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Single Shot 3D Hand Pose Estimation Using Radial
Basis Function Networks Trained on Synthetic Data

Abstract

Human motion tracking and analysis forms an important category of problems
in the field of Computer Vision. Within this category, the class of problems that
deal with the estimation of the full pose of a human hand are especially interesting.
This thesis treats the problem of estimating in real time the full pose of a human
hand, using only visual input. Many approaches have been proposed to solve this
problem, including applying machine learning techniques. The recent success of
deep neural networks for computer vision tasks has resulted in new advancements
in this area. Despite the significant effort that has been devoted to the problem
of 3D hand pose estimation, no method has succeeded to tackle the problem in its
full generality.

Machine learning approaches and, in particular, deep learning ones require
large annotated datasets for training. The annotation process in real-world data
is human labor intensive and time consuming. Therefore, an automatic way of
creating and annotating training data is preferable. The use of synthetic data
provides an easy way to obtain large volumes of accurately annotated data. On the
negative side of using synthetic data, details of the real data may not be accurately
simulated. Existing machine learning techniques are sensitive to the distribution of
input data and may fail to generalize to real-world data when trained on synthetic
data.

In this thesis we present a novel framework to perform single shot 3D hand
pose estimation from depth maps. More specifically, the input is assumed to be
a single depth map, depicting a single hand in isolation, that is, not occluded by
its surroundings. The depth map is acquired using a depth sensor, and no visual
aids (e.g., markers) are used to facilitate the task of localizing the hand or parts of
it. The method follows a coarse-to-fine strategy, employing Radial Basis Function
Networks (RBFNs) that are trained on a large synthetic dataset.

In order to synthesize the dataset that is used to train the RBFNs, we capture
a real-world sequence of a human hand performing a set of diverse hand gestures.
We proceed to estimate the hand pose for each frame of the sequence using an
offline hand tracking method with high computational budget, achieving accurate
estimations. Given the set of all the recovered hand poses, we proceed to select the
most diverse of them. We use this representative set, along with a dense sampling
of all possible rotations as a seed to generate the synthetic training set.

An initialization RBFN and multiple specialized RBFNs are trained on parts
of this large synthetic dataset. There are two classes of specialized RBFNs. One
class is appropriately trained to recover the global hand rotation given the hand
articulation and the second one to recover the global hand articulation given the
hand rotation. Given an input depth map, we use the trained models to recover
a hand pose. Towards this end, the initialization RBFN is used to provide a



rough pose estimation. Subsequently, the specialized RBFNs are employed in
an iterative refinement scheme in order to improve the initial estimation. This
iterative refinement scheme is repeated for a predetermined number of repetitions,
after the completion of which the final estimation is retrieved.

The overall computational cost of the proposed approach is dominated by the
computation of several RBFNs, yielding in practice a system that achieves close to
real-time performance. Furthermore, the proposed method is parallelizable, tak-
ing advantage of the inherent data-parallelism of RBFNs. The method requires
few real-world data and virtually no manual annotation, and it has few hyper-
parameters that are experimentally investigated to identify their optimal values.
We perform a quantitative evaluation of our method on a test sequence of our
own. Additionally, we present quantitative results on a public dataset that is com-
monly used to evaluate hand pose estimation and tracking methods. Qualitative
results are also presented for both datasets. We show that our approach achieves
promising results in all cases. Conclusively, this work shows that the proposed
RBFNs-based approach can generalize quite well when learning from synthetic
data.



Εκτίμηση της 3Δ Πόζας του Ανθρώπινου Χεριού

από Μια Εικόνα Χρησιμοποιώντας Δίκτυα

Συναρτήσεων Ακτινικής Βάσης Εκπαιδευμένα σε

Συνθετικά Δεδομένα

Περίληψη

Η παρακολούθηση και ανάλυση της ανθρώπινης κίνησης αποτελεί μια σημαντική

κατηγορία προβλημάτων στον τομέα της Υπολογιστικής ΄Ορασης. Μέσα σε αυτή την

κατηγορία, τα προβλήματα που αφορούν στην εκτίμηση της 3Δ πόζας ενός ανθρώπι-

νου χεριού είναι ιδιαίτερα ενδιαφέροντα. Αυτή η εργασία στοχεύει στην επίλυση του

προβλήματος της εκτίμησης της πόζας ενός ανθρώπινου χεριού σε πραγματικό χρό-

νο, χρησιμοποιώντας μόνο οπτική πληροφορία. Πολλές προσεγγίσεις έχουν προταθεί

για την επίλυση αυτού του προβλήματος, μεταξύ των οποίων και η εφαρμογή τεχνι-

κών μηχανικής μάθησης. Η πρόσφατη επιτυχία των βαθέων νευρωνικών δικτύων σε

προβλήματα υπολογιστικής όρασης έχει οδηγήσει σε σημαντική πρόοδο σε αυτόν τον

τομέα. Ωστόσο, παρά τις έντονες προσπάθειες που έχουν αφιερωθεί στην επίλυση

προβλημάτων αυτής της κατηγορίας, καμία μέθοδος δεν έχει καταφέρει να επιλύσει το

πρόβλημα στη γενική του μορφή.

Οι τεχνικές μηχανικής μάθησης και ιδιαίτερα αυτές που βασίζονται σε βαθιά νευρω-

νικά δίκτυα απαιτούν μεγάλα επισημασμένα σύνολα δεδομένων για τη εκπαίδευσή τους.

Η επισήμανση σε πραγματικά δεδομένα είναι κοπιαστική και απαιτεί χρόνο και άλλους

ανθρώπινους πόρους. Επομένως, προτιμάται ένας αυτόματος τρόπος δημιουργίας και

επισημείωσης των δεδομένων εκπαίδευσης. Η χρήση συνθετικών δεδομένων παρέχει

έναν εύκολο τρόπο για τη δημιουργία μεγάλου όγκου επισημασμένων δεδομένων υ-

ψηλής ακρίβειας. ΄Ενα μειονέκτημα αυτής της προσέγγισης είναι ότι οι λεπτομέρειες

των πραγματικών δεδομένων μπορεί να μην προσομοιωθούν με ικανοποιητική ακρίβεια

κατά τη δημιουργία των συνθετικών δεδομένων. Οι υπάρχουσες τεχνικές μηχανι-

κής μάθησης είναι ευαίσθητες στην κατανομή των δεδομένων εισόδου και συνεπώς,

μπορεί να αποτύχουν να γενικεύσουν σε πραγματικά δεδομένα όταν εκπαιδεύονται σε

συνθετικά δεδομένα.

Σε αυτή την εργασία παρουσιάζουμε μια νέα προσέγγιση για την εκτίμηση πόζας

χεριού από δεδομένα βάθους από μία μόνο όψη. Πιο συγκεκριμένα, υποθέτουμε ότι

η είσοδος είναι ένα μεμονωμένο καρέ δεδομένων βάθους, που απεικονίζει ένα απομο-

νωμένο χέρι, δηλαδή ένα χέρι που δεν επικαλύπτεται από αντικείμενα στο περιβάλλον

του. Το καρέ βάθους προσλαμβάνεται από έναν αισθητήρα βάθους και δεν χρησιμο-

ποιούνται οπτικά βοηθήματα για να διευκολυνθεί η εργασία εντοπισμού του χεριού

ή τμημάτων του. Η μέθοδος ακολουθεί μια στρατηγική εξειδίκευσης (coarse to fi-
ne) χρησιμοποιώντας δίκτυα συναρτήσεων ακτινικής βάσης (Radial Basis Function
Networks, RBFNs) που εκπαιδεύονται σε ένα μεγάλο σύνολο συνθετικών δεδομένων.

Η δημιουργία των συνθετικών δεδομένων που απαιτούνται για την εκπαίδευση των

δικτύων ξεκινάει καταγράφοντας μια πραγματική ακολουθία ενός ανθρώπινου χεριού

που εκτελεί διαφορετικές χειρονομίες. Στη συνέχεια εκτιμάται η πόζα του χεριού



για κάθε καρέ της ακολουθίας χρησιμοποιώντας μια μέθοδο παρακολούθησης χεριών

με υψηλό υπολογιστικό φόρτο, επιτυγχάνοντας ακριβείς εκτιμήσεις. Από αυτό το

σύνολο όλων των ανακτημένων ποζών, επιλέγουμε αυτές που διαφέρουν περισσότερο

μεταξύ τους. Χρησιμοποιούμε αυτό το αντιπροσωπευτικό σύνολο, μαζί με μια πυκνή

δειγματοληψία όλων των πιθανών περιστροφών για να δημιουργήσουμε το συνθετικό

σύνολο εκπαίδευσης.

΄Ενα δίκτυο αρχικοποίησης και πολλαπλά εξειδικευμένα δίκτυα εκπαιδεύονται σε

τμήματα του συνόλου συνθετικών δεδομένων. Υπάρχουν δύο ειδών εξειδικευμένα δί-

κτυα. Η μία κατηγορία, περιλαμβάνει δίκτυα που είναι κατάλληλα εκπαιδευμένα για να

ανακτήσουν τον προσανατολισμό των χεριών με δεδομένη την άρθρωση των δακτύ-

λων. Η δεύτερη κατηγορία ανακτά την άρθρωση δεδομένου του προσανατολισμού του

χεριού. Λαμβάνοντας σαν είσοδο ένα καρέ βάθους, χρησιμοποιούμε τα εκπαιδευμένα

μοντέλα για να ανακτήσουμε την πόζα του χεριού. Για το σκοπό αυτό, το δίκτυο

αρχικοποίησης χρησιμοποιείται για την εκτίμηση μιας αρχικής πόζας. Στη συνέχεια,

τα εξειδικευμένα δίκτυα χρησιμοποιούνται σε ένα επαναληπτικό σχήμα που έχει σκοπό

να βελτιώσει την αρχική εκτίμηση. Αυτό το επαναληπτικό σχήμα βελτίωσης εκτελεί-

ται για έναν προκαθορισμένο αριθμό επαναλήψεων, μετά την ολοκλήρωση του οποίου

ανακτάται η εκτίμηση πόζας.

