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Abstract

Big data analytics is one of the most active research areas today with a lot of
challenges, both theoretical and practical. This thesis makes a contribution to the
area of big data analytics by implementing the HIFUN language using the Apache
Spark framework. HIFUN is a high level query language, proposed for expressing
analytic queries over big data sets. This language makes a clear separation between
the conceptual and the physical level. An analytic query and its answer are defined
at the conceptual level independently of the nature and location of data. The
abstract definitions are then mapped to lower level evaluation mechanisms, taking
into account the nature and location of data, as well as other related aspects. In this
thesis, we leverage this language to design and implement a system which allows
a user to analyse, visualize and discover information useful for decision making,
which is "hidden" in large-scale data sets. In the physical level, HIFUN queries
are mapped to lower level evaluation mechanisms of the Apache Spark framework
following the conceptual evaluation scheme proposed by HIFUN and supporting a
big range of data set formats. In the conceptual level, we apply the query rewriting
rules and create query execution plans, proposed by HIFUN. Our work shows that
the HIFUN formal model is useful in practice and the experimental evaluation
of the system proves that the model’s approach to query rewriting and to the
generation of query execution plans succeeds in reducing the computational costs
regardless of the nature of the data.






IMTepiindn

H avdivon yeydhwy dedouévny ebvar plo amd Tic o eVERYES EPELVNTIXES TEPLOYES
CHUEQEA XL GUVODEVETAL OO TOAES VEWENTIXES Xou TEOXTIXES TpoxArioelc. AuThA 7
gpyooia cLUBAAkelL o auTHY TNV Teploy Y| VAonowwvtac Ty YAwooa HIFUN yenowo-
rowvtag to framework Apache Spark. H HIFUN elvan plo yAdooa encpwtrioewy
unhol emnédou N onolo €yel TpoTael YLol TNV EXPEACT) ENEPWTHOEWY AVEAUGTC TEVE
o€ BeboUEVaL UEYAAOU OYX0L. AUTH 1 YAOOGCO XAVEL Evay Gapt] Bloy welopd HETaED Tou
EVVOLOAOYIXOU o TOU QUOXOV emmEdou. Mlio emep®dTNoT AvdAuoNS Xt 1 AmdvTNoY
¢ opilovtan oTo evvolohoyixd eninedo aveldptnta and Ty GuoN xou TNy Torodeoia
Twv dedouévev. Katomy, avtol o agpnenuévol oployol avtiotoryilovton oe unyo-
VIoUoUg amotiunong youniotepou emnédou, AauBdvovtag unddy Ty QUor xaL TNV
Tomoeoio Twv BedoUEVeY, OTwe emlong xat dAhoug oyeTl{OUEVOUS TUPAYOVTES. Y€
aUTAY TNV gpyaoia, aLOTOLOUUE AUTAY TNV YAOOS Yiol TNV GYEDIGT xou TNV LAOTOM-
o1 EVOG GUOTHUATOS TO OTIO(0 ETUTEETEL OE VALY YEHOTY VO AVUAUGEL, VoL OTTIXOTIOLHCEL
xa vou avoxaAUel TAnpogopio 1 ool unopel var elvon yprown otn Ajdn anogdoe-
Vv %ot 1) onola eivan xEUUPEVT OE BEGOUEVA PEYAAOL OYXOU. 2TO QUOXO ETENEDOD, OL
enepwtoeic g HIFUN avtiotoyilovian oe unyaviopolc anotiunong yaunAotepou
emmédou tou Apache Spark, axolouddvtag to mpotewvduevo omd v HIFUN ev-
VOLOAOYLXO TAGVO amotTiunong, untootnellovTog Wia UEYEAT YU LORPHOY BEGOUEVMY.
Y10 evvolohoyixd eninedo, e@opuolOUUE TOUC XOVOVES ETOVEYYQEUPNS ENERMOTACEWY
X0l ONULOVEYOVUE TAGVYL EXTEAECTC EMEPWTHOEWY, TpoTevopeva and v HIFUN. H
epyaoio aut delyvel 6Tt To TuTXG povtéro g HIFUN elvon yerowo otnv mpdén
xa 1) TELpoTIXT aELOAOYNOT) TOU CUC THUATOC ATOBEIXVUEL OTL 1) TPOGEYYIGT| TOU UO-
VIEAOU GTNV ETMAVEYYQRUPY TNV ENEPWTACEWY XAl GTNY TUEAYWYT| TAAVWY EXTEAECTC
EMEQPMTNOEWY ETUTUYYAVEL TN HELWOCT) TOU UTOAOYLOTIX0) XOGTOUS aveldpTnTa oand TNy
pLOT TWV BEDOUEVLY.
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Chapter 1

Introduction

Big data analytics is one of the most active research areas with a lot of challenges
and needs for innovations which affect a wide range of industries. In response to
this trend, the research community and the IT industry have developed formal
models along with a number of frameworks to facilitate large-scale data analytics.
This thesis makes a contribution to this area by implementing HIFUN, a high
level functional query language for big data analytics [1]|2]. Our implementation is
based on Apache Spark, a widely used framework framework for big data analytics.
In this section, we describe the context, the motivation and the contributions of
our work.

1.1 Big Data

In the information era, enormous amounts of data have become available on hand
to decision makers [3|. Big data are data characterized by the 6 Vs [4][5]|6]]7]:

1. Volume: there is no specific size at which a data set is considered big and
this definition is subjective. In any case , the term big data refers to data sets
whose size is beyond the ability of typical database software tools to capture,
store, manage, and analyze.

2. Velocity: it is the measure of how fast the data are generated and processed
and this dimension refers to the capability of understanding and responding
to events as they occur. A number of applications today rely on real-time
data generation and processing to meet the demands of everyday life e.g.
Google Maps, Facebook etc.

3. Variety: it deals with the complexity of big data along with information
and semantic models behind these data. Big data can be collected as struc-
tured, unstructured, semi-structured or mixed and this dimension imposes
new requirements to data storage and database design.

3



4 CHAPTER 1. INTRODUCTION

4. Veracity: this dimension refers to the quality, the uncertainty and the im-
precision which this kind of data may have. They may have missing values,
misstatements or untruths which create a number of challenges during their
processing.

5. Voracity: this dimension refers to the strong appetite of the consumers for
data. There is an increase in the information requirements of users as a result
of the new capabilities coming from these large-scale datasets.

6. Value: this is the most important dimension of big data. Nowadays, busi-
nesses invest a lot of time and money collecting and saving data and their
motive is to turn these data into potential value.

It is undeniable that the collection and the processing of big data can enable
insights that unlock new sources of value and can support an array of human
activities [8]. This will be supported by the use of new technical architectures,
analytics, and frameworks |[3].

1.2 Big Data Analytics

Big data analytics is the process of collecting, transforming and analyzing big data
sets with the goal of discovering "hidden" patterns and other useful information to
suggest conclusions and support decision making. Analysts working with big data
sets basically want the knowledge that comes from analyzing the data [1]. This
process can be useful in multiple domains including businesses, health, security, re-
search, advertising etc. For example, in the business field, it can help organizations
to better understand the information contained within the data and identify the
data that is most important to the business and future business decisions [9]. Both
can result in revenue increase, cost reduction, increased productivity and better
performance. In the security field, it can help people prevent crime and predict
possible future crime locations by analyzing criminal records and revealing crime
patterns.

This process offers a lot of opportunities but also comes with a number of chal-
lenges. For example, as we mentioned in the previous subsection, big data are
characterized by variety. As a result, one of the challenges which appear is how
to integrate data of different structure level from different sources. Moreover, this
process demands specific skills and for this reason, people trained in big data ana-
lytics tools are needed. Furthermore, there is a need to reduce the computational
cost of this procedure to the minimum.

In any case, the analysis of big data requires new specialized frameworks and
programming models that process data sets in a parallel manner in a distributive
computing environment consisting of a considerable number of machines. This is
because traditional database software tools do not have a good performance in
large-scale datasets processing [1]. Some of those basic frameworks and models are
described in the next section.
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1.3 Motivation

As stated in [1], there is currently a number of systems developed for large-scale
data sets processing. While these systems co-exist, each carefully optimized in
accordance with the final application goals and constraints, their evolution has
resulted in an array of solutions catering to a wide range of diverse application
environments. Unfortunately, this has also fragmented the big data solutions that
are now adapted to particular types of applications. At the same time, applications
have moved towards leveraging multiple paradigms in conjunction, for instance
combining real time data and historical data. This has led to a pressing need
for solutions that seamlessly and transparently allow practitioners to mix different
approaches that can function and provide answers as an all-in-one solution. Based
on this observation, a high level query language, called HIFUN, was proposed in
[1][2]. HIFUN allows an analyst to formulate queries and study their properties at
the conceptual level along with mappings to existing evaluation mechanisms which
perform the actual evaluation of queries. The objective of HIFUN was to clearly
separate the conceptual and the physical level so that one can express analysis
tasks as queries at the conceptual level independently of how their evaluation is
done at the physical level. This solves the problem described above, as HIFUN is
agnostic of the application environment as well as of the nature and location of
data.

However, HIFUN is a formal language that was not implemented in practice.
Moreover, although some theory around Query Rewriting and Query Ezecution
Plans was proposed for minimizing the evaluation cost of queries, this work lacks
an algorithm which generates query execution plans and an experimental proof
that the rewritings proposed are efficient.

1.4 Thesis Contribution

In this thesis, we show that the HIFUN language is indeed of great benefit in
practice. We do this by implementing this language using a widely used framework,
Apache Spark. More precisely:

1. We map the conceptually defined queries of this language to physical level
mechanisms of the Apache Spark framework according to a proposed concep-
tual query evaluation scheme. The mapping is done using two APIs of the
framework which can support a big variety of data set formats.

2. Based on the HIFUN definitions of Query Rewriting rules and Query Eze-
cution Plans, we design and implement an algorithm which rewrites queries
and generates query execution plans to achieve the minimization of the cost
of the evaluation of a set of queries.

3. We map the rewritten queries in the Apache Spark framework and prove
experimentally that the HIFUN approach provides noticeable benefits related
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to query evaluation cost reduction.

4. We leverage the simple format of HIFUN queries to create a user-friendly
interface which allows any user to express analytic queries and discover useful
information in a data set, while hiding the evaluation mechanisms from him.

