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ΠΕΡΙΛΗΨΗ 

Η υπερθέρμανση του πλανήτη που προκαλείται από τα αέρια του 
θερμοκηπίου είναι ένα θέμα άκρως ανησυχητικό τα τελευταία χρόνια. Το 
μεθάνιο (CH4), που είναι το δεύτερο πιο σημαντικό αέριο θερμοκηπίου μετά 
το διοξείδιο του άνθρακα (CO2), αυξάνεται με ταχείς ρυθμούς, κυρίως λόγω 
των ανθρώπινων δραστηριοτήτων. Στην παρούσα μελέτη, στοχεύουμε να 
βελτιστοποιήσουμε τις εκτιμήσεις των ανθρωπογενών εκπομπών CH4 στην 
Κεντρική-Ανατολική Μεσόγειο και στην Ελλάδα, όπως αναφέρεται από την 
υπηρεσία Copernicus Atmosphere Monitoring Service, χρησιμοποιώντας 
αντίστροφη μοντελοποίηση. 

Για το σκοπό αυτό, εφαρμόζεται και χρησιμοποιείται το μοντέλο Weather 
Research and Forecasting - Greenhouse Gas σε συνδυασμό με το 
CarbonTracker Data Assimilation Shell, που ενσωματώνει δορυφορικές 
παρατηρήσεις από το προϊόν TROPOMI/WFMD και επιτόπιες μετρήσεις από 
το σταθμό στο Φινοκαλιά Λασιθίου. Επιλέχθηκαν δύο εμφωλευμένες περιοχές 
μελέτης, η Κεντρική-Ανατολική Μεσόγειος και η Ελλάδα και βελτιστοποιούνται 
πέντε διαφορετικές γεωγραφικές περιοχές σε αυτήν την περιοχή μελέτης. 
Χρησιμοποιούνται 50 μέλη συνόλου με χρονικό βήμα βελτιστοποίησης μίας 
εβδομάδας και παράθυρο αφομοίωσης 5 εβδομάδων. Η περίοδος 
αντιστροφής ορίζεται στις πρώτες δέκα εβδομάδες του 2019. 

Ερευνήσαμε δύο διαφορετικές περιπτώσεις, μία με σφάλμα μοντέλου 
μεταφοράς 10 ppb και 5 ppb για τα δορυφορικά δεδομένα και τις επίγιες 
μετρήσεις, αντίστοιχα και μία με δέκα φορές μεγαλύτερο σφάλμα. Σε όλες τις 
εβδομάδες που αντιστρέφονται για τις δύο προσομοιώσεις, προβλέπονται 
σχεδόν μόνο αρνητικές ροές. Αυτό αποδίδεται σε υψηλές αρχικές και οριακές 
συνθήκες σε σύγκριση με τις παρατηρήσεις που επιλέχθηκαν για το σύστημά 
μας. Επιπλέον, προβλέπονται διαφορετικοί αριθμοί περιοχών με θετικές 
εκπομπές από κάθε προσομοίωση, υποδεικνύοντας τη μεγάλη επίδραση του 
του σφάλματος του μοντέλου μεταφοράς στα αποτελέσματα εκτίμησης 
εκπομπών. 

 

Λέξεις κλειδιά: μεθάνιο, εκπομπές, WRF, CTDAS, αντίστροφη 

μοντελοποίηση, σφάλμα μοντέλου μεταφοράς 
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ABSTRACT 

 

Global warming induced by greenhouse gases has been an issue of outmost 
concern in the recent years. Methane (CH4), which is the second most 
important greenhouse gas after carbon dioxide (CO2), increases rapidly, 
mainly due to human activities. In the present study, we aim to optimize the 
estimations of CH4 anthropogenic emissions over Central-Eastern 
Mediterranean and over Greece as reported by Copernicus Atmosphere 
Monitoring Service, using inverse modeling.  

For this purpose, Weather Research and Forecasting - Greenhouse Gas 
model coupled with CarbonTracker Data Assimilation Shell, integrating 
satellite observations from TROPOMI/WFMD product and in-situ 
measurements from Finokalia station is implemented and used. Two one-way 
nested domains are selected, one over Central-Eastern Mediterranean and 
one over Greece and five different geographical regions in this study area are 
optimized. 50 ensemble members are used in the inversion with an 
optimization time step of one week and an assimilation window of 5 weeks. 
The inversion period is set to the first ten weeks of 2019.  

We investigated two different setups, one with transport model error of 10 ppb 
and 5 ppb for satellite data and in situ measurements, respectively and one 
with ten times larger error. In all of the weeks inverted for the two simulations, 
almost only negative fluxes are predicted. This is attributed to high initial and 
boundary conditions compared to the observations that were selected to work 
as input in our system. Furthermore, different number of positive emission 
regions in the study area are predicted by each inversion setup indicating the 
large influence of transport model error magnitude in the emissions estimation 
results. 

 

  

Keywords: Methane, emissions, WRF, CTDAS, inverse modeling, transport 

model error 
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1. Earth 

1.1 Climate and Greenhouse Effect 

 

The term "climate" refers to the weather's average behavior over a long time 
period. It's not always easy to figure out what the typical time period is for 
defining the climate. Too short spans of time are insufficient to balance year-
to-year variations, while too long periods can encompass numerous periods of 
climate change. Climate change has a characteristic time period ranging from 
decades to centuries. The average duration for defining the climate is 30 
years. The global average annual surface temperature is the most commonly 
used variable to characterize climate, however other factors such as rainfall 
frequency and amount can also be considered. Changes in the average 
values of these factors, as well as their variability, are part of climate change. 
The balance controls surface temperature between solar energy inflow and 
the planetary heat emission in space. 

Solar radiation is the primary source of energy for the Earth system. As a 
black body with an active temperature of TS = 5800 K, Sun emits radiation. 
The black body's associated energy flow is given by the Stefan-Boltzmann law 
F = σTS

4, where σ is the Stefan-Boltzmann constant, equal to 5.67 × 10–8 W 
m–2 K–4 and F the flux through a surface perpendicular to the incoming 
radiation. Solar radiation has a peak at 0.5 μm and extends to all 
wavelengths. The Earth disk (surface perpendicular to the incoming radiation) 
interrupts the passage of solar energy by 1365 W m– 2. This amount is known 
as the solar constant and is represented by the letter S. As a result, the 
average solar flux received by Earth’s disk is S / 4 = 341 W m– 2. Clouds and 
the Earth's surface reflect a fraction of the incoming solar energy back into 
space (around 30%). This is known as the planetary albedo (α=0.3). The 
Earth-atmosphere system absorbs the rest of the energy. The black body 
radiation emitted by the Earth at an active temperature TE compensates for 
this energy input. The relationship between solar heating and ground cooling 
at steady state is: 

 

(1-α) × S/4 = σTE
4 

 

TE = 255 K (-18 οC) is the average active temperature of Earth obtained from 
this equation. The wavelengths of terrestrial emission correspond to the 
infrared (IR), with a peak at 10 μm.  
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On average, roughly 341 W m-2 of solar energy enters the Earth’s atmosphere 
each year, with 30% of the energy being reflected back into space, leaving 
about 235 W m-2 to be absorbed by the Earth/Atmosphere system (Fig. 1). 
Clouds account for around two-thirds of the 107 W m-2 reflected back into 
space, the surface for about one-eighth, and Rayleigh atmospheric scattering 
for the rest. Although the surface-atmosphere system's total absorbed and 
transmitted energy is balanced at 235 W m-2, process fluxes and energy 
transfer within the system, between the surface outflux of Earth’s radiation 
through the top of the Atmosphere and the Atmosphere, and within the 
Atmosphere itself, modify this balance and Earth’s temperature from -18 oC 
(255 K) to +15 oC (288 K). In fact, certain gases, aerosols, and clouds in the 
atmosphere absorb around 70 percent of the 235 W m-2 of the outgoing 
longwave Earth’s radiation. Indeed, infrared terrestrial radiation released from 
the surface is trapped by some gases, the so-called greenhouse gases. 
Therefore, the actual Earth’s temperature is 33 K higher than the average 
active temperature. This is the natural greenhouse effect. Greenhouse gases 
are molecules that absorb infrared light and thereby lower the amount of 
terrestrial radiation that escapes into space warming the Earth/Atmosphere 
system. According to quantum physics, vibrational transitions are only allowed 
if they affect the molecule's bipolar moment. Greenhouse gases are any 
molecules with an asymmetric charge distribution (CO, chlorofluorocarbons) 
or the ability to obtain charge distribution through tension or bending (CO2, 
CH4, N2O, H2O, O3).  

 

Figure 1. Global annual average energy balance of the Earth for the period 
2000-2004. The units are W m-2. (Brasseur & Jacob, 2017) 
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A change in the planet's energy balance at the top of the atmosphere that has 
the potential to modify global temperature, such as that resulting from a 
change in the quantity of sunlight that strikes the Earth or a change in the 
abundance of CO2 in the atmosphere, is referred to as climate forcing. It has 
been observed that greenhouse gas (GHG) concentrations have risen during 
the last century. The resulting net trapping of infrared radiation in the Earth – 
Atmosphere system increases as GHG concentrations rise, contributing to the 
human greenhouse effect. The amount of rise in each GHG's concentration, 
the absorption spectrum of each, and potential interactions with other 
atmospheric components, all influence the ensuing climate change (Brasseur 
& Jacob, 2017). 

 

1.2 Methane 

1.2.1. Atmospheric importance of methane 

 

Methane (CH4) is a hydride of group-14 of periodic table, the simplest alkane. 
Naturally occurring methane is found both below ground and below the 
seabed and is formed by both geological and biological processes. When CH4 
reaches the surface and the atmosphere, it is known as atmospheric 
methane. Methane is second in importance to CO2 among greenhouse gases 
with significant anthropogenic sources. Typically, in a time horizon of 100 
years, CH4 will be 28 times more efficient per mass as a greenhouse gas than 
CO2 (Bruhwiler et al., 2014). In the atmosphere, it is gradually oxidized 
producing CO2 and moisture (H2O), which are also greenhouse gases. 

An ongoing growth in global CH4 is observed since the industrial revolution. In 
the pre-industrial period methane concentration was about 722 ppbv, then 
increased and stabilized around the year 2000 to approximately 1775 ppbv, 
resuming globally an increase in 2007 with the current global average around 
1910 ppbv (Fig. 2) (https://gml.noaa.gov/ccgg/trends_ch4/). As a greenhouse 
gas, CH4 contributes around 20% of the total radiative forcing from all the 
long-lived globally mixed greenhouse gases (0.5 ± 0.05 W m−2) (Zhou et al., 
2018). Therefore, the significance of CH4 and its potential to be a in global 
climate warming is beyond controversy. 

 

 

 

 

Field Code Changed

https://gml.noaa.gov/ccgg/trends_ch4/


 

14 
 

 

Figure 2.  Global Methane trend since 1983 (source: 
https://gml.noaa.gov/ccgg/trends_ch4/ ) 

 

As the governments became aware of the ongoing climate crisis, they signed 
one of the most important agreements for environment protection, the Paris 
Agreement in 2015, promising to confine global warming by the mid of 21st 
century to less than 2 o C or preferably, to less than 1.5 o C compared to the 
pre-industrial average temperature (https://unfccc.int/process-and-
meetings/the-paris-agreement/the-paris-agreement ). For sustainable 
development of the society and in order to fulfill the commitment of the Paris 
Agreement, it is necessary to limit anthropogenic climate change through 
targeted emission reductions, especially emissions of greenhouse gases, 
such as CO2 and CH4. While CO2 is the major contributor to the climate 
change, CH4 compared to CO2 has a short lifetime (about 10 years for 
methane, several decades to centuries for CO2), therefore its atmospheric 
concentrations will respond faster than CO2 to emission changes. 

 

 

 

 

 

 

 

Field Code Changed

Field Code Changed

https://gml.noaa.gov/ccgg/trends_ch4/
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1.2.2. Methane cycle 

 

Figure 3. Methane cycle (source: Encyclopedia Britannica). 

 

Methane sources are of both anthropogenic and biogenic origin, varying from 
fossil fuels and ruminants to wetlands and termites. Methane sinks in the 
troposphere are the reactions with hydroxyl radical, OH, chlorine radical, Cl 
both in the troposphere and stratosphere, and O1D in the stratosphere as well 
as deposition to the surface (Fig. 3). 

 

1.2.3. Major Methane sinks  

 

O(1D), singlet oxygen, is produced by O3 photolysis both in troposphere and 
stratosphere. In the troposphere, O1D reacts with water vapor (H2O) to 
produce hydroxyl radical, OH. 

Globally, the main oxidation reaction of methane, is with the hydroxyl radical: 
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𝐶𝐻4 + 𝑂𝐻 → 𝐶𝐻3 + 𝐻2𝑂       (𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 1) 

 

The methyl radical, CH3, reacts instantaneously with O2 to give methyl peroxy 
radical, CH3O2, which is also very reactive in the atmosphere (Müller et al., 
2016) that will further react to form secondary products like formaldehyde, CO 
and ultimately CO2.  

 

𝐶𝐻3 +  𝑂2 + 𝑀 →  𝐶𝐻3𝑂2 + 𝑀        (𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 2) 

 

so that CH4 + OH reaction can therefore be written as: 

 

𝐶𝐻4 + 𝑂𝐻 
𝑂2
→  𝐶𝐻3𝑂2 +  𝐻2𝑂         (𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 3) 

                                              

The rate coefficient for reaction 1 is k1 = 1.85 × 10-12 exp (-1690 / T) cm3 

molecule-1 s- 1 (Atkinson et al., 2006). The lifetime of CH4 due to the reaction 
with OH is roughly 9 years at T = 273 K and [OH] = 106 molecules cm-3. 
Despite its long lifetime, CH4 has a major effect on background tropospheric 
chemistry because of its large concentration (Seinfeld et al., 1998). 

Another sink is the atomic chlorine (Cl) radical. The free atomic chlorine 
radicals in the atmosphere react with methane, resulting in the formation of 
HCl and a methyl radical (CH3) that will further react as above discussed. 

A smaller sink of methane is the methanotrophic organisms in the soil. A 
group of bacteria leads to the oxidation of methane with nitrite as an oxidant in 
the absence of oxygen, causing the so-called anaerobic oxidation of methane. 
For simplicity, this sink is described in atmospheric numerical models as a dry 
deposition process. 
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1.2.4. Major Methane sources  

 

In contrast to methane sinks, there is a wide variety of sources that 
significantly contribute to methane emissions. The following are the major 
methane sources we come across globally. 

Biomass burning includes the incineration of living and dead materials in 
forests, savannas and agricultural waste and the incineration of fuel wood. 
Under ideal conditions of complete combustion, the combustion of the 
biomass material produces CO2 and water vapor (H20). Since complete 
combustion is not achieved under any biomass combustion conditions, other 
types of carbon, including carbon monoxide (CO), methane (CH4), non-
methane volatile organic compounds (NMVOC), and particulate carbon are 
produced (Fig. 4). The flaming phase is close to complete combustion, while 
the smoldering phase is close to incomplete combustion. Open air biomass 
combustion contributes between 20 to 60 Tg C yr-1 in the form of methane to 
the global atmosphere. This represents 5 to 15% of the world's annual 
methane emissions. Measurements show that biomass combustion is the 
overwhelming source of CH4 in tropical Africa (Levine, 2000). 

