann, 

2005:875-77). 

In regard to the incentives, Carson and Groves (2007) examined the incentive 

properties of preference questions. More specifically they took under consideration the 

properties of binary discrete choice questions to determine if such question formats are 

incentive compatible in the sense of whether a true answer to an actual question is an 

optimal strategy (Carson and Groves, 2007:182-184).  

The binary discrete choice elicitation methods have the property of being incentive 

compatible and this fact explains the reason why the NOOA Panel proposed such 

methods for CVM surveys (Carson and Groves, 2007:187). Haab, Interis, Petrolia and 

Whitehead (2013:596) mention that “Carson and Groves‟ arguments regarding incentive 

properties open a new exciting line of research for applied, behavioral, and experimental 

researchers to investigate the degree to which the incentive properties of various question 

formats can reduce or increase hypothetical bias”. 

Although there are plenty of studies referring to hypothetical bias there is no 

consensus about the causes or the ways to adjust survey responses in order to avoid 

hypothetical bias (Murphy et al., 2005:313). 

 

1.2.3. A review of meta-analyses of hypothetical bias 

Carson et al. (1996) conducted a meta-analysis of 83 studies which include 616 

comparisons between CV estimates and Revealed Preference estimates for quasi-public 

goods. They examined these studies and found that for most cases the CV estimates 

where a little lower than the Revealed Preference estimates and in some cases the CV 
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estimates distinctly exceeded the Revealed Preference estimates. Finally, they believe 

that their findings could play a crucial role in discussions of whether the CV estimates 

need to be in general, adjusted either upwards or downwards (Carson et al., 1996:93-4). 

Murphy, Allen, Stevens and Weatherhead (2005) reported results of a meta-analysis of 

hypothetical bias taking into considerations 28 stated preference studies estimating WTP 

by using the same mechanism for hypothetical and actual values. The main finding in 

their analysis is that the basic factor that can explain hypothetical bias is the size of the 

hypothetical value, furthermore no clear results were found about other factors that may 

be associated with hypothetical bias (Murphy et al., 2005:322). 

List and Gallet (2001:246) found that in hypothetical choices the estimates are about 3 

times higher than the estimates that come from real choices and they also noticed that the 

differences depend on the elicitation method and if the scenario presents a WTP or a 

WTA question. The elicitation method has been also mentioned by Green et al. 

(1998:85), more specifically they have mention that the referendum elicitation methods 

tend to return higher mean estimates than from Open-Ended responses. Little and Berrens 

(2004:5) also have found that the difference is about 3.13 times higher for the estimates 

that are based on hypothetical choices. 

Foster and Burrows (2017) gathered the literature on hypothetical bias and more 

specifically on previous meta-analysis in order to study if among the characteristics of the 

survey designs that contributes to overcoming hypothetical bias, there is a practical and 

reliable way to overcome hypothetical bias. As they mention, until the time their work 

was published, previous meta-analysis had confirmed that in stated preference studies 

hypothetical bias exists but they couldn‟t offer definite guidelines that could be used in 

order to reduce hypothetical bias (Foster and Burrows, 2017:270). 

More specifically, they examined how the “bias Ratio” (the ratio of the mean WTP 

from the hypothetical treatment to the WTP from the real treatment) (Foster and Burrows, 

2017:271), was affected by variables representing a number of commonly used 

techniques and two additional variables that they added.  The common techniques that 

they used were certainty correction, cheap-talk, the same respondent vs different 

respondent technique, if the observations are derived from conjoint or choice experiment, 
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if the respondent is a student or not, if the hypothetical and the real survey instruments 

are implemented in a laboratory study or not and if the good that is evaluated is public or 

private. 

Furthermore, they added two new variables indicating if the good that is evaluated is 

familiar or unfamiliar to the respondent and if the valuation of the good is mainly 

generated by non-use considerations (Foster and Burrows, 2017:273-79). Finally, after 

their attempt to update the existing prior meta-analyses, they conclude they their meta-

analysis did not offer definite insights in order to eliminate or reduce hypothetical bias 

(Foster and Burrows, 2017:286). 

Some empirical studies have shown that there is a possibility that estimates from real 

choices are higher than those from hypothetical choices and in this case hypothetical bias 

exists in the form of underestimation. Ehmke, Lusk and List (2008:489-90) found that 

hypothetical bias is not independent of location since many cultural factors exists and 

they could affect the existence of hypothetical bias. In their survey they used data from 

several countries such as, for example, China, France, Niger and a numbers of states in 

America and they concluded that less developing countries, like China and Niger, tend to 

vote “no” in hypothetical scenarios and “yes” in the real ones (Ehmke et al., 2008:497). 

 

1.2.4. Suggested methods to overcome hypothetical bias 

In general, it is difficult to measure hypothetical bias and the reason which explains 

this difficulty is that in order to test if hypothetical bias exists there has to be a 

comparison with real payments (Jakobsson and Dragun, 1996:84). Since for non-market 

and public goods the problem named market failure exists, “measuring hypothetical bias 

is difficult for non marketed resources and public goods” (Loomis, 2014:35). But it 

should be mentioned that Little and Berrens (2004:6) found that there is no evidence that 

private goods have potentially less difference between hypothetical and real payments 

than public goods. 

One part of the literature concerned with hypothetical bias has proposed ex ante 

approaches whereas the problem can be treated through auxiliary mechanisms like 
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“cheap talk” or “solemn oath” and “scenario adjustment” (Haab et al., 2013:599). On the 

other hand, the ex post procedure can correct hypothetical bias by using statistical 

techniques (Hofler and List, 2004:213). 

 

Ex-ante Methods 

The technique of solemn oath was introduced by Jacquemet, Joule, Luchini and 

Shogren (2013) in order to ensure respondents will be honest in their answers and thus 

eliminate the hypothetical bias problem. Just like courts, where witnesses take an oath “to 

tell the truth and nothing but the truth” in solemn oath the same procedure occurs. The 

respondents are asked to answer to the valuation questions after they swear a “truth-

telling-commitment” that they will be honest (Jacquemet et al., 2013:111). More 

specifically, in a survey including the solemn oath technique probably there will be an 

additional statement that the respondent will be asked to agree or not. The statement 

might be like the following: “I swear upon my honor that, during the whole experiment, I 

will tell the truth and always provide honest answers” (Jacquemet et al., 2013:115). 

Some researchers with non-experimental applications, have found that the oath 

framework “has significant effects on hypothetical response behavior across individuals 

and across multiple countries that is consistent with what would be expected from 

reduced hypothetical bias” (Haab et al., 2013:599). 

Scenario adjustment plays an important role in the choice procedure. There are three 

types of scenario adjustments that can occur since the researcher gives additional 

information to the respondent that already has an idea about any aspects of the presented 

scenario. Firstly, the respondents may replace their prior beliefs about the scenario with 

the new information that the researcher provides. Secondly, the respondents may reject 

the additional information and finally the respondents may combine their prior beliefs 

with the researcher‟s information (Cameron et al., 2011:10). 

If researchers do not include these scenario adjustments they may probably 

overestimate or underestimate WTP for a number of respondents. As Cameron, DeShazo 

and Johnson (2011:11) suggest “researchers should probably calculate and compare 
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estimates of WTP both with and without corrections for scenario adjustment”. And 

finally, researchers should include from the early design these possible scenario 

adjustments so neither overestimation nor underestimation for WTP will occur (Cameron 

et al., 2011:11). 

Cheap talk on the other hand, is a survey design in which “the valuation context 

involves providing respondents with additional instructions that explicitly encourage 

them to treat hypothetical scenario as if an actual monetary transaction were taking 

place” (Haab et al., 2013:599). 

In a cheap talk script the researcher explains to the respondents the problem of 

hypothetical bias that he has dealt with in other surveys in the past. In this way he tries to 

make the respondents answer sincerely. He may use either short script or long script. In 

the short script he will only mention the hypothetical bias that they have found in similar 

surveys. On the other hand, in the long cheap talk script the researcher mentions what 

kind of substitute goods exist and reminds the respondent that he should have in mind his 

household budget (Aadland and Caplan, 2006:565-67). 

Loomis (2014:36-8) has analyzed as well the ex ante survey design approaches and 

classifies them in the following four categories: “Consequentiality Designs”, “Honesty 

and Realism Approaches”, “Cheap Talk” and “Reducing Social Desirability Bias and 

Cognitive Dissonance”. 

Consequentiality refers to the fact that the survey should have some potential effect on 

the respondents such as affecting the likelihood of the provision of the good and/or 

changes in taxes. Honestly and realism approaches is a method in which the researcher 

makes the respondents to give their honest answer such us the inclusion of a solemn oath 

statement that we discussed above. Cheap talk has been discussed above, while “reducing 

social desirability bias and cognitive dissonance” refers to, among others, the problem 

that arises when some respondents answer payment questions based on social norms 

rather than their own personal values and one possible solution would be by asking what 

the respondent think others will pay for the provision of the good (Loomis, 2014:43). 

All the above techniques, as it has been mentioned, are considered as ex ante 

procedures and as Hofler and List (2004:213) emphasized “recent technology using ex 
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ante procedures has produced some strong evidence that hypothetical bias can be 

overcome”. However, in the case of cheap talk the evidence is not so positive since 

according to the study of Aadland and Caplan (2006:562) “a short, neutral cheap talk 

script appears to exacerbate rather than mitigate the bias”. According to the authors, 

respondents hearing that hypothetical bias occurred in other similar studies might try to 

attempt to give the “right” answer and thus increase the bias. 

 

Ex-post Methods 

Apart from the ex ante procedures to overcome hypothetical bias another set of 

procedures exist, the ex post procedures which can correct hypothetical bias by using 

statistical techniques (Hofler and List, 2004:213). 

For example, Loomis (2014:43) mentioned three ex post methods that can be included 

in surveys. Firstly, the preference towards the median WTP responses rather than the 

mean WTP responses. Secondly, including uncertainty when the respondent is not sure 

about his positive WTP answer and finally “relying on the degree of hypothetical bias 

uncovered in an experiment with a deliverable good to scale the WTP from a stated 

preference survey” (Loomis, 2014:43). 

Since there is a gap between the hypothetical and the real estimates, this difference 

must be taken into account in the models in order to get more reliable and realistic 

evaluations. Hofler and List (2004) designed an experiment to examine if the results are 

different between a hypothetical and an actual auction for a baseball card and they used 

stochastic frontier approach. 

More specifically, Hofler and List (2004:220) proposed a statistical approach in order 

to link the actual with the hypothetical statements from data for a baseball card auction. 

They conclude that people overstate their WTP and they have used calibration function 

derived from a stochastic frontier regression model in order to overcome the gap between 

the actual and the hypothetical bid. 

Additionally, Chien, Huang and Shaw (2005) proposed a modeling approach for 

double-bounded dichotomous choice data based on the stochastic frontier model that can 
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accommodate both yea-saying behavior and starting point bias. Furthermore, Kumbhakar, 

Parmeter and Tsionas (2012) consider possibility of underestimation or overestimation in 

first-price auctions. They developed an optimization error approach that allowed the 

optimal bids to differ from the bids they observed and propose the application of a 

stochastic frontier model (Kumbhakar et al., 2012:47-48). 

A researcher has the possibility to use more than one approach to overcome 

hypothetical bias. Usually cheap talk is combined with another ex ante approach or even 

with ex post methods. It is mentioned though that researchers that choose to combine the 

methods should be very careful because in this way there is a possibility of correcting 

more than the wanted hypothetical bias and so WTP is no longer overestimated but 

underestimated (Loomis, 2014:43). 

 

1.3. Stochastic frontier for CVM modeling with the presence of 

hypothetical bias 

Hofler and List (2004) propose the use of stochastic frontier model in order to 

calibrate hypothetical statements to real values. A one sided error is included in the 

hypothetical open-ended bid function capturing the difference between the actual and the 

hypothetical as shown in Eq. (1.1) below, (Hofler and List, 2004:215) 

𝑌𝑖
𝐻 = 𝑋𝑖𝛽 + 𝑣𝑖 + 𝑢𝑖 , 𝑖 = 1,… . ,𝑛   (1.1) 

● 𝑌𝑖
𝐻  represents the hypothetical bid for each individual 𝑖, 

● 𝑋𝑖  is a row of explanatory variables, the determinants of the bid for person 𝑖, 

● 𝛽 is a column vector of the coefficients. 

The function though, has two error terms, 𝑣 is the usual regression error term and 𝑢 is 

an additional one-sided error that represents the gap between the hypothetical and the true 

bid for each person (Hofler and List, 2004:216). 

Additionally, the model can be written in the following form (Hofler and List, 

2004:216) 

𝑌𝑖
𝐻 = 𝑌𝑖

𝐴 + 𝑢𝑖  ,   𝑖 = 1,… . ,𝑛  (1.2) 
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● 𝑌𝑖
𝐴 represents the actual bid for each 𝑖 person. 

In the case of yea-saying the analysis is based on the hypothesis that 𝑢𝑖 ≥ 0. In the 

case that the actual bid is equal to the hypothetical, the estimate of 𝑢𝑖 = 0 and the 

respondent answered sincerely. On the other hand when 𝑢𝑖 >0 it is implied that the 

respondents overstate the bid since the hypothetical bid is bigger than the actual (Hofler 

and List, 2004:216). The method proposed by Hofler and List (2004) can be easily 

implemented to CV survey data that use an open-ended elicitation format. 

Chien et al. (2005) on the other hand have introduced a stochastic frontier model of 

overestimation for Double-Bounded DC method. More analytically, they assume that 

WTP is given by 𝑊∗ = 𝑋𝛽 + 𝑉 where 𝑊∗ is the latent willingness to pay which is not 

observed and only the yes/no answers to the presented bids are observed. In the presence 

of yea-saying, the upward shift of the WTP can be captured again by a one-sided, non-

negative error term as shown below, 

𝑊1 = 𝑊∗ + 𝑈 = 𝑋𝛽 + 𝜀  

where 

● 𝛽 is the coefficient vector  

● 𝑋 are the respondent‟s characteristics 

● 𝑉 is the statistical noise where 𝐸(𝑉) = 0 

● 𝑈 is the one-sided non-negative random error for yea-saying bias 

● 𝜀 is the composite error (Chien et al., 2005:365). 

On the other hand the respondents to CV surveys need not be a heterogeneous group 

and hypothetical bias could be present only for a subset of respondents. In this case a 

latent class model where some respondents answer truthfully to the payment questions 

while others overstate might be a promising venue. In the case of production economics 

Kumbhakar, Parmeter and Tsionas (2013) have proposed the zero inefficiency model 

where both efficient and inefficient firms can be present. In their study a latent class 

stochastic frontier model is proposed to analyze production inefficiency. Taking as a 

starting point the well known production stochastic frontier model given below, 
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𝑦𝑖 = 𝑥𝑖
′𝛽 + 𝑣𝑖 + 𝑢𝑖 = 𝑥𝑖

′𝛽 + 𝜀𝑖  for i = 1, . . . ,n 

they assume that some firms are fully efficient with 𝑢𝑖 = 0 and some other firms are 

inefficient 𝑢𝑖 > 0 .Their zero inefficiency stochastic frontier model is: 

● 𝑦𝑖 = 𝑥𝑖
′𝛽 + 𝑣𝑖  with probability 𝑝, where 𝑝 is the probability of the firm to be fully 

efficient and 

● 𝑦𝑖 = 𝑥𝑖
′𝛽 + (𝑣𝑖 − 𝑢𝑖) with probability (1− 𝑝) (Kumbhakar et.al, 2013:67-68). 

The present thesis builds up on the results presented above and proposes a latent class 

stochastic frontier model for hypothetical bias for both open-ended and dichotomous 

choice formats. In our models we will have a latent class model where both hypothetical 

bias and sincerely answering may occur with a probability. More specifically, in this 

thesis we take into account the work of Chien, Huang and Shaw (2005) and of 

Kumbhakar, Parmeter and Tsionas (2013) in order to propose a mixture stochastic 

frontier model for CV data both under the open-ended and double-bounded format. 

 

1.4. Thesis overview 

The contents of this thesis are arranged as follows. In Chapter 2 a mixture model is 

proposed for estimating CV survey data under an open-ended format in the presence of 

yea-saying and simulations of 1000 replications have been conducted in order to 

investigate the performance of the model for several different cases. Two different cases 

are analyzed for the probability of class membership, namely the probability is constant 

over individuals and the probability depends on some regressor and therefore varies over 

individuals. 

Chapter 3 proposes a mixture model when the double-bounded elicitation format is 

used and respondents overstate their willingness to pay. The performance of the model is 

evaluated with simulations of 1000 replications under different scenarios. Moreover the 

method is applied to an empirical study about the valuation of the Kakadu Conservation 

Zone, which is based on the CV survey that took place in Australia and was published by 

Carson, Wilks and Imber (1994). 
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In Chapter 4 the importance of different strategies for selecting starting values is 

analyzed in detail and the proposed model of overcoming hypothetical bias has been 

tested for several different clustering methods in order to investigate the performance of 

the model for several different starting values methods. 

Finally, concluding remarks are presented since all the analysis of the previous 

chapters have led to the optimal proposed model which responds better in order to 

overcome Hypothetical Bias. 
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Chapter 2 

Applying stochastic frontier and mixture models to contingent 

valuation under the open-ended format 

 

Introduction 

In Chapter 2 a stochastic frontier mixture model is applied to CV under the open-

ended format aiming to overcome hypothetical bias. The chapter comprises of four main 

parts. 

The first section presents the theoretical background of the CVM under the open-

ended elicitation format. The second section analyzes the stochastic frontier model 

applied to open-ended format data under the presence of hypothetical bias while the third 

part introduces and analyzes the mixture model for open-ended data that it is suggested in 

order to overcome hypothetical bias. 

Finally the last part of the chapter presents the results of simulations that took place in 

order to test the proposed model. More analytically, the last section describes in detail the 

data generation process, the initialization strategy that was followed and all the 

simulation results for a number of different cases. Furthermore, the simulations took 

place for two different scenarios for class probability determination, in the first case the 

class probability is a constant and consequently all respondents have the same probability 

of overstating their willingness to pay (WTP hereafter) and in the other case the 

probability of overstating WTP differs among respondents since the probability depends 

on a variable z. 

 

2.1. Contingent valuation and open-ended elicitation format 

A CV study aims to measure for each individual his/hers monetary value for an item 

denoted as 𝑞 or for a change in its provision. More analytically, each individual has a 

direct utility function 𝑢 𝑥, 𝑞  which is defined by a number of commodities 𝑥 and also 𝑞, 

and an indirect utility function 𝜐(𝑝, 𝑞,𝑦) where 𝑝 contains the prices of the market 
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commodities and 𝑦 is the person‟s income. Furthermore, the assumption that is made is 

that 𝑢 𝑥, 𝑞  is increasing and quasi-concave in 𝑥 thus 𝜐(𝑝, 𝑞,𝑦) satisfies the standard 

properties for 𝑝 and 𝑦. Furthermore, each agent regards 𝑞 as “good” or “bad”. 

If 𝑞 is considered as “good”: 𝑢 𝑥, 𝑞  and 𝜐(𝑝, 𝑞,𝑦) will be increasing in 𝑞. 

If 𝑞 is considered as “bad”: 𝑢 𝑥, 𝑞  and 𝜐(𝑝, 𝑞,𝑦) will be decreasing in 𝑞. 

If the agent is indifferent to 𝑞: 𝑢 𝑥, 𝑞  and 𝜐(𝑝, 𝑞,𝑦) will be independent of 𝑞. 

In the valuation process there must be a comparison between two situations with 

respect to the provision of 𝑞. In a few words, if the changes in 𝑞 is 𝑞0 → 𝑞1, each person 

will have different utility functions, the utility function before the change will be 

𝑢0 ≡ 𝜐(𝑝, 𝑞0,𝑦) and after the change 𝑢1 ≡ 𝜐(𝑝, 𝑞1,𝑦). 

If the change represents an improvement  𝑢1 > 𝑢0. 

If the change represents a worsening  𝑢1 < 𝑢0. 

If the change is indifferent for the agent 𝑢1 = 𝑢0. 

The change in 𝑞 (𝑞0 → 𝑞1) which leads to a change in the utility (𝑢0 → 𝑢1), in 

monetary terms is represented by the compensating variation C which satisfies Eq. (2.1) 

and the equivalent variation E which satisfies Eq. (2.2). 

𝜐 𝑝, 𝑞1,𝑦 − 𝐶 = 𝜐 𝑝, 𝑞0, 𝑦        (2.1) 

𝜐 𝑝, 𝑞1,𝑦 = 𝜐 𝑝, 𝑞0,𝑦 + 𝐸       (2.2) 

In the case where the change is an improvement, 𝐶 > 0 and  𝐸 > 0.  Additionally, C is 

the person‟s maximum WTP in order to ensure that the change will be implemented and 

additionally E is the minimum willingness to accept (WTA hereafter). On the other hand, 

in the case where the change is regarded as being worse, 𝐶 < 0 and  𝐸 < 0. In this case, 

C is the person‟s WTA and respectively,  E measures the WTP in order to avoid the 

change (Carson and Hanemann, 2005:844-45). 

The CVM uses a survey in order to evaluate the WTP or the WTA that people have for 

a change in 𝑞, one elicitation method that is used in surveys in order to derive the 

WTP/WTA is the νpen-ended question format. The open-ended format reveals directly 

the respondents‟ WTP, more analytically, the open-ended question given to respondents 
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is “How much are you willing to pay for the change from 𝑞0 to 𝑞1?” (Carson and 

Hanemann, 2005:848). Suppose that the answer is A this means that the respondents 

compensating variation C (or his /hers WTP) is equal to A. 

The νpen-ended elicitation format has a number of advantages and disadvantages that 

have been reported in the literature. To begin with, one advantage is that the WTP is 

elicited directly and no further inference is needed (Loomis, 1990:79). As Ahmed and 

Gotoh (2006:16) state, the major advantage of the open-ended elicitation method is that it 

“provides straightforward actual valuation of amenities”. 

Furthermore, open-ended questions provide a richer set of information in regards to 

respondents‟ preferences and additionally open-ended format is more suitable when a 

survey takes place in more than one country (Håkansson, 2008:186). For example, 

Istamto et al., (2014) implement a multi-country study and state that they applied the 

open-ended elicitation method because it is referred as stable over time and furthermore it 

is considered as free of anchoring effects and starting point bias (Istamto et al., 2014:11). 

On the other hand, one disadvantage is that the respondents consider the procedure of 

stating a specific amount for WTP as a difficult mental task thus many respondents don‟t 

answer at all or answer by understating their WTP (Loomis, 1990:79). Furthermore, 

Carson (2000:1416) states that open-ended survey questions typically elicit a large 

number of protest zeros and a small number of very large responses and that even this 

small number can influence in a dramatic way the mean WTP. In a few words a major 

disadvantage of the open-ended format is that it may provide unrealistic responses 

(Ahmed and Gotoh, 2006:16). 

Additionally, the NOOA Panel (Arrow et al., 1993:20-1) criticized the open-ended 

elicitation format and stated that the open-ended questions are not providing the most 

reliable valuations for two reasons. The first reason is that the scenario lacks of realism 

since respondents in their everyday lives rarely are asked to pay for a particular public 

good. The second reason is because open-ended questions lead to strategic overstatement. 

Kealy and Turner (1993:326-7) tested the equality of open-ended and closed-ended 

CV results and they found that in the case of a public good there was a significant 

difference in the results obtained by the two elicitation methods. Furthermore, for the 
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case of a private good there were no differences in the estimates of WTP because no 

incentives for strategic behavior exist for the private good and additionally the 

respondents were more familiar with the good. 

Bateman et al. (1995:161) stated that in their survey they applied three different WTP 

elicitation methods. One elicitation method was the open-ended elicitation format and 

their results indicate that the respondents had to deal with significant uncertainty in 

regards to answering the open-ended questions and furthermore they may reveal free 

riding tendency or strategic overbidding. 

More analytically, some respondents may understate their WTP because they may 

adopt risk-averse strategies that place downwards the stated WTP due to unfamiliarity 

with the open-ended format questions. On the other hand, some respondents tend to 

overstate their WTP in the case where the respondents have realized that the decision in 

regards the provision of the good depends upon  mean WTP, in such case they overstate 

their WTP in order to increase the mean WTP and therefore improve the chance of 

provision (Bateman et al., 1995:164-5). 

Assuming a linear model, the maximum willingness to pay for individual 𝑖 is given 

below 

𝑊𝑇𝑃𝑖 = 𝛽′𝑥𝑖 + 𝑣𝑖    𝑖 = 1,⋯ ,𝑛        (2.3) 

𝑤𝑕𝑒𝑟𝑒 𝛽 =  

𝛽1

𝛽2

⋮
𝛽𝜅

  , 𝑥𝑖 =  𝑥𝑖1 … 𝑥𝑖𝜅  ′,  𝑣𝑖~𝑁 0,𝜎𝑣
2  

and xi is a vector of observed explanatory variables that affect WTP with  𝑥𝑖1 ≡ 1∀𝑖. 

If respondents answer truthfully to the open-ended question, i.e under the absence of 

perception and strategic errors, then the mean willingness to pay (MWTP) is given by 

𝛽′𝑥  and an estimate is given by 𝛽 ′𝑥 . 

Under the presence of hypothetical bias whereas respondents might overstate their 

bids (yea-saying behavior), model (2.3) does not hold anymore and a stochastic frontier 

model can be used to reflect this behavior. In the next section the stochastic frontier 
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model for the open-ended elicitation format under the presence of hypothetical bias is 

going to be analyzed in detail. 

 

2.2. Stochastic frontier model for the open-ended method under the 

presence of hypothetical bias 

Hofler and List (2004) proposed the use of a stochastic frontier model in order to take 

into consideration the difference between a real and a hypothetical auction bid. In the 

present section the same methodology is going to be applied in order to include 

hypothetical bias in Δq. (2.3). 

More analytically, for the case where hypothetical bias exists in the form of 

overstatement of WTP Eq. (2.3) becomes 

 𝑊𝑇𝑃𝑖
∗ = 𝑊𝑇𝑃𝑖 + 𝑢𝑖         (2.4) 

where 𝑢𝑖~ 𝑖𝑖𝑑 𝑁+ 0,𝜎𝑢
2  nonnegative Half Normal which in the stochastic frontier 

literature is known as The Normal-Half Normal Model. 

More analytically, Eq. (2.4) can be written as 

𝑊𝑇𝑃𝑖
∗ = 𝛽1 + 𝛽2𝑥𝑖2+…….+𝛽𝜅𝑥𝑖𝜅 + 𝑣𝑖 + 𝑢𝑖            (2.5) 

where 

● 𝜈𝑖  is the two sided “noise” component and 

● 𝑢𝑖  is the one-sided error term (Kumbhakar and Lovell, 2000:140) 

It should be noted that in the case where hypothetical bias exists in the form of 

understatement of WTP the stochastic frontier model becomes  

 𝑊𝑇𝑃𝑖
∗ = 𝑊𝑇𝑃𝑖 − 𝑢𝑖     (2.6)    (Kumbhakar and Lovell, 2000:74) 

Furthermore in the case of overstatement, from Eq. (2.4) it follows that 

𝑊𝑇𝑃∗𝑖−𝑊𝑇𝑃𝑖 = 𝑢𝑖             (2.7) 

Consequently, when the error term 𝑢𝑖  approaches zero, the gap between the real and 

hypothetical values is decreased and the hypothetical values → real values (Hofler and 

List, 2004:216). 
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Furthermore the composed error is given by 

𝜀𝑖 = 𝑣𝑖 + 𝑢𝑖         (2.8)    

So Eq. (2.5) can be written 

𝑊𝑇𝑃𝑖
∗ = 𝛽′𝑥𝑖 + 𝜀𝑖          (2.9) 

Since  𝐸 𝜀𝑖 = 𝐸 𝑢𝑖 = 𝜎𝑢 
2

𝜋
 , (Kumbhakar and Lovell, 2000), ignoring the presence 

of hypothetical bias will lead to overestimation of the constant term of equation (2.3). 

Very often the model is parameterized in terms of the two parameters defined below 

𝜎2 = 𝜎𝑣
2 + 𝜎𝑢

2         (2.10)  

and 

𝜆 =
𝜎𝑢
𝜎𝑣

         (2.11)  

If overestimation occurs then the parameter 𝜆 should be statistically significant and 

greater than zero. If 𝜆 approaches values close to zero, 𝜎𝑢  approaches values close to zero 

as well and the composed error tends to be 𝑣. 

