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NEPIAHWH

H utrepBépuavon Tou TTAQVATN TIOU TIPOKaAEiTal amd Ta aépia  TOu
BeppoknTtriou givalr éva BEpa AKpwg avnouxnTike Ta TeAeuTtaia xpovia. To
peBAvio (CHy), TTou gival To deUTEPO TTIO ONUAVTIKO aéplo BepUOKNTTiOU PETA
10 810&€idIO Tou AvBpaka (CO,), autdvetal he TaxeEic puBuoUg, Kupiwg Adyw
TWV avlpwITIvwy JpacTnPIOTATWY. ZTnV Trapouca HEAETN, OTOXEUOUUE va
BeATIOTOTTOINOOUUE TIG EKTIMACEIG TV aVBPWTTOYEVWY EKTTOUTTWV CH4 oTnv
Kevtpiki-AvatoAiky Meodyeio kai otnv EAAGSa, OTTwg avagépeTal amd tnv
utinpecia Copernicus Atmosphere Monitoring Service, XpPNOIYOTTOIWVTOG
avTioTpo®n PovTeAoTTOINON.

MNa 10 okommd autd, e@apudleTal Kal xpnolgotroigital To poviéAo Weather
Research and Forecasting - Greenhouse Gas o¢ ouvduaoud peE TO
CarbonTracker Data Assimilation Shell, Tou evowpaTwvel dOPUPOPIKES
TTapatnpioeig amd 1o poidv TROPOMI/WFMD kai emITOTTIEG PETPAOEIG ATTO
10 0T0BPO 010 PivokaAid AaciBiou. ETAEXBNKkav dU0 eNPWAEUPEVES TTEPIOXEG
MEAETNG, N KevTpikA-AvaToAikr) Meodyeiog kai n EAAGda kai BeATioToTroiouvTal
TTEVTE OIOQPOPETIKEG YEWYPAPIKEG TTEPIOXEG OE QUTAV TNV TIEPIOXH MEAETNG.
XpnoigotroiouvTal 50 péAn ouvolou pe xpovikd BAPa BeATIOTOTTOINONG Miag
eBoopadag kalr TopdBupo agopoiwong 5 gBdouadwv. H  Tepiodog
avTIOTPOQNG opieTal OTIG TTPWTEG dEka eBdoudadeg Tou 2019.

Epeuvnoaue 80O OIQQOPETIKEG TTEQITITWOEIG, Mia PE O@AAPA  POVTEAOU
petagopdas 10 ppb kai 5 ppb yia Ta dopugopikd dedouéva Kal TIG ETTIYIEG
METPAOEIG, avTIOTOIXO Kal Pia Je OEKA POPEG PEYAAUTEPO CPAAUA. Z€ OAEG TIG
€BOOUAdEG TTOU avTIOTPEPOVTAI yIa TIG BUO TTPOCOUOIWCEIG, TTPOBAETTOVTAI
oxedOV POvVo apvnTIKEG POEG. AuTO aTTodideTal O UYNAEG APXIKEG KAl OPIOKES
OuVvOnKeg o OUYKPION WPE TIG TTAPATNPACEIG TTOU ETMAEXBNKav yia To ocUOTHUA
pag. EmmimAéov, TTpoBAETTOVTOI OIAQOPETIKOI APIOUOI TTEPIOXWV HE OETIKEG
EKTTOUTTEG ATTO KABE TTPOCONOIWOT), UTTOBEIKVUOVTOG TN PEYAAN eTTidpacn Tou
TOU OQ@AAPOTOG TOU MOVTEAOU HETAQOPAG OTO ATTOTEAéOMATA  EKTIMNONG
EKTTOUTTWV.

NEGeig  kAaidid:  pebavio, ekmoptrég, WRF, CTDAS, avrioTpogn

povTeAoTroinon, OQAAPa HovTEAOU PETAPOPAG



ABSTRACT

Global warming induced by greenhouse gases has been an issue of outmost
concern in the recent years. Methane (CH,4), which is the second most
important greenhouse gas after carbon dioxide (CO,), increases rapidly,
mainly due to human activities. In the present study, we aim to optimize the
estimations of CH,; anthropogenic emissions over Central-Eastern
Mediterranean and over Greece as reported by Copernicus Atmosphere
Monitoring Service, using inverse modeling.

For this purpose, Weather Research and Forecasting - Greenhouse Gas
model coupled with CarbonTracker Data Assimilation Shell, integrating
satellite observations from TROPOMI/WFMD product and in-situ
measurements from Finokalia station is implemented and used. Two one-way
nested domains are selected, one over Central-Eastern Mediterranean and
one over Greece and five different geographical regions in this study area are
optimized. 50 ensemble members are used in the inversion with an
optimization time step of one week and an assimilation window of 5 weeks.
The inversion period is set to the first ten weeks of 2019.

We investigated two different setups, one with transport model error of 10 ppb
and 5 ppb for satellite data and in situ measurements, respectively and one
with ten times larger error. In all of the weeks inverted for the two simulations,
almost only negative fluxes are predicted. This is attributed to high initial and
boundary conditions compared to the observations that were selected to work
as input in our system. Furthermore, different number of positive emission
regions in the study area are predicted by each inversion setup indicating the
large influence of transport model error magnitude in the emissions estimation
results.

Keywords: Methane, emissions, WRF, CTDAS, inverse modeling, transport

model error
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1. Earth

1.1 Climate and Greenhouse Effect

The term "climate" refers to the weather's average behavior over a long time
period. It's not always easy to figure out what the typical time period is for
defining the climate. Too short spans of time are insufficient to balance year-
to-year variations, while too long periods can encompass numerous periods of
climate change. Climate change has a characteristic time period ranging from
decades to centuries. The average duration for defining the climate is 30
years. The global average annual surface temperature is the most commonly
used variable to characterize climate, however other factors such as rainfall
frequency and amount can also be considered. Changes in the average
values of these factors, as well as their variability, are part of climate change.
The balance controls surface temperature between solar energy inflow and
the planetary heat emission in space.

Solar radiation is the primary source of energy for the Earth system. As a
black body with an active temperature of Ts = 5800 K, Sun emits radiation.
The black body's associated energy flow is given by the Stefan-Boltzmann law
F = oTs* where o is the Stefan-Boltzmann constant, equal to 5.67 x 10° W
m? K* and F the flux through a surface perpendicular to the incoming
radiation. Solar radiation has a peak at 0.5 pym and extends to all
wavelengths. The Earth disk (surface perpendicular to the incoming radiation)
interrupts the passage of solar energy by 1365 W m™ 2. This amount is known
as the solar constant and is represented by the letter S. As a result, the
average solar flux received by Earth’s disk is S / 4 = 341 W m™ 2. Clouds and
the Earth's surface reflect a fraction of the incoming solar energy back into
space (around 30%). This is known as the planetary albedo (0=0.3). The
Earth-atmosphere system absorbs the rest of the energy. The black body
radiation emitted by the Earth at an active temperature Tg compensates for
this energy input. The relationship between solar heating and ground cooling
at steady state is:

(1-a) x S/4 = oTg*

Te = 255 K (-18 °C) is the average active temperature of Earth obtained from
this equation. The wavelengths of terrestrial emission correspond to the
infrared (IR), with a peak at 10 ym.
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On average, roughly 341 W m™ of solar energy enters the Earth’s atmosphere
each year, with 30% of the energy being reflected back into space, leaving
about 235 W m™ to be absorbed by the Earth/Atmosphere system (Fig. 1).
Clouds account for around two-thirds of the 107 W m? reflected back into
space, the surface for about one-eighth, and Rayleigh atmospheric scattering
for the rest. Although the surface-atmosphere system's total absorbed and
transmitted energy is balanced at 235 W m™, process fluxes and energy
transfer within the system, between the surface outflux of Earth’s radiation
through the top of the Atmosphere and the Atmosphere, and within the
Atmosphere itself, modify this balance and Earth’s temperature from -18 °C
(255 K) to +15 °C (288 K). In fact, certain gases, aerosols, and clouds in the
atmosphere absorb around 70 percent of the 235 W m™ of the outgoing
longwave Earth’s radiation. Indeed, infrared terrestrial radiation released from
the surface is trapped by some gases, the so-called greenhouse gases.
Therefore, the actual Earth’s temperature is 33 K higher than the average
active temperature. This is the natural greenhouse effect. Greenhouse gases
are molecules that absorb infrared light and thereby lower the amount of
terrestrial radiation that escapes into space warming the Earth/Atmosphere
system. According to quantum physics, vibrational transitions are only allowed
if they affect the molecule's bipolar moment. Greenhouse gases are any
molecules with an asymmetric charge distribution (CO, chlorofluorocarbons)
or the ability to obtain charge distribution through tension or bending (CO.,
CHy4 N0, H,0, O3).

Global Energy Flows W m?

102\ Reflected Solar 341 Incoming 239 [ Outgoing
Radiation Solar Longwave
101.9Wm? Radiation f Radiation

, 3413Wm? 2385Wm?
Reflected by
Clouds and ;
Atmosphere i 40 3\}.7113 ;ﬂhe"c
79 Emitted by 169
\ Atmosphere
\N\ Absorbed by "2, Greenhouse
= 78 Atmosphere ~ _)Gases
Laten
2 ‘
Reflected by [ \\ 356 =
Surface = EAc
=D Radiation
23 &=
161 =] 396
0 333

Figure 1. Global annual average energy balance of the Earth for the period
2000-2004. The units are W m™. (Brasseur & Jacob, 2017)
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A change in the planet's energy balance at the top of the atmosphere that has
the potential to modify global temperature, such as that resulting from a
change in the quantity of sunlight that strikes the Earth or a change in the
abundance of CO in the atmosphere, is referred to as climate forcing. It has
been observed that greenhouse gas (GHG) concentrations have risen during
the last century. The resulting net trapping of infrared radiation in the Earth —
Atmosphere system increases as GHG concentrations rise, contributing to the
human greenhouse effect. The amount of rise in each GHG's concentration,
the absorption spectrum of each, and potential interactions with other
atmospheric components, all influence the ensuing climate change (Brasseur
& Jacob, 2017).

1.2 Methane

1.2.1. Atmospheric importance of methane

Methane (CH,) is a hydride of group-14 of periodic table, the simplest alkane.
Naturally occurring methane is found both below ground and below the
seabed and is formed by both geological and biological processes. When CH,4
reaches the surface and the atmosphere, it is known as atmospheric
methane. Methane is second in importance to CO, among greenhouse gases
with significant anthropogenic sources. Typically, in a time horizon of 100
years, CH,4 will be 28 times more efficient per mass as a greenhouse gas than
CO; (Bruhwiler et al., 2014). In the atmosphere, it is gradually oxidized
producing CO, and moisture (H,0O), which are also greenhouse gases.

An ongoing growth in global CH,4 is observed since the industrial revolution. In
the pre-industrial period methane concentration was about 722 ppb,, then
increased and stabilized around the year 2000 to approximately 1775 ppby,
resuming globally an increase in 2007 with the current global average around
1910 ppby (Fig. 2) (https://gml.noaa.gov/ccgg/trends ch4/). As a greenhouse

( Field Code Changed

gas, CH, contributes around 20% of the total radiative forcing from all the
long-lived globally mixed greenhouse gases (0.5 + 0.05 W m™) (Zhou et al.,
2018). Therefore, the significance of CH,4 and its potential to be a in global
climate warming is beyond controversy.
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Figure 2. Global Methane trend since 1983 (source:
https://gml.noaa.gov/ccgg/trends ch4/)

\: Field Code Changed

As the governments became aware of the ongoing climate crisis, they signed
one of the most important agreements for environment protection, the Paris
Agreement in 2015, promising to confine global warming by the mid of 21
century to less than 2 ° C or preferably, to less than 1.5 ° C compared to the
pre-industrial average temperature (https://unfccc.int/process-and-

 Field Code Changed

meetings/the-paris-agreement/the-paris-agreement ).  For  sustainable
development of the society and in order to fulfill the commitment of the Paris
Agreement, it is necessary to limit anthropogenic climate change through
targeted emission reductions, especially emissions of greenhouse gases,
such as CO, and CH4. While CO, is the major contributor to the climate
change, CH,; compared to CO, has a short lifetime (about 10 years for
methane, several decades to centuries for CO,), therefore its atmospheric
concentrations will respond faster than CO, to emission changes.
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1.2.2. Methane cycle

anaerobic methanotrophs methanogens
oxidation by in soil

microbes CO, Ha0

dry soil oxidation

Figure 3. Methane cycle (source: Encyclopedia Britannica).

Methane sources are of both anthropogenic and biogenic origin, varying from
fossil fuels and ruminants to wetlands and termites. Methane sinks in the
troposphere are the reactions with hydroxyl radical, OH, chlorine radical, CI
both in the troposphere and stratosphere, and O'D in the stratosphere as well
as deposition to the surface (Fig. 3).

1.2.3. Major Methane sinks

O(1D), singlet oxygen, is produced by O3 photolysis both in troposphere and
stratosphere. In the troposphere, O'D reacts with water vapor (H,O) to
produce hydroxyl radical, OH.

Globally, the main oxidation reaction of methane, is with the hydroxyl radical:
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CH,+ OH - CH; + H,0 (reaction 1)

The methyl radical, CHg, reacts instantaneously with O, to give methyl peroxy
radical, CH30,, which is also very reactive in the atmosphere (Miller et al.,
2016) that will further react to form secondary products like formaldehyde, CO
and ultimately CO,.

CH;+ 0,+M - CH3;0,+M (reaction 2)

so that CH,4 + OH reaction can therefore be written as:

CH,+ OH > CH;0, + H,0 (reaction 3)
2

The rate coefficient for reaction 1 is k; = 1.85 x 10 exp (-1690 / T) cm®
molecule® s7?! (Atkinson et al., 2006). The lifetime of CH,4 due to the reaction
with OH is roughly 9 years at T = 273 K and [OH] = 10° molecules cm™.
Despite its long lifetime, CH4 has a major effect on background tropospheric
chemistry because of its large concentration (Seinfeld et al., 1998).

Another sink is the atomic chlorine (Cl) radical. The free atomic chlorine
radicals in the atmosphere react with methane, resulting in the formation of
HCl and a methyl radical (CH3) that will further react as above discussed.