The contribution of biomass combustion to the total budget of methane or any 
other species depends on a variety of ecosystem and fire parameters, 
including the specific ecosystem burned, the mass consumed during 
combustion, the nature of the combustion (complete or incomplete), and 
knowledge of how emission factors (EF, amount of methane emitted per unit 
of burned material) vary depending on changing fire conditions in different 
ecosystems. The accuracy in the determination of all these parameters reflect 
in the accuracy of the estimate of biomass combustion emissions. 

 

Figure 4. Estimates of carbon release and CO2, CH4, CO emissions from fires 
as a function of fuel type (steppe, forest, and peatland) and burn severity 

(severe, moderate, light) based on fraction of biomass (carbon) consumed. 
Uncertainties in these estimates are ± 50 % (Levine, 2000). 
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Hydrate gas is an ice-like substance formed when water and low molecular 
weight gases (CO2, H2S, CH4 and higher order hydrocarbons) combine into a 
clathrate structure (Fig. 5). They are cage-like structures, with 1 m3 of 
hydrated CH4 resulting from trapping a maximum of 180 m3 of methane as 
measured at standard temperature and pressure (STP). Hydrate gas, a 
naturally occurring and highly concentrated form of methane, traps significant 
carbon in the global system. It is widespread in the sediments of the marine 
continents and frost areas.   

Hydrate gases are destabilized by increasing temperature or decreasing 
pressure, conditions that are rarely associated with the same climate. For 
elastic sediments, that are sediments that bend under load and recover when 
the load is removed, the pressure disturbance associated with sea level rise 
would be relatively instantaneous. Conversely, the impact of temperature 
changes on the tundra (hydrated permafrost) or seabed (marine or submarine 
hydrated permafrost) on deep-buried hydrates can be delayed by hundreds or 
thousands of years, depending on thickness and temperature of the 
supernatants, that is the upper layers of soil and liquid. This lag means that 
hydrate gas remains stable over centuries and in response to climate change 
can release significant methane gas on millennial scales (Ruppel & Kessler, 
2017). 

 

 

Figure 5. Gas hydrates structure (source: 
https://worldoceanreview.com/en/wor-1/energy/methane-hydrates/) 

 

 

Field Code Changed

https://worldoceanreview.com/en/wor-1/energy/methane-hydrates/
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Landfills: CH4 estimates for global waste disposal methane emissions range 
from 9 to 70 Tg yr-1. 

Methane is formed by methanogenic bacteria, either by decomposition of 
organic acids into CH4 and CO2, or by reducing CO2 with hydrogen. 
Representative reactions are shown below: 

 

𝐶𝐻3𝐶𝑂𝑂𝐻 → 𝐶𝐻4 +  𝐶𝑂2     (𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 4) 

𝐶𝑂2 + 4𝐻2  →  𝐶𝐻4 +  𝐻2𝑂     (𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 5) 

 

The percentage of landfill carbon that is eventually converted to methane and 
carbon dioxide is not satisfactorily high. In the best case, 25% to 40% of 
waste carbon can be converted to biogas, that is methane produced by 
landfills and can be used as fuel. Field and laboratory studies suggest that 
maximum methane from landfill waste is approximately 0.06 to 0.09 m3 per kg 
of dry waste depending on the moisture content and other variables such as 
organic load, storage capacity and nutrients. Landfill CH4 emissions after 
2012 show a rapid upward trend (Fig. 6), which reflects the growth trend of 
the urban population. As the rapid increase in the urban population can lead 
to rapid growth in the disposal of solid waste, if there is no significant 
implementation of landfill methane mitigation measures, a rapid increase in 
emissions should also be expected. (Bogner & Spokas, 1993) 

 

Figure 6. Landfill methane emissions by world region: 1970-2017 (Zhao et al., 
2019) 
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Livestock is the largest anthropogenic source in the global methane budget 
(103 Tg CH4 yr-1 mean over the period 2000–2009). Annual mean ruminant 
intestinal fermentation predominates in this source and represents emissions 
of 87–97 Tg CH4 yr - 1 during the period 2000–2009. Animal manure 
management has a smaller contribution. Cattle, buffalo, goats and sheep are 
the main types of animal ruminants that emit CH4 and together account for 
96% of the global source of intestinal fermentation. 

The animal's microbiome is made up of bacteria, fungi, protozoa and archaea 
that turn grass into a source of energy for ruminants, but also produce 
methane as a by-product of fermentation. CH4 is produced by a group of 
germs called methanogens (archaea). CH4 is released into the atmosphere 
from the stomach through the animal's breath or during the storage of manure 
and pulp (Fig. 7) (Patra et al., 2017). 

It is estimated that global FCH4-ruminant doubled from 48.5 ± 5.6 Tg CH4 yr-1 in 
1961 to 99.0 ± 11.7 Tg CH4 yr-1 in 2012. The increase of emissions took place 
mainly in Latin America and the Caribbean, in East and Southeast Asia, in 
Sub-Saharan Africa, Near East and North Africa and South Asia. In contrast, 
from 1961 to 2012, FCH4-ruminant decreased in Europe and Russia by 31% and 
54%, respectively, making 2012 emissions lower than those of 1961 in these 
two regions (Chang et al., 2019). Number of bovine animals in Europe can be 
shown in Fig. 8. 

Figure 7. Enteric fermentation (source: https://letstalkscience.ca/ ) Field Code Changed

https://letstalkscience.ca/
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Figure 8. Number of bovine animals in Europe (source: Eurostat, 
https://ec.europa.eu/, last access: 3/2022). 

 

Fuels: Methane can be emitted by coal, oil and gas plants. Natural gas is 
composed mainly of CH4 and secondarily of ethane (C2H6) and propane 
(C3H8). Methane emissions are mainly due to leakage into the atmosphere 
during the various stages of natural gas exploitation and transportation, and 
from mines (Fig. 9). Fig. 10 shows the natural gas system in Greece.  

The presence of C2H6 in the atmosphere can be an indicator for CH4 

emissions. Thermogenic and biogenic methane sources can be separated 
using the ethane-to-methane emission ratios. Although there are no relevant 
emissions of C2H6 during microbial methanogenesis, C2H6 is emitted 
together with CH4 from thermal sources, i.e. mainly from the extraction of 
fossil fuels. The ethane-to-methane emission ratio (EMR) is greater than 1.0% 
for most methane thermogenic sources, while biogenic sources are 
characterized by EMR values below 0.1% (Hausmann et al., 2016). 

Field Code Changed

https://ec.europa.eu/
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Figure 9. GHG and Black Carbon emissions by fossil fuel industry (source: 
https://tropicsu.org/lesson-plan-hydrocarbons-and-climate-change/) 

Figure 10. Natural gas distribution system in Greece (source: 
https://www.desfa.gr/ ) 

 

Rice fields: The main carriers responsible for methane’s emissions from rice 
fields are methanogenic bacteria. Such microorganisms perform well under 
anaerobic conditions and are collecting organic carbon and converting it to 
methane. The starting materials for the involved reactions are the straws of 

Field Code Changed

Field Code Changed

https://tropicsu.org/lesson-plan-hydrocarbons-and-climate-change/
https://www.desfa.gr/
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rice plants which represent the main inflow of organic matter (Fig.11). These 
materials usually accumulate during the rainy season or flood periods, 
decompose and become the main source of methanogenic substrates.  

During the rainy season the emissions are higher, while at the same time 
there are reductions in rice production. On the other hand, during the dry 
season, methane emissions are lower. At the same time, rice yields are low 
during the dry season and high during the rainy season. This is explained by 
the fact that in the wet season, the resulting photosynthesis produces carbon, 
but the lack of flowers and blossoms makes this carbon unavailable for grain 
production and therefore low rice production. This amount of carbon that is 
not used for seed production enters the soil as rotten roots and as the leaf 
litter falls, it serves as a raw material for methanogens, leading to high CH4 
emissions in the wet season. In the dry season scenario, much of the carbon 
is used for sowing and active rice production, resulting in lower CH4 
emissions and higher rice production. 

Globally, most of CH4 emissions from rice fields occur in and around the 
tropics, subtropics and parts of the temperate north. Southeast Asia 
contributes 90% to the global rice emissions. Africa and South America add 
3.5% and 4.7% to the global rice methane budget respectively. The 
percentage of CH4 emissions from rice fields is increasing at a rate of 0.7-
1.1% per year. This corresponds to 10-70% of man-made methane (Sanchis 
et al., 2012). 

Figure 11. Methane emissions from rice fields (Sanchis et al., 2012). 
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Wetlands: Anaerobic CH4 is also released by wetlands into the atmosphere 
after being affected by a combination of processes involving methanotrophic 
bacteria in the soil through plant transport structures known as "aerenchyma", 
by ebullition or through soil pores. Differences between current and prehistoric 
emissions are due to changes in wetland area and various variables, including 
nitrogen deposition, sedimentation, temperature, land use change and land 
cover. The largest change in wetland emissions from prehistoric industry 
occurred in the northern temperate zone (−79%) with smaller changes in high 
latitudes (+ 9%) (Fig. 12). In the northern regions, the increase in CH4 
emissions corresponds to the increase in wetlands and air temperature, while 
in the tropics the decrease in wetland area and the large fluctuation of rainfall 
are responsible for the reduced CH4 emissions. The world's largest source of 
atmospheric CH4 (1-2.37 × 105 Tg yr-1) is acidic wetlands, such as peat and 
fences, which cover 3.5% of the earth's surface but store about 30% of the 
global carbon of terrestrial ecosystems. Acidic wetlands can be temporarily 
converted into atmospheric CH4 sinks, or at least have the potential to 
consume atmospheric CH4, which is currently underestimated and poorly 
understood at the microbial level (Kolb & Horn, 2012) (Poulter et al., 2017). 

 

 

Figure 12. Wetland methane emissions estimates for the preindustrial (PI) and 
present-day conditions for the entire Globe. Preindustrial emissions are mean 

values from 1850 to 1869 (PI simulation) and present-day emissions are 
simulated mean values from 1993 to 2004. The box shows the interquartile 

range, the whiskers show the maximum and minimum, and black lines gives 
the median methane emissions. The purple line gives the results from Paudel 

et al. (2016). 
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Each of these sources and sinks contributes to methane abundances in a 
different extent. Fig.13 depicts the mean global methane budget for the period 
2000 to 2009. Methane emissions from human activities have surpassed 
natural emissions since the 1980s (Salawitch et al., 2017). As above 
discussed, human activities that produce methane include energy production 
from natural gas, coal and oil, decomposition in landfills, ruminant farming and 
rice cultivation. Wetlands are the main natural source of methane; while 
biomass burning emissions have a significant human contribution. Despite the 
importance of methane as a greenhouse gas in the Earth's atmosphere, there 
are still great uncertainties about the location and intensity of emission 
sources. The two major difficulties in reducing uncertainty stem from the wide 
variety of geographically overlapping diffuse CH4 sources and the destruction 
of CH4 by the very short-lived OH radical. 

 

Figure 13. Global methane budget (2000-2009) from (Salawitch et al., 2017). 
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1.2.5. CH4 sources in Greece 

 

Specifically, in Greece waste is the most significant source of anthropogenic 
methane emissions, accounting for about 45% of total methane emissions in 
2019 (without LULUCF). Since 1990, methane emissions from waste have 
been reduced by 1.35%, owing primarily to solid waste disposal on land and 
wastewater treatment. Agriculture's methane emissions declined by 9.1 % in 
2019 compared to 1990 levels. Agriculture accounted for 44.6% of total 
methane emissions in 2019, with enteric fermentation being the primary 
source category in the sector. Energy-related methane emissions (mostly 
fugitive emissions from coal mining and the production, processing, and 
distribution of liquid fuels and natural gas) account for nearly 10% of overall 
methane emissions (Fig. 14) (Ministry of Environment and Energy, 2021). 

 

Figure 14. Anthropogenic CΗ4 emissions in Greece by major sectors for the 
period 1990 – 2019. Left axis provides emissions in kt CH4 yr-1. IPPU is the 
Industrial Processes and Product Use sector. Right axis provides percent 

change compared to 1990 emissions  (Ministry of Environment and Energy, 
2021). 
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1.3 Aim of the study 

 

In the present study, we aim to improve the estimations of the sum of 
methane total anthropogenic emissions over Central-Eastern Mediterranean 
as well as over Greece as provided by Copernicus Atmosphere Monitoring 
Service version 4.2 emission dataset, with the aid of inverse modeling.  

For this purpose, we use the Weather Research and Forecasting- 
Greenhouse Gas numerical model (Beck et al., 2011) coupled with 
CarbonTracker Data Assimilation Shell (Van Der Laan-Luijkx et al., 2017), the 
optimization algorithm of which is the Ensemble Square Root Kalman Filter.  

Regarding the observations against which the emissions are optimized, 
satellite observations from TROPOspheric Monitoring Instrument WFMD 
product from Institute of Environmental Physics (IUP), University of Bremen  
(Schneising et al., 2019) and in-situ measurements from Finokalia station 
(htpp://finokalia.chemistry.uoc.gr), Lasithi from Environmental Chemical 
Processes Laboratory, University of Crete are integrated into the model 
system. 
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2. Methodology 

 

2.1. Inverse modeling 

In the present study, we attempted to improve methane anthropogenic 
emissions through data assimilation. Data assimilation is a time-stepping 
technique in which we optimize the variables driving a physical system, using 
observations of that system. In atmospheric chemistry, data assimilation is 
commonly referred as a type of problem in which we aim to optimize a gridded 
time-dependent 3-D model field of atmospheric concentrations or emissions 
based on measurements of these concentrations or associated factors. 

The variables we want to optimize are referred to as state variables, and they 
are assembled into a state vector x. We construct the observations into an 
observation vector y in the same way. The forward model of the physical 
system, model F, describes our understanding of the link between x and y: 

 

𝑦 = 𝐹(𝑥,𝑝) + 𝜀0   (1) 

 

where, p is a parameter vector that includes all model variables that we don't 
want to optimize as part of the inversion, and ε0 is an observational error 
vector that includes contributions from measurements, the forward model, and 
model parameters errors. The forward model predicts the effect (y) as a 
function of the cause (x) using equations that describe the system's physics. 
We can quantify the cause (x) from observations of the effect by inverting the 
model (y). The solution is a best estimate of x, which is called the ideal 
estimate, posterior estimate, or retrieval. Other limitations on the value of x 
may help to reduce the error on the optimal estimate due to the uncertainty in 
deriving x from y. This is called prior information. The prior estimate xA, which 
represents our best guess of x before the observations are made and has an 
error of εA, is a typical constraint used in assimilation. The best estimate is 
calculated based on the error statistics of 𝜀0 and xA, (Brasseur & Jacob, 2017). 

 

2.2. CarbonTracker Data Assimilation Shell   

CarbonTracker is a data assimilation system for CO2 that predicts global 
carbon sources and sinks. It was created at the National Oceanic and 
Atmospheric Administration's (NOAA) Earth System Research Laboratory 
(ESRL) between 2005 and 2007 (Peters et al., 2005). Following that, 
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development and application were split into two branches: (1) CarbonTracker 
(NOAA/ESRL) and (2) CarbonTracker Europe (CTE). Here we refer to the 
CTE version. 

