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Abstract

In this Master’s Thesis we study the Rashba spin-orbit coupling effect
(RSOC) on the supercurrent and zero-phase current of a short, ballistic
Josephson junction, in the clean limit. The junction consists of two s-wave
superconductors (S) and three layers in between, a 2-dimensional electron gas
(2DEG) between two ferromagnets (F) (S/IF/F/2DEG/F/IF/S). In addi-
tion, we have two thin insulator interfaces (IF ) between the superconductors
and the ferromagnets, capable of both normal scattering and spin-flip due to
inhomogeneous magnetization.

We study this junction by observing how the absolute value of the critical
supercurrent, the zero-phase current and the current-phase relation (CPR)
change when we introduce a 2DEG layer with spin-orbit coupling.

The effects produced by magnetization and spin-orbit coupling are com-
pared. The 2-dimensional electron gas is placed on the xy plane, and that
means it produces an electric field, parallel to the z axis, with the induced
magnetic field on the plane where the carriers move. As we increase spin-
orbit coupling we observe that the magnetization geometry has a strong effect
on physical properties. In the half-metallic limit, where due to spin ↓ cut-
off, singlet correlations diminish, while triplet correlations are induced, which
enable long range supercurrent.

Spin-orbit interaction changes the 0 − π transitions observed due to the
magnetization. Also, it breaks the degeneracy for the supercurrent of ge-
ometries with equal supercurrent. Oscillations in the critical supercurrent
are attributed to exchange fields but also to resonances in the 2DEG inter-
mediate layer, which scale in width like λ−1. In the half-metallic limit we
see strong triplet correlations, which are especially noticed outside the cut-off
points in kp. Triplet correlations exist even for smaller exchange fields along
with singlet correlations. For this, the magnetization geometry is crucial.

Keywords:
• Josephson junction, rashba spin-orbit coupling effect, zero-phase cur-

rent, current-phase relation (CPR), singlet correlations, triplet corre-
lations, half-metallic limit.
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1 Introduction

We start this Thesis by introducing the reader to the basic theories and
phenomena involved in the problem we study. We consider weakly linked
superconductors (Josephson junctions) through an intermediate layer (in-
sulator, metal, ferromagnetic layer, etc.) which allow supercurrent to pass
through them with zero impedance at zero external voltage. Josephson devel-
oped a theory which, involving effectively Cooper pair tunneling, successfully
explained the S/I/S junctions with an insulator (I) thickness of about 10 Å.
This is possible, also for large metallic intermediate layers, due to a process
called Andreev reflection, which enables pairs of electrons pass through the
junction. Multiple Andreev reflections lead to the Andreev bound states,
states carrying the supercurrent from one superconductor to the other. We
will introduce all of the above in a physical language.

1.1 Superconductivity

H. Kamerlingh Onnes, on April 8, 1911, while studying the resistance
of metals at cryogenic temperatures, observed that after a certain temper-
ature, specific for each metal, their resistance abruptly disappeared. This
phenomenon was called Superconductivity, meaning that in certain mate-
rials, their cooling below a specific critical temperature (Tc) vanishes the
electrical resistance expulses magnetic fields. In the following years, many
other materials were observed of being superconductive. Starting from a low
critical temperature, for pure metals, of around 0.4K to 9K, materials were
found to have critical temperatures higher than 100K. The hunt continues
for high Tc superconductors, with the highest temperature material being a
ceramic material consisting of thallium, mercury, copper, barium, calcium
and oxygen (HgBa2Ca2Cu3O8+d) with a Tc = 133K [1].

In 1933, Walther Meissner and Robert Ochesfeld discovered the expul-
sion of a magnetic field from a superconductor, and named the phenomenon
the Meissner effect. A superconductor in a magnetic field, produces surface
electrical currents. The magnetic field which these surface currents produce,
cancels out the applied magnetic field within the bulk of the superconductor.
The applied magnetic field penetrates the superconductor within a distance
called the London penetration depth, where it is not completely cancelled.
The penetration length is characteristic for each superconductor. Due to
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the Meissner effect, the superconductors are thought of as having perfect
diamagnetism.

Proposed by John Bardeen, Leon Neil Cooper and John Robert Schri-
effer, the BCS theory was the first microscopic theory of superconductivity.
The theory states that for sufficiently low temperatures, electrons near the
Fermi surface form Cooper pairs. This binding occurs in the presence of
an attractive potential, which is generally attributed to the interaction be-
tween electrons and the vibrating crystal lattice. BCS theory can explain
superconductivity quite well in conventional superconductors.

The BCS theory assumes that an attractive force exists between elec-
trons. This force is due to Coulomb attraction between the electron and
the crystal lattice. An electron in the lattice will cause a slight increase in
positive charges around it. The induced local positive charge will, in turn,
attract another electron, making them correlated. These two electrons form
what we know as a Cooper pair. However, energy from thermal vibrations
of the lattice can break the pair, if it is high enough, else the electrons re-
main correlated. This explains roughly why superconductivity requires low
temperatures. Cooper pairs feel no scattering, thus can propagate without
resistance, at zero temperature, and they contribute to the supercurrent. To
be more specific, BCS theory describes how two electrons interact, using a
weak attraction with an exchange of phonons, in an energy band of ωD width
(where ωD is Debye frequency) centered on Fermi energy EF .

1.2 Josephson Effect

The Josephson effect is a macroscopic quantum phenomenon of a current
that can flow between two superconductors without being reduced, when no
voltage is applied. A weak link is a weak electrical contact put between
superconductive electrodes. When the dimensions of such links are suffi-
ciently small, a single-valued and 2π periodic relationship arises between the
supercurrent Is and the phase difference, φ, of the condensates on the two
superconductive electrodes. The condensate is described by a macroscopic
wavefunction (complex order parameter), where the amplitude is related to
the density of the superconducting electrons and has a given phase. With in-
creasing dimensions, this relationship deviates gradually from the Josephson
behavior. The type of the weak link defines this deviation.

1.2.1 General description

The Josephson effect describes the phenomenon of the current that flows
through a weak contact, between two superconductive electrodes, that can
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contain a component Is (supercurrent), which is not dependent on voltage V
across the electrodes but on the phase difference

ϕ = χ2 − χ1, (1)

where χ1,2 are the phases of the order parameter, ∆, in the electrodes

∆1,2 = |∆1,2| exp(iχ1,2). (2)

In the simplest (”classical”) case, the relationship IS(ϕ) is sinusoidal

IS = Ic sinϕ, (3)

where Ic is called the supercurrent amplitude or the critical current with
no external voltage applied. This phenomenon is called the DC Josephson
effect. DC Josephson has been studied by means of probability amplitude of
the Andreev reflections by Furusaki, Tsukada [9]. Experimentally, Eq. (3) is
a good description for SIS junctions.

The phase ϕ can also be related to the external voltage V , applied across
the superconductive electrodes (superconductors), by the superconducting
phase evolution equation

dϕ

dt
=

2e

~
V. (4)

where h
2e

is the magnetic flux quantum Φ0. In Eq. (4), ϕ changes with
time, and that produces a supercurrent in the Josephson junction. This
phenomenon is called the AC Josephson effect.

Eq. (3), in general junctions, is an approximate one, and various kind
of deviations of supercurrent from this dependence may be observed in a
superconductive weak link of any type. Moreover, the constant Ic involved
in Eq. (3) is essentially dependent on the geometry and material of the weak
link, the electrode material, temperature, and other factors.

1.2.2 DC and AC Josephson effects

The phenomena taking place at the Josephson contacts are divided into
stationary (DC) and non-stationary (AC) effects, depending on whether the
variables, including the phase difference ϕ, change with time or not.

The phase difference between the two condensates, introduces a non-zero
supercurrent flow and if ϕ remains constant (DC effect), no voltage appears
across the junction. As stated above, the supercurrent remains constant in
time and it’s amplitude can be between −Ic and Ic. When a fixed voltage
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VDC is applied across the junction, the phase will vary linearly with time and
the current will be an AC current with amplitude Ic and frequency 1

h
2eVDC .

1.3 Andreev process

The mechanism that allows the transfer of supercurrent across a wide
intermediate layer is based on the so-called Andreev reflection [4]. It is
triggered when a conduction electron in a normal metal hits a superconductor
- normal metal (SN) interface. The electron at the Fermi energy µ can not
pass through to the superconductor due to absence of single particle states
in an energy window of µ ± ∆, with ∆ being the superconductor energy
gap. Inside the gap of the superconductor there are no excitations so that
the incident electron can not propagate. Andreev found that the incident
electron can correlate with another electron with opposite momentum, form
a Cooper pair and pass through to the superconductor. In order to satisfy the
boundary conditions we have the reflection of a hole, inside the normal region.
Moreover, as the momentum of the hole is nearly identical to that of the
incident electron, the hole is retroreflected, following the incident electron’s
path in the opposite direction. During this process, the superconductor phase
is transferred to the hole along with a scattering phase shift. The inverse
process is also possible, that is holes can be Andreev reflected into electrons.

1.3.1 Bogoliubov de Gennes equations

Bogoliubov-de Gennes equations [2] describe the quasiparticle excitations in
a superconductor, for a two-component wavefunction

~Ψ(~r) =

(
~u(r)
~v(r)

)
(5)

where u and v describe the electron and hole part of the quasiparticle exci-
tation. The equation then, reads:(

H0 ∆(~r)
∆∗(~r) −H∗0

)
· ~Ψ(~r) = E~Ψ(~r) (6)

where

H0 =
1

2m

(
~
i
~∇− e ~A

c

)2

+ U(~r)− µ (7)

and U(~r) is the total electrostatic potential, ∆(~r) the pair potential, and
µ the Fermi energy. For ∆ = 0 the electron and hole parts in the BdG
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Figure 1.1: (a) Dispersion relation in a normal metal for electrons and holes,
left and right of the kF respectively. (b) Dispersion relation for quasiparticles
in a superconductor with an energy gap ∆ around Fermi energy EF . Both
have E = 0 at the Fermi energy.

equations decouple. u(~r) and v(~r) are the ordinary electron and hole eigen-
functions with energies ±E, relative to the Fermi energy. For a uniform bulk
superconductor with ∆(~r) = ∆0e

iφ, the dispersion relation of the quasipar-
ticles is identical to the well known Bardeen-Cooper-Schrieffer (BCS) theory
for superconductivity [3].

E =

√
(
~2k2

2m
− µ)2 + ∆2

0. (8)

shown in figure 1.1. The quasiparticles have an excitation gap ∆. Below
that energy, only evanescent states are available. The dispersion relation for
a normal metal, for energies close to the Fermi energy µ is

E = |p2/2m− µ| ≈ ~vF |k − kF | (9)

with the Fermi velocity vF =
√

2µ/m and the Fermi wavevector kF = mvF/~.

1.3.2 Andreev reflection

When a normal metal is in contact with a superconductor, the Fermi
energies of the electrons and Cooper pairs respectively are aligned. Electrons
can only pass into the superconductor if their energy is over ∆. When their
energy is below ∆, Andreev reflection occurs [4]. An incident electron hits
the interface, is annihilated, forming a Cooper pair on the superconductor,
while a hole is reflected. The total charge transported across the interface is
qe − qh = 2qe,Cooper = 2e. As the Cooper pair has a total energy of 2EF , the
incident electron EF + E and the reflected hole EF − E, the total energy of
the process is conserved. This process is shown schematically in figure 1.2.
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Figure 1.2: (a) The Andreev reflection in energy space, and (b) in real space.

1.3.3 Phase Conjugation

The wavevectors of the incident electron (k+) and the reflected hole (k−)
are given by

k± = kF ± E/~vF (10)

where kF is the Fermi wavevector and vF the Fermi velocity and E is mea-
sured from the Fermi energy. As the wavevectors are nearly identical (E �
∆), the hole is effectively retroreflected and will retrace the incident electron’s
path backwards.

As the electron traverses the normal region at the Fermi energy, gains a
phase θe

θe =

0∫
−L

k+dx (11)

while the hole traversing backwards, towards x = −L, introduces a phase:

θe,h =

0∫
−L

k+dx+

−L∫
0

k−dx = 0. (12)

This is known as phase conjugation. The phase conjugation is complete only
when the energy is at the Fermi level (E = 0). When E 6= 0, the conjugation
is not complete, and a small phase θe,h(E) = 2LEvF/~ change remains. With
phase conjugation we can have bound states that span distances much more
than the typical Fermi wavelength of a single particle.
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1.3.4 Macroscopic phase imparted on electrons and holes

When an incident electron (or hole) hits an interface in the Andreev
reflection process, the macroscopic phase of the superconductor is imparted
to the reflected hole (or electron). The phase of the reflected hole is shifted
by the phase of the condensate and a phase due to the scattering of electron
to hole.

φhole = φelectron + φsuperconductor + arccos(E/∆)

the corresponding phase shift occurs when the hole is reflected to an electron
at the other interface, so that the total phase shift during this process is

∆φe + ∆φh + φ+ 2 arccos (E/∆)

The term arccos(E/∆) is the phase shift acquired by the evanescent quasi-
particle wavefunction, which penetrates a total distance of ξs, into the su-
perconductive region, where

ξs = ~vF,s/π∆ (13)

with vF,s the superconductor’s Fermi velocity. When the energy is equal to
EF , Eq. (9) becomes E = ~vF |kF−kF | = 0. Then, the phase due to penetra-
tion of the evanescent quasi-particle wavefunction is equal to arccos(E/∆) =
arccos(0) = π/2.

1.3.5 Interface scattering

Blonder, Tinkham and Klapwijk (BTK) have shown [5] that the probabil-
ity of Andreev reflection is strongly reduced by normal interface scattering.
In addition, the Fermi velocity mismatch between the normal region and
the superconductive region can lead to interface scattering. BTK provided
a model to include interface scattering in the form of a delta function with
variable height, V (x) = U0δ(x). The scattering strength is given by the
parameter Z = U0/~vF .

1.3.6 Double NS interface Andreev reflection

The SNS Josephson junction is essentially two NS interfaces with Fermi
velocity mismatches and normal reflection potentials. So,in order to draw
conclusions about the junction’s function, we can apply what we have al-
ready discussed in the previous sections. In the case of an SNS junction, at
each NS interface occur Andreev reflections. When we put the two NS in-
terfaces together, Andreev reflections occur in both interfaces and that leads
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to multiple Andreev reflections. This phenomenon was first introduced by
Klapwijk et al. [19].