A smaller sink of methane is the methanotrophic organisms in the soil. A
group of bacteria leads to the oxidation of methane with nitrite as an oxidant in
the absence of oxygen, causing the so-called anaerobic oxidation of methane.
For simplicity, this sink is described in atmospheric numerical models as a dry
deposition process.
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1.2.4. Major Methane sources

In contrast to methane sinks, there is a wide variety of sources that
significantly contribute to methane emissions. The following are the major
methane sources we come across globally.

Biomass burning includes the incineration of living and dead materials in
forests, savannas and agricultural waste and the incineration of fuel wood.
Under ideal conditions of complete combustion, the combustion of the
biomass material produces CO, and water vapor (H,0). Since complete
combustion is not achieved under any biomass combustion conditions, other
types of carbon, including carbon monoxide (CO), methane (CH,4), non-
methane volatile organic compounds (NMVOC), and particulate carbon are
produced (Fig. 4). The flaming phase is close to complete combustion, while
the smoldering phase is close to incomplete combustion. Open air biomass
combustion contributes between 20 to 60 Tg C yr* in the form of methane to
the global atmosphere. This represents 5 to 15% of the world's annual
methane emissions. Measurements show that biomass combustion is the
overwhelming source of CHy, in tropical Africa (Levine, 2000).

The contribution of biomass combustion to the total budget of methane or any
other species depends on a variety of ecosystem and fire parameters,
including the specific ecosystem burned, the mass consumed during
combustion, the nature of the combustion (complete or incomplete), and
knowledge of how emission factors (EF, amount of methane emitted per unit
of burned material) vary depending on changing fire conditions in different
ecosystems. The accuracy in the determination of all these parameters reflect
in the accuracy of the estimate of biomass combustion emissions.

1000 q

100 4

a
-]
L

e
a
N

Emissions {t ha")
-
s

| [ 1|
0.01 4 | B AR L
| |

0001 4L L

Severe  Moderate Light Steppe Peat
forest forest forest

ETotal carbon (1COZ (1CO 1ICH4

Figure 4. Estimates of carbon release and CO, CH,4, CO emissions from fires
as a function of fuel type (steppe, forest, and peatland) and burn severity
(severe, moderate, light) based on fraction of biomass (carbon) consumed.
Uncertainties in these estimates are + 50 % (Levine, 2000).
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Hydrate gas is an ice-like substance formed when water and low molecular
weight gases (CO», H,S, CH,4 and higher order hydrocarbons) combine into a
clathrate structure (Fig. 5). They are cage-like structures, with 1 m® of
hydrated CH, resulting from trapping a maximum of 180 m® of methane as
measured at standard temperature and pressure (STP). Hydrate gas, a
naturally occurring and highly concentrated form of methane, traps significant
carbon in the global system. It is widespread in the sediments of the marine
continents and frost areas.

Hydrate gases are destabilized by increasing temperature or decreasing
pressure, conditions that are rarely associated with the same climate. For
elastic sediments, that are sediments that bend under load and recover when
the load is removed, the pressure disturbance associated with sea level rise
would be relatively instantaneous. Conversely, the impact of temperature
changes on the tundra (hydrated permafrost) or seabed (marine or submarine
hydrated permafrost) on deep-buried hydrates can be delayed by hundreds or
thousands of years, depending on thickness and temperature of the
supernatants, that is the upper layers of soil and liquid. This lag means that
hydrate gas remains stable over centuries and in response to climate change
can release significant methane gas on millennial scales (Ruppel & Kessler,
2017).

Water molecules 7.9

Figure 5. Gas hydrates structure (source:
https://worldoceanreview.com/en/wor-1/energy/methane-hydrates/)

[ Field Code Changed
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Landfills: CH,4 estimates for global waste disposal methane emissions range
from 9 to 70 Tg yr™.

Methane is formed by methanogenic bacteria, either by decomposition of
organic acids into CH; and CO,, or by reducing CO, with hydrogen.
Representative reactions are shown below:

CH;COOH — CH,+ CO, (reaction4)

CO0, +4H, - CH,+ H,0 (reaction5)

The percentage of landfill carbon that is eventually converted to methane and
carbon dioxide is not satisfactorily high. In the best case, 25% to 40% of
waste carbon can be converted to biogas, that is methane produced by
landfills and can be used as fuel. Field and laboratory studies suggest that
maximum methane from landfill waste is approximately 0.06 to 0.09 m® per kg
of dry waste depending on the moisture content and other variables such as
organic load, storage capacity and nutrients. Landfill CH, emissions after
2012 show a rapid upward trend (Fig. 6), which reflects the growth trend of
the urban population. As the rapid increase in the urban population can lead
to rapid growth in the disposal of solid waste, if there is no significant
implementation of landfill methane mitigation measures, a rapid increase in
emissions should also be expected. (Bogner & Spokas, 1993)

Landfill Methane Emissions by World Region: 1970 - 2017

2012
30000

25000

Europe & Central Asia
20000 EEm North America
East Asia & Pacific
Em Middle East & North Africa
Latin America & Caribbean
Em  South Asia
Sub-Saharan Africa

15000

10000

Landfill Mathane Emissions (Gg)

]
8

0
1970 1980 1990 2000 2010
Year

Figure 6. Landfill methane emissions by world region: 1970-2017 (Zhao et al.,
2019)
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Livestock is the largest anthropogenic source in the global methane budget
(103 Tg CH,4 yr' mean over the period 2000-2009). Annual mean ruminant
intestinal fermentation predominates in this source and represents emissions
of 87-97 Tg CH4 yr ~ ' during the period 2000-2009. Animal manure
management has a smaller contribution. Cattle, buffalo, goats and sheep are
the main types of animal ruminants that emit CH, and together account for
96% of the global source of intestinal fermentation.

The animal's microbiome is made up of bacteria, fungi, protozoa and archaea
that turn grass into a source of energy for ruminants, but also produce
methane as a by-product of fermentation. CH, is produced by a group of
germs called methanogens (archaea). CH, is released into the atmosphere
from the stomach through the animal's breath or during the storage of manure
and pulp (Fig. 7) (Patra et al., 2017).

It is estimated that global Fcus-ruminant doubled from 48.5 + 5.6 Tg CHgy yr'1 in
1961 t0 99.0 + 11.7 Tg CHy4 yr* in 2012. The increase of emissions took place
mainly in Latin America and the Caribbean, in East and Southeast Asia, in
Sub-Saharan Africa, Near East and North Africa and South Asia. In contrast,
from 1961 to 2012, Fcua-ruminant decreased in Europe and Russia by 31% and
54%, respectively, making 2012 emissions lower than those of 1961 in these
two regions (Chang et al., 2019). Number of bovine animals in Europe can be
shown in Fig. 8.
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Figure 7. Enteric fermentation (source: https://letstalkscience.ca/ )
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Figure 8. Number of bovine animals in Europe (source: Eurostat,
https://ec.europa.eul/, last access: 3/2022).
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Fuels: Methane can be emitted by coal, oil and gas plants. Natural gas is
composed mainly of CH4 and secondarily of ethane (C,Hg) and propane
(C3Hg). Methane emissions are mainly due to leakage into the atmosphere
during the various stages of natural gas exploitation and transportation, and
from mines (Fig. 9). Fig. 10 shows the natural gas system in Greece.

The presence of C,Hg in the atmosphere can be an indicator for CHy4
emissions. Thermogenic and biogenic methane sources can be separated
using the ethane-to-methane emission ratios. Although there are no relevant
emissions of CyHg during microbial methanogenesis, C;Hg is emitted
together with CH,4 from thermal sources, i.e. mainly from the extraction of
fossil fuels. The ethane-to-methane emission ratio (EMR) is greater than 1.0%
for most methane thermogenic sources, while biogenic sources are
characterized by EMR values below 0.1% (Hausmann et al., 2016).
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Figure 9. GHG and Black Carbon emissions by fossil fuel industry (source
https://tropicsu.org/lesson-plan-hydrocarbons-and-climate-change/)
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Figure 10. Natural gas distribution system in Greece (source:
https://www.desfa.qr/ )
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Rice fields: The main carriers responsible for methane’s emissions from rice
fields are methanogenic bacteria. Such microorganisms perform well under
anaerobic conditions and are collecting organic carbon and converting it to
methane. The starting materials for the involved reactions are the straws of
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rice plants which represent the main inflow of organic matter (Fig.11). These
materials usually accumulate during the rainy season or flood periods,
decompose and become the main source of methanogenic substrates.

During the rainy season the emissions are higher, while at the same time
there are reductions in rice production. On the other hand, during the dry
season, methane emissions are lower. At the same time, rice yields are low
during the dry season and high during the rainy season. This is explained by
the fact that in the wet season, the resulting photosynthesis produces carbon,
but the lack of flowers and blossoms makes this carbon unavailable for grain
production and therefore low rice production. This amount of carbon that is
not used for seed production enters the soil as rotten roots and as the leaf
litter falls, it serves as a raw material for methanogens, leading to high CH,4
emissions in the wet season. In the dry season scenario, much of the carbon
is used for sowing and active rice production, resulting in lower CHy
emissions and higher rice production.

Globally, most of CH4 emissions from rice fields occur in and around the
tropics, subtropics and parts of the temperate north. Southeast Asia
contributes 90% to the global rice emissions. Africa and South America add
3.5% and 4.7% to the global rice methane budget respectively. The
percentage of CH,4 emissions from rice fields is increasing at a rate of 0.7-
1.1% per year. This corresponds to 10-70% of man-made methane (Sanchis
et al., 2012).
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Figure 11. Methane emissions from rice fields (Sanchis et al., 2012).
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Wetlands: Anaerobic CH, is also released by wetlands into the atmosphere
after being affected by a combination of processes involving methanotrophic
bacteria in the soil through plant transport structures known as "aerenchyma",
by ebullition or through soil pores. Differences between current and prehistoric
emissions are due to changes in wetland area and various variables, including
nitrogen deposition, sedimentation, temperature, land use change and land
cover. The largest change in wetland emissions from prehistoric industry
occurred in the northern temperate zone (-79%) with smaller changes in high
latitudes (+ 9%) (Fig. 12). In the northern regions, the increase in CHy
emissions corresponds to the increase in wetlands and air temperature, while
in the tropics the decrease in wetland area and the large fluctuation of rainfall
are responsible for the reduced CH,4 emissions. The world's largest source of
atmospheric CH,4 (1-2.37 x 10° Tg yr) is acidic wetlands, such as peat and
fences, which cover 3.5% of the earth's surface but store about 30% of the
global carbon of terrestrial ecosystems. Acidic wetlands can be temporarily
converted into atmospheric CH4 sinks, or at least have the potential to
consume atmospheric CH,4, which is currently underestimated and poorly
understood at the microbial level (Kolb & Horn, 2012) (Poulter et al., 2017).
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Figure 12. Wetland methane emissions estimates for the preindustrial (Pl) and
present-day conditions for the entire Globe. Preindustrial emissions are mean
values from 1850 to 1869 (Pl simulation) and present-day emissions are
simulated mean values from 1993 to 2004. The box shows the interquartile
range, the whiskers show the maximum and minimum, and black lines gives
the median methane emissions. The purple line gives the results from Paudel
et al. (2016).
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Each of these sources and sinks contributes to methane abundances in a
different extent. Fig.13 depicts the mean global methane budget for the period
2000 to 2009. Methane emissions from human activities have surpassed
natural emissions since the 1980s (Salawitch et al., 2017). As above
discussed, human activities that produce methane include energy production
from natural gas, coal and oil, decomposition in landfills, ruminant farming and
rice cultivation. Wetlands are the main natural source of methane; while
biomass burning emissions have a significant human contribution. Despite the
importance of methane as a greenhouse gas in the Earth's atmosphere, there
are still great uncertainties about the location and intensity of emission
sources. The two major difficulties in reducing uncertainty stem from the wide
variety of geographically overlapping diffuse CH4 sources and the destruction
of CH4 by the very short-lived OH radical.
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Figure 13. Global methane budget (2000-2009) from (Salawitch et al., 2017).
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1.2.5. CH,4 sources in Greece

Specifically, in Greece waste is the most significant source of anthropogenic
methane emissions, accounting for about 45% of total methane emissions in
2019 (without LULUCF). Since 1990, methane emissions from waste have
been reduced by 1.35%, owing primarily to solid waste disposal on land and
wastewater treatment. Agriculture's methane emissions declined by 9.1 % in
2019 compared to 1990 levels. Agriculture accounted for 44.6% of total
methane emissions in 2019, with enteric fermentation being the primary
source category in the sector. Energy-related methane emissions (mostly
fugitive emissions from coal mining and the production, processing, and
distribution of liquid fuels and natural gas) account for nearly 10% of overall
methane emissions (Fig. 14) (Ministry of Environment and Energy, 2021).
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Figure 14. Anthropogenic CH,4 emissions in Greece by major sectors for the
period 1990 — 2019. Left axis provides emissions in kt CH, yr. IPPU is the
Industrial Processes and Product Use sector. Right axis provides percent
change compared to 1990 emissions (Ministry of Environment and Energy,

2021).
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1.3 Aim of the study

In the present study, we aim to improve the estimations of the sum of
methane total anthropogenic emissions over Central-Eastern Mediterranean
as well as over Greece as provided by Copernicus Atmosphere Monitoring
Service version 4.2 emission dataset, with the aid of inverse modeling.

For this purpose, we use the Weather Research and Forecasting-
Greenhouse Gas numerical model (Beck et al., 2011) coupled with
CarbonTracker Data Assimilation Shell (Van Der Laan-Luijkx et al., 2017), the
optimization algorithm of which is the Ensemble Square Root Kalman Filter.

Regarding the observations against which the emissions are optimized,
satellite observations from TROPOspheric Monitoring Instrument WFMD
product from Institute of Environmental Physics (IUP), University of Bremen
(Schneising et al.,, 2019) and in-situ measurements from Finokalia station
(htpp://ffinokalia.chemistry.uoc.gr), Lasithi from Environmental Chemical
Processes Laboratory, University of Crete are integrated into the model
system.
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2. Methodology

2.1. Inverse modeling

In the present study, we attempted to improve methane anthropogenic
emissions through data assimilation. Data assimilation is a time-stepping
technigue in which we optimize the variables driving a physical system, using
observations of that system. In atmospheric chemistry, data assimilation is
commonly referred as a type of problem in which we aim to optimize a gridded
time-dependent 3-D model field of atmospheric concentrations or emissions
based on measurements of these concentrations or associated factors.