Using atmospheric observations of CO2 mole fractions, the CarbonTracker 
data assimilation system for CO2 estimates the carbon exchange between the 
atmosphere, land biosphere, and seas. TM5 transport model which connects 
surface fluxes to atmospheric CO2 mole fractions, is a major component of 
CarbonTracker (Van Der Laan-Luijkx et al., 2017). In 2005, the existing TM5 
CO2 model version was also coupled with Carbon-Tracker, which required 
only a little amount of new code to use as a CO2 ensemble Kalman smoother. 
New CarbonTracker requirements evolved over time, requiring the handling of 
new and more sophisticated data structures and work flows, which were 
difficult to implement in Fortran and not necessarily consistent with the 
continued development of TM5. This resulted in the CarbonTracker Data 
Assimilation Shell, a new object-oriented Python programming language 
implementation (CTDAS). It is built in a modular manner, allowing for the 
addition of new observation types, changes to the structure of the underlying 
state vector, and even the replacement of the transport model (e.g. WRF-
GHG) or optimization method (e.g. four-dimensional variational) with only 
minor additional code within a single module  (Van Der Laan-Luijkx et al., 
2017). 

In our study, CTDAS is coupled with the WRF-GHG transport model (Beck et 
al., 2011). Using observations of atmospheric CH4 mole fractions, the 
CarbonTracker data assimilation system for CH4 estimates methane emission 
fluxes. CarbonTracker is a fixed-lag ensemble Kalman smoother application 
based in the Bayesian approach (Peters et al., 2005). In the following, we 
explain how Carbon Tracker works with regard to methane.  

The cost function (J) that represents the accuracy with which the system is 
solved, is used to optimize the surface CH4 fluxes: 

 

𝐽(𝑥) = �𝑦0 − 𝐻(𝑥)�𝑇𝑹−1�𝑦0 − 𝐻(𝑥)� + (𝑥 − 𝑥𝑏)𝑇𝑷−1(𝑥 − 𝑥𝑏)     (2) 

 

where yο are the atmospheric CH4 mole fraction observations, with their error 
covariance R (model-data-mismatch error). H is the observation operator, 
which is an atmospheric transport model. H connects the observations yo to 
the scalars that modify the surface CH4 fluxes, which are included in the state 
vector x, with their error covariance R. The background state vector xb with 
error covariance P contains prior information about the emission fluxes. 
Superscript T corresponds to the transpose of the matrix. 
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The state vector x and its covariance P that minimizes J can be shown to be: 

 

𝑥𝑡𝑎 =  𝑥𝑡𝑏 +  𝑲(𝑦𝒕0 −  𝐻(𝑥𝑡𝑏))     (3) 

𝑷𝑡𝑎 = (𝑰 − 𝑲𝑯)𝑷𝒕𝒃     (4) 

 

in which t is a subscript for time, superscript b refers to background quantities 
and a to analyzed ones, H is the linear(ized) matrix form of the observation 
operator H, I is the identity matrix and K is the Kalman gain matrix defined as: 

 

𝑲 = �𝑷𝒕𝒃𝑯𝑻�(𝑯𝑷𝒕𝒃𝑯𝑻 + 𝑹)−𝟏     (5) 

 

Kalman gain is the weight assigned to the measurements and current-state 
estimate. When the error covariance matrix of the observation is very large 
compared to the state vector (R>>P), then K is nearly 0, meaning you trust 
the model more than the measurements. When R<<P, then K is nearly 1 
meaning you trust the measurement more than the model. In other words, 
with a large gain, the filter gives measurements more weight, and so conforms 
to them more quickly. The filter follows more closely to the model predictions 
when the gain is low. A high gain close to one will provide a jumpier estimated 
prediction, whereas a low gain close to zero will smooth out noise but reduce 
responsiveness. 

In an ensemble Kalman filter, the information in the covariance matrix P is 
represented in fewer dimensions N by an ensemble of state vectors xi 
composed of a mean state, and deviations from the mean state:  

 

𝑥𝑖 =  𝑥̅ +  𝑥′𝑖 (6) 

 

The deviations x’i are created such that the normalized ensemble of 
deviations defines the columns of a matrix X: 

 

𝑿 = 1
√𝑁−1

 (𝑥′1,𝑥′𝟐, … , 𝑥′𝑁)𝑻    =  1
√𝑁−1

 (𝑥1 − 𝑥,� 𝑥2 − 𝑥,� … , 𝑥𝑁 − 𝑥̅)   (7) 
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which is the square root of the covariance matrix 

 

𝑷 = 𝑿𝑿𝑻 (8) 

 

When N →  ∞ this representation of P is exact, while in an ensemble Kalman 
filter with a finite number of members, P is approximated. 

Whitaker & Hamill (2002) provided an efficient approach for calculating an 
optimized ensemble from a background ensemble with the correct covariance 
structure. This is the ensemble square root filter (EnSRF). The batch of 
observations relating to one filter time step are processed one at a time in the 
sequential/serial EnSRF algorithm, reducing the size of the Kalman gain 
matrix K in each sequential analysis step to a vector that has the size of the 
number of unknowns. The Kalman gain matrix is derived using the following 
approximations from the ensemble of state vectors and equation (5): 

 

𝑯𝑷𝑯𝑻 ≈  1
√𝑁−1

�𝐻(𝑥′1),𝐻(𝑥′2), … ,𝐻(𝑥′𝑁)� ∙ (𝐻(𝑥′1),𝐻(𝑥′2), … ,𝐻(𝑥′𝑁))𝑇 (9) 

𝑷𝑯𝑻 ≈  1
√𝑁−1

(𝑥′1, 𝑥′2, … , 𝑥′𝑁) ∙ �𝐻(𝑥′1),𝐻(𝑥′2), … ,𝐻(𝑥′𝑁)�𝑇 (10) 

 

where each entry N denotes one column of ensemble state vectors or 
ensemble modeled CH4 values as in equation (7). 

The Kalman gain matrix is used to update the mean state vector with equation 
(3), whereas the deviations from the mean state vector are updated 
independently using: 

 

𝑥′𝑖
𝑎 = 𝑥′𝑖

𝑏 − 𝒌�𝐻(𝑥′𝑖
𝑏) (11) 

 

Where the vector 𝒌� is related to the Kalman gain matrix K by a scalar quantity   
α calculated as: 

𝒌� = 𝑲 ∙ 𝑎   (12) 
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𝑎 = (1 + � 𝑹
𝑯𝑷𝒃𝑯𝑻+𝑹

)−1 (13) 

 

The analyzed mean and ensemble state from one observation will serve as 
the background state for the next until all observations are processed. 

To reflect the additional information in the updated state vectors, we must also 
update the ensemble of sampled CH4 concentrations H(xi’b). Each modeled 
CH4 concentration that corresponds to a yet-to-be-assimilated observation m 
(denoted H(xt)m here) is updated using the equation: 

 

𝐻(𝑥𝑡𝑎)𝑚 = 𝐻(𝑥𝑡𝑏)𝑚 +  𝑯𝒎𝑲(𝑦𝑡0 − 𝐻(𝑥𝑡𝑏)) (14) 

 

whereas the deviations are updated using: 

 

𝐻(𝑥′𝑖
𝑎)𝑚 = 𝐻(𝑥′𝑖

𝑏)𝑚 −  𝑯𝒎𝒌�(𝑦𝑡0 − 𝐻(𝑥′𝑖
𝑏)) (15) 

 

In the right-hand side of this equation the operator Hm has been substituted 
by its matrix equivalent Hm. 

 

The so-called dynamical model M plays a crucial role in data assimilation. 
Before fresh observations are provided to the system, this model predicts the 
evolution of the state vector through time and hence offers an initial guess of 
the state vector: 

 

𝒙𝑡+1𝑏 = 𝑀(𝒙𝑡𝑎) (16) 

 

In our case we use (16) to propagate the mean of the state, and prescribe its 
covariance structure at each new step drawing a new ensemble of N flux 
deviations from a specified background covariance to represent the Gaussian 
Probability Density Function around the flux. 
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CarbonTracker calculates scaling factors (λr) that multiply anthropogenic 
emissions. For each spatial region r and each time step (t) we want to better 
quantify the emissions, the total carbon fluxes F(x,y,t) are represented by: 

 

𝐹(𝑥,𝑦, 𝑡) =  𝜆𝑟 ∙ 𝐹𝑎𝑛𝑡ℎ𝑟𝑜(𝑥,𝑦, 𝑡) +  𝐹𝑓𝑖𝑟𝑒(𝑥,𝑦, 𝑡) +  𝐹𝑏𝑖𝑜(𝑥,𝑦, 𝑡) (17) 

 

The scaling vectors (λr) multiply Fanthro, which are pre-calculated space–time 
anthropogenic emissions obtained from Copernicus Atmosphere Monitoring 
Service (prior fluxes, see section 2.4.3). Fire emissions and biogenic fluxes 
are not optimized and we assume 100% certainty for them.  

The obtained modeled mole fractions are compared to atmospheric data in 
CTDAS, and the differences are minimized by changing the flux scaling 
vectors (λr) resulting in optimum posterior fluxes. For each new time step t, 
the background scaling factors (λb) are chosen as the average of the optimal 
scaling factors (λa) from the two preceding time steps, plus the fixed prior 
value (λp) we select, as in the following equation by (Van Der Laan-Luijkx et 
al., 2017). 

𝜆𝑡
𝑏 =  𝜆𝑡−2

𝑎+𝜆𝑡−1
𝑎+ 𝜆𝑝

3.0
  (18) 

 

When inferring to fixed-lag assimilation window, we mean that instead of 
solving the Bayesian system in one large operation, smaller subsets of 
unknowns are optimized in a time stepping approach as in  Bruhwiler et al. 
(2005). In the fixed lag ensemble square root Kalman filter used in CTDAS, 
the state vector contains flux estimates for multiple time steps t each 
corresponding for instance, to an one-week mean. This is indicated by the 
system’s ‘‘lag’’. In other words, the relationship between the state vector x and 
observations y described by operator H spans several timesteps t. 

A CTDAS cycle proceeds as follows (Fig. 15):  

(1) We run the forward model from the background concentration fields in 
CH4i(x,y,z,t) to CH4i(x,y,z,t + 12) forced by the fluxes in xi(0,. . .,11) (A 
to B in the figure), and extract CH4 mixing ratios at the observation 
times and locations. This allows us to construct an ensemble of 
modeled CH4 at each site. 

(2)  Equations (3) and (11) are solved to give an analyzed ensemble of 
fluxes for each element of the state vector and each week. 
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(3) The ensemble of final fluxes in xi
a(12) will no longer be estimated in the 

next cycle and are therefore incorporated into CH4i(x,y,z,t + 1) by 
running the forward model one week forward starting from CH4i(x,y,z,t) 
forced with the final ensemble fluxes xi(12) (A to C in the Fig. 15).  
 

(4) Each analyzed state vector becomes the background state vector for 
the next cycle. A new background mean flux is created to go into x(0) 
by propagation with model M (equation (16)). 
 
 

(5) We draw a new ensemble of N flux deviations from the specified 
background covariance structure to represent the Gaussian Probability 
Density Function around the new mean flux x(0), and finally  
 

(6) new observations y are read and the next cycle starts (Peters et al., 
2005). 

Figure 15. CTDAS cycles: 12 weeks of fluxes compose the state vector. Light 
shaded boxes denote the background fluxes, and dark shaded boxes denote 
posterior fluxes. Each box represents N ensemble members. The number in 
parentheses indicates how many times a week of fluxes has been estimated 

previously from past cycles, and the subscript i refers to an individual 
ensemble member.  

The ensemble Kalman filter looks for correlations between random flux 
perturbations and simulated methane measurement variations. We could 
anticipate the entire ensemble to agree that increasing methane flux in one 
place results in higher simulated methane concentrations at a downwind site 
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nearby. However, because we utilize a random sample of a few ensemble 
members to approximate the flow covariance matrix, we occasionally see 
misleading correlations. Any link between the flux ensemble and the 
measurement could be fictitious.  

For this reason, the CT2007 localization technique is used. For instance, if 
150 ensemble members are used, the linear correlation coefficient between 
the 150 scaling factor deviations and the 150 observation deviations for each 
parameter/observation combination is calculated. The association between a 
parameter deviation and its modeled observational impact is kept, if it is 
statistically significant. Otherwise, due to the small ensemble's numerical 
estimate of the covariance matrix, the association is thought to be spurious 
noisy. Relationships that reach 95% significance in a Student's T-test with a 
two-tailed probability distribution are accepted in our case. 
(https://gml.noaa.gov/ccgg/carbontracker/CT2007/documentation_assim.html) 

 

2.3. Weather Research and Forecast – Greenhouse Gas model 

The forward model we utilize in the present study is the Weather Research 
and Forecasting – Greenhouse Gas model (WRF-GHG) reported in (Beck et 
al., 2011). 

WRF contains two dynamical solvers, referred to as the advanced research 
WRF (ARW) and the nonhydrostatic mesoscale model (NMM). WRF ARW 
was used for the present study. The mesoscale model WRF (Skamarock et 
al., 2008) is a numerical weather prediction system that may be used for 
atmospheric research as well as operational forecasting at scales ranging 
from tens of meters to thousands of kilometers. First, WRF was combined 
with the Vegetation Photosynthesis and Respiration module to construct high-
resolution regional simulations of atmospheric CH4 passive tracer transport 
(WRF-VPRM) (Ahmadov et al., 2009). Then, WRF-VPRM was expanded to 
WRF-GHG (Beck et al., 2011), which can model the regional passive tracer 
transport for GHGs (CH4, CO2 ) and carbon monoxide (CO). In the last 
versions of WRF, WRF-GHG is integrated in WRF-Chem code (WRF model 
coupled with Chemistry) (Grell et al., 2005) as an individual chemistry option.  
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2.4 Model and Inversion Framework setup 

2.4.1. Observations  

 

The observations we utilize in the assimilation, in order to improve methane 
anthropogenic emissions, are satellite data as well as in situ measurements. 
Satellite data have exceptional temporal as well as horizontal resolution and a 
wide-region coverage in comparison with in-situ measurements. However, 
station observations are considered more accurate due to the procedure they 
are obtained.  

Satellite data: TROPOMI/WFMD Methane column-averaged dry air mole 
fractions (XCH4) v1.5 product is used as created by the Institute of 
Environmental Physics, University of Bremen (Schneising et al., 2019).  

TROPOMI is an imaging spectrometer onboard of the Copernicus Sentinel-5 
Precursor (S5P), a European satellite for atmosphere monitoring, launched on 
13 October 2017 and planned for a mission of seven years. S5P is a sun-
synchronous orbit satellite at 824 km altitude, with an Equator overpass time 
at 13:30 local time and a 16-days cycle. The swath of TROPOMI is about 
2600 km and it operates with a horizontal resolution of 7×7 km2 (5.6 × 7 km2 
from 6 August 2019).  

To retrieve CH4 from satellite observations, the Weighting Function Modified 
Differential Optical Absorption Spectroscopy (WFM-DOAS) algorithm that is a 
least-squares method was used by Schneising et al. (2019). By normalizing 
the vertical column amounts of CH4 with the dry air column acquired from the 
European Centre for Medium-Range Weather Forecasts (ECMWF) analysis, 
the column-averaged dry air mole fractions of methane (denoted XCH4) are 
generated.  

