

1

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΤΜΗΜΑ ΧΗΜΕΙΑΣ

ΤΙΤΛΟΣ ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ

ΕΡΓΑΣΤΗΡΙΟ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ ΚΑΙ ΧΗΜΙΚΩΝ

ΔΙΕΡΓΑΣΙΩΝ

ΜΕΤΑΠΤΥΧΙΑΚΟ ΔΙΠΛΩΜΑ ΕΙΔΙΚΕΥΣΗΣ

Προσαρμογή ενός συστήματος αφομοίωσης
ατμοσφαιρικών δεδομένων για την μελέτη των

εκπομπών μεθανίου στην Ελλάδα.

Ευαγγέλου Ιωάννα

Υπεύθυνη Καθηγήτρια: Κανακίδου Μαρία

ΗΡΑΚΛΕΙΟ 2022

2

UNIVERSITY OF CRETE
DEPARTMENT OF CHEMISTRY

TITLE OF POSTGRADUATE PROGRAMME

 ENVIRONMENTAL CHEMICAL PROCESSES LABORATORY

Master Thesis

Adaptation of an atmospheric data assimilation
system for the study of methane emissions in Greece.

Ioanna Evangelou

Master Thesis Supervisor: Maria Kanakidou

HERAKLION 2022

3

Εξεταστική Επιτροπή

Κανακίδου Μαρία

Καθηγήτρια (Επιβλέπουσα)

Κοσιώρης Γεώργιος

Καθηγητής

Μιχαλόπουλος Νικόλαος

Καθηγητής

4

ACKNOWLEDGMENTS

Words cannot express my gratitude to my professor and chair of my
examinee committee Prof. Dr. Kanakidou for her invaluable patience,
supervision and feedback. I also could not have undertaken this work without
my defense committee, Prof. Dr Kosioris and Prof. Dr. Michalopoulos, who
generously provided knowledge and expertise. Additionally, this endeavor
would not have been possible without the support of my PhD supervisor and
friend, Nikos Gialesakis, who helped, consulted and encouraged me in every
step of this journey. I am also grateful to Dr. Nikos Daskalakis for the late-
night feedback sessions and the moral support and all the members of ECPL
group for their help. A special thanks also to Dr. Reum from DLR for giving us
the WRF-GHG-CTDAS code as well as Prof. Dr. Vrekoussis and Dr.
Schneising from IUP, University of Bremen for providing us with the
TROPOMI/WFMD product. Lastly, I would be remiss in not mentioning my
friends and family, especially my parents, and my brothers. Their belief in me
has kept my spirits and motivation high during this process.

5

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ

ΙΩΑΝΝΑ ΕΥΑΓΓΕΛΟΥ

Ημερομηνία γέννησης: 18/09/1998, διεύθυνση: Αναγεννήσεως 42, Ηράκλειο
Κρήτης, Ελλάδα, 71305, τηλ: 2810319518, κιν:(+30)6949846181,
email:joanevangelou9881@gmail.com

ΕΚΠΑΙΔΕΥΣΗ

09/2016 – 06/2020: Πανεπιστήμιο Κρήτης, Τμήμα Φυσικής

•Πτυχίο: Επιστήμη της Φυσικής (ημερομηνία αποφοίτησης: Ιούλιος 2020)

•Βαθμός: 8,24/10, Διπλωματική εργασία: «Στατιστική ανάλυση και αξιολόγηση
του αιολικού δυναμικού της Ανατολικής Κρήτης με χρήση πειραματικών και
αριθμητικών δεδομένων», Επιβλέπων Καθηγητής: Γεώργιος Κοσιώρης,
Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών, UOC

09/2020 – μέχρι τώρα: Πανεπιστήμιο Κρήτης, Τμήμα Χημείας

•Μεταπτυχιακός τίτλος: Περιβαλλοντική Επιστήμη και Μηχανική

•Διατριβή: ‘Αντίστροφη μοντελοποίηση για τη βελτίωση των εκτιμήσεων των
ανθρωπογενών εκπομπών CH4 στην Ελλάδα με χρήση του WRF-GHG-
CarbonTracker Data Assimilation Shell’, Επιβλέπουσα Καθηγήτρια: Μαρία
Κανακίδου, Τμήμα Χημείας, UOC

ΓΛΩΣΣΕΣ

•Μητρική Γλώσσα: Ελληνικά

•Αγγλική Γλώσσα (άπταιστα, επίπεδο C2, Michigan Proficiency, 2013)

•Γερμανική Γλώσσα (επίπεδο Β2, Κρατικό Πιστοποιητικό Γλώσσας, 2013 /
επίπεδο Β1, Goethe-Institut, 2013)

ΕΡΕΥΝΗΤΙΚΑ ΕΡΓΑ

Διπλωματική εργασία: «Στατιστική ανάλυση και αξιολόγηση του αιολικού
δυναμικού της Ανατολικής Κρήτης με τη χρήση πειραματικών και αριθμητικών
δεδομένων». Έρευνα στο αιολικό δυναμικό με μοντέλο έρευνας καιρού
Weather Research and Forecasting (WRF) (NCAR) για την περιοχή Σητείας
Κρήτης και ανάλυση του ενεργειακού κέρδους από την εγκατάσταση
ανεμογεννητριών.

ΕΡΕΥΝΗΤΙΚΑ ΑΡΘΡΑ

• Evangelou et al., 2021. Κατανομή μεθανίου στην Ελλάδα όπως προκύπτει
από τα δεδομένα του Sentinel-5P TROPOMI, 17th International Conference
on Environmental Science and Technology, 1-4 Sept, 2021

6

CURICULUM VITAE

IOANNA EVANGELOU

Date of birth:18/09/1998, address: Anagenniseos 42, Heraklion, Crete,
Greece, 71305, tel:2810319518, mob:(+30)6949846181, email:
joanevangelou9881@gmail.com

EDUCATION

09/2016 – 06/2020: University of Crete (UOC), Department of Physics

• Bachelor Degree: Science of Physics (graduation date: July 2020)
• Grade: 8.24/10 (243 ECTS), Diploma Thesis: ‘Statistical analysis and

evaluation of the wind potential of Eastern Crete with the use of
experimental and numerical data’, Supervisor Professor: Georgios
Kosioris, Department of Mathematics and Applied Mathematics, UOC

09/2020 – until now: University of Crete (UOC), Department of Chemistry

• Master Degree: Environmental Science and Engineering
• Thesis: ‘Inverse modelling for improving estimates of anthropogenic

CH4 emissions over Greece using WRF-GHG-CarbonTracker Data
Assimilation Shell’, Supervisor Professor: Maria Kanakidou,
Department of Chemistry, UOC

LANGUAGES

• Mother Language: Greek
• English Language (fluent, C2 level, Michigan Proficiency,2013)
• German Language (B2 level, State Certificate of Language,2013 / B1

level, Goethe- Institut, 2013)

RESEARCH PROJECTS

Bachelor Diploma thesis: ‘Statistical analysis and evaluation of the wind
potential of Eastern Crete with the use of experimental and numerical data’.
Research on wind potential with weather research model Weather Research
and Forecasting (WRF) (NCAR) for region Siteia, Crete and analysis of
energy gain from installation of wind turbines.

PUBLICATIONS

• Evangelou et al., 2021. Methane distribution over Greece as derived
from Sentinel-5P TROPOMI data, 17th International Conference on
Environmental Science and Technology, 1-4 Sept, 2021

7

ΠΕΡΙΛΗΨΗ

Η υπερθέρμανση του πλανήτη που προκαλείται από τα αέρια του
θερμοκηπίου είναι ένα θέμα άκρως ανησυχητικό τα τελευταία χρόνια. Το
μεθάνιο (CH4), που είναι το δεύτερο πιο σημαντικό αέριο θερμοκηπίου μετά
το διοξείδιο του άνθρακα (CO2), αυξάνεται με ταχείς ρυθμούς, κυρίως λόγω
των ανθρώπινων δραστηριοτήτων. Στην παρούσα μελέτη, στοχεύουμε να
βελτιστοποιήσουμε τις εκτιμήσεις των ανθρωπογενών εκπομπών CH4 στην
Κεντρική-Ανατολική Μεσόγειο και στην Ελλάδα, όπως αναφέρεται από την
υπηρεσία Copernicus Atmosphere Monitoring Service, χρησιμοποιώντας
αντίστροφη μοντελοποίηση.

Για το σκοπό αυτό, εφαρμόζεται και χρησιμοποιείται το μοντέλο Weather
Research and Forecasting - Greenhouse Gas σε συνδυασμό με το
CarbonTracker Data Assimilation Shell, που ενσωματώνει δορυφορικές
παρατηρήσεις από το προϊόν TROPOMI/WFMD και επιτόπιες μετρήσεις από
το σταθμό στο Φινοκαλιά Λασιθίου. Επιλέχθηκαν δύο εμφωλευμένες περιοχές
μελέτης, η Κεντρική-Ανατολική Μεσόγειος και η Ελλάδα και βελτιστοποιούνται
πέντε διαφορετικές γεωγραφικές περιοχές σε αυτήν την περιοχή μελέτης.
Χρησιμοποιούνται 50 μέλη συνόλου με χρονικό βήμα βελτιστοποίησης μίας
εβδομάδας και παράθυρο αφομοίωσης 5 εβδομάδων. Η περίοδος
αντιστροφής ορίζεται στις πρώτες δέκα εβδομάδες του 2019.

Ερευνήσαμε δύο διαφορετικές περιπτώσεις, μία με σφάλμα μοντέλου
μεταφοράς 10 ppb και 5 ppb για τα δορυφορικά δεδομένα και τις επίγιες
μετρήσεις, αντίστοιχα και μία με δέκα φορές μεγαλύτερο σφάλμα. Σε όλες τις
εβδομάδες που αντιστρέφονται για τις δύο προσομοιώσεις, προβλέπονται
σχεδόν μόνο αρνητικές ροές. Αυτό αποδίδεται σε υψηλές αρχικές και οριακές
συνθήκες σε σύγκριση με τις παρατηρήσεις που επιλέχθηκαν για το σύστημά
μας. Επιπλέον, προβλέπονται διαφορετικοί αριθμοί περιοχών με θετικές
εκπομπές από κάθε προσομοίωση, υποδεικνύοντας τη μεγάλη επίδραση του
του σφάλματος του μοντέλου μεταφοράς στα αποτελέσματα εκτίμησης
εκπομπών.

Λέξεις κλειδιά: μεθάνιο, εκπομπές, WRF, CTDAS, αντίστροφη

μοντελοποίηση, σφάλμα μοντέλου μεταφοράς

8

ABSTRACT

Global warming induced by greenhouse gases has been an issue of outmost
concern in the recent years. Methane (CH4), which is the second most
important greenhouse gas after carbon dioxide (CO2), increases rapidly,
mainly due to human activities. In the present study, we aim to optimize the
estimations of CH4 anthropogenic emissions over Central-Eastern
Mediterranean and over Greece as reported by Copernicus Atmosphere
Monitoring Service, using inverse modeling.

For this purpose, Weather Research and Forecasting - Greenhouse Gas
model coupled with CarbonTracker Data Assimilation Shell, integrating
satellite observations from TROPOMI/WFMD product and in-situ
measurements from Finokalia station is implemented and used. Two one-way
nested domains are selected, one over Central-Eastern Mediterranean and
one over Greece and five different geographical regions in this study area are
optimized. 50 ensemble members are used in the inversion with an
optimization time step of one week and an assimilation window of 5 weeks.
The inversion period is set to the first ten weeks of 2019.

We investigated two different setups, one with transport model error of 10 ppb
and 5 ppb for satellite data and in situ measurements, respectively and one
with ten times larger error. In all of the weeks inverted for the two simulations,
almost only negative fluxes are predicted. This is attributed to high initial and
boundary conditions compared to the observations that were selected to work
as input in our system. Furthermore, different number of positive emission
regions in the study area are predicted by each inversion setup indicating the
large influence of transport model error magnitude in the emissions estimation
results.

Keywords: Methane, emissions, WRF, CTDAS, inverse modeling, transport

model error

9

CONTENTS

 Page

CHAPTER 1. Earth

1.1 Climate and Greenhouse Effect…………………………………….….11
1.2 Methane……………………………………………………………….….13

1.2.1. Atmospheric importance of methane ……………………….....13

1.2.2. Methane cycle…………………………………..………………..15

1.2.3. Major methane sinks…………………………………………….15

1.2.4 Major methane sources………………………………………….17

 1.2.5. CH4 sources in Greece……………………………………….….26

1.3 Aim of the study………………………………………………………….27

CHAPTER 2. Methodology

2.1 Inverse modeling………………………………………………………..28

2.2 CarbonTracker Data Assimilation Shell………..……………………..28

2.3 Weather Research and Forecast – Greenhouse Gas model….….. 35

2.4 Model and Inversion Framework setup …………….……………….. 36

2.4.1. Observations….……………………………………………….....36

2.4.2. Model Setup……………………………………..………………..38

 2.4.3. Apriori Emissions………………………………………………….39

 2.4.4. CTDAS setup………………………………………………..……..42

CHAPTER 3. Results and Discussion

3.1 Inversion results ………………………………………………………..44

3.2 Discussion……...………………………………………………………..55

APPENDIX A…………………………………………………………………….57

APPENDIX B…………………………………………………………………….58

APPENDIX C…………………………………………………………………….62

REFERENCES…………………………………………………………………..84

Field Code Changed

Field Code Changed

10

ABBREVIATIONS

 CH4: Methane

CO2: Carbon Dioxide

CO: Carbon Monoxide

 CTDAS: CarbonTracker Data Assimilation Shell

 EnSRF: Ensemble Square Root Filter

GHG: GreenHouse Gas

TM5: Transport Model 5

TROPOMI: TROPOspheric Monitoring Instrument

TROPOMI/WFMD: TROPOspheric Monitoring Instrument / Weighting

Function Modified Differential Optical Absorption Spectroscopy

WRF: Weather Research and Forecasting model

WRF-GHG: Weather Research and Forecasting – Greenhouse Gas model

11

1. Earth

1.1 Climate and Greenhouse Effect

The term "climate" refers to the weather's average behavior over a long time
period. It's not always easy to figure out what the typical time period is for
defining the climate. Too short spans of time are insufficient to balance year-
to-year variations, while too long periods can encompass numerous periods of
climate change. Climate change has a characteristic time period ranging from
decades to centuries. The average duration for defining the climate is 30
years. The global average annual surface temperature is the most commonly
used variable to characterize climate, however other factors such as rainfall
frequency and amount can also be considered. Changes in the average
values of these factors, as well as their variability, are part of climate change.
The balance controls surface temperature between solar energy inflow and
the planetary heat emission in space.

Solar radiation is the primary source of energy for the Earth system. As a
black body with an active temperature of TS = 5800 K, Sun emits radiation.
The black body's associated energy flow is given by the Stefan-Boltzmann law
F = σTS

4, where σ is the Stefan-Boltzmann constant, equal to 5.67 × 10–8 W
m–2 K–4 and F the flux through a surface perpendicular to the incoming
radiation. Solar radiation has a peak at 0.5 μm and extends to all
wavelengths. The Earth disk (surface perpendicular to the incoming radiation)
interrupts the passage of solar energy by 1365 W m– 2. This amount is known
as the solar constant and is represented by the letter S. As a result, the
average solar flux received by Earth’s disk is S / 4 = 341 W m– 2. Clouds and
the Earth's surface reflect a fraction of the incoming solar energy back into
space (around 30%). This is known as the planetary albedo (α=0.3). The
Earth-atmosphere system absorbs the rest of the energy. The black body
radiation emitted by the Earth at an active temperature TE compensates for
this energy input. The relationship between solar heating and ground cooling
at steady state is:

(1-α) × S/4 = σTE
4

TE = 255 K (-18 οC) is the average active temperature of Earth obtained from
this equation. The wavelengths of terrestrial emission correspond to the
infrared (IR), with a peak at 10 μm.

12

On average, roughly 341 W m-2 of solar energy enters the Earth’s atmosphere
each year, with 30% of the energy being reflected back into space, leaving
about 235 W m-2 to be absorbed by the Earth/Atmosphere system (Fig. 1).
Clouds account for around two-thirds of the 107 W m-2 reflected back into
space, the surface for about one-eighth, and Rayleigh atmospheric scattering
for the rest. Although the surface-atmosphere system's total absorbed and
transmitted energy is balanced at 235 W m-2, process fluxes and energy
transfer within the system, between the surface outflux of Earth’s radiation
through the top of the Atmosphere and the Atmosphere, and within the
Atmosphere itself, modify this balance and Earth’s temperature from -18 oC
(255 K) to +15 oC (288 K). In fact, certain gases, aerosols, and clouds in the
atmosphere absorb around 70 percent of the 235 W m-2 of the outgoing
longwave Earth’s radiation. Indeed, infrared terrestrial radiation released from
the surface is trapped by some gases, the so-called greenhouse gases.
Therefore, the actual Earth’s temperature is 33 K higher than the average
active temperature. This is the natural greenhouse effect. Greenhouse gases
are molecules that absorb infrared light and thereby lower the amount of
terrestrial radiation that escapes into space warming the Earth/Atmosphere
system. According to quantum physics, vibrational transitions are only allowed
if they affect the molecule's bipolar moment. Greenhouse gases are any
molecules with an asymmetric charge distribution (CO, chlorofluorocarbons)
or the ability to obtain charge distribution through tension or bending (CO2,
CH4, N2O, H2O, O3).