An electron (or hole) that hits the left SN interface is Andreev reflected
into a hole (or electron) that travels to the right. At the right NS interface it
is Andreev reflected into an electron (or hole) that travels to the left. As the
flow of the carriers continues, Andreev reflections continue to occur. Andreev
reflection enables Cooper pairs from one superconductor to pass through
the intermediate region into the other superconductor. Multiple Andreev
reflections can enable a flow of Cooper pairs that can lead to supercurrent.

However, we also mentioned that normal scattering strongly reduces the
probability for Andreev reflections to occur. That is the reason why normal
scattering affects directly the value of the supercurrent. As we introduce
a normal scattering potential at the interfaces, an incident electron can be
either Andreev reflected or reflected normally.

1.4 Bound states

Inside an SNS with zero external voltage, in general, an infinite number
of Andreev reflections occur. The carriers taking part in the process do
not gain any energy, and thus can not escape the normal region. These
multiple Andreev reflections form current-carrying bound states, inside the
SNS junction, as was first discussed by Kulik [20]. We are going to introduce
some basic concepts of bound states for 1−D systems.

1.4.1 Andreev bound states

We consider an SNS junction, the interfaces of which can induce nor-
mal scattering. We include all scattering in the delta function potentials of
the interfaces, using the phenomenological parameter Z to characterize the
scattering strength, a parameter identical for both interfaces. Z includes the
scattering due to mismatch of the Fermi velocities between the superconduc-
tor and the normal metal. The scattering potential is

Vbarrier = U0 (δ(x) + δ(x− L)) (14)

where U0 will be normalized as Z = U0

EF /kF
. The pair potential, across the

junction, has a piece-wise constant form

∆(x) =


∆,
0,

∆eiφ,

x < 0
0 < x < L
x > L

(15)
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with ∆ vanishing in the normal region, but constant in the superconductors
(∆� µ). In Eq. (15), φ is the phase of the right superconductor, as in the
phase difference, we set φL = 0. We solve the boundary conditions at x = 0
and x = L.

Ψ(x)|x=0− = Ψ(x)x=0+

Ψ(x)|x=L− = Ψ(x)x=L+

~2
2m∗

∂
∂x

Ψ(x)|x=0+ − ~2
2me

∂
∂x

Ψ(x)|x=0− = ~2pF
2me

ZΨ(x)|x=0

~2
2m∗

∂
∂x

Ψ(x)|x=L+ − ~2
2me

∂
∂x

Ψ(x)|x=L− = ~2pF
2me

ZΨ(x)|x=L

We solve the BdG equations, assuming a constant effective mass m∗. The
wavevectors for electrons (k+) and holes (k−) in the normal region, are given

~q± =
√

2m(µ± E) (16)

and for the superconductor

~k± =

√
2m(µ±

√
E2 −∆2) (17)

The wavefunction is

Ψ(x) =



aeikx
(
v
u

)
+ beikx

(
u
v

)
(αeiq

+x + βe−iq
+(x−L))

(
1
0

)
+(γeiq

−(x−L) + δe−iq
−x)

(
0
1

)
ceik(x−L)

(
ueiφ/2

ve−iφ/2

)
+ de−ik(x−L)

(
veiφ/2

ue−iφ/2

)

x < 0

0 < x < L

x > L

Eliminating α, β, γ, δ, the conditions form a set of equations, shown in a
matrix form:

A+v Ā+u B+eiφ/2u B+eiφ/2v
A−u Ā−v B−e−iφ/2u B−e−iφ/2v
B+u B+v Ā+eiφ/2u A+eiφ/2v
B−u B−v Ā−e−iφ/2u A−e−iφ/2v

 ·

a
b
c
d

 =


0
0
0
0

 (18)

where A± = −q±/(m∗tan(q±L)) − kFZ − ik, B± = q±/(m∗sin(q±L)), and
Ā± is the complex conjugate of A±, in dimensionless quantities.
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1.4.2 Supercurrent in short junctions

Limiting the junction to short lengths, the phase difference imparted on the
carriers for traversing the normal region is negligible, so that (k+−k−)L� 1.
Using Taylor series on

√
1± x ≈ 1±x/2, so from Eq. (16) we can derive that

k± ≈ kFE/2µ, and vF = ~kF/m∗. The condition, then, becomes 2E
~vF

L� 1.
We only consider states that have energies within the superconductor energy
gap, so that the maximum E will assume the value ∆. The condition becomes

L� ξ0 (19)

with

ξ0 =
~vF
2∆

. (20)

When the above condition is satisfied, we can take the limit of L → 0 to
simplify the matrix of the Eq. (18). If we set the determinant of the matrix
equal to zero, we can solve the set of equations, for energy E,

E = ±∆

√
cos2(φ/2) + Z2

1 + Z2
(21)

For Z = 0, Eq. (21) becomes E = ±∆cos(φ
2
), a result produced by Kulik

[20]. In figure 1.3, the bound states are plotted for three values of Z, both for
positive and negative values of energy. Note that the bound states branches
are symmetrical, that is for each energy there is a corresponding negative
energy. An interface with (Z 6= 0) leads to a gap in the bound states, which
as shown, increases fast with Z. When temperature is T = 0, the bound
states below the Fermi energy level can carry a supercurrent that depends
on the superconductor phase difference:

I = −2e

~
dE

dφ
(22)

Combining the above equation with bound state spectrum, E = ±∆cos(φ
2
),

we derive the current-phase relation (CPR) in figure 1.4. For short junctions,
the continuous bound state spectrum, for energies above the superconductor
gap, do not contribute to the supercurrent [21]. The non-sinusoidal I(φ) rela-
tion transitions to sinusoidal when normal interface scattering is introduced.
As we observe at figure 1.4, when Z = 0.5, the I(φ) relation has already
transitioned to a sinusoidal form.
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Figure 1.3: Bound state energy versus superconductor phase difference, for
Z = 0, Z = 0.5 and Z = 1.

Figure 1.4: Current-phase relation for three values of normal interface scat-
tering, T/Tc = 0, Z = 0, Z = 0.5 and Z = 1.
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1.5 Organization of Thesis

In section 2, we approach the S/F/2DEG/F/S junction analytically. We
solve the BdG equations [2] by using the Klapwijk, Blonder and Tinkham
model (BTK) [19]. We then proceed to calculate the supercurrent with the
Furusaki-Tsukada method [8] by summing analytically the contributions from
the normal Andreev reflection, in a single term [28].

In section 3, we produce numerical results for simple junctions, both as a
point of comparison and as a code validation method. We study the critical
supercurrent, current as a function of kp, and current-phase relation for SNS,
S/2DEG/S and SFS junctions.

In section 4, we study the S/F/2DEG/F/S junction numerically. We
observe how parameters of the junction and more specifically the spin-orbit
interaction affects weak and strong magnetization induced phenomena.

In section 5, we summarize the results and discuss potential problems and
further expansion of this Thesis subject.
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2 Analytical approach - The SF/2DEG/FS junc-

tion

We consider a clean two-dimensional ballistic SF/2DEG/FS Josephson
junction. The left and right superconductors are assumed identical except
for the different macroscopic phases. The interface barriers at x = 0 and
x = dL + d + dR = L are in the zy plane and are capable of both normal
scattering and spin-flips due to interface magnetization (gray areas). The
quantum spin-axis is set along the z-axis. A schematic approach of the
SF/2DEG/FS junction is in figure 2.1.

Figure 2.1: Schematic of an SF/2DEG/FS junction. Gray areas denote
spin-active interfaces with normal scattering potential.

2.1 BdG Hamiltonian of the junction

The BdG equation describing the junction is given by(
H(k) ∆(k)
−∆∗(−k) −H∗(−k))

)(
û
v̂

)
= E

(
û
v̂

)
(23)

where

H(k) = H0(k) +HRSOC(k)−HM (24)

is the Hamiltonian of the problem, and the components of this Hamiltonian
are:

H0(k) = εk − µ+ V (x) (25)

εk = ~2k2
2m

being the kinetic energy and µ is the chemical potential, of the
system. The interface potential is V (x) = U0 [δ(x) + δ(x− L)] and the scat-
tering strength is given by the parameter Z = U0/~vF .
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HRSOC(k) =
λ0

~
(σypx − σxpy) θ0(x) (26)

HRSOC(k) describes the Rashba spin-orbit coupling (RSOC) in the 2DEG
region [23] with λ0 the RSOC constant. σx and σy are the Pauli spin matrices,
px and py are the two components of the momentum operator p, θ0(x) =
θ(x− dL)θ(x− L− dR) with θ(x) the Heavyside step function.

HM(x) = σ ·M(x) (27)

where σ = (σx, σy, σz) of the Pauli matrices. M(x) is the self-consistent pair
magnetization vector of the junction, measured in energy units. It is written
in the form

M(x) =
∑
i

Mi(x)χi(x) +
∑
j

Njδ(x− xj) (28)

2.2 Stationary scattering states

The equilibrium supercurrent can be calculated by the method of Furusaki-
Tsukada [8]. This calculation is dependent on the asymptotic form of the
stationary scattering states of the BdG Hamiltonian and specifically the An-
dreev scattering amplitudes [4]. Andreev scattering amplitudes are the re-
flection amplitudes, with particle and spin reversal, when compared to the
incident state. We assume that the pair potential and the magnetization
are determined self-consistently, meaning that both assume their bulk values
exponentially, as the distance from the interface grows. This enables us to
study the problem with the short range potential scattering theory. Specifi-
cally, we define the existence of two spatial points on the left and right side
of the junction, beyond which the pair potential assumes its bulk constant
value. The BdG equations are then solved separately in each region (left
SC, left FM, 2DEG, right FM, right SC) and the solutions are matched at
the respective boundaries. The junction is placed on the xy plane. The left
superconductor (LSC) extends for x ≤ 0, the left ferromagnet (LFM) from
0 ≤ x ≤ dL, the 2-dimensional electron gas (2DEG) from dL ≤ x ≤ d, the
right ferromagnet (RFM) from d ≤ x ≤ dR, and the right superconductor
(RSC) for x ≥ dR. We have translational invariance along the y axis, so
that the momentum, parallel to the interface (kp), is conserved, so that the
y-dependent wavefunction is eikpy. kp is normalized on Fermi wavevector kF
and takes values from −1 to 1.
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2.2.1 Superconductor eigenfunctions

The linearly independent solutions of the superconductors [28] are given be-
low. We define ν = L,R for left and right superconductor respectively.
For the left, we have the wavefunctions of the scattered states travelling to
−∞. That means that the planar wave for electrons is e−ikeLx and for holes is
e+ikhLx. For the right, the transmitted wavefunctions for electrons are e+ikeRx,
and holes are e−ikhRx. Thus, in each superconductor, the wavefunction is a
linear combination of the following

Ψe↑ν(x) =


uν(E)ei

χν
2

0
0

vν(E)e−i
χν
2

 e±ikeνxeikpy, (29)

Ψe↓ν(x) =


0

uν(E)ei
χν
2

−vν(E)e−i
χν
2

0

 e±ikeνxeikpy, (30)

Ψh↑ν(x) =


0

vν(E)ei
χν
2

−uν(E)e−i
χν
2

0

 e±ikhνxeikpy, (31)

Ψh↓ν(x) =


vν(E)ei

χν
2

0
0

uν(E)e−i
χν
2

 e±ikhνxeikpy, (32)

where

keν,hν =

√
2m

~2

(
µ− U ± sgn(E)

√
E2 − |∆|2

)
− k2

p (33)

are the wavenumbers for electrons and holes on the left superconductor (and
right) respectively, χν is the phase of the superconducting order parameter
for left and right superconductors. Also,

uν(E) =

√
1

2

(
1 +

Ων

E

)
(34)

and

vν(E) = sgn(E)

√
1

2

(
1− Ων

E

)
, (35)
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are the coherence factors for both superconductors.

2.2.2 Ferromagnet eigenfunctions

In this section we use Stoner’s model to define eigenfunctions in a ferro-
magnet with a magnetization M [28]. By setting ∆ = 0 in BdG equations,
we get

(
h0 − µ− σ ·M 0̂

0̂ −h0 + µ+ (σ ·M)∗

)(
û(x)
v̂(x)

)
= E

(
û(x)
v̂(x)

)
. (36)

The solutions for electrons and holes can be decoupled into two indepen-
dent equations

(h0 − µ− σ ·M)û(x) = Eû(x) (37)

(h0 − µ− (σ ·M)∗)v̂(x) = −Ev̂(x). (38)

The magnetization vector is given in polar coordinates, with a magnitude
of M , and φ, θ the radial and angular coordinates respectively, so that

σ ·M = M

(
cos θ e−iφ sin θ
eiφ sin θ − cos θ

)
. (39)

We can derive the energy eigenvalues of a homogeneous ferromagnet for
electron-like excitations

Ψe↑(x) =


cos θ

2
e−i

φ
2

sin θ
2
ei
φ
2

0
0

 e±iqe↑xeikpy (40)

Ψe↓(x) =


− sin θ

2
e−i

φ
2

cos θ
2
ei
φ
2

0
0

 e±iqe↓xeikpy, (41)

where

qes =

√
2m

~2
(µ− U + sM + E)− k2

p. (42)

with s indicating ↑, ↓ spin states. In each ferromagnet, with magnetization
angles θ, φ, the hole-like excitations in the ferromagnet are
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Ψh↑(x) =


0
0

cos θ
2
ei
φ
2

sin θ
2
e−i

φ
2

 e±iqh↑xeikpy (43)

Ψh↓(x) =


0
0

− sin θ
2
ei
φ
2

cos θ
2
e−i

φ
2

 e±iqh↓xeikpy, (44)

where

qhs =

√
2m

~2
(µ− U + sM − E)− k2

p. (45)

is the wavenumber for hole-like excitations with s =↑, ↓ spin states. The
above are the wavefunctions for a single ferromagnet. In our study, we have
two ferromagnets. The left ferromagnet is placed from 0 ≤ x ≤ dL and the
right ferromagnet is placed from d ≤ x ≤ dR. The same expressions hold if
we put the corresponding direction angles for each magnetization.

