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Deep Learning Techniques in Signal Processing
Abstract

Deep learning architectures have revolutionized research in numerous scien-
tific domains and triggered a paradigm shift from traditional machine learning
methodologies and feature engineering to architecture design and the so-called
“end-to-end” training. While the efficacy of deep learning networks can be strongly
attributed to their vigorous capacity of extracting aggregated knowledge, as the
size of the available data increases, at the same time they exhibit an underwhelm-
ing performance, when trained with a limited amount of annotated examples. Our
main aim, in this thesis, is to explore the impact of the utilization of state-of-the-art
deep learning methodologies, in both cases of data abundance and data deficiency,
in two major research topics in the fields of cosmology and remote sensing.

In the first case study, we address the problem of spectroscopic redshift es-
timation in astronomy. Due to the expansion of the Universe and its statistical
homogeneity and isotropy, galaxies recede from each other on average. This move-
ment causes the emitted electromagnetic waves to shift from the blue part of the
spectrum to the red part, due to the Doppler effect. This redshift is one of the most
important observables in astronomy and cosmology, allowing the measurement of
galaxy distances. Several sources of astrophysical and instrumental noise render
the estimation process far from trivial, especially in the low signal-to-noise regime
of many astrophysical observations. In recent years, new approaches for a reliable
and automated methodology of the redshift evaluation have been sought out, in
order to minimize our reliance on currently popular techniques that heavily involve
human intervention. The fulfillment of this task has evolved into a grave necessity,
in conjunction with the insatiable generation of immense amounts of astronomical
data, falling into the category of the so-called Big Data. We propose an alterna-
tive approach that transforms the issue at hand from a regression problem to a
multi-class classification task, opening the field for the deployment of a currently
dominating deep learning classifier, commonly known as Deep Convolutional Neu-
ral Networks. This approach is extensively evaluated on a spectroscopic dataset
of full spectral energy galaxy distributions, modelled after the upcoming Euclid
satellite galaxy survey. Experimental analysis on observations of idealistic and
realistic conditions demonstrate the potent capabilities of the proposed scheme.

In the second case study, we examine a flourishing research topic in the field
of remote sensing, namely land cover classification. Conventional methodologies
mainly focus either on the simplified single-label scenario or on pixel-based ap-
proaches that cannot efficiently handle high resolution images. On the other hand,
the problem of multi-label land cover scene categorization remains, to this day,
fairly unexplored. While deep learning and Convolutional Neural Networks have
demonstrated an astounding capacity at handling challenging image classification
tasks, they significantly underperform when trained on limited in size datasets. To
overcome this issue, we propose an online data augmentation technique that can



drastically increase the size of a smaller dataset to copious amounts. Our experi-
ments on a multi-label variation of the UC Merced Land Use dataset demonstrates
the potential of the proposed methodology, which outperforms the current state-
of-the-art by more than 6% in terms of the F-score metric.



Teyvixég Badidg Mdidnong otnv Encslepyacio
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Ilepiandn

Ou apyttextovixég Badide udinone €youv empépet Veyehiddels ahhayéc otny é-
PELVOL TOAVGEIIUWY ETULO TNUOVIXGY TEDIWY Xl €YO0LY TUPOBOTHCEL T1) UETAC TROPT| Ao
TIC TATEOTOEADOTES UEVOBOAOYIEC UNYOVIXAC UAINONE X TNV XATUGKELY| Y VOEIOUS-
TWYV, TN OYESlUON APYITEXTOVIXADY X0 G TNV ENOVOUalOUEVY exnaldeuan “amd dxen
oe dxpn”. Evo n anoteleopatixdtnta Twv dixtiwy Bodide udinone umopel vo o-
nodolel o1 o¥evapr woavdTNTd Toug var e€dyouy cuvalpoloUEV YVKOOT, xadde To
TA00¢ TV Bladéotuwy SeB0UEVLY ALEAVETAL, CUYYEOVKS ATOBBOUY AMOYONTEUTIXG,
OTaY EXTALOEVOVTOL UE T1) YPNOT TEPLOPLOUEVWY GE TANVOC CNUELWUEVKDY OEBOUEVWYV.
H Boowr emdiwdn authc tng epyactog etvor 1 e€epedivnor Tou avTtixTunou oYy eoveY
pedodoroyiwy Pothdc uddnone, oe nepintioeic ENeuhng 1 agpdoviag dedouévwy, o
0U0 ONUAVTIXG EPELYNTIXG VEUUTA TTOU ANMTOVTOL TWV TEBIWY TNG XOCUOAOYIOC Xou TNG
TNAETLOXOTNOTC.

L1y mpdTn TEQITTOOLI0AOYIXT UEAETN VETOUUE el TAMNTOC TO TEOBANUL EXTIUNONC
e aoyatooxomixic epulprc UeTatomong otny acteovoula. Eoutioc tne dwoto-
AT ToU XOUTOVTOC %ok TNG CTATIOTIXAC TOU OUOLOYEVELIC X0 IGOTEOTIAC, Ol Yoho&leg
amouaxELVOVTAL, XaTd PEGo Opo, ueTal Toug. AuTh 1 xivnon avayxdlel Ta exTEUTO-
MEVA NAEXTEOUAY VITTIXG. XOUATO VO UETATOTUGTOVY OO TO UTAE TUAUA TOU QACUATOS
GTO XOXXWVO, CLUPWVY UE To (ovouevo Doppler. H epulpy| yetatodnion etvor omd ta
O OMUAVTIXG PAUVOUEVA GTNV AOTEOVOULA Xl TNV xoopohoyia, xahoThvTag duvaTy
TN METENOT TWV ATOCTACEWY TV YoAolwy. Apxetéc mnyéc Yoplfou, elite actpopu-
OWAC TPOEAEUOTC ELTE Amd ToL OpY VYL HETEPNOEWY, xahoToUY T1 dladacia extiunong
UN-TETEWHEVT), EOLXA OE TEPITTAOELS 00 TROPUOIXWY TARATNENoEWY LYol YoplBou.
To teheutador ypovia, €xouv avalntniel véeg mpooeyyloeg yia TNy o&lOTO TN XL ou-
TOUATOTOLNUEVY EXTIUNOT) TNG EPUUPHC UETATOTIONS, UE OXOTO Vo EAdyloTOTOINVEL 1)
e€dpTnom Wag and Tig uTdpyouces dnuopieic TeYVIKé Tou BaocilovTon oy upd o TNy av-
Yeomvn mopéufaor. H exnifpowon auvtic tne avalrtnong anotelel coPapn avoryxato-
TNTO, O GUVBLOIOUOS UE TNV OXOPES TN TOEAY WY 1) ATEQUVTMY, G TARUOC, G TEOVOULIXMY
dedopévwy mou umdyovton oty xatnyoplo Twv Meydhwy Acdouévov. Ilpoteivouue
ulor evodhoxtixry mpocéyyion, mou petacynuoatiler To {nroduevo medBAnua and éva
Chtnua mohvdpounong oe éva TedBANua TaEvounong ToAUmAOY xhdoewy. Etot, a-
volyel o 8pouoc yia Ty aglomoinom evog unepioybovtog tadvounty Batde udinong,
XOWOC YVWoTog wg Bohd Nevpwvixd Aixtua Yuvéhéng. Amotyolue extevdg T
TEOGEYYLON QUTH, UE TN YEHOY PACUATOOOTUXWY DEDOUEVHV TTOU ATOTEAOUVTAL OO
YOUAUELOHES HATAVOUES PUCUOTIXNG EVEQYELNS, UOVTENOTIONUEVA CUUPOVA UE TNV ENER-
YOUEVT ETOXOTNGCT) ToL dopubdeou Euxheldn. H mewpopotind avdiuor oe Oeahlo TixEC
X0l PEOMO TIXES TOPUTNENCELS ETULOEXVUEL TIG LOYUPES BUVATOTNTES TOU TROTELVOUEVOU
oyedlov.

Y deltepn perétn meplntwong e€etdlouue éva oxpdlov gpeuvnixd Yéua 610



Tedlo TS TNAETOXOTNONG, Xl CLYXEXPWEVA TNV Toktvounon xdhudne yne. Ou cup-
Boatixée pedodoroyieg mou €youv yenowonoiniel oto Topedddv eaTidlovy eite otV
ATAOTIOUNUEVT) TERITTWOT] TOU TEOPBAAUATOS HOVABIXOY ETIXETWY, EITE OE TROCEYYIOELC
Baolopéveg oe eovooTolyela, ol omoleg Bev UTOPOUV VoL BLAYELRIGTOOY ATOBOTIXG
exoveg LPNATg avdivone. Avtideta, To TEOBAnua tng Tavounong xdiudng yng ue
TN YeNON TOANATAGDY ETIXETCYV, TOQUUEVEL UEYEL XU CHUEQO OYETIXG aveEepebvnTo.
[Tapd Tou 6T oL uédodol Badidc pdinone xou to Nevpwvixd Aixtua Xuvéhng €youv
emdel€el plor EXTANNTING IXAVOTTA G TNV AVTWUETOTLON OTOUTNTIXOY TROBANUAT®Y To-
Evounong emodvemy, 0w BEV xaTapépvouy va avtamoxetdolv oTic Tpocdoxieg o
TEQITTAOOELS TTOU 1) EXTABEVCT] TOUC TEAYUATOTOLEITOL YE T1| YPNOT| TEQLOPLOUEVKV Oe-
dopévewy oto mAdoc. T vor unepvixicouue 10 cUYXEXEEVO (ATNUA, TEOTEVOUNE
ot SuvoLxy| TEY VXY ETEXTACTC TLVY BEBOUEVKVY T elvar xovi| var augrioet To péyedog
UXEOY GLUVOALY BEdOUEVLY oe dgdoveg tocotnTteg. Ta melpduatd pog o uio Topoh-
hayh) v 6edopévwy UC Merced Land Use, ye moAamhéc eTiXETES, EMOEVOOLY TIG
BLVATOTNTES TOU TROTEWVOUEVOL TANLGEOU, oL EEMEPVEEL TNV TEOUTAEYOUCH OMOTEAE-
opatxdtepn uédodo, xatd éva Toc0oTd e TéEne Tou 6% ot yetpwr| tou F-score.



Euvyapiotieg

Oa flela VoL EUYUPLOTACEK UE TOV THO ELALXEVY TEOTO TOV EMOTTY HOL, XNy NTH
xou ovTimeUTovn xOpto Havoryidytn Toouxohidn, mou and tnv npdtn oty tlotede oe
gUEVOL XL Hou eumioTedTNXE plot Véon otny epeuvnTixn tou ouddo. H extiunomn mou
TEEPE YLOL TNV EQELVITIXT] X0 OXAUOTUGEX Y| TOU LUTOG TaGT) EfValL TOAD LOYLET XU ATOTEAEL
TNYT) EUTVEUONC XU 0BMYO YLoL T1) GUVEYY) HOL TpooTdeld TEOCWTIXNG EEMENC.

Enlong, Yo fleha va exppdow dNpocto Eva UEYIAO EUYOQOIGTE) TEOG TOV UETUOLO0-
ATOPXO EQEVVNTH X0 GUECO EMPBAETOVTE pov, 8oxTwe [enydplo Toayxatdxn, yio
ouvey ) oo THELEN xou TNV avextiuntn Boridelo Tou You Tpocépepe Tar Tpla TEAEUTALY
YEOVL, TOCO GTo TALGLA TNE TTLUYLOXAS 000 %o TNG UETATTUYLOXNAC MOU EpYaTlog.

Aev unopt va unv ovogepd® ot 800 cuyxwvovouvta doyela, o Iavemotiuo
KeAtne xau to Ivetitovto Teyvohoyiog xou Epeuvac, yia dhoug toug ndpouc (exmat-
BEUTIXOUC, EPELVNTIXOVS XAl OLXOVOUIXOUC) TOU Uou Topetyay o teheutada 9 ypdvia,
ywelc ™ cuufolr) Twv onolwy B Va elya xatapépel 6oa €y emTOYEL UEYEL OT|UE-
eo. Amoteholyv xon tar 800 TEOTUTO aXOdNUOIXNG Xou EPELVNTIXNG EUNUEPLUG xou HTaY
MEYSAT) HOU YOed Xl TWUT) TOU OTOTEAECA XOUUATL TOUC OAOL AUTA TAL YPOVLOL.

Axoun, Yo fdeha va avogepdd 6Toug avlp®dToUS, TOU oY XL 1) ETOPT TOUG UE
TNV €WS TOEA OXAONUUEXY| %ol EQEUVNTIXY oL Topelal BeV HTav axpBie GUEST, TNV
xadoploay, Tap’ohd AUTE, UE TOV TO XAlPlo %ol OLUCLICTIXG TEOTO. OEhw Vo Tw Eval
amépavTo euyaplo T oTn Yelo pou Aomoacia, yio Oha 60a €YEL XAVEL VIO EUEVDL, HOL
otoug yovelg wou Avtovn xon Moplo, yio Ty avidlotehy) xou dveu dpwv Bordela,
urtooTAREN xou aydmn Toug. Téhog, xopla AEEN Bev elvon apxeTh yio Voo umopéow
VoL ExPedow TN Padid VYVOUOCSUVH XoL aydnn pou meog T obluyo uou, Erévn. H
xohoa v NG, To Vdppog xa 1 o THELEY TNG AmoTéAECAY PARO TOL POTIOE Tol BUCKOAN
®ote va gatvovTon amAd. Xopic ecéva dev Yo elya xatapépet Timota.
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Chapter 1

Introduction

The rise of the “golden age” of Deep Learning [1] has fundamentally changed the
way we handle and apprehend raw, unprocessed data. While existing machine
learning models heavily rely on the development of efficient feature extractors,
a non-trivial and very challenging task, deep learning architectures are able to
single-handedly derive complex representations concealed in the data by learn-
ing intermediate representations and by structuring different levels of abstraction,
essentially modelling the way the human brain works.

The origins of the deep learning paradigm (also known as Artificial Neural Net-
works - ANNs) lie in the midst of the 20" century. Specifically, Ivakhnenko and
Lapa [2] described for the first time, in 1965, the first working learning algorithm
for supervised deep feed-forward multi-layer perceptrons. For the coming decades,
the concepts surrounding deep learning methodologies evolved and expanded, but
deep learning itself waxed and waned in popularity mostly because of its insatiable
need for immoderate amounts of computational and memory resources. However,
the arrival of the current decade (2010s) marked the end of an era of controversy
and dispute regarding the reliability and viability of ANN architectures and es-
tablished a new order for deep learning, an idea that was once sort of an “ugly
duckling” which blossomed to become “the belle of the ball” [3]. The rapid tech-
nological advancements in the computer processing power and memory-storage
means and the drastic increase in the amount of available data had a profound
contribution in the performance of various deep learning architectures, which were
established as the state-of-the-art in many research fields.

One such an architecture subsists in Convolutional Neural Networks (CNNs)
[4], namely a sequentially structured model that utilizes a combination of convo-
lutional, non-linear, pooling and fully-connected layers. The inspiration behind
CNNs resides in the concept of visual receptive fields [5], i.e. the region in the
visual sensory periphery where stimuli can modify the response of a neuron. This
is the main reason that CNNs initially found application in image classification, by
learning to recognize images by experience in the same perception that a human
being can gradually learn to distinguish different image stimuli from one another.



