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ABSTRACT

Yakinthi G. Pavlaki: OVERCOMING HYPOTHETICAL BIAS IN CONTINGENT
VALUATION SURVEYS

(Under the direction of Associate Prof. Margarita Genius)

This Ph.D. thesis aims to build econometric models that can overcome hypothetical
bias in Contingent Valuation surveys. Within 4 interrelated Chapters, this thesis focuses
on constructing a mixture model and applying stochastic frontier analysis in order to
include the existence of hypothetical bias. The main idea of the proposed model of the
present thesis is that in a Contingent Valuation survey there might be two types of
respondents. The first one refers to respondents that answer sincerely about their WTP
and the second to respondents that overstate their WTP.

The first chapter presents a literature review regarding Contingent Valuation Method
(CVM) and the problem of Hypothetical Bias. Additionally, it analyzes the theoretical
framework regarding the statistical models that are constructed in Chapter 2 and 3. The
second and third Chapters present the proposed model that can overcome hypothetical
bias for the open-ended elicitation format and for the double-bounded dichotomous
choice elicitation format. The Chapters contain the theoretical background of the
corresponding format, the stochastic frontier theory, which is applied to model
hypothetical bias, the mixture models theory that is used in order to allow the existence of
the 2 classes and the estimation procedure, including the EM algorithm.

In order to test the validity of the proposed model, simulations took place for 1000
observations and 1000 replications for several cases. Additionally in Chapter 3, after the
illustration of the simulation results an empirical application is presented with real CVM
data. The fourth Chapter deals with the issue of the selection of starting values for the
EM algorithm. Chapter 4 begins with the literature review about the initialization
techniques and the importance of the initial values. Furthermore, application of three

initialization methods were applied to the proposed model for the double-bounded format




and a comparison of the initialization techniques took place in order to conclude which

initialization strategy performs better.

Keywords: Environmental Econometrics, Contingent Valuation Method (CVM), Open-
Ended, Double-Bounded, Hypothetical Bias, Stochastic Frontier Analysis, Composed
Error, Finite Mixture Models, EM algorithm, Willingness-To-Pay, Initial Values




INEPIAHYH

Yokivon I'. TTovdakn: AIOPOQNONTAZX TO TIPOBAHMA THX YITO®OETIKHX
MEPOAHVYIAX XE EPEYNEX ITIOANOAOI'IKHY AIIOTIMHXHX
(CONTINGENT VALUATION)
(Ynd v xabodrynomn g AvomA. KaOnyntprag Margarita Genius)

H mopovoa Suwaxtopikn owatpin peretd mwg o Eemepaotel 10 mPOPANUO NG
Ynobetikng Mepolnyiag oe €pguveg mov mpaypotomoovvtal pe v péBodo g
mbavoroykng amotipunong 1 Contingent Valuation (CV). ITio cuykekpipéva mpoteiveTon
€vo. EVOAAOKTIKO HOVTEAO, GTOYEVLOVTOG Ol EKTIUNGELS TOVL TPOKVATOVV Vo, &lvar
amoAlaypéEves and to mpoPAnua g Ymobetikng Mepoinyiag, mov cOUQOVO HE TNV
Biroypapia, ivarl Bacikdg mapdyovtag mov TANTTEL TNV a&lOTIoTIN Kot TV £YKVPOTNTO

TV anotelecpdtov g pedddoov CV.

H ddaxtopikn datpiPn amotereiton and t€00epa AAANAEVOETA KEPAAOLO. XTO TPMOTO
KepdAaio mapatifetor m Bewpla mov avaeépetar o pébBodo CV, n PifAoypagikn
avaokomnon ywo v odyvon g neBdoov KaBMOC Kol o1 KPITIKES Tov Exel deTelL M
puébodog ocvumeprhapfavopévov tov mpoPAnuotog ¢ YmoBetikng Mepoinyiag.
EmumAéov 1 PipAoypagiky] avookOnnon Tov TPATOL KEPOANIOL OVAPEPEL TOKIAES
épevvec mov avalnmoav Vv Vmapén tov mpoPAnuatog kabmg emiong Kot SAPOPES
pefodovg mov €xovv mpotabel Yo va d1opBwBel 1 Yrnobetikn Mepoinyia. EmmAéov oto
TEAOG TOL TPOTOL KePOAaiov yivetar ovoaeopd tov Bewpntikod vrdPabpov TOL

OTOTIOTIKOV LOVTEAOVL OV KOTAGKEVAGTNKE GTIV TOPOVLGA SLoTPL].

210 0€0TEPO KOl GTO TPITO KEPAANLO TOPOVGLALETAL 1) EPOPLOYT TOL TPOTEWVOUEVOD
OTOTIOTIKOV HOVTEAOL Yo va dtopBwBel To mpoPAnua g Ymobetiknig Mepoinyiag yio
v Open-Ended pébodo expaicvong dedopévov kor yw tv  Double-Bounded
Dichotomous Choice uéfodo expaicvong dedopévaov g CV uebddov avtiotorya. ITo
CLYKEKPLUEVA, OTO KEQAALO aVTA Tapovataletal apyud 1 Bewpia g CV peboddov mov

avtiotoryel omv avtiotoyrn péBodo ekpaievong, avaADETOL AETTOUEPMS 1) BemPNTIKN




BGon, M KOTOOKELY] TOV OTOTIOTIKOD HOVTEAOV, KOOMG Kou OGAAeG Oewpiec mov
EQOPUOCTNKAY KOTO TOV OYeOOUO TOL pHOoVTEAOL, Y. Oswpio WKTOV HOVTEA®V-
Mixture models theory k.. Xtnv cvvéyela Tov KEQOUAIOV aVTOV TPOYUATOTOIHON KOV
TPOCOUOIDGELS pe okomd va eEetachel mwg Asttovpyel To HOVTELD KL OV avTATOKPIvETOL
otov apykd okomd Tov. EmmpooHitmc oto Tpito kEPAAOMO TOPOVGLALETOL KO LU0l
EUMEPIKY] €QOPUOYN OMOL TO TPOTEWVOUEVO HOVTEAD OOKIUACTNKE GE TPOYUOTIKA

ototyelo peAETNG e TV epapproyn g nebddov CV.

TéMog 10 TETAPTO KEPAANLO TPOKELTOL Y10 EMEKTAGT TOL TPITOL KEPOAniov kabdg o
EM akyopiBuog, mov epapudletar ywoo TtV EKTIUNON TOV TPOTEWVOUEVOL LOVTEAOV,
avagépetor oty Bifaoypapio 0Tt avtipetonilel coPfapn evacOncio otig apykés TIES.
Mo tov AO0yo avtd, mpoxeyévov va mpotabel €va oOAoKANPpOUEVO HOVIEAO Yo TNV
AVTILETOMION TG Y7mobetikng Mepoinyiag, €ywve pio cOYKPION TPUOV SLOPOPETIKMV
nefddwv Tpocdiopiopol apykadv Tinav. Ot uébodor mov eetdotnkav NTav n 1 Toyaio
apywonoinon, n onoia LEB0d0g epappdcstnke ota ke@aiao 2 kot 3, n pébodog twv 100
TOXOHOV  OpYIKOTOMOoE®mV Kot TéA0G O aAyopuog K-means. T v obykpion
TPOYLOTOTOUONKOV TPOGOUOIDGELS KAl EPOPUOGTNKOAV SLAPOPO. KPLTPLOL TPOEPYOUEVA

a6 Vv BPAoypapikn avacKOTNoT).

AgEerg Khewdna: Ilepiforrovriky Owovopetpia, [TiBavoroywkn Amotipunon, Avorytov-
Tomov pébodog expaicvomng, Kheworod-Tomov péBodog expaicvong, Ymobetkn
Mepoinyia, Yrdoerypo Xtoyxactikod Xvvopov, llemepacuéva Melypoata Katavopmv
(Mwctd povtéra), Tovbeto Zediua, EM Akyopibuog, Tpobopio TTinpounc, Apyikég
Tiég
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Exterapévny Iepidnyn

H moapovoa didaxtopikn dtatpin €xel g avtikeipevo v enilvon tov mpofANpHoTog
YmoBetikng Meponyioc oe épevveg pe v uébodo ITbavoroywkne Amotipmong-
Contingent Valuation (CV). XZvykekpipéva petold tecobpwv oAlnloegoptduevmv
KeQaAaiov, mpoteiveTal €vag €VOAAOKTIKOG TPOTOG LOVIEAOTOINONG TOV OEOOUEVOV
npoepyoueves amd CV épevveg. O evaAlokTikdg TPOTOG LOVTEAOTOINGNG TTOV TPOTEIVETOL
avVOQEPETOL 0E OVO  EVOAAOKTIKEG HeBOOOVLE ekpOiELONG TOV OESOUEVOV KOl OF
SPOPETIKOVS TPOTOVS TPOGOIOPIGUOY TMOV OPYIKAOV TIUAV Y. TNV EKTIUNGT TOV

TPOTEWVOUEVOL LOVTEAOV.

Kepaloro 1: H nébodog IMBavoroyikig Arotipmeng (Contingent
Valuation Method) kow np Yro0gtikn Mepoinyia

To npdt0 KEPdAaO Topovoldlel v péBodo Contingent Valuation wat tig kprrikég
mov £xet dexTel avapopkd L Tig ekTiuNoelg ™e. [To avaivtikd, kabdg ta tepiocdTepa
nepPorroviikd oyobd dev €xovv KATOWL TN OTNV 0yopd Ol OKOVOROAGYOL £YOouvV
avartuéel pehodovg ya va ta a&toloyovv. Kdamoleg pébodot mov ypnoporotovvron eivat
Ol QTOKOAVTTOUEVEG TTPOTIUNGELS OOV Pacilovial TS TAPATNPNGES TNG TPAYLOTIKNG
CLUTEPLPOPAS Kot 01 dEINA®UEVES TPOTIUNGELS TOV Pacilovtat g avtd mov wyvpilovton
Ta dropa 6t Ba ékavav (Bockstael and McConnell, 2007:15). H uébodog CV avfket otig
peBOd0LVGg dedMA®UEVOV TTPOTIUNGEDY Ko Bempeital o¢ and ta mo evéMkta epyaleio

Kobd¢ mapéyel v duvototnta vo oxediactodv Tokila cevapia (Carson and Hanemann,
2005:824).

O epevvng mov epapprdlet v pébodo CV ypnoiponotel Eva epoTNUATOAGYIO TOV
amoteleiton and Tpio pépm. To TpdTO UEPOC AMOTEAEITOL OO YEVIKEG EPMTNGEIS OYETIKEG
LE TO QaVTIKEILEVO NG €peuvag, To 0evTepPOo UéEPOG mapovotalel To CV oevaplo Kot Tig

TANPOPOPIES OVOPOPIKA LLE TNV VIOTIOEUEVT] TANPOUN Kot TEAOG TO TPiTO UEPOG aPOpd

XV



EPMTNOEIS YL TNV GLAAOYN TOV OMNUOYPOPIKMOV YOPUKTNPIOTIKOV TOV EPOTOUEVOV

(Carson and Hanemann, 2005:825).

Mo oavoivtikd, o610 JeOTEPO HEPOC TOV EPMOTNUATOAOYIOV GUYKEVIPMOVOVIOL Ol
TAnpoopiec yio v mwpobupio TAnpoung (Willingness To Pay-WTP) 1 v mpobupia
amolnuioong (Willingness To Accept-WTA) 6mov vrdpyovv dapopetikéc uébodot
EKHOIELONG YO TNV GLYKEVTIPMOON TOV omavinoemv. Ovouootikd kamoleg péBodot
ekpaigvong eivor n Avorytov Tomov (Open-Ended), 6mov n gpdtnon mpobuuiag yio
mnpoun/arolnuioon eivor  ovowyt), K emmAéov  vmbpyovv Kamotec péBodot
Anpoyneiopotog O0mov  Sivetal GTOVG EPWTMUEVOLS Mo Ttpocpopd (bid) kot o
epoTONEVOG KaAeital va armavtioet e éva Nat 1 Oyt yuo tnv mpoceopd avtn. Edv elvat
uovo pio m epmdton n pébodog ekpaicvong ovoudletor Single-Bound Dichotomous-
Choice, €bv otov gpotduevo divoviar dVo dadoykéc epmtnoelg ovoudletar Double-
Bounded Dichotomous-Choice kat téhog edv akolovbei kot tpitn d1adoyIKn epdTNON N
uébodog ovopdletar Third-Bound Dichotomous-Choice (Arrow et.al., 1993:4).

[Top’ 6An Vv gvupeia yprion g pebodov CV, €xet deytel kprtikn v v adlomortio
TOV onoTeEAECUdTOV TS Mo amd Tic PaciKOTEPEG KPITIKEG TNG OVAPEPETAL GTO
mpofAnua ¢ YmoBetikng Meponyioc. H YmoBetuey Mepoinyio opiletan wg v
JLPOPA OV VITAPYEL OVALEGO GTO TL SNADVOVV Ta dTopa 0Tt B TA PV Kot 6TO Tt Ot
TApovay Tpaypatikd (Loomis, 2014:35). H Yrobetikny Mepoinyia epeovifetal og 500
popeés, Ymepextiunon 1 Ymoektipmon tov WTP 1 tov WTA. T'a va Eemepaotel 10
mpofAnua g YmoBetikng Mepoinyiog €xovv mpotabel mowcideg péBodol, ol omoieg
yopioviar ce 0600 Pacikés katnyopieg avdioyo to o mol0 onuelo ™G €pgvvag

epappolovrat.

Mo avaivtikd, veapyovy pébodor mov epapudlovial ek TV TPoTEPpwV (eX ante),
onAadn Kot TNV OLAAOYN TOV OEOOUEVMOV KOl OTOCKOTOLV OTINV AmoQLYN 1TNG
YnoBetikng MepoAnyiog. Tétoeg pébodor eivor or “cheap talk”, “solemn oath” wou
“scenario adjustments”(Haab et al., 2013:599), 6mov emdidKOLY PHEGH EVNUEP®ONG YiaL
™V Omapén TV TPOPANUOTOC 1 HECH OPK®V VO TOPOTPLVOLY TOVG EPWTOUEVOVS VO

OTOVTNCOLV EIMKPIVA. ATO TV GAAN vtapyovv kot péEBodotl mov epapuodloviot €k TV
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VOTEP®V (EX POSt), SNAOT KATA TNV SLAPKELN TNG EKTIUNONG LEGH GTATIGTIKAOV TEXVIKMV

(Hofler and List, 2004:213).

Ov Hofler xou List(2004) mpotewvav v ypNHon TOL VTOSEIYUATOS GTOYXOCTIKOD
ovvopov (stochastic frontier analysis) ywo va copmepidingbei n dopopd avapeso oTIg
TPOYLOTIKEG KOl OTIC VITOOETIKEC TPOCPOPEG GE U0 EPOPLLOYN TTOV APOPOVGE KAPTEG TOV
baseball. Ztnv cvvéyeia Tpotabnke 1 ¥PNON TOL VIOSEIYUATOS GTOYAGTIKOD GLVOPOV Y10
™mv povteronoinon g vepdnimong otnv Double-Bounded pébodo (Chien et al.,2005).
Emunpocbétmg or Kumbhakar, Parmeter kou Tsionas (2013) mpdtewvav 10 poviélo
undevikng avamoteAeopatikomrog (zero inefficiency model) 6mov oe éva deiyua
UTOPOLV VO LIAPYOLV TOVTOXPOVA, HE Mo TOavOTNTO EMYEPNCES 7OV  glval

OMOTEAECLOTIKEG KOl EMLYEIPTOELS TOV EIVOL U1 OTTOTEAEGLOTIKEG,.

Yy moapovoa daTpiPn mpoteiveTol £va IKTO HOVTEAO VITOJEIYLOTOS GTOXAGTIKOV
ovvopov (mixture stochastic frontier model) ®ote va poviedomomBel n Vmapén
YnoOetikric Mepoinyiag ovvdvdlovtog tig mpotdoelg twv Chien, Huang kow Shaw
(2005) xon Twv Kumbhakar, Parmeter kot Tsionas (2013). Téhog to povtého 10 omoio
npoteiveTol mopovotdleTor Yoo 0o pebodovg expaicvong, v Open-Ended xot v

Double-Bounded.

Kepararo 2: E@oappoyn Tov vTodElynatog 6T0Y06TIKOD 6GVVOPOL
(stochastic frontier analysis) kow pikT®@v (Mixture) povréimv oty
néBodo CV yia v Avorytov tomov (Open-Ended) pédoodo ekpaicvonc.

210 0e0TEPO KEPAAOLO NG TaPoVSOS OTPPrg TaPOVCIALETOL TO TPOTEWVOUEVO
HovTéLO Yo TV mepimtmon 6mov N uébodog ekpaicvong tov WTP givar 1 Open-Ended.
2V TEPIMTOON OVTH 0 EPMTMUEVOG KOAEITOL VO OTAVINGEL GE U0 AVOTXTH] EPATNON
1660 Ba Nrav datedelnévog va TANPAOGEL Yo TNV aAloyr] TOV TAPOVSIALeL TO VTOOETIKO

oeVapLO.

H Open-Ended péfodog éxel kdmolo TAEOVEKTAILOTO KOl LELOVEKTAPATO. APYIKA, EVal
mAeovéktnua eivor 0tt to WTP exponevetan amevbeiog (Loomis, 1990:79). EmumAéov 1

pEB0O0G avT TaPEYEL TEPICCOTEPES TANPOPOPIES AVOPOPIKA WE TIG TPOTYUNGCELS TOV
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EPMTOUEVOV Kl EMTAEOV TPOGUPUOLETOL EVKOADTEPO OTAV IO EPELVO TPOLYLOTOTOLEITON
og neplocotepo yopeg (Hakansson, 2008:186). And tnv dAAn n néBodoc mapovoidlet kot
KOO0 LEOVEKTALOTA, OTWG OTL TPOKELTAL Y10, o, OVGKOAN dtadkacion KabmG To dTopa
dvoKoAeHOVTOL VAL TPOGIOPIGOVV TO TOGH oL Ba MTav Slatefelévol Vo TANPOGOLY LE
amotélecuo eite vo unv amovtovv KaboAov gite amavtohv VTOTIUOVTAG TO TOGO oL Ha

nrov datebeuévorl va TAnpdoovy (Loomis, 1990:79).

Mo v katookevr] Tov poviéAov ypnolponombnke n Bewpia TOL VITOJETYHOTOG
OTOYOGTIKOV GLVOPOL VIO TNV VIdBeon OtL N Y7mobetik Mepoinyia eppavifetor g
popon Ymepektiunong tov WTP. T'w va evtayfel 6t0 omAd HOVIEAO YPOUUIKNG
TOALVOPOUNGONG 1| VIEPEKTIUNGOTN TPOCTIOETAL GTOV JATAPUKTIKO OPO, OOV KOTOVEUETOL
COUP®VO, HE TNV KOVOVIKY] KOTOVOUY, €&vo emmAéov oQAApo mov ovopdletol
povomievpog (one-sided) 6pog c@AALOTOG KAODEC KOTOVEUETOL GOUPOVO, UE TNV MMUL-

kavovikn katavoun (Kumbhakar and Lovell, 2000:140).

To yeyovog Ot pmopel oe €va detypa vor LITEPYOLV EPMTMOUEVOL TOV OEV AMAVTOVV
EMKpIVA, dgv onuaivel OTL 0gv LIAPYOLV KOl KATOLO0L TOV OVTIMG SIVOLV TNV ELMKPIVN
toug amdvinon. ['a tov Adyo avtd, ypnoporoimvtog v Bempio TOV LIKTOV HOVTEL®V
kot v 10éa v Kumbhakar et al. (2013:67), yivetar | vdbeon 611 610 deiypa vdpyovy
V0 opdodeg TavTOYPOVA, AVTOL TOV ATAVTOHV EIMKPIVA KL VTOL TOV VIEPONADVOLV, LE
v mOavoTNTO Vo OVIKEL KOTo1og oty opdoa 1 va givor 1 p; ko 1 mbovotnta vo

aVIKEL KATO10G 6TNV opdda 2 va eivain p, = 1 — py.

IMa v extipnon tov pktod povtédov ypnoyonoteitar o ailyopiuoc EM o omoiog
yewpiletor 10 mpOPANUO peyioTomoinong ®G mPOPANUO OV AEITOLV TOPATNPNOELS
(missing values), 6mov o1 TaPATHPHGELG TOV AEIMOVY GTNV TPOKEUEVT TEPITTMOT Eivar Ot
TANPOPOPIES OVOPOPIKA LLE TO GE TTOLX OPLAdA aviKeL 0 KaOe epwtdpevos. O alyopiBpog
EM amoteAeiton and dvo Pruata, to Prua E mov avaeépeton oty mpocdokio Kot To

Bpa M mov avaeépetor otny peyiotonoinon (McLachlan and Peel, 2000:48).

Ymv  ovvéyew axolovOncav mpocopoiwoelg 1000  emavainyemv kot 1000
TOPUTNPNOE®Y Yo €va €0POG MEPMTIMOEMV MOTE VO €EETOOTEL 1 €yKLPOTNTA TOV
povtédlov. EmmAéov avapopikd pe v mboavotnta vo aviKel 0 EPOTMUEVOS GTNY OUAdN

I(amovTovv elMkpva) Kot oty opada 2 (vrepdnAdvouv) eetdotnkay 600 SOPOPETIKES
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TEPWTAOOELS. TNV Ui TepinTmon BempnOnke 6TL n mBavOTHTA VO AViKEL KATO10G GE pia
opdoa eivor otabepn Yoo OAOVG OGOLG OVAKOLY GTNV OUAdN OLTH, EVM 1 OEVTEPT
nepintwon mov eEetdotnke VIToBETEL OTL N TOHAVOTNTO VA AVIKEL KATO10G GE L0 OHAd0L
etvar dwpopetikn Yo kdBe epwtodpevo kabdg M mBavotnta efaptdton omd pio
petofint. EmmAéov, katd v didpKela g ekTipnong 000nke 1diaitepn Tpocoyn oTov
TPOGOIOPICUO TOV OPYIKOV TIUOV Kol okolovdndnkov Kdamolwoe Pruoata ywo Tov

TPOGIOPIGHO TOVC.

To amoTeAéoHOTO TOV TPOCOUOIDGEMY KOl Y10 TIG OVO TMEPUTTMOCELS TPOGOLOPIGLOV
g mhavoTNTOg £d€1Eay OTL TO TpoTEWVOUEVO Lovtédo glvarl oe Béom va dopbdcet to
npoPAnua e Yrobetikng Mepoinyiog kaBdg ot eXTIUNTEG TOV TOPAUETP®V Eivol TOAD
KOVTA oTIc aAnOvég Tipég KL emmpocsBétmc 1 MepoAnyia gival ToAD KOovtd 6to Undév.
EmumAéov, yio Adyovg ovykpiong, ta dedopéva exkTyumbnkay Kot pe to amhd HOVIEAO
extTiumong, mov dev Aappdver veoyn v vVIapén Yrobetikng MepoAnyiog Kot omd v
oLYKPLON TV dV0 HOVTEAW®V TPOEKLYE OTL TO AAO HOVTEAO OEV EKTIUA TO 1010 KOAG TIg

TapapéTpovg Kot 1 Mepoinyio mov mpokidmtel eivor apketd vynir.

Xe KAMOlEG TEPMTMOOCELS OOV 1 aANOVY TIUN TNG TOPAUETPOV TTOV AVOPEPETOL GTOV
Babud vmepdniwong elxe piKpOTEPEG TINEG, moapatnpnOnke Ott 10  TPHYpOUU
dvokolebtnke va dwokpivel Tig dVvo opddes. Oco peyoddtepog Ntav o Paduodg
VREPONAWONG TOGO EVKOAOTEPO TO TPOYPOLLLO UTOPOVCE VO, OLOKPIVEL TIC dVO OUADEC.
EmnAéov otig mepmtdcelg mov SLGKOAELATAV TO TPOYPOLLA VO SLOUKPIVEL TIC VO OUADES
elye OC AMOTEAEGLO VO TTOPOVGLALOVTOL TEPIGGOTEPES EMAVAANYELS LE TPOPANLLATO GTO

TPOGOLOPIGUO TOV TUTIKMV ATOKAMGEDV KATOLWV TOPUUETPDV.

Ev ovvrtopia, ta amotedéopato amd T Tpocopoldcelg yio to Open-Ended povtého
001YOUV GTO GLUTEPAGHO OTL TO HOVTELOD gfval KatdAANAo Yia va dtopBdcet To TpdPAN Lo
™™g YmoBetikng Mepoinyiag apkel To HOVTEAO Vo Uopel va SloKkpiverl T VO OHAOES.
2y ovvéyela g dtTpiPng mapovoldletat To poviéo mov tpoteiveton yia tnv Double-

Bounded pébodo expaicvong tov dedopévamy.
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Kepdioro 3: EQuppoyn 100 vTodEiyHoToS 6TOYUGTIKOY GUVOPOV
(stochastic frontier analysis) ko pikt@v (Mixture) povréhmv etV
néBodo CV o v Double-Bounded pé@oodo ekpaicvong.

210 1piT0 KEPAAOLO TNG TTOPOVGAG JATPPNE TaPOVSIALETOL TO TPOTEWVOUEVO LOVTELOD
Yy Vv mepintmon 6mov n péBodog ekupaicvong tov WTP eivar pe v pébodo tov
dnuoyneiocpatoc ko wo ovykekpiuévo 1 Double-Bounded. Xtnv mepintmon avty o
epMTOUEVOG KaAeitan va amavinoetl pe éva Nat 1 Oyt oty gpdtnon yw to av Oa ftov
drotebelévog va TANpOGEL Yo TNV oAloyn Tov Topovotdlel 1o vobeTikd Geviplo o
OUYKEKPIUEVT] TTPOGPOPA. XTNV GLVEYEWD, €dv €£xel amoavtnoel pe Nl otV TpadT
TPOCPOPA TOL TOPOVCLALETOL Mo dEVTEPT TPOCPOPE, LEYOADTEPY] OO TNV TPMTN KO
KaAeitan Eavd va amoavioet pe Not 11 Oyt Xty mepintoon mov €xet anaviimoet Oyt oty
TPMTN TPOGPOPE TOTE 1 HEVTEPT TPOGPOPH TOL HIVETOL GTOV EPMTMUEVO Efvarl LIKPOTEPT

NG TPMTNG TPOSPOPAG Kot kKadeitan Eavd va amavtiost pe Not 1 Oxt.

H upébodog Double-Bounded npoteiveton w¢ m pébodog mov 6Oa mpémer va
YPNOWOTOOVV Ol €peuvNnTéG KOOMG M xpnon HeBOdov OMUoYNEeIGHOTOS €YEl TOALY
mAeovektuata (Arrow et al., 1993: 21). Apykd givorl o peoMoTtikn dedopévon OTL M
apoyn omuociov ayabov sivar cuviBwg pe HeBOdOVE INUOYNPIGUOTOS GUVETMG Eivarl
KATL O OKEID OTOVG EPMTMUEVOVS Kl EMITPOGHETMG dev £Y0LV OTPOTNYIKO ADYO Vo
amovtioovy pun elukpvd. KaBog doev amoitel mold okéyn kor mpoomdbela yio va
amovtnBovv o1 EPOTNGELS GLVETMG etvat Aydtepot ekeivol Tov dev amavtovv. Emumiéov 1
péBodog avtn potdlet pe tnv Asttovpyia ¢ ayopdc 6mov ta dtopo BAETOLV TIC TIHES KO
anopaciCouv av Ba ayopdacovv 1N Oxl. And v dAAn, n néBodog avtn mapovstalel Kot
Kémola petovektuota. Eva peovékmmpo elvar 6Tt ot ekTiUoelg yioo v mpobopia
TAnpoug uropel vo enmpedlovtol and vIoBEGEIS Y TNV GLVAPTNOT YPNCWOTNTOS 1)
Yo, TV Katavoun tov ceoipudtev (Loomis, 1990:79). EmmAéov éva facikod HEIOVEKTN O
™G peBodov eivor O6TL o1 EpOTOUEVOL €MNPedloviol amd TNV TPAOTY TPOGPOPA LE

OTOTEAECLLO, VO OTTOOEYOVTOL KO TNV OEVTEPT] TPOGPOPA.