2.2.3 Two-dimensional electron gas eigenfunctions

Rashba Hamiltonian and electron transport have been studied by Molenkamp
et. al. [10, 11]. In addition, triplet Josephson current modulated by Rashba
spin-orbit coupling has been studied by Yang et. al. [12]. In Eq. (26) we
defined the Rashba hamiltonian for spin-orbit interaction

HRSOC(k) =
λ0

~
(σypx − σxpy) θ0(x).

where the function θ0 is 1 inside the 2DEG and 0 outside. The above equation
is derived from

HRSOC(k) = λ0(−i~∇× ~E) · ~σ =
λ0

~
~Ez · (~σ · ~k)z (46)

where ~Ez is the electric field (in z-direction) vector in the 2DEG which is
placed on the xy plane. The wavefunction for the 2DEG is
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ΨRSOC = eikpy

ce1R√2


eiχ(a1)

1
0
0

eiqe1x +
ce1L√

2


eiχ(a1r)

1
0
0

e−iqe1x

+
ce2R√

2


−eiχ(a2)

1
0
0

eiqe2x +
ce2L√

2


−eiχ(a2r)

1
0
0

e−iqe2x

+
ch1R√

2


0
0

−e−iχ(b1r)

1

e−iqh1x +
ch1L√

2


0
0

−e−iχ(b1)

1

eiqh1x

+
ch2R√

2


0
0

e−iχ(b2r)

1

e−iqh2x +
ch2L√

2


0
0

e−iχ(b2)

1

eiqh2x
 (47)

where kp is the conserved momentum parallel to the interface. The propa-
gation coefficients, cpsν , are the coefficients for the respective particles and
spin modes, with p = e, h the particle counter, s = 1, 2 the spin mode of
a carrier, and ν = L, R the direction that a particle is propagating com-
pared to the x axis, with L being the propagation to the left, and R to
the right. The spin-dependent wavevectors of particles are qe1, qe2, qh1, qh2.
χ(ai) = π/2−ai, χ(air) = ai−π/2 and ai=1,2 are the angles between electron
wavevectors and the x axis, while χ(bi) = π/2 − bi, χ(bir) = bi − π/2 and
bi=1,2 are the angles between hole wavevectors and the x axis. In order to
define the wavevectors inside the 2DEG we first define the Fermi wavevector

kF =
√

2mEF/~2, (48)

where EF is the Fermi energy level and m the mass of the particles. Also
the Rashba wavevector

kR = mλ0/~2, (49)

where λ0 is the unnormalized spin-orbit interaction constant. The amplitudes
of the wavevectors of particles p = e, h and spin modes s = 1, 2 are given
by

qe10 =
√
k2
R + k2

F + 2mE/~2 − kR (50)

qe20 =
√
k2
R + k2

F + 2mE/~2 + kR (51)
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qh10 =
√
k2
R + k2

F − 2mE/~2 − kR (52)

qh20 =
√
k2
R + k2

F − 2mE/~2 + kR (53)

The normal component of the wavevectors are

qe1 =
√
q2
e10 − k2

p (54)

qe2 =
√
q2
e20 − k2

p (55)

qh1 =
√
q2
h10 − k2

p (56)

qh2 =
√
q2
h20 − k2

p (57)

since we assume homogeneity along y axis, and kp is conserved. The angles
of the wavevectors, Eqs. (50) to (53), are given by

a1 = arctan(kp/qe1)

a2 = arctan(kp/qe2)

b1 = arctan(kp/qh1)

b2 = arctan(kp/qh2) (58)

2.2.4 Normalization of parameters

In order to calculate the supercurrent using the Andreev scattering am-
plitudes, we normalize our parameters.

As we have already mentioned, the widths are normalized on the Fermi
wavevector k−1

F of the left superconductor. The pair potential, ∆, is normal-
ized over the Fermi energy, EF , of the left superconductor, as well as the fer-
romagnet magnetization strength, M , the interface magnetization, Zm, and
the interface normal scattering strength, Zn. In this study, the Fermi energy
(taken from the bottom of the conduction band) is considered the same for all
layers. The particle mass, m, is considered constant across the junction, and
in case of different masses, it is normalized over the particle mass of the left
superconductor, m0. All wavevectors are normalized over the Fermi wavevec-
tor, kF , of the left superconductor. The spin-orbit coupling constant λ is
normalized over the Fermi energy divided by the Fermi wavevector, EF/kF .
It is convenient to introduce the Rashba wavevector, kR = mλ0/~2, which we
normalized over kF , so that kR/kF = mλ0

~2kF
= m

m0

λ0
~2k2F /m0

kF = m̄ λ
2EF

kF = m̄λ.

When m is constant across the junction, m̄ = 1, thus λ = λ0kF/2EF . The
current is normalized over e∆L0/~.
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2.3 Boundary conditions

Having written the wavefunctions for each layer in the junction, we need
to solve for 32 coefficients. There are 4 scattering amplitudes for the left
superconductor, 4 propagation amplitudes for the right superconductor, and
8 coefficients for each intermediate layer in between. We solve the boundary
conditions for each interface. The boundary conditions for the left supercon-
ductor (x = 0−) and the left ferromagnet (x = 0+) are

Ψ(x)|x=0+ = Ψ(x)|x=0−

vxΨ(x)|x=0+−vxΨ(x)|x=0− = Z0τΨ(0) (59)

for the left ferromagnet (x = d−L) and the 2DEG (x = d+
L) are

Ψ(x)|x=d+L
= Ψ(x)|x=d−L

vxΨ(x)|x=d+L
−vxΨ(x)|x=d−L

= τΨ(dL) (60)

for the 2DEG (x = d−) and the right ferromagnet (x = d+) are

Ψ(x)|x=d+ = Ψ(x)|x=d−

vxΨ(x)|x=d+−vxΨ(x)|x=d− = τΨ(d) (61)

for the right ferromagnet (x = d−R) and the right superconductor, for x = d+
R

Ψ(x)|x=d+R
= Ψ(x)|x=d−R

vxΨ(x)|x=d+R
−vxΨ(x)|x=d−R

= Z0τΨ(dR) (62)

where vx the velocity operator

vx =


− ~
m

∂
∂x

λ0
~ θ0(x) 0 0

−λ0
~ θ0(x) − ~

m
∂
∂x

0 0
0 0 ~

m
∂
∂x

−λ0
~ θ0(x)

0 0 λ0
~ θ0(x) ~

m
∂
∂x

 (63)

and τ is

τ =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 (64)

where θ0 is the domain function for the 2DEG, and Z0 is the matrix

Z0 =

(
Ẑj 0̂

0̂ Ẑj
∗

)
(65)
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with

Ẑj =
2m0

~2
Vj 1̂−

2m0

~2
σ ·Nj. (66)

which include both normal and spin-flip scattering

2.4 The matching matrix from the boundary condi-
tions

From section 3.4, we have a linear system of 32 coefficients. We define
that `, r denote the left and right ferromagnet, whereas L,R the left and
right superconductor.

L1 F `
11 F `

12 0 0 0 0 0
L2 F `

21 F `
22 0 0 0 0 0

0 f `11 f `12 S11 S12 0 0 0
0 f `21 f `22 S21 S22 0 0 0
0 0 0 s11 s12 F r

11 F r
12 0

0 0 0 s21 s22 F r
21 F r

22 0
0 0 0 0 0 f r11 f r12 R1

0 0 0 0 0 f r21 f r22 R2




α
β`

η
βr

γ

 = Bps (67)

where L1 and L2 are 4× 4 matrices

L1 =

(
uL1̂ vL1̂

−ikeLuL1̂ ikhLvL1̂

)
e
iχL
2 (68)

L2 =

(
vL1̂a uL1̂a

−ikeLvL1̂a ikhLuL1̂a

)
e−

iχL
2 , (69)

R1 and R2 are 4× 4 matrices

R1 = −
(

uR1̂ vR1̂
ikeR
m̃R

uR1̂ − ikhR
m̃R

vR1̂

)
e
iχR
2 (70)

R2 = −
(

vR1̂a uR1̂a
ikeR
m̃R

vR1̂a − ikhR
m̃R

uR1̂a

)
e−

iχR
2 , (71)

where 1̂ is the unitary matrix and 1̂a is

1̂a =

(
0 −1
1 0

)
.
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We also consider the mass to be constant across the junction, so the normal-
ized right superconductor mass is m̃R = 1. F `

ij, f
`
ij, Sij, sij, F

r
ij, f

r
ij are all

4× 4 matrices, and the indices i, j = 1, 2 correspond to their position on the
matrix of Eq. (67). Elements denoted with 0, are 4× 4 matrices comprised
only of zeroes. When i 6= j the above matrices are zero.

The F `,r
ij for i = j are

F11 =
(
E+ E−

)
(72)

F22 =
(
H+ H−

)
, (73)

where

E+ =

(
−e↑ −e↓

(− iqe↑
m̃`,r

+ Ẑ`)e↑ (− iqe↓
m̃`,r

+ Ẑ`)e↓

)
(74)

H+ =

(
−h↑ −h↓

(− iqh↑
m̃`,r

+ Ẑ∗` )h↑ (− iqh↓
m̃`,r

+ Ẑ∗` )h↓

)
, (75)

from which we obtain E− and H− if we change qe↑,↓ → −qe↑,↓ in E+, and
qh↑,↓ → −qh↑,↓ in H+, respectively.

In addition, f `,rij matrices for i = j are

f11 =
(
E ′+ E ′−

)
(76)

f22 =
(
H ′+ H ′−

)
, (77)

where E ′+ and H ′+ are

E ′+ =

(
e↑e

iqe↑dL,R e↓e
iqe↓dL,R

(
iqe↑
m̃`,r

+ Ẑr)e↑e
iqe↑dL,R (

iqe↓
m̃`,r

+ Ẑr)e↓e
iqe↓dL,R

)
(78)

H ′+ =

(
h↑e

iqh↑dL,R h↓e
iqh↓dL,R

(
iqh↑
m̃`,r

+ Ẑ∗r )h↑e
iqh↑dL,R (

iqh↓
m̃`,r

+ Ẑ∗r )h↓e
iqh↓dL,R

)
. (79)

and E ′− and H ′− are obtained by changing qe↑,↓ → −qe↑,↓ in E ′+, and qh↑,↓ →
−qh↑,↓ in H ′+, respectively.

The e↑,↓ spinors are defined

e↑ =

(
e−iφ/2 cos θ/2
eiφ/2 sin θ/2

)
, e↓ =

(
−e−iφ/2 sin θ/2
eiφ/2 cos θ/2

)
(80)
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The h↑,↓ spinors are defined as the conjugate of the respective electron spinors,
hs = e∗s. These four spinors are different for the left and right ferromagnet,
as the angles can be changed independently for each ferromagnetic layer, so
that φ→ φ`,r and θ → θ`,r.

Sij and sij matrices are the part of the boundary conditions corresponding
to the 2DEG interfaces with the ferromagnetic layers, F . As mentioned,
when i 6= j, the matrix elements are zeroes. So, for i = j we have Sij

S11 =
(
E ′′+|E ′′−

)
(81)

S22 =
(
H ′′+|H ′′−

)
(82)

where

E ′′+ =

(
−e1R −e1L

(− iqe1
m̄

1̂− λ1̂a)e1R ( iqe1
m̄

1̂− λ1̂a)e1L

)
E ′′− =

(
−e2R −e2L

(− iqe2
m̄

1̂− λ1̂a)e2R ( iqe2
m̄

1̂− λ1̂a)e2L

)
H ′′+ =

(
−h1R −h1L

( iqh1
m̄

1̂− λ1̂a)h1R (− iqh1
m̄

1̂− λ1̂a)h1L

)
H ′′− =

(
−h2R −h2L

( iqh2
m̄

1̂− λ1̂a)h2R (− iqh2
m̄

1̂− λ1̂a)h2L

)
,

and for sij when i = j, we have

s11 =
(
E ′′′+ |E ′′′−

)
(83)

s22 =
(
H ′′′+ |H ′′′−

)
(84)

where

E ′′′+ =

(
e1R e

iqe1d e1L e
−iqe1d

( iqe1
m̄

1̂ + λ1̂a)e1R e
iqe1d (− iqe1

m̄
1̂ + λ1̂a)e1L e

−iqe1d

)

E ′′′− =

(
e2R e

iqe2d e2L e
−iqe2d

( iqe2
m̄

1̂ + λ1̂a)e2R e
iqe2d (− iqe2

m̄
1̂ + λ1̂a)e2L e

−iqe2d

)
H ′′′+ =

(
h1R e

−iqh1d h1L e
iqh1d

(− iqh1
m̄

1̂ + λ1̂a)h1R e
−iqh1d ( iqh1

m̄
1̂ + λ1̂a)h1L e

iqh1d

)
H ′′′− =

(
h2R e

−iqh2d h2L e
iqh2d

(− iqh2
m̄

1̂ + λ1̂a)h2R e
−iqh2d ( iqh2

m̄
1̂ + λ1̂a)h2L e

iqh2d

)
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where 1̂ is the unitary 2 × 2 matrix, 1̂a =

(
0 −1
1 0

)
, m̄ is the normalized

mass over the mass of the particles, on the left superconductor. We define
the spinors e1L,R, e2L,R, h1L,R and h2L,R as

e1R =

(
ie−ia1

1

)
, e1L =

(
−ieia1

1

)
e2R =

(
−ie−ia2

1

)
, e2L =

(
ieia2

1

)
h1R =

(
−ie−ib1

1

)
, h1L =

(
ieib1

1

)
h2R =

(
ie−ib2

1

)
, h2L =

(
−ieib2

1

)
which are calculated from Eq. (47), when we solve for the angles a1, a2, b1, b2.

In Eq. (67), α and γ are four-component vectors, β`, βr and η are eight
component vectors. α contains the left superconductor’s scattering ampli-
tudes, in the order e↑, e↓, h↓, h↑, whereas β contains the right superconduc-
tor’s coefficients, in the same order as α. Column vectors β` and βr contain
the coefficients corresponding to the ferromagnetic layers, which are in the

order −→e ↑, ←−e ↑, −→e ↓, ←−e ↓,
←−
h ↑,
−→
h ↑,
←−
h ↓,
−→
h ↓. Column vector η corresponds to

the 2DEG layer’s coefficients, in the order−→e 1,
←−e 1,

−→e 2,
←−e 2,

−→
h 1,
←−
h 1,
−→
h 2,
←−
h 2.