1.5 Thesis Organization

The remaining of this report is organized as follows: In section 2, we provide the
background of this thesis. In subsection 2.1 we present the Google’s MapReduce
programming model and in the next 2 subsections, 2.2 and 2.3, we briefly describe
and compare two of the currently most popular big data processing frameworks
which use this model to perform computations. In section 3, we present the HI-
FUN language [1][2]. More precisely, in subsection 3.1, the definitions of this
language are reviewed; in 3.1.1, the definition of an analytic query and its answer
is given; and in subsection 3.1.2, the definition of the Analysis Context is given and
a query language over it is defined. Moreover, in subsection 3.2, the features of
the language are presented; in subsection 3.2.1, a proposed theory related to Query
Rewriting and Query Erecution Plans is reviewed; in subsection 3.2.2, the concep-
tual scheme of the language for query evaluation based on the abstract definition
of a query is briefly reviewed; and in subsection 3.2.3, we explain how the different
representations of a query answer can be produced. In section 4, we give a detailed
description of a system that we implemented, which includes all the contributions
described above, and we explain what this system provides. In subsections 4.1 and
4.2, the mapping of the HIFUN conceptual scheme to physical level mechanisms
using two APIs of the Apache Spark is given. In the last subsections of the main
section, 4.3 and 4.4, we describe how we designed an algorithm which reduces the
queries evaluation cost based on the theory of Query Rewriting and Query Fxe-
cution Plans, and how a user-friendly interface is implemented which allows any
user to perform an analysis on a data set and explore useful information in its
answer. Finally, in the last two sections, we evaluate the effectiveness of the query
rewritings at reducing queries evaluation cost, present directions of future work
and make some concluding remarks.



Chapter 2

Background

In this section, we describe some of the popular frameworks and technologies de-
veloped for big data processing.

2.1 The MapReduce Programming Model

MapReduce, seen from a high level, is a programming model for processing data
sets of large volume in a parallel manner. A programmer of the MapReduce li-
brary expresses a computation as two functions, the Map and the Reduce function.
Firstly, the Map function takes an input pair and produces a set of intermediate
key /value pairs (K, V). All intermediate values associated with the same interme-
diate key are passed to the Reduce function. The latter accepts an intermediate
key K; and a set of values for that key and merges these values to form a possibly
smaller set of values (usually zero or one output value is produced per Reduce
invocation). These are depicted in Figure 2.1. A big amount of real world tasks
can be expressed using this model and programs following it can be automatically
parallelized and executed on a large cluster of machines achieving high scalability.
Each key-value pair can be mapped or reduced independently and this means that
many different processors, or even machines, can each take a section of the data
and process it separately [10][11][12][13][14][15].

This model needs a framework that runs these programs in parallel, automati-
cally handling the details of distribution, synchronization, and fault-tolerance. The
model and the framework work together to make programs that are scalable, dis-
tributed, and fault-tolerant. Some of the framework’s jobs include 1. constructing
the input pairs of the mapper from the input files, 2. collecting, sorting and group-
ing the intermediate key-value pairs by key and 3. collecting the output pairs of
the reducer and storing them in output files. In general, the framework handles all
the needed synchronization between the steps of Map and Reduce [12].

7



8 CHAPTER 2. BACKGROUND

Reduce() .
Reduce( ) i

Figure 2.1: The MapReduce Programming Model

2.2 Apache Hadoop

Hadoop is a programming framework developed to support the processing of data
sets of large volume in a distributed computing environment. It consists of com-
puter clusters built from commodity hardware. All the modules in Hadoop are
designed with an assumption that hardware failures are common occurrences and
should be automatically handled by the framework. The fundamental parts of
the Hadoop ecosystem are the Hadoop Distributed File System (HDFS), which is
its storage part, and the Hadoop MapReduce, which is an implementation of the
Google’s MapReduce programming model as described above. Some additional
parts of the ecosystem are 1. the basic modules: Hadoop Common which contains
libraries and utilities needed by other Hadoop modules, the Hadoop Yarn which
is a platform responsible for managing computing resources in clusters, and 2. a
number of various components that can be installed on top of or alongside Hadoop
like Apache Hive, Base and Zookeeper.

The architecture of a multi-node Hadoop cluster can be seen in Figure 2.2.
Hadoop creates clusters of machines, distributes data across the nodes in the cluster
and transfers packaged code into nodes to process the data in parallel. This allows
the data set to be processed faster and more efficiently than it would be in a more
conventional supercomputer architecture that relies on a parallel file system where
computation and data are distributed via high-speed networking. A Hadoop cluster
is consisted of two layers, the HDFS layer and the MapReduce layer. It includes
a single master and multiple worker nodes. The master node consists of a Job
Tracker, a Task Tracker, a NameNode, and a DataNode. A slave or worker node
acts as both a DataNode and a TaskTracker. Briefly, a Job Tracker pushes work
to available Task Tracker nodes in the cluster to be executed, trying to keep the
work as close to the data as possible in order to avoid network traffic [16][17][18].
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master slave
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Figure 2.2: A multi-node Hadoop cluster

2.2.1 Hadoop Distributed File System (HDFS)

The Hadoop Distributed File System (HDFS) is a fault-tolerant, distributed and
scalable storage system, part of the Apache Hadoop ecosystem. It can store a
massive amount of data and scale up incrementally by adding more DataNodes to
the cluster. Hadoop splits files into blocks and distributes them across the nodes
of the cluster. A strong benefit of this filesystem is that if a node of a cluster fails,
Hadoop can continue to operate the cluster using the remaining nodes without
losing data or interrupting work. Other benefits of it are high portability across
heterogeneous hardware and software platforms, a simple coherency model and
network congestion minimization.

It has a master/slave architecture which is depicted in Figure 2.3. An HDFS
cluster consists of a master server that manages the file system namespace and
controls access to files by the clients, that is the NameNode, and a number of
DataNodes which manage storage attached to the nodes that they run on. HDFS
splits data files into blocks and stores these blocks in a set of DataNodes. The Na-
meNode performs operations on files and directories, and determines the mapping
of blocks to DataNodes. The DataNodes follow commands from the NameNode
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performing block-related operations and are responsible for the read /write requests
from the clients. The fault-tolerance is achieved by replicating the blocks of a file
across the DataNodes [19].

HDFS Architecture

Metadata (Name, replicas, ...):
/home/foo/data, 3, ...

Namenode

Metadata ops

Read Datanodes Datanodes

' | I
B & = = Replication a8 8 =
] L] Jo Blocks

g \/ N J
Y

~" .
Rack 1 Write Rack 2

Figure 2.3: The Hadoop Distributed File System Architecture

2.3 Apache Spark

Apache Spark is a fast and general engine for large-scale data processing. Some of
its goals include: 1. Generality: designed to cover a wide range of workloads (e.g.,
job batches, iterative algorithms, interactive queries and streaming) that previ-
ously required separate distributed systems, 2. Low Latency: designed for speed,
operating both in memory and on disk, 3. Fault Tolerance, 4. Simplicity: its capa-
bilities are accessible via a set of rich APIs, 5. Existing technologies exploitation:
exploits existing distributed file systems and cluster managers e.g. HDFS, Yarn. It
is a unified ecosystem consisted of a number of main components including Spark
core and some upper-level libraries: MLib for machine learning, GraphX for graph
analysis, Spark Streaming for stream processing and Spark SQL for structured data
processing [20][21].

Apache Spark has now emerged as the de facto standard for big data analyt-
ics after Hadoop’s MapReduce. As a framework, it combines a core engine for
distributed computing with an advanced programming model for in-memory pro-
cessing. Although it has the same linear scalability and fault tolerance capabilities
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Spark MLIib
Streamingl} (machine
learning)

Apache Spark

Figure 2.4: Apache Spark Stack

as those of MapReduce, it comes with a multistage in-memory programming model
comparing to the rigid map-then-reduce disk-based model. With such an advanced
model, Apache Spark is much faster and easier to use. It comes with rich APIs
for performing complex distributed operations on distributed data. In addition,
Apache Spark leverages the memory of a computing cluster to reduce the depen-
dency on the underlying distributed file system, leading to dramatic performance
gains in comparison with Hadoop’s MapReduce. It is built upon the Resilient
Distributed Datasets (RDDs) abstraction which provides an efficient data shar-
ing between computations. Previous data flow frameworks lack such data sharing
ability although it is an essential requirement for different workloads [21].

2.3.1 Spark Applications

A Spark application is consisted of the following entities: a driver program, a
cluster manager, workers, executors and tasks. A driver program is an application
that uses Spark as a library and defines a high-level control flow of the target
computation. While a worker provides CPU, memory and storage resources to
a Spark application, an ezecutor is a Java Virtual Machine process that Spark
creates on each worker for that application. A job is a set of computations that
Spark performs on a cluster to get results to the driver program and a Spark
application can launch multiple jobs. Spark splits a job into a directed acyclic
graph of stages where each stage is a collection of tasks. A fask is the smallest unit
of work that Spark sends to an executor |21].

Figure 2.6 gives an overview of how Spark runs on clusters. Spark applications
run as independent sets of processes on a cluster, coordinated by the SparkCon-
text object in the driver program. More specifically, the SparkContext can connect
to several types of cluster managers, which allocate resources across applications.
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Figure 2.5: Apache Spark Execution Workflow

Once connected, Spark acquires executors on nodes in the cluster, which are pro-
cesses that run computations and store data for an application. Next, it sends the
application code to the executors. Finally, SparkContext sends tasks to the execu-
tors to run. This architecture allows Spark applications to run with high efficiency
on the cluster [22].

As we describe in detail in the next sections, we designed and implemented a big
data analytics system using the Apache Spark framework. Our system evaluates
analytic queries expressed by the users by mapping them to lower level mechanisms
of this framework. The data sets that need to be analyzed in our system are stored
onto the HDFS and a number of our queries evaluation processes are designed
based on the MapReduce programming model.
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Figure 2.6: Key entities for running a Spark application
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Chapter 3

The HIFUN Language

In this section, we are going to briefly describe the formal model of the high level
query language called HIFUN, proposed for expressing analytic queries over big
data sets. For a detailed description, the reader is referred to [1][2].