 

2.3. Open-ended mixture model  

2.3.1. Mixture models theory 

Finite Mixtures of distributions is an approach for modeling many kinds of random 

phenomena. Due to their flexibility, mixture models are increasingly used because of 

their convenience to model unknown distributional shapes.  Mixture models are applied 

in a variety of fields, such as biology, agriculture, marketing, engineering, medicine, 

economics, social sciences and many more, and furthermore finite mixture models 

support many statistical techniques such as cluster and latent class analysis (McLachlan 

et al., 2019:355-6). 

By definition a g-component finite mixture density 𝑓 𝑦𝑖 ;𝜃𝑗   is given by 

𝑓 𝑦𝑖 ;𝛹 =  𝜋𝑗
𝑔
𝑗=1 𝑓𝑗 (𝑦𝑖 ;𝜃𝑗 )   (2.12) 
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Where  

● 𝑓𝑗 (𝑦𝑖) are the densities and they are called the components densities of the mixture 

● 𝜋𝑗  nonnegative quantities  0 ≤ 𝜋𝑗 ≤ 1   𝑗 = 1,… ,𝑔) and 

 𝜋𝑗

𝑔

𝑗=1

= 1 

𝜋1,… ,𝜋𝑔  are called  the mixing proportions or weights 

● 𝜃𝑗  the vector of unknown parameters 

● Ψ is the vector with all the unknown parameters 𝛹 = (𝜋1,… . ,𝜋𝑔 ,𝜉𝛵)Τ and 

● 𝜉 is the vector including all the parameters in 𝜃1 ,… ,𝜃𝑔  known a priori to be distinct 

(McLachlan and Peel, 2000:6-22). 

In a few words taking into consideration Eq. (2.12), 𝑓 𝑦𝑖 ;𝛹  is a linear combination 

of densities 𝑓𝑗 (𝑦𝑖) and the weights 𝜋𝑗  are the class probabilities. 

 

2.3.2. Open-ended mixture model 

Hypothetical bias may occur if the respondents do not answer sincerely and as a result 

a gap is created between their real WTP and the WTP they state. Although it is possible 

that some respondents may state the wrong WTP it is possible that a number of 

respondents may answer sincerely. 

In such cases a latent class model or a mixture model could capture this heterogeneity 

in the response behavior of individuals. In a few words it can‟t be considered that all 

responders are overstating their WTP because some respondents might actually answer 

sincerely. The present consideration follows the same notion that Kumbhakar, Parmeter 

and Tsionas (2013:67) followed in their paper related to the productive inefficiency of 

firms. In a few words, they stated that in a sample both efficient and inefficient firms can 

exist with a given probability. 

Taking into account the finite mixture models theory, the model for WTP will be 

considered as a mixture of two classes. Class 1 has no hypothetical bias and respondents 



Overcoming Hypothetical Bias  Chapter 2 

 
59 

 

answer sincerely so a model with a Normal error holds and class 2 overstates WTP so a 

model with a composed Normal-Half-normal error term exists. 

In a few words it is assumed that a number of respondents answer truthfully according 

to their real WTP and a number of other respondents overstate their WTP. The two 

classes are: 

Class 1: people that answer sincerely and WTP is given by Eq. (2.3), and 

Class 2: people that overstate their WTP and therefore Eq. (2.9) holds.  

The probability of belonging to class 1 and class 2 is given by 𝑝1 and 𝑝2 = (1− 𝑝1) 

respectively. 

In the present case with the two classes described above, the model becomes 

𝑊𝑇𝑃𝑖
∗ =  

𝛽′𝑥𝑖 + 𝑣𝑖             𝑤𝑖𝑡𝑕 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝1

𝛽′𝑥𝑖 + 𝑣𝑖 + 𝑢𝑖      𝑤𝑖𝑡𝑕  𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  𝑝2

           (2.13) 

 

The density functions for each case for the error are the following: 

No Hypothetical Bias: 

𝑓1 𝑣𝑖 =
1

𝜎𝑣 2𝜋
𝑒
−

1

2
 
𝑣𝑖
𝜎𝑣
 

2

=
1

𝜎𝑣 2𝜋
𝑒
−

1

2
 
𝑤𝑡 𝑝𝑖−𝛽

′ 𝑥𝑖
𝜎𝑣

 
2

       (2.14) 

which is the density of the 𝑁(0,𝜎𝑣
2). 

Hypothetical Bias: 

For Normal (𝑣𝑖~𝑖𝑖𝑑 𝑁 0,𝜎𝑣
2 ) and Half-Normal  𝑢𝑖~𝑖𝑖𝑑 𝑁+ 0,𝜎𝑢

2   distributions we 

have the composed error density distribution: 

𝑓2 𝜀𝑖 =
2

𝜎
𝜑  
𝜀𝑖
𝜎
 𝛷  

𝜆

𝜎
𝜀𝑖         (2.15) 

(Kumbhakar and Lovell, 2000) 

where θ(.)/𝛷 .   are the density/cumulative distribution of the 𝑁(0,1) and 𝜀𝑖 , 𝜎 and 𝜆 

are given by Eq. (2.8), the square root of Eq. (2.10) and (2.11) respectively.  

  



Overcoming Hypothetical Bias  Chapter 2 

 
60 

 

The density of the mixture model is  

𝑓 𝑊𝑇𝑃∗;𝜃 =  𝑝𝑗𝑓𝑗 (𝑊𝑇𝑃∗;𝜃𝑗 )

2

𝐽=1

= 𝑝1𝑓1 𝑊𝑇𝑃
∗;𝜃1 + 𝑝2𝑓2 𝑊𝑇𝑃

∗;𝜃2     (2.16) 

Where  𝜃 = (𝛼,𝛽,𝜎𝑣
2 ,𝜎𝑢

2) and α refers to the constant term. 

For a sample of 𝑛 observations the likelihood function is 

𝐿 =  𝑓 𝑊𝑇𝑃𝑖
∗ ;𝜃 =   𝑝𝑗𝑓𝑗  𝑊𝑇𝑃

∗;𝜃𝑗           (2.17)

2

𝑗=1

𝑛

𝑖=1

𝑛

𝑖=1

 

and the log-likelihood function is given by 

𝑙𝑜𝑔𝐿 =  log  𝑝𝑗𝑓𝑗  𝑊𝑇𝑃
∗;𝜃𝑗  

2

𝑗=1

 =

𝑛

𝑖=1

 

=  log 𝑝1𝑓1(𝑊𝑇𝑃∗;𝜃1) + 𝑝2𝑓2(𝑊𝑇𝑃∗;𝜃2) 𝑛
𝑖=1        (2.18) 

The log-likelihood function is going to be maximized with respect to the unknown 

parameters, 𝜃 and 𝑝1. 

Furthermore, because mixture models present difficulties in the maximization process 

Eq. (2.18) is going to be estimated with the EM algorithm (Dempster et. al., 1977). The 

Maximum Likelihood Estimates for the mixing proportion for mixtures of Normals 

cannot be written in closed form. As a consequence these MLEs have to be computed 

iteratively while the EM algorithm greatly facilitates their computation (McLachlan and 

Peel, 2000:25). 

In order to estimate a Mixture model the EM algorithm is going to be applied in the 

present thesis. The EM algorithm treats the estimation problem as a missing data 

problem, where the missing data is the information about class membership. Moreover, it 

consists of two steps, the E-step (expectation) and the M-step (maximization). Applying 

the EM algorithm to the mixture problem ensures monotonic increases of the likelihood 

values (McLachlan and Peel, 2000:48). Appendix A describes in detail how the EM 

algorithm works. 
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It should be noted that fitting mixture models has to deal with a number of issues such 

as the presence of multiple maxima in the mixture likelihood function and therefore the 

choice of starting values plays a very important role. 

 

2.4. Simulations for open-ended mixture model 

Simulations were conducted in order to test the validity of the proposed model for a 

number of different cases. For each different case 1000 replications were considered with 

samples of 1000 observations. 

Additionally, with respect to the probability of class membership, the simulations 

consider two alternative scenarios. The first scenario considers the probability 𝑝1 to be 

constant over respondents while the second scenario assumes that class membership 

depends on a variable z. 

 

2.4.1. Data generation  

In the data generation process of each case, the model that is going to be used is a 

simple regression model of the form, 

𝑊𝑇𝑃𝑖
∗ = 𝑎 + 𝛽𝑥𝑖 + 𝜔𝑖          (2.19) 

given by one explanatory-independent variable 𝑥𝑖~𝑁(4,1) where the coefficient of 𝑥𝑖  

β is equal to 2 and the constant term 𝛼 is equal to 5. Taking into consideration Eq. (2.13) 

and Eq. (2.19) the model becomes 

𝑊𝑇𝑃𝑖
∗ =  

5 + 2𝑥𝑖 + 𝑣𝑖             𝑤𝑖𝑡𝑕 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝1

5 + 2𝑥𝑖 + 𝑣𝑖 + 𝑢𝑖     𝑤𝑖𝑡𝑕 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  𝑝2
            (2.20)   

Where  𝑣𝑖~𝑖𝑖𝑑 𝑁(0,𝜎𝑣
2) and  𝑢𝑖~𝑖𝑖𝑑 𝑁+

 0,𝜎𝑢
2 . 

For each case that was examined, different values were given to 𝜎𝑣 and 𝜎𝑢 . More 

analytically, Table 2.1 illustrates the values of 𝜎𝑣,  𝜎𝑢  is given as a function of 𝜎𝑣  in Eq. 

(2.21) and 𝜆  is determined by Eq. (2.11). 
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𝜎𝑢 =  

10𝜎𝑣
5𝜎𝑣
2𝜎𝑣

           (2.21) 

 

Table 2.1: Values for 𝜎𝑣 

Values for 𝝈𝒗 

𝜎𝑣 = 0.5 𝜎𝑣 = 0.7 𝜎𝑣 = 0.8 

𝜎𝑣 = 1 𝜎𝑣 = 1.2 𝜎𝑣 = 1.5 

 

Additionally the mean WTP at the mean value of 𝑥𝑖  is given by Eq. (2.22) below 

𝑚𝑒𝑎𝑛 𝑊𝑇𝑃 =  5 + 2𝑥  = 12.994   (2.22) 

Finally, for the class membership probability  𝑝1 (probability to belong in class 1 were 

respondents answer sincerely) and  𝑝2 (probability to belong in class 2 were 

overstatement occurs) two cases were considered. 

Case A:  𝑝1 is a constant, equal to 0.75 and   𝑝2 is equal to 0.25. In this case all 

respondents that belong in the same class have the same probability. 

Case B:  𝑝1 is no longer a constant, each respondent has a different probability to 

belong to class 1 since  𝑝1 depends on a variable z. 

More analytically, denoting by 𝑝∗∗ an unobserved latent variable 

𝑝∗∗ = 𝑑1 + 𝑑2𝑧𝑖 + 𝑤𝑖 ⇒ 

               𝑝∗∗ = 2 + 2𝑧𝑖 + 𝑤𝑖              (2.23) 

where  𝑤𝑖~𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐(0, 1) or standard logistic  and  𝑧𝑖~𝑁𝑜𝑟𝑚𝑎𝑙 1, 4.84 .  

The probability that respondent 𝑖 belongs in class 1 (𝑝∗∗ > 0) is given by 

𝑝1𝑖 =
1

1 + 𝑒− 𝑑1+𝑑2𝑧𝑖 
          (2.24) 
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Furthermore, in case B, since there is different probability 𝑝1𝑖  for each respondent, the 

probability of class 1 can‟t be illustrated since it is practically very difficult to illustrate 

1000 different probabilities, consequently in this case, the mean probability is computed 

and its value is given by 

𝑝1
∗ =

 𝑝1𝑖
1000
𝑖=1

1000
= 0.80     (2.25). 

 

2.4.2. Starting values and Estimation Strategy 

In the case of the open-ended method model we followed a number of steps and 

estimations in order to get the starting values for the model and especially for the EM 

algorithm. The estimates obtained by the EM algorithm were then used as starting values 

for the ML estimation of the mixture model, a similar procedure is followed for instance 

in Stata (StataCorp, 2021). 

The above mentioned procedure can be decomposed in a number of steps that are 

described below, namely determining the starting values of the EM algorithm (Steps 1-3) 

and application of the EM algorithm and subsequent estimation by ML (Step 4). 

Step 1: Random assignment of observations to two classes 

The first step in obtaining starting values for the EM algorithm consisted in randomly 

assigning observations to the two classes. For this purpose, random draws from a 

Uniform(0,1) were generated and the observation was classified in the first class 

whenever the draw was below 0.5. 

Step 2: Assigning an error distribution (normal/composed) to each class 

In order to determine which model is represented from each group, ordinary least 

squares was applied to each group separately. Taking into account our previous 

observation in section 2.2 about the positive mean of the composed error term, the group 

with the bigger estimate of the constant term is assumed to be the class with 

overstatement (composed error model), while the other class is assumed to be the class 

where respondents answer sincerely. 
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More analytically, since the two classes have been determined, from each team‟s OLS 

(Ordinary Least Squares) estimation estimates for 𝑎 and 𝛽 were received. As it has been 

already mentioned, since  𝐸 𝜀𝑖 = 𝐸 𝑢𝑖 = 𝜎𝑢 
2

𝜋
 , ignoring the presence of hypothetical 

bias will lead to overestimation of the constant term of the equation. Taking under 

consideration this fact, it is expected that the class with the bigger estimate of 𝑎 will 

represent the class with respondents that overstate their WTP. 

From the OLS regression starting values for 𝛼,𝛽 and 𝜎𝑣 have been determined and 

consequently a starting value for 𝜎𝑢  is needed. More specifically, 𝜎𝑢  was computed by  

𝜎 𝑢 =
𝑎 2 − 𝛼 1

 
2

𝜋

 

where 𝑎 2 is the estimate of the constant term from OLS for the class where 

overestimation presumably occurs and 𝛼 1 is the estimate obtained by OLS regression for 

the class where no overestimation occurs. 

From the clustering procedure the proportion of the number of the observations-

respondents that belong in each class was calculated and this proportion was used as a 

starting value of the class membership probability. 

Step 3: Estimating Eq. (2.19) with a composed error by ML 

After the OLS estimation procedure was completed and the classes were determined, a 

ML estimation followed for the composed error model (class with overstatements of 

WTP) assuming that all respondents have overstate their WTP. This step provided 

starting values for EM mainly for the parameter 𝜆. 

More specifically the starting values of 𝛼 and 𝛽 were defined as the mean of the 

values of the OLS of both classes. The starting value of 𝜎𝑣
2 was determined as the  𝜎2 

estimate obtained from the OLS for the normal error model class and finally the starting 

value for 𝜆 was determined to be equal with the estimate of 𝜆 obtained by the ML 

estimation of the composed model. 
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Step 4: Application of EM algorithm 

In this step, the EM algorithm was run for the mixture model until a tolerance criterion 

was reached. The tolerance criterion was until the log-likelihood, obtained for iteration k, 

satisfies Eq. (2.26). 

 𝑙𝑜𝑔𝑙𝑖𝑘𝑒𝑙𝑖𝑕𝑜𝑜𝑑 𝑘 − 𝑙𝑜𝑔𝑙𝑖𝑘𝑒𝑙𝑖𝑕𝑜𝑜𝑑 𝑘 − 1  < 0.001           (2.26) 

where k is the number of  the iteration. 

The estimates produced from the EM algorithm were used as starting values to 

maximize the log-likelihood of the proposed mixture model. This strategy is similar to 

the one implemented by Stata (StataCorp, 2021) whereas a few iterations of the EM 

algorithm are used to refine starting values for maximum likelihood. 

Additionally, for case B where the probability is different for each respondent, the 

parameters 𝑑1 and 𝑑2 need starting values as well thus an additional procedure was added 

in step 4. More analytically, the extra procedure that was added was the estimation of a 

“logit” model for the class probability and the results were used as starting values for the 

parameters 𝑑1 and 𝑑2. 

 

2.4.3. Simulation Results for the open-ended method model 

For all cases the simulation results were obtained after 1000 replications. However, in 

some cases, there were problems for a number of replications since standard errors could 

not be computed. Therefore the tables that follow present the results for the successful 

replications and the number of failed replications are reported as well. More specifically 

the estimation results that are illustrated are obtained after the replications with the 

problem were removed. 

For each parameter the tables report the mean estimates and the standard deviation. 

Furthermore, apart from the parameter estimates, we illustrate the bias of the mean WTP 

estimate for each case. More specifically the bias is given by the following equation: 

𝐵𝑖𝑎𝑠 = 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑚𝑒𝑎𝑛 𝑊𝑇𝑃 −𝑚𝑒𝑎𝑛 𝑊𝑇𝑃 ⇒ 

 𝐵𝑖𝑎𝑠 =  𝑎 + 𝛽 𝑥  −   5 + 2𝑥                         (2.27)               
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Where 

𝑎 =
 𝛼 𝑟𝑅
𝑟=1

𝑅
, 𝛽 =

 𝛽 𝑟𝑅
𝑟=1

𝑅
 and R is the number of replications. 

The closer to zero the bias is for each case, it means that the estimates of the 

parameters are closer to the real values. It is very important to obtain very small values of 

bias since the major goal is to overcome hypothetical bias. The smaller the bias is, the 

more appropriate the model is in order to overcome hypothetical bias. 

 

Case A. Fixed probability of class membership for all respondents 

(𝒑𝟏=0.75) 

In this subsection the results of 1000 replications are presented for the case where the 

class membership probability for class 1 (no overstatement occurs) is constant and equal 

to 0.75 and consequently 25% of the respondents overstate their WTP. 

Table 2.2 illustrates the mean estimates of 𝑎, 𝛽, 𝜎𝑣
2 and  𝜆, the class probability was 

parametrized as in Eq. (2.28) below in order to ensure that the estimate lies in the open 

unit interval and in the estimation process the parameter 𝑘𝑎𝑝𝑝𝑎 is the parameter that was 

estimated. 

𝑝 1 =
1

(1 + 𝑒𝑘𝑎𝑝𝑝𝑎 )
                   (2.28) 

Furthermore, the bias of the mean WTP estimate of each case is illustrated in Table 

2.4 and Table 2.3 illustrates the number of replications with breaking down issues that 

have been removed. More specifically, if in a specific replication a parameter‟s standard 

deviation was infinite or appeared as NaN (not a number), this replication was removed 

and the mean estimates were calculated from the remaining replications. 
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Table 2.2: Simulation results for open-ended and class probability 𝑝1=0.75 

Estimation Results for open-ended 𝒑𝟏=0.75 

 
𝜶  𝜷  𝝈 𝒗

𝟐 𝝀  𝒑 𝟏 

𝝈𝒗 = 𝟎.𝟓 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

Mean 4.9888 2.0027 0.2483 10.0155 0.7496 

Standard deviation 0.0783 0.019 0.0152 0.5424 
 

𝝈𝒗 = 𝟎.𝟓 𝒂𝒏𝒅  𝝀 = 𝟓 

Mean 4.9814 2.0044 0.2479 5.0108 0.7491 

Standard deviation 0.0778 0.0187 0.0164 0.2947 
 

𝝈𝒗 = 𝟎.𝟕 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

Mean 4.9845 2.0037 0.4867 10.0173 0.7497 

Standard deviation 0.1098 0.0267 0.0299 0.5416 
 

𝝈𝒗 = 𝟎.𝟕 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean 4.9742 2.0061 0.4859 5.011 0.7491 

Standard deviation 0.1088 0.0262 0.0322 0.2947 
 

𝝈𝒗 = 𝟎.𝟕 𝒂𝒏𝒅 𝝀 = 𝟐 

Mean 4.9733 2.008 0.502 1.1305 0.6974 

Standard deviation 0.1478 0.0243 0.1085 0.9877 
 

𝝈𝒗 = 𝟎.𝟖 𝒂𝒏𝒅  𝝀 = 𝟏𝟎 

Mean 4.9823 2.0043 0.6357 10.0172 0.7497 

Standard deviation 0.1254 0.0305 0.039 0.5416 
 

𝝈𝒗 = 𝟎.𝟖 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean 4.9703 2.007 0.6346 5.0107 0.7491 

Standard deviation 0.1245 0.03 0.0421 0.2947 
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Table 2.2: (continued) 

𝝈𝒗 = 𝟎.𝟖 𝒂𝒏𝒅 𝝀 = 𝟐 

Mean 4.957 2.0087 0.6304 2.0179 0.7455 

Standard deviation 0.13 0.028 0.0541 0.169 
 

𝝈𝒗 = 𝟏 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

Mean 4.9775 2.0054 0.9951 10.0315 0.7495 

Standard deviation 0.1569 0.038 0.061 0.5417 
 

𝝈𝒗 = 𝟏 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean 4.9628 2.0088 0.9916 5.0107 0.7491 

Standard deviation 0.1556 0.0375 0.0657 0.2947 
 

𝝈𝒗 = 𝟏 𝒂𝒏𝒅 𝝀 = 𝟐 

Mean 4.9459 2.0109 0.9849 2.0173 0.7453 

Standard deviation 0.1625 0.035 0.0844 0.1691 
 

𝝈𝒗 = 𝟏.𝟐 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

Mean 4.9731 2.0065 1.4304 10.0171 0.7497 

Standard deviation 0.1881 0.0457 0.0879 0.5416 
 

𝝈𝒗 = 𝟏.𝟐 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean 4.9554 2.0105 1.4278 5.0107 0.7491 

Standard deviation 0.1868 0.0449 0.0946 0.2947 
 

𝝈𝒗 = 𝟏.𝟐 𝒂𝒏𝒅 𝝀 = 𝟐 

Mean 4.9202 2.0131 1.4052 2.0280 0.719 

Standard deviation 0.2336 0.0422 0.1198 0.1625 
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Table 2.2: (continued) 

𝝈𝒗 = 𝟏.𝟓 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

Mean 4.9663 2.0081 2.2353 10.0167 0.7497 

Standard deviation 0.2352 0.0571 0.1373 0.5418 
 

𝝈𝒗 = 𝟏.𝟓 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean 4.9442 2.0132 2.231 5.0107 0.7491 

Standard deviation 0.2335 0.0562 0.1478 0.2947 
 

 

Table 2.2 shows that in all cases the mean estimates for all the parameters are very 

close to the real values (with one exception for the case where 𝜆 = 2 and 𝜎𝑣 = 0.7). Over 

all cases considered the bias for the estimate of 𝛼 is less than 1.6% of the parameter value 

while for the estimate of 𝛽 it is less than 0.7%. 

More specifically, in cases where 𝜆 = 10 and 5 the mean estimates are very close to 

the real values for all parameters. Additionally in the case where 𝜆 = 2 and 𝜎𝑣 = 0.7 the 

mean estimate for 𝑝1 and 𝜆 are not as close to the real values as in other cases. So does in 

the case where 𝜎𝑣 = 1.2 and 𝜆 = 2, the mean estimate for 𝑝1 is not as close to the real 

value as in the other cases. To sum up, the probability estimate in the rest of the cases is 

very close to the real probability. 

In general and as expected, for a given value of 𝜆, both the bias and standard deviation 

of the estimates of 𝛼 and 𝛽 increase as the variance of the two-sided error term 𝜎𝑣 

increases. On the other hand, for a given value of 𝜎𝑣  the bias and standard deviation of 

the mentioned parameter estimates decreases with 𝜆. 

Moreover, from the results presented in Table 2.3, in cases where 𝜆 = 10 and 𝜆 = 5 

the replications that had to be removed were very few, especially for the cases where 

𝜆 = 5 almost all of them had no replications with standard error issues. On the other hand 

though, in cases where 𝜆 = 2 for some cases the number of the replications removed 

were more than 500 replications thus for such cases the simulation results are not 



Overcoming Hypothetical Bias  Chapter 2 

 
70 

 

illustrated in Table 2.2 and 2.4. Such cases were for example the cases with 𝜎𝑣 = 0.5  and 

𝜎𝑣 = 1.5 where in both cases 𝜆 = 2. 

Kumbhakar et al. (2013:68) have pointed out that when 𝜆 → 0 the identification of the 

model breaks down. This can explain the fact why in many cases where 𝜆 = 2 the 

program returned many replications with standard error issues. 

 

Table 2.3: Replication removed for each case due to standard error issues 

Number of replications removed 

 𝛌 = 𝟏𝟎 𝛌 = 𝟓 𝛌 = 𝟐 

𝝈𝒗=0.5 2 0 - 

𝝈𝒗=0.7 2 1 374 

𝝈𝒗 =0.8 2 0 3 

𝝈𝒗=1.0 4 0 0 

𝝈𝒗=1.2 4 0 28 

𝝈𝒗=1.5 4 0 - 

 

Finally Table 2.4 illustrates the bias of the estimated mean WTP as given by Eq. 

(2.27). Furthermore, Table 2.4 illustrates as well the bias of the mean WTP as it is given 

by Eq. (2.27) in the case where the model is estimated without considering the case of 

overestimation. 

  



Overcoming Hypothetical Bias  Chapter 2 

 
71 

 

Table 2.4: Bias of Mean WTP for open-ended mixture model vs Bias of the Mean 

WTP for open-ended normal model (no Hypothetical bias considered) with class 

probability fixed 

Bias of Mean WTP for Open-ended model  (probability 𝒑𝟏=0.75) 

 𝝈𝒗 = 𝟎.𝟓 & 𝝀 = 𝟏𝟎 𝝈𝒗 = 𝟎.𝟓 & 𝝀 = 𝟓 𝝈𝒗 = 𝟎.𝟕 & 𝝀 = 𝟏𝟎 𝝈𝒗 = 𝟎.𝟕& 𝝀 = 𝟓 

Mean 

𝑾𝑻 𝑷𝒎𝒊𝒙𝒕𝒖𝒓𝒆 𝒎𝒐𝒅𝒆𝒍 
12.9936 12.993 12.9933 12.9926 

𝑩𝒊𝒂𝒔𝒎𝒊𝒙𝒕𝒖𝒓𝒆 𝒎𝒐𝒅𝒆𝒍 -0.0004 -0.001 -0.0007 -0.0014 

Mean 

𝑾𝑻 𝑷𝒏𝒐𝒓𝒎𝒂𝒍 𝒎𝒐𝒅𝒆𝒍 
13.9922 13.4933 14.3915 13.693 

𝑩𝒊𝒂𝒔𝒏𝒐𝒓𝒎𝒂𝒍 𝒎𝒐𝒅𝒆𝒍 0.9982 0.4993 1.3975 0.699 

 𝝈𝒗 = 𝟎.𝟕 & 𝝀 = 𝟐 𝝈𝒗 = 𝟎.𝟖 & 𝝀 = 𝟏𝟎 𝝈𝒗 = 𝟎.𝟖 & 𝝀 = 𝟓 𝝈𝒗 = 𝟎.𝟖 & 𝝀 = 𝟐 

Mean 

𝑾𝑻 𝑷𝒎𝒊𝒙𝒕𝒖𝒓𝒆 𝒎𝒐𝒅𝒆𝒍 
12.9992 12.9935 12.9923 12.9858 

𝑩𝒊𝒂𝒔𝒎𝒊𝒙𝒕𝒖𝒓𝒆 𝒎𝒐𝒅𝒆𝒍 0.0053 -0.0005 -0.0017 -0.0082 

Mean 

𝑾𝑻 𝑷𝒏𝒐𝒓𝒎𝒂𝒍 𝒎𝒐𝒅𝒆𝒍 
13.2739 14.5912 13.7928 13.3139 

𝑩𝒊𝒂𝒔𝒏𝒐𝒓𝒎𝒂𝒍 𝒎𝒐𝒅𝒆𝒍 0.2799 1.5971 0.7988 0.3199 

 𝝈𝒗 = 𝟏 & 𝝀 = 𝟏𝟎 𝝈𝒗 = 𝟏 & 𝝀 = 𝟓 𝝈𝒗 = 𝟏 & 𝝀 = 𝟐 𝝈𝒗 = 𝟏.𝟐 & 𝝀 = 𝟏𝟎 

Mean 

𝑾𝑻 𝑷𝒎𝒊𝒙𝒕𝒖𝒓𝒆 𝒎𝒐𝒅𝒆𝒍 
12.993 12.992 12.9835 12.9931 

𝑩𝒊𝒂𝒔𝒎𝒊𝒙𝒕𝒖𝒓𝒆 𝒎𝒐𝒅𝒆𝒍 -0.0009 -0.002 -0.0105 -0.0009 
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Table 2.4: (continued) 

Mean 

𝑾𝑻 𝑷𝒏𝒐𝒓𝒎𝒂𝒍 𝒎𝒐𝒅𝒆𝒍 
14.9904 13.9926 13.3938 15.3897 

𝑩𝒊𝒂𝒔𝒏𝒐𝒓𝒎𝒂𝒍 𝒎𝒐𝒅𝒆𝒍 1.9964 0.9985 0.3998 2.3957 

 𝝈𝒗 = 𝟏.𝟐 & 𝝀 = 𝟓 𝝈𝒗 = 𝟏.𝟐 & 𝝀 = 𝟐 𝝈𝒗 = 𝟏.𝟓 & 𝝀 = 𝟏𝟎 𝝈𝒗 = 𝟏.𝟓 & 𝝀 = 𝟓 

Mean 

𝑾𝑻 𝑷𝒎𝒊𝒙𝒕𝒖𝒓𝒆 𝒎𝒐𝒅𝒆𝒍 
12.9914 12.9666 12.9927 12.991 

𝑩𝒊𝒂𝒔𝒎𝒊𝒙𝒕𝒖𝒓𝒆 𝒎𝒐𝒅𝒆𝒍 -0.0026 -0.0274 -0.0013 -0.003 

Mean 

𝑾𝑻 𝑷𝒏𝒐𝒓𝒎𝒂𝒍 𝒎𝒐𝒅𝒆𝒍 
14.1923 13.4738 15.9887 14.4918 

𝑩𝒊𝒂𝒔𝒏𝒐𝒓𝒎𝒂𝒍 𝒎𝒐𝒅𝒆𝒍 1.1983 0.4798 2.9946 1.4978 

 

The bias obtained by the proposed model in all cases is very small and close to zero, 

with the maximum value of the bias being around 0.21% of the true value of mean WTP 

in only one case. The majority of the cases have bias less than the 0.1% of the true value 

of mean WTP. More analytically, in cases where 𝜎𝑣 = 0.5 and 𝜆 = 10 or 5,   𝜎𝑣 = 0.7, 

0.8 or 1.2 and 𝜆 = 10 the bias is below 0.001. The biggest bias is in the case where 

𝜎𝑣 = 1.2 and 𝜆 = 2 which is -0.0274 and on the other hand the smallest bias in the case 

where 𝜎𝑣 = 0.5 and 𝜆 = 10 which is -0.0004. 