The variables we want to optimize are referred to as state variables, and they
are assembled into a state vector x. We construct the observations into an
observation vector y in the same way. The forward model of the physical
system, model F, describes our understanding of the link between x and y:

y=Flp)+ & (1)

where, p is a parameter vector that includes all model variables that we don't
want to optimize as part of the inversion, and €o is an observational error
vector that includes contributions from measurements, the forward model, and
model parameters errors. The forward model predicts the effect (y) as a
function of the cause (x) using equations that describe the system's physics.
We can quantify the cause (x) from observations of the effect by inverting the
model (y). The solution is a best estimate of x, which is called the ideal
estimate, posterior estimate, or retrieval. Other limitations on the value of x
may help to reduce the error on the optimal estimate due to the uncertainty in
deriving x from y. This is called prior information. The prior estimate x, which
represents our best guess of x before the observations are made and has an
error of €4, is a typical constraint used in assimilation. The best estimate is
calculated based on the error statistics of €, and xa, (Brasseur & Jacob, 2017).

2.2. CarbonTracker Data Assimilation Shell

CarbonTracker is a data assimilation system for CO, that predicts global
carbon sources and sinks. It was created at the National Oceanic and
Atmospheric Administration's (NOAA) Earth System Research Laboratory
(ESRL) between 2005 and 2007 (Peters et al., 2005). Following that,
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development and application were split into two branches: (1) CarbonTracker
(NOAA/ESRL) and (2) CarbonTracker Europe (CTE). Here we refer to the
CTE version.

Using atmospheric observations of CO, mole fractions, the CarbonTracker
data assimilation system for CO, estimates the carbon exchange between the
atmosphere, land biosphere, and seas. TM5 transport model which connects
surface fluxes to atmospheric CO, mole fractions, is a major component of
CarbonTracker (Van Der Laan-Luijkx et al., 2017). In 2005, the existing TM5
CO, model version was also coupled with Carbon-Tracker, which required
only a little amount of new code to use as a CO, ensemble Kalman smoother.
New CarbonTracker requirements evolved over time, requiring the handling of
new and more sophisticated data structures and work flows, which were
difficult to implement in Fortran and not necessarily consistent with the
continued development of TM5. This resulted in the CarbonTracker Data
Assimilation Shell, a new object-oriented Python programming language
implementation (CTDAS). It is built in a modular manner, allowing for the
addition of new observation types, changes to the structure of the underlying
state vector, and even the replacement of the transport model (e.g. WRF-
GHG) or optimization method (e.g. four-dimensional variational) with only
minor additional code within a single module (Van Der Laan-Luijkx et al.,
2017).

In our study, CTDAS is coupled with the WRF-GHG transport model (Beck et
al.,, 2011). Using observations of atmospheric CH; mole fractions, the
CarbonTracker data assimilation system for CH, estimates methane emission
fluxes. CarbonTracker is a fixed-lag ensemble Kalman smoother application
based in the Bayesian approach (Peters et al., 2005). In the following, we
explain how Carbon Tracker works with regard to methane.

The cost function (J) that represents the accuracy with which the system is
solved, is used to optimize the surface CH, fluxes:

JG) = (° = HE) R(y* — H@x)) + (x — xP)TPL(x —x2)  (2)

where y, are the atmospheric CH, mole fraction observations, with their error
covariance R (model-data-mismatch error). H is the observation operator,
which is an atmospheric transport model. H connects the observations y, to
the scalars that modify the surface CH4 fluxes, which are included in the state
vector X, with their error covariance R. The background state vector x;, with
error covariance P contains prior information about the emission fluxes.
Superscript T corresponds to the transpose of the matrix.
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The state vector x and its covariance P that minimizes J can be shown to be:

Xt = xtb + K()’to - H(xtb)) (3

P4 = —-KH)PS (4)

in which t is a subscript for time, superscript b refers to background quantities
and a to analyzed ones, H is the linear(ized) matrix form of the observation
operator H, | is the identity matrix and K is the Kalman gain matrix defined as:

K= (P H")(HP,’HT + R)™1 (5)

Kalman gain is the weight assigned to the measurements and current-state
estimate. When the error covariance matrix of the observation is very large
compared to the state vector (R>>P), then K is nearly 0, meaning you trust
the model more than the measurements. When R<<P, then K is nearly 1
meaning you trust the measurement more than the model. In other words,
with a large gain, the filter gives measurements more weight, and so conforms
to them more quickly. The filter follows more closely to the model predictions
when the gain is low. A high gain close to one will provide a jumpier estimated
prediction, whereas a low gain close to zero will smooth out noise but reduce
responsiveness.

In an ensemble Kalman filter, the information in the covariance matrix P is
represented in fewer dimensions N by an ensemble of state vectors x;
composed of a mean state, and deviations from the mean state:

X = X+ x,i (6)

The deviations x'; are created such that the normalized ensemble of
deviations defines the columns of a matrix X:

1 1 — — —
=\/ﬁ (x',x's, ___'x'N)T = = (X, =X, %3 — X, oo, Xy — X) @)
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which is the square root of the covariance matrix
P = XXT (8)

When N — oo this representation of P is exact, while in an ensemble Kalman
filter with a finite number of members, P is approximated.

Whitaker & Hamill (2002) provided an efficient approach for calculating an
optimized ensemble from a background ensemble with the correct covariance
structure. This is the ensemble square root filter (EnSRF). The batch of
observations relating to one filter time step are processed one at a time in the
sequential/serial EnSRF algorithm, reducing the size of the Kalman gain
matrix K in each sequential analysis step to a vector that has the size of the
number of unknowns. The Kalman gain matrix is derived using the following
approximations from the ensemble of state vectors and equation (5):

HPH ~ —— (H(x'), H(x'), .., H')) - (1), H(X'2), o, HGE' )T (9)

! ! r r ! r T
PHTzE%ﬂxDxpmmN)(H@l)szywH@ND (10)

where each entry N denotes one column of ensemble state vectors or
ensemble modeled CH,4 values as in equation (7).

The Kalman gain matrix is used to update the mean state vector with equation
(3), whereas the deviations from the mean state vector are updated
independently using:

x'l-a = x'ib — EH(X’ib) (11)

Where the vector k is related to the Kalman gain matrix K by a scalar quantity
a calculated as:

k=K -a (12)
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_ R -1
a=(1+ [y (19)

The analyzed mean and ensemble state from one observation will serve as
the background state for the next until all observations are processed.

To reflect the additional information in the updated state vectors, we must also
update the ensemble of sampled CH4 concentrations H(x;"®). Each modeled
CH, concentration that corresponds to a yet-to-be-assimilated observation m
(denoted H(xt)m here) is updated using the equation:

H(x:")m = H(xtb)m + H,K(y,° - H(xtb)) (14)

whereas the deviations are updated using:

HE D = HE' ) — Hak(:° — H(X'")) (15)

In the right-hand side of this equation the operator Hy, has been substituted
by its matrix equivalent Hy,.

The so-called dynamical model M plays a crucial role in data assimilation.
Before fresh observations are provided to the system, this model predicts the
evolution of the state vector through time and hence offers an initial guess of
the state vector:

Xep1? = M(x,) (16)

In our case we use (16) to propagate the mean of the state, and prescribe its
covariance structure at each new step drawing a new ensemble of N flux
deviations from a specified background covariance to represent the Gaussian
Probability Density Function around the flux.
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CarbonTracker calculates scaling factors (A;) that multiply anthropogenic
emissions. For each spatial region r and each time step (t) we want to better
quantify the emissions, the total carbon fluxes F(x,y,t) are represented by:

Fx,y,£) = A Fanenro(x, ¥, £) + Ffire(xry: t) + Fyio(x,y, 1) (17)

The scaling vectors (A;) multiply Fanimo, Which are pre-calculated space—time
anthropogenic emissions obtained from Copernicus Atmosphere Monitoring
Service (prior fluxes, see section 2.4.3). Fire emissions and biogenic fluxes
are not optimized and we assume 100% certainty for them.

The obtained modeled mole fractions are compared to atmospheric data in
CTDAS, and the differences are minimized by changing the flux scaling
vectors (A) resulting in optimum posterior fluxes. For each new time step t,
the background scaling factors (A) are chosen as the average of the optimal
scaling factors (A%) from the two preceding time steps, plus the fixed prior
value (A°) we select, as in the following equation by (Van Der Laan-Luijkx et
al., 2017).

Ap—2 %+ Ap 1+ AP
3.0

A0 = (18)

When inferring to fixed-lag assimilation window, we mean that instead of
solving the Bayesian system in one large operation, smaller subsets of
unknowns are optimized in a time stepping approach as in Bruhwiler et al.
(2005). In the fixed lag ensemble square root Kalman filter used in CTDAS,
the state vector contains flux estimates for multiple time steps t each
corresponding for instance, to an one-week mean. This is indicated by the
system’s “lag”. In other words, the relationship between the state vector x and
observations y described by operator H spans several timesteps t.

A CTDAS cycle proceeds as follows (Fig. 15):

(1) We run the forward model from the background concentration fields in
CH.i(x,y,z,t) to CH4i(x,y,z,t + 12) forced by the fluxes in xi(0,. . .,11) (A
to B in the figure), and extract CH4 mixing ratios at the observation
times and locations. This allows us to construct an ensemble of
modeled CH4 at each site.

(2) Equations (3) and (11) are solved to give an analyzed ensemble of
fluxes for each element of the state vector and each week.
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(3) The ensemble of final fluxes in x;*(12) will no longer be estimated in the
next cycle and are therefore incorporated into CHy(x,y,z,t + 1) by
running the forward model one week forward starting from CHi(x,y,z,t)
forced with the final ensemble fluxes xi(12) (A to C in the Fig. 15).

(4) Each analyzed state vector becomes the background state vector for
the next cycle. A new background mean flux is created to go into x(0)
by propagation with model M (equation (16)).

(5) We draw a new ensemble of N flux deviations from the specified
background covariance structure to represent the Gaussian Probability
Density Function around the new mean flux x(0), and finally

(6) new observations y are read and the next cycle starts (Peters et al.,
2005).

yo(t+12)  y°(t+13)

CH,,gX,y,Z,t) """""""""""""""""""""""""""""""""""""""""""""""""""""""""""" - CHQ(X,Q,Z,HH)

x(12)  x(1)  x(0) x(9) X8  x(7) x(2) %@

)

CHA(X.YJZ,HI ------------------------------------------------------------------------------------------------------ > CH,xy,2,t+13)

x(2)  x(1)  x(0)  x(9)  x(8) (5} x@  x@)  x)

Figure 15. CTDAS cycles: 12 weeks of fluxes compose the state vector. Light
shaded boxes denote the background fluxes, and dark shaded boxes denote
posterior fluxes. Each box represents N ensemble members. The number in
parentheses indicates how many times a week of fluxes has been estimated
previously from past cycles, and the subscript i refers to an individual
ensemble member.

The ensemble Kalman filter looks for correlations between random flux
perturbations and simulated methane measurement variations. We could
anticipate the entire ensemble to agree that increasing methane flux in one
place results in higher simulated methane concentrations at a downwind site
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nearby. However, because we utilize a random sample of a few ensemble
members to approximate the flow covariance matrix, we occasionally see
misleading correlations. Any link between the flux ensemble and the
measurement could be fictitious.

For this reason, the CT2007 localization technique is used. For instance, if
150 ensemble members are used, the linear correlation coefficient between
the 150 scaling factor deviations and the 150 observation deviations for each
parameter/observation combination is calculated. The association between a
parameter deviation and its modeled observational impact is kept, if it is
statistically significant. Otherwise, due to the small ensemble's numerical
estimate of the covariance matrix, the association is thought to be spurious
noisy. Relationships that reach 95% significance in a Student's T-test with a
two-tailed  probability  distribution are accepted in our case.
(https://gml.noaa.gov/ccgg/carbontracker/CT2007/documentation_assim.html)

\ Field Code Changed

2.3. Weather Research and Forecast — Greenhouse Gas model

The forward model we utilize in the present study is the Weather Research
and Forecasting — Greenhouse Gas model (WRF-GHG) reported in (Beck et
al., 2011).

WRF contains two dynamical solvers, referred to as the advanced research
WRF (ARW) and the nonhydrostatic mesoscale model (NMM). WRF ARW
was used for the present study. The mesoscale model WRF (Skamarock et
al., 2008) is a numerical weather prediction system that may be used for
atmospheric research as well as operational forecasting at scales ranging
from tens of meters to thousands of kilometers. First, WRF was combined
with the Vegetation Photosynthesis and Respiration module to construct high-
resolution regional simulations of atmospheric CH4 passive tracer transport
(WRF-VPRM) (Ahmadov et al., 2009). Then, WRF-VPRM was expanded to
WRF-GHG (Beck et al., 2011), which can model the regional passive tracer
transport for GHGs (CH4, CO; ) and carbon monoxide (CO). In the last
versions of WRF, WRF-GHG s integrated in WRF-Chem code (WRF model
coupled with Chemistry) (Grell et al., 2005) as an individual chemistry option.
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2.4 Model and Inversion Framework setup

2.4.1. Observations

The observations we utilize in the assimilation, in order to improve methane
anthropogenic emissions, are satellite data as well as in situ measurements.
Satellite data have exceptional temporal as well as horizontal resolution and a
wide-region coverage in comparison with in-situ measurements. However,
station observations are considered more accurate due to the procedure they
are obtained.

Satellite data: TROPOMI/WFMD Methane column-averaged dry air mole
fractions (XCH,4;) v1.5 product is used as created by the Institute of
Environmental Physics, University of Bremen (Schneising et al., 2019).

TROPOMI is an imaging spectrometer onboard of the Copernicus Sentinel-5
Precursor (S5P), a European satellite for atmosphere monitoring, launched on
13 October 2017 and planned for a mission of seven years. S5P is a sun-
synchronous orbit satellite at 824 km altitude, with an Equator overpass time
at 13:30 local time and a 16-days cycle. The swath of TROPOMI is about
2600 km and it operates with a horizontal resolution of 7x7 km? (5.6 x 7 km?
from 6 August 2019).