In this work, we build upon the state-of-the-art methodology of Convolutional
Neural Networks and we focus on its application on two challenging research topics
in the fields of cosmology and remote sensing. Specifically:

e We consider the problem of spectroscopic redshift estimation on realistic and
idealistic galaxy spectral profiles.

e We address the problem of multi-label land cover scene categorization on the
modified, from a multi-label perspective, UC Merced Land Use Dataset [6].

1.1 Big Data as the primary fuel of deep learning method-
ologies

The emergence of the concept of Big Data [7] has signaled a major shift from
the narrow availability of exploitable data to data overflow and under-utilization,
essentially cultivating the need for new approaches on data processing and manage-
ment. The acquisition of data in vast amounts and from various sources has opened
new horizons in scientific research and in the way we apprehend and utilize exist-
ing or newly developed methodologies. The aformentioned monumental success of
deep learning architectures in the recent years, can be strongly attributed to their
interminable capacity to harness the power of Big Data and has been significantly
enhanced by fully exploiting emerging, cutting-edge hardware technologies.

On the other hand, the dependency of these type of architectures on attainable
unlabeled or human-annotated observations constitutes, at the same time, their
major drawback leading to severe under-performance issues in cases where the
availability of said data is limited. The more parameters we want the model
to learn or as complex as the issue at hand gets, so does the data required for
training increase. The risk of these networks overfitting to small training datasets
is highly apparent considering that most of their variations train on parameters
that often exceed the order of magnitude of a million, or even tens of millions. Even
though their potential ability to extract high-level, complex abstractions and data
representations is unparalleled compared to other methodologies, nevertheless this
ability can greatly deteriorate with datasets of inadequate size.

1.1.1 Alternative techniques for data deficiency

Dealing with deficient datasets can prove to be a challenging issue, having in mind
that at first we need to identify the scarcity itself as the source of the network’s
under-performance and, at the same time, to effectively address the problem with
potential solutions. While cross-validation can significantly help in dealing with the
bias-variance dilemma (i.e. the trade-off between underfitting and overfitting), a
series of simple, yet powerful techniques can be also employed to address the prob-
lem of overfitting itself. This set of techniques, commonly known as regularizers,
can be broadly divided into two characteristic categories, either a model-centric
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or a data-centric. In the former case, we interfere with the network’s structure
and functionality with the goal to reduce its complexity and enhance its general-
ization capabilities. Commonly used techniques associated with this case, include
weight decay, early stopping, dropout [8] and transfer learning [9]. In the latter
case, we intervene on the data themselves, either by artificially augmenting their
size (data augmentation) [10] or by consistently normalizing their intermediate
representations in each layer (batch normalization) [11].

In the scope of this thesis, we emphasize on three of the aformentioned tech-
niques, thoroughly described in Chapter 3. Specifically, we examine the cases of
dropout, data augmentation and batch normalization.

1.2 Challenges in remote sensing

The broader scientific area of remote sensing refers to the use of satellite- or
aircraft-based technologies, for the acquisition of information about an object or
phenomenon without any physical contact. There are several scientific fields per-
tinent to the remote sensing archetype and the challenges that it poses. In this
thesis, we consider the problems of spectroscopic redshift estimation in cosmology
and the multi-label scene categorization in land cover classification.

1.2.1 Spectroscopic redshift estimation on galaxy spectral profiles

Modern cosmological and astrophysical research seeks answers to questions such
as “what is the distribution of dark matter and dark energy in the Universe?”
[12, 13], or “how can we quantify transient phenomena, like exoplanets orbiting
distant stars?” [14]. To answer such questions, a large number of deep space
observation platforms has been deployed. Spaceborne instruments, such as the
Planck Satellite! [15], the Kepler Space Observatory? [16] and the upcoming Eu-
clid mission® [17], seek to address these questions with unprecedented accuracy,
since they avoid the deleterious effects of Earth’s atmosphere, a strong limiting
factor to all their observational strategies. Meanwhile, ground-based telescopes
like the LSST* [18] will be able to acquire massive amounts of data through high
frequency full-sky surveys, providing complementary observations. The analysis of
huge numbers of observations from a variety of different sources has paved the way
for new methodologies in various research fields, and astronomy is an indicative
scenario where observations propel the data-driven scientific research [19].

One particular long-standing problem in astrophysics is the ability to derive
precise estimates to galaxy redshifts. According to the Big Bang model, due to
the expansion of the Universe and its statistical homogeneity and isotropy, galaxies
move away from each other and any given observation point. A result of this motion
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is that light emitted from galaxies is shifted towards larger wavelengths through
the Doppler effect, a process termed redshifting. Redshift estimation has been an
integral part of observational cosmology, since it is the principal way in which we
can measure galaxies’ radial distances and hence their 3-dimensional position in
the Universe. This information is fundamental for several observational probes
in cosmology, such as the rate of expansion of the Universe and the gravitational
lensing of light by the matter distribution - which is used to infer the total dark
matter density - among other methods [20, 21].

A variety of photometric redshift estimation techniques have been widely used
due to the fact that photometric analysis is substantially less costly and time
consuming contrary to the spectroscopic case. However, the limited wavelength
resolution of photometry, compared to spectroscopy, introduces a higher level of
uncertainty to the given procedures. In spectroscopy, the dispersion of the light
into a wider spectral band can lead to better discrimination between different wave-
lengths making the whole process far more accurate. By observing the full spectral
energy distribution (SED) of a galaxy, one can theoretically detect distinctive emis-
sion and absorption lines that can lead to a fairly trivial redshift estimation by
measuring the wavelength shift of these spectral characteristics from the rest-frame
(frame of reference where the galaxy is at rest, i.e. at zero redshift).

In practice, estimation of redshift from spectroscopic observations is far from
straightforward. There are several sources of astrophysical and instrumental er-
rors, such as readout noise from CCDs, contaminating light from dust enveloping
our own galaxy, Poisson noise from photon counts, and more. Furthermore, due
to the need of obtaining large amounts of spectra, astronomers are forced to limit
the time of integration for any given galaxy, resulting in low signal-to-noise mea-
surements. As a consequence, not only it becomes difficult to confidently measure
specific spectral features for secure redshift estimation, but we also incur the risk
of misidentifying features - e.g. confusing a hydrogen line for an oxygen line -
which results in so-called catastrophic outliers. Human evaluation mitigates a lot
of these problems with current, relatively small, data sets. However, the spec-
tral observations we will consider are particularly challenging, existing in very low
signal-to-noise regimes and detected in massive amounts, forcing us to develop
automated methods capable of achieving high accuracy and necessitating minimal
human intervention. Chapter 4 proposes our novel approach to the problem of
spectroscopic redshift estimation on both clean, idealistic spectral profiles and on
noisy, realistic observations.



1.2.2 Multi-label, land cover scene categorization on top-view im-
age data

High-resolution imaging sensors aboard miniaturized satellite and aerial vehicles
acquire large amounts of high-resolution imagery, which mandates the development
of automated and sophisticated algorithms for reliably processing and deriving
meaningful information from the image content. This can become more apparent
in time-sensitive situations [22], [23] or in cases where the frequency of arrival of
incoming data can be at a daily or even hourly basis.

Land cover classification remains one of the biggest challenges in the remote
sensing discipline and a crucial component in monitoring physical and anthro-
pogenic phenomena in the large scale. Semantic segmentation of satellite images
has been widely applied, in a pixel-wise manner, but as denoted in [24] there are
certain limitations to that approach when dealing with higher-resolution images.
Meanwhile, in higher level feature-based approaches each image is processed as
a whole, with a subsequent goal to be associated with a descriptive label of the
scene content. Most existing works concentrate on the multi-class scenario, where
every image is categorized to one-of-many different labels, an assumption that
oversimplifies the issue at hand given that a certain scene can depict more than
one of the primary classes. This is generally known as a multi-label classification
approach and is a very underdeveloped research topic, in the case of land cover
scene categorization.

In Chapter 5, we approach the problem of multi-label land cover scene cate-
gorization using a conventional deep learning-based methodology, uniquely modi-
fied for multi-label classification. Given that most existing multi-label land cover
datasets are very small, we employ a novel technique that artificially increases
the size of any given image dataset in copious amounts, commonly known as data
augmentation [10].

1.3 Motivation and objectives

The aformentioned challenges motivated us to use a state-of-the-art deep learn-
ing model as a baseline, namely Convolutional Neural Networks, attuned and
customized to their specific requirements. Both the examined research problems
remain fairly unexplored and lack of generalized, automated and robust method-
ologies, that can address them in a reliable way.

In the case of spectroscopic redshift estimation, the estimation of galaxy red-
shifts is perceived as a regression task in general, still, a classification approach
can be formulated without the loss of essential information. The robustness of the
proposed model will be examined in two different data variations, as depicted in
the example of Figure 1.1. In the first case (b), we deploy randomly redshifted
variations of the original rest-frame spectral profiles (a) of the dataset used. These
redshifted equivalents, effectively result from linear translations of the rest-frame,
in logarithmic scale. This case can be considered as an idealistic scenario, as it
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Figure 1.1: Example of the utilized spectral profiles. From the initially available
rest-frame samples, randomly redshifted equivalents are produced, in clean and
noisy forms. The x-axis corresponds to the emitted wavelengths, while the y-axis
resembles the normalized spectral density flux value.

ignores the interference of noise or presumes the existence of a reliable denoising
technique. On the other hand, a more realistic scenario is considered (c), with the
available redshifted observations subjected to noise of realistic conditions.

In the case of multi-label land cover scene categorization, the lack of adequately
sized datasets can seriously cripple the performance of the adopted deep learning
model, necessitating the need for alternative solutions. To that end, we exploit the
CNN5’ transformation invariance property, based on the fact that a CNN must be
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able to robustly classify inputs (in our case images), regardless of small, possible
alterations of their content. The employed technique, termed data augmentation
earlier in this thesis, has proven to be significantly effective in image classification.
Data augmentation proposes a simple, yet powerful, framework where the size of
a small labeled dataset, derived in a limited set of conditions, can be artificially
increased through a series of potential transformations (translations, flips, rescaling
etc.). As previous studies in the single-label case have shown [22, 25, 26], CNN
classification with data augmentation can have a substantial impact in multiple
remote sensing scenarios, demonstrating its potent capabilities.

1.4 Contribution
The main contributions of our work are referenced below:

e We use a deep learning architecture for the case of spectroscopic redshift
estimation, never used before for the issue at hand. To achieve that we need
to convert the problem from a regression task, as engaged in general, to a
classification task, as encountered in this novel approach.

o We utilize Big Data and evaluate the impact of a significant increase of the
employed observations in the overall performance of the proposed method-
ology. The dataset used is modelled after one of the biggest upcoming spec-
troscopic surveys, the Euclid Mission [17].

e We employ the cutting edge methodology of Convolutional Neural Net-
works with dynamic data augmentation, tailored for multi-label land cover
scene classification. The proposed method marks a clear departure for ex-
isting techniques, such as the current state-of-the-art graph-theoretic semi-
supervised approach [27], or a recent work [28] that exploits different types of
features, either hand-crafted or derived via transfer learning, to calculate im-
age distances and to obtain corresponding similarities. Our method, apart
from being the first to employ a fully trainable, end-to-end deep learning
model for the task at hand, it manages, at the same time, to significantly
outperform the state-of-the-art on a redefined version, from a multi-label
perspective, of the UC Merced Land Use Dataset [6].



1.5 Related publications

The experimental efforts of this thesis have been summarized in the following two
original publications:

1. R. Stivaktakis, G. Tsagkatakis, B. Moraes, F. Abdalla, J-L Starck, P. Tsakalides,
“Convolutional Neural Networks for Spectroscopic Redshift Estimation on
Euclid Data”, IEEE Transactions on Big Data (Special Issue on Big Data
From Space) - under review

2. R. Stivaktakis, G. Tsagkatakis, P. Tsakalides, “Deep Learning for Multi-
Label Land Cover Scene Categorization Using Data Augmentation”, IEEE
Geoscience and Remote Sensing Letters - accepted

1.6 Roadmap

The remainder of this thesis is structured as follows. In Chapter 2, we present a
brief outline of the relevant literature concerning the utilized methodologies and the
accompanying challenges, in astronomy and land cover classification. A detailed
overview of the existing theoretical background, models and techniques adopted
in this work is provided in Chapter 3. In Chapters 4 and 5, we focus on the two
examined case studies, regarding the spectroscopic redshift estimation on galaxy
spectral profiles modelled after the Euclid survey and the multi-label land cover
scene categorization on the modified UC-Merced Dataset. Specifically, we present
the datasets used, analyze the proposed frameworks, demonstrate our experimental
efforts and evaluate our findings in comparison with other methodologies. Finally,
in Chapter 6 we conclude, presenting possible directions for future work.



Chapter 2

Related work

Most existing deep learning models have largely benefited from the dawn of the
Big Data era, demonstrating impressive results that can match, or even exceed,
human performance [29]. Despite the fact that training a deep artificial neural net-
work can be fairly computationally demanding, even more so while we increase its
complexity and the data it needs to process, nevertheless, the continuous evolution
of computational means and memory storage capacity have rendered feasible such
a task. At the same time, and in contrast to the training process, the evaluation
phase for a test dataset can be exceptionally fast, with a negligible execution time,
regardless of its size. Currently, deep learning is considered to be the state-of-
the-art in various research domains, such as image classification, natural language
processing and robotic control, with models like Convolutional Neural Networks
[4], Long-Short Term Memory (LSTM) networks [30], and Recurrent Neural Net-
works [31], dominating the research trends.

The main idea behind Convolutional Neural Networks materialized for the first
time with the concept of “Neocognitron”, a hierarchical neural network capable
of performing visual pattern recognition [32], and evolved into LeNet-5, by Yann
LeCun et al. [4], in the following years. The massive breakthrough of CNNs (and
deep learning in general) transpired in 2012, in the ImageNet competition [33],
where the CNN of Alex Krizhevsky et al. [34] managed to reduce the classification
error record by ~10%, an astounding improvement at the time. CNNs have been
considered in numerous applications, including image classification [34, 35] and
processing [36], video analytics [37, 38], spectral imaging [39] and remote sensing
[40, 41, 42] confirming their dominance and ubiquity in contemporary scientific
research.

In recent years, the practice of CNNs in astrophysical data analysis has led
to new breakthroughs, among others, in the study of galaxy morphological mea-
surements and structural profiling through their surface’s brightness [43, 44], the
classification of radio galaxies [45], astrophysical transients [46] and star-galaxy
seperation [47], and the statistical analysis of matter distribution for the detection
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of massive galaxy clusters, known as strong gravitational lenses [48, 49]. The ex-
ponential increase of incoming data, for future and ongoing surveys, has led to a
compelling need for the deployment of automated methods for large-scale galaxy
decomposition and feature extraction, negating the commitment on human visual
inspection and hand-made user-defined parameter setup.

