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Abstract

Machine learning (ML) is a growing field poised to change the way we practice cardiovas-

cular medicine, providing new tools for interpreting data and making decisions. Cardiac

digital images or biosignals defy traditional statistical methods and require the deployment

of ML. In this work we show that ML classifiers trained using anthropometric features and

ECG-derived features, can: (a) detect abnormal left ventricular geometry, even before the

onset of left ventricular hypertrophy; (b) detect hypertension using 12-lead-ECG-derived

features; and (c) detect hypertension in populations without cardiovascular disease from

single-lead-ECGs. The latter classifiers can be useful in raising awareness in people with

undiagnosed hypertension. We then present a computational method to simulate the dy-

namics of action potential propagation using the three-variable Fenton-Karma model and

account for both normal and damaged cells through spatially inhomogeneous voltage diffu-

sion coefficient.
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Επιβλέπων: Καθ. Γ. Τσιρωνης Ελενη Ε. Αγγελακη

Εφαρμογες Μηχανικης Μαθησης και Υπολογιστικων
Μεθοδων στην προβλεψη της Καρδιοαγγειακης

Αναδιαμορφωσης

Περιληψη

Ημηχανική μάθηση (ΜΜ) είναι ένας γοργά αναπτυσσόμενος τομέας που πιθανόν να αλλάξει

τον τρόπο με τον οποίο ασκούμε την καρδιολογική ιατρική, προσφέροντας νέα εργαλεία για την

ερμηνεία των δεδομένων και τη λήψη αποφάσεων. Οι ψηφιακές εικόνες και τα βιοσήματα της

καρδιάς δεν μπορουν να αναλυθούν με τις παραδοσιακές στατιστικές μεθόδους και χρειαζονται

εφαρμογές της ΜΜ. Σε αυτήν την εργασία δείχνουμε ότι οι ταξινομητές ΜΜ που εκπαιδεύονται

χρησιμοποιώντας ανθρωπομετρικά χαρακτηριστικά και χαρακτηριστικά που προέρχονται από

το ηλεκτροκαρδιογράφημα (ΗΚΓ), μπορούν: (α) να ανιχνεύσουν την ανώμαλη γεωμετρία

της αριστερής κοιλίας, ακόμη και πριν την εμφάνιση υπερτροφίας της αριστερής κοιλίας, (β)

να ανιχνεύσουν την υπέρταση σε πληθυσμούς χωρίς καρδιαγγειακή νόσο, χρησιμοποιώντας

χαρακτηριστικά που προέρχονται από το ΗΚΓ 12 απαγωγών, και (γ) να ανιχνεύσουν την

υπέρταση σε πληθυσμούς χωρίς καρδιαγγειακή νόσο, από το ΗΚΓ της μίας απαγωγής. Στην

τελευταία περίπτωση, οι ταξινομητές θα μπορουσαν να είναι χρήσιμοι για την ευαισθητοποίηση

άτομων με αδιάγνωστη υπέρταση. Στη συνέχεια, παρουσιάζουμε μια υπολογιστική μέθοδο για

την προσομοίωση της διάδοσης του δυναμικού ενέργειας χρησιμοποιώντας το μοντέλο Fenton-

Karma σε καρδιακά κύτταρα με χωρικά ανισότροπο συντελεστή διάχυσης.
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1
Introduction

Humans have always revelled at explaining the physical world through Physics and

Math. Initially with just our brains, then using computers programmed to follow a list of

formal, mathematical rules, called algorithms, designed to solve straight-forward problems.

In the last decades, these algorithms have evolved to solving difficult, even intuitive tasks,

such as recognizing faces in a photo, making conversation, discovering patterns in hetero-

1



geneous data, or detecting diseases in medical imaging modalities. Algorithms aiming at

creating systems that mimic cognitive functions akin to humans, constitute the broad term

of artificial intelligence (AI). Today, AI is a growing field with many practical applications

and active research areas including in cardiology.

Cardiovascular diseases (CVDs) are a group of disorders of the heart and blood ves-

sels which may lead to deaths due to heart attacks and strokes – according to theWorld

Health Organization, CVDs are the leading cause of death globally, taking an estimated

17.9 million lives each year.1 Many patients are asymptomatic until the late stages when

they present with acute, life-threatening disease. Early detection, risk assessment, and

behavior/health-factor intervention are essential to lower CVDmorbidity and mortality.

Cardiac remodeling is considered an important aspect of CVD progression and is therefore

emerging as a significant therapeutic target.2,3,4,5 More specifically, arterial hypertension is

associated with a spectrum of cardiac geometric adaptation matched to systemic hemody-

namics and ventricular load, which has important prognostic implications.2,3,4,5

The heart, this incredibly complicated physical system that keeps us alive, produces a

synchronized mechanical contraction, or heartbeat, initiated by a self-generated electrical

stimulus that propagates through the cardiac muscle creating what is called an action po-

tential (AP). APs are macroscopically traced via the body surface electrocardiogram (ECG).

One of cardiology’s most inexpensive, easy to use, and noninvasive modalities, the EKG,

enables physicians to look for patterns that correlate with disease manifestation, provid-

ing unique information that cannot be obtained by any other technique. An ECG can

be rapidly recorded with computer-enabled portable equipment in a so-called 12 lead, or

2



single-lead configuration, the latter supported also by wearable devices.

The motivation for this dissertation is first to understand the interplay between experi-

mental observations in ECG signals and disease manifestation, and second, to gain insight

into the connection of cardiac elements on a cell level and the macroscopically observed

ECG signals. The content is arranged as follows: Chapter 1 discusses the purpose of this

work and gives its outline, and Chapter 2 provides a brief description of the function of the

heart with some details on ECG acquisition. Chapter 3 gives an overview of AI, its subcat-

egories, and methods of implementation. Examples of AI in medicine and specifically in

cardiology are given.

Chapter 4 discusses the methods common to all the experimental studies of the next

three Chapters. Chapter 5 describes cardiac remodeling and the role of ECG in predicting

abnormal left ventricular geometry, and Chapter 6 presents the results of opportunistically

detecting the existence of arterial hypertension, using a 12-lead. Wrapping the machine

learning part is Chapter 7, where we detect hypertension from a single-lead ECG.

Chapter 8 provides an introduction to the mathematical concepts involved in AP prop-

agation. Chapter 9 employs a low-dimensional mathematical model for the AP, and con-

structs the so-called pseudo-ECG, reproducing some features of the body surface ECG.We

then alter the parameters of the model to mimic defected regions in the cardiac tissue. In

this Chapter we also present our findings in T-wave inversion when changing the diffusiv-

ity of the cell medium. Last, in Chapter 10 we make our conclusions and discuss about

future work.
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2
Cardiac anatomy and physiology

The heart is located between the lungs in the middle of the chest, enclosed in a

double layered membrane called the pericardium, whose inner layer is attached to the heart

muscle. A coating of fluid separates the two layers of the membrane, letting the heart move

as it beats. Internally, the heart is composed of four chambers: the left and right atrium,

located in the upper part, and the left and right ventricle located in the lower part, as shown

5



in figure 2.1.

Fig. 2.1: Anatomy of the heart as a double pump. Image from6, CC.

When relaxed, the right atrium receives deoxygenated blood that has circulated through-

out the body including the heart itself after delivering oxygen and nutrients, while the left

fills with newly oxygenated blood from the lungs. When the atria contract they push the

blood through valves into the relaxed ventricles, which then contract to push blood out.

The right ventricle pumps blood to the lungs while the left one pumps blood to the body.

This continuous cycle of synchronized contractions repeats approximately 60-100 times

per minute and circulates close to six liters of blood per minute through the body.

6



2.1 The electrocardiogram

British physiologist Augustus D. Waller of St Mary’s Medical School, London, recorded

the first human electrocardiogram in 1887, using a capillary electrometer from Thomas

Goswell, a technician in the laboratory7, thus inventing a cornerstone in cardiovascular

diagnostics. In early 20th century, Dutch physicianWillem Einthoven, considered the

father of electrocardiography as we know it today, coined the term “electrocardiogram”.

Einthoven, using an improved electrometer and a correction formula, distinguished five

deflections which he named P, Q, R, S and T8. His revolutionary invention transformed

cardiac diagnostics, earning him the Nobel Prize in Physiology or Medicine in 1924.

Electrodes placed in specific locations on the extremities and torso detect the currents

reaching the skin and are configured in leads to record the voltage differences between

those electrodes. Today, recordings of 12 leads are produced, and the standardization of the

ECGwaves (P, QRS, and T) allows for consistent readings. ECG recording devices, called

electrocardiographs, evolved from cumbersome, large machines, to small and portable ones.

Their recordings also progressed to include not just paper outputs but also digital files

that can be interpreted, stored, and analysed by computer. Digital interpretation of ECGs

via computational methods andML further enhance diagnostic accuracy. The addition

of wearable technology, mobile apps, and telemedicine platforms, make ECG readings

accessible even beyond the clinical setting.

The use of multiple leads helps capture the activity of the heart through multiple views,

the outputs of which are amplified, filtered, digitized, and displayed to produce an ECG

7



recording. Leads are divided in two groups:

      

Fig. 2.2: Electrodes attached to the body surface to take an ECG. Chest leads give a close multidimensional
view of cardiac electrical activity (left). In the limp leads (right), the right leg (RL) electrode functions solely as
a ground to prevent alternating current interference. LA stands for left arm; LL for left leg; and RA for right
arm. Image from9. Used with permission from Elsevier.

(a) The six limb leads consisting of the standard bipolar (I, II, III) and augmented (aVR,

aVL, and aVF) leads. The bipolar leads record the voltage difference between two extrem-

ities as follows: lead I records the difference between the left arm (LA) and the right arm

(RA) electrodes, lead II records the difference between the right arm (RA) and the left leg

(LL) electrodes, and lead III records the difference between the left leg (LL) and the left

arm (LA) electrodes. Dr. Emanuel Golberger invented the three augmented leads which

are unipolar in the sense that those electrodes record the voltage in one location rather than

two. To be exact, they record the difference between that location and the middle of the

chest considered to have zero potential. Fig. 2.2 (right) shows the placement of the limb
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electrodes on the body. Leads I, II, and III can be represented schematically as a triangle,

called Einthoven’s triangle, showing the spatial orientation of those three leads. The aug-

mented leads can also be placed on Einthoven’s triangle as shown in Fig. 2.3 (left).

Fig. 2.3: Einthoven’s triangle extended to include not only the three standard limb leads, but also the three
augmented leads (left). Vectors for the six unipolar precordial leads are shown on the right. LA, Left arm; LF,
left foot; RA, right arm. Image from10. Used with permission from Elsevier.

(b) The six precordial leads (V1 to V6), also called the chest leads, record the electrical

currents of the heart via electrodes placed directly on the chest wall. Shown in Fig. 2.2

(left), and Fig. 2.3 (right), they are unipolar and, being closer to the heart, better suited for

the detection of certain conditions such as left ventricular hypertrophy (LVH).

The ECG connects basic science and life-saving decisions made by physicians, in the

most fascinating way. The criteria for interpreting an ECG in a clinical setting have evolved

for over a century and are based on correlations between physiologic findings and feature

measurements in large populations. Several different criteria with varying accuracy have

been proposed for clinical conditions, sometimes, based purely on empirical knowledge.
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Consequently, ECGs can be viewed using in different frames of reference. One, is formu-

lated from the statistical probability that a physiologic abnormality exists based on the

phenomenological findings on the ECG, and the other, uses knowledge accumulated from

studies in cardiac electrophysiology. A typical output ECG reading is shown in Fig. 2.4.

Fig. 2.4: A. Sample ECG showing all 12 standard leads. Each lead is displayed for a fourth of the total time
which is usually 10 sec. B. A closer look at a whole 10 sec tracing for lead II. The average heart rate for this
person is 50− 60 beats per minute. Image from9. Used with permission from Elsevier.

2.2 The action potential

The study of the heart’s electrical system is about excitable media, a class of nonlinear com-

plex systems, whose behavior is described in terms of the potentials and currents they pro-

duce, observed in the medium’s interior, across their membranes, and in their surrounding
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space. Charge-carrying ions within electrolytes – mainly ions of sodium and potassium –

constitute currents in living tissue. Except where it crosses the membrane, current is mostly

one directional, moving along the fiber’s axis. Excitable media are composed of elemen-

tary segments each of which has three basic characteristics: a resting state, an excitation

threshold, and a diffusive-type coupling among neighboring segments.11 Myocardial cells

exhibit all three characteristics: (1) They have a resting potential of about−80 to−90

mVwith respect to surrounding extracellular fluid. (2) Their threshold for excitation of

about−70 mV ensures that only external stimuli above a certain value induce the cell to

change its state from resting to excited. When in an excited state, the cell produces a pulse

in time which propagates without damping and whose shape and nature are determined

by the nonlinear properties of the medium and not by the form of the external excitation.

This change happens due to charged cations moving in and out of the cell, a movement

controlled by specialized proteins embedded in the cell membranes that make up ion chan-

nels, transporters, and pumps, collectively referred to as gates. (3) propagation of the AP

involves the diffusion of ions via the gap junctions, as well as their transmembrane transfer

through the gates.

At the top of Fig. 2.5 we see the sodium (Na+) entry via the fast sodium channel which

is responsible for the rapid upstroke of the action potential in ventricular cells. Calcium

(Ca++) enters the cell via the calcium channel, depicted next to the sodium channel, and

is responsible for the depolarization of the muscle cells. Potassium (K+) repolarizes the cell

by exiting via potassium channels. Potassium channels are the only ones that are always

open in order to maintain the resting potential. All channels are considered gated because
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they open and close at different rates depending on the transmembrane voltage and on the

length of time during which the cell has maintained certain voltages.

Fig. 2.5: Ion channels, gap junctions, and transporters in the myocyte. At the top of the Figure we can see
the sodium (Na+) entry via the fast sodium channel which is responsible for the rapid upstroke of the action
potential. Image from12 used with permission from Wolters Kluwer.

Effectively, gap junctions slow down propagation by having a larger resistance than the

cytoplasm. They allow heart cells to function in a coordinated, synchronized manner, en-

suring they’re electrically connected as a single unit. These junctions are predominantly

found at the ends of cells. As a result, the anatomic characteristics of groups of cardiac

muscle differ based on the orientation they’re studied from, a trait known as “anisotropy”.

Conduction velocity is about two to three times faster along the length of the fiber com-

pared to across its width.

There are 5 types of cardiac muscle which differ anatomically and functionally: sinoa-

trial (SA) node, atrioventricular (AV) node, His-Purkinje system, atrial muscle, and ven-
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tricular muscle.13 The myocardium, the muscle in the walls of the heart chambers, is the

thickest part of the heart muscle – thicker in the ventricles and thinner in the atria; its

cells, called myocytes, are roughly shaped as cylinders and in the ventricles are 100 µm long

and 25 µm wide14. Each cell contains myofibrils, long chains of individual sarcomeres

which are the basic contractile element of the cell, the part that makes the heart contract.

Sarcolemma, as the cell’s membrane, named defines the limits of the cell and separates its

exterior from its interior, while also acting as an electrical parallel plate capacitor. Its asym-

metric lipid molecule bilayer forms an interior insulating core. Myocytes contain regions

called intercalated discs (IDs), present only in cardiac cells. Shown along with sarcomeres

in Fig. 2.6, IDs appear as dark transverse lines that cross chains of cardiac cells at various

intervals and include gap junctions, complexes that metabolically and electrically connect

adjacent cardiomyocytes.

Fig. 2.6: Electron imaging of normal human left ventricular cardiomyocytes. Intercalated discs (arrows) and
sarcomere striations are clearly seen; magnification ×600. ID indicates intercalated disc. Image from15.

Normally, the AP originates from a group of specialized pacemaker cells, found in high

proportion of the right atrium, and constituting the sinoatrial node (SAN), as shown in
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Fig. 2.7. From the SAN, the electrical signal spreads through the right atrium into the left

Fig. 2.7: Anatomy of the heart as an electrically timed pump. Image from16 used with permission from Else‐
vier.

atrium and then to the atrioventricular (AV) node which, under normal circumstances, is

the sole electrical conduction point between the atria and the ventricles. The AP proceeds

to the bundle of His, and from there to the left ventricle via the left bundle branch, as

well as the right ventricle via the right bundle branch. The conduction of the electrical

signal in the ventricles is rapid due to specialized cells called Purkinjie fibers that ensure

simultaneous depolarization and therefore contraction of the ventricles.

Life is sustained due to the reliable propagation of APs across the myocardium, which

ensures its coordinated excitation and contraction, the heartbeat, as mentioned. The AP

is essentially an electrical disturbance, which propagates over long distances, and once ini-

tiated by excitation from a stimulus current, preserves its propagation independently of

the triggering stimulus – achieving an “autopreserving” status. The resting potential for

the membrane is around−85 mV and is depicted by phase 4 in Fig. 2.8. To initiate the
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AP, the stimulus current must assume a threshold value of certain amplitude, between

−60 to−70 mV, after which a dramatic change in the potential is shown by the rapid up-

stroke of phase 0 in Fig. 2.8. A fast influx of Na+ ions through the membrane depolarizes

the membrane by over 100 mV in only milliseconds (phase 1 in in Fig. 2.8). Then the fast

Na+ channels close and the slow Ca++ ion channels open to let the influx of Ca++ as well

as some Na+. These slow currents are accompanied by K+ leaning the cell in the plateau

phase (phase 2 in Fig. 2.8). Then the Ca++ stops and rest state is restored by the outward

flux of K+ (phase 3 in Fig. 2.8).

Time

-50

-25

0

25

50

M
em

br
an

e 
po

te
nt

ia
l (

m
V)

0

1 2

4

3

Fig. 2.8: Schematic representation of AP. The resting potential is represented by phase 4. Phase 0 is the rapid
upstroke of depolarization which happens because of Na+ influx; a transient outward potassium current is
responsible for partial repolarization during phase 1; slow Ca++ influx balanced by K+ efflux results in the
plateau of phase 2; and final rapid repolarization results largely from further K+ efflux during phase 3. The
orange dotted line denotes the threshold potential for cell firing

Alterations in the electrical properties of ventricular tissue form the basis of ischemic

arrhythmogenesis producing changes in the AP pulses and the ECG.17,18 Such alterations,

involving, for example, the remodeling of ionic currents due to changes in intracellular and
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extracellular ionic concentrations, has been studied in the literature.19 Spatial heterogeneity

such as cell-to-cell decoupling, occurring usually in later stages of ischemia, has also been

shown experimentally to lead to propagation disruptions and a reduction in conduction

velocity.20

Fig. 2.9 shows the cardiac conduction system as a network of specialized cells compris-

ing of the sinoatrial (SA) node, the artial muscle, the atrioventricular (AV) node, the His

bundle and its bundle branches, the Purkinjie fibers, and finally the ventricular myocytes.
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Fig. 2.9: Cardiac action potential (AP) shown for different types of cardiomyocytes, and how they relate to
the electrocardiogram (ECG). Depicted is the membrane potential w.r.t. time, for the duration of a single
heartbeat. P waves relate to the depolarization of the atrial myocytes, the QRS complex relates to the depo‐
larization of the ventricles, and T waves relate to the repolarization of the ventricles. We notice that, the AP
of the ventricular cells, depicted by the grey curve at the bottom of the series of curves, has a longer duration
than that of the SA node, drawn as the top curve; also, the Purkinje cell AP is similar to the ventricular action
potential except for a sharper initial peak.These relations are color‐coded in the small realistic electrocardio‐
gram (ECG) at the bottom right of the image. Image courtesy of Dr. De Voogt and ECGpedia.org.

We can see that AP curve shapes are different for each type of cardiac cell. In the small

realistic electrocardiogram (ECG) at the bottom right of the image, we see how these AP

curves are associated with parts of an actual ECG (introduced in section 2.1).

Disruptions in AP propagation are the manifestations of underlying cardiac abnormal-

ities, e.g. in myocardial ischemia, one such abnormality, the blood supply to the heart’s
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coronary arteries cannot meet the demand. The basis of ischemic arrhythmogenesis is al-

teration in the electrical properties of ventricular tissue, producing changes in the action

potential and the body surface ECG17,18. One such alteration, the remodeling of ionic

currents due to changes in intracellular and extracellular ionic concentrations, has been

studied in the literature19. In addition to ionic remodeling, spatial heterogeneity such as

cell-to-cell decoupling, occurring usually in later stages of ischemia, has been shown experi-

mentally to lead to propagation disruptions and a reduction in conduction velocity20.
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3
Artificial Intelligence in cardiovascular medicine

The term AI defines an interdisciplinary area that includes the techniques we

call machine learning (ML). In today’s literature, those two terms are often interchange-

able, justified by the absence of practical applications in the area outside of their intersec-

tion; an area reserved for Artificial General Intelligence (AGI), a theoretical form of AI

where machines would have an intelligence similar to humans, and Artificial Super Intelli-
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gence (ASI) where machines would surpass the intelligence of the human brain.

3.1 Machine learning

ML is defined as a set of mathematical algorithms that enable computers to detect com-

plex patterns in data and then use those patterns to predict future behavior, thus assisting

humans in decision-making, while automating repetitive human labor. ML focuses more

on making predictions, whereas statistics is geared towards making inferences about data.

ML algorithms, usually calledmodels, improve at tasks with experience; the more you train

them, the better they become. Models such as logistic regression (LR), use hand-crafted

features to determine outcomes, e.g., whether to recommend cesarean delivery21. The

performance of these simple models depends on the representation of the data, as in our

previous example, the features that the doctor will choose to input, such as the absence of

a uterine scar. LR learns how each of these features of the patient correlates with various

outcomes. More complicated algorithms such asRandom Forests (RFs) still use predefined

features but can handle more complicated and nonlinear relationships between them.

When models discover not only the mapping from representation to outcome, but also

the representation itself, we have what is called representation learning. For some tasks,

such as interpreting images, learned representations often result in much better perfor-

mance than can be obtained with hand-designed features. When asking a model to discrim-

inate cats from dogs, we do not describe explicitly how a cat looks, we just show the model

many images of cats with the label “this is a cat”. By acquiring knowledge from experience

and learning complicated concepts out of simpler ones, we avoid having to formally specify
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all the knowledge that the problem requires. Model architectures in this category include

“shallow”, meaning with 1-2 layers, feed forward neural networks (FFNN), and shallow

autoencoders. For problems with a lot of existing human expert knowledge, e.g., data in a

tabular form, adding that data to the algorithmmight increase its accuracy.

Last in our tour of the main types of AI, is deep learning which is expressed by “deep”,

meaning with many layers, FFNNs, convolutional neural networks (CNN),Recurrent neu-

ral networks (RNN), and a zoo of other architectures.22 See Fig. 3.1 for a drawing of a

recap of the basic AI types.