Figure 1. Global annual average energy balance of the Earth for the period
2000-2004. The units are W m-2. (Brasseur & Jacob, 2017)

13

A change in the planet's energy balance at the top of the atmosphere that has
the potential to modify global temperature, such as that resulting from a
change in the quantity of sunlight that strikes the Earth or a change in the
abundance of CO2 in the atmosphere, is referred to as climate forcing. It has
been observed that greenhouse gas (GHG) concentrations have risen during
the last century. The resulting net trapping of infrared radiation in the Earth –
Atmosphere system increases as GHG concentrations rise, contributing to the
human greenhouse effect. The amount of rise in each GHG's concentration,
the absorption spectrum of each, and potential interactions with other
atmospheric components, all influence the ensuing climate change (Brasseur
& Jacob, 2017).

1.2 Methane

1.2.1. Atmospheric importance of methane

Methane (CH4) is a hydride of group-14 of periodic table, the simplest alkane.
Naturally occurring methane is found both below ground and below the
seabed and is formed by both geological and biological processes. When CH4
reaches the surface and the atmosphere, it is known as atmospheric
methane. Methane is second in importance to CO2 among greenhouse gases
with significant anthropogenic sources. Typically, in a time horizon of 100
years, CH4 will be 28 times more efficient per mass as a greenhouse gas than
CO2 (Bruhwiler et al., 2014). In the atmosphere, it is gradually oxidized
producing CO2 and moisture (H2O), which are also greenhouse gases.

An ongoing growth in global CH4 is observed since the industrial revolution. In
the pre-industrial period methane concentration was about 722 ppbv, then
increased and stabilized around the year 2000 to approximately 1775 ppbv,
resuming globally an increase in 2007 with the current global average around
1910 ppbv (Fig. 2) (https://gml.noaa.gov/ccgg/trends_ch4/). As a greenhouse
gas, CH4 contributes around 20% of the total radiative forcing from all the
long-lived globally mixed greenhouse gases (0.5 ± 0.05 W m−2) (Zhou et al.,
2018). Therefore, the significance of CH4 and its potential to be a in global
climate warming is beyond controversy.

Field Code Changed

https://gml.noaa.gov/ccgg/trends_ch4/

14

Figure 2. Global Methane trend since 1983 (source:
https://gml.noaa.gov/ccgg/trends_ch4/)

As the governments became aware of the ongoing climate crisis, they signed
one of the most important agreements for environment protection, the Paris
Agreement in 2015, promising to confine global warming by the mid of 21st
century to less than 2 o C or preferably, to less than 1.5 o C compared to the
pre-industrial average temperature (https://unfccc.int/process-and-
meetings/the-paris-agreement/the-paris-agreement). For sustainable
development of the society and in order to fulfill the commitment of the Paris
Agreement, it is necessary to limit anthropogenic climate change through
targeted emission reductions, especially emissions of greenhouse gases,
such as CO2 and CH4. While CO2 is the major contributor to the climate
change, CH4 compared to CO2 has a short lifetime (about 10 years for
methane, several decades to centuries for CO2), therefore its atmospheric
concentrations will respond faster than CO2 to emission changes.

Field Code Changed

Field Code Changed

https://gml.noaa.gov/ccgg/trends_ch4/
https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement
https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement

15

1.2.2. Methane cycle

Figure 3. Methane cycle (source: Encyclopedia Britannica).

Methane sources are of both anthropogenic and biogenic origin, varying from
fossil fuels and ruminants to wetlands and termites. Methane sinks in the
troposphere are the reactions with hydroxyl radical, OH, chlorine radical, Cl
both in the troposphere and stratosphere, and O1D in the stratosphere as well
as deposition to the surface (Fig. 3).

1.2.3. Major Methane sinks

O(1D), singlet oxygen, is produced by O3 photolysis both in troposphere and
stratosphere. In the troposphere, O1D reacts with water vapor (H2O) to
produce hydroxyl radical, OH.

Globally, the main oxidation reaction of methane, is with the hydroxyl radical:

16

𝐶𝐻4 + 𝑂𝐻 → 𝐶𝐻3 + 𝐻2𝑂 (𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 1)

The methyl radical, CH3, reacts instantaneously with O2 to give methyl peroxy
radical, CH3O2, which is also very reactive in the atmosphere (Müller et al.,
2016) that will further react to form secondary products like formaldehyde, CO
and ultimately CO2.

𝐶𝐻3 + 𝑂2 + 𝑀 → 𝐶𝐻3𝑂2 + 𝑀 (𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 2)

so that CH4 + OH reaction can therefore be written as:

𝐶𝐻4 + 𝑂𝐻
𝑂2
→ 𝐶𝐻3𝑂2 + 𝐻2𝑂 (𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 3)

The rate coefficient for reaction 1 is k1 = 1.85 × 10-12 exp (-1690 / T) cm3

molecule-1 s- 1 (Atkinson et al., 2006). The lifetime of CH4 due to the reaction
with OH is roughly 9 years at T = 273 K and [OH] = 106 molecules cm-3.
Despite its long lifetime, CH4 has a major effect on background tropospheric
chemistry because of its large concentration (Seinfeld et al., 1998).

Another sink is the atomic chlorine (Cl) radical. The free atomic chlorine
radicals in the atmosphere react with methane, resulting in the formation of
HCl and a methyl radical (CH3) that will further react as above discussed.

A smaller sink of methane is the methanotrophic organisms in the soil. A
group of bacteria leads to the oxidation of methane with nitrite as an oxidant in
the absence of oxygen, causing the so-called anaerobic oxidation of methane.
For simplicity, this sink is described in atmospheric numerical models as a dry
deposition process.

17

1.2.4. Major Methane sources

In contrast to methane sinks, there is a wide variety of sources that
significantly contribute to methane emissions. The following are the major
methane sources we come across globally.

Biomass burning includes the incineration of living and dead materials in
forests, savannas and agricultural waste and the incineration of fuel wood.
Under ideal conditions of complete combustion, the combustion of the
biomass material produces CO2 and water vapor (H20). Since complete
combustion is not achieved under any biomass combustion conditions, other
types of carbon, including carbon monoxide (CO), methane (CH4), non-
methane volatile organic compounds (NMVOC), and particulate carbon are
produced (Fig. 4). The flaming phase is close to complete combustion, while
the smoldering phase is close to incomplete combustion. Open air biomass
combustion contributes between 20 to 60 Tg C yr-1 in the form of methane to
the global atmosphere. This represents 5 to 15% of the world's annual
methane emissions. Measurements show that biomass combustion is the
overwhelming source of CH4 in tropical Africa (Levine, 2000).

The contribution of biomass combustion to the total budget of methane or any
other species depends on a variety of ecosystem and fire parameters,
including the specific ecosystem burned, the mass consumed during
combustion, the nature of the combustion (complete or incomplete), and
knowledge of how emission factors (EF, amount of methane emitted per unit
of burned material) vary depending on changing fire conditions in different
ecosystems. The accuracy in the determination of all these parameters reflect
in the accuracy of the estimate of biomass combustion emissions.

Figure 4. Estimates of carbon release and CO2, CH4, CO emissions from fires
as a function of fuel type (steppe, forest, and peatland) and burn severity

(severe, moderate, light) based on fraction of biomass (carbon) consumed.
Uncertainties in these estimates are ± 50 % (Levine, 2000).

18

Hydrate gas is an ice-like substance formed when water and low molecular
weight gases (CO2, H2S, CH4 and higher order hydrocarbons) combine into a
clathrate structure (Fig. 5). They are cage-like structures, with 1 m3 of
hydrated CH4 resulting from trapping a maximum of 180 m3 of methane as
measured at standard temperature and pressure (STP). Hydrate gas, a
naturally occurring and highly concentrated form of methane, traps significant
carbon in the global system. It is widespread in the sediments of the marine
continents and frost areas.

Hydrate gases are destabilized by increasing temperature or decreasing
pressure, conditions that are rarely associated with the same climate. For
elastic sediments, that are sediments that bend under load and recover when
the load is removed, the pressure disturbance associated with sea level rise
would be relatively instantaneous. Conversely, the impact of temperature
changes on the tundra (hydrated permafrost) or seabed (marine or submarine
hydrated permafrost) on deep-buried hydrates can be delayed by hundreds or
thousands of years, depending on thickness and temperature of the
supernatants, that is the upper layers of soil and liquid. This lag means that
hydrate gas remains stable over centuries and in response to climate change
can release significant methane gas on millennial scales (Ruppel & Kessler,
2017).

Figure 5. Gas hydrates structure (source:
https://worldoceanreview.com/en/wor-1/energy/methane-hydrates/)

Field Code Changed

https://worldoceanreview.com/en/wor-1/energy/methane-hydrates/

19

Landfills: CH4 estimates for global waste disposal methane emissions range
from 9 to 70 Tg yr-1.

Methane is formed by methanogenic bacteria, either by decomposition of
organic acids into CH4 and CO2, or by reducing CO2 with hydrogen.
Representative reactions are shown below:

𝐶𝐻3𝐶𝑂𝑂𝐻 → 𝐶𝐻4 + 𝐶𝑂2 (𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 4)

𝐶𝑂2 + 4𝐻2 → 𝐶𝐻4 + 𝐻2𝑂 (𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 5)

The percentage of landfill carbon that is eventually converted to methane and
carbon dioxide is not satisfactorily high. In the best case, 25% to 40% of
waste carbon can be converted to biogas, that is methane produced by
landfills and can be used as fuel. Field and laboratory studies suggest that
maximum methane from landfill waste is approximately 0.06 to 0.09 m3 per kg
of dry waste depending on the moisture content and other variables such as
organic load, storage capacity and nutrients. Landfill CH4 emissions after
2012 show a rapid upward trend (Fig. 6), which reflects the growth trend of
the urban population. As the rapid increase in the urban population can lead
to rapid growth in the disposal of solid waste, if there is no significant
implementation of landfill methane mitigation measures, a rapid increase in
emissions should also be expected. (Bogner & Spokas, 1993)

Figure 6. Landfill methane emissions by world region: 1970-2017 (Zhao et al.,
2019)

20

Livestock is the largest anthropogenic source in the global methane budget
(103 Tg CH4 yr-1 mean over the period 2000–2009). Annual mean ruminant
intestinal fermentation predominates in this source and represents emissions
of 87–97 Tg CH4 yr - 1 during the period 2000–2009. Animal manure
management has a smaller contribution. Cattle, buffalo, goats and sheep are
the main types of animal ruminants that emit CH4 and together account for
96% of the global source of intestinal fermentation.

The animal's microbiome is made up of bacteria, fungi, protozoa and archaea
that turn grass into a source of energy for ruminants, but also produce
methane as a by-product of fermentation. CH4 is produced by a group of
germs called methanogens (archaea). CH4 is released into the atmosphere
from the stomach through the animal's breath or during the storage of manure
and pulp (Fig. 7) (Patra et al., 2017).

It is estimated that global FCH4-ruminant doubled from 48.5 ± 5.6 Tg CH4 yr-1 in
1961 to 99.0 ± 11.7 Tg CH4 yr-1 in 2012. The increase of emissions took place
mainly in Latin America and the Caribbean, in East and Southeast Asia, in
Sub-Saharan Africa, Near East and North Africa and South Asia. In contrast,
from 1961 to 2012, FCH4-ruminant decreased in Europe and Russia by 31% and
54%, respectively, making 2012 emissions lower than those of 1961 in these
two regions (Chang et al., 2019). Number of bovine animals in Europe can be
shown in Fig. 8.

Figure 7. Enteric fermentation (source: https://letstalkscience.ca/) Field Code Changed

https://letstalkscience.ca/

21

Figure 8. Number of bovine animals in Europe (source: Eurostat,
https://ec.europa.eu/, last access: 3/2022).

Fuels: Methane can be emitted by coal, oil and gas plants. Natural gas is
composed mainly of CH4 and secondarily of ethane (C2H6) and propane
(C3H8). Methane emissions are mainly due to leakage into the atmosphere
during the various stages of natural gas exploitation and transportation, and
from mines (Fig. 9). Fig. 10 shows the natural gas system in Greece.

The presence of C2H6 in the atmosphere can be an indicator for CH4

emissions. Thermogenic and biogenic methane sources can be separated
using the ethane-to-methane emission ratios. Although there are no relevant
emissions of C2H6 during microbial methanogenesis, C2H6 is emitted
together with CH4 from thermal sources, i.e. mainly from the extraction of
fossil fuels. The ethane-to-methane emission ratio (EMR) is greater than 1.0%
for most methane thermogenic sources, while biogenic sources are
characterized by EMR values below 0.1% (Hausmann et al., 2016).

Field Code Changed

https://ec.europa.eu/

22

Figure 9. GHG and Black Carbon emissions by fossil fuel industry (source:
https://tropicsu.org/lesson-plan-hydrocarbons-and-climate-change/)

Figure 10. Natural gas distribution system in Greece (source:
https://www.desfa.gr/)

Rice fields: The main carriers responsible for methane’s emissions from rice
fields are methanogenic bacteria. Such microorganisms perform well under
anaerobic conditions and are collecting organic carbon and converting it to
methane. The starting materials for the involved reactions are the straws of

Field Code Changed

Field Code Changed

https://tropicsu.org/lesson-plan-hydrocarbons-and-climate-change/
https://www.desfa.gr/

23

rice plants which represent the main inflow of organic matter (Fig.11). These
materials usually accumulate during the rainy season or flood periods,
decompose and become the main source of methanogenic substrates.

During the rainy season the emissions are higher, while at the same time
there are reductions in rice production. On the other hand, during the dry
season, methane emissions are lower. At the same time, rice yields are low
during the dry season and high during the rainy season. This is explained by
the fact that in the wet season, the resulting photosynthesis produces carbon,
but the lack of flowers and blossoms makes this carbon unavailable for grain
production and therefore low rice production. This amount of carbon that is
not used for seed production enters the soil as rotten roots and as the leaf
litter falls, it serves as a raw material for methanogens, leading to high CH4
emissions in the wet season. In the dry season scenario, much of the carbon
is used for sowing and active rice production, resulting in lower CH4
emissions and higher rice production.

Globally, most of CH4 emissions from rice fields occur in and around the
tropics, subtropics and parts of the temperate north. Southeast Asia
contributes 90% to the global rice emissions. Africa and South America add
3.5% and 4.7% to the global rice methane budget respectively. The
percentage of CH4 emissions from rice fields is increasing at a rate of 0.7-
1.1% per year. This corresponds to 10-70% of man-made methane (Sanchis
et al., 2012).

Figure 11. Methane emissions from rice fields (Sanchis et al., 2012).

24

Wetlands: Anaerobic CH4 is also released by wetlands into the atmosphere
after being affected by a combination of processes involving methanotrophic
bacteria in the soil through plant transport structures known as "aerenchyma",
by ebullition or through soil pores. Differences between current and prehistoric
emissions are due to changes in wetland area and various variables, including
nitrogen deposition, sedimentation, temperature, land use change and land
cover. The largest change in wetland emissions from prehistoric industry
occurred in the northern temperate zone (−79%) with smaller changes in high
latitudes (+ 9%) (Fig. 12). In the northern regions, the increase in CH4
emissions corresponds to the increase in wetlands and air temperature, while
in the tropics the decrease in wetland area and the large fluctuation of rainfall
are responsible for the reduced CH4 emissions. The world's largest source of
atmospheric CH4 (1-2.37 × 105 Tg yr-1) is acidic wetlands, such as peat and
fences, which cover 3.5% of the earth's surface but store about 30% of the
global carbon of terrestrial ecosystems. Acidic wetlands can be temporarily
converted into atmospheric CH4 sinks, or at least have the potential to
consume atmospheric CH4, which is currently underestimated and poorly
understood at the microbial level (Kolb & Horn, 2012) (Poulter et al., 2017).

Figure 12. Wetland methane emissions estimates for the preindustrial (PI) and
present-day conditions for the entire Globe. Preindustrial emissions are mean

values from 1850 to 1869 (PI simulation) and present-day emissions are
simulated mean values from 1993 to 2004. The box shows the interquartile

range, the whiskers show the maximum and minimum, and black lines gives
the median methane emissions. The purple line gives the results from Paudel

et al. (2016).

25

Each of these sources and sinks contributes to methane abundances in a
different extent. Fig.13 depicts the mean global methane budget for the period
2000 to 2009. Methane emissions from human activities have surpassed
natural emissions since the 1980s (Salawitch et al., 2017). As above
discussed, human activities that produce methane include energy production
from natural gas, coal and oil, decomposition in landfills, ruminant farming and
rice cultivation. Wetlands are the main natural source of methane; while
biomass burning emissions have a significant human contribution. Despite the
importance of methane as a greenhouse gas in the Earth's atmosphere, there
are still great uncertainties about the location and intensity of emission
sources. The two major difficulties in reducing uncertainty stem from the wide
variety of geographically overlapping diffuse CH4 sources and the destruction
of CH4 by the very short-lived OH radical.