To use TROPOMI/WFMD observations, modifications had to be made to the 
Python script for satellite observations reading since WRF-GHG-CTDAS initial 
setup is for handling O-CO2 satellite data (https://ocov2.jpl.nasa.gov/). The 
corresponding code is displayed in Appendix C. For comparison of 
observations to the model, the column averaging kernel as provided by the 
TROPOMI/WFMD product is applied to the model profiles using the formula: 

 

𝑋𝑚𝑜𝑑 = ∑ ((𝑋𝑎𝑝𝑟𝑙 + 𝐴𝑙�𝑋𝑚𝑜𝑑𝑙 − 𝑋𝑎𝑝𝑟𝑙�)𝑤𝑙𝑙  (20) 
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where 𝑙 is the index of the vertical layer, 𝐴𝑙 the averaging kernel, 𝑋𝑎𝑝𝑟𝑙 the a-
priori mole fraction and 𝑋𝑚𝑜𝑑𝑙 the simulated mole fraction of layer 𝑙.  𝑤𝑙 is the 
layer dependent pressure weight.  

Due to the long lifetime of methane, it can be assumed that methane 
columnar values account for the background concentration of methane in the 
atmosphere (Appendix A). 

In-situ observations: We used methane near surface measurements from 
the Finokalia atmospheric observatory (Fig. 16). The atmospheric 
measurement station of the University of Crete, a climate change observatory, 
established and operated by Environmental Chemical Processes Laboratory 
(E.C.P.L.) at Finokalia, Lasithi since 1993, holds the largest time series of 
atmospheric measurements of greenhouse gas concentrations throughout the 
Eastern Mediterranean. The station represents the Eastern Mediterranean 
atmosphere and has drawn significant scientific interest in the domains of 
atmospheric composition, air quality, and climate change. It also serves as the 
regional background station for Greece, reporting on air pollution levels to 
Greek and EU authorities. Methane measurements are performed 
discontinuously since 2002 (flask samples) and continuously by a PICARRO 
analyzer since June 2014 in collaboration with the Laboratory of Sciences of 
Climate and Environment (LSCE) in France. For the present study hourly CH4 
data are used. 

Since point observation handling was not implemented in WRF-GHG-CTDAS, 
we developed the code displayed in Appendix C, based on the existing 
satellite data sampling scripts. For comparison of the model with the in-situ 
observations, the level of WRF-GHG which is closer to the station’s altitude is 
selected. The model output of methane concentrations is in ppm and methane 
concentrations as reported by the station are given in ppb, thus the 
comparison is quite direct.  

 

Figure 16.   Finokalia (FKL) station (longitude: 25.670, latitude: 35.338, 
altitude: 250) (source: https://finokalia.chemistry.uoc.gr/gallery/station/). Field Code Changed
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2.4.2 Model Setup 

 

This study uses version 4.3 of WRF coupled with Chemistry (WRF-Chem) 
(Grell et al., 2005). Methane is implemented as a passive tracer (chemistry 
option = 17 in the WRF-Chem code), thus not impacting meteorological 
variables and chemistry. Thus, the total mass of methane in the model 
domain depends only on the surface fluxes inside the domain and the 
boundary conditions. 

There are no chemical processes in the WRF-GHG simulations for methane, 
despite the fact that oxidation by OH is the principal sink of methane in the 
atmosphere. This would not alter our results because the lifetime of methane 
is rather long compared to the simulation duration. 

In our study we simulate the period 1/1/2019-11/3/2019. We use two nested 
domains for WRF-GHG (Fig. 17) on Lambert Conformal projection in order to 
simulated methane fluxes. The coarser domain (D01) has a horizontal grid 
distance of 36 km centering at 38.45 °N and 20.336 °W and it covers Central 
and Eastern Mediterranean. The domain has 33 vertical levels up to 50 hPa 
(about 20 km height). The finest domain (D02) is located over Greece with 
spatial resolution of 12 km, as shown in Fig. 17. The simulations were run with 
one-way nested mode. 

Figure 17. WRF-GHG domains used in our study. 
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We use ERA5 meteorology from European Centre for Medium Range 
Weather Forecasts (Hersbach et al., 2020) and improved orography from 
European Digital Elevation Model (EU-DEM) 
(https://land.copernicus.eu/imagery-in-situ/eu-dem/)  in order to have better 
wind intensity and direction calculation, which can affect our emissions 
estimation. Initial and boundary chemical conditions for methane are obtained 
from the TM5 global chemistry transport model (Huijnen et al., 2010).  

As for the parameterizations that are used in the present study, for the 
planetary boundary layer we selected the YSU scheme. The YSU scheme 
uses a 1st order closure to calculate the turbulent vertical fluxes within the 
planetary boundary layer. Kain-Fritsch (new Eta) scheme, a deep and shallow 
sub-grid scheme using a mass flux approach with downdrafts and CAPE 
removal time scale, is selected as cumulus scheme. For the representation of 
land surface processes, shortwave radiation and longwave radiation the 
default options are selected, which are respectively Noah Land-Surface 
Model, a unified NCEP/NCAR/AFWA scheme with soil temperature and 
moisture in four layers, fractional snow cover and frozen soil physics, Dudhia 
scheme, a simple downward integration allowing for efficient cloud and clear-
sky absorption and scattering, and RRTM Rapid Radiative Transfer Model 
that accounts for multiple bands, trace gases, and microphysics species. 

 

2.4.3 Apriori Emissions 

 

Two different methane emission databases are used in this study. Emissions 
from biomass burning are taken from the Fire INventory from NCAR (FINN) 
version 2.4 and Copernicus Atmosphere Monitoring Service (CAMS) version 
4.2 emission datasets are used for emissions by anthropogenic activities. 

The Fire INventory from NCAR (FINN) model predicts worldwide emissions 
from open burning at high horizontal resolution of 1 km2 and daily. FINN 
provides open burning emissions estimates for use in regional and global 
chemical transport models by combining satellite images of active fires and 
land cover with emission factors and estimated fuel loadings. The datasets 
used in the study are available at https://www.acom.ucar.edu/Data/fire/ . 

The Copernicus Atmosphere Monitoring Service provides monthly gridded 
global emission inventories with spatial resolution of 0.1ox0.1o. These 
inventories describe anthropogenic emissions from fossil fuel use on land, 
ships, and aviation, as well as natural emissions from vegetation, soil, the 
ocean, and termites, using a combination of current data sets and new 
information. Anthropogenic emissions on land are further broken down into 

Field Code Changed
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different activity sectors (e.g., power generation, road traffic, industry). 
Because most inventory-based data sets are only accessible after several 
years, the CAMS emission inventories employ trends from the most recent 
available years to extend current data sets forward in time, providing timely 
input data for real-time forecast models. The anthropogenic inventories used 
in the present study are available at https://eccad3.sedoo.fr/ . Table 1 displays 
the average anthropogenic and fire emissions for the year 2019 as derived by 
CAMS and FINN inventories respectively for the two domains of our study. 

 

Table 1. Average anthropogenic and fire emissions for 2019 for the two 
domains of the present study as derived by CAMS and FINN inventories 

respectively. 

Emissions                             (mol km-2 hr-1) Domain 1 Domain 2 
Anthropogenic                      17.26 17.90 
Fire                                     0.0048 0.0056 
 

The biogenic fluxes for methane (emissions from wetlands and termites and 
soil uptake) are calculated online in the WRF-GHG based on the work of 
Kaplan (2002), Sanderson (1996)   and Ridgwell et al. (1999) respectively. 
Input fields of wetland fraction per grid cell and fast carbon pool are necessary 
for the calculation of the wetland emissions. We used the wetland map (Fig. 
18) from the global dataset of Wetland Area and Dynamics for Methane 
Modeling (WAD2M) (Zhang et al., 2021) 
(https://essd.copernicus.org/articles/13/2001/2021/essd-13-2001-2021-
discussion.html) and the fast carbon pool map (Fig. 19) from the Lund-
Potsdam-Jena model (LPJ) (Sitch et al., 2003) as obtained by the Lawrence 
Livermore National Laboratory (https://esgf-node.llnl.gov/search/esgf-llnl/).  
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Figure 18. Inundated soil map for our coarser domain by WAD2M 0.25o x 
0.25o product. 

 

Figure 19. Fast carbon pool for our coarser domain by Lund-Potsdam-Jena   
0.5o x 0.5o product. 
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2.4.4. CTDAS setup 

 

The inversion system of CTDAS for WRF-GHG was downloaded from the 
Wageningen University and Research CTDAS repository 
(https://git.wur.nl/ctdas/CTDAS/-/tree/ctdas-wrf). We use a flux model in which 
we assume biosphere and fire fluxes fixed, and anthropogenic emissions with 
100% uncertainty. The statevector consists of 5 parameters for mapping 
anthropogenic fluxes shown in Fig. 20. These will be referred to the next parts 
of the study as: Greece, North region, South region, East region and West 
region, with respect to the geographical position of Greece. Regarding 
Kalman filter setup, we use serial optimization algorithm, 50 ensemble 
members with an optimization time step of 7 days and an assimilation window 
(lag) of 5 weeks. The inversion is done for 10 CTDAS cycles, that is for period 
1/1/2019-11/3/2019. 

The model data mismatch R, that is the observational error in equation (1) 
and the matrix R in the equation (2), is set to the sum of squares of the 
observation product error and the transport model error. In other words, 
besides the measurement uncertainty( 𝑚𝑑𝑚), the combined uncertainty 
(𝑚𝑑𝑚𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑) is calculated by adding an estimate for the model error as 
below: 

 

𝑚𝑑𝑚𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = �𝑚𝑑𝑚2 + 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡_𝑒𝑟𝑟𝑜𝑟2 

 

where mdm is the observational error, transport_error is the assumed error of 
WRF-GHG and of the concentrations mapping into the observations space 
and mdmcombined is the overall uncertainty. In an inversion, the model-data 
mismatch covariance matrix (R) shows how well the optimized fluxes should 
be able to reproduce atmospheric observations, given errors in modeled 
transport, measurement, and gridded fluxes (Gourdji et al., 2018). 

Satellite observations used are assigned an uncertainty as provided by the 
TROPOMI product and are selected only if they have a quality flag equal to 
zero, indicating only good CH4 observations. For in situ data, we select mdm 
to be equal to the measurement standard deviation. The transport error is 
assumed to be 10 ppb and 5 ppb for satellite data and in-situ measurements, 
respectively. In a second run, we use 100 ppb and 50 ppb transport model 
error to investigate the difference it makes in the results. In the next sections 
we refer to these runs as 10 ppb and 5 ppb run, and 100 ppb and 50 ppb run. 
As for the observation rejection threshold, we set 99.7% probability threshold 
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(3σ) that observation agrees with the model prediction. In other words, if the 
inequality |𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 − 𝐻(𝑥)| > 3 × √𝑅 is true, the observation is 
considered as an outlier and it is not assimilated. Furthermore, we use 95% 
probability threshold that observation and state vector element correlate 
through CT2007 localization option. 

Figure 20. Statevector parameters regions used for our inversion setup: 
Greece (light blue), North region (green), South region (yellow), East region 

(purple) and West region (pink). 
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3. Results and Discussion 

3.1 Inversion results 

 

Two different runs were conducted with different transport model errors. In 
Fig. 21, the emission maps for one day of each week of our inversion period 
are depicted, which correspond to the 10 ppb (for satellite error) and 5 ppb 
(for in-situ error) run, hereafter called 10.5 run. In Fig. 22 the corresponding 
50 ensemble statevector deviations for Greece are shown. Only the maps for 
the coarse domain are included here. The emission maps for the domain over 
Greece are available in the Appendix B.  

Regarding the 10.5 run, we observe that for the first 5 weeks, which also 
correspond to our system’s lag, both negative and positive surface fluxes are 
predicted. After this period, the majority of the surface fluxes are negative. It is 
deduced that during the first 5 weeks, high TM5 initial and boundary 
conditions influence the results in large extent, forcing our system to 
significantly reduce the emissions in order to conform with observations. After 
5 weeks, we assume that WRF-GHG has been stabilized and boundaries 
have a lower impact on the results, however still considerable. In addition to 
high boundary conditions, negative emissions could be attributed to the lack 
of chemistry in WRF-GHG and specifically of OH sink. The omission of 
chemistry is potentially leading to methane accumulation over our domain, 
which has a similar effect as high boundary conditions.  
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Figure 21. Optimized anthropogenic methane emissions over Eastern 
Mediterranean for the 10 weeks of the inversion period (10.5 run for the 

period 1/1/2019-11/3/2019). 

 

Fig. 22 shows the deviations around mean scaling vector, λ, for Greece for 
the apriori and the posteriori ensembles. It can be seen that the deviations are 
decreased after the optimization, in other words, the prior error of λ is highly 
reduced which indicates that our system works properly in terms of the cost 
function minimization, reducing error in emissions. Optimization in the first 
cycles is more “abrupt” in comparison with the following ones, since λ in the 
next inversion cycles is closer to the “truth”; the assumption for λ in the first 
cycle is 1.   
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Figure 22. Prior and Posterior deviations from mean statevector λ for the 
region of Greece for the 10.5 run. Note the differences in the x-axis scale in 

the panels. 

 

 

In Fig. 23, observations (blue), simulated apriori concentrations H(x) (orange) 
and posteriori concentrations (green) for the week 26 February - 4 March  
2019 (week 9) are depicted. This week showed the most negative mean 
difference between observations and prior concentrations. We observe that 
the majority of the observations are lower than the prior concentrations, thus 
the posterior concentrations are lower, leading eventually to negative 
emission fluxes in our results. The difference between observations and prior 
H(x) as well as the mean of this difference for the same week are shown in 
Fig. 24. 
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Figure 23. Methane observations from in-situ and satellite data and prior and 
posterior modeled concentrations for the week 26/2-4/3/2019 (week 9) (10.5 

run). 

 

Figure 24. Difference between observed and simulated methane 
concentrations as well as the mean of the difference for the specific week 

26/2-4/3/2019 (week 9)  (10.5 run). 
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In terms of the 100 and 50 ppb run (here-after 100.50 run), the emission maps 
are displayed in Fig. 25. The CH4 emissions for the finest domain are also 
displayed in Appendix B. Optimized emissions by the 100.50 run and the 10.5 
run are different. In Table 2, the regions that have positive emissions for each 
simulation and each week are noted. For the ten weeks optimized, the 
simulation with the larger error predicts zero to two positive regions more or 
less than the small error simulation, except from the week 5. Since the 
measurement errors are the same in both inversions, this indicates that 
transport model error can largely impact the inversion results.  

In 100.50 run, less observations are rejected compared to the 10.5 run, since 
model-data-mismatch R has higher values (see section 2.4.4). Improving the 
transport model or rejecting atmospheric observations when the 
corresponding footprints from the transport model are regarded untrustworthy 
have been the main approaches for lowering the impact of transport model 
error on urban inversions. Discarding atmospheric observations from 
inversions, on the other hand, limits the quantity of data available to constrain 
fluxes and can bias aggregated flux estimates (Gourdji et al., 2018).  

Methane observations and apriori as well as posteriori modeled 
concentrations for the week 9 in Fig. 26 indicate that ten times larger transport 
model error make a small, notable change in the simulated methane 
concentrations. In Fig. 27, we compare the posteriori concentrations of the 
two inversions and each posteriori with the observations. It can be seen that 
posterior concentrations for the 100.50 run are higher than the 10.5 run ones, 
that is closer to the apriori concentrations. This is expected since a large 
model-data-mismatch error will force the system to change slightly based on 
the observation information, thus the difference between the apriori and 
posteriori concentrations will be smaller.The difference between observations 
and modeled concentrations in Fig. 28 depict again that high boundaries 
result in apriori concentrations that are in average higher than the 
observations. 
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Figure 25. Optimized anthropogenic methane emissions over Eastern 
Mediterranean (100.50 run for the period 1/1/2019-11/3/2019). 
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Table 2. Regions with positive emissions for the 10.5 and for the 100.50 
simulation respectively for the period 1/1/2019-11/3/2019. 