Amd TG OmMOVTACES OV OIVEL O EPMOTMUEVOG OTIG TPOGPOPEG TPOKVMTEL £Vl

CLUUTEPOCLO. OVOPOPIKA He TO 7OV avikel 10 M mpobuvpio mAnpouns-WTP  tov
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epoTdueVoV. TTo avaivtikd edv o epotdpevog £xel melt Noat kot 6TiG 000 TPocpopég TOTE
10 WTP tov atdpov etvar peyardtepo omd tnv vynAdtepn tpocspopd. To avtifetro 1oyvet
€qv 1o dropo £xet met Oyt Ko 6Ta Vo TPOTEWOUEVO TOGH KAOMDG cuumepaiveTol 6Tl T0
WTP 100 gpotdpevon givar pikpdtepo amd v opnAdTEPT TPOGPOPH. XTIV TEPITTOON
OOV 01 AAVTHGELS TOL ATOUOL ival Nat oty TpdTn epd@TNoN Ko Oyt oty devtepn 1
Oy oty Tpot Kot Nat oty 0€0tepn, TpokvMTEL Eva dtdotnua, 6Tt dniadn to WTP tov

atopov gtvor petald Tov 600 TPOGPOPHOV.

Mo v Kotackevn oV povtélov, Onmg €xel o avoeepbel, ypnolpwomombnke
Bewpia TOL VTOOELYLOTOC GTOXAGTIKOV GLVOPOL Y10 TNV TEPIMTMOOT OTOL 1 YToOETIKN
Mepoyia eppaviCetor oe popen Ymepextipmong tov WTP. Tha va evrayBel oto
povtédo AavBdvovcag petafAntig n vaepektiunor akoAovdnOnke n idio pebodoroyio pe
avt tov Keeohaiov 2. EmmAéov Omwg Kor 610 KepdAowo 2, pelemOnkov ovO
OLPOPETIKEG TEPUTTAOGELS AVAPOPIKA He TNV THAVOTNTO VO OVIKEL KATOL0G GE o
ouada. Xmnv o mepintmon Bewpnbnke 6t n mbavoétTo vo aviKel KOmowog o€ pio
oudda etvor otabepn yioo OAOLG OGOVG OVIKOLV GTNV OUAd0 OLTH, EVAD OTN OeVTEPN
nepintwon N TOavOTNTA VO OVIKEL KOTOL0G GE Ulot OUAd0 €ival OLOPOPETIKN Yo KAOE

epoTOUEVO KaBMG N TBavOTNTA EE0pTATAL OO Lol LETOPANTY).

2y ovvéyewn mpaypotonombnkay mpocopoidsels 1000 emavainyemv yoo 1000
TOPATNPNCES Yoo TV dnuovpyia dedopévev pe v VTapEn VIEPONAWONG DGTE Vo
eEaocpaotel  vmopén Ymobetukng Mepoinyiog ki émetta akolovOnce extipnon pe to
TPOTEWVOUEVO LOVTEAO OGTE va €EETAOTEL 1 €YKLPATNTO KOl 1 KAVOTNTO TOL HOVTEAOL
vy v dopbwomn tov TpoPfAnuatog. To amoTeAEGHATO TOV TPOGOUOUDCEMY KOl Y1l TIG
V0 TEPMTMGELS TPOGOHIOPIoUOV NG TOAVOTNTAG £€1EAV OTL TO TPOTEWVOUEVO HOVTELOD
dopbavel oe wavomomtikd Pabud 1o mpOPAnpa g Ymobetwkng Mepoinyioc. ITo
OLYKEKPIUEVO Ol EKTIUNGELS TOV TOPAUETPOV EIVOL TOAD KOVTA GTIG 0ANOvEG TIHES Yo
OAEG TIC TTEPIMTMGELS OV eEETAGTNKAV Kot 1 Megpoinyio mov vroAoyiotnke gival TOAD
Kovtd 610 pundév. Emmiéov kabmg to dedopéva ekTiundnkoy Kot pe 1o oamAd HovTELO
exktipmong mov dev AapPdver vwoyn v vmapén Ymobetikng MepoAnyiag, amd v
OUYKPION TOV OTOTEAECGUATMOV TPOEKLYE OTL Y10 OAEC TIC MEPUMTMOGELS €AV Oev AneOet

VoYM KATA TV EKTIUMOM 1 VTOPEN NG VIEPONAWMONG OO TOLG EPMTMUEVOVG, TO OTAO
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HOVTELO EMGTPEPEL EKTIUNGEIS OV OEV €lval TOGO KOVTA OTIC OANOwEC TIHEG Ko 1)

MepoAinyia eivor ToAd peyardtepn.

EmumAéov  ot0 «Kkepdhoo 3 a@oétov  OAOKANp®ONKOV Ol TPOGOUOIDCELS,
TPOYUATOTOMONKE L0 EUTEIPIKY EPOPLOYN TOL TPOTEWOUEVOL HOVTEAOV G aAnOv
dedopéva. amd épevva pe v pébodo CV. ITwo oavorvtikd, yio Tqv vAomoinomn g
EUTEIPTKNG EQPOPLOYNG TO TPOTEWVOUEVO LOVTELO TPOTOTOONKE, KAODS T dedouéva dev
napovsiolov vrepdAmon oAld vmodniwon tov WTP. Zuvendg ta dedopéva
exTymOnkay yio v mepintwon émov 1 Yrobetikr] Mepolnyia vdpyet vod v pHopon
vroektipnong tov WTP ko yia tnv mepintoon émov 1 mbavotnto vmodnAmong dev eivat
O oAAG Opépel avdpecso oTovg epOTOUEVOVS KaBDg eEaptdTor omd  Kdamoleg

petaPAnTés.

To detypa avapépetor oe 1827 mapatnpnoelg kot Ta dedopéva givor dabécipa 6to
nakéto “Ecdat” g ylodoocog mpoypappatiopod R oto 6voua “kakadu” to omoio
dedopéva mpoépyovtar amd to dpbpo g Werner (1999) (Croissant and Graves, 2020:84-
85). Ta awbevtikd otoryeia Tpoipyovtar and éva apbpo twv Carson, Wilks kot Imber tov
1994 6mov mpaypotonoincay pia épevva 1o 1990 otnv Avotpaiia pe v pébodo CV yu
10 €Gv Oa Tpoywpnoel N idpvor opuyeimv otny dtatnpntéa meproyn tov Kakadu 1 av Oa

npénel va evtoyBel ki meployn avti 6to £0vikd napro tov Kakadu.

Ot avegapmnteg petafintég mov ypnoomomdnkay yio v epunveio tov WTP kabog
Kot ot petafAntég mov emnpedlovv v mbavotta eivan exeiveg mov ypnoiomoince Kot
Bpnke 011 elvan oTOTIOTIKA ONUOVTIKEG oTNV €pevva g 1 Werner. Ao v ektipunon tov
HOVTEAOL LE TO TPOTEWOUEVO LOVTEAO EVTOMIGTNKE OTL OVIME NTOV LITOEKTIUNUEVO TO
WTP. EmnAéov epocov extiundnke 10 amAd LOVIELO KOl TO TPOTEWVOUEVO UIKTO LOVTELO
ovykpidnkov to dVo povtéda epapudlovrag ta kprripro BIC kot AIC 6mov €oe1av o1t
TO TPOTEWOUEVO MKTO HOVTEAD elvol KaToAANAOTEPO KaBMG o1 HeETAPANTEC TOL
TPOoTEOKAY OTO KTO HOVIEAO TEPLYPAPOVY HE KAADTEPO TPOMO TNV mpobupia
TANpopA.

Yvvoyilovtog amd TO OMOTEAEGUOTO TOV TPOCOUOIDCEMY KOl TNG EUTEPIKNG
EPOPLOYNG CLUTEPAIVETAL OTL TPOTEWVOUEVO HOVTELO pmopel va dopBdcet To mpdPAna

¢ YmoBetikng Mepoinyiag gite givor vtd v popen vrepektipnong tov WTP gite vo
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v popoen vroektipnong tov WTP. Télog 1o tétapto Ke@dAato TG mopodcas datpiPng
euPabvvel oto Bépa TOL TPOGOIOPICUOD TV OPYIKAOV TIUOV KOl TO CLYKEKPIUEVA
OLYKPIVEL 3 JPOPETIKEG TEYVIKEG DOTE VO TPOGIOPIGTEL TOLOG TPOTOC TPOGHIOPIGUOV
TOV OpYIKOV THOV Asttovpyel KoAVTEpO Yoo TNV O1OpO®oY TOv TPOPANUATOS TNG

YmoBetiknc MepoAnyiog.

Kepaiaro 4: XOykpion o10QopeTIKOV pgdoo v apylk@v TIH@V Y10 TNV
Double-Bounded péBodo ekpaisvong tov piktov (Mixture) povrérov.

2V mapodoa SaTpiPn To TPOTEWOUEVO HIKTO HOVTELO ekTipdTon pe adyoptOpo EM,
0 omoiog aAyoppog mapovotdletl kamowo petovektpata. To TpdTo peovékTnuo givort
OTL amontel KOAES apyIKES TYES KOl TO OEVTEPO PELOVEKTNLLO EEvOl OTL VTTAPYEL TEPIMTMOOT)
0 aAyopBuoc va maydevtel og Tomikd péyiota (Pani¢ et al., (2020:1). Kabdg Aowmdv, o
TPOGOIOPIGUOS OPYIK®OV TIUOV €lval oA onuoavtikdg yu tov adyoplduo EM, oto
Ke@dAalo avto e€etdleTon To BER aVTO AETTOUEPDG KOl GLYKEKPIUEVO dOKILALOVTOL KOt
OLYKPIVOVTOL SLOPOPETIKOL TPOTOL APYIKOTOINGNS avaPOPIKd e TO g yopiloviot ot
TopATNPNCES 6€ dVO opddes. v Piloypaeia Exovv mpotabel TOAAEG TEYVIKES DOTE
Vo eMAELYOVIOL Ol  OpYIKEG TIHEG, TOAAEC ek Ttov  omoiwv  Pacilovror oty
opadomoinon/xatnyoplonoinon (clustering). H xatnyoplomoinon ypnoiponotel moAAEC
TEYVIKEG DOTE VAL YOPLGTOVV T, SEGOUEVO GE VITOOUADES LE YVOLOVA VO pLotdlovv 660 TO

duvatdv TEPocdTEPO G601 aviKovy otny idta opdda (Mann and Kaur, 2013:43-44).

[No v mapovoa épevva viomomOnkav tpelg péBodol apykomoinone. H mpmdt
1EB0d0G avapépetal oe TVYNiO apyIKomToinoT Tov Tpaypatoromnke 1 gopd (1 random
initialization), n omoio €ivar N péB0dOC OV EPOPUOGTNKE GTO, KEQA o 2 Kot 3. XTnv
OLVEYELD  €QOPUOCTNKE oL €MEKTOON NG mponyovuevng  pebddov  kabog
npaypotorominke n toyaio apywomoinon 100 eopéc (100 random initializations) wou
OTN CULVEXEW EMAEXOMKAV ©OC apykéS TES Ol eKTIUNOCES Omov avdpeco otig 100
emavaiyelg mopovciocav v peyaAvtepn log-likelihood. Télog m tpitn pébodog

aPYIKOTOINGNG TOL EPAPUOGTNKE Elvar 0 alyopidpog katnyoploroinong k-means.
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Atya Adywo yuo v kdBe péboodo, n 1 tuyaio apyuconoinon eivor omd TIc MO eVPEWMS
YPNOUOTOOVUEVES HUEBOOOVE Yl VO TPOGAIOPIOTOVV APYIKEG TIES Yo, TOV aAyOp1Oo
EM (Biernachi et al., 2003:566). Me v pébodo avtn ta dedopéva yopiotnkay o€ 600
onadeg pe avoroyia 50:50 péow tvyaiov AMyewv mov yivovtal amd o OHOOHOPEN
katovour. Ot toyoiec ANpelg omd pio OpOlOpOpET KoTovoun E&ivol o yvootn
dadikacio yio tov Tpocdiopiopnd apykov tudv (Hipp and Bauer, 2006:41, Shireman et
al., 2017:284).

H toygaio apyikomoinon mov yivetor mepiocdtepeg (opég, omnv MEPITTOON NG
napovcag Epgvvag 100, eivor pia eméktaon g mpornyovuevng HeBOdoL TOL OLGLUCTIKE
emovolopPavetor 1 dadikacio meplocodTepeg amd o eopés. H pébodog avty elvan
yvoot og “search/run/select” (Biernachi et al., 2003:563-66). Zvvi0mg yio tv emidloyn
TOV APYIKOV TILOV OVAUESH OTIS EMAVOANYELS Yivetal péow kpurnpiov onwg to BIC
(Shireman et al., 2017:284). H pébodoc avtn cuvidmg cvuvovaletar pe pio péBodo mov
ovopdletar ovvropeg exktiunoelg EM (short runs of EM) omov dev emupéneton otov

alyopBpo vo @thoel oe GOYKAoN OAAL avoKOTTETOL 1 O001KOGI0 LEYIGTOTOINONG

(Biernachi et al., 2003:567).

O apBpdg TV TVYOI®VY aPYIKOTOMCEMY TOL TTpoTeiveTal amd Vv PipAoypapio eivar
yopw otig 1000, kdtt 10 omoio elvan mpakTkd adHVATO, Yio Tov AdYo avtd cuvnBileTon vo
vAomotovvtar 100 (Shireman et al., 2017:284). EmmAéov kabmdg avokOmTETAL O
aAlyop1Oog TPOTov PTAGEL GE GLYKALOT, YIVETALl AOYOG OTIG TOCEG EMAVOANYELS B TV
WWoviKo va otopotnoel. Xy BipAtoypagio dev vdpyel £vag YeVIKOG Kavovag, cuvifwmg
avagépovror o 10 wor 20 emavoqyels. v mapovoa épevva emA&yOnkav 20
emovaANyelg 6mov eivar 0 aplBpdc ETOVOAYE®V OV EMAEYEL ALTOUOTO TO TPOYPOLLLLOL
Stata (StataCorp, 2021:4).

Télog 1 tpitn néBodoc apyomoinong sivar o akyopduog k-means omov givar évog
TOAD YVOOTOC OAYOPIOULOC Y100 Y ®WPIoUO OEOOUEVMV GE OUAOES, OOV O aplBudg TV
opadwv mpoodopiletar amd Tov epeuvnTy €K TV TPoTtépwv. H Pacikn wdéa g pebodov
VTG €tvat OTL 01 S1aPOPEG PETOED TOV GTOLYEIV TOL AVIKOLV GTNV 1010 Opada oV

ehayrotomonOei (Kassambara, 2017:36-37). Baowkd mAgovéktnua avtig thg pebddov
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elvar 0Tt elvan pol oA kot ypryopn péBodog Opums to Pactkd e PEOVEKTNA Elval OTL

TPEMEL VO, EIVOL EK TOV TPOTEP®V YVOOTOS 0 aptOpog tmv opddwv (Kassambara, 2017:46).

Mo mv odykpion avtdv Tov 3 gpyoleiv KOTNYOPLOTOINONG TPOYUOTOTOMONKAY
TPOGOUOIDGES DGTE VO EPAPLOCGTOVV KAmola Kpttnpla 6vykpiong. Ot TpoGopotdcelg
&ywvav pe 500 emavainyelc ko 1000 mopatnpnoels, yuo Tic 101EC TEPIMTMOGELS Y10 TO
Double-Bounded piktd poviélo mov mpoteivetat, yio Ty tepintoon émov n mibavotnto

etvat 6tabepn Yo 6GOVG aviKOVV GTNV 1d10L OpAda.

Apyikd pio Tp®OTN  GOYKPIoN  TPOYHOTOTOMONKE 0@OTOL  0AOKANPGONKAY Ol
EKTIUNOELS Y10, OAEC TIG TEPUTTMOOELS KOl LEBAOOVE OVOPOPIKEL [LE TOVG EKTIUNTES KOl TV
Mepolnyia. Xtnv cuvéyelo epapUOGTNKOY KATOW0 KPLTHPLo amdO0eNS Tov TPoTeivovTol
aro v Piproypaeio Yoo cvykpion pebddwv apyikonoinone. Il cvykexpéva, €va
Kputnplo givor o ypOVOG MOV OMOLTEITOL YL VO OAOKANPADOGEL TO TPOYPOLLO TIG
enelepyooieg (Meila and Heckerman, 2001:16). "Eva dgbtepo kptthplo givatl 0 Guvolkdg
aplOUOC EMOVOAMYEDV TOV OTALTOVVTOL Y10, VO OTAGEL O aAYOPOLOS 6E GUYKAIoN Kot
emiong N wovotTNTa Vo fpEL TO OAIKO HEYIOTO, OTOL Yl TO KPLTNPLO OVTO TPEMEL Ol

EKTIUNTEG Va IKavomolovy Kamoteg ouvOnkeg (Karlis and Xekalaki, 2003:580-81).

Axoun éva kprrfiplo 6mov epapudomke eivon o deiktng ARI (Adjusted Rand Index)
omov petpdel moco KaAd ywpiotnkav ta otoyeio omd v péBodo katnyoplomoinomg
(Maruotti and Punzo, 2021:455-56) kot emmAéov mpootédnkav oty chykpion o apdpds
TOV EMOVOAYEDV TOV aQopEtnKay AOY® TPOPANUATOV GTOV VTOAOYIGUO TNG TUMIKNG

AmTOKAMONG KATOIWV TOPOUETPOV.

Epapupolovrag ta  mopoamdve  Kputnplo.  mPoEKLyay  KATOL  EVOLAPEPOVTO
ovunepdopato KoOOS OAeg ot HEBodOL apykoToinonS PEPVOLV E1G TEPOS LE EMLTLYIO TOV
apykd okomd G Jpbwong Tov mpoPAnuatog ¢ Ymobetwkng Mepoinyiag.
Aoppdavoviag Opmg VoYM TOL KPP, TOL EPOPUOCTNKAY, N GOYKPLon £0€1&e OTL M
péboodog pe tig 100 Tuyaieg apyikomooelg Asttovpyel kahdtepa o€ oyéon pe TG GAAES
00 peBdoovg dumg Eva Pactkd PeElOVEKTNIA aVTNG TG HEBOdoL eivan OTL amoutel TOAD

xPOVO.

A6 v mapoboo OWAKTOPIKN £€pevva, mpoteivetar Yo v 010pBwon Tov

npoPAnuatog Ymobetikng Meponyiog 1 epappoyn evog pktod (Mmixture) poviédov
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omov Aappdvetor voyn katd TV extiunon n mboavotnta vrepdimong tov WTP. T'a
TIG OPYIKES TIUEG TOV HOVTEAOV, €AV OEV VTLAPYEL Ttieon xpovov, va epapuodlovior ot 100
TUYOIEG OPYIKOTOUOELS, EWUAAMG Ol GAAeg 0V0 péBodol apyucomoinong mpoteivovrat

e&loov kabmg 1 dopopd oty amdd0oT TV TPLUOV HeBOd®V gival TOAD pkpn.
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Overcoming Hypothetical Bias Chapter 1

Chapter 1
Contingent Valuation and Hypothetical Bias

Introduction

Most environmental goods are not traded in markets and as a result economists have
developed methods for their valuation. Methods such as revealed preference which is
based on observations of actual behavior and stated preference which is based on
hypothetical behavior (Bockstael and McConnell, 2007:15), have been applied to value

environmental goods.

One of the stated preference approaches is the Contingent Valuation Method (CVM)
(Carson and Hanemann, 2005:824). The CVM is considered as a flexible tool because it
provides the possibility of creating several experimental scenarios (Carson and
Hanemann, 2005:824).

As mentioned in Du Preez, Menzies, Sale and Hosking (2012:3), over time CVM
became the most widely used method for valuing goods that are not available in a market.
The CVM is a tool that is usually used to value potential effects of policy changes in the
case where market-base valuation of the effect is impossible. “The results of these
analyses are often intended to inform policy decisions, which are made within the context

of formal policymaking institutions” (Calson et al., 2016:460).

Although CVM is a broadly accepted method, there are several problems that the
researchers have to deal with and the reliability of the method has been questioned since
a heated debate has been triggered through the years. As the application of CVM spread

to deal with the valuation of a number of goods many problems appeared.

Namely the most popular problems are problems such as non-response bias (Berg,
2005:865), starting point bias (Boyle et al., 1985:189), information bias (Ajzen et
al.,1996:44), psychological biases (Bateman et al.,, 1995:166), question order bias
(Kartman et al., 1996:532), and hypothetical bias (Loomis, 2014:35).
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In this thesis the focus is on overcoming one of the critiques namely the existence of
Hypothetical Bias. “Hypothetical bias can be defined as the difference between what a
person indicates they would pay in the survey or interview and what a person would
actually pay” (Loomis, 2014:35).

Hypothetical bias is a major issue of the CVM and as Haab, Interis, Petrolia and
Whitehead mention (2013:595) “In short, we find promise for the curious researcher that
the CVM debate is not settled, important questions remain, and that a critical examination
of the CVM literature will provide fertile ground for future research”.

Many techniques have been devised to overcome hypothetical bias. The approaches
that have been used are separated in two main categories. The first category is ex ante
and the second one is ex post approaches (Loomis, 2014:34). This thesis aims to deal
with the problem of hypothetical bias by using an ex post approach. More specifically, by
using stochastic frontier analysis as in the case of Hofler and List (2004) where they

applied the approach for Open-Ended auctions.

Additionally in this thesis the method is going to be applied to the Double-Bounded
Dichotomous Choice (DC) model while introducing also elements from latent class
models theory since we will be dealing with mixture models of two classes (Normal error

and composed Normal-Half-normal error).

This thesis is inspired by the work of Chien, Huang and Shaw (2005) related to the
estimation of a model when yea-saying bias is present and the work of Kumbhakar,
Parmeter and Tsionas (2013) that propose a model that can be applied when both efficient
and inefficient firms are present in a sample with a given probability. Consequently in
this thesis mixtures will be added, since we have both overstating respondents and
respondents that answer sincerely, in order to combine the two basic ideas that inspired

this thesis.

Furthermore, we use the results of Tsay et al. (2013) who provide a closed-form
approximation for the cumulative distribution function of a composed Normal-Half-
normal error. Finally, in the present thesis we use the EM algorithm estimation procedure
(McLachlan and Peel, 2000).
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1.1. The Contingent Valuation Method (CVM)
1.1.1. The method

Neoclassical theory was faced with the problem that most environmental goods don’t
have a price, since they are not generally purchased in markets like other common goods.
In order to overcome this problem several valuation methods have been proposed in the
literature, one such method being the CVM (Vatn, 2005:302).

The CVM is one of the most commonly used methods to value non-marketed
resources, such as wildlife, recreation and environmental quality (Hanemann et.al.,
1991:1255). A basic principle in a survey using CVM is that people are rational and
additionally, people know their preferences for a particular good relative to other goods

and they can translate their preferences into money (Green and Tunstall, 1999:242-43).

In an investigation using the CVM approach, the researcher uses a questionnaire that
presents a hypothetical environmental change to respondents. In the case of an
environmental improvement the respondent is asked to state the maximum amount of
income he/she would be willing to pay (WTP) for the improvement or alternatively the
minimum amount of income he/she would be willing to accept (WTA) to forego the
improvement. The aims and the needs of each research are the determinants of the design
of the questionnaire. Typically the questionnaire consists of three parts, the beginning,
the middle and the end (Green and Tunstall, 1999:238).

The first part is an introduction about the general subject of the research followed by
general questions. The second part concerns the CVM scenario, the purpose of the
scenario, how it will be implemented, how it will be financed and afterwards the WTP or
WTA questions. Finally in the third part personal questions are made so that the
researcher gathers the demographic characteristics of the respondents (Carson and
Hanemann, 2005:825).

More analytically, the first part, which contains the introductory questions, aims to
help the respondents understand the purpose of the research. As Green and Tunstall
(1999:239) mention, the language that the researchers use must be clear and furthermore

the researchers must give attention to every detail in order to ensure that the respondents
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will understand the questions and answer correctly. Furthermore, the description of the
good that is evaluated is very crucial because a wrong description may mislead the
respondents’ answers with a significant impact on the validity of the research. Boyle and
Bergstrom (1999:193) mention that several studies have proven that more information or
less information in the description of the good may have statistically significant effects in

surveys using CVM.

The second part of the questionnaire, which refers to the valuation scenario, contains
the questions for eliciting WTP or WTA. This part consists of two components, the first
one is an introduction which informs the respondents that they can freely express their
opinion about the scenario and emphasizes the importance of the respondents’
participation (Green and Tunstall, 1999:245-46). Furthermore, in this part the researcher
should inform the respondents that they should have in mind their disposable income.
Arrow et al. (1993:9-14) mentioned that one of the problems that concerned the National
Oceanic and Atmospheric Administration-NOOA Panel was that the majority of previous
applications of CVM, respondents were not reminded to have in mind their budget
constrain while answering, so respondents may answer without thinking carefully. The
other component refers to the WTP/WTA questions. Finally, the third part of the
questionnaire is related to the collection of the socioeconomic information of the

respondents.

The WTP or WTA questions are the most essential part of the questionnaire. There are
several elicitation methods to design in a different way the CVM questions. Mitchell and
Carson (1989:98) present 9 CV elicitation methods that could be categorized in two
groups, whether respondents are given a single WTP question or an iterated series of
WTP questions. Namely the single question methods are, the Open-Ended (OE) or the
Direct question, the Payment Card, the Sealed bid auction, the Take-it-or-leave-it offer,
the spending question offer and the Interval checklist. On the other hand, the iterated
series questions methods are the Bidding game, the Oral auction and the Take-it-or-leave-

it offer with follow-up.

For the first CV surveys the Bidding game format was used and the respondents were
called to answer with a yes or no if they are willing to pay a certain amount. If they
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answered yes then a bigger amount was given, alternatively a smaller if they answered
no. This process continued until the respondent switched answer form yes to no (or from

no to yes) (Carson and Haneman, 2005:870).

Due to concerns about the starting bid of the Bidding game method, led researchers to
apply simpler approaches such as Single closed-ended questions, known as the
referendum, Single-bound (1DC) or binary discrete-response format and the Double-
bounded (2DC) approach where a double sampling framework, with a second binary
discrete choice question depending on the answer at the first was applied (Carson and
Haneman, 2005:871). Additionally, in 2002 Cooper, Hanemann and Signorello, proposed

another elicitation approach called the one-and-one-half-bound (OOHB).

Besides the fact that there is a variety of elicitation methods a researcher can choose,
the NOAA Panel (Arrow et al., 1993:4) suggests that the elicitation method researchers
should use is a referendum method such as 1DC and 2DC. Furthermore, one other main
guideline that has been given by the NOAA Panel refers to Single-bound DC and
suggests that the sample size might have to be at least 1000 respondents and generally
that WTP format is preferred to WTA (Bateman et al., 1995:162).

A few words for some of the elicitation formats, firstly, the Open-Ended method is “a
form of an open-ended question asking what is the maximum amount they would be
willing to pay for the program in question” (Arrow et.al., 1993:4). On the other hand, the
Single-Bound Dichotomous Choice, the Double-Bound Dichotomous Choice and the
Third-Bound Dichotomous Choice are in a form of a hypothetical referendum in which
each respondent has to answer if he is willing to pay a certain amount of money with a
“Yes” or “No”(Arrow et al., 1993:4).

More specifically, the Single-Bound Dichotomous Choice method includes only one
question-bid in which the respondents may answer with yes or no if they agree or
disagree about paying a given amount of money in order to ensure an environmental
improvement. To continue with, the Double-Bounded Dichotomous Choice method
includes an extra follow-up question depending on the answer given to the first question.
In the case of a WTP question, if the respondent has responded to the first question with a

“yes” then, for the second question, the second bid will be bigger than the first bid. On
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the other hand, if the answer to the first bid is “no” then the second bid will be a smaller

amount (Hanemann et.al., 1991:1255-56).