To retrieve CH, from satellite observations, the Weighting Function Modified
Differential Optical Absorption Spectroscopy (WFM-DOAS) algorithm that is a
least-squares method was used by Schneising et al. (2019). By normalizing
the vertical column amounts of CH,4 with the dry air column acquired from the
European Centre for Medium-Range Weather Forecasts (ECMWF) analysis,
the column-averaged dry air mole fractions of methane (denoted XCH,) are
generated.

To use TROPOMI/WFMD observations, modifications had to be made to the
Python script for satellite observations reading since WRF-GHG-CTDAS initial
setup is for handling O-CO2 satellite data (https://ocov2.jpl.nasa.gov/). The

\ Field Code Changed

corresponding code is displayed in Appendix C. For comparison of
observations to the model, the column averaging kernel as provided by the
TROPOMI/WFMD product is applied to the model profiles using the formula:

Xmoa = Zl((Xaprl + Al(Xmodl - Xaprl))wl (20)
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where [ is the index of the vertical layer, A, the averaging kernel, Xaprl the a-

priori mole fraction and X,,,,,' the simulated mole fraction of layer I. w; is the
layer dependent pressure weight.

Due to the long lifetime of methane, it can be assumed that methane
columnar values account for the background concentration of methane in the
atmosphere (Appendix A).

In-situ observations: We used methane near surface measurements from
the Finokalia atmospheric observatory (Fig. 16). The atmospheric
measurement station of the University of Crete, a climate change observatory,
established and operated by Environmental Chemical Processes Laboratory
(E.C.P.L.) at Finokalia, Lasithi since 1993, holds the largest time series of
atmospheric measurements of greenhouse gas concentrations throughout the
Eastern Mediterranean. The station represents the Eastern Mediterranean
atmosphere and has drawn significant scientific interest in the domains of
atmospheric composition, air quality, and climate change. It also serves as the
regional background station for Greece, reporting on air pollution levels to
Greek and EU authorities. Methane measurements are performed
discontinuously since 2002 (flask samples) and continuously by a PICARRO
analyzer since June 2014 in collaboration with the Laboratory of Sciences of
Climate and Environment (LSCE) in France. For the present study hourly CH4
data are used.

Since point observation handling was not implemented in WRF-GHG-CTDAS,
we developed the code displayed in Appendix C, based on the existing
satellite data sampling scripts. For comparison of the model with the in-situ
observations, the level of WRF-GHG which is closer to the station’s altitude is
selected. The model output of methane concentrations is in ppm and methane
concentrations as reported by the station are given in ppb, thus the
comparison is quite direct.

Figure 16. Finokalia (FKL) station (longitude: 25.670, latitude: 35.338,
altitude: 250) (source: https://finokalia.chemistry.uoc.gr/gallery/station/).
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2.4.2 Model Setup

This study uses version 4.3 of WRF coupled with Chemistry (WRF-Chem)
(Grell et al., 2005). Methane is implemented as a passive tracer (chemistry
option = 17 in the WRF-Chem code), thus not impacting meteorological
variables and chemistry. Thus, the total mass of methane in the model
domain depends only on the surface fluxes inside the domain and the
boundary conditions.

There are no chemical processes in the WRF-GHG simulations for methane,
despite the fact that oxidation by OH is the principal sink of methane in the
atmosphere. This would not alter our results because the lifetime of methane
is rather long compared to the simulation duration.

In our study we simulate the period 1/1/2019-11/3/2019. We use two nested
domains for WRF-GHG (Fig. 17) on Lambert Conformal projection in order to
simulated methane fluxes. The coarser domain (DO1) has a horizontal grid
distance of 36 km centering at 38.45 °N and 20.336 °W and it covers Central
and Eastern Mediterranean. The domain has 33 vertical levels up to 50 hPa
(about 20 km height). The finest domain (D02) is located over Greece with
spatial resolution of 12 km, as shown in Fig. 17. The simulations were run with
one-way nested mode.

WRF nested domain setup
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Figure 17. WRF-GHG domains used in our study.
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We use ERA5 meteorology from European Centre for Medium Range
Weather Forecasts (Hersbach et al., 2020) and improved orography from
European Digital Elevation Model (EU-DEM)
(https://land.copernicus.eu/imagery-in-situ/eu-dem/) in order to have better

\ Field Code Changed

wind intensity and direction calculation, which can affect our emissions
estimation. Initial and boundary chemical conditions for methane are obtained
from the TM5 global chemistry transport model (Huijnen et al., 2010).

As for the parameterizations that are used in the present study, for the
planetary boundary layer we selected the YSU scheme. The YSU scheme
uses a 1st order closure to calculate the turbulent vertical fluxes within the
planetary boundary layer. Kain-Fritsch (new Eta) scheme, a deep and shallow
sub-grid scheme using a mass flux approach with downdrafts and CAPE
removal time scale, is selected as cumulus scheme. For the representation of
land surface processes, shortwave radiation and longwave radiation the
default options are selected, which are respectively Noah Land-Surface
Model, a unified NCEP/NCAR/AFWA scheme with soil temperature and
moisture in four layers, fractional snow cover and frozen soil physics, Dudhia
scheme, a simple downward integration allowing for efficient cloud and clear-
sky absorption and scattering, and RRTM Rapid Radiative Transfer Model
that accounts for multiple bands, trace gases, and microphysics species.

2.4.3 Apriori Emissions

Two different methane emission databases are used in this study. Emissions
from biomass burning are taken from the Fire INventory from NCAR (FINN)
version 2.4 and Copernicus Atmosphere Monitoring Service (CAMS) version
4.2 emission datasets are used for emissions by anthropogenic activities.

The Fire INventory from NCAR (FINN) model predicts worldwide emissions
from open burning at high horizontal resolution of 1 km? and daily. FINN
provides open burning emissions estimates for use in regional and global
chemical transport models by combining satellite images of active fires and
land cover with emission factors and estimated fuel loadings. The datasets
used in the study are available at https://www.acom.ucar.edu/Data/fire/ .
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The Copernicus Atmosphere Monitoring Service provides monthly gridded
global emission inventories with spatial resolution of 0.1°x0.1°. These
inventories describe anthropogenic emissions from fossil fuel use on land,
ships, and aviation, as well as natural emissions from vegetation, soil, the
ocean, and termites, using a combination of current data sets and new
information. Anthropogenic emissions on land are further broken down into
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different activity sectors (e.g., power generation, road traffic, industry).
Because most inventory-based data sets are only accessible after several
years, the CAMS emission inventories employ trends from the most recent
available years to extend current data sets forward in time, providing timely
input data for real-time forecast models. The anthropogenic inventories used
in the present study are available at https://eccad3.sedoo.fr/ . Table 1 displays
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the average anthropogenic and fire emissions for the year 2019 as derived by
CAMS and FINN inventories respectively for the two domains of our study.

Table 1. Average anthropogenic and fire emissions for 2019 for the two
domains of the present study as derived by CAMS and FINN inventories

respectively.
Emissions (mol km? hr?) Domain 1 Domain 2
Anthropogenic 17.26 17.90
Fire 0.0048 0.0056

The biogenic fluxes for methane (emissions from wetlands and termites and
soil uptake) are calculated online in the WRF-GHG based on the work of
Kaplan (2002), Sanderson (1996) and Ridgwell et al. (1999) respectively.
Input fields of wetland fraction per grid cell and fast carbon pool are necessary
for the calculation of the wetland emissions. We used the wetland map (Fig.
18) from the global dataset of Wetland Area and Dynamics for Methane
Modeling (WAD2M) (zhang et al., 2021)
(https://essd.copernicus.org/articles/13/2001/2021/essd-13-2001-2021 -

\i Field Code Changed

discussion.html) and the fast carbon pool map (Fig. 19) from the Lund-
Potsdam-Jena model (LPJ) (Sitch et al., 2003) as obtained by the Lawrence
Livermore National Laboratory (https://esgf-node.linl.gov/search/esgf-linl/).

 Field Code Changed
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Wetland map

Fraction of gridcell inundated

-0.0
Figure 18. Inundated soil map for our coarser domain by WAD2M 0.25° x
0.25° product.

Fast Carbon Pool map

Carbon mass in soil (kg m-2)

Figure 19. Fast carbon pool for our coarser domain by Lund-Potsdam-Jena
0.5° x 0.5° product.
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2.4.4. CTDAS setup

The inversion system of CTDAS for WRF-GHG was downloaded from the
Wageningen University and Research CTDAS repository
(https://git.wur.nl/ctdas/CTDAS/-/tree/ctdas-wrf). We use a flux model in which

\ Field Code Changed

we assume biosphere and fire fluxes fixed, and anthropogenic emissions with
100% uncertainty. The statevector consists of 5 parameters for mapping
anthropogenic fluxes shown in Fig. 20. These will be referred to the next parts
of the study as: Greece, North region, South region, East region and West
region, with respect to the geographical position of Greece. Regarding
Kalman filter setup, we use serial optimization algorithm, 50 ensemble
members with an optimization time step of 7 days and an assimilation window
(lag) of 5 weeks. The inversion is done for 10 CTDAS cycles, that is for period
1/1/2019-11/3/2019.

The model data mismatch R, that is the observational error in equation (1)
and the matrix R in the equation (2), is set to the sum of squares of the
observation product error and the transport model error. In other words,
besides the measurement uncertainty( mdm), the combined uncertainty
(mdmcompinea) 1S calculated by adding an estimate for the model error as
below:

MdMompinea =  mdm? + transport_error?

where mdm is the observational error, transport_error is the assumed error of
WRF-GHG and of the concentrations mapping into the observations space
and mdmcombined IS the overall uncertainty. In an inversion, the model-data
mismatch covariance matrix (R) shows how well the optimized fluxes should
be able to reproduce atmospheric observations, given errors in modeled
transport, measurement, and gridded fluxes (Gourdiji et al., 2018).

Satellite observations used are assigned an uncertainty as provided by the
TROPOMI product and are selected only if they have a quality flag equal to
zero, indicating only good CH,4 observations. For in situ data, we select mdm
to be equal to the measurement standard deviation. The transport error is
assumed to be 10 ppb and 5 ppb for satellite data and in-situ measurements,
respectively. In a second run, we use 100 ppb and 50 ppb transport model
error to investigate the difference it makes in the results. In the next sections
we refer to these runs as 10 ppb and 5 ppb run, and 100 ppb and 50 ppb run.
As for the observation rejection threshold, we set 99.7% probability threshold
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(30) that observation agrees with the model prediction. In other words, if the
inequality |observation — H(x)| >3 x+R is true, the observation is
considered as an outlier and it is not assimilated. Furthermore, we use 95%
probability threshold that observation and state vector element correlate
through CT2007 localization option.

Figure 20. Statevector parameters regions used for our inversion setup:
Greece (light blue), North region (green), South region (yellow), East region
(purple) and West region (pink).
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3. Results and Discussion

3.1 Inversion results

Two different runs were conducted with different transport model errors. In
Fig. 21, the emission maps for one day of each week of our inversion period
are depicted, which correspond to the 10 ppb (for satellite error) and 5 ppb
(for in-situ error) run, hereafter called 10.5 run. In Fig. 22 the corresponding
50 ensemble statevector deviations for Greece are shown. Only the maps for
the coarse domain are included here. The emission maps for the domain over
Greece are available in the Appendix B.

Regarding the 10.5 run, we observe that for the first 5 weeks, which also
correspond to our system’s lag, both negative and positive surface fluxes are
predicted. After this period, the majority of the surface fluxes are negative. It is
deduced that during the first 5 weeks, high TM5 initial and boundary
conditions influence the results in large extent, forcing our system to
significantly reduce the emissions in order to conform with observations. After
5 weeks, we assume that WRF-GHG has been stabilized and boundaries
have a lower impact on the results, however still considerable. In addition to
high boundary conditions, negative emissions could be attributed to the lack
of chemistry in WRF-GHG and specifically of OH sink. The omission of
chemistry is potentially leading to methane accumulation over our domain,
which has a similar effect as high boundary conditions.
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Anthropogenic CH4 emissions - week 2

Anthropogenic CH4 emissions - week 4

Anthropogenic CH4 emissions - week 6
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Anthropogenic CH4 emissions - week 7

Anthropogenic CH4 emissions - week 9
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Figure 21. Optimized anthropogenic methane emissions over Eastern
Mediterranean for the 10 weeks of the inversion period (10.5 run for the
period 1/1/2019-11/3/2019).

| Fig. 22 shows the deviations around mean scaling vector, A, for Greece for
the apriori and the posteriori ensembles. It can be seen that the deviations are
decreased after the optimization, in other words, the prior error of A is highly
reduced which indicates that our system works properly in terms of the cost
function minimization, reducing error in emissions. Optimization in the first
cycles is more “abrupt” in comparison with the following ones, since A in the
next inversion cycles is closer to the “truth”; the assumption for A in the first

cycleis 1.
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Greece prior and optimized ensemble -week 7 Greece prior and optimized ensemble -week 8
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Figure 22. Prior and Posterior deviations from mean statevector A for the
region of Greece for the 10.5 run. Note the differences in the x-axis scale in
the panels.

In Fig. 23, observations (blue), simulated apriori concentrations H(x) (orange)

| and posteriori concentrations (green) for the week 26 February - 4 March
2019 (week 9) are depicted. This week showed the most negative mean
difference between observations and prior concentrations. We observe that
the majority of the observations are lower than the prior concentrations, thus
the posterior concentrations are lower, leading eventually to negative
emission fluxes in our results. The difference between observations and prior
H(x) as well as the mean of this difference for the same week are shown in
Fig. 24.
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Figure 23. Methane observations from in-situ and satellite data and prior and
posterior modeled concentrations for the week 26/2-4/3/2019 (week 9) (10.5
run).
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Figure 24. Difference between observed and simulated methane
concentrations as well as the mean of the difference for the specific week
26/2-4/3/2019 (week 9) (10.5 run).
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In terms of the 100 and 50 ppb run (here-after 100.50 run), the emission maps
are displayed in Fig. 25. The CH4 emissions for the finest domain are also
displayed in Appendix B. Optimized emissions by the 100.50 run and the 10.5
run are different. In Table 2, the regions that have positive emissions for each
simulation and each week are noted. For the ten weeks optimized, the
simulation with the larger error predicts zero to two positive regions more or
less than the small error simulation, except from the week 5. Since the
measurement errors are the same in both inversions, this indicates that
transport model error can largely impact the inversion results.