The problem of estimating galaxy redshifts has been examined in greater depths
in the case of photometry, contrary to the spectroscopic equivalent. Concern-
ing the former, popular methods used, adapted for this kind of problem, include
a Bayesian estimation with predefined spectral templates [50] and a variety of
machine learning-based models, such as the Multilayer Perceptron [51, 52| and
Boosted Decision Trees [52, 53]. On the other hand, due to heavily noisy ob-
servations in spectroscopy, the main redshift estimation techniques involve cross-
correlating the SED with predefined spectral templates [54] or PCA decomposi-
tions of a template library. Noisy conditions and potential errors, due to the choice
of templates, are the main reasons that most reliable spectroscopic redshift esti-
mation methods heavily depend on human judgment and experience to validate
automated results.

Regarding land cover classification, a variety of pixel-based approaches have
been proposed [55, 56, 57, 58, 59, 60, 61, 62|, but in cases where datasets of
high resolutions are adopted, feature-based approaches that designate labels to
the image content in its entirety, are generally preferred [24, 25, 42, 63, 64]. The
extraction of meaningful and descriptive features from remote sensing imagery has
been a critical step in the design of automated and sophisticated machine learning
algorithms. In the domains of computer vision and image processing, the devel-
opment of highly effective methodologies like Scale Invariant Feature Transform
(SIFT) [65] and Histogram of Oriented Gradients (HOG) [66] incorporate a re-
liable approach to various tasks, suffering nonetheless from an over-reliance on
many heuristic optimizations and, in general, on human intervention. At the same
time, remote sensing tailored features like NDVI (Normalized Difference Vegeta-
tion Index) [67] are too closely coupled with particular types of observations. On
the other hand, deep learning architectures have proven to be potent feature ex-
tractors [34, 38, 68, 69, 70], in a more generalized way, by learning hierarchical
intermediate representations and structuring complex and deep levels of abstrac-
tion.

Finally, in the case of multi-label scene categorization, previous works in the
natural image classification literature [71, 72, 73] expose the principal challenges
met and propose potential solutions. In the special case of the remote sensing,
content-based image retrieval (CBIR), for multi-label, satellite or aerial image
scene categorization, which we examine in this thesis, the only relevant works that
exist in the literature are the previously mentioned works in [27] and [28], which,
however, are not based on deep learning.
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Chapter 3

Theoretical background

In this chapter, we provide a detailed overview of the theory, methods and tech-
niques used throughout this thesis. First, we present the fundamentals of the
supervised classification in machine learning and then we focus on the theory be-
hind Convolutional Neural Networks and the specifics regarding their structure,
functionality and regularization. A basic knowledge of conventional Artificial Neu-
ral Network (ANN) methodologies is assumed for the reader.

3.1 Classification fundamentals

The problem of classification (Figure 3.1) is one of the most significant topics in
the field of machine learning. Given a collection of objects, whose members each
belong to one of a number of different sets or classes, a classification or prediction
rule is the process where for each observation in the collection, a prediction is made
concerning the real class it belongs to. The prediction rule is usually derived by an

unlabeled
test samples

A

prediction rule

labeled training machine learning
observations architecture

A,
predicted
classification

Figure 3.1: Block-diagram of the classification problem, in its abstract form.
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automated machine learning architecture, which is trained on labeled observations,
following a “programming-by-example” paradigm. The procedure of using labeled
examples for the training of the machine learning model is commonly known as
supervised learning. The prediction of new, unlabeled observations by the trained
model constitutes the testing phase. In this phase, the evaluation of the model’s
performance takes place.

In a classification scenario, the various classes that characterize the objects
of the studied collection can be of different statistical data types, based on the
formulated problem. They can either be binary (positive or negative, true or false,
success or failure), numerical (integer-valued or real-valued) or categorical (on the
basis of some qualitative property). Categorical classes can be furtherly divided
into ordinal and nominal classes. In the first case, there is a natural ordering
between the different categories, however the distance between consecutive classes
is considered unknown and not equally distributed. On the other hand, in the
latter case, there exists no form of ranking between the classes.

The three most common types of a classification problem are the binary, the
multi-class and the multi-label classification. In the following sub-sections, we will
examine the basic principles of each type, along with their main differences.

3.1.1 Binary classification

Binary categorization is generally considered as the easiest form of classification
and is defined as the problem, where the output attribute of each observation (i.e.,
its label) can be categorized as one of two outcomes. Typical examples of binary
classification tasks include pass-or-fail situations (e.g. the final exams of a course),

| Message text ‘
Figure 3.2: Example of a binary classification problem with a linear decision
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medical evaluations (e.g. a patient suffering from a certain disease or not), spam
filtering (Figure 3.2, [74]) and so on so forth. The main objective of a binary
classifier is to find a robust decision boundary that will reliably dichotomize the
feature space into two groups, one for the data points that belong to the positive
class and another for the points of the negative class. The simplest form of a
decision surface is linear, in cases where the observed data are linearly separable.
In all other cases, the derived boundary can either be linear or more complex in
form.

One of the main challenges met in the case of binary classification is class
imbalance, meaning that the proportion of data examples that correspond to one
of the two binary classes is considerably larger compared to the alternative. For
example, in the case of spam filtering, the number of messages attributed as spam
is generally smaller compared to the number of relevant messages. At the same
time, misclassifying spam messages as normal (false negative) is not of the same
significance as falsely appointing that a normal message, coming from a legitimate
source, is actually spam (false positive). Certain solutions that can successfully
address the problem of class imbalance include data re-sampling, generation of
synthetic data, utilization of class weighted models and gradient boosting [75, 76].

3.1.2 Multi-class classification

A generalized version of the binary categorization problem can be found in the case
of multi-class classification, in the context that in both scenarios each data sample
is associated with a single output attribute, though in the latter case, that attribute
is not restricted to binary values. In a multi-class classification problem, the label

Petal/Sepal data
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Petal/Sepal data
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Setosa

Petal/Sepal data

Petal/Sepal data Petal/Sepal data
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Class?
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Figure 3.3: Example of a multi-class classification problem on Fisher’s Iris dataset.
The number of distinct classes is 3 (Setosa, Versicolor, Virginica). Each data
sample can be categorized in either of the 3 classes, yet exclusively in one.
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of each observation can hold any value from a finite set of predefined values, based
on the utilized application, with all values, however, being mutually exclusive.
Typical examples of multi-class classification tasks include face recognition [77, 78],
handwriting classification [4, 10], Fisher’s linear discriminant analysis on the Iris
flower dataset [79] (Figure 3.3, [74]) and so on so forth.

Since many classification methodologies have been developed specifically for
the binary classification scenario, multi-class classification often requires the use
of alternative techniques, that will divide the issue at hand into easier, binary
sub-problems. To that end, the concepts of one-vs-all and one-vs-one reduction
can be employed. Let us consider a multi-class classification scenario with C
different classes. In the one-vs-all strategy, and for each class, a new classifier is
trained that regards all the samples of that class as positive examples, and all the
remaining observations that belong to the rest of the classes as negative examples.
In this case, we need to train as many classifiers as the number of classes, hence
C classifiers. On the other hand, in the one-vs-one reduction we adopt a slightly
different strategy. For all possible pairs of classes, we retain all the observations
that belong to the two classes and at the same time we discard all the remaining
samples. Then, for each pair, we train a new classifier based on the preserved
samples. In this case, the number of different classifiers that we need to train is

c(C —1)

, hence, as many as all the different combinations of pairs. The main

drawback of both presented reduction techniques lies in the fact that both one-vs-
all and one-vs-one methodologies can’t easily handle problems where the number
of unique classes is very large, due to the inevitable increase in complexity. The
utilization of these strategies is considered redundant in the case of Convolutional
Neural Networks, given that CNNs adopt algorithm adaption techniques which
can easily extend their functionality, from a binary to a multi-class classifier.
The investigated case study in Chapter 4, concerning the problem of spectro-
scopic redshift estimation, pertains to the multi-class classification problem.

3.1.3 Multi-label classification

The case of multi-label categorization is the most difficult among the examined
classification problems, as it combines properties from both binary and multi-class
classification tasks. Formally, multi-label classification is the problem of training
an automated model that is able to map input data samples to binary output
vectors, assigning a value of 0 or 1 for each element in the output vector. The
elements of the output vector correspond to the distinct labels of the formulated
problem, with no mutual exclusivity between the labels. This means, that each
data observation can be directly associated with more than one labels, without any
restrictions on their number. Typical examples of multi-label categorization appli-
cations include sentiment analysis [80, 81], recommender systems [82], automatic
media tagging [83], categorization of natural image scenery (Figure 3.4, [74]), land
cover classification [27] etc.
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Figure 3.4: Example of a multi-label classification problem on natural image
scenery. The problem consists of a set of non-mutually exclusive labels (beach,
field, mountain, sea), meaning that each image can be associated with more than
one of the labels of the utilized labelset.

The fact that in multi-label classification each sample can be associated with
more than one classes, prohibits the utilization of a variety of popular machine
learning methodologies which have been developed with the problem of multi-
class classification as a reference point. Various approaches have been considered,
that convert the problem of multi-label classification into simpler multi-class or
binary tasks, having as a major drawback that label independence is assumed,
thus not preserving the cross-correlations between labels of the same sample. A
characteristic example of these approaches is sample unfolding [84], where each
observation is duplicated in as many instances as the number of active labels it is
associated with, assigning a single label to each duplicate. Hence, the multi-label
classification problem is reduced to a mutli-class problem, with a considerably
increased dataset size, which grows in magnitude as the label cardinality rises.
Another example, lies in the calculation of the power set of the existing labelset,
associating each data observation exclusively with one entry in the newly formed
power set, based on its active labels. The major drawback of this technique man-
ifests in the fact that the size of the produced power set, increases exponentially
with each increase of the size of the original labelset (if C'is the initial number
of distinct labels, then the size of the power set will be 2¢). Once more, the uti-
lization of these techniques in the case of Convolutional Neural Networks can be
omitted, given that CNNs can be adjusted to adopt algorithm adaption techniques
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and, therefore, be extended from a multi-class to a multi-label classifier.
The investigated case study in Chapter 5, regarding the problem of land cover
scene categorization, concerns the multi-label classification scenario.

3.2 Convolutional Neural Networks

A Convolutional Neural Network is a particular type of Artificial Neural Network,
which comprises of neuronal inputs, outputs and intermediate representations,
along with their respective connections that encode the learnable weights of the
network. One of the key differences between CNNs and other neural architec-
tures, like Multilayer Perceptron [85], is that in typical ANNs, each neuron of
any given layer connects with all neurons of its respective previous and following
layers (fully-connected layers). On the contrary, CNNs are structured in a locally-
connected manner, exhibiting the spatial correlations of the given input, under
the assumption that neighboring regions of each observation are more likely to
be related than regions that are farther away. By reducing the number of total
connections, CNNs can successfully manage to drastically decrease the number of
trainable parameters, rendering the network less prone to overfitting. At the same
time, CNNs can be administered in the use of various types of data, with more or
less complicated dimensional structures, with the pivotal property of maintaining
their spatial correlations without the need to collapse higher dimensional matri-
ces into flattened vectors. Based on this property, and in association with the
structural dimensions of the input data, a CNN can either be one-dimensional,
two-dimensional, three-dimensional or, as a matter of fact, n-dimensional.

In sub-sections 3.2.1 and 3.2.2, we present the basic components of a typi-
cal CNN, which demonstrate its structural and functional properties. The first
part of a CNN architecture consists of a combination of convolutional, non-linear
and downsampling (pooling) layers and is commonly known as the feature ex-
traction module. The main responsibility of this module is to derive informative
and relevant characteristics from the input observations, starting from abstract
representations in its shallower layers, and culminating to concrete and detailed
features, as the depth of the network increases. The procured features of the fea-
ture extractor are adopted by the classification module of the CNN, which in turn
is tasked to perform valid and reliable predictions for the input data. An example
illustration of the above pipeline is provided in Figure 3.5 [86]. As a final step,
a detailed overview concerning the utilized regularizing techniques is presented in
sub-section 3.2.3.

3.2.1 Feature extraction module
3.2.1.1 Convolutional layers and non-linearities

The foundational layer of a CNN, the Convolutional Layer, encodes the spatial
correlations of the given input, by identifying appropriate n-dimensional filters.
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Figure 3.5: Example architecture of a simple, two-dimensional CNN. In the mod-
ule of feature extraction, a convolutional + ReLLU layer extracts primary features
from the input image, with a subsequent downsampling via a pooling layer. The
aformentioned pipeline can be repeated as many times as needed to procure higher-
order features. In the classification module, the derived features of the final pooling
layer are flattened into a one-dimensional vector and are given as input to a se-
quence of fully-connected layers. Finally, a probabilistic softmax layer is adopted,
which is responsible for the output predictions.

These trainable filters essentially map local, possibly overlapping, regions of the
preceding layer to units of the succeeding layer, resulting in local connectivity
patterns. The filter incorporates the learnable parameters of the network, which
at first are random [87] and, therefore, totally unreliable, but as the training of the
network advances, through the process of backpropagation [68], these parameters
are optimized and are able to capture interesting features from the given inputs.
The parameters (i.e. weights) of the filter are considered to be shared [88], in the
aspect that the same weights can be utilized throughout the convolution of the
entirety of the input, with the alternative being, having different weights for each
convolutional step. The assumption of weight sharing is based on the fact that for
a particular filter we want it to be able to detect a certain kind of features, in all
possible positions of the given input. This, can consequently lead to a drastical
decrease in the number of weights, lowering the complexity of the network and
enhancing its ability to generalize, thus adding to its total robustness against
overfitting.

Using the two-dimensional case as a reference point, we can furtherly examine
the convolution of an input observation of size W x H with a trainable filter of
size K x L. The resulting output will be of size W’ x H', where W =W — K +1
and H = H — L + 1. The values of W’ and H' may vary based on the stride of
the operation of convolution, meaning that with a minimum stride of 1 the filter
is slid over the input vector one cell at a time, thus generating a longer output.
On the other hand, with a bigger stride value, the filter “jumps” to more distant
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Figure 3.6: A simple example of a two-dimensional convolutional layer.

cells after each step of the convolution, resulting in a smaller output. An example
of the convolution of an input observation with a simple filter, and a stride of 1, is
illustrated in Figure 3.6. Even though the aformentioned example corresponds to
the two-dimensional case, it can be easily generalized to the n-dimensional case.

For each particular convolutional layer, more than one filters can be trained,
each associated with the acquisition of different features. Each of the n-dimensional
filters, act independently on the input, generating an n-dimensional output struc-
ture per filter. The generated outputs are then stacked together over a new channel
dimension, with a length equal to the number of different filters trained in the given
convolutional layer. For a subsequent convolutional layer, that will need to operate
on this higher, (n + 1)-dimensional structure, the properties of the convolutional
procedure will not change, in the aspect that each filter of this layer will be con-
volved with each of the channels separately. For the current filter and for each
channel, a new n-dimensional output will be produced and, ultimately, all these
derived outputs will be summed up and combined into one final n-dimensional
structure.