Deep 

Learning 

e.g. ,

ChatGPT 

Representation 

Learning 

e.g. ,

shallow

autoencoders

Machine 

Learning 

e.g. ,

Random 

Forest 

AI 

AGI, ASI

e.g. ,

Knowledge

Bases

Fig. 3.1: A Venn diagram showing how deep learning is a kind of representation learning, which is in turn
a kind of machine learning, which is used for many but not all approaches to AI. Each section of the Venn
diagram includes an example of an AI technology. Image adapted from the book “Deep Learning”.23 Used
with permission from MIT Press.
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In terms of the relationship between the type of training and the kind of data used, ML

is usually divided into three main categories, supervised learning, unsupervised learning,

and reinforcement learning. Fig. 3.2 shows a schematic representation of these three cate-

gories, the details of which are explained in the following paragraphs.

Fig. 3.2: Graphic chart depicting the three major subtypes of ML: supervised learning, unsupervised learning,
and reinforcement learning. Image from9. Used with permission from Elsevier.

In supervised learning the algorithm is given a set of input–output pairs

D = {(xi, yi)}Ni=1,

whereN is the number of samples in the dataset, also called the training set, and the goal
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is to learn a mapping from x inputs to y outputs. The input x = {x1, x2, x3} is a vector of

values called predictors or features, and yi is a single value called the response variable. For

example, x1 could be the age of a patient, x2 their BMI, x3 their blood pressure, and the

response variable could be y = 1, code for a hypertensive person, or y = 0 for a non-

hypertensive (normotensive). Most algorithms assume that the response variable is either

categorical, having values in one ofK different classes or categories, or continuous, taking

on numerical values. We refer to problems with a continuous response as regression prob-

lems, and those involving a categorical response as classification problems. In our previous

example, ywas categorical, assuming values from the finite set yi ∈ {0, 1}. The algorithm

is trained on this set of data, the metric of good performance being how close to the real

output are the outputs of the algorithm when applied to an unseen test set, i.e., the error

rate:
1
N

N∑
i=1

I(yi ̸= ŷi),

or otherwise, the fraction of incorrect classifications, where ŷi is the class label predicted

for the ith observation by the model, and yi is the true class for the same observation. The

indicator variable I is equal to 1 if yi ̸= ŷi, and 0 if yi = ŷi. In other words, if yi = ŷi, then

the ith observation was classified correctly by our model; if yi ̸= ŷi, it wasmisclassified. For

more on metrics see Section 3.1.2.

The success of the supervised technique relies heavily on the availability of large anno-

tated datasets.

In unsupervised learning we only have inputs
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D = {xi}Ni=1,

but no outputs, and the main goal is to find patterns in the data. This, of course, is not

well defined, as we might not know what kind of patterns we are looking for. Observing

patterns in the data allows a deep learning model to cluster inputs. Fig. 3.3 shows a dataset

with two features, x = {x1, x2}, with a clear, non-overlapping (left), and a not-so-clear

(right) clustering tendency for three groups.

Fig. 3.3: Clustering tendency of dataset with two features. Each group is shown using a different colored
symbol. Left: The three groups are well‐separated. In this setting, a clustering approach should successfully
identify the three groups. Right: There is some overlap among the groups. Now the clustering task is more
difficult. Image from24. Used with permission from Springer.

One obvious advantage of unsupervised learning is that it can leverage large amount of

unlabeled data that would otherwise require a large effort to be labeled.

Other ML techniques include: (a) self-supervised learning, where a model is trained on

a task using the data itself to generate supervisory signals, rather than relying on external
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labels, e.g., when we hide a portion of a sentence and the model is asked to generate it; (b)

semi-supervised, where the data consists of a small number of labeled examples and a large

number of unlabeled examples, requiring a combination of supervised and unsupervised

techniques.

Although large sets are abundant in tasks such as common object identification (labeled

photos of cats and dogs), in medicine, there is a plethora of data being produced with little

or no labels, while the opposite, annotated medical datasets, are scarce.25 Labeled medical

datasets are generally in the hundreds of samples and rarely in the thousands or millions.

Transfer learning offers a way to overcome this obstacle. With this method, model param-

eters trained on other tasks, are transferred to a medical task with some extra training. For

example, we could use a model architecture useful for reading text or music and tweak it to

read ECG voltage traces. Or, image models trained on the ImageNet, a large visual database

designed for use in visual object recognition software, can be used to read clinical imaging

photos. However, the characteristics that the model learns might not be relevant to the

medical task at hand. Another technique to compensate for the lack of large datasets, is

data augmentationwhere you supplement the data with “alternative views” of them, e.g.,

one could apply transformations to an ECG to obtain these alternative views, as shown in

Fig. 3.4. What types of augmentation are suitable for the particularities of ECG nature, is

debatable, though.

Unlabeled datasets can be leveraged to build self-supervisedmodels,25 models that learn

from data without labels. For example, one could occlude a portion of an ECG and train

the model to “generate” it. This way, a good representation of the ECG can be learned
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Fig. 3.4: Transformation applied to an ECG segment to augment training a) original, b) with additive Gaussian
noise, c) after being flipped temporally, FlipY , and d) after being flipped along the x‐axis, FlipX. Image from26.

by the model and later used for supervised learning with small amount of labels. Another

self-supervised technique, is contrastive learning, where the primary objective is to make

the model associate similar samples and disassociate dissimilar ones. Similar and dissimilar

samples can be generated using augmentation, as previously mentioned, and as shown in

Fig. 3.5.

The third large category of ML is reinforcement learning. Large language models (LLMs)

in their final training stage, have humans rate their responses in a feedback loop (reward or

penalty), thus reinforcing correct behavior. ChatGPT’s27 impressive behavior in mak-

ing human-like conversation is based on fine-tuning by lots of people rating its responses.

ChatGPT can, for example, write computer programs for processing and visualizing data,

translate foreign languages, decipher explanation-of-benefits notices and laboratory tests
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Single-image instances with augmentation 

] 
Multiple views of the same patient (spatial) 

Multiple samples from the same patient (temporal) 

Fig. 3.5: Examples of positive data pairs used in contrastive learning. From top to bottom: two rotations of
the same X‐ray image; two spatial views of the same patient; two time points of an ECG trace. Image from25.

for readers unfamiliar with the language used in each, and, perhaps controversially, write

emotionally supportive notes to patients.28 At its present form, it is difficult to know

whether ChatGPT’s answers are grounded in appropriate facts.

Given the inefficiency of the human involvement, scientists are looking for other ways to

train LLMs, such as having AI systems rate each other’s responses, taking the human out of

the loop.
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3.1.1 Data science

Data science is a broader set of tools for making sense of complex datasets to which ma-

chine learning is an important, but not the sole, component. In recent years, we have seen

a staggering increase in the scale and scope of data collection across virtually all areas of sci-

ence and industry.24 Data science uses statistical methods, so, since there is terminology

overlap, we will talk about the three types of datasets we use in this work. The training set,

the validation set, and the test set. First, we divide the dataset into training and test sets. We

put the test set away and use it only once to evaluate the performance of our final model(s).

The reported metrics are always on the test set. The training set can be further divided into

training set and validation set either explicitly or via cross-validation. Explicitly is when

we have enough data to “spare” some for the validation set. The model is fit on the train-

ing set, and the fitted model is used to predict the responses for the (known) observations

in the validation set. Depending on the resulting error rate, typically assessed using mean

squared error (MSE) for quantitative responses, the model is trained again optimizing for

this error. If we do not have enough data, we use what is called k-fold cross-validation. This

method randomly divides the dataset into k groups of equal size, each of which is succes-

sively treated as the validation set, while the model is trained on the remaining k− 1 groups.

TheMSE is then computed on the observations in the held-out group. This procedure is

repeated k times resulting in k estimates of the test error, MSE1, MSE2, etc. The total error
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is computed by averaging these values,

1
k

k∑
i=1

MSEi.

Fig. 3.6 illustrates this approach.

Fig. 3.6: A schematic display of 5‐fold CV. A set of n observations is randomly split into five non‐overlapping
groups. Each of these fifths acts as a validation set (shown in beige), and the remainder as a training set
(shown in blue). The test error is estimated by averaging the five resulting MSE estimates. Image from.29

Used with permission from Springer.

3.1.2 Classification metrics

Classification metrics are based on the number of correct predictions, namely, true pos-

itive (TP), true negative (TN), false positive (FP), and false negative (FN) outcomes. They
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include

sensitivity or true positive rate = TP
TP+FN

specificity or true negative rate = TN
TN+FP

false positive rate = 1− specificity

accuracy = TP+TN
TN+FN+FP+TP

Sensitivity and specificity are measures of a model’s ability to correctly classify a person

as having a disease or not having a disease. A highly sensitive model means that there are

few false negative results, and thus fewer cases of disease are missed. The specificity of a

model is its ability to designate an individual who does not have a disease as negative. A

highly specific model means that there are few false positive results, thus avoiding unneces-

sary further diagnostic procedures. It is desirable to have a test that is both highly sensitive

and highly specific, but unfortunately, this is rarely feasible.

The accuracy is a good metric only when the dataset is balanced, meaning the number of

positive outcomes is roughly the same as the number of negative outcomes. In cases of im-

balanced datasets, the area under the receiver operating characteristic curve (AUC/ROC),

measured using the trapezoidal rule, is a more accurate metric. The ROC curve is a pop-

ular graphic for simultaneously displaying the two types of errors for all possible thresh-

olds29. A threshold is the percentage after which an outcome is considered positive. If our

threshold is set to 0.5 (50%), and our model classifies a person as being hypertensive with a
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probability of 55%, then the outcome is positive. The name “ROC” is historic, and comes

from communications theory; an acronym for receiver operating characteristics. The over-

all performance of a classifier, summarized over all possible thresholds, is given by the area

under the (ROC) curve (AUC). The closest to 1 is the AUC the better the classifier. We

expect a classifier that performs no better than a coin flip to have an AUC of 0.5. For an

example of an ROC see Fig. 7.2.

3.1.3 Tools

The programming language Python30 and the Scikit-learn31 library was used for all

ML algorithms and numerical calculations. Custom Python code produced the additional

ECGwaveformmeasurements. We used the scipy.stats.spearmanr function for measur-

ing correlation. All figures and plots, unless otherwise noted, were created directly from the

data, using the plotting library matplotlib32. For implementing the Random Forest clas-

sifier (introduced below) we used RandomForest classifier. All data analysis was done with

the Pandas33 library.

3.1.4 Random Forest classification

ARF is a method of machine learning, an ensemble of Decision Trees34. Decision trees

are formal structures that have been successfully applied to making decisions in medicine;

they resemble decision processes, a method familiar to many doctors. Each decision tree in

a RF (see Fig. 3.7) performs a series of binary decisions (splits) by selecting a subgroup of

the input features (such as age, body mass index, and body surface area), effectively trying
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out different feature order and feature combinations.

(a)

age <= 64.5
gini = 0.486

samples = 380
value = [158, 222]

class = LVH

BSA <= 2.215
gini = 0.494

samples = 236
value = [131, 105]

class = normal

True
BMI <= 26.76
gini = 0.305

samples = 144
value = [27, 117]

class = LVH

False

BSA <= 1.845
gini = 0.464

samples = 197
value = [125, 72]

class = normal

BMI <= 27.26
gini = 0.26

samples = 39
value = [6, 33]
class = LVH

sex <= 0.5
gini = 0.305
samples = 64

value = [52, 12]
class = normal

age <= 51.5
gini = 0.495

samples = 133
value = [73, 60]
class = normal

BMI <= 25.275
gini = 0.49
samples = 7

value = [3, 4]
class = LVH

age <= 40.5
gini = 0.241
samples = 57

value = [49, 8]
class = normal

gini = 0.0
samples = 3

value = [3, 0]
class = normal

gini = 0.0
samples = 4

value = [0, 4]
class = LVH

BMI <= 23.28
gini = 0.444
samples = 3

value = [1, 2]
class = LVH

BSA <= 1.635
gini = 0.198
samples = 54

value = [48, 6]
class = normal

gini = 0.0
samples = 1

value = [1, 0]
class = normal

gini = 0.0
samples = 2

value = [0, 2]
class = LVH

age <= 59.5
gini = 0.426
samples = 13
value = [9, 4]
class = normal

BMI <= 23.44
gini = 0.093
samples = 41

value = [39, 2]
class = normal

gini = 0.0
samples = 8

value = [8, 0]
class = normal

BMI <= 25.375
gini = 0.32
samples = 5

value = [1, 4]
class = LVH

age <= 62.5
gini = 0.5

samples = 2
value = [1, 1]
class = normal

gini = 0.0
samples = 3

value = [0, 3]
class = LVH

gini = 0.0
samples = 1

value = [1, 0]
class = normal

gini = 0.0
samples = 1

value = [0, 1]
class = LVH

BMI <= 23.355
gini = 0.48
samples = 5

value = [3, 2]
class = normal

gini = 0.0
samples = 36

value = [36, 0]
class = normal

gini = 0.0
samples = 3

value = [3, 0]
class = normal

gini = 0.0
samples = 2

value = [0, 2]
class = LVH

BSA <= 2.17
gini = 0.42

samples = 40
value = [28, 12]
class = normal

BMI <= 32.035
gini = 0.499
samples = 93

value = [45, 48]
class = LVH

age <= 49.5
gini = 0.375
samples = 36

value = [27, 9]
class = normal

BMI <= 33.985
gini = 0.375
samples = 4

value = [1, 3]
class = LVH

BMI <= 28.705
gini = 0.436
samples = 28

value = [19, 9]
class = normal

gini = 0.0
samples = 8

value = [8, 0]
class = normal

BMI <= 28.245
gini = 0.494
samples = 18

value = [10, 8]
class = normal

BSA <= 2.135
gini = 0.18

samples = 10
value = [9, 1]
class = normal

BSA <= 2.0
gini = 0.469
samples = 16

value = [10, 6]
class = normal

gini = 0.0
samples = 2

value = [0, 2]
class = LVH

BSA <= 1.885
gini = 0.5

samples = 12
value = [6, 6]
class = normal

gini = 0.0
samples = 4

value = [4, 0]
class = normal

BMI <= 26.875
gini = 0.278
samples = 6

value = [5, 1]
class = normal

BMI <= 24.61
gini = 0.278
samples = 6

value = [1, 5]
class = LVH

gini = 0.0
samples = 5

value = [5, 0]
class = normal

gini = 0.0
samples = 1

value = [0, 1]
class = LVH

BMI <= 23.235
gini = 0.5

samples = 2
value = [1, 1]
class = normal

gini = 0.0
samples = 4

value = [0, 4]
class = LVH

gini = 0.0
samples = 1

value = [0, 1]
class = LVH

gini = 0.0
samples = 1

value = [1, 0]
class = normal

gini = 0.0
samples = 9

value = [9, 0]
class = normal

gini = 0.0
samples = 1

value = [0, 1]
class = LVH

gini = 0.0
samples = 2

value = [0, 2]
class = LVH

BMI <= 40.54
gini = 0.5

samples = 2
value = [1, 1]
class = normal

gini = 0.0
samples = 1

value = [1, 0]
class = normal

gini = 0.0
samples = 1

value = [0, 1]
class = LVH

age <= 63.5
gini = 0.489
samples = 61

value = [35, 26]
class = normal

BSA <= 2.18
gini = 0.43

samples = 32
value = [10, 22]

class = LVH

sex <= 0.5
gini = 0.5

samples = 49
value = [24, 25]

class = LVH

sex <= 0.5
gini = 0.153
samples = 12

value = [11, 1]
class = normal

BMI <= 29.205
gini = 0.413
samples = 24

value = [7, 17]
class = LVH

BMI <= 30.265
gini = 0.435
samples = 25

value = [17, 8]
class = normal

BMI <= 25.415
gini = 0.484
samples = 17

value = [7, 10]
class = LVH

gini = 0.0
samples = 7

value = [0, 7]
class = LVH

gini = 0.0
samples = 4

value = [0, 4]
class = LVH

age <= 59.5
gini = 0.497
samples = 13
value = [7, 6]
class = normal

BSA <= 2.08
gini = 0.375
samples = 8

value = [6, 2]
class = normal

BMI <= 28.72
gini = 0.32
samples = 5

value = [1, 4]
class = LVH

gini = 0.0
samples = 5

value = [5, 0]
class = normal

BMI <= 27.32
gini = 0.444
samples = 3

value = [1, 2]
class = LVH

gini = 0.0
samples = 1

value = [1, 0]
class = normal

gini = 0.0
samples = 2

value = [0, 2]
class = LVH

gini = 0.0
samples = 4

value = [0, 4]
class = LVH

gini = 0.0
samples = 1

value = [1, 0]
class = normal

age <= 61.5
gini = 0.346
samples = 18

value = [14, 4]
class = normal

BMI <= 31.245
gini = 0.49
samples = 7

value = [3, 4]
class = LVH

BSA <= 1.885
gini = 0.291
samples = 17

value = [14, 3]
class = normal

gini = 0.0
samples = 1

value = [0, 1]
class = LVH

age <= 58.5
gini = 0.444
samples = 6

value = [4, 2]
class = normal

age <= 59.0
gini = 0.165
samples = 11

value = [10, 1]
class = normal

age <= 55.5
gini = 0.444
samples = 3

value = [1, 2]
class = LVH

gini = 0.0
samples = 3

value = [3, 0]
class = normal

gini = 0.0
samples = 1

value = [1, 0]
class = normal

gini = 0.0
samples = 2

value = [0, 2]
class = LVH

gini = 0.0
samples = 8

value = [8, 0]
class = normal

BMI <= 27.705
gini = 0.444
samples = 3

value = [2, 1]
class = normal

gini = 0.0
samples = 1

value = [0, 1]
class = LVH

gini = 0.0
samples = 2

value = [2, 0]
class = normal

gini = 0.0
samples = 3

value = [0, 3]
class = LVH

BMI <= 31.57
gini = 0.375
samples = 4

value = [3, 1]
class = normal

gini = 0.0
samples = 2

value = [2, 0]
class = normal

BMI <= 31.825
gini = 0.5

samples = 2
value = [1, 1]
class = normal

gini = 0.0
samples = 1

value = [0, 1]
class = LVH

gini = 0.0
samples = 1

value = [1, 0]
class = normal

gini = 0.0
samples = 11

value = [11, 0]
class = normal

gini = 0.0
samples = 1

value = [0, 1]
class = LVH

sex <= 0.5
gini = 0.375
samples = 28

value = [7, 21]
class = LVH

age <= 63.5
gini = 0.375
samples = 4

value = [3, 1]
class = normal

gini = 0.0
samples = 7

value = [0, 7]
class = LVH

age <= 53.5
gini = 0.444
samples = 21

value = [7, 14]
class = LVH

gini = 0.0
samples = 2

value = [2, 0]
class = normal

BMI <= 43.1
gini = 0.388
samples = 19

value = [5, 14]
class = LVH

BMI <= 37.27
gini = 0.346
samples = 18

value = [4, 14]
class = LVH

gini = 0.0
samples = 1

value = [1, 0]
class = normal

age <= 59.5
gini = 0.48

samples = 10
value = [4, 6]
class = LVH

gini = 0.0
samples = 8

value = [0, 8]
class = LVH

BMI <= 36.035
gini = 0.278
samples = 6

value = [1, 5]
class = LVH

age <= 63.0
gini = 0.375
samples = 4

value = [3, 1]
class = normal

gini = 0.0
samples = 5

value = [0, 5]
class = LVH

gini = 0.0
samples = 1

value = [1, 0]
class = normal

gini = 0.0
samples = 3

value = [3, 0]
class = normal

gini = 0.0
samples = 1

value = [0, 1]
class = LVH

gini = 0.0
samples = 3

value = [3, 0]
class = normal

gini = 0.0
samples = 1

value = [0, 1]
class = LVH

gini = 0.0
samples = 1

value = [1, 0]
class = normal

BMI <= 32.905
gini = 0.229
samples = 38

value = [5, 33]
class = LVH

BSA <= 2.335
gini = 0.42

samples = 10
value = [3, 7]
class = LVH

BSA <= 2.295
gini = 0.133
samples = 28

value = [2, 26]
class = LVH

age <= 42.5
gini = 0.219
samples = 8

value = [1, 7]
class = LVH

gini = 0.0
samples = 2

value = [2, 0]
class = normal

gini = 0.0
samples = 1

value = [1, 0]
class = normal

gini = 0.0
samples = 7

value = [0, 7]
class = LVH

BMI <= 36.5
gini = 0.48
samples = 5

value = [2, 3]
class = LVH

gini = 0.0
samples = 23

value = [0, 23]
class = LVH

gini = 0.0
samples = 3

value = [0, 3]
class = LVH

gini = 0.0
samples = 2

value = [2, 0]
class = normal

age <= 72.0
gini = 0.472
samples = 34

value = [13, 21]
class = LVH

BMI <= 32.405
gini = 0.222

samples = 110
value = [14, 96]