The overhead arrow denotes the direction the particle is travelling to.
Bps is a 32-column vector, determined by the left incident free states. In

order to calculate the bound states and supercurrent, we have to consider a
zero-incident amplitude. As a result, we set Bps = 0, the part that defines
the incident free states.

Solving the set of equations, in Eq. (67), gives us the coefficients that we
need in order to fully determine the wavefunctions of stationary scattering
states. Using Cramer’s rule, we get the solution:

αps,p′s′ =
Γαps,p′s′

Γ
(85)

where Γ is the determinant of the 32× 32 matrix in Eq. (67), and Γαps,p′s′ is
the determinant of the same matrix, if we swap the corresponding to αps,p′s′
column, with Bps vector. Therefore, in order to calculate the supercurrent,
we use:

I = − e

~β
∑
ωn

1

Γ(χ, iωn)

∂Γ(χ, iωn)

∂χ
(86)
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The determinant Γ of the 32 × 32 matrix of Eq. (67), depends only on the
linearly independent solutions in the left, right and intermediate regions of
the junction, and not on solutions of the BdG equations for specific incidence
conditions. The supercurrent depends on the structure of the junction and
not on the incident conditions.

In order to calculate the Γ determinant so that we can calculate the su-
percurrent from Eq. (86), we take the analytic continuation of the Matsubara
frequencies, ωn. Setting φL = 0 and φR = χ, the phase difference is then χ.
By the method of Laplace expansion, we isolate terms that have the same
dependence on the phase difference χ. Thus, we can express the determinant
as follows:

Γ(χ, iωn) = Acos2χ+Bsinχ+ Ccosχ+D (87)

where A, B, C, D are complicated functions of the parameters of the
junction, but independent of χ. In general, they are A(ωn, kp), B(ωn, kp),
C(ωn, kp), D(ωn, kp). Substituting into Eq. (86), we get:

I =
e

~β
∑
ωn

2Asin2χ−Bcosχ+ Csinχ

Acos2χ+Bsinχ+ Ccosχ+D
(88)

Therefore, knowing A, B, C, D as a function of ωn and kp, we can calculate
the supercurrent as a function of phase, very efficiently. In the above expres-
sion was written for a given kp. In the end we must sum over all kp values,
in two dimensions, so that Eq. (88) becomes

I =
e

~β
∑
kp

∑
ωn

2Asin2χ−Bcosχ+ Csinχ

Acos2χ+Bsinχ+ Ccosχ+D
(89)

We use the Eq. (89) to calculate all supercurrent values in this thesis.
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3 Simple Results

In this section, we aim to reproduce well known results of heavily studied
Josephson junctions, such as the SNS, S/2DEG/S and the SFS. The
Andreev bound states of two-dimensional systems and the dependence of Ic,
as a function of the junction parameters, will be compared to one-dimensional
results.

3.1 S - Normal Metal - S (SNS) Josephson junction

The superconductor - normal metal - superconductor (SNS) Josephson
junction has been examined thoroughly in the past. We briefly study the
properties of clean weak links for ballistic short junctions, in which the mean
free path of an electron, l, is larger that the distance between the super-
conductive electrodes, d, and the coherence length ξ0 = vF/2πTc, in which
the condition of the clean limit l � ξ0 = vF/2πTc is also fulfilled in the
superconductive electrodes.

It has been shown [6], and already discussed in figure 1.4, that in clean
SNS junctions, the current-phase relation (CPR) has a sinusoidal form at
T ' Tc, but takes a saw-toothed curve at low T .

We examine the ballistic SNS junction when the interfaces between the
normal metal and the superconductor are thin insulator (I) films capable of
normal scattering. Double-barrier junction modify the supercurrent heavily,
which depends linearly on the barrier transparency, due to coherent Cooper
pair tunneling [7].

3.1.1 SNS Andreev bound states

The momentum mismatch at energy E of the electron-hole pair, leads to
the loss of coherence and the phase shift due to branch crossing processes
determine the bound states [4, 21, 13], called Andreev bound states. Andreev
bound states are states that carry the supercurrent from one superconductor
to the other. At zero voltage, an infinite number of Andreev reflections can,
in principle, take place. The electrons and holes do not gain energy in the
normal region from which they can not escape. This leads to bound states
in the junction which carry the supercurrent, as discussed by Kulik [20].

We use an SNS junction with two normal scattering interfaces included
in delta function potentials. That has been discussed by Chrestin et al. [22],
using normal scattering in both interfaces of a Nb-p-InAs-inversion-layer-Nb
system. As we have seen from section 1.4.2, Eq. (22), the supercurrent in
short junctions can take a simple form. The phase difference due to the
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traversal of the normal region does not play a role, so that (k+ − k−)L� 1.
Solving the determinant for energy E we get Eq. (21)

E = ±∆

√
cos2

(
φ
2

)
+ Z2

1 + Z2
.

For Z = 0, meaning zero normal scattering at the interfaces, Eq. (21) be-
comes E = ±∆ cos(φ

2
), a result Kulik [20] has produced. Comparing the

result Kulik produced, in figure 1.3, with figure 3.1, we can see the bound
states for a two-dimensional SNS junction, when calculated for normal in-
cidence (kp = 0).

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

 E
/E

F
 

φ/2π 

 

 

Figure 3.1: Andreev bound state energy versus superconductor phase differ-
ence, T/ Tc = 0.1, Zn varies from 0(blue line), 0.2(red line), 0.5(green line),
1(yellow line), kFd = 50, measured at kp = 0.

For increasing values of Z, we can see the gap at φ = π increasing. At T = 0,
the bound state below the Fermi level can carry a supercurrent that depends
on the superconductor phase difference, as described by Eq. (22)

I = −2e

~
dE

dφ

We can calculate the current-phase relation (CPR) with figure 3.1 and Eq.
(22). We can see that it agrees with the result produced by Eq. (21). At
φ = 0, the energy is −∆,+∆. That is what we call a 0-junction. Moreover,
we observe that the missing points near φ = π are due to numerical reasons
when dE/dφ tends to 0.
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Figure 3.2: Current-Phase Relation, T/Tc = 0.1, kFd = 50.

The numerical CPR for Zn = 0, 0.5, 1 is consistent with the theoretical
CPR of figure 1.4. We expect that at T = 0, the zero normal reflection graph
will take a saw-tooth form, as in figure 1.4. At Zn = 0.5, we observe that the
CPR is very close to sinusoidal form. Generally, the maximum current for a
given Zn tends to move away from φ = π as normal scattering increases in
strength.
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Figure 3.3: Current-Phase Relation, kFd = 50, Zn = 0.

In figure 3.2, the position of the critical current is displaced away from
φ = π as Zn increases, or as the temperature increases, in figure 3.3. Thus for
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Figure 3.4: Current as a function of kp/kF , T/Tc = 0.1, kFd = 50.

decreasing transmittance, the CPR transforms into a sinusoidal form. For
small temperatures it has a saw-tooth form.

3.1.2 SNS critical current Ic

Supercurrent for a ballistic, junction at low temperatures, is calculated
from Eq. (89), where we must sum up for all values of the parallel wavevec-
tor, −1 ≤ kp ≤ +1. It is useful however, to see the contribution to the
supercurrent, as a function of kp, and this is plotted in figure 3.4. Due to the
conservation of kp from layer to layer, only the vertical wavenumber changes.
The SNS junction has only one layer, the normal metal. We calculate the
current versus kp for the phase, φ, at maximum supercurrent.

In figure 3.4, supercurrent is calculated as a function of kp for four different
values of Zn between 0 and 1. The contribution at kp = 0 is not always the
largest. When Zn = 0, the interface normal scattering is zero, and as a result
all kp values (except the values close to kp = −1, 1) contribute almost evenly
to current. When we introduce interface normal scattering, specific values of
kp, for a given Zn, contribute significantly more or less than the mean value.
The oscillations in supercurrent are due to resonances in the normal region.

University of Crete 43



3 SIMPLE RESULTS

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
0

0,1

0,2

0,3

0,4

I
h̄
/
e
∆

l0

kP/kF

 

 

Zn = 0

Zn = 0.2

Zn = 0.5

Zn = 1

Figure 3.5: Current as a function of kp/kF , T/Tc = 0.1, kFd = 50. kp/kF is
limited to 0.9 to 1.

In figure 3.5 we limit 0.9 ≤ kp ≤ 1. The vertical lines correspond to reso-
nances and anti-resonances due to normal scattering. The full lines denote
a resonance and jagged lines denote an anti-resonance. The numbering is
done from right to left, thus the full line on kp = 1 is the first anti-resonance.
The phase shift of electrons and holes is affected by the interface normal
scattering. The corresponding peaks of each resonance, are displaced to-
wards higher values of kp, the higher the strength of normal scattering. In
addition, the area of the current versus kp for each line, which is the total
respective supercurrent value, decreases as Zn increases.

Increasing interface normal scattering decreases the critical supercurrent
value. In figure 3.6, we calculate the critical current, Ic, for three different
widths of the normal region, versus the normal scattering strength, Zn. As a
function of Zn, the absolute value of critical current decreases as the width
increases. The character of these three curves remains the same.

In figure 3.7 we observe how critical current is affected by an increase
in temperature, for different values of normal scattering strength, Zn. As
expected, at T = Tc, superconductivity collapses, so the critical current
vanishes, regardless of normal scattering strength.

3.2 S - Two-Dimensional Electron Gas - S (S/2DEG/S)
Josephson junction

In spintronics, there is strong interest in the Rashba spin-orbit coupling
(RSOC), which couples an electron’s spin degree of freedom to orbital mo-
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Figure 3.6: Critical current Ic as a function of the normal scattering strength
Zn, T/Tc = 0.1.
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Figure 3.7: Critical current Ic as a function of the temperature (normalized
on critical temperature Tc) for different scattering strengths, kFd = 50.
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Figure 3.8: Critical current Ic as a function of width kFd, T/Tc = 0.1, Zn = 0

tion. Motivated by the prospects in this area, studies are undertaken on
incorporating RSOC in Josephson junctions [24, 25]. The first goal was to
replace the ferromagnet, in SFS junctions, in the realization of π−junction
and 0−π transition, by changing the spin-orbit coupling through an electric
field. Even in the absence of an exchange field, the spin-orbit interaction
splits the spin degeneracy of the Andreev levels for finite superconductive
phase difference, χ. The coexistence of the spin-orbit coupling and Zeeman
effect can give anomalous Josephson current [26, 27].

The S/2DEG/S junction consists of two superconductors, and between
them a 2-dimensional electron gas (2DEG). The 2DEG acts like a uniformly
charged plane. It is placed on the xy plane, with x the vertical axis to the
interfaces of the junction. Due to the asymmetry of the quantum well caused
by dopping, 2DEG can exhibit Rashba spin-orbital interaction, which will
modify carrier energies and trajectories based on their spin. We study the
clean, ballistic, short S/2DEG/S junction. Our study is not as extensive
as the studies that have been done for this junction these two last decades.
Our aim is to reproduce some basic and well established results, both as a
point of comparison and as a code check. S/2DEG/S remains a 0−junction
regardless of what parameters we change.

3.2.1 S/2DEG/S critical current Ic

In chapter 3.1.2 we analyzed how the supercurrent changes as a function
of an SNS junction’s parameters. In this chapter, instead of a normal region,
we place a two-dimensional electron gas on the xy plane.
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Figure 3.9: Critical current Ic as a function of the Rashba spin-orbit coupling
constant λ, as seen for different widths kFd, Zn = 0, T/Tc = 0.1.

In figure 3.8 we compare the SNS junction (λ = 0) with the S/2DEG/S
junction (λ 6= 0). We study how the spin-orbit interaction affects critical
supercurrent, as the width increases. The top full line is the critical super-
current, Ic, of an SNS junction. The decrease of the supercurrent is almost
linear. Increasing λ displaces the curves to lower critical supercurrent, while
on the same time introduces oscillations, which die out for large values of
width.

The effect of increasing spin-orbit interaction strength on the critical su-
percurrent, can be seen in figure 3.9. The critical supercurrent is calculated
versus the Rashba spin-orbit coupling constant λ, for different widths of the
intermediate layer, kFd. As we can see, the supercurrent is reduced as the
width is increased. Also, it is reduced as a function of spin-orbit interaction.

In figure 3.10, we calculate the critical supercurrent, as a function of the
normal scattering strength, Zn, for four values of λ. We see a displacement
of the curves to lower critical supercurrent, as λ increases, and a smooth
variation for increasing Zn.
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Figure 3.10: Critical current Ic as a function of scattering strength Zn, as
seen for different SOC parameters λ, kFd = 50, T/Tc = 0.1.

3.3 S - Ferromagnet - S (SFS) Josephson junction

The SFS junction consists of two superconductors, and between them,
a ferromagnet. The ferromagnet carries an arbitrary magnetization affecting
spin states of the carriers. The two interfaces carry a magnetization that
enables spin-flip scattering along with normal scattering. We will not do an
extensive study of the SFS junction, as it has been done in the clean limit
[14, 15, 16]. Our purpose is to provide a point of comparison, as well as code
validation. We reproduce results from I. Margaris’ et al. [28] study, taking
into account the one-dimensional versus two-dimensional problem.

3.3.1 SFS zero-phase current I0P

A non-coplanar set of magnetization vectors imparts to the junction a
zero-phase current [28]. By changing the right interface’s magnetization vec-

tor ~ZmR we can observe in which geometries the junction has a zero-phase
current.

We can observe that zero-phase current is significantly affected by normal
scattering strength and interface magnetization scattering direction. In (a),
we introduce an SFS junction, in which we change gradually the direction of
the right interface magnetization vector along the xy plane. When the set of
magnetization vectors becomes non-coplanar then we have finite zero-phase
current. On the other hand, when the ~ZmR is aligned with the x axis, whether
it is +x or −x, the zero-phase current vanishes. In (b), we calculated the
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Figure 3.11: Zero-phase current versus (a) right interface’s magnetization

vector for three values of Zn, and (b) Current-phase relation for ~ZmR direction
corresponding to maximum zero-phase current of (a). T/Tc = 0.1, kFd = 25,
M = 0.8, Zm = 1. Geometry is zx(xy).

current-phase relation for the corresponding three values of ~ZmR, for which
the zero-phase current is maximum in (a), one for each Zn value.