When addressing challenging problems, the use of shallow CNN architectures
is insufficient, given their limited capacity to form deeper and complex repre-
sentations of the input data. The development of deeper models, able to derive
informative and detailed characteristics, becomes a necessity. The claim that an
effective expansion of the CNN can be achieved by introducing more convolutional
layers, one on top of another, is actually invalid. Given the linear property of the
convolutional operation, the sequential stacking of all these convolutional layers
could actually be accounted for as one merged linear transformation over the input
data, thus rendering the formed architecture as shallow. To be able to effectively
form deeper, more complex CNN models, a non-linearity needs to be introduced
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directly after each convolutional layer, enabling the network to act as a univer-
sal function approximator [89]. Typical choices for the non-linear function (also
known as activation function) include the logistic (sigmoid) function, the hyper-
bolic tangent (tanh) and the Rectified Linear Unit (ReLU), represented by the
following formulae:

1
flz) = = (logistic function - sigmoid) (3.1)
e
er —e” .
flx) = ——, (hyperbolic tangent - tanh) (3.2)
f(z) = max(0,z) . (rectifier - ReLU) (3.3)

In CNNs, the most common choice is ReLU and its variations [90]. Compared to
the cases of the sigmoid and hyperbolic tangent functions, the rectifier possesses
the advantage that it is easier to compute (as well as its gradient) and is generally
more resistant to saturation conditions [34], rendering the training process faster
and less likely to suffer from the problem of vanishing gradients [91].

3.2.1.2 Pooling layers

Pooling Layers are usually introduced between subsequent convolutional + ReLLU
layers. Though optional, the use of pooling can have a very impactful role in
the successful performance of the model, by introducing desired properties like
scale invariance through a form of non-linear downsampling. The main intuition
behind pooling lies in the fact that the exact location and orientation of a detected
feature is less significant than its relative position to other features. Therefore, the
network can be rendered invariant to small changes of the initial input, that don’t
tamper with its original content. With pooling, the processed input is commonly
split into small, evenly sized and non-overlapping local regions, and for each region
a given operation is executed (e.g. maximum, average, L2-norm etc.). Thus, the
most relevant information is preserved, leading at the same time to a substantial
reduction of the data dimensonality and, consequently, to an increased robustness
against overfitting. A simple example of a max-pooling operation is presented in
Figure 3.7 [92].

3.2.2 Classification module

3.2.2.1 Fully-connected layers and the softmax classifier

The classification segment of a Convolutional Neural Network is responsible for
the credible deduction of valid predictions for the input observations. While the
feature extractor is in charge of the production of high-quality features, at the same
time, the classifier is responsible of distilling meaningful knowledge by taking into
account the entirety of those features. This can be effectively achieved by utilizing
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Figure 3.7: A simple example of a two-dimensional max-pooling layer.

Fully-Connected Layers, commonly known as dense layers, where, as the name
implies, all the neuronal nodes of a given layer are directly connected with all nodes
of its subsequent layer. Multiple dense layers (typically with a ReLU activation
function) can be stacked together, to compose even deeper architectures.

The final classification step is performed via a dense layer, with as many output
units as the number of unique classes of the addressed problem. In this final layer,
a probabilistic activation function must be employed, typically in the form of
the multi-class generalization of logistic regression, commonly known as Softmaz
Regression. Softmax regression is based on the exploitation of the probabilistic
characteristics of the normalized exponential (softmax) function defined as:

T
60]. T

N 25:1 e’
where x is the input of the fully-connected layer, ¢; are the parameters that corre-
spond to a certain class ¢; and C is the total number of the distinct classes related
to the task at hand. It is fairly obvious that the softmax function reflects an esti-
mation of the normalized probability of each class ¢; to be predicted as the correct
class. As deduced from the previous equation, each of these probabilities can take
values in the range of [0,1] and, at the same time, they all need to add-up to the
value of 1. This property, makes softmax an exceptional choice for the problem of
multi-class classification, however in the multi-label case it displays a problematic
behaviour, as justified in Chapter 5.

ho(z); (3.4)
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3.2.3 Regularizing techniques

The risk of overfitting the training dataset remains imminent in the case of Convo-
lutional Neural Networks, considering their high complexity and their parameter-
heavy functionality. As previously mentioned, the local-connectivity patterns
formed in the convolutional layers and the concept of weight sharing can seriously
reduce the total number of adopted parameters, however the utilization of these
methodologies does not suffice, given the fact that the most parameter-intense
segment of a CNN is its classification module with all the densely connected lay-
ers. The employment of effective techniques that can reliably address the problem
of overfitting is a grievous matter, considering that the trained model can easily
adapt to the particular dataset it was trained on, failing to effectively generalize
on new, unseen data.

Apart from the trivial solution of gathering more data to experiment with,
having a theoretical complete negation of the effects overfitting when the number
of training observations tend to infinity, a variety of simple techniques can be effec-
tively used to enhance the generalization capabilities of the trained network. In the
scope of this thesis, we are going to demonstrate the effects of data augmentation,
dropout and batch normalization.

3.2.3.1 Data augmentation

In most cases, the collection of more data can prove to be a complicated and
expensive procedure. The difficulty of this task becomes even more challenging,
when the data collected must also be labeled. A possible solution can be formu-
lated by manipulating the adopted dataset to appear as if it was more diverse. To
that end, we exploit the aformentioned CNNs’ transformation invariance property,
based on the fact that a CNN must be able to robustly classify inputs, regardless
of small, possible alterations of their content. Specifically, we employ a technique
that has proven to be significantly effective, especially in the case of image classi-
fication, known as data augmentation [28]. Data augmentation proposes a simple
framework, where the size of a small labeled dataset, derived in a limited set of
conditions, can be artificially increased through a series of potential transforma-
tions (e.g. translations). In Chapter 5, we will thoroughly examine the impact
of the utilization of data augmentation, in a multi-label image classification and
remote sensing scenario.

3.2.3.2 Dropout

Dropout [8] is one of the most popular techniques, used with CNNs, that can
help narrow down the effects of overfitting. With dropout, a simple, yet very
powerful trick can be used to temporarily decrease the total parameters of the
network at each training iteration. All the neurons in the network are associated
with a probability value p (subject to hyper-parameter tuning) and each neuron,
independently from the others, can be temporarily dropped from the network
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(along with all incoming and outgoing connections) with that probability. This
is an iterative process, meaning that for each training sample of a training batch,
a random portion of the entirety of the original network is dropped, leading to
“thinner” and more degenerated variations of its initial structure, as the value of
the probability p grows bigger. Each layer can be associated with a different p
value, meaning that dropout can be considered as a per-layer operation, with some
layers discarding neurons in a higher percentage, while others dropping neurons
in a lower rate or not at all. In the testing phase, the entirety of the network is
used, meaning that dropout is not applied at all. Given that the weights of this
final version of the network are scaled-down, compared to the originally trained
weights, then for each neuron, all its associated outgoing weights are multiplied
by the probability value 1 — p, equal to the probability that the said neuron was
retained in the network during the training phase.

3.2.3.3 Batch normalization

Contrary to dropout, batch normalization can be accounted for, more as a nor-
malizer, but previous studies [11] have shown that it can work very effectively as a
regularizer as well. Batch normalization is, in fact, a local (per layer) normalizer,
that operates on the neuronal activations in a similar way to the initial normal-
izing technique, optionally applied to the input in the pre-processing step. The
primary goal is to enforce a zero mean and a standard deviation of one, for all
activations of the given layer and for each mini-batch. The main intuition behind
batch normalization lies in the fact that, as the neural network deepens, it becomes
more probable that the neuronal activations of intermediate layers might diverge
significantly from desirable values and might tend to saturation. This is known
as Internal Covariate Shift [11] and batch normalization can play a crucial role on
mitigating its effects. Consequently, it can actuate the gradient descent operation
to a faster convergence, but also it can lead to an overall highest accuracy and, as
stated before, render the network stronger and more robust against overfitting.
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Chapter 4

Case study: Convolutional
Neural Networks for
spectroscopic redshift
estimation on Euclid data

In this chapter, we explore the problem of accurate redshift estimation from re-
alistic and idealistic spectroscopic observations, modeled after the Euclid spectro-
scopic survey. Redshift estimation is generally considered as a regression task,
given the fact that a galaxy redshift (z) can be measured as a non-negative, real-
valued number. Considering the specifications of the Fuclid space telescope, we
can focus our study in its redshift range of detectable galaxies. Consequently, we
can restrict the precision of each of our estimations to match the resolution of the
spectroscopic instrument, meaning that we can split the chosen redshift range into
evenly sized slots, equal to Euclid’s required resolution. Hence, we can transform
the problem at hand from a regression task to a multi-class classification task,
using a set of ordinal classes, with each class corresponding to a different slot. Our
main goal, in this Euclid case study, is the utilization, validation and evaluation of
a cutting-edge classification model, namely Convolutional Neural Networks, tai-
lored to the modified problem of spectroscopic redshift estimation. In the next
sections, we first explore the case of the Euclid space telescope and we present the
specifications of the adopted dataset. Next, we examine the proposed framework
and the utilized methodologies. Finally, we demonstrate our experimental findings
and we discuss on the inferred results.

23



4.1 The Euclid space telescope

The Euclid mission [17] aims to measure the global properties of the Universe to
an unprecedented accuracy, with emphasis on a better understanding of the na-
ture of Dark Energy. It will collect photometric data with broadband optical and
near-infrared filters and spectroscopic data with a near-infrared slitless spectro-
graph. The latter will be one of the biggest upcoming spectroscopic surveys and
will help us determine the details of cosmic acceleration through measurements
of the distribution of matter in cosmic structures. In particular, it will measure
the characteristic distance scale imprinted by primordial plasma oscillations in the
galaxy distribution. The projected launch date is set for 2020 and throughout its
6-year mission, Euclid will gather of the order of 50 million galaxy spectral pro-
files, originating from wide and deep sub-surveys. A top-priority issue associated
with Euclid is the efficient processing and management of these enormous amounts
of data, with scientific specialists from both astrophysical and engineering back-
grounds contributing to the ongoing research. To successfully achieve this purpose,
we need to ensure that realistically simulated data will be available, strictly mod-
eled after the real observations coming from Euclid in terms of quality, veracity
and volume.

4.2 Dataset

When generating a large, realistic, simulated spectroscopic dataset, we need to
ensure that it is representative of the expected quality of the Euclid data. A first
requirement is to have a realistic distribution of galaxies in several photometric
observational parameters. We want the simulated data to follow representative
redshift, color, magnitude and spectral type distributions. These quantities de-
pend on each other in intricate ways, and correctly capturing the correlations is
important if we want to have a realistic assessment of the accuracy of our proposed
method. To that end, we define a master catalog for the analyses with the COS-
MOSSNAP simulation pipeline [93], which calibrates property distributions with
real data from the COSMOS survey [94]. The generated COSMOS Mock Catalog
(CMC) is based on the 30-band COSMOS photometric redshift catalogue with
magnitudes, colors, shapes and photometric redshifts for 538,000 galaxies on an
effective area of 1.24 deg? in the sky, down to an i-band magnitude of ~ 24.5 [95].
The idea behind the simulation is to convert these real properties into simulated
properties. Based on the fluxes of each galaxy, it is possible to select the best-
matching SED from a library of predefined spectroscopic templates. With a “true”
redshift and an SED associated to each galaxy, any of their observational proper-
ties can then be forward-simulated, ensuring that their properties correspond to
what is observed in the real Universe.

For the specific purposes of this analysis, we require realistic SEDs and emis-
sion line strengths. Euclid will observe approximately 50 million spectra in the
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wavelength (\) range 11000 — 20000 A with a mean resolution R = 250, where
R = ALA. To obtain realistic spectral templates, we start by selecting a 50% ran-
dom subset of the galaxies that are below redshift z = 1 with Ha flux above
1070 ergem=2 571, and bring them to rest-frame values (z = 0). We then resam-
ple and integrate the flux of the best-fit SEDs at a resolution of A\ = 5A. This
corresponds to R = AAA = 250 at an observed wavelength of 11000 A, if interpreted
in rest-frame wavelength at z = 2. For the purpose of our analysis, we will retain
this choice, even though it implies higher resolution at larger wavelengths. Lastly,
we redshift the SEDs to the expected Euclid range. In the particular case where
we wish to vary the number of training samples, we generate more than one copy
per rest-frame SED at different random redshifts. We will refer to the resampled,
integrated, redshifted SEDs as “clean” spectra for the rest of the analysis.

For each clean spectrum above, we generate a matched noisy SED. The required
sensitivity of the observations is defined in terms of the significance of the detection
of the Ho Balmer transition line: an unresolved (i.e. sub-resolution) Ha line of
spectral density flux 3x 107 1%ergem™2s71 is to be detected at 3.50 above the noise
in the measurement. These requirements imply a detection rate that depends on
magnitude and redshift, and Euclid will mostly detect galaxies in the redshift range
0.7 < z < 2.0. We create the noisy dataset, by adding white Gaussian noise such
that the significance of the faintest detectable Ha line, according to the criteria
above, is 1o. This does not include all potential sources of noise and contamination
in Euclid observations, such as dust emission from the galaxy and line confusion
from overlapping objects. We do not include these effects as they depend on
sky position and galaxy clustering, which are not relevant to the assessment of
the efficiency and accuracy of redshift estimation. Our choice of Gaussian noise
models other realistic effects of the observations, including noise from sources such
as the detector read-out, photon counts and intrinsic galaxy flux variations.

4.3 Proposed framework

4.3.1 One-dimensional CNN

A typical CNN architecture, as described in Chapter 3, has been adopted for the
problem of spectroscopic redshift estimation. Given the one-dimensional struc-
tural form of the utilized spectra, this CNN architecture must be based on one-
dimensional convolutional operations. In Figure 4.1, we present a simple example
of such a network. The use of pooling has been excluded from the pipeline, con-
sidering its aformentioned property that renders the network invariant to small
changes of the initial input. Even though it is a significant property in the case of
image classification, at the same time, this is the reason why we can’t use pooling
in our designated problem, given that these transformations of the original rest-
frame SEDs, define the different redshifted states. By using pooling we “cripple”
the network’s ability to identify each different redshift, considering the suppression
of these transformations.
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Figure 4.1: Simple one-dimensional CNN. The input vector v is convolved with
a trainable filter h (with a stride equal to 1), resulting in an output vector of
size M = N — 2. Subsequently, a non-linear transfer function (typically ReLU) is
applied, element-wise, on the output vector without altering its original size. The
use of pooling is excluded. Finally, a fully-connected, supervised, softmax layer is
used for the task of classification. The number of the output neurons (C) is equal
to the number of the distinct classes of the formulated problem (800 classes in our
case). More than one fully-connected layers can be optionally applied, right before
the softmax-classification layer.