Το συνολικό υπολογιστικό κόστος της προτεινόμενης προσέγγισης καθορίζεται α-

πό τις υπολογιστικές απαιτήσεις ενός μικρού πλήθους δικτύων RBFN, επιτυγχάνοντας
επιδόσεις σχεδόν πραγματικού χρόνου. Επιπλέον, η προτεινόμενη μέθοδος επιδέχεται

επιτάχυνσης μέσω παραλληλοποίησης, χάρη στον εγγενή παραλληλισμό των δικτύων

RBFN. Η μέθοδος απαιτεί λίγα πραγματικά δεδομένα και σχεδόν καθόλου επισημεί-
ωση. Επιπλέον, έχει λίγες υπερ-παραμέτρους οι οποίες διερευνούνται πειραματικά για

να προσδιοριστούν οι βέλτιστες τιμές τους. Η ποσοτική αξιολόγηση της μεθόδου

βασίστηκε σε μια πραγματική ακολουθία για την οποία γνωρίζουμε τις πραγματικές

πόζες του χεριού (ground truth). Επιπλέον, παρουσιάζουμε ποσοτικά αποτελέσματα
σε ένα κοινά διαθέσιμο σύνολο δεδομένων (public dataset) που χρησιμοποιείται για
την αξιολόγηση των μεθόδων εκτίμησης και παρακολούθησης πόζας χεριών. Ποιοτικά

αποτελέσματα παρουσιάζονται και για τα δύο σύνολα δεδομένων τα οποία δείχνουν ότι

η προσέγγισή μας επιτυγχάνει ικανοποιητικά αποτελέσματα σε όλες τις περιπτώσεις.

Συμπερασματικά, η εργασία αυτή δείχνει ότι προτεινόμενη προσέγγιση για εκτίμηση

της 3Δ πόζας του χεριού που βασίζεται σε δίκτυα RBFN μπορεί να γενικεύσει αρκετά
καλά σε πραγματικά δεδομένα, ενώ έχει εκπαιδευθεί σε συνθετικά δεδομένα.
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Chapter 1

Introduction

The human hand is one of the most important means of interaction, communication
and manipulation, making it a very important subject of research. It is therefore
desirable to build interaction systems that take advantage of the motion of the
human hand. The task of estimating the full pose of a human hand observed
using visual input comprises a very interesting and useful problem in the field of
Computer Vision [13]. From a theoretical point of view, this area of problems is
interesting because they are a part of a more general group of problems that try
to estimate the pose of arbitrary articulated objects.

The significant importance of solving this problem can be seen by the vast
number of applications on which the hand pose estimation is applicable. Effec-
tive methods to solve the problem can be used as building blocks in the domain
of human-computer interaction (HCI). Applications of such approaches include
robotic teleoperation, game control, medical rehabilitation, sign language recogni-
tion and more. As the technological evolution pushes the real-world even deeper
into the existence of the virtual one, hand pose recovery enables Virtual- and
Augmented-Reality scenarios. The number of applications that are in need of
such solutions is increasing exponentially as every industry wants to exploit the
products of the arising virtual evolution.

This problem is accompanied by many difficulties making it, in its full gen-
erality, an unsolved problem. Firstly, the search space of human hand poses is
very large because of the high number of degrees of freedom, a fact that still holds
even after accounting for correlations of natural hand motion. Furthermore, the
human hand is very dexterous, meaning that this search space is not redundant.
Another complicating factor is the fact that the hand can move very fast, breaking
the temporal continuity assumption and thus making purely tracking approaches
prone to failure. Lastly, the uniform, almost texture-less hand appearance leads to
visual ambiguities that must be resolved. All these difficulties make the problem
challenging, and the ways of resolving it more demanding.

Machine learning methods have been widely used for hand pose estimation
[60]. In these methods, a model learns a mapping between observations and the

1



2 CHAPTER 1. INTRODUCTION

poses. In order to teach the model, one must acquire a large number of training
observations from a dataset. Usually a real-world manual creation and annotation
is needed for these datasets, by a human subject. This work though is time and
recourse consuming. Hence, a more autonomous way is preferable by creating
synthetic datasets that reflect the properties of real-world datasets.

Recent approaches commonly rely on deep artificial neural networks for esti-
mating hand poses [47, 48, 15]. Learning from synthetic data though (such as
images/depth maps), can be problematic due to a gap between synthetic and real
data distributions [68], leading the deep neural networks (such as a Convolutional
Neural Networks CNNs) to learn details only present in synthetic data and fail-
ing to generalize well on real data. We propose a different approach that uses
an Artificial Neural Network (ANN) compared to CNNs, achieving an appealing
result.

In this thesis a method is presented for single-shot hand pose estimation of an
isolated (i.e. not interacting with the environment) hand observed using a depth
sensor. Only the problem of pose estimation is treated, assuming a bounding box
is provided by a hand detector such as the methods proposed in [41, 30]. The use
of regressor Radial Basis Function Networks (RBFNs) is proposed for hand pose
recovery. A creation of a synthetic dataset from captured sequences is used in
order to train the networks.

The proposed approach is split in a training and an estimation phase. We
start by capturing a long sequence of widely varying hand poses using an RGBD
sensor. The sequence is processed offline similarly to [78]. In contrast to that
work however, we discard the real-world depth maps and only keep the hand
poses. These poses seed the generation of a large hand pose database. Firstly, the
most distinctive hand poses are selected, essentially discarding very similar ones.
A large number of rotations is uniformly sampled, and for each combination of
rotation and hand pose, a depth map is generated. This constitutes a database of
synthetic depth maps with known hand pose and global hand rotation. Using this
dataset, we train a large number of RBF networks, each specialized in recovering
the hand articulation given the global hand rotation or predicting global hand
rotation given an articulation. Furthermore, an RBFN is trained in a subset of all
the hand pose combinations so that it can provide a rough estimate of an observed
depth map. This rough estimation will be use to initialize an iterative search
that uses the specialized RBFNs to refine its initial estimation. After we conclude
with the training of our networks we proceed to the estimation phase. Given a
new observation of a hand in the form of a cropped depth map, we derive an
initial estimation of the hand pose using the initialization RBFN. Then with the
use of an iterative search scheme employing the specialized RBFNs we improve the
initial estimation. After a predetermined number of epochs we stop the refinement,
yielding the final estimation of the hand pose.

The rest of this thesis is organized as follows: an outline of the relevant litera-
ture is presented in Chapter 2. A detailed overview of existing methods, techniques
and tools that we will use in the development of the proposed method are provided
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in Chapter 3. The design and the implementation of the proposed methodology is
described in Chapter 4. In Chapter 5 are presented the experiments conducted to
tune and evaluate the proposed method, along with the obtained results. Finally,
Chapter 6 concludes the thesis with a discussion over the impact of this method
and the future work.
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Chapter 2

Related Work

The problem of visual hand pose estimation is a long standing one in the field
of computer vision. Works as early as 1994 have attempted to tackle it [55].
The computational load of the method proposed in that work was too large for
commodity processors back then, and therefore specialized hardware was required.
The steady exponential increase in available computational power as well as the
recent introduction of commodity depth sensors helped renew the interest in the
problem [49, 54]. Many of the challenges and methods are presented in [73], where
the authors state that pose estimation may appear roughly solved, still it remains
a challenging category of problems. More recently, the success of deep learning in
computer vision has also given new interest in this problem [48, 15].

A comprehensive overview on the subject, the interest for the problem and
the difficulties in solving it, can be found in Erol et al.[13]. In this survey work,
the authors propose to categorize the methods on hand tracking according to the
level of detail of the estimated pose. This ranges from simple 2D localization
of some hand parts on the observed image (termed Partial) to full estimation
in 3D of all the rigid parts that comprise the hand (called Full DoF). Another
categorization discriminates between methods that can perform single-shot pose
estimation, or Single Frame, and those that perform tracking (termed Model-Based
Tracking methods). In an evolution of these categorizations, we can separate all
methods into three categories, discriminative methods, generative methods and
hybrid methods. In an evolution of these terms, Single Frame corresponds to
discriminative methods and Model-Based Tracking to generative ones, as used
for example in [48]. As presented in [44], discriminative methods learn a direct
mapping from input to target values, while generative methods fit a model to
increase to joint probability of the input and the target values. Hybrid methods
use both types of methods to a part, in order to overcome the disadvantages of each
other. In the following sections we will describe methods following the generative,
discriminative and hybrid category respectively.

5
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2.1 Generative Methods

Generative methods are model-based approaches. This means that, methods of
this type make use of a hand model that is used during the estimation process
to compute image features. These features are compared to respective features
extracted from the observed image. The aforementioned features may be edges,
depth information, skin color, or an estimated appearance constructed by the hand
model. A quantification of the feature comparison for varying poses of the hand
model serves as an objective function to an optimization routine. Thus, the orig-
inal problem is effectively reduced to an optimization one with search space the
parameterization of the hand model. Due to the high dimensionality of the config-
uration space though, the computational performance of these methods is limited.
A big disadvantage of such methods is the requirement of initialization. Therefore
most of the methods optimize their estimation based on previous estimations. On
the other hand, these methods can be easily adapted to different situations such
as varying lighting conditions or object manipulation. The research areas of model
based methods include the construction of efficient and realistic 3D hand models,
the dimensionality reduction of configuration space and the development of fast
and reliable tracking algorithms to estimate the hand posture.

The first works of generative methods appear from 1994 and after [55, 21].
In both works the authors constructed a primitive model of a hand in order to
achieve tracking, coping with the multiple degrees of freedom (DoF) of the hand.
Some methods use wearable devices or gloves to aid tracking like in [83, 61, 28].
The most recent means of feature acquisition is through depth images [86, 64, 27],
especially after the recent growth of the depth sensor capabilities. Other methods
like in [4] and [37] use variants of particle filtering to track predetermined hand
models, or shape invariant hand models [38] from depth information.

Not all cases use depth information to track or fit a model of the hand. In [10]
the authors make use of temporal texture continuity and shading information in
order to track from a monocular video. In [2] the authors provide a 3D estima-
tion from cluttered images. Other works try to retrieve depth information from
RGB images through stereo matching like in [90, 51], where the acquired depth
information may be treated like in depth images’ scenarios.

For optimizing the objective functions defined by the methods, it was pos-
tulated that the use of particle swarm optimization (PSO) [1, 12] was beneficial
towards estimation [49, 50]. The authors in [49] used PSO to minimize the dis-
crepancy between the 3D structure of hypothesized instances of a hand model and
actual hand observations. In [54], the authors propose a generative method com-
bining the PSO and Iterative Closet Point (ICP) algorithms to speed-up the search
of the hand pose space. Other works that use ICP are [14, 74] which employ the
articulated variant of this technique.