Week 10.5 run 100.50 run 

1 Greece, East Greece 
2 Greece Greece, North 
3 - - 
4 North Greece, North 
5 Greece, East, West, South - 
6 - Greece 
7 East, West - 
8 - Greece 
9 - Greece 
10 - - 

 

Figure 26. Methane observations from in-situ and satellite data and prior and 
posterior modeled concentrations for 26/2-4/3/2019 (week 9) (100.50 run) 
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Figure 27. Posterior concentrations for the two simulations in the upper panel  
and comparison with the observations for week 9 of our inversion in the 

bottom two panels. 

 

Figure 28. Difference between the observed and apriori simulated methane 
concentrations as well as the mean of the difference for the week 26/2-

4/3/2019 (week 9)  (100.50 run).  
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3.2 Discussion 

 

We have conducted two inversions for optimizing methane emissions using 
total anthropogenic emissions of Copernicus Atmosphere Monitoring Service 
inventory over Central and Eastern Mediterranean, and Greece. Different 
transport model errors of different magnitude for TROPOMI/WFMD satellite 
product and in-situ measurements from Finokalia station are selected in order 
to examine the effect that this type of error has on our results.   

In all of the weeks inverted for the two inversions, almost only negative fluxes 
are predicted after a period of 5 weeks. Possible reasons for that are the 
boundary conditions used and the lack of the major chemical sink of methane, 
OH, from WRF-GHG model. Therefore, methane flows out of our domains 
mainly depending on the meteorology. Thus, the vast majority of methane 
molecules tend to accumulate over the domain in general. A possible solution 
to this problem would be to add a methane decay factor in WRF-GHG model 
that agrees with methane’s lifetime. However, due to the long lifetime of CH4, 
of several years, this ommission is not expected to have major impact on our 
resutls.  

In terms of boundary conditions, an alternative model, except from TM5, can 
be used, the simulations of which would be closer to the observations over 
our domain. A reanalysis product, which will be created by assimilating 
observations over Eastern Mediterranean, for instance, would be an 
appropriate constraint to the inversion. This would probably prevent the 
unphysical results of negative emissions. Lastly, negative emissions might 
also be attributed to the ill-posedness of the inversion problem. Miller et al. 
(2014) pointed out that inverse modelling approaches based on Gaussian 
assumptions, such as Ensemble Kalman filter, cannot incorporate physical 
bounds (e.g. non-negative emissions) and often produce unrealistic results. 
Therefore, it may be required to impose non-negativity constraints on the 
covariance matrices to ensure positive flux results. 

Increasing the transport model error ten times, to 100 ppb and 50 ppb for 
satellite and in-situ data respectively, changes the number of regions that are 
predicted to have positive emission fluxes in comparison to the 10 ppb and 5 
ppb run. A small model-data mismatch can either mean that the observation 
does not provide any constrain on the emissions or the prior emission fluxes 
are correct. When there is large transport error, the inversion could generate 
unrealistic results (negative fluxes). For observing locations in the near-field of 
large sources, transport model representations are likely to be much more 
difficult than for sites in the global network, which are often in distant areas 
with well-mixed air (Gourdji et al., 2018). Thus, transport model error, which is 
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difficult to be assumed and many times its importance is neglected in 
inversions, needs to be carefully estimated in order to avoid misleading 
inversion results.  
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APPENDIX A 

Variability of methane concentrations over large urban agglomerations -
Athens, Thessaloniki, and Patras.  

 

For Finokalia, in-situ measurements are used. For Athens, Thessaloniki and 
Patras, gridded TROPOMI columns are used. Due to the long lifetime of 
methane, it can be inferred that the methane columnar values account for the 
background concentration of methane in the atmosphere. Comparing Athens, 
Thessaloniki, and Patras with Finokalia, we observe that the seasonality for all 
sites, considering the respective errors, is in general agreement. The months 
of March and October in Finokalia tend to be higher and lower than the other 
sites, respectively.The coverage of TROPOMI over the big cities is not 
adequate in these months, thus Finokalia data should be considered more 
reliable.   

 

 

 

 

 

 

 

 

 

Figure A1. Methane normalized seasonality for the period 2019-2020.  
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APPENDIX B 

Total optimized methane emissions over the finest domain over the inversion 
setup for the two runs with different transport model errors. 
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Figure B1.   10.5 run emission maps for the domain over Greece for the 
period 1/1/2019-11/3/2019. 
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Figure B2.   100.50 run emission maps for the domain over Greece for the 
period 1/1/2019-11/3/2019. 
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APPENDIX C 

 

Modified code for reading of TROPOMI/WFMD satellite product 
(obs_WRF_xch4.py) and code for the sampling of in-situ measurements 
(wrfout_flask_sampler.py, wrfchem_flask_helper.py). 

 

obs_WRF_xch4.py 

1. import os 
2. import sys 
3. import logging 
4. import pandas as pd 
5. import datetime as dtm 
6. import numpy as np 
7. from numpy import array, logical_and, sqrt 
8. sys.path.append(os.getcwd()) 
9. sys.path.append('../../') 
10.   
11. identifier = 'CarbonTracker total column-averaged CH4 mole fractions' 
12. version = '0.0' 
13.   
14. from da.observations.obs_baseclass import Observations 
15. import da.tools.io4 as io 
16. import da.tools.rc as rc 
17.   
18. ################### Begin Class TROPOMIObservations ################### 
19.   
20. class TotalColumnSample(object): 
21.     """ an object that holds data + methods and attributes needed to manipulate 

mole fraction values """ 
22.   
23.     def __init__(self, idx, codex, scanlen, ground, groundlen,  xdate, obs=0.0, 

simulated=0.0, lat=-999., lon=-999., mdm=None,  prior=0.0,  prior_profile=0.0,\ 
24.                    av_kernel=0.0,  pressure=0.0, pressure_weighting_function=None, 

level_def ="layer_average", psurf = float('nan'), resid=0.0, hphr=0.0, flag=0, 
species='ch4', sdev=0.0,\ 

25. latc_0=None, latc_1=None, latc_2=None, latc_3=None, lonc_0=None, lonc_1=None, 
lonc_2=None, lonc_3=None ): 

26.   
27.         self.id             = idx               
28.         self.code           = codex 
29.         self.scanlen        = scanlen 
30.         self.ground         = ground 
31.         self.groundlen      = groundlen 
32.         self.xdate          = xdate 
33.         self.obs            = obs               # Value observed 
34.         self.simulated      = simulated         # Value simulated by model 
35.         self.lat            = lat               # Sample lat 
36.         self.lon            = lon               # Sample lon 
37.         self.latc_0         = latc_0            # Sample latitude corner 
38.         self.latc_1         = latc_1            # Sample latitude corner 
39.         self.latc_2         = latc_2            # Sample latitude corner 
40.         self.latc_3         = latc_3            # Sample latitude corner 
41.         self.lonc_0         = lonc_0            # Sample longitude corner 
42.         self.lonc_1         = lonc_1            # Sample longitude corner 
43.         self.lonc_2         = lonc_2            # Sample longitude corner 
44.         self.lonc_3         = lonc_3            # Sample longitude corner 
45.         self.mdm            = mdm               # Model data mismatch 
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46.         self.prior          = prior          # A priori column value used in 
retrieval 

47.         self.prior_profile  = prior_profile    # A priori profile used in retrieval 
48.         self.av_kernel      = av_kernel         # Averaging kernel 
49.         self.pressure       = pressure  
50.         self.pressure_weighting_function     = pressure_weighting_function 
51.         self.level_def      = level_def         # Are prior and averaging kernel 

defined as layer averages? 
52.         self.psurf          = psurf             # Surface pressure (only needed if 

level_def is "layer_average") 
53.         self.loc_L          = int(0)             # localization length 
54.   
55.         self.resid          = resid             # Mole fraction residuals 
56.         self.hphr           = hphr                # Mole fraction prior uncertainty 

from fluxes and (HPH) and model data mismatch (R) 
57.         self.may_localize   = True              # Whether sample may be localized 

in optimizer 
58.         self.may_reject     = True              # Whether sample may be rejected if 

outside threshold 
59.         self.flag           = flag              # Flag 
60.         self.sdev           = sdev              # standard deviation of ensemble 
61.         self.species        = species.strip() 
62.   
63.   
64. ################### End Class TotalColumnSample ######################### 
65.   
66.   
67. #################### Begin Class TotalColumnObservations ##################        
68.   
69. class TotalColumnObservations(Observations): 
70.       
71.     def setup(self, dacycle): 
72.   
73.         self.startdate = dacycle['time.sample.start'] 
74.         self.enddate   = dacycle['time.sample.end'] 
75.   
76.         sat_dirs = dacycle.dasystem['obs.column.input.dir'].split(',') 
77.         sat_files = dacycle.dasystem['obs.column.ncfile'].split(',') 
78.   
79.         self.sat_dirs    = [] 
80.         self.sat_files   = [] 
81.         for i in range(len(sat_dirs)): 
82.             if not os.path.exists(sat_dirs[i].strip()): 
83.                 msg = 'Could not find the required satellite input directory (%s) ' 

% sat_dirs[i] 
84.                 logging.error(msg) 
85.                 raise IOError(msg) 
86.             else: 
87.                 self.sat_dirs.append(sat_dirs[i].strip()) 
88.                 self.sat_files.append(sat_files[i].strip()) 
89.         del i 
90.   
91.         # Get observation selection criteria (if present): 
92.         if 'obs.column.selection.variables' in dacycle.dasystem.keys() and 

'obs.column.selection.criteria' in dacycle.dasystem.keys(): 
93.             self.selection_vars     = 

dacycle.dasystem['obs.column.selection.variables'].split(',') 
94.             self.selection_criteria = 

dacycle.dasystem['obs.column.selection.criteria'].split(',') 
95.             logging.debug('Data selection criteria found: %s, %s' 

%(self.selection_vars, self.selection_criteria)) 
96.         else: 
97.             self.selection_vars     = [] 
98.             self.selection_criteria = [] 
99.             logging.info('No data observation selection criteria found, using all 

observations in file.') 
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100.  
101.          # Model data mismatch approach 
102.         self.mdm_calculation = dacycle.dasystem.get('mdm.calculation') 
103.         if self.mdm_calculation in 

['parametrization','empirical','no_transport_error']: 
104.             logging.info('Model data mismatch approach = %s' 

%self.mdm_calculation) 
105.         else: 
106.             logging.warning('No valid model data mismatch method found. 

Valid options are \'parametrization\', \'empirical\'. ' + \ 
107.                             'Using a constant estimate for the model 

uncertainty of 1ppm everywhere.') 
108.   
109.         # Path to file with observation error settings for column 

observations 
110.         if not os.path.exists(dacycle.dasystem['obs.column.rc']): 

#obs.column.rc 
111.             msg = 'Could not find the required column observation .rc input 

file (%s) ' % dacycle.dasystem['obs.column.rc'] 
112.             logging.error(msg) 
113.             raise IOError(msg) 
114.         else: 
115.             self.obs_file = (dacycle.dasystem['obs.column.rc']) 
116.   
117.         self.datalist = [] 
118.   
119.           
120.         # Switch to indicate whether simulated column samples are read from 

obsOperator output, 
121.         # or whether the sampling is done within CTDAS (in obsOperator 

class) 
122.         self.sample_in_ctdas = dacycle.dasystem['sample.in.ctdas'] if 

'sample.in.ctdas' in dacycle.dasystem.keys() else False 
123.         logging.debug('sample.in.ctdas = %s' % self.sample_in_ctdas) 
124.  
125.           
126.     def get_samples_type(self): 
127.         return 'column' 
128.   
129.   
130.     def add_observations(self): 
131.         """ Reading of total column observations, and selection of 

observations that will be sampled and assimilated. 
132.   
133.         """ 
134.   
135.         # Read observations from daily input files 
136.         for i in range(len(self.sat_dirs)): 
137.   
138.             logging.info('Reading observations from %s%s' 

%(self.sat_dirs[i],self.sat_files[i])) 
139.   
140.             infile0 = os.path.join(self.sat_dirs[i], self.sat_files[i]) 
141.             ndays = 0 
142.   
143.             while self.startdate+dtm.timedelta(days=ndays) <= self.enddate: 
144.   
145.                 infile = 

infile0.replace("<YYYYMMDD>",(self.startdate+dtm.timedelta(days=ndays)).strftime("%
Y%m%d")) 

146.                # d1 = infile.split('_')[8] 
147.                 #dtseries = d1[0:-3] 
148.   
149.                 if os.path.exists(infile):    
150.                     logging.info("Reading observations for %s" % 

(self.startdate+dtm.timedelta(days=ndays)).strftime("%Y%m%d")) 
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151.                     len_init = len(self.datalist) 
152.   
153.   
154.                     # get index of observations that satisfy selection 

criteria (based on variable names and values in system rc file, if present) 
155.                     ncf   = io.ct_read(infile, 'read') 
156.                       
157.                     if self.selection_vars: 
158.                         selvars = [] 
159.                         for j in self.selection_vars: 
160.                             selvars.append(ncf.get_variable(j.strip()))   
161.                         del j 
162.                         criteria = [] 
163.                         for j in range(len(self.selection_vars)): 
164.                             criteria.append(eval('selvars[j]'+self.selection

_criteria[j])) 
165.                         del j 
166.                         subselect = 

np.logical_and.reduce(criteria).nonzero()[0] 
167.                     else: 
168.                         subselect = 

np.arange(ncf.get_variable('sounding_id').size)  
169.   
170.   
171.                     code      = ncf.get_attribute('tracking_id') 
172.                     level_def = "layer_average"   
173.                      # read observations 
174.                     ids           = 

ncf.get_variable('sounding_id').take(subselect,axis=0) 
175.                     scanlen       = len(ids) 
176.                     ground        = 

ncf.get_variable('ground_pixel').take(subselect,axis=0) 
177.                     groundlen     = len(ground) 
178.                     lats          = 

ncf.get_variable('latitude').take(subselect,axis=0)  
179.                     lons          = 

ncf.get_variable('longitude').take(subselect,axis=0) 
180.                     obs           = 

ncf.get_variable('xch4').take(subselect,axis=0) 
181.                     unc           = 

ncf.get_variable('xch4_uncertainty').take(subselect,axis=0) 
182.                     dates         = 

ncf.get_variable('time').take(subselect,axis=0) 
183.                     dates         = array([dtm.datetime.fromtimestamp(d) for 

d in dates] 
184.                     av_kernel     = 

ncf.get_variable('xch4_averaging_kernel').take(subselect,axis=0) 
185.                     prior_profile = 

ncf.get_variable('ch4_profile_apriori').take(subselect,axis=0) 
186.                     pressure      = 

ncf.get_variable('pressure_levels').take(subselect,axis=0)   
187.                     prior         = [float('nan')]*len(ids)  
188.                     pwf           = 

ncf.get_variable('pressure_weight').take(subselect,axis=0)  
189.                     psurf         =  [float('nan')]*len(ids)  
190.                       
191.                     # Optional: footprint corners 
192.                     latc = dict( 
193.                         latc_0=[float('nan')]*len(ids), 
194.                         latc_1=[float('nan')]*len(ids), 
195.                         latc_2=[float('nan')]*len(ids), 
196.                         latc_3=[float('nan')]*len(ids)) 
197.                     lonc = dict( 
198.                         lonc_0=[float('nan')]*len(ids), 
199.                         lonc_1=[float('nan')]*len(ids), 
200.                         lonc_2=[float('nan')]*len(ids), 
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201.                         lonc_3=[float('nan')]*len(ids)) 
202.   
203.                     ncf.close() 
204.   
205.                     # Add samples to datalist 
206.                     # Note that the mdm is initialized here equal to the 

measurement uncertainty. This value is used in add_model_data_mismatch to calculate 
the mdm including model error 

