
Computer Science Department
University of Crete

Prototype Deployment of the Network of Affined
Honeypots Architecture

Master’s Thesis

Manos Athanatos

October 2007
Heraklion, Greece

2

University of Crete

Computer Science Department

Prototype Deployment of the Network of Affined Honeypots

Architecture

Thesis submitted by

Manos Athanatos

in partial fulfillment of the requirements for the

Master of Science degree in Computer Science

THESIS APPROVAL

Author:

Manos Athanatos

Committee approvals:

Evangelos P. Markatos

Professor, Thesis Supervisor

Mema Roussopoulos

Assistant Professor

Maria Papadopouli

Assistant Professor

Departmental approval:

Panos Trahanias

Professor, Chairman of Graduate Studies

Heraklion, October 2007

Abstract

Internet security is an arms race between attackers and the whitehat com-
munity. Honeypots are a valuable asset that helps researchers and security
experts obtain knowledge for both known and unknown attacks. Honey-
pots are specially designed hosts set up to act as decoys for attackers and
automated attacking tools. Since a single honeypot host can only receive a
small portion of the unsolicited internet traffic and thus has limited chances
to be the victim of a cyber attack, a distributed monitoring infrastructure
of cooperative honeypots is needed.

Network of Affined Honeypots (NoAH) aims to develop and deploy a large
scale system of honeypots which cooperate in order to identify new and an-
alyze existing attacks. NoAH is composed of a core that is comprised of low
and high interaction honeypots, which are responsible for interacting with
the attackers and analyze the received traffic. Apart from the core, there
are tunneling and funneling mechanisms that collect and direct traffic from
participating honeypots to the NoAH core. Moreover, home users and small
enterprises can participate in NoAH infastructure through Honey@Home
tool. Honey@Home listens to the unused address space of a home or en-
terprise network and forwards received traffic to the NoAH core. In this
thesis we present a prototype deployment of the NoAH infastructure along
with some experimental results and record our experiences with the NoAH
infrastructure. Results suggest that we can build a robust and effective
infrastructure with moderate resource requirements.

Supervisor: Professor Evangelos Markatos

iii

iv

Περίληψη

Η ασφάλεια υπολογιστών είναι ένας αγώνας µεταξύ των επιτιθέµενων και τις
ερευνητικής κοινότητας που ασχολείται µε την ασφάλεια υπολογιστών. Τα
‘‘Honeypots’’ (συστήµατα ανίχνευσης επιθέσεων) είναι ένα πολύτιµο εργαλείο
που ϐοηθάει τους ερευνητές και τους ειδικούς στην ασφάλεια υπολογιστών
να κατανοήσουν καλύτερα τις ήδη γνώστες και να ανιχνεύσουν προτύτερα ά-
γνωστες επιθέσεις. Τα ‘‘Honeypots’’ είναι ειδικά σχεδιασµένα συστήµατα τα
οποία λειτουργούν σαν δόλωµα για τους επιτιθέµενους και για τα αυτόµατα
προγράµµατα επιθέσεων. ΄Ενα µόνο ‘‘Honeypot’’ µπορεί να λάβει ένα περιο-
ϱισµένο µέρος της ‘ύποπτης’ κίνησης που κυκλοφορεί στο διαδίκτυο και έτσι
έχει περιορισµένες πιθανότητες να πέσει ϑύµα µιας επίθεσης µεσώ του δια-
δικτύου. Γι΄ αυτούς τους λόγους χρειάζεται ένα κατανεµηµένο σύστηµα από
πολλά συνεργαζόµενα ‘‘Honeypot’’.