class = LVH

BSA <= 1.805
gini = 0.48

samples = 15
value = [9, 6]
class = normal

BSA <= 1.63
gini = 0.332
samples = 19

value = [4, 15]
class = LVH

BSA <= 1.605
gini = 0.375
samples = 12
value = [9, 3]
class = normal

gini = 0.0
samples = 3

value = [0, 3]
class = LVH

gini = 0.0
samples = 3

value = [3, 0]
class = normal

BSA <= 1.64
gini = 0.444
samples = 9

value = [6, 3]
class = normal

gini = 0.0
samples = 1

value = [0, 1]
class = LVH

age <= 69.5
gini = 0.375
samples = 8

value = [6, 2]
class = normal

BSA <= 1.76
gini = 0.48
samples = 5

value = [3, 2]
class = normal

gini = 0.0
samples = 3

value = [3, 0]
class = normal

age <= 66.0
gini = 0.375
samples = 4

value = [3, 1]
class = normal

gini = 0.0
samples = 1

value = [0, 1]
class = LVH

BMI <= 24.615
gini = 0.5

samples = 2
value = [1, 1]
class = normal

gini = 0.0
samples = 2

value = [2, 0]
class = normal

gini = 0.0
samples = 1

value = [0, 1]
class = LVH

gini = 0.0
samples = 1

value = [1, 0]
class = normal

age <= 79.5
gini = 0.48
samples = 5

value = [3, 2]
class = normal

BMI <= 25.57
gini = 0.133
samples = 14

value = [1, 13]
class = LVH

gini = 0.0
samples = 2

value = [2, 0]
class = normal

age <= 85.5
gini = 0.444
samples = 3

value = [1, 2]
class = LVH

gini = 0.0
samples = 2

value = [0, 2]
class = LVH

gini = 0.0
samples = 1

value = [1, 0]
class = normal

gini = 0.0
samples = 11

value = [0, 11]
class = LVH

BMI <= 25.865
gini = 0.444
samples = 3

value = [1, 2]
class = LVH

gini = 0.0
samples = 1

value = [1, 0]
class = normal

gini = 0.0
samples = 2

value = [0, 2]
class = LVH

BSA <= 1.865
gini = 0.284
samples = 70

value = [12, 58]
class = LVH

BSA <= 2.07
gini = 0.095
samples = 40

value = [2, 38]
class = LVH

age <= 66.0
gini = 0.159
samples = 46

value = [4, 42]
class = LVH

BMI <= 29.37
gini = 0.444
samples = 24

value = [8, 16]
class = LVH

BMI <= 27.6
gini = 0.444
samples = 3

value = [1, 2]
class = LVH

BSA <= 1.665
gini = 0.13

samples = 43
value = [3, 40]
class = LVH

gini = 0.0
samples = 1

value = [1, 0]
class = normal

gini = 0.0
samples = 2

value = [0, 2]
class = LVH

age <= 74.5
gini = 0.26

samples = 13
value = [2, 11]
class = LVH

age <= 79.5
gini = 0.064
samples = 30

value = [1, 29]
class = LVH

age <= 71.5
gini = 0.408
samples = 7

value = [2, 5]
class = LVH

gini = 0.0
samples = 6

value = [0, 6]
class = LVH

gini = 0.0
samples = 4

value = [0, 4]
class = LVH

BSA <= 1.635
gini = 0.444
samples = 3

value = [2, 1]
class = normal

gini = 0.0
samples = 1

value = [1, 0]
class = normal

BMI <= 29.18
gini = 0.5

samples = 2
value = [1, 1]
class = normal

gini = 0.0
samples = 1

value = [0, 1]
class = LVH

gini = 0.0
samples = 1

value = [1, 0]
class = normal

gini = 0.0
samples = 22

value = [0, 22]
class = LVH

age <= 81.5
gini = 0.219
samples = 8

value = [1, 7]
class = LVH

gini = 0.0
samples = 1

value = [1, 0]
class = normal

gini = 0.0
samples = 7

value = [0, 7]
class = LVH

age <= 73.5
gini = 0.444
samples = 6

value = [4, 2]
class = normal

BMI <= 32.315
gini = 0.346
samples = 18

value = [4, 14]
class = LVH

gini = 0.0
samples = 4

value = [4, 0]
class = normal

gini = 0.0
samples = 2

value = [0, 2]
class = LVH

BMI <= 31.235
gini = 0.291
samples = 17

value = [3, 14]
class = LVH

gini = 0.0
samples = 1

value = [1, 0]
class = normal

BMI <= 30.71
gini = 0.397
samples = 11
value = [3, 8]
class = LVH

gini = 0.0
samples = 6

value = [0, 6]
class = LVH

BSA <= 2.015
gini = 0.219
samples = 8

value = [1, 7]
class = LVH

age <= 81.5
gini = 0.444
samples = 3

value = [2, 1]
class = normal

gini = 0.0
samples = 5

value = [0, 5]
class = LVH

BSA <= 2.06
gini = 0.444
samples = 3

value = [1, 2]
class = LVH

gini = 0.0
samples = 1

value = [1, 0]
class = normal

gini = 0.0
samples = 2

value = [0, 2]
class = LVH

gini = 0.0
samples = 2

value = [2, 0]
class = normal

gini = 0.0
samples = 1

value = [0, 1]
class = LVH

gini = 0.0
samples = 25

value = [0, 25]
class = LVH

BSA <= 2.16
gini = 0.231
samples = 15

value = [2, 13]
class = LVH

BMI <= 34.475
gini = 0.48
samples = 5

value = [2, 3]
class = LVH

gini = 0.0
samples = 10

value = [0, 10]
class = LVH

gini = 0.0
samples = 2

value = [0, 2]
class = LVH

BMI <= 36.075
gini = 0.444
samples = 3

value = [2, 1]
class = normal

gini = 0.0
samples = 1

value = [1, 0]
class = normal

BSA <= 2.125
gini = 0.5

samples = 2
value = [1, 1]
class = normal

gini = 0.0
samples = 1

value = [0, 1]
class = LVH

gini = 0.0
samples = 1

value = [1, 0]
class = normal

(b)

Fig. 3.7: (a) Depiction of a single decision tree out of many in a Random Forest. (b) The area inside the black
box enlarged for visibility. The end nodes are called leaf nodes and their color denotes the class they repre‐
sent; orange for LVH and blue for no‐LVH. LVH: left ventricular hypertrophy, see Chapter 5.

RFs build a large collection of de-correlated trees, and then average their votes for the

predicted class 29. RFs are good predictors even with smaller datasets due to a technique

called bagging (bootstrap aggregating). Bootstrap creates overlapping, randomly selected,

distinct data sets by repeatedly sampling observations from the original data set with re-

placement. Let’s assume our original dataset is x = {x1, x2, x3, x4}, one bootstraped dataset
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would be b1 = {x1, x1, x3, x2}, another one would be b2 = {x1, x3, x3, x4}, etc. Bagging

trains multiple trees on bootstrapped subsets of the data, and makes the final decision

based on the majority vote of the different trees.

RFs use what is left out in a bootstrapped subset as a validation dataset. This is called

Out-Of-Bag (OOB) estimate35 of the training error. This estimate shows the ability of

the model to predict on unobserved data. The OOB procedure can be divided in 4 steps:

(a) entries left out from the bootstrapped subsets are considered part of a “test set”; (b)

the model is evaluated on that test set; (c) the classification error is calculated; (d) the two

previous steps are repeated until the error is minimized; The model optimizes its hyperpa-

rameters by minimizing this built-in OOB error estimate, which, as it turns out, is almost

identical to that obtained by the usual k-fold cross-validation 29. Therefore this technique

enables RFs to be trained and cross-validated in one pass. A RF is also capable of handling

non-linear interactions as well as cross-correlations among features.

Ensemble methods such as RFs perform better on tabular data that NNs. For a bench-

mark comparison of NN vs RF erformance on tabular data see.36

3.1.5 Feature importance via Shapley Additive explanations

Explaining predictions from tree models is always desired and is particularly important

in medical applications, where the patterns uncovered by a model are often more impor-

tant than the model’s prediction performance 37. The tree ensemble method in the scikit-

learn package allows for the computing of measures of feature importance. These measures

aspire to provide insight into which features drive the model’s prediction. Mean Decrease
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in Impurity (MDI), an approach popular among medical researchers, calculates each fea-

ture importance as the sum over the number of splits (across all trees). It was shown that

the impurity-based feature importance can inflate the role of numerical features and bias

the contribution of categorical, low cardinality ones 38. Furthermore, these significances

are computed on training set statistics and therefore do not reflect the usefulness of the

feature in predictions that generalize to the test set. A better method is Permutation Impor-

tance which randomly shuffles a feature and calculates the error after running the model; if

the error increased, then that feature is deemed important. We go one step further and cal-

culate a recent feature importance metric called Shapley Additive explanations (SHAP), a

game theoretic approach to explain the output of any machine learning model39,37. SHAP

connects optimal credit allocation with local explanations using the classic Shapley values

from game theory and their related extensions. Visualizing feature importance using SHAP

values is thought to be more accurate for global and local feature importance (importance

calculated on each feature instead of all of them). SHAP values have already been used in

medical papers 40.

3.1.6 t-distributed Stochastic Neighbor Embedding (t-SNE)

Feature visualization through dimensionality reduction using t-distributed Stochastic

Neighbor Embedding (t-SNE)41 is a popular method in the medical community; a vari-

ation of Stochastic Neighbor Embedding, t-SNEmaps points from high-dimensional

space to low-dimensional space by minimizing the difference in all pairwise similarities

between points in high- and low-dimensional spaces. Embedding high dimensional data
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into 2 dimensions allows us to visualize them in a way that gives useful insights on what

differentiates study participants with a condition from those without. We performed visu-

alization as part of our feature selection, before running any models, to inspect the features

that seemed to best discriminate hypertensive from normotensive participants. The axes of

the low-dimensional space are given in arbitrary units. The algorithm proceeds as follows:

first, the pairwise distance matrix is calculated in high-dimensional space; next, the distance

matrix is transformed to a similarity matrix using a varying Gaussian kernel, so that the

similarity between pointsXi andXj represents the joint probability thatXi will chooseXj

as its neighbor or vice versa (based on their Euclidean distance and local density); then, a

random low-dimensional mapping is rendered and pairwise similarities are computed for

points in the low-dimensional map. However, the low-dimensional similarities are com-

puted using Student’s t-distribution rather than a Gaussian distribution. Finally, gradient

descent is used to minimize the Kullback-Leibler divergence between the two probability

distributions, leading to the final low-dimensional map.

3.2 Role of artificial intelligence in cardiovascular medicine

ML has already been shown to outperform human experts in fields as diverse as speech

recognition,42 image classification,43 and game playing.44 ML is also gaining ground in

medicine, performing comparably with physicians at tasks such as interpreting medical im-

ages.45 ML is reducing the cost of development and time consumption in drug design.46

Digital health technologies, such as AI-enabled tools and remote monitoring devices, have

the potential to allow health systems to provide better, more accessible care while easing
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the overburdening of clinicians. The use of telemedicine and AI may be able to address the

global shortage of health care providers;47 it has lately sparked interest in areas such as the

care of retinopathy of premature infants, addressing the relative shortage of ophthalmolo-

gists.48

Cardiology is no exception.49 ML is impacting both clinical diagnostics50,51 and re-

search,52,53 and will certainly change the way we practice cardiovascular medicine, provid-

ing new tools for leveraging data and making decisions.54,55 Several studies apply ML for

the prediction of heart failure.56 Cardiovascular imaging is an area where MLmay reduce

cost and improve value by facilitating image acquisition, measurement, and subsequent

evaluation.57,58 In a recent paper, the authors implement a deep learning–based tool to

estimate right ventricular ejection fraction (RVEF) from 2D echocardiographic videos.59

Cardiovascular image segmentation is a another field in which AI-based methods have re-

cently shown substantial improvements in performance60 – segmentation is the process of

content extraction that takes as an input a medical image, volume, or sequence of images or

volumes, to produce associated shapes, for example, defining the chambers of the heart or

heart vasculature.

3.3 Applications of machine learning in the electrocardiogram

Although cardiovascular imaging with various modalities such as calcium scoring com-

puted tomography, coronary CT angiography, and cardiac MRI, have advanced rapidly

over recent years, the ECG remains the primary evaluation method for a person suspected

of having a cardiovascular pathology.61 Applications of ML on the ECG are evolving
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rapidly with tremendous future implications on cardiovascular medicine.62,63,64,65 Anal-

ysis of the ECGwithML is already helping clinicians detect cardiovascular diseases such as

coronary artery disease.66

Modalities such as ECGs and echocardiogram images, defy traditional statistical meth-

ods and require the deployment of ML. ECG signals and patterns largely unrecogniz-

able to human eye interpretation can be detected by machine learning algorithms. In a

study, anMLmodel detected arrhythmias equally well as cardiologists.67. In another, a

model trained on sinus rhythm ECGs identified patients with paroxysmal atrial fibrillation

(AF).68 New combinations of ECG parameters were used to predict Echo-LVH.69 Left

ventricular diastolic function was assessed withML and ECG Features.70

3.3.1 Wearables

Cardiovascular medicine can benefit from smart analysis of massive amounts of data pro-

duced by wearable sensors that have the capacity to incorporate health data with lifestyle

parameters. Assuming privacy and security issues are addressed, ambulatory devices could

become a source for continuous monitoring and early warning, especially for vulnerable

populations. The Apple Watch has moved beyond photoplethysmographic pulse detection

to generate an ECG that is similar to a single-lead (or Lead I) ECG,71 and the relevant app

can detect atrial fibrillation (AF).72 Chest patches can record single-lead ECGs.73
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3.3.2 The need for interpretability

Medicine is a high-stakes field where justifying decisions is important. Given the com-

plexity of MLmodels, especially deep learning models, it is not always possible to explain

their predictions, which is a barrier to the adoption of ML in medicine. Better perfor-

mance, though, of some of these models compared to traditional methods, necessitates

their use, and makes the quest for interpretability all the more necessary. Saliency maps74,

a visualization technique that identifies pixels whose relevance to the network’s prediction

is high, and Grad-CAM75, which highlights the regions of the image that the model consid-

ered most relevant for predicting the given class, are steps towards interpretability. Other

such techniques include LIME,76 and the aforementioned SHAP.
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Data consist of numbers, of course. But these numbers are fed into the computer, not

produced by it. These are numbers to be treated with considerable respect, never to be

tampered with, nor subjected to a numerical process whose character you do not completely

understand.

Bill Press, computational biologist and computer scientist, from his book77

4
Research methods

Data acquisition for this thesis lasted three years, fromNovember 2019 to November

2022 , and involved two Cardiology centers, the Heraklion University General Hospital,

and the Chania St George General Hospital, both located in Crete, Greece. The popula-

tion was, by assumption, local to the island of Crete, although we did not explicitly collect

such information. This is the only AI ECG-based study that we are aware of, that uses
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data from the population of the island of Crete. While there is value in using standard-

ized and highly tested databases to train and evaluate anML algorithm, such as the ones in

Physionet,78 there are also caveats; the population from which the data were collected may

not be the right one for a novel hypothesis. Or, the necessary features might be missing,

as was the case with our research; data on whether human subjects were hypertensive did

not exist in public databases. By gathering our own data, we addressed these issues. Also,

participants in our study were carefully selected to eliminate clinical parameters that could

mislead the model. This way, we improve the quality of input data and avoid pitfalls due

to the large diversity of pathological conditions that formed the basis for the training data.

Last, our data were collected prospectively across real-world clinical settings and by many

operators.

The study was conducted in accordance with the Declaration of Helsinki, the proto-

col was approved by the Hospital Ethics Committee, and patients gave written informed

consent to their participation in the study.

4.1 Sample/cohort selection and exclusion criteria

Participants to all three experimental studies, had no indications of CVD, underwent a

physical examination, an ECG recording, a routine echocardiography examination, and

laboratory tests, before inclusion. Height and weight were measured during the same visit

as the ECG acquisition, and the individuals were classified using the World Health Organi-

zation (WHO) classification of body mass index (BMI).

Hypertensive patients were recruited from the outpatient clinics of the two centers. Nor-
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motensive healthy individuals were referred either for the investigation of atypical chest

pain or for the modification of risk factors for cardiovascular disease such as hyperlipidemia.

The diagnosis of hypertension was based on the recommendations of the European Society

of Hypertension/European Society of Cardiology79; essential hypertension was defined as

office BP> 140/90 mmHg, measured in three consecutive visits, or in one visit when the

diagnosis was confirmed by out of office measurements. In addition, out of office measure-

ments were performed to exclude two medical conditions: a) what is known as white‐coat

hypertension, referred to as an untreated condition in which office blood pressure mea-

surements are elevated, but 24‐h ambulatory blood pressure measurement, home blood

pressure measurement, or both show no abnormalities; and b) what is known as masked

hypertension, characterized by a normal office blood pressure and hypertensive levels on

24‐h ABPM .

Emphasizing the importance of data quality over quantity, we had every ECG carefully

reviewed by cardiologists to exclude subjects with certain conditions that could confuse

the model. Subjects with any of the following characteristics were excluded: tachy- or brad-

yarrhythmia; permanent atrial fibrillation, RBBB, LBBB or other conduction abnormali-

ties on ECG, coronary artery disease; moderate or severe valvular heart disease, cardiomy-

opathy, cerebrovascular, liver or renal disease; history of acute coronary syndrome or my-

ocarditis; ejection fraction< 55%; history of drug or alcohol abuse; any chronic inflamma-

tory or other infectious disease during the last 6 months; thyroid gland disease; pregnant or

lactating women. Vascular or neoplastic conditions were also ruled out vascular or neoplas-

tic conditions were ruled out by a careful examination of the history and routine laboratory
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tests. Functional tests for myocardial ischemia, coronary computed tomography angiogra-

phy or invasive coronary angiography were performed according to physician’s judgement,

in order to exclude coronary artery disease. The study was conducted in accordance with

the Declaration of Helsinki, the protocol was approved by the Hospital Ethics Committee,

and patients gave written informed consent to their participation in the study.

4.2 Electrocardiogram acquisition

A 12-lead ECG of 10 seconds duration in resting position was performed on each subject

using a digital 6-Channel machine (Biocare iE 6, Shenzhen, P.R. China) and was stored

in a digital file with sampling rate 1000 Hz using eXtensive Markup Language format

(XML). We used custom code to automatically read the XML and extract the information

we needed. We used all 12 leads for the hypertrophy study and the 12-lead hypertension

experiment, and in order to simulate devices that record only a single lead for our last study,

we isolated the tracings of lead I from our digital files for further processing.

Automated measurements of wave/complex duration and wave amplitude, calculated

by Biocare’s software, were then extracted from the digital files. These measurements were

based on representative complexes, corresponding to individual heart beats, which, accord-

ing to the manufacturer, were calculated as follows: the multiple cardiac cycles of 10-sec

duration that are recorded for each lead, are overlaid digitally to form a single 1-sec duration

representative beat for each lead; this reduces the effects of beat-to-beat variation in the

waveforms and removes potential artifacts. Some features extracted from the ECG, such

as heights of waveforms, are lead-specific, while others such as time intervals, are measured
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in the averaged waveforms of all leads overlaid on each other. We moved all representative

beats vertically until the ST segment was on the zero horizontal line, and that became our

isoelectric line, or baseline. The process is schematically shown in Fig. 4.1.

Fig. 4.1: The data collection process at a glance. The electrocardiograph records an ECG from the patient
with the help of a healthcare professional. The machine then saves an XML file, out of which we extract a 10
sec ECG signal with some measurements, and then a 1 sec representative signal.

4.3 Echocardiography

Echocardiography provides detailed data on cardiac structure, including the size and shape

of cardiac chambers, as well as the morphology and function of cardiac valves. It is often

the second most common cardiac imaging modality performed, after the ECG. Echocardio-

graphy is based on the standard principles of ultrasound imaging in which high-frequency

sound waves emitted from piezoelectric crystals in a transducer, traverse through internal
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body structures, interact with tissues, and after reflecting back to the transducer, are pro-

cessed by computer to generate an image and detailed measurements. The time required

for the waves to be reflected back is translated in scan lines that depict both location (depth

of reflection) and amplitude (intensity of reflection)

A full echocardiographic study was performed in all subjects using a Vivid 7 (General

Electric, Horten, Norway) ultrasound device with a 1.5 - 3.6 MHz wide angle phased-array

transducer (M4S) according to the recommendations of the European Association of Car-

diovascular Imaging and American Society of Echocardiography80 by two experienced

echocardiographists blindly. All examinations were performed the same day with the ECG

and digitally stored for off-line analysis as the mean of three cardiac cycles.

4.4 Feature engineering and selection

Choosing good predictive features/markers from data is arguably the most challeng-

ing part in anML project even more important than the choice of the specific learning

algorithm. Finding the right markers to extract from the raw data, those that could reveal

psychological signals of interest and better predict target outcomes, is especially hard with

rich sources such as ECGs. In addition to knownmetrics, i.e., what physicians look for in

an ECG, we constructed our own features with the suggestions of the cardiologists in the

team. Feature selection was part of pre-processing, before any models were trained, so as

not to bias the model.

Below is a list of the extracted and calculated features, in categories. In subsequent Chap-

ters we describe how they were selectively used for each experiment.
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4.4.1 Anthropometric features

(1) age, years.

(2) height, cm.

(3) weight, kgr.

(4) sex, binary, 0: male, 1: female.

(5) BMI, kg/m2. Body mass index. Calculated by taking a person’s weight, divided by their

height squared, or BMI = weight (in kg)/ height2 (in m2). BMI is a statistical index

to provide an estimate of body fat in males and females of any age81,82. The National

Institute of Health (NIH) now uses BMI to define a person as underweight, normal

weight, overweight, or obese instead of traditional height vs. weight charts. However,

individual variations do exist, and BMI is insufficient as the sole means of classifying a

person as obese or malnourished. In certain populations, like elite athletes and body-

builders, an elevated BMI does not directly correlate to their health status due to their

increased muscle mass and weight falsely increasing their BMI. Weight and height

were measured during the same visit as the ECG acquisition.

(6) BMI_bins, categorical variable assigning a person to one of four categories according

to their BMI: underweight (BMI< 18.5 kg/m2, category 0), normal weight (18.5 ≤

BMI≥ 24.9 kg/m2, category 1), overweight (24.9 < BMI≥ 29.9 kg/m2, category 2),

and obesity (BMI> 29.9 kg/m2, category 3). We did not have underweight people in

our study, so, effectively we only have categories 1, 2, and 3.
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(7) BSA, in m2, body surface area, calculated withMosteller’s simplified formula83:

BSA (m2) =

√
height (cm) · weight (kgr)

3600 (cm kgr/m4)

(8) BF, %. Percentage of body fat. Defined by the formulae: [adult males] BF(%) = 1.20

· BMI + 0.23 · age - 10.8 - 5.4, and [adult females] BF(%) = 1.20 · BMI + 0.23 · age -

5.4.84

4.4.2 ECG-derived features

Electrocardiographic terms are consistent with AMAManual of Style (2019, 11th edition).

We chose to include ECGmeasurements adjusted for BMI based on studies showing that

larger body mass decreases the amplitude of the R and S waves in specific leads due to the

electrical currents traveling longer distances.85 For reference, an ECG tracing with its major

components is shown in Fig. 4.2.

Based on time markers on the 1 sec representative beat derived by the electrocardio-

graph, ECG-based features were calculated (see Fig. A.1 for an example of an XML ex-

cerpt). Those are, (a) the P_onset, time of start of the P wave, (b) the P_offset, end of the

P wave, (c) the QRS_onset, start of the QRS complex, and (d) QRS_offset, end of the QRS

complex. And last, (e) T_offset, the end of the T wave. All time points are measured from

the beginning of the ECGwaveform, as shown in Fig. 4.3.

Durations
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Fig. 4.2: Basic components of the ECG signal, including the P, QRS, ST, T, and U waveforms, the RR, PR, QRS,
and QT intervals, and the PR, ST, TP segments. Image from9. Used with permission from Elsevier.

0 400 800
Time (ms)

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Vo
lta

ge
 (m

V
)

Rpeak

Ppeak

Pon PoffQon Qoff Toff

Rpeak

Ppeak

Pon PoffQon Qoff Toff

Rpeak

Ppeak

Pon PoffQon Qoff Toff

Rpeak

Ppeak

Pon PoffQon Qoff Toff

Rpeak

Ppeak

Pon PoffQon Qoff Toff

Rpeak

Ppeak

Pon PoffQon Qoff Toff

Rpeak

Ppeak

Pon PoffQon Qoff Toff

Fig. 4.3: Time markers derived by the machine. Pon is the onset of the P wave, Poff denotes the offset, Qon is
the onset of the QRS complex, and Qoff, its offset. For the T interval only the offset is derived by the machine.
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(1) hr, beats per minute. Heart rate. The average RR interval, or the distance between

two consecutive R peaks (see Fig. 4.2 in Chapter 2). The measurement was performed

by the machine and included in the XML file, as shown in Fig. A.2.