207.                     logging.info("Size scan groun dates obs lats lons 
av_kern %d %d %d %d %d %d %d " % 
(ids.size,ground.size,dates.size,obs.size,lats.size,lons.size,av_kernel.size)) 

208.                     for k in range(len(ids)): 
209.                         # Check for every sounding if time is between start 

and end time (relevant for first and last days of window) 
210.                         if self.startdate <= dates[k] <= self.enddate: 
211.                                self.datalist.append(TotalColumnSample(ids[k]

, code,  scanlen, ground[k], groundlen, dates[k],  obs[k]* 1.e-3, None, lats[k], 
lons[k], unc[k]* 1.e-3,prior=prior[k], prior_profile=prior_profile[k,:]* 1.e-3,\ 

212.                                av_kernel=av_kernel[k,:], 
pressure=pressure[k,:], pressure_weighting_function=pwf[k,:], level_def=level_def, 
psurf=psurf[k], latc_0=latc['latc_0'][k], latc_1=latc['latc_1'][k], 
latc_2=latc['latc_2'][k], latc_3=latc['latc_3'][k], 

213.                                                                     lonc_0=l
onc['lonc_0'][k], lonc_1=lonc['lonc_1'][k], lonc_2=lonc['lonc_2'][k], 
lonc_3=lonc['lonc_3'][k] 

214. )) 
215.   
216.                     logging.debug("Added %d observations to the Data list" % 

(len(self.datalist)-len_init)) 
217.   
218.                 ndays += 1 
219.   
220.         del i 
221.   
222.         if len(self.datalist) > 0: 
223.             logging.info("Observations list now holds %d values" % 

len(self.datalist)) 
224.         else: 
225.             logging.info("No observations found for sampling window") 
226.   
227.   
228.     def add_model_data_mismatch(self, filename=None, advance=False): 
229.  
230.         obs_data = rc.read(self.obs_file) 
231.         self.rejection_threshold = int(obs_data['obs.rejection.threshold']) 
232.   
233.         # At this point mdm is set to the measurement uncertainty only, 

added in the add_observations function. 
234.         # Here this value is used to set the combined mdm by adding an 

estimate for the model uncertainty as a sum of squares. 
235.         if len(self.datalist) <= 1: return 
236.         for obs in self.datalist: 
237.             # parametrization as used by Frederic Chevallier 
238.             if self.mdm_calculation == 'parametrization': 
239.                 obs.mdm = ( obs.mdm*obs.mdm + 

(0.8*np.exp((90.0+obs.lat)/300.0))**2 )**0.5 
240.             # empirical approach of Andy Jacobson, TO BE IMPLEMENTED 
241.             # elif self.mdm_calculation == 'empirical': 
242.             #     obs.mdm = ... 
243.             elif self.mdm_calculation == 'no_transport_error': 
244.                 pass 
245.             else: # assume general model uncertainty of 1 ppm (arbitrary 

value) 
246.                 obs.mdm = ( obs.mdm*obs.mdm + 0.2**2 )**0.5 
247.         del obs 
248.   
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249.         meanmdm = np.average(np.array( [obs.mdm for obs in self.datalist] )) 
250.         logging.debug('Mean MDM = %s' %meanmdm)         
251.   
252.    
253.     def add_simulations(self, filename, silent=False): 
254.         """ Adds observed and model simulated column values to the mole 

fraction objects 
255.             This function includes the add_observations and 

add_model_data_mismatch functionality for the sake of computational efficiency 
256.   
257.         """ 
258.   
259.         if self.sample_in_ctdas: 
260.             logging.debug("CODE TO ADD SIMULATED SAMPLES TO DATALIST TO BE 

ADDED") 
261.   
262.         else: 
263.             # read simulated samples from file 
264.             if not os.path.exists(filename): 
265.                 msg = "Sample output filename for observations could not be 

found : %s" % filename 
266.                 logging.error(msg) 
267.                 logging.error("Did the sampling step succeed?") 
268.                 logging.error("...exiting") 
269.                 raise IOError(msg) 
270.   
271.             ncf       = io.ct_read(filename, method='read') 
272.             logging.debug("Read Observed and Simulated SAMPLES from file 

(%s)" % filename) 
273.             ids       = ncf.get_variable('sounding_id')  
274.             simulated = ncf.get_variable('column_modeled')  
275.             ncf.close() 
276.             logging.info("Successfully read data from model sample file 

(%s)" % filename) 
277.   
278.             obs_ids = self.getvalues('id').tolist() 
279.   
280.             missing_samples = [] 
281.   
282.             # Match read simulated samples with observations in datalist 
283.             logging.info("Adding %i simulated samples to the data list..." % 

len(ids)) 
284.             for i in range(len(ids)): 
285.                 # Assume samples are in same order in both datalist and file 

with simulated samples... 
286.                 if ids[i] == obs_ids[i]: 
287.                     self.datalist[i].simulated = simulated[i] 
288.                 # If not, find index of current sample 
289.                 elif ids[i] in obs_ids: 
290.                     index = obs_ids.index(ids[i]) 
291.                     # Only add simulated value to datalist if sample has not 

been filled before. Otherwise: exiting 
292.                     if self.datalist[index].simulated is not None: 
293.                         msg = 'Simulated and observed samples not in same 

order, and duplicate sample IDs found.' 
294.                         logging.error(msg) 
295.                         raise IOError(msg) 
296.                     else: 
297.                         self.datalist[index].simulated = simulated[i] 
298.                 else: 
299.                     logging.debug('added %s to missing_samples, obs id = %s' 

%(ids[i],obs_ids[i])) 
300.                     missing_samples.append(ids[i]) 
301.             del i 
302.   
303.             if not silent and missing_samples != []: 
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304.                 logging.warning('%i Model samples were found that did not 
match any ID in the observation list. Skipping them...' % len(missing_samples)) 

305.   
306.             # if number of simulated samples < observations: remove 

observations without samples 
307.             if len(simulated) < len(self.datalist): 
308.                 test = len(self.datalist) - len(simulated) 
309.                 logging.warning('%i Observations were not sampled, removing 

them from datalist...' % test) 
310.                 for index in reversed(list(range(len(self.datalist)))): 
311.                     if self.datalist[index].simulated is None: 
312.                         del self.datalist[index] 
313.                 del index 
314.   
315.             logging.debug("%d simulated values were added to the data list" 

% (len(ids) - len(missing_samples))) 
316.   
317.     def write_sample_coords(self, obsinputfile): 
318.         """ 
319.             Write empty sample_coords_file if soundings are present in time 

interval, just such that general pipeline code does not have to be changed... 
320.         """ 
321.   
322.         if self.sample_in_ctdas: 
323.             return 
324.   
325.         if len(self.datalist) <= 1: #== 0: 
326.             logging.info("No observations found for this time period, no obs 

file written") 
327.             return 
328.   
329.         # write data required by observation operator for sampling to file 
330.         f = io.CT_CDF(obsinputfile, method='create') 
331.         logging.debug('Creating new observations file for 

ObservationOperator (%s) containing %d observations' % 
(obsinputfile,len(self.datalist))) 

332.   
333.         dimsoundings  = f.add_dim('soundings',len(self.datalist))   
334.         dimepoch      = f.add_dim('epoch_dimension', 7) 
335.         dimchar      = f.add_dim('char', 30) 
336.            
337.         if len(self.datalist) == 1: 
338.             dimlevels = f.add_dim('levels', len(self.getvalues('pressure'))) 
339.         else: 
340.             dimlevels = f.add_dim('levels', 

self.getvalues('pressure').shape[1]) 
341.           
342.         if len(self.datalist) == 1: 
343.             dimlayers = f.add_dim('layers',len(self.getvalues('av_kernel'))) 
344.         else: 
345.             dimlayers = f.add_dim('layers', 

self.getvalues('av_kernel').shape[1]) 
346.   
347.   
348.         savedict           = io.std_savedict.copy() 
349.         savedict['dtype']  = "int64" 
350.         savedict['name']   = "sounding_id"  
351.         savedict['dims']   = dimsoundings 
352.         savedict['values'] = self.getvalues('id').tolist() 
353.         f.add_data(savedict) 
354.           
355.           
356.         data = [[d.year, d.month, d.day, d.hour, d.minute, d.second, 

d.microsecond] for d in self.getvalues('xdate') ] 
357.         savedict           = io.std_savedict.copy() 
358.         savedict['dtype']  = "int" 
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359.         savedict['name']   = "date" 
360.         savedict['dims']   = dimsoundings + dimepoch 
361.         savedict['values'] = data 
362.         f.add_data(savedict) 
363.   
364.         savedict           = io.std_savedict.copy() 
365.         savedict['name']   = "latitude" 
366.         savedict['dims']   = dimsoundings 
367.         savedict['values'] = self.getvalues('lat').tolist() 
368.         f.add_data(savedict) 
369.   
370.         savedict           = io.std_savedict.copy() 
371.         savedict['name']   = "longitude" 
372.         savedict['dims']   = dimsoundings 
373.         savedict['values'] = self.getvalues('lon').tolist() 
374.         f.add_data(savedict) 
375.   
376.         savedict = io.std_savedict.copy() 
377.         savedict['name']   = "averaging_kernel" 
378.         savedict['dims']   = dimsoundings + dimlayers 
379.         savedict['values'] = self.getvalues('av_kernel').tolist() 
380.         f.add_data(savedict) 
381.   
382.         savedict = io.std_savedict.copy() 
383.         savedict['name']   = "prior_profile" 
384.         savedict['dims']   = dimsoundings + dimlayers 
385.         savedict['missing_value'] = "-999999." 
386.         savedict['values'] = self.getvalues('prior_profile').tolist() 
387.         f.add_data(savedict) 
388.   
389.           
390.         savedict = io.std_savedict.copy() 
391.         savedict['name']   = "prior" 
392.         savedict['dims']   = dimsoundings  
393.         savedict['values'] = self.getvalues('prior').tolist() 
394.         f.add_data(savedict) 
395.   
396.           
397.         savedict = io.std_savedict.copy() 
398.         savedict['name']   = "psurf" 
399.         savedict['dims']   = dimsoundings 
400.         savedict['values'] = self.getvalues('psurf').tolist() 
401.         f.add_data(savedict) 
402.   
403.         savedict = io.std_savedict.copy() 
404.         savedict['name']   = "pressure_levels" 
405.         savedict['dims']   = dimsoundings + dimlevels 
406.         savedict['values'] = self.getvalues('pressure').tolist() 
407.         f.add_data(savedict) 
408.           
409.         savedict = io.std_savedict.copy() 
410.         savedict['name']   = "pressure_weighting_function" 
411.         savedict['dims']   = dimsoundings + dimlayers 
412.         savedict['values'] = 

self.getvalues('pressure_weighting_function').tolist() 
413.         f.add_data(savedict) 
414.   
415.         savedict           = io.std_savedict.copy() 
416.         savedict['name']   = "latc_0" 
417.         savedict['dims']   = dimsoundings 
418.         savedict['values'] = self.getvalues('latc_0').tolist() 
419.         f.add_data(savedict) 
420.   
421.         savedict           = io.std_savedict.copy() 
422.         savedict['name']   = "latc_1" 
423.         savedict['dims']   = dimsoundings 
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424.         savedict['values'] = self.getvalues('latc_1').tolist() 
425.         f.add_data(savedict) 
426.   
427.         savedict           = io.std_savedict.copy() 
428.         savedict['name']   = "latc_2" 
429.         savedict['dims']   = dimsoundings 
430.         savedict['values'] = self.getvalues('latc_2').tolist() 
431.         f.add_data(savedict) 
432.   
433.         savedict           = io.std_savedict.copy() 
434.         savedict['name']   = "latc_3" 
435.         savedict['dims']   = dimsoundings 
436.         savedict['values'] = self.getvalues('latc_3').tolist() 
437.         f.add_data(savedict) 
438.   
439.         savedict           = io.std_savedict.copy() 
440.         savedict['name']   = "lonc_0" 
441.         savedict['dims']   = dimsoundings 
442.         savedict['values'] = self.getvalues('lonc_0').tolist() 
443.         f.add_data(savedict) 
444.   
445.         savedict           = io.std_savedict.copy() 
446.         savedict['name']   = "lonc_1" 
447.         savedict['dims']   = dimsoundings 
448.         savedict['values'] = self.getvalues('lonc_1').tolist() 
449.         f.add_data(savedict) 
450.   
451.         savedict           = io.std_savedict.copy() 
452.         savedict['name']   = "lonc_2" 
453.         savedict['dims']   = dimsoundings 
454.         savedict['values'] = self.getvalues('lonc_2').tolist() 
455.         f.add_data(savedict) 
456.   
457.         savedict           = io.std_savedict.copy() 
458.         savedict['name']   = "lonc_3" 
459.         savedict['dims']   = dimsoundings 
460.         savedict['values'] = self.getvalues('lonc_3').tolist() 
461.         f.add_data(savedict) 
462.    
463.   
464.         savedict = io.std_savedict.copy() 
465.         savedict['dtype'] = "char" 
466.         savedict['name']  = "level_def" 
467.         savedict['dims']  = dimsoundings + dimchar        
468.         savedict['values'] = self.getvalues('level_def').tolist() 
469.         f.add_data(savedict)  
470.   
471.         f.close() 
472. ################### End Class TotalColumnObservations ################### 
473.   
474. if __name__ == "__main__": 

475.     pass 
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wrfout_flask_sampler.py  

1. import os 
2. import sys 
3. import copy 
4. import numpy as np 
5. import netCDF4 as nc 
6.   
7. # Import some CTDAS tools 
8. pd = os.path.pardir 
9. inc_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 
10.                         pd, pd, pd) 
11. inc_path = os.path.abspath(inc_path) 
12. sys.path.append(inc_path) 
13. from da.tools.wrfchem.wrfchem_flask_helper import WRFChemHelper_flask 
14. from da.tools.wrfchem.utilities import utilities 
15. import argparse 
16.   
17. ########## Parse options 
18. parser = argparse.ArgumentParser() 
19. parser.add_argument("--nproc", type=int, 
20.                     help="ID of this sampling process (0 ... nprocs-1)") 
21. parser.add_argument("--nprocs", type=int, 
22.                     help="Number of sampling processes") 
23. parser.add_argument("--sampling_coords_file", type=str, 
24.                     help="File with sampling coordinates as created " + \ 
25.                          "by CTDAS column samples object") 
26. parser.add_argument("--run_dir", type=str, 
27.                     help="Directory with wrfout files") 
28. parser.add_argument("--original_save_suffix", type=str, 
29.                     help="Just leave this on .original") 
30. parser.add_argument("--nmembers", type=int, 
31.                     help="Number of tracer ensemble members") 
32. parser.add_argument("--tracer_optim", type=str, 
33.                     help="Tracer that was optimized (e.g. CO2 for " + \ 
34.                          "ensemble members CO2_000 etc.)") 
35. parser.add_argument("--outfile_prefix", type=str, 
36.                     help="One process: output file. More processes: " + \ 
37.                          "output file is <outfile_prefix>.<nproc>.slice") 
38. parser.add_argument("--footprint_samples_dim", type=int, 
39.                     help="Sample column footprint at n x n points") 
40.   
41. args = parser.parse_args() 
42. settings = copy.deepcopy(vars(args)) 
43.   
44. wd = os.getcwd() 
45. try: 
46.     os.makedirs("log") 
47. except OSError:  
48.     pass 
49.   
50. logfile = os.path.join(wd, "log/wrfout_sampler." + str(settings['nproc']) + ".log") 
51.   
52. os.system("touch " + logfile) 
53. os.system("rm " + logfile) 
54. os.system("echo 'Process " + str(settings['nproc']) + " of " + 

str(settings['nprocs']) + ": start' >> " + logfile) 
55. os.system("date >> " + logfile) 
56.   
57. ########## Initialize wrfhelper 
58. wrfhelper = WRFChemHelper_flask(settings) 
59. wrfhelper.validate_settings(['sampling_coords_file', 
60.                              'run_dir', 
61.                              'nproc', 
62.                              'nprocs', 
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63.                              'original_save_suffix', # necessary for selecting 
filename 