On the other hand, the bias obtained by the estimation of the normal model that 

doesn‟t take into account the possible existence of hypothetical bias is large in all cases. 

More specifically, as Table 2.4 shows, in the cases where 𝜆 = 10 or 5 the bias was larger 

since in these cases the overstatement was bigger. Furthermore, since the potential bias 

was not considered during the estimation process it was expected that the constant will be 

bigger and consequently the estimate of the mean WTP will be large. Overall the 

maximum value of the bias is 2.9946 and the smaller bias is 0.2799, obtained in the case 

where 𝜆 = 2 and 𝜎𝑣 = 0.7. 
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Overall, taking into consideration the above simulation results for open-ended format 

CV model with latent classes, with class membership probability 𝑝1 equal to 0.75, it can 

be concluded that the model that is proposed in order to overcome hypothetical bias was 

able to fulfill its main goal. 

Additionally, comparing the mean WTP estimate of the proposed model and the 

normal model where overstatement is ignored the gain of the proposed model is clear 

since the proposed model reduces the bias of the mean WTP estimate. The mean 

estimates of the parameters for almost all cases were very close to the real values, the 

class membership probability estimate was very close to the real probability and the bias 

of the mean WTP estimate was almost zero. However it should be noted that for the cases 

in which the parameter 𝜆 is 2, many replications would break down and the bias was 

considerably larger. 

 

Case B. Probability depending on variable z 

In case B the real class membership probability 𝑝1 is no longer a fixed constant but 

varies between respondents. More analytically, the probability is determined by a 

variable z and is given by Eq. (2.24). It is quite possible that some underlying 

characteristics of respondents could affect their likelihood of overstating or understating 

their WTP, therefore it is more realistic to assume that the class membership probability 

varies over individuals. 

In the present subsection, several cases are going to be analyzed in order to test how 

the model responds when each respondent has different class probability.  Regarding the 

model structure two extra parameters (𝑑1 and 𝑑2) have been included in the estimation 

process. Tables 2.5 and 2.6 report the results for the above scenario. Additionally, since 

the class membership probability differs among respondents, it is impossible for each 

case to illustrate 1000 mean probabilities, so Table 2.6 shows the mean estimates of 

parameters 𝑑1,𝑑2 and the mean probability of all class membership probabilities given by 

Eq. (2.25). Furthermore Table 2.7 illustrates the number of replications that have been 

removed due to standard error issues and finally Table 2.8 presents the bias of the mean 

WTP estimate. 
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Table 2.5: Open ended model simulation results for probability depending on variable 

z (1): parameters 𝛼,𝛽,𝜎𝑣
2 and 𝜆  

Estimation Results for open-ended model and 𝒑𝟏 depending on z (1) 

 
𝜶  𝜷  𝛔 𝐯

𝟐
 𝝀  

𝝈𝒗 = 𝟎.𝟓 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

Mean 5.0045 1.9989 0.2494 10.0288 

Standard deviation 0.0773 0.0189 0.0131 0.5675 

𝝈𝒗 = 𝟎.𝟓 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean 5.0014 1.9997 0.2492 5.0067 

Standard deviation 0.075 0.0182 0.013 0.2999 

𝝈𝒗 = 𝟎.𝟕 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

Mean 5.0037 1.9991 0.4885 10.0265 

Standard deviation 0.1055 0.0258 0.0261 0.5916 

𝝈𝒗 = 𝟎.𝟕 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean 5.0058 1.9985 0.4886 5.0121 

Standard deviation 0.1078 0.0263 0.0258 0.2992 

𝝈𝒗 = 𝟎.𝟖 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

Mean 5.005 1.9993 0.6389 10.03 

Standard deviation 0.1114 0.0273 0.032 0.5649 

𝝈𝒗 = 𝟎.𝟖 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean 5.0029 1.9995 0.6386 5.0123 

Standard deviation 0.1199 0.028723 0.0325 0.2972 

𝝈𝒗 =  𝟏 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

Mean 5.0051 1.9988 0.997 10.0265 

Standard deviation 0.1508 0.0369 0.0533 0.592 
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Table 2.5: (continued) 

𝝈𝒗 = 𝟏 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean 5.0065 1.9984 0.9968 5.0166 

Standard deviation 0.15 0.0366 0.0545 0.3142 

𝝈𝒗 =  𝟏 𝒂𝒏𝒅 𝝀 = 𝟐 

Mean 5.0063 1.999 0.9994 2.0037 

Standard deviation 0.1454 0.0351 0.0557 0.1642 

𝝈𝒗 = 𝟏.𝟐 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

Mean 5.0027 1.9995 1.4363 10.0228 

Standard deviation 0.1798 0.0431 0.0726 0.5637 

𝝈𝒗 = 𝟏.𝟐 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean 5.0077 1.9981 1.4355 5.0165 

Standard deviation 0.18 0.0439 0.0785 0.3142 

𝝈𝒗 = 𝟏.𝟐 𝒂𝒏𝒅 𝝀 = 𝟐 

Mean 5.0042 1.9992 1.4359 2.0083 

Standard deviation 0.1755 0.0417 0.0754 0.1594 

𝝈𝒗 = 𝟏.𝟓 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

Mean 5.0079 1.9981 2.2431 10.0265 

Standard deviation 0.2262 0.0553 0.12 0.5916 

𝝈𝒗 = 𝟏.𝟓 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean 5.0097 1.9976 2.2429 5.0165 

Standard deviation 0.225 0.0549 0.1227 0.3142 

𝝈𝒗 = 𝟏.𝟓 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean 5.0103 1.9984 2.2473 2.005 

Standard deviation 0.2191 0.0529 0.1251 0.1629 



Overcoming Hypothetical Bias  Chapter 2 

 
76 

 

Table 2.6: Open ended- probability depending on variable z  (2): probability estimates 

Estimation Results for open-ended and 𝒑𝟏 depending on z (2) 

 
𝒅 𝟏 𝒅 𝟐 Mean 𝒑 𝟏 

𝝈𝒗 = 𝟎.𝟓 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

Mean 2.0074 2.0161 0.7968 

Standard deviation 0.2038 0.1966 
 

𝝈𝒗 = 𝟎.𝟓 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean 2.0313 2.0355 0.7974 

Standard deviation 0.247 0.2464 
 

𝝈𝒗 = 𝟎.𝟕 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

Mean 2.0245 2.028 0.7973 

Standard deviation 0.2083 0.2168 
 

𝝈𝒗 = 𝟎.𝟕 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean 2.0113 2.0262 0.7966 

Standard deviation 0.2446 0.2422 
 

𝝈𝒗 = 𝟎.𝟖 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

Mean 2.0171 2.0278 0.7969 

Standard deviation 0.2094 0.207 
 

𝝈𝒗 = 𝟎.𝟖 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean 2.039 2.0466 0.7974 

Standard deviation 0.2478 0.2668 
 

𝝈𝒗 =  𝟏 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

Mean 2.0249 2.0281 0.7974 

Standard deviation 0.2081 0.2168 
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Table 2.6: (Continued) 

𝝈𝒗 = 𝟏 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean 2.0395 2.0442 0.7975 

Standard deviation 0.2592 0.2739 
 

𝝈𝒗 = 𝟏 𝒂𝒏𝒅 𝝀 = 𝟐 

Mean 2.1311 2.1564 0.7975 

Standard deviation 0.4873 0.485458 
 

𝝈𝒗 = 𝟏.𝟐 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

Mean 2.025 2.0287 0.7974 

Standard deviation 0.205 0.2148 
 

𝝈𝒗 = 𝟏. 𝟐 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean 2.0394 2.0443 0.7975 

Standard deviation 0.2593 0.2739 
 

𝝈𝒗 = 𝟏. 𝟐 𝒂𝒏𝒅 𝝀 = 𝟐 

Mean 2.1098 2.1395 0.7973 

Standard deviation 0.4677 0.5214 
 

𝝈𝒗 = 𝟏.𝟓 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

Mean 2.0245 2.0279 0.7973 

Standard deviation 0.2083 0.2168 
 

𝝈𝒗 = 𝟏. 𝟓 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean 2.0395 2.0444 0.7975 

Standard deviation 0.2594 0.2739 
 

𝝈𝒗 = 𝟏. 𝟓 𝒂𝒏𝒅 𝝀 = 𝟐 

Mean 2.1257 2.1505 0.7974 

Standard deviation 0.4747 0.475 
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As Table 2.5 illustrates, the mean estimates, after removing the replications with 

standard error issues, are very close to the real values for all cases. Additionally, Table 

2.6 illustrates the mean estimates for the class membership parameters and the mean 

estimated probability. In all cases the mean estimates for 𝑑1 and 𝑑2 are very close to the 

given values. Each respondent has a different probability in each replication thus Eq. 

(2.24) and Eq. (2.25) were applied in order to receive an indicative  𝑝1 from each 

replication. Table 2.6 shows the mean probability of all the indicative probabilities of all 

the replications. 

Table 2.7 presents the number of replications that have been removed for each case. It 

can be seen that in cases where 𝜆 = 10 and 𝜆 = 5 the replications that had to be removed 

were very few, just like in the case where the class membership probability was the same 

for all respondents. On the other hand though, in cases where 𝜆 = 2 the majority of the 

cases are not presented at all due to many standard error issues. 

 

Table 2.7: Number of replications with standard error problems 

Number of replications removed 

 𝛌 = 𝟏𝟎 𝛌 = 𝟓 𝛌 = 𝟐 

𝝈𝒗=0.5 0 14 - 

𝝈𝒗=0.7 0 1 - 

𝝈𝒗=0.8 0 0 - 

𝝈𝒗=1.0 1 0 5 

𝝈𝒗=1.2 0 0 4 

𝝈𝒗=1.5 0 0 5 

 

In order to explain the identification problem of the two classes in cases where 𝜆 = 2, 

the following Figures 2.1-2.3 illustrate graphically the densities for 𝜎𝑣
2 = 0.49 and 

𝜆 = 10, 5 and 2. 

  



Overcoming Hypothetical Bias  Chapter 2 

 
79 

 

Figure 2.1: Density illustration of Normal error N(0, 0.49) and composed error 

(𝜆 = 10) 

 

Figure 2.1, presents the illustration of the Normal error density and the Composed 

error density in the case where 𝜆 = 10. As it is shown the two densities in this case are 

easily distinguishable and thus the program was able to identify the two classes and 

return estimates close to the real values, without breaking down problems. 

In Figure 2.2, the density of the normal error has remained the same but the density of 

the composed error is illustrated for 𝜆 = 5. It can be noticed that the two densities are 

still easily distinguishable but the observations of the composed density are gathered 

closer to the center. In this case the density of the composed error, compared to the 

previous case where 𝜆 = 10, is still easily distinct from the normal error density, but as it 

is shown, the shape of the composed error density is more symmetric than before. 
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Figure 2.2: Density illustration of Normal error N(0,0.49) and composed error (ι=5)

 

Additionally, Figure 2.3, shows the normal error density compared to the composed 

error in the case where 𝜆 = 2.  As 𝜆 decreases the overlap of the two densities in the 

region where the normal density is not close to zero increases and the composed error 

density in less skewed. In this case the two densities are getting to look very similar so in 

such cases the program deals with serious issues in order to identify for each respondent 

in which class he/she belongs. 
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Figure 2.3: Density illustration of Normal error N(0, 0.49) and composed error (ι=2) 

 

Overall it can be concluded that as 𝜎𝑢  is getting bigger, so does the mean of the 

composed error as well,  𝛦 𝑣 + 𝑢 = 0 + 𝜎𝑢
 2

 𝜋
 and skewness increases while the center 

of the density moves to the right and possibly the two densities are more easily 

distinguished. On the other hand, in cases where 𝜎𝑢  doesn‟t have an outstanding 

difference compared to 𝜎𝑣, the model won‟t have the ability to detect which class refers 

to each respondents so the algorithm has identification issues. Such cases are the ones 

where 𝜆 = 2 and this explains why many cases with 𝜆 = 2 had identification problems. 

Finally, Table 2.8 illustrates the biases for the mean WTP estimate for each case as 

given by Eq. (2.27). 

.  



Overcoming Hypothetical Bias  Chapter 2 

 
82 

 

Table 2.8: Bias of Mean WTP for open-ended and probability depending on variable z 

Bias of Mean WTP for open-ended elicitation format model  (class probability depending on 

variable z) 

 𝝈𝒗 = 𝟎.𝟓 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 𝝈𝒗 = 𝟎.𝟓 𝒂𝒏𝒅 𝝀 = 𝟓 𝝈𝒗 = 𝟎.𝟕 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

Mean 

W𝑻 𝑷𝒎𝒊𝒙𝒕𝒖𝒓𝒆 𝒎𝒐𝒅𝒆𝒍 
12.9941 12.9942 12.9941 

𝑩𝒊𝒂𝒔𝒎𝒊𝒙𝒓𝒖𝒓𝒆 𝒎𝒐𝒅𝒆𝒍 0.0001 0.0002 0.0001 

Mean 

𝑾𝑻 𝑷𝒏𝒐𝒓𝒎𝒂𝒍 𝒎𝒐𝒅𝒆𝒍 
13.9922 13.4933 14.3915 

𝑩𝒊𝒂𝒔𝒏𝒐𝒓𝒎𝒂𝒍 𝒎𝒐𝒅𝒆𝒍 0.9982 0.4993 1.3975 

 𝝈𝒗 = 𝟎.𝟕 𝒂𝒏𝒅 𝝀 = 𝟓 𝝈𝒗 = 𝟎.𝟖 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 𝝈𝒗 = 𝟎.𝟖 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean 

W𝑻 𝑷𝒎𝒊𝒙𝒕𝒖𝒓𝒆 𝒎𝒐𝒅𝒆𝒍 
12.9938 12.9962 12.9949 

𝑩𝒊𝒂𝒔𝒎𝒊𝒙𝒕𝒖𝒓𝒆 𝒎𝒐𝒅𝒆𝒍 -0.0002 0.0022 0.0009 

Mean 

𝑾𝑻 𝑷𝒏𝒐𝒓𝒎𝒂𝒍 𝒎𝒐𝒅𝒆𝒍 
13.693 14.5912 13.7928 

𝑩𝒊𝒂𝒔𝒏𝒐𝒓𝒎𝒂𝒍 𝒎𝒐𝒅𝒆𝒍 0.699 1.5971 0.7988 

 𝝈𝒗 = 𝟏 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 𝝈𝒗 = 𝟏 𝒂𝒏𝒅 𝝀 = 𝟓 𝝈𝒗 = 𝟏 𝒂𝒏𝒅 𝝀 = 𝟐 

Mean 

W𝑻 𝑷𝒎𝒊𝒙𝒕𝒖𝒓𝒆 𝒎𝒐𝒅𝒆𝒍 
12.9943 12.9941 12.9963 

𝑩𝒊𝒂𝒔𝒎𝒊𝒙𝒕𝒖𝒓𝒆 𝒎𝒐𝒅𝒆𝒍 0.0003 0.0001 0.0023 

Mean 

𝑾𝑻 𝑷𝒏𝒐𝒓𝒎𝒂𝒍 𝒎𝒐𝒅𝒆𝒍 
14.9904 13.9926 13.3938 

𝑩𝒊𝒂𝒔𝒏𝒐𝒓𝒎𝒂𝒍 𝒎𝒐𝒅𝒆𝒍 1.9964 0.9985 0.3998 
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Table 2.8: (continued) 

 𝝈𝒗 = 𝟏.𝟐 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 𝝈𝒗 = 𝟏.𝟐 𝒂𝒏𝒅 𝝀 = 𝟓 𝝈𝒗 = 𝟏.𝟐 𝒂𝒏𝒅 𝝀 = 𝟐 

Mean 

W𝑻 𝑷𝒎𝒊𝒙𝒕𝒖𝒓𝒆 𝒎𝒐𝒅𝒆𝒍 
12.9947 12.9941 12.995 

𝑩𝒊𝒂𝒔𝒎𝒊𝒙𝒕𝒖𝒓𝒆 𝒎𝒐𝒅𝒆𝒍 0.0007 0.0001 0.001 

Mean 

𝑾𝑻 𝑷𝒏𝒐𝒓𝒎𝒂𝒍 𝒎𝒐𝒅𝒆𝒍 
15.3897 14.1923 13.4738 

𝑩𝒊𝒂𝒔𝒏𝒐𝒓𝒎𝒂𝒍 𝒎𝒐𝒅𝒆𝒍 2.3957 1.1983 0.4798 

 𝝈𝒗 = 𝟏.𝟓 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 𝝈𝒗 = 𝟏.𝟓 𝒂𝒏𝒅 𝝀 = 𝟓 𝝈𝒗 = 𝟏.𝟓 𝒂𝒏𝒅 𝝀 = 𝟐 

Mean 

W𝑻 𝑷𝒎𝒊𝒙𝒕𝒖𝒓𝒆 𝒎𝒐𝒅𝒆𝒍 
12.9943 12.9941 12.9979 

𝑩𝒊𝒂𝒔𝒎𝒊𝒙𝒕𝒖𝒓𝒆 𝒎𝒐𝒅𝒆𝒍 0.0003 0.0001 0.0039 

Mean 

𝑾𝑻 𝑷𝒏𝒐𝒓𝒎𝒂𝒍 𝒎𝒐𝒅𝒆𝒍 
15.9887 14.4918 13.5937 

𝑩𝒊𝒂𝒔𝒏𝒐𝒓𝒎𝒂𝒍 𝒎𝒐𝒅𝒆𝒍 2.9946 1.4978 0.5997 

 

As is illustrated in Table 2.8, the bias in all cases is very small, below 0.1 and more 

specifically the bias is very close to 0 for all cases which means that the mean estimates 

are almost the same with the true value. 

More analytically, in the majority of the cases the bias is below 0.001which represents 

a very small percentage of mean WTP value. The biggest bias is in case where 𝜎𝑣 =

1.5 and 𝜆 = 2 which is 0.0039 and on the other hand the smallest bias is 0.0001 which 

this value is the bias for several cases such as 𝜎𝑣 = 0.5 and 𝜆 = 10 and more. 

Additionally, the bias of the mean WTP for the model where overstatement is ignored 

is larger. More specifically, the biggest bias is in the case where 𝜎𝑣 = 1.5 and 𝜆 = 10 
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which is 2.9946, in this case the bias from the proposed model is 0.0003 thus it is 

concluded that the gain of the proposed model is clear. 

Overall, taking into consideration the above simulation results for a composed open-

ended elicitation format model with class membership probability 𝑝1 different for each 

respondent, it can be concluded that the model that is proposed in order to overcome 

hypothetical bias was able to fulfill its main goal in most of the experiments. 

 

Conclusions  

In this chapter a mixture open-ended model is proposed as a way to tackle the problem 

caused by yea-saying behavior. The simulation results are quite encouraging under both 

scenarios of either constant mixture weights or individual dependent mixture weights. 

The proposed model is effective in dealing with Hypothetical Bias and can provide 

unbiased estimates of mean WTP when CV data include yea-saying behavior. 

Additionally, comparing the simulation results when OLS is applied to all responses 

when hypothetical bias is ignored to the simulation results obtained by the proposed 

model it can be noticed that the proposed model reduces significantly the bias of mean 

WTP. It can be noticed that when hypothetical bias is not taken into account the mean 

WTP estimate has higher values and thus there is a problem of overestimation. By 

applying the proposed model the mean WTP is no longer overestimated and the estimates 

are more reliable since hypothetical bias has been taken into account in the econometric 

model. Furthermore, it should be noted that as the parameter 𝜆 gets smaller the program 

had problems identifying the two classes and consequently more breaking down issues 

occurred. 

At this point, the first evidence show how the mixture model works in order to 

overcome hypothetical bias have been gathered and the next step in the following chapter 

is to apply the stochastic frontier model in a double-bounded DC model in order to 

expand the model to a more popular elicitation method. 
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Appendix A  

EM algorithm 

The EM algorithm treats the estimation problem as a missing data problem, where the 

missing data is the information about class membership. More analytically and following 

McLachlan and Peel (2000), the EM algorithm treats the observed data vector 𝑦1,… , 𝑦𝑛  

as incomplete since the component-label vectors 𝑧1,… , 𝑧𝑛  are not available. The 

component-label vectors are taken to be realized values of the random vectors 𝑍1,… ,𝑍𝑛  

where we assume they are distributed unconditionally as 𝑍1,… ,𝑍𝑛
𝑖𝑖𝑑
~

 𝑀𝑢𝑙𝑡𝑔(1,𝜋). The 

𝑗-th mixing proportion 𝜋𝑗  is the prior probability that the entity belongs to the 𝑗-th 

component of the mixture. On the other hand, the posterior probability that the entity 

belongs to the 𝑗-th component with 𝑦𝑖  having been observed is given by 

𝜏𝑗  𝑦𝑖 = 𝑝𝑟 𝑒𝑛𝑡𝑖𝑡𝑦 ∈ 𝑗𝑡𝑕 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡  𝑦𝑖) = 𝑝𝑟 𝑍𝑗𝑖 = 1 𝑦𝑖 = 𝜋𝑗𝑓𝑗 (𝑦𝑖)/𝑓 𝑦𝑖  

 𝑗 = 1,… ,𝑔; 𝑖 = 1,… , 𝑛 (McLachlan and Peel, 2000:19-20). 

The E-step handles the posterior probability and in the M-step since E-step replaces 

the unobservable part 𝑧𝑗𝑖  with the current conditional expectation 𝜏𝑗  𝑦𝑖   we can obtain 

the updated estimate of 𝜋𝑗  (McLachlan and Peel, 2000:49-50). 

In a few words, a finite mixture maximizes the likelihood (McLachlan et al., 

2019:360) and the ML estimate of Ψ, (𝛹 ) is given by a proper root of the likelihood 

equation,  

𝜕 log 𝐿 𝛹 𝜕𝛹 = 0 

log 𝐿 𝛹 =  𝑙𝑜𝑔

𝑛

𝑖=1

𝑓𝑦𝑖 ;𝛹) =  

 log{ 𝜋𝑗

𝑔

𝑗=1

𝑓𝑗 (𝑦𝑖 ;𝜃𝑗 )}

𝑛

𝑖=1

 

Additionally, a g-dimensional vector 𝑧𝑖  is being fitted in the likelihood function, 

where 𝑧𝑗𝑖 = (𝑧𝑖)𝑗 = 1 𝑜𝑟 0 according to if 𝑦𝑖  is or isn‟t arisen from the j-th component of 

the mixture, 1,… ,𝑔 𝑎𝑛𝑑 𝑖 = 1,… , 𝑛. 
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The complete data log likelihood function for 𝛹 is 

log 𝐿𝑐  𝛹 =    𝑧𝑗𝑖 [log𝜋𝑗 + log 𝑓𝑗 (𝑦𝑖 ;𝜃𝑗 )]

𝑛

𝑖=1

𝑔

𝑗=1

 

(McLachlan and Peel, 2000:48). 

In the E-step in the EM algorithm we take the conditional expectation of log 𝐿𝑐  𝛹  

given 𝑦 and 𝛹(0) is used for 𝛹. 

𝑄 𝛹;𝛹 0  = 𝛦𝛹(0)[𝑙𝑜𝑔 𝐿𝑐  𝛹 |𝑦] 

On the (𝑘 + 1) iteration 𝑄 𝛹;𝛹 𝑘   is required on the E-step and 𝛹 𝑘  is the value of 

𝛹 after the 𝑘-th iteration of the EM. The E-step provides the quantity 𝜏𝑗  𝑦𝑖 ;𝛹
 𝑘   

𝜏𝑗  𝑦𝑖 ;𝛹
 𝑘  = 𝜋𝑗

𝑘𝑓𝑗 (𝑦𝑖 ;𝜃𝑗
(𝑘))/ 𝜋(𝑘)

𝑕𝑓𝑕(𝑦𝑖 ;𝜃𝑕
(𝑘))

𝑔

𝑕=1

 

which is the posterior probability that the 𝑖-th part of the sample with value 𝑦𝑖  belongs 

to the 𝑗-th component of the mixture. 

In the M-step the equation that is maximized is 

𝑄 𝛹;𝛹 𝑘  =   𝜏𝑗  𝑦𝑖 ;𝛹
 𝑘  [𝑙𝑜𝑔 𝜋𝑗 + 𝑙𝑜𝑔 𝑓𝑗 (𝑦𝑖 ;𝜃𝑗 )]

𝑛

𝑖=1

𝑔

𝑗=1

 

Where 𝜋𝑗  will be given by 

𝜋𝑗 =  𝑧𝑗𝑖 /𝑛

𝑛

𝑖=1

 

and by replacing 𝑧𝑗𝑖  by 𝜏𝑗  𝑦𝑖 ;𝛹
 𝑘   we have 

𝜋𝑗 (𝑘+1) =  𝜏𝑗  𝑦𝑖 ;𝛹
 𝑘  /𝑛𝑛

𝑖=1   (McLachlan and Peel, 2000:48-50).  
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Chapter 3 

Applying stochastic frontier and mixture models to contingent 

valuation under the double-bounded dichotomous choice 

format  

 

Introduction 

In Chapter 3 a stochastic frontier CV under the double-bounded dichotomous choice 

format is going to be applied in order to overcome hypothetical bias. The main difference 

from the open-ended format is that a number of bids are given to respondents and they 

have to answer with a Yes or No regarding their WTP. 

The chapter is organized as follows. The first section presents the theoretical 

background of the CV method under the double-bounded elicitation format. The second 

section analyses the stochastic frontier model of the double-bounded format with the 

presence of hypothetical bias and the third part analyses the double-bounded mixture 

model that it is suggested in order to overcome hypothetical bias. The fourth section of 

the chapter presents simulations that took place intending to test the proposed model and 

finally the last section of this chapter, presents an empirical application with real CV 

data, in order to investigate if hypothetical bias exists and how the proposed model can 

overcome the bias. 

Considering the fourth section, it describes in detail the data generation process, the 

initialization strategy that it was followed and the simulation results for a number of 

different cases. Additionally, the simulations took place for two different probability 

determination cases. In the first case the class probability is a constant and consequently 

all respondents have the same probability for overstating their WTP and in the other case 

the probability of overstating WTP can differ among respondents since the probability 

depends on a variable z. 
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3.1. Contingent valuation and double-bounded dichotomous choice 

elicitation method 

In a CV study the main goal is to measure in monetary terms for each individual an 

item 𝑞. Each person has a utility function 𝑢 𝑥, 𝑞 which is defined by a number of 

commodities 𝑥 and the item 𝑞. Each person has an indirect utility function 𝜐 𝑝, 𝑞,𝑦  

where 𝑝 are the market prices of the commodities and 𝑦 is the income. It is important to 

compare if after a change in 𝑞 each individual will be better off or worse off. For 

example: 

If the change in 𝑞 represents an improvement  𝑢1 > 𝑢0. 

If the change represents a worsening  𝑢1 < 𝑢0. 

If the change if indifferent for the agent  𝑢1 = 𝑢0. 