In figure 3.12, we increase Zn and Zm for (a) and (b) respectively, studying
how zero-phase current is affected. In (a), the absolute zero-phase current
decreases exponentially for Zm equal 0.5 and 1, while for Zm = 2 it reaches
a maximum value around Zn = 1.25. In (b), we observe that all three
values of Zn produce a peak in zero-phase current, but as Zn values increase
that maximum is displaced towards higher values of Zm. These results are
consistent with those in [28].

An SFS junction with non-coplanar set of magnetization directions zxy
(read from left to right, left interface, layer, right interface) develops a zero-
phase current. We study the effects of ferromagnet’s width kFd as well as
ferromagnet’s magnetization strength M on the zero-phase current.
We observe in (a) as expected, the oscillations of the supercurrent as a func-
tion of width. In (b), as the magnetization strength approaches M = EF ,
the results for figure 3.13 do not agree fully with the 1-dimensional results
of [28]. In two dimensions, we see no sign changes in the supercurrent.
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Figure 3.12: Zero-phase current versus (a) normal scattering strength Zn,
and (b) spin-flip scattering strength Zm. T/Tc = 0.1, kFd = 25, M = 0.8.
Geometry is zxy.
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Figure 3.13: Zero-phase current versus (a) width kFd, for M = 0.5, Zn = 1,
Zm = 1, and (b) magnetization strength of ferromagnet M , for kFd = 25,
Zn = 0, Zm = 1. T/Tc = 0.1. Magnetization directions: zxy.
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4 Results of the SF/2DEG/FS junction

In section 2 we introduced the reader to the analysis of the SF/2DEG/FS
junction, whereas in section 3 we presented results of other junctions, for com-
parison and code validation. In this section we present the arithmetic results
of the SF/2DEG/FS junction. The junction consists of two superconduc-
tors (S), two ferromagnets (F ) and a 2-dimensional electron gas (2DEG),
while the SF and FS interfaces are spin active and have a normal scattering
potential. The analysis is focused on the effect of the spin-orbit coupling on
the supercurrent which is already modulated by ferromagnets. In section 3,
we analyzed simple junctions. Comparing them to each other we observed
that the modulation of the supercurrent between a 2DEG and a ferromagnet
occurs in a different way.

4.1 Parameters of the SF/2DEG/FS junction

We consider a short ballistic clean junction, so that we disregard diffusive
characteristics. The junction has no inversion asymmetry, so we can neglect
Dresselhaus spin-orbit coupling, and consider only Rashba spin-orbit effects
where the asymmetry is caused by the 2DEG. We also limit widths to d < ξ0,
so that the Andreev spectrum has few branches.

The junction consists of three layers between two superconductors. The
layers are two ferromagnets and between them a 2DEG. Each layer has
different width, dL for the left ferromagnet, d for the 2DEG and dR for
the right ferromagnet. Widths are normalized over the Fermi wavevector,
kF . For simplicity, the magnetization strength M is the same for the two
ferromagnets, but not the direction, ~ML,R, of the magnetization vectors.
Moreover, the interfaces between the ferromagnets and the superconductors
have both spin-active magnetization Zm and normal scattering potential Zn.
Magnetization strength, for both ferromagnets and interfaces, is normalized
to the Fermi energy EF . Spin-orbit coupling constant λ refers to the 2DEG
and is normalized over the Fermi energy divided by the Fermi wavevector,
EF/kF . Normal scattering strength Zn is normalized over the Fermi energy
divided by Fermi wavevector, EF/kF . For simplicity, we keep Zn and Zm the
same in both interfaces, while we can independently change the magnetiza-
tion vectors for Zm, denoted as ~ZmL and ~ZmR respectively for the left and
right interface. Temperature is regarded as uniform throughout the junction
and is normalized to the critical temperature Tc. Lastly, the kp wavevector
depends on the incidence angle, its direction is vertical to the x axis, and it
is normalized over the Fermi wavevector kF .
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Geometry is the direction of all the interface and ferromagnetic magne-
tization vectors of a junction. It is read from left to right, as the layers
and interfaces are placed from left to right. Each component corresponds to
the respective magnetization vector. Geometries can have two, three or four
components. As an example, in section 3, we studied an SFS geometry with
three components, zxy. Three-component geometries are for single layer and
double interface junctions, with z and y being the magnetization vectors of
the interfaces, whereas x being the vector of the ferromagnetic layer mag-
netization. Two and four-component geometries are used for junctions with
double ferromagnet layers without or with interface magnetization respec-
tively. Sometimes the vector of a magnetization may not be parallel to an
axis, but on a plane. The plane vector will be put in brackets, in order to
reflect this information. For example, in a junction with two interfaces and
two ferromagnetic layers, the left layer has a magnetization vector on the xy
plane. The geometry of that junction will read x(xy)zy. If the specific angle
on that plane is needed, it will follow the plane components. As an example,
for a magnetization direction in the xy plane with an angle of 30 degrees
from x axis, the geometry will be x(xy30)zy, or x(xy60)zy if it is 30 degrees
from y axis.

4.2 Introductory Results

4.2.1 Current-phase relation types

The current-phase relation (CPR) for a junction can strongly affect the
dynamical behaviour of a junction and drastically alter its form, as parame-
ters change. We show five distinct I(φ) types; the 0-junction, the π-junction,
the cosine-like φ-junction, the minus-cosine-like φ-junction and the general
φ0-junction.

Our goal in this section is to introduce the reader to I(φ) types, and not
to the specific parameters used to obtain them. Values of supercurrent are
not indicative of any certain I(φ) type.

The current as a function of the phase difference φ is given by

Ic = sin(φ+ φ0) (90)

In figure 4.2, (a), φ0 = 0, therefore the supercurrent equals Ic = sin(φ) and
thus called a 0-junction. When φ0 = π, Ic = sin(φ + π) = −sin(φ), the
junction is called π-junction.
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Figure 4.1: (a) 0-junction and (b) π-junction. T/Tc = 0.1, M = 1, λ = 0.1,
kFdL,R = 150, Zm = 1, Zn = 0. Geometry is yzxy. kFd = 8.5 for 0-junction,
and kFd = 10 for π-junction.

The shift in phase, φ0, can be different than 0 or π. Then the junction
is called a φ0-junction. However, we can identify two more specific junctions
that they can be separated from the general φ0 type.
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Figure 4.2: (a) cosine-like junction and (b) minus cosine-like junction.
T/Tc = 0.1, M = 1, λ = 0.1, kFd = 50, kFdL,R = 150, Zm = 1, Zn = 0.
Geometry is zyzy for cosine-like junction and xyz(xy10).

When φ0 = 3π/2, π/2, the I(φ) relation can look like a cosine or minus-
cosine function. In (a), the shift of phase is close to φ0 = 3π/2, and is
regarded as a cosine-like junction, whereas in (b), φ0 = π/2 and the junction
is then called a minus-cosine-like junction.

During the change of parameters on a junction, the form of the I(φ) can
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be altered significantly. That is called a transition, from an I(φ) form to
another.
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Figure 4.3: 0 to π transition. (a) 0-junction to (b) and (c) transition φ-
junction, to (d) π-junction. T/Tc = 0.1, M = 1, λ = 0.1, kFdL,R = 150,
Zm = 1, Zn = 0. Geometry is yzxy. kFd = 8.5 for (a), kFd = 9 for (b),
kFd = 9.5 for (c) and kFd = 10 for (d).

As the width of the 2DEG, kFd, increases the junction transitions from 0
(a) to π (d) type. As the junction changes from 0 to π-type, a second
harmonic appears in the I(φ) relation, as is seen in (b) and (c). All 0 to
π transitions go through (b) and (c), but not all I(φ) relations containing
a second harmonic indicate a transition. Under specific circumstances, a
transition can stop before it is completed, as the junction returns to the
starting I(φ) relation. The 0− π transition has been studied theoretically in
the clean limit [16, 17, 18]

University of Crete 54



4 RESULTS OF THE SF/2DEG/FS JUNCTION

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.06

−0.03

0

0.04

0.08

I
h̄
/
e
∆

l0

φ/π

 

 

Figure 4.4: −cos-like to cos-like junction transition. T/Tc = 0.1, M = 1,

λ = 0.1, kFd = 50, kFdL,R = 150, Geometry is xyz ~ZmR, with ~ZmR being
changed from x axis to y axis.

Other φ0 shifting examples include −cos-like to cos-like transitions, as we
can see in figure 4.4. The −cos-like junction (full line) slowly shifts as the

magnetization vector ~ZmR is changed from xyz(xy10) (full line) to xyz(xy30)
(jagged-with-dots line), to xyz(xy50), xyz(xy70), xyz(xy90) respectively. The
successive I(φ) relations denote generic φ0-junctions. As the shift continues,
the junction will fully transition to a cos-like junction.

4.2.2 Cut-off points

We consider the wavenumbers inside the ferromagnets and the 2DEG.
While the value of these wavenumbers is a real number, the respective carrier
plane wave can propagate inside the layer. So, for energies inside the gap

qps =
√

1 + sM − k2
p (ferromagnet) (91)

qp2,1 =

√(√
1 + λ2 ± λ

)2

− k2
p (2DEG) (92)

where p = e, h is the particle counter, s = +1(↑), − 1(↓) the spin counter,
and spin 2, 1 corresponding to +λ,−λ in Eq. (92). In the ferromagnet, the
spin ↓ vector becomes imaginary above a critical kp which depends on the
magnetization. For the 2DEG layer, depending on the spin-orbit coupling
constant, spin-mode 1 can become imaginary. Then, the carrier plane wave
gets damped and can not continue to propagate inside the layer. We define
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Figure 4.5: Cut-off kp points for different values of magnetization M . T/Tc =
0.1, λ = 0, kFd = 15, kFdL,R = 15, Zn,m = 0, Geometry is zx.

the value of kp, above which the wavenumber becomes imaginary, as the
cut-off point for a specific value of λ and M .
In figure 4.5 we can see the kp values above which the current vanishes, for
each value of M . When M = 0, the cut-off point is kp = 1. We can calculate
the exact kp by setting qps = 0 in Eq. 91. For s = −1 and M = 1, the
wavevector is qps =

√
−k2

p. This happens for all kp values (cut-off point at
kp = 0). Thus, there is no propagation for s = −1(↓). M = 1 state is
called the half-metallic limit, since spin ↑ propagates while spin ↓ decays.
Therefore, we can calculate the spin ↓ cut-off in kp, for any value of M .

The same principle can be applied, in order to calculate the cut-off points
for the spin-orbit interaction on the 2DEG. When qp1 = 0, the value of kp
calculated is the cut-off point. We observe that the cut-off for the spin-orbit
interaction of the 2DEG is a sudden and abrupt reduction of supercurrent.
In contrast to the magnetization case, the supercurrent does not vanish after
the cut-off point. The cut-off point for λ = 0.2 is at kp = 0.82kF , for λ = 0.6
is at kp = 0.565kF and so on. After the cut-off point, the supercurrent
continues to take non-zero values, until kp = 1. This non-zero current is due
to spin 2 states that exist in 2DEG.

Ferromagnet cut-off is different to the spin-orbit cut-off because of the
2DEG spin states. Whereas in ferromagnets, only two spin states exist, ↑ and
↓, in 2DEG, spin modes 1 and 2 change as a function of kp. In ferromagnets,
above the cut-off point, only one spin state survives, spin ↑, while spin ↓
is suppressed. When a carrier with that spin is Andreev reflected, it will
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Figure 4.6: Cut-off kp points for different values of spin-orbit coupling con-
stant λ. T/Tc = 0.1, M = 0, kFd = 15, kFdL,R = 15, Zn,m = 0.

produce an opposite carrier with the opposite spin. The opposite spin can
not propagate inside the ferromagnet. This process does not enable Cooper
pairs to pass through the junction, which gives zero supercurrent. The spin
mode 1 has cut-off points in kp, as spin-orbit coupling increases. However,
spin mode 2 carriers are reflected both into spin mode 1 and spin mode 2,
which have both spin ↑ and ↓ components. Thus, they can propagate without
decay.
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Figure 4.7: Current-phase relation (CPR) for (a) λ = 0, M varies from 0 to
0.8, and for (b) M = 0 and λ = 0 to 0.8. T/Tc = 0.1, Zn,m = 0, kFd = 15,
kFdL,R = 15. Geometry is zx.
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In figure 4.7 we calculate the current-phase relations corresponding to
figures 4.6 and 4.5. In (a), we change magnetization strength, M . In M = 0.8
the current-phase relation transitions from 0 to π. In (b), we change spin-
orbit coupling constant, λ. The character of the current-phase relations does
not change as λ increases.

4.3 Two-dimensional distribution of current

In order to calculate the current-phase relation we integrate the supercur-
rent distribution for all possible angles of incidence (sum over all kp values).
In the supercurrent versus kp graph, we can observe cut-offs, resonances and
anti-resonances due to normal scattering.
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Figure 4.8: Supercurrent as a function of kp/kF for different values of M and
λ. T/Tc = 0.1, Zn,m = 0, kFd = 30, kFdL,R = 25, Geometry is zx.

In figure 4.8, we calculate the supercurrent as a function of the parallel
wavevector kp. Supercurrent versus kp is always calculated on the phase φ of
the absolute maximum value of supercurrent in the respective I(φ) relation
(CPR). For M = 0.2, the cut-off point is at kp = 0.894kF , whereas for
λ = 0.2, cut-off point is at kp = 0.82kF . As we can observe, the cut-off points
do not change. They are not affected by the presence of each other. On the
other hand, the general character of current can change dramatically when
both M and λ are present. For normal incidence (kp = 0), in dashed-with-
points line, supercurrent has vanished. Normal incidence does not produce
a supercurrent for these parameters, which is not the case for both the other
cases.
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Figure 4.9: Supercurrent as a function of kp/kF for different values of kFd
and kFdL,R. T/Tc = 0.1, Zn,m = 0, M = 0.2, λ = 0.2, Geometry is zx.

For M = 0.2 and λ = 0.2, in figure 4.9, we change the width of the layers,
kFd and kFdL,R. Supercurrent versus kp is calculated on the maximum value
of I(φ). We focus on 0 ≤ kp ≤ 1, as kp < 0 is symmetrical. We observe
that the cut-off points do not change as a function of width, and depend
only on M and λ. Peaks and dips increase in number, as the increased width
introduces more normal resonances and anti-resonances. Also, for vertical
incidence (kp = 0), supercurrent increases for the two dashed-line curves.
We argue that the occurrence of zero supercurrent at kp = 0 was less of a
coincidental and more of a periodicity phenomenon.