64.                              'nmembers', # special case 0: sample 'tracer_optim' 
65.                              'tracer_optim', 
66.                              'outfile_prefix', 
67.                              'footprint_samples_dim']) 
68.   
69. cwd = os.getcwd() 
70. os.chdir(wrfhelper.settings['run_dir']) 
71.   
72. #wrfhelper.namelist = wrfhelper.read_namelist(wrfhelper.settings['run_dir']) 
73. wrfhelper.namelist = wrfhelper.read_namelist(".") 
74.   
75.   
76. ########## Figure out which samples to process 
77. # Get number of samples 
78. ncf = nc.Dataset(settings['sampling_coords_file'], "r") 
79. nsamples = len(ncf.dimensions["obs"]) 
80. ncf.close() 
81.   
82. id0, id1 = utilities.get_slicing_ids(nsamples, settings['nproc'], 

settings['nprocs']) 
83.   
84. os.system("echo 'id0=" + str(id0) + "' >> " + logfile) 
85. os.system("echo 'id1=" + str(id1) + "' >> " + logfile) 
86.   
87. ########## Read samples from coord file 
88. dat = wrfhelper.read_sampling_coords(settings['sampling_coords_file'], id0, id1) 
89.   
90. os.system("echo 'Data read, len=" + str(len(dat['obs'])) + "' >> " + logfile) 
91.   
92.   
93. ########## Locate samples in wrf domains 
94.   
95. # Take care of special case without ensemble 
96. nmembers = settings['nmembers'] 
97. if nmembers == 0: 
98.     # Special case: sample 'tracer_optim', don't add member suffix 
99.     member_names = [settings['tracer_optim']] 
100.     nmembers = 1 
101. else: 
102.     member_names = [settings['tracer_optim'] + "_%03d" % nm for nm in 

range(nmembers)] 
103.   
104.   
105. # Keep a description of a small wrf file for each domain in memory to 
106. # locate observations. 
107. # This concept is probably obsolete - doesn't save time, and 
108. # locate_domain is parallelized anyway 
109. wrfhelper.open_wrf_location_files() 
110.   
111. if settings["footprint_samples_dim"]==1: 
112.     # Locate all observations in space 
113.     # This function Wouldn't work for moving nests. 
114.     id_xy_f, domain, z = wrfhelper.locate_domain(dat['latitude'], 

dat['longitude'], dat['altitude']) 
115.     # Assume box averages and don't interpolate horizontally 
116.     id_xy = np.round(id_xy_f).astype(int) 
117.     os.system("echo 'Domains located from obs " + str(domain) + "' >> " + 

logfile) 
118. else: 
119.     # Return the whole thing (needed in wrfhelper.sample_total_columns) 
120.     raise NotImplementedError("To do: 

wrfhelper.get_footprint_sampling_points") 
121.     dat_fs = wrfhelper.get_footprint_sampling_points(dat) 
122.     # Locate (free) 
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123.     id_xy_f_free, domain_free = wrfhelper.locate_domain(dat_fs['latitude'], 
dat_fs['longitude']) 

124.     id_xy_free = np.round(id_xy_f_free).astype(int) 
125.     # Determine max domain 
126.     domain_fs = None 
127.     raise NotImplementedError("To do: domain_fs") 
128.     # Sample again with domain restriction - no need to return it again 
129.     id_xy_f, _ = wrfhelper.locate_domain(dat_fs['latitude'], 

dat_fs['longitude'], domain_fs) 
130.     id_xy = np.round(id_xy_f).astype(int) 
131.     # Thin out domain_fs to pass it to determination of id_t and frac_t 

below 
132.     domain = domain_fs[::settings["footprint_samples_dim"]] 
133.       
134. wrfhelper.close_wrf_location_files() 
135.   
136. id_t = np.zeros_like(domain) 
137. frac_t = np.ndarray(id_t.shape, float) 
138. frac_t[:] = float("nan") 
139.  
140. wrfout_files = dict() 
141. wrfout_times = dict() 
142. wrfout_start_time_ids = dict() 
143.   
144. UD = list(set(domain)) 
145. os.system("echo 'domains " + str(UD) + "' >> " + logfile) 
146.   
147. for dom in UD:  
148.     os.system("echo 'Processing domain " + str(dom) + "' >> " + logfile) 
149.     idd = np.where(domain == dom)[0] 
150.     os.system("echo 'idd " + str(idd) + "' >> " + logfile) 
151.     # Get full time vector 
152.     wrfout_files[dom] = wrfhelper.get_wrf_filenames("wrfout_d%02d_*00" % 

dom)  
153.     os.system("echo 'Wrf filenames  " + str(wrfout_files[dom])  + "' >> " + 

logfile) 
154.     wrfout_times[dom], wrfout_start_time_ids[dom] = 

wrfhelper.wrf_times(wrfout_files[dom]) 
155.   
156.     # time id 
157.     for idd_ in idd: 
158.         # Look where it sorts in 
159.         tmp = [i 
160.                for i in range(len(wrfout_times[dom])-1) 
161.                if wrfout_times[dom][i] <= dat['time'][idd_] \ 
162.                   and dat['time'][idd_] < wrfout_times[dom][i+1]] 
163.         # Catch the case that the observation took place exactly at the 
164.         # last timestep 
165.         if len(tmp) == 1: 
166.             id_t[idd_] = tmp[0] 
167.             time0 = wrfout_times[dom][id_t[idd_]] 
168.             time1 = wrfout_times[dom][id_t[idd_]+1] 
169.             frac_t[idd_] = (time1 - dat['time'][idd_]).total_seconds() / 

(time1 - time0).total_seconds() 
170.             os.system("echo 'frac_t  " + str(frac_t[idd_])  + "' >> " + 

logfile) 
171.         else: # len must be 0 in this case 
172.             if len(tmp) > 1: 
173.                 os.system("echo 'wat' >> " + logfile) 
174.                 raise ValueError("wat") 
175.             if dat['time'][idd_] == wrfout_times[dom][-1]: 
176.                 id_t[idd_] = len(wrfout_times[dom])-1 
177.                 frac_t[idd_] = 1 
178.             else: 
179.                 msg = "Sample %d, obs_num %s: outside of simulated 

time."%(idd_, dat['obs_num'][idd_]) 
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180.                 os.system("echo '" + msg + "' >> " + logfile) 
181.                 raise ValueError(msg) 
182.   
183.   
184. # Now read the data 
185. # Input: id_xy, dom, id_t, wrfout_start_time_ids, fract_t 
186. # Output: sampled columns 
187. # All input related to location: 
188. if settings["footprint_samples_dim"]>1: 
189.     domain = domain_fs 
190.     id_t = np.repeat(id_t, settings["footprint_samples_dim"]) 
191.     frac_t = np.repeat(frac_t, settings["footprint_samples_dim"]) 
192.       
193. loc_input = dict(id_xy=id_xy, domain=domain, 
194.                  id_t=id_t, frac_t=frac_t, 
195.                  files=wrfout_files, 

file_start_time_indices=wrfout_start_time_ids, z=z)  
196.   
197.   
198. ens_sim = wrfhelper.sample_flask(dat, loc_input, member_names) 
199.   
200. # Write results to file 
201. obs_ids = dat['obs_num'] 
202. # Remove simulations that are nan (=not in domain) 
203. if ens_sim.shape[0] > 0: 
204.     valid = np.apply_along_axis(lambda arr: not np.any(np.isnan(arr)), 1, 

ens_sim) 
205.     obs_ids_write = obs_ids[valid] 
206.     ens_sim_write = ens_sim[valid, :] 
207. else: 
208.     obs_ids_write = obs_ids 
209.     ens_sim_write = ens_sim 
210.   
211. if settings['nprocs'] == 1: 
212.     outfile = settings['outfile_prefix'] 
213. else: 
214.     # Create output files with the appendix ".<nproc>.slice" 
215.     # Format <nproc> so that they can later be easily sorted. 
216.     len_nproc = int(np.floor(np.log10(settings['nprocs']))) + 1 
217.     outfile = settings['outfile_prefix'] + (".%0" + str(len_nproc) + 

"d.slice") % settings['nproc'] 
218.   
219. os.system("echo 'Writing output file '" + 

os.path.join(wrfhelper.settings['run_dir'], outfile) + " >> " + logfile) 
220.   
221. wrfhelper.write_simulated_flask(obs_id=obs_ids_write, 
222.                                   simulated=ens_sim_write, 
223.                                   nmembers=nmembers, 
224.                                   outfile=outfile) 
225.   
226. os.chdir(cwd) 

227. os.system("echo 'Done' >> " + logfile) 
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wrfchem_flask_helper.py 

1. import os 
2. import shutil 
3. import re 
4. import glob 
5. import bisect 
6. import copy 
7. import numpy as np 
8. import netCDF4 as nc 
9. import datetime as dt 
10. import wrf 
11. import f90nml 
12. import pickle 
13.   
14.   
15. # CTDAS modules 
16. import da.tools.io4 as io 
17. from da.tools.wrfchem.utilities import utilities 
18.   
19.   
20. class WRFChemHelper_flask(object): 
21.     """Contains helper functions for sampling WRF-Chem""" 
22.     def __init__(self, settings): 
23.         self.settings = settings 
24.   
25.     def validate_settings(self, needed_items=[]): 
26.         """ 
27.         This is based on WRFChemOO._validate_rc 
28.         """ 
29.   
30.         if len(needed_items)==0: 
31.             return 
32.   
33.         for key in needed_items: 
34.             if key not in self.settings: 
35.                 msg = "Missing a required value in settings: %s" % key 
36.                 raise IOError(msg) 
37.   
38.     @staticmethod 
39.     def read_namelist(dirname): 
40.         """Read run settings from namelist.input file in dirname""" 
41.         nml_file = os.path.join(dirname, "namelist.input") 
42.         namelist = f90nml.read(nml_file) 
43.          
44.         list_vars = ["e_we", 
45.                      "e_sn",  
46.                      "parent_id", 
47.                      "parent_grid_ratio", 
48.                      "i_parent_start", 
49.                      "j_parent_start" 
50.                     ] 
51.         for v in list_vars: 
52.             if not isinstance(namelist["domains"][v], list): 
53.                 namelist["domains"][v] = [namelist["domains"][v]] 
54.   
55.         return namelist 
56.       
57.     def locate_domain(self, lat, lon, alt):   #Added altitude location - Ioanna 
58.         """ 
59.         Input 
60.         ----- 
61.         lat: Single values or lists or np.arrays 
62.         lon: Single values or lists or np.arrays 
63.           
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64.         Output 
65.         ------ 
66.         - xy-coordinates in finest domain that contains the coordinates 
67.         - finest domain 
68.         -z 
69.         """ 
70.           
71.         if not hasattr(self, "_loc_files"): 
72.             raise RuntimeError("Must call open_wrf_loc_files first.") 
73.               
74.         # Work with arrays internally. 
75.         lat = np.array(lat, ndmin=1) 
76.         lon = np.array(lon, ndmin=1) 
77.           
78.         alt = np.array(alt, ndmin=1) 
79.   
80.         # Get coordinates of the observation in all domains 
81.         ndomains = self.namelist["domains"]["max_dom"] 
82.   
83.         # Get domain sizes in xy on mass (=unstaggered) grid (hence the -1) 
84.         dom_size_x = np.array(self.namelist['domains']['e_we'], dtype=float, 

ndmin=1) - 1 
85.         dom_size_y = np.array(self.namelist['domains']['e_sn'], dtype=float, 

ndmin=1) - 1 
86.            
87.   
88.         # Initialize  output 
89.         xy = np.zeros((len(lat), 2)) 
90.         xy[:] = np.nan 
91.         finest_domain = np.zeros((len(lat), ), int) 
92.   
93.         z = np.zeros(len(alt)) 
94.         z[:] = np.nan 
95.   
96.         # Since wrf.ll_to_xy takes very long, I save a bit of time here 
97.         # by starting in the finest domain and processing only 
98.         # observations that weren't previously found. 
99.         for n in range(ndomains-1, -1, -1): 
100.             # Get xy for this domain 
101.             # Only process what you haven't processed 
102.             sel = np.where(finest_domain == 0)[0] 
103.   
104.             # In case all domains where set 
105.             if len(sel)==0: 
106.                 break 
107.   
108.             x, y = wrf.ll_to_xy(wrfin=self._loc_files[n], 
109.                                 latitude=lat[sel], 
110.                                 longitude=lon[sel], 
111.                                 meta=False, 
112.                                 as_int=False) 
113.                           
114.   
115.             # For each domain, check if the observation is inside the 
116.             # domain extent 
117.             # I put the edges on -0.5 and e_we/e_sn - 0.5. 
118.   
119.             # To be able to iterate over x and y in case they're scalars: 
120.             x = np.array(x, ndmin=1) 
121.             y = np.array(y, ndmin=1) 
122.   
123.             # Test: inside domain? 
124.             # The -1 here are because of 0-based indices, and the -/+ 0.5 

are 
125.             # because that's halfway to the next mass-staggered point and 
126.             # I treat the WRF grid as boxes. 
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127.             x_in = [(-0.5 <= x_) and (x_ <= dom_size_x[n] - 1 + 0.5) for x_ 
in x] 

128.             y_in = [(-0.5 <= y_) and (y_ <= dom_size_y[n] - 1 + 0.5) for y_ 
in y] 