Firstly, the main benefit of HIFUN is that it separates the conceptual and
the physical level, which means that it can be used to express analytic queries
regardless of the nature of the data sets. This language can be used to express
analytic queries on a data set D if:

1. D consists of data items that can be uniquely identified.

2. the items in D share a common set of attributes and each attribute can be
seen as a function associating each data item of D with a value, in some set
of values.

3.1 Definitions

3.1.1 The definition of an analytic query and its answer

An analytic query in HIFUN is defined to be a triple (g, m, op), such that g and
m are attributes of the data set D, and op is an aggregate operation applicable on
m-values. The attribute ¢ is called the "grouping attribute" and the attribute m
is called the "measuring attribute". The query ) is evaluated in three steps:

1. Grouping: The items of D are grouped using the values of the grouping
attribute g.

2. Measuring: The value of the measuring attribute m is extracted from each
item contained in each group created in the previous step.

3. Reduction The values of the measuring attribute m are aggregated in each
group to get a final value v;. This aggregate value is defined to be the answer
of the query (@ on g;, that is ansg(g;) = v;

15
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To formally define the query and its answer, some basic mathematical concepts,
the functions and the partitions, are needed.

Q = (g, m,op)

ansq(a;) = (red(m/g~"(a;), op))
Figure 3.1: The definition of an analytic query and its answer

The formal definition is depicted in Figure 3.1. Firstly, D is a finite set of data
items, that is D = {d;,...,d,}. An analytic query over D is a triple @ = (g, m,
op), where g is a function with domain the set D and range a set A, m is a function
with domain the set D and range a set V and op is an operation over V taking its
values in a set W. If {aq,...,ay} is the set of values of g, then we call grouping of D
by g, the partition 7, = {g"1(a1), ..., g }(ax)} induced by g on D. The reduction
of m with respect to op, denoted red(m, op), is a value of W defined as red(m, op)
= op({m(d1), ..., m(dy))). Based on the above, the answer to Q, denoted ansq, is
a function from the set of values of ¢ to W defined by:

ansg(a;) = red(m/g *(a;),op),i = 1,2,....k
The following restricted queries can also be defined over D:

1. Attribute-Restricted Query: (¢g/E, m, op), where E is any subset of D.
To evaluate this query, we compute the restriction ¢g/F and then evaluate the
query over E.

2. Result-Restricted Query: (g, m, op)/F, where F is any subset of the
target of g. To evaluate this query, we evaluate the query Q = (g, m, op)
over D and then we compute the restriction ansg/F.
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3.1.2 Analysis Context

An analysis context over a data set D is any subset of attributes of the set of all
attributes of D. It is the interface between an analyst and the data set. An example
can be seen in Figure 3.2. The attributes with domain the data items of D are
called "direct” and the attributes that can be derived from the direct attributes
are called "derived”. 1t is a directed labelled acyclic graph whose nodes represent
data sets, and whose edges are functions between the data sets. An analyst can
express queries by choosing any node of the context and can also form complex
grouping functions using the functional algebra. More specifically:

1. The composition operation can be used to compose one or more attributes
to allow grouping by "derived” attributes. e.g (r o b, q, sum)

2. The pairing operation can be used to allow grouping by more than one at-
tributes. e.g (b A p, g, sum)

3. The restriction operation can be used to express restricted queries.

4. The Cartesian product projection operation can be used to express projection
queries which are useful for query rewritings explained in the next subsection.

Region Supplier Category
T S C
Branch| Product

A
Y

Date

d D Quantity

q

Figure 3.2: An Analysis Context example

Given a context C, a functional expression over it is either an edge of C or a
well formed expression whose operands are edges and whose operations are those
of the functional algebra. Based on this, a query over C' is a triple (e, e’, op), such
that e and e’ have a common source and op is an operation over the target of e’.
Finally, the query language of C is the set of all queries over C.
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3.2 The Main Features of HIFUN

3.2.1 Query Rewriting and Query Execution Plans

In this subsection, we briefly describe how a given query can be rewritten in terms
of one or more other queries to reduce its evaluation cost. Query Rewriting has
two applications:

1. Optimizing the evaluation of a query which is done by taking advantage of
results of queries that have already been evaluated.

2. Optimizing the evaluation of a set () of queries.

The rewriting rules are the following:

(a) Q = {(g,m,0p1),...(g,m,opn)} = Q = ((g,m), {op1, ..., 0pn})
(b) @ = {(g,m1,0p1),...(9: M, 0pn)} = Q = (g, ({m1,0p1}, ..., {mn, opn}))

(c) Q= {(g1,m,0p),..., (gn, m,0p)}, where op is a distributive operation.
Queries of this form can be rewritten according to a number of rules:

i. Aset @ = {(f,m,op),...,(h,m,op)} can be rewritten as Q@ = {(f A
. A hymyop), (projr, (f A ... A hym,op),op),....(proju, (f A ... A
h,m,op),op)}.

ii. Aset @ = {(go f,m,op),...,(ho f,m,op)} can be rewritten as Q =
{{((gn...AR)of), m,op), (proja, ((gn...AR)of),m,op),op), ..., (projmu, (g
.. Anh)o f),m,op),op)}.

ii. A set @ = {(f,m,op),(g o f,m,op)} can be rewritten as @ =
{(f,m,op), (g, (f,m,op),op)}. This is called the Basic Rewriting
Rule.

In case there are equality constraints over a context, they can be used to increase
the possibilities of query rewritings in both applications.

Since some queries can be evaluated using the answers of other queries with
lower cost, a Query Ezecution Plan (ordered set of steps of query evaluation) has to
be created for every set of queries () which guarantees that each query is evaluated
only once and the evaluation order implied by rewriting is maintained. This is
done by creating a Query Rewriting Graph for every set of queries (), which is a
directed labeled graph where the nodes are the queries of () and there is an edge
from a node ) to node @’ if ()’ can be rewritten in terms of ). The label of the
edge  — @’ is the function on which is based the rewriting of ¢’ in terms of .
A Query Execution Graph EG for a set of queries ) is a subgraph of the Query
Rewriting Graph, where the nodes of the subgraph are the queries of () and each
node has at most one predecessor. Finally, the Query Ezecution Plan is a Query
Execution Graph together with an external order <. compatible with the rewriting
order <,,. More specifically, the external order <. is the ordering of the queries to
be evaluated and the rewriting partial order <,, is defined by the rewriting rules
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as described above. The rewriting order carries semantic information in addition
to ordering information and that is the main difference between the two partial
orders. An example for the above-mentioned can be seen in Figure 3.3. In the
query execution plans depicted, the rewriting order <, is indicated by the edges in
solid line, whereas the external order <. is indicated by the edges in dotted line.

a set of queries to be executed

h
and their rewriting graph RG Q «—=A—Q
Q,= (b, q, sum) )
Q,= (p, q, sum) RG | r| hes S
Q= (r°b, g, sum)= (h°sep, q, sum) 0 0
Q4= (Sop> q7 Sum) ! 2
two different R Q Qs Q4
execution graphs EG-1 EG-2
EG-1 and EG-2 S r s
Q Q, Q, Q,
. o N— Q. \ h
two different ~ Q, Q,
execution plans
EP-1.1 and EP-12  EP-1.1 hes s EP-1.2 s
derived from EG-1
Q Q Q- »Q,

Figure 3.3: Query Rewriting Graph, Query Execution Graphs and Query Execution
Plans Example

3.2.2 Conceptual Query Evaluation Scheme

The HIFUN language proposes a conceptual evaluation scheme which consists of
four steps as follows:

1. Query input preparation Query input, denoted by IN(Q), is the set of
tuples which contain the useful information necessary for evaluating a query
@. That is the identifier ¢ together with the values g(i) and m(i), as well as
the values A(i) of any attributes A contained in the restriction, in case of a
restricted query. This step returns this set IN(Q).
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2. Filtering (if needed) This step is skipped in case there are no attribute
restrictions. In case we have an Attribute-Restricted Query, this step filters
the tuples that don’t conform to the query restrictions, contained in the set

IN(Q).

3. my construction This step constructs the grouping partition 7, = {G1,...,
G}, as it was previously defined in the query definition. The reduction of
g will give the answer to the query.

4. 4 reduction This step returns the answer of the query on each value g;
of g, previously defined as ansg(g;)=red(m/G;, op), j = 1,..., n, for every
block G of the grouping partition .

This scheme can be mapped to different lower level evaluation mechanisms
supporting a big range of data set formats.

3.2.3 Query Answer Representations

The HIFUN language proposes a formal method for creating multiple representa-
tions of a query result based on Currification [23]. Briefly, when the target of the
grouping ¢ of a query is a Cartesian product, the answer of the query has more
than one representation. Each different representation of a query result can reveal
new "patterns” of information that might not be visible in a different representa-
tion. For example, consider the query @ = (region A category, quantity, sum). The
answer ansg of the query is the function: ansg : Region X Category — TotQty.
The standard way of representing the answer ansg can be seen on the left side of
Figure 3.4. However, additional representations of the answer can be produced us-
ing Currification. For example, we can generate a function r; : Category — TotQty
for each distinct value r; of the function r. The new representation of the answer
of the result can be seen on the right side of Figure 3.4. As we can see, the new
representation reveals information of the answer not visible in the standard one.

The formal model of HIFUN was leveraged to develop a big data analytics sys-
tem using Apache Spark and prove that this language is useful in practice. In the
next section, we describe in detail how we implemented this system which allows
a user to analyse, visualize and discover information useful for decision making,
"hidden" in large-scale data sets. This system is based on HIFUN’s definitions and
features and performs optimizations though query rewritings and query execution
plans, as proposed by HIFUN, to reduce computational costs.
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r;: Category — TotalQty

ans, : Region x Category — TotalQty Paris:

Figure 3.4:

@ Warsaw,Water
@ Manchester,Soft Drinks
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@ Paris, Soft Drinks

@ Brussels,Energy Drinks
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@ salzburg,Soft Drinks .
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Different representations of a query answer
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Chapter 4

System Implementation

As we made clear in the previous sections, an analytic query and its answer in
HIFUN are defined at the conceptual level independently of the nature and the
location of the data. This allows us to use it to evaluate analytic queries on more
than one type of data sets, mapping analytic queries to available evaluation mech-
anisms. In the following paragraphs, we firstly explain in detail how we mapped
HIFUN queries to existing mechanisms of Apache Spark in the physical level to
evaluate analytic queries. This was done based on the HIFUN conceptual evalua-
tion scheme, which was presented in the previous section using two different APIs:
1: the RDDs API, 2: the SPARK SQL module and the Dataset API [21]. Please
note that each API supports different types of data sets and is more efficient in
different cases. In any case, each data set must conform with the 2 prerequisites of
the formal model as described above. Secondly, we explain how the query rewrit-
ings are applied and the query execution plans are generated, which both reduce
the evaluation cost of queries. Finally, we explain how we allow a user to express
analytic queries, visualise the results and explore the query answers through a
user-friendly interface.