(2) P_duration, ms. Time from onset of the P wave to its offset.

(3) PQ_duration, ms. Duration of P wave. Measured from the onset of the P wave to the

onset of the QRS. It is also referred to as the PR interval as a Q wave is not always

present.

(4) QRS_duration, ms. QRS interval duration. Measured from the beginning to the end

of the QRS complex.

(5) QT_interval, ms. The QT interval comprises the QRS complex, the ST segment, and

the T wave. It is calculated from the start of the QRS complex until the end of the T

wave.

(6) QTc, ms. QT corrected. One difficultly of QT interpretation is that the QT interval

gets shorter as the heart rate increases. This problem can be solved by correcting the

QT time for heart rate using the Bazett formula:

QTc =
QT√

RR interval (sec)

(7) ST_duration, ms. Duration of the ST segment. Time distance from the offset of the

QRS complex until the onset of the T wave. Because of the complexity of the ECG

in the area where the T wave starts, the machine did not make measurements for this

variable. We used Python code to infer the start of the T wave from the slope of the
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rising wave. As seen in Fig. 4.4, the start of the T wave was marked where the slope

hits the baseline horizontal line.
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Fig. 4.4: T wave markers, Ton is T_onset, Toff denotes the offset. For the T interval only the offset is de‐
rived by the machine, the onset is calculated by our software. The shaded area is the area under the T wave,
namely the TOI.

(8) ID_I, ms. Intrinsicoid deflection, or R-wave peak time. Represents the early phase

of ventricular depolarization and is defined as the time period from the onset of the

QRS complex to the peak of the R wave. The lead number comes after the dash. In

previous studies, delayed intrinsicoid deflection (DID)≤ 50 ms in lateral precordial

leads V5 or V6 has been associated with left ventricular hypertrophy (LVH) and is

included in the Romhilt-Estes criteria for ECG diagnosis of LVH. The ID can be seen

in Fig. 4.5.

(9) T_duration, ms. T wave duration. Time from onset of the T wave to its offset (see

Fig. 4.4).
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Fig. 4.5: Arrow indicates the intrinsicoid deflection (ID), the time duration between the onset of the QRS
complex and the peak of the R wave.

Amplitudes

1. R_I, mV. R wave voltage amplitude in lead I (or other lead indicated by the roman

numeral). Height of the peak of the R wave (see Fig. 4.3).

2. T_V2, mV. T wave voltage amplitude in lead V2 (or other lead indicated by the roman

numeral). Height of the peak of the T wave (see Fig. 4.4).

3. P_V5, mV. P wave voltage amplitude (see P peak in Fig. 4.4).

4. S_V5, mV. S wave voltage amplitude, defined as the height of the S wave, in absolute

value since S is usually below the isoelectric.

5. R_max, mV. Maximum voltage R height. The largest R wave voltage amplitude of all

the limb leads.
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Axes

Axes values are produced by the electrocardiograph’s software, while the feature

QRS_T_angle is calculated by our software, as explained below.

1. P_axis_fr, degrees. Angle of the electrical axis of the P wave in frontal plane.

2. QRS_axis_fr, degrees. Angle of the electrical axis of the QRS complex in frontal

plane. The QRS axis signifies the sum of all individual vectors generated by the de-

polarization waves of ventricular myocytes, and is considered an important ECG

parameter that reflects the diastolic function of the left ventricle.86 For a depiction of

this vector see Fig. 4.6.

Fig. 4.6: Position of the mean QRS vector which defines the feature QRS_axis_fr. Normal values are consid‐
ered those from ‐30° to +90° in the frontal plane. Image from12 used with permission from Wolters Kluwer.

3. T_axis_fr, degrees. Angle of the electrical axis of the T wave in frontal plane.
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4. QRS_T_angle, degrees. Planar frontal QRS-T angle, defined as the angle between the

frontal QRS_axis_ fr and T_axis_fr vectors; it is the angle between the directions of

ventricular depolarization and repolarization, therefore, a wide QRS-T angle reflects

either structural abnormalities affecting the depolarization or regional pathophysio-

logical changes in ionic channels altering the sequence of repolarization.87 It can be

calculated from a standard 12‐lead ECG as the absolute value of the difference be-

tween the frontal plane QRS axis and T axis. If such a difference exceeds 180 degrees,

then frontal QRS‐T angle is calculated as 360° minus the absolute value of the differ-

ence between the frontal plane QRS axis and T axis.88

Areas

1. ROI_aVF, mVms, calculated as 1/2 of the area/integral below the R wave in the aVL

lead. The reason we take 1/2 of the area and not whole is purely by convention. The

above definition applies to other leads, e.g., ROI_V2, would be the area/integral below

the R wave in the V2 lead.

2. TOI_I, in mVms, the whole area under the T wave, as seen in Fig. 4.4.

We removed features that exhibited correlation> 85% in Spearman’s rank correlation

test; highly correlated features contribute the same amount of information and including

both of them in a RF model might not affect performance, but it will divide, thus lessen,

each feature’s predictive significance. We choose the Spearman test because of the possibil-

ity of non-linear relationships among the data and then calculated the rank-sum statistic
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Fig. 4.7: Shaded area shows is variable ROI_I, defined as 1/2 of the area under the R curve, by convention.

and ranked the features according to their p-value. This feature selection is part of prepro-

cessing, before the model was trained.

4.5 Dataset preparation

Unless otherwise indicated, the dataset for each study was split into a train set (80%), used

directly to learn the parameters of the model, and a test set (20%), consisting of data the

model had not seen during training and was used exclusively for performance evaluation

of the final model. Reported metrics are on the test set. Stratification for sex and history of

hypertension, during the partition, ensured the two sets contained the same proportions

of these two features. For validation while training the Random Forest (RF) we used the

model’s internal out-of-bag (OOB) set. Feature importance graphs are also on the test

set, as, using the train set inflates the importance of some features which might not be as

important in predicting the outcome. We also made sure that data from the same patient
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was not included in both the train and test set.
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5
Detection of abnormal left ventricular geometry

The left ventricle (LV) is the largest and strongest chamber in the heart, strong

enough to generate pressure and displace a volume of blood through the aortic valve and

into the systemic circulation. LV performance is determined by the preload (venous re-

turn, end-diastolic volume), myocardial contractility (the force generated at any given end-

diastolic volume), and afterload (aortic impedance and wall stress)10. The LV responds
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to systemic hemodynamic and ventricular load under declining cardiac function, by trig-

gering a hypertrophic response, leading to an increase in myocyte size, left ventricular wall

thickness and mass. When cardiac enlargement occurs, the heart muscle cells become either

longer, deemed eccentric hypertrophy, or wider, in concentric hypertrophy. Although this

remodeling response initially restores wall stress, it ultimately leads to a prognosis of in-

creased risk for major cardiovascular complications.89 Cardiac remodeling is considered an

important aspect of CVD progression and is therefore emerging as a significant therapeutic

target.2,3,4,5

The detection of hypertension-mediated organ damage, such as abnormal LVG, is a

useful approach toward risk stratification of a hypertensive population.79 The evaluation

of cardiac structure and function is encouraged since it might influence treatment deci-

sions.79 Transthoracic echocardiography has received a strong indication for the initial

evaluation of suspected hypertensive heart disease. Abnormal LVG is the early marker of

LV remodeling that precedes hypertrophy and is frequently associated with LV diastolic

dysfunction.80

Left ventricular hypertrophy (LVH), is usually defined as an increase in LVmass, al-

though such an increase is not the only attribute consistent with LVH.More broadly we

can define hypertrophy as an increase in size of the tissue due to an increase in size of the

cells in that tissue without increasing their number, thus differentiating hypertrophy from

hyperplasia. Verma et al.90 define 3 patterns of LV remodeling based on measurements of

the LVmass index (LVMi) and relative wall thickness (RWT): (a) concentric remodeling

(CR) defined as normal LVMi and increased RWT; (b) eccentric hypertrophy (EH) having
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increased LVMi and normal RWT; and (c) concentric hypertrophy (CH) characterized

by both increased LVMi and RWT. For completeness, (d) normal geometry (NG) is de-

fined as both normal LVMi and RWT. CH and EH are collectively denoted as LVH. LV

remodeling is defined as either CR or EH or CH. Values are slightly different for males and

females, as indicated in the graphic depiction of these categories shown in Fig. 5.1.

Fig. 5.1: Patterns of cardiac remodeling based on sex and measurements of the left ventricular mass index
and relative wall thickness. N is the number of samples/patients in each category. Sex is defined as binary
(male/female) with ♀ being the symbol for females. Image from90.

The three abnormal patterns were associated with a higher risk of subsequent cardio-

vascular events, carrying progressively worse prognosis. In hypertensive patients, LV re-

modeling„ is predictive of the incidence of cardiovascular events.79 CR not only precedes
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LVH, but also most other cardiac dysfunctions while it progresses asymptomatically. The

early detection of abnormal LVG can result in early detection of subclinical hypertension-

mediated organ damage and may help clinical decision on follow up.

An ECG is the primary modality for detecting LVH or other abnormalities in hyperten-

sive individuals. An effect of advanced LVH on the ECG is a prominent negative S wave

on the right chest leads and tall R waves on the left chest leads. However, the ECG is not

a sensitive method of detecting left ventricular hypertrophy, and, with existing knowledge,

cannot detect signs of LVG at early stages, before LVH is present. Notably, although ECG

criteria demonstrate relatively high specificity, the sensitivity for the detection of LVH is

low,91 approximately 30%, and in some studies it is as low as 6.9%.92 The echocardiogram

is always suggested as an additional diagnostic evaluation for this reason.

We propose a digital interpretation of the ECGwithMLmethods, to extract informa-

tion that is not easily and directly detected by the human eye, especially within a busy clini-

cal setting, that would expand the diagnostic capabilities of ECG in detecting patients with

LV remodeling and LVH, and refer them for further echocardiographic evaluation. This

study was designed to test the hypothesis that a 12 lead ECG, being a routine and inexpen-

sive screening procedure, can, throughMLmethods, provide further accuracy in detecting

abnormal LVG, even at the early stages before the onset of LVH, in a population without

established CVD.We also seek to understand which features contribute to the MLmodel’s

decisions by calculating global feature importance and feature interactions.
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5.1 Feature engineering and selection

Besides the features described in Chapter 4, additional echocardiographic features and

criteria for LVH used in daily practice were calculated:

(1) LVM, gr. Left ventricular mass. Equal to the internal dimension measured at end-

diastole, according to the American Society of Echocardiography guidelines.93

(2) LVMi, gr·m2. Left ventricular mass indexed for BSA. Some say that this tends to under-

estimate the prevalence of LV hypertrophy in overweight patients.

(3) RWT. Relative wall thickness. Defined as the ratio of twice left ventricular diastolic

posterior wall thickness (PWT) to left ventricular end-diastolic diameter (LVEDD),

RWT is a measure of LV geometry and has been associated with LVH and myocardial

ischemia. RWTwas derived by 2× PWT/LVIDd (LVIDd–left ventricular internal

diastolic dimension, PWT–posterior wall thickness). Normal RWTwas defined as<

0.43. Septal and posterior wall thicknesses were measured at end-diastole, according

to the American Society of Echocardiography guidelines.93,79

(4) hyper, binary. 1: existence, 0: absence of hypertension.

(5) soko, mV. Sokolow-Lyon (SL) voltage. Sum SV1 + RV5 > 3.5 mV, where SV1 is the

S wave voltage in V1 lead, and RV5 is the R wave voltage in the V5 lead, as defined by

European guidelines on hypertension and the detection of LVH.79

(6) BMI_adj_soko, mV. BMI adjusted SL index. Calculated by adding 0.4mV for being

overweight, and 0.8mV for being obese, to the regular SL index, based on Hesham et.
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al.94

BMI_adj_soko =


SL+ 0.4, if overweight

SL+ 0.8, if obese.

(7) Cornell_sum, or RaVL+SV3, mV. Cornell voltage index. Calculated as the sum of the R

wave height for lead aVL, R_aVL, and the S wave height for V3 in absolute value, S_V3.

(8) Cornell_product, or RaVL_QRS, ms·mV. Cornell product. The product of the Cornell

index with the QRS complex duration.

(9) BMI_adj_cornell, mV·kgr/m2. BMI adjusted Cornell product. Calculated by multi-

plying the continous value of BMIwith the Cornell product RaVL+SV3 based on Hes-

ham et. al.94

In addition to the above standard LVH criteria, we have our own criterion:

(10) BMI_soko, or BMI/SL, in kgr/m2mV, a custom-made criterion, defined as continuous

BMI divided by the SL index. We introduce the feature because we hypothesize that

body mass affects the amplitude of the R and S waves, as the electrical currents travel

different distances before reaching the lead electrodes.

We performed feature selection to reduce the dimensionality of our space by eliminating

irrelevant features, and correcting for high correlation among some of the features, as as-

sessed by Pearson’s correlation test. Keeping only one of two correlated features retains all

the information while providing a clearer picture of the remaining feature’s contribution
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(see Chapter4); Pearson’s coefficient > 0.90 was our threshold for removal. Our model was

trained on 32 features shown in Table 5.1.
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5.2 Results

After careful screening of 903 hypertensive and normotensive healthy individuals, we en-

rolled 528 consecutive subjects older than 30 years of age, with and without essential hy-

pertension and no indications of CVD. Of the chosen subjects, 56 % were female and 71%

were hypertensive. The mean age was 62.3±11.9 years for women, and 60.5±12.4 years

for men. Based on BMI, 45.7 % of them were obese, 40.2 % were overweight, and 13.9 %

were within normal range; there were no underweight individuals. CRwas present in 37.2%

of the individuals, LVHwas present in 17 %, while 45.7 % of them had normal geometry.

Figure 5.2 shows the box plots for four features and their distributions among the three cat-

egories, NG, CR, and LVH. Specifically, Figure 5.2D reveals a tendency of the product of the

BMIwith the SL criteria, (BMI_soko) to discriminate the CR class from the other two.
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Fig. 5.2: (A‐D) Box plots of feature distributions in patients for class NG, CR, and LVH. In (D) we notice that
BMI/SL shows a small tendency to discriminate the CR class. The individual dots in the box plots depict out‐
liers, patients with predictor values very different from other patients. BMI, body mass index; CR, concentric
remodeling; LVH, left ventricular hypertrophy; NG, normal geometry; BMI/SL, BMI_soko.

Trained on a set of features, anML classifier’s goal is to assign each individual (observa-

tion) to one of various classes (response variable). We tried using just the anthropometric

features as predictors and then adding the ECG-derived features. For evaluating the perfor-

mance of our model we calculated accuracy, sensitivity, specificity, and AUC/ROC.

When trained using only clinical variables (sex, age, BMI_bins, BSA, hyper, and height),

our model and got an accuracy of 79 % in the test set, with a sensitivity of 84 % and a speci-

ficity of 73 %. The addition of the ECG-derived features seen in table 5.1, improved our

model’s accuracy to 87 % (in the same test set), with a sensitivity of 97 % and a specificity of
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75 % for the default threshold of 0.5. AUC/ROCwas 0.91.

Concentrating on the LVH class, we trained the RF to classify NG+CR vs. textttLVH.We

achieved an accuracy of 89, specificity 93, sensitivity 67, and AUC/ROC 0.89. Due to the

imbalance in the dataset (ratio of NG+CR to LVHwas 5/1) when divided into these categories,

we performed oversampling for imbalance correction using RandomOverSampler.95 The

model results are summarized in Table 5.2.

We then visualized the global feature importance and local explanations for the binary

classification using SHAP. An interesting finding is the effect of specific features on each

individual subject separately, as well as the interaction effects between pairs of features. In

Fig 5.3 we notice that hypertension has a strong positive effect on being classified as CR+LVH,

while normotensive patients have a different risk for being classified as CR+LVH. Age plays an

important role in the risk of being classified as CR+LVHwith a cutoff around 65 years, and

the risk is higher for men under 65, while over 65 the risk appears higher for women, as

shown in Fig. 5.3 (C).
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Feature Description Range Mean or Mode

sex 0, M; 1,F 2 F
age age, years 31.0 - 90.0 61.5

hyper history of hypertension, 0, NT; 1, HTN 2 1
BMI_bins BMI class, 0, normal; 1, overweight; 2, obese 3 3
height_cm height, cm 137.0 - 194.0 165

BSA BSA, m2 1.3 - 2.8 1.93
P_dur P wave duration, ms 0.0 - 154.0 113

QRS_dur QRS interval duration, ms 68.0 - 138.0 92.7
QTc_dur QT-interval corrected for heart rate, ms 368.0 - 510.0 422
ST_dur ST segment duration, ms 0.0 - 277.0 112
S_V1 S wave amplitude in V1, mV 0.0 - 1.9 0.732
soko SL voltage, mV 0.5 - 4.5 1.93

R_max Tallest R wave in limb leads (RE criteria), mV 0.3 - 1.9 0.903
BMI_soko BMI divided by SL voltage, kgr/m2 mV 6.0 - 73.8 17.4

ID_V5 Intrinsicoid deflection in V5, ms 24.0 - 57.0 39.5
ROI_aVF Area under R wave in aVF, ms mV 0.0 - 21.3 3.46
SOI_V1 Area under S wave in V1, ms mV 0.0 - 62.2 17.3

QRSOI_V5 Area under QRS interval in V5, ms mV 11.0 - 80.2 33.7
QRSOI_12 Total area in all leads (sum), ms mV 137.5 - 672.9 285

R_V2 R wave amplitude in V2, mV 0.0 - 2.0 0.41
R_aVL_QRS Cornell product, ms mV 3.6 - 243.8 52.6

S_V2 S wave amplitude in V2, mV 0.1 - 2.3 0.784
S_V5 S wave amplitude in V5, mV 0.0 - 1.3 0.381

QRS_T_angle Planar Frontal QRS-T angle, degrees 0.0 - 176.0 33.3
QRS_axis_fr QRS axis front, degrees, degrees -77.0 - 97.0 15.6

T_axis_fr T axis front, degrees -59.0 - 258.0 39.8
T_aVL T wave amplitude in aVL, mV -0.3 - 0.3 0.0815
T_V2 T wave amplitude in V2, mV -0.3 - 1.2 0.253
S_V3 S wave amplitude in V3, mV 0.1 - 2.7 0.828

RaVL_SV3 Cornell sum, mV 0.2 - 3.8 1.39

Table 5.1: Anthropometric and ECG feature inputs to the machine learning model for the detection of abnor‐
mal left ventricular geometry. NT, normotensives; HTN, hypertensives.
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Features Categories Acc (%) Spec (%) Sens (%) AUC/ROC

6 clinical NG vs. CR+LVH 79 73 84 0.85
32 (6 clinical+ 26 ECG) NG vs. CR+LVH 87 75 97 0.91
32 (6 clinical+ 26 ECG+oversampling) NG+CR vs. LVH 89 93 67 0.89

Table 5.2: Performance metrics for the machine learning classifier in discriminating between various cate‐
gories. Acc, accuracy; Spec, specificity; Sens, sensitivity.
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5.3 Discussion

We have shown the promising potential of MLmodeling for the diagnostic screening of

abnormal LVG and cardiac remodeling through ECG.We found specific clinical and ECG

features that can predict early pathological changes of LVG in patients without established

CVD and detect the population who will benefit from a detailed echocardiographic evalua-

tion. We used not only the traditional ECG criteria for LVH but also a novel ECGmarker

that increased the accuracy of our MLmodel.

Our results show that age plays an important role in the risk of someone having CR or

LVHwith a cut-off around 64.5 years. The risk appears higher for men younger than 64.5

while after that age the risk seems higher for women. Our results indicate that BMI ad-

justed SL criteria seem to differentiate for the CR class. Hypertension, textttage, and BMI

were most significant, as expected; the area under the QRS complex summed over all 12

leads, the Planar Frontal QRS-T angle, and QTc duration, among others, were important

in predicting risk.

There are limited data in the literature that attempt to predict cardiac structural or func-

tional abnormalities with ECG data interpreted throughML algorithms.70,96 However,

the existing knowledge has focused only on patients who have already shown LVH. There

are no data for patients in earlier stages of cardiac geometry change prior to hypertrophy.

The present prospective ML study also differs from previous ones in that it involves pa-

tients who were very carefully selected, thereby excluding those with CVD.70 This may

explain the fact that in our study, analysis of patients with LVH achieved a higher AUC in
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comparison to recently published work,70 despite the fact that the number of our patients

is smaller. ML is susceptible to major errors in interpretation, and generalizability. The fact

that participants in our study did not have CVD is a major strength since in effect it largely

eliminates other clinical parameters that could mislead our model. In this way, we improve

the quality of input data and avoid various pitfalls that could arise due to the large diversity

of pathological conditions that formed the basis for the training process.

We have discovered new relationships and showed that a quantitative assessment of ab-

normal LVG can be performed by using easily obtained clinical data and ECG features.

This novel approach has the potential to serve as a cost-effective screening tool for early de-

tection of LV remodeling, to dramatically optimize treatment and patient-management.

ECGs are more easily obtainable and cost-effective than echocardiography or cardiac mag-

netic resonance imaging (MRI), and for those reasons more often used in current clin-

ical practice. The goal of hypertension treatment is to prevent pathological changes in

LVG or to reverse CR and LVH. Deep learning could potentially detect patients with

hypertension-mediated organ damage at an early stage and with simple and widely used

clinical tools.

There are some limitations to our work. The number of subjects we have included is not

large since this is a single center study over a specific time period. Nonetheless, our results

are clear and mainly due to the fact that our subject population is carefully chosen and

does not have other CVD that could influence ECG features.

Although cardiac MRI has been suggested as the most accurate diagnostic test for car-

diac remodeling and LVH, it is limited by cost and lack of availability. Most importantly,
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it is not recommended for routine clinical use for this reason. 2D echocardiography is the

imaging test of choice for assessing those patients and is also the only guideline-approved

modality for monitoring volumes and mass,79,80 which also has well studied prognostic and

clinical implications.79,97

We did not perform coronary angiogram in all patients, and this may bias the outcomes.