129.   
130.             # Save domain, x and y at these locations 
131.             in_this_dom = np.where(np.logical_and(x_in, y_in))[0] 
132.             finest_domain[sel[in_this_dom]] = n + 1 
133.             # If domain = 1, set _all_ xy to see where they end up 
134.             if n==0: 
135.                 xy[sel, 0] = x 
136.                 xy[sel, 1] = y 
137.             else: 
138.                 xy[sel[in_this_dom], 0] = x[in_this_dom] 
139.                 xy[sel[in_this_dom], 1] = y[in_this_dom] 
140.   
141.               
142.             model_z_all_ll = wrf.getvar(wrfin=self._loc_files[n], 
143.                                 varname= 'height_agl', 
144.                                 timeidx=  0, 
145.                                 units='m', 
146.                                 squeeze=True, 
147.                                 meta=False) 
148.   
149.             x = np.round(x).astype(int) 
150.             y = np.round(y).astype(int) 
151.               
152.             model_z = list() 
153.             z = list() 
154.               
155.             model_z = np.array([(model_z_all_ll[:, i,i]) for i, (x_,y_) in 

enumerate(zip(x, y))]) 
156.             z = np.array([np.abs(model_z[i,:] - alt[sel[i]]).argmin() for i 

in range(len(x))])   #index of z 
157.   
158.         # Return the indices and domain 
159.         return xy, finest_domain, z 
160.   
161.     def get_groups_space_time(self, dat, time_bins, only_in=False): 
162.         """ 
163.         Returns a dictionary of lists of indices of observations in dat, 
164.         where keys are tuples of (time bin, x bin, y bin and wrf 
165.         domain), and values are indices of the observations that fall 
166.         within this bin. 
167.         """ 
168.       
169.         # Time groups 
170.         id_t = np.array([bisect.bisect_right(time_bins, dat_date) 
171.                          for dat_date in dat['date']], 
172.                         int) 
173.       
174.         # Spatial groups (indices and domain) 
175.         id_xy_f, dom, z = self.locate_domain(dat['latitude'], 

dat['longitude'], dat['altitude']) 
176.       
177.         id_xy = np.round(id_xy_f).astype(int) 
178.       
179.           
180.       
181.         # Version of only_in with sel: might be faster if sel is short - 
182.         # I don't know! But the results for my test case where identical 
183.         # (meaning 'domain' looked correct and identical) for both 
184.         # options for only_in. 
185.   
186.         # if only_in: 
187.         #     # Yes, 0<id_t is correct: in bisect_right, it means the 



 

78 
 

188.         #     # value is below the lowest sequence value. 
189.         #     time_in = np.logical_and(0<id_t, id_t<len(time_bins)) 
190.         #     space_in = dom != 0 
191.         #     sel = np.where(np.logical_and(time_in, space_in))[0] 
192.         #  
193.         # else: 
194.         #     sel = range(len(id_t)) 
195.         #  
196.         # indices = get_index_groups(id_t[sel], id_xy[sel, 0], id_xy[sel, 

1], dom[sel]) 
197.         #  
198.         # # Now have to account for sel again! 
199.         # if only_in: 
200.         #     for k, v in indices.iteritems(): 
201.         #         indices[k] = sel[v] 
202.       
203.         # Version of only_in  without sel: might be faster if sel is 
204.         # long - I don't know! But the results for my test case where 
205.         # identical (meaning 'domain' looked correct and identical) 
206.       
207.         # Indices for all groups: 
208.         indices = utilities.get_index_groups(id_t, id_xy[:, 0], id_xy[:, 1], 

dom) 
209.       
210.         # Throw the out-of-domain ones out here already 
211.         if only_in: 
212.             # Remove the index groups where domain is 0 (= outside of 
213.             # domain). Need to iterate over a list, because with an 
214.             # iterator, python complains that the dictionary changed 
215.             # size during iteration. 
216.             for k in list(indices.keys()): 
217.                 if k[3] == 0: 
218.                     del indices[k] 
219.             # Equivalent to the above 3 lines, don't know what's faster: 
220.             # groups = {k: v for k, v in groups.iteritems() if k[3] != 0} 
221.       
222.         return indices 
223.   
224.   
225.     @staticmethod 
226.     def times_in_wrf_file(ncf): 
227.         """ 
228.         Returns the times in netCDF4.Dataset ncf as datetime object 
229.         """ 
230.         times_nc = ncf.variables["Times"] 
231.         times_chr = [] 
232.         for nt in range(times_nc.shape[0]): 
233.             # freum 2021-07-11: with the migration to python3, need to 
234.             # replace the string - conversion. Hope "utf-8" works 
235.             # always. 
236.             # times_chr.append(times_nc[nt, :].tostring()) 
237.             times_chr.append(str(times_nc[nt, :], "utf-8")) 
238.   
239.         times_dtm = [dt.datetime.strptime(t_chr, "%Y-%m-%d_%H:%M:%S") 
240.                      for t_chr in times_chr] 
241.   
242.         return times_dtm 
243.   
244.     def wrf_times(self, file_list): 
245.         """Read all times in a list of wrf files 
246.   
247.         Output 
248.         ------ 
249.         - 1D-array containing all times 
250.         - 1D-array containing start indices of each file 
251.         """ 
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252.   
253.         times = list() 
254.         start_indices = np.ndarray((len(file_list), ), int) 
255.         for nf in range(len(file_list)): 
256.             ncf = nc.Dataset(file_list[nf]) 
257.             times_this = self.times_in_wrf_file(ncf) 
258.             start_indices[nf] = len(times) 
259.             times += times_this 
260.             ncf.close() 
261.   
262.         return times, start_indices 
263.   
264.     def open_wrf_location_files(self): 
265.         """ 
266.         Keep a description of a small wrf file for each domain in memory 
267.         to locate observations. 
268.         Appends _loc_file to self. 
269.           
270.         Note: Should be edited out of the code. 
271.         """ 
272.   
273.         ndomains = self.namelist["domains"]["max_dom"] 
274.         path = self.settings["run_dir"] 
275.         pattern = "wrfinput_d%02d" 
276.         self._loc_files = list() 
277.         for nd in range(1, ndomains+1): 
278.             fp = os.path.join(path, pattern % nd) 
279.             self._loc_files.append(nc.Dataset(fp, "r")) 
280.   
281.     def close_wrf_location_files(self): 
282.         """See _open_wrf_location_files""" 
283.         for loc_file in self._loc_files: 
284.             loc_file.close() 
285.   
286.     def wrf_filename_times(self, prefix): 
287.         """Get timestamps in wrf file names in run directory.""" 
288.   
289.         # List all filenames 
290.         files = self.get_wrf_filenames(prefix + "*") 
291.         # Only use d01 files, pattern should be the same for all domains 
292.         pattern = os.path.join(self.settings["run_dir"], prefix) 
293.         files = [f for f in files if re.search(pattern, f)] 
294.         # Extract timestamp from filename 
295.         # Format is %Y-%m-%d_%H:%M:%S at the end of the filename 
296.         pattern_time = "%Y-%m-%d_%H:%M:%S" 
297.         len_tstamp = len(pattern_time) + 2 
298.         times = [dt.datetime.strptime(f[-len_tstamp:], pattern_time) 
299.                  for f in files] 
300.   
301.         return times 
302.   
303.     def get_wrf_filenames(self, glob_pattern): 
304.         """ 
305.         Gets the filenames in self.settings["run_dir"] that follow 
306.         glob_pattern, excluding those that end with 
307.         self.settings["original_save_suffix"] 
308.         """ 
309.         path = self.settings["run_dir"] 
310.         # All files... 
311.         wfiles = glob.glob(os.path.join(path, glob_pattern)) 
312.         # All originals 
313.         orig_suf = self.settings["original_save_suffix"] 
314.         opattern = glob_pattern + orig_suf 
315.         ofiles = glob.glob(os.path.join(path, opattern)) 
316.   
317.         # All files except all originals: 
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318.         files = [x for x in wfiles if x not in ofiles] 
319.   
320.         # I need this sorted too often to not do it here. 
321.         files = np.sort(files).tolist() 
322.         return files 
323.   
324.   
325.     def sample_flask(self, dat, loc, fields_list): 
326.          
327.         # Initialize output 
328.         tc = np.ndarray(shape=(len(dat["obs_num"]), len(fields_list)), 

dtype=float) 
329.         tc[:] = float("nan") 
330.   
331.         # Process by domain 
332.         UD = list(set(loc["domain"])) 
333.         #for dom in UD[1:]: 
334.         for dom in UD: 
335.             idd = np.nonzero(loc["domain"] == dom)[0] 
336.             # Process by id_t 
337.             UT = list(set(loc["id_t"][idd])) 
338.             for time_id in UT: 
339.                 # Coordinates to process 
340.                 idt = idd[np.nonzero(loc["id_t"][idd] == time_id)[0]] 
341.                 # Get tracer ensemble profiles 
342.                 profiles = self._read_and_intrp_v(loc, fields_list, time_id, 

idt) 
343.         # Here it starts to make sense to loop over individual observations 
344.                 for nidt in range(len(idt)): 
345.                     nobs = idt[nidt]                    
346.                    # Compute flasks 
347.                     for nf in range(len(fields_list)): 
348.   
349.                         # Model retrieval 
350.                         tc[nobs, nf] = profiles[nf][nidt] 
351.                
352.         return tc 
353.   
354.     @staticmethod 
355.     def _read_and_intrp_v(loc, fields_list, time_id, idp): 
356.         """ 
357.         Helper function for sample_flasks. 
358.         read_and_intrp, but vectorized. 
359.         Reads in fields and interpolates 
360.         them linearly in time. 
361.           
362.         Output 
363.         ------ 
364.         List of temporally interpolated fields, one entry per member of 
365.         fields_list. 
366.         """ 
367.   
368.         var_intrp_l = list() 
369.   
370.         # Check we were really called with observations for just one domain 
371.         domains = set(loc["domain"][idp]) 
372.         if len(domains) > 1: 
373.             raise ValueError("I can only operate on idp with identical 

domains.") 
374.         dom = domains.pop() 
375.   
376.         # Select input files 
377.         id_file0 = bisect.bisect_right(loc["file_start_time_indices"][dom], 

time_id) - 1 
378.         id_file1 = bisect.bisect_right(loc["file_start_time_indices"][dom], 

time_id+1) - 1 



 

81 
 

379.         if id_file0 < 0 or id_file1 < 0: 
380.             raise ValueError("This shouldn't happen.") 
381.   
382.         # Get time id in file 
383.         id_t_file0 = time_id - loc["file_start_time_indices"][dom][id_file0] 
384.         id_t_file1 = time_id+1 - 

loc["file_start_time_indices"][dom][id_file1] 
385.   
386.         # Open files 
387.         nc0 = nc.Dataset(loc["files"][dom][id_file0], "r") 
388.         nc1 = nc.Dataset(loc["files"][dom][id_file1], "r") 
389.         # Per field to sample 
390.         for field in fields_list: 
391.             # Read input file 
392.             field0 = wrf.getvar(wrfin=nc0, 
393.                                 varname=field, 
394.                                 timeidx=id_t_file0, 
395.                                 squeeze=False, 
396.                                 meta=False) 
397.   
398.             field1 = wrf.getvar(wrfin=nc1, 
399.                                 varname=field, 
400.                                 timeidx=id_t_file1, 
401.                                 squeeze=False, 
402.                                 meta=False) 
403.   
404.             if len(field0.shape) == 4: 
405.                 # Sample field at timesteps before and after observation 
406.                 # They are ordered nt x nz x ny x nx 
407.                 # var0 will have shape (len(idp),len(profile)) 
408.                 var0 = field0[0, loc["z"][idp], loc["id_xy"][idp, 1], 

loc["id_xy"][idp, 0]]  
409.                 var1 = field1[0, loc["z"][idp], loc["id_xy"][idp, 1], 

loc["id_xy"][idp, 0]] 
410.                 # Repeat frac_t for profile size 
411.                 frac_t_ = np.array(loc["frac_t"][idp])#.reshape((len(idp), 

1)).repeat(var0.shape[1], 1) 
412.             elif len(field0.shape) == 3: 
413.                 # var0 will have shape (len(idp),) 
414.                 var0 = field0[0, loc["id_xy"][idp, 1], loc["id_xy"][idp, 0]] 
415.                 var1 = field1[0, loc["id_xy"][idp, 1], loc["id_xy"][idp, 0]] 
416.                 frac_t_ = np.array(loc["frac_t"][idp]) 
417.             elif len(field0.shape) == 2: 
418.                 # var0 will have shape (len(idp),len(profile)) 
419.                 # This is for ZNW, which is saved as (time_coordinate, 
420.                 # vertical_coordinate) 
421.                 var0 = field0[[0]*len(idp), :]  
422.                 var1 = field1[[0]*len(idp), :] 
423.                 frac_t_ = np.array(loc["frac_t"][idp]).reshape((len(idp), 

1)).repeat(var0.shape[1], 1) 
424.             else: 
425.                 raise ValueError("Can't deal with field with %d dimensions." 

% len(field0.shape)) 
426.   
427.             # Interpolate in time 
428.             var_intrp_l.append(var0*frac_t_ + var1*(1. - frac_t_)) 
429.   
430.         nc0.close() 
431.         nc1.close() 
432.   
433.         return var_intrp_l 
434.   
435.     @staticmethod 
436.     def read_sampling_coords(sampling_coords_file, id0=None, id1=None): 
437.         """Read in samples""" 
438.   
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439.         ncf = nc.Dataset(sampling_coords_file, "r") 
440.         if id0 is None: 
441.             id0 = 0 
442.         if id1 is None: 
443.             id1 = len(ncf.dimensions['obs']) 
444.   
445.         dat = dict( 
446.             obs_num=np.array(ncf.variables["obs_num"][id0:id1]), 
447.             date=ncf.variables["date_components"][id0:id1], 
448.             latitude=np.array(ncf.variables["latitude"][id0:id1]), 
449.             longitude=np.array(ncf.variables["longitude"][id0:id1]), 
450.             altitude=np.array(ncf.variables["altitude"][id0:id1]), 
451.             #strategy=np.array(ncf.variables["sampling_stategy"][id0:id1]), 
452.             #evn=np.array(ncf.variables["obs_id"][id0:id1]), 
453.             obs=np.array(ncf.variables["observed"][id0:id1]), 
454.             mdm=np.array(ncf.variables["modeldatamismatch"][id0:id1]) 
455.             ) 
456.   
457.         ncf.close() 
458.   
459.         # Convert date to datetime object 
460.         dat["time"] = [dt.datetime(*x) for x in dat["date"]] 
461.   
462.         return dat 
463.   
464.     @staticmethod 
465.     def write_simulated_flask(obs_id, simulated, nmembers, outfile): 
466.         """Write simulated observations to file.""" 
467.   
468.         # Output format: see obs_xco2_fr 
469.   
470.         f = io.CT_CDF(outfile, method="create") 
471.   
472.         dimid = f.createDimension("obs_num", size=None) 
473.         dimid = ("obs_num",) 
474.         savedict = io.std_savedict.copy() 
475.         savedict["name"] = "obs_num" 
476.         savedict["dtype"] = "int64" 
477.         savedict["long_name"] = "Unique_Dataset_observation_index_number" 
478.         savedict["units"] = "" 
479.         savedict["dims"] = dimid 
480.         savedict["comment"] = "Format as in input" 
481.         savedict["values"] = obs_id.tolist() 
482.         f.add_data(savedict, nsets=0) 
483.   
484.         dimmember = f.createDimension("nmembers", size=nmembers) 
485.         dimmember = ("nmembers",) 
486.         savedict = io.std_savedict.copy() 
487.         savedict["name"] = "flask" 
488.         savedict["dtype"] = "float" 
489.         savedict["long_name"] = "Simulated flask" 
490.         savedict["units"] = "??" 
491.         savedict["dims"] = dimid + dimmember 
492.         savedict["comment"] = "Simulated model value created by WRFChemOO" 
493.         savedict["values"] = simulated.tolist() 
494.         f.add_data(savedict, nsets=0) 
495.   
496.         f.close() 
497.   
498.     @staticmethod 
499.     def save_file_with_timestamp(file_path, out_dir, suffix=""): 
500.         """ Saves a file to with a timestamp""" 
501.         nowstamp = dt.datetime.now().strftime("_%Y-%m-%d_%H:%M:%S") 
502.         new_name = os.path.basename(file_path) + suffix + nowstamp 
503.         new_path = os.path.join(out_dir, new_name) 
504.         shutil.copy2(file_path, new_path) 
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505.       
506.   
507. if __name__ == "__main__": 

508.     pass 
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