A very interesting and challenging group of problems copes with hands inter-
acting with other objects. In [57] the authors emphasize the difficulties of hand
interacting with objects. The authors in [20] use a local tracker for each segment
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of the hand to overcome the challenge of occlusions between the hand and the ob-
ject. In [50] the authors enforce physical constrains to the model interacting with
the object to improve the tracked estimations. In [52] the authors track hands in
interaction with unknown objects, creating the model of the objects during the
tracking procedure. Again, depth information is not always necessary as in [3] the
authors make use of salient points, like finger tips, by taking into account edges,
optical flow and collisions.

2.2 Discriminative Methods

Discriminative methods estimate hand configurations directly from images using
a precomputed mapping from the image feature space to the hand configuration
space. Discriminative methods attempt to solve a difficult problem since the map-
ping from images to hand poses is highly nonlinear due to the variation of hand
appearances under different views. In order to perform the mapping, a dataset is
required that holds the input to the method, usually an image, and the target val-
ues that correspond to the input, the hand configuration represented on the input.
This dataset is used to train a method and create the desired mapping. During
estimation, the input can be mapped to the closest corresponding target that the
method has learned, or interpolate to a new target value creating a regressed es-
timation of the input. For increased accuracy of these methods, one must acquire
large training dataset to cover the large hand space, thus it will take usually a
large amount of time to train properly the whole method. On the positive side,
discriminative methods are in general fast at runtime, since the training phase is
performed offline. They require only a single camera and have no need of initial-
ization in order to perform an estimation. A particular property of discriminative
methods is that they can be easily specialized to specific hand configurations, how-
ever in order to cover the full set of possible hand poses, a very large dataset must
be employed. The research areas of discriminative methods include the selection
of appropriate training algorithms, the suitable learning techniques used by these
algorithms, the creation and annotation of large datasets and the effort of training
models that can generalize to unseen data.

For discriminative methods many learning procedures and algorithms have
been proposed and used, from k-nearest neighbor searches to deep convolutional
neural networks. In [83] the authors use a glove to track a 3D hand and employ
nearest neighbor approach to achieve tracking at interactive rates. The use of
random decision forest is also widely used with some variations, as seen in [31,
82, 75], for regressing to a 3D hand estimation. In [9] the authors used Relevance
Vector Machine (RVM) [77] based learning method to estimate hand pose from
multiple cameras.

Since Convolutional Neural Networks (CNN) architectures started being used
widely, many works have included these types of techniques and variations of them
from RGB images [40] and depth images [8, 17, 70, 22]. In [42] the authors casted
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the 3D hand estimation problem from depth images into a voxel-to-voxel prediction
with the use of a 3D voxelized grid. The authors in [78] combined a random forest
classifier for image segmentation and a CNN to regress to a hand pose, whereas
in [15] the authors create 2D heat-maps from depth images to perform the pose
estimation. Some methods employ multiple CNNs, as in [36] where the authors
use a tree-like structured multiple CNNs to regress to a final hand pose. In [48]
a CNN architecture is used combined with a prior on the 3D pose to improve the
accuracy of the model. Later the authors improved their architecture by using the
best methods for training the networks [45]. The best architectural approaches
and training strategies for CNNs where examined in [19].

Similar to the generative methods, for the discriminative methods the task of
estimating hand poses that interact with objects is very interesting and challenging.
In [58] the authors used a nearest neighbor based approach. The use of CNN is
also significant for hand interacting with object for detecting and estimating the
pose of both [43], even for the cases when the object is unknown [63].

Another very interesting category of approaches are the ones that use synthetic
data for training the discriminative models. The creation of synthetic data is
automated making the procedure of annotation instant. Creating such synthetic
datasets is presented in [46]. Some works rely on synthetic data training in order
to classify similarities between synthetic and real data [67, 56]. Others, like in [26]
train random decision forest and support vector machines to regress on a 3D
hand poses trained on synthetic data. The most challenging methods train CNNs
architectures on synthetic data [69, 11, 16] by augmenting the used training set,
partially addressing the fact that CNNs are problematic on generalizing when
trained on synthetic data. Moreover, the authors in [92] used a deep network
learning technique to learn from synthetic RGB images and regress a 3D hand
pose estimation.

2.3 Hybrid Methods

Hybrid methods try to exploit the advantages of both previously mentioned meth-
ods, generative and discriminative, trying to avoid their respective disadvantages.
Researchers try to achieve this by employing a technique that uses components of
generative and discriminative methods. Research focuses on what methods to use
from generative and discriminative aspects, as on what algorithms and optimiza-
tion procedures to follow.

Some methods acquire small discriminative aspects [71, 34, 84] of fixing esti-
mations that are returned by a model-based method for added robustness, while
others try to leverage the advantages of both like in [29] where the authors use
random decision forest to correct instances of optimization failure. In [76] the
authors employ a discriminative objective function and a joint optimization of the
model used and the observed data. The authors in [91] use a model based deep
learning approach by adopting forward kinematics based layer that ensures the
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geometric validity of the estimations. In [79] the authors combine a generative
model with discriminatively trained salient points and with collision detection and
physics simulation to increase accuracy. The authors in [53] use a regressor to learn
and deliver multiple initial hypotheses, then a 3D model is fitted by deliberately
exploiting the inherent uncertainty of the proposed joints. Using CNNs in [87] a
hierarchical PSO is integrated into a CNN framework forcing constrains to the out-
put results. Again using deep architectures, the authors in [81] propose a method
using two deep generative models. To further improve the generalization of their
model they train a generator that synthesizes depth maps and a discriminator that
benefits from a augmented training set synthetic samples.

2.4 Proposed Work Categorization

The proposed work is closely related to [59] and [78]. In [59], Romero et al.present
a system to recover the hand pose from monocular RGB input using Histogram of
Oriented Gradients features. Similarly to our approach, Romero et al.propose the
search over a large synthetic database for the entry (or entries) with the closest
features to the observed ones. On the other hand, the use of RGB data limits the
discriminative ability of their feature space, making it imperative to use temporal
coherency as a strong prior in the search. In contrast to this, our approach relies on
depth data and therefore it can perform single shot estimation. In [78], Tompson et
al.propose the use of an early generative RGBD-based approach [49] to annotate
a large set of input hand poses instead of manual annotation. This dataset is
used to train a deep convolutional neural network that learns to estimate specific
landmarks of the human hand. An inverse kinematics procedure produces the
final hand pose based on this estimation of landmarks. Similarly, in our work
we automate the task of annotating input data. In contrast to [78], we use the
output of this annotation to generate a much larger synthetic dataset which we
then proceed to learn. Learning from synthetic data is problematic in deep neural
networks since they rely in the statistics of the input images across all scales.
On the other hand, the regression method we adopt, RBF networks, is able to
abstract away the small details of the input data, thus generalizing well from
synthetic training data to real-world input.

Our work is also closely related to works on dataset generation and augmenta-
tion [46]. A deep convolutional architecture is presented in [48] that can generate
predictions of joint locations in the form of 2D heat maps. The authors also pro-
pose the use of a bottleneck in the deep network architecture, to enforce a strong
prior on natural hand poses. The predicted joint positions are refined by another
network to improve estimation accuracy. The iterative refinement of specialized
networks that we use in this work has a close resemblance.
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Chapter 3

Preliminaries

This chapter provides a detailed overview of the methods and techniques that will
be used in this thesis. These include previous work in related areas that is essential
for the methodology presented in Sec. 4. More specifically, this chapter provides
a description of the type of the artificial neural network (Radial Basis Function
Network), the hand model and the algorithms used subsequently.

3.1 Radial Basis Function Network (RBFN)

A Radial Basis Function Network (RBFN) is a particular type of artificial neural
network, introduced firstly by Broomhead et al. [5], that uses radial basis functions
as activation functions. The output of the network is a linear combination of radial
basis functions of the input and neuron parameters.

RBFNs are commonly used in various of classification and regression problems.
Function approximation is a frequently tackled task for RBFNs as in [85, 24, 89],
also other regression problems can extended to cases that deal with images as
well [7, 88]. Classification problems that use RBFNs can also regard images as
in [23, 32].

3.1.1 Network Architecture

Typically RBFNs have three layers: an input layer, a hidden layer with non-linear
Radial Basis activation function and a linear output layer.

The input layer can be modeled as a vector of real numbers x ∈ Rn. The
output of the network is then a scalar function of the input vector, ϕ : Rn → R,
and is given by

ϕ(x) =

N∑
i=1

wiρ(‖x− ci‖) (3.1)

also called activation value, where N is the number of neurons in the hidden layer,
ci is the center vector for neuron i, and wi is the weight of neuron i in the linear
output neuron.

11
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Input x

Radial basis
functions ρ

Output ϕ(x)

Linear output weights w

Figure 3.1: Architecture of a radial basis function network. An input vector x
is provided to all radial basis functions. Each radial basis function computes a
different response according to its parameters. The output of the network is a
linear combination of the outputs from the radial basis functions.

In this work we use a normalized architecture of RBFNs. The mapping in this
architecture is

ϕ(x) =

∑N
i=1wiρ(‖x− ci‖)∑N
i=1 ρ(‖x− ci‖)

(3.2)

where the denominator ρ(‖x − ci‖) is used to normalize the response of each
center of the network for every center ci where i = 1, . . . , N . Normalized RBFNs
relax the localized characteristics of standard RBF networks and exhibit excellent
generalization properties, as explained in [6].

Functions that depend only on the distance from a center vector are radially
symmetric about that vector, hence the name radial basis function. In the basic
form of RBFNs, all inputs are connected to each hidden neuron. The distance
from the center vector is typically taken to be the Euclidean norm and the radial
basis function is commonly taken to be Gaussian

ρ(‖x− ci‖) = exp[−β‖x− ci‖2] (3.3)

where x is the input and ci is again the center vector for neuron i. The β parameter
is defined as

β =
1

2σ2
(3.4)
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where σ is the standard deviation of the Gaussian.

During learning, the goal is to determine the tunable parameters wi, ci and σ
in a manner that optimizes the fit between the output φ of the network and the
data.

3.1.2 Training the Network

The training process of an RBFN consists of: choosing the hyper-parameters,
centers c and the standard deviation σ of the RBFN neurons, and learning the
output weights w between the RBFN neurons and the output nodes. The work
of Schwenker et al. [65] provides an overview of common approaches on training
RBFNs.