In 100.50 run, less observations are rejected compared to the 10.5 run, since
model-data-mismatch R has higher values (see section 2.4.4). Improving the
transport model or rejecting atmospheric observations when the
corresponding footprints from the transport model are regarded untrustworthy
have been the main approaches for lowering the impact of transport model
error on urban inversions. Discarding atmospheric observations from
inversions, on the other hand, limits the quantity of data available to constrain
fluxes and can bias aggregated flux estimates (Gourdji et al., 2018).

Methane observations and apriori as well as posteriori modeled
concentrations for the week 9 in Fig. 26 indicate that ten times larger transport
model error make a small, notable change in the simulated methane
concentrations. In Fig. 27, we compare the posteriori concentrations of the
two inversions and each posteriori with the observations. It can be seen that
posterior concentrations for the 100.50 run are higher than the 10.5 run ones,
that is closer to the apriori concentrations. This is expected since a large
model-data-mismatch error will force the system to change slightly based on
the observation information, thus the difference between the apriori and
posteriori concentrations will be smaller.The difference between observations
and modeled concentrations in Fig. 28 depict again that high boundaries
result in apriori concentrations that are in average higher than the
observations.
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Anthropogenic CH4 emissions - week 7 Anthropogenic CH4 emissions - week 8
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Figure 25. Optimized anthropogenic methane emissions over Eastern
Mediterranean (100.50 run for the period 1/1/2019-11/3/2019).
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Table 2. Regions with positive emissions for the 10.5 and for the 100.50
simulation respectively for the period 1/1/2019-11/3/2019.

Week 10.5 run 100.50 run
1 Greece, East Greece
2 Greece Greece, North
3 - -
4 North Greece, North
5 Greece, East, West, South | -
6 - Greece
7 East, West -
8 - Greece
9 - Greece
10 - -
S0 CTDAS results -20190226
195 -.
190
B
(=9
2 185
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Figure 26. Methane observations from in-situ and satellite data and prior and
posterior modeled concentrations for 26/2-4/3/2019 (week 9) (100.50 run)
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Figure 27. Posterior concentrations for the two simulations in the upper panel
and comparison with the observations for week 9 of our inversion in the
bottom two panels.
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Figure 28. Difference between the observed and apriori simulated methane
concentrations as well as the mean of the difference for the week 26/2-
4/3/2019 (week 9) (100.50 run).
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3.2 Discussion

We have conducted two inversions for optimizing methane emissions using
total anthropogenic emissions of Copernicus Atmosphere Monitoring Service
inventory over Central and Eastern Mediterranean, and Greece. Different
transport model errors of different magnitude for TROPOMI/WFMD satellite
product and in-situ measurements from Finokalia station are selected in order
to examine the effect that this type of error has on our results.

In all of the weeks inverted for the two inversions, almost only negative fluxes
are predicted after a period of 5 weeks. Possible reasons for that are the
boundary conditions used and the lack of the major chemical sink of methane,
OH, from WRF-GHG model. Therefore, methane flows out of our domains
mainly depending on the meteorology. Thus, the vast majority of methane
molecules tend to accumulate over the domain in general. A possible solution
to this problem would be to add a methane decay factor in WRF-GHG model
that agrees with methane’s lifetime. However, due to the long lifetime of CHy,
of several years, this ommission is not expected to have major impact on our
resutls.

In terms of boundary conditions, an alternative model, except from TM5, can
be used, the simulations of which would be closer to the observations over
our domain. A reanalysis product, which will be created by assimilating
observations over Eastern Mediterranean, for instance, would be an
appropriate constraint to the inversion. This would probably prevent the
unphysical results of negative emissions. Lastly, negative emissions might
also be attributed to the ill-posedness of the inversion problem. Miller et al.
(2014) pointed out that inverse modelling approaches based on Gaussian
assumptions, such as Ensemble Kalman filter, cannot incorporate physical
bounds (e.g. non-negative emissions) and often produce unrealistic results.
Therefore, it may be required to impose non-negativity constraints on the
covariance matrices to ensure positive flux results.

Increasing the transport model error ten times, to 100 ppb and 50 ppb for
satellite and in-situ data respectively, changes the number of regions that are
predicted to have positive emission fluxes in comparison to the 10 ppb and 5
ppb run. A small model-data mismatch can either mean that the observation
does not provide any constrain on the emissions or the prior emission fluxes
are correct. When there is large transport error, the inversion could generate
unrealistic results (negative fluxes). For observing locations in the near-field of
large sources, transport model representations are likely to be much more
difficult than for sites in the global network, which are often in distant areas
with well-mixed air (Gourdji et al., 2018). Thus, transport model error, which is

55



difficult to be assumed and many times its importance is neglected in
inversions, needs to be carefully estimated in order to avoid misleading
inversion results.
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APPENDIX A

Variability of methane concentrations over large urban agglomerations -
Athens, Thessaloniki, and Patras.

For Finokalia, in-situ measurements are used. For Athens, Thessaloniki and
Patras, gridded TROPOMI columns are used. Due to the long lifetime of
methane, it can be inferred that the methane columnar values account for the
background concentration of methane in the atmosphere. Comparing Athens,
Thessaloniki, and Patras with Finokalia, we observe that the seasonality for all
sites, considering the respective errors, is in general agreement. The months
of March and October in Finokalia tend to be higher and lower than the other
sites, respectively.The coverage of TROPOMI over the big cities is not
adequate in these months, thus Finokalia data should be considered more
reliable.

CH,4 seasonality
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Figure Al. Methane normalized seasonality for the period 2019-2020.
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APPENDIX B

Total optimized methane emissions over the finest domain over the inversion
setup for the two runs with different transport model errors.
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Anthropogenic CH4 emissions - week 2
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Figure B1. 10.5 run emission maps for the domain over Greece for the
period 1/1/2019-11/3/2019.
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Anthropogenic CH4 emissions - week 1
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Anthropogenic CH4 emissions - week 7
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Figure B2. 100.50 run emission maps for the domain over Greece for the
period 1/1/2019-11/3/2019.
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APPENDIX C

Modified code for reading of TROPOMI/WFMD satellte product
(obs_WRF_xch4.py) and code for the sampling of in-situ measurements
(wrfout_flask_sampler.py, wrfchem_flask_helper.py).

LWoONOTUVTA WNE

[Ergy
=)

obs_WRF_xch4.py

import os

import sys

import logging

import pandas as pd

import datetime as dtm

import numpy as np

from numpy import array, logical_and, sqrt
sys.path.append(os.getcwd())
sys.path.append('../../")

. identifier = 'CarbonTracker total column-averaged CH4 mole fractions'
12.

version = '0.0'

. from da.observations.obs_baseclass import Observations

. import da.tools.io4 as io

. import da.tools.rc as rc

o HHEHEHEHERAEHEAH Begin Class TROPOMIObservations #ftHtHHHHHEHEH

. class TotalColumnSample(object):

an object that holds data + methods and attributes needed to manipulate
mole fraction values """

def __init_ (self, idx, codex, scanlen, ground, groundlen, xdate, obs=0.0,
simulated=0.0, lat=-999., lon=-999., mdm=None, prior=0.0, prior_profile=0.0,\
av_kernel=0.0, pressure=0.0, pressure_weighting function=None,
level_def ="layer_average", psurf = float('nan'), resid=0.0, hphr=0.0, flag=0,
species="ch4', sdev=0.0,\

. latc_@=None, latc_1=None, latc_2=None, 1latc_3=None, lonc_@=None, lonc_1=None,

lonc_2=None, lonc_3=None ):

self.id = idx

self.code = codex

self.scanlen = scanlen

self.ground = ground

self.groundlen = groundlen

self.xdate = xdate

self.obs = obs # Value observed
self.simulated = simulated # Value simulated by model
self.lat = lat # Sample lat

self.lon = lon # Sample lon

self.latc_o = latc_o # Sample latitude corner
self.latc_1 = latc_1 # Sample latitude corner
self.latc_2 = latc_2 # Sample latitude corner
self.latc_3 = latc_3 # Sample latitude corner
self.lonc_0 = lonc_0 # Sample longitude corner
self.lonc_1 = lonc_1 # Sample longitude corner
self.lonc_2 = lonc_2 # Sample longitude corner
self.lonc_3 = lonc_3 # Sample longitude corner
self.mdm = mdm # Model data mismatch
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93.

94.

95.

self.prior = prior # A priori column value wused in
retrieval

self.prior_profile = prior_profile # A priori profile used in retrieval

self.av_kernel = av_kernel # Averaging kernel

self.pressure = pressure

self.pressure_weighting function = pressure_weighting_function

self.level_def = level_def # Are prior and averaging kernel
defined as layer averages?

self.psurf = psurf # Surface pressure (only needed if
level_def is "layer_average")

self.loc_L = int(e) # localization length

self.resid = resid # Mole fraction residuals

self.hphr = hphr # Mole fraction prior uncertainty
from fluxes and (HPH) and model data mismatch (R)

self.may_localize = True # Whether sample may be localized
in optimizer

self.may_reject = True # Whether sample may be rejected if
outside threshold

self.flag = flag # Flag

self.sdev = sdev # standard deviation of ensemble

self.species = species.strip()

o A End Class TotalColumnSample #####H#HHEHEHEHHEH

Begin Class TotalColumnObservations ###HHHHHEHH

. class TotalColumnObservations(Observations):

def setup(self, dacycle):

self.startdate = dacycle['time.sample.start']
self.enddate = dacycle['time.sample.end"']

sat_dirs = dacycle.dasystem[ 'obs.column.input.dir'].split(’',")
sat_files = dacycle.dasystem['obs.column.ncfile'].split("',")

self.sat_dirs S|
self.sat_files =[]
for i in range(len(sat_dirs)):
if not os.path.exists(sat_dirs[i].strip()):
msg = 'Could not find the required satellite input directory (%s) '
% sat_dirs[i]
logging.error(msg)
raise IOError(msg)
else:
self.sat_dirs.append(sat_dirs[i].strip())
self.sat_files.append(sat_files[i].strip())
del i

# Get observation selection criteria (if present):
if 'obs.column.selection.variables" in dacycle.dasystem.keys() and
'obs.column.selection.criteria’ in dacycle.dasystem.keys():
self.selection_vars =
dacycle.dasystem[ 'obs.column.selection.variables'].split("',")
self.selection_criteria =
dacycle.dasystem[ 'obs.column.selection.criteria'].split(',")

logging.debug('Data selection criteria found: %S, %s"
%(self.selection_vars, self.selection_criteria))
else:
self.selection_vars =[]
self.selection_criteria = []
logging.info('No data observation selection criteria found, using all

observations in file.")
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100.

101. # Model data mismatch approach

102. self.mdm_calculation = dacycle.dasystem.get('mdm.calculation’)

103. if self.mdm_calculation in
[ 'parametrization', 'empirical', 'no_transport_error']:

104. logging.info( 'Model data mismatch approach = %s '
%self.mdm_calculation)

105. else:

106. logging.warning('No valid model data mismatch method found.
Valid options are \'parametrization\', \'empiricall\'. ' + \

107. 'Using a constant estimate for the model
uncertainty of 1ppm everywhere.')

108.

109. # Path to file with observation error settings for column
observations

110. if not os.path.exists(dacycle.dasystem[ 'obs.column.rc']):
#obs.column.rc

111. msg = 'Could not find the required column observation .rc input
file (%s) ' % dacycle.dasystem['obs.column.rc']

112. logging.error(msg)

113. raise IOError(msg)

114. else:

115. self.obs_file = (dacycle.dasystem['obs.column.rc'])

116.

117. self.datalist = []

118.

119.

120. # Switch to indicate whether simulated column samples are read from
obsOperator output,

121. # or whether the sampling is done within CTDAS (in obsOperator
class)

122. self.sample_in_ctdas = dacycle.dasystem['sample.in.ctdas"] if
'sample.in.ctdas' in dacycle.dasystem.keys() else False

123. logging.debug('sample.in.ctdas = %s' % self.sample_in_ctdas)

124.

125.

126. def get_samples_type(self):

127. return 'column’

128.

129.

130. def add_observations(self):

131. """ Reading of total column observations, and selection of
observations that will be sampled and assimilated.

132.

133. e

134.

135. # Read observations from daily input files

136. for i in range(len(self.sat_dirs)):

137.

138. logging.info('Reading observations from %s%s "
%(self.sat_dirs[i],self.sat_files[i]))

139.

140. infile® = os.path.join(self.sat_dirs[i], self.sat_files[i])

141. ndays = 0

142.

143. while self.startdate+dtm.timedelta(days=ndays) <= self.enddate:

144.

145. infile =

infile@.replace("<YYYYMMDD>", (self.startdate+dtm.timedelta(days=ndays)).strftime("%
Yo%m%d"))

146. # dl = infile.split('_")[8]

147. #dtseries = d1[0:-3]

148.

149. if os.path.exists(infile):

150. logging.info("Reading observations for %s" %

(self.startdate+dtm.timedelta(days=ndays)).strftime("%Y%m%d"))
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151. len_init = len(self.datalist)

152.

153.

154. # get index of observations that satisfy selection
criteria (based on variable names and values in system rc file, if present)

155. ncf = io.ct_read(infile, 'read')

156.

157. if self.selection_vars:

158. selvars = []

159. for j in self.selection_vars:

160. selvars.append(ncf.get_variable(j.strip()))

161. del j

162. criteria = []

163. for j in range(len(self.selection_vars)):

164. criteria.append(eval('selvars[j]'+self.selection
_criteria[j]))

165. del j

166. subselect =
np.logical_and.reduce(criteria).nonzero()[0]

167. else:

168. subselect =
np.arange(ncf.get_variable('sounding_id').size)

169.

170.