Figure 13. Global methane budget (2000-2009) from (Salawitch et al., 2017).

26

1.2.5. CH4 sources in Greece

Specifically, in Greece waste is the most significant source of anthropogenic
methane emissions, accounting for about 45% of total methane emissions in
2019 (without LULUCF). Since 1990, methane emissions from waste have
been reduced by 1.35%, owing primarily to solid waste disposal on land and
wastewater treatment. Agriculture's methane emissions declined by 9.1 % in
2019 compared to 1990 levels. Agriculture accounted for 44.6% of total
methane emissions in 2019, with enteric fermentation being the primary
source category in the sector. Energy-related methane emissions (mostly
fugitive emissions from coal mining and the production, processing, and
distribution of liquid fuels and natural gas) account for nearly 10% of overall
methane emissions (Fig. 14) (Ministry of Environment and Energy, 2021).

Figure 14. Anthropogenic CΗ4 emissions in Greece by major sectors for the
period 1990 – 2019. Left axis provides emissions in kt CH4 yr-1. IPPU is the
Industrial Processes and Product Use sector. Right axis provides percent

change compared to 1990 emissions (Ministry of Environment and Energy,
2021).

27

1.3 Aim of the study

In the present study, we aim to improve the estimations of the sum of
methane total anthropogenic emissions over Central-Eastern Mediterranean
as well as over Greece as provided by Copernicus Atmosphere Monitoring
Service version 4.2 emission dataset, with the aid of inverse modeling.

For this purpose, we use the Weather Research and Forecasting-
Greenhouse Gas numerical model (Beck et al., 2011) coupled with
CarbonTracker Data Assimilation Shell (Van Der Laan-Luijkx et al., 2017), the
optimization algorithm of which is the Ensemble Square Root Kalman Filter.

Regarding the observations against which the emissions are optimized,
satellite observations from TROPOspheric Monitoring Instrument WFMD
product from Institute of Environmental Physics (IUP), University of Bremen
(Schneising et al., 2019) and in-situ measurements from Finokalia station
(htpp://finokalia.chemistry.uoc.gr), Lasithi from Environmental Chemical
Processes Laboratory, University of Crete are integrated into the model
system.

28

2. Methodology

2.1. Inverse modeling

In the present study, we attempted to improve methane anthropogenic
emissions through data assimilation. Data assimilation is a time-stepping
technique in which we optimize the variables driving a physical system, using
observations of that system. In atmospheric chemistry, data assimilation is
commonly referred as a type of problem in which we aim to optimize a gridded
time-dependent 3-D model field of atmospheric concentrations or emissions
based on measurements of these concentrations or associated factors.

The variables we want to optimize are referred to as state variables, and they
are assembled into a state vector x. We construct the observations into an
observation vector y in the same way. The forward model of the physical
system, model F, describes our understanding of the link between x and y:

𝑦 = 𝐹(𝑥,𝑝) + 𝜀0 (1)

where, p is a parameter vector that includes all model variables that we don't
want to optimize as part of the inversion, and ε0 is an observational error
vector that includes contributions from measurements, the forward model, and
model parameters errors. The forward model predicts the effect (y) as a
function of the cause (x) using equations that describe the system's physics.
We can quantify the cause (x) from observations of the effect by inverting the
model (y). The solution is a best estimate of x, which is called the ideal
estimate, posterior estimate, or retrieval. Other limitations on the value of x
may help to reduce the error on the optimal estimate due to the uncertainty in
deriving x from y. This is called prior information. The prior estimate xA, which
represents our best guess of x before the observations are made and has an
error of εA, is a typical constraint used in assimilation. The best estimate is
calculated based on the error statistics of 𝜀0 and xA, (Brasseur & Jacob, 2017).

2.2. CarbonTracker Data Assimilation Shell

CarbonTracker is a data assimilation system for CO2 that predicts global
carbon sources and sinks. It was created at the National Oceanic and
Atmospheric Administration's (NOAA) Earth System Research Laboratory
(ESRL) between 2005 and 2007 (Peters et al., 2005). Following that,

29

development and application were split into two branches: (1) CarbonTracker
(NOAA/ESRL) and (2) CarbonTracker Europe (CTE). Here we refer to the
CTE version.

Using atmospheric observations of CO2 mole fractions, the CarbonTracker
data assimilation system for CO2 estimates the carbon exchange between the
atmosphere, land biosphere, and seas. TM5 transport model which connects
surface fluxes to atmospheric CO2 mole fractions, is a major component of
CarbonTracker (Van Der Laan-Luijkx et al., 2017). In 2005, the existing TM5
CO2 model version was also coupled with Carbon-Tracker, which required
only a little amount of new code to use as a CO2 ensemble Kalman smoother.
New CarbonTracker requirements evolved over time, requiring the handling of
new and more sophisticated data structures and work flows, which were
difficult to implement in Fortran and not necessarily consistent with the
continued development of TM5. This resulted in the CarbonTracker Data
Assimilation Shell, a new object-oriented Python programming language
implementation (CTDAS). It is built in a modular manner, allowing for the
addition of new observation types, changes to the structure of the underlying
state vector, and even the replacement of the transport model (e.g. WRF-
GHG) or optimization method (e.g. four-dimensional variational) with only
minor additional code within a single module (Van Der Laan-Luijkx et al.,
2017).

In our study, CTDAS is coupled with the WRF-GHG transport model (Beck et
al., 2011). Using observations of atmospheric CH4 mole fractions, the
CarbonTracker data assimilation system for CH4 estimates methane emission
fluxes. CarbonTracker is a fixed-lag ensemble Kalman smoother application
based in the Bayesian approach (Peters et al., 2005). In the following, we
explain how Carbon Tracker works with regard to methane.

The cost function (J) that represents the accuracy with which the system is
solved, is used to optimize the surface CH4 fluxes:

𝐽(𝑥) = �𝑦0 − 𝐻(𝑥)�𝑇𝑹−1�𝑦0 − 𝐻(𝑥)� + (𝑥 − 𝑥𝑏)𝑇𝑷−1(𝑥 − 𝑥𝑏) (2)

where yο are the atmospheric CH4 mole fraction observations, with their error
covariance R (model-data-mismatch error). H is the observation operator,
which is an atmospheric transport model. H connects the observations yo to
the scalars that modify the surface CH4 fluxes, which are included in the state
vector x, with their error covariance R. The background state vector xb with
error covariance P contains prior information about the emission fluxes.
Superscript T corresponds to the transpose of the matrix.

30

The state vector x and its covariance P that minimizes J can be shown to be:

𝑥𝑡𝑎 = 𝑥𝑡𝑏 + 𝑲(𝑦𝒕0 − 𝐻(𝑥𝑡𝑏)) (3)

𝑷𝑡𝑎 = (𝑰 − 𝑲𝑯)𝑷𝒕𝒃 (4)

in which t is a subscript for time, superscript b refers to background quantities
and a to analyzed ones, H is the linear(ized) matrix form of the observation
operator H, I is the identity matrix and K is the Kalman gain matrix defined as:

𝑲 = �𝑷𝒕𝒃𝑯𝑻�(𝑯𝑷𝒕𝒃𝑯𝑻 + 𝑹)−𝟏 (5)

Kalman gain is the weight assigned to the measurements and current-state
estimate. When the error covariance matrix of the observation is very large
compared to the state vector (R>>P), then K is nearly 0, meaning you trust
the model more than the measurements. When R<<P, then K is nearly 1
meaning you trust the measurement more than the model. In other words,
with a large gain, the filter gives measurements more weight, and so conforms
to them more quickly. The filter follows more closely to the model predictions
when the gain is low. A high gain close to one will provide a jumpier estimated
prediction, whereas a low gain close to zero will smooth out noise but reduce
responsiveness.

In an ensemble Kalman filter, the information in the covariance matrix P is
represented in fewer dimensions N by an ensemble of state vectors xi
composed of a mean state, and deviations from the mean state:

𝑥𝑖 = 𝑥̅ + 𝑥′𝑖 (6)

The deviations x’i are created such that the normalized ensemble of
deviations defines the columns of a matrix X:

𝑿 = 1
√𝑁−1

 (𝑥′1,𝑥′𝟐, … , 𝑥′𝑁)𝑻 = 1
√𝑁−1

 (𝑥1 − 𝑥,� 𝑥2 − 𝑥,� … , 𝑥𝑁 − 𝑥̅) (7)

31

which is the square root of the covariance matrix

𝑷 = 𝑿𝑿𝑻 (8)

When N → ∞ this representation of P is exact, while in an ensemble Kalman
filter with a finite number of members, P is approximated.

Whitaker & Hamill (2002) provided an efficient approach for calculating an
optimized ensemble from a background ensemble with the correct covariance
structure. This is the ensemble square root filter (EnSRF). The batch of
observations relating to one filter time step are processed one at a time in the
sequential/serial EnSRF algorithm, reducing the size of the Kalman gain
matrix K in each sequential analysis step to a vector that has the size of the
number of unknowns. The Kalman gain matrix is derived using the following
approximations from the ensemble of state vectors and equation (5):

𝑯𝑷𝑯𝑻 ≈ 1
√𝑁−1

�𝐻(𝑥′1),𝐻(𝑥′2), … ,𝐻(𝑥′𝑁)� ∙ (𝐻(𝑥′1),𝐻(𝑥′2), … ,𝐻(𝑥′𝑁))𝑇 (9)

𝑷𝑯𝑻 ≈ 1
√𝑁−1

(𝑥′1, 𝑥′2, … , 𝑥′𝑁) ∙ �𝐻(𝑥′1),𝐻(𝑥′2), … ,𝐻(𝑥′𝑁)�𝑇 (10)

where each entry N denotes one column of ensemble state vectors or
ensemble modeled CH4 values as in equation (7).

The Kalman gain matrix is used to update the mean state vector with equation
(3), whereas the deviations from the mean state vector are updated
independently using:

𝑥′𝑖
𝑎 = 𝑥′𝑖

𝑏 − 𝒌�𝐻(𝑥′𝑖
𝑏) (11)

Where the vector 𝒌� is related to the Kalman gain matrix K by a scalar quantity
α calculated as:

𝒌� = 𝑲 ∙ 𝑎 (12)

32

𝑎 = (1 + � 𝑹
𝑯𝑷𝒃𝑯𝑻+𝑹

)−1 (13)

The analyzed mean and ensemble state from one observation will serve as
the background state for the next until all observations are processed.

To reflect the additional information in the updated state vectors, we must also
update the ensemble of sampled CH4 concentrations H(xi’b). Each modeled
CH4 concentration that corresponds to a yet-to-be-assimilated observation m
(denoted H(xt)m here) is updated using the equation:

𝐻(𝑥𝑡𝑎)𝑚 = 𝐻(𝑥𝑡𝑏)𝑚 + 𝑯𝒎𝑲(𝑦𝑡0 − 𝐻(𝑥𝑡𝑏)) (14)

whereas the deviations are updated using:

𝐻(𝑥′𝑖
𝑎)𝑚 = 𝐻(𝑥′𝑖

𝑏)𝑚 − 𝑯𝒎𝒌�(𝑦𝑡0 − 𝐻(𝑥′𝑖
𝑏)) (15)

In the right-hand side of this equation the operator Hm has been substituted
by its matrix equivalent Hm.

The so-called dynamical model M plays a crucial role in data assimilation.
Before fresh observations are provided to the system, this model predicts the
evolution of the state vector through time and hence offers an initial guess of
the state vector:

𝒙𝑡+1𝑏 = 𝑀(𝒙𝑡𝑎) (16)

In our case we use (16) to propagate the mean of the state, and prescribe its
covariance structure at each new step drawing a new ensemble of N flux
deviations from a specified background covariance to represent the Gaussian
Probability Density Function around the flux.

33

CarbonTracker calculates scaling factors (λr) that multiply anthropogenic
emissions. For each spatial region r and each time step (t) we want to better
quantify the emissions, the total carbon fluxes F(x,y,t) are represented by:

𝐹(𝑥,𝑦, 𝑡) = 𝜆𝑟 ∙ 𝐹𝑎𝑛𝑡ℎ𝑟𝑜(𝑥,𝑦, 𝑡) + 𝐹𝑓𝑖𝑟𝑒(𝑥,𝑦, 𝑡) + 𝐹𝑏𝑖𝑜(𝑥,𝑦, 𝑡) (17)

The scaling vectors (λr) multiply Fanthro, which are pre-calculated space–time
anthropogenic emissions obtained from Copernicus Atmosphere Monitoring
Service (prior fluxes, see section 2.4.3). Fire emissions and biogenic fluxes
are not optimized and we assume 100% certainty for them.

The obtained modeled mole fractions are compared to atmospheric data in
CTDAS, and the differences are minimized by changing the flux scaling
vectors (λr) resulting in optimum posterior fluxes. For each new time step t,
the background scaling factors (λb) are chosen as the average of the optimal
scaling factors (λa) from the two preceding time steps, plus the fixed prior
value (λp) we select, as in the following equation by (Van Der Laan-Luijkx et
al., 2017).

𝜆𝑡
𝑏 = 𝜆𝑡−2

𝑎+𝜆𝑡−1
𝑎+ 𝜆𝑝

3.0
 (18)

When inferring to fixed-lag assimilation window, we mean that instead of
solving the Bayesian system in one large operation, smaller subsets of
unknowns are optimized in a time stepping approach as in Bruhwiler et al.
(2005). In the fixed lag ensemble square root Kalman filter used in CTDAS,
the state vector contains flux estimates for multiple time steps t each
corresponding for instance, to an one-week mean. This is indicated by the
system’s ‘‘lag’’. In other words, the relationship between the state vector x and
observations y described by operator H spans several timesteps t.

A CTDAS cycle proceeds as follows (Fig. 15):

(1) We run the forward model from the background concentration fields in
CH4i(x,y,z,t) to CH4i(x,y,z,t + 12) forced by the fluxes in xi(0,. . .,11) (A
to B in the figure), and extract CH4 mixing ratios at the observation
times and locations. This allows us to construct an ensemble of
modeled CH4 at each site.

(2) Equations (3) and (11) are solved to give an analyzed ensemble of
fluxes for each element of the state vector and each week.

34

(3) The ensemble of final fluxes in xi
a(12) will no longer be estimated in the

next cycle and are therefore incorporated into CH4i(x,y,z,t + 1) by
running the forward model one week forward starting from CH4i(x,y,z,t)
forced with the final ensemble fluxes xi(12) (A to C in the Fig. 15).

(4) Each analyzed state vector becomes the background state vector for
the next cycle. A new background mean flux is created to go into x(0)
by propagation with model M (equation (16)).

(5) We draw a new ensemble of N flux deviations from the specified
background covariance structure to represent the Gaussian Probability
Density Function around the new mean flux x(0), and finally

(6) new observations y are read and the next cycle starts (Peters et al.,
2005).

Figure 15. CTDAS cycles: 12 weeks of fluxes compose the state vector. Light
shaded boxes denote the background fluxes, and dark shaded boxes denote
posterior fluxes. Each box represents N ensemble members. The number in
parentheses indicates how many times a week of fluxes has been estimated

previously from past cycles, and the subscript i refers to an individual
ensemble member.

The ensemble Kalman filter looks for correlations between random flux
perturbations and simulated methane measurement variations. We could
anticipate the entire ensemble to agree that increasing methane flux in one
place results in higher simulated methane concentrations at a downwind site

35

nearby. However, because we utilize a random sample of a few ensemble
members to approximate the flow covariance matrix, we occasionally see
misleading correlations. Any link between the flux ensemble and the
measurement could be fictitious.

For this reason, the CT2007 localization technique is used. For instance, if
150 ensemble members are used, the linear correlation coefficient between
the 150 scaling factor deviations and the 150 observation deviations for each
parameter/observation combination is calculated. The association between a
parameter deviation and its modeled observational impact is kept, if it is
statistically significant. Otherwise, due to the small ensemble's numerical
estimate of the covariance matrix, the association is thought to be spurious
noisy. Relationships that reach 95% significance in a Student's T-test with a
two-tailed probability distribution are accepted in our case.
(https://gml.noaa.gov/ccgg/carbontracker/CT2007/documentation_assim.html)

2.3. Weather Research and Forecast – Greenhouse Gas model

The forward model we utilize in the present study is the Weather Research
and Forecasting – Greenhouse Gas model (WRF-GHG) reported in (Beck et
al., 2011).

WRF contains two dynamical solvers, referred to as the advanced research
WRF (ARW) and the nonhydrostatic mesoscale model (NMM). WRF ARW
was used for the present study. The mesoscale model WRF (Skamarock et
al., 2008) is a numerical weather prediction system that may be used for
atmospheric research as well as operational forecasting at scales ranging
from tens of meters to thousands of kilometers. First, WRF was combined
with the Vegetation Photosynthesis and Respiration module to construct high-
resolution regional simulations of atmospheric CH4 passive tracer transport
(WRF-VPRM) (Ahmadov et al., 2009). Then, WRF-VPRM was expanded to
WRF-GHG (Beck et al., 2011), which can model the regional passive tracer
transport for GHGs (CH4, CO2) and carbon monoxide (CO). In the last
versions of WRF, WRF-GHG is integrated in WRF-Chem code (WRF model
coupled with Chemistry) (Grell et al., 2005) as an individual chemistry option.