RBF networks are trained from pairs of input and target values xt,yt for t =
1, . . . , |T |, indexing a training set T . The vector xt ∈ Rn is the input as already
mentioned, and yt ∈ R is the annotated target output corresponding to the input
xt. Training is achieved by a two-step algorithm. In the first step, the center
vectors ci of the RBFN in the hidden layer are chosen. The second step fits a
linear model with coefficients wi to the hidden layer’s outputs with respect to
some objective function. A common objective function, at least for regression, is
the least squares function:

K(w) =

|T |∑
t=1

Kt(w) (3.5)

where,

Kt(w) = [yt − ϕ(xt, w)]2 (3.6)

There are many possible approaches for selecting the centers of the network
also studied in [18, 80]. In this work we will mainly focus on two alternatives for
center initialization. The first approach is to select k centers from the training set
by performing a k-Means clustering. The second approach is to create a center for
every training sample. This increases the computation time but also increases the
accuracy of the network.

For selecting the first option, that is, using k-Means clustering technique for the
centers selection, we may set the parameter σ to be the average distance between
all points in a cluster from the cluster’s centroid

σj =
1

|Tj |

|Tj |∑
i=1

‖xj,i − cj‖ (3.7)

where cj is the centroid of cluster j, |Tj | is the number of training samples belong-
ing to the cluster j and xj,i is the ith training sample in the cluster j. As a second
option, we can chose one center for every single training sample. In this case we
may define the parameter σ as the mean value of distances between all training
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samples of the training set T .

σ =
1

n2

n∑
i=1

n∑
j=1

‖xi − xj‖ (3.8)

In both cases, the value of σ is not necessarily the most optimal, that is, the one
that achieves the best performance of the network. Therefore, an experimental
evaluation can be performed in order to determine the optimal value of hyper-
parameter σ.

The final set of tunable parameters to be determined are the output weights
w. These can be trained using gradient descent. First, for every data point in
our training set, we compute the activation values of the RBFN neurons. These
activation values become the training inputs to gradient descent. We also add a
fixed value of 1s as a bias term to the beginning of the vector of activation values.
Gradient descent must be run separately for each output node.

Another possible training technique, and the one used in this work, is applying
the linear pseudoinverse solution. This solution arises by formulating the problem
as a least squares minimization between the responses of the radial basis function
and the desired outputs after fixing the centers ci:

minimize‖θTw − b‖. (3.9)

The weights that minimize the error at the output are computed using the Moore-
Penrose inverse solution

w = θ+b (3.10)

where θ+ is the pseudoinverse of θ the values of which are the radial basis functions
evaluated at the points xt

θti = ρ(‖xt − ci‖) (3.11)

and b is a vector with the target values yt for t = 1, . . . , |T |. The existence of
this linear solution means that unlike multilayer perceptron (MLP) networks [62],
RBFNs have a unique local minimum when the centers are fixed.

In contrast to the definitions above, it is common to have a training set that
maps input vectors xt to output vectors yt ∈ Rm, instead of scalars yt. This is easy
to accommodate by training m separate RBF networks, each targeting a scalar of
the vector y, and concatenating their output to regress the vector y. In practice,
these RBFNs share a large part of the computations and so it is beneficial to reuse
them. Thus, this concatenation of RBFNs can be considered as a single RBFN
that regresses to a vector y ∈ Rm.

Having computed the centers c, the parameter β and the entries of θ from a
trained RBFN, we can evaluate any given test input. We denote them as param-
eters of a trained RBFN model.

The implementation of the RBFN architecture found in [39] is used and mod-
ified for the purposes of this work. The RBFN is used in this work to estimate
hand poses using regression. The input to the RBFN is a depth map image and
the target value is the pose of the depicted hand.
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Figure 3.2: The skinned hand model used in this work: (a) the rendered skinned
hand; (b) the 20 joints of the model with their corresponding degrees of freedom
(DOF);

3.2 Hand Model

In this work we use a 27-parameter skinned hand model for representation as seen
in Fig. 3.2a. Similar to Oikonomidis et al. [49], the hand model kinematics are
defined by 20 joints that have up to two degrees of freedom, as shown in Fig. 3.2b.

A hand pose p is a 27-parameter vector defined as

p = (x, y, z, qx, qy, qz, qw, φ1, φ2, . . . , φ20) (3.12)

The first 3 values pxyz = (x, y, z) define the global 3D position of the hand model.
The next 4 values pq = (qx, qy, qz, qw) define a normalized quaternion that deter-
mines the global rotation of the hand model in the 3D space with respect to the
center of the model. The remaining 20 parameters pφ = (φ1, . . . , φ20) define the
angle of each joint of the hand, fully determining the articulation of the hand.

The 27 parameters are also used to render the hand model. The rendering is
used to obtain the depth map of the hand model given a hand pose p. We denote
the rendering as a function Ren(p) that is implemented in a similar way as in [49].
In contrast to [49] where the hand shape is constructed as a set of appropriately
transformed cylinders and spheres, in our work we use a linear-blend skinned hand
model.

Given a hand pose p we set some key points on the joints and the fingertips of
the hand, then using the model’s forward kinematics with the 3D positions of the
key points, we obtain the model’s landmarks L. These landmarks are 3D positions
that can be used for comparing two hand poses, by computing distances between
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Figure 3.3: The skinned hand model used in this work with the annotated land-
marks, visualized as red discs.

corresponding landmarks of compared hand poses. In Fig. 3.3 the aforementioned
landmarks are visualized overlayed the rendered hand model.

3.3 KKZ Algorithm

A new initialization technique was introduced by Katsavounidis et al. [25] for
Generalized Lloyd iteration in [33], which exploited the fact that vectors that are
most far apart from each other based on a distance metric, are more likely to
belong to different classes.

Given a sequence of vectors vi, with i = 1, ..., N , we obtain a sorted vector
array s as follows:

1. Calculate the norms of all vectors in the sequence. Choose the vector with
the maximum norm as the first item of your sorted array s.

2. Calculate the distance of all vectors vk from the first vector of the sorted
array s, and choose the vector vk with the largest distance as the second
item of the sorted array. After this step, we have a sorted array s of size 2.

3. Generally, with a sorted array s of size i, i = 2, 3, ..., we compute the distance
between any remaining vector vk and all existing vectors of the sorted array
and call the smallest value the distance between vk and the sorted array s.
Then, the vector with the largest distance from the sorted array s is chosen
to be the (i+ 1)th item of s. The procedure stops when we obtain an array
of size N .

When the procedure finishes, we end up with a sorted array of vectors with the
property that each element of the array is the furthest from the elements above it.

Given a large set of hand poses, we would like to be able to identify an arbitrary
number of the most diverse ones. Doing this offers us a more sparse and diverse
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set holding representative of the original set. The KKZ algorithm is used to sort
hand poses with respect to their articulations and rotations. This offers the most
diverse poses to be located at the beginning of the sorted array of poses.
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Chapter 4

Method Description

This chapter describes in detail the design and the implementation of the proposed
method. Our goal is to recover the global position, orientation and full articulation
of a human hand observed by a depth sensor. More specifically, given a single
depth map of the observed hand, we aim to recover the pose parameters listed
above, without using any information provided by previous depth maps from a
sequence. Towards this end, we parameterize the pose space of the human hand as
a 27-dimensional vector. This vector defines a pose for the employed hand model
(Sec. 3.2). The task is therefore reduced to one of parameter estimation, where
the parameters of interest are the full hand pose vector. To achieve this we train
Radial Basis Function Networks (RBFN) (Sec. 3.1) to regress directly from an
input depth map to this pose vector.

We start with a real-world captured dataset to acquire a large number of ar-
ticulations. By sampling densely the rotation space, we combine them with the
acquired articulations to create a synthetic dataset. We use the synthetic dataset
to train an initial RBFN and multiple specialized RBFNs. For an input depth map
we use the initial RBFN to retrieve a rough approximation. Then, the specialized
RBFNs try to refine iteratively this approximation.

The method is divided in two phases, the training phase and the estimation
phase. The training phase (Sec. 4.1) consists of preparing the training and training
the initialization RBFN and specialized RBFNs. The estimation phase (Sec. 4.2)
uses the parameters learned from training in order to estimate the hand pose
parameters given a single depth frame. Figure 4.1 illustrates the pipeline of the
system during the training phase and provides an example during the estimation
phase.

4.1 Training Phase

In order to proceed with the training of the system, some preparation steps are
necessary. More specifically, the training dataset has to be adjusted and augmented
so it can be used as input in the training process. We use two sets A and R that

19
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hold all the articulations and all the rotations respectively of a training dataset.
This dataset is synthetically generated using the tracking of a real hand performing
multiple gestures (this procedure is outlined in Sec. 5.1.2). For specific articulations
and orientations we have to train separately specialized RBFNs using a subset of
the initial training dataset, plus one extra RBFN that we are going to use as
an initialization step of the Iterative Refinement Algorithm (Sec. 4.2.1). The
input needed for training each RBFN is pairs of rendered depth maps of hand
poses Ren(p) and their respective hand pose p which is the desired output of the
network.

4.1.1 Training Set Preparation

Our method uses a synthetically generated training set, as described in Sec. 5.1.2,
in order to train the networks. Having prior knowledge of the ground-truth hand
poses p during the training phase, we extract all the articulations that are defined
by the set A. Also the R set is composed from densely sampling the quaternion
space. The hand poses were obtained by tracking a real world sequence that
captures diverse hand poses. Training our system in all the available data is not
preferable, due to the fact that some of the samples are repeated (not necessarily
identical, but similar poses) and the increase of the training time. Towards this
end, we employ KKZ Algorithm (Sec. 3.3) to select a subset of diverse hand poses
and hand articulations. More specifically using the KKZ Algorithm we sort all
articulations in A and orientations in R and select the first |A| articulations and
the first |R| orientations to create the new sets A and R that are going to be used
for training, where |A| ≤ |A| and |R| ≤ |R| are preselected sizes of sets A ⊆ A

and R ⊆ R. The KKZ Algorithm rearranges the sets in such order that any ith
element, from the articulation set A for instance, i = 1, 2, . . . , |A|, of the sorted set
is the farthest from the set of elements 1 to i− 1. Thus we achieve a dense, evenly
distributed training set that contains representatives of all the articulations in the
captured sequence and of all rotations.