Where 𝑢0 ,𝑢1 are the utility levels associated to 𝑞0 and 𝑞1 for a given 𝑥. The change in 

monetary terms is represented by the Compensating variation C which satisfies Eq. (3.1) 

and the equivalent variation E which satisfies Eq. (3.2). 

𝜐 𝑝, 𝑞1,𝑦 − 𝐶 = 𝜐 𝑝, 𝑞0, 𝑦        (3.1) 

𝜐 𝑝, 𝑞1,𝑦 = 𝜐 𝑝, 𝑞0,𝑦 + 𝐸        (3.2) 

In the case where the change is an improvement 𝐶 > 0 and  𝐸 > 0, where C is the 

person‟s maximum WTP in order to ensure that the change will be implemented, 

additionally E is the minimum WTA. On the other hand, in the case where the change 

leads to being worse off  𝐶 < 0 and  𝐸 < 0. In this case, C is the person‟s WTA and 

respectively E measures the WTP in order to avoid the change (Carson and Hanemann, 

2005:844-45). 

One elicitation method in order to evaluate the WTP or WTA that individuals have for 

a change in 𝑞 is the double-bounded dichotomous choice format. The double-bounded 

question format is a closed-ended format. More analytically, the respondents are asked, 

“Would you vote to support the change from 𝑞0 to 𝑞1 if it would cost you $A?” The 

respondent will answer “yes” if his value C (his WTP) is at least A (Carson and 

Hanemann, 2005:848). 
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The double-bounded format is a referendum format. The NOOA Panel (Arrow et al., 

1993:21) proposed that researchers should use a referendum format because it has many 

advantages. First of all it is more realistic because in the provision of public goods 

referenda are common. Another advantage of the double-bounded elicitation format is 

that respondents can answer without high mental demands thus there are less non-

responses by the end of the survey. 

Furthermore, the question format matches the market setting where the price is stated 

and the individuals are price-takers and consequently they decide if they are going to buy 

or not at the given price. Additionally, the double-bounded format is referred to as an 

“incentive compatible device” in the sense that respondents would reveal their true 

preferences in regard to the provision of a good (Loomis, 1990:79). 

On the other hand, the double-bounded format has a number of disadvantages, one 

disadvantage is that the estimates could be sensitive to distributional assumptions and to 

the functional form of the utility function (Loomis, 1990:79). Furthermore, a major 

disadvantage of the double-bounded format is that there is a possibility that the 

respondents are influenced from the first offer and consequently they tend to accept the 

follow-up offer (Ahmed and Gotoh, 2006:16). 

In CV surveys the respondents are asked to reveal their preference about a given 

scenario by answering with a Yes or No to the question of whether they are willing to pay 

a certain amount (the bid). The double-bounded format asks the respondents twice and 

the second question-bid depends on the answer of the first question. 

By applying the double-bounded approach is implicitly assumed that “the 

respondent‟s answers to both of the payment questions are driven by one underlying 

WTP value” (Alberini, 1995:297). Additionally, if this assumption holds it means that the 

information regarding the true WTP is increased by the second discrete choice question 

because a tighter interval around the true WTP has been created and therefore there is a 

gain in efficiency with respect to the single-bound elicitation format. 

The maximum willingness to pay for individual 𝑖 is given below 

𝑊𝑇𝑃𝑖 = 𝛽′𝑥𝑖 + 𝑣𝑖    𝑖 = 1,⋯ ,𝑛      (3.3) 
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𝑤𝑕𝑒𝑟𝑒 𝛽 =  

𝛽1

𝛽2

⋮
𝛽𝜅

  , 𝑥𝑖 =  𝑥𝑖1 … 𝑥𝑖𝜅  ′ and  𝑣𝑖~𝑁 0,𝜎𝑣
2  

and 𝑥𝑖  is a vector of observed explanatory variables that affect WTP and 𝑥𝑖1 ≡ 1∀𝑖. 

The density function for the error is the following: 

𝑓1 𝑣𝑖 =
1

𝜎𝑣 2𝜋
𝑒
−

1

2
 
𝑣𝑖
𝜎𝑣
 

2

=
1

𝜎𝑣 2𝜋
𝑒
−

1

2
 
𝑤𝑡 𝑝𝑖−𝛽

′ 𝑥𝑖
𝜎𝑣

 
2

        (3.4) 

Each respondent has to answer two successive bids whereas the second bid depends on 

the answer that is given for the first bid. Firstly, the respondents have to answer the first 

bid with a yes or no. Denoting as 𝑦1and 𝑦2 the responses to the two bids respectively 

𝑦1𝑖 =  
1     𝑦𝑒𝑠 𝑡𝑜 𝑏𝑖𝑑1𝑖

0     𝑛𝑜 𝑡𝑜  𝑏𝑖𝑑1𝑖

 ,        𝑖 = 1,⋯ ,𝑛                 (3.5) 

If yes to 𝑏𝑖𝑑1𝑖 , 𝑦1𝑖 = 1 and 𝑏𝑖𝑑2𝑖 > 𝑏𝑖𝑑1𝑖 ,  𝑦2𝑖 =  
 1 𝑓𝑜𝑟 𝑦𝑒𝑠 𝑡𝑜 𝑏𝑖𝑑2𝑖

0 𝑓𝑜𝑟 𝑛𝑜 𝑡𝑜 𝑏𝑖𝑑2𝑖

                (3.6) 

If no to 𝑏𝑖𝑑1𝑖 , 𝑦1𝑖 = 0 and 𝑏𝑖𝑑2𝑖 < 𝑏𝑖𝑑1𝑖, 𝑦2𝑖 =  
1 𝑓𝑜𝑟 𝑦𝑒𝑠 𝑡𝑜 𝑏𝑖𝑑2𝑖

0 𝑓𝑜𝑟 𝑛𝑜 𝑡𝑜 𝑏𝑖𝑑2𝑖

                    (3.7) 

In order to receive yes-yes as an answer for both bids the individual‟s WTP must 

satisfy the that 𝑊𝑇𝑃𝑖 > 𝑏𝑖𝑑1𝑖 and 𝑊𝑇𝑃𝑖 > 𝑏𝑖𝑑2𝑖  so we have that 𝑊𝑇𝑃𝑖 > 𝑏𝑖𝑑2𝑖  >

𝑏𝑖𝑑1𝑖 . A yes answer to the first bid and no to the second bid, means that the individual‟s 

WTP is greater than 𝑏𝑖𝑑1𝑖  but smaller than 𝑏𝑖𝑑2𝑖  , 𝑊𝑇𝑃𝑖 > 𝑏𝑖𝑑1𝑖 and 𝑊𝑇𝑃𝑖 < 𝑏𝑖𝑑2𝑖  so 

we have that 𝑏𝑖𝑑1𝑖 < 𝑊𝑇𝑃𝑖 < 𝑏𝑖𝑑2𝑖 . 

On the other hand, for a no-yes answer to 𝑏𝑖𝑑1𝑖 and 𝑏𝑖𝑑2𝑖  respectively, the 

respondent‟s WTP must me smaller than 𝑏𝑖𝑑1𝑖 and greater than 𝑏𝑖𝑑2𝑖  ,𝑊𝑇𝑃𝑖<𝑏𝑖𝑑1𝑖 and 

𝑊𝑇𝑃𝑖 > 𝑏𝑖𝑑2𝑖  which means that 𝑏𝑖𝑑2𝑖 < 𝑊𝑇𝑃𝑖 < 𝑏𝑖𝑑1𝑖 . Finally, in order to receive a no 

answer in both bids, the respondent‟s WTP is smaller than both 𝑏𝑖𝑑1𝑖 and 

𝑏𝑖𝑑2𝑖 , 𝑊𝑇𝑃𝑖<𝑏𝑖𝑑1𝑖 and 𝑊𝑇𝑃𝑖 < 𝑏𝑖𝑑2𝑖  so we have that 𝑊𝑇𝑃𝑖 < 𝑏𝑖𝑑2𝑖<𝑏𝑖𝑑1𝑖 . 
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For yes-yes 

𝑊𝑇𝑃𝑖 > 𝑏𝑖𝑑1𝑖 𝑎𝑛𝑑 𝑊𝑇𝑃𝑖 > 𝑏𝑖𝑑2𝑖  so we have that 𝑊𝑇𝑃𝑖 > 𝑏𝑖𝑑2𝑖  > 𝑏𝑖𝑑1𝑖  

𝑃 𝑊𝑇𝑃𝑖 ≥ 𝑏𝑖𝑑2𝑖 = 𝑃(𝑣𝑖 ≥ 𝑏𝑖𝑑2𝑖 − 𝛽
′𝑥𝑖) = 

𝑃  
𝑣𝑖
𝜎𝑣
≥
𝑏𝑖𝑑2𝑖 − 𝛽

′𝑥𝑖
𝜎𝑣

 = 1− 𝑃  
𝑣𝑖
𝜎𝑣
≤
𝑏𝑖𝑑2𝑖 − 𝛽

′𝑥𝑖
𝜎𝑣

  

in terms of the standard normal cumulative distribution it can be written as 

1− 𝛷  
𝑏𝑖𝑑2𝑖 − 𝛽

′𝑥𝑖
𝜎𝑣

             3.8  

For yes-no 

𝑊𝑇𝑃𝑖 > 𝑏𝑖𝑑1𝑖 𝑎𝑛𝑑 𝑊𝑇𝑃𝑖 < 𝑏𝑖𝑑𝑖2  so we have that 𝑏𝑖𝑑1𝑖 < 𝑊𝑇𝑃𝑖 < 𝑏𝑖𝑑2𝑖  

𝑃 𝑏𝑖𝑑1𝑖 ≤ 𝑊𝑇𝑃𝑖 ≤ 𝑏𝑖𝑑2𝑖 = 

𝑃((𝑏𝑖𝑑1𝑖 − 𝛽
′𝑥𝑖) ≤ 𝑣𝑖 ≤ (𝑏𝑖𝑑2𝑖 − 𝛽

′𝑥𝑖)) 

𝑃  
𝑣𝑖
𝜎𝑣
≤
𝑏𝑖𝑑2𝑖 − 𝛽

′𝑥𝑖
𝜎𝑣

 − 𝑃  
𝑣𝑖
𝜎𝑣
≥
𝑏𝑖𝑑1𝑖 − 𝛽

′𝑥𝑖
𝜎𝑣

  

in terms of the standard normal cumulative distribution it can be written as 

𝛷 
𝑏𝑖𝑑2𝑖 − 𝛽

′𝑥𝑖
𝜎𝑣

 − 𝛷  
𝑏𝑖𝑑1𝑖 − 𝛽

′𝑥𝑖
𝜎𝑣

            (3.9) 

For no-yes 

𝑊𝑇𝑃𝑖 < 𝑏𝑖𝑑1𝑖 𝑎𝑛𝑑 𝑊𝑇𝑃𝑖 > 𝑏𝑖𝑑2𝑖  so we have that 𝑏𝑖𝑑2𝑖 < 𝑊𝑇𝑃𝑖 < 𝑏𝑖𝑑1𝑖  

𝑃 𝑏𝑖𝑑2𝑖 ≤ 𝑊𝑇𝑃𝑖 ≤ 𝑏𝑖𝑑1𝑖 = 

𝑃((𝑏𝑖𝑑2𝑖 − 𝛽
′𝑥𝑖) ≤ 𝑣𝑖 ≤ (𝑏𝑖𝑑1𝑖 − 𝛽

′𝑥𝑖))= 

𝑃  
𝑣𝑖
𝜎𝑣
≤
𝑏𝑖𝑑1𝑖 − 𝛽

′𝑥𝑖
𝜎𝑣

 − 𝑃  
𝑣𝑖
𝜎𝑣
≥
𝑏𝑖𝑑2𝑖 − 𝛽

′𝑥𝑖
𝜎𝑣

  

in terms of the standard normal cumulative distribution it can be written as 

𝛷  
𝑏𝑖𝑑1𝑖 − 𝛽

′𝑥𝑖
𝜎𝑣

 − 𝛷  
𝑏𝑖𝑑2𝑖 − 𝛽

′𝑥𝑖
𝜎𝑣

                  (3.10) 
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For no-no 

𝑊𝑇𝑃𝑖 < 𝑏𝑖𝑑1𝑖 𝑎𝑛𝑑 𝑊𝑇𝑃𝑖 < 𝑏𝑖𝑑2𝑖  so we have that 𝑊𝑇𝑃𝑖 < 𝑏𝑖𝑑2𝑖 < 𝑏𝑖𝑑1𝑖  

𝑃 𝑊𝑇𝑃𝑖 ≤ 𝑏𝑖𝑑2𝑖 = 𝑃(𝑣𝑖 ≤ 𝑏𝑖𝑑2𝑖 − 𝛽
′𝑥𝑖) =  𝑃  

𝑣𝑖
𝜎𝑣
≤
𝑏𝑖𝑑2𝑖 − 𝛽

′𝑥𝑖
𝜎𝑣

  

in terms of the standard normal cumulative distribution it can be written as 

𝛷  
𝑏𝑖𝑑2𝑖 − 𝛽

′𝑥𝑖
𝜎𝑣

             (3.11) 

The log-likelihood function is given by: 

ln 𝐿 = 𝑦1𝑖𝑦2𝑖 ln 1− 𝛷  
𝑏𝑖𝑑2𝑖  − 𝛽

′𝑥𝑖
𝜎𝑣

  +  1− 𝑦1𝑖  1− 𝑦2𝑖 ln𝛷 
𝑏𝑖𝑑2𝑖  − 𝛽

′𝑥𝑖
𝜎𝑣

 

𝑛

𝑖=1

+ 𝑦1𝑖 1− 𝑦2𝑖 ln 𝛷  
𝑏𝑖𝑑2𝑖  − 𝛽

′𝑥𝑖
𝜎𝑣

 − 𝛷  
𝑏𝑖𝑑1𝑖  − 𝛽

′𝑥𝑖
𝜎𝑣

  

+  1− 𝑦1𝑖 𝑦2𝑖 𝑙𝑛  𝛷  
𝑏𝑖𝑑1𝑖  − 𝛽

′𝑥𝑖
𝜎𝑣

 − 𝛷  
𝑏𝑖𝑑2𝑖  − 𝛽

′𝑥𝑖
𝜎𝑣

           (3.12) 

If respondents answer truthfully to the double-bounded questions, i.e under the 

absence of perception and strategic errors, then the mean willingness to pay (MWTP) is 

given by 𝛽′𝑥  and an estimate is given by 𝛽 ′𝑥 . Under the presence of hypothetical bias, 

respondents might overstate their bids (yea-saying behavior). In such case the model 

given by Eq. (3.3) does not hold anymore and a stochastic frontier model can be used to 

reflect this behavior. The next section analyses the stochastic frontier model for the 

double-bounded DC elicitation format under the presence of hypothetical bias. 

 

3.2. Stochastic frontier model for the double-bounded DC method with 

the presence of hypothetical bias 

Hofler and List (2004) proposed the use of the stochastic frontier model as a way to 

take into consideration the difference between the real and the hypothetical auction bid. 

Additionally, Chien et al. (2005:362) proposed “a general model that addresses the 

starting point bias in the dichotomous choice evaluation data by incorporating both the 
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anchoring effect and yes-saying bias”. More specifically, Chien et al. (2005:365) applied 

stochastic frontier model by adding a composed error in their model in order to include 

the fact that yea-saying tendency will increase a respondent‟s WTP. In a few words, in 

the presence of yea-saying behavior, stated WTP can be modeled as “true” WTP 

augmented with a one-sided nonnegative error term as below 

 𝑊𝑇𝑃𝑖
∗ = 𝑊𝑇𝑃𝑖 + 𝑢𝑖          (3.13) 

or 

𝑊𝑇𝑃𝑖
∗ = 𝛽′𝑥𝑖 + 𝜀𝑖              (3.14) 

where 𝑢𝑖~ 𝑖𝑖𝑑 𝑁+ 0,𝜎𝑢
2  nonnegative Half Normal which gives rise to the so called 

Normal-Half Normal Model in the stochastic frontier literature. 

More analytically, Eq. (3.13) is 

𝑊𝑇𝑃∗𝑖 = 𝛽1 + 𝛽2𝑥𝑖2+…….+𝛽𝜅𝑥𝑖𝜅 + 𝑣𝑖 + 𝑢𝑖       (3.15) 

and the composed error is given by 

𝜀𝑖 = 𝑣𝑖 + 𝑢𝑖              (3.16) 

Note that the composed error doesn‟t have a zero mean, since 𝐸 𝜀𝑖 = 𝐸 𝑢𝑖 = 𝜎𝑢 
2

𝜋
, 

(Kumbhakar and Lovell, 2000), thus ignoring the presence of hypothetical bias will lead 

to overestimation of the constant term of equation (3.3). In the case where hypothetical 

bias exists in the form of understatement of WTP the stochastic frontier model becomes 

𝑊𝑇𝑃𝑖
∗ = 𝑊𝑇𝑃𝑖 − 𝑢𝑖           (3.17) 

From Eq. (3.3) and Eq. (3.13) follows that 

𝑊𝑇𝑃𝑖
∗−𝑊𝑇𝑃𝑖 = 𝑢𝑖             (3.18) 

When the error term 𝑢𝑖  approaches zero, the gap between the real and hypothetical 

values is decreased and the hypothetical values → true values (Hofler and List, 

2004:216). Additionally, the model is parameterized very often in terms of the two 

parameters defined below 

𝜎2 = 𝜎𝑣
2 + 𝜎𝑢

2             (3.19)  

and 
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     𝜆 =
𝜎𝑢
𝜎𝑣

                  (3.20)  

If overestimation occurs then the parameter 𝜆 should be statistically significant and 

greater than zero. If 𝜆 approaches values close to zero, 𝜎𝑢  approaches values close to zero 

as well and the composed error tends to be equal to 𝑣 . For Normal (𝑣𝑖~𝑖𝑖𝑑 𝑁 0,𝜎𝑣
2 ) 

and Half-Normal  𝑢𝑖~𝑖𝑖𝑑 𝑁+ 0,𝜎𝑢
2   distributions we have that the composed error 

density distribution: 

𝑓2 𝜀𝑖 =
2

𝜎
𝜑  
𝜀𝑖
𝜎
 𝛷  

𝜆

𝜎
𝜀𝑖            (3.21) 

(Kumbhakar and Lovell, 2000; Chien et al., 2005:366) 

where θ(.)/𝛷 .   are the density/cumulative distribution of the N(0,1) and 𝜀𝑖 , 𝜎 and 𝜆 

are given by Eq. (3.18), the square root of Eq.(3.21) and (3.22) respectively. 

In the case where hypothetical bias exists, Eq. (3.5), Eq. (3.6) and Eq. (3.7) hold but 

Eqs. (3.8)-(3.11) need to be modified as now the model includes a composed error term 

and its cumulative distribution needs to be used instead of the cumulative normal. The 

cumulative distribution of the composed error term involves integrating the expression in 

Eq. (3.21) which is non-trivial. Tsay et al., (2013) proposed a closed-form approximation 

for the cumulative distribution function of a normal-half normal composed error that 

represents the integral 

𝐹 =  
2

𝜎
𝜑  
𝜀𝑖
𝜎
 𝛷  

𝜆

𝜎
𝜀𝑖  𝑑𝜀𝑖            3.22 

𝑄

−∞

 

For any number Q, which in our case is 𝑄 = 𝑏𝑖𝑑𝑗𝑖 − 𝛽
′𝑥𝑖 . Therefore  𝛷( ) is replaced 

by the closed form approximation denoted by Fa proposed by Tsay et al., (2013:261) 

when deriving Eqs. (3.8)-(3.11). 

Additionally, Amsler et al. (2019) present another approximation for the cumulative 

distribution function of a normal-half normal composed error. They proposed a new 

simulation based method and they compare their method with Tsay‟s et al. (2013) 

approximation. They found that in non-extreme values the two approximations are quite 

close but for extreme values they claim that their approximation is more accurate (Amsler 
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et al., 2019:32). The new simulation based method for the cdf is not applied in the present 

thesis because it was not published yet by the time the present dissertation was starting.  

The log-likelihood given in Eq. (3.12) is modified and is given as  

ln 𝐿 = 𝑦1𝑖𝑦2𝑖 ln 1 − 𝐹𝑎 𝑏𝑖𝑑2𝑖  − 𝛽
′𝑥𝑖  +  1− 𝑦1𝑖  1− 𝑦2𝑖 ln𝐹𝑎 𝑏𝑖𝑑2𝑖  − 𝛽

′𝑥𝑖 

𝑛

𝑖=1

+ 𝑦1𝑖 1− 𝑦2𝑖 ln 𝐹𝑎 𝑏𝑖𝑑2𝑖  − 𝛽
′𝑥𝑖 − 𝐹𝑎 𝑏𝑖𝑑1𝑖  − 𝛽

′𝑥𝑖  

+   1− 𝑦1𝑖 𝑦2𝑖 𝑙𝑛 𝐹𝑎 𝑏𝑖𝑑1𝑖  − 𝛽
′𝑥𝑖 − 𝐹𝑎 𝑏𝑖𝑑2𝑖  − 𝛽

′𝑥𝑖               (3.23)   

In the case where hypothetical bias exists in the form of underestimation, which means 

that individuals respond more no-no, the approximation of the cumulative distribution 

function of a normal-half normal composed error differs. 

More analytically, in the case where underestimation occurs, Eq. (3.17) holds and the 

density of the composed error term is not given by Eq. (3.22) but by Eq. (3.24) below 

(Kumbhakar and Lovell, 2000). 

𝑓2
′ 𝜀𝑖 =

2

𝜎
𝜑  
𝜀𝑖
𝜎
 𝛷  −

𝜆

𝜎
𝜀𝑖         (3.24) 

The integral of Eq. (3.24) represents the cdf of the composed error in the case of 

underestimation.  Ιn order to present the cumulative distribution of the composed error 

term in this case, some algebra shows it can be expressed as a function of F in Eq. (3.22) 

as follows 

 
2

𝜎
𝜑  
𝜀𝑖
𝜎
 𝛷  −

𝜆

𝜎
𝜀𝑖 𝑑𝜀𝑖 =

𝑄

−∞

 
2

𝜎
𝜑  
𝜀𝑖
𝜎
  1− 𝛷  

𝜆

𝜎
𝜀𝑖  𝑑𝜀𝑖

𝑄

−∞

 

=    
2

𝜎
𝜑  
𝜀𝑖
𝜎
 𝑑𝜀𝑖 − 

2

𝜎
𝜑  
𝜀𝑖
𝜎
 𝛷  

𝜆

𝜎
𝜀𝑖 

𝑄

−∞

𝑄

−∞

𝑑𝜀𝑖
 

=  
2

𝜎
𝜑  
𝜀𝑖
𝜎
 𝑑𝜀𝑖 − 𝐹

𝑄

−∞

= 2𝛷  
𝑄

𝜎
 − 𝐹                       

The last equality is obtained by performing a change of variable in the integral of the 

left hand side. The closed-form approximation of the composed error in the case of 

underestimation is given by the expression below, 
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2𝛷  
𝑄

𝜎
 − 𝐹𝑎  

 

3.3. Double-bounded mixture model  

Hypothetical bias may occur if the respondents do not answer honestly, consequently a 

gap between the real WTP and the estimated hypothetical WTP is created. Although it is 

possible that a number of respondents might answer insincerely, a number of respondents 

might reveal their true WTP. It cannot be considered that all responders are overstating 

their WTP because some responders might actually answer sincerely. In cases where this 

heterogeneity occurs in regard to individuals behavior a latent class model or a mixture 

model is proposed in order to estimate the WTP. 

The present consideration follows the same idea that Kumbhakar, Parmeter and 

Tsionas (2013:67) followed in their paper related to the productive inefficiency of firms. 

In a few words, they stated that in a sample both efficient and inefficient firms can exist 

with a probability. Taking into account the finite mixture models theory, the model for 

WTP will be considered as a mixture of two classes. Class 1 has no hypothetical bias and 

respondents answer sincerely thus a model with a Normal distributed error holds and 

class 2 overstates WTP so a model with a composed Normal-Half-normal error term 

exists.  The two classes are: 

Class 1: respondents answer sincerely and WTP is given by Eq. (3.3) and 

Class 2: respondents overstate their WTP and therefore Eq. (3.15) holds.  

The probability of belonging to class 1 and class 2 is noted as 𝑝1 and 𝑝2 = (1− 𝑝1) 

respectively. 

For the present case with the two classes described above, the model becomes 

𝑊𝑇𝑃𝑖
∗ =  

𝛽′𝑥𝑖 + 𝑣𝑖             𝑤𝑖𝑡𝑕 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝1

𝛽′𝑥𝑖 + 𝑣𝑖 + 𝑢𝑖      𝑤𝑖𝑡𝑕  𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  𝑝2

           (3.25) 

And the log-likelihood function is given by  
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ln 𝐿 =  𝑙𝑛

𝑛

𝑖=1

 𝑦1𝑖𝑦2𝑖 𝑝1 1− 𝑓12 + 𝑝2 1− 𝑓22   

+ 𝑦1𝑖 1− 𝑦2𝑖  𝑝1 𝑓12 − 𝑓11 + 𝑝2 𝑓22 − 𝑓21   

+  1− 𝑦1𝑖 𝑦2𝑖 𝑝1 𝑓11 − 𝑓12 + 𝑝2 𝑓21 − 𝑓22  

+  1− 𝑦1𝑖  1− 𝑦2𝑖   𝑝1𝑓12 + 𝑝2𝑓22           (3.26) 

Where 𝑓11 = 𝛷  
𝑏𝑖𝑑 1𝑖  −𝛽

′𝑥𝑖

𝜎𝑣
 ,𝑓12 = 𝛷  

𝑏𝑖𝑑 2𝑖  −𝛽
′𝑥𝑖

𝜎𝑣
 ,  

𝑓21 = 𝐹𝑎 𝑏𝑖𝑑1𝑖  − 𝛽
′𝑥𝑖  and 𝑓22 = 𝐹𝑎 𝑏𝑖𝑑2𝑖  − 𝛽

′𝑥𝑖 . 

The log-likelihood function is maximized with respect to the unknown parameters, 

𝛼,𝛽,𝜎𝑣
2, 𝜆 and 𝑝1. Furthermore, because mixture models have difficulties in the 

maximization process Eq. (3.26) is going to be estimated with EM algorithm. 

 

3.4. Simulations for the double-bounded DC mixture model 

In order to test the validity of the model a number of simulations are presented for 

several cases. For each case 1000 observations were generated and 1000 replications took 

place. The procedure was followed for two different cases according to the determination 

of the class membership probability. The first case assumes that the class membership 

probability 𝑝1 is a constant while the second scenario assumes that the class membership 

probability differs among respondents since it depends on a variable z. 

 

3.4.1. Data generation 

The model that is going to be employed is a simple regression model given in Eq. 

(3.27) with one explanatory-independent variable  𝑥𝑖~𝑁 (4,1) where the coefficient of 

𝑥𝑖 , 𝛽 is equal to 2 and the constant term 𝛼 is equal to 5. 

𝑊𝑇𝑃𝑖
∗ = 𝑎 + 𝛽𝑥𝑖 + 𝜔𝑖          (3.27) 

Combining Eq. (3.25) and Eq. (3.27) the model becomes 

𝑊𝑇𝑃𝑖
∗ =  

5 + 2𝑥𝑖 + 𝑣𝑖             𝑤𝑖𝑡𝑕 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝1

5 + 2𝑥𝑖 + 𝑣𝑖 + 𝑢𝑖     𝑤𝑖𝑡𝑕 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  𝑝2
            (3.28)   
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Where  𝑣𝑖~𝑖𝑖𝑑 𝑁(0,𝜎𝑣
2) and  𝑢𝑖~𝑖𝑖𝑑 𝑁+ 0,𝜎𝑢

2 . 

For each case 𝜎𝑣  and 𝜎𝑢  is determined as follows, the values of 𝜎𝑣 are 0.7 0.9, 1, 1.25 

and 1.5 and 𝜎𝑢  is defined by a function of 𝜎𝑣 given in Eq. (3.29). 

𝜎𝑢 =  

10𝜎𝑣
5𝜎𝑣
2𝜎𝑣

        (3.29) 

The parameter 𝜆 is determined by Eq. (3.20) and the bids that are given to respondents 

are 11, 13, 14 and 15. Table 3.1 shows analytically the structure of the bids,  𝑏𝑖𝑑1 and 

𝑏𝑖𝑑2 which are determined according Eq. (3.30). 