Field Code Changed

https://gml.noaa.gov/ccgg/carbontracker/CT2007/documentation_assim.html

36

2.4 Model and Inversion Framework setup

2.4.1. Observations

The observations we utilize in the assimilation, in order to improve methane
anthropogenic emissions, are satellite data as well as in situ measurements.
Satellite data have exceptional temporal as well as horizontal resolution and a
wide-region coverage in comparison with in-situ measurements. However,
station observations are considered more accurate due to the procedure they
are obtained.

Satellite data: TROPOMI/WFMD Methane column-averaged dry air mole
fractions (XCH4) v1.5 product is used as created by the Institute of
Environmental Physics, University of Bremen (Schneising et al., 2019).

TROPOMI is an imaging spectrometer onboard of the Copernicus Sentinel-5
Precursor (S5P), a European satellite for atmosphere monitoring, launched on
13 October 2017 and planned for a mission of seven years. S5P is a sun-
synchronous orbit satellite at 824 km altitude, with an Equator overpass time
at 13:30 local time and a 16-days cycle. The swath of TROPOMI is about
2600 km and it operates with a horizontal resolution of 7×7 km2 (5.6 × 7 km2
from 6 August 2019).

To retrieve CH4 from satellite observations, the Weighting Function Modified
Differential Optical Absorption Spectroscopy (WFM-DOAS) algorithm that is a
least-squares method was used by Schneising et al. (2019). By normalizing
the vertical column amounts of CH4 with the dry air column acquired from the
European Centre for Medium-Range Weather Forecasts (ECMWF) analysis,
the column-averaged dry air mole fractions of methane (denoted XCH4) are
generated.

To use TROPOMI/WFMD observations, modifications had to be made to the
Python script for satellite observations reading since WRF-GHG-CTDAS initial
setup is for handling O-CO2 satellite data (https://ocov2.jpl.nasa.gov/). The
corresponding code is displayed in Appendix C. For comparison of
observations to the model, the column averaging kernel as provided by the
TROPOMI/WFMD product is applied to the model profiles using the formula:

𝑋𝑚𝑜𝑑 = ∑ ((𝑋𝑎𝑝𝑟𝑙 + 𝐴𝑙�𝑋𝑚𝑜𝑑𝑙 − 𝑋𝑎𝑝𝑟𝑙�)𝑤𝑙𝑙 (20)

Field Code Changed

https://ocov2.jpl.nasa.gov/

37

where 𝑙 is the index of the vertical layer, 𝐴𝑙 the averaging kernel, 𝑋𝑎𝑝𝑟𝑙 the a-
priori mole fraction and 𝑋𝑚𝑜𝑑𝑙 the simulated mole fraction of layer 𝑙. 𝑤𝑙 is the
layer dependent pressure weight.

Due to the long lifetime of methane, it can be assumed that methane
columnar values account for the background concentration of methane in the
atmosphere (Appendix A).

In-situ observations: We used methane near surface measurements from
the Finokalia atmospheric observatory (Fig. 16). The atmospheric
measurement station of the University of Crete, a climate change observatory,
established and operated by Environmental Chemical Processes Laboratory
(E.C.P.L.) at Finokalia, Lasithi since 1993, holds the largest time series of
atmospheric measurements of greenhouse gas concentrations throughout the
Eastern Mediterranean. The station represents the Eastern Mediterranean
atmosphere and has drawn significant scientific interest in the domains of
atmospheric composition, air quality, and climate change. It also serves as the
regional background station for Greece, reporting on air pollution levels to
Greek and EU authorities. Methane measurements are performed
discontinuously since 2002 (flask samples) and continuously by a PICARRO
analyzer since June 2014 in collaboration with the Laboratory of Sciences of
Climate and Environment (LSCE) in France. For the present study hourly CH4
data are used.

Since point observation handling was not implemented in WRF-GHG-CTDAS,
we developed the code displayed in Appendix C, based on the existing
satellite data sampling scripts. For comparison of the model with the in-situ
observations, the level of WRF-GHG which is closer to the station’s altitude is
selected. The model output of methane concentrations is in ppm and methane
concentrations as reported by the station are given in ppb, thus the
comparison is quite direct.

Figure 16. Finokalia (FKL) station (longitude: 25.670, latitude: 35.338,
altitude: 250) (source: https://finokalia.chemistry.uoc.gr/gallery/station/). Field Code Changed

https://finokalia.chemistry.uoc.gr/gallery/station/

38

2.4.2 Model Setup

This study uses version 4.3 of WRF coupled with Chemistry (WRF-Chem)
(Grell et al., 2005). Methane is implemented as a passive tracer (chemistry
option = 17 in the WRF-Chem code), thus not impacting meteorological
variables and chemistry. Thus, the total mass of methane in the model
domain depends only on the surface fluxes inside the domain and the
boundary conditions.

There are no chemical processes in the WRF-GHG simulations for methane,
despite the fact that oxidation by OH is the principal sink of methane in the
atmosphere. This would not alter our results because the lifetime of methane
is rather long compared to the simulation duration.

In our study we simulate the period 1/1/2019-11/3/2019. We use two nested
domains for WRF-GHG (Fig. 17) on Lambert Conformal projection in order to
simulated methane fluxes. The coarser domain (D01) has a horizontal grid
distance of 36 km centering at 38.45 °N and 20.336 °W and it covers Central
and Eastern Mediterranean. The domain has 33 vertical levels up to 50 hPa
(about 20 km height). The finest domain (D02) is located over Greece with
spatial resolution of 12 km, as shown in Fig. 17. The simulations were run with
one-way nested mode.

Figure 17. WRF-GHG domains used in our study.

39

We use ERA5 meteorology from European Centre for Medium Range
Weather Forecasts (Hersbach et al., 2020) and improved orography from
European Digital Elevation Model (EU-DEM)
(https://land.copernicus.eu/imagery-in-situ/eu-dem/) in order to have better
wind intensity and direction calculation, which can affect our emissions
estimation. Initial and boundary chemical conditions for methane are obtained
from the TM5 global chemistry transport model (Huijnen et al., 2010).

As for the parameterizations that are used in the present study, for the
planetary boundary layer we selected the YSU scheme. The YSU scheme
uses a 1st order closure to calculate the turbulent vertical fluxes within the
planetary boundary layer. Kain-Fritsch (new Eta) scheme, a deep and shallow
sub-grid scheme using a mass flux approach with downdrafts and CAPE
removal time scale, is selected as cumulus scheme. For the representation of
land surface processes, shortwave radiation and longwave radiation the
default options are selected, which are respectively Noah Land-Surface
Model, a unified NCEP/NCAR/AFWA scheme with soil temperature and
moisture in four layers, fractional snow cover and frozen soil physics, Dudhia
scheme, a simple downward integration allowing for efficient cloud and clear-
sky absorption and scattering, and RRTM Rapid Radiative Transfer Model
that accounts for multiple bands, trace gases, and microphysics species.

2.4.3 Apriori Emissions

Two different methane emission databases are used in this study. Emissions
from biomass burning are taken from the Fire INventory from NCAR (FINN)
version 2.4 and Copernicus Atmosphere Monitoring Service (CAMS) version
4.2 emission datasets are used for emissions by anthropogenic activities.

The Fire INventory from NCAR (FINN) model predicts worldwide emissions
from open burning at high horizontal resolution of 1 km2 and daily. FINN
provides open burning emissions estimates for use in regional and global
chemical transport models by combining satellite images of active fires and
land cover with emission factors and estimated fuel loadings. The datasets
used in the study are available at https://www.acom.ucar.edu/Data/fire/ .

The Copernicus Atmosphere Monitoring Service provides monthly gridded
global emission inventories with spatial resolution of 0.1ox0.1o. These
inventories describe anthropogenic emissions from fossil fuel use on land,
ships, and aviation, as well as natural emissions from vegetation, soil, the
ocean, and termites, using a combination of current data sets and new
information. Anthropogenic emissions on land are further broken down into

Field Code Changed

Field Code Changed

https://land.copernicus.eu/imagery-in-situ/eu-dem/
https://www.acom.ucar.edu/Data/fire/

40

different activity sectors (e.g., power generation, road traffic, industry).
Because most inventory-based data sets are only accessible after several
years, the CAMS emission inventories employ trends from the most recent
available years to extend current data sets forward in time, providing timely
input data for real-time forecast models. The anthropogenic inventories used
in the present study are available at https://eccad3.sedoo.fr/ . Table 1 displays
the average anthropogenic and fire emissions for the year 2019 as derived by
CAMS and FINN inventories respectively for the two domains of our study.

Table 1. Average anthropogenic and fire emissions for 2019 for the two
domains of the present study as derived by CAMS and FINN inventories

respectively.

Emissions (mol km-2 hr-1) Domain 1 Domain 2
Anthropogenic 17.26 17.90
Fire 0.0048 0.0056

The biogenic fluxes for methane (emissions from wetlands and termites and
soil uptake) are calculated online in the WRF-GHG based on the work of
Kaplan (2002), Sanderson (1996) and Ridgwell et al. (1999) respectively.
Input fields of wetland fraction per grid cell and fast carbon pool are necessary
for the calculation of the wetland emissions. We used the wetland map (Fig.
18) from the global dataset of Wetland Area and Dynamics for Methane
Modeling (WAD2M) (Zhang et al., 2021)
(https://essd.copernicus.org/articles/13/2001/2021/essd-13-2001-2021-
discussion.html) and the fast carbon pool map (Fig. 19) from the Lund-
Potsdam-Jena model (LPJ) (Sitch et al., 2003) as obtained by the Lawrence
Livermore National Laboratory (https://esgf-node.llnl.gov/search/esgf-llnl/).

Field Code Changed

Field Code Changed

Field Code Changed

https://eccad3.sedoo.fr/
https://essd.copernicus.org/articles/13/2001/2021/essd-13-2001-2021-discussion.html
https://essd.copernicus.org/articles/13/2001/2021/essd-13-2001-2021-discussion.html
https://esgf-node.llnl.gov/search/esgf-llnl/

41

Figure 18. Inundated soil map for our coarser domain by WAD2M 0.25o x
0.25o product.

Figure 19. Fast carbon pool for our coarser domain by Lund-Potsdam-Jena
0.5o x 0.5o product.

42

2.4.4. CTDAS setup

The inversion system of CTDAS for WRF-GHG was downloaded from the
Wageningen University and Research CTDAS repository
(https://git.wur.nl/ctdas/CTDAS/-/tree/ctdas-wrf). We use a flux model in which
we assume biosphere and fire fluxes fixed, and anthropogenic emissions with
100% uncertainty. The statevector consists of 5 parameters for mapping
anthropogenic fluxes shown in Fig. 20. These will be referred to the next parts
of the study as: Greece, North region, South region, East region and West
region, with respect to the geographical position of Greece. Regarding
Kalman filter setup, we use serial optimization algorithm, 50 ensemble
members with an optimization time step of 7 days and an assimilation window
(lag) of 5 weeks. The inversion is done for 10 CTDAS cycles, that is for period
1/1/2019-11/3/2019.

The model data mismatch R, that is the observational error in equation (1)
and the matrix R in the equation (2), is set to the sum of squares of the
observation product error and the transport model error. In other words,
besides the measurement uncertainty(𝑚𝑑𝑚), the combined uncertainty
(𝑚𝑑𝑚𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑) is calculated by adding an estimate for the model error as
below:

𝑚𝑑𝑚𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = �𝑚𝑑𝑚2 + 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡_𝑒𝑟𝑟𝑜𝑟2

where mdm is the observational error, transport_error is the assumed error of
WRF-GHG and of the concentrations mapping into the observations space
and mdmcombined is the overall uncertainty. In an inversion, the model-data
mismatch covariance matrix (R) shows how well the optimized fluxes should
be able to reproduce atmospheric observations, given errors in modeled
transport, measurement, and gridded fluxes (Gourdji et al., 2018).

Satellite observations used are assigned an uncertainty as provided by the
TROPOMI product and are selected only if they have a quality flag equal to
zero, indicating only good CH4 observations. For in situ data, we select mdm
to be equal to the measurement standard deviation. The transport error is
assumed to be 10 ppb and 5 ppb for satellite data and in-situ measurements,
respectively. In a second run, we use 100 ppb and 50 ppb transport model
error to investigate the difference it makes in the results. In the next sections
we refer to these runs as 10 ppb and 5 ppb run, and 100 ppb and 50 ppb run.
As for the observation rejection threshold, we set 99.7% probability threshold

Field Code Changed

https://git.wur.nl/ctdas/CTDAS/-/tree/ctdas-wrf

43

(3σ) that observation agrees with the model prediction. In other words, if the
inequality |𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 − 𝐻(𝑥)| > 3 × √𝑅 is true, the observation is
considered as an outlier and it is not assimilated. Furthermore, we use 95%
probability threshold that observation and state vector element correlate
through CT2007 localization option.

Figure 20. Statevector parameters regions used for our inversion setup:
Greece (light blue), North region (green), South region (yellow), East region

(purple) and West region (pink).

44

3. Results and Discussion

3.1 Inversion results

Two different runs were conducted with different transport model errors. In
Fig. 21, the emission maps for one day of each week of our inversion period
are depicted, which correspond to the 10 ppb (for satellite error) and 5 ppb
(for in-situ error) run, hereafter called 10.5 run. In Fig. 22 the corresponding
50 ensemble statevector deviations for Greece are shown. Only the maps for
the coarse domain are included here. The emission maps for the domain over
Greece are available in the Appendix B.

Regarding the 10.5 run, we observe that for the first 5 weeks, which also
correspond to our system’s lag, both negative and positive surface fluxes are
predicted. After this period, the majority of the surface fluxes are negative. It is
deduced that during the first 5 weeks, high TM5 initial and boundary
conditions influence the results in large extent, forcing our system to
significantly reduce the emissions in order to conform with observations. After
5 weeks, we assume that WRF-GHG has been stabilized and boundaries
have a lower impact on the results, however still considerable. In addition to
high boundary conditions, negative emissions could be attributed to the lack
of chemistry in WRF-GHG and specifically of OH sink. The omission of
chemistry is potentially leading to methane accumulation over our domain,
which has a similar effect as high boundary conditions.

45

46

Figure 21. Optimized anthropogenic methane emissions over Eastern
Mediterranean for the 10 weeks of the inversion period (10.5 run for the

period 1/1/2019-11/3/2019).

Fig. 22 shows the deviations around mean scaling vector, λ, for Greece for
the apriori and the posteriori ensembles. It can be seen that the deviations are
decreased after the optimization, in other words, the prior error of λ is highly
reduced which indicates that our system works properly in terms of the cost
function minimization, reducing error in emissions. Optimization in the first
cycles is more “abrupt” in comparison with the following ones, since λ in the
next inversion cycles is closer to the “truth”; the assumption for λ in the first
cycle is 1.

47

48

Figure 22. Prior and Posterior deviations from mean statevector λ for the
region of Greece for the 10.5 run. Note the differences in the x-axis scale in

the panels.

In Fig. 23, observations (blue), simulated apriori concentrations H(x) (orange)
and posteriori concentrations (green) for the week 26 February - 4 March
2019 (week 9) are depicted. This week showed the most negative mean
difference between observations and prior concentrations. We observe that
the majority of the observations are lower than the prior concentrations, thus
the posterior concentrations are lower, leading eventually to negative
emission fluxes in our results. The difference between observations and prior
H(x) as well as the mean of this difference for the same week are shown in
Fig. 24.

49

Figure 23. Methane observations from in-situ and satellite data and prior and
posterior modeled concentrations for the week 26/2-4/3/2019 (week 9) (10.5

run).

Figure 24. Difference between observed and simulated methane
concentrations as well as the mean of the difference for the specific week

26/2-4/3/2019 (week 9) (10.5 run).

50

In terms of the 100 and 50 ppb run (here-after 100.50 run), the emission maps
are displayed in Fig. 25. The CH4 emissions for the finest domain are also
displayed in Appendix B. Optimized emissions by the 100.50 run and the 10.5
run are different. In Table 2, the regions that have positive emissions for each
simulation and each week are noted. For the ten weeks optimized, the
simulation with the larger error predicts zero to two positive regions more or
less than the small error simulation, except from the week 5. Since the
measurement errors are the same in both inversions, this indicates that
transport model error can largely impact the inversion results.

In 100.50 run, less observations are rejected compared to the 10.5 run, since
model-data-mismatch R has higher values (see section 2.4.4). Improving the
transport model or rejecting atmospheric observations when the
corresponding footprints from the transport model are regarded untrustworthy
have been the main approaches for lowering the impact of transport model
error on urban inversions. Discarding atmospheric observations from
inversions, on the other hand, limits the quantity of data available to constrain
fluxes and can bias aggregated flux estimates (Gourdji et al., 2018).