As M increases, the cut-off point shifts towards smaller kp. In figure
4.10, we set kFd = 30 and kFdL,R = 25 while increasing M substantially.
Supercurrent versus kp is calculated on the maximum value of I(φ). Note
that x axis is limited to kp = 0.4, focusing on the non-zero supercurrent
values. Supercurrent distribution for M = 1 vanishes as the cut-off point
is kp = 0. The cut-off points for M = 0.9, 0.95 are at kp = 0.316, 0.223,
after which, the supercurrent distribution tends to zero values. As we ap-
proach the half-metallic limit (M = 1), the total supercurrent distribution
is reduced rapidly for all geometries consisting of only ferromagnetic layers
(2-component ferromagnet geometries).

In figure 4.11, we do not change widths compared to figure 4.10. We
decrease M by a small amount, so that M = 0.8, and we change the spin-
orbit coupling constant λ. Supercurrent versus kp is calculated on the maxi-
mum value of I(φ). At zero incidence (kp = 0), supercurrent decreases non-
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Figure 4.10: Supercurrent as a function of kp/kF for different values of M .
T/Tc = 0.1, Zn,m = 0, λ = 0.2, kFd = 30, kFdL,R = 25. Geometry is zx.
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Figure 4.11: Supercurrent as a function of kp/kF for different values of λ.
T/Tc = 0.1, Zn,m = 0, M = 0.8, kFd = 30, kFdL,R = 25. Geometry is zx.
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monotonically as λ increases. The cut-off point for M = 0.8 is kp = 0.447.
For λ = 0.4, supercurrent has a negative value. The supercurrent value as a
function of kp, tends to oscillate more intense as λ increases. In addition, all
curves have a common cut-off due to the magnetization, at kp = 0.447.
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Figure 4.12: Supercurrent as a function of kp/kF for different values of λ.
T/Tc = 0.1, Zn,m = 0, M = 0.9, kFd = 30, kFdL,R = 25. Geometry is zx.

In figure 4.12, we change M = 0.9 when compared to figure 4.11. Super-
current versus kp is calculated on the maximum value of I(φ). Supercurrent
distribution for λ = 0 and 0.1 are almost identical for 0.14 ≥ kp/kF ≥ 0.22,
while also assuming a negative value for kp/kF ≤ 0.16, 0.17. The reason is
that while λ assumes low values, magnetization M is very strong and domi-
nates these two values of λ. That seems to change when λ is increased. From
0.2 and above, supercurrent starts at positive values and its dependence from
kp stays roughly the same.

In figure 4.13 we calculate the respective CPR for the same values of λ,
corresponding to figures 4.11 and 4.12. For M = 0.8 in (a), the supercurrent
as a function of the phase difference φ does not seem to change significantly
for low values of λ, despite the obvious reduction in value. For λ = 0.4, the
maximum value of the supercurrent is higher than that of λ = 0.2, leading
to an oscillation in supercurrent as a function of λ. In (b), M is increased to
0.9. For λ = 0, the junction is of 0-type. As λ increases, it changes from a
0-junction to a π-junction, for λ = 0.2. With increased λ = 0.4, the junction
returns to a 0-type. Again, the maximum value of supercurrent oscillates as
a function of λ.

In figure 4.14 we set M = 1, while we change the interface magnetization
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Figure 4.13: Current-Phase Relation (CPR) for different values of λ. For (a)
M = 0.8 and (b) M = 0.9. T/Tc = 0.1, Zn,m = 0, kFd = 30, kFdL,R = 25.
Geometry is zx.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.05

0

0.05

0.1

0.15

0.2

0.25

I
h̄
/e

∆
l0

kp/kF

 

 

Z
m

=0

Z
m

=0.5

Z
m

=1

Figure 4.14: Current as a function of kp/kF for different values of Zm. T/Tc =
0.1, Zn = 0, M = 1, λ = 0.2, kFd = 30, kFdL,R = 25. Geometry is yzxy.

University of Crete 62



4 RESULTS OF THE SF/2DEG/FS JUNCTION

strength. When Zm = 0, the geometry is zx. In figure 4.10 we concluded that
the supercurrent distribution of 2-component geometries, consisting of only
ferromagnets, is reduced to zero at the half-metallic limit (M = 1). As Zm
increases, the supercurrent distribution assumes non-zero values. Geometry
changes to yzxy.

The reason, outlined in our discussion about figure 4.5, is that while spin ↑
can propagate through the ferromagnetic layers, spin ↓ decays exponentially
and can not propagate. We consider an FS (or SF) interface. The process
that enables Cooper pairs to pass through the ferromagnet F, is the Andreev
reflection. The Andreev reflection, in a non spin-active FS interface, occurs
normally for kp ≤ cut-off kp, until the magnetization assumes M = 1 value.
In the half-metallic limit, spin ↓ can not propagate through the F layer
for all kp. We assume a carrier, with spin ↑, that hits the interface while
moving through the ferromagnet. As it is Andreev reflected, an opposite
carrier is retroreflected, with the opposite spin (spin ↓). Following the above
statement, this opposite carrier decays inside the F layer and therefore the
supercurrent decreases to zero. An exception to the above argument would
be that when the ferromagnet’s layer is small enough, the reflected opposite
carrier with spin ↓ effectively is not stopped by a thin potential barrier.
Quantum mechanically, it can tunnel through the barrier with a probability
that decreases as the energy of the carrier is decreased, as well as the potential
and the width of the barrier are increased. We will show, in figure 4.21, that
tunneling of these carriers, with spin ↓, is relevant for widths kFdL,R ≤ 7
and potential strength M = 1. After that value, effectively the supercurrent
vanishes, as the probability for a tunneling to occur decreases exponentially
with width.

In the previous paragraph we analyzed what happens to the Andreev re-
flection on an SF interface when it is not spin-active. When the interface is
spin-active, the supercurrent does not vanish even for increased widths of the
ferromagnetic layers. We consider an SFS junction, with spin-active inter-
faces, where M = 1 and Zm = 1. Inside the ferromagnetic layer, spin ↓ does
not propagate. An incident carrier, with spin ↑, hits the FS interface. We
distinguish two different cases. In the first case, ferromagnetic magnetization
vector ~M is parallel to the interface magnetization vector ~ZmR. As a result,
spin ↑ is an eigenstate of both the ferromagnet and interface magnetization.
So, the carrier can propagate normally, and the spin-active interface does
not affect the carrier’s spin. The carrier is reflected into an opposite carrier
with spin ↓, and the process produces no supercurrent. In the second case,
~M is not parallel to ~ZmR. As the eigenstates of the ferromagnetic magneti-

zation and the interface are now different, the carrier hits the interface and
its spin is affected. Depending on the angle between the two magnetization
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vectors, spin ↑F has a chance of either becoming spin ↑I or ↓I , where F and

I denote the layer, ferromagnet and interface. We consider both situations.
The carrier is reflected into the opposite carrier with spin either ↓I or ↑I .
The opposite carrier is retroreflected and enters the ferromagnet. Spin ↓I
becomes either spin ↑F or ↓F , and spin ↑I also becomes either spin ↑F or
↓F . If the opposite carrier ends with spin ↓F it decays. However, there is
always a probability that the carrier can end with spin ↑F regardless of the
spin state it possessed inside the interface. We extend our claim to the left
interface, where the same process occurs, if ~M is not parallel to ~ZmL. Two
Andreev reflections after the first incidence, there is a clear probability of a
carrier with spin ↑F retracing the steps of the first carrier. This process out-
lined above, induces triplet correlations, and differs from the normal double
Andreev reflection on the spin of the opposite carrier (before the second An-
dreev reflection). In normal double Andreev reflection, the opposite carrier
has exclusively only spin ↓ when it hits the interface, as only singlet corre-
lations are induced, whereas for triplet correlations the opposite carrier has
both spin ↑ and ↓.

To resolve any complications, we should note that only one spin carrier is
considered for the process, despite the fact that Andreev reflection changes
any spin into its opposite. Also, we note that triplet correlations can exist
outside the half-metallic limit, and coexist with singlet correlations in two-
ferromagnet junctions (SFFS), and also double spin-active interface junc-
tions (SIFIS), while the magnetization strength is M < 1. When M = 1, in
the half-metallic limit, singlet correlations do not exist. Thus, the only way
to produce supercurrent is by induced triplet correlations.

In figure 4.15, magnetization strength is M = 1, and Zm = 1, enabling
triplet correlations. For (a), λ = 0, we calculate supercurrent as a function of
kp for different geometries. Supercurrent distribution for xyzx and zxzy has
the same value, for all kp values. For kp > 0.2, the distribution is the same
for xyzx, zxzy and zyzy geometries, which is the full line. Without the spin-
orbit coupling we expect that as long as the ~Zm vectors are vertical to the
neighbouring ~M , their direction will not affect the supercurrent distribution.
On the other hand, when ~M are vertical to each other (xyzx, zxzy and zyzy),
the supercurrent distribution assumes the same value. Despite the fact that
for the three geometries with vertical ferromagnetic layers, we obtain almost
the same distribution for kp values greater than 0.2, nevertheless there is a

deviation in supercurrent for kp ≤ 0.2. Parallel ~M geometry xyyx, has a
completely different supercurrent distribution when compared to the other
three geometries. The argument that supercurrent is primarily modulated
by the angle between the two ferromagnetic vectors ~M is reinforced by the
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Figure 4.15: Supercurrent as a function of kp/kF for different geometries, for
(a) λ = 0 and (b) λ = 0.4. T/Tc = 0.1, M = 1, Zn = 0, Zm = 1, kFd = 15,
kFdL,R = 15.

results of xyyx geometry, when no spin-orbit interaction is present.
Continuing the discussion on figure 4.15, in (b), we enable spin-orbit cou-

pling, setting λ = 0.4. Before, we argued that when ferromagnetic layer
directions, ~M , are vertical to each other, the modulation on the supercurrent
distribution is the same. With spin-orbit coupling, supercurrent distribution
values for vertical ~M geometries are quite different, especially for normal
incidence. While for λ = 0 and vertical ~M layers, the supercurrent distribu-
tion was the same (when kp > 0.2), for λ = 0.4 only zxzy and xyzx remain
the same. Supercurrent distribution for geometry zxzy is different for all
kp values. For the geometry xyyx, the distribution is different regardless of
λ = 0. Lastly, comparing the current distributions of the geometries, we see
that the maximum value of supercurrent, which is the sum of all kp values,
is about the same in case (a). Whereas in (b) the current for geometry xyyx
is quite different (higher than the other three). The corresponding current-
phase relation graphs, in figure 4.16, validate the above argument, when we
observe the maximum value of the critical current.

Considering the cases outlined in figure 4.15, we calculate the current-
phase relation of each, for both λ = 0 and 0.4. In figure 4.16 (a), we set λ = 0.
Geometry zyzy is a 0-junction, whereas xyzx and xyyx are π-junctions.
Finally zxzy is a−cos-junction. Geometries xyzx and zxzy have a zero-phase
current. That is expected, as they form a non-coplanar set of magnetization
vectors. Moreover, the geometries zyzy and xyyx that do not form a non-
coplanar set, do not introduce zero-phase current. The maximum value of
the supercurrent seems to be constant for the geometries with vertical ~M
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Figure 4.16: Current-Phase Relation (CPR) for different geometries. (a)
λ = 0 and (b) λ = 0.4. T/Tc = 0.1, M = 1, Zm = 1, Zn = 0, kFd = 15,
kFdL,R = 15.

layers, whereas xyyx displays the highest value of supercurrent, as expected
from the supercurrent distribution in figure 4.15. In (b), we increase spin-
orbit coupling to λ = 0.4. Supercurrent values decrease for all geometries. In
addition, geometry zyzy has the same character as before, a 0-junction with
no zero-phase current. In (a), geometry xyyx was a π-junction with no zero-
phase current. With active spin-orbit interaction, it produces a significant
zero-phase current. We argue that due to the plane structure of the 2DEG
layer, on xy plane, it produces an electric field parallel to z axis. This electric
field is translated to a magnetic field when electrons traverse the region. The
magnetic field is induced across the xy plane. So, while geometry xyyx
forms a coplanar set of magnetization vectors, so that no zero-phase current
is expected, when we introduce spin-orbit coupling, a significant zero-phase
current is observed. Geometry zyzy does not produce a zero-phase current
despite the fact that it can form a non-coplanar set, if the magnetic field is
induced on x axis. On the other hand, geometry zxzy is not affected by the
introduction of spin-orbit interaction. Geometry xyzx, which forms a non-
coplanar set of magnetization vectors, as expected, shows zero-phase current
even without the spin-orbit interaction. However, when we enable spin-orbit
coupling (for the specific value of λ), its zero-phase current disappears.

In figure 4.17, in the geometry xyzy, we plot for four values of λ, we plot
the supercurrent versus kp at a phase where I(φ) has its maximum value,
which can be different for each λ. The supercurrent distribution for λ = 0 is
positive for all kp, while for λ 6= 0, the supercurrent distributions also take
negative values. There are no distinct features on the kp cut-off points, for

University of Crete 66



4 RESULTS OF THE SF/2DEG/FS JUNCTION

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.05

0

0.05

0.1

0.15

0.2

0.25

I
h̄
/
e
∆

l0

kP/kF

 

 

λ=0
λ=0.1
λ=0.2
λ=0.4

Figure 4.17: Current as a function of kp, for different values of spin-orbit
coupling constant λ, T/Tc = 0.1, kFd = 15, kFdL,R = 15, M = 1, Zm = 1,
Zn = 0. Geometry is xyzy.

each λ. It is possible that kp cut-off points, for weak spin-orbit coupling, are
dominated by the strength of the magnetization M = 1.
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Figure 4.18: Current-phase relation (CPR) for different values of spin-orbit
coupling constant λ, T/Tc = 0.1, kFd = 15, kFdL,R = 15, M = 1, Zm = 1,
Zn = 0. Geometry is xyzy.

Continuing the analysis from figure 4.17, we calculate current-phase re-
lation for the four values of spin-orbit interaction, for xyzy geometry. For
λ = 0, the junction starts as a cos-like one. For values λ = 0.1, 0.2 it is clear
that it transitions from a cos-like junction to a −cos-like one, as λ changes.
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It is certain that, between 0.2 ≤ λ ≤ 0.4, the junction has changed from
cos-like to −cos-like and back.