4.1 Apache SPARK RDDs API

4.1.1 Query Evaluation

In this subsection we will describe how we mapped the steps of the HIFUN con-
ceptual evaluation scheme to existing physical level mechanisms of the Apache
Spark RDDs API. The Resilient Distributed Datasets (RDDs) is the fundamental
data structure in Apache Spark. Briefly, RDDs is a distributed memory abstrac-
tion that lets programmers perform in-memory computations on large clusters in
a fault-tolerant manner [24]. Before the evaluation begins, a data set is saved in a
Hadoop Distributed File System(HDFS) cluster, split in blocks saved possibly in
different DataNodes.

The evaluation steps are as follows: Firstly, the analytic query is parsed and dis-

23
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tributed to all the cluster nodes as a broadcast variable [25]. This ensures that
the query is copied to each worker only once which reduces the evaluation cost.
A broadcast variable was chosen because a query is read-only and useful to every
worker. After this, the data set is saved as an RDD and the query evaluation
scheme steps are executed.

1. Query input preparation: In this step, the IN(Q) set is computed, which
is consists of tuples that contain the useful attributes of each data item. This
is done using the map() function of Spark [26], keeping the useful attributes
and storing them in Tuple objects. The Tuple object was created and seri-
alized using the Kryo serialization. Kryo is a fast and efficient object graph
serialization framework which is faster and more efficient than the standard
serializer [27|. This once again results to a smaller evaluation time. The out-
put of this step is a new RDD which contains the set of tuples as described
above.

2. Filtering: This step filters the tuples of the RDD that don’t conform to the
query restrictions, if any. This is done using the filter() function of Spark [26]
and the output of this step is a new RDD which contains the filtered tuples.

3. my construction and 7, reduction: Firstly, to construct the grouping par-
tition 7y and the 7, reduction, the map ToPair() function [28] was used. The
result of this function, after being applied to the tuples RDD is a new Pair
RDD which contains key-value pairs (K, V), where the Key of the pair is the
value of the grouping attribute of each data item 4 (or the values of the group-
ing attributes if the domain of ansg is a cartesian product of two or more
grouping attributes) and the Value of the pair is the value of the measuring
attribute of each data item . After that, the function reduceByKey() [28] is
applied on the Pair RDD. This function constructs both the grouping par-
tition my and the 7, reduction and creates a final Pair RDD which contains
the answer of the query ansg. Finally, the answer is saved on a text file and
can be used for visualization and further exploration.

We will now show an example of a query evaluation step-by-step. Let D be a data
set whose analysis context is depicted in Figure 4.1 and let ¢ be an attribute-
restricted query that needs to be evaluated where @ = (par/E, ¢, sum), E={x
in D/ c(x)="Soft-Drinks’}. Please note that the structure of the data set is just
indicative. Datasets of varying forms can be analyzed using the RDDs API imple-
mentation changing only the Input preparation step.

Firstly, in the query input preparation step, we choose the attributes useful for the
analysis. Those are the grouping attributes p and r, the measuring attribute ¢ and
the attribute ¢ contained in the query restriction. The result of this step is the
Input Preparation RDD which contains tuples of the form (p(i), (i), ¢(i), q(i)).
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Region Product Supplier
Branch r p s Category
b c
d .
Date D 1 Quantity

Figure 4.1: Analysis Context of the data set of the RDDs API evaluation example

This is depicted in Figure 4.2.

Blocks

Input Preparation RDD
Dataset

(Coca-Cola, New York, Soft-Drinks, 500)
(Sprite, London, Soft-Drinks, 20)
(Bud, Oslo, Beers,16)..

01101010001001

1, Coca-Cola, 500.. 0011101001101

2, Sprite, 20..

(Bogle, Paris, Wine, 10)

3’ Fanta’ 30.. 11100011000101 : Transform ; ;
4, Bogle, 10.. 0001100110111 1 (Fanta, Madrid, Soft-Drinks, 30)
5, Bud, 16.. : (Pepsi, Stockholm, Soft-Drinks, 20)
1
1
1

Figure 4.2: Query Input Preparation Step

Secondly, in the Filtering step, the tuples of the Input preparation RDD are filtered
according to the restriction of the query: c¢(z) = ’Soft Drinks’. A new RDD, the
Filtered RDD is created, which contains only the tuples conforming to this restric-
tion. This is depicted in Figure 4.3. This step is skipped in the evaluation of non
Attribute-Based Restricted queries.

The last step is depicted in Figures 4.4 and 4.5. The Key-Value Pairs RDD is
created which contains (K |V) pairs, where K the "p(i),r(i)” pairs of each tuple
and V the ¢(i) value of each tuple. Finally, the Result RDD contains the query
answer ansq : Product X Region — TotQty consisted of (K’,V’) tuples. For each
distinct value that the pairing of the functions p and r(pAr) gives when applied
to each row of D, we have one such tuple and the value V’ of each such tuple is the
value that the ansg function gives, when applied to K.
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Figure 4.4: 7, construction and m, reduction Step Part 1

4.1.2 Rewritten Set Evaluation

As we saw in the formal definition of the query language, a set () of HIFUN queries
can be rewritten according to some rules. In this subsection, we will describe how
the evaluation process changes in the RDDs API for each rewriting rule.

1. Q = {(g7m70p1)7 "'(gvma Opn)} = Q = ((g7m)7{0p17“-70pn})

For this rewriting rule, the Query input preparation step and the Filtering
step remain the same. As far as the 7, construction and 7, reduction steps
are concerned, the mapToPair() function creates an RDD which contains key-
value pairs of the form (K, (Vi,...,V,,)), where (V1, ..., V) is the list consisted
of the measuring attribute value m(%) of each data item i, repeated n times.
After that, the function reduceByKey() applies the n operations on the list
of values to produce the query answer.

2. Q = {(g7m1a0pl)v "'(gvmnvopn)} = Q = (ga {mlaopl}a sty {mnaopn})
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Key-Value Pairs RDD
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((Coca-Cola, New York), 1000)
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1
ITransform
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Result RDD
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((Coca-Cola, New York), 1500)
((Sprite, London), 70)..

((Fanta, Madrid), 110)
((Pepsi, Stockholm), 20)..

Figure 4.5: 7, construction and my reduction Step Part 2

The evaluation of the rewritten set of the second rewriting rule is very similar
to the evaluation of the previous one. In the Query input preparation step,
the values of the distinct measuring attributes of each data item are added to
the tuples of the IN(Q) set. The 7, construction and m, reduction steps are
identical to the steps of the previous rule. The mapToPair() function creates
an RDD which contains key-value pairs of the form (K, (V4,...,V,,)), where
(Vi,..., V) is the list consisted of the values of the n measuring attributes of
each data item 4 and the function reduceByKey() applies the n operations on
the list of values to produce the query answer. The Filtering step once again
remains the same.

- Q = {(g1,m,0p),...(gn,m,0p)} = Q = {(g1 A .. A gn,m,0p),(proja,, (g1 A

i A Gny M, 0D),0D), ..., (DTOJG N, (g1 A oo A gny, 0p), 0p)}

For the last rewriting rule, the evaluation of the base query (g1 A... Agn, m, 0p)
is done as described above. Since the result of the base query is traversed
n times, one for each projection query, it is cached in memory. For each
projection query, we use the mapToPair() function to create key-value pairs
of the form (K, V), where K contains the values of the subset of the grouping
attributes values of the base query, which are contained in the projection
query. Once again, the reduceByKey() function gives the projection query
answer.
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4.2 Apache SPARK SQL Datasets API

4.2.1 Query Evaluation

In this subsection we will describe how the HIFUN conceptual evaluation scheme
can be implemented using existing physical level mechanisms of Apache Spark SQL,
which is a Spark module for structured data processing. This module provides two
APIs, the DataFrames and the Datasets. A DataFrame is conceptually equivalent
to a table in a relational database, but it comes with richer optimizations as Spark
evaluates transformations lazily. More specifically, it is a distributed collection of
data, like RDD, but organized into named columns. This provides Spark with
more information about the structure of both the data and the computation. Such
information can be used for extra optimizations. As far as the Datasets API is
concerned, it is a strongly typed, immutable collection of objects that are mapped
to a relational schema. It provides the benefits of RDDs with the benefits of Spark
SQL’s optimized execution engine and fast in-memory encoding [21]. The latter
was used for the evaluation of the HIFUN queries.

The evaluation steps follow the conceptual mapping of HIFUN queries to SQL
group-by queries as given in [1][2]. This conceptual mapping is shown in Figure
4.6 and it is implemented in our system as follows: the SPARK SQL provides
the option of running SQL queries programmatically on Datasets. As a result, a
HIFUN analytical query can be translated to an SQL query, which can give the
query result when executed [29].

Q =(g4/E, mg, op), E={xin D/g,(x)=XYZ'}

Input Preparation m, reduction

SELECT \EA, op(B) AS anJ/SQ (A)
FROM T

WHERE A=XY7Z’ < Filtering
GROUP B}P’ A

1, construction

Figure 4.6: Correspondence between the conceptual evaluation scheme and the
evaluation using an SQL query



4.2. APACHE SPARK SQL DATASETS API 29

We will now show an example of a query evaluation step-by-step. Let D be a data
set whose analysis context is depicted in Figure 4.7 and let ¢} be an attribute-
restricted query that needs to be evaluated where Q=((ro b) A(c o p)/E, q, sum),
E={xin D/ ro b(z)!="Athens’}. The data set D is consisted of 3 relational tables,
as shown in the figure. The mapping of the query @) to an SQL query is shown in the
Figure 4.7. Firstly, in the Input preparation step the useful attributes are selected
which are the grouping attributes Region, Category and the measuring attribute
Quantity. The Region attribute is also included in the query restriction. Some
of these attributes are contained in the upper-level tables of the analysis context
so the tables are joined accordingly. Secondly, in the Filtering step, the HIFUN
restrictions are translated to SQL restrictions using the "Where” clause in the
obvious way. Thirdly, in the 7, construction step, the grouping partition as defined
in the formal model is constructed using the "GROUP BY" clause, grouping by
the two grouping attributes Region and Category. Finally, the m, reduction step
is implemented by applying the query operation SUM on the measuring attribute
Quantity. The answer of the constructed SQL query is the answer of the HIFUN

query @, ansq.