During the sorting procedure of KKZ, a distance metric between the compared
vectors is required. For quaternions we use the dot product as a similarity metric.
This can be converted to a distance metric by subtracting it from the unit:

DQ(q1,q2) = 1− (q1 · q2) (4.1)

where q1 and q2 are the two compared quaternions. To sort the set A of articula-
tion, the employed distance metric is more complex. More specifically, we calculate
the distance between the landmarks (Sec. 3.2) that are defined by the articulations
in A. To determine the landmarks of a hand pose, we also need the orientation
and the global position of the hand. Given the fact that we are only interested on
the articulation of the hand, we fix the rotation and the position of the compared
hand poses, so that the comparison will not affect our distances. The distance
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function between two articulations a1 and a2 is defined as

D(a1, a2) =
1

n

n∑
l=1

||L1l − L2l ||2 (4.2)

where L1 and L2 are the landmarks obtained by the articulations a1 and a2 re-
spectively for the fixed rotation and n is the number of landmarks defined by the
hand model.

The RBFNs must also regress directly from the depth map to the global posi-
tion px, py, pz. Learning the global position of each training sample is not desirable
because it is independent of any given instance of depth map input. We could use
the 3D position of the center of the bounding box b that encloses the hand model
to denote the global position. But computing the center b of the bounding box at
the observed hand depth is not sufficient because the anchor point of the employed
hand model will not necessarily coincide with b. For this reason we also compute
and learn the 3D offset o = p− b of the model’s position from the center b. We
store o instead of px, py and pz for the purposes of the training, and train accord-
ingly our RBFNs to regress for these parameters. Later, during evaluation we use
the regressed offset and add it to the bounding box position of the estimated hand
depth map to recover the global hand position.

For creating the input data used for training our networks, we render a pose
p using the rendering function Ren(p). Therefore Ren(p) is a depth image of
the given pose p.As seen in Sec. 4.1.3, RBFNs compare the data with centers to
make an estimation, given their radial distance. In our case, both the data and the
centers of the network are depth maps, thus we employ comparison between them.
In order to compare depth maps it is necessary to perform depth normalization.
Each training depth map is normalized by subtracting the median of the non-zero
values and adding a fixed depth value.

All the pairs of depth images Ren(p) and the respective hand poses p which
are |A| ∗ |R| in total, form our training set. A subset of this training dataset is
used to train the initialization RBFN, whereas the whole training set is used to
train the rest of the networks. Each specialized RBFN, uses a different subset of
the training set that corresponds to its specialization.

4.1.2 Training Initialization RBFN

An RBFN must be trained that is going to be used as an initialization step of
the Iterative Refinement Algorithm (Sec. 4.2.1). We select the z first articulations
and rotations from our sets A and R that will be used to train the initialization
RBFN, due to their diversity by exploiting the property of the KKZ ordering. We
create the z2 training poses by combining the articulations and orientations of this
training set. Having the pairs of each depth maps Ren(p) with their respective
hand poses p, corresponding inputs x and targets y in Sec. 3.1.2, we train the
network and store the three network’s parameters Cinit, βinit, θinit.
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The selected articulations and rotations are limited to the number z which is
smaller than the |A| and |R|. Apart from practical limitations such as memory
capacities, it is undesirable to train a single RBFN on all the available training data
because the resulting network would be very slow during evaluation. Instead, we
choose the solution of sparsely sampling the full pose set to train the initialization
RBFN. The specialized RBFNs take over the task of refining its initial estimation.

4.1.3 Training Specialized RBFNs

Having a single RBFN trained on every possible articulation and orientation is not
feasible, thus the specialized networks ease the refinement by learning for a fixed
articulation all rotations and vice versa. Each articulation a ∈ A and orientation
r ∈ R is used to train respectively |A| and |R| specialized RBFNs, so that each
RBFN is specialized in a specific articulation or in a specific orientation.

4.1.3.1 Articulation-Specialized RBFNs

Every RBFNai is trained separately, where i = 1, . . . , |A|. The training input
for RBFNai is a matrix containing hand poses that have a fixed articulation
ai ∈ A for all rotations R and their corresponding depth maps. Specifically, for
the RBFNai the training input consists of input and target pairs

Ren(pi,1)
...

Ren(pi,j)
...

Ren(pi,|R|)

 ,


pi,1
...

pi,j
...

pi,|R|)

 (4.3)

where pi,j is a hand pose with articulation ai and rotation rj , j = 1, . . . , |R| and
Ren(pi,j) its respective depth map. The output parameters of the training that
are stored for use during the estimation phase are the parameters of each of the
networks Cai, βai, θai for each articulation-specialized RBFN.

4.1.3.2 Rotation-Specialized RBFNs

Similarly to the previous case, we fix the rotation rj and train the networks
RBFNrj for every articulation in A. The training of every network RBFNrj
is composed with the pairs of training input and their corresponding targets

Ren(p1,j)
...

Ren(pi,j)
...

Ren(p|A|,j)

 ,


p1,j
...

pi,j
...

p|A|,j)

 (4.4)

The learned parameters of the networks in this case are Crj , βrj , θrj .
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4.2 Estimation Phase

The focus of this work is the estimation of the hand pose having as input a crop
of the hand within depth map. We do not focus on the detection of the hand in
the image, assuming that it is provided to the system. Therefore we assume the
position of the bounding box that contains the hand to be available during the
estimation phase. To estimate the global position of a hand pose p, we use the
position of the bounding box that contains the depth image of the given hand pose.
We follow an iterative refinement scheme, starting from a pose estimation that
is regressed from the initialization RBFN. To refine this estimation, we proceed
to alternatively refine the orientation and the articulation part of the pose by
finding the specialized network that can refine the proposed solution by using its
specialized knowledge.

4.2.1 Iterative Refinement Algorithm

The estimation of a hand pose is derived from an RBFN that is chosen according
to an iterative refinement scheme. This scheme uses an initial approximation of
the hand pose. Then iteratively it finds an articulation from set A to use the
according RBFN that was trained on that articulation to return a new estimation.
This estimation is used to find a rotation from set R to use the corresponding
rotation specialized RBFN for a new estimation, returning to the start of the
iteration.

More specifically, to evaluate a single test depth image t we start by finding
a rough approximation p̃ = RBFNinit(t;Cinit, βinit, θinit) using our initialization
RBFN. Subsequently, for a number of epochs we find the closest articulation ai,
from set A that was used for training, to the articulation ã of the estimated p̃. We
input the test image t to the RBFNai that was trained upon this closest artic-
ulation to obtain a new estimation p̃ = RBFNai(t;Cai, βai, θai). Then we find
the orientation rj from the set R, that is closest to the orientation r̃ of the newest
estimation p̃. An update of the estimation p̃ is performed by the output of the ro-
tation specialized RBFN p̃ = RBFNrj(t;Crj , βrj , θrj). We repeat these steps as
mentioned, starting from the beginning of the iteration. Iteratively we lookup the
closest articulation and orientation and update the estimation accordingly, for a
predetermined number of epochs. The last RBFNrj provides the final estimation
p̃.

For estimating the position of a hand pose we need the vector (p̃x, p̃y, p̃z) that
contains the estimated regressed offsets from the center of a bounding box. Given
the vector b that holds the center of the test’s image bounding box we add the two
vectors in order to obtain the final global position of the hand pose. Algorithm 1
describes the Iterative Refinement Algorithm described above.

The function FindClosestArticulation returns the closest articulation to its
first argument, from the set of articulations A by measuring the distances of the
articulations to the input articulation. The distance is computed as defined in
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Algorithm 1 Iterative Refinement Algorithm (IRA)

Input: The test depth image t and the center 3D vector of bounding box b
containing the hand.
Output: The hand pose estimation p̃.

p̃← RBFNinit(t;Cinit, βinit, θinit);
for e = 1 . . . epochs do

ai ← FindClosestArticulation(ã, A);
// FindClosestArticulation returns the closest
// articulation ai ∈ A to the estimated one ã
p̃← RBFNai(t;Cai, βai, θai);
rj ← FindClosestRotation(r̃, R);
// FindClosestRotation returns the closest rotation
// rj ∈ R to the estimated rotation r̃
p̃← RBFNrj(t;Crj , βrj , θrj);

end for
p̃xyz = p̃xyz + b;
// We add to the estimated offset p̃xyz the center of the
// bounding box b to translate it to its global position
return (p̃);

Eq. 4.2. Similarly, the function FindClosestRotation returns the closest rotation
to its first argument from the set R by measuring rotation distances to the pro-
vided rotation. The rotations are actually quaternions as explained in Sec. 3.2,
thus the distance between two rotations is equivalent to the distance between two
quaternions. The distance between two quaternions q1 and q2 is defined in Eq. 4.1.

Since at each iteration we search the space of our training data to find the
closest articulations and rotations, the runtime of the estimation is proportional
to the size of the training dataset. Thus, for the selection of the number of epochs
we must consider that with increased training set we increase the runtime of the
estimation phase.

The orientation of our hand model in Sec. 3.2 is defined as a normalized quater-
nion. Therefore we normalize the rotation quaternion of our estimation p̃ in order
to proceed with the comparison with other hand poses, or with the rendering of
the hand’s image. The normalization of a quaternion vector q is performed as:

qnorm =
q

|q|
. (4.5)

For an description of the methods pipeline, we can refer again to the Fig. 4.1.
The example illustrates the run of IRA for 2 epochs and indicates with red arrows
the closest articulations and rotations found in sets A and R respectively.
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θrj
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RBFNai

RBFNa|A|

p̃ + b

|A|

|R|

RBFNr1

RBFNrj

RBFNr|R|[p1,j ,p2,j , . . . ,pi,j , . . . ,p|A|,j ]

[pi,1,pi,2, . . . ,pi,j , . . . ,pi,|R|]
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θai
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C|A|
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rj
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Figure 4.1: (Top-Left) Training |R| rotation-specialized RBFNs, by fixing the
rotation rj each time and learning the pairs (Ren(pi,j),pi,j) for i = 1, . . . , |A|.
(Bottom-Left) Similarly, training |A| articulation-specialized RBFNs, by fixing the
articulation ai each time and learning the pairs (Ren(pi,j),pi,j) for j = 1, . . . , |R|.
(Top-Right) Sample execution of the IRA for 2 epochs. Firstly, RBFNinit esti-
mates an approximation p̃. Epoch 1: We find the articulation a1 to be the closest
articulation from the set A to the approximated articulation ã. RBFNa1 esti-
mates a pose p̃. We find the rotation rj as the closest rotation from the set R to
the estimated rotation r̃. Then, RBFNrj estimates a pose p̃. Epoch 2: We repeat
the previous actions, finding this time the articulation ai and rotation r|R| as the
closest. Therefore RBFNr|R| estimates the final hand pose p̃. (Bottom-Right)
Illustration of an RBFN with |A| number of centers, and the weighted sum of its
hidden neurons composing the estimation p̃ to which we add the bounding box
center b.
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Chapter 5

Experimental Evaluation

This chapter provides the evaluation procedure for this method, giving a descrip-
tion of the datasets used during all phases and throughout the whole procedure of
evaluating the method. Also, details of the method’s configuration and parame-
terization are presented with quantitative feedback. Last but not least,the results
of the proposed method are provided in both quantitative and qualitative forms.