In Iterative Bidding method, after the DC questions an open-ended questions follows
which gives to respondents the freedom to move up or down from the given WTP starting
point (Bateman et al., 1995:161-1640). Finally, in the one-and-one-half-bound (OOHB)
approach, two prices are given up front to the respondents and the researcher informs
them that although the exact cost of the good is unknown, it lies within the two prices.
Afterwards one of the two prices is randomly selected and the respondents are asked if
they are willing to pay the given price, whether a follow-up question will ensue depends
on the selected initial price and the answer to the first question, since the WTP amounts

must be consistent to the stated price range (Cooper et al., 2002:742).

In this thesis the main elicitation methods that will be examined are the Double-
Bounded Dichotomous Choice method as well as the open-ended elicitation method.

1.1.2. The diffusion of the method

The method was proposed in 1963 by Robert Davis in his Ph.D. thesis at Harvard
University. The use of the method started in the beginning of the “70s and expanded after
the ‘80s in the US (Loomis, 1999:613), in Europe as well and from the ‘90s all over the
world (Bonnieux and Rainelli, 1999:585-86). The initial versions of CVM proposed by
Davis in 1963 and Randall et al. in 1974 focused on incentives and free-rider issues
(Green et al., 1998:86).

More analytically, Davis applied an Open-Ended protocol and Randall on the other
hand applied a sequential bidding protocol. Randall et al. presented a number of
arguments for the use of sequential bidding instead of Open-Ended. More specifically
they mentioned that the referendum task was simpler and less affected by
misinterpretations. Although there were many arguments in favor of sequential bidding
protocol, the Open-ended protocol was the most commonly used protocols in the early
‘80s (Green et al., 1998:87).
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The CVM has been widely used for valuation of environmental changes in many
countries in the past years. The reasons for the broad acceptance of CVM are several.
Firstly, from the mid-seventies until the decade of 1990 there was an increasing use of the
method which led to a substantial number of publications, for example “the article by
Randall et al., in 1974 in the first issue of the Journal of Environmental Economics and
Management, which introduced more differentiation of contingent valuation surveys from
opinion polls by using photographs to help describe the valuation scenario” (Haab et al.,
2013:594).

Second, another important reason for the acceptance of CVM was the publication of
the book by Mitchell and Carson in 1989 which “first integrated economic theory, survey
research methods, and social science measurement issues” (Haab et al., 2013:594). Last
but not least, the Exon Valdez oil spill, which turned the awareness of numerous
economists and many institutions as well towards CVM (Haab et al., 2013:594).

In 1993 the US National Oceanic and Atmospheric Administration (NOAA) created a
“blue ribbon panel” that gave guidelines for researches using CVM and afterwards
numerous critiqgues came along from researchers such as Hausman (Haab et al.,
2013:594).

1.2. Hypothetical Bias
1.2.1. The beginning of the debate over CVM

CVM is a broadly accepted method, although there are several problems that the
researchers have to deal with. Sugden (1999:139) mentions that even if the respondents
answer the CV questions honestly, major problems can arise. For example, the design of

the scenario, especially for a public good, is not that easy.

The respondents on the other hand, as Green and Tunstall (1999:209-11) mention, are
also facing difficulties in their attempt to give the right answers. Namely the respondents
deal with memory problems, communication problems which lead to difficulties in

understanding, lack of knowledge regarding the good that is evaluated in the valuation
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exercise and finally, as Milon (1989:294) mentions, respondents have to deal with their

strategic incentives.

Since 1993 a debate has started questioning the validity of the CVM. As a
consequence of the Exxon Valdez oil spill a conference took place and brought the
attention towards CVM (Haab et al., 2013:594). The conclusion of the conference was
that CVM was unreliable (Carson, 2012:30). In 1993 the National Oceanic and
Atmospheric Administration (NOAA) assembled a panel in order to evaluate the CVM.
The NOAA panel gave a number of guidelines for the method and these guidelines
triggered the debate. In 1994, many articles were published in the Journal of Economic
Perspectives criticizing the method (Haab et al., 2013:594).

In 1994 Portney first criticized the guidelines that the NOAA panel had highlighted for
the method. Portney mentioned that these guidelines created a lot of displeasure to many
supporters of CV since the surveys became more complicated and more expensive and
furthermore these guidelines may lead to underestimating lost existence values (Portney,
1994:9-10). On the other hand, CV still had supporters and Hanemann was an avid
supporter of the method. Hanemann in his article “Valuing The Environment Through
Contingent Valuation” (1994) summarizes that a researcher will receive reliable results

by using CVM when surveys are properly designed (Hanemann, 1994:21).

Diamond and Hausman (1994) disputed the method and they stated the problem of
reliability and also the existence of biases (Diamond and Hausman, 1994: 45-6). In their
critique they mention as well that the CVM is unable to measure the preferences that are
attempted to be measured in a particular survey (Diamond and Hausman, 1994:46). But
although “Diamond and Hausman raised a number of important issues, their negative
opinion has done little to quell the demand for contingent valuation research” (Haab et
al., 2013:594).

The debate over the validity of the method was settled down until the BP Deepwater
Horizon oil spill in 2010 took place, where the damage from the oil spill had to be
evaluated. So in 2012 the debate started again. Kling, Phaneuf and Zhao (2012) mention
that since the first debate, stated preference techniques, such as CV, have been enriched

by new developments in theory and the contribution of the knowledge from behavioral
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economics, so researchers should take into account all the progress that has taken place
since 1994 (Kling et al., 2012: 21-2). Carson defended the CVM and remarked that like
all the economic techniques CVM is not perfect but there is no other alternative to
evaluate some goods, while he also pointed out that the method had a successful progress

the last twenty years (Carson, 2012:40).

On the other hand, Hausman (2012:43) stated that there is no progress in the past
twenty years and that the method has to deal with serious problems (Haab et al.,
2013:594-5). Hausman criticized strongly the method and he mentioned three important
problems that need to be solved. The first problem is the difference between the two
measures WTP and WTA, the second problem is the lack of scope effects and the third
problem is Hypothetical bias (Hausman, 2012:43).

1.2.2. The problem of Hypothetical Bias

In hypothetical surveys or referenda, the participants tend to express higher values of
money for goods than the participants that are dealing with a similar choice involving real
money payments (Foster and Burrows, 2017:270). A main concern about the CVM
results is that they are based on respondents’ answers to the CVM scenario and the
answers are based on the fact that the respondents know that the scenario is hypothetical.
If they knew that the scenario was about to be implemented their answers would be
different. As is mentioned in Haab, Interis, Petrolia and Whitehead (2013:596)

“What people say is different from what they do”.

More specifically, because the supply of the good that is examined in the scenario is
hypothetical, and so is the amount of payment that the respondents agree to pay, the
reliability and the validity of the CVM results have been the matter of a debate (Aadland
and Caplan, 2006:563).

Hypothetical bias indicates that there is an unwanted difference between what the
respondents answer about the maximum they would be willing to pay and what they
would actually pay. This fact leads to researchers obtaining less reliable results when
applying CVM if the presence of this potential gap is ignored.
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Hypothetical bias can take two different forms and it can lead to overestimation or
underestimation. In the case of overestimation the hypothetical estimates are higher than
the real ones. In case of WTA there are more no-saying answers (i.e respondents
overstate the amount of compensation) while for WTP yea-saying answers (i.e
respondents overstate how much they are willing to pay). The other case of Hypothetical
Bias is underestimation where the hypothetical estimates are smaller than the real ones. In
case of a WTA survey we have more yea-saying answers and in a WTP no-saying

anNSWEers.

As Murphy et al. (2005:313-14) discuss there are two dominating questions regarding
hypothetical bias, “what is the magnitude of hypothetical bias associated with the Stated

Preference valuation approach” and “what factors are responsible for this bias”.

Bateman et al. (1995:164-65) refers that one reason why respondents may understate
their WTP, especially in Open-Ended elicitation format, is because of the “free ride”
problem. More specifically, the respondent might pretend that his interest for the good
that is evaluated is lower when he expects that the good will be provided anyway.
Additionally, another reason might be that the respondents believe that the costs of the
project will be shared per capita so they respond by giving the expected cost if it is below
WTP or they respond zero if it is not. Another reason is unfamiliarity with the Open-
Ended format questions which leads to risk-averse strategies in regard to their answers.
Finally, if the good is not well described, respondents are dealing with unfamiliar
situations leading their states to be biased (Bateman et al., 1995:165).

On the other hand, one reason why respondents may overstate their WTP is because
respondents might answer positively in order to satisfy the interviewer. Respondents
believe that the positive answer is the answer that the interviewer would like to hear so
they say yes (Bateman et al., 2006:6). Additionally, yea-saying bias can be motivated by
the “warm glow” effect which means that the respondents by answering positively may
feel satisfaction that they have contributed for the good that is evaluated. Furthermore,
overstating WTP may be triggered by the fact that respondents feel social pressure during

the survey. People tend to be sensitive to public opinion in their community so they

36



Overcoming Hypothetical Bias Chapter 1

answer positively in order to be part of a community with a high public spirit which

means contribution for providing public good (Chien et al.,2005:364).

An important parameter that plays a crucial role in the issue of hypothetical bias is the
problem of incentives. Due to strategic behavior by respondents, the WTP amount would
either be higher or lower. Furthermore researchers explored if the incentives for strategic
behavior could be connected to the elicitation method, since the estimates obtained by
different elicitation method had quite large differences (Carson and Hanemann,
2005:875-77).

In regard to the incentives, Carson and Groves (2007) examined the incentive
properties of preference questions. More specifically they took under consideration the
properties of binary discrete choice questions to determine if such question formats are
incentive compatible in the sense of whether a true answer to an actual question is an

optimal strategy (Carson and Groves, 2007:182-184).

The binary discrete choice elicitation methods have the property of being incentive
compatible and this fact explains the reason why the NOOA Panel proposed such
methods for CVM surveys (Carson and Groves, 2007:187). Haab, Interis, Petrolia and
Whitehead (2013:596) mention that “Carson and Groves’ arguments regarding incentive
properties open a new exciting line of research for applied, behavioral, and experimental
researchers to investigate the degree to which the incentive properties of various question

formats can reduce or increase hypothetical bias”.

Although there are plenty of studies referring to hypothetical bias there is no
consensus about the causes or the ways to adjust survey responses in order to avoid
hypothetical bias (Murphy et al., 2005:313).

1.2.3. A review of meta-analyses of hypothetical bias

Carson et al. (1996) conducted a meta-analysis of 83 studies which include 616
comparisons between CV estimates and Revealed Preference estimates for quasi-public
goods. They examined these studies and found that for most cases the CV estimates
where a little lower than the Revealed Preference estimates and in some cases the CV
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estimates distinctly exceeded the Revealed Preference estimates. Finally, they believe
that their findings could play a crucial role in discussions of whether the CV estimates

need to be in general, adjusted either upwards or downwards (Carson et al., 1996:93-4).

Murphy, Allen, Stevens and Weatherhead (2005) reported results of a meta-analysis of
hypothetical bias taking into considerations 28 stated preference studies estimating WTP
by using the same mechanism for hypothetical and actual values. The main finding in
their analysis is that the basic factor that can explain hypothetical bias is the size of the
hypothetical value, furthermore no clear results were found about other factors that may
be associated with hypothetical bias (Murphy et al., 2005:322).

List and Gallet (2001:246) found that in hypothetical choices the estimates are about 3
times higher than the estimates that come from real choices and they also noticed that the
differences depend on the elicitation method and if the scenario presents a WTP or a
WTA question. The elicitation method has been also mentioned by Green et al.
(1998:85), more specifically they have mention that the referendum elicitation methods
tend to return higher mean estimates than from Open-Ended responses. Little and Berrens
(2004:5) also have found that the difference is about 3.13 times higher for the estimates
that are based on hypothetical choices.

Foster and Burrows (2017) gathered the literature on hypothetical bias and more
specifically on previous meta-analysis in order to study if among the characteristics of the
survey designs that contributes to overcoming hypothetical bias, there is a practical and
reliable way to overcome hypothetical bias. As they mention, until the time their work
was published, previous meta-analysis had confirmed that in stated preference studies
hypothetical bias exists but they couldn’t offer definite guidelines that could be used in

order to reduce hypothetical bias (Foster and Burrows, 2017:270).

More specifically, they examined how the “bias Ratio” (the ratio of the mean WTP
from the hypothetical treatment to the WTP from the real treatment) (Foster and Burrows,
2017:271), was affected by variables representing a number of commonly used
techniques and two additional variables that they added. The common techniques that
they used were certainty correction, cheap-talk, the same respondent vs different

respondent technique, if the observations are derived from conjoint or choice experiment,
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if the respondent is a student or not, if the hypothetical and the real survey instruments
are implemented in a laboratory study or not and if the good that is evaluated is public or

private.

Furthermore, they added two new variables indicating if the good that is evaluated is
familiar or unfamiliar to the respondent and if the valuation of the good is mainly
generated by non-use considerations (Foster and Burrows, 2017:273-79). Finally, after
their attempt to update the existing prior meta-analyses, they conclude they their meta-
analysis did not offer definite insights in order to eliminate or reduce hypothetical bias
(Foster and Burrows, 2017:286).

Some empirical studies have shown that there is a possibility that estimates from real
choices are higher than those from hypothetical choices and in this case hypothetical bias
exists in the form of underestimation. Ehmke, Lusk and List (2008:489-90) found that
hypothetical bias is not independent of location since many cultural factors exists and
they could affect the existence of hypothetical bias. In their survey they used data from
several countries such as, for example, China, France, Niger and a numbers of states in
America and they concluded that less developing countries, like China and Niger, tend to

vote “no” in hypothetical scenarios and “yes” in the real ones (Ehmke et al., 2008:497).

1.2.4. Suggested methods to overcome hypothetical bias

In general, it is difficult to measure hypothetical bias and the reason which explains
this difficulty is that in order to test if hypothetical bias exists there has to be a
comparison with real payments (Jakobsson and Dragun, 1996:84). Since for non-market
and public goods the problem named market failure exists, “measuring hypothetical bias
is difficult for non marketed resources and public goods” (Loomis, 2014:35). But it
should be mentioned that Little and Berrens (2004:6) found that there is no evidence that
private goods have potentially less difference between hypothetical and real payments

than public goods.

One part of the literature concerned with hypothetical bias has proposed ex ante

approaches whereas the problem can be treated through auxiliary mechanisms like
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“cheap talk” or “solemn oath” and “scenario adjustment” (Haab et al., 2013:599). On the
other hand, the ex post procedure can correct hypothetical bias by using statistical
techniques (Hofler and List, 2004:213).

Ex-ante Methods

The technique of solemn oath was introduced by Jacquemet, Joule, Luchini and
Shogren (2013) in order to ensure respondents will be honest in their answers and thus
eliminate the hypothetical bias problem. Just like courts, where witnesses take an oath “to
tell the truth and nothing but the truth” in solemn oath the same procedure occurs. The
respondents are asked to answer to the valuation questions after they swear a “truth-
telling-commitment” that they will be honest (Jacquemet et al., 2013:111). More
specifically, in a survey including the solemn oath technique probably there will be an
additional statement that the respondent will be asked to agree or not. The statement
might be like the following: “I swear upon my honor that, during the whole experiment, |

will tell the truth and always provide honest answers” (Jacquemet et al., 2013:115).

Some researchers with non-experimental applications, have found that the oath
framework “has significant effects on hypothetical response behavior across individuals
and across multiple countries that is consistent with what would be expected from
reduced hypothetical bias” (Haab et al., 2013:599).

Scenario adjustment plays an important role in the choice procedure. There are three
types of scenario adjustments that can occur since the researcher gives additional
information to the respondent that already has an idea about any aspects of the presented
scenario. Firstly, the respondents may replace their prior beliefs about the scenario with
the new information that the researcher provides. Secondly, the respondents may reject
the additional information and finally the respondents may combine their prior beliefs

with the researcher’s information (Cameron et al., 2011:10).

If researchers do not include these scenario adjustments they may probably
overestimate or underestimate WTP for a number of respondents. As Cameron, DeShazo

and Johnson (2011:11) suggest “researchers should probably calculate and compare
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estimates of WTP both with and without corrections for scenario adjustment”. And
finally, researchers should include from the early design these possible scenario
adjustments so neither overestimation nor underestimation for WTP will occur (Cameron
etal., 2011:11).

Cheap talk on the other hand, is a survey design in which “the valuation context
involves providing respondents with additional instructions that explicitly encourage
them to treat hypothetical scenario as if an actual monetary transaction were taking
place” (Haab et al., 2013:599).

In a cheap talk script the researcher explains to the respondents the problem of
hypothetical bias that he has dealt with in other surveys in the past. In this way he tries to
make the respondents answer sincerely. He may use either short script or long script. In
the short script he will only mention the hypothetical bias that they have found in similar
surveys. On the other hand, in the long cheap talk script the researcher mentions what
kind of substitute goods exist and reminds the respondent that he should have in mind his
household budget (Aadland and Caplan, 2006:565-67).

Loomis (2014:36-8) has analyzed as well the ex ante survey design approaches and
classifies them in the following four categories: “Consequentiality Designs”, “Honesty
and Realism Approaches”, “Cheap Talk” and “Reducing Social Desirability Bias and

Cognitive Dissonance”.

Consequentiality refers to the fact that the survey should have some potential effect on
the respondents such as affecting the likelihood of the provision of the good and/or
changes in taxes. Honestly and realism approaches is a method in which the researcher
makes the respondents to give their honest answer such us the inclusion of a solemn oath
statement that we discussed above. Cheap talk has been discussed above, while “reducing
social desirability bias and cognitive dissonance” refers to, among others, the problem
that arises when some respondents answer payment questions based on social norms
rather than their own personal values and one possible solution would be by asking what

the respondent think others will pay for the provision of the good (Loomis, 2014:43).

All the above techniques, as it has been mentioned, are considered as ex ante

procedures and as Hofler and List (2004:213) emphasized “recent technology using ex
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ante procedures has produced some strong evidence that hypothetical bias can be
overcome”. However, in the case of cheap talk the evidence is not so positive since
according to the study of Aadland and Caplan (2006:562) “a short, neutral cheap talk
script appears to exacerbate rather than mitigate the bias”. According to the authors,
respondents hearing that hypothetical bias occurred in other similar studies might try to

attempt to give the “right” answer and thus increase the bias.

Ex-post Methods

Apart from the ex ante procedures to overcome hypothetical bias another set of
procedures exist, the ex post procedures which can correct hypothetical bias by using
statistical techniques (Hofler and List, 2004:213).

For example, Loomis (2014:43) mentioned three ex post methods that can be included
in surveys. Firstly, the preference towards the median WTP responses rather than the
mean WTP responses. Secondly, including uncertainty when the respondent is not sure
about his positive WTP answer and finally “relying on the degree of hypothetical bias
uncovered in an experiment with a deliverable good to scale the WTP from a stated

preference survey” (Loomis, 2014:43).

Since there is a gap between the hypothetical and the real estimates, this difference
must be taken into account in the models in order to get more reliable and realistic
evaluations. Hofler and List (2004) designed an experiment to examine if the results are
different between a hypothetical and an actual auction for a baseball card and they used

stochastic frontier approach.

More specifically, Hofler and List (2004:220) proposed a statistical approach in order
to link the actual with the hypothetical statements from data for a baseball card auction.
They conclude that people overstate their WTP and they have used calibration function
derived from a stochastic frontier regression model in order to overcome the gap between

the actual and the hypothetical bid.

Additionally, Chien, Huang and Shaw (2005) proposed a modeling approach for
double-bounded dichotomous choice data based on the stochastic frontier model that can
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accommaodate both yea-saying behavior and starting point bias. Furthermore, Kumbhakar,
Parmeter and Tsionas (2012) consider possibility of underestimation or overestimation in
first-price auctions. They developed an optimization error approach that allowed the
optimal bids to differ from the bids they observed and propose the application of a
stochastic frontier model (Kumbhakar et al., 2012:47-48).

A researcher has the possibility to use more than one approach to overcome
hypothetical bias. Usually cheap talk is combined with another ex ante approach or even
with ex post methods. It is mentioned though that researchers that choose to combine the
methods should be very careful because in this way there is a possibility of correcting
more than the wanted hypothetical bias and so WTP is no longer overestimated but
underestimated (Loomis, 2014:43).

1.3. Stochastic frontier for CVM modeling with the presence of
hypothetical bias

Hofler and List (2004) propose the use of stochastic frontier model in order to
calibrate hypothetical statements to real values. A one sided error is included in the
hypothetical open-ended bid function capturing the difference between the actual and the
hypothetical as shown in Eq. (1.1) below, (Hofler and List, 2004:215)

YA=XB+vi+uwi=1,..n (11
o Y represents the hypothetical bid for each individual i,
e X; is arow of explanatory variables, the determinants of the bid for person i,
e 3 is a column vector of the coefficients.

The function though, has two error terms, v is the usual regression error term and u is
an additional one-sided error that represents the gap between the hypothetical and the true
bid for each person (Hofler and List, 2004:216).

Additionally, the model can be written in the following form (Hofler and List,
2004:216)

Yi=YA+wu, i=1,..,n (12)
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o Y4 represents the actual bid for each i person.

In the case of yea-saying the analysis is based on the hypothesis that u; > 0. In the
case that the actual bid is equal to the hypothetical, the estimate of u; = 0 and the
respondent answered sincerely. On the other hand when w; >0 it is implied that the
respondents overstate the bid since the hypothetical bid is bigger than the actual (Hofler
and List, 2004:216). The method proposed by Hofler and List (2004) can be easily
implemented to CV survey data that use an open-ended elicitation format.

Chien et al. (2005) on the other hand have introduced a stochastic frontier model of
overestimation for Double-Bounded DC method. More analytically, they assume that
WTP is given by W* = X + V where W* is the latent willingness to pay which is not
observed and only the yes/no answers to the presented bids are observed. In the presence
of yea-saying, the upward shift of the WTP can be captured again by a one-sided, non-

negative error term as shown below,
W,=W*"+U=XB+¢
where
e (3 is the coefficient vector
e X are the respondent’s characteristics
e I/ is the statistical noise where E(V) = 0
e U is the one-sided non-negative random error for yea-saying bias
e ¢ is the composite error (Chien et al., 2005:365).

On the other hand the respondents to CV surveys need not be a heterogeneous group
and hypothetical bias could be present only for a subset of respondents. In this case a
latent class model where some respondents answer truthfully to the payment questions
while others overstate might be a promising venue. In the case of production economics
Kumbhakar, Parmeter and Tsionas (2013) have proposed the zero inefficiency model
where both efficient and inefficient firms can be present. In their study a latent class
stochastic frontier model is proposed to analyze production inefficiency. Taking as a

starting point the well known production stochastic frontier model given below,
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yl-=xi’ﬁ+vi+ul-=xl-,ﬁ+€l-f0ri:1,...,n

they assume that some firms are fully efficient with u; = 0 and some other firms are

inefficient u; > 0 .Their zero inefficiency stochastic frontier model is:

e y; = x; B + v; with probability p, where p is the probability of the firm to be fully

efficient and
ey, = x; B+ (v; — u;) with probability (1 — p) (Kumbhakar et.al, 2013:67-68).

The present thesis builds up on the results presented above and proposes a latent class
stochastic frontier model for hypothetical bias for both open-ended and dichotomous
choice formats. In our models we will have a latent class model where both hypothetical
bias and sincerely answering may occur with a probability. More specifically, in this
thesis we take into account the work of Chien, Huang and Shaw (2005) and of
Kumbhakar, Parmeter and Tsionas (2013) in order to propose a mixture stochastic
frontier model for CV data both under the open-ended and double-bounded format.

1.4. Thesis overview

The contents of this thesis are arranged as follows. In Chapter 2 a mixture model is
proposed for estimating CV survey data under an open-ended format in the presence of
yea-saying and simulations of 1000 replications have been conducted in order to
investigate the performance of the model for several different cases. Two different cases
are analyzed for the probability of class membership, namely the probability is constant
over individuals and the probability depends on some regressor and therefore varies over

individuals.

Chapter 3 proposes a mixture model when the double-bounded elicitation format is
used and respondents overstate their willingness to pay. The performance of the model is
evaluated with simulations of 1000 replications under different scenarios. Moreover the
method is applied to an empirical study about the valuation of the Kakadu Conservation
Zone, which is based on the CV survey that took place in Australia and was published by
Carson, Wilks and Imber (1994).
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In Chapter 4 the importance of different strategies for selecting starting values is
analyzed in detail and the proposed model of overcoming hypothetical bias has been
tested for several different clustering methods in order to investigate the performance of
the model for several different starting values methods.

Finally, concluding remarks are presented since all the analysis of the previous
chapters have led to the optimal proposed model which responds better in order to

overcome Hypothetical Bias.
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Chapter 2
Applying stochastic frontier and mixture models to contingent
valuation under the open-ended format

Introduction

In Chapter 2 a stochastic frontier mixture model is applied to CV under the open-
ended format aiming to overcome hypothetical bias. The chapter comprises of four main
parts.

The first section presents the theoretical background of the CVM under the open-
ended elicitation format. The second section analyzes the stochastic frontier model
applied to open-ended format data under the presence of hypothetical bias while the third
part introduces and analyzes the mixture model for open-ended data that it is suggested in
order to overcome hypothetical bias.

Finally the last part of the chapter presents the results of simulations that took place in
order to test the proposed model. More analytically, the last section describes in detail the
data generation process, the initialization strategy that was followed and all the
simulation results for a number of different cases. Furthermore, the simulations took
place for two different scenarios for class probability determination, in the first case the
class probability is a constant and consequently all respondents have the same probability
of overstating their willingness to pay (WTP hereafter) and in the other case the
probability of overstating WTP differs among respondents since the probability depends

on a variable z.

2.1. Contingent valuation and open-ended elicitation format

A CV study aims to measure for each individual his/hers monetary value for an item
denoted as q or for a change in its provision. More analytically, each individual has a
direct utility function u(x, q) which is defined by a number of commodities x and also q,

and an indirect utility function v(p,q,y) where p contains the prices of the market
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commodities and y is the person’s income. Furthermore, the assumption that is made is
that u(x, q) is increasing and quasi-concave in x thus v(p, q,y) satisfies the standard

properties for p and y. Furthermore, each agent regards g as “good” or “bad”.
If q is considered as “good”: u(x, q) and v(p, q, y) will be increasing in q.
If q is considered as “bad”: u(x, q) and v(p, q, y) will be decreasing in q.
If the agent is indifferent to g: u(x, q) and v(p, q, y) will be independent of g.

In the valuation process there must be a comparison between two situations with
respect to the provision of g. In a few words, if the changes in g is g° — g, each person
will have different utility functions, the utility function before the change will be

u® = v(p, q°, y) and after the change u' = v(p, q',y).
If the change represents an improvement u! > u°.
If the change represents a worsening u! < u°.
If the change is indifferent for the agent u! = u°.

The change in q (¢° » q') which leads to a change in the utility (u® — ul), in
monetary terms is represented by the compensating variation C which satisfies Eq. (2.1)
and the equivalent variation E which satisfies Eq. (2.2).

v(p,qty —C) =v(p,q"y) (2.1)

v(p, gL y) =v(p, ¢,y +E) (2.2)

In the case where the change is an improvement, C > 0 and E > 0. Additionally, C is
the person’s maximum WTP in order to ensure that the change will be implemented and
additionally E is the minimum willingness to accept (WTA hereafter). On the other hand,
in the case where the change is regarded as being worse, C < 0 and E < 0. In this case,
C i1s the person’s WTA and respectively, E measures the WTP in order to avoid the
change (Carson and Hanemann, 2005:844-45).

The CVM uses a survey in order to evaluate the WTP or the WTA that people have for
a change in g, one elicitation method that is used in surveys in order to derive the
WTP/WTA is the open-ended question format. The open-ended format reveals directly

the respondents’ WTP, more analytically, the open-ended question given to respondents
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is “How much are you willing to pay for the change from q° to g'?” (Carson and
Hanemann, 2005:848). Suppose that the answer is A this means that the respondents
compensating variation C (or his /hers WTP) is equal to A.