Methane observations and apriori as well as posteriori modeled
concentrations for the week 9 in Fig. 26 indicate that ten times larger transport
model error make a small, notable change in the simulated methane
concentrations. In Fig. 27, we compare the posteriori concentrations of the
two inversions and each posteriori with the observations. It can be seen that
posterior concentrations for the 100.50 run are higher than the 10.5 run ones,
that is closer to the apriori concentrations. This is expected since a large
model-data-mismatch error will force the system to change slightly based on
the observation information, thus the difference between the apriori and
posteriori concentrations will be smaller.The difference between observations
and modeled concentrations in Fig. 28 depict again that high boundaries
result in apriori concentrations that are in average higher than the
observations.

51

52

Figure 25. Optimized anthropogenic methane emissions over Eastern
Mediterranean (100.50 run for the period 1/1/2019-11/3/2019).

53

Table 2. Regions with positive emissions for the 10.5 and for the 100.50
simulation respectively for the period 1/1/2019-11/3/2019.

Week 10.5 run 100.50 run

1 Greece, East Greece
2 Greece Greece, North
3 - -
4 North Greece, North
5 Greece, East, West, South -
6 - Greece
7 East, West -
8 - Greece
9 - Greece
10 - -

Figure 26. Methane observations from in-situ and satellite data and prior and
posterior modeled concentrations for 26/2-4/3/2019 (week 9) (100.50 run)

54

Figure 27. Posterior concentrations for the two simulations in the upper panel
and comparison with the observations for week 9 of our inversion in the

bottom two panels.

Figure 28. Difference between the observed and apriori simulated methane
concentrations as well as the mean of the difference for the week 26/2-

4/3/2019 (week 9) (100.50 run).

55

3.2 Discussion

We have conducted two inversions for optimizing methane emissions using
total anthropogenic emissions of Copernicus Atmosphere Monitoring Service
inventory over Central and Eastern Mediterranean, and Greece. Different
transport model errors of different magnitude for TROPOMI/WFMD satellite
product and in-situ measurements from Finokalia station are selected in order
to examine the effect that this type of error has on our results.

In all of the weeks inverted for the two inversions, almost only negative fluxes
are predicted after a period of 5 weeks. Possible reasons for that are the
boundary conditions used and the lack of the major chemical sink of methane,
OH, from WRF-GHG model. Therefore, methane flows out of our domains
mainly depending on the meteorology. Thus, the vast majority of methane
molecules tend to accumulate over the domain in general. A possible solution
to this problem would be to add a methane decay factor in WRF-GHG model
that agrees with methane’s lifetime. However, due to the long lifetime of CH4,
of several years, this ommission is not expected to have major impact on our
resutls.

In terms of boundary conditions, an alternative model, except from TM5, can
be used, the simulations of which would be closer to the observations over
our domain. A reanalysis product, which will be created by assimilating
observations over Eastern Mediterranean, for instance, would be an
appropriate constraint to the inversion. This would probably prevent the
unphysical results of negative emissions. Lastly, negative emissions might
also be attributed to the ill-posedness of the inversion problem. Miller et al.
(2014) pointed out that inverse modelling approaches based on Gaussian
assumptions, such as Ensemble Kalman filter, cannot incorporate physical
bounds (e.g. non-negative emissions) and often produce unrealistic results.
Therefore, it may be required to impose non-negativity constraints on the
covariance matrices to ensure positive flux results.

Increasing the transport model error ten times, to 100 ppb and 50 ppb for
satellite and in-situ data respectively, changes the number of regions that are
predicted to have positive emission fluxes in comparison to the 10 ppb and 5
ppb run. A small model-data mismatch can either mean that the observation
does not provide any constrain on the emissions or the prior emission fluxes
are correct. When there is large transport error, the inversion could generate
unrealistic results (negative fluxes). For observing locations in the near-field of
large sources, transport model representations are likely to be much more
difficult than for sites in the global network, which are often in distant areas
with well-mixed air (Gourdji et al., 2018). Thus, transport model error, which is

56

difficult to be assumed and many times its importance is neglected in
inversions, needs to be carefully estimated in order to avoid misleading
inversion results.

57

APPENDIX A

Variability of methane concentrations over large urban agglomerations -
Athens, Thessaloniki, and Patras.

For Finokalia, in-situ measurements are used. For Athens, Thessaloniki and
Patras, gridded TROPOMI columns are used. Due to the long lifetime of
methane, it can be inferred that the methane columnar values account for the
background concentration of methane in the atmosphere. Comparing Athens,
Thessaloniki, and Patras with Finokalia, we observe that the seasonality for all
sites, considering the respective errors, is in general agreement. The months
of March and October in Finokalia tend to be higher and lower than the other
sites, respectively.The coverage of TROPOMI over the big cities is not
adequate in these months, thus Finokalia data should be considered more
reliable.

Figure A1. Methane normalized seasonality for the period 2019-2020.

58

APPENDIX B

Total optimized methane emissions over the finest domain over the inversion
setup for the two runs with different transport model errors.

59

Figure B1. 10.5 run emission maps for the domain over Greece for the
period 1/1/2019-11/3/2019.

60

61

Figure B2. 100.50 run emission maps for the domain over Greece for the
period 1/1/2019-11/3/2019.

62

APPENDIX C

Modified code for reading of TROPOMI/WFMD satellite product
(obs_WRF_xch4.py) and code for the sampling of in-situ measurements
(wrfout_flask_sampler.py, wrfchem_flask_helper.py).

obs_WRF_xch4.py

1. import os
2. import sys
3. import logging
4. import pandas as pd
5. import datetime as dtm
6. import numpy as np
7. from numpy import array, logical_and, sqrt
8. sys.path.append(os.getcwd())
9. sys.path.append('../../')
10.
11. identifier = 'CarbonTracker total column-averaged CH4 mole fractions'
12. version = '0.0'
13.
14. from da.observations.obs_baseclass import Observations
15. import da.tools.io4 as io
16. import da.tools.rc as rc
17.
18. ################### Begin Class TROPOMIObservations ###################
19.
20. class TotalColumnSample(object):
21. """ an object that holds data + methods and attributes needed to manipulate

mole fraction values """
22.
23. def __init__(self, idx, codex, scanlen, ground, groundlen, xdate, obs=0.0,

simulated=0.0, lat=-999., lon=-999., mdm=None, prior=0.0, prior_profile=0.0,\
24. av_kernel=0.0, pressure=0.0, pressure_weighting_function=None,

level_def ="layer_average", psurf = float('nan'), resid=0.0, hphr=0.0, flag=0,
species='ch4', sdev=0.0,\

25. latc_0=None, latc_1=None, latc_2=None, latc_3=None, lonc_0=None, lonc_1=None,
lonc_2=None, lonc_3=None):

26.
27. self.id = idx
28. self.code = codex
29. self.scanlen = scanlen
30. self.ground = ground
31. self.groundlen = groundlen
32. self.xdate = xdate
33. self.obs = obs # Value observed
34. self.simulated = simulated # Value simulated by model
35. self.lat = lat # Sample lat
36. self.lon = lon # Sample lon
37. self.latc_0 = latc_0 # Sample latitude corner
38. self.latc_1 = latc_1 # Sample latitude corner
39. self.latc_2 = latc_2 # Sample latitude corner
40. self.latc_3 = latc_3 # Sample latitude corner
41. self.lonc_0 = lonc_0 # Sample longitude corner
42. self.lonc_1 = lonc_1 # Sample longitude corner
43. self.lonc_2 = lonc_2 # Sample longitude corner
44. self.lonc_3 = lonc_3 # Sample longitude corner
45. self.mdm = mdm # Model data mismatch

63

46. self.prior = prior # A priori column value used in
retrieval

47. self.prior_profile = prior_profile # A priori profile used in retrieval
48. self.av_kernel = av_kernel # Averaging kernel
49. self.pressure = pressure
50. self.pressure_weighting_function = pressure_weighting_function
51. self.level_def = level_def # Are prior and averaging kernel

defined as layer averages?
52. self.psurf = psurf # Surface pressure (only needed if

level_def is "layer_average")
53. self.loc_L = int(0) # localization length
54.
55. self.resid = resid # Mole fraction residuals
56. self.hphr = hphr # Mole fraction prior uncertainty

from fluxes and (HPH) and model data mismatch (R)
57. self.may_localize = True # Whether sample may be localized

in optimizer
58. self.may_reject = True # Whether sample may be rejected if

outside threshold
59. self.flag = flag # Flag
60. self.sdev = sdev # standard deviation of ensemble
61. self.species = species.strip()
62.
63.
64. ################### End Class TotalColumnSample #########################
65.
66.
67. #################### Begin Class TotalColumnObservations ##################
68.
69. class TotalColumnObservations(Observations):
70.
71. def setup(self, dacycle):
72.
73. self.startdate = dacycle['time.sample.start']
74. self.enddate = dacycle['time.sample.end']
75.
76. sat_dirs = dacycle.dasystem['obs.column.input.dir'].split(',')
77. sat_files = dacycle.dasystem['obs.column.ncfile'].split(',')
78.
79. self.sat_dirs = []
80. self.sat_files = []
81. for i in range(len(sat_dirs)):
82. if not os.path.exists(sat_dirs[i].strip()):
83. msg = 'Could not find the required satellite input directory (%s) '

% sat_dirs[i]
84. logging.error(msg)
85. raise IOError(msg)
86. else:
87. self.sat_dirs.append(sat_dirs[i].strip())
88. self.sat_files.append(sat_files[i].strip())
89. del i
90.
91. # Get observation selection criteria (if present):
92. if 'obs.column.selection.variables' in dacycle.dasystem.keys() and

'obs.column.selection.criteria' in dacycle.dasystem.keys():
93. self.selection_vars =

dacycle.dasystem['obs.column.selection.variables'].split(',')
94. self.selection_criteria =

dacycle.dasystem['obs.column.selection.criteria'].split(',')
95. logging.debug('Data selection criteria found: %s, %s'

%(self.selection_vars, self.selection_criteria))
96. else:
97. self.selection_vars = []
98. self.selection_criteria = []
99. logging.info('No data observation selection criteria found, using all

observations in file.')

64

100.
101. # Model data mismatch approach
102. self.mdm_calculation = dacycle.dasystem.get('mdm.calculation')
103. if self.mdm_calculation in

['parametrization','empirical','no_transport_error']:
104. logging.info('Model data mismatch approach = %s'

%self.mdm_calculation)
105. else:
106. logging.warning('No valid model data mismatch method found.

Valid options are \'parametrization\', \'empirical\'. ' + \
107. 'Using a constant estimate for the model

uncertainty of 1ppm everywhere.')
108.
109. # Path to file with observation error settings for column

observations
110. if not os.path.exists(dacycle.dasystem['obs.column.rc']):

#obs.column.rc
111. msg = 'Could not find the required column observation .rc input

file (%s) ' % dacycle.dasystem['obs.column.rc']
112. logging.error(msg)
113. raise IOError(msg)
114. else:
115. self.obs_file = (dacycle.dasystem['obs.column.rc'])
116.
117. self.datalist = []
118.
119.
120. # Switch to indicate whether simulated column samples are read from

obsOperator output,
121. # or whether the sampling is done within CTDAS (in obsOperator

class)
122. self.sample_in_ctdas = dacycle.dasystem['sample.in.ctdas'] if

'sample.in.ctdas' in dacycle.dasystem.keys() else False
123. logging.debug('sample.in.ctdas = %s' % self.sample_in_ctdas)
124.
125.
126. def get_samples_type(self):
127. return 'column'
128.
129.
130. def add_observations(self):
131. """ Reading of total column observations, and selection of

observations that will be sampled and assimilated.
132.
133. """
134.
135. # Read observations from daily input files
136. for i in range(len(self.sat_dirs)):
137.
138. logging.info('Reading observations from %s%s'

%(self.sat_dirs[i],self.sat_files[i]))
139.
140. infile0 = os.path.join(self.sat_dirs[i], self.sat_files[i])
141. ndays = 0
142.
143. while self.startdate+dtm.timedelta(days=ndays) <= self.enddate:
144.
145. infile =

infile0.replace("<YYYYMMDD>",(self.startdate+dtm.timedelta(days=ndays)).strftime("%
Y%m%d"))

146. # d1 = infile.split('_')[8]
147. #dtseries = d1[0:-3]
148.
149. if os.path.exists(infile):
150. logging.info("Reading observations for %s" %

(self.startdate+dtm.timedelta(days=ndays)).strftime("%Y%m%d"))

65

151. len_init = len(self.datalist)
152.
153.
154. # get index of observations that satisfy selection

criteria (based on variable names and values in system rc file, if present)
155. ncf = io.ct_read(infile, 'read')
156.
157. if self.selection_vars:
158. selvars = []
159. for j in self.selection_vars:
160. selvars.append(ncf.get_variable(j.strip()))
161. del j
162. criteria = []
163. for j in range(len(self.selection_vars)):
164. criteria.append(eval('selvars[j]'+self.selection

_criteria[j]))
165. del j
166. subselect =

np.logical_and.reduce(criteria).nonzero()[0]
167. else:
168. subselect =

np.arange(ncf.get_variable('sounding_id').size)
169.
170.
171. code = ncf.get_attribute('tracking_id')
172. level_def = "layer_average"
173. # read observations
174. ids =

ncf.get_variable('sounding_id').take(subselect,axis=0)
175. scanlen = len(ids)
176. ground =

ncf.get_variable('ground_pixel').take(subselect,axis=0)
177. groundlen = len(ground)
178. lats =

ncf.get_variable('latitude').take(subselect,axis=0)
179. lons =

ncf.get_variable('longitude').take(subselect,axis=0)
180. obs =

ncf.get_variable('xch4').take(subselect,axis=0)
181. unc =

ncf.get_variable('xch4_uncertainty').take(subselect,axis=0)
182. dates =

ncf.get_variable('time').take(subselect,axis=0)
183. dates = array([dtm.datetime.fromtimestamp(d) for

d in dates]
184. av_kernel =

ncf.get_variable('xch4_averaging_kernel').take(subselect,axis=0)
185. prior_profile =

ncf.get_variable('ch4_profile_apriori').take(subselect,axis=0)
186. pressure =

ncf.get_variable('pressure_levels').take(subselect,axis=0)
187. prior = [float('nan')]*len(ids)
188. pwf =

ncf.get_variable('pressure_weight').take(subselect,axis=0)
189. psurf = [float('nan')]*len(ids)
190.
191. # Optional: footprint corners
192. latc = dict(
193. latc_0=[float('nan')]*len(ids),
194. latc_1=[float('nan')]*len(ids),
195. latc_2=[float('nan')]*len(ids),
196. latc_3=[float('nan')]*len(ids))
197. lonc = dict(
198. lonc_0=[float('nan')]*len(ids),
199. lonc_1=[float('nan')]*len(ids),
200. lonc_2=[float('nan')]*len(ids),

66

201. lonc_3=[float('nan')]*len(ids))
202.
203. ncf.close()
204.
205. # Add samples to datalist
206. # Note that the mdm is initialized here equal to the

measurement uncertainty. This value is used in add_model_data_mismatch to calculate
the mdm including model error

207. logging.info("Size scan groun dates obs lats lons
av_kern %d %d %d %d %d %d %d " %
(ids.size,ground.size,dates.size,obs.size,lats.size,lons.size,av_kernel.size))

208. for k in range(len(ids)):
209. # Check for every sounding if time is between start

and end time (relevant for first and last days of window)
210. if self.startdate <= dates[k] <= self.enddate:
211. self.datalist.append(TotalColumnSample(ids[k]

, code, scanlen, ground[k], groundlen, dates[k], obs[k]* 1.e-3, None, lats[k],
lons[k], unc[k]* 1.e-3,prior=prior[k], prior_profile=prior_profile[k,:]* 1.e-3,\

212. av_kernel=av_kernel[k,:],
pressure=pressure[k,:], pressure_weighting_function=pwf[k,:], level_def=level_def,
psurf=psurf[k], latc_0=latc['latc_0'][k], latc_1=latc['latc_1'][k],
latc_2=latc['latc_2'][k], latc_3=latc['latc_3'][k],

213. lonc_0=l
onc['lonc_0'][k], lonc_1=lonc['lonc_1'][k], lonc_2=lonc['lonc_2'][k],
lonc_3=lonc['lonc_3'][k]

214.))
215.
216. logging.debug("Added %d observations to the Data list" %

(len(self.datalist)-len_init))
217.
218. ndays += 1
219.
220. del i
221.
222. if len(self.datalist) > 0:
223. logging.info("Observations list now holds %d values" %

len(self.datalist))
224. else:
225. logging.info("No observations found for sampling window")
226.
227.
228. def add_model_data_mismatch(self, filename=None, advance=False):
229.
230. obs_data = rc.read(self.obs_file)
231. self.rejection_threshold = int(obs_data['obs.rejection.threshold'])
232.
233. # At this point mdm is set to the measurement uncertainty only,

added in the add_observations function.
234. # Here this value is used to set the combined mdm by adding an

estimate for the model uncertainty as a sum of squares.
235. if len(self.datalist) <= 1: return
236. for obs in self.datalist:
237. # parametrization as used by Frederic Chevallier
238. if self.mdm_calculation == 'parametrization':
239. obs.mdm = (obs.mdm*obs.mdm +

(0.8*np.exp((90.0+obs.lat)/300.0))**2)**0.5
240. # empirical approach of Andy Jacobson, TO BE IMPLEMENTED
241. # elif self.mdm_calculation == 'empirical':
242. # obs.mdm = ...
243. elif self.mdm_calculation == 'no_transport_error':
244. pass
245. else: # assume general model uncertainty of 1 ppm (arbitrary

value)
246. obs.mdm = (obs.mdm*obs.mdm + 0.2**2)**0.5
247. del obs
248.