4.3.2 Sample transformation: From rest-frame to redshifted spec-
tra

Each of the clean, rest-frame spectral profiles of our initial dataset consist of
3750 wavelength-related bins. These bins correspond to the spectral density flux
value of each observation, for that certain wavelength range (AX = 54, A\ =
[1252.5,20002.5]A). To create valid redshifted variations from their rest-frame
equivalents, we can use the formula:

log(1+ z) = log(Aops) — log(Aemit) & 1+ 2z = )\)\Obs , (4.1)
emit

where A is the original, rest-frame wavelength, z is the redshift we want to
apply and A5 is the wavelength that will ultimately be observed, for the given
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redshift value. This formula is linear on logarithmic scale. For the conduction of
our experiments, we work on the redshift range of z = [1, 1.8), which is very similar
to what Euclid is expected to detect. Also, to avoid redundant operations and to
establish a simpler and faster network we use a subset of the wavelength range of
each redshifted example (instead of the entirety of the available spectrum), based
on Euclid’s spectroscopic specifications (1.1 — 2.0um < 11000 — 20000;1). That
means that all the training and testing spectra will be of equal size W =
1800 bins. Finally, in both realistic and idealistic observations, a simple normal-
ization method has been performed, such that would ensure that the structure of
the data would remain unchanged, establishing at the same time numerical com-
patibility with the trained CNN. In the following equation, X4, corresponds to
the maximum spectral density flux value encountered in all examples (in absolute
terms, given the noisy case) and X,piginq: is the initial value for each feature:

X ainal
Xnormalized - % (42)

4.3.3 Label transformation: From regression to classification

For the “regression-to-classification” transition, our working redshift range of [1, 1.8)
has been split into 800 non-overlapping, equally-sized slots resulting in a resolu-
tion of 0.001, consistent with the Euclid expectations. Each slot corresponds to an
associated ordinal class (from 0 to 799), which in turn must be converted into the
one-hot encoding format to match the final predictions procured by the softmax
layer of the CNN. A certain real-valued redshift of a random spectral profile will be
essentially associated with the ordinal class that corresponds to the redshift slot
it belongs to. This transformed equivalent of the task of spectroscopic redshift
estimation can be essentially categorized, as already mentioned in Chapter 3, as a
multi-class classification problem.

4.4 Experimental evaluation and discussion

The pipeline of the proposed methodology can be briefly summarized in the block
diagram of Figure 4.2. Shallow and deeper variations of the CNN have been con-
sidered, with 1,2 and 3 convolutional (+ ReLU) layers. Cross-validation has been
conducted throughout the entirety of the experimental evaluation. As initial pre-
experiments have shown, desirable values for the network’s different hyperparam-
eters are a kernel size of 8, a number of filters equal to 16 (per convolutional layer)
and a stride equal to 1. Additionally, the adagrad optimizer [96] has been employed
for the optimization step, considering its adaptable learning rate capability, that
grants the network a bigger flexibility in the learning process. Finally, the use of
the categorical cross-entropy loss has been preferred, among other commonly used
choices.
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Figure 4.2: The flow diagram of the proposed approach. Our initial, clean rest-
frame dataset (1) is used for the generation of randomly redshifted examples (2)
in the redshift range of z = [1, 1.8), which corresponds to that of Euclid. The
data are (optionally) corrupted with noise of realistic properties (3) and are, then,
normalized (4). The redshift value of each galaxy profile is categorized into its cor-
responding ordinal class (5) and subsequently the dataset (pairs of galaxy profiles
and redshift labels) is split into the training set (6) and the testing set (6). The
first is utilized by a deep Convolutional Neural Network, which is trained for the
task at hand (7). The latter is used in the testing process (7), where the validity
of the predicted labels (i. e. the estimated redshifts) is evaluated.
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4.4.1 Idealistic observations
4.4.1.1 Impact of the network’s depth

Our initial experiments revolve around the depth of the Convolutional Neural
Network. We have used a fixed number of 400,000 training examples, 10,000
validation and 10,000 testing examples. Our aim is to examine the impact of
increasing the depth of the model, on the final predictive outcome. Specifically,
we have trained and evaluated CNNs with 1,2 and 3 convolutional layers. In all
cases, a single fully-connected layer with a softmax activation function and 800
output neurons has been used for classification.

Accuracy is the basic metric that can be used to measure the performance of
a trained classifier, during and after the training process. As the training goes by,
we expect that the parameters of the network will start to adapt to the problem
at hand, thus decreasing the total loss, and, consequently, improving the accuracy
percentage. In Figure 4.3, we support this presumption by demonstrating the
accuracy’s rate of change over the number of training epochs. It can be easily
derived that as a CNN becomes deeper, it is clearly more capable to converge
on a satisfying solution. Both 2- and 3-layered networks converge very fast and
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Figure 4.3: Accuracy plot for the training and cross-validation sets, for 1,2 and 3
convolutional layers. The x-axis corresponds to the number of executed epochs.
In all cases we used the same 400,000 training examples.
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Figure 4.4: Classification scatter plots and histograms for the 1 convolutional-layer
case (1% column) and the 3 convolutional-layer case (2"¢ column). The scatter
plots illustrate points in 2D space that correspond to the true redshift value for
each testing observation versus the predicted outcome of the given classifier, for
that observation. The bar plots, on the other hand, depict the difference (in value)
between the state-of-nature and the prediction, for the misclassified cases.

very close to the optimal case, with the latter, narrowly resulting in the best
accuracy. On the other hand, the shallowest network is very slow and significantly
underperforms compared to the deeper architectures.

More information can be deduced in Figure 4.4 (1% row), where we compare,
for the shallowest and for the deepest case, and per testing example, the predicted
redshift value outputed by the trained classifier versus the state-of-nature. Ideally,
we want all the green dots depicted in each plot to fall upon the diagonal red
line that splits the plane in half, meaning that all predicted outcomes coincide
with the true values. As the green dots move farther away from the diagonal,
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Accuracy

the impact of the faulty predictions becomes more significant leading to the so
called catastrophic outliers. A good estimator is characterized, not only by its
ability to procure the best accuracy, but also by its capacity to diminish such
irregularities. At the same time, in the 2”@ row of the aforementioned Figure,
the depicted histograms represent the actual difference in distance (positive or
negative) between misclassified estimated values and their corresponding ground-
truth value versus the frequency of occurence, in logarithmic scale, for each case.
Negative values of difference correspond to outliers that exist in the lower right
half of the scatter plot and positive values correspond to outliers that exist in its
upper left part. Once again, the deeper network not only leads to a significantly
smaller number of errors, compared to the 1-layered case, but also to a more limited
amount of catastrophic failures.

4.4.1.2 Data-driven analysis

In this setting, we will explore the significance of broad data availability in the
overall performance of the proposed model. As mentioned before, Big Data have
revolutionized the way Artificial Neural Networks perform [29], serving as the
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Figure 4.5: Training and cross-validation accuracy, for 1,2 and 3 convolutional
layers, using a significantly decreased amount of training observations (40,000).
Overfitting is introduced, to various extents, based on each case.
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Figure 4.6: Validation performance of a 3-layered network, using larger and more
limited in size datasets. In all cases the training accuracy (not depicted here) can
asymptotically reach 100% accuracy, after enough epochs.

main fuel for their conspicuous achievements. Figure 4.5 illustrates the behavior
of the same network variations as in previous experiments (1,2 and 3 convolutional
layers), using this time a notably more limited, in size, training set of observations
compared to the previous case. Specifically, we have lowered the number of training
examples from 400,000 to 40,000, namely to one-tenth. Compared to the results
we have previously examined in Figure 4.3, we can evidently identify a huge gap
between the performance of corresponding models with copious vs more limited
amounts of data. Also, it is adequately obvious that in all three cases overfitting is
introduced, to various extents, with overoptimistic models that perform well in the
training set, developing a decaying performance on the validation and the testing
examples.

As a second step, we want to preserve the network’s structural and hyper-
parametric characteristics immutable, whereas altering the amount of training
observations utilized in each experimental recurrence. We have deployed a scaling
number of training examples beginning from 40,000 observations, then to 100,000
and finally to 200,000 and 400,000 observations for the training of a 3-layered
CNN (3 convolutional + 1 fully-connected layer). As shown in Figure 4.6, while
we increase the exploited amount of data, the curve of the validation accuracy
also increases in a smoother and steeper pace, until convergence. On the contrary,
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when we use less data, the line becomes more unstable, with a delayed convergence
and a poorer final performance. It is very important to state that despite the fact
that the training accuracy can asymptotically reach in all cases 100% accuracy,
after enough epochs, the same doesn’t apply for the validation accuracy (and re-
spectively for the testing accuracy) with the phenomenon of overfitting taking its
toll, mostly in the cases where the volume of the training data is not enough to
handle the complexity of the network, failing to generalize in the long term. As we
will observe in more detail in the noisy-data case, regularizing techniques, such as
dropout, can significantly help battle this phenomenon, but not in a way that the
difference between the training and the validation performance will be completely
commensurated.

4.4.1.3 Tolerance on extreme cases

Before advancing to noise-afflicted spectral profiles it is worthsome to investigate
some extreme cases, concerning two astrophysical-related aspects of the data. As
presented before, one of our main novelties is the realization of the redshift esti-
mation task as a classification task, guided by the specific redshift resolution that
Euclid can achieve, and leading to the categorization of all possible detectable
redshifts into 1 of 800 possible classes. As a first approach, we want to extend our
working resolution to a double precision, specifically from 0.001 to 0.0005, meaning

True Redshift vs Predicted Redshift

Figure 4.7: Performance of a 3-layered network trained with 400,000 training exam-
ples. In the first plot we compare the cases where the redshift estimation problem
is transformed into a classification task, with the use of 800 versus 1600 classes.
In the second plot, we present the scatter plot of the predicted result versus the
state-of-nature of the testing samples, only for the case of 1600 total classes.
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Figure 4.8: Validation performance of a 3-layered network trained with 400,000
training examples. We want to examine the behavior of the model, when trained
with data of reduced dimensionalities.

that the existing redshift range of [1, 1.8) will be split into 1600 classes instead of
800.

As observed in Figure 4.7, doubling the total number of possible classes has a
non-critical impact in the predictive capabilities of our approach, given the fact
that at convergence, the model produces a similar outcome for the two cases.
Despite the fact that doubling the classes leads to a slower convergence, a behavior
that can be attributed to the drastical increase of the parameters of the fully-
connected layer, the network is still able to estimate successfully, in the long term,
the redshift of new observations. Furthermore, as depicted in the scatter plot of the
same figure, we can deduce that increasing the predictive resolution of the CNN
can lead to an increase in the total robustness of the model against catastrophic
outliers, given the fact that none of the misclassified observations in the testing
set exist far from the diagonal red line, namely the optimal error-free case.

In our second approach, we want to challenge the network’s predictive capabili-
ties, when presented with lower-dimensional data, and to essentially define where is
the turning point where the abstraction of information becomes more of a strain,
rather than a benefit. Having to deal with data that exist in high-dimensional
spaces (like in the case of Euclid), can become more of a burden, rather than a
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blessing, as described by Richard Bellman [97], with the introduction of the very
well-known term, of the “curse of dimensionality”. In our case, data dimensionality
can be derived by splitting the operating wavelength of the deployed instrument
into bins, where each bin corresponds to the spectral density flux value of the
wavelength range it describes. Euclid operates in the range of 1.1 — 2.0 um with a
bin size of AX = 5A, which implies 1800 different bins per observation. To reduce
that number, we need to increase the wavelength range per bin by merging each
bin with neighboring cells, namely by adding together their corresponding spec-
tral density flux values. Thus, we can assert that by lowering the dimensionality
of data using this methodology, we can accomplish the concentration of existing
information in cells of compressed knowledge, rather than discarding redundant
information.

In Figure 4.8, we can conclude that when dealing with clean data, the reduction
of the number of total wavelength bins into more manageable numbers can result,
not only in a congruent performance compared to the initial model, but also into a
faster convergence. On the other hand, oversimplifying the model can be deemed
inefficacious, if we take into account the decline of the achieved accuracy in the
three lower-dimensional cases. A moderate decline in the performance becomes
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Figure 4.9: Comparison of the model’s performance, trained with clean and with
noisy data (400,000 in both cases). The 3-layered neural network utilizes the same
hyperparameters, in both cases, without any form of regularization.
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visible in the case of 225 bins, with a more aggressive degeneration of the model
occurring in the two remaining cases.

4.4.2 Realistic observations

The availability of idealistic data presumes the ambitious scenario of a reliable
denoising technique for the spectra, prior to the estimation phase. Although suc-
cessful methods have been developed in the past [98], [99], our main aim is to
integrate implicitly the denoising operation in the training of the CNN, meaning
that it should be able to distinguish the noise from the relevant information by
itself, without depending on an intermediate party. This way, an autonomous
system can be established, with a considerable robustness against noise, a strong
feature extractor and essentially a reliable predictive competence. To that end, we
have directly used the noisy observations described in section 4.2, as the input of
the adopted CNNs.

A comparison between the idealistic and the realistic scenarios constitutes the
first step that will lead to an initial realization of the difficulty of our newly set ob-
jective. In Figure 4.9, we observe that training a noise-based model with a number
of observations that has been previously proven to be sufficient in the clean-based
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Figure 4.10: Accuracy on the validation set (noisy dataset), for different sizes of
the training set. No regularization has been used.
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Figure 4.11: Classification scatter plots and histograms for the realistic case, for
3-layered networks trained with 400,000 training examples (column a) & 4,000,000
training examples (column b).

case, leads to an exaggerated performance during the training process that doesn’t
apply to newly observed spectra, hence leading to overfitting. Clean data are no-
tably simpler than their noisy counterparts, which in turn are excessively diverge,
meaning that generalization in the latter case is seemingly more difficult. The
main intuition to battle this phenomenon lies in drastically increasing the spectral
observations used in training. Feeding the network with bigger volumes of data
can mitigate the effects of overfitting, given the fact that the observed set of spec-
tra tends to become so large that it befits the general case. The above intuition is
strongly supported by Figure 4.10, where we compare the performance of similar
models when trained with different-sized sets. Preserving constant hyperparam-
eters and not utilizing any form of regularization, we can conclude that, just by
increasing in bulk the total amount of data, the network’s generalization capabili-
ties can also increase in a scalable way. As a final remark, the increased predictive
difficulty established by the noisy scenario is also demonstrated in Figure 4.11.
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The drastical increase in the number of misclassified samples is more than obvi-
ous, compared to the previously examined case in Figure 4.4, leading to an abrupt
rise in the amount and variety of the different catastrophic outliers. Nevertheless,
the faulty predictions that lie approximate to the corresponding ground-truths
constitute the majority of the mispredictions, as verified by the highly populated
green mass around the diagonal red line (scatter plots) and the highest histogram
column bordering the origin, in the case of the histograms.

4.4.2.1 Impact of regularization

The effects of regularization are illustrated in Figure 4.12, in two different set-
tings, one with a training set of 400,000 examples and another with a training
set of 4,000,000 examples. In the case of batch normalization, we inserted an
extra batch normalization layer after each convolutional layer and after ReLU.
Although in literature [11], the use of batch normalization is proposed before
the non-linearity, in our case extensive experimental results suggested otherwise.
Dropout was introduced only in the fully-connected layer, with a value of p equal
to 0.5, which appeared to yield the best results compared to other choices. It is
important to note that the use of dropout can be also applied in the case of the
convolutional layers, however without an out-of-the-ordinary change in the final
performance.