171. code = ncf.get_attribute('tracking_id")

172. level_def = "layer_average"

173. # read observations

174. ids =
ncf.get_variable('sounding_id').take(subselect,axis=0)

175. scanlen = len(ids)

176. ground =
ncf.get_variable('ground_pixel').take(subselect,axis=0)

177. groundlen = len(ground)

178. lats =
ncf.get_variable('latitude').take(subselect,axis=0)

179. lons =
ncf.get_variable('longitude').take(subselect,axis=0)

180. obs =
ncf.get_variable('xch4').take(subselect,axis=0)

181. unc =
ncf.get_variable('xch4_uncertainty').take(subselect,axis=0)

182. dates =
ncf.get_variable('time').take(subselect,axis=0)

183. dates = array([dtm.datetime.fromtimestamp(d) for
d in dates]

184. av_kernel =
ncf.get_variable('xch4_averaging_kernel').take(subselect,axis=0)

185. prior_profile =
ncf.get_variable('ch4_profile_apriori').take(subselect,axis=0)

186. pressure =
ncf.get_variable('pressure_levels').take(subselect,axis=0)

187. prior = [float('nan')]*len(ids)

188. pwf =
ncf.get_variable('pressure_weight').take(subselect,axis=0)

189. psurf = [float('nan')]*len(ids)

190.

191. # Optional: footprint corners

192. latc = dict(

193. latc_@=[float('nan')]*len(ids),

194. latc_1=[float('nan')]*len(ids),

195. latc_2=[float('nan')]*len(ids),

196. latc_3=[float('nan')]*len(ids))

197. lonc = dict(

198. lonc_@=[float('nan')]*len(ids),

199. lonc_1=[float('nan')]*len(ids),

200. lonc_2=[float('nan')]*len(ids),
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201. lonc_3=[float('nan')]*len(ids))

202.

203. ncf.close()

204.

205. # Add samples to datalist

206. # Note that the mdm is initialized here equal to the

measurement uncertainty. This value is used in add_model_data_mismatch to calculate
the mdm including model error

207. logging.info("Size scan groun dates obs lats 1lons
av_kern %d %d %d %d %d %d %d " %
(ids.size,ground.size,dates.size,obs.size,lats.size,lons.size,av_kernel.size))

208. for k in range(len(ids)):

209. # Check for every sounding if time is between start
and end time (relevant for first and last days of window)

210. if self.startdate <= dates[k] <= self.enddate:

211. self.datalist.append(TotalColumnSample(ids[k]

, code, scanlen, ground[k], groundlen, dates[k], obs[k]* 1.e-3, None, lats[k],
lons[k], unc[k]* 1.e-3,prior=prior[k], prior_profile=prior_profile[k,:]* 1.e-3,\

212. av_kernel=av_kernel[k,:],
pressure=pressure[k,:], pressure_weighting_function=pwf[k,:], level_def=level_def,
psurf=psurf[k], latc_@=latc['latc_0'][k], latc_1=latc['latc_1'][k],
latc_2=latc['latc_2'][k], latc_3=latc['latc_3'][k],

213. lonc_o=1
onc['lonc_0"'][k], lonc_1=lonc['lonc_1"'][k], lonc_2=lonc['lonc_2"'][k],
lonc_3=lonc[ 'lonc_3"'][k]

214. )

215.

216. logging.debug("Added %d observations to the Data list" %
(len(self.datalist)-len_init))

217.

218. ndays += 1

219.

220. del i

221.

222. if len(self.datalist) > 0:

223. logging.info("Observations 1list now holds %d values" %
len(self.datalist))

224. else:

225. logging.info("No observations found for sampling window")

226.

227.

228. def add_model_data_mismatch(self, filename=None, advance=False):

229.

230. obs_data = rc.read(self.obs_file)

231. self.rejection_threshold = int(obs_data[ 'obs.rejection.threshold'])

232.

233. # At this point mdm is set to the measurement uncertainty only,
added in the add_observations function.

234. # Here this value is used to set the combined mdm by adding an
estimate for the model uncertainty as a sum of squares.

235. if len(self.datalist) <= 1: return

236. for obs in self.datalist:

237. # parametrization as used by Frederic Chevallier

238. if self.mdm_calculation == ‘'parametrization':

239. obs.mdm = ( obs.mdm*obs.mdm +
(0.8*np.exp((90.0+0bs.1lat)/300.0))**2 )**g. 5

240. # empirical approach of Andy Jacobson, TO BE IMPLEMENTED

241. # elif self.mdm_calculation == ‘'empirical':

242. # obs.mdm = ...

243. elif self.mdm_calculation == 'no_transport_error'

244, pass

245, else: # assume general model uncertainty of 1 ppm (arbitrary
value)

246. obs.mdm = ( obs.mdm*obs.mdm + ©.2%%2 )**g 5

247. del obs

248.
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249. meanmdm = np.average(np.array( [obs.mdm for obs in self.datalist] ))

250. logging.debug('Mean MDM = %s' %meanmdm)

251.

252.

253. def add_simulations(self, filename, silent=False):

254. """ Adds observed and model simulated column values to the mole
fraction objects

255. This function includes the add_observations and

add_model_data_mismatch functionality for the sake of computational efficiency
256.

257. e

258.

259. if self.sample_in_ctdas:

260. logging.debug("CODE TO ADD SIMULATED SAMPLES TO DATALIST TO BE
ADDED")

261.

262. else:

263. # read simulated samples from file

264. if not os.path.exists(filename):

265. msg = "Sample output filename for observations could not be
found : %s" % filename

266. logging.error(msg)

267. logging.error("Did the sampling step succeed?")

268. logging.error("...exiting")

269. raise IOError(msg)

270.

271. ncf = io.ct_read(filename, method='read")

272. logging.debug("Read Observed and Simulated SAMPLES from file
(%s)" % filename)

273. ids = ncf.get_variable('sounding_id")

274. simulated = ncf.get_variable('column_modeled")

275. ncf.close()

276. logging.info("Successfully read data from model sample file
(%s)" % filename)

277.

278. obs_ids = self.getvalues('id').tolist()

279.

280. missing_ samples = []

281.

282. # Match read simulated samples with observations in datalist

283. logging.info("Adding %i simulated samples to the data list..." %
len(ids))

284. for i in range(len(ids)):

285. # Assume samples are in same order in both datalist and file
with simulated samples...

286. if ids[i] == obs_ids[i]:

287. self.datalist[i].simulated = simulated[i]

288. # If not, find index of current sample

289. elif ids[i] in obs_ids:

290. index = obs_ids.index(ids[i])

291. # Only add simulated value to datalist if sample has not
been filled before. Otherwise: exiting

292. if self.datalist[index].simulated is not None:

293, msg = 'Simulated and observed samples not in same
order, and duplicate sample IDs found.'

294, logging.error(msg)

295. raise IOError(msg)

296. else:

297. self.datalist[index].simulated = simulated[i]

298. else:

299. logging.debug('added %s to missing_samples, obs id = %s'
%(ids[i],obs_ids[i]))

300. missing_samples.append(ids[i])

301. del i

302.

303. if not silent and missing_samples != []:
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304. logging.warning('%i Model samples were found that did not
match any ID in the observation list. Skipping them...' % len(missing_samples))

305.

306. # if number of simulated samples < observations: remove
observations without samples

307. if len(simulated) < len(self.datalist):

308. test = len(self.datalist) - len(simulated)

309. logging.warning('%i Observations were not sampled, removing
them from datalist...' % test)

310. for index in reversed(list(range(len(self.datalist)))):

311. if self.datalist[index].simulated is None:

312. del self.datalist[index]

313. del index

314.

315. logging.debug("%d simulated values were added to the data list"
% (len(ids) - len(missing_samples)))

316.

317. def write_sample_coords(self, obsinputfile):

318. e

319. Write empty sample_coords_file if soundings are present in time

interval, just such that general pipeline code does not have to be changed...
320. n

321.

322. if self.sample_in_ctdas:

323. return

324.

325. if len(self.datalist) <= 1: #== 0O:

326. logging.info("No observations found for this time period, no obs
file written")

327. return

328.

329. # write data required by observation operator for sampling to file

330. f = io.CT_CDF(obsinputfile, method='create')

331. logging.debug('Creating new observations file for
ObservationOperator (%s) containing %d observations' %
(obsinputfile,len(self.datalist)))

332.

333. dimsoundings = f.add_dim('soundings',len(self.datalist))

334. dimepoch = f.add_dim('epoch_dimension', 7)

335. dimchar = f.add_dim('char', 30)

336.

337. if len(self.datalist) == 1:

338. dimlevels = f.add_dim('levels', len(self.getvalues('pressure')))

339. else:

340. dimlevels = f.add_dim('levels’,
self.getvalues('pressure').shape[1])

341.

342. if len(self.datalist) == 1:

343. dimlayers = f.add_dim('layers',len(self.getvalues('av_kernel')))

344, else:

345. dimlayers = f.add_dim('layers’,
self.getvalues('av_kernel').shape[1])

346.

347.

348. savedict = io.std_savedict.copy()

349. savedict['dtype'] = "int64"

350. savedict['name’'] = "sounding_id"

351. savedict['dims'] = dimsoundings

352. savedict['values'] = self.getvalues('id').tolist()

353. f.add_data(savedict)

354.

355.

356. data = [[d.year, d.month, d.day, d.hour, d.minute, d.second,
d.microsecond] for d in self.getvalues('xdate') ]

357. savedict = io.std_savedict.copy()

358. savedict['dtype'] = "int"
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359. savedict['name'] = "date"

360. savedict['dims'] = dimsoundings + dimepoch

361. savedict['values'] = data

362. f.add_data(savedict)

363.

364. savedict = io.std_savedict.copy()

365. savedict[ 'name'] = "latitude"

366. savedict['dims"'] = dimsoundings

367. savedict['values'] = self.getvalues('lat"').tolist()

368. f.add_data(savedict)

369.

370. savedict = io.std_savedict.copy()

371. savedict['name'] = "longitude"

372. savedict['dims'] = dimsoundings

373. savedict['values'] = self.getvalues('lon').tolist()

374. f.add_data(savedict)

375.

376. savedict = io.std_savedict.copy()

377. savedict[ 'name'] = "averaging_kernel"

378. savedict['dims'] = dimsoundings + dimlayers

379. savedict['values'] = self.getvalues('av_kernel').tolist()

380. f.add_data(savedict)

381.

382. savedict = io.std_savedict.copy()

383. savedict[ 'name'] = "prior_profile"

384. savedict['dims'] = dimsoundings + dimlayers

385. savedict[ 'missing_value'] = "-999999."

386. savedict['values'] = self.getvalues('prior_profile').tolist()

387. f.add_data(savedict)

388.

389.

390. savedict = io.std_savedict.copy()

391. savedict['name"'] = "prior"

392. savedict['dims'] = dimsoundings

393. savedict['values'] = self.getvalues('prior').tolist()

394. f.add_data(savedict)

395.

396.

397. savedict = io.std_savedict.copy()

398. savedict['name'] = "psurf"

399. savedict['dims'] = dimsoundings

400. savedict['values'] = self.getvalues('psurf').tolist()

401. f.add_data(savedict)

402.

403. savedict = io.std_savedict.copy()

404. savedict[ 'name'] = "pressure_levels"

405. savedict['dims'] = dimsoundings + dimlevels

406. savedict['values'] = self.getvalues('pressure').tolist()

407. f.add_data(savedict)

408.

409. savedict = io.std_savedict.copy()

410. savedict['name"'] = "pressure_weighting_function"

411. savedict['dims'] = dimsoundings + dimlayers

412. savedict['values']
self.getvalues('pressure_weighting_function').tolist()

413. f.add_data(savedict)

414.

415. savedict = io.std_savedict.copy()

416. savedict[ 'name'] = "latc_o"

417. savedict['dims'] = dimsoundings

418. savedict['values'] = self.getvalues('latc_0"').tolist()

419. f.add_data(savedict)

420.

421. savedict = io.std_savedict.copy()

422. savedict['name"'] = "latc_1"

423. savedict['dims"] = dimsoundings
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424,
425.
426.
427.
428.
429.
430.
431.
432.
433.
434,
435.
436.
437.
438.
439.
440.
441.
442.
443,
444,
445,
446.
447.
448.
449.
450.
451.
452.
453,
454,
455.
456.
457.
458.
459.
460.
461.
462.
463.
464.
465.
466.
467.
468.
469.
470.
471.
472.
473.
474.

savedict['values'] = self.getvalues('latc_1').tolist()
f.add_data(savedict)

savedict = io.std_savedict.copy()
savedict['name"'] = "latc_2"
savedict['dims'] = dimsoundings

savedict['values'] = self.getvalues('latc_2").tolist()
f.add_data(savedict)

savedict = io.std_savedict.copy()
savedict[ 'name'] = "latc_3"
savedict['dims"'] = dimsoundings

savedict['values'] = self.getvalues('latc_3").tolist()
f.add_data(savedict)

savedict = io.std_savedict.copy()
savedict['name"'] = "lonc_o"
savedict['dims'] = dimsoundings

savedict['values'] = self.getvalues('lonc_0"').tolist()
f.add_data(savedict)

savedict = io.std_savedict.copy()
savedict[ 'name'] = "lonc_1"
savedict['dims"'] = dimsoundings

savedict['values'] = self.getvalues('lonc_1").tolist()
f.add_data(savedict)

savedict = io.std_savedict.copy()
savedict['name"'] = "lonc_2"
savedict['dims'] = dimsoundings

savedict['values'] = self.getvalues('lonc_2").tolist()
f.add_data(savedict)

savedict = io.std_savedict.copy()
savedict[ 'name'] = "lonc_3"
savedict['dims"'] = dimsoundings

savedict['values'] = self.getvalues('lonc_3").tolist()
f.add_data(savedict)

savedict = io.std_savedict.copy()

savedict['dtype'] = "char"

savedict['name'] = "level_def"

savedict['dims'] = dimsoundings + dimchar
savedict['values'] = self.getvalues('level_def').tolist()
f.add_data(savedict)

f.close()

End Class TotalColumnObservations

" "

if __name__ == "__main__":

475. pass
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. parser

wrfout_flask_sampler.py

import
import
import
import
import

# Impor
pd = os
inc_pat

. inc_pat
. sys.pat
. from da
. from da
. import

o
. parser

. parser.
. parser.

. parser.

. parser.
. parser.

. parser.

. parser.

. parser.

. args =

. setting

. wd = os
. try:

0s.