67

249. meanmdm = np.average(np.array([obs.mdm for obs in self.datalist]))
250. logging.debug('Mean MDM = %s' %meanmdm)
251.
252.
253. def add_simulations(self, filename, silent=False):
254. """ Adds observed and model simulated column values to the mole

fraction objects
255. This function includes the add_observations and

add_model_data_mismatch functionality for the sake of computational efficiency
256.
257. """
258.
259. if self.sample_in_ctdas:
260. logging.debug("CODE TO ADD SIMULATED SAMPLES TO DATALIST TO BE

ADDED")
261.
262. else:
263. # read simulated samples from file
264. if not os.path.exists(filename):
265. msg = "Sample output filename for observations could not be

found : %s" % filename
266. logging.error(msg)
267. logging.error("Did the sampling step succeed?")
268. logging.error("...exiting")
269. raise IOError(msg)
270.
271. ncf = io.ct_read(filename, method='read')
272. logging.debug("Read Observed and Simulated SAMPLES from file

(%s)" % filename)
273. ids = ncf.get_variable('sounding_id')
274. simulated = ncf.get_variable('column_modeled')
275. ncf.close()
276. logging.info("Successfully read data from model sample file

(%s)" % filename)
277.
278. obs_ids = self.getvalues('id').tolist()
279.
280. missing_samples = []
281.
282. # Match read simulated samples with observations in datalist
283. logging.info("Adding %i simulated samples to the data list..." %

len(ids))
284. for i in range(len(ids)):
285. # Assume samples are in same order in both datalist and file

with simulated samples...
286. if ids[i] == obs_ids[i]:
287. self.datalist[i].simulated = simulated[i]
288. # If not, find index of current sample
289. elif ids[i] in obs_ids:
290. index = obs_ids.index(ids[i])
291. # Only add simulated value to datalist if sample has not

been filled before. Otherwise: exiting
292. if self.datalist[index].simulated is not None:
293. msg = 'Simulated and observed samples not in same

order, and duplicate sample IDs found.'
294. logging.error(msg)
295. raise IOError(msg)
296. else:
297. self.datalist[index].simulated = simulated[i]
298. else:
299. logging.debug('added %s to missing_samples, obs id = %s'

%(ids[i],obs_ids[i]))
300. missing_samples.append(ids[i])
301. del i
302.
303. if not silent and missing_samples != []:

68

304. logging.warning('%i Model samples were found that did not
match any ID in the observation list. Skipping them...' % len(missing_samples))

305.
306. # if number of simulated samples < observations: remove

observations without samples
307. if len(simulated) < len(self.datalist):
308. test = len(self.datalist) - len(simulated)
309. logging.warning('%i Observations were not sampled, removing

them from datalist...' % test)
310. for index in reversed(list(range(len(self.datalist)))):
311. if self.datalist[index].simulated is None:
312. del self.datalist[index]
313. del index
314.
315. logging.debug("%d simulated values were added to the data list"

% (len(ids) - len(missing_samples)))
316.
317. def write_sample_coords(self, obsinputfile):
318. """
319. Write empty sample_coords_file if soundings are present in time

interval, just such that general pipeline code does not have to be changed...
320. """
321.
322. if self.sample_in_ctdas:
323. return
324.
325. if len(self.datalist) <= 1: #== 0:
326. logging.info("No observations found for this time period, no obs

file written")
327. return
328.
329. # write data required by observation operator for sampling to file
330. f = io.CT_CDF(obsinputfile, method='create')
331. logging.debug('Creating new observations file for

ObservationOperator (%s) containing %d observations' %
(obsinputfile,len(self.datalist)))

332.
333. dimsoundings = f.add_dim('soundings',len(self.datalist))
334. dimepoch = f.add_dim('epoch_dimension', 7)
335. dimchar = f.add_dim('char', 30)
336.
337. if len(self.datalist) == 1:
338. dimlevels = f.add_dim('levels', len(self.getvalues('pressure')))
339. else:
340. dimlevels = f.add_dim('levels',

self.getvalues('pressure').shape[1])
341.
342. if len(self.datalist) == 1:
343. dimlayers = f.add_dim('layers',len(self.getvalues('av_kernel')))
344. else:
345. dimlayers = f.add_dim('layers',

self.getvalues('av_kernel').shape[1])
346.
347.
348. savedict = io.std_savedict.copy()
349. savedict['dtype'] = "int64"
350. savedict['name'] = "sounding_id"
351. savedict['dims'] = dimsoundings
352. savedict['values'] = self.getvalues('id').tolist()
353. f.add_data(savedict)
354.
355.
356. data = [[d.year, d.month, d.day, d.hour, d.minute, d.second,

d.microsecond] for d in self.getvalues('xdate')]
357. savedict = io.std_savedict.copy()
358. savedict['dtype'] = "int"

69

359. savedict['name'] = "date"
360. savedict['dims'] = dimsoundings + dimepoch
361. savedict['values'] = data
362. f.add_data(savedict)
363.
364. savedict = io.std_savedict.copy()
365. savedict['name'] = "latitude"
366. savedict['dims'] = dimsoundings
367. savedict['values'] = self.getvalues('lat').tolist()
368. f.add_data(savedict)
369.
370. savedict = io.std_savedict.copy()
371. savedict['name'] = "longitude"
372. savedict['dims'] = dimsoundings
373. savedict['values'] = self.getvalues('lon').tolist()
374. f.add_data(savedict)
375.
376. savedict = io.std_savedict.copy()
377. savedict['name'] = "averaging_kernel"
378. savedict['dims'] = dimsoundings + dimlayers
379. savedict['values'] = self.getvalues('av_kernel').tolist()
380. f.add_data(savedict)
381.
382. savedict = io.std_savedict.copy()
383. savedict['name'] = "prior_profile"
384. savedict['dims'] = dimsoundings + dimlayers
385. savedict['missing_value'] = "-999999."
386. savedict['values'] = self.getvalues('prior_profile').tolist()
387. f.add_data(savedict)
388.
389.
390. savedict = io.std_savedict.copy()
391. savedict['name'] = "prior"
392. savedict['dims'] = dimsoundings
393. savedict['values'] = self.getvalues('prior').tolist()
394. f.add_data(savedict)
395.
396.
397. savedict = io.std_savedict.copy()
398. savedict['name'] = "psurf"
399. savedict['dims'] = dimsoundings
400. savedict['values'] = self.getvalues('psurf').tolist()
401. f.add_data(savedict)
402.
403. savedict = io.std_savedict.copy()
404. savedict['name'] = "pressure_levels"
405. savedict['dims'] = dimsoundings + dimlevels
406. savedict['values'] = self.getvalues('pressure').tolist()
407. f.add_data(savedict)
408.
409. savedict = io.std_savedict.copy()
410. savedict['name'] = "pressure_weighting_function"
411. savedict['dims'] = dimsoundings + dimlayers
412. savedict['values'] =

self.getvalues('pressure_weighting_function').tolist()
413. f.add_data(savedict)
414.
415. savedict = io.std_savedict.copy()
416. savedict['name'] = "latc_0"
417. savedict['dims'] = dimsoundings
418. savedict['values'] = self.getvalues('latc_0').tolist()
419. f.add_data(savedict)
420.
421. savedict = io.std_savedict.copy()
422. savedict['name'] = "latc_1"
423. savedict['dims'] = dimsoundings

70

424. savedict['values'] = self.getvalues('latc_1').tolist()
425. f.add_data(savedict)
426.
427. savedict = io.std_savedict.copy()
428. savedict['name'] = "latc_2"
429. savedict['dims'] = dimsoundings
430. savedict['values'] = self.getvalues('latc_2').tolist()
431. f.add_data(savedict)
432.
433. savedict = io.std_savedict.copy()
434. savedict['name'] = "latc_3"
435. savedict['dims'] = dimsoundings
436. savedict['values'] = self.getvalues('latc_3').tolist()
437. f.add_data(savedict)
438.
439. savedict = io.std_savedict.copy()
440. savedict['name'] = "lonc_0"
441. savedict['dims'] = dimsoundings
442. savedict['values'] = self.getvalues('lonc_0').tolist()
443. f.add_data(savedict)
444.
445. savedict = io.std_savedict.copy()
446. savedict['name'] = "lonc_1"
447. savedict['dims'] = dimsoundings
448. savedict['values'] = self.getvalues('lonc_1').tolist()
449. f.add_data(savedict)
450.
451. savedict = io.std_savedict.copy()
452. savedict['name'] = "lonc_2"
453. savedict['dims'] = dimsoundings
454. savedict['values'] = self.getvalues('lonc_2').tolist()
455. f.add_data(savedict)
456.
457. savedict = io.std_savedict.copy()
458. savedict['name'] = "lonc_3"
459. savedict['dims'] = dimsoundings
460. savedict['values'] = self.getvalues('lonc_3').tolist()
461. f.add_data(savedict)
462.
463.
464. savedict = io.std_savedict.copy()
465. savedict['dtype'] = "char"
466. savedict['name'] = "level_def"
467. savedict['dims'] = dimsoundings + dimchar
468. savedict['values'] = self.getvalues('level_def').tolist()
469. f.add_data(savedict)
470.
471. f.close()
472. ################### End Class TotalColumnObservations ###################
473.
474. if __name__ == "__main__":

475. pass

71

wrfout_flask_sampler.py

1. import os
2. import sys
3. import copy
4. import numpy as np
5. import netCDF4 as nc
6.
7. # Import some CTDAS tools
8. pd = os.path.pardir
9. inc_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),
10. pd, pd, pd)
11. inc_path = os.path.abspath(inc_path)
12. sys.path.append(inc_path)
13. from da.tools.wrfchem.wrfchem_flask_helper import WRFChemHelper_flask
14. from da.tools.wrfchem.utilities import utilities
15. import argparse
16.
17. ########## Parse options
18. parser = argparse.ArgumentParser()
19. parser.add_argument("--nproc", type=int,
20. help="ID of this sampling process (0 ... nprocs-1)")
21. parser.add_argument("--nprocs", type=int,
22. help="Number of sampling processes")
23. parser.add_argument("--sampling_coords_file", type=str,
24. help="File with sampling coordinates as created " + \
25. "by CTDAS column samples object")
26. parser.add_argument("--run_dir", type=str,
27. help="Directory with wrfout files")
28. parser.add_argument("--original_save_suffix", type=str,
29. help="Just leave this on .original")
30. parser.add_argument("--nmembers", type=int,
31. help="Number of tracer ensemble members")
32. parser.add_argument("--tracer_optim", type=str,
33. help="Tracer that was optimized (e.g. CO2 for " + \
34. "ensemble members CO2_000 etc.)")
35. parser.add_argument("--outfile_prefix", type=str,
36. help="One process: output file. More processes: " + \
37. "output file is <outfile_prefix>.<nproc>.slice")
38. parser.add_argument("--footprint_samples_dim", type=int,
39. help="Sample column footprint at n x n points")
40.
41. args = parser.parse_args()
42. settings = copy.deepcopy(vars(args))
43.
44. wd = os.getcwd()
45. try:
46. os.makedirs("log")
47. except OSError:
48. pass
49.
50. logfile = os.path.join(wd, "log/wrfout_sampler." + str(settings['nproc']) + ".log")
51.
52. os.system("touch " + logfile)
53. os.system("rm " + logfile)
54. os.system("echo 'Process " + str(settings['nproc']) + " of " +

str(settings['nprocs']) + ": start' >> " + logfile)
55. os.system("date >> " + logfile)
56.
57. ########## Initialize wrfhelper
58. wrfhelper = WRFChemHelper_flask(settings)
59. wrfhelper.validate_settings(['sampling_coords_file',
60. 'run_dir',
61. 'nproc',
62. 'nprocs',

72

63. 'original_save_suffix', # necessary for selecting
filename

64. 'nmembers', # special case 0: sample 'tracer_optim'
65. 'tracer_optim',
66. 'outfile_prefix',
67. 'footprint_samples_dim'])
68.
69. cwd = os.getcwd()
70. os.chdir(wrfhelper.settings['run_dir'])
71.
72. #wrfhelper.namelist = wrfhelper.read_namelist(wrfhelper.settings['run_dir'])
73. wrfhelper.namelist = wrfhelper.read_namelist(".")
74.
75.
76. ########## Figure out which samples to process
77. # Get number of samples
78. ncf = nc.Dataset(settings['sampling_coords_file'], "r")
79. nsamples = len(ncf.dimensions["obs"])
80. ncf.close()
81.
82. id0, id1 = utilities.get_slicing_ids(nsamples, settings['nproc'],

settings['nprocs'])
83.
84. os.system("echo 'id0=" + str(id0) + "' >> " + logfile)
85. os.system("echo 'id1=" + str(id1) + "' >> " + logfile)
86.
87. ########## Read samples from coord file
88. dat = wrfhelper.read_sampling_coords(settings['sampling_coords_file'], id0, id1)
89.
90. os.system("echo 'Data read, len=" + str(len(dat['obs'])) + "' >> " + logfile)
91.
92.
93. ########## Locate samples in wrf domains
94.
95. # Take care of special case without ensemble
96. nmembers = settings['nmembers']
97. if nmembers == 0:
98. # Special case: sample 'tracer_optim', don't add member suffix
99. member_names = [settings['tracer_optim']]
100. nmembers = 1
101. else:
102. member_names = [settings['tracer_optim'] + "_%03d" % nm for nm in

range(nmembers)]
103.
104.
105. # Keep a description of a small wrf file for each domain in memory to
106. # locate observations.
107. # This concept is probably obsolete - doesn't save time, and
108. # locate_domain is parallelized anyway
109. wrfhelper.open_wrf_location_files()
110.
111. if settings["footprint_samples_dim"]==1:
112. # Locate all observations in space
113. # This function Wouldn't work for moving nests.
114. id_xy_f, domain, z = wrfhelper.locate_domain(dat['latitude'],

dat['longitude'], dat['altitude'])
115. # Assume box averages and don't interpolate horizontally
116. id_xy = np.round(id_xy_f).astype(int)
117. os.system("echo 'Domains located from obs " + str(domain) + "' >> " +

logfile)
118. else:
119. # Return the whole thing (needed in wrfhelper.sample_total_columns)
120. raise NotImplementedError("To do:

wrfhelper.get_footprint_sampling_points")
121. dat_fs = wrfhelper.get_footprint_sampling_points(dat)
122. # Locate (free)

73

123. id_xy_f_free, domain_free = wrfhelper.locate_domain(dat_fs['latitude'],
dat_fs['longitude'])

124. id_xy_free = np.round(id_xy_f_free).astype(int)
125. # Determine max domain
126. domain_fs = None
127. raise NotImplementedError("To do: domain_fs")
128. # Sample again with domain restriction - no need to return it again
129. id_xy_f, _ = wrfhelper.locate_domain(dat_fs['latitude'],

dat_fs['longitude'], domain_fs)
130. id_xy = np.round(id_xy_f).astype(int)
131. # Thin out domain_fs to pass it to determination of id_t and frac_t

below
132. domain = domain_fs[::settings["footprint_samples_dim"]]
133.
134. wrfhelper.close_wrf_location_files()
135.
136. id_t = np.zeros_like(domain)
137. frac_t = np.ndarray(id_t.shape, float)
138. frac_t[:] = float("nan")
139.
140. wrfout_files = dict()
141. wrfout_times = dict()
142. wrfout_start_time_ids = dict()
143.
144. UD = list(set(domain))
145. os.system("echo 'domains " + str(UD) + "' >> " + logfile)
146.
147. for dom in UD:
148. os.system("echo 'Processing domain " + str(dom) + "' >> " + logfile)
149. idd = np.where(domain == dom)[0]
150. os.system("echo 'idd " + str(idd) + "' >> " + logfile)
151. # Get full time vector
152. wrfout_files[dom] = wrfhelper.get_wrf_filenames("wrfout_d%02d_*00" %

dom)
153. os.system("echo 'Wrf filenames " + str(wrfout_files[dom]) + "' >> " +

logfile)
154. wrfout_times[dom], wrfout_start_time_ids[dom] =

wrfhelper.wrf_times(wrfout_files[dom])
155.
156. # time id
157. for idd_ in idd:
158. # Look where it sorts in
159. tmp = [i
160. for i in range(len(wrfout_times[dom])-1)
161. if wrfout_times[dom][i] <= dat['time'][idd_] \
162. and dat['time'][idd_] < wrfout_times[dom][i+1]]
163. # Catch the case that the observation took place exactly at the
164. # last timestep
165. if len(tmp) == 1:
166. id_t[idd_] = tmp[0]
167. time0 = wrfout_times[dom][id_t[idd_]]
168. time1 = wrfout_times[dom][id_t[idd_]+1]
169. frac_t[idd_] = (time1 - dat['time'][idd_]).total_seconds() /