The open-ended elicitation format has a number of advantages and disadvantages that
have been reported in the literature. To begin with, one advantage is that the WTP is
elicited directly and no further inference is needed (Loomis, 1990:79). As Ahmed and
Gotoh (2006:16) state, the major advantage of the open-ended elicitation method is that it

“provides straightforward actual valuation of amenities”.

Furthermore, open-ended questions provide a richer set of information in regards to
respondents’ preferences and additionally open-ended format is more suitable when a
survey takes place in more than one country (Hakansson, 2008:186). For example,
Istamto et al., (2014) implement a multi-country study and state that they applied the
open-ended elicitation method because it is referred as stable over time and furthermore it

is considered as free of anchoring effects and starting point bias (Istamto et al., 2014:11).

On the other hand, one disadvantage is that the respondents consider the procedure of
stating a specific amount for WTP as a difficult mental task thus many respondents don’t
answer at all or answer by understating their WTP (Loomis, 1990:79). Furthermore,
Carson (2000:1416) states that open-ended survey questions typically elicit a large
number of protest zeros and a small number of very large responses and that even this
small number can influence in a dramatic way the mean WTP. In a few words a major
disadvantage of the open-ended format is that it may provide unrealistic responses
(Ahmed and Gotoh, 2006:16).

Additionally, the NOOA Panel (Arrow et al., 1993:20-1) criticized the open-ended
elicitation format and stated that the open-ended questions are not providing the most
reliable valuations for two reasons. The first reason is that the scenario lacks of realism
since respondents in their everyday lives rarely are asked to pay for a particular public

good. The second reason is because open-ended questions lead to strategic overstatement.

Kealy and Turner (1993:326-7) tested the equality of open-ended and closed-ended
CV results and they found that in the case of a public good there was a significant

difference in the results obtained by the two elicitation methods. Furthermore, for the
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case of a private good there were no differences in the estimates of WTP because no
incentives for strategic behavior exist for the private good and additionally the

respondents were more familiar with the good.

Bateman et al. (1995:161) stated that in their survey they applied three different WTP
elicitation methods. One elicitation method was the open-ended elicitation format and
their results indicate that the respondents had to deal with significant uncertainty in
regards to answering the open-ended questions and furthermore they may reveal free
riding tendency or strategic overbidding.

More analytically, some respondents may understate their WTP because they may
adopt risk-averse strategies that place downwards the stated WTP due to unfamiliarity
with the open-ended format questions. On the other hand, some respondents tend to
overstate their WTP in the case where the respondents have realized that the decision in
regards the provision of the good depends upon mean WTP, in such case they overstate
their WTP in order to increase the mean WTP and therefore improve the chance of
provision (Bateman et al., 1995:164-5).

Assuming a linear model, the maximum willingness to pay for individual i is given

below
WTP,=Bx;+v; i=1,--,n (2.3)
B
where f = '82 X = [*X1 - Xuc]', v;~N(0,0,%)
B

and x; is a vector of observed explanatory variables that affect WTP with x;; = 1Vi.
If respondents answer truthfully to the open-ended question, i.e under the absence of
perception and strategic errors, then the mean willingness to pay (MWTP) is given by
B’ % and an estimate is given by ' x.

Under the presence of hypothetical bias whereas respondents might overstate their

bids (yea-saying behavior), model (2.3) does not hold anymore and a stochastic frontier

model can be used to reflect this behavior. In the next section the stochastic frontier
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model for the open-ended elicitation format under the presence of hypothetical bias is

going to be analyzed in detail.

2.2. Stochastic frontier model for the open-ended method under the
presence of hypothetical bias

Hofler and List (2004) proposed the use of a stochastic frontier model in order to take
into consideration the difference between a real and a hypothetical auction bid. In the
present section the same methodology is going to be applied in order to include
hypothetical bias in Eq. (2.3).

More analytically, for the case where hypothetical bias exists in the form of
overstatement of WTP Eq. (2.3) becomes

where u;~ iid N*(0,02) nonnegative Half Normal which in the stochastic frontier

literature is known as The Normal-Half Normal Model.
More analytically, Eq. (2.4) can be written as
WTP! = 1 + Boxipt....... B X + U + 1 (2.5)
where
e V; 1s the two sided “noise” component and
e u; is the one-sided error term (Kumbhakar and Lovell, 2000:140)

It should be noted that in the case where hypothetical bias exists in the form of
understatement of WTP the stochastic frontier model becomes

WTP," = WTP;, —u; (2.6) (Kumbhakar and Lovell, 2000:74)
Furthermore in the case of overstatement, from Eq. (2.4) it follows that
WTP*,—WTP;, = u; (2.7)

Consequently, when the error term w; approaches zero, the gap between the real and
hypothetical values is decreased and the hypothetical values — real values (Hofler and
List, 2004:216).
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Furthermore the composed error is given by
& =V + Uu; (28)
So Eq. (2.5) can be written

WTP* =B x; + & (2.9)

Since E(g;) = E(w) = au\/% , (Kumbhakar and Lovell, 2000), ignoring the presence
of hypothetical bias will lead to overestimation of the constant term of equation (2.3).
Very often the model is parameterized in terms of the two parameters defined below
o’ =0} +o? (2.10)

and

1= 2.11
== (2.11)

v

If overestimation occurs then the parameter A should be statistically significant and
greater than zero. If A approaches values close to zero, a,, approaches values close to zero

as well and the composed error tends to be v.

2.3. Open-ended mixture model

2.3.1. Mixture models theory

Finite Mixtures of distributions is an approach for modeling many kinds of random
phenomena. Due to their flexibility, mixture models are increasingly used because of
their convenience to model unknown distributional shapes. Mixture models are applied
in a variety of fields, such as biology, agriculture, marketing, engineering, medicine,
economics, social sciences and many more, and furthermore finite mixture models
support many statistical techniques such as cluster and latent class analysis (McLachlan
et al., 2019:355-6).

By definition a g-component finite mixture density f(yl-; Bj) is given by

fOs®) =S £ 6) (2.12)
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Where

* f; (y;) are the densities and they are called the components densities of the mixture

e 7; nonnegative quantities 0 <m; <1 j=1,..,g) and

g
S

j=1

Ty, ..., Ty are called the mixing proportions or weights

e 8, the vector of unknown parameters

e ¥ is the vector with all the unknown parameters ¥ = (7, ..., T4,§ ™7 and

e & is the vector including all the parameters in 6;, ..., 6, known a priori to be distinct
(McLachlan and Peel, 2000:6-22).

In a few words taking into consideration Eq. (2.12), f(y;; ¥) is a linear combination

of densities f; (y;) and the weights 7; are the class probabilities.

2.3.2. Open-ended mixture model

Hypothetical bias may occur if the respondents do not answer sincerely and as a result
a gap is created between their real WTP and the WTP they state. Although it is possible
that some respondents may state the wrong WTP it is possible that a number of

respondents may answer sincerely.

In such cases a latent class model or a mixture model could capture this heterogeneity
in the response behavior of individuals. In a few words it can’t be considered that all
responders are overstating their WTP because some respondents might actually answer
sincerely. The present consideration follows the same notion that Kumbhakar, Parmeter
and Tsionas (2013:67) followed in their paper related to the productive inefficiency of
firms. In a few words, they stated that in a sample both efficient and inefficient firms can

exist with a given probability.

Taking into account the finite mixture models theory, the model for WTP will be

considered as a mixture of two classes. Class 1 has no hypothetical bias and respondents
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answer sincerely so a model with a Normal error holds and class 2 overstates WTP so a

model with a composed Normal-Half-normal error term exists.

In a few words it is assumed that a number of respondents answer truthfully according
to their real WTP and a number of other respondents overstate their WTP. The two

classes are:
Class 1: people that answer sincerely and WTP is given by Eq. (2.3), and
Class 2: people that overstate their WTP and therefore Eq. (2.9) holds.

The probability of belonging to class 1 and class 2 is given by p; and p, = (1 —p;)

respectively.
In the present case with the two classes described above, the model becomes

B x; + v with probability p;

WTP; = {B,xi + v, +u; with probability p,

(2.13)

The density functions for each case for the error are the following:

No Hypothetical Bias:

1y 1 _z(wwi—ﬁ’xi) 14
. ) = 2\oyp — 2 oy .
hw) o2 ° o, N2 ° (214

which is the density of the N (0, o2).

Hypothetical Bias:
For Normal (v;~iid N(0,02)) and Half-Normal (u;~iid N*(0,52)) distributions we
have the composed error density distribution:
2 & A
pE)=-e(H)e(ca) @15
(Kumbhakar and Lovell, 2000)

where @(.)/@(.) are the density/cumulative distribution of the N(0,1) and ¢;, ¢ and 4
are given by Eq. (2.8), the square root of Eq. (2.10) and (2.11) respectively.
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The density of the mixture model is

fWTP;6) =
]

p;fi(WTP*;6,) = p1 fi(WTP*;60,) + p2f,(WTP*;0;) (2.16)

2
=1

Where 8 = (a, B, 02, 02) and « refers to the constant term.

For a sample of n observations the likelihood function is

L= ﬁf(WTPi* ;0) = ﬁipj];(ww*; 6) (217)
i=1

i=1j=1

and the log-likelihood function is given by
n 2
logL =Zlog ij]j(WTP*;HJ-) =
i=1 j=1

= Xi=11og(p1 fi(WTP™; 61) + p2fL(WTP*;6,))  (2.18)
The log-likelihood function is going to be maximized with respect to the unknown

parameters, 6 and p;.

Furthermore, because mixture models present difficulties in the maximization process
Eq. (2.18) is going to be estimated with the EM algorithm (Dempster et. al., 1977). The
Maximum Likelihood Estimates for the mixing proportion for mixtures of Normals
cannot be written in closed form. As a consequence these MLEs have to be computed
iteratively while the EM algorithm greatly facilitates their computation (McLachlan and
Peel, 2000:25).

In order to estimate a Mixture model the EM algorithm is going to be applied in the
present thesis. The EM algorithm treats the estimation problem as a missing data
problem, where the missing data is the information about class membership. Moreover, it
consists of two steps, the E-step (expectation) and the M-step (maximization). Applying
the EM algorithm to the mixture problem ensures monotonic increases of the likelihood
values (McLachlan and Peel, 2000:48). Appendix A describes in detail how the EM

algorithm works.
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It should be noted that fitting mixture models has to deal with a number of issues such
as the presence of multiple maxima in the mixture likelihood function and therefore the

choice of starting values plays a very important role.

2.4. Simulations for open-ended mixture model

Simulations were conducted in order to test the validity of the proposed model for a
number of different cases. For each different case 1000 replications were considered with

samples of 1000 observations.

Additionally, with respect to the probability of class membership, the simulations
consider two alternative scenarios. The first scenario considers the probability p; to be
constant over respondents while the second scenario assumes that class membership

depends on a variable z.

2.4.1. Data generation

In the data generation process of each case, the model that is going to be used is a

simple regression model of the form,
WTP = a+ Bx; + w; (2.19)

given by one explanatory-independent variable x;~N(4,1) where the coefficient of x;
S is equal to 2 and the constant term « is equal to 5. Taking into consideration Eq. (2.13)
and Eq. (2.19) the model becomes

54 2x; +v; with probability p,

WTP, = {5 + 2x; + v; + u; with probability p,

(2.20)

Where v;~iid N(0,0%) and u;~iid N* (0, d2).

For each case that was examined, different values were given to ¢, and o,. More
analytically, Table 2.1 illustrates the values of o, o, is given as a function of g, in Eq.
(2.21) and A is determined by Eq. (2.11).
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o, =1 50, (2.21)

Table 2.1: Values for o,

Values for o,

Additionally the mean WTP at the mean value of x; is given by Eq. (2.22) below
mean WTP = (5 + 2x) = 12.994 (2.22)

Finally, for the class membership probability p; (probability to belong in class 1 were
respondents answer sincerely) and p, (probability to belong in class 2 were

overstatement occurs) two cases were considered.

Case A: p; is a constant, equal to 0.75 and p, is equal to 0.25. In this case all

respondents that belong in the same class have the same probability.

Case B: p; is no longer a constant, each respondent has a different probability to

belong to class 1 since p; depends on a variable z.
More analytically, denoting by p** an unobserved latent variable
p”=di +dyzi tw >
pr =242z +w; (2.23)
where w;~Logistic(0,1) or standard logistic and z;~Normal(1,4.84).

The probability that respondent i belongs in class 1 (p** > 0) is given by

1
1 4 e—(d1+d2z)

P1i (2.24)
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Furthermore, in case B, since there is different probability p,; for each respondent, the
probability of class 1 can’t be illustrated since it is practically very difficult to illustrate
1000 different probabilities, consequently in this case, the mean probability is computed
and its value is given by

1000
. 2i=1 Pii

pi =" =080 (225).

2.4.2. Starting values and Estimation Strategy

In the case of the open-ended method model we followed a number of steps and
estimations in order to get the starting values for the model and especially for the EM
algorithm. The estimates obtained by the EM algorithm were then used as starting values
for the ML estimation of the mixture model, a similar procedure is followed for instance
in Stata (StataCorp, 2021).

The above mentioned procedure can be decomposed in a number of steps that are
described below, namely determining the starting values of the EM algorithm (Steps 1-3)

and application of the EM algorithm and subsequent estimation by ML (Step 4).
Step 1: Random assignment of observations to two classes

The first step in obtaining starting values for the EM algorithm consisted in randomly
assigning observations to the two classes. For this purpose, random draws from a
Uniform(0,1) were generated and the observation was classified in the first class

whenever the draw was below 0.5.
Step 2: Assigning an error distribution (normal/composed) to each class

In order to determine which model is represented from each group, ordinary least
squares was applied to each group separately. Taking into account our previous
observation in section 2.2 about the positive mean of the composed error term, the group
with the bigger estimate of the constant term is assumed to be the class with
overstatement (composed error model), while the other class is assumed to be the class

where respondents answer sincerely.
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More analytically, since the two classes have been determined, from each team’s OLS

(Ordinary Least Squares) estimation estimates for a and S were received. As it has been
already mentioned, since E(g;) = E(w;) = au\/% , ignoring the presence of hypothetical

bias will lead to overestimation of the constant term of the equation. Taking under
consideration this fact, it is expected that the class with the bigger estimate of a will

represent the class with respondents that overstate their WTP.

From the OLS regression starting values for , 8 and o,, have been determined and

consequently a starting value for g, is needed. More specifically, a,, was computed by

where @, is the estimate of the constant term from OLS for the class where
overestimation presumably occurs and @; is the estimate obtained by OLS regression for

the class where no overestimation occurs.

From the clustering procedure the proportion of the number of the observations-
respondents that belong in each class was calculated and this proportion was used as a

starting value of the class membership probability.
Step 3: Estimating Eq. (2.19) with a composed error by ML

After the OLS estimation procedure was completed and the classes were determined, a
ML estimation followed for the composed error model (class with overstatements of
WTP) assuming that all respondents have overstate their WTP. This step provided

starting values for EM mainly for the parameter A.

More specifically the starting values of @ and g were defined as the mean of the
values of the OLS of both classes. The starting value of o was determined as the o2
estimate obtained from the OLS for the normal error model class and finally the starting
value for A was determined to be equal with the estimate of A obtained by the ML

estimation of the composed model.

64



Overcoming Hypothetical Bias Chapter 2

Step 4: Application of EM algorithm

In this step, the EM algorithm was run for the mixture model until a tolerance criterion
was reached. The tolerance criterion was until the log-likelihood, obtained for iteration Kk,
satisfies Eq. (2.26).

|loglikelihood (k) — loglikelihood(k — 1)| < 0.001 (2.26)
where Kk is the number of the iteration.

The estimates produced from the EM algorithm were used as starting values to
maximize the log-likelihood of the proposed mixture model. This strategy is similar to
the one implemented by Stata (StataCorp, 2021) whereas a few iterations of the EM

algorithm are used to refine starting values for maximum likelihood.

Additionally, for case B where the probability is different for each respondent, the
parameters d, and d, need starting values as well thus an additional procedure was added
in step 4. More analytically, the extra procedure that was added was the estimation of a
“logit” model for the class probability and the results were used as starting values for the

parameters d; and d,.

2.4.3. Simulation Results for the open-ended method model

For all cases the simulation results were obtained after 1000 replications. However, in
some cases, there were problems for a number of replications since standard errors could
not be computed. Therefore the tables that follow present the results for the successful
replications and the number of failed replications are reported as well. More specifically
the estimation results that are illustrated are obtained after the replications with the

problem were removed.

For each parameter the tables report the mean estimates and the standard deviation.
Furthermore, apart from the parameter estimates, we illustrate the bias of the mean WTP
estimate for each case. More specifically the bias is given by the following equation:

Bias = expected value of estimated mean WTP — mean WTP =

Bias = (@ + fpx) — (5+ 2%) (2.27)
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Where

R ~r R pr . . .
a= Z”R“x B = er;/? and R is the number of replications.

The closer to zero the bias is for each case, it means that the estimates of the
parameters are closer to the real values. It is very important to obtain very small values of
bias since the major goal is to overcome hypothetical bias. The smaller the bias is, the

more appropriate the model is in order to overcome hypothetical bias.

Case A. Fixed probability of class membership for all respondents
(p1=0.75)

In this subsection the results of 1000 replications are presented for the case where the
class membership probability for class 1 (no overstatement occurs) is constant and equal

to 0.75 and consequently 25% of the respondents overstate their WTP.

Table 2.2 illustrates the mean estimates of a, 8, o2 and A, the class probability was
parametrized as in Eq. (2.28) below in order to ensure that the estimate lies in the open
unit interval and in the estimation process the parameter kappa is the parameter that was

estimated.

1

p1 =

Furthermore, the bias of the mean WTP estimate of each case is illustrated in Table
2.4 and Table 2.3 illustrates the number of replications with breaking down issues that
have been removed. More specifically, if in a specific replication a parameter’s standard
deviation was infinite or appeared as NaN (not a number), this replication was removed

and the mean estimates were calculated from the remaining replications.
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Table 2.2: Simulation results for open-ended and class probability p;=0.75

Estimation Results for open-ended p;=0.75
a B 62 A D1
g,=0.5and A1 =10
Mean 4.9888 2.0027 0.2483 10.0155 0.7496
Standard deviation 0.0783 0.019 0.0152 0.5424
g,=0.5and 1=5
Mean 4.9814 2.0044 0.2479 5.0108 0.7491
Standard deviation 0.0778 0.0187 0.0164 0.2947
0,=07and1=10
Mean 4.9845 2.0037 0.4867 10.0173 0.7497
Standard deviation 0.1098 0.0267 0.0299 0.5416
g,=0.7and A =5
Mean 4.9742 2.0061 0.4859 5.011 0.7491
Standard deviation 0.1088 0.0262 0.0322 0.2947
o0,=0.7and A =2
Mean 4.9733 2.008 0.502 1.1305 0.6974
Standard deviation 0.1478 0.0243 0.1085 0.9877
o,=0.8and 41 =10
Mean 4.9823 2.0043 0.6357 10.0172 0.7497
Standard deviation 0.1254 0.0305 0.039 0.5416
0,=0.8andA=5
Mean 4.9703 2.007 0.6346 5.0107 0.7491

Standard deviation 0.1245 0.03 0.0421 0.2947
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Table 2.2: (continued)
o,=0.8and A =2
Mean 4.957 2.0087 0.6304 2.0179 0.7455
Standard deviation 0.13 0.028 0.0541 0.169
o,=1land 1 =10
Mean 49775 2.0054 0.9951 10.0315 0.7495
Standard deviation 0.1569 0.038 0.061 0.5417
o,=1land A1 =5
Mean 4.9628 2.0088 0.9916 5.0107 0.7491
Standard deviation 0.1556 0.0375 0.0657 0.2947
o,=1land A =2
Mean 4.9459 2.0109 0.9849 2.0173 0.7453
Standard deviation 0.1625 0.035 0.0844 0.1691
o,=1.2and A=10
Mean 49731 2.0065 1.4304 10.0171 0.7497
Standard deviation 0.1881 0.0457 0.0879 0.5416
o,=1.2andA =5
Mean 4.9554 2.0105 1.4278 5.0107 0.7491
Standard deviation 0.1868 0.0449 0.0946 0.2947
o,=1.2and1=2
Mean 4.9202 2.0131 1.4052 2.0280 0.719

Standard deviation

0.2336 0.0422 0.1198 0.1625
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Table 2.2: (continued)

o,=1.5and A =10
Mean 4.9663 2.0081 2.2353 10.0167 0.7497
Standard deviation 0.2352 0.0571 0.1373 0.5418
o,=1.5andA=5
Mean 4.9442 2.0132 2.231 5.0107 0.7491

Standard deviation 0.2335 0.0562 0.1478 0.2947

Table 2.2 shows that in all cases the mean estimates for all the parameters are very
close to the real values (with one exception for the case where A = 2 and g, = 0.7). Over
all cases considered the bias for the estimate of « is less than 1.6% of the parameter value

while for the estimate of S it is less than 0.7%.

More specifically, in cases where 1 = 10 and 5 the mean estimates are very close to
the real values for all parameters. Additionally in the case where A = 2 and o,, = 0.7 the
mean estimate for p; and A are not as close to the real values as in other cases. So does in
the case where g, = 1.2 and 1 = 2, the mean estimate for p; is not as close to the real
value as in the other cases. To sum up, the probability estimate in the rest of the cases is

very close to the real probability.

In general and as expected, for a given value of A, both the bias and standard deviation
of the estimates of a and f increase as the variance of the two-sided error term o,
increases. On the other hand, for a given value of o, the bias and standard deviation of

the mentioned parameter estimates decreases with A.

Moreover, from the results presented in Table 2.3, in cases where A =10 and A =5
the replications that had to be removed were very few, especially for the cases where
A = 5 almost all of them had no replications with standard error issues. On the other hand
though, in cases where A = 2 for some cases the number of the replications removed

were more than 500 replications thus for such cases the simulation results are not
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illustrated in Table 2.2 and 2.4. Such cases were for example the cases with g, = 0.5 and

o, = 1.5 where in both cases 1 = 2.

Kumbhakar et al. (2013:68) have pointed out that when A — 0 the identification of the
model breaks down. This can explain the fact why in many cases where A = 2 the

program returned many replications with standard error issues.

Table 2.3: Replication removed for each case due to standard error issues

Number of replications removed

A=10 A=5 A=2
g,=0.5 2 0 -
0,=0.7 2 1 374
o, =038 2 0 3
0,=1.0 4 0 0
0,=1.2 4 0 28
0,=15 4 0 :

Finally Table 2.4 illustrates the bias of the estimated mean WTP as given by Eq.
(2.27). Furthermore, Table 2.4 illustrates as well the bias of the mean WTP as it is given
by Eqg. (2.27) in the case where the model is estimated without considering the case of

overestimation.

70




Overcoming Hypothetical Bias

Chapter 2

Table 2.4: Bias of Mean WTP for open-ended mixture model vs Bias of the Mean

WTP for open-ended normal model (no Hypothetical bias considered) with class

probability fixed

Bias of Mean WTP for Open-ended model (probability p;=0.75)

Mean
wTP mixture model

Blasmixture model

Mean
wTP normal model

Blasnormal model

Mean
WTP mixture model

Blasmixture model

Mean
WTPnormal model

Blasnormal model

Mean
WTP mixture model

Blasmixture model

0,=0.5&21=10

12.9936

-0.0004

13.9922

0.9982

6,=0.7&A=2

12.9992

0.0053

13.2739

0.2799

0,=1&21=10

12.993

-0.0009

06,=0.5&1=5

12.993

-0.001

13.4933

0.4993

6,=0.8&21=10

12.9935

-0.0005

14.5912

1.5971

6,=1&4=5

12.992

-0.002

0,=0.7&1=10

12.9933

-0.0007

14.3915

1.3975

6,=08&A=75

12.9923

-0.0017

13.7928

0.7988

6,=1&A=2

12.9835

-0.0105

0,=07&A=5

12.9926

-0.0014

13.693

0.699

6,=0.88&1="2

12.9858

-0.0082

13.3139

0.3199

06,=1.2&24=10

12.9931

-0.0009
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Table 2.4: (continued)

Mean
wip,, . 14.9904 13.9926 13.3938 15.3897
Bias, o mal model 1.9964 0.9985 0.3998 2.3957
6,=1.2&1=5 0,=12&4=2 0,=15&A=10 o0,=1.5&4=5
Mean
_ 12.9914 12.9666 12.9927 12.991
WTPmixture model
Bias,ivrure model -0.0026 -0.0274 -0.0013 -0.003
Mean
= 14.1923 13.4738 15.9887 14.4918
WTP normal model
Bias,ormal model 1.1983 0.4798 2.9946 1.4978

The bias obtained by the proposed model in all cases is very small and close to zero,
with the maximum value of the bias being around 0.21% of the true value of mean WTP
in only one case. The majority of the cases have bias less than the 0.1% of the true value
of mean WTP. More analytically, in cases where ¢, = 0.5 and A =10 or 5, o, = 0.7,
0.8 or 1.2 and A = 10 the bias is below 0.001. The biggest bias is in the case where
0, = 1.2and 1 = 2 which is -0.0274 and on the other hand the smallest bias in the case
where ¢, = 0.5and 4 = 10 which is -0.0004.

On the other hand, the bias obtained by the estimation of the normal model that
doesn’t take into account the possible existence of hypothetical bias is large in all cases.
More specifically, as Table 2.4 shows, in the cases where A = 10 or 5 the bias was larger
since in these cases the overstatement was bigger. Furthermore, since the potential bias
was not considered during the estimation process it was expected that the constant will be
bigger and consequently the estimate of the mean WTP will be large. Overall the
maximum value of the bias is 2.9946 and the smaller bias is 0.2799, obtained in the case

where A = 2 and g, = 0.7.
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Overall, taking into consideration the above simulation results for open-ended format
CV model with latent classes, with class membership probability p; equal to 0.75, it can
be concluded that the model that is proposed in order to overcome hypothetical bias was

able to fulfill its main goal.

Additionally, comparing the mean WTP estimate of the proposed model and the
normal model where overstatement is ignored the gain of the proposed model is clear
since the proposed model reduces the bias of the mean WTP estimate. The mean
estimates of the parameters for almost all cases were very close to the real values, the
class membership probability estimate was very close to the real probability and the bias
of the mean WTP estimate was almost zero. However it should be noted that for the cases
in which the parameter A is 2, many replications would break down and the bias was

considerably larger.

Case B. Probability depending on variable z

In case B the real class membership probability p; is no longer a fixed constant but
varies between respondents. More analytically, the probability is determined by a
variable z and is given by Eq. (2.24). It is quite possible that some underlying
characteristics of respondents could affect their likelihood of overstating or understating
their WTP, therefore it is more realistic to assume that the class membership probability

varies over individuals.