As we can see in both examined cases, dropout can clearly help enhance the
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Figure 4.12: Impact of regularization, in regard with the size of the training set.
In the left plot, a network trained with 400,000 observations is illustrated, while
in the right plot 4,000,000 training examples have been utilized. The reported
accuracy is associated with the validation set.
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Figure 4.13: Comparison bar plots for the k Nearest Neighbours, Random For-
est, Support Vector Machine and Convolutional Neural Networks algorithms. We
present the best case performance on the test set, for each classifier, in the idealis-
tic and the realistic case, with a limited and an increased amount of training data.

network’s performance in the validation set, leading to an increase in the accuracy
by ~0.5% in the worst case and ~1.5% in the best case. This is not a ground-
breaking increase per se, but it is worth mentioning nonetheless. On the other
hand, batch normalization appears to have a bigger regularizing effect in improv-
ing the accuracy of the model, yielding a tremendous increase by almost 10% in
the case of 400,000 training examples, and a significantly lower gain of ~2% when
trained with 4,000,000 observations. In this final case, even though batch normal-
ization still leads to the best performance, its difference compared to dropout is
almost negligible.

4.4.3 Comparison with other classifiers

In this sub-section, we want to compare the best-case performance of the proposed
model on the task of spectroscopic redshift estimation, against the performance
of other popular classifiers, namely k Nearest Neighbours [100], Random Forest
[101] and Support Vector Machine [102]. The bar plots in Figure 4.13 corroborate
the claim that Convolutional Neural Networks reign supreme as the most effective
algorithm, in all examined cases. The main competitor, in both idealistic and real-
istic scenarios, stands in the case of the Gaussian-kernel Support Vector Machine,
which in our problem is inexpedient to use given the fact that SVMs are most effec-
tive in binary classification scenarios or in cases where the total amount of unique
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classes is limited. With 800 possible classes to predict, both techniques of one-vs-
all and one-vs-one multi-class classification require the training of a large amount
of individual classifiers, namely 800 and (800 % 799 /2) = 319, 600 accordingly. On
the other hand, k Nearest Neighbours and the Random Forest methodologies sig-
nificantly underperform, failing to cope with the noisy variations of the data, even
with an increased amount of training examples.

4.4.4 Levels of confidence

One of the benefits of the transformation of the redshift estimation problem to a
classification procedure manifests in the association of each estimation, with a level
of confidence of the network’s certainty that the predicted outcome corresponds to
the true redshift value. Using the probabilities produced by the softmax function,
we can extract valuable information about the network’s reliability, as illustrated
in Figure 4.14, where we examine the derived confidence of the best-case trained
networks for both idealistic and realistic datasets. In the idealistic scenario, we
can observe that the trained model is generally very confident about the validity
of its predictions leading to a very steep cumulative curve in the transition from
the 90% to 100% . As also verified by the corresponding histogram, most of the
predictions are associated with a very high probability that lies in the range of (0.9,
1], with a decreased frequency of occurrence as the levels of confidence decrease.
This is a very desirable property, given the fact that we want the network to be
certain about its designated choice, leading to concrete estimations that are not
subject to dispute. In the realistic scenario, although the total confidence of the
trained network clearly drops, as expected, still the high confidence choices remain
dominant in quantity, compared to the lower cases which mostly correspond to the
misclassified observations.

4.4.5 Intermediate representations

In this final paragraph, we will briefly examine the undergoing transformation of
the input testing observations, as they flow deeper into the trained network. Specif-
ically, we will comment on the derived intermediate representations of randomly
chosen filters of different layers. As previously discussed, Convolutional Neural
Networks are excellent feature extractors and can successfully distill important
knowledge from raw data, even when afflicted with high levels of noise. In the
case of the clean spectra, Figure 4.15 outlines that the salient effect of randomly
chosen filters is the gradual removal of the continuum of the derived interme-
diate representations, preserving only the characteristic emission and absorption
lines of the given galaxy profiles (most importantly the Ha line). Removing the
continuum is one of the key steps that any spectroscopic analysis requires, while
at the same time, distinguishing these lines constitutes a key characteristic to a
better discrimination of the different redshift classes. The introduction of mirror
amplitudes in the negative half-plane is not of specific importance, given their
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Figure 4.14: Levels of confidence derived by softmax in the testing set. The
lower plot depicts the cumulative occurrences per level of confidence, for both
examined cases. For example, the y-axis value that corresponds to the x-value of
0.4 represents the number of testing observations that obtain a predictive output
with a confidence that is less than or equal to 0.4. The upper left (idealistic case)
and upper right (realistic case) histograms, exhibit a similar scenario, but not in
a cumulative form (and in logarithmic scale).
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Figure 4.15: A random testing example (clean clase) and the corresponding acti-
vations of the 1% and the 3" convolutional layers.
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Figure 4.16: A random testing example (noisy case) and the corresponding acti-
vations of the 1% and the 3" convolutional layers.

immediate nullification by the succeeding ReLLUs. Furthermore, in the case of the
realistic observations in Figure 4.16, even though the outright removal of irrelevant
information may not be easily achievable, given the low signal-to-noise ratio of the
observed spectrum, essentially the network is able to perform a partial denois-
ing of the examined profile, gradually isolating the desired peaks from the faulty

discontinuities.
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Chapter 5

Case study: Deep learning for
multi-label land cover scene

categorization on the modified
UC-Merced dataset

In this case study, we concentrate on the problem of multi-label land cover scene
categorization, on aerial high-resolution images. At first, we introduce the UC
Merced Land Use Dataset in both its original, multi-class configuration and in its
modified, multi-label version. Then, we examine the proposed framework, namely
the needed adjustments we need to perform on the CNN’s architecture to conform
with the problem of multi-label classification. Moreover, we propose an online
variation of the image data augmentation technique, given the limited size of the
adopted dataset, and we present the applied cross-validation methodology, the
hyperparameters and the evaluation metrics used. Finally, in the last section of
this chapter, we demonstrate our experimental findings and we comment on the
deduced results.

5.1 The UC Merced land use dataset

The UC Merced Land Use Dataset! (UC-Merced) [6] includes aerial images ex-
tracted from larger images of the USGS National Map Urban Area Imagery Col-
lection? and it has been widely used in various remote sensing applications. It is
a high-resolution dataset that contains 2100 different images (of 256x256 pixels)
evenly split among 21 mutually exclusive, unique classes (Table 5.1). UC-Merced
has been considered in many different land cover categorization methodologies
that concentrate on the single-label scenario. For the purpose of our experiments,

"http:/ /weegee.vision.ucmerced.edu/datasets/landuse.html
https:/ /nationalmap.gov/ortho.html
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(a) airplane:  airplane, cars, (b) dense residential: buildings, (c) tennis court: buildings, cars,
grass, pavement cars, pavement, trees court, pavement, trees
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(d) overpass, bare soil, grass, (e) harbor: buildings, dock, ship, (f) parking lot: cars, pavement
pavement, trees water

(g) sparse residential: buildings, (h) forest: trees (i) beach: sand, sea
cars, chaparral, pavement,
sand, trees

Figure 5.1: Example images of the UC Merced dataset. The underlined annota-
tions indicate the multi-class association for each image. On the other hand, the
labels marked with bold are the corresponding multi-label annotations, examined
in this case study.
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we have utilized UC-Merced with a completely re-imagined labelset, more suited
for the multi-label case. Specifically, the new labelset consists of 17 different la-
bels, listed in Table 5.2, and each image in UC-Merced can be categorized to one
through seven of those labels, in accordance with its content. The labelset modifi-
cation has been conducted by the authors in [27], in the context of the BigEarth?
research project. An example set of UC-Merced images is illustrated in Figure 5.1,
where each image is tagged with both its multi-class and multi-label annotations.

5.2 Proposed framework

In this section the deployed methodologies and the accompanying concepts will be
shortly presented. The pipeline of the proposed approach is briefly described in
the block diagram in Figure 5.2.

5.2.1 Modification of the typical CNN architecture
5.2.1.1 Sigmoid outputs and thresholding

The first modification that we need to perform on a Convolutional Neural Network
to address a multi-label task is the substitution of the output softmax layer. Given
that softmax is normalized to strictly output probabilities that will always add up
to one, it is considered an ideal choice for a single-label multi-class scenario, where
all classes are mutually exclusive, albeit not as good of a choice for the multi-label
case. With softmax, as the trained system’s confidence for the prediction of a spe-
cific class increases, there is a need to enhance the probability score of that certain
class and concurrently to decrease the respective probabilities of the remaining

3http://bigearth.cu/index.html

Table 5.1: The original labelset of UC-Merced (single-label case) and the number
of samples associated with each label-class.

label of samples
- # p label # of samples
agricultural 100 - -
- intersection 100
airplane 100 - - -
. medium residential 100
baseball diamond 100 -
beach 100 mobile home park 100
buildings 100 overbass 100
parking lot 100
chaparral 100 ivor 100
dense residential 100
runway 100
forest 100 - .
sparse residentia
freewa; 100 dential 100
Y storage tanks 100
golf course 100 tennis court 100
harbor 100
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Table 5.2: The modified labelset of UC-Merced (with a multi-label perspective)
and the number of samples associated with each label.

1 1 f sampl
.abe # of samples label # of samples
airplane 100 -
- mobile home 102
bare soil 633
i pavement 1305
buildings 696
sand 389
cars 884
sea 100
chaparral 119 -
ship 102
court 105
tanks 100
dock 100
trees 1015
field 106 water 203
grass 977

classes. This is an undesirable property for the multi-label approach, given that
in most cases more than one labels must be associated with each sample. Instead
of selecting the single label with the maximum probability score, we need to select
all those labels with a score large enough that has rendered them active. To that

Labels Preserved
N || ==

" = repeatable, based on depth
{;, 5 x _ (at test time only)
2 } _Pooling if probability for label j > threshold
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Figure 5.2: The pipeline of the proposed methodology. Each batch of the training
set is dynamically and randomly augmented at every iteration of the training
process. The augmented data are fed into a deep CNN with sigmoid output units,
which is trained with backpropagation based on a chosen loss function. Probability
thresholding is used for the predictions only at test time. The test set is excluded
from the data augmentation methodology.
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end, for each individual output unit of the CNN, we must be able to efficiently
transition from its predicted score, to the binary decision of designating a label as
active or rejected. Considering that the number of active labels can be different for
each observation, there are no guarantees that a sufficiently high softmax proba-
bility score for a certain label, for a given sample, will also be regarded as high for
another sample of the dataset. As a result, in our method we choose to employ the
following sigmoid output activation function, yielding probability scores without
constraints concerning their sum:

1

f(@) = Fp— (5.1)

During inference, translating the probabilities associated with each output node
into a binary prediction for each label, requires the utilization of an appropriately
defined threshold such that a label is considered active if the associated score
exceeds the threshold. However, it is important to note that using thresholding
during training is not suggested. Given that the threshold operator converts the
predicted probability score values to constant numbers (0 for a rejected label and
1 for an active label), it leads to a zero gradient calculation for all output units,

causing the backpropagation process to malfunction.

5.2.1.2 Pertinent loss function choices

A second adjustment that we need to undertake, in order to adapt the network to
a multi-label problem is the adoption of pertinent to the task at hand loss function
choices. The use of popular losses, such as the mean squared reconstruction error
and the categorical cross entropy, may be appropriate in a multi-class classification
scenario, but in the multi-label case it is highly ineffective. In the defined problem,
most common choices include the multi-label alternative of the categorical cross-
entropy, namely the binary cross entropy (BCE), and the Poisson loss. Concerning
the latter, it is actually a measure of the divergence of each predicted label vector’s
distribution from a Poisson ground-truth distribution, which in our case is true
given its binary form and the sparsity of ones. The corresponding formulae of the
two adopted loss functions are defined as:

n

£=——> [y"og (V) + (1 —y")log (1 - 5)] (BCE), (5.2)
i=1
L= % Z(gj(i) —yDlog (7)) (Poisson). (5.3)
i=1

The scalar value n represents the number of training samples associated with each
training batch, y(® corresponds to the ground-truth label vector of the i-th sample
of the batch and §* corresponds to the predicted score vector for the same sample.
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5.2.2 Online image data augmentation

Most state-of-the-art deep learning architectures contain a massive amount of
trainable parameters that often exceed the order of magnitude of a million, or
even tens of millions. Having to deal with such complex models can easily result
in overfitting the training dataset, if its size is not sufficiently large. For an image
dataset, data augmentation can be a surprisingly effective solution and can signifi-
cantly increase the total number of available, annotated training examples through
a variety of simple transformations. These transformations include, among others,
the rotation of the image by different degrees, image rescaling, horizontal and ver-
tical flips, translations to the x and y-axis, and the addition of noise. By slightly
changing the content of each image without tampering with its semantic informa-
tion, thus preserving the same label associations, the CNN can be “tricked” to
perceive the existence of a significantly larger training dataset than the one ini-
tially available. The intuition behind image data augmentation originates from the
fact that a CNN must be able to discriminate between significant and irrelevant
features. Feeding the network with different variations of the same image, paired
with the same corresponding labels, can greatly improve its ability to distinguish
between those features and, accordingly, to preserve only the relevant information.
An airplane will still be an airplane regardless of its position in the given image or
whether it is facing to a certain direction. However, the same allegation cannot be
made if you remove its wings or its tail, crucial characteristics to its identification.

An online methodology has been deployed for data augmentation, meaning
that each training batch is dynamically augmented at every training iteration,
altering all the images of the batch on the fly. Compared to the offline alternative,
dynamic augmentation negates the memory requirements of a bigger, statically
defined dataset and reinforces, at the same time, the generalization capabilities of
the network, considering that the CNN will rarely or never process twice the exact
same sample.

5.2.3 Hyperparameters and Cross-Validation

Our initial experiments were conducted on a deep CNN with 3 convolutional layers,
1 dense-ReLU layer and 1 dense-sigmoid layer, with a global confidence threshold
of 0.45 for all labels. Shallower networks were also examined, but as presented in
Table 5.3 their performance was poorer compared to the deeper alternative. An
increasing number of 128, 256 and 512 trainable filters has been deployed, per
convolutional layer, with a kernel size of 3x3 and a stride of 2x2 each. For the
max pooling operator, a non-overlapping window size of 2x2 has been used on all
applicable convolutional layers. For the majority of our experiments the binary
cross entropy loss has been utilized, along with the adagrad optimizer [96], but, in
general, both Poisson and BCE have been found to perform relatively close (Table
5.4).

Different experimental variations have been considered. In each variation the
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Table 5.3: Performance evaluation based on the depth of the CNN. Data augmen-
tation is utilized.

Depth Accuracy Precision Recall F-score

1 Conv. Layer | 19.32 (4.24) | 55.23 (2.50) | 21.68 (7.58) | 31.14

2 Conv. Layers | 77.72 (0.72) 85.17 (0.31) 84.96 (0.99) 85.06

3 Conv. Layers | 81.32 (0.82) | 87.95 (0.84) | 89.32 (0.67) | 88.63

Table 5.4: Performance evaluation for the defined loss functions.

Loss Accuracy Precision Recall F-score
BCE 81.32 (0.82) 87.95 (0.84) 89.32 (0.67) 88.63
Poisson | 81.74 (1.12) | 88.00 (1.42) | 90.48 (2.12) | 89.22

same setting of the previous paragraph has been applied, altering, each time,
only one of the available hyperparameters. Each experimental variation has been
trained and tested 5 times and for each adopted performance metric, an average
value has been computed. Specifically, for each of these 5 experiments, the UC-
Merced dataset is randomly split into a training set of 1600 samples and a test set
of 500 samples for evaluating the performance. In all the experiments, the network
has been trained for 300 epochs, with a training batch size of 10. Furthermore,
batch normalization has been examined, leading to a faster convergence of the
training process, as well as a minor increase in the final performance.