𝑏𝑖𝑑2 =  
 1.25𝑏𝑖𝑑1         𝑖𝑓 𝑦𝑒𝑠 𝑖𝑛 𝑏𝑖𝑑1 

0.75𝑏𝑖𝑑1         𝑖𝑓  𝑛𝑜 𝑖𝑛 𝑏𝑖𝑑1

        (3.30) 

 

Table 3.1: 𝑏𝑖𝑑1 and 𝑏𝑖𝑑2 

Bids given to respondents 

𝒃𝒊𝒅𝟏 =11 𝒃𝒊𝒅𝟏 =12 𝒃𝒊𝒅𝟏 =13 𝒃𝒊𝒅𝟏 =15 

Yes No Yes No Yes No Yes No 

𝒃𝒊𝒅𝟐 =14 𝒃𝒊𝒅𝟐 =9 𝒃𝒊𝒅𝟐 =15 𝒃𝒊𝒅𝟐 =9 𝒃𝒊𝒅𝟐 =17 𝒃𝒊𝒅𝟐 =10 𝒃𝒊𝒅𝟐 =19 𝒃𝒊𝒅𝟐 =12 

 

The mean WTP at the mean value of 𝑥𝑖  is given by Eq. (3.31) below 

𝑚𝑒𝑎𝑛 𝑊𝑇𝑃 =  2 + 5𝑥  = 12.994                     (3.31) 

and finally two cases were considered in regard to the class membership probability 

 𝑝1 (probability to belong in class 1 were respondents answer sincerely) and 

 𝑝2 (probability to belong in class 2 were overstatement occurs). 

Case A: the probability is constant  𝑝1 = 0.75 and 𝑝2 = 0.25. In this case all 

respondents that belong to the same class have the same probability. 
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Case B:  𝑝1 is no longer a constant, but depends on a variable z that varies across 

respondents. Therefore each respondent has a different probability to belong to a given 

class. More analytically, denoting by p
**

 an unobserved latent variable 

𝑝∗∗ = 𝑑1 + 𝑑2𝑧𝑖 + 𝑤𝑖 ⇒ 

𝑝∗∗ = 2 + 2𝑧𝑖 + 𝑤𝑖              (3.32) 

where 𝑤𝑖~𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 0,1  or standard logistic  and  𝑧𝑖~𝑁𝑜𝑟𝑚𝑎𝑙 1, 4.84 . 

The probability that respondent 𝑖 belongs to class 1 (𝑝∗∗ > 0) is given by 

𝑝1𝑖 = 1 (1 + 𝑒− 𝑑1+𝑑2𝑧𝑖 )           (3.33) 

In case B, since each respondent has different probability 𝑝1𝑖 , the probability of each 

class cannot be illustrated since it is practically very difficult to illustrate 1000 different 

probabilities. In this case, the mean probability is given by Eq. (3.34). 

𝑝1
∗ =

 𝑝1𝑖
1000
𝑖=1

1000
= 0.80        (3.34) 

 

3.4.2. Starting values and estimation strategy 

Choosing initial values is a very crucial step in the estimation of mixture models, 

nevertheless some preliminary results were obtained using the EM algorithm with 

arbitrary initial values. This procedure aimed to investigate how the model responds and 

it was very helpful in order to define the procedure of estimating the starting values. 

 

Given starting values 

The mixture model was estimated by the EM algorithm with starting values defined 

manually for the parameters 𝛼,𝛽,𝜎𝑣
2  and 𝜆 for the case where the class membership 𝑝1 is 

a constant and equal to 0.75. The starting value for 𝜎𝑣
2 was chosen to be around the 

double of the real value and values for 𝜎u
2 were chosen so that the resulting value of 𝜆 

deviated from the real value by no more than 60% for most cases. Table 3.2 illustrates the 

starting values that were given for the estimation process. 
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Table 3.2: Starting values determined manually 

Starting values  

 𝜶 𝜷 𝝈𝒗
𝟐 𝝈𝒖

𝟐  ι 𝑝1 

𝝈𝒗 = 𝟏 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

Starting 

values 
4 3 2 120 7.74 0.5 

𝝈𝒗 = 𝟏 𝒂𝒏𝒅 𝝀 = 𝟓 

Starting 

values 
3 3 2 100 7.071 0.5 

𝝈𝒗 = 𝟏 𝒂𝒏𝒅 𝝀 = 𝟐 

Starting 

values 
3 3 2 80 6.32455 0.5 

𝝈𝒗 = 𝟑 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

Starting 

values 
3 3 20 1200 7.745967 0.5 

𝝈𝒗 = 𝟑 𝒂𝒏𝒅 𝝀 = 𝟓 

Starting 

values 
3 3 25 1000 6.32455 0.5 

𝝈𝒗 = 𝟑 𝒂𝒏𝒅 𝝀 = 𝟐 

Starting 

values 
3 3 20 1000 3.162278 0.5 

𝝈𝒗 = 𝟓 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

Starting 

values 
3 3 50 3000 7.7459 0.5 

𝝈𝒗 = 𝟓 𝒂𝒏𝒅 𝝀 = 𝟓 

Starting 

values 
3 3 50 2000 6.32455 0.5 
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Starting values from random assignment 

The steps for determining starting values for the double-bounded method model under 

random assignment are very similar as the steps described is section 2.4.2 of Chapter 2. 

Because of the nature of the double-bounded method, a few changes were implemented 

to the procedure. The starting values were determined by steps described below: 

Step 1: Random assignment of observations to two classes 

The first step to determine starting values for the EM algorithm includes random 

assignment of the observations into two classes. To achieve this task, random draws from 

a Uniform(0,1) were generated and each observation was classified in the first class 

whenever the draw was below 0.5. 

Step 2: Assigning an error distribution (normal/composed) to each class 

Next for each class a “probit” model was estimated and the class with the biggest 

constant was assigned the model with overestimation. These estimates of both probits 

were used as starting values in order to run a ML estimation as if all respondents had 

answered honestly (Normal error model) and afterwards as if all respondents had 

overstated (Composed error model). By the end of this stage were determined starting 

values for the EM estimation.  

Step 3: Application of EM algorithm 

The EM algorithm was run for the mixture model until a tolerance criterion was 

reached. The tolerance criterion was that the EM algorithm would continue iterating until 

the log-likelihood obtained at iteration 𝑘 satisfied Eq. (3.35).   

 𝑙𝑜𝑔𝑙𝑖𝑘𝑒𝑙𝑖𝑕𝑜𝑜𝑑 𝑘 − 𝑙𝑜𝑔𝑙𝑖𝑘𝑒𝑙𝑖𝑕𝑜𝑜𝑑 𝑘 − 1  < 0.001           (3.35) 

where 𝑘 is the number of  the iteration. 

As soon as the EM algorithm estimation was completed, the estimates were used as 

starting values for the ML estimation of the proposed model. The idea of using EM 

algorithm estimates as starting values of ML estimation is a procedure that Stata 

implements (StataCorp, 2021). 
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Additionally in the case where the probability differs among respondents, it is 

necessary to determine starting values for the parameters 𝑑1 and 𝑑2.To this effect a 

“logit” model for the probability was added in Step 3. 

 

3.4.3. Simulation results for the double-bounded method model 

This subsection presents the simulation results for the double-bounded elicitation 

method mixture model for several cases. At first are presented the EM algorithm 

estimates with starting values defined in Table 3.2. Secondly, are illustrated the 

simulation results of the final proposed mixture model using random assignment to 

determine initial values. As mentioned before 1000 replications were applied for a 

number of cases, however in some cases some iterations had problems with the 

computation of standard errors. Therefore the tables that follow present the results after 

the replications with such problems were removed. Additionally, the number of the 

replications that failed in computing standard errors is reported as well. 

The tables below report for each parameter the mean estimates and their standard 

deviation, as well as the bias of the mean WTP estimate for each case. More specifically 

the bias is given by 

𝐵𝑖𝑎𝑠 = 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑚𝑒𝑎𝑛 𝑊𝑇𝑃 −𝑚𝑒𝑎𝑛 𝑊𝑇𝑃 ⇒ 

 𝐵𝑖𝑎𝑠 =  𝑎 + 𝛽 𝑥  −   5 + 2𝑥                (3.36)               

where 

𝑎 =
 𝛼 𝑟𝑅
𝑟=1

𝑅
, 𝛽 =

 𝛽 𝑟𝑅
𝑟=1

𝑅
 and R is the number of replications. 

The desired outcome is to receive values for bias close to zero. The closest to zero the 

bias is the closest to the real values are the estimates of the parameters and consequently 

the proposed model is more suitable in order to overcome hypothetical bias. 
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Results when starting values are chosen arbitrarily 

 

Table 3.3: Double-Bounded DC Simulation results for EM algorithm and starting 

values given manually 

EM Estimation Results for Double-Bounded DC1000 replications 

 
𝜶  𝜷  𝝈 𝒗

𝟐 𝝀  
Mean 

𝑾𝑻 𝑷 
𝒑 𝟏𝑬𝑴 

𝝈𝒗 = 𝟏 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

Mean 4.9771 2.012 1.0241 10.5977 13.0193 0.7621 

Standard deviation 0.2446 0.0628 0.1302 0.9448 
  

𝝈𝒗 = 𝟏 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean 5.1366 2.0143 1.2751 7.1476 13.1878 0.8489 

Standard deviation 0.2396 0.0606 0.1599 0.6192 
  

𝝈𝒗 = 𝟏 𝒂𝒏𝒅 𝝀 = 𝟐 

Mean 5.2679 2.0114 1.4312 5.3147 13.3077 0.9778 

Standard deviation 0.2202 0.0555 0.1397 0.5777 
  

𝝈𝒗 = 𝟑 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

Mean 4.8991 2.0392 9.1876 11.4233 13.0496 0.7637 

Standard deviation 0.5499 0.1357 1.0133 0.6946 
  

𝝈𝒗 = 𝟑 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean 5.0888 2.0359 9.7301 10.0233 13.2263 0.8146 

Standard deviation 0.5337 0.1315 1.0777 0.6009 
  

𝝈𝒗 = 𝟑 𝒂𝒏𝒅 𝝀 = 𝟐 

Mean 5.3157 2.0315 10.2207 4.3492 13.4354 0.9045 

Standard deviation 0.5154 0.123 1.0709 0.2496 
  

𝝈𝒗 = 𝟓 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

Mean 4.7964 2.0633 24.9755 10.9938 13.0433 0.7599 

Standard deviation 0.9202 0.2152 4.19 0.8793 
  



Overcoming Hypothetical Bias  Chapter 3 

 
106 

 

Table 3.3: (continued) 

𝝈𝒗 = 𝟓 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean 5.0033 2.0572 25.695 8.8546 13.2257 0.7973 

Standard deviation 0.9339 0.2113 4.4129 0.7142 
  

 

Table 3.3 shows that in almost all cases the mean estimate of the constant is close to 

the real value, so does the mean estimates for 𝛽  and 𝜎 𝑣
2. For the rest of the parameters 

such as 𝜆  the mean estimates when 𝜆 = 10 are very close to the true values but in the 

cases where 𝜆 = 5 and 𝜆 = 2 the mean estimates are not very close. Additionally in the 

cases where 𝜎𝑣 = 1 and 𝜆 = 10 or 5, 𝜎𝑣 = 3 and 𝜆 = 10 or 5 and finally in the case 

where 𝜎𝑣 = 5 and 𝜆 = 5, no standard error issues occurred in none of the 1000 

replications.  

In the case where 𝜎𝑣 = 1 and 𝜆 = 2, 𝜎𝑣 = 3 and 𝜆 = 2 and in case where 𝜎𝑣 = 5 and 

𝜆 = 10 a number of replications were removed. The number of replications removed was 

16, 6 and 304 respectively. Furthermore, in all cases the standard deviation of the 

parameters is small except for 𝜎 𝑣
2‟s standard deviation in the cases where 𝜎𝑣 = 5. 

Additionally, Table 3.4 presents the mean Bias of the estimated mean WTP for each case 

given by Eq. (3.36). In all cases the bias is very small and especially in cases where 

𝜆 = 10 the bias is even smaller than 0.1. Overall the case where 𝜎𝑣 = 1 and 𝜆 = 10 has 

the smallest bias and the case where 𝜎𝑣 = 5 and 𝜆 = 10 has the second smallest bias. 

 

Table 3.4: Mean Bias of WTP for EM algorithm estimation and given starting values  

Bias of Mean WTP for EM algorithm estimation and given starting values 

𝝈𝒗 = 𝟏 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 𝝈𝒗 = 𝟏 𝒂𝒏𝒅 𝝀 = 𝟓 𝝈𝒗 = 𝟏 𝒂𝒏𝒅 𝝀 = 𝟐 𝝈𝒗 = 𝟑 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

0.0253 0.1938 0.3136 0.0556 

𝝈𝒗 = 𝟑 𝒂𝒏𝒅 𝝀 = 𝟓 𝝈𝒗 = 𝟑 𝒂𝒏𝒅 𝝀 = 𝟐 𝝈𝒗 = 𝟓 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 𝝈𝒗 = 𝟓 𝒂𝒏𝒅 𝝀 = 𝟓 

0.2323 0.4414 0.0493 0.2317 
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Finally, taking into consideration results in Table 3.3 and Table 3.4 it can be 

concluded that cases where 𝜆 is not large, the mean estimates aren‟t very close to the 

given starting values. 

Summarizing, these first findings of how the double-bounded model responds when it 

is estimated with the EM algorithm with arbitrary starting values led the present research 

towards two directions. Firstly, the implementation of the STATA estimation procedure 

with the additional ML estimation by using EM estimates as starting values and secondly 

the determination of proper starting values became a very important task. 

 

Results when starting values are obtained from random assignment 

The following subsection presents the simulation results for the proposed model with 

starting values determined within the estimation process after random assignment. The 

simulation results are presented for the two different cases in regards of the probability 

determination. 

 

Case A: Probability 𝒑𝟏 is fixed and equal to 0.75 

Tables 3.5, 3.6 and 3.7 illustrate the simulation results for the case where the 

probability of overstating their WTP is equal for all respondents. More analytically Table 

3.5 presents the mean estimates and the standard deviation of the parameters 𝑎, 𝛽, 𝜎𝑣
2 and 

𝜆 after removing any replications with standard error issues in a total of 1000 

replications. Additionally, the class probability was parameterized as in Eq. (3.37) below 

in order to ensure that the estimate lies in the open unit interval and the parameter that 

was estimated during the estimation process was kappa. 

𝑝 1 =
1

(1 + 𝑒𝑘𝑎𝑝𝑝𝑎 )
                          (3.37) 

Table 3.6 illustrates the numbers of replications that have been removed in each case. 

More specifically, the replications that have been removed had for a parameter infinite 

standard deviation or it appeared as NaN (not a number). Finally Table 3.7 shows the bias 

of the mean WTP.  
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Table 3.5: Simulation results for Double-Bounded DC model and constant probability 

Estimation Results for Double-Bounded DC and 𝒑𝟏=0.75 1000 replications 

 
𝜶  𝜷  𝝈 𝒗

𝟐 𝝀  𝒑 𝟏 

𝝈𝒗 = 𝟎.𝟕 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

Mean 4.9785 2.0077 0.5117 10.2506 0.751 

Standard deviation 0.209 0.0505 0.3055 1.7784 
 

𝝈𝒗 = 𝟎.𝟕 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean 4.967 2.0082 0.4899 5.0805 0.7479 

Standard deviation 0.2017 0.0488 0.1331 0.6738 
 

𝝈𝒗 = 𝟎.𝟕 𝒂𝒏𝒅 𝝀 = 𝟐 

Mean 4.9198 2.0071 0.4642 2.2268 0.6951 

Standard deviation 0.2672 0.045 0.1239 0.5134 
 

𝝈𝒗 = 𝟎.𝟗 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

Mean 4.9641 2.0113 0.8286 9.8666 0.7519 

Standard deviation 0.2407 0.0593 0.3583 2.0512 
 

𝝈𝒗 = 𝟎.𝟗 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean 4.9582 2.0119 0.818 4.9026 0.7514 

Standard deviation 0.2319 0.0569 0.2258 0.808 
 

𝝈𝒗 = 𝟎.𝟗 𝒂𝒏𝒅 𝝀 = 𝟐 

Mean 4.9033 2.0102 0.7732 2.0605 0.7214 

Standard deviation 0.3015 0.0517 0.1841 0.4829 
 

𝝈𝒗 = 𝟏 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

Mean 4.9636 2.0112 1.0144 10.3519 0.7508 

Standard deviation 0.2574 0.0631 0.3377 2.0818 
 

𝝈𝒗 = 𝟏𝒂𝒏𝒅 𝝀 = 𝟓 
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Table 3.5: (continued) 

Mean 4.9534 2.0126 0.9956 5.0857 0.7537 

Standard deviation 0.2435 0.0604 0.1473 0.7168 
 

𝝈𝒗 = 𝟏 𝒂𝒏𝒅 𝝀 = 𝟐 

Mean 4.8937 2.0108 0.9545 2.1075 0.7213 

Standard deviation 0.3224 0.0553 0.2131 0.4388 
 

𝝈𝒗 = 𝟏.𝟐𝟓 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

Mean 4.9445 2.0146 1.5588 10.4779 0.7507 

Standard deviation 0.2829 0.0712 0.2774 2.5891 
 

𝝈𝒗 = 𝟏.𝟐𝟓 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean 4.9517 2.0145 1.5801 5.1063 0.7522 

Standard deviation 0.2897 0.0705 0.3711 1.1316 
 

𝝈𝒗 = 𝟏.𝟐𝟓 𝒂𝒏𝒅 𝝀 = 𝟐 

Mean 4.8811 2.0121 1.5025 2.0698 0.7198 

Standard deviation 0.3798 0.0648 0.2965 0.4539 
 

𝝈𝒗 = 𝟏.𝟓 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

Mean 4.9436 2.0156 2.2519 10.8362 0.75071 

Standard deviation 0.3266 0.0799 0.3976 3.5602 
 

𝝈𝒗 = 𝟏.𝟓 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean 4.9309 2.0177 2.2518 5.2014 0.7472 

Standard deviation 0.33 0.0785 0.4282 1.2087 
 

𝝈𝒗 = 𝟏.𝟓 𝒂𝒏𝒅 𝝀 = 𝟐 

Mean 4.8572 2.0158 2.1703 2.1716 0.7032 

Standard deviation 0.4271 0.0728 0.411 0.568 
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Table 3.6: Number of replication removed due to standard error issues for the DB DC 

model for 𝑝1 fixed 

Number of replications removed for 𝒑𝟏 fixed 

 𝛌 = 𝟏𝟎 𝛌 = 𝟓 𝛌 = 𝟐 

𝝈𝒗 = 𝟎.𝟕 33 29 73 

𝝈𝒗 = 𝟎.𝟗 24 18 58 

𝝈𝒗 = 𝟏 47 18 59 

𝝈𝒗 = 𝟏.𝟐𝟓 67 31 47 

𝝈𝒗 = 𝟏.𝟓 67 40 80 

 

Table 3.5 shows that in the majority of the cases the estimates are very close to the 

true values. More analytically, in the cases where 𝜎𝑣 = 0.9, 1 and 1.25 the mean 

estimates are very close to the true values for all parameters, including the class 

membership probability. The standard deviation of all parameters is small except for 

parameter 𝜆 in the case where 𝜎𝑣 = 1.25 and 𝜆 = 10. Considering Table 3.6 for these 

cases the number of replications removed because of standard error issues are from 1.8%-

8% . Additionally, it can be noticed that when 𝜆 = 2, 𝛼  and 𝑝 1 although they are close to 

the true values, their estimates are not as close as in cases with 𝜆 = 10 or 5. 

To continue with the analysis, Table 3.7 illustrates the bias of the estimate of mean 

WTP for each case, given by Eq. (3.36). As it can be noticed, the bias is very small and 

very close to 0 for all cases, which means that the mean estimates are almost the same as 

the true values. The biggest bias is in the case where 𝜎𝑣 = 1.5 and 𝜆 = 2 which is            

-0.0796 and the smallest bias is in the case where 𝜎𝑣 = 0.7 and 𝜆 = 5 which is -0.0002. 

Additionally, Table 3.7 presents the simulation results of the double-bounded model 

for the case where hypothetical bias is ignored. In all cases the estimate of the mean WTP 

is bigger than the mean estimate of WTP of the proposed model. As it was expected, 

when hypothetical bias is not taken into consideration during the estimation process the 

results reveal that the bias is positive in the presence of yea-saying.  
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Table 3.7: Bias of mean WTP for DB DC proposed model vs Bias of the mean WTP 

for DB model (no Hypothetical bias considered) (fixed probability) 

Bias of Mean WTP same probability for overestimation for all respondents 

 𝝈𝒗 = 𝟎.𝟕 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 𝝈𝒗 = 𝟎.𝟕 𝒂𝒏𝒅 𝝀 = 𝟓 𝝈𝒗 = 𝟎.𝟕 𝒂𝒏𝒅 𝝀 = 𝟐 

Mean 

𝑾𝑻 𝑷𝒎𝒊𝒙𝒕𝒖𝒓𝒆 𝒎𝒐𝒅𝒆𝒍 
13.0033 12.9938 12.9422 

𝑩𝒊𝒂𝒔𝒎𝒊𝒙𝒕𝒖𝒓𝒆 𝒎𝒐𝒅𝒆𝒍 0.0093 -0.0002 -0.0518 

Mean 

𝑾𝑻 𝑷𝒏𝒐𝒓𝒎𝒂𝒍 𝒎𝒐𝒅𝒆𝒍 
13.9789 13.645 13.2841 

𝑩𝒊𝒂𝒔𝒏𝒐𝒓𝒎𝒂𝒍 𝒎𝒐𝒅𝒆𝒍 0.9849 0.651 0.29 

 𝝈𝒗 = 𝟎.𝟗 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 𝝈𝒗 = 𝟎.𝟗 𝒂𝒏𝒅 𝝀 = 𝟓 𝝈𝒗 = 𝟎.𝟗 𝒂𝒏𝒅 𝝀 = 𝟐 

Mean 

𝑾𝑻 𝑷𝒎𝒊𝒙𝒕𝒖𝒓𝒆 𝒎𝒐𝒅𝒆𝒍 
13.0033 12.9998 12.9381 

𝑩𝒊𝒂𝒔𝒎𝒊𝒙𝒕𝒖𝒓𝒆 𝒎𝒐𝒅𝒆𝒍 0.0093 -0.0058 -0.05593 

Mean 

𝑾𝑻 𝑷𝒏𝒐𝒓𝒎𝒂𝒍 𝒎𝒐𝒅𝒆𝒍 
14.0848 13.7612 13.3569 

𝑩𝒊𝒂𝒔𝒏𝒐𝒓𝒎𝒂𝒍 𝒎𝒐𝒅𝒆𝒍 1.0908 0.7672 0.3629 

 𝝈𝒗 = 𝟏 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 𝝈𝒗 = 𝟏 𝒂𝒏𝒅 𝝀 = 𝟓 𝝈𝒗 = 𝟏 𝒂𝒏𝒅 𝝀 = 𝟐 

Mean 

𝑾𝑻 𝑷𝒎𝒊𝒙𝒕𝒖𝒓𝒆 𝒎𝒐𝒅𝒆𝒍 
13.0024 12.9978 12.9309 

𝑩𝒊𝒂𝒔𝒎𝒊𝒙𝒕𝒖𝒓𝒆 𝒎𝒐𝒅𝒆𝒍 0.0084 0.0038 -0.0631 

Mean 

𝑾𝑻 𝑷𝒏𝒐𝒓𝒎𝒂𝒍 𝒎𝒐𝒅𝒆𝒍 
14.1264 13.8106 13.3906 

 



Overcoming Hypothetical Bias  Chapter 3 

 
112 

 

Table 3.7: (continued) 

𝑩𝒊𝒂𝒔𝒏𝒐𝒓𝒎𝒂𝒍 𝒎𝒐𝒅𝒆𝒍 1.1324 0.8166 0.3966 

 𝝈𝒗 = 𝟏.𝟐𝟓 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 𝝈𝒗 = 𝟏.𝟐𝟓 𝒂𝒏𝒅 𝝀 = 𝟓 𝝈𝒗 = 𝟏.𝟐𝟓 𝒂𝒏𝒅 𝝀 = 𝟐 

Mean 

𝑾𝑻 𝑷𝒎𝒊𝒙𝒕𝒖𝒓𝒆 𝒎𝒐𝒅𝒆𝒍 
12.9969 13.0037 12.9235 

𝑩𝒊𝒂𝒔𝒎𝒊𝒙𝒕𝒖𝒓𝒆 𝒎𝒐𝒅𝒆𝒍 0.0029 0.0097 -0.0705 

Mean 

𝑾𝑻 𝑷𝒏𝒐𝒓𝒎𝒂𝒍 𝒎𝒐𝒅𝒆𝒍 
14.211 13.9165 13.4705 

𝑩𝒊𝒂𝒔𝒏𝒐𝒓𝒎𝒂𝒍 𝒎𝒐𝒅𝒆𝒍 1.2169 0.9224 0.4765 

 𝝈𝒗 = 𝟏.𝟓 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 𝝈𝒗 = 𝟏.𝟓 𝒂𝒏𝒅 𝝀 = 𝟓 𝝈𝒗 = 𝟏.𝟓 𝒂𝒏𝒅 𝝀 = 𝟐 

Mean 

𝑾𝑻 𝑷𝒎𝒊𝒙𝒕𝒖𝒓𝒆 𝒎𝒐𝒅𝒆𝒍 
13 12.9957 12.9144 

𝑩𝒊𝒂𝒔𝒎𝒊𝒙𝒕𝒖𝒓𝒆 𝒎𝒐𝒅𝒆𝒍 0.006 0.0017 -0.0796 

Mean 

𝑾𝑻 𝑷𝒏𝒐𝒓𝒎𝒂𝒍 𝒎𝒐𝒅𝒆𝒍 
14.2802 14.005 13.5459 

𝑩𝒊𝒂𝒔𝒏𝒐𝒓𝒎𝒂𝒍 𝒎𝒐𝒅𝒆𝒍 1.2861 1.011 0.5519 

 

Taking into consideration the simulation results illustrated in Table 3.5, 3.6 and 3.7 it 

can be concluded that the model is effective in accomplishing its main goal to overcome 

hypothetical bias and return unbiased estimates.  

 

Case B: Probability 𝒑𝟏 is different for each respondent 

The present subsection analyses the simulation results for the double-bounded DC 

model in the case where the probability is not fixed but each respondent has a different 
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probability of overstating WTP. Since in this case each respondent‟s probability is 

determined by a variable z, two additional parameters are added within the estimation 

process. 

The Tables 3.8-3.11 illustrate the simulation results for a number of cases. More 

analytically, Table 3.8 and 3.9 present the mean estimates of the parameters, including 

the parameters related to the class probability, Table 3.10 contains the number of 

replications that were removed from each case and finally, Table 3.11 presents the bias of 

the mean WTP for each case. 