Το έργο ΝοΑΗ (∆ίκτυο από συνεργαζόµενα ‘‘Honeypots’’) στοχεύει στην
σχεδίαση και ανάπτυξη ενός κατανεµηµένου δικτύου από συνεργαζόµενα ‘‘Ho-
neypots’’, το οποίο προσπαθεί να ανακαλύψει καινουργίες και να αναλύσει
τις ήδη υπάρχουσες επιθέσεις. Το ΝοΑΗ αποτελείται από ένα ‘πυρήνα’ από
‘‘Honeypots’’ χαµηλής και υψηλής αλληλεπίδρασης, τα οποία επικοινωνούν
µε τους επιτιθέµενους και αναλύουν τη κίνηση που λαµβάνουν από αυτούς.
Εκτός από τον ‘πυρήνα’, στο ΝοΑΗ υπάρχουν διάφοροι µηχανισµοί στο ο-
ποίοι λαµβάνουν και προωθούν τη λαµβανόµενη κίνηση στο πυρήνα του συ-
στήµατος. Επιπλέον, οι απλοί χρήστες και οι µικρές επιχειρήσεις µπορούν
να λάβουν µέρος στο σύστηµα ΝοΑΗ χρησιµοποιώντας το πρόγραµµα ‘‘Ho-
ney@Home’’. Το πρόγραµµα ‘‘Honey@Home’’ λαµβάνει τη κίνηση που πρω-
τύτερα κατευθύνονταν σε ανενεργές ΙΡ διευθύνσεις. Αυτή η κίνηση συλλέγεται
και προωθείται στον ‘πυρήνα’ του ΝοΑΗ από το πρόγραµµα ‘‘Honey@Home’’.

v

vi

Σε αυτή την εργασία παρουσιάζουµε µια πρωτότυπη ανάπτυξη της αρχιτεκτο-
νικής ΝοΑΗ. Επίσης, παρουσιάζονται τα αποτελέσµατα από µια σειρά πειρα-
µάτων τα οποία έγιναν µε σκοπό τη µέτρηση της απόδοσης του συστήµατος
ΝοΑΗ. Τα αποτελέσµατα αυτά δείχνουν ότι είναι εφικτό να δηµιουργήσουµε
µια εύρωστη και αποδοτική υποδοµή από ‘‘Honeypots’’ µε τη χρήση περιορι-
σµένων πόρων.

Επόπτης : Καθηγητής Ευάγγελος Μαρκάτος

Acknowledgments

I feel grateful to my Supervisor, Professor Evangelos P. Markatos, for

his valuable assistance and guidelines in my academic steps in the field of

Computer Science. I am really privileged to cooperate with people of his

mental and ethical values.

My best regards to the following, past and current, members of the Dis-

tributed Computing Systems Laboratory (ICS/FORTH), whom I feel to be

friends more than just colleagues: Spiros Antonatos, Michalis Polychron-

akis, Demetres Antoniades, Elias Athanasopoulos, Antonis Papadogian-

nakis, Christos Papachristos, Periklis Akritidis, Manolis Stamatogiannakis,

Demetres Koukis, George Vasiliades, Polakis Iason, Nikos Hatzibodozis,

Michalis Foukarakis, John Velegrakis and Manos Moschous.

I would like to thank my family, my parents George and Helen and my

sister Marina, for the support and education they provided me with.

Last but not least, I would like to thank Eirini for her emotional support.

viii

ix

To my Family.