. except

pas

. logfile

. 0s.syst
. 0s.syst
. 0s.syst

str(set

. 0s.syst

o W
. wrfhelp
. wrfhelp

os
sys

copy

numpy as np
netCDF4 as nc

t some CTDAS tools

.path.pardir

h = os.path.join(os.path.dirname(os.path.abspath(__file_)),
pd, pd, pd)

h = os.path.abspath(inc_path)

h.append(inc_path)

.tools.wrfchem.wrfchem_flask_helper import WRFChemHelper_ flask

.tools.wrfchem.utilities import utilities

argparse

### Parse options
= argparse.ArgumentParser()
add_argument("--nproc", type=int,

help="ID of this sampling process (@ ... nprocs-1)")
add_argument("--nprocs"”, type=int,

help="Number of sampling processes")
add_argument("--sampling_coords_file", type=str,

help="File with sampling coordinates as created " + \

"by CTDAS column samples object")

.add_argument("--run_dir", type=str,

help="Directory with wrfout files")
add_argument("--original_save_suffix", type=str,
help="Just leave this on .original")
add_argument("--nmembers", type=int,
help="Number of tracer ensemble members")
add_argument("--tracer_optim", type=str,
help="Tracer that was optimized (e.g. C02 for " + \
"ensemble members C02_000 etc.)")
add_argument("--outfile_prefix", type=str,
help="One process: output file. More processes: " + \
"output file is <outfile_prefix>.<nproc>.slice")
add_argument("--footprint_samples_dim", type=int,
help="Sample column footprint at n x n points")

parser.parse_args()
s = copy.deepcopy(vars(args))

.getcwd()
makedirs("log")

OSError:
s

= os.path.join(wd, "log/wrfout_sampler." + str(settings['nproc']) + ".log")

em("touch " + logfile)

em("rm " + logfile)

em("echo 'Process " + str(settings[ 'nproc']) +
tings['nprocs']) + ": start' >> " + logfile)
em("date >> " + logfile)

"

### Initialize wrfhelper
er = WRFChemHelper_flask(settings)
er.validate_settings(['sampling_coords_file’,
‘run_dir',
'nproc’',
'nprocs’,
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. os.system("echo 'ide=" + str(ide) +
. os.system("echo 'id1=" + str(idl) + "' >> " + logfile)

‘original_save_suffix', # necessary for selecting
filename
‘nmembers', # special case ©: sample 'tracer_optim'
'tracer_optim',
‘outfile_prefix’',
'footprint_samples_dim'])
. cwd = os.getcwd()

. os.chdir(wrfhelper.settings['run_dir'])

. #wrfhelper.namelist = wrfhelper.read_namelist(wrfhelper.settings['run_dir'])

non

. wrfhelper.namelist = wrfhelper.read_namelist(".")

. HHHHHEHE Figure out which samples to process

. # Get number of samples

. ncf = nc.Dataset(settings['sampling_coords_file'], "r")
. nsamples = len(ncf.dimensions["obs"])

. ncf.close()

. ide, id1 = utilities.get_slicing_ids(nsamples, settings['nproc'],

settings['nprocs'])

>> " + logfile)

. HHHHHAEH Read samples from coord file
. dat = wrfhelper.read_sampling_coords(settings['sampling_coords_file'], ide, id1l)

. os.system("echo 'Data read, len=" + str(len(dat['obs'])) + "' >> " + logfile)

. HHHEHEHEH Locate samples in wrf domains

. # Take care of special case without ensemble
. nmembers = settings[ 'nmembers’]
. if nmembers ==

# Special case: sample 'tracer_optim', don't add member suffix
member_names = [settings['tracer_optim']]
nmembers = 1
else:
. member_names = [settings['tracer_optim'] + "_%@3d" % nm for nm in
range(nmembers)]

103.
104.

105.
106.
107.
108.
109.

# Keep a description of a small wrf file for each domain in memory to
# locate observations.

# This concept is probably obsolete - doesn't save time, and

# locate_domain is parallelized anyway
wrfhelper.open_wrf_location_files()

11e.

111.
112.
113.

114

115
116
117

118
119
120

121
122

if settings["footprint_samples_dim"]==1:

# Locate all observations in space

# This function Wouldn't work for moving nests.
. id_xy_f, domain, z = wrfhelper.locate_domain(dat['latitude'],
dat['longitude'], dat['altitude'])

. # Assume box averages and don't interpolate horizontally

. id_xy = np.round(id_xy_f).astype(int)

o os.system("echo 'Domains located from obs " + str(domain) + "' >> " +
logfile)

. else:

o # Return the whole thing (needed in wrfhelper.sample_total_columns)

. raise NotImplementedError("To do:

wrfhelper.get_footprint_sampling points™)
5 dat_fs = wrfhelper.get_footprint_sampling_points(dat)
. # Locate (free)
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123. id_xy_f_free, domain_free = wrfhelper.locate_domain(dat_fs['latitude'],
dat_fs['longitude'])

124. id_xy_free = np.round(id_xy_f_free).astype(int)

125. # Determine max domain

126. domain_fs = None

127. raise NotImplementedError("To do: domain_fs")

128. # Sample again with domain restriction - no need to return it again

129. id_xy_f, _ = wrfhelper.locate_domain(dat_fs['latitude'],
dat_fs['longitude'], domain_fs)

130. id_xy = np.round(id_xy_f).astype(int)

131. # Thin out domain_fs to pass it to determination of id_t and frac_t
below

132. domain = domain_fs[::settings["footprint_samples_dim"]]

133.

134. wrfhelper.close_wrf_location_files()

135.

136. id_t = np.zeros_like(domain)

137. frac_t = np.ndarray(id_t.shape, float)

138. frac_t[:] = float("nan"

139.

140. wrfout_files = dict()

141. wrfout_times = dict()

142. wrfout_start_time_ids = dict()

143.

144. UD = list(set(domain))

145. os.system("echo 'domains " + str(UD) + "' >> " + logfile)

146.

147. for dom in UD:

148. os.system("echo 'Processing domain " + str(dom) + "' >> " + logfile)

149. idd = np.where(domain == dom)[@]

150. os.system("echo 'idd " + str(idd) + "' >> " + logfile)

151. # Get full time vector

152. wrfout_files[dom] = wrfhelper.get_wrf_filenames("wrfout_d%e2d_*ee" %
dom)

153. os.system("echo 'Wrf filenames " + str(wrfout_files[dom]) + "' >> " +
logfile)

154. wrfout_times[dom], wrfout_start_time_ids[dom] =
wrfhelper.wrf_times(wrfout_files[dom])

155.

156. # time id

157. for idd_ in idd:

158. # Look where it sorts in

159. tmp = [1

160. for i in range(len(wrfout_times[dom])-1)

161. if wrfout_times[dom][i] <= dat['time'][idd_] \

162. and dat['time'][idd_] < wrfout_times[dom][i+1]]

163. # Catch the case that the observation took place exactly at the

164. # last timestep

165. if len(tmp) == 1:

166. id_t[idd_] = tmp[@]

167. time® = wrfout_times[dom][id_t[idd_]]

168. timel = wrfout_times[dom][id_t[idd_]+1]

169. frac_t[idd_] = (timel - dat['time'][idd_]).total_seconds() /
(timel - time@).total_seconds()

170. os.system("echo 'frac_t " + str(frac_t[idd_]) + "' >> " +
logfile)

171. else: # len must be © in this case

172. if len(tmp) > 1:

173. os.system("echo 'wat' >> " + logfile)

174. raise ValueError("wat")

175. if dat['time'][idd_] == wrfout_times[dom][-1]:

176. id_t[idd_] = len(wrfout_times[dom])-1

177. frac_t[idd_] = 1

178. else:

179 msg = "Sample %d, obs_num %s: outside of simulated

time."%(idd_, dat['obs_num'][idd_])
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180.
181.
182.

183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.

196.
197.
198.
199.
200.
201.
202.
203.
204.

205.
206.
207.
208.
209.
210.
211.
212.
213.
214.
215.
216.
217.

218.
219.

220.
221.
222.
223.
224.
225.
226.

files=wrfout_files,
file_start_time_indices=wrfout_start_time_ids, z=z)
ens_sim = wrfhelper.sample_flask(dat, loc_input, member_names)
# Write results to file
obs_ids = dat['obs_num']
# Remove simulations that are nan (=not in domain)
if ens_sim.shape[0] > 0:
valid = np.apply_along_axis(lambda arr: not np.any(np.isnan(arr)),
ens_sim)
obs_ids_write = obs_ids[valid]
ens_sim_write = ens_sim[valid, :]
else:
obs_ids_write = obs_ids
ens_sim_write = ens_sim
if settings['nprocs'] == 1:
outfile = settings['outfile_prefix']
else:
# Create output files with the appendix ".<nproc>.slice"
# Format <nproc> so that they can later be easily sorted.
len_nproc = int(np.floor(np.logle(settings['nprocs']))) + 1
outfile = settings['outfile prefix'] + (".%0" + str(len_nproc)
"d.slice") % settings['nproc']
os.system("echo '"Writing output file "

os.path.join(wrfhelper.settings['run_dir'], outfile) +

227.

" w

os.system("echo + msg + >>
raise ValueError(msg)

"

+ logfile)

# Now read the data

# Input: id_xy, dom, id_t, wrfout_start_time_ids, fract_t

# Output: sampled columns

# All input related to location:

if settings["footprint_samples_dim"]>1:
domain = domain_fs
id_t = np.repeat(id_t, settings["footprint_samples_dim"])
frac_t = np.repeat(frac_t, settings["footprint_samples_dim"])

loc_input = dict(id_xy=id_xy, domain=domain,
id_t=id_t, frac_t=frac_t,

>> " + logfile)

wrfhelper.write_simulated_flask(obs_id=obs_ids_write,
simulated=ens_sim_write,
nmembers=nmembers,
outfile=outfile)

os.chdir(cwd)
os.system("echo 'Done’ >>

+ logfile)
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wrfchem_flask_helper.py

import os

import shutil

import re

import glob

import bisect

import copy

import numpy as np
import netCDF4 as nc
import datetime as dt
10. import wrf

11. import f90nml

12. import pickle

WOoOONOTUVTAWNRE

15. # CTDAS modules
16. import da.tools.io4 as io
17. from da.tools.wrfchem.utilities import utilities

19.

20. class WRFChemHelper_flask(object):

21. """Contains helper functions for sampling WRF-Chem"""
22. def _ init_ (self, settings):

23. self.settings = settings

24.

25. def validate_settings(self, needed_items=[]):

26. e

27. This is based on WRFChemOO._validate_rc

28. e

29.

30. if len(needed_items)==0:

31. return

32.

33. for key in needed_items:

34. if key not in self.settings:

35. msg = "Missing a required value in settings: %s" % key
36. raise IOError(msg)

37.

38. @staticmethod

39. def read_namelist(dirname):

40. """Read run settings from namelist.input file in dirname"""
41. nml_file = os.path.join(dirname, "namelist.input")
42. namelist = f90nml.read(nml_file)

43,

a4, list_vars = ["e_we",

45, "e_sn",

46. "parent_id",

47. "parent_grid_ratio",

48. "i_parent_start",

49, "j_parent_start"

50. ]

51. for v in list_vars:

52. if not isinstance(namelist["domains"][v], list):
53. namelist["domains"][v] = [namelist["domains"][v]]
54.

55. return namelist

56.

57. def locate_domain(self, lat, lon, alt): #Added altitude location - Ioanna
58. e

59. Input

60.  -----

61. lat: Single values or lists or np.arrays

62. lon: Single values or lists or np.arrays

63.
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113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.

125.
126.

Output

- Xy-coordinates in finest domain that contains the coordinates

- finest domain

-z

if not hasattr(self, "_loc_files"):

raise RuntimeError("Must call open_wrf_loc_files first.")

# Work with arrays internally.

lat = np.array(lat, ndmin=1)

lon = np.array(lon, ndmin=1)

alt = np.array(alt, ndmin=1)

# Get coordinates of the observation in all domains

ndomains = self.namelist["domains"]["max_dom"]

# Get domain sizes in xy on mass (=unstaggered) grid (hence the -1)

dom_size_x = np.array(self.namelist[ 'domains']['e_we'], dtype=float,
ndmin=1) - 1

dom_size_y = np.array(self.namelist[ 'domains']['e_sn'], dtype=float,

ndmin=1) - 1

are

# Initialize output

xy = np.zeros((len(lat), 2))

xy[:] = np.nan

finest_domain = np.zeros((len(lat), ), int)

z = np.zeros(len(alt))
z[:] = np.nan

# Since wrf.1ll_to_xy takes very long, I save a bit of time here
# by starting in the finest domain and processing only
# observations that weren't previously found.
for n in range(ndomains-1, -1, -1):
# Get xy for this domain
# Only process what you haven't processed
sel = np.where(finest_domain == 0)[0]

# In case all domains where set
if len(sel)==0:
break

X, y = wrf.11l_to_xy(wrfin=self._loc_files[n],
latitude=lat[sel],
longitude=lon[sel],
meta=False,
as_int=False)

For each domain, check if the observation is inside the
domain extent
# I put the edges on -0.5 and e_we/e_sn - 0.5.

H* H

H*

X = np.array(x, ndmin=1)
y = np.array(y, ndmin=1)

# Test: inside domain?
# The -1 here are because of ©-based indices, and the

# because that's halfway to the next mass-staggered point
# I treat the WRF grid as boxes.
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127. x_in = [(-0.5 <= x_) and (x_ <= dom_size x[n] - 1 + 0.5) for x_

in x]

128. y_in = [(-0.5 <= y_) and (y_ <= dom_size_y[n] - 1 + 0.5) for y_
in y]

129.

130. # Save domain, x and y at these locations

131. in_this_dom = np.where(np.logical_and(x_in, y_in))[0]

132. finest_domain[sel[in_this_dom]] = n + 1

133. # If domain = 1, set _all_ xy to see where they end up

134. if n==0:

135. xy[sel, 0] = x

136. xy[sel, 1] =y

137. else:

138. xy[sel[in_this_dom], ©] = x[in_this_dom]

139. xy[sel[in_this_dom], 1] = y[in_this_dom]

140.

141.

142. model_z_all_11 = wrf.getvar(wrfin=self._loc_files[n],

143. varname= 'height_agl’,

144. timeidx= 0,

145. units="m',

146. squeeze=True,

147. meta=False)

148.