 

Table 3.8: Double-Bounded DC model simulation results for probability depending 

on variable z (1): parameters 𝛼,𝛽,𝜎𝑣
2 and 𝜆 

Estimation Results for Double-Bounded DC model and 𝒑𝟏 depending on z(1) 

 
𝜶  𝜷  𝛔 𝐯

𝟐
 𝝀  

𝝈𝒗 = 𝟎.𝟗𝟓 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

Mean 4.9906 2.0024 0.9014 10.307 

Standard deviation 0.2185 0.0551 0.0881 1.7271 

𝝈𝒗 = 𝟎.𝟗𝟓 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean 4.9967 2.0008 0.8981 5.054 

Standard deviation 0.213 0.0538 0.1101 0.634 

𝝈𝒗 = 𝟎.𝟗𝟓 𝒂𝒏𝒅 𝝀 = 𝟐 

Mean 5.006 1.9985 0.8937 2.0303 

Standard deviation 0.208 0.0526 0.0885 0.2753 

𝝈𝒗 = 𝟏 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

Mean 4.9875 2.0032 0.9962 10.3362 

Standard deviation 0.228 0.0576 0.0979 1.7702 

𝝈𝒗 = 𝟏 𝒂𝒏𝒅 𝝀 = 𝟓 
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Table 3.8: (continued) 

Mean 4.9983 2.0004 0.9924 5.0751 

Standard deviation 0.2235 0.0563 0.0976 0.6278 

𝝈𝒗 = 𝟏 𝒂𝒏𝒅 𝝀 = 𝟐 

Mean 5.0085 1.998 0.9913 2.0237 

Standard deviation 0.2156 0.0547 0.0954 0.2682 

𝝈𝒗 = 𝟏.𝟐𝟓 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

Mean 4.9925 2.0022 1.5652 10.4184 

Standard deviation 0.2623 0.066 0.137 2.1611 

𝝈𝒗 = 𝟏.𝟐𝟓 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean 5.0027 1.9992 1.5551 5.0919 

Standard deviation 0.2565 0.0642 0.1357 0.7094 

𝝈𝒗 = 𝟏.𝟐𝟓 𝒂𝒏𝒅 𝝀 = 𝟐 

Mean 5.0018 1.9989 1.5508 2.0194 

Standard deviation 0.248 0.062 0.1398 0.2779 

𝝈𝒗 = 𝟏.𝟓 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

Mean 5.0011 1.9998 2.2403 10.4926 

Standard deviation 0.2967 0.0743 0.1771 2.4955 

𝝈𝒗 = 𝟏.𝟓 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean 5.0016 1.9997 2.2387 5.1095 

Standard deviation 0.2976 0.0743 0.179 0.8007 

𝝈𝒗 = 𝟏.𝟓 𝒂𝒏𝒅 𝝀 = 𝟐 

Mean 5.0001 1.9996 2.2345 2.0184 

Standard deviation 0.2889 0.0715 0.1855 0.2861 
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Table 3.9: Double-Bounded DC model simulation results for probability depending 

on variable z (2): probability estimates 

Estimation Results for Double-Bounded DC model and 𝒑𝟏 depending on z (2) 

 𝒅 𝟏 𝒅 𝟐 Mean 𝒑 𝟏 

𝝈𝒗 = 𝟎.𝟗𝟓 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

Mean 2.0281 2.0393 0.7952 

Standard deviation 0.2605 0.2585  

𝝈𝒗 = 𝟎.𝟗𝟓 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean 2.0536 2.0808 0.796 

Standard deviation 0.4123 0.3677  

𝝈𝒗 = 𝟎.𝟗𝟓 𝒂𝒏𝒅 𝝀 = 𝟐 

Mean 2.2271 2.3132 0.7931 

Standard deviation 0.9041 0.9918  

𝝈𝒗 = 𝟏 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

Mean 2.0309 2.0414 0.797 

Standard deviation 0.2634 0.2578  

𝝈𝒗 = 𝟏 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean 2.0618 2.081 0.7969 

Standard deviation 0.367 0.3686  

𝝈𝒗 = 𝟏 𝒂𝒏𝒅 𝝀 = 𝟐 

Mean 2.257 2.3289 0.7946 
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Table 3.9: (continued) 

Standard deviation 0.9952 0.961  

𝝈𝒗 = 𝟏.𝟐𝟓 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

Mean 2.033 2.0456 0.797 

Standard deviation 0.2692 0.2657  

𝝈𝒗 = 𝟏.𝟐𝟓 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean 2.0664 2.0871 0.7969 

Standard deviation 0.3684 0.362  

𝝈𝒗 = 𝟏.𝟐𝟓 𝒂𝒏𝒅 𝝀 = 𝟐 

Mean 2.2807 2.5523 0.7942 

Standard deviation 1.9851 5.366  

𝝈𝒗 = 𝟏.𝟓 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

Mean 2.0519 2.066 0.793 

Standard deviation 0.3041 0.3045  

𝝈𝒗 = 𝟏.𝟓 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean 2.0668 2.0873 0.7969 

Standard deviation 0.3799 0.3762  

𝝈𝒗 = 𝟏.𝟓 𝒂𝒏𝒅 𝝀 = 𝟐 

Mean 2.2801 2.4021 0.7946 

Standard deviation 2.1368 3.1363  
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Table 3.10: Number of replication removed for Double-Bounded DC model with 

probability depending on variable z 

Number of replications removed for p1 depends on z 

 𝛌 = 𝟏𝟎 𝛌 = 𝟓 𝛌 = 𝟐 

𝝈𝒗=0.95 5 4 44 

𝝈𝒗=1 5 6 35 

𝝈𝒗=1.25 4 3 11 

𝝈𝒗=1.5 13 6 25 

 

As Table 3.8 and 3.9 illustrate, for the majority of the cases, the mean estimates of all 

parameters are close to the true values. More analytically, for the cases with 𝜎𝑣 ≤ 1.25 it 

is noticed that the mean estimates of the parameters are very close to the given values and 

the standard deviation for most of the parameters is small. 

Additionally, Table 3.9 presents all the information concerning the estimate of the 

class membership probability. In the present case, each respondent has a different 

probability of overestimating his/hers WTP thus the mean probability of all respondents 

is calculated for each replication by using Eq. (3.34). Table 3.9 shows the mean estimates 

for the parameters 𝑑1and 𝑑2 which are very close to the true values. Additionally, Table 

3.9 contains a representative probability which is the mean probability of the 1000 class 

membership probabilities. 

To continue with the analysis, Table 3.10 illustrates the number of replications 

removed from each case. As it can be seen, the replications removed for all cases were 

less than 45. More specifically the number of replications removed ranges between 3 and 

44 replications. Additionally it can be noticed that as 𝜆 gets smaller the number of 

replications removed increases compared to the cases where 𝜆 is 10 or 5. 

Finally, Table 3.11 presents the bias between the mean WTP and the estimated mean 

WTP for each case, given by Eq. (3.36). Firstly, the bias of Mean WTP is close to 0 for 

all cases which means that the estimation procedure returned estimates very close to the 

true mean WTP. The bias in absolute values is very small since it is even below 0.01 for 

the majority of the cases. More analytically, in all cases the bias is smaller than 0.01 and 



Overcoming Hypothetical Bias  Chapter 3 

 
118 

 

the smallest bias is in the case where 𝜎𝑣 = 0.95 and 𝜆 = 2 which is almost zero. 

Additionally, the biggest bias is in the case where 𝜎𝑣 = 1.25 and 𝜆 = 2 which the bias is 

equal to -0.026. 

Furthermore, Table 3.11 presents as well the mean WTP estimate and the bias of the 

mean WTP for the case where hypothetical bias is ignored during the estimation process. 

As it can be noticed in all cases the mean WTP for the normal model displays much 

higher biases than the ones in the mixture case. In a few words, comparing the two 

models it can be concluded that if overestimation is not considered during the estimation 

process, the estimates are biased and consequently not reliable. The application of the 

proposed model has a clear gain since unbiased estimates of the mean WTP are obtained 

and the proposed model is effective in dealing with Hypothetical Bias. 

 

Table 3.11: Bias of Mean WTP for Double-Bounded DC model and probability 

different for each respondent 

Bias of Mean WTP for Double-Bounded DC model and probability of overstatement 

different for each respondent 

 𝝈𝒗 = 𝟎.𝟗𝟓 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 𝝈𝒗 = 𝟎.𝟗𝟓 𝒂𝒏𝒅 𝝀 = 𝟓 𝝈𝒗 = 𝟎.𝟗𝟓 𝒂𝒏𝒅 𝝀 = 𝟐 

Mean 

W𝑻 𝑷𝒎𝒊𝒙𝒕𝒖𝒓𝒆 𝒎𝒐𝒅𝒆𝒍 
12.9942 12.9939 12.994 

𝑩𝒊𝒂𝒔𝒎𝒊𝒙𝒕𝒖𝒓𝒆 𝒎𝒐𝒅𝒆𝒍 0.0002 -0.0001 0(0.00001) 

Mean 

𝑾𝑻 𝑷𝒏𝒐𝒓𝒎𝒂𝒍 𝒎𝒐𝒅𝒆𝒍 
14.1062 13.7866 13.3739 

𝑩𝒊𝒂𝒔𝒏𝒐𝒓𝒎𝒂𝒍 𝒎𝒐𝒅𝒆𝒍 1.1122 0.7926 0.3799 

 𝝈𝒗 = 𝟏 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 𝝈𝒗 = 𝟏 𝒂𝒏𝒅 𝝀 = 𝟓 𝝈𝒗 = 𝟏 𝒂𝒏𝒅 𝝀 = 𝟐 

Mean 

W𝑻 𝑷𝒎𝒊𝒙𝒕𝒖𝒓𝒆 𝒎𝒐𝒅𝒆𝒍 
12.9943 12.9939 12.9945 
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Table 3.11: (continued) 

𝑩𝒊𝒂𝒔𝒎𝒊𝒙𝒕𝒖𝒓𝒆 𝒎𝒐𝒅𝒆𝒍 0.0003 -0.0001 0.0005 

Mean 

𝑾𝑻 𝑷𝒏𝒐𝒓𝒎𝒂𝒍 𝒎𝒐𝒅𝒆𝒍 
14.1264 13.8106 13.3906 

𝑩𝒊𝒂𝒔𝒏𝒐𝒓𝒎𝒂𝒍 𝒎𝒐𝒅𝒆𝒍 1.1324 0.8166 0.3966 

 𝝈𝒗 = 𝟏.𝟐𝟓 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 𝝈𝒗 = 𝟏.𝟐𝟓 𝒂𝒏𝒅 𝝀 = 𝟓 𝝈𝒗 = 𝟏.𝟐𝟓 𝒂𝒏𝒅 𝝀 = 𝟐 

Mean 

W𝑻 𝑷𝒎𝒊𝒙𝒕𝒖𝒓𝒆 𝒎𝒐𝒅𝒆𝒍 
12.9953 12.9935 12.9914 

𝑩𝒊𝒂𝒔𝒎𝒊𝒙𝒕𝒖𝒓𝒆 𝒎𝒐𝒅𝒆𝒍 0.0013 -0.0005 -0.0026 

Mean 

𝑾𝑻 𝑷𝒏𝒐𝒓𝒎𝒂𝒍 𝒎𝒐𝒅𝒆𝒍 
14.211 13.9165 13.4705 

𝑩𝒊𝒂𝒔𝒏𝒐𝒓𝒎𝒂𝒍 𝒎𝒐𝒅𝒆𝒍 1.2169 0.9224 0.4765 

 𝝈𝒗 = 𝟏.𝟓 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 𝝈𝒗 = 𝟏.𝟓 𝒂𝒏𝒅 𝝀 = 𝟓 𝝈𝒗 = 𝟏.𝟓 𝒂𝒏𝒅 𝝀 = 𝟐 

Mean 

W𝑻 𝑷𝒎𝒊𝒙𝒕𝒖𝒓𝒆 𝒎𝒐𝒅𝒆𝒍 
12.9943 12.9944 12.9925 

𝑩𝒊𝒂𝒔𝒎𝒊𝒙𝒕𝒖𝒓𝒆 𝒎𝒐𝒅𝒆𝒍 0.0003 0.0004 -0.0015 

Mean 

𝑾𝑻 𝑷𝒏𝒐𝒓𝒎𝒂𝒍 𝒎𝒐𝒅𝒆𝒍 
14.2802 14.005 13.5459 

𝑩𝒊𝒂𝒔𝒏𝒐𝒓𝒎𝒂𝒍 𝒎𝒐𝒅𝒆𝒍 1.2861 1.011 0.5519 

 

Considering the findings above, for the case where the probability of class 

membership is different for each respondent, it can be concluded that the proposed model 

works effectively in returning estimates close to the true values and furthermore to 

minimize the bias. 
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3.5. The double-bounded DC mixture model applied to empirical data 

The simulation results have shown that the proposed mixture model can succeed in 

overcoming hypothetical bias. In the present section an empirical examination of the 

proposed model with real CV data is presented. 

 

3.5.1. The dataset 

In the present empirical application the data that are used refer to a sample of 1827 

observations and 22 variables, 3 of the variables require information about the yes-no 

answers regarding the WTP scenario and the rest of the variables are additional 

information obtained from the questionnaires. The dataset is available in the R package 

“Ecdat” under the name “kakadu” obtained from Werner (1999), (Croissant and Graves, 

2020:84-85). The origin of the dataset comes from the paper “Valuing the Preservation of 

Australia's Kakadu Conservation Zone” published by Richard T. Carson, Leanne Wilks 

and David Imber in 1994. 

The main issue of the CV scenario was whether the mining industry should proceed in 

the Kakadu Conservation Zone or instead the Kakadu Conservation Zone should be 

added to the Kakadu National Park (Carson et al., 1994: 727). The survey took place in 

Australia and in the Northern Territories of the Kakadu National Park for two different 

impact scenarios. The major impact scenario contained an analytical description about the 

chemicals that are going to be used and furthermore it was mentioned that there might be 

a water shortage and there could be losses in wildlife. On the other hand the minor impact 

scenario mentioned only that toxic chemicals will be used and that the wildlife will be 

disturbed without mentioning the possible water shortage or that there would be losses in 

wildlife (Carson et al., 1994:730).  

Carson et al. (1994) applied the double-bounded DC elicitation method and Table 3.12 

presents the four sets of dollar amounts that were used. Additionally, the questionnaire 

aimed to elicit information about recycling, watching nature shows on television, 

membership in environmental organizations and demographic information such as 

income, age, education etc. (Carson et al., 1994: 732-733). The survey took place in 
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September 1990 and 2,034 respondents were interviewed. The respondents were given 

randomly one out of the eight different versions of the questionnaire, the two impact 

scenarios and the four different sets of amounts (Carson et al., 1994: 732). 

 

Table 3.12: Empirical application-the 4 bid sets given to respondents  

Bids given to respondents 

𝒃𝒊𝒅𝟏 = 𝟏𝟎𝟎 𝒃𝒊𝒅𝟏 = 𝟓𝟎 𝒃𝒊𝒅𝟏 = 𝟐𝟎 𝒃𝒊𝒅𝟏 = 𝟓 

yes no yes No Yes No Yes no 

𝒃𝒊𝒅𝟐 = 𝟐𝟓𝟎 𝒃𝒊𝒅𝟐 = 𝟓𝟎 𝒃𝒊𝒅𝟐 = 𝟏𝟎𝟎 𝒃𝒊𝒅𝟐 = 𝟐𝟎 𝒃𝒊𝒅𝟐 = 𝟓𝟎 𝒃𝒊𝒅𝟐 = 𝟓 𝒃𝒊𝒅𝟐 = 𝟐𝟎 𝒃𝒊𝒅𝟐 = 𝟐 

 

Werner (1999:479) used the Kakadu dataset in order to use a mixture distribution 

allowing respondents in the lowest WTP category to be classified in two groups, those 

who have zero WTP and those that have a non zero WTP but smaller than the amount 

that they were asked.  For her research she used the Kakadu dataset for only the 

Australian sample and only for the major impact scenario. In a few words, Werner 

assumed that there is an unknown part of the sample where respondents that answered 

no-no to the double-bounded WTP questions actually have a zero WTP. Our difference 

from Werner is that the present study assumes that there is an unknown number of 

respondents that when they respond no to the first bid, irrelevant from the answer in the 

second bid, there might be a chance that the respondent understates his/hers WTP.  

Following Werner‟s work the model given in Eq. (3.38) is going to be estimated in the 

case where the class membership probability is no longer the same for all respondents but 

is determined by a number of variables and the data that were used refer only to the 

Australian sample. 

The WTP was determined by: 

log(𝑊𝑇𝑃𝑖) =  𝑎 + 𝛽1𝐽𝑂𝐵𝑆+ 𝛽2𝐹𝐼𝑁𝐵𝐸𝑁 + 𝛽3𝑀𝐼𝑁𝐸𝑃𝐴𝑅𝐾𝑆 + 

                   𝛽4𝑀𝑂𝑅𝐸𝑃𝐴𝑅𝐾𝑆 + 𝛽5𝐸𝑁𝑉𝐶𝑂𝑉 + 𝛽6𝐴𝐺𝐸 + 𝛽7𝐼𝑁𝐶𝑂𝑀𝐸 + 𝑣𝑖               (3.38) 
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And the probability of understating WTP is determined by the following variables and 

it is modeled by using a logistic: 

𝑅𝐸𝐶𝑃𝐴𝑅𝐾𝑆, 𝐿𝑂𝑊𝑅𝐼𝑆𝐾,𝐴𝐵𝑂𝑅𝐼𝐺𝐼𝑁𝐴𝐿,𝐹𝐼𝑁𝐵𝐸𝑁,𝑀𝐼𝑁𝐸𝑃𝐴𝑅𝐾𝑆,𝑀𝑂𝑅𝐸𝑃𝐴𝑅𝐾𝑆,𝐴𝐺𝐸 and 𝑀𝐴𝐽𝑂𝑅. 

The variables that were used as explanatory variables in Eq. (3.38) are the explanatory 

variables that Werner (1999) has used and are statistically significant. Table 3.13 

describes in detail the definition of each variable from Eq. (3.38) and the determinants of 

the probability as they are defined by Carson et al. (1994:742).  To sum up, Eq. (3.38) 

and the probability were estimated with the double-bounded DC format mixture model 

for the case where probability is no longer a constant but differs among respondents. 

Table 3.14 illustrates the estimation results. 

 

Table 3.13: Variable definition (Carson et al., 1994:742) 

The variables used in the estimation model 

Variable name Variable definition 

RECPARKS 

Measures the agreement by respondent that the greatest value of national 

parks and nature reserves is in recreational activities such as camping, 

bushwalking, photography (1-5). 

JOBS 

How important the respondent feels jobs are in making resource 

decisions (forest and mineral resources).High values indicate jobs are an 

important factor. 

LOWRISK 
Measures acceptance of low risk mining activities. High values indicate 

greater acceptance. 

ABORIGINAL 

Measures the importance of Kakadu to Aboriginals should be taken into 

account as a factor in making decisions concerning Kakadu. High values 

indicate that this factor should be taken into account. 

FINBEN 
Measures the importance of financial benefits in making natural 

resources decisions. High values indicate great importance. 

MINEPARKS 

Measures how strongly the respondents feel that mining within national 

parks reduces the value of the parks. High values indicate mining 

reduces the value of the parks 

MOREPARKS 

Measures how strongly the respondents feel more national parks should 

be created from state forests. High values indicate that respondents favor 

more parks. 
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Table 3.13: (continued) 

ENVCON 

Measures if the respondents are environmentally minded consumers (1: 

if respondents are recycling and buy environmentally friendly products, 

0: otherwise). 

AGE The age of the respondent. 

INCOME The yearly income that the respondent report. 

MAJOR Indicates if the respondent received the major impact scenario. 

 

3.5.2. Estimation Results 

As a first step, Eq. (3.38) was estimated for the case where no overestimation or 

underestimation occurs in the sample. The ML estimates of the parameters and the 

median WTP are illustrated in the second half of Table 3.14. The main reason of 

presenting these results is to enable the comparison with the estimates obtained by the 

mixture model estimation.  

As a next step, it was necessary to evaluate if hypothetical bias occurs and in which 

form, in the form of overestimation or underestimation. Firstly, Eq. (3.38) was estimated 

for the case where hypothetical bias exists in the form of overestimation by using the 

closed-form approximation for the cumulative distribution function of a normal-half 

normal composed error that Tsay et al. (2013) proposed, given by Eq. (3.22). The 

estimate of 𝜆 was almost zero, 𝜆 = 0.0088 and a procedure was followed in order to test 

if overestimation occurs. More specifically, we used the pseudo-likelihood ratio test -

PLR test (Kumbhakar et al., 2013:69) and the null hypothesis was that 𝑝 = 1 which 

means that no overestimation occurs in the sample. The pseudo-likelihood ratio test is 

given by Eq. (3.39), 

𝑃𝐿𝑅 = −2 𝐿𝑁𝑜𝑟𝑚𝑎𝑙 − 𝐿𝑀𝑖𝑥𝑡𝑢𝑟𝑒     (3.39)      

where 𝐿𝑁𝑜𝑟𝑚𝑎𝑙  is the log-likelihood of the normal linear model and 𝐿𝑀𝑖𝑥𝑡𝑢𝑟𝑒  is the log-

likelihood of the mixture model and it is distributed as a mixture of 𝜒2distributions. By 
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applying Eq. (3.39), 𝑃𝐿𝑅 = −0.012 and compared to the value of 𝜒1,0.05
2 = 2.706, given 

by Kodde and Palm (1986:1246), it can be concluded that the null hypothesis was not 

rejected since 𝑃𝐿𝑅 = −0.012 < 𝜒1,0.05
2 = 2.706 and no overestimation occurs. Since no 

overestimation occurs in the data the estimates of the mixture model in this case are not 

presented.   

Secondly, the data were estimated by the mixture model that takes into consideration 

hypothetical bias in the form of underestimation. For the case of underestimation Eq. 

(3.38) was again estimated but instead of using the closed-form approximation for the 

cumulative distribution function of a normal-half normal composed error that Tsay et al. 

(2013) proposed, given by Eq. (3.22), was used the closed-form approximation for the 

cumulative distribution function of a normal-half normal composed error in the case 

where underestimation occurs, given by Eq. (3.24).  

Applying the mixture model in order to overcome hypothetical bias in the form of 

underestimation, it was found that indeed WTP was underestimated. More specifically, 

applying the pseudo-likelihood ratio test given by Eq. (3.39), 𝑃𝐿𝑅 = 238.264 compared 

to 𝜒1,0.05
2 = 2.706 (Kodde and Palm, 1986:1246) results that the null hypothesis, 𝑝 = 1 

which means that no underestimation occurs in the sample, is rejected and hypothetical 

bias occurs in the form of underestimation. In Table 3.14, the first part illustrates the 

estimates of the parameters and the median WTP. 
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Table 3.14: Hypothetical bias vs No hypothetical bias 

Estimates for the Kakadu National Park hypothetical bias taking into account during 

estimation and probability determined by variables 

 Parameter estimates Parameter estimates 

 
(Mixture Model: Hypothetical bias 

is taken into account) 

(Normal Model: No Hypothetical 

bias taken into account) 

WTP parameters Estimates 
Standard 

error 
t value Estimates 

Standard 

error 
t value 

Constant 6.4453 0.6244 10.323 2.7203 0.6422 4.236 

JOBS -0.4926 0.0798 -6.170 -0.6144 0.0973 -6.312 

FINBEN -0.2929 0.081 -3.617 -0.8035 0.0969 -8.295 

MINEPARKS 0.1141 0.0918 1.243 1.1485 0.0965 11.902 

MOREPARKS 0.1202 0.0889 1.353 0.6309 0.0937 6.731 

ENVCON 0.4077 0.1705 2.391 0.5469 0.2091 2.616 

AGE -0.018 0.0054 -3.301 -0.041 0.0062 -6.568 

INCOME 0.0249 0.0066 3.769 0.0136 0.0065 2.090 

𝝈𝒗
𝟐 4.4923 0.5635 7.972 3.2713 0.16 20.443 

λ 8.8033 2.224
a 

3.9583    

Probability 

Parameters 
Estimates 

Standard 

error 
t value    

Constant -0.8231 1.3555 -0.607    

RECPARKS 0.5717 0.1776 3.219    

LOWRISK -1.2435 0.214 -5.811    

ABORIGINAL 0.411 0.1468 2.8    

FINBEN -0.8114 0.1616 -5.020    

MINEPARKS 1.3412 0.2326 5.765    
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Table 3.14: (continued) 

MOREPARKS 0.4637 0.1668 2.780    

AGE -0.0317 0.0094 -3.383    

MAJOR 1.0217 0.3039 3.362    

       

Mean probability 0.7145      

Median WTP 178.4478   69.2936   

Log-likelihood -1420.56   -1539.692   

BIC 2983.818   3146.978   

AIC 2879.12   3097.384   

a 
the standard error for parameter ι was computed by applying delta method since ι 

was parametrised  as 𝜆 = 𝑒𝛾 . 

 

Table 3.14 shows that the median WTP for the case where no hypothetical bias is 

taken into account is smaller than in the case where hypothetical bias is taken into 

consideration during the estimation. The main reason why the median WTP was 

determined instead of the mean WTP was because the distribution of WTP is log normal 

which is not symmetric consequently the median WTP is determined by Eq. (3.40) 

𝑚𝑒𝑑𝑖𝑎𝑛 𝑊𝑇𝑃 = 𝑒𝑚𝑒𝑎𝑛  𝑙𝑜𝑔 (𝑊𝑇𝑃)                        (3.40) 

In order to compare the two models the BIC (Schwarz Bayesian Information 

Criterion) and the AIC (Akaike Information Criterion) were computed for both models 

that take into account the log-likelihoods and the number of parameters. The mixture 

model has ten more parameters than the normal model and the BIC for the mixture model 

is equal to 2903.093 and for the normal model is equal to 3108.7396. The BIC for the 

mixture model is smaller which means that it has a better fit. The same conclusion is 
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made by applying the AIC, more specifically, the AIC for the mixture model is 2879.12 

and for the normal model is 3097.384.  

As it is expected, in the case where underestimation occurs and it is not taken into 

account during the estimation process, the constant term would be affected and the 

estimate is expected to be smaller compared to the case where hypothetical bias is 

considered. 

 

Conclusions  

The main goal of this thesis is to propose a statistical model that can be applied to CV 

survey data in order overcome hypothetical bias, i.e the fact that some respondents might 

not answer truthfully to the valuation question. The sections above analyze in detail the 

theoretical framework, the methodology that was used and all the steps that were 

followed in order to build the proposed mixture model. In order to test the validity of the 

model and check whether it is successful in overcoming hypothetical bias several 

simulations took place and we showed the results of 1000 replications. 

The findings confirm that the model is effective in overcoming hypothetical bias since 

the mean estimates are very close to the generated values for all the parameters. More 

analytically, the Mean WTP, the parameter 𝜆 which is the overestimation indicator and 

the probability of the class membership were estimated and their values were close to the 

“true” values. Overall, these results are able to confirm that our model will overcome one 

of the basic critiques that the CVM has received and that questions the validity of the 

valuation estimates obtained from the application of this method. 
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Chapter 4 

Comparing different starting values techniques for the double-

bounded DC format mixture model 

 

Introduction 

In the proposed mixture model, the EM algorithm is an important component of the 

estimation process. The EM algorithm is an iterative algorithm to find maximum 

likelihood estimates that starts from an initial point for the parameters and proceeds to 

iteratively update the parameters estimates until convergence is obtained. 

The EM algorithm though, deals with a number of drawbacks. The first drawback is 

the need for good initial values and the second refers to the possibility that the algorithm 

might get trapped in local optima (Panić et al., 2020:1). The determination of the initial-

starting point for the EM algorithm is a very important task thus in the following sections 

this topic is going to be examined in detail. The main goal is to examine different 

initialization strategies in regard to the class assignment. More specifically, the initial 

class assignment was obtained by different methods in order to obtain starting values for 

the EM algorithm. Afterwards a comparison of the results took place in order to conclude 

which initialization technique comes up with better starting values in order to obtain 

estimates close to the real values and consequently to eliminate hypothetical bias. 

The present chapter is organized as follows: the first section presents the double-

bounded mixture model that is going to be examined in regard to the initialization 

techniques. Additionally, the first section discusses the importance of determining proper 

starting values. The second section presents the initialization techniques that are used in 

the comparison while the third section contains the simulation results for each 

initialization technique. Finally the last section presents a description of the comparison 

criteria that are used and the related literature as well as the comparison results for the 

conducted experiments. 
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4.1. Initializing the double-bounded mixture model 

4.1.1. The double-bounded mixture model 

The double-bounded mixture model allows for heterogeneity in the response behavior 

of individuals to WTP questions whereas part of the sample answers truthfully to the 

valuation exercise while the rest of the sample overstates their WTP. As will be shown 

below this heterogeneity can be modeled by using a conventional two-sided error term 

for the first group and a composed error term for the second group. 

This strategy is the one followed by Kumbhakar et al. (2013:67) in their paper related 

to the productive inefficiency of firms, in which they stated that in a sample both efficient 

and inefficient firms can exist with a probability. In the present case the data consists of 

discrete responses to different bids presented and the underlying model for WTP is as a 

mixture of two classes. The two classes are: 

Class 1: respondents that answer sincerely and WTP is given by  

𝑊𝑇𝑃𝑖 = 𝛽′𝑥𝑖 + 𝑣𝑖    𝑖 = 1,⋯ ,𝑛       (4.1) 

𝑤𝑕𝑒𝑟𝑒 𝛽 =  

𝛽1

𝛽2

⋮
𝛽𝜅

  , 𝑥𝑖 =  𝑥𝑖1 … 𝑥𝑖𝜅  ′, 𝑥𝑖1 ≡ 1∀𝑖 and  𝑣𝑖~𝑁 0,𝜎𝑣
2  

 

Class 2: respondents that overstate their WTP and therefore Eq. (4.2) holds. 

𝑊𝑇𝑃𝑖
∗ = 𝛽′𝑥𝑖 + 𝜀𝑖           (4.2) 

where 

𝜀𝑖 = 𝑣𝑖 + 𝑢𝑖       (4.3) 

𝑢𝑖~ 𝑖𝑖𝑑 𝑁+ 0,𝜎𝑢
2  non-negative Half Normal. Additionally, the probabilities of 

belonging to class 1 and class 2 are given by 𝑝1 and 𝑝2 = (1− 𝑝1) respectively. For class 

2 it is considered that hypothetical bias exists in the form of overstatement of WTP, thus 

in Eq. (4.3) where the composed error 𝜀𝑖  is determined, 𝑢𝑖  is the one-sided non-negative 

error and it reflects that the yes-saying tendency will raise each respondents elicited WTP 

(Chien et al., 2005:364-65). 
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Furthermore when the error term 𝑢𝑖  approaches zero, the gap between the real and 

hypothetical values is decreased and the hypothetical values → real values (Hofler and 

List, 2004:216). In a few words, in cases where the error term 𝑢𝑖  approaches zero, the 

hypothetical WTP tends to be equal to the actual WTP and consequently the existence of 

hypothetical bias tends to disappear. 