The transformations that were used for dynamic data augmentation include
image rotation, translation and horizontal and vertical flips. Specifically, in the
case of image rotation we used a degree range for random rotations of [—45, 45]°and
for image translation we performed random shifts in a maximum range of the 20%
of the total height or width of the image. Considering that the augmentation
of the training set is dynamic, the size of augmented data can be calculated by
multiplying the initial size of the training set by the number of epochs the network
was trained. In our case, we end up with 1600 x 300 = 480, 000 training samples.
In order to minimize any potential cross-contamination between the training and
the test sets, data augmentation is not performed on the test set.

5.2.4 Metrics

The conventional performance-evaluation metric of accuracy, adopted in the single-
label scenario, is not suited for the multi-label case, examined in this chapter.
To that end, the metrics of precision and recall have been utilized for a reliable
evaluation of the performance of the proposed methodology and for a consistent
comparison with the current state-of-the-art in [27]. Precision is a measurement of
the percentage of the positively predicted labels that are active in ground-truth.
On the other hand, recall is defined as the fraction of all active labels that are
successfully predicted as such. Moreover, the F-score measure is adopted, as the
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harmonic mean of both precision and recall, along with a multi-label variation of
the metric of accuracy. The corresponding formulae of the employed metrics are
defined as:

1 &K |Y:NZ
Precision = — —_ 5.4
e o
Recall = 1 Zn: Y0 Zi (5.5)
nim
Accurac ! z": [¥%: 0 Zi (5.6)
uracy = — —_— .
e AL
Foscore — 2 Precision x Recall (5.7)

Precision + Recall’

where, n corresponds to the number of samples in the evaluated dataset (the test
set), Y; corresponds to the real labelset of the i-th sample and Z; corresponds to
the predicted labelset. The union (U) and the intersection (N) operators return a
new set with the bit-wise OR and respectively the bit-wise AND of the elements
of the two operand labelsets. Finally the |- | operator counts the number of active
labels (number of 1s) of the given set.

5.3 Experimental analysis and discussion

The experimental setup described in sub-section 5.2.3 was used as a baseline for
the various experiments conducted. As a first comparison, in Tables 5.5 and 5.6,
we can observe that the use of data augmentation leads to a generous perfor-
mance improvement with or without the use of regularization (i.e. dropout).
Another important observation is that in the case where data augmentation is
omitted, dropout can meaningfully improve the final outcome, given that initially
the trained CNN overfits the small training dataset. On the other hand, as seen

Table 5.5: The performance and standard deviation (parentheses) of the proposed
architecture, with different dropout options. Data augmentation has been utilized.

Dropout | Accuracy | Precision Recall F-score
No 81.2 (0.7) 87.3 (0.6) 88.5 (0.7) 87.9
0.25 81.3 (0.8) 88.0 (0.8) 89.3 (0.7) 88.6
0.50 81.4 (0.4) | 88.2 (0.5) | 89.5 (0.6) 88.8
0.75 79.7 (0.0) 86.4 (0.2) 89.1 (0.3) 87.7
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Table 5.6: The performance and standard deviation (parentheses) of the proposed
architecture, with different dropout options. Data augmentation has been omitted.

Dropout | Accuracy | Precision Recall F-score
No 68.0 (0.5) 80.4 (0.5) 77.6 (1.4) 79.0
0.25 73.7 (0.8) 85.1 (1.0) 81.1 (0.6) 83.1
0.50 75.7 (0.5) 85.4 (0.6) 83.3 (0.7) 84.3
0.75 77.7 (0.2) | 85.5 (0.1) | 85.8 (0.4) 85.7

in Table 5.5, the impact of dropout greatly diminishes as the augmentation of the
training set leads to a stronger mitigation of the effects of overfitting.

In Figure 5.3, we explore the impact of the different sigmoid thresholds and
how they are translated to the network’s increased requirements for more con-
fident predictions. The results demonstrate that low threshold values lead to
over-optimistic (high recall - low precision) predictions while high threshold values
result to conservative (low recall - high precision) predictions. Nevertheless, all
thresholds seem to result in reasonable F-score evaluations, with values between
0.3 and 0.4 qualifying as the optimal selections.

In Figure 5.4, we perform a data-driven analysis on how the initial size of the
given training set can affect the final performance of the trained CNN. In the case
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Figure 5.3: Plot of the precision, recall and F-score percentages for different sig-
moid probability thresholds. The remaining hyperparameters stay unchanged.
The extreme threshold values of 0 and 1 have been excluded.
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Figure 5.4: Demonstration of the impact of the initial size of the training set, with
and without the utilization of data augmentation. In the case of data augmentation
(green bars) the initial size is projected into much larger numbers. Given that in all
experiments, the network was trained for 300 epochs, the final size of the training
dataset is increased to 120,000, 240,000 and 480,000, indicated by the first, second
and third green bar, respectively.

where data augmentation is employed, even though there is an obvious benefit
with each increase, this benefit is not as pronounced as in the no-augmentation
scenario. This result is inline with our intuition, since with data augmentation
the transformation of the initial training examples leads to a fairly large dataset,
regardless of its original limited size, whereas without data augmentation the initial
size remains unaltered, rendering each increase far more impactful.

Figure 5.5, presents some indicative annotations inferred by the proposed
model. We observe that the trained network manages to correctly predict the
majority of the ground-truth labels of the tested images. Certainly, there are
some cases where it fails to perceive the existence of certain objects. For example,
in image (a) it misses the building in the lower left corner, presumably because
it has inferred that buildings are usually found in groups and rarely in maritime
environments. In other cases, and for equivalent reasons, it attributes specific la-
bels to the image that in reality are false positives. For example, in image (b)
the network is confident that it detects cars, given that in most freeway images in
the dataset cars are present. Last, in image (c), we can observe that the network
might fail to distinguish between different objects that might share some common
attributes. For example, the green color of the existing courts seems to confuse
the trained CNN, which falsely decides the existence of the grass label, instead of
that of the court.
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Figure 5.5: Examples of inferred annotations where bold indicates correctly iden-
tified labels, italics denotes labels detected by the proposed method but not iden-
tified as active in the ground-truth, and underlined are ground-truth labels not

found by the proposed method.

Table 5.7: Comparison between the multi-label image retrieval model (MLIR-
CF) [28], the graph-based approach (GB) [27] and our proposed CNN with data
augmentation (CNN DA).

(b) bare soil, grass, pavement,
trees, cars

(c) buildings, cars,
trees, court grass

Metric MLIR-CF [28] | GB [27] | CNN DA
Accuracy 61.88 74.29 82.29
Precision 68.13 85.68 88.08

Recall 81.77 80.25 91.02

F-score 74.33 82.88 89.53

Finally, in Table 5.7 we present a comparison between our best trained model
and the aforementioned works on the same topic. The increase of 6.65% on the F-
score and 8% on the multi-label accuracy, compared to the current state-of-the-art,
clearly show the capabilities of the proposed approach.
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Chapter 6

Conclusions

In this thesis, we have addressed different classification problems in remote sensing,
by utilizing the cutting-edge deep learning methodology of Convolutional Neural
Networks. We have done so, in a case where the availability of data falls under
the category of the Big Data paradigm, but also in a different scenario where data
deficiency calls for alternative solutions.

Regarding the first application field, we proposed an alternative solution for
the problem of spectroscopic redshift estimation in astronomy, through its trans-
formation from a regression to a multi-class classification problem. We deployed a
one-dimensional variation of a Convolutional Neural Network and we thoroughly
examined its estimating capabilities for the issue at hand, using big volumes of
training observations in various settings. Experimental results unveiled the great
potential of this radically new approach in the field of spectroscopic redshift anal-
ysis and triggered the need for a deeper study, concerning Euclid and other spec-
troscopic surveys.

In the second case study, we demonstrated the benefits of using deep CNN
architectures along with data augmentation to efficiently address the problem of
multi-label, land cover scene categorization on a limited in size dataset. The
performed experiments demonstrated the impressive capabilities of the proposed
methodology that managed to outperform the current state-of-the-art by more
than 6% F-score, in a multi-label modified version of the UC-Merced Land Use
Dataset. Both case studies serve to further confirm the potential of deep learning
for simultaneous feature extraction and classification.

6.1 Future directions

Future work in spectroscopic redshift analysis, concerning the Euclid space tele-
scope, includes the introduction of new noise patterns that will complement the
existing noise-scenario to an outright realistic simulation. Using these data, a ro-
bust predictive model can be built, capable of pioneering in the area of our study,
and a form of transfer learning can be applied [9], exploiting future, real Euclid
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observations. Another avenue of applications involves other spectroscopic surveys.
The Dark Energy Spectroscopic Instrument (DESI) [103] is one of the major up-
coming cosmological surveys currently under construction and installation in Kitt
Peak, Arizona. It will operate in different wavelengths and under different obser-
vational and instrumental conditions compared to Euclid, and consequently will
be able to detect galaxies with different redshift properties.

In the case of multi-label classification in remote sensing, our focus can be
concentrated on the design of alternative techniques for managing the problem
of low data availability and on the application of the proposed methodology on
hyperspectral imaging modalities.

Finally, given that all current deep learning libraries provide frameworks of
CNN architectures that are limited up to the three-dimensional case, we can es-
tablish the development of a generalized scheme for n-dimensional Convolutional
Neural Networks.

56



Bibliography

1]

[6]

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436-444, 2015.

A. G. Ivakhnenko and V. G. Lapa. Cybernetic predicting devices. Technical
report, Purdue Univ. Lafayette ind. school of Electrical Engineering, 1966.

Andrew Beam. Deep learning 101 - part 1: History and back-
ground. https://beamandrew.github.io/deeplearning/2017/02/23/
deep_learning_101_partl.html.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation ap-
plied to handwritten zip code recognition. Neural computation, 1(4):541-551,
1989.

H Keffer Hartline. The response of single optic nerve fibers of the vertebrate
eye to illumination of the retina. American Journal of Physiology—Legacy
Content, 121(2):400-415, 1938.

Yi Yang and Shawn Newsam. Bag-of-visual-words and spatial extensions for
land-use classification. In Proceedings of the 18th SIGSPATIAL international
conference on advances in geographic information systems, pages 270-279.
ACM, 2010.

Randal Bryant, Randy H Katz, and Edward D Lazowska. Big-data comput-
ing: creating revolutionary breakthroughs in commerce, science and society.
A white paper prepared for the Computing Community Consortium com-
mittee of the Computing Research Association, 2008.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks
from overfitting. Journal of machine learning research, 15(1):1929-1958,
2014.

Lorien Y Pratt. Discriminability-based transfer between neural networks. In
Advances in neural information processing systems, pages 204-211, 1993.

57



[10]

[11]

Patrice Y Simard, Dave Steinkraus, and John C Platt. Best practices for
convolutional neural networks applied to visual document analysis. page 958.
IEEE, 2003.

Sergey lToffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International Con-
ference on Machine Learning, pages 448-456, 2015.

Gianfranco Bertone.  Particle dark matter: Observations, models and
searches. Cambridge University Press, 2010.

E. J. Copeland, M. Sami, and S. Tsujikawa. Dynamics of Dark Energy.
International Journal of Modern Physics D, 15:1753-1935, 2006.

Geoffrey Marcy, R Paul Butler, Debra Fischer, Steven Vogt, Jason T Wright,
Chris G Tinney, and Hugh RA Jones. Observed properties of exoplanets:

masses, orbits, and metallicities. Progress of Theoretical Physics Supplement,
158:24-42, 2005.

Planck Collaboration, P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown,
J. Aumont, C. Baccigalupi, A. J. Banday, R. B. Barreiro, J. G. Bartlett, and
et al. Planck 2015 results. XIII. Cosmological parameters. A&A, 594:A13,
September 2016.

W. J. Borucki, D. Koch, G. Basri, N. Batalha, T. Brown, D. Caldwell,
J. Caldwell, J. Christensen-Dalsgaard, W. D. Cochran, E. DeVore, E. W.
Dunham, A. K. Dupree, T. N. Gautier, J. C. Geary, R. Gilliland, A. Gould,
S. B. Howell, J. M. Jenkins, Y. Kondo, D. W. Latham, G. W. Marcy, S. Mei-
bom, H. Kjeldsen, J. J. Lissauer, D. G. Monet, D. Morrison, D. Sasselov,
J. Tarter, A. Boss, D. Brownlee, T. Owen, D. Buzasi, D. Charbonneau,
L. Doyle, J. Fortney, E. B. Ford, M. J. Holman, S. Seager, J. H. Steffen,
W. F. Welsh, J. Rowe, H. Anderson, L. Buchhave, D. Ciardi, L. Walkowicz,
W. Sherry, E. Horch, H. Isaacson, M. E. Everett, D. Fischer, G. Torres,
J. A. Johnson, M. Endl, P. MacQueen, S. T. Bryson, J. Dotson, M. Haas,
J. Kolodziejczak, J. Van Cleve, H. Chandrasekaran, J. D. Twicken, E. V.
Quintana, B. D. Clarke, C. Allen, J. Li, H. Wu, P. Tenenbaum, E. Verner,
F. Bruhweiler, J. Barnes, and A. Prsa. Kepler Planet-Detection Mission:
Introduction and First Results. Science, 327:977, February 2010.

R Laureijs, J Amiaux, S Arduini, J-L. Augueres, J Brinchmann, R Cole,
M Cropper, C Dabin, L Duvet, A Ealet, et al. FEuclid definition study
report. arXiv preprint arXiv:1110.3193, 2011.

P. A. Abell, J. Allison, S. F. Anderson, J. R. Andrew, J. R. P. Angel, L. Ar-
mus, D. Arnett, S. J. Asztalos, T. S. Axelrod, S Bailey, et al. Lsst science
book, version 2.0. 2009.

58



[19]

[20]

[21]

[22]

[26]

[27]

Zachary D Stephens, Skylar Y Lee, Faraz Faghri, Roy H Campbell, Chengxi-
ang Zhai, Miles J Efron, Ravishankar Iyer, Michael C Schatz, Saurabh Sinha,

and Gene E Robinson. Big data: astronomical or genomical? PLoS biology,
13(7):€1002195, 2015.

G Efstathiou, Wo J Sutherland, and SJ Maddox. The cosmological constant
and cold dark matter. Nature, 348(6303):705-707, 1990.

Richard Massey, Thomas Kitching, and Johan Richard. The dark matter of
gravitational lensing. Reports on Progress in Physics, 73(8):086901, 2010.

Jun Ding, Bo Chen, Hongwei Liu, and Mengyuan Huang. Convolutional
neural network with data augmentation for sar target recognition. IEEFE
Geoscience and remote sensing letters, 13(3):364-368, 2016.

Christopher D Lippitt, Douglas A Stow, and Lloyd L Coulter. Time-sensitive
remote sensing. Springer, 2015.

Qin Zou, Lihao Ni, Tong Zhang, and Qian Wang. Deep learning based fea-
ture selection for remote sensing scene classification. IFEE Geosci. Remote
Sensing Lett., 12(11):2321-2325, 2015.