Firstly, we describe the procedure we followed to generate the synthetic data
that we used to train the RBFNs. Specifically, two sequences were captured for
creating a training and testing dataset respectively. In particular, the first sequence
is needed to construct a synthetic dataset that is entirely used in the training phase,
while the second sequence is exclusively used for testing. For testing our method
we also used the publicly available MSRA hands dataset in [72].

Each dataset used by our method has to be preprocessed before entering the
pipeline. This is done to make all input uniform with regard to the image size,
image pixel values and the hand positioning. This preprocessing allows us to treat
all input images in a uniform manner.

We define a metric for comparing hand poses in order to evaluate our method.
This metric is also used for the hyper-parameter tuning, to determine the best
parameterization of our model.

In order to tune the hyper-parameters we use a subset of the synthetic training
set to find the best parameters for our method. The tuning is performed to opti-
mize the method with respect to the number of centers, the value of the standard
deviation σ used in the RBFNs (Sec. 3.1.2) and the number of epochs used by IRA
in Sec. 4.2.1. The chosen parameters are assessed using the respective pose estima-
tion errors of the models, created using these parameters. This procedure allows
us to select the hyper-parameter values that result to the best pose estimation
error.

Finally, we present the results of evaluating the proposed method. The evalu-
ation is performed on two datasets, the second captured sequence and the MSRA
hands dataset. We evaluate on each dataset two equally trained models. The first
one is the model of the proposed method as describes in Sec. 4, and the second one

27
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is only the initial network RBFNinit, without the use of the iterative refinement
of the specialized RBFNs. For both datasets and models we present quantitative
and qualitative results showing the performance of our method.

5.1 Datasets

In order to employ the training phase, a dataset must be used to train the im-
plemented networks. This dataset was created synthetically using a prerecorded
sequence. The evaluation of the method is performed on different datasets. In
this work we provide experimental evaluation on two datasets, one created from
a captured sequence, and the other being a publicly available dataset, the MSRA
hand dataset [72]. All datasets are preprocessed before being used as input for
both training and evaluation phases.

5.1.1 Captured Sequences

For creating the captured dataset used in this work, we recorded two sequences
of human hand poses. Overall, we recorded the color and the depth information
(RGBD) of a human hand performing a large variety of finger articulations on
a limited range of hand pose rotations. The hand actions that are performed in
the second sequence are identical to the actions of the first sequence. They were
recorded in this manner with the prospect of using the first sequence as a training
information, and the second sequence as a test.

The first sequence is about 2 minutes long, and the second sequence is about 1
minute and 30 seconds long. Specifically, the first sequence contains 3180 frames of
color and depth maps individually, and the second sequence contains 2710 frames
of color and depth information. Sample frames of the captured sequences with
their depth maps are illustrated in Fig. 5.1. All images are of size 640 × 480,
captured from a RGBD depth sensor. The cropped images shown in Fig. 5.1 are
only for visualization purposes, and not the actual input to the system.

We employ the implementation of the method presented in [49] to track the
sequences with a large budget, yielding accurate estimation of each of the hand
poses, which is a 27-parameter vector p for each frame. The manual initializa-
tion required by this method is the only manual annotation used in the proposed
pipeline. The tracked information returns accurately hand poses that are used
as target values y for training the networks. Also, these hand poses are used as
ground truths for evaluating estimations of depth maps.

The 20 last elements, φ1, . . . , φ20, of every hand pose p from the first sequence,
define the articulation set A. These pairs of depth maps and hand poses of the
first sequence are used in the creation of the synthetic dataset.
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Figure 5.1: Samples of the captured dataset: First row original 640 × 480 RGB
images with their corresponding depth images, second to fourth row cropped RGB
images of hands with their corresponding depth images.

5.1.2 Synthetic Dataset

A synthetic dataset is created that is used during the training phase in Sec. 4.1.1
for the creation of the training set. For the creation of the synthetic dataset we
use the 3180 hand poses that were tracked from the first captured sequence.

As mentioned, the first captured sequence has a limited range of hand pose
rotations. This makes the dataset less diverse as it does not cover a large space of
hand poses. This is not desirable because we want to train the RBFNs so that they
generalize to any given depth map of a hand pose. Capturing a large sequence of
hand poses with more rotations is also not desirable, because it can become a time
consuming and tedious process. Thus, we need to create a more dense augmented
training set that covers a large space of hand poses in an autonomous fashion.

To augment the training set, we sample densely the quaternion space comput-
ing a set of unique and diverse quaternion vectors. Towards this end, we follow
an approach that largely resembles the KKZ approach. Specifically, we create a
huge set of random normalized quaternion vectors Q that represent the quaternion
space. Then we start by randomly sampling without replacement one quaternion
from this space and add it to a new set R. Next, we find for all quaternions in Q
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Algorithm 2 Generating rotation set R

Input: A set of random normalized quaternion vectors Q.
Output: The rotation set R.

R← q;
// where q is a randomly sampled quaternion from Q

for j = 1 . . .#quaternions do
// where #quaternions is the number of quaternions we want to insert in R

q← arg max
q

(min(DQ(Q,R)))

//DQ returns the distance matrix between all quaternions from set Q to R

Q← Q− {q}
R← R ∪ {q}

end for
return (R);

the closest quaternions to the ones in R by calculating the distances between the
set Q and R. The quaternion with the maximum shortest distance from Q will be
added to R. We repeat the above steps for a desired number of rotations. The
distance between two quaternions q1 and q2 is defined in Eq. 4.1:

DQ(q1,q2) = 1− (q1 ∗ q2).

Algorithm 2 describes the generation of set R.
The idea of creating the set of rotations R is similar to the described KKZ

algorithm in Sec. 3.3. In this work we set the number of desired quaternions to
be equal to 1024. Selecting a higher number would benefit towards the increased
density of the dataset, but we are confined to the memory space as we will explain
below.

Having the two sets A and R we can proceed with the creation of the synthetic
dataset. We create hand pose vectors p by taking all possible combinations of
articulations from A and rotations from R. That means that pφ = a,∀a ∈ A

and pq = r, ∀r ∈ R. The global positions of the hand poses are set to px = 0,
py = 0 and pz = 1000. Setting those numbers to any other value will affect
negatively the generation of depth images below. In conclusion we will end up
with 3180× 1024 = 3256320 different hand poses for our dataset.

Having the generated poses of our dataset, we need to generate the depth
maps that correspond to the hand poses. From the implementation of [49] we also
use the module that synthesizes candidate depth maps of our skinned articulated
hand model. We refer to the functionality of this module as Ren in Sec. 4. By
applying the rendering function Ren to every hand pose p of the synthetic dataset
we generate the corresponding 3256320 depth maps Ren(p).

Overall, after this procedure we have in our possession the input depth images
x = Ren(p) and their target values y = p required by the training procedure.
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Figure 5.2: Samples of the synthetic dataset.

For the purposes of this work we select a synthetic dataset to be the one that is
used for training, as annotating real-world data is time and recourse consuming
compared to synthetic data creation.

Samples of the synthetic dataset are presented in Fig. 5.2. The images of the
poses presented are cropped, only for visualization purposes.

5.1.3 MSRA Hands Dataset

A publicly available dataset was also used for evaluating the performance of this
work. The publicly available dataset, MSRA hands dataset, presented in [72] is
a large dataset of hand poses. The dataset consists of 17 different hand gestures
performed from 9 different subjects. Each gesture is recorded for about 500 frames,
for a total of 76500 frames. The provided depth maps are annotated with 3D joint
locations. In particular, there are 21 annotated 3D joints for each depth map.
We manually mapped the joints of this dataset to the corresponding landmarks of
our hand model in order to compare the estimated hand poses with the annotated
hand poses of this dataset.

The hand shapes and sizes differ from subject to subject making the dataset
diverse. The performed gestures are mostly chosen from the American Sign Lan-
guage. Specifically, the gestures consist of numbers 1 to 9 and 8 more letters from
the American Sign Language. Each gesture is repeated for many rotations span-
ning as much as possible the finger articulation and hand rotation space. This
dataset was used to evaluate the proposed method for all the varying articulations
rotations and hand shapes captured by this dataset.

Samples of depth images with their ground truth joint annotations are shown
in Fig. 5.3.
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(a) 1 (b) 2 (c) 3 (d) 9

(e) I (f) IP (g) L (h) MP

(i) RP (j) T (k) TIP (l) Y

Figure 5.3: Samples of depth images of MSRA dataset with the annotated joints
for some of the numbers (Fig. 5.3a-5.3d) and letters of the American Sign Language
(Fig. 5.3e-5.3l).

5.1.4 Input Preprocessing

Every dataset has its differences regarding the input depth maps. The differences
include, the variety of image sizes, the depth values where the hands were captured,
the background depths and the models of the hands used. We pass the input
through a preprocessing step to achieve a fair comparison of the inputted data of
the network. All depth maps are preprocessed from every dataset.

For every depth image, used for training or testing, we apply the following
procedure. We mask the region of the depth map where the hand is located. This
region contains all the projected depth pixels that are part of the hand from the
wrist to the fingertips. All the pixels that are not located in the masked region
have their value set to 0. We find the bounding box that contains the masked
hand. Using this bounding box we crop the depth image. The cropped image is
padded with zeros along its smallest dimension in order to make it a square image
with equal height and width. The padded zeros are inserted symmetrically on the
two opposite sides of the smallest dimension so that the hand will be located in
the center of the image. Each depth map is normalized by subtracting the median
value of the non-zero values and adding to them a fixed depth value of 1000. Finally
we resize the image to 64 by 64 pixels using Nearest-neighbor interpolation.

After applying this procedure to a test image, we store the subtracted median
so that we can add it later in order to estimate the actual position of the hand.
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This procedure is used to make the comparison between depth maps possible, as
RBFNs compare centers, that in our case are the preprocessed depth images.