In the present subsection, several cases are going to be analyzed in order to test how
the model responds when each respondent has different class probability. Regarding the
model structure two extra parameters (d; and d,) have been included in the estimation
process. Tables 2.5 and 2.6 report the results for the above scenario. Additionally, since
the class membership probability differs among respondents, it is impossible for each
case to illustrate 1000 mean probabilities, so Table 2.6 shows the mean estimates of
parameters d;, d, and the mean probability of all class membership probabilities given by
Eqg. (2.25). Furthermore Table 2.7 illustrates the number of replications that have been
removed due to standard error issues and finally Table 2.8 presents the bias of the mean
WTP estimate.
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Table 2.5: Open ended model simulation results for probability depending on variable

z (1): parameters a, B, o2 and A

Estimation Results for open-ended model and p, depending on z (1)
a B 6,” 1
o,=0.5and A =10
Mean 5.0045 1.9989 0.2494 10.0288
Standard deviation 0.0773 0.0189 0.0131 0.5675
o0,=0.5and A =5
Mean 5.0014 1.9997 0.2492 5.0067
Standard deviation 0.075 0.0182 0.013 0.2999
o,=0.7and A =10
Mean 5.0037 1.9991 0.4885 10.0265
Standard deviation 0.1055 0.0258 0.0261 0.5916
0,=0.7and A =5
Mean 5.0058 1.9985 0.4886 5.0121
Standard deviation 0.1078 0.0263 0.0258 0.2992
o,=0.8and A =10
Mean 5.005 1.9993 0.6389 10.03
Standard deviation 0.1114 0.0273 0.032 0.5649
o0,=0.8and A =5
Mean 5.0029 1.9995 0.6386 5.0123
Standard deviation 0.1199 0.028723 0.0325 0.2972
o,= 1land 1 =10
Mean 5.0051 1.9988 0.997 10.0265

Standard deviation 0.1508 0.0369 0.0533 0.592
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Table 2.5: (continued)
o,=1landA=5
Mean 5.0065 1.9984 0.9968 5.0166
Standard deviation 0.15 0.0366 0.0545 0.3142
o,= land A =2
Mean 5.0063 1.999 0.9994 2.0037
Standard deviation 0.1454 0.0351 0.0557 0.1642
o,=1.2and A =10
Mean 5.0027 1.9995 1.4363 10.0228
Standard deviation 0.1798 0.0431 0.0726 0.5637
o,=1.2andA=5
Mean 5.0077 1.9981 1.4355 5.0165
Standard deviation 0.18 0.0439 0.0785 0.3142
o,=1.2andA=2
Mean 5.0042 1.9992 1.4359 2.0083
Standard deviation 0.1755 0.0417 0.0754 0.1594
o,=1.5and1=10
Mean 5.0079 1.9981 2.2431 10.0265
Standard deviation 0.2262 0.0553 0.12 0.5916
o,=1.5and1=5
Mean 5.0097 1.9976 2.2429 5.0165
Standard deviation 0.225 0.0549 0.1227 0.3142
o,=1.5andA=5
Mean 5.0103 1.9984 2.2473 2.005
Standard deviation 0.2191 0.0529 0.1251 0.1629
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Table 2.6: Open ended- probability depending on variable z (2): probability estimates

Estimation Results for open-ended and p; depending on z (2)
d, d, Mean P4
g,=0.5and A1 =10
Mean 2.0074 2.0161 0.7968
Standard deviation 0.2038 0.1966
g,=0.5andA=5
Mean 2.0313 2.0355 0.7974
Standard deviation 0.247 0.2464
g,=0.7and A =10
Mean 2.0245 2.028 0.7973
Standard deviation 0.2083 0.2168
g,=0.7and A =5
Mean 2.0113 2.0262 0.7966
Standard deviation 0.2446 0.2422
0,=08and1=10
Mean 2.0171 2.0278 0.7969
Standard deviation 0.2094 0.207
0,=0.8andA1=5
Mean 2.039 2.0466 0.7974
Standard deviation 0.2478 0.2668
og,=1land A =10
Mean 2.0249 2.0281 0.7974

Standard deviation 0.2081 0.2168
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Table 2.6: (Continued)
g,=1landA =5
Mean 2.0395 2.0442 0.7975
Standard deviation 0.2592 0.2739
g,=1and A =2
Mean 2.1311 2.1564 0.7975
Standard deviation 0.4873 0.485458
o,=1.2and A =10
Mean 2.025 2.0287 0.7974
Standard deviation 0.205 0.2148
o,=1.2andA1=5
Mean 2.0394 2.0443 0.7975
Standard deviation 0.2593 0.2739
o,=1.2andA =2
Mean 2.1098 2.1395 0.7973
Standard deviation 0.4677 0.5214
g,=1.5and 1 =10
Mean 2.0245 2.0279 0.7973
Standard deviation 0.2083 0.2168
o,=1.5and1=5
Mean 2.0395 2.0444 0.7975
Standard deviation 0.2594 0.2739
o,=1.5and 1 =2
Mean 2.1257 2.1505 0.7974
Standard deviation 0.4747 0.475
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As Table 2.5 illustrates, the mean estimates, after removing the replications with
standard error issues, are very close to the real values for all cases. Additionally, Table
2.6 illustrates the mean estimates for the class membership parameters and the mean
estimated probability. In all cases the mean estimates for d; and d, are very close to the
given values. Each respondent has a different probability in each replication thus Eq.
(2.24) and Eq. (2.25) were applied in order to receive an indicative p; from each
replication. Table 2.6 shows the mean probability of all the indicative probabilities of all

the replications.

Table 2.7 presents the number of replications that have been removed for each case. It
can be seen that in cases where A = 10 and A = 5 the replications that had to be removed
were very few, just like in the case where the class membership probability was the same
for all respondents. On the other hand though, in cases where 1 = 2 the majority of the

cases are not presented at all due to many standard error issues.

Table 2.7: Number of replications with standard error problems

Number of replications removed

A=10 A=5 A=2
d,=0.5 14 -
g,=0.7
g,=0.8
g,=1.0
g,=1.2
0,=15

o O B, O O O
O O O O -
o~ O

In order to explain the identification problem of the two classes in cases where 1 = 2,
the following Figures 2.1-2.3 illustrate graphically the densities for o2 = 0.49 and
A =10,5and 2.
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Figure 2.1: Density illustration of Normal error N(0, 0.49) and composed error

(A = 10)
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Figure 2.1, presents the illustration of the Normal error density and the Composed
error density in the case where 2 = 10. As it is shown the two densities in this case are
easily distinguishable and thus the program was able to identify the two classes and

return estimates close to the real values, without breaking down problems.

In Figure 2.2, the density of the normal error has remained the same but the density of
the composed error is illustrated for A = 5. It can be noticed that the two densities are
still easily distinguishable but the observations of the composed density are gathered
closer to the center. In this case the density of the composed error, compared to the
previous case where 4 = 10, is still easily distinct from the normal error density, but as it

is shown, the shape of the composed error density is more symmetric than before.
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Figure 2.2: Density illustration of Normal error N(0,0.49) and composed error (A=5)
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Additionally, Figure 2.3, shows the normal error density compared to the composed
error in the case where 4 = 2. As A decreases the overlap of the two densities in the
region where the normal density is not close to zero increases and the composed error
density in less skewed. In this case the two densities are getting to look very similar so in
such cases the program deals with serious issues in order to identify for each respondent

in which class he/she belongs.
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Figure 2.3: Density illustration of Normal error N(0, 0.49) and composed error (A=2)
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Overall it can be concluded that as o, is getting bigger, so does the mean of the

composed error as well, E(v+u) =0+ g,

2 . .
2 and skewness increases while the center

N
of the density moves to the right and possibly the two densities are more easily
distinguished. On the other hand, in cases where o, doesn’t have an outstanding

difference compared to ¢, the model won’t have the ability to detect which class refers

to each respondents so the algorithm has identification issues. Such cases are the ones

where 4 = 2 and this explains why many cases with 1 = 2 had identification problems.

Finally, Table 2.8 illustrates the biases for the mean WTP estimate for each case as

given by Eq. (2.27).
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Table 2.8: Bias of Mean WTP for open-ended and probability depending on variable z

Bias of Mean WTP for open-ended elicitation format model (class probability depending on

Mean
WTP mixture model

Blasmixrure model

Mean
wTP normal model

Biasnormal model

Mean
WTP mixture model

Blasmixture model

Mean
WwTP normal model

Biasnormal model

Mean
WTPmixture model

Blasmixture model

Mean
WTPnormal model

Biasnormal model

variable z)

g,=0.5andA=10 o0,=0.5andA=5 o0,=0.7and1=10

12.9941 12.9942 12.9941
0.0001 0.0002 0.0001
13.9922 13.4933 14.3915
0.9982 0.4993 1.3975

6,=0.7andA=5 0,=0.8andA=10 o0,=0.8andA1=5

12.9938 12.9962 12.9949
-0.0002 0.0022 0.0009
13.693 14.5912 13.7928
0.699 1.5971 0.7988
g,=1land A =10 g,=1landA =5 o,=1land A =2

12.9943 12.9941 12.9963
0.0003 0.0001 0.0023
14.9904 13.9926 13.3938
1.9964 0.9985 0.3998
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Table 2.8: (continued)

o,=1.2andA=10 o0,=1.2and1=5 o,=1.2and 1 =2

Mean

WP 12.9947 12.9941 12.995

Bias mirture modol 0.0007 0.0001 0.001
__Mean 15.3897 141923 13.4738

WTPyormal modet

BiaS ormal model 2.3957 1.1983 0.4798

6,=1.5andA=10 o,=1.5andA=5 o,=1.5andi=2

_ Mean 12.9943 12.9941 12.9979

WTPrixture model

Biasmizture model 0.0003 0.0001 0.0039

W P:ﬁz . 15.9887 14.4918 13.5937

BiaS ormal model 2.9946 1.4978 0.5997

As is illustrated in Table 2.8, the bias in all cases is very small, below 0.1 and more
specifically the bias is very close to 0 for all cases which means that the mean estimates

are almost the same with the true value.

More analytically, in the majority of the cases the bias is below 0.001which represents
a very small percentage of mean WTP value. The biggest bias is in case where o, =
1.5and A = 2 which is 0.0039 and on the other hand the smallest bias is 0.0001 which

this value is the bias for several cases such as g, = 0.5 and A = 10 and more.

Additionally, the bias of the mean WTP for the model where overstatement is ignored

is larger. More specifically, the biggest bias is in the case where g, = 1.5and 4 = 10
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which is 2.9946, in this case the bias from the proposed model is 0.0003 thus it is

concluded that the gain of the proposed model is clear.

Overall, taking into consideration the above simulation results for a composed open-
ended elicitation format model with class membership probability p; different for each
respondent, it can be concluded that the model that is proposed in order to overcome
hypothetical bias was able to fulfill its main goal in most of the experiments.

Conclusions

In this chapter a mixture open-ended model is proposed as a way to tackle the problem
caused by yea-saying behavior. The simulation results are quite encouraging under both
scenarios of either constant mixture weights or individual dependent mixture weights.
The proposed model is effective in dealing with Hypothetical Bias and can provide

unbiased estimates of mean WTP when CV data include yea-saying behavior.

Additionally, comparing the simulation results when OLS is applied to all responses
when hypothetical bias is ignored to the simulation results obtained by the proposed
model it can be noticed that the proposed model reduces significantly the bias of mean
WTP. It can be noticed that when hypothetical bias is not taken into account the mean
WTP estimate has higher values and thus there is a problem of overestimation. By
applying the proposed model the mean WTP is no longer overestimated and the estimates
are more reliable since hypothetical bias has been taken into account in the econometric
model. Furthermore, it should be noted that as the parameter A gets smaller the program
had problems identifying the two classes and consequently more breaking down issues

occurred.

At this point, the first evidence show how the mixture model works in order to
overcome hypothetical bias have been gathered and the next step in the following chapter
is to apply the stochastic frontier model in a double-bounded DC model in order to
expand the model to a more popular elicitation method.
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Appendix A

EM algorithm

The EM algorithm treats the estimation problem as a missing data problem, where the
missing data is the information about class membership. More analytically and following
McLachlan and Peel (2000), the EM algorithm treats the observed data vector y;, ..., ¥,
as incomplete since the component-label vectors z,...,z, are not available. The
component-label vectors are taken to be realized values of the random vectors 73, ..., Z,

where we assume they are distributed unconditionally as Z;, ...,Zniid Mult,(1,m). The

j-th- mixing proportion m; is the prior probability that the entity belongs to the j-th
component of the mixture. On the other hand, the posterior probability that the entity
belongs to the j-th component with y; having been observed is given by
7 (y;) = pr(entity € jth component |y;) = pr(Z; = 1|y;) = m f; ) /f )
(G=1,..,g;i =1,...,n)(McLachlan and Peel, 2000:19-20).

The E-step handles the posterior probability and in the M-step since E-step replaces

the unobservable part z; with the current conditional expectation 7; (y;) we can obtain

the updated estimate of r; (McLachlan and Peel, 2000:49-50).

In a few words, a finite mixture maximizes the likelihood (McLachlan et al.,
2019:360) and the ML estimate of ¥, (%) is given by a proper root of the likelihood

equation,

dlogL(¥)/0¥ =0

logL(¥) = Z log fy; W) =
i=1

n Y
> 1080 7 £ 6))
i=1 j=1

Additionally, a g-dimensional vector z; is being fitted in the likelihood function,
where z; = (z;); = 1 or 0 according to if y; is or isn’t arisen from the j-th component of

the mixture, 1, ...,gand i =1, ..., n.
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The complete data log likelihood function for ¥ is
g n
logLe ) = > 7 [logm +logf; (7; 6)]
j=1i=1
(McLachlan and Peel, 2000:48).

In the E-step in the EM algorithm we take the conditional expectation of log L. (¥)
given y and ¥ @ s used for ¥.

Q(¥; ¥ ©®) = Eygy[log L. (P)]y]

On the (k + 1) iteration Q(¥; ¥®) is required on the E-step and ¥®) is the value of
Y after the k-th iteration of the EM. The E-step provides the quantity z; (yi; SU("))

g
5 (s ¥®) =1 £ (v 6§ )/ ) w B £ (6, )
h=1

which is the posterior probability that the i-th part of the sample with value y; belongs

to the j-th component of the mixture.
In the M-step the equation that is maximized is
g n
Q(w; ) = Z Z 7 (y; W®)[log m; + log f; (vi; 6))]
j=1i=1
Where 7; will be given by
n
=) aun
i=1

and by replacing z; by 7 (v; #*)) we have

m &) = 37 7 (y; w®)/n (McLachlan and Peel, 2000:48-50).
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Chapter 3
Applying stochastic frontier and mixture models to contingent
valuation under the double-bounded dichotomous choice
format

Introduction

In Chapter 3 a stochastic frontier CV under the double-bounded dichotomous choice
format is going to be applied in order to overcome hypothetical bias. The main difference
from the open-ended format is that a number of bids are given to respondents and they
have to answer with a Yes or No regarding their WTP.

The chapter is organized as follows. The first section presents the theoretical
background of the CV method under the double-bounded elicitation format. The second
section analyses the stochastic frontier model of the double-bounded format with the
presence of hypothetical bias and the third part analyses the double-bounded mixture
model that it is suggested in order to overcome hypothetical bias. The fourth section of
the chapter presents simulations that took place intending to test the proposed model and
finally the last section of this chapter, presents an empirical application with real CV
data, in order to investigate if hypothetical bias exists and how the proposed model can

overcome the bias.

Considering the fourth section, it describes in detail the data generation process, the
initialization strategy that it was followed and the simulation results for a number of
different cases. Additionally, the simulations took place for two different probability
determination cases. In the first case the class probability is a constant and consequently
all respondents have the same probability for overstating their WTP and in the other case
the probability of overstating WTP can differ among respondents since the probability

depends on a variable z.
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3.1. Contingent valuation and double-bounded dichotomous choice
elicitation method

In a CV study the main goal is to measure in monetary terms for each individual an
item q. Each person has a utility function u(x,g)which is defined by a number of
commodities x and the item g. Each person has an indirect utility function v(p,q,y)
where p are the market prices of the commodities and y is the income. It is important to
compare if after a change in g each individual will be better off or worse off. For

example:
If the change in g represents an improvement u! > u°.
If the change represents a worsening u! < u°.
If the change if indifferent for the agent u! = u°.

Where u®, u! are the utility levels associated to q° and g for a given x. The change in
monetary terms is represented by the Compensating variation C which satisfies Eq. (3.1)
and the equivalent variation E which satisfies Eq. (3.2).

v(p, g,y -0 =v(pq®y) (3.1

v(p, gL y) =v(p,q".y+E) (3.2)

In the case where the change is an improvement C > 0and E > 0, where C is the
person’s maximum WTP in order to ensure that the change will be implemented,
additionally E is the minimum WTA. On the other hand, in the case where the change
leads to being worse off C < 0and E < 0. In this case, C is the person’s WTA and
respectively E measures the WTP in order to avoid the change (Carson and Hanemann,
2005:844-45).

One elicitation method in order to evaluate the WTP or WTA that individuals have for
a change in g is the double-bounded dichotomous choice format. The double-bounded
question format is a closed-ended format. More analytically, the respondents are asked,
“Would you vote to support the change from ¢q° to g' if it would cost you $A?” The
respondent will answer “yes” if his value C (his WTP) is at least A (Carson and
Hanemann, 2005:848).
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The double-bounded format is a referendum format. The NOOA Panel (Arrow et al.,
1993:21) proposed that researchers should use a referendum format because it has many
advantages. First of all it is more realistic because in the provision of public goods
referenda are common. Another advantage of the double-bounded elicitation format is
that respondents can answer without high mental demands thus there are less non-

responses by the end of the survey.

Furthermore, the question format matches the market setting where the price is stated
and the individuals are price-takers and consequently they decide if they are going to buy
or not at the given price. Additionally, the double-bounded format is referred to as an
“incentive compatible device” in the sense that respondents would reveal their true

preferences in regard to the provision of a good (Loomis, 1990:79).

On the other hand, the double-bounded format has a number of disadvantages, one
disadvantage is that the estimates could be sensitive to distributional assumptions and to
the functional form of the utility function (Loomis, 1990:79). Furthermore, a major
disadvantage of the double-bounded format is that there is a possibility that the
respondents are influenced from the first offer and consequently they tend to accept the
follow-up offer (Ahmed and Gotoh, 2006:16).

In CV surveys the respondents are asked to reveal their preference about a given
scenario by answering with a Yes or No to the question of whether they are willing to pay
a certain amount (the bid). The double-bounded format asks the respondents twice and

the second question-bid depends on the answer of the first question.

By applying the double-bounded approach is implicitly assumed that “the
respondent’s answers to both of the payment questions are driven by one underlying
WTP value” (Alberini, 1995:297). Additionally, if this assumption holds it means that the
information regarding the true WTP is increased by the second discrete choice question
because a tighter interval around the true WTP has been created and therefore there is a
gain in efficiency with respect to the single-bound elicitation format.

The maximum willingness to pay for individual i is given below

WTP, =B'x;+v; i=1,-,n (3.3)
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B
where B = l'gzl X =[x - Xu] and v;~N(0,02)
B

and x; is a vector of observed explanatory variables that affect WTP and x;; = 1Vi.

The density function for the error is the following:

r2
_l(ﬁ)z 1 _l(W“’i—ﬁ "i)
e 2\oyp — e 2 oy

1
o,N2m o,N2m

Each respondent has to answer two successive bids whereas the second bid depends on

i) = (3.4)

the answer that is given for the first bid. Firstly, the respondents have to answer the first

bid with a yes or no. Denoting as y;and y, the responses to the two bids respectively

1 yestobidy; .
., = s = 1’ e, 3_5
Vi {O no to bidy; l " (35
) ) ) 1 for yes to bid,;
If Yyes to bldll’, Vi = 1 and bldzl' > bldli, Voi = { O?OT:')I;O to bldzfl (36)
) _ ) ) _ (1 for yes to bidy;
If no to bldli, Vi = 0 and bldzl' < bldli, Voi = {O fOT' no to bidZi (37)

In order to receive yes-yes as an answer for both bids the individual’s WTP must
satisfy the that WTP; > bidy;and WTP; > bid,; so we have that WTP; > bid,; >
bid,; . A yes answer to the first bid and no to the second bid, means that the individual’s
WTP is greater than bid,;; but smaller than bid,; , WTP; > bid; and WTP; < bid,; SO
we have that bid,; < WTP; < bid,;.

On the other hand, for a no-yes answer to bidq;and bid,; respectively, the
respondent’s WTP must me smaller than bidq; and greater than bid,; , WTP;<bid,; and
WTP; > bid,; which means that bid,; < WTP; < bid,;. Finally, in order to receive a no
answer in both bids, the respondent’s WTP is smaller than both bid;;and
bid,; , WTP;<bid,; and WTP; < bid,; so we have that WTP; < bid,;<bid;; .
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For yes-yes
WTPl > bidli and WTPl > bidzl' SO we have that WTPL > bidzl' > bidll'

P(WTP; = bidy;) = P(v; = bidy; — B'x;) =

P<ﬁzbld2i_ﬁxi)=1_P<ﬂgbld2i_’8xi>

Oy Oy Oy Oy

in terms of the standard normal cumulative distribution it can be written as

1— (M) (3.8)

v

For yes-no
WTPL > bidli and WTPl < bldlz SO we have that bidli < WTPL < bidZi

P((bidy; — B'x;) < v; < (bidy; — B x;))

p <£ < bidzl' — B,xi> _p (ﬂ - bidli - B,xi>

o, o, o, o,

in terms of the standard normal cumulative distribution it can be written as

@ (bldzl - ﬁ,xi> —_® <bldll - ﬁ,xi> (39)

O-v Uv
For no-yes
WTP; < bidy; and WTP; > bid,; so we have that bid,; < WTP; < bidy;
P(bid,; < WTP; < bidy;) =

P((bidy; — B'x;) < v; < (bidy; — B x))=

p <ﬂ < bidy; — .Brxi> _p (ﬂ > bidy; — ﬁ’xi>

Oy Oy Oy Oy

in terms of the standard normal cumulative distribution it can be written as

@ <bid1i - B xi) o <bid2i - B xi) (3.10)

Oy Oy
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For no-no

WTP; < bidli and WTP; < bidZi so we have that WTP; < bidZi < bidli

, v, bidy — B x;
P(WTP; < bidy;) = P(v; < bidy; —B'x;)) = P <a— < ZG—B>
v v

in terms of the standard normal cumulative distribution it can be written as

o (M) 311)

Oy

The log-likelihood function is given by:

n 1] 7
bid,; — B x; bid,; — B x;
InL = Z Y1iY2i In (1 - (21—,8[>> + (1 =-y»1)A—-y;)In® <21—'BL>
i=1 Ov Oy

bld P ’x. bld R ,.X"
+y1:(1—y)In <q§ <21—ﬁl> — @ <1l—'/31>)
o, p

(L= i)y In <¢ (u) o (u)) (3.12)

v O—V

If respondents answer truthfully to the double-bounded questions, i.e under the
absence of perception and strategic errors, then the mean willingness to pay (MWTP) is
given by B'% and an estimate is given by 8 %. Under the presence of hypothetical bias,
respondents might overstate their bids (yea-saying behavior). In such case the model
given by Eqg. (3.3) does not hold anymore and a stochastic frontier model can be used to
reflect this behavior. The next section analyses the stochastic frontier model for the

double-bounded DC elicitation format under the presence of hypothetical bias.

3.2. Stochastic frontier model for the double-bounded DC method with
the presence of hypothetical bias

Hofler and List (2004) proposed the use of the stochastic frontier model as a way to
take into consideration the difference between the real and the hypothetical auction bid.
Additionally, Chien et al. (2005:362) proposed “a general model that addresses the

starting point bias in the dichotomous choice evaluation data by incorporating both the
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anchoring effect and yes-saying bias”. More specifically, Chien et al. (2005:365) applied
stochastic frontier model by adding a composed error in their model in order to include
the fact that yea-saying tendency will increase a respondent’s WTP. In a few words, in
the presence of yea-saying behavior, stated WTP can be modeled as “true” WTP

augmented with a one-sided nonnegative error term as below
WTP" = WTP, +u;  (3.13)
or
WTP* = B x; + ¢ (3.14)
where u;~ iid N*(0,02) nonnegative Half Normal which gives rise to the so called
Normal-Half Normal Model in the stochastic frontier literature.
More analytically, Eq. (3.13) is
WTP*; = B1 + Baxip+....... B xie +v; +u;  (3.15)
and the composed error is given by

& =V + Uu; (316)

Note that the composed error doesn’t have a zero mean, since E(¢;) = E(u;) = g, \/%,

(Kumbhakar and Lovell, 2000), thus ignoring the presence of hypothetical bias will lead
to overestimation of the constant term of equation (3.3). In the case where hypothetical
bias exists in the form of understatement of WTP the stochastic frontier model becomes

WTP,* = WTP; —y; (3.17)
From Eg. (3.3) and Eqg. (3.13) follows that
WTP!—WTP; = u; (3.18)

When the error term wu; approaches zero, the gap between the real and hypothetical
values is decreased and the hypothetical values — true values (Hofler and List,
2004:216). Additionally, the model is parameterized very often in terms of the two
parameters defined below

0 =02 +0? (3.19)

and

95



Overcoming Hypothetical Bias Chapter 3

Uu

A=— (3.20)
O-U

If overestimation occurs then the parameter A should be statistically significant and

greater than zero. If A approaches values close to zero, o, approaches values close to zero

as well and the composed error tends to be equal to v . For Normal (v;~iid N(0,52))
and Half-Normal (ui~iid N*(0, af)) distributions we have that the composed error

density distribution:

2 & A
aE)=20(X)e(a)  G2n
(Kumbhakar and Lovell, 2000; Chien et al., 2005:366)

where ¢(.)/@(.) are the density/cumulative distribution of the N(0,1) and ¢;, ¢ and A4
are given by Eq. (3.18), the square root of Eq.(3.21) and (3.22) respectively.

In the case where hypothetical bias exists, Eq. (3.5), Eqg. (3.6) and Eq. (3.7) hold but
Egs. (3.8)-(3.11) need to be modified as now the model includes a composed error term
and its cumulative distribution needs to be used instead of the cumulative normal. The
cumulative distribution of the composed error term involves integrating the expression in
Eq. (3.21) which is non-trivial. Tsay et al., (2013) proposed a closed-form approximation
for the cumulative distribution function of a normal-half normal composed error that
represents the integral

F= JQ ;go (%) ® (gsi) de,  (3.22)

—00

For any number Q, which in our case is Q = bid;; — B'x;. Therefore @() is replaced
by the closed form approximation denoted by F, proposed by Tsay et al., (2013:261)
when deriving Egs. (3.8)-(3.11).

Additionally, Amsler et al. (2019) present another approximation for the cumulative
distribution function of a normal-half normal composed error. They proposed a new
simulation based method and they compare their method with Tsay’s et al. (2013)
approximation. They found that in non-extreme values the two approximations are quite

close but for extreme values they claim that their approximation is more accurate (Amsler
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et al., 2019:32). The new simulation based method for the cdf is not applied in the present

thesis because it was not published yet by the time the present dissertation was starting.

The log-likelihood given in Eq. (3.12) is modified and is given as

InL =z y1:¥2: In(1 — E, (bidy; — ﬁ’xi)) + (1 —y1)(1 — y2) InF, (bidy; — B 'x;)
i=1

+ y1;(1 — y2.) In(E, (bidy; — B'x;) — F,(bidy; — B'x,))
+ (1= y1)y2 In(F, (bidy; — B'x;) — F,(bidy; — B'x))) (3.23)

In the case where hypothetical bias exists in the form of underestimation, which means
that individuals respond more no-no, the approximation of the cumulative distribution

function of a normal-half normal composed error differs.

More analytically, in the case where underestimation occurs, Eg. (3.17) holds and the
density of the composed error term is not given by Eq. (3.22) but by Eg. (3.24) below
(Kumbhakar and Lovell, 2000).

E-

fz'(si)=§<p( )cb(—gsl-) (3.24)

-
o

The integral of Eq. (3.24) represents the cdf of the composed error in the case of
underestimation. In order to present the cumulative distribution of the composed error
term in this case, some algebra shows it can be expressed as a function of F in Eq. (3.22)

as follows

The last equality is obtained by performing a change of variable in the integral of the
left hand side. The closed-form approximation of the composed error in the case of

underestimation is given by the expression below,
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3.3. Double-bounded mixture model

Hypothetical bias may occur if the respondents do not answer honestly, consequently a
gap between the real WTP and the estimated hypothetical WTP is created. Although it is
possible that a number of respondents might answer insincerely, a number of respondents
might reveal their true WTP. It cannot be considered that all responders are overstating
their WTP because some responders might actually answer sincerely. In cases where this
heterogeneity occurs in regard to individuals behavior a latent class model or a mixture
model is proposed in order to estimate the WTP.

The present consideration follows the same idea that Kumbhakar, Parmeter and
Tsionas (2013:67) followed in their paper related to the productive inefficiency of firms.
In a few words, they stated that in a sample both efficient and inefficient firms can exist
with a probability. Taking into account the finite mixture models theory, the model for
WTP will be considered as a mixture of two classes. Class 1 has no hypothetical bias and
respondents answer sincerely thus a model with a Normal distributed error holds and
class 2 overstates WTP so a model with a composed Normal-Half-normal error term

exists. The two classes are:
Class 1: respondents answer sincerely and WTP is given by Eq. (3.3) and
Class 2: respondents overstate their WTP and therefore Eq. (3.15) holds.