Grant J Scott, Matthew R England, William A Starms, Richard A Marcum,
and Curt H Davis. Training deep convolutional neural networks for land—

cover classification of high-resolution imagery. IEEE Geoscience and Remote
Sensing Letters, 14(4):549-553, 2017.

Weiwei Sun and Ruisheng Wang. Fully convolutional networks for semantic
segmentation of very high resolution remotely sensed images combined with
dsm. IEEE Geoscience and Remote Sensing Letters, 15(3):474-478, 2018.

Bindita Chaudhuri, Beglim Demir, Subhasis Chaudhuri, and Lorenzo Bruz-
zone. Multilabel remote sensing image retrieval using a semisupervised
graph-theoretic method. IEEFE Transactions on Geoscience and Remote
Sensing, 56(2):1144-1158, 2018.

Zhenfeng Shao, Ke Yang, and Weixun Zhou. Performance evaluation of
single-label and multi-label remote sensing image retrieval using a dense

labeling dataset. Remote Sensing, 10(6):964, 2018.

Tan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735-1780, 1997.

59



[31]

[32]

[33]

[41]

[42]

John J Hopfield. Neural networks and physical systems with emergent col-
lective computational abilities. In Spin Glass Theory and Beyond: An In-
troduction to the Replica Method and Its Applications, pages 411-415. World
Scientific, 1987.

Kunihiko Fukushima. Neocognitron: A hierarchical neural network capable
of visual pattern recognition. Neural networks, 1(2):119-130, 1988.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A
Large-Scale Hierarchical Image Database. In CVPR09, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-
tion with deep convolutional neural networks. In F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems 25, pages 1097-1105. Curran Associates, Inc., 2012.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

Sergey Zagoruyko and Nikos Komodakis. Learning to compare image patches
via convolutional neural networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4353-4361, 2015.

Grigorios Tsagkatakis, Mustafa Jaber, and Panagiotis Tsakalides. Goal!!
event detection in sports video. FElectronic Imaging, 2017(16):15-20, 2017.

Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul
Sukthankar, and Li Fei-Fei. Large-scale video classification with convolu-

tional neural networks. In Proceedings of the IEEE conference on Computer
Viston and Pattern Recognition, pages 1725-1732, 2014.

Konstantina Fotiadou, Grigorios Tsagkatakis, and Panagiotis Tsakalides.
Deep convolutional neural networks for the classification of snapshot mo-
saic hyperspectral imagery. FElectronic Imaging, 2017(17):185-190, 2017.

Fan Hu, Gui-Song Xia, Jingwen Hu, and Liangpei Zhang. Transferring deep
convolutional neural networks for the scene classification of high-resolution
remote sensing imagery. Remote Sensing, 7(11):14680-14707, 2015.

Wei Hu, Yangyu Huang, Li Wei, Fan Zhang, and Hengchao Li. Deep con-
volutional neural networks for hyperspectral image classification. Journal of
Sensors, 2015, 2015.

Guang Xu, Xuan Zhu, Dongjie Fu, Jinwei Dong, and Xiangming Xiao. Au-

tomatic land cover classification of geo-tagged field photos by deep learning.
Environmental Modelling € Software, 91:127-134, 2017.

60



[43]

[44]

[45]

D Tuccillo, Etienne Decenciere, Santiago Velasco-Forero, et al. Deep learning
for studies of galaxy morphology. Proceedings of the International Astronom-
ical Union, 12(S325):191-196, 2016.

D Tuccillo, E Decenciére, S Velasco-Forero, H Dominguez Sanchez, P Di-
mauro, et al. Deep learning for galaxy surface brightness profile fitting.
Monthly Notices of the Royal Astronomical Society, 2017.

AK Aniyan and Kshitij Thorat. Classifying radio galaxies with the con-
volutional neural network. The Astrophysical Journal Supplement Series,
230(2):20, 2017.

Fabian Gieseke, Steven Bloemen, Cas van den Bogaard, Tom Heskes, Jonas
Kindler, Richard A Scalzo, Valério ARM Ribeiro, Jan van Roestel, Paul J
Groot, Fang Yuan, et al. Convolutional neural networks for transient candi-
date vetting in large-scale surveys. Monthly Notices of the Royal Astronom-
ical Society, 472(3):3101-3114, 2017.

Edward J Kim and Robert J Brunner. Star-galaxy classification using deep
convolutional neural networks. Monthly Notices of the Royal Astronomical
Society, page stw2672, 2016.

CE Petrillo, C Tortora, S Chatterjee, G Vernardos, LVE Koopmans, G Ver-
does Kleijn, NR Napolitano, G Covone, P Schneider, A Grado, et al. Finding
strong gravitational lenses in the kilo degree survey with convolutional neural
networks. Monthly Notices of the Royal Astronomical Society, 472(1):1129—
1150, 2017.

Francois Lanusse, Quanbin Ma, Nan Li, Thomas E Collett, Chun-Liang
Li, Siamak Ravanbakhsh, Rachel Mandelbaum, and Barnabas Poczos. Cmu
deeplens: Deep learning for automatic image-based galaxy-galaxy strong lens
finding. arXiv preprint arXiv:1703.02642, 2017.

Narciso Benitez. Bayesian photometric redshift estimation. The Astrophys-
ical Journal, 536(2):571, 2000.

Christopher Bonnett. Using neural networks to estimate redshift distribu-
tions. an application to cfhtlens. Monthly Notices of the Royal Astronomical
Society, 449(1):1043-1056, 2015.

Iftach Sadeh, Filipe B Abdalla, and Ofer Lahav. Annz2: Photometric red-
shift and probability distribution function estimation using machine learn-
ing. Publications of the Astronomical Society of the Pacific, 128(968):104502,
2016.

61



[53]

[58]

[61]

[62]

[63]

David W Gerdes, Adam J Sypniewski, Timothy A McKay, Jiangang Hao,
Matthew R Weis, Risa H Wechsler, and Michael T Busha. Arborz: pho-

tometric redshifts using boosted decision trees. The Astrophysical Journal,
715(2):823, 2010.

Karl Glazebrook, Alison R. Offer, and Kathryn Deeley. Automatic redshift
determination by use of principal component analysis i: Fundamentals. The
Astrophysical Journal, 492:98-109, 1998.

Daniel Guidici and Matthew L Clark. One-dimensional convolutional neural
network land-cover classification of multi-seasonal hyperspectral imagery in
the san francisco bay area, california. Remote Sensing, 9(6):629, 2017.

Haoning Lin, Zhenwei Shi, and Zhengxia Zou. Maritime semantic labeling of
optical remote sensing images with multi-scale fully convolutional network.
Remote Sensing, 9(5):480, 2017.

Yi Zhu and Shawn Newsam. Land use classification using convolutional
neural networks applied to ground-level images. In Proceedings of the 23rd
SIGSPATIAL International Conference on Advances in Geographic Infor-
mation Systems, page 61. ACM, 2015.

Jingxiang Yang, Yongqgiang Zhao, Jonathan Cheung-Wai Chan, and Chen
Yi. Hyperspectral image classification using two-channel deep convolutional
neural network. In Geoscience and Remote Sensing Symposium (IGARSS),
2016 IEEE International, pages 5079-5082. IEEE, 2016.

Konstantinos Karalas, Grigorios Tsagkatakis, Michalis Zervakis, and Pana-
giotis Tsakalides. Feature learning for multi-label land cover classification.

Jie Geng, Jianchao Fan, Hongyu Wang, Xiaorui Ma, Baoming Li, and Fu-
liang Chen. High-resolution sar image classification via deep convolutional
autoencoders. IEEE Geoscience and Remote Sensing Letters, 12(11):2351—
2355, 2015.

Nataliia Kussul, Mykola Lavreniuk, Sergii Skakun, and Andrii Shelestov.
Deep learning classification of land cover and crop types using remote sensing
data. IEEE Geoscience and Remote Sensing Letters, 14(5):778-782, 2017.

Grigorios Tsagkatakis and Panagiotis Tsakalides. Deep feature learning for
hyperspectral image classification and land cover estimation. ESA Symbo-
stum, 2016.

Dimitrios Marmanis, Mihai Datcu, Thomas Esch, and Uwe Stilla. Deep

learning earth observation classification using imagenet pretrained networks.
IEEE Geoscience and Remote Sensing Letters, 13(1):105-109, 2016.

62



[64]

[68]

[69]

[70]

Marco Castelluccio, Giovanni Poggi, Carlo Sansone, and Luisa Verdoliva.
Land use classification in remote sensing images by convolutional neural
networks. arXiv preprint arXiw:1508.00092, 2015.

David G Lowe. Object recognition from local scale-invariant features. In
Computer vision, 1999. The proceedings of the seventh IEEE international
conference on, volume 2, pages 1150-1157. Ieee, 1999.

Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human
detection. In Computer Vision and Pattern Recognition, 2005. CVPR 2005.
IEEE Computer Society Conference on, volume 1, pages 886-893. IEEE,
2005.

Steven W Running. Estimating terrestrial primary productivity by combin-
ing remote sensing and ecosystem simulation. In Remote sensing of biosphere
functioning. Springer, 1990.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
internal representations by error propagation. Technical report, California
Univ San Diego La Jolla Inst for Cognitive Science, 1985.

Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality
of data with neural networks. science, 313(5786):504-507, 2006.

Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative ad-

versarial nets. In Advances in neural information processing systems, pages
26722680, 2014.

Matthew R Boutell et al. Learning multi-label scene classification. Pattern
recognition, 37(9), 2004.

Zhi-Hua Zhou et al. Multi-instance multi-label learning with application to
scene classification. In Advances in neural information processing systems,
2007.

Ricardo S Cabral et al. Matrix completion for multi-label image classifica-
tion. In Advances in Neural Information Processing Systems, 2011.

Image adopted from:

Francisco Herrera, Francisco Charte, Antonio J Rivera, and Maria J Del Je-
sus. Multilabel classification. In Multilabel Classification, pages 17-31.
Springer, 2016.

Leo Breiman. Arcing the edge. Technical report, Technical Report 486,
Statistics Department, University of California, 1997.

Jerome H Friedman. Greedy function approximation: a gradient boosting
machine. Annals of statistics, pages 1189-1232, 2001.

63



[77]

[78]

[79]

Matthew A Turk and Alex P Pentland. Face recognition using eigenfaces.
In Computer Vision and Pattern Recognition, 1991. Proceedings CVPR’91.,
IEEE Computer Society Conference on, pages 586-591. IEEE, 1991.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, et al. Deep face
recognition. In BMVC, page 6, 2015.

Ronald A Fisher. The use of multiple measurements in taxonomic problems.
Annals of eugenics, 7(2):179-188, 1936.

Shu Huang, Wei Peng, Jingxuan Li, and Dongwon Lee. Sentiment and topic
analysis on social media: a multi-task multi-label classification approach. In
Proceedings of the 5th annual ACM web science conference, pages 172—181.
ACM, 2013.

Shuhua Monica Liu and Jiun-Hung Chen. A multi-label classification based
approach for sentiment classification. Fapert Systems with Applications,
42(3):1083-1093, 2015.

Dolly Carrillo, Vivian F Lépez, and Maria N Moreno. Multi-label classifica-
tion for recommender systems. In Trends in Practical Applications of Agents
and Multiagent Systems, pages 181-188. Springer, 2013.

Toannis Katakis, Grigorios Tsoumakas, and Ioannis Vlahavas. Multilabel
text classification for automated tag suggestion. In Proceedings of the
ECML/PKDD, volume 18, 2008.

Grigorios Tsoumakas, Ioannis Katakis, and loannis Vlahavas. Mining multi-
label data. In Data mining and knowledge discovery handbook, pages 667—
685. Springer, 2009.

Frank Rosenblatt. Principles of neurodynamics. perceptrons and the theory
of brain mechanisms. Technical report, Cornell Aeronautical Lab, 1961.

Image adopted from:

Mathworks. Introduction to deep learning: What are convolutional neu-
ral networks?  https://www.mathworks.com/videos/introduction-to-deep-
learning-what-are-convolutional-neural-networks—1489512765771.html.

Yoshua Bengio. Practical recommendations for gradient-based training of
deep architectures. In Neural networks: Tricks of the trade, pages 437—-478.
Springer, 2012.

Yann LeCun et al. Generalization and network design strategies. Connec-
tionism wn perspective, pages 143-155, 1989.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks.
Neural networks, 4(2):251-257, 1991.

64



[90]

[91]

[95]

[100]

[101]

[102]

Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evalu-
ation of rectified activations in convolutional network. arXiv preprint
arXw:1505.00853, 2015.

Sepp Hochreiter. The vanishing gradient problem during learning recurrent
neural nets and problem solutions. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, 6(02):107-116, 1998.

Image adopted from:
(CS231n Convolutional Neural Networks for Visual Recognition. Convolu-
tional neural networks. http://cs231n.github.io/convolutional-networks/.

S Jouvel, J-P Kneib, O Ilbert, G Bernstein, S Arnouts, T Dahlen, A Ealet,
B Milliard, H Aussel, P Capak, et al. Designing future dark energy space
missions-i. building realistic galaxy spectro-photometric catalogs and their
first applications. Astronomy € Astrophysics, 504(2):359-371, 20009.

Pm Capak, H Aussel, M Ajiki, HJ McCracken, B Mobasher, N Scoville,
P Shopbell, Y Taniguchi, D Thompson, S Tribiano, et al. The first release
cosmos optical and near-ir data and catalog. The Astrophysical Journal
Supplement Series, 172(1):99, 2007.

O Ilbert, P Capak, M Salvato, H Aussel, HJ McCracken, DB Sanders,
N Scoville, J Kartaltepe, S Arnouts, E Le Floc’h, et al. Cosmos photometric
redshifts with 30-bands for 2-deg2. The Astrophysical Journal, 690(2):1236,
2008.

John Duchi et al. Adaptive subgradient methods for online learning and
stochastic optimization. JMLR, 12(Jul), 2011.

Richard Bellman. Dynamic programming. Princeton University Press, 1957.

DP Machado, A Leonard, J-L Starck, FB Abdalla, and S Jouvel. Darth
fader: Using wavelets to obtain accurate redshifts of spectra at very low
signal-to-noise. Astronomy € Astrophysics, 560:A83, 2013.

Konstantina Fotiadou, Grigorios Tsagkatakis, Bruno Moraes, Filipe B Ab-
dalla, and Panagiotis Tsakalides. Denoising galaxy spectra with coupled dic-
tionary learning. In Signal Processing Conference (EUSIPCO), 2017 25th
European, pages 498-502. IEEE, 2017.

Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE
transactions on information theory, 13(1):21-27, 1967.

Leo Breiman. Random forests. Machine learning, 45(1):5-32, 2001.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine
learning, 20(3):273-297, 1995.

65



[103] Michael Levi, Chris Bebek, Timothy Beers, Robert Blum, Robert Cahn,
Daniel Eisenstein, Brenna Flaugher, Klaus Honscheid, Richard Kron, Ofer
Lahav, et al. The desi experiment, a whitepaper for snowmass 2013. arXiv
preprint arXiww:1508.0847, 2013.

66