However, we believe that this bias is small since patients underwent a meticulous work out

to exclude coronary artery disease while performing coronary angiogram in low probability

patients would be unethical. RWT is not always reflective of true LVG in patients with

asymmetric hypertrophy. However, it is the most widely used index for this purpose in

routine clinical practice for hypertensive patients.79,80
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Fig. 5.3 (following page): Global and local importance for the 20 most important features in the RF binary
classifier for detecting CR+LVH, and feature interactions for four of them. All plots are on the test set. (a):
Bar chart of mean feature importance for the classification. (b): SHAP summary plot showing the effect of
each feature on individual patients. The long tails indicate rare but high magnitude risk factors. The red part
on the Hypertension row shows that hypertension has a strong positive effect on someone being classified
as CR+LVH, and the spread of the blue line shows that non‐hypertensive people have different risk for being
classified as CR+LVH. (c): Effect of age on detecting CR+LVH. The plot shows that age plays an important
role in the risk of being classified as CR+LVH with a cut‐off around 65 years of age. The risk is higher for men
under 65, while over 65 the risk appears higher for women, as the blue and red dots indicate. (d): Effect of
the BMI/SL on detecting CR+LVH with a visible cut‐off of around 18 kg/(m2 mV). (e): Effect of QRS‐T angle
on the same risk. Risk appears higher after a value of 27 degrees . (f): Effect of QTc duration on the same
risk, with a visible cut‐off point at 420 ms.
RF: random forest, CR: concentric remodeling, ECG: electrocardiogram, NG: normal geometry, LVH: left
ventricular hypertrophy, SHAP: (SHapley Additive exPlanations), BSA: body surface area, BMI: body mass
index.
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Fig. 5.3: (continued)

71



72



Everything should be made as simple as possible, but not simpler.

Quote attributed to Albert Einstein

6
Opportunistic screening for the detection of arterial

hypertension through 12-lead ECG

Hypertension is defined as blood pressure (BP) of greater than 140 and/or 90 mmHg ac-

cording to the ESC/ESH guidelines for hypertension79 or 130 and/or 80 mmHg according

to the ACC/AHA guidelines.98 Essential hypertension is the type not attributed to under-
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lying, identifiable cause. Hypertension is one of the most significant risk factors for car-

diovascular disease (CVD) and a major cause of premature mortality and rising health care

costs.99 It is a leading modifiable cause in 54% of stroke cases and 47% of ischemic heart dis-

ease incidences worldwide.100 The global prevalence of hypertensive heart disease, having

risen steadily over the last decades, is expected to continue to rise due to population growth

and aging.101 Unfortunately, control rates among people with hypertension are very poor,

approximately 23% for women and 18% for men, with a large number of hypertensives not

properly identified.102

Unawareness of hypertension is an important contributing factor to the inadequate con-

trol of the disease and absence of appropriate antihypertension treatments. Population

screening programs have shown that more than 50% of hypertensives were unaware they

had hypertension.103,104 Despite the progress in blood pressure (BP) measurement tech-

niques, a substantial proportion of hypertensive patients is not identified as such, and are

thus incorrectly diagnosed and managed.105 Although current practices, with the use of

ambulatory and home BP measurements, have become more powerful in detecting the

‘real’ hypertensive population by discarding the white-coat effect and discovering masked

hypertension, still a large proportion of patients escape diagnosis. Considering the impor-

tance of this disease for public health, exploring novel tools that potentially minimize the

unawareness and increase the diagnostic performance of hypertension in daily clinical prac-

tice seems of vital importance.

In this Chapter we show our work in detecting whether a person is hypertensive using

features derived from a 12-lead ECG, as well as basic anthropometric features.
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6.1 Feature selection

Initially we had 60 features in our dataset (see Table B.1). Some pairs of features exhib-

ited high correlation, as calculated by Spearman’s rank correlation test; highly correlated

features contribute the same amount of information and including both of them in a RF

model might not affect performance, but it will divide, thus lessen, each feature’s predictive

significance. We chose a cut-off of 0.90 % correlation for removal. In our python code we

used the spearmanr function from the scipy.stats package. We choose the particular test

because of the possibility of non-linear relationships among the data and then calculated

the Rank-Sum statistic and ranked the features according to their p-value.

6.2 Results

After carefully screening 2156 healthy individuals, we enrolled 1091 consecutive subjects

aged 30 to 80 years (Fig. 6.1). Of our participants, 617 (56.5 %) were female, 474 (43.5 %)

were male, and 712 (65.2 %) were hypertensive based on the definition given above.

At the time of the study, 613 (86.22 %) of those hypertensives were receiving RAAS

blockers, 185 (26 %) CCBs, 102 (14.35 %) diuretics, and 93 (5.49 %) some other form

of medication. Of the non hypertensives, 11 (2.91 %) were receiving RAAS blockers, 93

(24 %) CCBs, 52 (13.75 %) diuretics, and 3 (0.79 %) some other form of medication. Over-

all, the mean age was 59.3± 11.2 years; 60.3±10.8 years for females, and 58±11.6 years

for males. According to their BMI, 505 (46.3 %) of them were obese, 417 (38.0 %) were

overweight, and 169 (15.0 %) were within normal range. Based on blood pressure cate-
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Randomized and split in train and test datasets 
with care not to include the same subject in both datasets

                                                                 

Train and validation dataset 
(used for training the models)

 N = 872 (80%)

Test dataset 
(used only for evaluating the models)

 N = 219 (20%)

Included in the study 
N = 1091

Excluded for having one or more
 of the exclusion charasteristics

 N = 998
Excluded for technical reasons, e.g.
• electrocardiograph signal too noisy
• digital file lost 

                                                    N = 52

Eligible study participants 
N = 2156

Refused to participate 
                                   N = 15

Fig. 6.1: Study flowchart of participant selection from initial hospital evaluation until data inclusion in the ML
models.

gory, 6.7 % were optimal, 10.47 % were normal, 49.49 % were in the upper normal range,

27.55 % were grade 1 hypertensives, 5.14 % were grade 2 hypertensives, and 0.64 % were

grade 3 hypertensives. Compared with the normotensive group, the hypertensive group

was older, had higher BMI, and tended to have slightly more female participation. The

comparative statistics for a range of anthropometric and ECG features between hyperten-

sive and normotensive population are shown in Table 6.1.
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Feature HTN NT P-value*

Mean Std Range Mean SD Range

Age, years 62.5 10.5 30.0 - 80.00 53.3 10.2 30.0 - 80.00 <0.001

Systolic blood presure, mmHg 139.8 13.8 100.0 - 185.00 127.5 9.1 91.0 - 175.00 <0.001

Diastolic blood pressure, mmHg 84.6 8.9 42.0 - 127.00 80.7 7.6 52.0 - 133.00 <0.001

Mean blood pressure, mmHg 103.0 9.2 68.0 - 146.30 96.3 7.2 70.7 - 147.00 <0.001

Heart rate, bpm 69.9 11.6 40.0 - 129.00 71.1 12.0 48.0 - 109.00 0.108

Body mass index, kgr/m2 31.4 5.4 18.8 - 56.64 28.1 5.2 17.6 - 48.87 <0.001

Body fat, kgr/m2 41.6 9.0 18.9 - 75.45 36.6 8.1 17.3 - 67.04 <0.001

BMI-adjusted Cornell, mV·kgr/m2 45.1 18.5 4.3 - 128.13 34.3 16.2 3.1 - 118.90 <0.001

R wave amplitude in aVL, mV 0.6 0.3 0.0 - 1.91 0.5 0.3 0.0 - 1.61 <0.001

Cornell criteria, mV 1.4 0.5 0.1 - 3.77 1.2 0.5 0.1 - 3.37 <0.001

Area under R wave in I, ms·mV 9.3 3.9 0.8 - 33.36 7.8 3.3 0.8 - 21.10 <0.001

QRS axis front, degrees◦ 13.6 32.4 -77.0 - 188.00 26.0 30.6 -82.0 - 88.00 <0.001

Corrected QT interval, ms 423.7 24.6 337.0 - 500.00 414.8 22.1 364.0 - 506.00 <0.001

P wave duration, ms 114.6 15.5 0.0 - 196.00 111.7 10.6 75.0 - 149.00 <0.001

PQ interval duration, ms 167.0 27.4 0.0 - 277.00 159.0 20.8 112.0 - 226.00 <0.001

QT interval duration, ms 397.9 31.7 290.0 - 501.00 387.5 28.7 312.0 - 496.00 <0.001

R wave amplitude in III, mV 0.2 0.2 0.0 - 1.37 0.3 0.3 0.0 - 1.74 <0.001

Planar frontal QRS-T angle, degrees◦ 37.0 35.3 0.0 - 178.00 26.2 25.3 0.0 - 168.00 <0.001

Area under R wave in aVF, ms·mV 3.9 3.6 0.0 - 25.39 4.7 3.7 0.0 - 23.51 <0.001

Area under T wave divided by QRS complex area 1.0 0.5 0.0 - 3.46 1.1 0.5 0.1 - 3.12 <0.001

Area under R wave in III, ms·mV 1.9 2.4 0.0 - 21.05 2.6 3.0 0.0 - 19.12 <0.001

BMI-modified Sokolow-Lyon voltage, kgr/m2·mV 17.5 7.7 4.9 - 96.88 15.4 5.9 5.8 - 41.95 <0.001

BMI-adjusted Sokolow-Lyon voltage, mV 2.6 0.6 0.2 - 5.66 2.4 0.6 1.0 - 4.73 <0.001

Total QRS area in all leads, ms·mV 291.2 78.0 118.4 - 734.18 272.2 78.4 133.9 - 942.09 <0.001

S wave amplitude in V5, mV 0.4 0.3 0.0 - 1.46 0.3 0.2 0.0 - 1.60 <0.001

T wave amplitude in V5, mV 0.3 0.2 -0.7 - 1.02 0.3 0.2 -0.5 - 0.82 <0.001

S wave amplitude in V3, mV 0.9 0.4 0.0 - 2.84 0.8 0.4 0.0 - 3.15 <0.001

QRS complex duration, ms 92.6 11.0 62.0 - 153.00 90.6 11.2 55.0 - 147.00 0.002

P wave amplitude in II, mV 0.1 0.0 0.0 - 0.28 0.1 0.0 0.0 - 0.41 0.003

Area under QRS interval in V5, ms·mV 34.7 12.3 10.5 - 93.14 32.5 11.1 11.7 - 97.14 0.004

Q vs. S vector 0.9 0.6 -0.8 - 2.91 0.9 0.6 -0.8 - 2.65 0.008

J point deflection, mV -0.0 0.0 -0.1 - 0.14 -0.0 0.0 -0.1 - 0.13 0.01

Q wave duration, ms 10.5 8.1 0.0 - 36.00 11.9 8.6 0.0 - 48.00 0.01

P axis in frontal plane, degrees◦ 46.6 22.5 -59.0 - 116.00 50.4 26.4 -61.0 - 268.00 0.011

Intrincicoid deflection in II, ms 41.9 6.7 5.0 - 95.00 41.1 6.7 4.0 - 64.00 0.042

Area under S wave in V1, ms·mV 18.6 11.5 0.0 - 77.63 17.2 9.9 0.0 - 51.79 0.054

T wave duration, ms, ms 204.0 42.3 43.0 - 345.00 200.6 32.4 77.0 - 312.00 0.071

T wave amplitude in III, mV 0.0 0.1 -0.4 - 0.37 0.0 0.1 -0.3 - 0.57 0.077

Table 6.1: Characteristics and Comparative Statistics for Hypertensive and Normotensive Study Participants.
BMI: body mass index; SD: standard deviation; HTN: participants with hypertension, NT: participants not
diagnosed with hypertension.
*The alternative hypothesis for this P‐value is that there exists a difference between HTN and NT participants
for each feature/variable 77



Embedding high-dimensional data into 2 dimensions allows us to visualize them in a

way that gives useful insights on what differentiates study participants with a condition

from those without. We performed visualization as part of our feature selection, before

running any models, to inspect the features that seemed to best discriminate hypertensive

from normotensive participants. We employed the t-SNE algorithm. We visualized various

subsets of the anthropometric and ECG features using t-SNE. In Fig. 6.2, each point is a

participant characterized by the following set of features: age, BF, BMI_adj_cornell, R_aVL,

and BMI_soko. This particular subset of features seems to visually separate hypertensive

patients, who are represented by dots mostly on the upper left corner, from normotensive

patients which are the ones in the rest of the plot. This feature selection was part of prepro-

cessing.

Fig. 6.2: Study subject clustering using t‐distributed Stochastic Neighbor Embedding (t‐SNE). NT signifies
the normotensive participants and HTN the hypertensive. The axes of the 2‐dimensional space are given in
arbitrary units.
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Fig. 6.3: Feature distribution comparison. These box plots show the distributions of body mass index
(BMI) (A), R wave amplitude in aVL (B) , BMI‐adjusted Cornell criteria (BMI multiplied by RaVL+SV3)
(C) , and age (D) , between normotensive (NT) and hypertensive (HTN) individuals. Scatterplots
(dots) of the data were superimposed for a more detailed visualization of the distributions. Each plot
is also subdivided in male and female participants.

Based on the discriminatory ability of these features, we depict the distributions of BMI,

R_aVL, BMI_adj_ cornell, and age, between normotensive and hypertensive individuals in

four separate plots, shown in Fig. 6.3). In each plot, we separate the distributions for male

and female individuals. We notice that the distributions for BMI, age, and BMI_adj_ornell

index, are shifted towards larger values for hypertensive than normotensive participants.

Our RF model’s accuracy on detecting hypertension using was 84.2 %, its specificity

was 66.7 %, and its sensitivity was 91.4 %; AUC/ROCwas 0.86, for the standard decision
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threshold of 0.5. By moving the threshold to 0.6, we increased our specificity to 78.0 %,

without sacrificing the sensitivity too much (new value was 84.0 % vs. 91.4 %). The results

for all our models are in Table 6.2
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Model Features Accuracy (%) AUC(ROC) Sensitivity (%) Specificity (%)

Random Forest 1

(thresh.= 0.6) age, sex, BF, BMI-adj-Cornell, R in aVL, BMI-modified SL 84.2 0.89 84.0 78.0

Random Forest 1 age, sex, BF, BMI-adj Cornell, R in aVL, BMI-modified SL 84.2 0.86 91.4 66.7

Random Forest 2 age, sex, BF, BMI-adj-Cornell, R in aVL 82.0 0.86 90.0 66.0

Random Forest 3 age, sex, BF, BMI-adj Cornell, R in aVL, BMI-modified SL, BMI 83.2 0.867 91.4 63.2

Logistic Regression age, sex, BF, BMI-adj Cornell, R in aVL, BMI-modified SL 77.8 0.77 93.6 39.7

KNearest Neighbors age, sex, BF, BMI-adj-Cornell, R in aVL, BMI-modified SL 78.8 0.87 97.6 40.2

Table 6.2: Classification performance metrics for random forest, logistic regression, and k‐nearest neighbors
with the respective features used in training.
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Feature importance calculated by SHAP is shown in Fig. 6.4 (A). Dependence on BMI-

adjusted Cornell criteria is shown in Fig. 6.4 (B). The horizontal dashed line represents

the cut-off between having a negative effect on being hypertensive (below the line) and

a positive one (above the line). On the x-axis we see that participants with a value above

37 mV·kgr/m2 (approximately) have a positive chance of being hypertensive. These values

were calculated by SHAP on the RF model. Training the model to model to predict in

which BP category each participant belonged did not give any meaningful results maybe

because the data used were one-time measurements that were taken on different days than

the ECG, thus having little association.

6.3 Discussion

To our knowledge, this is the first clinical study that exploits the promising potential of

ML algorithms for the efficient and cost-effective opportunistic screening of arterial hyper-

tension. We found specific basic clinical and ECG features that can be applied for point-of

care detection of hypertensive population who will benefit from further evaluation and

treatment. In our study, age, BF, BMI_adj_cornell, R_aVL, and BMI_soko, seemed to sepa-

rate hypertensive patients from normotensive (Figures 6.3 and 6.4A). It is remarkable that

using just these features our model can detect hypertension with a good accuracy. Our find-

ings could be useful because, although hypertension is a leading preventable risk factor for

premature death and disability worldwide, the proportion of awareness and treatment re-

mains poor 103,104,79,93. We showed that with familiar and easily obtainable clinical tools we

can enhance the diagnostic efficacy and improve the detection of hypertension.
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Fig. 6.4: Results in detecting hypertension by the Random Forest. (A) Feature importances calcu‐
lated on the test set using Shapley Additive explanations (SHAP). Features are (BMI), BMIsoko, and
BMIadjcornell. Body fat (BF) is defined by the formulae: [adult males] BF(%) = 1.20 · BMI + 0.23 ·
age ‐ 10.8 ‐ 5.4, and [adult females] BF(%) = 1.20 · BMI + 0.23 · age ‐ 5.4. Sex is binary male/female
(M/F). (B) Effect of BMI adjusted Cornell criteria on the risk of being hypertensive. Each dot in the
plot is a participant whose BMI adjusted Cornell value is indicated on the x‐axis. The values on the
y‐axis effectively indicate the effect of each participant’s set of features in characterizing them as
hypertensive.
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Our study design has several strengths. First, the participants were carefully selected and

did not have CVD since it largely eliminates other clinical parameters that could mislead

our model. In this way, we improve the quality of input data and avoid various pitfalls that

could arise due to the large diversity of pathological conditions that formed the basis for

the training process. Second, our data were collected prospectively across real-world clini-

cal settings and by many operators. There are limited data in the literature that attempt to

associate BP level with ECG signals interpreted throughML algorithms 106,107,108. How-

ever, most of the existing knowledge was derived from limited number of ECGs acquired

from public databases such as Physionet. Our results are clear because our population was

carefully chosen not to have CVD that could influence ECG features.

We present an ECG-basedML algorithm that can identify the existence of arterial hyper-

tension by using easily obtained clinical data and ECG features in the clinical setting. This

novel approach has the potential to serve as a cost-effective screening tool, empower clini-

cians to detect hypertensive participants and eliminate the effects of white coat and masked

hypertension in the routine clinical practice. Our model contributes to the development of

human-centered and autonomous technologies and can optimize patient-management.

Our study has some limitations. We could not control for every possible lifestyle factor,

and there is possibility of residual confounding. Most of the people that were excluded

did not meet the eligibility criteria or had one of the characteristics for exclusion. Only 15

refused to participate; this number is low and that reduces the potential bias and ensures

the generalizability of our study findings.
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7
Diagnostic performance of single-lead ECG in the

detection of arterial hypertension

Hypertension was our focus in Chapter 6, and especially the fact that a large number

of hypertensives are not aware of their condition. We showed that from basic clinical data

and the use of the 12-lead ECG, we can identify participants with arterial hypertension.
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In this Chapter we are trying to detect hypertension using anthropometric features and a

single-ECG, namely of lead I.

ECG technology is now ubiquitous in smartwatches and other wearables and can record

a single-lead ECGwhich is equivalent to lead I on a standard 12-lead ECG. So far wearable

ECGs have consistently demonstrated their value in detecting arrhythmias such as atrial fib-

rillation.109 Although still challenging, detecting cardiac diseases using a single or reduced

number of leads has appeared in the literature.110 In recent studies, single-lead ECGs were

used to detect T-wave (due to ventricular repolarisation) morphology abnormalities,111

to develop an automatic mental stress detection system based on ECG signals from smart

T-shirts,112 and to identify patients with atrial fibrillation-induced heart failure.113

The rapidly growing technology and popularity of wearables may offer the opportunity

for detecting cardiovascular diseases using single-lead ECGs. This can increase dramatically

HTN awareness in the general population, improve HTN control and transform the way

health care is delivering. Our aim was to developML algorithms to detect HTN from

single-lead ECGs in subjects without cardiovascular disease.

7.1 Feature selection

A 12-lead ECG of 10 seconds duration in resting position was performed on each sub-

ject, as described in Chapter 4. In order to simulate devices that record only a single lead,

we kept the tracings of only lead I in our digital files for further processing.

The dataset was randomly partitioned into a train set of 1128 (90 %) data points, used

directly to learn the parameters of the model, and a test set of 126 (10 %), consisting of a
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part of the data the model had not seen before and was used exclusively for final perfor-

mance evaluation of the models. Stratification for sex and history of hypertension, during

the partition, ensured the two sets contained the same proportions of these two features.

The ratio of hypertensive to normotensive patients in the total dataset was about 2, which

did not, in our view, necessitate the use of techniques for imbalanced datasets.

7.2 Results

After careful screening 2156 healthy individuals, we enrolled 1254 consecutive subjects

(Fig. 7.1). Of our participants, 715 (57.02 %) were female, 539 (42.98%) were male, and

831 (66.27%) were hypertensive. Overall, the mean age was 60.22±12.46 years old; 61.28±11.95

for females, and 58.8±12.98 for males. Based on BMI, 589 (46.97%) of them were obese,

475 (37.88%) were overweight, and 190 (15.15%) were within normal range. Compared

with the normotensive group, the hypertensive group was older, had higher BMI, and

tended to have slightly more female participation.

The comparative statistics for a range of anthropometric and ECG features between

hypertensive and normotensive population are shown in Table 7.1. The prevalence of hy-

pertensives in our study was 66.2%. Fig. 7.3 uses hierarchical clustering to show, along

with descriptive names and clustering tendency, the 35 features in the model. In classi-

fying hypertensive vs. normotensive, our RF model’s accuracy was 81%, with specificity

equal to 70%, sensitivity 88%, and area under the receiver operating characteristic curve

(AUC/ROC) 0.82, as shown in Fig. 7.2.

Feature importance calculated by SHAP is shown in Fig. 7.4. As expected, age and BMI
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Feature Hypertensives Normotensives p value

Mean Std Range Mean Std Range

Age, years 63.8 11.5 20.0 - 90.00 53.1 11.1 22.0 - 86.00 <0.001

BMI, kgr/m2 31.4 5.4 18.8 - 56.64 28.4 5.5 17.6 - 50.47 <0.001

BMI-adjusted QRS complex area, ms·mV·kgr/m2 709.5 291.8 152.7 - 1846.01 554.3 280.1 75.9 - 1885.32 <0.001

(area under the QRS complex multiplied by BMI)

Area under T wave divided by QRS complex area, (-) 1.0 0.5 0.0 - 3.25 1.3 0.7 0.1 - 5.23 <0.001

QRS axis frontal plane, degrees 13.3 31.9 -77.0 - 188.00 25.4 31.1 -82.0 - 128.00 <0.001

Corrected QT interval, ms 422.7 24.4 337.0 - 500.00 414.2 22.6 355.0 - 506.00 <0.001

PR interval duration, ms 168.5 25.6 99.0 - 277.00 160.4 23.3 112.0 - 341.00 <0.001

QT interval duration, ms 397.7 31.0 290.0 - 501.00 387.5 29.4 264.0 - 496.00 <0.001

R wave amplitude, mV 0.8 0.3 0.2 - 1.82 0.7 0.3 0.1 - 1.55 <0.001

ST segment, ms 112.6 43.2 0.0 - 289.00 101.6 35.3 0.0 - 229.00 <0.001

P wave duration 114.7 14.5 50.0 - 227.00 112.0 10.9 75.0 - 149.00 <0.001

T wave amplitude, mV 0.2 0.1 -0.4 - 0.56 0.2 0.1 -0.2 - 0.62 <0.001

Body surface area, m2 2.0 0.2 1.3 - 3.08 1.9 0.2 1.4 - 2.79 <0.001

Height, cm 164.9 10.0 142.0 - 192.00 167.1 9.7 137.0 - 200.00 <0.001

Intrinsicoid deflection, ms 42.3 6.0 25.0 - 69.00 41.3 5.9 21.0 - 67.00 0.007

Area under S wave, ms·mV 1.2 2.0 0.0 - 14.17 1.3 2.1 0.0 - 23.32 0.008

QRS complex duration, ms 92.1 11.1 62.0 - 153.00 90.6 11.0 55.0 - 147.00 0.016

P axis in frontal plane, degrees 46.4 23.6 -80.0 - 116.00 50.1 26.9 -61.0 - 268.00 0.042

Heart rate, bpm 69.8 11.2 40.0 - 129.00 71.2 12.3 48.0 - 123.00 0.091

T wave, ms 192.9 39.4 56.0 - 357.00 195.3 30.4 94.0 - 372.00 0.278

S wave amplitude, mV 0.1 0.1 0.0 - 0.54 0.1 0.1 0.0 - 0.87 0.478

T axis frontal plane, degrees 39.2 35.9 -87.0 - 261.00 35.9 23.4 -58.0 - 154.00 0.49

Q wave, ms 15.1 8.1 0.0 - 55.00 15.6 7.7 0.0 - 40.00 0.648

P wave amplitude, mV 0.1 0.0 0.0 - 0.19 0.1 0.0 0.0 - 0.21 0.778

J point deflection, mV 0.0 0.0 -0.1 - 0.12 0.0 0.0 -0.1 - 0.12 0.949

BMI: body mass index.