Branch Product Q=((r° b)A(c ° p)/E, q, sum), E={x in

Region Supplier Category | { D/ r > b(x)!="Athens’}

) U

\ / SELECT Branch.Region AS region,
: S c Product.Category AS category,

Branch Product SUM(D.Quantity) AS ,

v b 5 —~ ANSQ(REGION x CATEGORY)

FROM D JOIN branch ON D.Branch
Date |+ D o Quantity = Branch.Branch JOIN Product ON
D d q D.Product = Product.Product

WHERE Branch.Region<>‘Athens’
D(D, Date, Branch, Product, Quantity)
Branch(Branch, Region) GROUP BY Branch.Region,
Product(Product, Supplier, Category) Product.Category

Figure 4.7: Apache Spark SQL Dataset API query evaluation example

4.2.2 Rewritten Set Evaluation

Once again, a set () of HIFUN queries can be rewritten according to some rules. In
this subsection, we will describe how the evaluation process changes in the Datasets
APT for each rewriting rule.

1. Q= {(g,m,op1),...(g,m,opn)} = Q = ((g,m),{op1, ..., 0pn})
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For this rewriting rule, the only step changing is the 7, reduction step making
small changes on the SQL query. More specifically, we apply the aggregate
functions related to the n operations on the measuring attribute m. This is
depicted in Figure 4.8.

. Q = {(g7m170p1)7 "'(g7mn70pn)} = Q = (97 {m170p1}7 ceey {mn70pn})

The evaluation of the rewritten set of the second rewriting rule is very sim-
ilar to the evaluation of the previous one. Once again, we change the m,
reduction part of the SQL query, applying the n aggregate functions on the
corresponding measuring attributes. This is depicted in Figure 4.8.

Q=(ga, mp. {opy, ..., 0P, }) Q=(gas, {mgp.0py1}. ....\Myz, 0py,})
Input Preparation m, reduction Input Prepflration T, 1eduction
v ¥
&SELECT A, 0p,(B), ... op,(B) |SELECTA, 0p,(B), ... opn(Z2)
FROM T FROM T
GROUP I%YA GROUP ]%YA
1, construction T4 construction

Figure 4.8: First and Second Rewriting Rule Datasets API

3. Q = {(g1,m,0p),...(gn,m,0p)} = Q = {(91 A ... A gn,m,0p),(proja,,(g1 A

e A gnam70p)70p)7 ooy (pTOjG]\H (gl N oo N Gn, T, Op),op)}

For this rewriting rule, the result table of the base query (g1 A ... A gn, m, 0p)
is cached for faster evaluation of the projection queries. The mapping of both
the base query and the projection queries to SQL queries is shown in Figure
4.9.

- Q= {(f,m,op), (go f7m70p)} =Q = {(f7 m, Op), (97 (f,m,op),op)}

In this case, for the evaluation of the second query, the answer table of the first
query, (f, m, op), is joined with the table containing the grouping attribute g
and the aggregation function is applied on the column containing the result
of the aggregation of the first query. The mapping of both queries to SQL
queries is shown in Figure 4.10.
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Q1=(ga NN gn, mg, Op) Q2 =(projg,, (ga N A gy, mp, Op), Op)
Input Prepalftion 14 reduction Input Prepalftion 14 reduction
AS ansQl (A X e X N) FROM ansQ1
FROMT GROUPBY A
GROUPBYA,..., N
? 1
Ty construction Ty construction

Figure 4.9: Third Rewriting Rule Datasets API

Q1= (f, my, op) Q2 =(g, (f. my, op), op)
Input Preparation 7, reduction Input Preparation m, reduction
v v

SELECT F, op(B) AS ans, (F) SELECT G, op(ansg, (F))
FROMTI1 FROM ansy, JOIN T2 ON T2 F = ans,, .F
GROUPBY F GROUPBY G

A A

1, construction Ty construction

Figure 4.10: Basic Rewriting Rule Datasets API

4.3 Query Rewriting and Query Execution Plans Algo-
rithm

In the formal model of the HIFUN language, the concepts of the Query Rewriting
Graph, the Query Ezecution Graph and the Query Fzecution Plan were introduced
[1]. Briefly, these concepts were proposed to reduce the evaluation cost of a set of
queries ). However, the problem of choosing the most effective rewriting when a
given query has two or more different rewritings in terms of other queries in the
set (), and the problem of choosing between possible Query Ezecution Graphs is
not tackled. In this subsection, we explain how we tackled these problems and
describe an algorithm which applies the proposed Query Rewritings and generates
the Query Frzecution Plan of a set @ of queries.

Firstly, the rewritten queries of the first and the second rewriting rule are eval-
uated in the same way as described above, so the effectiveness of them in reducing
the evaluation cost is the same. This can be also proved experimentally as shown
in the next section. For this reason, every time we have two or more queries in the
rewriting set with the same grouping, some common and some different measuring
attributes and we have to choose between the first and the second rewriting rule,
we always choose the second one. For example, let () be a set of queries where Q
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= (g, m1,0p1),(g, m1,0p2), (g, ma,ops). In this case, the first two queries could be
rewritten as (g, mi, {op1,0p2}) but this would let the third query to be evaluated
individually which has a higher cost. For this reason, in these cases, we always
choose the second rewriting rule to make sure none of the queries is evaluated indi-
vidually. In our example, ) would be rewritten as Q = {(g, {m1,op1}, {m1, op2},
{m2, ops})}.

Secondly, the first two rewriting rules are more effective in reducing the evalu-
ation cost than the third rewriting rule. This once again is proved experimentally
and can be seen in the next section. This is explained as follows: the third rewriting
rule performs one grouping for each projection query of the set. A grouping is a
shuffle operation which creates network traffic and has high cost [21]|. This is more
expensive than performing more than one operations on the measuring values, as
this does not depend on the network and executes fast in the memory of the nodes
of the cluster. For this reason, when we have two or more queries and a query can
be rewritten using the remaining queries, then if we have to choose between the first
and the third or the second and the third rewriting rule, we always keep the third
one as the last choice. The third rewriting rule is chosen only if we have no alter-
natives and this reduces the evaluation cost. For example, let ) be a set of queries
where Q = {(g, m1,0p1),(g, m1,0p2), (f, m1,0p1)}, where op; a distributive oper-
ation. In this case, @ would be rewritten as Q = {(g, m1, {op1, 0p2}), (f, m1,0p1)}.

We will now describe the steps which are followed to apply the Query Rewrit-
ings and produce the Query Execution Plan for a set () of queries.

Algorithm: Query rewritings and execution plan generation
Input: A set @) of queries

Output: The possibly rewritten queries and the execution plan for the set @

1. The queries of the set () are rewritten based on the rewriting rules excluding
the basic rewriting rule.

(a) The set Q is traversed once, keeping the number of distinct measur-
ing attributes and distinct operations per grouping g. This will help
to ensure that the choice rules as described above are followed. More-
over, in case there are equality constraints in the analysis context, if the
grouping attributes or the measuring attribute have alternatives accord-
ing to the equality constraints then we change them accordingly while
traversing so that these queries can be used for rewritings using equality
constraints which were proposed in the formal model.
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(b) A new empty set @’ is created

(c) For every query g of @: If @’ is empty we add the query ¢ to Q. If not,
we start traversing @’

-If a query ¢’ with the same grouping ¢ and the same measuring at-
tribute m is found then we check if this grouping has a single measuring
attribute in the set. If yes, then we choose the first rewriting rule and
add the operation of ¢ to ¢’. If not, we choose the second rewriting rule
and add the measuring attribute m and the operation of ¢ to ¢’.

-If a query ¢’ with the same grouping ¢ and different measuring at-
tributes is found then we choose the second rewriting rule and add the
measuring attribute m and the operation of ¢ to ¢’.

-If a query ¢’ with the same measuring attribute m, the same distribu-
tive operation op and different groupings g1, go with the same source is
found then we check if both groupings have single measuring and single
operation attributes in the set. If yes, we add the grouping attributes
of grouping g1 not contained in go to go and add the corresponding pro-
jection queries in the set Q’. If not, we keep traversing the set ()’.

-If a query is already rewritten and ¢ can join the rewriting without
violating the choice rules, then it is done accordingly.

-If none of the above hold, we add the query ¢ to Q.

2. We traverse @)’ and check every grouping ¢ . If grouping ¢ has alternatives
according to possible equality constraints then if ¢ cannot be used to allow
any rewritings based on the basic rewriting rule, we search if the grouping
alternatives can be used to allow more basic rule rewritings. The differ-
ence between this step and step 1.a is that in this step we check equality
constraints to allow basic rewriting rule rewritings only. In case there are dif-
ferent measurings which are equal according to the equality constraints and
they can be used for basic rewriting rule rewritings, they are already changed
in step 1.a.

3. A direct acyclic graph G is created, whose nodes are the queries of the set ()’
In case there are projection queries, edges are added from the base queries
to the projection queries accordingly.

4. The possibly rewritten queries of ()’ are partitioned into subsets S;, based
on the depth 7 of the grouping ¢ of each query. This depth is equal to the
number of compositions contained in a grouping ¢ of a query. In case a query
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has more than one grouping attributes then we add the query to a subset
S;i, only if the grouping attributes have common source. If not, the queries
cannot be rewritten based on the basic rewriting rule.