The probability of belonging to class 1 and class 2 is noted as p; and p, = (1 — p;)

respectively.
For the present case with the two classes described above, the model becomes

B'x; + v with probability p,

B'x; + v, +wu; with probability p, (3:25)

And the log-likelihood function is given by
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InL = z In[y1y2i(p1(1 = f12) + p2(1 = f22))
i=1

+y;,(1— yZi)(pl (fiz — fi1) + p2(f22 — f21))
+(1- 3’1i)}’2i(P1 (fi1 — fiz) + p2(f21 — fzz))
+ (1 —y10(1 = y2) (1fiz + p2f22)] (3.26)

Where f;; = & (bidli _,B,xi) fia =@ (bidzL' _.B,xi)’

Oy Oy

fo1r = F(bidy; — B'x;) and fo, = F,(bidy; — B'x;).
The log-likelihood function is maximized with respect to the unknown parameters,

a,B,02,A1and p;. Furthermore, because mixture models have difficulties in the

maximization process Eq. (3.26) is going to be estimated with EM algorithm.

3.4. Simulations for the double-bounded DC mixture model

In order to test the validity of the model a number of simulations are presented for
several cases. For each case 1000 observations were generated and 1000 replications took
place. The procedure was followed for two different cases according to the determination
of the class membership probability. The first case assumes that the class membership
probability p; is a constant while the second scenario assumes that the class membership

probability differs among respondents since it depends on a variable z.

3.4.1. Data generation

The model that is going to be employed is a simple regression model given in Eq.
(3.27) with one explanatory-independent variable x;~N (4,1) where the coefficient of

x;, B is equal to 2 and the constant term « is equal to 5.
WTP = a+ Bx; + w; (3.27)
Combining Eqg. (3.25) and Eq. (3.27) the model becomes

54 2x; +v; with probability p,

WTh = {5 + 2x; + v; + u; with probability p,

(3.28)
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Where v;~iid N(0,02) and u;~iid N*(0,52).
For each case a,, and g,, is determined as follows, the values of ¢, are 0.7 0.9, 1, 1.25
and 1.5 and o,, is defined by a function of o, given in Eqg. (3.29).
100,
o, = { S50, (3.29)
20,
The parameter A is determined by Eq. (3.20) and the bids that are given to respondents

are 11, 13, 14 and 15. Table 3.1 shows analytically the structure of the bids, bid; and
bid, which are determined according Eq. (3.30).

it ={ U rsid,  if mombidy G0
Table 3.1: bid; and bid,
Bids given to respondents
bid, =11 bid, =12 bid, =13 bid, =15
Yes No Yes No Yes No Yes No
bid, =14 bid, =9 bid, =15 bid, =9 bid, =17 bid, =10 bid, =19 bid, =12

The mean WTP at the mean value of x; is given by Eq. (3.31) below
mean WTP = (2 + 5x%) = 12.994 (3.31)

and finally two cases were considered in regard to the class membership probability
p; (probability to belong in class 1 were respondents answer sincerely) and

p, (probability to belong in class 2 were overstatement occurs).

Case A: the probability is constant p; = 0.75and p, = 0.25. In this case all

respondents that belong to the same class have the same probability.
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Case B: p; is no longer a constant, but depends on a variable z that varies across
respondents. Therefore each respondent has a different probability to belong to a given

class. More analytically, denoting by p~ an unobserved latent variable
p* =dy +dyz; +w; >
pr =242z +w; (3.32)
where w;~Logistic(0,1) or standard logistic and z;~Normal(1,4.84).

The probability that respondent i belongs to class 1 (p** > 0) is given by
pri = 1/(1 + e~ (@1+d2z)) (3.33)
In case B, since each respondent has different probability p;;, the probability of each
class cannot be illustrated since it is practically very difficult to illustrate 1000 different
probabilities. In this case, the mean probability is given by Eqg. (3.34).

1000

pi="55m =080  (334)

3.4.2. Starting values and estimation strategy

Choosing initial values is a very crucial step in the estimation of mixture models,
nevertheless some preliminary results were obtained using the EM algorithm with
arbitrary initial values. This procedure aimed to investigate how the model responds and

it was very helpful in order to define the procedure of estimating the starting values.

Given starting values

The mixture model was estimated by the EM algorithm with starting values defined
manually for the parameters a, 8, o2 and A for the case where the class membership p; is
a constant and equal to 0.75. The starting value for o2 was chosen to be around the
double of the real value and values for o2 were chosen so that the resulting value of A
deviated from the real value by no more than 60% for most cases. Table 3.2 illustrates the

starting values that were given for the estimation process.
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Table 3.2: Starting values determined manually
Starting values
a B o2 a2 I8 P1
o,=1land 1 =10
Starting 4 3 2 120 7.74 0.5
values
o,=1land A1 =75
Starting 3 3 2 100 7.071 0.5
values
o,=1land A =2
Starting 3 3 2 80 6.32455 0.5
values
o,=3and A= 10
Starting 3 3 20 1200 7.745967 05
values
o,=3andA=5
Starting 3 3 25 1000 6.32455 0.5
values
o0,=3and A =2
Starting 3 3 20 1000 3.162278 0.5
values
o,=5and 1=10
Starting 3 3 50 3000 7.7459 0.5
values
o,=5and A1 =5
Starting 3 3 50 2000 6.32455 0.5
values
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Starting values from random assignment

The steps for determining starting values for the double-bounded method model under
random assignment are very similar as the steps described is section 2.4.2 of Chapter 2.
Because of the nature of the double-bounded method, a few changes were implemented

to the procedure. The starting values were determined by steps described below:
Step 1: Random assignment of observations to two classes

The first step to determine starting values for the EM algorithm includes random
assignment of the observations into two classes. To achieve this task, random draws from
a Uniform(0,1) were generated and each observation was classified in the first class

whenever the draw was below 0.5.
Step 2: Assigning an error distribution (normal/composed) to each class

Next for each class a “probit” model was estimated and the class with the biggest
constant was assigned the model with overestimation. These estimates of both probits
were used as starting values in order to run a ML estimation as if all respondents had
answered honestly (Normal error model) and afterwards as if all respondents had
overstated (Composed error model). By the end of this stage were determined starting

values for the EM estimation.
Step 3: Application of EM algorithm

The EM algorithm was run for the mixture model until a tolerance criterion was
reached. The tolerance criterion was that the EM algorithm would continue iterating until
the log-likelihood obtained at iteration k satisfied Eq. (3.35).

|loglikelihood (k) — loglikelihood(k — 1)| < 0.001 (3.35)
where k is the number of the iteration.

As soon as the EM algorithm estimation was completed, the estimates were used as
starting values for the ML estimation of the proposed model. The idea of using EM
algorithm estimates as starting values of ML estimation is a procedure that Stata

implements (StataCorp, 2021).
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Additionally in the case where the probability differs among respondents, it is
necessary to determine starting values for the parameters d; and d,.To this effect a

“logit” model for the probability was added in Step 3.

3.4.3. Simulation results for the double-bounded method model

This subsection presents the simulation results for the double-bounded elicitation
method mixture model for several cases. At first are presented the EM algorithm
estimates with starting values defined in Table 3.2. Secondly, are illustrated the
simulation results of the final proposed mixture model using random assignment to
determine initial values. As mentioned before 1000 replications were applied for a
number of cases, however in some cases some iterations had problems with the
computation of standard errors. Therefore the tables that follow present the results after
the replications with such problems were removed. Additionally, the number of the

replications that failed in computing standard errors is reported as well.

The tables below report for each parameter the mean estimates and their standard
deviation, as well as the bias of the mean WTP estimate for each case. More specifically

the bias is given by

Bias = expected value of estimated mean WTP — mean WTP =

Bias = (a + px) — (5 + 2%) (3.36)

where

a4 = Tr1@” ,é _ R BT
R ' R

and R is the number of replications.

The desired outcome is to receive values for bias close to zero. The closest to zero the
bias is the closest to the real values are the estimates of the parameters and consequently

the proposed model is more suitable in order to overcome hypothetical bias.

104



Overcoming Hypothetical Bias Chapter 3

Results when starting values are chosen arbitrarily

Table 3.3: Double-Bounded DC Simulation results for EM algorithm and starting

values given manually

EM Estimation Results for Double-Bounded DC1000 replications

a B % i wre Pum
g,=1and 1 =10
Mean 49771 2.012 1.0241 10.5977  13.0193 0.7621
Standard deviation 0.2446 0.0628 0.1302 0.9448
g,=1land1=5
Mean 5.1366 2.0143 1.2751 7.1476 13.1878  0.8489
Standard deviation 0.2396 0.0606 0.1599 0.6192
o,=1land A =2
Mean 5.2679 2.0114 1.4312 5.3147 13.3077 0.9778
Standard deviation 0.2202 0.0555 0.1397 0.5777
,=3and 1 =10
Mean 4.8991 2.0392 9.1876 11.4233  13.0496 0.7637
Standard deviation 0.5499 0.1357 1.0133 0.6946
6,=3and A=5
Mean 5.0888 2.0359 9.7301  10.0233  13.2263  0.8146
Standard deviation 0.5337 0.1315 1.0777 0.6009
g,=3and 1 =2
Mean 5.3157 2.0315 10.2207  4.3492 13.4354  0.9045
Standard deviation 0.5154 0.123 1.0709 0.2496
6,=5and 1 =10
Mean 4.7964 2.0633 24.9755 10.9938 13.0433  0.7599
Standard deviation 0.9202 0.2152 4.19 0.8793
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Table 3.3: (continued)

g,=5andA1=5
Mean 5.0033 2.0572 25.695 8.8546  13.2257  0.7973
Standard deviation 0.9339 0.2113 4.4129 0.7142

Table 3.3 shows that in almost all cases the mean estimate of the constant is close to
the real value, so does the mean estimates for § and 62. For the rest of the parameters
such as A the mean estimates when 1 = 10 are very close to the true values but in the
cases where A = 5 and A = 2 the mean estimates are not very close. Additionally in the
cases where g, =1 and A =10 or 5, g, =3 and A = 10 or 5 and finally in the case
where g, =5 and A =15, no standard error issues occurred in none of the 1000

replications.

In the case where g, = 1and A = 2, g, = 3 and A = 2 and in case where g, = 5 and
A = 10 a number of replications were removed. The number of replications removed was
16, 6 and 304 respectively. Furthermore, in all cases the standard deviation of the
parameters is small except for 62’s standard deviation in the cases where ¢, = 5.
Additionally, Table 3.4 presents the mean Bias of the estimated mean WTP for each case
given by Eq. (3.36). In all cases the bias is very small and especially in cases where
A = 10 the bias is even smaller than 0.1. Overall the case where ¢, = 1 and 1 = 10 has

the smallest bias and the case where g, = 5 and 1 = 10 has the second smallest bias.

Table 3.4: Mean Bias of WTP for EM algorithm estimation and given starting values

Bias of Mean WTP for EM algorithm estimation and given starting values
g,=1land 1 =10 o,=1land 1=5 g,=1land 1 =2 g,=3and 1 =10
0.0253 0.1938 0.3136 0.0556
6,=3andA1=5 o,=3and 1 =2 g,=5and 1 =10 o,=5and1=5

0.2323 0.4414 0.0493 0.2317
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Finally, taking into consideration results in Table 3.3 and Table 3.4 it can be
concluded that cases where A is not large, the mean estimates aren’t very close to the

given starting values.

Summarizing, these first findings of how the double-bounded model responds when it
is estimated with the EM algorithm with arbitrary starting values led the present research
towards two directions. Firstly, the implementation of the STATA estimation procedure
with the additional ML estimation by using EM estimates as starting values and secondly

the determination of proper starting values became a very important task.

Results when starting values are obtained from random assignment

The following subsection presents the simulation results for the proposed model with
starting values determined within the estimation process after random assignment. The
simulation results are presented for the two different cases in regards of the probability

determination.

Case A: Probability p, is fixed and equal to 0.75

Tables 3.5, 3.6 and 3.7 illustrate the simulation results for the case where the
probability of overstating their WTP is equal for all respondents. More analytically Table
3.5 presents the mean estimates and the standard deviation of the parameters a, 8, o2 and
A after removing any replications with standard error issues in a total of 1000
replications. Additionally, the class probability was parameterized as in Eq. (3.37) below
in order to ensure that the estimate lies in the open unit interval and the parameter that
was estimated during the estimation process was kappa.

1

e (3.37)

b1 =

Table 3.6 illustrates the numbers of replications that have been removed in each case.
More specifically, the replications that have been removed had for a parameter infinite
standard deviation or it appeared as NaN (not a number). Finally Table 3.7 shows the bias

of the mean WTP.
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Table 3.5: Simulation results for Double-Bounded DC model and constant probability

Estimation Results for Double-Bounded DC and p;=0.75 1000 replications
a B 2 y) p1
g,=0.7and A =10
Mean 4.9785 2.0077 0.5117 10.2506 0.751
Standard deviation 0.209 0.0505 0.3055 1.7784
g,=0.7andA=5
Mean 4.967 2.0082 0.4899 5.0805 0.7479
Standard deviation 0.2017 0.0488 0.1331 0.6738
,=0.7and A =2
Mean 4.9198 2.0071 0.4642 2.2268 0.6951
Standard deviation 0.2672 0.045 0.1239 0.5134
0,=09and1=10
Mean 4.9641 2.0113 0.8286 9.8666 0.7519
Standard deviation 0.2407 0.0593 0.3583 2.0512
06,=09and1=5
Mean 4.9582 2.0119 0.818 4.9026 0.7514
Standard deviation 0.2319 0.0569 0.2258 0.808
g,=09and A =2
Mean 4.9033 2.0102 0.7732 2.0605 0.7214
Standard deviation 0.3015 0.0517 0.1841 0.4829
o,=1land 1 =10
Mean 4.9636 2.0112 1.0144 10.3519 0.7508
Standard deviation 0.2574 0.0631 0.3377 2.0818

g,=1land A =5
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Table 3.5: (continued)
Mean 4.9534 2.0126 0.9956 5.0857 0.7537
Standard deviation 0.2435 0.0604 0.1473 0.7168
g,=1land 1 =2
Mean 4.8937 2.0108 0.9545 2.1075 0.7213
Standard deviation 0.3224 0.0553 0.2131 0.4388
g,=1.25and 1 =10
Mean 4.9445 2.0146 1.5588 10.4779 0.7507
Standard deviation 0.2829 0.0712 0.2774 2.5891
g,=1.25and1=5
Mean 4.9517 2.0145 1.5801 5.1063 0.7522
Standard deviation 0.2897 0.0705 0.3711 1.1316
0,=1.25and A =2
Mean 4.8811 2.0121 1.5025 2.0698 0.7198
Standard deviation 0.3798 0.0648 0.2965 0.4539
o0,=1.5and1=10
Mean 4.9436 2.0156 2.2519 10.8362 0.75071
Standard deviation 0.3266 0.0799 0.3976 3.5602
g,=1.5andA=5
Mean 4.9309 2.0177 2.2518 5.2014 0.7472
Standard deviation 0.33 0.0785 0.4282 1.2087
g,=1.5and A =2
Mean 4.8572 2.0158 2.1703 2.1716 0.7032
Standard deviation 0.4271 0.0728 0.411 0.568
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Table 3.6: Number of replication removed due to standard error issues for the DB DC

model for p, fixed

Number of replications removed for p4 fixed

A=10 A=5 A=2
0,=0.7 33 29 73
0,=0.9 24 18 58
o, =1 47 18 59
0, =1.25 67 31 47
0,=1.5 67 40 80

Table 3.5 shows that in the majority of the cases the estimates are very close to the
true values. More analytically, in the cases where o, = 0.9, 1 and 1.25 the mean
estimates are very close to the true values for all parameters, including the class
membership probability. The standard deviation of all parameters is small except for
parameter A in the case where o, = 1.25 and A = 10. Considering Table 3.6 for these
cases the number of replications removed because of standard error issues are from 1.8%-
8% . Additionally, it can be noticed that when A = 2, @ and p; although they are close to

the true values, their estimates are not as close as in cases with A = 10 or 5.

To continue with the analysis, Table 3.7 illustrates the bias of the estimate of mean
WTP for each case, given by Eg. (3.36). As it can be noticed, the bias is very small and
very close to O for all cases, which means that the mean estimates are almost the same as
the true values. The biggest bias is in the case where g, = 1.5 and A1 = 2 which is
-0.0796 and the smallest bias is in the case where g,, = 0.7 and 2 = 5 which is -0.0002.

Additionally, Table 3.7 presents the simulation results of the double-bounded model
for the case where hypothetical bias is ignored. In all cases the estimate of the mean WTP
is bigger than the mean estimate of WTP of the proposed model. As it was expected,
when hypothetical bias is not taken into consideration during the estimation process the

results reveal that the bias is positive in the presence of yea-saying.
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Table 3.7: Bias of mean WTP for DB DC proposed model vs Bias of the mean WTP
for DB model (no Hypothetical bias considered) (fixed probability)

Bias of Mean WTP same probability for overestimation for all respondents

0,=0.7and 1 =10 0,=0.7and1 =5 0,=0.7and 1 =2

Mean
- 13.0033 12.9938 12.9422
WTPmixture model
Bias niziure model 0.0093 -0.0002 -0.0518
Mean 13.9789 13.645 13.2841
WTPnormal model . . .
Bias,ormal model 0.9849 0.651 0.29
0,=09and1=10 0,=0.9and A1 =5 0,=09and A =2
Mean 13.0033 12.9998 12.9381
wTP mixture model . . '
Bias nixiure model 0.0093 -0.0058 -0.05593
Mean 14.0848 13.7612 13.3569
WTPnormal model . . '
Bias, o mal model 1.0908 0.7672 0.3629
o,=1and1=10 o,=1land1=5 o,=1land1=2
Mean 13.0024 12.9978 12.9309
wTP mixture model . . '
Bias,pixiure model 0.0084 0.0038 -0.0631
Mean 14.1264 13.8106 13.3906
WTPnormal model . . '
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Table 3.7: (continued)

Bias,ormal model 1.1324 0.8166 0.3966

,=1.25andA=10 o0,=1.25andA=5 o0,=1.25andAi1=2

Mean

Wep, o 12.9969 13.0037 12.9235
Bias mivture model 0.0029 0.0097 -0.0705
_ Mean 14.211 13.9165 13.4705
WTP 6rmal model
Biasnormal model 1.2169 0.9224 0.4765
6,=1.5and 1 =10 g,=1.5and1=5 og,=1.5and 1=2
- Pm“i'“::?e . 13 12.9957 12.9144
Biasmizoure model 0.006 0.0017 -0.0796
__Mean 14.2802 14.005 13.5459
WTPormal model
Bias ormal model 1.2861 1.011 0.5519

Taking into consideration the simulation results illustrated in Table 3.5, 3.6 and 3.7 it
can be concluded that the model is effective in accomplishing its main goal to overcome

hypothetical bias and return unbiased estimates.

Case B: Probability p, is different for each respondent

The present subsection analyses the simulation results for the double-bounded DC

model in the case where the probability is not fixed but each respondent has a different
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probability of overstating WTP. Since in this case each respondent’s probability is
determined by a variable z, two additional parameters are added within the estimation

process.

The Tables 3.8-3.11 illustrate the simulation results for a number of cases. More
analytically, Table 3.8 and 3.9 present the mean estimates of the parameters, including
the parameters related to the class probability, Table 3.10 contains the number of
replications that were removed from each case and finally, Table 3.11 presents the bias of
the mean WTP for each case.

Table 3.8: Double-Bounded DC model simulation results for probability depending

on variable z (1): parameters «, 8, o and A

Estimation Results for Double-Bounded DC model and p; depending on z(1)
@ B 6,° y)
g, =0.95and A =10
Mean 4.9906 2.0024 0.9014 10.307
Standard deviation 0.2185 0.0551 0.0881 1.7271
0,=095and A1 =5
Mean 4.9967 2.0008 0.8981 5.054
Standard deviation 0.213 0.0538 0.1101 0.634
g,=0.95and 1 =2
Mean 5.006 1.9985 0.8937 2.0303
Standard deviation 0.208 0.0526 0.0885 0.2753
g,=1land 1 =10
Mean 4.9875 2.0032 0.9962 10.3362
Standard deviation 0.228 0.0576 0.0979 1.7702

g,=1land1=5
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Table 3.8: (continued)

Chapter 3

Mean

Standard deviation

Mean

Standard deviation

Mean

Standard deviation

Mean

Standard deviation

Mean

Standard deviation

Mean

Standard deviation

Mean

Standard deviation

Mean

Standard deviation

g,=1land A1 =2

g,=1.25and A1 =10

g,=1.25and1=5

g,=1.25and 1 =2

o0,=1.5and1=10

0,=1.5and1=5

g,=1.5and A =2

5.0751

0.6278

2.0237

0.2682

10.4184

2.1611

5.0919

0.7094

2.0194

0.2779

10.4926

2.4955

5.1095

0.8007

2.0184

0.2861
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Table 3.9: Double-Bounded DC model simulation results for probability depending

on variable z (2): probability estimates

Estimation Results for Double-Bounded DC model and p; depending on z (2)
d, d, Mean p;
0,=0.95and 1 =10
Mean 2.0281 2.0393 0.7952
Standard deviation 0.2605 0.2585
0,=0.95and A1 =5
Mean 2.0536 2.0808 0.796
Standard deviation 0.4123 0.3677
0,=0.95and A =2
Mean 2.2271 2.3132 0.7931
Standard deviation 0.9041 0.9918
g,=1land 1 =10
Mean 2.0309 2.0414 0.797
Standard deviation 0.2634 0.2578
o,=1land A =5
Mean 2.0618 2.081 0.7969
Standard deviation 0.367 0.3686
g,=1land A1 =2

Mean 2.257 2.3289 0.7946
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Table 3.9: (continued)

Chapter 3

Standard deviation

Mean

Standard deviation

Mean

Standard deviation

Mean

Standard deviation

Mean

Standard deviation

Mean

Standard deviation

Mean

Standard deviation

0.9952 0.961
g,=1.25and 1 =10
2.033 2.0456
0.2692 0.2657
o0,=1.25and A =5
2.0664 2.0871
0.3684 0.362
g,=1.25and 1 =2
2.2807 2.5523
1.9851 5.366
o,=1.5and 1 =10
2.0519 2.066
0.3041 0.3045
g,=1.5andA=5
2.0668 2.0873
0.3799 0.3762
g,=1.5and A =2
2.2801 2.4021

2.1368 3.1363

0.797

0.7969

0.7942

0.793

0.7969

0.7946
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Table 3.10: Number of replication removed for Double-Bounded DC model with

probability depending on variable z

Number of replications removed for p1 depends on z

A=10 A=5 A=2
0,=0.95 5 4 44
0,=1 5 6 35
0,=1.25 4 3 11
0,=15 13 6 25

As Table 3.8 and 3.9 illustrate, for the majority of the cases, the mean estimates of all
parameters are close to the true values. More analytically, for the cases with ¢, < 1.25 it
is noticed that the mean estimates of the parameters are very close to the given values and

the standard deviation for most of the parameters is small.

Additionally, Table 3.9 presents all the information concerning the estimate of the
class membership probability. In the present case, each respondent has a different
probability of overestimating his/hers WTP thus the mean probability of all respondents
is calculated for each replication by using Eq. (3.34). Table 3.9 shows the mean estimates
for the parameters d;and d, which are very close to the true values. Additionally, Table
3.9 contains a representative probability which is the mean probability of the 1000 class

membership probabilities.

To continue with the analysis, Table 3.10 illustrates the number of replications
removed from each case. As it can be seen, the replications removed for all cases were
less than 45. More specifically the number of replications removed ranges between 3 and
44 replications. Additionally it can be noticed that as A gets smaller the number of

replications removed increases compared to the cases where A is 10 or 5.

Finally, Table 3.11 presents the bias between the mean WTP and the estimated mean
WTP for each case, given by Eq. (3.36). Firstly, the bias of Mean WTP is close to 0 for
all cases which means that the estimation procedure returned estimates very close to the
true mean WTP. The bias in absolute values is very small since it is even below 0.01 for
the majority of the cases. More analytically, in all cases the bias is smaller than 0.01 and

117




Overcoming Hypothetical Bias Chapter 3

the smallest bias is in the case where o, = 0.95 and A = 2 which is almost zero.
Additionally, the biggest bias is in the case where g, = 1.25 and A = 2 which the bias is
equal to -0.026.

Furthermore, Table 3.11 presents as well the mean WTP estimate and the bias of the
mean WTP for the case where hypothetical bias is ignored during the estimation process.
As it can be noticed in all cases the mean WTP for the normal model displays much
higher biases than the ones in the mixture case. In a few words, comparing the two
models it can be concluded that if overestimation is not considered during the estimation
process, the estimates are biased and consequently not reliable. The application of the
proposed model has a clear gain since unbiased estimates of the mean WTP are obtained
and the proposed model is effective in dealing with Hypothetical Bias.

Table 3.11: Bias of Mean WTP for Double-Bounded DC model and probability

different for each respondent

Bias of Mean WTP for Double-Bounded DC model and probability of overstatement
different for each respondent

06,=095and1=10 o0,=0.95andA=5 0,=0.95and1=2

Mean

_ 12.9942 12.9939 12.994

WTP mixture model

Bias,izture model 0.0002 -0.0001 0(0.00001)
Mean 14.1062 13.7866 13.3739

WTPnormal model . . '

Bias, o mal model 1.1122 0.7926 0.3799

o,=1land 1 =10 o,=1land1=5 o,=1land1=2

Mean 12.9943 12.9939 12.9945

WTP mixture model . . '
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Table 3.11: (continued)

BiS,ixture model 0.0003 -0.0001 0.0005
Mean 14.1264 13.8106 13.3906

WTPnormal model . . '

BiaS,grmat model 1.1324 0.8166 0.3966

0,=1.25andA1=10 o0,=1.25andA=5 o0,=1.25andA=2

Mean
_ 12.9953 12.9935 12.9914
WTP mixture model
Bias pixture model 0.0013 -0.0005 -0.0026
Mean
_ 14.211 13.9165 13.4705
WTPnormal model
Bias o mal model 1.2169 0.9224 0.4765
g,=1.5and1=10 g,=1.5andA1=5 og,=1.5and 1 =2
Mean
_ 12.9943 12.9944 12.9925
WTP mixture model
Bias mixture model 0.0003 0.0004 -0.0015
Mean
_ 14.2802 14.005 13.5459
WTPnormal model
Bias ormal model 1.2861 1.011 0.5519

Considering the findings above, for the case where the probability of class
membership is different for each respondent, it can be concluded that the proposed model
works effectively in returning estimates close to the true values and furthermore to

minimize the bias.
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3.5. The double-bounded DC mixture model applied to empirical data

The simulation results have shown that the proposed mixture model can succeed in
overcoming hypothetical bias. In the present section an empirical examination of the
proposed model with real CV data is presented.

3.5.1. The dataset

In the present empirical application the data that are used refer to a sample of 1827
observations and 22 variables, 3 of the variables require information about the yes-no
answers regarding the WTP scenario and the rest of the variables are additional
information obtained from the questionnaires. The dataset is available in the R package
“Ecdat” under the name “kakadu” obtained from Werner (1999), (Croissant and Graves,
2020:84-85). The origin of the dataset comes from the paper “Valuing the Preservation of
Australia's Kakadu Conservation Zone” published by Richard T. Carson, Leanne Wilks
and David Imber in 1994.

The main issue of the CV scenario was whether the mining industry should proceed in
the Kakadu Conservation Zone or instead the Kakadu Conservation Zone should be
added to the Kakadu National Park (Carson et al., 1994: 727). The survey took place in
Australia and in the Northern Territories of the Kakadu National Park for two different
impact scenarios. The major impact scenario contained an analytical description about the
chemicals that are going to be used and furthermore it was mentioned that there might be
a water shortage and there could be losses in wildlife. On the other hand the minor impact
scenario mentioned only that toxic chemicals will be used and that the wildlife will be
disturbed without mentioning the possible water shortage or that there would be losses in
wildlife (Carson et al., 1994:730).