Table 7.1: Characteristics and Comparative Statistics for Hypertensive and Normotensive Study Participants.
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Randomized and split in train and test 
datasets with care not to include 
duplicates in both datasets

Train dataset 
(used for training the models)  

N = 1128 (90%) 

Test dataset 
(used only for evaluating the models)  

N = 126 (10%)

Included in the study 
N = 1254

Not meeting eligibility criteria/ 
Refused to participate 

N = 582
Excluded for technical reasons
• electrocardiograph signal too noisy
• digital file lost 

N = 320

Accessed for eligibility 
N = 2156

Fig. 7.1: Study flowchart.

were two of the most important features in our model. Other features that seemed to sep-

arate hypertensive patients from normotensive were the BMI-adjusted area under QRS

complex area (defined as the area under the QRS complex multiplied by BMI), and the area

under the T wave divided by QRS complex area. Other features that came as important,

but less so, were the R-wave amplitude, the QRS axis in the frontal plane, the corrected QT

interval duration, and the PR interval duration.
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Fig. 7.2: Receiver operating characteristic (ROC) curve depicting the diagnostic performance of our
Random Forest (RF) model, as the true positive rate (TPR) against the false positive rate (FPR). FPR
is equal to 1− specificity, and TPR is equal to the sensitivity. The AUC/ROC is 0.82

7.3 Discussion

In this prospective analysis of single-lead ECGs, we found that single-lead ECG features

can be applied for the detection of arterial HTN. To our knowledge, this is the first clinical

study that exploits the promising potential of ML algorithms for the efficient and cost-

effective opportunistic screening of arterial HTN using a single-ECG reading and detect

individuals who will benefit from further evaluation and treatment. According to our find-

ings, age, BMI-adjusted area under total QRS area, body mass index, area under T wave

divided by QRS complex area, seemed to separate hypertensive patients from normoten-

sive.

Our results are significant given that HTN is a major public health issue and a lead-
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ing preventable risk factor for premature death and disability worldwide.114 Notably, a

large proportion of hypertensive patients remained undiagnosed and unaware of their

clinical condition.99 Despite the increasing prevalence, the proportions of hypertension

awareness and BP home monitoring are still low in the general population.103,104,79,93 On

the other hand, wearable devices and smartwatches are becoming increasingly popular

and now have started to make a significant impact on the healthcare industry. Artificial

intelligence-based ECGs analysis has been combined with wearable devices to investigate

various cardiac pathologies and has already redefined assessment of several clinical con-

ditions such as arrhythmias.115 A lead I equivalent ECG strip can be obtained by several

smartwatches and can provide very valuable clinical information. The applications of ar-

tificial intelligence on ECG are evolving rapidly with tremendous future implications on

cardiovascular medicine.62,63,64,61,65 ECG signals and patterns largely unrecognizable to

human eye interpretation can be detected byML algorithms making the ECG a more pow-

erful, non-invasive clinical tool. Moreover, single-lead smartwatch ECGs have been shown

to be accurate and provide a significant amount of information, such as heart rate, cardiac

conduction, as well as rhythm. We showed that with familiar and easily obtainable single-

lead ECGmay enhance the diagnostic efficacy and improve the detection of hypertension.

This might have a dramatic impact in the global HTNmanagement.

The unawareness of HTNwhich is an important contributing factor for the inadequate

control of the disease and often the diagnosis of HTN is challenging and demanding even

in the office. BP measurements are not always optimally performed in the routine clinical

practice or even skipped altogether. Most importantly, a modest elevation in BP demands a
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confirmation of at least two occasions while the exclusion of clinical entities such as white

coat effect or masked hypertension depends on out-of-office measurements.79,93 The in-

crease the diagnostic performance of HTN in the general population and the instantly

derived screening at points-of care are significant for the management of the escalating

burden of HTN.

Our study design has several strengths. First, the participants were carefully selected and

did not have CVD since it largely eliminates other clinical parameters that could mislead

our model. In this way, we improve the quality of input data and avoid various pitfalls that

could arise due to the large diversity of pathological conditions that formed the basis for

the training process. Second, our data were collected prospectively across real-world clin-

ical settings and by many operators. There are limited data in the literature that attempt

to associate HTNwith ECG signals interpreted throughML algorithms.106,107,108 Our

group has developedMLmodels showing that detection of HTN through a 12-lead ECG

is feasible.116

We present an ECG-basedML algorithm that can identify the existence of arterial hyper-

tension by using easily obtained clinical data and single-lead ECG features in the clinical

setting. Apart from the raised awareness, this novel approach has the potential to serve as

a cost-effective screening tool, empower clinicians to detect hypertensive participants and

eliminate the effects of white coat and masked hypertension in the routine clinical practice.

Deep learning opens up new opportunities in health care quality and advancing personal-

ized medicine at a low cost. Our model contributes to the development of human-centered

and autonomous technologies and can optimize patient-management.
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Our study has some limitations. We could not control for every possible lifestyle fac-

tor, and there is possibility of residual confounding. Nonetheless, our results are clear and

mainly due to the fact that our population is carefully chosen and does not have other

CVD that could influence ECG features.We did not perform coronary angiogram in all par-

ticipants, and this may bias the outcomes. However, we believe that this bias is small since

participants underwent a meticulous work out to exclude coronary artery disease while per-

forming coronary angiogram in low probability participants would be unethical. Finally,

more research is needed and the existing data should be validated different populations and

ethnic groups.

The definition of hypertension considered office BP levels > 140 and/or 90 mmHg and

was in accordance with the ESC/ESH guidelines for hypertension79 instead of > 130

and/or 80 mmHg according to the ACC/AHA guidelines.98 This might have an impact

on our results.
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Fig. 7.3: Feature hierarchical clustering as a dendrogram
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Age (years) 

Body mass index (kgr/m2)
I 

T wave area divided by QRS complex area 

BMI-adjusted QRS complex area*--
1 

Corrected QT interval (ms) --
1 

PQ interval duration (ms) --
1 

QT interval duration (ms) --
1 

R wave area --
1 

P wave duration (ms) --
1 

ST segment duration (ms) •• 
I 

0.00 0.025 0.05 

- hypertensive

- normotensive

0.075 0.1 

Mean SHAP value 
(average impact on model prediction) 

Fig. 7.4: Feature importance for the Random Forest model, calculated using Shapley Additive explana‐
tions (SHAP). Mean SHAP value, shown in x‐axis, represents each feature’s contribution in predicting
hypertension. *BMI‐adjusted QRS complex area is defined as the area under the QRS complex mul‐
tiplied by BMI, in ms·mV·kgr/m2.
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Since all models are wrong, the scientist cannot obtain a “correct” one by exces-

sive elaboration. On the contrary followingWilliam of Occam he should seek

an economical description of natural phenomena.

George E. P. Box, British statistician, in his celebrated 1976 paper117

8
Equations of cardiac electrical propagation

Differential equations make the heart tick. Cardiac electrical propagation

is often modeled as a reaction-diffusion process represented by sets of nonlinear ordi-

nary (ODEs) or partial differential equations (PDEs). Computational models allow the

study of action potential propagation in single cells, in a 1-dimensional cable of cells, in

2-dimensional slabs of tissue, or in 3-dimensional whole heart models. Alterations in the
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electrical properties of ventricular tissue form the basis of ischemic arrhythmogenesis pro-

ducing changes in the AP pulses and the ECG.17,18 Such alterations, involving, for exam-

ple, the remodeling of ionic currents due to changes in intracellular and extracellular ionic

concentrations, has been studied in the literature.19 Spatial heterogeneity such as cell-to-

cell decoupling, occurring usually in later stages of ischemia, has also been shown experi-

mentally to lead to propagation disruptions and a reduction in conduction velocity.20

Since Hodgkin and Huxley118 proposed the first model for the AP in 1952, many ionic

models have been proposed, each reproducing the AP in cardiac tissue, with few or more

number of terms (introduced later in the Chapter).

8.1 The cable equations

Simulating transmembrane potentials from the level of a single myocyte up to measurable

current on the body surface, is an intractable problem, if not in terms of representing them

in mathematical terms, but because of computer memory and computational efficiency;

there are thousands of ionic channels in a myocyte and billions of myocytes in the heart.

We start with a simple depiction of the cardiac excitable tissue in one spatial dimension as

a series of myocytes of length Δx electrically connected via gap junctions.119 Fig. 8.1 shows

a simplistic drawing of an “electrical circuit” comprised of a series of cells. Gap junctions

are modeled as resistors having a resistance rgΔx, where rg is the resistance per unit length

– larger than the resistance inside of the cell (cytoplasm) which we ignore. Each cell com-

municates with the extracellular environment via a) the membrane capacitanceCm = cΔx,

where c is the membrane capacitance per unit length, and b) ion channels located on the
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membrane, where imΔx is the current per unit length flowing through the channel. The

ion channels are nonlinear complicated structures, permeable only to specific ions.

Fig. 8.1: Partial circuit representation of a series of excitable cells. Figure from119. Used with kind permission
from Niels F. Otani.

We continue with the drawing in Fig. 8.2 which includes the extracellular environment.

We set our coordinate system so that each cell center is at position x, its right neighbor at

position x+Δx, and its left neighbor at position x−Δx. Since we are interested in voltages,

we refer to the voltage inside the cell as Φi(x, t) (i for inside), and the voltage outside the cell

as Φe(x, t) (e for external). This being a dynamical system, voltages are functions of both

space x and time t; for brevity we will leave out the time dependence for now and add it

later. We consider the gap junctions as functions of x (although they could also be time de-

pendent), located at either x+Δx/2 or x−Δx/2, and having resistances of rg(x+Δx/2)Δx

and rg(x − Δx/2)Δx respectively. We also introduce two stimulus currents, iintracell for the

intracellular, and iextracell representing the extracellular, both currents per unit length.
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Fig. 8.2: Complete circuit representation of a series of excitable cells, including the intracellular and extracel‐
lular voltages, as well as internal and external stimulus currents. Figure from119. Used with kind permission
from Niels F. Otani.

The currents entering and leaving node “1” in figure 8.2 are:

a) one leaving the node from the left

Φi(x)− Φi(x− Δx)
rg(x− Δx/2)Δx ,(8.1)

b) one leaving the node from the right

Φi(x)− Φi(x+ Δx)
rg(x+ Δx/2)Δx ,(8.2)
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c) one flowing away through the membrane capacitor

Cm
dVm
dt = cΔx(Φi(x)− Φe(x))

dt ,(8.3)

where Cm is the capacitance, andVm is the voltage drop across the membrane,

d) the intracellular going in (hence the negative sign)

−iintracell(x)Δx ,(8.4)

e) one flowing away via the ion channels

im(x)Δx ,(8.5)

Adding Eq. (8.1) to Eq. (8.2) and rearranging the terms, we have

−
[
Φi(x+ Δx)− Φi(x)

Δx · 1
rg(x+ Δx/2) − Φi(x)− Φi(x− Δx)

Δx · 1
rg(x− Δx/2)

]
.

(8.6)

Noticing that the first two terms of each addend are the derivatives at points (x + Δx) and

(x) respectively, and assigning

Dg(x) ≡
1

rg(x− Δx/2) , and Dg(x+ Δx) ≡ 1
rg(x+ Δx/2) ,(8.7)
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Eq. (8.6) becomes

−
[
ΔΦi
Δx

∣∣∣
x+Δx

·Dg(x+ Δx)− ΔΦi
Δx

∣∣∣
x
·Dg(x)

]
.(8.8)

Adding Eqs (8.3), (8.5), (8.8), and (8.4), and applying Kirchhoff’s 1st law to node “1” (all

currents should add to 0), we have

cΔx(Φi(x)− Φe(x))
dt + im(x)Δx− iintracell(x)Δx

−
[
ΔΦi
Δx

∣∣∣
x+Δx

·Dg(x+ Δx)− ΔΦi
Δx

∣∣∣
x
·Dg(x)

]
= 0

(8.9)

Dividing by cΔx, and substituting Vm for Φi(x)− Φe(x)we obtain

∂Vm
∂t (x) + im(x)

c − iintracell(x)
c

− 1
cΔx

[
∂Φi
∂x (x+ Δx) ·Dg(x+ Δx)− ∂Φi

∂x (x) ·Dg(x)
]
= 0

(8.10)

Substituting

D∗
g =

Dg

c(8.11)
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in Eq. (8.10) we have

∂Vm
∂t (x) + im(x)

c − iintracell(x)
c

− 1
Δx ·

[
∂Φi
∂x (x+ Δx) ·D∗

g(x+ Δx)− ∂Φi
∂x (x) ·D∗

g(x)
]
= 0 .

(8.12)

Noticing that

(8.13)

lim
Δx→0

{
1
Δx ·

[
∂Φi
∂x (x+ Δx) ·D∗

g(x+ Δx)− ∂Φi
∂x (x) ·D∗

g(x)
]}

=
∂

∂x

[
∂Φi
∂x (x) ·D∗

g

]
,

and substituting this result in Eq. (8.12), we obtain

(8.14) ∂Vm
∂t (x) + im(x)

c − iintracell(x)
c − ∂

∂x

[
∂Φi
∂x (x) ·D∗

g(x)
]
= 0 .

The derivation for node “2”, located outside the cell, is identical to the one we just per-

formed for node “1”, if we substitute re → rg, iextracell → iintracell, Φe → Φi, im → −im, and

D∗
e → D∗

g , thus obtaining

(8.15) ∂(−Vm)

∂t (x)− im(x)
c − iextracell(x)

c − ∂

∂x

[
∂Φe
∂x (x) ·D∗

e (x)
]
= 0 .

If we concentrate on Eq. (8.14) and substitute Φi = Vm+Φe with the intent on producing
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an equation that describes the behavior of the transmembrane potential Vm, we obtain

∂Vm
∂t (x) + im(x)

c − iintracell(x)
c

− ∂

∂x

[
∂Vm
∂x (x)D∗

g(x)
]
− ∂

∂x

[
∂Φe
∂x (x)D∗

g(x)
]
= 0 .

Ignoring the effects of the extracellular potential Φe, adding the explicit dependence on

both x and t, and rearranging the terms, we have

(8.16) ∂Vm
∂t (x, t) = ∂

∂x

[
∂Vm
∂x (x, t)D∗

g(x)
]
− im(x, t)

c +
iintracell(x, t)

c ,

often called themonodomain cable equation, describing the AP propagation inside the cell

in one dimension.

Each term in this equation is connected to parts of the system’s behavior. The dynamic

change in the membrane potential, (∂Vm/∂t)(x, t), is effectively the charging of the capac-

itor – thinking of the membrane again as a capacitor – by the im(x, t) current flowing via

the membrane channels. One can make the connection with cell components in Fig. 2.5 in

Chapter 2, where im could be the collective current flowing through the Na+, Ca++, and

K+ ion channels and maybe the transporters. This current has a complicated nonlinear be-

havior which can be defined in many ways depending on cardiac model. If, for example, we

set

− im
c =

1
ε

(
Vm − V3

m
3 −W

)
,(8.17)
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we have the Fitzhugh-Nagumo120,121 equations, one of the simplest cardiac models:

∂Vm
∂t (x, t) = 1

ε

(
Vm − V3

m
3 −W

)
,

∂W
∂t = Vm − βW+ γ ,

where the small parameter ε is the ratio of the temporal scales between Vm andW,W can be

considered as representing the slow ionic currents in the cell, and β and γ are parameters.

Continuing with the terms in Eq. (8.16), the current iintracell(x, t) can be thought of as an

external current applied to the cell at a given point in time and space. This concept will be

useful later when we apply an external current to initiate the AP in our numerical calcula-

tions in Chapter 9.

Lastly, the term

∂

∂x

[
D∗

g(x)
∂Vm
∂x (x, t)

]
,

can be recognised as a diffusion term, with D∗
g(x) being a spatially-dependent diffusion

coefficient. This term is at the center of our study. In Chapter 9, we will be changing this

coefficient and observing the effects on AP propagation.

The Fitzhugh-Nagumomodel is one of several electrophysiological models describing

AP propagation across mammalian cardiac cells, with simplified ion currents.122,123,124,125

More detailed ionic models include a large number of membrane currents with parame-

ters whose value was measured in classic voltage-clamp or patch-clamp experiments, and
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a larger number of gates. Complicated models include the Beeler-Reuter model126, the

Luo-Rudy model127, and the TenTusscher-Noble-Noble-Panfilov model128, which are

based on direct experimental observations. These models are complex enough to capture

some of the realistic cardiac behavior, yet they are less good in providing an essential phe-

nomenological insight into the spatial dynamical behavior of the AP. Simpler models such

as the four-variable Bueno-Cherry-Fenton model129, and the three-variable cardiac Fenton-

Karma model130 (FK3V) provide insight with less computational burden.

We cannot solve these equations in any generic form, we may only see their behavior

for a specific set of parameters by using numerical techniques; each set of parameters is

connected to essential features of the model so the solutions shed light on those effects

and physiological function. One-dimensional numerical simulations, being quick and

efficient, enabled us to try out multiple different values for the relevant parameters and

capture the changes in morphology. The property of conduction velocity being typically

about two to three times faster along the length of the fiber compared to across its width,

makes numerical calculations using 1Dmodels a good first approach.

8.2 The Fenton-Karma model (1998)

Earlier in this Chapter, we derived the cable equations in a series of cells, and gave a brief

review of existing cardiac models. Now, will take a closer look at the model which we will

be implementing in our computational model, the three variable model by Fenton and

Karma (FK) in one-dimension.

In his dissertation131, Flavio Fenton introduced an extension to what was known as the
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two-variable Karma model, namely the three-variable Fenton-Karma (FK3V) model of cou-

pled reaction-diffusion equations on a 1-D cable of cells. We used this model in this work

to produce pECG patterns relating to AP propagation. The model consists of the follow-

ing three coupled PDEs,130,122 shown below including the stimulus current, Jstim(x, t), a

rectangular pulse that initiates the AP:

∂u
∂t = ∇ ·

(
D̃∇u

)
− Jfi(u; v)− Jso(u)− Jsi(u;w) + Jstim(x, t) ,(8.18)

∂v
∂t = Θ(uc − u) 1− v

τ−v (u)
−Θ(u− uc)

v
τ+v

,(8.19)

∂w
∂t = Θ(uc − u)1− w

τ−w
−Θ(u− uc)

w
τ+w

,(8.20)

where, the transmembrane voltage 0 < u(x, t) < 1, normalized to a dimensionless property,

is defined to be u ≡ (V − V0)/(Vfi − V0)whereV is the un-normalized transmembrane

potential,V0 is the resting membrane potential, andVfi is the Nernst potential of the fast

inward current. The normalized threshold potential is given by uc. The permeability of the

channels in the cell membrane is regulated by the two gating variables ν(x, t) and w(x, t).

Gate state indicates whether ions can pass or not. Variable ν(x, t) denotes the fast inactiva-

tion gate which opens when the cell is not excited, and closes when it becomes excited. The

closing time constant τ+v corresponds to cell depolarization, and the opening time constant

τ−v to cell repolarization. The u−dependent parameter τ−v (u) is given by

(8.21) τ−v (u) = Θ(u− uv)τ−v1 +Θ(uv − u)τ−v2.
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This splitting allows the minimum diastolic interval, i.e., the excitable gap, controlled by

τ−v1, to vary independently from the steepness of this curve, controlled by τ−v2. The voltage

threshold uν < uc controls the splitting. Variable w is the probability of a gate opening as

described in the Hodgkin-Huxley model; τ+w and τ−w are the time constants for closing and

opening of the gate, respectively. As a preview to the detailed analysis of the predictions

of this numerical model, we show the typical behavior of the basic quantities, u, v, and w,

with u being the voltage from which the pseudo-ECG can be constructed.
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Fig. 8.3: AP as a function of time for a 1‐D cable and for a 400 ms duration. Shown are the three variables of
the FK3V model, the normalised membrane voltage u, and the gating variables v and w.

The scaled phenomenological ionic currents Jfi, Jso, and Jsi (fmeaning fast, and s slow),

are related to the corresponding currents in units ofmA through

(8.22) Jc =
Ic

Cm(Vc − V0)
,

where Cm is the membrane capacitance, and c can be either fi, or so, or si, where:

(a) Jfi corresponds to the fast inward sodium (Na+) current, responsible for the depo-

108



larization of the membrane, and depending on the gating variable ν. This gating variable

is responsible for inactivation of the current after depolarization, and its reactivation after

repolarization.

(b) Jso is a slow outward current analogous to the time-independent potassium (K+)

current; it is responsible for re-polarization of the cell membrane.

(c) Jsi is a slow inward current, corresponding to the calcium (Ca+) current, that bal-

ances Iso during the plateau phase of the action potential; this current depends on one gate

variable w, responsible for its inactivation and reactivation. The above correspondence to

the Na, K, and Ca currents, is an oversimplification, due to membrane dynamics being a

lot more complex. The model, though, succeeds in capturing the minimal ionic complexity

that underlies the membrane recovery processes. All currents are considered normalized.