. Starting from the subset S, where m is the maximum depth of the queries

of the set () and going back to S;, where 1 is the first depth bigger that the
minimum depth of the queries of the set @): for every query ¢” in each subset
we start searching all the previous subsets from the highest to the lowest
depth, for queries ¢”’ that can be used to rewrite ¢”. In case we find one,
we rewrite the queries, add a labelled edge in the graph G from the node
representing the query ¢”’ to the node representing the node ¢” and continue
with the next query of the subset. More specifically, if C is an analysis context
withf: A > B, g: B—> C,h: B — D three edges of C, the queries are
rewritten as follows:

-If ¢7 = (g o f, m, op) and ¢”’= (f, m, op), then ¢” is rewritten as (g, ansyn,
op)

dfq" = (gof A..Anhof, m, op)and ¢”’'= (f, m, op), then ¢” is rewritten
as (gA... A h, ansgn, op)

If ¢7 = (g o f, m, opy) and ¢”’= (f, m, { opi...,0pn}), where op, one of the
operations of ¢”’ , then ¢”is rewritten as (g, ansgr, ops)

If ¢7 = (g o f, my,0p,) and ¢”’= (f, {m1,0p1}, ..., {mn, opn}), where m, one
of the measuring attributes of ¢”” and op,. one of the operations of ¢”” applied
on my in ¢”’ then ¢” is rewritten as (g, ansgn opz)

A query ¢”’ can also be a projection query produced by the third rewriting
rule and in this case ¢” can also be rewritten using ¢”’
We assume that every op in this step is distributive.

in the obvious way.

. The topological sorting of the direct acyclic graph created is used to compute

the query execution plan of the set ¢ [1].

We will now show an indicative example of how this algorithm works to produce
the execution plan for a specific set of queries. Let () be a set of queries where ¢} —
{(a,my,0p1), (d,m1,0p1), (@, mq,0p2), (b,m1,0p1), (b, m1,0p2), (b, ma, 0p3), (¢, m1,
op1), (eo f,my,0ps), (goa, my,op1), (hob,ma, op3), (iob, ma, ops), (jokol,my,op1)}
and let op1, ops distributive operations with the following equality constraints hold-
ing: eof =aand jokol=mod.

The steps of the algorithm are the following:

1.

(a) The number of distinct measuring attributes and distinct operations per
grouping ¢ is kept. For example, grouping b has two distinct measuring
attributes: m; and me, and three operations: opy, ops and ops. Check-
ing the first equality constraint we notice that there are two queries
with grouping ¢ and one query with grouping e o f. The grouping
of the query (e o f,mq,0p3) is changed to a while traversing to allow



4.3. QUERY REWRITING AND QUERY EXECUTION PLANS ALGORITHM35

more rewriting rules. The second constraint does not produce a useful
rewriting according to the rewriting rules excluding the basic rewriting
rule.

(b) Q={}
(c) We start traversing Q:
i. (a,my,op1): Q = {(a,m1,0p1)}
Q’ is empty so we add the query to the set.

ii. (d,mi,0p1): Q = {(a,m1,0p1),(d,m1,0p1)}

The query (a, my,o0p1) is found which has the same measuring, the
same distributive operation and different grouping with the same
source. Grouping a has three distinct operations so we keep travers-
ing and since there are no other queries inside, the query is added
to Q.

iii. (@, m1,0p2): Q" = {(a,m1, {op1,0p2}), (d,m1, 0p1)}

The query (a,m1,0p1) is found which has the same grouping and
measuring. Grouping e has a single measuring attribute, so opy is
added to the query.

iv. (bymy,op1): Q = {(a,m1,{op1,0p2}), (d,m1,0p1), (b,m1,0p1)}
The query (d, m1,o0p1) is found which has the same measuring, the
same distributive operation and different grouping with the same
source. Grouping b has two distinct measurings so it is skipped.

v. (bymi,op2): Q = {(a,m1,{op1,0p2}), (d,m1,0p1), (b, ({m1,0p1},

{ma,0p2}))}
The query (b,m1,0p1) is found which has the same grouping and
the same measuring. Grouping b has two distinct measurings so
the second rewriting rule is chosen and the measuring m1 and the
operation op2 are added to the query.

vi. (b,mae,ops): Q = {(a,m1,{op1,0p2}), (d,m1,0p1), (b, ({m1,op1},
{ma, op2}, {m2, 0ps}))}

The query (b, ({m1,0p1}, {m1,o0p2})) is found and (b, m2,ops) can
join the rewriting so its measuring and operation are added.

vii. (¢,m1,0p1): Q' = {(a, m1, {op1,0p2}), (dAc,mi,0p1), (b, ({m1,0p1},

{m1,0pa}, {ma, op3}), (projp, (dac, m1,0p1),0p1), (projc, (dac,m1,
op1),0p1))}
The query (d, my,o0p1) is found which has the same measuring, the
same operation and different grouping with the same source. Group-
ing ¢ is added to ((d,m1,0p1) and the two projection queries are
added to the set @’

viil. (a,m1,0p3): Q" = {(a, m1,{op1, op2,0p3}), (d A c,mi,0p1), (b, ({mi,
op1}, {mi1, opa}, {ma, op3}), (projp, (drc,my,0p1), op1), (projc, (dA
¢, m1,0p1),0p1))}

The query (a, my, {op1, op2}) is found and since it is already rewrit-
ten according to the first rewriting rule and (a,m1, op3) can join the
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rewriting, ops is added. We remind that the grouping of this query
was changed using the equality constraints to allow this rewriting.

ix. (goa,mi,op1): Q ={(a,my,{op1,0p2,0p3}), (drc,mi,0p1), (b, ({m1,
op1}, {m1, opa}, {ma, ops}), (projp, (dac, m1,0p1),op1), (projc, (A
¢, my,0p1),0p1)), (g oa,my,op1)}

No query with common grouping or different grouping with common
source.

X. (hoba ma, 0p3): Q’ - {(a7 mi, {Oph op2, 0p3})7 (d/\C, mi, 0p1)7 (b7 ({mla
op1}, {m1, opa}, {m2, op3}), (projp, (drc,ma, op1), op1), (projc, (da
¢, m1,0p1),0p1)), (g 0 a,mi,op1), (hob,ma,ops)}

No query with common grouping or different grouping with common
source.

xi. (iob,mg,op3): Q' = {(a, my, {op1,0p2,0p3}), (drc, m1,0p1), (b, ({m1,

0p1}7 {m17 0p2}, {T)’LQ, 0p3})a (p’l”OjD, (d/\ca may, 0p1)7 0p1)7 (p?“OjC, (d/\
¢,my,op1),0p1)),(goa,mi,op1), ((h Ai)ob,ma,ops), (projmu, ((h A
2) o b,ma, 0p3)7 Op3)a (p?“Oj[, ((h A Z) o b,ma, 0p3)7 OPS)}
The query (hob, mg, ops) is found which has the same measuring, the
same distributive operation and different grouping with the same
source. The grouping (iob) is added to the query and two projection
queries are added to the set.

xii. (jokol,mq,op1): Q = {(a, m1, {op1,0p2,0ps}), (drc,my,0p1), (b, ({
my, 0p1}7 {mh 0p2}7 {m27 0p3}))7 (p?”OjD, (d/\c, mi, Opl), Opl), (p?"Ojc,
(dne,my,0p1),0p1)), (goa, my,op1), (hAi)ob, ma,ops), (projm, ((h
/\’i)Ob, ma2, 0p3)7 Op3)> (p’l"Oj[, ((h/\Z)Ob, ma, 0p3)> Op3)7 (jOk‘Ol, my, Opl)
}. No query with common grouping or different grouping with com-
mon source.

2. The set @)’ is traversed and we notice that the query (j o k ol,mq,0p;) has

a grouping alternative according to the equality constraints of the context
and the current grouping j o k ol cannot be used for any basic rewriting rule
rewriting. For this reason, the grouping of the query is changed to mod since
there is a query in the set ()’ with the same measuring, the same distributive
operation and a grouping contained in the source of m o d.

. A direct acyclic graph G is created, whose nodes are the queries of the set Q).

Labels are added from the base queries to the projection queries accordingly.

. Two subsets are created, Sy containing the queries of ¢’ with grouping

depth 0 and S containing the queries of ()’ with grouping depth 1. More
specifically: Sy = {q} = (a,m1, {op1,0p2,0p3}), ¢4 = (d A ¢c,m1,0p1),q5 =
(bv ({m170p1}> {m170p2}> {m270p3}))3(ﬁ1 = (pT‘OjD,CL’I’LSqIQ,Opl),qIS = (pT’Ojc,a
nsg.op1)} and S1 = {g5 = (g °a,m1,0p1),q7 = ((h A i) o b,ma,0p3),q5 =
(projm,ansy ,ops),dy = (projr, ansy,, 0ps), dyo = (mod,mi,op1)}
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5. We check if any queries in subset S; can be rewritten using any queries in
So. The query g5 = (g © a,my,0p1) can be rewritten using the query ¢}
so it is rewritten as gf = (g,ansqfl,opl). An edge is added from the node
representing the query ¢ to the node representing the query g with a label
g. The query ¢4 = ((h A1) ob, mg, op3) can be rewritten using the query ¢4 so

it is rewritten as ¢f = (h A 1, ansqém2 ,op3). An edge is added from the node

representing the query ¢4 to the node representing the query ¢ with a label

h A i. The query ¢}, = (mod, my,op;) can be rewritten using the query ¢

so it is rewritten as ¢j, = (m,ansy,op1). An edge is added from the node

representing the query ¢ to the node representing the query ¢}, with a label

m.

6. The topological sorting of the graph gives three query levels L;,i = 0,1,2
[1]. The queries contained in a level i + 1 are evaluated after the evaluation
of the queries contained in a level i. More specifically: Lo = {d}, ¢}, ¢4},
Ly = {4}, 45, g5, ¢} and Lo = {q¢§,q5,q}p}- The final result is depicted in

Figure 4.11.
Level 2
' q’6 Level 1
le
E qll Level O

Figure 4.11: Final Result of the Query Execution Plans Generation Algorithm
Example

4.4 User Interface

In this subsection, we are going to describe the user interface implemented for this
system, which allows a user to express analytic queries, visualise the results and
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explore the query answers.