Carson et al. (1994) applied the double-bounded DC elicitation method and Table 3.12
presents the four sets of dollar amounts that were used. Additionally, the questionnaire
aimed to elicit information about recycling, watching nature shows on television,
membership in environmental organizations and demographic information such as

income, age, education etc. (Carson et al., 1994: 732-733). The survey took place in
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September 1990 and 2,034 respondents were interviewed. The respondents were given
randomly one out of the eight different versions of the questionnaire, the two impact

scenarios and the four different sets of amounts (Carson et al., 1994: 732).

Table 3.12: Empirical application-the 4 bid sets given to respondents

Bids given to respondents
yes no yes No Yes No Yes no

bid, =250  bid, =50  bid, =100  bid, =20  bid, = 50 bid, =5 bid, = 20 bid, = 2

Werner (1999:479) used the Kakadu dataset in order to use a mixture distribution
allowing respondents in the lowest WTP category to be classified in two groups, those
who have zero WTP and those that have a non zero WTP but smaller than the amount
that they were asked. For her research she used the Kakadu dataset for only the
Australian sample and only for the major impact scenario. In a few words, Werner
assumed that there is an unknown part of the sample where respondents that answered
no-no to the double-bounded WTP questions actually have a zero WTP. Our difference
from Werner is that the present study assumes that there is an unknown number of
respondents that when they respond no to the first bid, irrelevant from the answer in the

second bid, there might be a chance that the respondent understates his/hers WTP.

Following Werner’s work the model given in Eq. (3.38) is going to be estimated in the
case where the class membership probability is no longer the same for all respondents but
is determined by a number of variables and the data that were used refer only to the

Australian sample.
The WTP was determined by:
log(WTP,) = a + $,JOBS + B,FINBEN + f3MINEPARKS +

BsMOREPARKS + BsENVCOV + BsAGE + B;INCOME + v, (3.38)
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And the probability of understating WTP is determined by the following variables and

it is modeled by using a logistic:
RECPARKS,LOWRISK,ABORIGINAL, FINBEN, MINEPARKS, MOREPARKS, AGE and MAJOR.

The variables that were used as explanatory variables in Eq. (3.38) are the explanatory
variables that Werner (1999) has used and are statistically significant. Table 3.13
describes in detail the definition of each variable from Eqg. (3.38) and the determinants of
the probability as they are defined by Carson et al. (1994:742). To sum up, Eq. (3.38)
and the probability were estimated with the double-bounded DC format mixture model
for the case where probability is no longer a constant but differs among respondents.
Table 3.14 illustrates the estimation results.

Table 3.13: Variable definition (Carson et al., 1994:742)

The variables used in the estimation model

Variable name Variable definition

Measures the agreement by respondent that the greatest value of national
RECPARKS parks and nature reserves is in recreational activities such as camping,
bushwalking, photography (1-5).
How important the respondent feels jobs are in making resource
JOBS decisions (forest and mineral resources).High values indicate jobs are an
important factor.

Measures acceptance of low risk mining activities. High values indicate

LOWRISK
greater acceptance.

Measures the importance of Kakadu to Aboriginals should be taken into
ABORIGINAL account as a factor in making decisions concerning Kakadu. High values
indicate that this factor should be taken into account.

Measures the importance of financial benefits in making natural

FINBEN resources decisions. High values indicate great importance.

Measures how strongly the respondents feel that mining within national
MINEPARKS parks reduces the value of the parks. High values indicate mining
reduces the value of the parks
Measures how strongly the respondents feel more national parks should
MOREPARKS be created from state forests. High values indicate that respondents favor
more parks.
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Table 3.13: (continued)

Measures if the respondents are environmentally minded consumers (1:
ENVCON if respondents are recycling and buy environmentally friendly products,
0: otherwise).

AGE The age of the respondent.
INCOME The yearly income that the respondent report.
MAJOR Indicates if the respondent received the major impact scenario.

3.5.2. Estimation Results

As a first step, Eqg. (3.38) was estimated for the case where no overestimation or
underestimation occurs in the sample. The ML estimates of the parameters and the
median WTP are illustrated in the second half of Table 3.14. The main reason of
presenting these results is to enable the comparison with the estimates obtained by the

mixture model estimation.

As a next step, it was necessary to evaluate if hypothetical bias occurs and in which
form, in the form of overestimation or underestimation. Firstly, Eq. (3.38) was estimated
for the case where hypothetical bias exists in the form of overestimation by using the
closed-form approximation for the cumulative distribution function of a normal-half
normal composed error that Tsay et al. (2013) proposed, given by Eq. (3.22). The
estimate of A was almost zero, A = 0.0088 and a procedure was followed in order to test
if overestimation occurs. More specifically, we used the pseudo-likelihood ratio test -
PLR test (Kumbhakar et al., 2013:69) and the null hypothesis was that p = 1 which
means that no overestimation occurs in the sample. The pseudo-likelihood ratio test is
given by Eq. (3.39),

PLR = _Z(LNormal — Lyixture ) (339)

where Ly,rmar 1S the log-likelihood of the normal linear model and Ly;ytre 1S the l0g-

likelihood of the mixture model and it is distributed as a mixture of y2distributions. By
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applying Eq. (3.39), PLR = —0.012 and compared to the value of )(fO.OS = 2.706, given
by Kodde and Palm (1986:1246), it can be concluded that the null hypothesis was not
rejected since PLR = —0.012 < )(12’0_05 = 2.706 and no overestimation occurs. Since no
overestimation occurs in the data the estimates of the mixture model in this case are not

presented.

Secondly, the data were estimated by the mixture model that takes into consideration
hypothetical bias in the form of underestimation. For the case of underestimation Eq.
(3.38) was again estimated but instead of using the closed-form approximation for the
cumulative distribution function of a normal-half normal composed error that Tsay et al.
(2013) proposed, given by Eq. (3.22), was used the closed-form approximation for the
cumulative distribution function of a normal-half normal composed error in the case

where underestimation occurs, given by Eq. (3.24).

Applying the mixture model in order to overcome hypothetical bias in the form of
underestimation, it was found that indeed WTP was underestimated. More specifically,
applying the pseudo-likelihood ratio test given by Eq. (3.39), PLR = 238.264 compared
to xZ0.05 = 2.706 (Kodde and Palm, 1986:1246) results that the null hypothesis, p = 1
which means that no underestimation occurs in the sample, is rejected and hypothetical
bias occurs in the form of underestimation. In Table 3.14, the first part illustrates the

estimates of the parameters and the median WTP.

124



Overcoming Hypothetical Bias Chapter 3

Table 3.14: Hypothetical bias vs No hypothetical bias

Estimates for the Kakadu National Park hypothetical bias taking into account during
estimation and probability determined by variables

Parameter estimates Parameter estimates
(Mixture Model: Hypothetical bias | (Normal Model: No Hypothetical
is taken into account) bias taken into account)
WTP parameters Estimates SIEE t value Estimates SHETE t value
error error
Constant 6.4453 0.6244 10.323 2.7203 0.6422 4.236
JOBS -0.4926 0.0798 -6.170 -0.6144 0.0973 -6.312
FINBEN -0.2929 0.081 -3.617 -0.8035 0.0969 -8.295
MINEPARKS 0.1141 0.0918 1.243 1.1485 0.0965 11.902
MOREPARKS 0.1202 0.0889 1.353 0.6309 0.0937 6.731
ENVCON 0.4077 0.1705 2.391 0.5469 0.2091 2.616
AGE -0.018 0.0054 -3.301 -0.041 0.0062 -6.568
INCOME 0.0249 0.0066 3.769 0.0136 0.0065 2.090
o’ 4.4923 0.5635 7.972 3.2713 0.16 20.443
A 8.8033 2.224° 3.9583
Probability Estimates Standard t value
Parameters error
Constant -0.8231 1.3555 -0.607
RECPARKS 0.5717 0.1776 3.219
LOWRISK -1.2435 0.214 -5.811
ABORIGINAL 0.411 0.1468 2.8
FINBEN -0.8114 0.1616 -5.020
MINEPARKS 1.3412 0.2326 5.765
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Table 3.14: (continued)

MOREPARKS 0.4637 0.1668 2.780
AGE -0.0317 0.0094 -3.383
MAJOR 1.0217 0.3039 3.362

Mean probability 0.7145

Median WTP 178.4478 69.2936

Log-likelihood -1420.56 -1539.692
BIC 2983.818 3146.978
AIC 2879.12 3097.384

% the standard error for parameter A was computed by applying delta method since A

was parametrised as 1 = e?.

Table 3.14 shows that the median WTP for the case where no hypothetical bias is
taken into account is smaller than in the case where hypothetical bias is taken into
consideration during the estimation. The main reason why the median WTP was
determined instead of the mean WTP was because the distribution of WTP is log normal

which is not symmetric consequently the median WTP is determined by Eqg. (3.40)
median WTP = e™meen log WTP) (3.40)

In order to compare the two models the BIC (Schwarz Bayesian Information
Criterion) and the AIC (Akaike Information Criterion) were computed for both models
that take into account the log-likelihoods and the number of parameters. The mixture
model has ten more parameters than the normal model and the BIC for the mixture model
is equal to 2903.093 and for the normal model is equal to 3108.7396. The BIC for the

mixture model is smaller which means that it has a better fit. The same conclusion is
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made by applying the AIC, more specifically, the AIC for the mixture model is 2879.12
and for the normal model is 3097.384.

As it is expected, in the case where underestimation occurs and it is not taken into
account during the estimation process, the constant term would be affected and the
estimate is expected to be smaller compared to the case where hypothetical bias is

considered.

Conclusions

The main goal of this thesis is to propose a statistical model that can be applied to CV
survey data in order overcome hypothetical bias, i.e the fact that some respondents might
not answer truthfully to the valuation question. The sections above analyze in detail the
theoretical framework, the methodology that was used and all the steps that were
followed in order to build the proposed mixture model. In order to test the validity of the
model and check whether it is successful in overcoming hypothetical bias several
simulations took place and we showed the results of 1000 replications.

The findings confirm that the model is effective in overcoming hypothetical bias since
the mean estimates are very close to the generated values for all the parameters. More
analytically, the Mean WTP, the parameter A which is the overestimation indicator and
the probability of the class membership were estimated and their values were close to the
“true” values. Overall, these results are able to confirm that our model will overcome one
of the basic critiques that the CVM has received and that questions the validity of the

valuation estimates obtained from the application of this method.
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Chapter 4
Comparing different starting values techniques for the double-
bounded DC format mixture model

Introduction

In the proposed mixture model, the EM algorithm is an important component of the
estimation process. The EM algorithm is an iterative algorithm to find maximum
likelihood estimates that starts from an initial point for the parameters and proceeds to

iteratively update the parameters estimates until convergence is obtained.

The EM algorithm though, deals with a number of drawbacks. The first drawback is
the need for good initial values and the second refers to the possibility that the algorithm
might get trapped in local optima (Pani¢ et al., 2020:1). The determination of the initial-
starting point for the EM algorithm is a very important task thus in the following sections
this topic is going to be examined in detail. The main goal is to examine different
initialization strategies in regard to the class assignment. More specifically, the initial
class assignment was obtained by different methods in order to obtain starting values for
the EM algorithm. Afterwards a comparison of the results took place in order to conclude
which initialization technique comes up with better starting values in order to obtain

estimates close to the real values and consequently to eliminate hypothetical bias.

The present chapter is organized as follows: the first section presents the double-
bounded mixture model that is going to be examined in regard to the initialization
techniques. Additionally, the first section discusses the importance of determining proper
starting values. The second section presents the initialization techniques that are used in
the comparison while the third section contains the simulation results for each
initialization technique. Finally the last section presents a description of the comparison
criteria that are used and the related literature as well as the comparison results for the

conducted experiments.
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4.1. Initializing the double-bounded mixture model

4.1.1. The double-bounded mixture model

The double-bounded mixture model allows for heterogeneity in the response behavior
of individuals to WTP questions whereas part of the sample answers truthfully to the
valuation exercise while the rest of the sample overstates their WTP. As will be shown
below this heterogeneity can be modeled by using a conventional two-sided error term

for the first group and a composed error term for the second group.

This strategy is the one followed by Kumbhakar et al. (2013:67) in their paper related
to the productive inefficiency of firms, in which they stated that in a sample both efficient
and inefficient firms can exist with a probability. In the present case the data consists of
discrete responses to different bids presented and the underlying model for WTP is as a

mixture of two classes. The two classes are:
Class 1: respondents that answer sincerely and WTP is given by

WTP, =B'x;+v; i=1,-,n (41)

where f = '8.2 X = [*¥1 - Xuc]', x;; = 1Viand v;~N(0,02)

Class 2: respondents that overstate their WTP and therefore Eq. (4.2) holds.
WTP* = B'x; + ¢ (4.2)
where
g=v;+u (4.3

u;~ iid N*(0,52) non-negative Half Normal. Additionally, the probabilities of
belonging to class 1 and class 2 are given by p; and p, = (1 — p;) respectively. For class
2 it is considered that hypothetical bias exists in the form of overstatement of WTP, thus
in Eqg. (4.3) where the composed error ¢; is determined, u; is the one-sided non-negative
error and it reflects that the yes-saying tendency will raise each respondents elicited WTP
(Chien et al., 2005:364-65).
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Furthermore when the error term u; approaches zero, the gap between the real and
hypothetical values is decreased and the hypothetical values — real values (Hofler and
List, 2004:216). In a few words, in cases where the error term u; approaches zero, the
hypothetical WTP tends to be equal to the actual WTP and consequently the existence of
hypothetical bias tends to disappear.

Additionally, the model is parameterized very often in terms of the two parameters
defined below

6% =02+ 02 (4.4)

and
_ oy,
A= _Uv (4.5)

Summing up the model becomes

B'x; + v with probability p;

B'x; + v, +u; with probability p, (4.6)

Each respondent has to answer two successive bid questions whereas the second bid
depends on the answer that is given to the first bid. Firstly, the respondents have to
answer to the first bid with a yes or no. Denoting as y;; and y,; the responses to the two

bids respectively, y,; and y,; are presented in Eq. (4.7), Eq. (4.8) and Eq. (4.9).

1 yestobidy; .
;= , =1,--, 4.7
Vi {O no to bidy; l " (4.7)
] ] . 1 for yes to bid,;
If yeS to bldli Y1 = 1 and bldzl' > bldli, Voi = { O];OT:‘)YIIO to bleZl (4‘8)
L
] ) . 1 for yes to bid,;
If no to bldll’, Vi = 0 and bldzl' < bldli, Voi = {Oj;or};lo to bidzz'l (49)
l

In order to receive yes-yes as an answer for both bids the individual’s WTP* must
satisfy that WTP; > bid; and WTP;" > bid,; so we have that WTP; > bid,; > bidy; .
A yes answer to the first bid followed by no to the second bid, means that the individual’s
WTP* is greater than bidy; but smaller than bid,;, WTP; > bid,; and WTP; < bid,; S0
we have that bid,; < WTP;] < bid,;.
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On the other hand, for a no answer to bid;; and a yes answer to bid,; the respondent’s
WTP* must me smaller than bid,; and greater than bid,; ,WTP; < bid,; and
WTP; > bid,; so we have that bid,; < WTP; < bid;. Finally, in order to receive a no
answer to both bids, the respondent’s WTP™* is smaller than bid,; and bid,;, WTP;" <
bid,; and WTP; < bid,; so we have that WT P < bid,;<bidy; .

Additionally, the density functions for each case for the error are the following:

No Hypothetical Bias:

1 1w 1 _ifwtpi=B'x
fiv) = —¢ ) = e (5 (4.10)
0.

Hypothetical Bias:

For Normal (v;~iid N(0,02)) and Half-Normal (u;~iid N*(0,52)) distributions we
have the composed error density distribution:
2 /g A
f2(&) :gfp(;l)d’(gfi) (4.11)
(Kumbhakar and Lovell, 2000)

where ¢(.)/®(.) are the density/cumulative distribution of the N(0,1) and ¢;, o and 1
are given by Eq. (4.3), the square root of Eq. (4.4) and (4.5) respectively.

As explained in Chapter 3 (p. 96-98), we will use the closed form approximation of
Tsay et al. (2013) for the cumulative distribution of the composed error term where the
latter is given by

F= fQ gw(g)qb(iei) de,  (4.12)

where Q = bid; — B'x;.

For a sample of n observations the log-likelihood function for the proposed mixture

model is given by
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InL = Z In[y1:y2:(p1(1 = fi2) + p2(1 = f22))
i=1

+ y1:(1 = y20) (01 (fiz — f11) + 02(Fa2 — f21))
+ (1 = y1)y2:(p1(fir — fi2) + 02(Ffor — £22))
+ (1= y1)(A = y2) P1fiz + P2f22)] (4.13)

where fi; = @ (bidu _ﬁ,xi) R (bidZi _ﬁ,xi)'

oy Oy

for = F'(bidy; — B x;) and fo, = F'(bidy; — B x;).

In order to estimate a Mixture model we apply the EM algorithm which was
introduced by Dempster, Laird and Rubin in the late 1970s (McLachlan and Peel,
2000:4). The EM algorithm consists of two steps, the E-step (expectation) and the M-step
(maximization) and treats the estimation problem as a missing data problem, where the
missing data is the information about class membership. Appendix A of Chapter 2
presents in detail a description of how the EM algorithm works. Applying EM to the
mixture problem ensures monotonic increases of the likelihood values (McLachlan and
Peel, 2000:48).

4.1.2. EM algorithm and the importance of initial values

For estimating finite mixture models, the ML estimation via the EM algorithm has
dominated the field for several reasons. Firstly, it is simple compared to other methods,
secondly, it can exhibit monotonic convergence, thirdly, its’ statistical interpretation is
simple and finally, if the starting values are within admissible range so do the estimates
(Karlis and Xekalaki, 2003:577-78).

On the other hand, there are several difficulties regarding the application of the EM
algorithm. Namely a few drawbacks of the EM algorithm is that it has slow convergence,
another drawback is the need of proper choice of stopping rule in order to detect if the
maximum is reached and additionally the choice of initial values in order to find the
global maximum in the fewer as possible iterations (Karlis and Xekalaki, 2003:578).

“The choice of initial values is of great importance in the algorithm-based literature as it
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can heavily influence the speed of convergence of the algorithm and its ability to locate
the global maximum” (Karlis and Xekalaki, 2003:579).

The EM algorithm starts from some initial value for model’s parameters. Choosing
starting values has an important role since “different starting strategies and stopping rules
can lead to quite different estimates in the context of fitting mixtures of exponential
components via EM algorithm” (McLachlan and Peel, 2000:54). Two problems emerge
from the need of initial values. Firstly the number of components of the mixture must be
known in advance, but in the majority of the cases this information is unavailable.
Secondly even if the number of components is known, the suitable set of initial values
must been determined in order to avoid being trapped in local optima (Panié¢ et al.,

(2020:1-2).

In general, mixture models present an estimation difficulty in regards of the
discrimination between a local optima and the global optimum. Mixture models may
have several local optima and the normal mixture models may also come up with
singularities where it means that there might be points that the likelihood function may go

to infinity causing non-convergence to the model (Hipp and Bauer, 2006:36).

Hipp and Bauer (2006:36) state that the estimation of a mixture model should be done
with several sets of starting values in order to avoid these kind of irregularities on the
likelihood surface and in order to enable the determination of the global optimum. In
short, the starting values for the EM algorithm are crucial since the convergence to the
global maximum is strongly dependent on the starting values and additionally the speed
of convergence of the EM algorithm depends to a high degree on the initial values
(Biernachi, 2004:267).

4.2. Initialization techniques

The EM algorithm requires starting values for the model’s parameters and several
initialization strategies to determine starting values have been proposed in the literature.
In the present section the most commonly used initialization techniques are introduced

and briefly described.
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Many techniques that have been proposed in order to choose initial values are
Clustering based ideas. Cluster analysis includes a broad set of techniques in order to find
subgroups of the observations within a dataset. Clustering is a very important task in data
analysis. This task arranges a set of objects so the objects in the identical group are as
related as possible to the objects included in the same group-cluster. In a few words,
cluster analysis is done by separating the data into groups-clusters by detecting
similarities among the data according to their characteristics and grouping similar data
objects into clusters (Mann and Kaur, 2013:43-44).

Some clustering techniques have been suggested by Woodward et al. (1984) and
McLachlan (1988). Woodward et al. used an ad hoc quasi-clustering technique for the
case of a mixture of two Normals. More specifically, Woodward et al. allowed as
possible initial values of the class probability p the values from 1-9. For each value the
sample was divided in two subsamples and the initial value of the class probability was

determined as “the value at which p(1 — p)(m; — m,)? is maximized, where m; is the

sample median of the jth subsample” (Woodward et al.,, 1984:592). McLachlan
(1988:418) proposed the use of the two-dimensional scatter plots combined with
principal component analysis in order to search for the presence of clusters. The visual

clustering of the data was used as initial values for the posterior probabilities.

Furthermore, Leroux (1992:1351-53) noticed that in order to obtain good estimates
from maximum likelihood estimation, consideration should be given to the number of
mixture components. In order to choose the number of components a number of criteria
were used such as BIC and AIC comparing the constrained maximum-likelihood

estimates for one, two and three components.

In particular settings another initialization strategy that can be applied only on
simulated data is the use of the real cluster membership probability. This technique is
proposed for cases where the researcher aims to investigate the behavior of the EM
algorithm when the starting point is the optimal solution (Maruotti and Punzo, 2021:454).
Another initialization technique is the “Random Short EM”. This procedure consists of a
number of short runs of the EM algorithm with a certain number of iterations by starting

from a different random position each time. The starting values for the EM algorithm are
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determined by the short EM with the biggest likelihood (Biernachi et al., 2013:567). As
Maruotti and Punzo (2021:454) state, this procedure has S short runs of the EM algorithm
and each short run has H iterations from different random positions. The random
positions are obtained by selecting K centres randomly. The values that were considered
for S and H were two, 1 or 10 and 1 or 5 respectively. In order to implement this
initialization strategy they use the “rand.EM( )” function included in the “EMCluster”

package which refers to finite Gaussian mixtures (Chen et al., 2021).

Other initialization techniques belong to partitional clustering algorithms. Partitional
clustering algorithms obtain classification of the observations into a number of clusters,
based on their similarity. The number of clusters is determined in advance by the
researcher. Namely the most popular algorithms are K-means clustering, K-medoids
clustering or PAM and CLARA algorithm (Kassambara, 2017:35). Additionally another
clustering algorithm is the fuzzy C-means which is a variation of the K-means algorithm
and SOM algorithm (Self-Organizing Map) (Brun et. al, 2007:813).

There are a number of R packages that provide initial values for the EM algorithm for
the case of Gaussian mixtures. Namely there is the “EMcluster” package, which is
already mentioned above (Chen et al., 2021), the “mclust” package (Fraley et al., 2022),
the “mixtools” package (Young et al., 2020), the “mixture” package (Pocuca et al., 2021)
and finally, the “Rough-Enhanced-Bayes mixture estimation (REBMIX) algorithm (Panic
et al., 2020:1). The REBMIX algorithm provides an alternative to the EM algorithm for
finding parameter estimates for mixture models where both estimate accuracy and
estimation time are important criteria and therefore the resulting estimates, while close to
the ones from the EM, might not be as good as the latter. Based on these observations,
Panic et al. (2020:2) propose the use of the REBMIX algorithm as an initialization
strategy for the EM.

For the initialization process two different techniques were adopted in order to initially
partition the data into two classes and determine starting values for the remaining
parameters. The first technique refers to a random classification applied in two different
ways, namely only once and also multiple times. The second technique refers to another

clustering technique known as the k-means clustering algorithm. In the following

137



Overcoming Hypothetical Bias Chapter 4

subsections, each one of the initialization techniques that has been applied in the

proposed double-bounded mixture model is analyzed in detail.

4.2.1. Random initialization

To define starting values for the EM algorithm, a procedure was applied in order to
assign randomly into two classes the data. In the present subsection the procedure that
was applied in Chapters 2 and 3, namely random assignment, is analyzed. Random
initialization might be the most employed technique in order to initialize EM algorithm
(Biernachi et al., 2003:566).

Random draws were used from a uniform distribution to separate the data into two
groups and an observation was classified in the first class whenever the draw was below
0.5. Random draws from a uniform distribution is a commonly used procedure for
starting values (Hipp and Bauer, 2006:41, Shireman et al., 2017:284).

4.2.2. Random initialization multiple times

The present initialization technique is an extension of the previous one. More
analytically, in this strategy the simple random initialization is applied several times,
instead of only once and the selection of the “best” solution must take place. The best
solution is defined as the one that returns the highest maximized likelihood. Briefly, this
extended strategy refers to three steps, search/ run/ select in order to maximize the
likelihood (Biernachi et al., 2003:563-66). Maximizing the likelihood contains the three
steps. Firstly a search method is built in order to generate p initial positions, secondly, the
EM algorithm must be run for a given number of iterations at each initial position and
finally, the choice of the solution that provided the best likelihood value (Biernachi et al.,
2003:563).

In general, usually for the selection of the best initial values a fit criterion is used, such
as the BIC (Shireman et al, 2017:284). The random initialization technique can be
applied together with the technique called the short runs of the EM algorithm. In short

runs of EM the researches does not wait for convergence and the stopping rule of the EM
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algorithm is determined by a stopping rule with a specific number of iterations (Biernachi
et al., 2003:567). Shireman, Steinley and Brusco (2016:477) recommended that the
number of initializations must be large. More specifically, they suggest “that a “large”
number of initializations for mixture modeling be over 1000”. Although, in their research
they found the optimal solution in a smaller number of iterations but they mentioned that

this could be by chance.

In practice a safe number of random initializations exceeding 1000 is unfeasible, thus
a smaller number of initializations is usually applied, for instance 100 random
initializations (Shireman et al., 2017:284). To sum up, in the double-bounded DC format
mixture model the random assignment to two classes applied 100 times was adopted and
for each random assignment a short EM algorithm was adopted. By the end of the 100
assignments the starting values for the EM algorithm were selected by the BIC criterion.
Moreover, since the number of parameters was the same across the different assignments,

the BIC criterion is equivalent to using biggest log-likelihood.

For the short EM the number of iterations needed to be determined having in mind that
the bigger the initial EM iteration number is the more time intensive the procedure will
be. The literature does not offer a unique number for the choice of the number of
iterations. For example, the Mplus software defaults to 10 iterations of the EM algorithm
from 20 random starts (Shireman et al., 2017:285), while StataCorp (2021:4) in order to
determine starting values for finite mixture models defaults to 20 iterations. On the other
hand, Biernachi et al. (2003:574) concluded that after comparing eight different strategies
with repeating algorithms, the random strategy 10EM (10 initializations with 100
iterations for each EM) returned the best results. Taking into consideration all the above

it was decided to use 20 iterations for the short EM procedure.

4.2.3. Classification with k-means algorithm

“K-means clustering is the most commonly used unsupervised machine learning
algorithm for partitioning a given data set into a set of k groups, where k represents the
number of groups pre-specified by the analyst” (Kassambara, 2017:36). The basic idea is

to define clusters in a way that the total intra-cluster variation is minimized. Each

139



Overcoming Hypothetical Bias Chapter 4

observation from the given dataset is assigned to the cluster in which the sum of squares
distance of the specific observation to their assigned cluster center is minimized
(Kassambara, 2017:36-7).

K-means has a number of advantages and disadvantages. The advantages are that it is
a simple and fast algorithm but on the other hand a number of drawbacks occur. Firstly
the number of clusters must be known in advance by the analyst, secondly if the data are
rearranged it is possible that the analyst will receive a different solution and thirdly it is
affected by outliers (Kassambara, 2017:46). Additionally, another drawback is that k-
means tend to find spherical clusters, in cases where the clusters are highly heterogeneous
and non spherical, k-means won’t be able to find the exact representation of the data and
consequently won’t be able to provide appropriate starting values (Shireman et al.,

2017:285).

Furthermore, because the final clustering result obtained by k-means is affected by the
random starting assignments, Kassambara (2017:41) recommends that k-means clustering
should be computed with a large number of different random starting assignments, since
the algorithm will select the best result corresponding to the lowest within cluster
variation. More specifically, the default in R is 1 thus the proposed number is 25 or 50.
Additionally, since the number of times that k-means should perform is determined by
the researcher and the accurate number is subjective, Shireman et al. (2017:289) propose

to set the number of runs for the k-means initialization technique to be set to 100.