4.4 Critical current

In section 3 we discussed some results for SNS, SFS and S2DEGS
junctions. The critical supercurrent can vary widely as the parameters
change. We use results in section 3 as a guide, while we proceed to study
the S/F/2DEG/F/S junction. A direct comparison between the critical su-
percurrent values of the basic junctions and the S/F/2DEG/F/S junction
should be avoided or be taken into context, as the effects produced by each
layer are different.

In the first two figures, 4.19 and 4.20, RSOC constant λ is the only pa-
rameter that is changed. In figure 4.19 the spin-orbit constant is λ = 0,
making the 2DEG layer effectively a normal metal, whereas in figure 4.20
spin-orbit constant is changed into λ = 0.1. Both types of interface scat-
tering are Zn,m = 0. As we already discussed in section 4.1, magnetization
strength in ferromagnetic layers is kept the same, and here it is set M = 0.2.
We plot the critical current as a function of the right ferromagnet’s magne-
tization direction ~MR. ~MR starts aligned with z axis, changes to x (along
the zx plane), then y axis (along the xy plane), and back to z (along the

yz plane). ~ML is kept constant for each branch, z, x and y for blue (full),
green (dashed with dots) and red (dashed) respectively. The geometry is
two-component, which means it only has two ferromagnetic layers and no
spin-active interfaces.

For λ = 0, the 2DEG layer is a normal metal. We observe a strong
correlation between the critical current and the angle between ~ML and ~MR.
The critical current is periodic for each two-layer geometry. As magnetization
directions ~ML and ~MR remain vertical to each other, the critical current
remains constant. There are several apparent symmetries. xz is equal to zx,
xy is equal to yx and zy is equal to yz. Also, as long as the plane of ~MR

shares one component with the ~ML, the critical current assumes the same
value, when ~MR is on 45’ of that plane.

In figure 4.20 we introduce a non-zero spin-orbit interaction, setting λ =
0.1, and as a result the symmetries, observed in figure 4.19, break. While
still remaining periodic, critical current is a complex function of ~MR. In
general, it is sensitive on the exact geometry, but on the same time it has
retained two symmetries. The numerical calculations show the same result
for the xy and the symmetric yx geometry, while the same is true for zy
and yz geometries. Moreover, whereas in figure 4.19, the critical current was
constant and maximum to a value of around Ic(λ = 0)|max = 0.4, in 4.20
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Figure 4.19: Critical current Ic as a function of the direction of right ferro-
magnet’s magnetization vector, for different magnetization directions of the
left ferromagnet, T/Tc = 0.1, kFd = 25, kFdL,R = 25, M = 0.2, λ = 0,
Zn,m = 0.
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Figure 4.20: Critical current Ic as a function of the direction of right ferro-
magnet’s magnetization vector, for different magnetization directions of the
left ferromagnet, T/Tc = 0.1, kFd = 25, kFdL,R = 25, M = 0.2, λ = 0.1,
Zn,m = 0.
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geometry xz, it reaches a maximum critical current of Ic = 0.5, while zx
geometry reaches only an Ic = 0.125.

In figure 4.20 we observed that geometry xz has an increased supercurrent
for Ic = 0.5, when compared to all other potential geometries. xy geometry
has an Ic = 0.35. Critical supercurrent values are sensitive to the geometry of
the junction, when λ 6= 0. During the next figures, 4.21 and 4.22, we change
the ferromagnets’ width and the magnetization M strength, in order to test
if xz geometry has the strongest supercurrent regardless of magnetization.

In figure 4.21 we change both ferromagnets’ width kFdL,R in a uniform
manner, while testing for four magnetization strength values. The geometry
is xy, while the 2DEG width is kept constant at kFd = 25.
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Figure 4.21: Critical current Ic as a function of the ferromagnets width
kFdL,R, for different magnetization strength values M , T/Tc = 0.1, kFd = 25,
λ = 0, Zn,m = 0. Magnetization directions are xy.

For M = 0, we emulate the S/N/2DEG/N/S junction. Increasing magne-
tization strength M introduces oscillations while also decreasing the mean
value of the supercurrent. As magnetization strength M increases, both the
oscillations’ period and the amount of resonances due to normal reflections
are increased.

It is important to mention that for M = 1 (half-metallic limit) the
supercurrent gets diminished in an exponential manner, with the oscilla-
tions being damped. The reason is that for M = 1, the wavevectors from
qe,s =

√
1 + sM − k2

p, become

qe,↑ =
√

2− k2
p (93)
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qe,↓ =
√
−k2

p (94)

so that for any kp, qe,↓ becomes imaginary. A planar wave with imaginary
exponential decays and effectively vanishes after a small length. The result
is that qe,↓ can not propagate through the ferromagnets of the junction.
Moreover, qh,↓ also becomes imaginary and can not propagate. Imagine an
electron with spin ↑ hitting the FS interface. The hole with spin ↓ that is
reflected gets immediately damped and can not propagate. The sequence is
broken, and after a while no Andreev reflections occur, thus the supercurrent
vanishes. This consideration does not take into account the tunneling effect
which allows carriers with imaginary wavenumbers to pass through a thin
layer (probability reduced when width increased). We see the tunneling
effect in figure 4.21, as critical current Ic 6= 0 for widths kFdL,R < 7, when
M = 1.

In figure 4.22 we change the geometry to xz, compared to figure 4.21,
where it was xy. All other variables are kept the same.
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Figure 4.22: Critical current Ic as a function of the ferromagnets width
kFdL,R, for different magnetization strength values M , T/Tc = 0.1, kFd = 25,
λ = 0.1, Zn,m = 0. Geometry is xz.

The supercurrent for xz has retained the same general characteristics as xy.
Increasing M creates more oscillations, and for M = 1 the supercurrent is
damped very quickly. On the other hand, the mean values of supercurrent
are increased for M 6= 0, which is what we observed in figure 4.20, where the
supercurrent, for the xz geometry, was the most increased. The supercurrent
for M = 0 for geometries xy and xz, is exactly the same.
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Figure 4.23: Critical current Ic as a function of normal scattering strength,
for different ferromagnet widths. T/Tc = 0.1, kFd = 25, M = 0.2, Zm = 0.

Using the information available in figure 4.22, for M = 0.2, the crit-
ical supercurrent’s first two dips and peaks occur for ferromagnets’ width
kFdL,R = 6, 11, 18, 25. We then introduce normal scattering to the inter-
faces of SF/FS, and observe how the critical supercurrent changes for the
four kFdL,R values. As Zn increases, the value of critical supercurrent de-
creases and tends to zero for large values of Zn. The current reduction is
similar for all values of kFdL,R.

Previously, in figure 4.23, we kept λ and d constant, while we changed M
and dL,R. Now, in figure 4.24, we set M = 0.2 and dL,R = 25. The 2DEG
width is changed for four values of λ. For λ = 0, supercurrent oscillates in
an irregular way. These oscillations are due to normal scattering resonances
occurring inside the ferromagnets. As the kFd increases they are smoothed
out. As λ increases we observe supercurrent oscillations with a much wider
period. This period, while irregular, seems to scale with λ−1. For λ = 0.05,
we can argue that one period is ∆kFd = 97− 25 = 72, whereas, for λ = 0.1,
two periods are ∆kFd = 76 − 12 = 64/2 = 32, and finally, for λ = 0.2, four
periods are ∆kFd = 85 − 23 = 62/4 = 15.5. Some deviation from λ−1 is
expected considering the irregular periods, but the values are quite close.

In order to explain the λ−1 change of period for the supercurrent, we
consider that a carrier with spin 2 hits the 2DEG/F interface and is reflected
into the opposite carrier with spin 1. The vertical wavenumbers for spin 1
and 2 are

University of Crete 72



4 RESULTS OF THE SF/2DEG/FS JUNCTION

0 10 20 30 40 50 60 70 80 90 100

0.3

0.32

0.34

0.36

0.38

0.4

0.42

I
c
h̄
/
e
∆

l0

kFd

 

 

λ=0
λ=0.05
λ=0.1
λ=0.2

Figure 4.24: Critical current Ic as a function of the 2DEG’s width kFd, for
different RSOC constants λ, T/Tc = 0.1, kFdL,R = 25, M = 0.2, Zn,m = 0.
Geometry is xy.

q(e,h)20 =
√

1 + λ2 + λ (95)

q(e,h)10 =
√

1 + λ2 − λ (96)

So, the total phase shift from the above reflection will be

q(e)20d− q(h)10d = 2nπ + φ+ φsc (97)

solving Eq. (97), we get q(e)20 − q(h)10 = (2nπ + φ + φsc)/d ⇒
√

1 + λ2 +

λ − (
√

1 + λ2 − λ) = (2nπ + φ + φsc)/d ⇒ 2λ = (2nπ + φ + φsc)/d ⇒ d =
(nπ + φ/2 + φsc/2)/λ⇒ d ∼ λ−1.

In figure 4.25 we keep the same parameters as in figure 4.24. The critical
supercurrent has been replaced by zero-phase supercurrent. As we observed
already, for the SFS junction, when the magnetization directions form a non-
coplanar set, a zero-phase current develops across the junction. While we
only have two magnetization vectors on the ferromagnets (xy), a zero-phase
current develops as λ increases in value. The spin-orbit coupling introduces
a magnetization vector, parallel to the xy plane. For the geometry xy, we
expect a coplanar set of magnetization vectors regardless of width or spin-
orbit coupling constant. Thus we would not expect a zero-phase current
to be generated, with a non-zero value. We observe that the zero-phase
current jumps from negative to positive values constantly, as kFd increases,
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Figure 4.25: Zero-phase current I0P as a function of 2DEG width, for different
RSOC constants. T/Tc = 0.1, kFdL,R = 25,M = 0.2, Zn,m = 0. Geometry is
xy.

for any non-zero λ. For λ = 0, it is zero as expected. It is possible we have
encountered an ”accidental degeneracy” quantum phenomenon, as observed
by Margaris et. al. [28].

In figure 4.26 we test how temperature affects critical supercurrent on
four different setups. An SN/N/NS junction (top full line - black), an
SN/2DEG/NS junction (jagged line - blue), an SF/N/FS junction (bottom
full line - red), and an SF/2DEG/FS junction (jagged with dots - green).
When T → Tc, superconductivity collapses, and as a result, all four criti-
cal supercurrent values diminish until they vanish for T = Tc, as expected.
Moreover, the Rashba spin-orbit value of λ = 0.1 has a much lesser impact
on supercurrent when compared to magnetization strength of M = 0.2, as
temperature increases.

4.5 The half-metallic limit

Previously, we mentioned that when M = 1, the junction functions in
the half-metallic limit. In section 4.4 we analyzed the impact M = 1 has
on wavenumbers of ferromagnets, and we observed that for kFdL,R > 7 the
critical supercurrent decays. In this section, we set M = 1 and set the
spin-active interfaces at Zm = 1. In order to completely avoid tunneling
phenomena, we set the ferromagnets’ width at kFdL,R = 150, where specific
geometries exist that allow significant critical supercurrent.
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Figure 4.26: Critical current Ic as a function of normalized temperature, for
four different junction setups. kFd = kFdL,R = 25, Zn,m = 0.

Geometries, in this section, are four-component as we have two interfaces
in addition to the ferromagnets. So, we present geometries, as we discussed
in section 4.1, by stating first the left interface, then the left ferromagnet,
the right ferromagnet, and lastly the right interface. We argue that when
geometries have one ferromagnet’s ~ML,R, parallel to the neighbouring inter-

face’s ~ZmL,R, the critical current is rapidly reduced to zero when kFdL,R = 10.
For zero spin-orbit coupling we change the width of the 2DEG, kFd, for

different geometries. The two cases, in figure 4.27, correspond to several
geometries, which fall in two general categories, PP and V V . PP denotes
that the two ferromagnet magnetization vectors are parallel to each other,
while V V denotes that they are vertical to each other. Following up on
previous results, when a ferromagnetic magnetization vector ~ML,R and the

neighbouring interface magnetization vector, ~ZmL,R, are parallel, the critical
supercurrent is reduced to zero. Thus, in figure 4.27, r̂ can not be parallel
to the neighbouring ~M .

Any geometry that has parallel ~ML,R and non parallel ~ZmL,R (to the neigh-

bouring ~M) has the same critical supercurrent, denoted by rPPr. The same

applies for vertical ~ML,R and non parallel (to the neighbouring ~M) ~ZmL,R.
Also, we observe that the oscillations in critical supercurrent value are more
intense for the rV V r geometries. The existence of a metal between the two
ferromagnets (and the change of its width) affects differently the junction,

depending on the angle between the ~ML,R directions. The supercurrent os-
cillates as the width increases, but the actual period of the oscillations is
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Figure 4.27: Critical current Ic as a function of 2DEG’s width d, Zm = 1,
M = 1, λ = 0, T/Tc = 0.1, kFdL,R = 150, Zn = 0. Geometry: r = x, y, z,
P = parallel layers, V = vertical layers.

constant regardless of width and is close to 3. Below, we provide supercur-
rent versus kp graphs calculated for kFd values of 8 to 10, which is consistent
with the period observed.

In figure 4.28, we calculate the normal incidence current as a function
of width. We observe that it oscillates with the same period as the critical
current does. This period, is exactly equal to π. In each period, current
begins in negative values and changes to positive values. This change in sign
means that the maximum current in the current-phase relation is negative
at first, but the positive peak takes over after half a period. We remind
that critical current takes absolute values. When normal incidence does not
contribute to the current, the critical current takes its minimum value, while
also the zero-phase current vanishes.

In figure 4.29, we can observe that the supercurrent distribution, as we
move from a peak (kFd = 8) to a dip (kFd = 10) (see figure 4.27, vertical
magnetization vectors), changes only slightly for kp ≥ 0.5 values. The most
significant change in distribution is seen close to zero incidence, where the
supercurrent drops to zero, for kFd = 9.25. The point of vanishing super-
current moves towards higher kp values as width increases, also affecting the
rest of the distribution, distorting the high kp values.
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Figure 4.28: Critical current (full line), zero-phase current (jagged with dots
line) and normal incidence current (kp = 0) as a function of 2DEG width
kFd, Zm = 1, M = 1, λ = 0, T/Tc = 0.1, kFdL,R = 150, Zn = 0. Geometry:
zxyz.