Additionally, the model is parameterized very often in terms of the two parameters 

defined below 

𝜎2 = 𝜎𝑣
2 + 𝜎𝑢

2              4.4  

and 

𝜆 =
𝜎𝑢
𝜎𝑣

                 (4.5)  

Summing up the model becomes  

𝑊𝑇𝑃𝑖
∗ =  

𝛽′𝑥𝑖 + 𝑣𝑖             𝑤𝑖𝑡𝑕 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝1

𝛽′𝑥𝑖 + 𝑣𝑖 + 𝑢𝑖      𝑤𝑖𝑡𝑕  𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  𝑝2

           (4.6) 

Each respondent has to answer two successive bid questions whereas the second bid 

depends on the answer that is given to the first bid. Firstly, the respondents have to 

answer to the first bid with a yes or no.  Denoting as 𝑦1𝑖  and 𝑦2𝑖  the responses to the two 

bids respectively, 𝑦1𝑖  and 𝑦2𝑖  are presented in Eq. (4.7), Eq. (4.8) and Eq. (4.9). 

𝑦1𝑖 =  
1     𝑦𝑒𝑠 𝑡𝑜 𝑏𝑖𝑑1𝑖

0     𝑛𝑜 𝑡𝑜  𝑏𝑖𝑑1𝑖

 ,        𝑖 = 1,⋯ ,𝑛                 (4.7) 

If yes to 𝑏𝑖𝑑1𝑖  ,𝑦1𝑖 = 1 and 𝑏𝑖𝑑2𝑖 > 𝑏𝑖𝑑1𝑖,  𝑦2𝑖 =  
 1 𝑓𝑜𝑟 𝑦𝑒𝑠 𝑡𝑜 𝑏𝑖𝑑2𝑖

0 𝑓𝑜𝑟 𝑛𝑜 𝑡𝑜 𝑏𝑖𝑑2𝑖

                   (4.8) 

If no to 𝑏𝑖𝑑1𝑖 ,   𝑦1𝑖 = 0 and 𝑏𝑖𝑑2𝑖 < 𝑏𝑖𝑑1𝑖,  𝑦2𝑖 =  
1 𝑓𝑜𝑟 𝑦𝑒𝑠 𝑡𝑜 𝑏𝑖𝑑2𝑖

0 𝑓𝑜𝑟 𝑛𝑜 𝑡𝑜 𝑏𝑖𝑑2𝑖

                    (4.9) 

In order to receive yes-yes as an answer for both bids the individual‟s 𝑊𝑇𝑃∗ must 

satisfy that 𝑊𝑇𝑃𝑖
∗ > 𝑏𝑖𝑑1𝑖  and 𝑊𝑇𝑃𝑖

∗ > 𝑏𝑖𝑑2𝑖  so we have that 𝑊𝑇𝑃𝑖
∗ > 𝑏𝑖𝑑2𝑖  > 𝑏𝑖𝑑1𝑖 . 

A yes answer to the first bid followed by no to the second bid, means that the individual‟s 

𝑊𝑇𝑃∗ is greater than 𝑏𝑖𝑑1𝑖  but smaller than 𝑏𝑖𝑑2𝑖 , 𝑊𝑇𝑃𝑖
∗ > 𝑏𝑖𝑑1𝑖 and 𝑊𝑇𝑃𝑖

∗ < 𝑏𝑖𝑑2𝑖  so 

we have that 𝑏𝑖𝑑1𝑖 < 𝑊𝑇𝑃𝑖
∗ < 𝑏𝑖𝑑2𝑖 . 
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On the other hand, for a no answer to 𝑏𝑖𝑑1𝑖 and a yes answer to 𝑏𝑖𝑑2𝑖  the respondent‟s 

𝑊𝑇𝑃∗ must me smaller than 𝑏𝑖𝑑1𝑖  and greater than 𝑏𝑖𝑑2𝑖  ,𝑊𝑇𝑃𝑖
∗ < 𝑏𝑖𝑑1𝑖 and  

𝑊𝑇𝑃𝑖
∗ > 𝑏𝑖𝑑2𝑖  so we have that 𝑏𝑖𝑑2𝑖 < 𝑊𝑇𝑃𝑖

∗ < 𝑏𝑖𝑑1𝑖. Finally, in order to receive a no 

answer to both bids, the respondent‟s 𝑊𝑇𝑃∗ is smaller than 𝑏𝑖𝑑1𝑖 and 𝑏𝑖𝑑2𝑖 ,𝑊𝑇𝑃𝑖
∗ <

𝑏𝑖𝑑1𝑖 𝑎𝑛𝑑 𝑊𝑇𝑃𝑖
∗ < 𝑏𝑖𝑑2𝑖  so we have that 𝑊𝑇𝑃𝑖

∗ < 𝑏𝑖𝑑2𝑖<𝑏𝑖𝑑1𝑖 . 

 

Additionally, the density functions for each case for the error are the following: 

No Hypothetical Bias: 

𝑓1 𝑣𝑖 =
1

𝜎𝑣 2𝜋
𝑒
−

1

2
 
𝑣𝑖
𝜎𝑣
 

2

=
1

𝜎𝑣 2𝜋
𝑒
−

1

2
 
𝑤𝑡 𝑝𝑖−𝛽

′ 𝑥𝑖
𝜎𝑣

 
2

        (4.10) 

Hypothetical Bias: 

For Normal (𝑣𝑖~𝑖𝑖𝑑 𝑁 0,𝜎𝑣
2 ) and Half-Normal  𝑢𝑖~𝑖𝑖𝑑 𝑁+ 0,𝜎𝑢

2   distributions we 

have the composed error density distribution: 

𝑓2 𝜀𝑖 =
2

𝜎
𝜑  
𝜀𝑖
𝜎
 𝛷  

𝜆

𝜎
𝜀𝑖            (4.11) 

(Kumbhakar and Lovell, 2000) 

where θ(.)/𝛷 .   are the density/cumulative distribution of the 𝑁(0,1) and 𝜀𝑖 , 𝜎 and 𝜆 

are given by Eq. (4.3), the square root of Eq. (4.4) and (4.5) respectively.  

As explained in Chapter 3 (p. 96-98), we will use the closed form approximation of 

Tsay et al. (2013) for the cumulative distribution of the composed error term where the 

latter is given by 

𝐹 =  
2

𝜎
𝜑  
𝜀𝑖
𝜎
 𝛷  

𝜆

𝜎
𝜀𝑖  𝑑𝜀𝑖            4.12 

𝑄

−∞

 

where  𝑄 = 𝑏𝑖𝑑𝑖 − 𝛽
′𝑥𝑖 . 

For a sample of 𝑛 observations the log-likelihood function for the proposed mixture 

model is given by 
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ln 𝐿 =  𝑙𝑛

𝑛

𝑖=1

 𝑦1𝑖𝑦2𝑖 𝑝1 1− 𝑓12 + 𝑝2 1− 𝑓22                                     

+ 𝑦1𝑖 1− 𝑦2𝑖 (𝑝1 𝑓12 − 𝑓11 + 𝑝2(𝑓22 − 𝑓21))  

+  1− 𝑦1𝑖 𝑦2𝑖(𝑝1 𝑓11 − 𝑓12 + 𝑝2 𝑓21 − 𝑓22 )

+  1− 𝑦1𝑖  1− 𝑦2𝑖  (𝑝1𝑓12 + 𝑝2𝑓22)                       (4.13) 

where  𝑓11 = 𝛷  
𝑏𝑖𝑑 1𝑖   −𝛽

′ 𝑥𝑖

𝜎𝑣
  ,   𝑓12 = 𝛷  

𝑏𝑖𝑑 2𝑖  −𝛽
′ 𝑥𝑖

𝜎𝑣
 ,  

𝑓21 = 𝐹′ 𝑏𝑖𝑑1𝑖  − 𝛽
′𝑥𝑖   and 𝑓22 = 𝐹′ 𝑏𝑖𝑑2𝑖  − 𝛽

′𝑥𝑖 . 

In order to estimate a Mixture model we apply the EM algorithm which was 

introduced by Dempster, Laird and Rubin in the late 1970s (McLachlan and Peel, 

2000:4). The EM algorithm consists of two steps, the E-step (expectation) and the M-step 

(maximization) and treats the estimation problem as a missing data problem, where the 

missing data is the information about class membership. Appendix A of Chapter 2 

presents in detail a description of how the EM algorithm works. Applying EM to the 

mixture problem ensures monotonic increases of the likelihood values (McLachlan and 

Peel, 2000:48). 

 

4.1.2. EM algorithm and the importance of initial values 

For estimating finite mixture models, the ML estimation via the EM algorithm has 

dominated the field for several reasons. Firstly, it is simple compared to other methods, 

secondly, it can exhibit monotonic convergence, thirdly, its‟ statistical interpretation is 

simple and finally, if the starting values are within admissible range so do the estimates 

(Karlis and Xekalaki, 2003:577-78). 

On the other hand, there are several difficulties regarding the application of the EM 

algorithm. Namely a few drawbacks of the EM algorithm is that it has slow convergence, 

another drawback is the need of proper choice of stopping rule in order to detect if the 

maximum is reached and additionally the choice of initial values in order to find the 

global maximum in the fewer as possible iterations (Karlis and Xekalaki, 2003:578). 

“The choice of initial values is of great importance in the algorithm-based literature as it 
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can heavily influence the speed of convergence of the algorithm and its ability to locate 

the global maximum” (Karlis and Xekalaki, 2003:579). 

The EM algorithm starts from some initial value for model‟s parameters. Choosing 

starting values has an important role since “different starting strategies and stopping rules 

can lead to quite different estimates in the context of fitting mixtures of exponential 

components via EM algorithm” (McLachlan and Peel, 2000:54). Two problems emerge 

from the need of initial values. Firstly the number of components of the mixture must be 

known in advance, but in the majority of the cases this information is unavailable. 

Secondly even if the number of components is known, the suitable set of initial values 

must been determined in order to avoid being trapped in local optima (Panić et al., 

(2020:1-2). 

In general, mixture models present an estimation difficulty in regards of the 

discrimination between a local optima and the global optimum. Mixture models may 

have several local optima and the normal mixture models may also come up with 

singularities where it means that there might be points that the likelihood function may go 

to infinity causing non-convergence to the model (Hipp and Bauer, 2006:36). 

Hipp and Bauer (2006:36) state that the estimation of a mixture model should be done 

with several sets of starting values in order to avoid these kind of irregularities on the 

likelihood surface and in order to enable the determination of the global optimum. In 

short, the starting values for the EM algorithm are crucial since the convergence to the 

global maximum is strongly dependent on the starting values and additionally the speed 

of convergence of the EM algorithm depends to a high degree on the initial values 

(Biernachi, 2004:267). 

 

4.2. Initialization techniques 

The EM algorithm requires starting values for the model‟s parameters and several 

initialization strategies to determine starting values have been proposed in the literature. 

In the present section the most commonly used initialization techniques are introduced 

and briefly described. 
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Many techniques that have been proposed in order to choose initial values are 

Clustering based ideas. Cluster analysis includes a broad set of techniques in order to find 

subgroups of the observations within a dataset. Clustering is a very important task in data 

analysis. This task arranges a set of objects so the objects in the identical group are as 

related as possible to the objects included in the same group-cluster.  In a few words, 

cluster analysis is done by separating the data into groups-clusters by detecting 

similarities among the data according to their characteristics and grouping similar data 

objects into clusters (Mann and Kaur, 2013:43-44). 

Some clustering techniques have been suggested by Woodward et al. (1984) and 

McLachlan (1988). Woodward et al. used an ad hoc quasi-clustering technique for the 

case of a mixture of two Normals. More specifically, Woodward et al. allowed as 

possible initial values of the class probability 𝑝 the values from 1-9. For each value the 

sample was divided in two subsamples and the initial value of the class probability was 

determined as “the value at which 𝑝 1− 𝑝  𝑚1 −𝑚2 
2 is maximized, where 𝑚𝑗  is the 

sample median of the jth subsample” (Woodward et al., 1984:592). McLachlan 

(1988:418) proposed the use of the two-dimensional scatter plots combined with 

principal component analysis in order to search for the presence of clusters. The visual 

clustering of the data was used as initial values for the posterior probabilities. 

Furthermore, Leroux (1992:1351-53) noticed that in order to obtain good estimates 

from maximum likelihood estimation, consideration should be given to the number of 

mixture components. In order to choose the number of components a number of criteria 

were used such as BIC and AIC comparing the constrained maximum-likelihood 

estimates for one, two and three components.  

In particular settings another initialization strategy that can be applied only on 

simulated data is the use of the real cluster membership probability. This technique is 

proposed for cases where the researcher aims to investigate the behavior of the EM 

algorithm when the starting point is the optimal solution (Maruotti and Punzo, 2021:454). 

Another initialization technique is the “Random Short EM”. This procedure consists of a 

number of short runs of the EM algorithm with a certain number of iterations by starting 

from a different random position each time. The starting values for the EM algorithm are 
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determined by the short EM with the biggest likelihood (Biernachi et al., 2013:567). As 

Maruotti and Punzo (2021:454) state, this procedure has S short runs of the EM algorithm 

and each short run has H iterations from different random positions. The random 

positions are obtained by selecting K centres randomly. The values that were considered 

for S and H were two, 1 or 10 and 1 or 5 respectively. In order to implement this 

initialization strategy they use the “rand.EM( )” function included in the “EMCluster” 

package which refers to finite Gaussian mixtures (Chen et al., 2021). 

Other initialization techniques belong to partitional clustering algorithms. Partitional 

clustering algorithms obtain classification of the observations into a number of clusters, 

based on their similarity. The number of clusters is determined in advance by the 

researcher. Namely the most popular algorithms are K-means clustering, K-medoids 

clustering or PAM and CLARA algorithm (Kassambara, 2017:35). Additionally another 

clustering algorithm is the fuzzy C-means which is a variation of the K-means algorithm 

and SOM algorithm (Self-Organizing Map) (Brun et. al, 2007:813). 

There are a number of R packages that provide initial values for the EM algorithm for 

the case of Gaussian mixtures.  Namely there is the “EMcluster” package, which is 

already mentioned above (Chen et al., 2021), the “mclust” package (Fraley et al., 2022), 

the “mixtools” package (Young et al., 2020), the “mixture” package (Pocuca et al., 2021) 

and finally, the “Rough-Enhanced-Bayes mixture estimation (REBMIX) algorithm (Panic 

et al., 2020:1). The REBMIX algorithm provides an alternative to the EM algorithm for 

finding parameter estimates for mixture models where both estimate accuracy and 

estimation time are important criteria and therefore the resulting estimates, while close to 

the ones from the EM, might not be as good as the latter. Based on these observations, 

Panic et al. (2020:2) propose the use of the REBMIX algorithm as an initialization 

strategy for the EM. 

For the initialization process two different techniques were adopted in order to initially 

partition the data into two classes and determine starting values for the remaining 

parameters. The first technique refers to a random classification applied in two different 

ways, namely only once and also multiple times. The second technique refers to another 

clustering technique known as the k-means clustering algorithm. In the following 
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subsections, each one of the initialization techniques that has been applied in the 

proposed double-bounded mixture model is analyzed in detail. 

 

4.2.1. Random initialization 

To define starting values for the EM algorithm, a procedure was applied in order to 

assign randomly into two classes the data. In the present subsection the procedure that 

was applied in Chapters 2 and 3, namely random assignment, is analyzed. Random 

initialization might be the most employed technique in order to initialize EM algorithm 

(Biernachi et al., 2003:566). 

Random draws were used from a uniform distribution to separate the data into two 

groups and an observation was classified in the first class whenever the draw was below 

0.5. Random draws from a uniform distribution is a commonly used procedure for 

starting values (Hipp and Bauer, 2006:41, Shireman et al., 2017:284). 

 

4.2.2. Random initialization multiple times  

The present initialization technique is an extension of the previous one. More 

analytically, in this strategy the simple random initialization is applied several times, 

instead of only once and the selection of the “best” solution must take place. The best 

solution is defined as the one that returns the highest maximized likelihood. Briefly, this 

extended strategy refers to three steps, search/ run/ select in order to maximize the 

likelihood (Biernachi et al., 2003:563-66). Maximizing the likelihood contains the three 

steps. Firstly a search method is built in order to generate 𝑝 initial positions, secondly, the 

EM algorithm must be run for a given number of iterations at each initial position and 

finally, the choice of the solution that provided the best likelihood value (Biernachi et al., 

2003:563). 

In general, usually for the selection of the best initial values a fit criterion is used, such 

as the BIC (Shireman et al, 2017:284). The random initialization technique can be 

applied together with the technique called the short runs of the EM algorithm. In short 

runs of EM the researches does not wait for convergence and the stopping rule of the EM 
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algorithm is determined by a stopping rule with a specific number of iterations (Biernachi 

et al., 2003:567). Shireman, Steinley and Brusco (2016:477) recommended that the 

number of initializations must be large. More specifically, they suggest “that a “large” 

number of initializations for mixture modeling be over 1000”. Although, in their research 

they found the optimal solution in a smaller number of iterations but they mentioned that 

this could be by chance. 

In practice a safe number of random initializations exceeding 1000 is unfeasible, thus 

a smaller number of initializations is usually applied, for instance 100 random 

initializations (Shireman et al., 2017:284). To sum up, in the double-bounded DC format 

mixture model the random assignment to two classes applied 100 times was adopted and 

for each random assignment a short EM algorithm was adopted. By the end of the 100 

assignments the starting values for the EM algorithm were selected by the BIC criterion. 

Moreover, since the number of parameters was the same across the different assignments, 

the BIC criterion is equivalent to using biggest log-likelihood. 

For the short EM the number of iterations needed to be determined having in mind that 

the bigger the initial EM iteration number is the more time intensive the procedure will 

be. The literature does not offer a unique number for the choice of the number of 

iterations. For example, the Mplus software defaults to 10 iterations of the EM algorithm 

from 20 random starts (Shireman et al., 2017:285), while StataCorp (2021:4) in order to 

determine starting values for finite mixture models defaults to 20 iterations. On the other 

hand, Biernachi et al. (2003:574) concluded that after comparing eight different strategies 

with repeating algorithms, the random strategy 10EM (10 initializations with 100 

iterations for each EM) returned the best results. Taking into consideration all the above 

it was decided to use 20 iterations for the short EM procedure. 

 

4.2.3. Classification with k-means algorithm  

“K-means clustering is the most commonly used unsupervised machine learning 

algorithm for partitioning a given data set into a set of k groups, where k represents the 

number of groups pre-specified by the analyst” (Kassambara, 2017:36). The basic idea is 

to define clusters in a way that the total intra-cluster variation is minimized. Each 
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observation from the given dataset is assigned to the cluster in which the sum of squares 

distance of the specific observation to their assigned cluster center is minimized 

(Kassambara, 2017:36-7).  

K-means has a number of advantages and disadvantages. The advantages are that it is 

a simple and fast algorithm but on the other hand a number of drawbacks occur. Firstly 

the number of clusters must be known in advance by the analyst, secondly if the data are 

rearranged it is possible that the analyst will receive a different solution and thirdly it is 

affected by outliers (Kassambara, 2017:46). Additionally, another drawback is that k-

means tend to find spherical clusters, in cases where the clusters are highly heterogeneous 

and non spherical, k-means won‟t be able to find the exact representation of the data and 

consequently won‟t be able to provide appropriate starting values (Shireman et al., 

2017:285). 

Furthermore, because the final clustering result obtained by k-means is affected by the 

random starting assignments, Kassambara (2017:41) recommends that k-means clustering 

should be computed with a large number of different random starting assignments, since 

the algorithm will select the best result corresponding to the lowest within cluster 

variation. More specifically, the default in R is 1 thus the proposed number is 25 or 50. 

Additionally, since the number of times that k-means should perform is determined by 

the researcher and the accurate number is subjective, Shireman et al. (2017:289) propose 

to set the number of runs for the k-means initialization technique to be set to 100.  

Taking into consideration all the above, in the present application, k-means will be 

performed 100 times by the using the function “kmeans( )” which is in the “stats 

package” of the R programming language (R Core Team, 2022). 

 

4.3. Simulations for the initialization techniques for the double-bounded 

mixture model 

The present section presents the simulation results for the three different initialization 

techniques described in section 4.2, namely, the 1 random initialization, the 100 random 

initializations and the k-means strategy. The simulations were conducted for 4 different 

cases considered in Chapter 3 and more specifically from Table 3.5 where in those cases 
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it was assumed that the class membership probability 𝑝1 was considered to be constant 

over respondents. The number of replications was set to 500 for a sample of 1000 

observations. 

 

4.3.1. Data generation 

In the data generation process, for all cases that are going to be applied, the model that 

is going to be estimated is simple regression model 

𝑊𝑇𝑃𝑖
∗ = 𝑎 + 𝛽𝑥𝑖 + 𝜔𝑖          (4.14) 

given by one explanatory-independent variable 𝑥𝑖~𝑁(4,1) where the coefficient of 

𝑥𝑖 ,𝛽 is equal to 2 and the constant term 𝛼 is equal to 5. Taking into consideration Eq. 

(4.6) and Eq. (4.14) the model becomes 

𝑊𝑇𝑃𝑖
∗ =  

5 + 2𝑥𝑖 + 𝑣𝑖             𝑤𝑖𝑡𝑕 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝1

5 + 2𝑥𝑖 + 𝑣𝑖 + 𝑢𝑖     𝑤𝑖𝑡𝑕 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  𝑝2
            (4.15)   

where  𝑣𝑖~𝑖𝑖𝑑 𝑁(0,𝜎𝑣
2) and  𝑢𝑖~ 𝑖𝑖𝑑 𝑁+ 0,𝜎𝑢

2 . 

For the normal error term 𝑣, the values 1 and 1.25 were used for 𝜎𝑣while for the half-

normal error term 𝑢, the choice of values for 𝜎𝑢  followed Eq. (4.16) below. 

𝜎𝑢 =  
10𝜎𝑣
5𝜎𝑣

           (4.16) 

From Eq. (4.5) it follows that the parameter 𝜆 takes the values 5 and 10. The bids are 

determined by Eq. (4.17) and Table 4.1 illustrates the structure of  𝑏𝑖𝑑1 and  𝑏𝑖𝑑2. 

𝑏𝑖𝑑2 =  
 25%𝑏𝑖𝑑1 + 𝑏𝑖𝑑1        𝑖𝑓 𝑦𝑒𝑠 𝑡𝑜 𝑏𝑖𝑑1 

25%𝑏𝑖𝑑1 − 𝑏𝑖𝑑1        𝑖𝑓  𝑛𝑜 𝑡𝑜 𝑏𝑖𝑑1

       (4.17) 
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Table 4.1: 𝑏𝑖𝑑1 and 𝑏𝑖𝑑2 

Bids given to respondents 

𝒃𝒊𝒅𝟏 =11 𝒃𝒊𝒅𝟏 =12 𝒃𝒊𝒅𝟏 =13 𝒃𝒊𝒅𝟏 =15 

Yes No Yes No Yes No Yes No 

𝒃𝒊𝒅𝟐 =14 𝒃𝒊𝒅𝟐 =9 𝒃𝒊𝒅𝟐 =15 𝒃𝒊𝒅𝟐 =9 𝒃𝒊𝒅𝟐 =17 𝒃𝒊𝒅𝟐 =10 𝒃𝒊𝒅𝟐 =19 𝒃𝒊𝒅𝟐 =12 

 

The mean WTP at the mean value of 𝑥𝑖  is given in Eq. (4.18) below 

𝑚𝑒𝑎𝑛 𝑊𝑇𝑃 =  2 + 5𝑥  = 12.994                    (4.18) 

And finally, regarding the class membership, the probability is a constant  𝑝1 = 0.75 

and 𝑝2 = 0.25. In this case all respondents that belong to the same class have the same 

probability of belonging to the class. 

 

4.3.2. Starting values and initialization strategy  

The initialization techniques that have been applied in the present subsection aim to 

separate the data into two clusters in order to compute starting values for the EM 

algorithm. The procedure that it was followed in each case is described below. 

 

A. Initial values obtained from 1 random initialization  

This initialization strategy is a simple procedure in order to separate randomly the data 

into two classes. This procedure was followed in Chapter 2 and 3 in order to receive 

starting values for the EM algorithm. In the following description are analyzed in detail 

the steps that were followed in order to obtain starting values. 
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Step A1: Random assignment of observations to two classes 

In the first step to determine starting values for the EM algorithm random draws from 

a Uniform(0,1) were generated and the observation was classified in the one class 

whenever the draw was below 0.5.  

Step A2: ML estimations assuming that one class exists 

For each class a probit model was estimated and the class with the biggest constant 

represents the one with overestimation. By ending this stage, starting values were 

obtained in order to apply ML estimation for a Normal error model and for a composed 

error model, assuming that all observations belong in one class, where initial value for 

𝜎𝑢  was determined using the same formula as in Step2 in Chapter 2 (p.63-64). At this 

point the estimation results from the ML estimation for a Normal error model and from 

the composed error model were used as starting values for EM algorithm. More 

specifically, for the parameters 𝛼,𝛽 and 𝜎𝑣
2 the starting values were determined from the 

ML of the Normal model, and the starting value of the parameter 𝜆 was determined by 

the ML estimate for the composed model. Additionally, from the clustering procedure the 

proportion was used as a starting value of the class membership probability. 

Step A3: Applying EM algorithm 

The EM algorithm was run for the mixture model until a tolerance criterion was 

reached, where the tolerance criterion was until the value of the log-likelihood obtained 

in each iteration, satisfies Eq. (4.19) 

 𝑙𝑜𝑔𝑙𝑖𝑘𝑒𝑙𝑖𝑕𝑜𝑜𝑑 𝑘 − 𝑙𝑜𝑔𝑙𝑖𝑘𝑒𝑙𝑖𝑕𝑜𝑜𝑑 𝑘 − 1  < 0.001           (4.19) 

where k is the number of  the iteration. 

Finally, the estimates produced from the EM algorithm were used as starting values to 

maximize the log-likelihood of the mixture model, since the EM algorithm was stopped 

before reaching convergence. 
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B. Initial values obtained from 100 random initializations 

This initialization procedure is very similar to the previous initialization strategy. The 

main difference is that the random assignment is done multiple times and not only once. 

In the following description are presented the steps that were followed in order to obtain 

starting values. 

Step B1:100 Random assignments 

The first step of this procedure includes the Steps A1-A2 described in the previous 

initialization technique. The addition that is done by the second initialization strategy is 

the repetition of the first strategy by 100 times. In the current strategy though Step A3 is 

modified, instead of using a tolerance criterion the number of iterations for the EM 

algorithm was set to 20. 

Step B2: Identifying the “best starting values” 

In order to select the best starting values among the 100 initializations a criterion such 

as the BIC (Shireman et al., 2017:284) can be used. Nevertheless, since the sample size 

and the number of parameters is the same across the 100 cases, this amounts to basing 

comparisons on the log-likelihood.  The estimates with the highest log-likelihood were 

therefore used as starting values for the EM algorithm. 

Step B3: Applying EM algorithm    

The EM algorithm was applied for the mixture model using the initial values 

determined in the previous step and using the tolerance criterion defined previously in 

Eq. (4.19). Finally, the estimates produced from the EM algorithm were used as starting 

values to maximize the log-likelihood of the mixture model. 

 

C. Initial values obtained from k-means classification 

For this initialization technique, the k-means algorithm was used to partition the data 

into two groups. The remaining Steps are the same as case A, thus the following steps 

were followed: 
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Step C1: Assigning to two classes with k-means 

The data were separated into two classes by applying k-means algorithm. 

Step C2: ML estimations assuming that one class exists 

Same as in Step A2. 

Step C3: Applying EM algorithm 

Same as in Step A3. 

Finally, the estimates produced from the EM algorithm were used as starting values to 

maximize the log-likelihood of the mixture model 

 

4.3.3. Simulation results for the double-bounded method model for 

different initialization strategies 

The present subsection presents the simulation results related to parameter estimates 

and mean Willingness To Pay estimates for the three different initialization techniques. 

The R programming language (R Core Team, 2022) was used to perform the simulations. 

More specifically version 4.1.1. 