Taking into consideration all the above, in the present application, k-means will be
performed 100 times by the using the function “kmeans( )” which is in the “stats

package” of the R programming language (R Core Team, 2022).

4.3. Simulations for the initialization techniques for the double-bounded
mixture model

The present section presents the simulation results for the three different initialization
techniques described in section 4.2, namely, the 1 random initialization, the 100 random
initializations and the k-means strategy. The simulations were conducted for 4 different

cases considered in Chapter 3 and more specifically from Table 3.5 where in those cases
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it was assumed that the class membership probability p; was considered to be constant
over respondents. The number of replications was set to 500 for a sample of 1000

observations.

4.3.1. Data generation

In the data generation process, for all cases that are going to be applied, the model that
IS going to be estimated is simple regression model

WTPL* =a-+ Bxl' + w; (4‘14)

given by one explanatory-independent variable x;~N(4,1) where the coefficient of
x;, B is equal to 2 and the constant term « is equal to 5. Taking into consideration Eq.
(4.6) and Eq. (4.14) the model becomes

54 2x; +v; with probability p,

5+ 2x; + v; +u; with probability p, (4.15)

where v;~iid N(0,02) and u;~ iid N*(0, a2).

For the normal error term v, the values 1 and 1.25 were used for o, while for the half-

normal error term wu, the choice of values for g, followed Eq. (4.16) below.

= {100” (4.16)

50,
From Eq. (4.5) it follows that the parameter A takes the values 5 and 10. The bids are
determined by Eq. (4.17) and Table 4.1 illustrates the structure of bid; and bid,.

25%bid + bid4 if yes to bid4

25%bidy — bid;  if noto bid; (4.17)
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Table 4.1: bid, and bid,

Bids given to respondents

bid, =11 bid, =12 bid, =13 bid, =15
Yes No Yes No Yes No Yes No
bid, =14 bid, =9 bid, =15 bid, =9 bid, =17 bid, =10 bid, =19 bid, =12

The mean WTP at the mean value of x; is given in Eq. (4.18) below
mean WTP = (2 + 5x%) = 12.994 (4.18)

And finally, regarding the class membership, the probability is a constant p; = 0.75
and p, = 0.25. In this case all respondents that belong to the same class have the same

probability of belonging to the class.

4.3.2. Starting values and initialization strategy

The initialization techniques that have been applied in the present subsection aim to
separate the data into two clusters in order to compute starting values for the EM

algorithm. The procedure that it was followed in each case is described below.

A. Initial values obtained from 1 random initialization

This initialization strategy is a simple procedure in order to separate randomly the data
into two classes. This procedure was followed in Chapter 2 and 3 in order to receive
starting values for the EM algorithm. In the following description are analyzed in detail
the steps that were followed in order to obtain starting values.
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Step Al: Random assignment of observations to two classes

In the first step to determine starting values for the EM algorithm random draws from
a Uniform(0,1) were generated and the observation was classified in the one class

whenever the draw was below 0.5.
Step A2: ML estimations assuming that one class exists

For each class a probit model was estimated and the class with the biggest constant
represents the one with overestimation. By ending this stage, starting values were
obtained in order to apply ML estimation for a Normal error model and for a composed
error model, assuming that all observations belong in one class, where initial value for
o,, was determined using the same formula as in Step2 in Chapter 2 (p.63-64). At this
point the estimation results from the ML estimation for a Normal error model and from
the composed error model were used as starting values for EM algorithm. More
specifically, for the parameters «, 8 and o2 the starting values were determined from the
ML of the Normal model, and the starting value of the parameter A was determined by
the ML estimate for the composed model. Additionally, from the clustering procedure the

proportion was used as a starting value of the class membership probability.
Step A3: Applying EM algorithm

The EM algorithm was run for the mixture model until a tolerance criterion was
reached, where the tolerance criterion was until the value of the log-likelihood obtained

in each iteration, satisfies Eq. (4.19)
|loglikelihood (k) — loglikelihood(k — 1)| < 0.001 (4.19)
where Kk is the number of the iteration.

Finally, the estimates produced from the EM algorithm were used as starting values to
maximize the log-likelihood of the mixture model, since the EM algorithm was stopped

before reaching convergence.
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B. Initial values obtained from 100 random initializations

This initialization procedure is very similar to the previous initialization strategy. The
main difference is that the random assignment is done multiple times and not only once.
In the following description are presented the steps that were followed in order to obtain

starting values.
Step B1:100 Random assignments

The first step of this procedure includes the Steps A1-A2 described in the previous
initialization technique. The addition that is done by the second initialization strategy is
the repetition of the first strategy by 100 times. In the current strategy though Step A3 is
modified, instead of using a tolerance criterion the number of iterations for the EM

algorithm was set to 20.
Step B2: Identifying the “best starting values”

In order to select the best starting values among the 100 initializations a criterion such
as the BIC (Shireman et al., 2017:284) can be used. Nevertheless, since the sample size
and the number of parameters is the same across the 100 cases, this amounts to basing
comparisons on the log-likelihood. The estimates with the highest log-likelihood were

therefore used as starting values for the EM algorithm.
Step B3: Applying EM algorithm

The EM algorithm was applied for the mixture model using the initial values
determined in the previous step and using the tolerance criterion defined previously in
Eq. (4.19). Finally, the estimates produced from the EM algorithm were used as starting

values to maximize the log-likelihood of the mixture model.

C. Initial values obtained from k-means classification

For this initialization technique, the k-means algorithm was used to partition the data
into two groups. The remaining Steps are the same as case A, thus the following steps

were followed:
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Step C1: Assigning to two classes with k-means

The data were separated into two classes by applying k-means algorithm.
Step C2: ML estimations assuming that one class exists

Same as in Step A2.

Step C3: Applying EM algorithm

Same as in Step A3.

Finally, the estimates produced from the EM algorithm were used as starting values to
maximize the log-likelihood of the mixture model

4.3.3. Simulation results for the double-bounded method model for
different initialization strategies
The present subsection presents the simulation results related to parameter estimates
and mean Willingness To Pay estimates for the three different initialization techniques.
The R programming language (R Core Team, 2022) was used to perform the simulations.
More specifically version 4.1.1.

As was the case in Chapters 2 and 3, the class membership probability, p;, was

reparametrized as p; :m;—appa) in order to ensure that the estimate of the class

membership probability lies in the open unit interval. Additionally, a number of
replications were dropped from the results as the standard errors of the maximum
likelihood estimates could not be computed. Finally, in addition to the parameter
estimates, the bias of WTP is illustrated for each case. More specifically the bias is given

by the following equation:

Bias = expected value of estimated mean WTP — mean WTP =

Bias = (a+ px) — (5 + 2x) (4.20)

Tria’

R R Br . H H
. ==L and R i the number of replications.

where @ =
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A. Simulation Results for the 1 random initialization strategy

The single or 1 random initialization has already been illustrated in Chapter 3 for 1000
simulations (Tables 3.5-3.7). For the sake of comparison the results for 500 replications
are reported below. Table 4.2 reports the mean estimates of the parameters «, 8, 52, 1 and
p1. Additionally, the number of the replications that have been removed from each case is
given in Table 4.3 and finally Table 4.4 presents the bias of the mean WTP for each case

and the mean estimate of the WTP.

Table 4.2: Simulation Results from the 1 random initialization technique

Simulation Results for Double-Bounded DC and p; = 0.75
1 random initialization

a B 2 Yl P1
o,=1land A1 =10
Mean 4.9631 2.0135 1.0379 10.4198 0.7507
Standard deviation 0.2601 0.0628 0.4752 2.4643
g,= 1land A1 =5
Mean 4.9498 2.0143 1.0028 5.056 0.7486
Standard deviation 0.2429 0.0597 0.2207 0.7579
og,= 1.25and A =10
Mean 4.9658 2.0135 1.6205 10.7376 0.7502
Standard deviation 0.294 0.0695 0.6545 3.6207
g,= 1.25and A =75
Mean 4.9486 2.0164 1.5871 5.0952 0.7496

Standard deviation 0.2845 0.0689 0.3925 0.9435
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As Table 4.2 shows, in all cases the mean estimates are very close to the true values.
Additionally, it can be noticed that the standard deviation of the parameters is small
except for the parameter A in the cases where 4 = 10. In such cases due to the fact that
o, has very large values compare to o,, (which is 1 and 1.25 respectively) the parameter
A will probably get higher estimates and since the standard deviation is sensitive to
extreme values, the standard deviation of A might have higher values. Furthermore, Table
4.3 shows that the number of replications removed from all cases is between 15 and 25

replications, representing 3-5% of the replications, which is a very small percentage.

Table 4.3: Replications removed from the 1random initialization technique

Number of replications removed

A=10 A=5
o, =1 20 15
o, =1.25 20 25

Finally, Table 4.4 reports the bias of the mean WTP for each case, given by applying
Eq. (4.20). It can be noticed that in all cases that have been examined the mean bias is

very close to zero which means that the model succeeded to overcome hypothetical bias.

Table 4.4: Bias of the mean WTP from 1 random initialization technique

Bias of Mean WTP same probability for overestimation for all respondents
1 random initialization

g,=1and 1 =10 g,=1land1=5
Mean WTPmixture model 13.0111 13.0011
Biasixture model 0.0171 0.0071
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Table 4.4: (continued)

o,=1.25and 1 =10 o0,=1.25and A =5
Mean WTP,ixture model 13.0139 13.0081
Biasnixture model 0.0199 0.014

B. Simulation Results for the 100 random initializations strategy

The results for the case where random initialization is conducted a 100 times and the
“best” initialization is chosen are illustrated in Tables 4.5, 4.6 and 4.7. More specifically,
Table 4.5 presents the mean estimates of the parameters «, 8, 62, 2 and p;. Additionally,
Table 4.6 shows the number of the replications that have been removed from each case
and finally Table 4.7 reports the bias of the mean WTP for each case and the mean
estimate of the WTP.

As can be observed from the results, in all cases the mean estimates are very close to
the real parameter values. Additionally the standard deviation for all parameters is small
except for parameter A in cases with real A equal to 10, as in the case with 1 random
initialization. The main reason is that in these cases ;> has very large values compare to
o2 thus the parameter A will probably get higher estimates and since the standard
deviation is sensitive to extreme values, the standard deviation of 2 might have higher

values.

Table 4.5: Simulation Results for the 100 random initializations strategy

Estimation Results for Double Bound DC and p;=0.75
100 random initializations

—~

a B a5 A P1
g,=1land A =10

Mean 4.9635 2.0135 1.0385 10.4274 0.7542

Standard deviation 0.2615 0.0624 0.4906 2.4547
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Table 4.5: (continued)

g,= 1land A1 =5

Mean 4.9477 2.0139 0.9929 5.0756 0.7562

Standard deviation 0.2375 0.0589 0.1437 0.6795

o,= 1.25and A =10

Mean 4.9466 2.0148 1.5517 10.4962 0.7515

Standard deviation 0.2796 0.0702 0.1826 2.5383

g,= 1.25and A =75

Mean 4.9419 2.0161 1.5603 5.1251 0.7514

Standard deviation 0.2791 0.0685 0.2703 0.8517

Furthermore Table 4.6 shows that the number of replications removed from all cases is
between 12 and 33. More generally, it can be stated that the replications removed
represent the 2.5-6.5% of the replications which is a small percentage.

Table 4.6: Replications removed from the 100 random initializations technique

Number of replications removed

A=10 A=5
o,=1 12 16
o,=1.25 33 22
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Finally, Table 4.7 reports the bias of the mean WTP, given by Eq. (4.20), together
with the mean estimate of the WTP. The bias of the mean WTP estimate is very small for
all cases, almost zero which means that the mean estimates are almost identical to the real

values of the parameters.

Table 4.7: Bias of the mean WTP from the 100 random initializations technique

Bias of Mean WTP same probability for overestimation for all respondents
100 random initializations

g,=1and A =10 o,=1land A =5
Mean WTP,ixture model 13.0115 12.9974
Biasyixture model 0.0175 0.0034
o,=1.25and 1 =10 g,=1.25and 1 =5
Mean WTP,ixture model 13.0003 13.0002
Biasyixture model 0.0063 0.0062

C. Initial values obtained from k-means algorithm

The results for parameter estimates when the k-means algorithm is used for
initialization are illustrated in Table 4.8 and the number of replications that were removed
for each case is illustrated in Table 4.9. Additionally, Table 4.10 reports the bias of the
mean WTP and the mean estimate of the WTP.

As was the case for the previous two initialization techniques, the results show that for
all cases the mean estimates of all parameters are very close to the real parameters.
Additionally the standard deviation of the estimates is small except for parameter A. The
parameter A in cases where its real value is equal to 10 has higher standard deviation due

to extreme values that may occur during the estimation.
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Table 4.8: Simulation Results for the k-means initializations strategy

Estimation Results for Double-Bounded DC and p1=0.75 initialization with k-means
a B % Yl P1
g,=1land A1 =10

Mean 4.9598 2.0131 1.0143 10.0244 0.7526
Standard deviation 0.2516 0.0629 0.3385 2.3945
o,=land1=5
Mean 4.9474 2.0144 0.9927 5.0772 0.7498
Standard deviation 0.2393 0.0596 0.1446 0.6958
g,= 1.25and 1 =10
Mean 4.9544 2.0144 1.5801 10.7918 0.7518
Standard deviation 0.2843 0.0698 0.4114 3.4944
o,= 1.25and A =5

Mean 4.9455 2.0161 1.57189 5.1266 0.7508

Standard deviation 0.2752 0.0681 0.3274 0.8746

To continue with the analysis, Table 4.9 illustrates the number of replications that
have been removed from each case due to standard error issues. The replications that
have been removed are very few, the number of them ranges from 1 to 8 replications. In
terms of percentage, the percentage of the replications that have been removed is smaller

than 2%, which is a small proportion of the total replications.
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Table 4.9: Replications removed from the k-means initialization technique

Number of replications removed
A=10 A=5
g,=1 1 1

g,=1.25 8 4

Table 4.10: Bias of the mean WTP from the k-means initialization technique

Bias of Mean WTP K-means initialization

g,=1and 1 =10 g,=1land1=5
Mean WTP yixture model 13.0062 12.999
Biasyixture model 0.0122 0.005
o,=1.25and A =10 0,=1.25and A =5
Mean WTP ixture model 13.006 13.0039
Biasyixture model 0.012 0.0099

Finally Table 4.10 presents the mean estimated WTP and the bias of the mean WTP
for each case, given by applying Eq. (4.20). Considering the results it can be noticed that
the bias of the mean WTP for each case, estimated by the proposed mixture model, is

very small, since the mean estimate of the WTP is very close to the real WTP.

Concluding the findings above it can be stated that the three initialization techniques
produce very similar parameter estimates. However the k-means initialization technique
has fewer replications with standard error issues. Additionally it can be seen that the
standard deviation from the 100 random initialization technique, in almost all cases is
smaller compare to the other initialization methods. Besides these small differences, all

three methods can initialize the EM algorithm effectively and the results show that the
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proposed mixture model can overcome hypothetical bias in a satisfactory way in order to

provide trustworthy estimates.

4.4. Comparison of initialization methods

In the previous section the three initialization techniques were compared in order to
examine which technique returns better estimates to minimize the bias of the mean WTP.
In the present section, additional performance criteria are going to be applied in order

detect if there is an initialization strategy that performs better.

4.4.1. Methodology for comparing initialization methods

In order to compare the initialization techniques a number of performance criteria
were applied. Examining in detail the literature that refers to comparison of initialization
methods, the performance criteria that are commonly used in such researches are

presented below.

One practical criterion for algorithm comparison is the running time (Meild and
Heckerman, 2001:16). Another criterion used is the number of iterations that are
necessary until convergence. This criterion was performed by Karlis and Xekalaki
(2003:580). Another criterion to examine the performance of an initialization strategy is
its ability to reach the Global maximum. Karlis and Xekalaki (2003:581), assume that at
least one of the methods has reached the global maximum.

In order to assume that each jt* set of initial values has succeeded in locating the

global maximum two conditions given by Eqg. (4.21) and Eqg. (4.22), must be satisfied:
Condition (1): |6ey — 6| < 107° (4.21)
and

(Lmax _Lj)

max

Condition (2):

<107° (4.22)
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where L,,,, denotes the log-likelihood with the maximum value, considered as the
global maximum and L; is the value of the log-likelihood for the j-th set of initial values.

Additionally, 6,,,, denotes the parameters corresponding to the global maximum.

In the present study since three techniques are going to be compared, for each
technique the log-likelihood value is determined at each replication and L., IS
determined as the log-likelihood with the maximum value among the three. Furthermore,
as 0,,,, 1S considered the parameter estimates of the technique with the maximum log-
likelihood.

Furthermore, another criterion is based on the ability to find the correct classification.
In order to determine the ability to determine the right classification the measure that is
used is the Adjusted Rand Index (ARI). The ARI has “a maximum value of 1 indicating
identical solutions” and measures the accuracy of the classifications (Maruotti and Punzo,
2021:455-56). The ARI is included in the “fossil” package and was applied by using the
adj.rand.index( ) function right after the classes were separated (Vavrek, 2020:33). The
Rand Index was proposed by Rand in 1971 and in 1985 Huber and Arabie proposed the
Adjusted Rand Index (Vavrek, 2020:33). The Adjusted Rand Index rescaled the Rand
Index by taking into consideration that “random cause will cause some objects to occupy

the same clusters” (Vavrek, 2020:33).

The Adjustment Rand Index is calculated by

o ()RS ()
AR B = e () 5 ()

(4.23)

Where

P* = {Cy, ..., Cg} is the partition of the data set based on the ground truth

P ={Cj, ...., Cx} is the clustering results generated by the clustering algorithm
K the number of clusters

N is the number of data points in a given dataset

Nj; is the number of data points of the class label ¢* € P* assigned to cluster C; in

partition P.
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N; is the number of data points in cluster C; of partition P and
N; is the number of data points in class ¢ (Yang, 2017:31).

Finally, two additional criteria are added. The proportion that condition 1 given by Eq.
(4.21) is satisfied as well as the condition 2, given by Eq. (4.22).

4.4.2. Comparison results

In order to determine the technique that provides the best initial values for the EM
algorithm, it should be in mind that the notion of “the best initialization method” involves
a trade-off between computation cost and accuracy. Additionally the best initial values
are an ill-defined notion since a formal delimitation among initial searches doesn’t’ exist
(Meila and Heckerman, 2001:14-5). The following Tables illustrate the results obtained

by applying the performance criteria described in the previous subsection.

To begin with, Table 4.11 reports the proportion of the times that each initialization
technique obtained the maximum log-likelihood value (column 1). It should be noted that
in a number of replications there was more than one technique with the maximum log-
likelihood value thus the percentages do not sum to 100%. The 100 Random
Initializations method had a very high percentage of maximum log-likelihood values.
More specifically, in the case where g, = 1and 1 = 10, 67.81% of the replications the
100 Random Initializations Technique returned the highest log-likelihood value among
the other techniques. Furthermore, in the remaining cases, 100 Random Initializations
method has as well the higher log-likelihood value among the other methods for more

than 50% of the replications.

Column 2 of Table 4.11 shows the percentage of times a method finds the global
maximum or in other words satisfies both conditions given in Eq. (4.21) and Eq. (4.22).
Note that condition (4.21) needs to hold for all parameters. As it can be seen the success
rate for the 1 Random Initialization technique is between 24% and 33% of the total
replications. The K-means algorithm has a very similar percentage of succeeding in
reaching the global maximum since it ranges from 23% to 37%. On the other hand the

100 Random Initializations technique has a higher percentage of reaching the global
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maximum, since it varies between 50% and 70%, which is almost the double percentage

of the other two methods.

Additionally, Table 4.11 presents the results for each condition separately. As it is
shown, for each parameter separately that composes the global maximum conditions, it
can be noticed that the parameters «, 8 and o2 have a high percentage of satisfying
condition 1 given by Eq. (4.21). The parameter A on the other hand although satisfies Eq.
(4.21) it can be noticed that the percentage is smaller than the other parameters’

percentages.

Although for all parameters and methods condition 1 is satisfied over 20% of the time,
the 100 Random Initializations technique has a substantial advantage of achieving
percentages more than 50%. Furthermore, in regards of succeeding in condition (2)
separately, in all cases the initialization methods reached over 99% of satisfying Eq.
(4.22).

156



Overcoming Hypothetical Bias Chapter 4

Table 4.11: Comparing the initialization methods for Double-Bounded DC (1)

Comparing the initialization methods for Double-Bounded DC and p,=0.75 (1)

Iikellc:?];)od r(r)ﬁfilr?]z% % condition (1) % condition (2)
a B o2 yl
g,=1and 1 =10
1R";‘I':]‘i0t'°m 18.24%  24.68% 41.63% 58.37% 45.49% 24.89% 99.14%
1°0Ff§ir;d°m 67.81%  68.45% 74.46% 86.48% 78.54% 69.74% 99.36%
K-means 1545%  23.18%  40.56% 56.01% 42.27% 23.18% 99.57%
g,=1land1=5
1R";‘2ﬂ°m 48.08%  30.13% 45.73% 60.9% 45.3% 39.53% 99.57%
1°0Fff1‘ﬂd°m 70.3%  50.85% 66.45% 79.06% 65.17% 55.98% 100%
K-means  49.36%  32.05% 45.09% 63.25% 46.79% 41.67% 100%
g,=1.25and 1 =10
lR";‘th'om 19.1%  33.71% 48.99% 70.34% 48.54% 33.93% 98.88%
loofﬁﬂdom 54.83%  55.28% 71.69% 86.52% 68.99% 55.96% 100%
K-means  26.07%  36.63% 53.26% 72.58% 49.21% 37.53% 99.78%
g,=1.25and1=5
1R";‘2i0t'°m 14.86%  26.61% 39.91% 60.31% 36.36% 28.6% 100%
100Random
ol 69.84%  70.07% 76.05% 85.14% 74.94% 70.73% 100%
K-means  15.96%  25.72% 39.25% 60.31% 38.14% 27.72% 100%
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Table 4.12 presents the remaining criteria that have been considered during the
comparison of the methods. To begin with, one parameter that is examined in the
comparison of the initialization strategies is the time that is needed in order to complete
the estimation. In order to enable the time needed for the comparison, the models were
run for the same number of replications. Additionally the time was calculated from the
beginning of the procedure until the end of the total replications. The 100 Random
Initializations technique is an extension of the 1Random Initialization and therefore the
time needed will be approximately 100 times more. This technique is not taken into
consideration in regards to the comparison of the time needed, thus the time needed to
complete the 100 Random Initializations is not illustrated in Table 4.12. As it is shown in
the first column of Table 4.12, the time that is needed in order to complete the process for
the 1 Random Initialization and the k-means are very close. In the case where g, = 1 and
A = 10 the time needed is the same, in the rest of the cases the differences between the

techniques is around 1 minute.

Another criterion that is taken under consideration is the number of replications that
have been removed due to standard error issues. As it is shown in Table 4.12, in 1
Random Initialization and 100 Random Initializations techniques the replications that
have been removed are about the same and vary from 13 to 25. On the other hand with k-
means technique the replications removed were fewer and more specifically it can be
noticed that the replications removed were 1 to 6 which are very few compared to the

other two strategies.

Another performance criterion refers to the number of iterations that the estimation
process runs until convergence. Table 4.12 reports the mean number of iterations needed
for each technique. It can be observed that across cases the number of iterations needed
doesn’t vary. More specifically, the 1 Random Initialization and the k-means technique
needed the same number of iterations for almost all cases. Furthermore the 100 Random
Initializations technique doesn’t differ from the other techniques much. More specifically
the 100 Random Initializations technique has either the same number of iterations as the
other techniques or it differs by 1 iteration. It should be noted that the number of

iterations is calculated after the best of the 100.
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The last performance criterion is the Adjusted Rand Index (ARI) which measures the
accuracy of the classification. The criterion was applied in order to have a measurement
of which criterion separates the two classes more accurately. As it is illustrated in Table
4.12, the three strategies have very similar results and there is no strategy that receives an
ARI score over 60%. Although none of the initialization techniques received a high level
for classification accuracy, it can be noticed that 100 Random Initializations technique

achieved the highest score for three out of the four cases.

Table 4.12: Comparing the initialization methods for Double-Bounded DC (2)

Comparing the initialization methods for Double Bounded DC and p;=0.75 (2)

Rgnning Time Replications l\_lumbgr of ARI
in minutes removed iterations
g,=1land 1 =10
1Random Init 37.89 20 40 50.36%
100Random Init - 13 38 52.57%
K-means 37.42 1 39 46.92%
g,=1land1=5
1Random Init 39.27 15 38 48.54%
100Random Init - 16 38 44.24%
K-means 40.52 1 38 44.74%
g,=1.25and 1 =10
1Random Init 32.66 20 37 50.34%
100Random Init - 22 36 57.19%
K-means 31.25 6 37 48.17%
g,=1.25and A1=5
1Random Init 34.34 25 37 49.26%
100Random Init - 22 38 55.79%
K-means 36.35 4 37 46.8%
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Finally, in order to complete the comparison of the initialization techniques Table 4.13
presents the estimates of the mean WTP and the bias of the mean WTP for all cases and
techniques. As it can be seen, the bias of the mean WTP for each technique is very small.
Although the differences within the techniques are very small, the 100 Random
Initializations has a slightly better performance in the majority of the examined cases, in

overcoming hypothetical bias.

Table 4.13: Comparison of the Bias of the mean WTP

Comparison of the Bias of Mean WTP

1 Random 100 Random
Initialization Initializations K-means
og,=1and 1 =10
Mean WTP 13.0111 13.0115 13.0062
Bias 0.0171 0.0175 0.0122
o,=1land A =5
Mean WTP 13.0011 12.9974 12.999
Bias 0.0071 0.0034 0.005
o,=1.25and A =10
Mean WTP 13.0139 13.0003 13.006
Bias 0.0199 0.0063 0.012
g,=1.25and A1=5
Mean WTP 13.0081 13.0002 13.0039
Bias 0.014 0.0062 0.0099
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Conclusions

The initial values of the EM algorithm play a very crucial role since selecting starting
values refers as a “well-documented” drawback of the method (Pani¢ et al., 2020:1). In
the present research, in order to overcome hypothetical bias a double-bounded mixture
model has been proposed. Furthermore the present chapter examined the starting values
issue thus different initialization methods were examined in order to determine the

technique that provides the more proper starting values for the proposed mixture model.

After 500 replications and examination of different cases the three chosen
initialization techniques have provided interesting findings. At first the main goal of
overcoming hypothetical bias is achieved by all initialization techniques. By comparing
the simulation results and the performance criteria it can be concluded that the three
techniques achieve accurately outcomes. Table 4.14 summarizes analytically which
technique performed better for each performance criterion. As is reported in Tables 4.11,
4.12 and 4.13 the differences are very small in the majority of the performance criteria

that have been applied.

In order to determine which technique performed better at each criterion it was taken
into account whether it obtained better results in most of the cases and more specifically
a technique performed better compared to another one if it had better outcomes at least in
3 out of the 4 cases. As is illustrated in the following table, the initialization method that
performed better in the majority of the criteria is the 100 Random Initializations

technique.
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Table 4.14: Technique that performed better at each criterion

Technique that performed better at each criterion

Technique that performed

Criterion applied et

% maximum log-likelihood 100 Random Initializations

% global maximum 100 Random Initializations

Time 1 Random Initialization and
K-means

Iterations 100 Random Initializations
Replications removed K-means

ARI 100 Random Initializations

Bias of the mean WTP 100 Random Initializations

Technique with the second
best performance

K-means

1 Random Initialization and
K-means (50-50)

1 Random Initialization

1 Random Initialization and
100 Random Initializations

1 Random Initialization

K-means

Summarizing all the above, the 100 Random Initializations technique performed better

for the majority of the criteria but the main drawback of this method is that it needs a lot

of time compared to the other methods. Thus if time is not an issue the 100 Random

Initializations technique is the preferred technique, on the other hand if the time is limited

the other two techniques can determine as well proper starting values in order to

overcome hypothetical bias.
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