Firstly, as we made clear, a HIFUN query consists of three parts only: the
grouping part, the measuring part, and an operation applicable on the measur-
ing attribute. Based on this simple structure, a very simple user interface can
be created which allows a user of any familiarity with data analytics to express
an analytic query. Our system provides a step-by-step query constructor which
allows a user to select the attributes and the operation needed for the analysis,
and possibly some restrictions on these attributes in a user-friendly way. By do-
ing this, we allow anyone interested in analysing some data to reveal information
useful for decision making, which may be "hidden" in them. For example, a fi-
nancial advisor of an airline who has data related to ticket bookings, would like to
maximise the profits of the company by proposing the introduction of new flights
to popular destinations. This system could allow him to reveal useful informa-
tion hidden in these data(e.g."Which flight of the airline has the most profits per
month?", "Which airport gets the most visitors per year?"), which can help him
with decision-making. Our system uses the language as a tool for the expression
of analytic queries but does not depend on a user being familiar with it in order to
be able to use it. Moreover, it automates the process of query rewriting and the
execution plans generation, providing to the user the answers of a set of queries
as if they were evaluated individually. For the visualisation of the answer of an
analytic query, charts from the Google Charts API were used.

4.4.1 Query Answer Visual Exploration

In this last subsection, we describe how our system allows a user to explore the
answer of a query. Firstly, in order to allow the exploration of all the different
representations of an answer of a query, the method of Currification|23| was used,
which was explained in section 3. A user can switch from one representation
to another by selecting the grouping attributes of interest through the system’s
interface.

Secondly, we allow a user to filter the answer ansg of a query (), according
to some restrictions of the grouping attributes. This is equivalent to the Result-
Restricted queries as defined in the formal model. We implement this by running
Spark, caching the answer and applying the filters on the answer. The user can
apply multiple filters, meaning that a filtered answer can be re-filtered using addi-
tional filters. The user can also undo the filtering and apply new restrictions from
scratch. The Spark application is terminated only when the user finishes with an-
swer exploration and this is done to ensure that the answer remains in cache and
is filtered efficiently. Our system allows the user to combine Filtering and Currifi-
cation to help him reveal useful information "hidden" in the answers of the queries
as much as possible.

We end this section with a remark regarding the query rewritings. Our system
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implements all of the rewritings proposed by HIFUN’s formal model. However, no
evaluation of the benefits resulting from the formal rewritings has been conducted
before in the context of HIFUN. We do this in the following section.
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Chapter 5

Evaluation

In this section, we describe the experiments that we conducted to evaluate the
effectiveness of the query rewritings, as described above. By effectiveness, we
mean the percentage decrease of the time needed to evaluate a set of queries using
the proposed rewriting rules. These experiments were performed over synthetic
data sets stored in the Hadoop Distributed File System (HDFS). Their schema
and their contents are described below in detail. The procedures were ran over a
cluster consisted of 4 nodes. Each node had 38 cores (19 physical and 19 virtual)
at 2.2 Ghz, 245 GB RAM and storage capacity of 415 GB.

5.1 Apache Spark RDDs API Rewritings Evaluation

In order to evaluate the effectiveness of the query rewritings in the RDDs API
implementation, a synthetic data set D was used. The analysis context of this
data set is depicted in Figure 5.1 and it contains delivery invoices in a distribution
center. More specifically, there are 7 attributes in D and they follow a uniform
distribution. The size of the data set D is 15 GB and contains 225M data items.
Finally, each attribute’s target is a set of around 50 distinct values.

1. Q= {(g,m,op1),...(g,m,0opn)} = Q = ((g,m),{op1, ..., 0pn})

In order to evaluate this rewriting rule, we randomly chose one attribute of
the data set D as the grouping attribute g, one attribute as the measuring
attribute m and n operations op; applicable on the attribute m, to create a
set (Q of n queries. Firstly, we evaluated the queries of Q one by one and
then we repeated the evaluation according to the rewriting rule. We ran the
experiments for a set Q of cardinality n=2, gradually increasing it to cardi-
nality n=>5, to observe how the effectiveness of the rewriting rule changes as
more queries participate in the rewriting of the set Q.

41
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Region Product Supplier
Branch r p s Category
b c
d :
Date D a Quantity

Figure 5.1: Analysis Context of the data set of the Apache Spark RDDs API
evaluation

The results of this evaluation are shown in detail in Tables 5.1 and 5.2.

Table 5.1 shows the evaluation time of the queries, when evaluated individ-
ually. The first column shows the id of each query, the second shows the
evaluation time of each query, and each row in the last column shows the
sum of the evaluation time of all the queries until that row. The last column
was compared to the evaluation time of the queries after the rewriting to
calculate the percentage decrease of the queries’ evaluation time.

Query ID Evaluation Time Evaluation Time
Total

1 8.8s 8.8s

2 8.78s 17.58s

3 8.76s 26.34s

4 8.68s 35.02s

5 12.12s 47.14s

Table 5.1: First Queries Evaluation Results RDDs API

Table 5.2 shows the evaluation time of the queries, when evaluated according
to the rewriting rule. The first column shows the cardinality of the set Q
(the number of queries participating in the rewriting). The elements of Q are
the queries that were evaluated individually before, whose results are shown
in Table 5.1. The second column shows the evaluation time of the set after
the rewriting. Finally, the last column shows the percentage decrease of the
evaluation time that was achieved through this rewriting rule.
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The startup time of Apache Spark was fixed and equal to 9.5 seconds and
was not included in the evaluation time of the queries.

Q Cardinality Evaluation Time Percentage  De-
crease in Time

2 9s 48.8%

3 9.44s 64.2%

4 9.84s 71.9%

5] 12.75s 73%

Table 5.2: First Rewriting Evaluation Results RDDs API

As we can see from the evaluation results in Table 5.2, a remarkable percent-
age decrease in time is achieved. Moreover, it can be easily observed that
the more queries participating in the rewriting set, the more effective the
rewriting rule is. This was expected as the grouping and the measuring step
is done only once and the n reduction operations are applied to the result.
Reducing the number of times that the data set D is read to the absolute
minimum is of great benefit to the reduction of the evaluation cost.

: Q = {(g,ml,opl), "'(g7mn70pn)} = Q = (97 {mlvopl}v 23 {mn70pn})

For this rewriting rule, we randomly chose one attribute of the data set D
as the grouping attribute g, n measuring attributes m; and n operations op;,
where op; is applicable on the corresponding measuring attribute m;, to cre-
ate a set QQ of n queries. The evaluation process which was followed was
identical to the process of the previous rewriting rule.

The results of this evaluation are shown in detail in Tables 5.3 and 5.4

Similarly, with the help of the second rewriting rule, we managed to achieve
a percentage decrease in time which cannot be easily ignored. Like in the
previous rewriting rule, the effectiveness of this rule is increasing as we add
more queries to the set . Once again, this was expected as the grouping
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Query ID Evaluation Time Evaluation Time
Total

1 8.52s 8.52s

2 8.52s 17.04s

3 8.8s 25.84s

4 8.74s 34.58s

5 8.42s 43s

Table 5.3: Second Queries Evaluation Results RDDs API

Q Cardinality Evaluation Time Percentage  De-
crease in Time

2 8.84s 48.12%

3 9.6s 62.85%

4 10.26s 70.33%

) 10.74s 75.02%

Table 5.4: Second Rewriting Evaluation Results RDDs API

is done only once whereas the n measuring and reduction steps are applied
to the result of grouping. Comparing the percentage decrease in time of the
first two rewriting rules, we can easily notice an obvious similarity between
the two results. This is due to the fact that the two rewriting rules are in
practice evaluated in the same way.

: Q = {(917m70p)7"'(97L7m70p)} = Q = {(gl AN e AN Gn, M, Op)7 (pTOjGN (gl A

e A gnam)op)aOp)v ceey (prOjGNv (gl A oo N Gnp, M, 0p)70p)}

For this rewriting rule, we randomly chose n attributes of the data set D as
grouping attributes g;, one measuring attribute m and one distributive oper-
ation op applicable on the measuring attribute, to create a set Q of n queries.
The evaluation process which was followed was identical to the process of the
previous rewriting rule and the set Q was of size n=2, gradually increased to
n=4. The size of the result of the intermediate query (g1 A ... A gn,m,0p)
was around 100K tuples. The size of this result depends on the number of
the distinct values of the co-domain of the n grouping attributes.

The results of this evaluation are shown in detail in Tables 5.5 and 5.6.

Once again, the third rewriting rule’s results were satisfactory. The results of
the evaluation show that this rewriting rule succeeds in reducing the evalua-
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Query ID Evaluation Time Evaluation Time
Total

1 8.56s 8.56s

2 8.88s 17.44s

3 8.86s 26.3s

4 8.44s 34.74s

Table 5.5: Third Queries Evaluation Results RDDs API

Q Cardinality

Evaluation Time

Percentage  De-
crease in Time

2 11.86s 32%
3 15.8s 39.92%
4 16.7s 51.93%

Table 5.6: Third Rewriting Evaluation Results RDDs API

tion time of the queries. Like in the previous rewriting rules, increasing the
cardinality of the set Q increases the percentage reduction in the evaluation
time. This was once again expected, as in this rewriting rule the data set
D is traversed only once instead of n times. Applying n projections on the
result of the intermediate query reduces the evaluation cost as the result is
smaller than the whole data set D.

To sum up, the preceding experiments that were conducted to evaluate the
effectiveness of the proposed rewritings prove that the theory is verified in
practice using this implementation. The reductions in the evaluation costs
show that these rewritings were worth the time taken to implement. The
percentage reductions are remarkable, keeping in mind that the data sets
we are dealing with can have exceedingly high volume and any unnecessary
computations should be avoided at any cost.

5.2 Apache Spark SQL Datasets API Rewritings Eval-
uation

As we made clear in the previous sections, each HIFUN analytic query and its
answer are defined at the conceptual level independently of the nature and location
of data, and our system offers two implementations to support a wide range of
data set formats. As the evaluation process is different in each implementation,
we also need to evaluate whether the query rewritings are effective in case we
use the Spark SQL Datasets API implementation. For this reason, we need to
repeat the former experimental evaluation and for this purpose we used a data
set structured according to a relational schema. For the new experiments, a new
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Figure 5.2: Analysis Context of the data set of the Apache Spark SQL Datasets
API evaluation

synthetic data set D was used which is consisted of a number of files. Each file
represents a relational table. The analysis context of the new data set is depicted in
Figure 5.2 and once again contains delivery invoices in a distribution center. More
specifically, it contains 2 relational tables, the base table D and one extra table
Product. The primary key of the D table is the delivery id D and the primary key of
the Product table is the product id Product. The first table contains five attributes,
the second contains two attributes and the attributes’ co-domain follow a uniform
distribution. The size of the base table D is 15GB and contains 130M tuples. All
of the attributes were chosen from the base table for the following experiments.
Finally, the evaluation steps followed were the same for each rewriting rule as
described above.