5.2 Metric Definition

To evaluate the performance of the method we define a metric for comparing two
hand poses. The metric quantifies the distance between two hand poses, taking
into account their 3D global position, articulation and rotation.

For two given hand poses p1 and p2 the function that measures the distance
between them, is defined as

D(p1,p2) =
1

n

n∑
l=1

||L1l − L2l ||2 (5.1)

where L1 and L2 are the landmarks of hand poses p1 and p2 respectively, and n is
the number of landmarks on our model. It is easy to see that, since this distance
is defined as the average of point distances, its unit of measurement is the same,
in our case millimeters (mm). As mentioned before, we use a similar distance
function (Eq. 4.2) in Sec. 4.1.1 for measuring distances between articulations. In
contrast to Eq. 4.2, Eq. 5.1 does not imply anything to be fixed on the hand poses,
giving a complete comparison between two distinct hand poses.

We will refer to this function as the distance error function. We use this func-
tion to evaluate and measure the performance of individual parts of our method,
such as specialized RBFNs or the initial RBFN, as also the whole method itself.
This function is also used to tune the hyper-parameters, optimizing the perfor-
mance of our method.

5.3 Hyper-parameter Tuning

As stated before, our method uses three hyper-parameters that must be chosen
beforehand. These are the centers of the RBFNs, the parameter σ used by the
radial basis functions and the epochs used during the evaluation phase of the
method. To select the best parameters we must investigate possible parameter
initializations and validate our method trying to find the best parameters.

For each investigation we train our method on a subset of the training set, and
validate on a separate validation set to find the ones that increase the accuracy of
the method.

5.3.1 Centers Selection

The alternative procedures for the selection of centers in a RBFN differ not only
on the desired number that specifies the quantity of centers in the network, but
also on the way we select these centers. Specifically, variations exist on the way a
center can be selected and formed.
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In our case, centers correspond to vectors with 4096 elements derived from the
input images (64× 64 image size). As described in Sec. 3.1.2 we try two different
approaches for center selection. The first approach is to select k centers from the
training set by performing a k-Means clustering, while the second approach is to
create a center for every training sample.

For selecting the centers we use a smaller part of the synthetic training set
as created in Sec. 4.1.1 to train the networks and a validation set taken from the
same synthetic dataset. Specifically, the 40 first articulations and 40 first rotations
from the sets A and R respectively are chosen to train the networks. We train 40
articulation specialized RBFNs, 40 rotation specialized RBFNs and the RBFNinit

for z = 40, forming a total of 1600 training samples. The validation set contains
1000 random samples taken from the same synthetic dataset, different from the
ones selected for training.

5.3.1.1 Mini-batch k-Means Center Clustering

To achieve clustering of the centers we use a variation of the k-Means algo-
rithm [35]. The Mini-batch k-Means algorithm is introduced in [66]. This variation
of the k-Means algorithm reduces computation cost by orders of magnitude com-
pared to the classic algorithm while achieving comparable results to the regular
k-Means algorithm. This is achieved by using mini-batch stochastic gradient de-
scent to solve the optimization problem of finding the nearest cluster of the data.

We train our networks with the training set described for validation. As σ we
assign the value 4016, and estimate the final poses for 6 epochs. This value does
not affect our final validation, as long as we train all networks equally with the two
hyper-parameters fixed. During the training of each RBFN, including the initial
one, we perform the Mini-batch k-Means algorithm for various numbers of k. The
number k denotes the number of centers we want to select. We repeat the training
procedure of all our networks, specialized and initial, for 12 different numbers of
centers. Specifically, we train our method for 128, 256, 384, 512, 640, 768, 896,
1024, 1152, 1280, 1408 and 1536 centers. We evaluate each trained model on the
previously described validation set and present the results in Fig. 5.4.

The graph in Fig. 5.4 shows the percentage of hand poses of the validation set
having average distance error less than the threshold in the horizontal axis. We
observe that as we increase the number of centers we have a significant gain in
the performance of our method. Even though for 1536 centers, that is the highest
number of centers of this graph, the minimum distance error is not the lowest.
Still, for higher percentage of the validation set we obtain lower distance errors.
Overall, it is clear to assume that as the number of centers increases and gets
closer to the number of the training samples, which is 1600, the performance of
our method improves.
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Figure 5.4: Validating RBFNs for different number of centers.

5.3.1.2 Training Set Center Assignment

Following the intuition of the previous experiment, we discard the clustering
method and train a new model using as centers each training sample separately,
that is 1600 centers. Again the other two hyper-parameters are fixed with values
σ = 4016 and 6 epochs. Figure 5.5 shows the results of the previous experiment,
plus the new trained model that uses as centers all the training samples without
clustering.

As expected the new model has the best accuracy overall, proving the assump-
tion of the previous experiment, that the performance of the model increases when
the number of centers reach the number of samples used for training. Intuitively
this means that the best performance is achieved when memorizing the training
dataset, interpolating between its samples.

5.3.2 Selection of σ

The value of parameter σ can be initialized as defined in Eq. 3.8:

σ =
1

n

n∑
i=1

‖xi‖.
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Figure 5.5: Validating RBFNs for different number of centers plus a model trained
on all training samples.

As stated though, this may not be the optimal value, thus we need to perform a
validation to determine the best value for the parameter.

To validate for the best value of the parameter σ, we use the RBFNinit network
trained for z = 100 on the 100 first articulations and 100 first rotations of sets
A and R respectively from the training set in Sec. 4.1.1, having a total of 10000
training samples. And as validation set we use the same 1000 random samples used
for the center selection that are different from the training samples. We select as
centers of the trained models, to be the training samples. Since we use only the
initial RBFN, we do not have to specify the number of epochs.

We train multiple individual RBFNinit models for different values of σ. Specif-
ically, we range the value of σ for 11 different values: 1600, 2536, 4019, 6370, 10095,
16000, 25358, 40190, 63697, 100953 and 160000. These values are created using
the mean of our training data, which in our case is 1600. We select those values
around the mean that are formed as

σ = d1600 ∗ 10se (5.2)

where s takes the values: 0 to 2 with step 0.2.
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Figure 5.6: Validating RBFNs for different number of σ values.

We assess the performance of those 11 networks for the same validation set of
1000 random samples used for the center selection. The results are presented in
Fig. 5.6.

We observe that even though the most optimal value for σ is 10095, the average
distance error decreased only by 1.2mm from the the highest average distance error.
Although the reduction is negligible, we prefer σ = 10095 for the slightest increase
of accuracy.

5.3.3 Number of Epochs Selection

Finally, to select the number of epochs we use the obtained method after trained
on the same training set of 1600 samples that we use in center selection and with
the same validation set of 1000 test samples. We train again 40 articulation and
40 rotation specialized RBFNs as also the RBFNinit for z = 40 using the 1600
training samples. The networks are trained with the training samples selected as
centers and parameter σ = 10095.

We perform the estimation phase on our validation set using 2, 4, 6, 8 and 10
epochs and report the average distance error for each evaluation. The results are
presented in Fig. 5.7.

We can observe that for 8 number of epochs we achieve the lowest average
distance error, and beyond 8 epochs the accuracy appears to degrade and the error
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Figure 5.7: Validating RBFNs for different number of epochs.

to increase. While there is an important difference of the average error between
2 and 8 epochs, we notice that from 6 to 8 epochs the distance error improves
hardly by 1mm. Also, for 6 epochs it took about 1 second on average to conclude
on an estimation, while for 8 epochs the method needed 1.25 seconds on average.
This might not be noticeable on our validation experiment, but for larger training
sets this might affect our evaluation time (see Sec. 4.2.1). Having said the above,
we prefer 6 number of epochs over 8 since the increase in computational time is
disproportional to the accuracy gain.

5.4 Results

We conducted four experiments to evaluate the performance of our method. The
first experiment evaluated the proposed method on our own captured test sequence.
The second experiment evaluated the proposed method on the publicly available
MSRA hands dataset. The third and fourth experiments evaluated only the initial
network RBFNinit on the captured test sequence and the MSRA dataset respec-
tively, to experimentally verify the validity of the iterative refinement scheme.
All the experiments ran on a computer equipped with Intel Core i7-4790 CPU at
3.60GHz × 8 and 16GB of RAM.



5.4. RESULTS 39

For conducting the first two experiments we started by training the entire
pipeline of the proposed method on the synthetically created training dataset using
the previously identified hyper-parameters. Specifically, as described in Sec. 4.1.1
we used |A| = 1024 articulations to form the set A and |R| = 1024 rotations to
form the set R that combined constitute our training set. Thus, we trained 1024
articulation specialized RBFNs and 1024 rotation specialized RBFNs. For training
the initial RBFN we selected z = 100 to form a total of 10000 training samples to
train the RBFNinit. We set for all RBFNs the centers as the respective training
samples of each network. All networks are trained with σ = 10095. The estimation
phase iterates for 6 epochs.

For the third and fourth experiments we used only the one initial network
RBFNinit with z = 100 to perform hand pose estimation. Therefore, combinations
of 100 articulations and 100 rotations were used, forming a total of 10000 training
samples. Again we set as centers of the trained network the samples used for
training. The training is performed for σ = 10095. Since we do not use any
refinement in this model, no number of epochs needs to be specified.

The sizes of the sets A and R as well as the value z that corresponds to the
training size of the RBFNinit, were selected purely for practical reasons as larger
sizes are limited by our computer’s memory. Because we do not favor articulations
over rotations and vice versa, we select both sizes |A| and |R| to be equal. Note
that if the density of the test articulation or rotation space is known beforehand
then by adjusting these parameters we can easily emphasize more towards one or
the other. More generally, the proposed method can easily incorporate constraints
on the rotation or articulation space.

5.4.1 Quantitative Results

For the first experiment we used our own real-world sequence to perform the
evaluation on the proposed method. The sequence is composed out of 2710 frames
containing depth and color information as well as the bounding boxes that contain
the hands. Alongside we had the accurately tracked hand poses that we used as
ground truth in order to compare them with the estimated ones.

Using the testing sequence we measure the distance error of the estimated poses
and plot the number of samples that correspond to each distance. In Fig. 5.8
we present the histogram with 250 bins for the distance errors for these testing
samples.

The proposed method achieves an average distance error of 44.37mm on the
captured test sequence and with standard deviation of 17.74mm. Even though the
average error is greater than 2cm we can observe that many of the tested samples
have distance error close to 2cm.