x

Contents

1 Introduction 1

1.1 Contributions . 3

1.2 Thesis Outline . 3

2 Background 5

2.1 Honeypots . 5

2.1.1 Low Interaction Honeypots 6

2.1.2 High Interaction Honeypots 9

2.2 Distributed Honeypot Architectures 11

2.3 Spam Honeypots . 14

3 NoAH architecture 17

3.1 Tunneling and Funneling . 19

3.1.1 Honey@Home . 23

3.2 Low Interaction Honeypots 26

3.3 High Interaction Honeypots 27

3.4 Interaction between Low and High Interaction Honeypots . . 28

3.4.1 ‘‘Lightweight Proxy’’ Honeypots 29

4 Evaluation Methodology 37

4.1 NoAH components . 37

4.2 Honey@Home and SSL Server Evaluation Methodology 39

xi

xii CONTENTS

4.3 Modified Honeyd Evaluation Methodology 42

4.4 High interaction honeypot Evaluation Methodology 44

5 Results 47

5.1 Testbed . 47

5.2 High Interaction Honeypots Evaluation 48

5.3 Hand Off Mechanism Evaluation 51

5.4 End-to-End Evaluation . 54

5.4.1 Honey@Home Evaluation 55

5.4.2 End-to-End measurements 57

6 Conclusions and Future Work 61

List of Figures

3.1 The overall architecture of NoAH. There are three entry points

to the system: Through Low interaction honeypots, through

the dark space of cooperating organization or through Honey@Home

tool that runs on homes/small enterprises’ dark space. At the

two latter cases the traffic going to dark space is redirected to

NoAH core. 18

3.2 Funneling IP addresses from 11.12.0.0/16 subnet to a single

low-interaction honeypot . 20

3.3 Funneling and tunneling. A packet from the attacker destined

to darkX IP address is tunneled to honeypot H1. 22

3.4 An overview of the design of Honey@Home. An IP address is

claimed by Honey@Home which runs on the user’s machine

and redirects all the traffic received to that IP to the NoAH core

the responses follow the same path back to the attacker. . . . 24

xiii

xiv LIST OF FIGURES

3.5 An overview of how Tor works. The client establishes a path

of onion routers and sends ‘‘onions’’, messages encrypted with

public keys of all path’s routers. At each router the onion is

piled off -decrypted by router’s public key- and forwarded to

the next router. The last router has fully decrypted content

and communicates directly with recipient through a standard

TCP/IP connection. 32

3.6 The diagram gives an overview of the Honeyd’s architecture . 33

3.7 Cooperation between low and high interaction honeypots. Low-

interaction honeypots are accessible by attackers, while high-

interaction ones are placed in a private subnet. The traffic from

attackers arrive to the low interaction honeypots which in turn

uses the services on high interaction honeypots to provide real

responses to the attackers. 34

3.8 An example of a connection handoff. After a correct three-

way handshake, low interaction honeypot becomes a proxy

between the attacker and the high-interaction honeypot . . . 35

4.1 A test setup in which requests to the server are performed

through the honey@home, SSL server and Honeyd. The server

and the client can communicate using the same protocol. . . 41

4.2 Setup for testing the overhead imposed by the handoff mech-

anism. A honeypot based on modified Honeyd is running on a

real machine and the requests from the client are handed off

to the real server. 43

5.1 Download time in seconds for a file sized 10M and for various

number of sequential downloads 50

5.2 CPU usage of Argos while running for three different guest

Operating Systems . 51

LIST OF FIGURES xv

5.3 The experimental testbed for measuring the overhead of both

funneling and tunneling mechanisms. The traffic received at

the funneling host is redirected through a tunnel to the low

interaction honeypot which hands it off to the real server. . . 53

5.4 An attack against NoAH infrastructure is launched by the

metasploit framework. NoAH’s high interaction honeypots re-

ceive the attack and are able to deflect it effectively. 58

xvi LIST OF FIGURES

List of Tables

5.1 Response time for numerous HTTP Get requests for a file of

100KB size. The table presents the response time when re-

trieving the file from the real server and from the real server

through the ‘‘hand off’’ and Funneling mechanisms 54

5.2 Response time for numerous SCP transaction for a file of 100KB

size. The table presents the response time when retrieving the

file from the real server and from the real server through the

‘‘hand off’’ and Funneling mechanisms 55

5.3 The mean transfer rate as produce by nuttcp tool for numerous

buffer sizes. The traffic was redirected through Honey@Home,

SSL server and modified Honeyd to the nuttcp receiver. . . . 56

xvii

xviii LIST OF TABLES

1
Introduction

Honeypots are specially designed systems that their sole purpose is to lure

attackers and automated attacking scripts. These systems can take many

different forms like machines running on unused IP addresses, unprotected

data records or files. A honeypot is valuable as a surveillance and early-

warning tool. As honeypots are not production systems, all traffic seen by

them is considered suspicious and maybe malicious. Furthermore, hon-

eypots should be treated with caution as it is expected to be compromised

with the danger to contaminate their local network.