(time1 - time0).total_seconds()
170. os.system("echo 'frac_t " + str(frac_t[idd_]) + "' >> " +

logfile)
171. else: # len must be 0 in this case
172. if len(tmp) > 1:
173. os.system("echo 'wat' >> " + logfile)
174. raise ValueError("wat")
175. if dat['time'][idd_] == wrfout_times[dom][-1]:
176. id_t[idd_] = len(wrfout_times[dom])-1
177. frac_t[idd_] = 1
178. else:
179. msg = "Sample %d, obs_num %s: outside of simulated

time."%(idd_, dat['obs_num'][idd_])

74

180. os.system("echo '" + msg + "' >> " + logfile)
181. raise ValueError(msg)
182.
183.
184. # Now read the data
185. # Input: id_xy, dom, id_t, wrfout_start_time_ids, fract_t
186. # Output: sampled columns
187. # All input related to location:
188. if settings["footprint_samples_dim"]>1:
189. domain = domain_fs
190. id_t = np.repeat(id_t, settings["footprint_samples_dim"])
191. frac_t = np.repeat(frac_t, settings["footprint_samples_dim"])
192.
193. loc_input = dict(id_xy=id_xy, domain=domain,
194. id_t=id_t, frac_t=frac_t,
195. files=wrfout_files,

file_start_time_indices=wrfout_start_time_ids, z=z)
196.
197.
198. ens_sim = wrfhelper.sample_flask(dat, loc_input, member_names)
199.
200. # Write results to file
201. obs_ids = dat['obs_num']
202. # Remove simulations that are nan (=not in domain)
203. if ens_sim.shape[0] > 0:
204. valid = np.apply_along_axis(lambda arr: not np.any(np.isnan(arr)), 1,

ens_sim)
205. obs_ids_write = obs_ids[valid]
206. ens_sim_write = ens_sim[valid, :]
207. else:
208. obs_ids_write = obs_ids
209. ens_sim_write = ens_sim
210.
211. if settings['nprocs'] == 1:
212. outfile = settings['outfile_prefix']
213. else:
214. # Create output files with the appendix ".<nproc>.slice"
215. # Format <nproc> so that they can later be easily sorted.
216. len_nproc = int(np.floor(np.log10(settings['nprocs']))) + 1
217. outfile = settings['outfile_prefix'] + (".%0" + str(len_nproc) +

"d.slice") % settings['nproc']
218.
219. os.system("echo 'Writing output file '" +

os.path.join(wrfhelper.settings['run_dir'], outfile) + " >> " + logfile)
220.
221. wrfhelper.write_simulated_flask(obs_id=obs_ids_write,
222. simulated=ens_sim_write,
223. nmembers=nmembers,
224. outfile=outfile)
225.
226. os.chdir(cwd)

227. os.system("echo 'Done' >> " + logfile)

75

wrfchem_flask_helper.py

1. import os
2. import shutil
3. import re
4. import glob
5. import bisect
6. import copy
7. import numpy as np
8. import netCDF4 as nc
9. import datetime as dt
10. import wrf
11. import f90nml
12. import pickle
13.
14.
15. # CTDAS modules
16. import da.tools.io4 as io
17. from da.tools.wrfchem.utilities import utilities
18.
19.
20. class WRFChemHelper_flask(object):
21. """Contains helper functions for sampling WRF-Chem"""
22. def __init__(self, settings):
23. self.settings = settings
24.
25. def validate_settings(self, needed_items=[]):
26. """
27. This is based on WRFChemOO._validate_rc
28. """
29.
30. if len(needed_items)==0:
31. return
32.
33. for key in needed_items:
34. if key not in self.settings:
35. msg = "Missing a required value in settings: %s" % key
36. raise IOError(msg)
37.
38. @staticmethod
39. def read_namelist(dirname):
40. """Read run settings from namelist.input file in dirname"""
41. nml_file = os.path.join(dirname, "namelist.input")
42. namelist = f90nml.read(nml_file)
43.
44. list_vars = ["e_we",
45. "e_sn",
46. "parent_id",
47. "parent_grid_ratio",
48. "i_parent_start",
49. "j_parent_start"
50.]
51. for v in list_vars:
52. if not isinstance(namelist["domains"][v], list):
53. namelist["domains"][v] = [namelist["domains"][v]]
54.
55. return namelist
56.
57. def locate_domain(self, lat, lon, alt): #Added altitude location - Ioanna
58. """
59. Input
60. -----
61. lat: Single values or lists or np.arrays
62. lon: Single values or lists or np.arrays
63.

76

64. Output
65. ------
66. - xy-coordinates in finest domain that contains the coordinates
67. - finest domain
68. -z
69. """
70.
71. if not hasattr(self, "_loc_files"):
72. raise RuntimeError("Must call open_wrf_loc_files first.")
73.
74. # Work with arrays internally.
75. lat = np.array(lat, ndmin=1)
76. lon = np.array(lon, ndmin=1)
77.
78. alt = np.array(alt, ndmin=1)
79.
80. # Get coordinates of the observation in all domains
81. ndomains = self.namelist["domains"]["max_dom"]
82.
83. # Get domain sizes in xy on mass (=unstaggered) grid (hence the -1)
84. dom_size_x = np.array(self.namelist['domains']['e_we'], dtype=float,

ndmin=1) - 1
85. dom_size_y = np.array(self.namelist['domains']['e_sn'], dtype=float,

ndmin=1) - 1
86.
87.
88. # Initialize output
89. xy = np.zeros((len(lat), 2))
90. xy[:] = np.nan
91. finest_domain = np.zeros((len(lat),), int)
92.
93. z = np.zeros(len(alt))
94. z[:] = np.nan
95.
96. # Since wrf.ll_to_xy takes very long, I save a bit of time here
97. # by starting in the finest domain and processing only
98. # observations that weren't previously found.
99. for n in range(ndomains-1, -1, -1):
100. # Get xy for this domain
101. # Only process what you haven't processed
102. sel = np.where(finest_domain == 0)[0]
103.
104. # In case all domains where set
105. if len(sel)==0:
106. break
107.
108. x, y = wrf.ll_to_xy(wrfin=self._loc_files[n],
109. latitude=lat[sel],
110. longitude=lon[sel],
111. meta=False,
112. as_int=False)
113.
114.
115. # For each domain, check if the observation is inside the
116. # domain extent
117. # I put the edges on -0.5 and e_we/e_sn - 0.5.
118.
119. # To be able to iterate over x and y in case they're scalars:
120. x = np.array(x, ndmin=1)
121. y = np.array(y, ndmin=1)
122.
123. # Test: inside domain?
124. # The -1 here are because of 0-based indices, and the -/+ 0.5

are
125. # because that's halfway to the next mass-staggered point and
126. # I treat the WRF grid as boxes.

77

127. x_in = [(-0.5 <= x_) and (x_ <= dom_size_x[n] - 1 + 0.5) for x_
in x]

128. y_in = [(-0.5 <= y_) and (y_ <= dom_size_y[n] - 1 + 0.5) for y_
in y]

129.
130. # Save domain, x and y at these locations
131. in_this_dom = np.where(np.logical_and(x_in, y_in))[0]
132. finest_domain[sel[in_this_dom]] = n + 1
133. # If domain = 1, set _all_ xy to see where they end up
134. if n==0:
135. xy[sel, 0] = x
136. xy[sel, 1] = y
137. else:
138. xy[sel[in_this_dom], 0] = x[in_this_dom]
139. xy[sel[in_this_dom], 1] = y[in_this_dom]
140.
141.
142. model_z_all_ll = wrf.getvar(wrfin=self._loc_files[n],
143. varname= 'height_agl',
144. timeidx= 0,
145. units='m',
146. squeeze=True,
147. meta=False)
148.
149. x = np.round(x).astype(int)
150. y = np.round(y).astype(int)
151.
152. model_z = list()
153. z = list()
154.
155. model_z = np.array([(model_z_all_ll[:, i,i]) for i, (x_,y_) in

enumerate(zip(x, y))])
156. z = np.array([np.abs(model_z[i,:] - alt[sel[i]]).argmin() for i

in range(len(x))]) #index of z
157.
158. # Return the indices and domain
159. return xy, finest_domain, z
160.
161. def get_groups_space_time(self, dat, time_bins, only_in=False):
162. """
163. Returns a dictionary of lists of indices of observations in dat,
164. where keys are tuples of (time bin, x bin, y bin and wrf
165. domain), and values are indices of the observations that fall
166. within this bin.
167. """
168.
169. # Time groups
170. id_t = np.array([bisect.bisect_right(time_bins, dat_date)
171. for dat_date in dat['date']],
172. int)
173.
174. # Spatial groups (indices and domain)
175. id_xy_f, dom, z = self.locate_domain(dat['latitude'],

dat['longitude'], dat['altitude'])
176.
177. id_xy = np.round(id_xy_f).astype(int)
178.
179.
180.
181. # Version of only_in with sel: might be faster if sel is short -
182. # I don't know! But the results for my test case where identical
183. # (meaning 'domain' looked correct and identical) for both
184. # options for only_in.
185.
186. # if only_in:
187. # # Yes, 0<id_t is correct: in bisect_right, it means the

78

188. # # value is below the lowest sequence value.
189. # time_in = np.logical_and(0<id_t, id_t<len(time_bins))
190. # space_in = dom != 0
191. # sel = np.where(np.logical_and(time_in, space_in))[0]
192. #
193. # else:
194. # sel = range(len(id_t))
195. #
196. # indices = get_index_groups(id_t[sel], id_xy[sel, 0], id_xy[sel,

1], dom[sel])
197. #
198. # # Now have to account for sel again!
199. # if only_in:
200. # for k, v in indices.iteritems():
201. # indices[k] = sel[v]
202.
203. # Version of only_in without sel: might be faster if sel is
204. # long - I don't know! But the results for my test case where
205. # identical (meaning 'domain' looked correct and identical)
206.
207. # Indices for all groups:
208. indices = utilities.get_index_groups(id_t, id_xy[:, 0], id_xy[:, 1],

dom)
209.
210. # Throw the out-of-domain ones out here already
211. if only_in:
212. # Remove the index groups where domain is 0 (= outside of
213. # domain). Need to iterate over a list, because with an
214. # iterator, python complains that the dictionary changed
215. # size during iteration.
216. for k in list(indices.keys()):
217. if k[3] == 0:
218. del indices[k]
219. # Equivalent to the above 3 lines, don't know what's faster:
220. # groups = {k: v for k, v in groups.iteritems() if k[3] != 0}
221.
222. return indices
223.
224.
225. @staticmethod
226. def times_in_wrf_file(ncf):
227. """
228. Returns the times in netCDF4.Dataset ncf as datetime object
229. """
230. times_nc = ncf.variables["Times"]
231. times_chr = []
232. for nt in range(times_nc.shape[0]):
233. # freum 2021-07-11: with the migration to python3, need to
234. # replace the string - conversion. Hope "utf-8" works
235. # always.
236. # times_chr.append(times_nc[nt, :].tostring())
237. times_chr.append(str(times_nc[nt, :], "utf-8"))
238.
239. times_dtm = [dt.datetime.strptime(t_chr, "%Y-%m-%d_%H:%M:%S")
240. for t_chr in times_chr]
241.
242. return times_dtm
243.
244. def wrf_times(self, file_list):
245. """Read all times in a list of wrf files
246.
247. Output
248. ------
249. - 1D-array containing all times
250. - 1D-array containing start indices of each file
251. """

79

252.
253. times = list()
254. start_indices = np.ndarray((len(file_list),), int)
255. for nf in range(len(file_list)):
256. ncf = nc.Dataset(file_list[nf])
257. times_this = self.times_in_wrf_file(ncf)
258. start_indices[nf] = len(times)
259. times += times_this
260. ncf.close()
261.
262. return times, start_indices
263.
264. def open_wrf_location_files(self):
265. """
266. Keep a description of a small wrf file for each domain in memory
267. to locate observations.
268. Appends _loc_file to self.
269.
270. Note: Should be edited out of the code.
271. """
272.
273. ndomains = self.namelist["domains"]["max_dom"]
274. path = self.settings["run_dir"]
275. pattern = "wrfinput_d%02d"
276. self._loc_files = list()
277. for nd in range(1, ndomains+1):
278. fp = os.path.join(path, pattern % nd)
279. self._loc_files.append(nc.Dataset(fp, "r"))
280.
281. def close_wrf_location_files(self):
282. """See _open_wrf_location_files"""
283. for loc_file in self._loc_files:
284. loc_file.close()
285.
286. def wrf_filename_times(self, prefix):
287. """Get timestamps in wrf file names in run directory."""
288.
289. # List all filenames
290. files = self.get_wrf_filenames(prefix + "*")
291. # Only use d01 files, pattern should be the same for all domains
292. pattern = os.path.join(self.settings["run_dir"], prefix)
293. files = [f for f in files if re.search(pattern, f)]
294. # Extract timestamp from filename
295. # Format is %Y-%m-%d_%H:%M:%S at the end of the filename
296. pattern_time = "%Y-%m-%d_%H:%M:%S"
297. len_tstamp = len(pattern_time) + 2
298. times = [dt.datetime.strptime(f[-len_tstamp:], pattern_time)
299. for f in files]
300.
301. return times
302.
303. def get_wrf_filenames(self, glob_pattern):
304. """
305. Gets the filenames in self.settings["run_dir"] that follow
306. glob_pattern, excluding those that end with
307. self.settings["original_save_suffix"]
308. """
309. path = self.settings["run_dir"]
310. # All files...
311. wfiles = glob.glob(os.path.join(path, glob_pattern))
312. # All originals
313. orig_suf = self.settings["original_save_suffix"]
314. opattern = glob_pattern + orig_suf
315. ofiles = glob.glob(os.path.join(path, opattern))
316.
317. # All files except all originals:

80

318. files = [x for x in wfiles if x not in ofiles]
319.
320. # I need this sorted too often to not do it here.
321. files = np.sort(files).tolist()
322. return files
323.
324.
325. def sample_flask(self, dat, loc, fields_list):
326.
327. # Initialize output
328. tc = np.ndarray(shape=(len(dat["obs_num"]), len(fields_list)),

dtype=float)
329. tc[:] = float("nan")
330.
331. # Process by domain
332. UD = list(set(loc["domain"]))
333. #for dom in UD[1:]:
334. for dom in UD:
335. idd = np.nonzero(loc["domain"] == dom)[0]
336. # Process by id_t
337. UT = list(set(loc["id_t"][idd]))
338. for time_id in UT:
339. # Coordinates to process
340. idt = idd[np.nonzero(loc["id_t"][idd] == time_id)[0]]
341. # Get tracer ensemble profiles
342. profiles = self._read_and_intrp_v(loc, fields_list, time_id,

idt)
343. # Here it starts to make sense to loop over individual observations
344. for nidt in range(len(idt)):
345. nobs = idt[nidt]
346. # Compute flasks
347. for nf in range(len(fields_list)):
348.
349. # Model retrieval
350. tc[nobs, nf] = profiles[nf][nidt]
351.
352. return tc
353.
354. @staticmethod
355. def _read_and_intrp_v(loc, fields_list, time_id, idp):
356. """
357. Helper function for sample_flasks.
358. read_and_intrp, but vectorized.
359. Reads in fields and interpolates
360. them linearly in time.
361.
362. Output
363. ------
364. List of temporally interpolated fields, one entry per member of
365. fields_list.
366. """
367.
368. var_intrp_l = list()
369.
370. # Check we were really called with observations for just one domain
371. domains = set(loc["domain"][idp])
372. if len(domains) > 1:
373. raise ValueError("I can only operate on idp with identical

domains.")
374. dom = domains.pop()
375.
376. # Select input files
377. id_file0 = bisect.bisect_right(loc["file_start_time_indices"][dom],

time_id) - 1
378. id_file1 = bisect.bisect_right(loc["file_start_time_indices"][dom],

time_id+1) - 1

81

379. if id_file0 < 0 or id_file1 < 0:
380. raise ValueError("This shouldn't happen.")
381.
382. # Get time id in file
383. id_t_file0 = time_id - loc["file_start_time_indices"][dom][id_file0]
384. id_t_file1 = time_id+1 -

loc["file_start_time_indices"][dom][id_file1]
385.
386. # Open files
387. nc0 = nc.Dataset(loc["files"][dom][id_file0], "r")
388. nc1 = nc.Dataset(loc["files"][dom][id_file1], "r")
389. # Per field to sample
390. for field in fields_list:
391. # Read input file
392. field0 = wrf.getvar(wrfin=nc0,
393. varname=field,
394. timeidx=id_t_file0,
395. squeeze=False,
396. meta=False)
397.
398. field1 = wrf.getvar(wrfin=nc1,
399. varname=field,
400. timeidx=id_t_file1,
401. squeeze=False,
402. meta=False)
403.
404. if len(field0.shape) == 4:
405. # Sample field at timesteps before and after observation
406. # They are ordered nt x nz x ny x nx
407. # var0 will have shape (len(idp),len(profile))
408. var0 = field0[0, loc["z"][idp], loc["id_xy"][idp, 1],

loc["id_xy"][idp, 0]]
409. var1 = field1[0, loc["z"][idp], loc["id_xy"][idp, 1],

loc["id_xy"][idp, 0]]
410. # Repeat frac_t for profile size
411. frac_t_ = np.array(loc["frac_t"][idp])#.reshape((len(idp),

1)).repeat(var0.shape[1], 1)
412. elif len(field0.shape) == 3:
413. # var0 will have shape (len(idp),)
414. var0 = field0[0, loc["id_xy"][idp, 1], loc["id_xy"][idp, 0]]
415. var1 = field1[0, loc["id_xy"][idp, 1], loc["id_xy"][idp, 0]]
416. frac_t_ = np.array(loc["frac_t"][idp])
417. elif len(field0.shape) == 2:
418. # var0 will have shape (len(idp),len(profile))
419. # This is for ZNW, which is saved as (time_coordinate,
420. # vertical_coordinate)
421. var0 = field0[[0]*len(idp), :]
422. var1 = field1[[0]*len(idp), :]
423. frac_t_ = np.array(loc["frac_t"][idp]).reshape((len(idp),

1)).repeat(var0.shape[1], 1)
424. else:
425. raise ValueError("Can't deal with field with %d dimensions."