The expressions for the normalized currents read

Jfi(u; v) = − v
τd
Θ(u− uc)(1− u)(u− uc),(8.23a)

Jso(u) = +
u
τ0
Θ(uc − u) + 1

τtextr
Θ(u− uc),(8.23b)

Jsi(u;w) = − w
2τsi

{
1+ tanh

[
k
(
u− usic

)]}
,(8.23c)

where

(8.24) τd =
Cm
ḡfi

.
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The values of the parameters ḡfi, τ0, τr, τsi, k, and usic are also given in Table I. The function

Θ = Θ(x), which appears repeatedly in Eqs (8.18) – (8.20) and Eqs (8.23a) – (8.23c), is

the standard Heaviside step function defined by Θ(x) = 1 for x ≥ 0 and Θ(x) = 0 for

x < 0. In this work, the modified Beeler-Reuter (MBR) model papameters are used. For

illustrations of the AP, there is indication of whether the normalized or un-normalized

quantities are depicted. Note: the parenthesis next to the symbol Θ, i.e., Θ(u− uv), is not a

multiplicand but the argument of the function.

From Eq. (8.18) we can see that modeling the propagation of electrical impulses in car-

diac tissue is affected by two distinct terms. The first term of the right hand side, includes

the diffusion coefficient and encompasses the passive characteristics of the medium, such as

its microscopic structure and cell-to-cell coupling via ion conducting gap junctions133. The

second term, the sum of the ionic currents through the membrane channels (excluding the

stimulus current), denotes the dynamic characteristic of the medium.

8.3 The Role of the Diffusion Coefficient

From the cable equation analysis, the effective voltage diffusion coefficient for homoge-

neous (healthy) tissue is given by

(8.25) D0 =
1

CmρSu
,

where Cm is the cell membrane capacitance, ρ is the longitudinal resistivity (attributed to

the gap junctions), and Su is the surface-to-volume ratio for the cell. The values of the pa-
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Parameter BRmodel MBRmodel MLR-I model

ḡfi 4 4 5.8
τr 33.33 50 130
τsi 29 44.84 127
τ0 12.5 8.3 12.5
τ+v 3.33 3.33 10
τ−v1 1250 1000 18.2
τ−v2 19.6 19.2 18.2
τ+w 870 667 1020
τ−w 41 11 80
uc 0.13 0.13 0.13
uv 0.04 0.055 –
usic 0.85 0.85 0.85

Other parameters

Cm 1 μF/cm2

V0 −85mV
Vfi +15mV
k 10

Table 8.1: Three different sets of model parameters that enter into the three‐variable Fenton‐Karma model
(Eqs. (8.18) ‐ (8.20)) from Ref. 132. In this work, the modified Beeler‐Reuter (MBR) model papameters are
used.

rameters Cm = 1 μFcm−2, ρ = 0.4 kΩcm (experimentally measured 129), and Su = 5000

cm−1 provided in Table 8.1 for human ventricular cells, give the typical valueD0 =

0.0012 ± 0.0002 cm2ms−1 used often in literature. In this work we use various values

for the diffusion coefficient, and by doing so, we can model various sub-cellular charac-

teristics of cardiac electrical propagation, such as different gap junction resistance and cell

membrane capacitance, and by extension, study conduction problems in the heart. My-
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ocardial tissue is, of course, a very complex structure, and we hope to capture only a part of

its behavior.

8.4 Summary

A surface EKG is recorded using two electrodes, an anode and a cathode, placed on the

skin surface, far away from the heart itself. Therefore, the field of view of an EKG is the

whole heart (Fig. 8.4 A). In contrast, the field of view of an activation recording using a

catheter is much smaller, as the electrodes are closely spaced (2 − 3mm apart). The lat-

ter is called an electrogram (EGM) (Fig. 8.4 B). Image (A) is an outside view of the heart,

whereas image (B) could be considered an inside view of the heart.

Fig. 8.4: The field of view of an EKG is the whole heart (A). In the plot of the lower portion of the image,
one can clearly see the surface P wave, showing the atrial activity, the surface QRS complex, showing the
ventricular depolarization, and lastly, the T wave, showing the ventricular repolarization. The field of view
of an EGM is restrained to a local area of the heart (B). With a catheter placed in a small area of the left
ventricular myocardium, we do not see any atrial activity or subsequent T wave.
Image adapted from a video by Dr. Joshua Cooper.134 ECG: electrocardiogram, EGM: electrogram.
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9
Numerical solution of the FK cardiac model

Differential equations are effective for describing various scientific and engineer-

ing problems depicting complex processes in natural and social sciences; examples include

the FK3V, and dynamical systems describing climate modelling135 or financial issues.136

Solving them efficiently has been a long-standing challenge. Only a few simple ODEs or

PDEs are solved analytically. For more complex PDEs, only numerical methods, such as
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the Finite Difference Method (FDM) and the Finite Element Method (FEM), can be ap-

plied.

9.1 Numerical calculations

The diffusion coefficient plays an important role in the propagation of the AP. We study

the role of the both when it is constant, and when it is allowed to vary spatially.

All numerical simulations for Eqs (8.18) – (8.20) along with Eqs (8.23a) – (8.23c), were

performed on a theoretical 1D cable of cells, using the fourth order Runge-Kutta (RK4)

algorithm with fixed timestep of dt = 0.002 ms. For spatial discretization of Eqs (8.18) –

(8.20), the domain was divided intoNx−1 elements withNx = 400 at xi = (i−1)L/(Nx−1)

(i = 1, 2, ...,Nx) which are separated by distance dx = L/(Nx − 1) = 0.0075 cm (about

the length of a cardiac cell). Second order, centered finite difference formulas were used

to discretize the first and second derivatives of the state variables wherever they appear

in Eqs (8.18) – (8.20). The spatially discretized equations are given explicitly in the next

subsection. The diffusion coefficient D̃ is, for some parts of the modeling, considered con-

stant, and for some others, spatially dependent (inhomogeneous), D̃(x), and is modeled

as a double step-function controlled by two very steep tanh functions. Numerical calcula-

tions were implemented with Python code, and, unless otherwise specified, they were run

for 150, 000 timesteps.

The boundary conditions at the ends of the cable are chosen to be those of zero-flux
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(Neumann) type, i.e.,

(9.1) D̃(x) ∂u(x, t)
∂x

∣∣∣∣
x=0

= D̃(x) ∂u(x, t)
∂x

∣∣∣∣
x=L

= 0,

where L is the length of the cable which, in what follows, is set everywhere equal to 3.0 cm.

As explained above, the (inhomogeneous) diffusion coefficient D̃(x) is practically a piece-

wise constant function which assumes the valueD0 andDscar in the normal (healthy) and

defected (scar) tissue region, respectively, as it is shown schematically in Fig. 9.5.

For a homogeneous (spatially constant) diffusion coefficient D̃(x) = D̃ along the cable,

Eq. (8.18) becomes

(9.2) ∂u
∂t = D̃ · ∂

2u
∂x2 − Jfi − Jso − Isi + Jstim .

If the diffusion coefficient D̃ is allowed to depend on the spatial coordinate x, the first term

on the right hand side of Eq. (8.18), i.e.,∇
(
D̃∇u

)
becomes

(9.3) ∂

∂x

[
D̃(x)∂u(x)

∂x

]
=

∂D̃(x)
∂x

∂u(x, t)
∂x + D̃(x)∂

2u(x, t)
∂x2 .

From Eq. (9.3) we can see that we need the discrete form of the first and second spatial

derivative of u(x, t), as well as the first spatial derivative of D̃(x). We use the following cen-
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tered differences137

∂u(x, t)
∂x =

ui+1(t)− ui−1(t)
2Δx ,(9.4)

D̃(x)
∂x =

D̃i+1 − D̃i−1
2Δx ,(9.5)

∂2u(x, t)
∂x2 =

ui+1(t)− 2ui(t) + ui−1(t)
Δx2 .(9.6)

Using Eqs (9.3) – (9.6), the spatially discretized system of Eqs (8.18) – (8.20) reads

∂ui
∂t =

D̃i+1 − D̃i−1
2Δx

ui+1 − ui−1
2Δx + D̃(xi)

ui+1 − 2ui + ui−1
Δx2

− Jfi(ui; vi)− Jso(ui)− Jsi(ui;wi) + Jstim(xi, t),(9.7)

∂vi
∂t = Θ(uc − ui)

1− vi
τ−v (ui)

−Θ(ui − uc)
vi
τ+v

,(9.8)

∂wi
∂t = Θ(uc − ui)

1− wi

τ−w
−Θ(ui − uc)

wi

τ+w
,(9.9)

where it is implied that the discretized variables ui, vi, and wi depend on time t.

We notice from the differential equations that the gating variables v and w can be solved

analytically up to the point when the threshold is reached and the cell fires. We take advan-

tage of that by including these equations our calculations.

v = (1− e−t/τ−v2)(9.10)

w = (1− e−t/τ−w )(9.11)
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This is also verified from visually inspecting the plots for the solutions to these equations

(see previous Chapter Fig. 8.3).

The stimulus current, which is necessary for the excitation of the AP pulse, is assumed

to arise from physiological mechanisms of the heart. There is a large volume of works on

the calculation of the ventricular AP in 1D138,139,140,141 using various types of stimulus

current functions Jstim(x, t). The FK3Vmodel has been also used for the calculation of the

ventricular AP in two and three dimensions142. Also, mapping models have been used for

the analysis of numerical results obtained through the FK3Vmodel143.

9.2 Propagation of the AP

As mentioned above, most of the research on propagation disruptions concentrates on

the remodeling of ionic currents. We chose to concentrate on changing the diffusion coeffi-

cient and studying the effect on the pseudo-ECG.We chose to concentrate on varying the

profiles of the voltage diffusion coefficient and consequently studying their effect on the

calculated pseudo-ECG, regarding thus the suppression of electrical connection between

cells as the primary cause of cardiac pathology.

Our theoretical cable of cells, of length L = 3 cm, is composed of 400 ventricular cells of

a single cell type, connected via gap junctions. A stimulus current Jstim(x, t)with an above-

threshold amplitude is applied to the first cell at x = 0 and is spatially restricted to the first

15 cells. It is therefore assumed to excite a small region around the left end of the cable of

length Lexc = 15 × (cell length). We take the cardiac cell length to be equal to the spatial

discretization dx = 0.0075 cm. The stimulus current is taken to be a rectangular pulse of,
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unless otherwise stated, amplitude Jamp = 0.9 mA and duration τp = 11 ms.

Using Eq. (9.7) – (9.9), we have calculated numerically the ventricular AP propagating

through ventricular tissue of length L = 3 cm as a function of time t. A small segment

of the tissue/cable of length Lexc = 0.11 cm is initially excited through its left end, i.e.,

the segment from x = 0 to x = Lexc = 0.11 cm, using stimulus currents of amplitude

Jamp = 5 mA and different durations τp. Typical AP pulse profiles (black curves) along

with the associated stimulus currents (red curves) are shown in Fig. 9.1, monitored at two

different locations on the cable, i.e., at x ≃ 0.26 cm (relatively close to the excited region,

left panels) and x ≃ 0.75 cm (at one-fourth of the cable length as measured from x = 0,

right panels). As it can be observed, the amplitude of the AP as well as its duration (action

potential duration, APD) increases with increasing τp (from top to bottom). The latter,

specifically, which is defined as the width of the pulse at 12% of its maximum amplitude

(illustrated in (a) by the gray horizontal double-headed arrow), increases from 159 ms for

τp = 1.0 ms, to 194.4 ms for τp = 9.0 ms, to 215.8 ms for τp = 9.0 ms. Left and right

panels, obtained by monitoring the AP pulses at different locations on the cable, also differ

in that the former exhibit a sharp peak at a time instant corresponding to the end of the

stimulus current pulse. This sharp peak decreases until it practically vanishes for locations

on the cable relatively far from the excited region.

Similarly, in Fig. 9.2, the calculated action potentialV as a function of time t is moni-

tored at two different positions on the cable for stimulus currents of amplitude Jamp =

4 mA, duration τp = 4 ms, and three different values of the initially excited segment at the

left end of the cable of length Lexc, which extends from x = 0 to x = Lexc. As in Fig. 9.1,
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the action potential is monitored at x ≃ 0.25 cm and x ≃ 0.75 cm (left and right panels, re-

spectively). Again it is observed that, the duration of the action potential (APD) increases

with increasing Lexc. Specifically, the APD increases from 173.9 ms for Lexc = 0.075 cm to

174.9 ms for Lexc = 0.113 cm, to 179.5 for Lexc = 0.113 cm. In both Figs. 9.1 and 9.2, the

action potential exhibits the right characteristics in (e) and (f) panels, as long as the shape

and the width (i.e., the APD) is concerned.

9.3 The pseudo-ECG

The analysis and interpretation of ECGs remains mostly empirical. The pseudo-ECG at

a particular time-instant t is calculated numerically from the spatial profile of the AP at that

time-instant on the cable using the expression144,145,146,147,129 (for a thorough derivation see

Ref.148)

(9.12) Φe(x⋆, t) = −K
∫

∇V(x, t) · ∇ 1
|x⋆ − x|dx,

where∇V(x, t) is the spatial gradient of the ventricular AP,K = 1.89 mm2 is a constant

that depends on electrophysiological quantities, such as the radius of the fiber and the in-

tracellular conductivity. The “electrode” measuring the voltage is at point x⋆ of the fiber,

and |x⋆ − x| is the distance from a source point x to a field point x⋆, where x⋆ > x, ∀x.

The temporal profile of the pseudo-ECG Φe constitutes an approximation for the ventric-

ular component of the ECG, i.e., the pseudo-ECG generated at a hypothetical electrode

which is located at a particular distance away from the last epicardial cell along the cable. As
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Fig. 9.1: The action potentialV (black curves) in mV as a function of time t that is produced by a sin‐
gle rectangular current pulse depicted by the red curve (notice the small deflection in the beginning) for
D = 0.005 cm2ms−1, Lexc = 0.113 cm, Jamp = 4.0 mA. The action potential duration (APD), indicated by
the gray horizontal double‐headed arrow, is measured for each plot. (a,b) τp = 1.0 ms, and APD= 159 ms;
(c,d) τp = 9.0 ms, and APD= 194.4 ms; (e,f) τp = 11.0 ms, and APD= 215.8 ms;. The action potential is
monitored at positions x ≃ 0.26 cm (right panels), and at x ≃ 0.75 cm (left panels).

shown in Fig. (2.9), the ventricular potential contributes specifically to the formation of

the QRS cluster and the T wave. The pseudo-ECG is, thus, expected to reproduce these

features.
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Fig. 9.2: The action potential u (black curves) in normalized units as a function of time t excited by a single
rectangular pulse current with amplitude Jamp = 4 mA, and duration τp = 7 ms. The action potential
duration (APD), indicated by the gray horizontal double‐headed arrow on the top left plot, is measured for
each plot. (a,b) Lexc = 0.075 cm, and APD= 173.9ms; (c,d) Lexc = 0.113 cm, and APD= 174.9ms; (e,f)
Lexc = 0.188 cm, and APD= 179.5ms. The action potential u is monitored at x ≃ 0.25 cm (right panels),
and at x ≃ 0.75 cm (left panels).

In one dimension, Eq. (9.12) reads

(9.13) Φe(x⋆, t) = −K
∫

∂V(x, t)
∂x

(
∂

∂x
1

|x⋆ − x|

)
dx .

We calculate the pseudo-ECG for point outside the cell cable, so for x⋆ > L, Eq. (9.13)
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Fig. 9.3: Simulated pseudo‐ECG as a function of time t calculated using the three‐variable Fenton‐Karma
model . For comparison, a drawing of a real ECG is shown in the inset. We can clearly detect the R and T
wave equivalents whose amplitudes we designate with the blue and green stars respectively.

becomes

(9.14) Φe(x⋆, t) = −K
∫

∂V(x, t)
∂x

1
(x⋆ − x)2 dx,

and is thus more easily calculated. Using the spatial profiles calculated from Eq. (9.7) -

(9.9) at each time instant, we calculate Φe(L, t)which is the desired pseudo-ECG; in our

calculations x⋆ = 3.37 cm, while the cell cable length is L = 3.0 cm. As shown in Fig.

9.3, the T-wave has positive polarity and its amplitude is defined as the vertical distance
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fromV = 0 . In general, T waves are considered positive when their deflection is upward,

and negative when it is downward. For biphasic T-waves (waves with both an upward and

a downward deflection), unless otherwise stated, the dominant deflection is chosen. In

the small inset, a surface ECGwhich is recorded using two electrodes placed on the skin

surface, away from the heart, is visually compared to the pseudo-ECG.

9.4 Constant Diffusion Coefficient

We first run our model with a spatially constant diffusion coefficient D̃ = D0. This

can be regarded as an effective parameter, a mean value to account for the discontinuity

defect part inserts. The height of the R-wave (see blue star in Fig. 9.3) in each pseudo-ECG

denotes the value of the T-wave amplitude in units of mV; when plotted for 25 different

values, as shown in Fig. 9.4, it appears to exhibit an exponential dependence on the effec-

tive diffusion coefficient D̃. Since repeated attempts to fit a single exponential curve using

least squares failed, we tried using the sum of two exponentials via the ansatz

(9.15) Rwa = Ae−αD̃ + Be−βD̃ + C,

whereRwa is the R-wave amplitude, and A, α, B, β, and C, are parameters to be fitted. Us-

ing the ansatz (9.15), we obtained excellent fit using parameters A = 0.79, α = 115.36,

B = 0.56, β = 1258.84, and C = 0.595. In the exemplary fit shown by the blue line in

Fig. 9.4, we notice a transition region around the value of 0.0012± 0.0002 cm2ms−1 of the

diffusion coefficient, which, as mentioned before, is an experimental value used frequently
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Fig. 9.4: R‐wave amplitude as a function of the (homogeneous, spatially constant) voltage diffusion coeffi‐
cient D̃ = D0, extracted from the calculated pseudo‐ECGs using Eq. (9.13) for a total of 25 values forD0
within the interval 0.0005 − 0.025 cm2ms−1 (blue curve). The root‐mean‐squared‐error (RMSE) for this
curve is 7.6 · 10−03 mV, which is low enough to provide confidence in the solution. Other simulation param‐
eters are: Jamp = 10.0 mA, tp = 10.0 ms, Lexc = 0.105 cm, dx = 0.0075 cm, dt = 0.0013 ms, Nsteps =
230769. Curve fit parameters are: A = 0.79, α = 115.36, B = 0.56, β = 1258.84, and C = 0.595. The range of
valuesDe = (0.0012± 0.0002) cm2ms−1 denoted by the shaded area, is a range of experimental values
used frequently in the literature. The constants for the failed single exponentials are c1 = 0.6 (green curve),
and c2 = 1.3 (red curve).

in literature. The transition region is identified by those values of D̃ = D0 for which the

fitted single-exponential curves Ae−αD̃ + C1 (green-dashed curve) and B e−βD̃ + C2

(red dashed-dotted curve) start diverging significantly from the numerical data (slightly

above the experimental value of D̃ = De. The algorithm was implemented using the SciPy

python library.
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9.5 Spatially-Dependent Diffusion Coefficient

In Fig. 9.5, we plot the profile of the diffusion coefficient D̃(x) that contains a localized

heterogeneity in the form of a defected (scar) region in which the conductance velocity has

been significantly reduced due to reduced electrical connection between cells, i.e., a region

in which the value of D̃(x) has dropped to

(9.16) Dscar = (1+ λ)D0,

whereD0 is the value of D̃(x) in the normal (healthy) region, and−1 < λ < 0. For ex-

ample, for a cable length of L = 3.0 cm withD0 = 0.005 cm2ms−1, a defected region

of length Lscar = 0.5 cm and λ = −0.8 would haveDscar = 0.001 cm2ms−1. Hence, the

spatially dependent voltage diffusion coefficient has the form

D̃(x) =


Dscar, if xscar < x < xscar + Lscar

D0, anywhere else.
(9.17)

Note that in a recent work149, a spatially and temporally diffusion coefficient was con-

sidered which encompasses conductance heterogeneities in the cardiac tissue induced by

the dynamics of the gap junctions. Obviously, the adjustable parameters of the voltage dif-

fusion profile is the starting point of the defected region xscar, the spatial length of the scar

tissue Lscar, and the percentage decrease λ which lowers D̃(x) in the defected region. Using
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Fig. 9.5: A. Profile of the diffusion coefficient D̃(x), where D̃(x) > 0, plotted against the position x on the
cell strand (0 < x < L, where L is the length of the tissue). The plot depicts a localized defect of width
Lscar and coefficient valueDscar, around the effectiveD0 (normal tissue). Marking the start of the defected
region (scar) is xscar. B. Rendering of the corresponding cell strand for visualization purposes (not in scale).
The green region corresponds to the scar tissue, while the rest of the strand is composed of normal tissue.
Figure created with matplotlib using the following values: D0 = 0.005 cm2ms−1, Lscar = 1.125 cm,
xscar = 0.5 cm, λ = −0.8, and L = 3.0 cm,Dscar = 0.002 mV (as derived from Eq. (9.16)).

Eqs (9.16) and (9.17) above, the spatially averaged diffusion coefficient is

(9.18) < D̃(x) > = D0

(
1+ λLscar

L

)
, where λ < 0 ,

To study the polarization of the T-wave in a tissue containing a localized defect, a stimu-

lus current in the form of a rectangular pulse of amplitude Jamp = 0.9 mA, and duration

τp = 11 ms, was applied at the first 15 cells of the cable, those which are at its left end

(x = 0), whose length is Lexc ≃ 0.011 cm. Then, the pseudo-ECG is calculated from the

spatio-temporal profile of the APs, and the maximummagnitude of the T-wave is identi-

fied. This procedure was repeated as a function of the width of the defect Lscar for three

different values of the position of the onset of the defect xscar and four values of the pa-
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rameter λ. The results are presented in a compact way in Fig. 9.8. In all four subfigures,

the diffusion coefficient in the healthy region isD0 = 0.005 cm2 ms−1. The defect was

modeled using a spatially dependent diffusion coefficient D̃(x), whose characteristics were

previously depicted in Fig. 9.5. For the results presented in Fig. 9.8, the defected region

spans the interval from x = xscar to x = xscar + Lscar. Within this interval, the diffusion

coefficient is D̃ = Lscar, with λ = −0.8,−0.7,−0.6, and−0.5 in Fig. 9.8(a), (b), (c), and

(d), respectively. Obviously, the relation xscar + Lscar < L should hold in any case.