In the second experiment we evaluated our method on the MSRA dataset.
The dataset is composed out of 76500 frames from 9 subjects performing 17 ges-
tures. We are provided with depth information and the bounding boxes containing
the hand for each frame. Again we are given the ground truth of the poses for
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Figure 5.8: Histogram of distance errors for the estimations on the captured se-
quence of the proposed method.

computing the distance errors.

We measure the error of the poses that our method estimated for the MSRA
dataset, plotting the number of samples that have a certain distance. The resulting
histogram is presented in Fig. 5.9 with 250 bins.

On the MSRA dataset, our method achieves an average distance error of
49.60mm and standard deviation of 12.60mm. Even though the standard de-
viation is quite low, we have some testing samples that reach distance errors of
430mm. Still, more than 99% of our samples have distance error less than 100mm.

For the third experiment we used the trained model that uses only theRBFNinit

for estimation. In this experiment we evaluated this model on our captured test
sequence. In Fig. 5.10 we present the histogram that shows the number of test
samples having a certain distance error, for 250 bins.

Having an average distance error of 61.13mm and standard deviation 6.46mm
we can observe that the iterative refinement that we impose in the previous exper-
iments, improves the performance of our method. The deviation of the distances
may increase with the use of IRA, in the contrast the accuracy of the method is
almost doubled.

For our last experiment we used again the model of RBFNinit to evaluate the
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Figure 5.9: Histogram of distance errors for the estimations on the MSRA dataset
of the proposed method.

poses of MSRA dataset. Figure 5.11 shows the histogram of distance errors for
250 bins.

With average distance of 61.45mm and standard deviation of 10.02mm we can
see that the absence of IRA degrades the accuracy of our model. Again on the
same dataset we observe a few large distances reaching 370mm, but as previously
more than 99% of our test samples have distance error less than 100mm.

To ease the comparison between the use and the absence of the iterative re-
finement scheme in our method, we present two plots that show the percentage of
poses, on the vertical axis, for which the distance error is below a certain threshold,
on the horizontal axis, for both datasets. In Fig. 5.12 the plot for the captured
test sequence is presented, while in Fig. 5.13 the same plot is shown for the MSRA
dataset.

We observe now that the use of IRA improves the initial estimation provided by
the RBFNinit. Thus, the accuracy of the method increases in both datasets. We
can also observe that for some difficult poses the RBFNinit estimates poses that
the specialized RBFNs can not further refine, on the contrary specialized RBFNs
worsen the final estimation. Nevertheless, it is noteworthy to say that the method
performs better on the captured test sequence, than on the MSRA dataset. We
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Figure 5.10: Histogram of distance errors for the estimations on the captured
sequence of RBFNinit model.

Table 5.1: Average distance errors (mm) for the four experiments.

Captured test sequence MSRA dataset

RBFNinit and IRA 44.37 49.60

RBFNinit only 61.13 61.45

hypothesize that the different hand shapes and sizes as well as the varying depth
ranges contribute to this degradation in performance. Still, the performance is very
appealing given the fact that the method achieves a generalization from synthetic
to real data.

Summarizing, we collect all average distances in Table 5.1, and all deviations
of our experiments in Table 5.2.

The use of IRA is significant for the performance of our method, proving that
the specialized RBFNs manage to refine the initial estimations that they are pro-
vided by the RBFNinit.

Table 5.3 presents average distance errors for 4 methods that were tested on the
MSRA dataset and our method. All of the 4 methods were trained on 8 subjects
of the MSRA dataset, and tested on the held out subject.
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Figure 5.11: Histogram of distance errors for the estimations on the MSRA dataset
of RBFNinit model.

Table 5.2: Standard deviation (mm) of testing samples for the four experiments.

Captured test sequence MSRA dataset

RBFNinit and IRA 17.74 12.60

RBFNinit only 6.46 10.02

Table 5.3: Comparison of our method with other methods from the literature on
the MSRA dataset.

Method Median Distance Error

Wan et al. [81] 25± 2mm

Sun et al. [72] 28± 2mm

Wan et al. [82] 32± 2mm

Ge et al. [16] 20± 2mm

Ours 48.93mm

Note that our method was tested on the whole dataset of 9 subjects and not
only on a single (not specified) subject as was done by the other 4 methods.
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Figure 5.12: Percentage of poses that are under a certain average distance error
threshold for the captured test sequence.

We observe that our method has the largest error compared to the other methods.
However, we trained our method on a synthetic dataset, meaning that our approach
has never seen any frame from the test dataset, or any other real-world dataset
for that matter. On the contrary, the compared methods were trained on a part of
the dataset that was used for testing. Even though the error we achieve is higher
than the other approaches, it is satisfactory as seen by the qualitative results in
Sec. 5.4.2, illustrating that our method is capable of generalization.

5.4.2 Qualitative Results

Figure 5.14 shows representative frames of estimated hand poses on the captured
test sequence with their respective manually annotated ground truths. And in
Fig. 5.15 we present images of estimated hand poses on the MSRA dataset. On
left is shown the test depth image with the annotated ground truth and on right
the estimated pose.

For the captured test sequence we can observe that the results are quite ap-
pealing. For some cases it is clear that the manual annotation was not accurate
enough, thus the estimation has a closer similarity to the annotation rather than
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Figure 5.13: Percentage of poses that are under a certain average distance error
threshold for MSRA dataset.

to the original RGB image.
For the MSRA dataset we observe that the estimations are quite accurate as

well, and the method manages to generalize well on the public dataset despite
the increased average error. We may notice that for subjects with different hand
shape variations (such as Subject 5), the estimations are slightly worse from other
subjects, given the fact that our method is trained using a single hand shape.

In Fig. 5.16 we present some fail cases of hand pose estimations. We observe
how our method tries to fit regressed hand poses to the input depth map by
projecting wrong finger articulations that can generate similar depth maps to
ones that we insert as input. Other fail cases show how the method may fail on
articulation estimations more often than on rotation estimations, as the rotation
is close to the desired one but the articulation is the one that seemingly increases
the error. While other cases show how for difficult poses where are minor depth
changes (as in the case of closed palm) the method fails to estimate accurately the
rotation of the hand.
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Figure 5.14: Qualitative results on captured test sequence: (Left) is the RGB
test image, (Middle) is the manually annotated ground truth, (Right) is the final
estimation.
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Figure 5.15: Qualitative results on MSRA dataset: Left part of each image sample
is the test depth image with the annotated ground truth, Right part of each image
sample is the final estimation.
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Figure 5.16: Fail cases for both datasets.



Chapter 6

Conclusions

In this thesis we presented a method for single-shot hand pose estimation using
a depth map as input. We created a large synthetic dataset and trained multi-
ple RBFNs on it. We used an initial RBFN to give a rough estimation given a
depth image. Then with the use of specialized RBFNs we managed to iteratively
refine this approximation arriving on a final estimation. The use of RBFNs al-
lows our method to make use of a large synthetic dataset, generalizing well to
real-world data. We validated our method in order to tune the hyper-parameters
of the proposed model. We justify the selection of these hyper-parameters, by
presenting quantitative results. Finally, we tested our method on two different
testing datasets. The first one is a captured sequence, and the second is a pub-
licly available dataset, that is used to assess hand pose estimation methods. To
draw our conclusions, we presented quantitative results of our proposed method,
accompanied also by qualitative feedback.

From a theoretical point of view, the significance of the proposed method is
that it shows that RBFNs can generalize quite well when learning synthetic data.
A RBFN does not search for patterns in local partitions of the data, and tries to
associate the data with the defined distances from its centers. A stand alone RBFN
might not perform satisfactory, but with the refinement of its initial suggestion,
multiple specialized RBFNs can improve the final estimation.

Future Work

Future work includes the investigation of the effects of parallax distortion and the
generalization across human hand sizes and shapes. The comparison with other
works and datasets would increase the perspective view on the concluded mat-
ter. Specifically, experimental comparison with deep learning approaches trained
on synthetic data would give clearer support over the assumption that RBFNs
generalize better than other deep learning architectures.

Also, we may exploit the ability of the proposed method to incorporate rotation
or pose constraints by applying it to the egocentric observation scenario as well as

49
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on the scenario of detecting a small vocabulary of predefined gestures.
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Mario Botsch, and Mark Pauly. Robust Articulated-ICP for Real-Time Hand
Tracking. In Computer Graphics Forum, 2015.

[75] Danhang Tang, Hyung Jin Chang, Alykhan Tejani, and Tae-Kyun Kim. La-
tent regression forest: Structured estimation of 3d articulated hand posture.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3786–3793, 2014.

[76] Jonathan Taylor, Benjamin Luff, Arran Topalian, Erroll Wood, Sameh
Khamis, Pushmeet Kohli, Shahram Izadi, Richard Banks, Andrew Fitzgib-
bon, Jamie Shotton, Lucas Bordeaux, Thomas Cashman, Bob Corish, Cem
Keskin, Toby Sharp, Eduardo Soto, David Sweeney, and Julien Valentin. Ef-
ficient and precise interactive hand tracking through joint, continuous op-
timization of pose and correspondences. ACM Transactions on Graphics,
35(4):1–12, 2016.

[77] Michael E Tipping. Sparse bayesian learning and the relevance vector ma-
chine. Journal of machine learning research, 1(Jun):211–244, 2001.

[78] Jonathan Tompson, Murphy Stein, Yann Lecun, and Ken Perlin. Real-time
continuous pose recovery of human hands using convolutional networks. ACM
Transactions on Graphics, 33, August 2014.



58 BIBLIOGRAPHY

[79] Dimitrios Tzionas, Luca Ballan, Abhilash Srikantha, Pablo Aponte, Marc
Pollefeys, and Juergen Gall. Capturing Hands in Action Using Discriminative
Salient Points and Physics Simulation. International Journal of Computer
Vision, 118(2):172–193, 2016.

[80] Zekeriya Uykan, Cuneyt Guzelis, M Ertugrul Celebi, and Heikki N Koivo.
Analysis of input-output clustering for determining centers of rbfn. IEEE
transactions on neural networks, 11(4):851–858, 2000.

[81] Chengde Wan, Thomas Probst, Luc Van Gool, and Angela Yao. Crossing
Nets: Combining GANs and VAEs with a Shared Latent Space for Hand
Pose Estimation. In CVPR, 2017.

[82] Chengde Wan, Angela Yao, and Luc Van Gool. Direction matters: hand pose
estimation from local surface normals. In European Conference on Computer
Vision, pages 554–569. Springer, 2016.
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