% len(field0.shape))
426.
427. # Interpolate in time
428. var_intrp_l.append(var0*frac_t_ + var1*(1. - frac_t_))
429.
430. nc0.close()
431. nc1.close()
432.
433. return var_intrp_l
434.
435. @staticmethod
436. def read_sampling_coords(sampling_coords_file, id0=None, id1=None):
437. """Read in samples"""
438.

82

439. ncf = nc.Dataset(sampling_coords_file, "r")
440. if id0 is None:
441. id0 = 0
442. if id1 is None:
443. id1 = len(ncf.dimensions['obs'])
444.
445. dat = dict(
446. obs_num=np.array(ncf.variables["obs_num"][id0:id1]),
447. date=ncf.variables["date_components"][id0:id1],
448. latitude=np.array(ncf.variables["latitude"][id0:id1]),
449. longitude=np.array(ncf.variables["longitude"][id0:id1]),
450. altitude=np.array(ncf.variables["altitude"][id0:id1]),
451. #strategy=np.array(ncf.variables["sampling_stategy"][id0:id1]),
452. #evn=np.array(ncf.variables["obs_id"][id0:id1]),
453. obs=np.array(ncf.variables["observed"][id0:id1]),
454. mdm=np.array(ncf.variables["modeldatamismatch"][id0:id1])
455.)
456.
457. ncf.close()
458.
459. # Convert date to datetime object
460. dat["time"] = [dt.datetime(*x) for x in dat["date"]]
461.
462. return dat
463.
464. @staticmethod
465. def write_simulated_flask(obs_id, simulated, nmembers, outfile):
466. """Write simulated observations to file."""
467.
468. # Output format: see obs_xco2_fr
469.
470. f = io.CT_CDF(outfile, method="create")
471.
472. dimid = f.createDimension("obs_num", size=None)
473. dimid = ("obs_num",)
474. savedict = io.std_savedict.copy()
475. savedict["name"] = "obs_num"
476. savedict["dtype"] = "int64"
477. savedict["long_name"] = "Unique_Dataset_observation_index_number"
478. savedict["units"] = ""
479. savedict["dims"] = dimid
480. savedict["comment"] = "Format as in input"
481. savedict["values"] = obs_id.tolist()
482. f.add_data(savedict, nsets=0)
483.
484. dimmember = f.createDimension("nmembers", size=nmembers)
485. dimmember = ("nmembers",)
486. savedict = io.std_savedict.copy()
487. savedict["name"] = "flask"
488. savedict["dtype"] = "float"
489. savedict["long_name"] = "Simulated flask"
490. savedict["units"] = "??"
491. savedict["dims"] = dimid + dimmember
492. savedict["comment"] = "Simulated model value created by WRFChemOO"
493. savedict["values"] = simulated.tolist()
494. f.add_data(savedict, nsets=0)
495.
496. f.close()
497.
498. @staticmethod
499. def save_file_with_timestamp(file_path, out_dir, suffix=""):
500. """ Saves a file to with a timestamp"""
501. nowstamp = dt.datetime.now().strftime("_%Y-%m-%d_%H:%M:%S")
502. new_name = os.path.basename(file_path) + suffix + nowstamp
503. new_path = os.path.join(out_dir, new_name)
504. shutil.copy2(file_path, new_path)

83

505.
506.
507. if __name__ == "__main__":

508. pass

84

REFERENCES

https://www2.acom.ucar.edu/wrf-chem

https://www.iup.uni-bremen.de/carbon_ghg/products/tropomi_wfmd/index_v12.php

https://www.ecmwf.int/en/research/data-assimilation

https://finokalia.chemistry.uoc.gr/

https://www2.acom.ucar.edu/modeling/finn-fire-inventory-ncar

https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-emission-
inventories?tab=overview

Ahmadov, R., Gerbig, C., Kretschmer, R., Körner, S., Rödenbeck, C., Bousquet, P.,
& Ramonet, M. (2009). Comparing high resolution WRF-VPRM simulations and
two global CO 2 transport models with coastal tower measurements of CO2.
Biogeosciences, 6(5), 807–817. https://doi.org/10.5194/bg-6-807-2009

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G.,
Jenkin, M. E., Rossi, M. J., & Troe, J. (2006). Evaluated kinetic and
photochemical data for atmospheric chemistry: Volume II – gas phase reactions
of organic species. Atmospheric Chemistry and Physics, 6(11), 3625–4055.
https://doi.org/10.5194/acp-6-3625-2006

Beck, V., Koch, T., Kretschmer, R., Marshall, J., Ahmadov, R., Gerbig, C., Pillai, D.,
& Heimann, M. (2011). The WRF Greenhouse Gas Model (WRF-GHG)
Technical Report. https://www.bgc-jena.mpg.de/bgc-
systems/pmwiki2/uploads/Download/Wrf-ghg/WRF-GHG_Techn_Report.pdf

Bogner, J., & Spokas, K. (1993). Landfill CH4: Rates, fates, and role in global carbon
cycle. Chemosphere, 26(1–4), 369–386. https://doi.org/10.1016/0045-
6535(93)90432-5

Brasseur, G. P., & Jacob, D. J. (2017). Modeling of atmospheric chemistry. Modeling
of Atmospheric Chemistry, March, 1–606.
https://doi.org/10.1017/9781316544754

Bruhwiler, L., Dlugokencky, E., Masarie, K., Ishizawa, M., Andrews, A., Miller, J.,
Sweeney, C., Tans, P., & Worthy, D. (2014). CarbonTracker-CH4: An
assimilation system for estimating emissions of atmospheric methane.
Atmospheric Chemistry and Physics, 14(16), 8269–8293.
https://doi.org/10.5194/acp-14-8269-2014

Bruhwiler, L. M. P., Michalak, A. M., Peters, W., Baker, D. F., & Tans, P. (2005). An
improved Kalman smoother for atmospheric inversions. Atmospheric Chemistry
and Physics, 5(10), 2691–2702. https://doi.org/10.5194/acp-5-2691-2005

Chang, J., Peng, S., Ciais, P., Saunois, M., Dangal, S. R. S., Herrero, M., Havlík, P.,
Tian, H., & Bousquet, P. (2019). Revisiting enteric methane emissions from
domestic ruminants and their δ13CCH4 source signature. Nature
Communications, 10(1), 1–14. https://doi.org/10.1038/s41467-019-11066-3

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

https://www2.acom.ucar.edu/wrf-chem
https://www.iup.uni-bremen.de/carbon_ghg/products/tropomi_wfmd/index_v12.php
https://www.ecmwf.int/en/research/data-assimilation
https://finokalia.chemistry.uoc.gr/
https://www2.acom.ucar.edu/modeling/finn-fire-inventory-ncar
https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-emission-inventories?tab=overview
https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-emission-inventories?tab=overview

85

Gourdji, S. M., Yadav, V., Karion, A., Mueller, K. L., Conley, S., Ryerson, T.,
Nehrkorn, T., & Kort, E. A. (2018). Reducing errors in aircraft atmospheric
inversion estimates of point-source emissions: The Aliso Canyon natural gas
leak as a natural tracer experiment. Environmental Research Letters, 13(4).
https://doi.org/10.1088/1748-9326/aab049

Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W.
C., & Eder, B. (2005). Fully coupled “online” chemistry within the WRF model.
Atmospheric Environment, 39(37), 6957–6975.
https://doi.org/10.1016/j.atmosenv.2005.04.027

Hausmann, P., Sussmann, R., & Smale, D. (2016). Contribution of oil and natural gas
production to renewed increase in atmospheric methane (2007-2014): Top-
down estimate from ethane and methane column observations. Atmospheric
Chemistry and Physics, 16(5), 3227–3244. https://doi.org/10.5194/acp-16-3227-
2016

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J.,
Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla,
S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., …
Thépaut, J. N. (2020). The ERA5 global reanalysis. Quarterly Journal of the
Royal Meteorological Society, 146(730), 1999–2049.
https://doi.org/10.1002/qj.3803

Huijnen, V., Williams, J., Van Weele, M., Van Noije, T., Krol, M., Dentener, F.,
Segers, A., Houweling, S., Peters, W., De Laat, J., Boersma, F., Bergamaschi,
P., Van Velthoven, P., Le Sager, P., Eskes, H., Alkemade, F., Scheele, R.,
Nédélec, P., & Pätz, H. W. (2010). The global chemistry transport model TM5:
Description and evaluation of the tropospheric chemistry version 3.0.
Geoscientific Model Development, 3(2), 445–473. https://doi.org/10.5194/gmd-
3-445-2010

Kaplan, J. O. (2002). Wetlands at the Last Glacial Maximum: Distribution and
methane emissions. Geophysical Research Letters, 29(6), 3–6.
https://doi.org/10.1029/2001GL013366

Kolb, S., & Horn, M. A. (2012). Microbial CH4 and N2O consumption in acidic
wetlands. Frontiers in Microbiology, 3(MAR).
https://doi.org/10.3389/fmicb.2012.00078

Levine, J. S. (2000). Biomass Burning and the Production of Greenhouse Gases.
Climate Biosphere Interaction: Biogenic Emissions and Environmental Effects of
Climate Change, 1–13.

Miller, S. M., Michalak, A. M., & Levi, P. J. (2014). Atmospheric inverse modeling with
known physical bounds: An example from trace gas emissions. Geoscientific
Model Development, 7(1), 303–315. https://doi.org/10.5194/gmd-7-303-2014

Ministry of Environment and Energy. (2021). NATIONAL INVENTORY REPORT OF
GREECE FOR GREENHOUSE AND OTHER GASES FOR THE YEARS 1990-
2019. March.

Müller, J. F., Liu, Z., Nguyen, V. S., Stavrakou, T., Harvey, J. N., & Peeters, J.
(2016). The reaction of methyl peroxy and hydroxyl radicals as a major source
of atmospheric methanol. Nature Communications, 7(May), 1–11.
https://doi.org/10.1038/ncomms13213

86

Patra, A., Park, T., Kim, M., & Yu, Z. (2017). Rumen methanogens and mitigation of
methane emission by anti-methanogenic compounds and substances. Journal
of Animal Science and Biotechnology, 8(1), 1–18.
https://doi.org/10.1186/s40104-017-0145-9

Paudel, R., Mahowald, N. M., Hess, P. G. M., Meng, L., & Riley, W. J. (2016).
Attribution of changes in global wetland methane emissions from pre-industrial
to present using CLM4.5-BGC. Environmental Research Letters, 11(3), 34020.
https://doi.org/10.1088/1748-9326/11/3/034020

Peters, W., Miller, J. B., Whitaker, J., Denning, A. S., Hirsch, A., Krol, M. C.,
Zupanski, D., Bruhwiler, L., & Tans, P. P. (2005). An ensemble data assimilation
system to estimate CO2 surface fluxes from atmospheric trace gas
observations. Journal of Geophysical Research Atmospheres, 110(24), 1–18.
https://doi.org/10.1029/2005JD006157

Poulter, B., Bousquet, P., Canadell, J. G., Ciais, P., Peregon, A., Saunois, M., Arora,
V. K., Beerling, D. J., Brovkin, V., Jones, C. D., Joos, F., Gedney, N., Ito, A.,
Kleinen, T., Koven, C. D., McDonald, K., Melton, J. R., Peng, C., Peng, S., …
Zhu, Q. (2017). Global wetland contribution to 2000-2012 atmospheric methane
growth rate dynamics. Environmental Research Letters, 12(9).
https://doi.org/10.1088/1748-9326/aa8391

Ridgwell, J., Marshall, J., & Gregson, K. (1999). Consumption of atmospheric
methane by soils: A process-based model. Global Biogeochemical Cycles,
13(1), 59–70.

Ruppel, C. D., & Kessler, J. D. (2017). The interaction of climate change and
methane hydrates. Reviews of Geophysics, 55(1), 126–168.
https://doi.org/10.1002/2016RG000534

Salawitch, R. J., Canty, T. P., Hope, A. P., Tribett, W. R., & Bennett, B. F. (n.d.).
Paris Climate Agreement : beacon of hope.

Sanchis, E., Ferrer, M., Torres, A. G., Cambra-López, M., & Calvet, S. (2012). Effect
of water and straw management practices on methane emissions from rice
fields: A review through a meta-analysis. Environmental Engineering Science,
29(12), 1053–1062. https://doi.org/10.1089/ees.2012.0006

Sanderson, M. S. (1996). Biomass of termites and their emissions of methane and
carbon dioxide: A global database. Global Biogeochemical Cycles, 10(4), 543–
557. https://doi.org/10.1029/96GB01893

Schneising, O., Buchwitz, M., Reuter, M., Bovensmann, H., Burrows, J. P., Borsdorff,
T., Deutscher, N. M., Feist, D. G., Griffith, D. W. T., Hase, F., Hermans, C., Iraci,
L. T., Kivi, R., Landgraf, J., Morino, I., Notholt, J., Petri, C., Pollard, D. F.,
Roche, S., … Wunch, D. (2019). A scientific algorithm to simultaneously retrieve
carbon monoxide and methane from TROPOMI onboard Sentinel-5 Precursor.
Atmospheric Measurement Techniques, 12(12), 6771–6802.
https://doi.org/10.5194/amt-12-6771-2019

Seinfeld, J. H., Pandis, S. N., & Noone, K. (1998). Atmospheric
Chemistry and Physics: From Air Pollution to Climate Change .
In Physics Today (Vol. 51, Issue 10). https://doi.org/10.1063/1.882420

Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J.
O., Levis, S., Lucht, W., Sykes, M. T., Thonicke, K., & Venevsky, S. (2003).

87

Evaluation of ecosystem dynamics, plant geography and terrestrial carbon
cycling in the LPJ dynamic global vegetation model. Global Change Biology,
9(2), 161–185. https://doi.org/10.1046/j.1365-2486.2003.00569.x

Skamarock, W. C., Klemp, J. B., Dudhia, J. B., Gill, D. O., Barker, D. M., Duda, M.
G., Huang, X.-Y., Wang, W., & Powers, J. G. (2008). A description of the
Advanced Research WRF Version 3, NCAR Technical Note TN-475+STR.
Technical Report, June, 113.

Van Der Laan-Luijkx, I. T., Van Der Velde, I. R., Van Der Veen, E., Tsuruta, A.,
Stanislawska, K., Babenhauserheide, A., Fang Zhang, H., Liu, Y., He, W., Chen,
H., Masarie, K. A., Krol, M. C., & Peters, W. (2017). The CarbonTracker Data
Assimilation Shell (CTDAS) v1.0: Implementation and global carbon balance
2001-2015. Geoscientific Model Development, 10(7), 2785–2800.
https://doi.org/10.5194/gmd-10-2785-2017

Whitaker, J. S., & Hamill, T. M. (2002). Ensemble data assimilation without perturbed
observations. Monthly Weather Review, 130(7), 1913–1924.
https://doi.org/10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2

Zhang, Z., Fluet-Chouinard, E., Jensen, K., McDonald, K., Hugelius, G., Gumbricht,
T., Carroll, M., Prigent, C., Bartsch, A., & Poulter, B. (2021). Development of the
global dataset of Wetland Area and Dynamics for Methane Modeling (WAD2M).
Earth System Science Data, 13(5), 2001–2023. https://doi.org/10.5194/essd-13-
2001-2021

Zhao, H., Themelis, N. J., Bourtsalas, A., & McGillis, W. R. (2019). Methane
Emissions from Landfills. ResearchGate, May, 1–98.

Zhou, M., Langerock, B., Vigouroux, C., Sha, M. K., Ramonet, M., Delmotte, M.,
Mahieu, E., Bader, W., Hermans, C., Kumps, N., Metzger, J. M., Duflot, V.,
Wang, Z., Palm, M., & De Mazière, M. (2018). Atmospheric CO and CH4 time
series and seasonal variations on Reunion Island from ground-based in situ and
FTIR (NDACC and TCCON) measurements. Atmospheric Chemistry and
Physics, 18(19), 13881–13901. https://doi.org/10.5194/acp-18-13881-2018

	2.1 Inverse modeling………………………………………………………..28
	3.1 Inversion results ………………………………………………………..44
	3.2 Discussion……...………………………………………………………..55