There are two types of honeypots based on the interaction they can

provide to the attacker; The low interaction (LI) honeypots and the high in-

teraction (HI) honeypots. The low-interaction honeypots emulate the basic

1

2 CHAPTER 1. INTRODUCTION

functionality of a some known services and interact with the attacker up

to a certain level without allowing the honeypot to be compromised. Since

LI honeypots can not be compromised they are unable to automatically

detect previously undiscovered vulnerabilities. High interaction honeypots

run real services and applications, usually over a virtual machine or some

other containment environment. Therefore high interaction honeypots can

be compromised and thus provide useful information about previously un-

known vulnerabilities or about new attack vectors based on already known

vulnerabilities.

NoAH aims to develop an infrastructure of collaborating honeypots with

multiple distributed monitoring sensors in order to detect and provide early

warning of cyberattacks either new or existing. In the context of NoAH ar-

chitecture [4] both types of honeypots are used. Low-interaction honeypots

are used as a first level traffic classifiers reducing the amount of traffic that

finally reaches the high interaction honeypots inside the NoAH core. Also

funneling and tunneling mechanisms are used to forward traffic received

by participating organizations’ and institutes’ black IP address space to the

NoAH core. Finally in order to motivate normal users to join NoAH in-

frastructure, Honey@Home tool has been introduced which allows ordinary

users to redirect traffic destinted to the dark IP address space or unused

port range.

Research work such as [9] and [2] report a shift in the landscape of

threats. Attackers have moved from massive wide spread attacks to more

focused ones, reaching the point of targeting client side applications. Also

with the massive deployment of broadband connections, personal comput-

ers have became a valuable asset for the creation of bot nets, armies of

zombie PCs, which can be used to launch Denial Service Attacks (DOS)

attacks, promote spam mail etc. Based on the previous remarks and in

order to increase our probabilities of witnessing an attack, a distributed

1.1. CONTRIBUTIONS 3

architecture with multiple sensors, like NoAH should be introduced. NoAH

consists of multiple distributed sensors that redirect ‘‘interesting’’ traffic to

the NoAH core for further processing.

In this work we performed a prototype deployment of the NoAH archi-

tecture and evaluated its performance under various set ups. We show that

a distributed system based on honeypots like NoAH, can be used in real life

situations in order to provide precise detection of attacks and early warning

for previously unknown attacks with moderate resource requirements.

1.1 Contributions

Our novel contributions in this thesis are the following:

• Prototype deployment of the NoAH architecture

• Evaluation methodology and experimental results for the NoAH archi-

tecture are provided

1.2 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 explores in detail

the various honeypots categories along with various distributed architec-

ture designs for honeypot systems that have been proposed. Chapter 3

discusses the NoAH honeypot architecture which will be evaluated in this

study. Chapter 4 presents the evaluation methodology that will be followed

for the in depth evaluation of NoAH architecture, this evaluation takes into

consideration both the various components of NoAH independently and the

NoAH system as a whole. Chapter 5 outlines our experimental results. Fi-

nally Chapter 6 concludes the thesis and presents few remarks for future

work that could be done in this area of study.

4 CHAPTER 1. INTRODUCTION

2
Background

In this chapter the necessary background information on the taxonomies of

honeypots and the various proposed architectures for large scale distributed

honeypots systems will be presented. Furthermore, some widely used tools

for setting up honeypots along with a short evaluation of each tool and each

honeypot architecture is also embodied.

2.1 Honeypots

Honeypots are systems that act as traps set to detect, deflect or in some

manner counteract attempts at unauthorized use of information systems.

A honeypot Commonly consists of a computer which runs a number of net-

work services that appears to be part of a network but which is actually

isolated, (un)protected and monitored, and which seems to contain infor-

5

6 CHAPTER 2. BACKGROUND

mation or resources that would be of value to attackers. A honeypot can

also masquerade to be an open proxy which can be used to send usolicited

emails or conduct other malicious activities. Generally all traffic that ar-

rives to a honeypot is considered to be either malicious or due to systems

misconfigurations.

Honeypots are divided into two categories based on their level of inter-

action with the attacker: The low interaction (LI) honeypots and the high

interaction (HI) honeypots. The low-interaction honeypots are mostly dae-

mons that emulate the basic functionality of a some well known Internet

services e.g. Web, FTP, Telnet servers and are able to interact with the

attacker up to a certain level without allowing the honeypot to be compro-

mised. On the other hand, high interaction honeypots are closely monitored

hosts running real services that can be compromised. High interaction hon-

eypots provide better level of realism than the low interaction honeypots but

have higher setup and maintenance costs. A third type of honeypot that is

not widely used is the middle interaction honeypots which resembles low

interaction honeypots but provide more elaborate emulation of services.