L. Q = {(g,m,0p1),...(g,m,0pn)} = Q = ((g,m), {op1, -, opn})

The results of this evaluation are shown in detail in Tables 5.7 and 5.8
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Query ID Evaluation Time Evaluation Time
Total

1 8.85s 8.85s

2 8.83s 17.68s

3 9.01s 26.69s

4 8.83s 35.52s

5 9.04s 44.56s

Table 5.7: First Queries Evaluation Results Datasets AP1

Q Cardinality

Evaluation Time

Percentage  De-
crease in Time

Ot o= W N

8.92s
9.02s
9.1s

9.14s

49.55%
66.2%

74.38%
79.49%

Table 5.8: First Rewriting Evaluation Results Datasets API

2. Q = {(g,m1,0p1), "'(g7mn70pn)} = Q = (97 {mlvopl}v ) {mTL?Opn})

The results of this evaluation are shown in detail in Tables 5.9 and 5.10

Query ID Evaluation Time Evaluation Time
Total

1 8.85s 8.85s

2 9.74s 18.59s

3 9.14s 27.73s

4 9.42s 37.15s

5 8.5 45.65s

Table 5.9: Second Queries Evaluation Results Datasets API

3. Q = {(glama Op),...(gn,m,op)} = Q = {(91 AN e A gn>m>op)7(prOjG1>(gl N

e A gn7m70p)70p)7 ceey (prOjGNa (91 ZANEETIVAN gnymvop)70p)}

The results of this evaluation are shown in detail in Tables 5.11 and 5.12.
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Q Cardinality Evaluation Time Percentage  De-
crease in Time

2 10.2s 45.13%

3 10.63s 61.67%

4 12.04s 67.59%

5] 12.54s 72.53%

Table 5.10: Second Rewriting Evaluation Results Datasets API

Query ID Evaluation Time Evaluation Time
Total

1 8.43s 8.43s

2 8.5s 16.93s

3 8.33s 25.26s

4 8.43s 33.69s

Table 5.11: Third Queries Evaluation Results Datasets API

Q Cardinality

Evaluation Time

Percentage  De-
crease in Time

2
3
4

10.56s
11.8s
13.27s

37.6%
53.3%
60.6%

Table 5.12: Third Rewriting Evaluation Results Datasets API

Once again, the results of the experiments presented in the previous tables show
that the rewriting rules succeed in reducing the evaluation cost of the queries in the
Datasets API implementation. The exact same remarks can be made on the results
for each rewriting rule. The results have much in common and are visualised more
clearly in the next subsection.
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5.3 Visualization of the Results of the Rewritings Eval-

uations
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Visualising the performance of each rewriting rule for both evaluations, it is
clear that the results of the experiments are satisfactory. This type of visualization
makes the observation that the percentage reduction is increasing as the cardinality
of the Q is increasing even more obvious. Our experimental evaluation proved the
effectiveness of the theory about query rewritings and the fact that it is useful in
practice regardless of the format of the data sets and the evaluation mechanisms
used to analyze them. However, it is worth mentioning that this effectiveness
may fluctuate and is influenced by a number of factors including the number of
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available processors and nodes in the cluster, the size of the data set, the number
of attributes and their distinct values etc.

5.4 Basic Rewriting Rule

The last rule that needs to be evaluated is the basic rewriting rule:

(gof, m, Op) - (g’ (fa m, Op)a Op)

For these series of experiments, a synthetic structured data set was used. The anal-
ysis context of this data set is depicted in Figure 5.3 and contains two relational
tables, the base table D and one extra table Product. The attributes ¢ and p in the
base table and the attribute ¢ in the Product table follow the uniform distribution.
To evaluate this rewriting rule, two HIFUN queries are created. Both of them have
the same measuring attribute (the guantity of the delivery invoice) and the same
distributive operation applicable on the measuring attribute. The attribute p was
selected as the grouping attribute of the first query and the attribute cop was se-
lected as the grouping attribute of the second query. Two kind of experiments were
conducted: Firstly, we kept the size of the top-level table Product fixed (1GB size
and 20M tuples) and gradually increased the size of the base table D (increased the
number of tuples of D while keeping the distinct values of products fixed according
to the number of products in the Product table). Secondly, we kept the size of the
base table D fixed (15GB and 255M tuples) and gradually increased the size of the
top-level table Product(as we increased the number of products, we increased the
distinct values of the p attribute in the base table without changing the number
of tuples in it). The queries were firstly evaluated individually and then according
to the rewriting rule. The results of this evaluation are shown in detail in the
following plots. The Set Q now contains the two queries as described above.

Evaluation Time

Basic Rewriting Rule - First Series of Experiments Rewriting Results
50 \ 100 \
—&— Query 1 evaluation time a —— Set Q
40 L8 Query 2 evaluation time ! '% —— Query 2
—— Query 2 after rewriting g 80
]
30 SR
2z 60
=
20 8
&
40 +
10| . 2
B 8 G = d
0 . 20 |
5 10 15 5 10

Size of Base Table (GB) Size of Base Table (GB)



5.4. BASIC REWRITING RULE

Product
Category
D(D. Product, Quantity)
¢ Product(Product. Category)
Product Quantity
p
D
D

51

Figure 5.3: Analysis Context of the data set of the Basic Rewriting Rule evaluation
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Taking a closer look at the results of the first series of experiments, we notice that
as the size of the base table increases, the effectiveness of the basic rewriting rule
increases. The bigger the tables that have to be joined, the higher the cost of the
join. This increases the evaluation time of the second query when we don’t use the
basic rewriting rule. By avoiding the join of the two big tables (for the evaluation
of the second rewritten query, the top-level table is joined with the answer table of
the first query which is much smaller than the base table), the evaluation cost of
the rewritten query stays fixed even when we increase the base table’s size as the
number of tuples in the answer table of the first query is fixed and equal to the
number of the distinct values of the products. These explain the increment in the

percentage reduction of both the set ) and the Query 2.



52 CHAPTER 5. EVALUATION

As far as the results of the second series of experiments are concerned, we
notice that as the size of the top-level table increases, the effectiveness of the basic
rewriting rule decreases. Again, the bigger the size of the top-level table, the bigger
the cost of the join. When using the basic rewriting rule, the size of the answer
table is increased when we add more tuples on the top-level table as the distinct
values of the products are increased. As we can see from the plots, the evaluation
time of the rewritten query increases for two reasons: 1: the join cost as described
above, 2: applying an operation on a bigger table takes more time. Moreover, the
results of the experiments show that the more the distinct values of the grouping
attribute, the higher the cost of the evaluation of a query. These explain the
reduction in the percentage reduction in time of both the set ) and the Query 2
as the size of the top-level table increases.

To sum up, the effectiveness of the basic rewriting rule fluctuates according to
a couple of factors like the size of the tables and the number of the distinct values
of the common attribute. In any case, the basic rewriting rule once again succeeds
in reducing the evaluation time of the queries.

Before ending the evaluation section, we would like to make a final remark. The fact
that we managed to achieve computational cost reductions using the Apache Spark
framework gives hope for further optimizations. Technology is constantly evolv-
ing and new big data analytics tools will appear in the future. Mapping analytic
queries to new lower level mechanisms may help in both reducing the evaluation
cost of a single query and increasing the percentage reduction of the evaluation
cost of a set of queries through rewritings.
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Future Work and Conclusions

In this section, we describe a number of research items that can be used for the
extension of our system.

The first research item concerns change in the data set D. Indeed, throughout
this work we have tacitly assumed that the data set is “static”. While this might be
a reasonable assumption in several application environments, it is by no means true
for big data sets in general. Indeed, there are application environments where the
data set changes frequently and where the results to some important, continuous
queries have to be updated frequently as well. The objective here is to study
incremental algorithms that take as input the increment in data and produce the
increment in the query result. Our system can then be extended by implementing
those algorithms [1].

The second research item concerns the extension of rewriting based on restric-
tions. Think of the staff working at an airport. Each day a big amount of flights
take place there and a member of the staff would like to ask questions like "How
many flights per hour took place between time X and time Y on day Z7”. In this
cage, if the result of the query "How many flights per hour took place during the
whole day 7Z7” was pre-evaluated and stored as a materialized view, then this query
could be evaluated faster using this view. In general, our system can be extended to
compute such queries with restrictions using the answers of pre-evaluated queries.

The third research item concerns the query answer visualization. As the group-
ing attributes of a query are increased, meaning that the domain of the answer
of the query gets more complex, the understanding and the visual representation
of the answer gets more difficult. However, there are tools available that can
be exploited to make the visual exploration of query answers even more simple.
Our system could be extended with additional visualization tools to become user-
friendlier.

The fourth research item concerns the execution plans generation complexity.
This work presents an algorithm which takes a query set as an input, applies query
rewritings and generates query execution plans but makes no remarks about its
complexity.

93
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The last research item is related to the Self-Service Analytics field. Briefly,
this field aims to enable business agents to perform analytic queries on business
information on their own. This field can be supported by tools which allow a
professional to perform an analysis using a data model which has been simplified
for understanding purposes. The HIFUN data model is simple enough to allow
anyone interested in business information analytics to express analytic queries and
can be leveraged by this field.

To conclude, in this thesis we showed that the HIFUN language is indeed of
great benefit in practice. We leveraged the theory of this language and the mech-
anisms of the Apache Spark framework to create a system which allows a user to
discover useful patterns hidden in data sets. The theory around Query Rewriting
and Query Frzecution Plans proved to be of great importance to reducing evalua-
tion costs of queries and they helped in the design of an algorithm for execution
plans generation. The rewriting rules proposed are shown to exhibit excellent per-
formance gains avoiding a lot of unnecessary computations. Our system provides
an all-in-one solution for big data analytics and can be extended to support a big
variety of data set formats, with its optimization mechanisms working regardless
of the nature of the data.
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