Figure 4.29: Supercurrent distribution as a function of 2DEG’s width kFd,
Zm = 1, M = 1, λ = 0, T/Tc = 0.1, kFdL,R = 150, Zn = 0. Geometry: zxyz.

University of Crete 77



4 RESULTS OF THE SF/2DEG/FS JUNCTION

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

I
c
h̄
/
e
∆

l0

kFd

 

 

Y ZZ Y
Y XZ Y
Y ZX Y

Figure 4.30: Critical current Ic as a function of 2DEG’s width d, Zm = 1,
M = 1, λ = 0.1, T/Tc = 0.1, kFdL,R = 150, Zn = 0. Geometries are yzzy,
yxzy and yzxy.

From λ = 0 in figure 4.27, we change the spin-orbit coupling to λ = 0.1,
in figure 4.30. We observed the critical supercurrent symmetries to break
in figure 4.20, and as a result, we expect the critical supercurrent to be
affected by the geometries of the junctions. The same small oscillations
that occurred for λ = 0, still exist and oscillate with the same period. The
position of peaks and dips seems to remain unchanged regardless of geometry.
However, another oscillation with much larger period exists. This period is
close to ∆kFd = 30, which is 10 times the period of the small oscillations.
This large oscillation only occurs for non-zero spin-orbit coupling values of
λ. As a result, it must be due to particle scattering inside the 2DEG. The
geometries yzxy and yxzy do not exhibit the same critical supercurrent, as a
result of the spin-orbit coupling, despite the fact that they are symmetrical to
ferromagnetic layer switch. Comparing these two geometries we can observe
that they have the same critical supercurrent value for kFd = 0, which we
expected due to being symmetric. As kFd increases, they split and have a
largely different character. We can mention that as they oscillate, where
yzxy has a peak in supercurrent, yxzy has a dip, in kFd = 23, and the other
way around, in kFd = 37. In figure 4.24, we discussed the reason behind the
large oscillations occurrence, and why they change as a function of λ−1. The
same principle applies here.
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Figure 4.31: Critical current Ic as a function of 2DEG’s width d, Zm = 1,
M = 1, λ = 0.1, T/Tc = 0.1, kFdL,R = 150, Zn = 0. Geometries are yzzy,
yzyz and xyyx.

Continuing the same comparison, in figure 4.31 we compare the geometry
yzzy introduced in figure 4.30, with geometries yzyz and xyyx, while also
providing low-grid calculations for yxxz and yxyx. These low-grid calcula-
tions serve the purpose of determining if the calculated points of the two
geometries coincide with any of the full-grid graphs. For the full-grid geome-
tries, the small oscillations are unchanged, but the large oscillations are less
intense, for both yzyz and xyyx, compared to figure 4.30. We observe that
while the period is constant, the difference between the highest and lowest
critical supercurrent values has decreased. As we compare the two figures,
we understand that the information given is not enough to make a statement,
accounting for every geometry. On the other hand, we can argue that when
the ferromagnetic layers align with the y axis, the critical supercurrent, as a
function of width, varies slightly. That happens for the geometry xyyx. The
magnetic field produced is not fixed on any axis of the xy plane. It can vary
with the incidence of the particles. So, for xyyx, yxxz and yxyx geometries,
the ferromagnetic layers are coplanar to the magnetic field of the 2DEG. The
resulting critical supercurrent is not the same in any of the three geometries.
We also notice that yzzy and yxxz geometries have the same character, but
some of the critical supercurrent values do not coincide.
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Figure 4.32: Critical current Ic as a function of 2DEG’s width d, Zm = 1,
M = 1, λ = 0.2, T/Tc = 0.1, kFdL,R = 150, Zn = 0.

In figures, 4.30 and 4.31, we compared several geometries for λ = 0.1. In
figure 4.32, we set λ = 0.2. As expected, the period of large oscillation is
constant for all geometries calculated. Compared to λ = 0.1 figures, the
large oscillation period has increased by a value of 2. We again mention that
the period of the large oscillation scales with λ−1. The small oscillations are
dominated by the larger period of the large oscillation. Only xyzx geometry
has fully visible small oscillations. Notice also, in full line, that two geome-
tries completely coincide, xzzx and yzzy. The ferromagnetic layers have the
same direction, and we expected that interface spin-flips will not affect the
critical supercurrent, only enable it through triplet correlations.

In figure 4.33 we calculate the critical supercurrent (clean lines) and the
absolute zero-phase current (X-lines), for geometry xyyx, for three values of
spin-orbit coupling constant. We notice that for λ = 0, zero-phase current is
0, as expected for a coplanar set of magnetization vectors. Moreover, zero-
phase current values close to zero tend to change abruptly, thus, at these
points the zero-phase current takes negative values. This means that the
junction transitions from cos-like to −cos-like (n peak to n + 1 peak, n =
1, 3, 5, ...). That occurs because on the n peaks, the zero-phase current has
the same value as the critical supercurrent. In addition, the n+1 peaks, which
have negative values, always coincide with peaks of the critical supercurrent.
While we do have a coplanar set of magnetization vectors, the effect of the
spin-orbit coupling enables strong zero-phase current.

Previously, we claimed that the direction of the interfaces’ magnetization
does not affect critical supercurrent as long as it enables triplet correlations.
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Figure 4.33: Critical supercurrent Ic (non-X-lines) and absolute zero-phase
current I0P (X-lines), as a function of kFd for different values of λ, T/Tc = 0.1,
Zm = 1, M = 1, kFdL,R = 150, Zn = 0. Geometry is xyyx.

That means it must be vertical to its neighbouring ferromagnetic magneti-
zation vector. In order to test this claim, we calculate the critical current
and zero-phase current for five geometries, as we change the direction of the
right interface’s magnetization ~ZmR. The calculations are made for λ = 0.1,
but also included, are the results for λ = 0. The direction of ~ZmR is changed
from ẑ axis to x̂, from x̂ to ŷ and from ŷ back to ẑ.

In figure 4.34, geometry is xzy ~ZmR. Full lines denote that λ = 0, whereas
jagged lines denote λ = 0.1. Also, clean lines denote critical current Ic and
marked-by-x lines denote zero-phase current I0P . When ~ZmR is parallel to
~MR the supercurrent vanishes. As the direction of ~ZmR moves on the zx

and yz planes the supercurrent increases. When ~ZmR is on the xy plane,
where it’s vertical to ~MR, critical current has a constant value. This result is
true regardless of λ, despite the fact that absolute value of supercurrent has
decreased for λ = 0.1. Geometry xyz ~ZmR always forms a non-coplanar set
of magnetization vectors, thus we expect that is always produces zero-phase
supercurrent. However, as long as ~ZmR is on the zx plane, the zero-phase
current vanishes. After it is aligned with x̂ axis, it slowly changes to a cos-like
junction. On the other hand, zero-phase current with spin-orbit interaction,
takes only negative values (except when ~ZmR is parallel to the ~MR) and is

much smoother as ~ZmR changes.
For zyz ~ZmR geometry, in figure 4.35, we observe that as long as ~ZmR is

vertical to ~MR, the current is constant, regardless of λ. Also, the supercurrent
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Figure 4.34: Critical current Ic and zero-phase current I0P as a function of
left interface’s magnetization direction ~ZmR, for λ = 0, 0.1. Zm = 1, M = 1,
T/Tc = 0.1, kFd = 50, kFdL,R = 150, Zn = 0. Geometry is xyz ~ZmR.
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Figure 4.35: Critical current Ic and zero-phase current I0 as a function of
left interface’s magnetization direction ~ZmR, for λ = 0, 0.1. Zm = 1, M = 1,
T/Tc = 0.1, kFd = 50, kFdL,R = 150, Zn = 0. Geometry is zyz ~ZmR.
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Figure 4.36: Critical current Ic and zero-phase current I0 as a function of
left interface’s magnetization direction ~ZmR, for λ = 0, 0.1. Zm = 1, M = 1,
T/Tc = 0.1, kFd = 50, kFdL,R = 150, Zn = 0. Geometry is xzy ~ZmR.

vanishes when ~ZmR is parallel to ~MR. The zero-phase current for λ = 0
vanishes when ~ZmR is on the yz plane, while takes non-zero values for all
other directions. Zero-phase current for λ = 0.1 takes non-zero values for
all directions of ~ZmR, except when it transitions to a cos-like junction for
~ZmR = (xy30). Also, comparing the two figures, we can see that critical
supercurrent values are exactly the same. We argue that values are the same
due to ferromagnetic layers having the same geometry.

In figure 4.36, we flip the ferromagnetic layer directions, from figure’s
4.34 xyz ~ZmR to xzy ~ZmR. We mention that the supercurrent now vanishes
when ~ZmR = ŷ. The critical supercurrent values, regardless of spin-orbit
interaction, are the same. Zero-phase current for λ = 0, again vanishes when
~ZmR is on the xy plane. In addition, it assumes exactly the opposite values,
when compared to xyz ~ZmR, for every other direction of ~ZmR.

For the xzx~ZmR geometry, in figure 4.37, enabling spin-orbit interaction
does not affect the supercurrent or zero-phase current. To be accurate, values
of Ic and I0P differ for λ = 0, 0.1, but the difference is negligible when
compared to the previous geometries. The zero-phase current vanishes when
~ZmR is on the zx plane.

Changing the ~ZmL into y, compared to figure 4.37, changes only the
character of the zero-phase current for non-zero values. In figure 4.38, zero-
phase current vanishes when ~ZmR is on the xy plane.
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Figure 4.37: Critical current Ic and zero-phase current I0 as a function of
left interface’s magnetization direction ~ZmR, for λ = 0, 0.1. Zm = 1, M = 1,
T/Tc = 0.1, kFd = 50, kFdL,R = 150, Zn = 0. Geometry is xzx~ZmR.
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Figure 4.38: Critical current Ic and zero-phase current I0 as a function of
left interface’s magnetization direction ~ZmR, for λ = 0, 0.1. Zm = 1, M = 1,
T/Tc = 0.1, kFd = 50, kFdL,R = 150, Zn = 0. Geometry is yzx~ZmR.
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5 CONCLUSION

5 Conclusion

We considered an S/F/2DEG/F/S short, ballistic junction in the clean
limit. We studied the effects of the spin-orbit interaction on the critical
supercurrent, zero-phase current and current-phase relation, when they are
already modulated by two ferromagnetic layers.

More specifically, we observed the changes in current-phase relation types
with junction parameters. We noticed the different effect of cut-off points,
due to magnetization and spin-orbit interaction. The cut-off in kp, due to
magnetization, vanishes the contribution to the supercurrent above the cut-
off kp. When we have no magnetization, but only spin-orbit coupling, the cut-
off kp point does not give vanishing supercurrent. When both M 6= 0, λ 6= 0,
it is the cut-off point due to magnetization that dominates the contribution
to supercurrent for high kp, while the cut-off in the 2DEG layer just causes
an abrupt change in the supercurrent, without vanishing it. We also observed
the difference between current-phase relations of magnetization-only layers
and spin-orbit-only layers. Spin-orbit-only layers produce only 0-junctions,
whereas magnetization-only were observed to transition from 0 to π junctions.

Moreover, we observed the effect that the normal resonances and anti-
resonances have on the supercurrent. Normal resonances are affected by the
width of the layers, by the magnetization strength, by spin-orbit coupling
and by interface normal scattering. As these parameters change, the change
in normal resonances influences the supercurrent, inducing oscillations. In
addition, for inhomogeneous ferromagnets, the spin-orbit interaction has a
strong influence on the supercurrent. Calculating and comparing the current-
phase relation for λ = 0 and λ 6= 0, the supercurrent of two of the four
geometries did not change, while for the other two it changed significantly.
Spin-orbit coupling breaks supercurrent degeneracies.

For a two-ferromagnet geometry, we found that the critical supercurrent
depends on the relative angle between the magnetization vectors, in absence
of spin-orbit coupling. On the other hand, with spin-orbit coupling, the crit-
ical supercurrent differed for most geometries and was increased in value for
specific geometries. As we mentioned, magnetization and spin-orbit interac-
tion affect normal scattering, so as we increased the width of the junction,
more resonances and anti-resonances were produced, greatly modulating the
supercurrent, whose separation depends on the width. However, normal scat-
tering strength acts destructively on current as it increases. The spin-orbit
coupling induces oscillations with a larger period, which scales with λ−1,
and is due to normal reflections in the 2DEG layer. Increasing temperature
lowers the supercurrent, until superconductivity collapses (on T = Tc), and
supercurrent vanishes.
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For values of magnetization M → 1, we observed the supercurrent to de-
crease in value, dropping to zero value after magnetization reached M = 1.
This limit is called the half-metallic limit, because in the ferromagnet, one
spin can propagate while the other decays. We argued that supercurrent
dropped to zero due to the nature of the Andreev reflection process, which
reflects a particle with a spin, to the anti-particle with the opposite spin,
which induces singlet correlations. In the half-metallic limit, increasing the
interface spin-flip scattering strength, we observed significant supercurrent
and quite strong for kp above the cut-off point for a spin ↓, in the ferromag-
net. Thus spin-active interfaces induce triplet correlations and in this, the
homogeneity of the magnetization is crucial.

Continuing on the half-metallic limit with spin-active interfaces, we ob-
served for λ = 0 the supercurrent assumes two different behaviours. The
supercurrent is modulated according to the angle between the ferromagnetic
magnetization vectors. When they are parallel, there is an almost linear
decay with width, with the supercurrent being modulated when they are
vertical. The period of the critical supercurrent oscillation is about π and
we see a clear correlation between normal incidence contribution to the cur-
rent, and the value of the critical supercurrent. They have the same period,
and diminishing of normal incidence is translated to minimum critical su-
percurrent values. When we increased λ, each geometry produced its own
characteristic current versus width relation. The period of oscillations was
affected by the value of λ−1, as mentioned before. Also, we observed that
spin-orbit interaction can induce zero-phase current when a geometry does
not support zero-phase current on its own (when λ was zero). The periodicity
of the zero-phase current indicates transitions of the junction, as a function
of width. Lastly we argued and observed that as long as an interface mag-
netization vector was vertical to the neighbouring ferromagnetic vector, the
supercurrent assumed its maximum potential value. When it is parallel, the
supercurrent vanishes.
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