149. X = np.round(x).astype(int)

150. y = np.round(y).astype(int)

151.

152. model_z = list()

153. z = list()

154.

155. model_z = np.array([(model_z_all 11[:, i,i]) for i, (x_,y_) in
enumerate(zip(x, y))1)

156. z = np.array([np.abs(model_z[i,:] - alt[sel[i]]).argmin() for i
in range(len(x))]) #index of z

157.

158. # Return the indices and domain

159. return xy, finest_domain, z

160.

161. def get_groups_space_time(self, dat, time_bins, only_in=False):

162. o

163. Returns a dictionary of lists of indices of observations in dat,

164. where keys are tuples of (time bin, x bin, y bin and wrf

165. domain), and values are indices of the observations that fall

166. within this bin.

167. e

168.

169. # Time groups

170. id_t = np.array([bisect.bisect_right(time_bins, dat_date)

171. for dat_date in dat['date']],

172. int)

173.

174. # Spatial groups (indices and domain)

175. id_xy_f, dom, z = self.locate_domain(dat['latitude'],
dat['longitude'], dat['altitude'])

176.

177. id_xy = np.round(id_xy_f).astype(int)

178.

179.

180.

181. # Version of only_in with sel: might be faster if sel is short -

182. # I don't know! But the results for my test case where identical

183. # (meaning 'domain' looked correct and identical) for both

184. # options for only_in.

185.

186. # if only_in:

187. # # Yes, 0<id_t is correct: in bisect_right, it means the
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188. # # value is below the lowest sequence value.

189. # time_in = np.logical_and(@<id_t, id_t<len(time_bins))

190. # space_in = dom != @

191. # sel = np.where(np.logical_and(time_in, space_in))[@]

192. #

193. # else:

194. # sel = range(len(id_t))

195. #

196. # indices = get_index_groups(id_t[sel], id_xy[sel, ©], id_xy[sel,
1], dom[sel])

197. #

198. # # Now have to account for sel again!

199. # if only_in:

200. # for k, v in indices.iteritems():

201. # indices[k] = sel[v]

202.

203. # Version of only_in without sel: might be faster if sel is

204. # long - I don't know! But the results for my test case where

205. # identical (meaning 'domain' looked correct and identical)

206.

207. # Indices for all groups:

208. indices = utilities.get_index_groups(id_t, id_xy[:, @], id_xy[:, 1],
dom)

209.

210. # Throw the out-of-domain ones out here already

211. if only_in:

212. # Remove the index groups where domain is @ (= outside of

213. # domain). Need to iterate over a list, because with an

214. # iterator, python complains that the dictionary changed

215. # size during iteration.

216. for k in list(indices.keys()):

217. if k[3] == @:

218. del indices[k]

219. # Equivalent to the above 3 lines, don't know what's faster:

220. # groups = {k: v for k, v in groups.iteritems() if k[3] != 0}

221.

222. return indices

223.

224.

225. @staticmethod

226. def times_in_wrf_file(ncf):

227. n

228. Returns the times in netCDF4.Dataset ncf as datetime object

229. e

230. times_nc = ncf.variables["Times"]

231. times_chr = []

232. for nt in range(times_nc.shape[0@]):

233. # freum 2021-07-11: with the migration to python3, need to

234. # replace the string - conversion. Hope "utf-8" works

235. # always.

236. # times_chr.append(times_nc[nt, :].tostring())

237. times_chr.append(str(times_nc[nt, :], "utf-8"))

238.

239. times_dtm = [dt.datetime.strptime(t_chr, "%Y-%m-%d_%H:%M:%S")

240. for t_chr in times_chr]

241.

242, return times_dtm

243,

244, def wrf_times(self, file_list):

245, """Read all times in a list of wrf files

246.

247. Output

248, 0 ------

249. - 1D-array containing all times

250. - 1D-array containing start indices of each file

251. e
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252.
253.
254.
255.
256.
257.
258.
259.
260.
261.
262.
263.
264.
265.
266.
267.
268.
269.
270.
271.
272.
273.
274.
275.
276.
277.
278.
279.
280.
281.
282.
283.
284.
285.
286.
287.
288.
289.
290.
291.
292.
293.
294,
295.
296.
297.
298.
299.
300.
301.
302.
303.
304.
305.
306.
307.
308.
309.
31e.
311.
312.
313.
314.
315.
316.
317.

def

def

def

def

times = list()
start_indices = np.ndarray((len(file_list), ), int)
for nf in range(len(file_list)):
ncf = nc.Dataset(file_list[nf])
times_this = self.times_in_wrf_file(ncf)
start_indices[nf] = len(times)
times += times_this
ncf.close()

return times, start_indices

open_wrf_location_files(self):

Keep a description of a small wrf file for each domain in memory
to locate observations.

Appends _loc_file to self.

Note: Should be edited out of the code.

ndomains = self.namelist["domains"]["max_dom"]
path = self.settings["run_dir"]
pattern = "wrfinput_d%e2d"
self._loc_files = list()
for nd in range(1, ndomains+1):
fp = os.path.join(path, pattern % nd)
self._loc_files.append(nc.Dataset(fp, "r"))

close_wrf_location_files(self):

"""See _open_wrf_location_files

for loc_file in self._loc_files:
loc_file.close()

wrf_filename_times(self, prefix):

"""Get timestamps in wrf file names in run directory."""

# List all filenames

files = self.get_wrf_filenames(prefix + "*")

# Only use dol files, pattern should be the same for all domains

pattern = os.path.join(self.settings["run_dir"], prefix)

files = [f for f in files if re.search(pattern, f)]

# Extract timestamp from filename

# Format is %Y-%m-%d_%H:%M:%S at the end of the filename

pattern_time = "%Y-%m-%d_%H:%M:%S"

len_tstamp = len(pattern_time) + 2

times = [dt.datetime.strptime(f[-len_tstamp:], pattern_time)
for f in files]

return times

get_wrf_filenames(self, glob_pattern):

Gets the filenames in self.settings["run_dir"] that follow
glob_pattern, excluding those that end with
self.settings["original_save_suffix"]

path = self.settings["run_dir"]

# All files...

wfiles = glob.glob(os.path.join(path, glob_pattern))
# All originals

orig_suf = self.settings["original_save_suffix"]
opattern = glob_pattern + orig_suf

ofiles = glob.glob(os.path.join(path, opattern))

# All files except all originals:
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318. files = [x for x in wfiles if x not in ofiles]

319.

320. # I need this sorted too often to not do it here.

321. files = np.sort(files).tolist()

322. return files

323.

324.

325. def sample_flask(self, dat, loc, fields_list):

326.

327. # Initialize output

328. tc = np.ndarray(shape=(len(dat["obs_num"]), len(fields_list)),
dtype=float)

329. tc[:] = float("nan")

330.

331. # Process by domain

332. UD = list(set(loc["domain"]))

333. #for dom in UD[1:]:

334. for dom in UD:

335. idd = np.nonzero(loc["domain"] == dom)[0]

336. # Process by id_t

337. UT = list(set(loc["id_t"][idd]))

338. for time_id in UT:

339. # Coordinates to process

340. idt = idd[np.nonzero(loc["id_t"][idd] == time_id)[0]]

341. # Get tracer ensemble profiles

342. profiles = self._read_and_intrp_v(loc, fields_list, time_id,
idt)

343. # Here it starts to make sense to loop over individual observations

344, for nidt in range(len(idt)):

345, nobs = idt[nidt]

346. # Compute flasks

347. for nf in range(len(fields_list)):

348.

349. # Model retrieval

350. tc[nobs, nf] = profiles[nf][nidt]

351.

352. return tc

353.

354. @staticmethod

355. def _read_and_intrp_v(loc, fields_list, time_id, idp):

356. e

357. Helper function for sample_flasks.

358. read_and_intrp, but vectorized.

359. Reads in fields and interpolates

360. them linearly in time.

361.

362. Output

363.  ==----

364. List of temporally interpolated fields, one entry per member of

365. fields_list.

366. e

367.

368. var_intrp_1 = list()

369.

370. # Check we were really called with observations for just one domain

371. domains = set(loc["domain"][idp])

372. if len(domains) > 1:

373. raise ValueError("I can only operate on idp with identical
domains.™)

374. dom = domains.pop()

375.

376. # Select input files

377. id_file® = bisect.bisect_right(loc["file_start_time_indices"][dom],
time_id) - 1

378. id_filel = bisect.bisect_right(loc["file_start_time_indices"][dom],

time_id+1) - 1
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379.
380.
381.
382.
383.
384.

385.
386.
387.
388.
389.
390.
391.
392.
393.
394,
395.
396.
397.
398.
399.
400.
401.
402.
403.
404.
405.
406.
407.
408

.loc["id_xy"][idp, o11

409.

410
411.

412.
413.
414.
415.
416.
417.
418.
419.
420.
421.
422.
423,

424,
425.

426.
427.
428.
429.
430.
431.
432.
433.
434.
435.
436.
437.
438.

if id_file@ < 0 or id_filel < ©:
raise ValueError("This shouldn't happen.")

# Get time id in file

id_t_file@ = time_id - loc["file_start_time_indices"][dom][id_file@]

id_t_filel = time_id+1 -
loc["file_start_time_indices"][dom][id_filel]

# Open files
nc@® = nc.Dataset(loc["files"][dom][id_file@], "r")
ncl = nc.Dataset(loc["files"][dom][id_filel], "r")
# Per field to sample
for field in fields_list:

# Read input file

fieldo = wrf.getvar(wrfin=nco,

varname=field,
timeidx=id_t_fileo,
squeeze=False,
meta=False)

fieldl = wrf.getvar(wrfin=nc1,

varname=field,
timeidx=id_t_filel,
squeeze=False,
meta=False)

if len(fielde.shape) == 4:

loc["id_xy"1[idp, 1]

# Sample field at timesteps before and after observation

# They are ordered nt x nz x ny x nx

# vare will have shape (len(idp),len(profile))

var@ = fielde[0, 1loc["z"][idp], loc["id_xy"][idp, 1],

varl = field1[9, loc["z"][idp], loc["id_xy"][idp, 1],

# Repeat frac_t for profile size
frac_t_ = np.array(loc["frac_t"][idp])#.reshape((len(idp),

1)).repeat(vare.shape[1], 1)
elif len(field@.shape) == 3:

# vare will have shape (len(idp),)

var@ = fielde[0, loc["id_xy"][idp, 1], loc["id_xy"][idp, ©]]
varl = field1[@, loc["id_xy"][idp, 1], loc["id_xy"][idp, ©]]
frac_t_ = np.array(loc["frac_t"][idp])

elif len(field@.shape) == 2:

# vare will have shape (len(idp),len(profile))

# This is for ZNW, which is saved as (time_coordinate,

# vertical_coordinate)

vare = fielde[[0]*1len(idp), :]

varl = fieldi[[©@]*1len(idp), :

frac_t_ = np.array(loc["frac_t"][idp]).reshape((len(idp),

1)).repeat(vare.shape[1], 1)
else:

% len(field@.shape))

raise ValueError("Can't deal with field with %d dimensions.

# Interpolate in time
var_intrp_l.append(var@*frac_t_ + varl*(1l. - frac_t_))

ncod.close()
ncl.close()

return var_intrp_1

@staticmethod
def read_sampling_coords(sampling_coords_file, id@=None, idl=None):

Read in samples
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439.
440.
441.
442.
443,
444,
445,
446.
447.
448.
449.
450.
451.
452.
453,
454,
455.
456.
457.
458.
459.
460.
461.
462.
463.
464.
465.
466.
467.
468.
469.
470.
471.
472.
473.
474.
475.
476.
477.
478.
479.
480.
481.
482.
483.
484.
485.
486.
487.
488.
489.
490.
491.
492.
493.
494,
495.
496.
497.
498.
499.
500.
501.
502.
503.
504.

ncf = nc.Dataset(sampling_coords_file, "r")
if ide is None:

ide = o
if idl is None:

idl = len(ncf.dimensions['obs'])

dat = dict(
obs_num=np.array(ncf.variables["obs_num"][id@:id1]),
date=ncf.variables["date_components"][id@:id1],
latitude=np.array(ncf.variables["latitude"][id@:id1]),
longitude=np.array(ncf.variables["longitude"][id@:id1]),
altitude=np.array(ncf.variables["altitude"][id@:id1]),
#strategy=np.array(ncf.variables["sampling_stategy"][id@:id1]),
#evn=np.array(ncf.variables["obs_id"][id@:id1]),
obs=np.array(ncf.variables["observed"][id@:id1]),
mdm=np.array(ncf.variables["modeldatamismatch"][id@:id1])

)
ncf.close()

# Convert date to datetime object
dat["time"] = [dt.datetime(*x) for x in dat["date"]]

return dat

@staticmethod
def write_simulated_flask(obs_id, simulated, nmembers, outfile):

Write simulated observations to file.
# Output format: see obs_xco2_fr

f = io.CT_CDF(outfile, method="create")
dimid = f.createDimension("obs_num", size=None)

dimid = ("obs_num",)
savedict = io.std_savedict.copy()

savedict["name"] = "obs_num"
savedict["dtype"] = "int64"
savedict["long_name"] = "Unique_Dataset_observation_index_number"

savedict["units"] =
savedict["dims"] = dimid
savedict["comment"] = "Format as in input"
savedict["values"] = obs_id.tolist()
f.add_data(savedict, nsets=0)

dimmember = f.createDimension("nmembers", size=nmembers)
dimmember = ("nmembers",)
savedict = io.std_savedict.copy()

savedict["name"] = "flask"

savedict["dtype"] = "float"

savedict["long_name"] = "Simulated flask"

savedict["units"] = "??"

savedict["dims"] = dimid + dimmember

savedict["comment"] = "Simulated model value created by WRFChemOO"

savedict["values"] = simulated.tolist()
f.add_data(savedict, nsets=0)

f.close()

@staticmethod
def save_file_with_timestamp(file_path, out_dir, suffix=""):

Saves a file to with a timestamp
nowstamp = dt.datetime.now().strftime("_%Y-%m-%d_%H:%M:%S")
new_name = os.path.basename(file_path) + suffix + nowstamp
new_path = os.path.join(out_dir, new_name)
shutil.copy2(file_path, new_path)
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508.

pass
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