As was the case in Chapters 2 and 3, the class membership probability, p1, was 

reparametrized as 𝑝1 =
1

(1+𝑒𝑘𝑎𝑝𝑝𝑎 )
 in order to ensure that the estimate of the class 

membership probability lies in the open unit interval. Additionally, a number of 

replications were dropped from the results as the standard errors of the maximum 

likelihood estimates could not be computed. Finally, in addition to the parameter 

estimates, the bias of WTP is illustrated for each case. More specifically the bias is given 

by the following equation: 

 𝐵𝑖𝑎𝑠 = 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑚𝑒𝑎𝑛 𝑊𝑇𝑃 −𝑚𝑒𝑎𝑛 𝑊𝑇𝑃 ⇒ 

 𝐵𝑖𝑎𝑠 =  𝑎 + 𝛽 𝑥  −   5 + 2𝑥            (4.20) 

where  𝑎 =
 𝛼 𝑟𝑅
𝑟=1

𝑅
, 𝛽 =

 𝛽 𝑟𝑅
𝑟=1

𝑅
 and 𝑅 is the number of replications. 
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A. Simulation Results for the 1 random initialization strategy 

The single or 1 random initialization has already been illustrated in Chapter 3 for 1000 

simulations (Tables 3.5-3.7). For the sake of comparison the results for 500 replications 

are reported below. Table 4.2 reports the mean estimates of the parameters 𝛼,𝛽,𝜎𝑣
2, 𝜆 and 

𝑝1. Additionally, the number of the replications that have been removed from each case is 

given in Table 4.3 and finally Table 4.4 presents the bias of the mean WTP for each case 

and the mean estimate of the WTP. 

 

Table 4.2: Simulation Results from the 1 random initialization technique 

Simulation Results for Double-Bounded DC and 𝒑𝟏 = 𝟎.𝟕𝟓 

1 random initialization 

 
𝜶  𝜷  𝝈 𝒗

𝟐 𝝀  𝒑 𝟏 

𝝈𝒗 =  𝟏 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

Mean 4.9631 2.0135 1.0379 10.4198 0.7507 

Standard deviation 0.2601 0.0628 0.4752 2.4643 
 

𝝈𝒗 =  𝟏 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean 4.9498 2.0143 1.0028 5.056 0.7486 

Standard deviation 0.2429 0.0597 0.2207 0.7579 
 

𝝈𝒗 =  𝟏.𝟐𝟓 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

Mean 4.9658 2.0135 1.6205 10.7376 0.7502 

Standard deviation 0.294 0.0695 0.6545 3.6207 
 

𝝈𝒗 =  𝟏.𝟐𝟓 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean 4.9486 2.0164 1.5871 5.0952 0.7496 

Standard deviation 0.2845 0.0689 0.3925 0.9435 
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As Table 4.2 shows, in all cases the mean estimates are very close to the true values. 

Additionally, it can be noticed that the standard deviation of the parameters is small 

except for the parameter 𝜆 in the cases where 𝜆 = 10. In such cases due to the fact that 

σ𝑢  has very large values compare to σ𝑣 (which is 1 and 1.25 respectively) the parameter 

𝜆 will probably get higher estimates and since the standard deviation is sensitive to 

extreme values, the standard deviation of 𝜆 might have higher values. Furthermore, Table 

4.3 shows that the number of replications removed from all cases is between 15 and 25 

replications, representing 3-5% of the replications, which is a very small percentage. 

 

Table 4.3: Replications removed from the 1random initialization technique 

Number of replications removed 

 𝛌 = 𝟏𝟎 𝛌 = 𝟓 

𝝈𝒗 = 𝟏 20 15 

𝝈𝒗 = 𝟏.𝟐𝟓 20 25 

 

Finally, Table 4.4 reports the bias of the mean WTP for each case, given by applying 

Eq. (4.20). It can be noticed that in all cases that have been examined the mean bias is 

very close to zero which means that the model succeeded to overcome hypothetical bias. 

 

Table 4.4: Bias of the mean WTP from 1 random initialization technique 

Bias of Mean WTP same probability for overestimation for all respondents  

1 random initialization 

 𝝈𝒗 = 𝟏 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 𝝈𝒗 = 𝟏 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean W𝐓 𝐏𝐦𝐢𝐱𝐭𝐮𝐫𝐞 𝐦𝐨𝐝𝐞𝐥 13.0111 13.0011 

𝐁𝐢𝐚𝐬𝐦𝐢𝐱𝐭𝐮𝐫𝐞 𝐦𝐨𝐝𝐞𝐥 0.0171 0.0071 
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Table 4.4: (continued) 

 
𝝈𝒗 = 𝟏.𝟐𝟓 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 𝝈𝒗 = 𝟏.𝟐𝟓 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean W𝐓 𝐏𝐦𝐢𝐱𝐭𝐮𝐫𝐞 𝐦𝐨𝐝𝐞𝐥 13.0139 13.0081 

𝐁𝐢𝐚𝐬𝐦𝐢𝐱𝐭𝐮𝐫𝐞 𝐦𝐨𝐝𝐞𝐥 0.0199 0.014 

 

B. Simulation Results for the 100 random initializations strategy  

The results for the case where random initialization is conducted a 100 times and the 

“best” initialization is chosen are illustrated in Tables 4.5, 4.6 and 4.7. More specifically, 

Table 4.5 presents the mean estimates of the parameters 𝛼 ,𝛽,𝜎𝑣
2 , 𝜆 and 𝑝1. Additionally, 

Table 4.6 shows the number of the replications that have been removed from each case 

and finally Table 4.7 reports the bias of the mean WTP for each case and the mean 

estimate of the WTP. 

As can be observed from the results, in all cases the mean estimates are very close to 

the real parameter values. Additionally the standard deviation for all parameters is small 

except for parameter 𝜆 in cases with real 𝜆 equal to 10, as in the case with 1 random 

initialization. The main reason is that in these cases 𝜎𝑢
2 has very large values compare to 

𝜎𝑣
2 thus the parameter 𝜆 will probably get higher estimates and since the standard 

deviation is sensitive to extreme values, the standard deviation of 𝜆 might have higher 

values. 

 

Table 4.5: Simulation Results for the 100 random initializations strategy 

Estimation Results for Double Bound DC and p1=0.75  

100 random initializations 

 
𝜶  𝜷  𝝈 𝒗

𝟐 𝝀  𝒑 𝟏 

𝝈𝒗 =  𝟏 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

Mean 4.9635 2.0135 1.0385 10.4274 0.7542 

Standard deviation 0.2615 0.0624 0.4906 2.4547 
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Table 4.5: (continued) 

𝝈𝒗 =  𝟏 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean 4.9477 2.0139 0.9929 5.0756 0.7562 

Standard deviation 0.2375 0.0589 0.1437 0.6795 
 

𝝈𝒗 =  𝟏.𝟐𝟓 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

Mean 4.9466 2.0148 1.5517 10.4962 0.7515 

Standard deviation 0.2796 0.0702 0.1826 2.5383 
 

𝝈𝒗 =  𝟏.𝟐𝟓 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean 4.9419 2.0161 1.5603 5.1251 0.7514 

Standard deviation 0.2791 0.0685 0.2703 0.8517 
 

 

Furthermore Table 4.6 shows that the number of replications removed from all cases is 

between 12 and 33. More generally, it can be stated that the replications removed 

represent the 2.5-6.5% of the replications which is a small percentage. 

 

Table 4.6: Replications removed from the 100 random initializations technique 

  

Number of replications removed 

 𝛌 = 𝟏𝟎 𝛌 = 𝟓 

𝝈𝒗 = 𝟏 12 16 

𝝈𝒗 = 𝟏.𝟐𝟓 33 22 
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Finally, Table 4.7 reports the bias of the mean WTP, given by Eq. (4.20), together 

with the mean estimate of the WTP. The bias of the mean WTP estimate is very small for 

all cases, almost zero which means that the mean estimates are almost identical to the real 

values of the parameters. 

 

Table 4.7: Bias of the mean WTP from the 100 random initializations technique 

Bias of Mean WTP  same probability for overestimation for all respondents 

100 random initializations 

 𝝈𝒗 = 𝟏 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 𝝈𝒗 = 𝟏 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean W𝐓 𝐏𝐦𝐢𝐱𝐭𝐮𝐫𝐞 𝐦𝐨𝐝𝐞𝐥 13.0115 12.9974 

𝐁𝐢𝐚𝐬𝐦𝐢𝐱𝐭𝐮𝐫𝐞 𝐦𝐨𝐝𝐞𝐥 0.0175 0.0034 

 
𝝈𝒗 = 𝟏.𝟐𝟓 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 𝝈𝒗 = 𝟏.𝟐𝟓 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean W𝐓 𝐏𝐦𝐢𝐱𝐭𝐮𝐫𝐞 𝐦𝐨𝐝𝐞𝐥 13.0003 13.0002 

𝐁𝐢𝐚𝐬𝐦𝐢𝐱𝐭𝐮𝐫𝐞 𝐦𝐨𝐝𝐞𝐥 0.0063 0.0062 

 

C. Initial values obtained from k-means algorithm 

The results for parameter estimates when the k-means algorithm is used for 

initialization are illustrated in Table 4.8 and the number of replications that were removed 

for each case is illustrated in Table 4.9. Additionally, Table 4.10 reports the bias of the 

mean WTP and the mean estimate of the WTP. 

As was the case for the previous two initialization techniques, the results show that for 

all cases the mean estimates of all parameters are very close to the real parameters. 

Additionally the standard deviation of the estimates is small except for parameter 𝜆. The 

parameter 𝜆 in cases where its real value is equal to 10 has higher standard deviation due 

to extreme values that may occur during the estimation. 
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Table 4.8: Simulation Results for the k-means initializations strategy 

Estimation Results for Double-Bounded DC and 𝒑𝟏=0.75 initialization with k-means 

 
𝜶  𝜷  𝝈 𝒗

𝟐 𝝀  𝒑 𝟏 

𝝈𝒗 =  𝟏 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

Mean 4.9598 2.0131 1.0143 10.0244 0.7526 

Standard deviation 0.2516 0.0629 0.3385 2.3945 
 

𝝈𝒗 =  𝟏 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean 4.9474 2.0144 0.9927 5.0772 0.7498 

Standard deviation 0.2393 0.0596 0.1446 0.6958 
 

𝝈𝒗 =  𝟏.𝟐𝟓 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

Mean 4.9544 2.0144 1.5801 10.7918 0.7518 

Standard deviation 0.2843 0.0698 0.4114 3.4944 
 

𝝈𝒗 =  𝟏.𝟐𝟓 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean 4.9455 2.0161 1.57189 5.1266 0.7508 

Standard deviation 0.2752 0.0681 0.3274 0.8746 
 

 

To continue with the analysis, Table 4.9 illustrates the number of replications that 

have been removed from each case due to standard error issues. The replications that 

have been removed are very few, the number of them ranges from 1 to 8 replications. In 

terms of percentage, the percentage of the replications that have been removed is smaller 

than 2%, which is a small proportion of the total replications. 
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Table 4.9: Replications removed from the k-means initialization technique 

Number of replications removed 

 𝛌 = 𝟏𝟎 𝛌 = 𝟓 

𝝈𝒗 = 𝟏 1 1 

𝝈𝒗 = 𝟏.𝟐𝟓 8 4 

 

Table 4.10: Bias of the mean WTP from the k-means initialization technique 

Bias of Mean WTP K-means initialization 

 𝝈𝒗 = 𝟏 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 𝝈𝒗 = 𝟏 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean W𝐓 𝐏𝐦𝐢𝐱𝐭𝐮𝐫𝐞 𝐦𝐨𝐝𝐞𝐥 13.0062 12.999 

𝐁𝐢𝐚𝐬𝐦𝐢𝐱𝐭𝐮𝐫𝐞 𝐦𝐨𝐝𝐞𝐥 0.0122 0.005 

 
𝝈𝒗 = 𝟏.𝟐𝟓 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 𝝈𝒗 = 𝟏.𝟐𝟓 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean W𝐓 𝐏𝐦𝐢𝐱𝐭𝐮𝐫𝐞 𝐦𝐨𝐝𝐞𝐥 13.006 13.0039 

𝐁𝐢𝐚𝐬𝐦𝐢𝐱𝐭𝐮𝐫𝐞 𝐦𝐨𝐝𝐞𝐥 0.012 0.0099 

 

Finally Table 4.10 presents the mean estimated WTP and the bias of the mean WTP 

for each case, given by applying Eq. (4.20). Considering the results it can be noticed that 

the bias of the mean WTP for each case, estimated by the proposed mixture model, is 

very small, since the mean estimate of the WTP is very close to the real WTP. 

Concluding the findings above it can be stated that the three initialization techniques 

produce very similar parameter estimates. However the k-means initialization technique 

has fewer replications with standard error issues. Additionally it can be seen that the 

standard deviation from the 100 random initialization technique, in almost all cases is 

smaller compare to the other initialization methods. Besides these small differences, all 

three methods can initialize the EM algorithm effectively and the results show that the 
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proposed mixture model can overcome hypothetical bias in a satisfactory way in order to 

provide trustworthy estimates. 

 

4.4. Comparison of initialization methods 

In the previous section the three initialization techniques were compared in order to 

examine which technique returns better estimates to minimize the bias of the mean WTP. 

In the present section, additional performance criteria are going to be applied in order 

detect if there is an initialization strategy that performs better. 

 

4.4.1. Methodology for comparing initialization methods 

In order to compare the initialization techniques a number of performance criteria 

were applied. Examining in detail the literature that refers to comparison of initialization 

methods, the performance criteria that are commonly used in such researches are 

presented below. 

One practical criterion for algorithm comparison is the running time (Meilă and 

Heckerman, 2001:16). Another criterion used is the number of iterations that are 

necessary until convergence. This criterion was performed by Karlis and Xekalaki 

(2003:580). Another criterion to examine the performance of an initialization strategy is 

its ability to reach the Global maximum. Karlis and Xekalaki (2003:581), assume that at 

least one of the methods has reached the global maximum. 

In order to assume that each 𝑗𝑡𝑕  set of initial values has succeeded in locating the 

global maximum two conditions given by Eq. (4.21) and Eq. (4.22), must be satisfied: 

Condition (1):  𝜃𝑚𝑎𝑥 − 𝜃𝑗  < 10−5                                   (4.21) 

and 

Condition (2):     
 𝐿𝑚𝑎𝑥 −𝐿𝑗  

𝐿𝑚𝑎𝑥
 < 10−5                                (4.22) 
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where 𝐿𝑚𝑎𝑥  denotes  the log-likelihood with the maximum value, considered as the 

global maximum and 𝐿𝑗  is the value of the log-likelihood for the j-th set of initial values. 

Additionally, 𝜃𝑚𝑎𝑥  denotes the parameters corresponding to the global maximum. 

In the present study since three techniques are going to be compared, for each 

technique the log-likelihood value is determined at each replication and 𝐿𝑚𝑎𝑥  is 

determined as the log-likelihood with the maximum value among the three. Furthermore, 

as 𝜃𝑚𝑎𝑥  is considered the parameter estimates of the technique with the maximum log-

likelihood. 

Furthermore, another criterion is based on the ability to find the correct classification. 

In order to determine the ability to determine the right classification the measure that is 

used is the Adjusted Rand Index (ARI). The ARI has “a maximum value of 1 indicating 

identical solutions” and measures the accuracy of the classifications (Maruotti and Punzo, 

2021:455-56). The ARI is included in the “fossil” package and was applied by using the 

adj.rand.index( ) function right after the classes were separated (Vavrek, 2020:33). The 

Rand Index was proposed by Rand in 1971 and in 1985 Huber and Arabie proposed the 

Adjusted Rand Index (Vavrek, 2020:33). The Adjusted Rand Index rescaled the Rand 

Index by taking into consideration that “random cause will cause some objects to occupy 

the same clusters” (Vavrek, 2020:33). 

The Adjustment Rand Index is calculated by 

𝐴𝑅𝐼 𝑃∗,𝑃 =
  

𝑁𝑖𝑗
2
 −   

𝑁𝑖
2
   

𝑁𝑗
2
 𝑗𝑖  / 𝑁2  𝑖𝑗

1

2
   

𝑁𝑖
2
 +  

𝑁𝑗
2
 𝑗𝑖  −   

𝑁𝑖
2
   

𝑁𝑗
2
 𝑗𝑖  / 𝑁2  

            (4.23) 

Where 

𝑃∗ =  𝐶1
∗,… ,𝐶𝐾

∗   is the partition of the data set based on the ground truth 

 𝑃 = {𝐶1,… . ,𝐶𝐾} is the clustering results generated by the clustering algorithm 

𝐾 the number of clusters 

𝑁 is the number of data points in a given dataset 

𝑁𝑖𝑗  is the number of data points of the class label 𝐶𝑗
∗ ∊ 𝑃∗ assigned to cluster 𝐶𝑖  in 

partition P. 
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𝑁𝑖  is the number of data points in cluster 𝐶𝑖  of partition 𝑃 and 

𝑁𝑗  is the number of data points in class 𝐶𝑗
∗ (Yang, 2017:31). 

Finally, two additional criteria are added. The proportion that condition 1 given by Eq. 

(4.21) is satisfied as well as the condition 2, given by Eq. (4.22). 

 

4.4.2. Comparison results  

In order to determine the technique that provides the best initial values for the EM 

algorithm, it should be in mind that the notion of “the best initialization method” involves 

a trade-off between computation cost and accuracy. Additionally the best initial values 

are an ill-defined notion since a formal delimitation among initial searches doesn‟t‟ exist 

(Meilă and Heckerman, 2001:14-5). The following Tables illustrate the results obtained 

by applying the performance criteria described in the previous subsection. 

To begin with, Table 4.11 reports the proportion of the times that each initialization 

technique obtained the maximum log-likelihood value (column 1). It should be noted that 

in a number of replications there was more than one technique with the maximum log-

likelihood value thus the percentages do not sum to 100%.  The 100 Random 

Initializations method had a very high percentage of maximum log-likelihood values. 

More specifically, in the case where 𝜎𝑣 = 1 and 𝜆 = 10, 67.81% of the replications the 

100 Random Initializations Technique returned the highest log-likelihood value among 

the other techniques. Furthermore, in the remaining cases, 100 Random Initializations 

method has as well the higher log-likelihood value among the other methods for more 

than 50% of the replications. 

Column 2 of Table 4.11 shows the percentage of times a method finds the global 

maximum or in other words satisfies both conditions given in Eq. (4.21) and Eq. (4.22). 

Note that condition (4.21) needs to hold for all parameters.  As it can be seen the success 

rate for the 1 Random Initialization technique is between 24% and 33% of the total 

replications. The K-means algorithm has a very similar percentage of succeeding in 

reaching the global maximum since it ranges from 23% to 37%.  On the other hand the 

100 Random Initializations technique has a higher percentage of reaching the global 
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maximum, since it varies between 50% and 70%, which is almost the double percentage 

of the other two methods. 

Additionally, Table 4.11 presents the results for each condition separately. As it is 

shown, for each parameter separately that composes the global maximum conditions, it 

can be noticed that the parameters 𝛼,𝛽 and 𝜎𝑣
2 have a high percentage of satisfying 

condition 1 given by Eq. (4.21). The parameter 𝜆 on the other hand although satisfies Eq. 

(4.21) it can be noticed that the percentage is smaller than the other parameters‟ 

percentages. 

Although for all parameters and methods condition 1 is satisfied over 20% of the time, 

the 100 Random Initializations technique has a substantial advantage of achieving 

percentages more than 50%. Furthermore, in regards of succeeding in condition (2) 

separately, in all cases the initialization methods reached over 99% of satisfying Eq. 

(4.22). 
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Table 4.11: Comparing the initialization methods for Double-Bounded DC (1) 

Comparing the initialization methods for Double-Bounded DC and 𝒑𝟏=0.75 (1) 

 

% max 

log-

likelihood 

% global 

maximum 
% 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏  (𝟏) % 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 (𝟐) 

 
  𝒂  𝜷  𝝈𝒗

𝟐  𝝀   

𝝈𝒗 = 𝟏 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

1Random 

Init 
18.24% 24.68% 41.63% 58.37% 45.49% 24.89% 99.14% 

100Random 

Init 
67.81% 68.45% 74.46% 86.48% 78.54% 69.74% 99.36% 

K-means 15.45% 23.18% 40.56% 56.01% 42.27% 23.18% 99.57% 

𝝈𝒗 = 𝟏 𝒂𝒏𝒅 𝝀 = 𝟓 

1Random 

Init 
48.08% 30.13% 45.73% 60.9% 45.3% 39.53% 99.57% 

100Random 

Init 
70.3% 50.85% 66.45% 79.06% 65.17% 55.98% 100% 

K-means 49.36% 32.05% 45.09% 63.25% 46.79% 41.67% 100% 

𝝈𝒗 = 𝟏.𝟐𝟓 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

1Random 

Init 
19.1% 33.71% 48.99% 70.34% 48.54% 33.93% 98.88% 

100Random 

Init 
54.83% 55.28% 71.69% 86.52% 68.99% 55.96% 100% 

K-means 26.07% 36.63% 53.26% 72.58% 49.21% 37.53% 99.78% 

𝝈𝒗 = 𝟏.𝟐𝟓 𝒂𝒏𝒅 𝝀 = 𝟓 

1Random 

Init 
14.86% 26.61% 39.91% 60.31% 36.36% 28.6% 100% 

100Random 

Init 
69.84% 70.07% 76.05% 85.14% 74.94% 70.73% 100% 

K-means 15.96% 25.72% 39.25% 60.31% 38.14% 27.72% 100% 



Overcoming Hypothetical Bias  Chapter 4 

 
158 

 

Table 4.12 presents the remaining criteria that have been considered during the 

comparison of the methods. To begin with, one parameter that is examined in the 

comparison of the initialization strategies is the time that is needed in order to complete 

the estimation. In order to enable the time needed for the comparison, the models were 

run for the same number of replications. Additionally the time was calculated from the 

beginning of the procedure until the end of the total replications. The 100 Random 

Initializations technique is an extension of the 1Random Initialization and therefore the 

time needed will be approximately 100 times more. This technique is not taken into 

consideration in regards to the comparison of the time needed, thus the time needed to 

complete the 100 Random Initializations is not illustrated in Table 4.12. As it is shown in 

the first column of Table 4.12, the time that is needed in order to complete the process for 

the 1 Random Initialization and the k-means are very close. In the case where 𝜎𝑣 = 1 and 

λ = 10 the time needed is the same, in the rest of the cases the differences between the 

techniques is around 1 minute. 

Another criterion that is taken under consideration is the number of replications that 

have been removed due to standard error issues. As it is shown in Table 4.12, in 1 

Random Initialization and 100 Random Initializations techniques the replications that 

have been removed are about the same and vary from 13 to 25. On the other hand with k-

means technique the replications removed were fewer and more specifically it can be 

noticed that the replications removed were 1 to 6 which are very few compared to the 

other two strategies. 

Another performance criterion refers to the number of iterations that the estimation 

process runs until convergence. Table 4.12 reports the mean number of iterations needed 

for each technique. It can be observed that across cases the number of iterations needed 

doesn‟t vary. More specifically, the 1 Random Initialization and the k-means technique 

needed the same number of iterations for almost all cases. Furthermore the 100 Random 

Initializations technique doesn‟t differ from the other techniques much. More specifically 

the 100 Random Initializations technique has either the same number of iterations as the 

other techniques or it differs by 1 iteration. It should be noted that the number of 

iterations is calculated after the best of the 100. 
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The last performance criterion is the Adjusted Rand Index (ARI) which measures the 

accuracy of the classification. The criterion was applied in order to have a measurement 

of which criterion separates the two classes more accurately. As it is illustrated in Table 

4.12, the three strategies have very similar results and there is no strategy that receives an 

ARI score over 60%. Although none of the initialization techniques received a high level 

for classification accuracy, it can be noticed that 100 Random Initializations technique 

achieved the highest score for three out of the four cases. 

 

Table 4.12: Comparing the initialization methods for Double-Bounded DC (2) 

Comparing the initialization methods for Double Bounded DC and 𝒑𝟏=0.75 (2) 

 
Running Time 

in minutes 

Replications 

removed 

Number of 

iterations 
ARI 

𝝈𝒗 = 𝟏 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

1Random Init 37.89 20 40 50.36% 

100Random Init - 13 38 52.57% 

K-means 37.42 1 39 46.92% 

𝝈𝒗 = 𝟏 𝒂𝒏𝒅 𝝀 = 𝟓 

1Random Init 39.27 15 38 48.54% 

100Random Init - 16 38 44.24% 

K-means 40.52 1 38 44.74% 

𝝈𝒗 = 𝟏.𝟐𝟓 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

1Random Init 32.66 20 37 50.34% 

100Random Init - 22 36 57.19% 

K-means 31.25 6 37 48.17% 

𝝈𝒗 = 𝟏.𝟐𝟓 𝒂𝒏𝒅 𝝀 = 𝟓 

1Random Init 34.34 25 37 49.26% 

100Random Init - 22 38 55.79% 

K-means 36.35 4 37 46.8% 
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Finally, in order to complete the comparison of the initialization techniques Table 4.13 

presents the estimates of the mean WTP and the bias of the mean WTP for all cases and 

techniques. As it can be seen, the bias of the mean WTP for each technique is very small. 

Although the differences within the techniques are very small, the 100 Random 

Initializations has a slightly better performance in the majority of the examined cases, in 

overcoming hypothetical bias. 

 

Table 4.13: Comparison of the Bias of the mean WTP 

Comparison of the Bias of Mean WTP 

 
1 Random 

Initialization 

100 Random 

Initializations 
K-means 

𝝈𝒗 = 𝟏 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

Mean W𝐓 P 13.0111 13.0115 13.0062 

𝐁𝐢𝐚𝐬 0.0171 0.0175 0.0122 

𝝈𝒗 = 𝟏 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean W𝐓 P 13.0011 12.9974 12.999 

𝐁𝐢𝐚𝐬 0.0071 0.0034 0.005 

𝝈𝒗 = 𝟏.𝟐𝟓 𝒂𝒏𝒅 𝝀 = 𝟏𝟎 

Mean W𝐓 P 13.0139 13.0003 13.006 

𝐁𝐢𝐚𝐬 0.0199 0.0063 0.012 

𝝈𝒗 = 𝟏.𝟐𝟓 𝒂𝒏𝒅 𝝀 = 𝟓 

Mean W𝐓 P 13.0081 13.0002 13.0039 

𝐁𝐢𝐚𝐬 0.014 0.0062 0.0099 
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Conclusions  

The initial values of the EM algorithm play a very crucial role since selecting starting 

values refers as a “well-documented” drawback of the method (Panić et al., 2020:1). In 

the present research, in order to overcome hypothetical bias a double-bounded mixture 

model has been proposed. Furthermore the present chapter examined the starting values 

issue thus different initialization methods were examined in order to determine the 

technique that provides the more proper starting values for the proposed mixture model. 

After 500 replications and examination of different cases the three chosen 

initialization techniques have provided interesting findings. At first the main goal of 

overcoming hypothetical bias is achieved by all initialization techniques. By comparing 

the simulation results and the performance criteria it can be concluded that the three 

techniques achieve accurately outcomes. Table 4.14 summarizes analytically which 

technique performed better for each performance criterion. As is reported in Tables 4.11, 

4.12 and 4.13 the differences are very small in the majority of the performance criteria 

that have been applied. 

In order to determine which technique performed better at each criterion it was taken 

into account whether it obtained better results in most of the cases and more specifically  

a technique performed better compared to another one if it had better outcomes at least in 

3 out of the 4 cases. As is illustrated in the following table, the initialization method that 

performed better in the majority of the criteria is the 100 Random Initializations 

technique. 
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Table 4.14: Technique that performed better at each criterion 

Technique that performed better at each criterion 

Criterion applied 
Technique that performed 

better 

Technique with the second 

best performance 

% maximum log-likelihood 100 Random Initializations K-means 

% global maximum 100 Random Initializations 
1 Random Initialization and  

K-means (50-50) 

Time 
1 Random Initialization and 

K-means 
- 

Iterations 100 Random Initializations 1 Random Initialization 

Replications removed K-means 
1 Random Initialization and  

100 Random Initializations 

ARI 100 Random Initializations 1 Random Initialization 

Bias of the mean WTP 100 Random Initializations K-means 

 

Summarizing all the above, the 100 Random Initializations technique performed better 

for the majority of the criteria but the main drawback of this method is that it needs a lot 

of time compared to the other methods. Thus if time is not an issue the 100 Random 

Initializations technique is the preferred technique, on the other hand if the time is limited 

the other two techniques can determine as well proper starting values in order to 

overcome hypothetical bias. 
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