By inspection of Fig. 9.8 we observe that the curves for xscar = x3 = 2 cm (green curves)

always remain on the positive side of the vertical axis, meaning that in this case there is no

polarization inversion of the corresponding T-wave, and thus this is always positive. The

same holds true for any other value of xscar > 2, since the defected region constitutes only

a relatively small part of the cable, which is of length L = 3 cm, so that it cannot affect

significantly the spatio-temporal AP profile. It can be also be observed from Fig. 9.8(d)

that all three curves remain on the positive sides of the vertical axis, and thus no T-wave

inversion appears, due to the relatively small magnitude of λ. Indeed, the magnitude of λ in

this case does not seem to be sufficiently high (or equivalently the defect is not sufficiently

deep) to invert T waves. For slightly deeper defect, for λ = −0.6, as shown in Fig. 9.8(c),

T-wave inversion is observed for xscar = x0 = 0.5 and Lscar = 2.25 (blue curve) but not

for xscar = x1 = 1.0 or xscar = x2 = 2.0 (orange and green curves, respectively). The

obvious reason is that in the latter cases the width of the defected region Lscar cannot reach

such a high value as that in the former case (Lscar = 2.25). Moreover, as it can be observed

from Figs. 9.8(a) and (b) the parts of the curves with xscar = x0 = 0.5 (blue curves) and
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xscar = x1 = 1.0 (orange curves), respectively, with inverted (negative) T-wave become larger

with decreasing λ. From these observations can thus be concluded that for fixed xscar, deep

and wide defected regions favor T-wave inversion. Furthermore, the value of Lscar at the

transition from positive to negative T waves is lower in the orange curves (xscar = x1 = 1.0)

than that in the blue curves (xscar = x0 = 0.5) as can be observed from Figs. 9.8(a) and

(b). Thus, for fixed λ, defects with higher xscar are capable to invert T-waves with lower

Lscar. From the above remarks it becomes clear that the width, the depth, and the starting

position of the defect contribute decisively to T-wave morphology.
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Fig. 9.6: T‐wave maximae and minimae as a function of the width of the defected region Lscar, as obtained
from the pseudo‐ECG with inhomogeneous voltage diffusion coefficient D̃(x) withD0 = 0.005 cm2ms−1

and λ = −0.8. The defected regions start at xscar = 0.5 cm. The blue solid curve is a guide to the eye. The
representation is the same as that in Fig. 9.8. The points depicted as blue solid circles are the ones chosen as
the largest of the two in the biphasic wave. The hollow white circles show the amplitude of the other wave
in the biphasic phase. The truly biphasic phase is limited to a few points around the blue vertical segment at
Lscar ≃ 1.6. The purpose of this plot is to show that there is a transition phase during T inversion, where the
wave has both positive (upward) and negative (downward) parts.

We should note that the transition from positive to negative T waves is realized through
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a biphasic stage, with a minimum and a maximum of similar magnitude. This is consistent

with the bibliography where it is reported that biphasic T waves usually evolve and are of-

ten followed by T-wave inversion with strongly suspected myocardial ischaemia150. There

was no attempt made to trace the biphasic stage in Fig. 9.8, which is actually limited within

a small interval around the transition point. Wherever two extremae appear in the calcu-

lated T-wave, only the higher of them is plotted. However, a typical biphasic stage of the

calculated T-wave is illustrated below.

In Fig. 9.6, the maximum and the minimum of the T-wave (equivalently the maximum

and the second maximum of the magnitude of the T-wave) are plotted as a function of the

width of the defected region Lscar, for the parameters of the blue curve in Fig. 9.8(a). Recall

that all points on that curve were obtained from the pseudo-ECG using voltage diffusion

coefficient D̃withD0 = 0.005 cm2ms−1, λ = −0.8, and a defected region starting at

xscar = x0 = 0.5 cm. The blue circles (filled and empty) have been obtained through nu-

merical calculations while the (blue) solid curve is a guide to the eye, actually indicating the

transition from positive to negative (inverted) T-wave. The filled and empty circles indicate

maximae and second maximae (whenever they exist) of the T-wave magnitude. Note that

the truly biphasic stage, for which the minimum and the maximum of the T-wave have

approximately equal magnitude, is limited to a few (∼ 5) points around the blue vertical

segment indicating the T-wave inversion transition. Further away from that segment, e.g.,

at x = 1.5 cm, i.e., at Lscar = 1.0, the maximum of the T-wave has much larger magnitude

of the minimum, and thus the positive character of the T-wave is dominant. Such cases

are regarded as positive T-waves in Fig. 9.8. Correspondingly, cases in which the negative
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Fig. 9.7: Pseudo‐ECGs as a function of time t, two‐dimensional maps of the action potential on the x − t
plane, and three dimensional plots of the action potential on the x − t plane, are shown on the left, middle,
and right columns, respectively. The parameters, from top to bottom row are Lscar = 0 (first row), Lscar =
1.25 cm (second row), and Lscar = 1.5 cm (third row). The first, second, and third row show the case of
pseudo‐ECG with positive, biphasic, and negative (inverted) T‐wave, respectively. These figures illustrate the
effect of the defected region on the spatio‐temporal profile of the action potential. The defected region in
the second and third row starts at Lscar = 0.5, and the length of the cable is L = 3 cm in all three rows.
Image used with kind permission from N. Lazarides.
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(inverted) character of the T-wave is dominant are regarded as inverted T-waves in Fig. 9.8.

In Fig. 9.7, the pseudo-ECG as a function of time t, the map of the action potential on

the x − t plane, and the three-dimensional plot of the action potential on the x − t plane

are shown in three different widths Lscar of the defected region of the cardiac tissue, to il-

lustrate its effect on the spatio-temporal profile of the action potential and eventually on

the T-wave morphology. In the figure, from the first to third row (from top to bottom),

the T-wave of the pseudo-ECG is positive, biphasic, and negative (inverted), respectively.

The results shown on the first row have been obtained for a healthy tissue, that is, for an

averaged diffusion coefficient D̃which is homogeneous (without defected region, λ = 0).

In this case, as shown in the map on the second column, the width of the action potential

decreases monotonically as it propagates from the excitation region of the cable outwards.

This is also apparent from the three-dimensional plot, where it is also clear that the ampli-

tude of the pulse is not significantly affected during propagation. The sharp peak of the

action potential profile, appearing in all three sub-figures in Fig. 9.7, is due to the action po-

tential pulse being very close to or inside the excitation region of length Lexc = 0.11 cm of

the cable. That peak however disappears after short time of propagation in all three cases.

The results shown in the second and third row have been obtained with a diffusion coef-

ficient D̃ = D̃(x), as in Eq. (9.17), with Lscar = 1.25 cm and Lscar = 1.5 cm, respectively.

AS it can be observed, the results in the second and third row are significantly affected by

the existence of the defected region. In the second row the T-wave of the pseudo-ECG

becomes biphasic, while the width of the action potential pulse is not any more monotoni-

cally decreasing during outward propagation. Instead, the pulse narrows substantially and
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abruptly while it propagates into the defected region, and becomes wider after departing

from it. That effect is also visible in the three-dimensional plot, where we may also observe

that the amplitude of the AP is not significantly affected during propagation, even in the

defected region. In the third row, the T-wave of the pseudo-ECG is inverted, becoming

negative. The profile of the propagating AP pulse is in this case very similar to that shown

in the second row, i.e., it narrows substantially and abruptly when entering the defected

region and widens again when departing from it. In this case however the pulse narrows

within a larger interval because of the larger Lscar = 1.5 cm. The three-dimensional plot is

also very similar to that in the second row.

These figures clearly illustrate the effect of the defected region on the propagation of

the action potential which in turn affect the pseudo-ECG and is capable of inverting the

T-wave. In Fig. 9.7, no attempt was made to match observed ECG data. This would re-

quire to choose the constantK in Eq. (9.14) and other parameters appropriately. But this

is outside the scope of this work which aims at showing qualitatively that spatially inhomo-

geneous voltage diffusion coefficients can account for the inversion of the T-wave, and also

to account for the variation of the R-wave amplitude against a homogeneous (constant)

diffusion coefficient D̃ = D0.
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Fig. 9.8: T‐wave morphology depicted as magnitude of the peak or the dip of the T‐wave (in units of mV) for
various starting positions and widths of the defected tissue. The variable x (0 < x < L) is the position on
the cell strand. The star at each xj, (j = 0, 1, 2) marks the position of the beginning of the defect for three
different values of xscar = 0.5, 1.0, and 2.0. All results are color‐coded by this value. The location of each
dot on the x‐axis signifies the end point of the defected region at xscar + Lscar, i.e., the distance along the
x‐axis of the dot from the star on the same curve represents the value of Lscar. Each plot has a different value
for the parameter λ as indicated in the label on top. For all four subplots, the effective diffusion coefficient is
D0 = 0.005 cm2ms−1.
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10
Conclusion and future work

10.1 Conclusion

Medical professionals follow their ownmental model when making deci-

sions. This model is “trained” by meticulous clinical history-taking, involving asking a

series of questions and evaluating the answers, eventually refining the probabilities for a
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specific disease. Past experiences with the same or other patients help them develop causal

models to guide their decisions which are iteratively refined after the result of every inter-

vention or observation.

AI models are supposed to replicate this process and assist with decision making. Can

they do it? The answer would have been different 20 years ago. Today, AI algorithms

are already part of the clinical evaluation of several medical modalities. There are papers

that compare machine model performance with that of human readers. On one hand this

shows the prospects of AI, on the other it contributes to a human-vs-machine perception

of AI that makes some medical professionals worry about job security, and leaves them

skeptical about AI’s broader deployment. A more useful attitude would be machine and

human working in a complementary way, leveraging each other’s aptitudes. In this capac-

ity, AI provides a tremendous opportunity for advancing medicine.

In this dissertation we showed the potential of MLmodeling for the efficient and cost-

effective diagnostic screening of abnormal LVG and cardiac remodeling through ECG.

Specific clinical and ECG features including novel ECGmarkers assisted the model in

predicting early pathological changes of LVG in patients without established CVD and

detected the population who will benefit from a detailed echocardiographic evaluation.

We also showed that from basic clinical data and the use of ECG, we can identify partic-

ipants with arterial hypertension which otherwise would be unaware of its existence. This

MLmodel’s purpose is to assess the risk and to prompt for further evaluation. The capa-

bility to detect a hypertensive individual immediately and efficiently only by using a simple

tool as the ECG creates great potential in the management of hypertension. We showed
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this using both the 12-lead ECG, and the single-lead ECG, the latter with an eye towards

future use in ECG-enabled wearables.

In the computational part of this work, we simulated the dynamics of the action poten-

tial propagation in a cable and calculated a pseudo-ECG that reproduces the R wave and

the T wave of an observed ECG. Our results connect the propagation of electrical (action)

potentials within the cardiac tissue with the morphology of the pseudo-ECG, and by exten-

sion with what physicians actually observe i.e., the ECG. Specifically, our results reveal the

dependence of the R-wave amplitude as a function of the (homogeneous) voltage diffusion

coefficients and, most importantly they point towards an intimate relation between inho-

mogeneous diffusion coefficients (diffusion coefficients with defected regions) and the

inversion (of the polarity) of the T-wave. The latter is often observed in cases of ischemia in

ECG recordings by physicians.

AI is creating new opportunities to improve physicians’ decision making and help with

patient care. However, AI also creates ethical and privacy concerns. Populations not ad-

equately represented in the training cohort will likely receive biased results. For example,

state-of-the-art dermatology AI models substantially underperform on darker skin tones

until they are fine-tuned on diverse data.151 There is a whole field addressing ethics and

fairness issues around AI, inductive or algorithmic biases, which is very important, too

important to be treated lightly, so it’s out of the scope of this work.
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10.2 Future work: Modeling the FK cardiac model using neural net-

works

Our numerical solution to the FKmodel, shown in Eqs (8.18-8.20), by construction, pro-

duced a solution in the form of an array that contains the values of the desired functions,

namely the voltage u and the gating variables v and w, at a selected group of points. Alter-

natively, there is a class of differential equation solvers that promise a mesh-free and time-

continuous approach to solving forward and inverse problems governed by differential

equations. In particular, they solve the governing coupled system of differential equations

by optimizing the parameters of a deep neural network152 (DNN) using a physics-based

loss function. Neural networks are known to have function approximation capabilities and

can produce solutions written in a differentiable, closed analytic form.153 Modern DNNs,

which are composed of a sequence of linear transformations and component-wise nonlin-

earities, provide such functions. DNNmodels are highly flexible—often having upwards

of tens of thousands of parameters—but can still be trained and evaluated efficiently due to

recent advances in parallelized hardware, automatic differentiation and stochastic optimiza-

tion. More importantly, they enable integration of data and mathematical models within

the same framework. This is known as a physics-informed neural network154 (PINN).

PINNs are effective especially for high-dimensional PDEs, for which traditional solvers

are computationally expensive. Still, many times, conventional solvers have proved to be

better. To train the PINNwe need careful adjustment of the weights on the loss terms cor-

responding to PDE, boundary, interface, and initial conditions. E.g. for a PDE of the form
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ut = f(x, t, u, ux, uxx, params),

where, ut denotes the first derivative w.r.t. time, etc., and params are other functions or

coefficients that the solution depends on, e.g. a diffusion coefficient. The solution would

then be a representation of a neural network u = uθ, trained by backpropagation to obtain

gradients for its parameters θ.

While using the Runge-Kutta method resulted in an accurate solution, we did try out

only a small number of values for the diffusion coefficient. Had we wanted to try out a

large number of different values, or to change a host of other parameters in the forward

problem, it would have been computationally tedious. A future neural network solution

could be better, since it can provide a solution to the system of PDEs, for any coefficient

value within that range, and the same applies for other parameters.

Another reason to utilize neural networks with PDEs is incorporating real data from

observations, what is often called a data-driven solution.154 That approach could solve the

inverse problem; going from obtained observations/data to calibrating the parameters of

the problem. In our case, a DNNwould solve the inverse problem by incorporating data

from real ECGs and discovering personalized parameters.
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10.3 Future work: Uncovering latent features in raw ECG signals us-

ing neural networks

Although ensemble methods such as RF perform better on tabular data, deep learning

has enabled tremendous progress for learning on images, language, and audio datasets.

Treating the ECG as a picture, in the case of the single beat, or even as a time series if con-

sidered as a series of beats, and training a neural network on this data, could uncover fea-

tures of the ECG connected and therefore predictive of certain cardiac conditions.
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Annotation XML files
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Fig. A.1: Excerpt of the XML file showing the part where the start and end of the P wave are stored.

Fig. A.2: Excerpt from an XML file showing the part where the variable “MDC_ECG_HEART_RATE” stores
the calculated heart rate, which, in this person, is 64 bpm. Also shown, among others, is the variable
“MDC_ECG_TIME_PD_QRS” which stores the duration of the QRS complex as an average for all leads (in
this case 79 ms). For definitions see Fig. 4.2 in Chapter 2.
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Feature HTN NT p value

Mean Std Range Mean Std Range

Systolic blood presure, mmHg 139.8 13.8 100.0 - 185.00 127.5 9.1 91.0 - 175.00 <0.001

Age, years 62.5 10.5 30.0 - 80.00 53.3 10.2 30.0 - 80.00 <0.001

Pulse blood pressure, mmHg 55.2 11.9 15.0 - 104.00 46.7 8.0 20.0 - 80.00 <0.001

Mean blood pressure 103.0 9.2 68.0 - 146.30 96.3 7.2 70.7 - 147.00 <0.001

Body mass index, kgr/m2 31.4 5.4 18.8 - 56.64 28.1 5.2 17.6 - 48.87 <0.001

BMI-adjusted Cornell, mV·kgr/m2 45.1 18.5 4.3 - 128.13 34.3 16.2 3.1 - 118.90 <0.001

Body fat, kgr/m2 41.6 9.0 18.9 - 75.45 36.6 8.1 17.3 - 67.04 <0.001

Diastolic blood pressure, mmHg 84.6 8.9 42.0 - 127.00 80.7 7.6 52.0 - 133.00 <0.001

R wave amplitude in aVL, mV 0.6 0.3 0.0 - 1.91 0.5 0.3 0.0 - 1.61 <0.001

Weight, kgr 86.1 18.0 43.0 - 180.00 78.6 17.4 45.0 - 153.00 <0.001

Cornell criteria, mV 1.4 0.5 0.1 - 3.77 1.2 0.5 0.1 - 3.37 <0.001

Area under R wave in I, ms·mV 9.3 3.9 0.8 - 33.36 7.8 3.3 0.8 - 21.10 <0.001

QRS axis front, degrees◦ 13.6 32.4 -77.0 - 188.00 26.0 30.6 -82.0 - 88.00 <0.001

Corrected QT interval, ms 423.7 24.6 337.0 - 500.00 414.8 22.1 364.0 - 506.00 <0.001

P wave duration, ms 114.6 15.5 0.0 - 196.00 111.7 10.6 75.0 - 149.00 <0.001

PQ interval duration, ms 167.0 27.4 0.0 - 277.00 159.0 20.8 112.0 - 226.00 <0.001

QT interval duration, ms 397.9 31.7 290.0 - 501.00 387.5 28.7 312.0 - 496.00 <0.001

R wave amplitude in III, mV 0.2 0.2 0.0 - 1.37 0.3 0.3 0.0 - 1.74 <0.001

Planar frontal QRS-T angle, degrees◦ 37.0 35.3 0.0 - 178.00 26.2 25.3 0.0 - 168.00 <0.001

Area under R wave in aVF, ms·mV 3.9 3.6 0.0 - 25.39 4.7 3.7 0.0 - 23.51 <0.001

Area under T wave divided by QRS complex area 1.0 0.5 0.0 - 3.46 1.1 0.5 0.1 - 3.12 <0.001

Area under R wave in III, ms·mV 1.9 2.4 0.0 - 21.05 2.6 3.0 0.0 - 19.12 <0.001

BMI-modified Sokolow-Lyon voltage, kgr/m2·mV 17.5 7.7 4.9 - 96.88 15.4 5.9 5.8 - 41.95 <0.001

BMI-adjusted Sokolow-Lyon voltage, mV 2.6 0.6 0.2 - 5.66 2.4 0.6 1.0 - 4.73 <0.001

Total QRS area in all leads, ms·mV 291.2 78.0 118.4 - 734.18 272.2 78.4 133.9 - 942.09 <0.001

S wave amplitude in V5, mV 0.4 0.3 0.0 - 1.46 0.3 0.2 0.0 - 1.60 <0.001

T wave amplitude in V5, mV 0.3 0.2 -0.7 - 1.02 0.3 0.2 -0.5 - 0.82 <0.001

S wave amplitude in V3, mV 0.9 0.4 0.0 - 2.84 0.8 0.4 0.0 - 3.15 <0.001

QRS complex duration, ms 92.6 11.0 62.0 - 153.00 90.6 11.2 55.0 - 147.00 0.002

P wave amplitude in II, mV 0.1 0.0 0.0 - 0.28 0.1 0.0 0.0 - 0.41 0.003

Area under QRS interval in V5, ms·mV 34.7 12.3 10.5 - 93.14 32.5 11.1 11.7 - 97.14 0.004

Q vs. S vector 0.9 0.6 -0.8 - 2.91 0.9 0.6 -0.8 - 2.65 0.008

J point deflection, mV -0.0 0.0 -0.1 - 0.14 -0.0 0.0 -0.1 - 0.13 0.01

Q wave duration, ms 10.5 8.1 0.0 - 36.00 11.9 8.6 0.0 - 48.00 0.01

P axis in frontal plane, degrees◦ 46.6 22.5 -59.0 - 116.00 50.4 26.4 -61.0 - 268.00 0.011

Height, cm 165.4 9.9 142.0 - 192.00 166.9 9.8 137.0 - 200.00 0.039

Intrincicoid deflection in II, ms 41.9 6.7 5.0 - 95.00 41.1 6.7 4.0 - 64.00 0.042

Area under S wave in V1, ms·mV 18.6 11.5 0.0 - 77.63 17.2 9.9 0.0 - 51.79 0.054

T wave duration, ms, ms 204.0 42.3 43.0 - 345.00 200.6 32.4 77.0 - 312.00 0.071

T wave amplitude in III, mV 0.0 0.1 -0.4 - 0.37 0.0 0.1 -0.3 - 0.57 0.077

BMI: body mass index, HTN: participants with hypertension, NT: participants with normal blood pressure (continues in next page).

Table B.1: (continued in next page).
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Feature HTN NT p value

Mean Std Range Mean Std Range

Heart rate, bpm 69.9 11.6 40.0 - 129.00 71.1 12.0 48.0 - 109.00 0.108

R wave amplitude in V2, mV 0.4 0.3 0.0 - 1.83 0.4 0.3 0.0 - 1.54 0.123

R-R interval duration, ms 884.7 140.5 464.0 - 1508.00 872.5 145.5 544.0 - 1360.00 0.128

T wave amplitude in aVL, mV 0.1 0.1 -0.3 - 0.43 0.1 0.1 -0.3 - 0.49 0.133

Q vs. S vector -0.4 0.5 -2.8 - 1.31 -0.3 0.4 -1.9 - 1.26 0.227

Area under S wave in V2, ms·mV 19.5 12.4 0.0 - 89.73 18.3 11.3 0.0 - 72.03 0.243

QRS-modified Sokolow-Lyon voltage, ms·mV 187.1 65.3 26.0 - 520.02 182.8 63.4 79.4 - 433.00 0.256

ST segment duration, ms 101.3 48.1 0.0 - 268.00 96.3 37.8 0.0 - 229.00 0.265

P wave amplitude in V2, mV 0.0 0.0 0.0 - 0.18 0.0 0.0 0.0 - 0.19 0.281

T wave amplitude in V2, mV 0.3 0.2 -0.3 - 1.12 0.3 0.2 -0.2 - 1.26 0.352

Quotient of RV2/RV5 amplitudes 0.4 0.3 0.0 - 1.99 0.4 0.3 0.0 - 1.71 0.438

R wave amplitude in V6, mV 1.1 0.4 0.0 - 2.92 1.1 0.4 0.1 - 3.32 0.442

S wave amplitude in V1, mV 0.7 0.3 0.0 - 2.56 0.7 0.3 0.0 - 1.58 0.454

Intrinsicoid deflection in V5, ms 39.6 6.2 17.0 - 103.00 40.0 6.3 20.0 - 66.00 0.457

Vector V2/vector V5 adjusted for BMI 1.8 4.9 0.0 - 53.71 1.7 4.1 0.0 - 44.98 0.49

R wave amplitude in V5, mV 1.2 0.5 0.0 - 3.21 1.2 0.5 0.2 - 2.83 0.514

T ratio 1.8 6.1 0.3 - 156.00 1.5 0.6 0.7 - 8.00 0.613

S wave amplitude in V2, mV 0.8 0.4 0.0 - 3.03 0.8 0.4 0.1 - 2.37 0.783

Tallest R wave in limb leads, mV 0.9 0.3 0.3 - 1.96 0.9 0.3 0.3 - 2.07 0.824

Area under R wave in V5, ms·mV 14.2 6.4 2.3 - 52.34 13.9 5.7 0.6 - 33.44 0.832

T axis frontal plane, degrees◦ 38.5 35.3 -87.0 - 258.00 36.2 23.4 -58.0 - 154.00 0.981

Sokolow-Lyon voltage, mV 2.0 0.6 0.2 - 4.86 2.0 0.6 0.8 - 4.33 0.991

BMI: body mass index, HTN: participants with hypertension, NT: participants with normal blood pressure.

Table B.1: Characteristics and Comparative Statistics for Hypertensive and Normotensive Study Participants.
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