2.1.1 Low Interaction Honeypots

As aforementioned earlier Low Interaction honeypots interact with the at-

tacker by emulating some well known services. These services could be

part of an Operating System such as daemon processes and other core ser-

vices or could also be high level applications like web servers, ftp servers,

ssh daemons and many more. Since the real services are not running on

low interaction honeypots, they can not be compromised and thus can only

provide limited information about an attack. Moreover, low interaction hon-

eypots are unable to discover previously unknown attacks or vulnerabilities

since they only emulate a small part of a service and do not posses the full

functionality and the details of the real service. Low interaction honeypots

can usually emulate the whole TCP/IP stack of any operating system and

2.1. HONEYPOTS 7

thus, are able to pretend that any Operating System is running by emulat-

ing the appropriate TCP/IP network stack implementation. Therefore, most

network scanners like nmap [28] which identify the OS running on a ma-

chine based on the diversification in the implementation of the TCP and IP

RFC from every OS, can easily be abused. Also, low interaction honeypots

are more efficient in terms of performance than the high interaction ones

and have less set up and maintenance costs. Finally, low interaction hon-

eypots are able to claim multiple IP addresses and run multiple different

services on each IP address by emulating the appropriate Operating System

with the corresponding services.

The most widely used low interaction honeypot implementation is Hon-

eyd [46]. Honeyd is a framework for virtual honeypots which can simulate

different systems up to network level. This allows Honeyd to be able to

emulate any operating system and thus to deceive most fingerprinting tools

available. Honeyd emulates a single or multiple machines with different

properties and connected to an arbitrary network topology using the unused

IP address space of a network. Honeyd also, uses scripts for the emulation

of the services running on each of the ‘‘virtual’’ hosts. This allows any user

of Honeyd to write and use her own scripts. This makes honeyd expandable

to new services that were not available at the time honeyd was developed.

The level of emulation details of a running services depends on the running

script, since it can emulate from a simple transport layer responder up to

complicated services like rpc.

One major drawback of honeyd is that each of the scripts must be writ-

ten manually. Scriptgen [41] aims to automatically generating scripts for

Honeyd. In order for scriptgen to create a new script three steps must be

completed. Firstly a real machine is connected to the Internet and all the

inbound and outgoing traffic from that machine is recorded. Secondly the

trace of the traffic is analyzed and a per port state machine is derived by

8 CHAPTER 2. BACKGROUND

observing the requests and replies to and from the host. Finally a honeyd

script is derived that can emulate the services of that machine, based on

the previously derived state machine.

Another type of low-interaction honeypots are the tarpits or ‘‘sticky hon-

eypots’’. Tarpits emulate a number of ‘‘virtual’’ hosts in the unused address

space of a network. These ‘‘virtual’’ hosts answer to connection attempts

in a way that make the machine on the other end to get ‘‘stuck’’. So the

project’s main goal is to be able to constrain the propagation of fast spread-

ing worms like CodeRed and to make the life of attackers harder. The most

well-known tarpit is being developed by the ‘‘LaBrea’’ honeypot project [6].

The Google Hack Honeypot - GHH [15] is being developed in order to

counter a new type of malicious web attackers, the search engine hackers.

The GHH is a tool that can provide valuable information about attack-

ers that use search engines as a hacking tool against network resources.

Authors of [43] demonstrate how attackers can easily identify vulnerable

services on the Internet with the use of indexing services like Google search

engine. These services can be exploitable messaging boards, web servers,

or other network applications. These insecure tools, when combined with

the power of a search engine and indexing which Google provides, results

in a convenient attack vector for malicious users.

Honeytrap [5] is a network security tool written to observe attacks against

network services. The Honeytrap daemon is able to detect requests to un-

bound TCP ports, and then it starts a server process to handle the incoming

connection to that port. In this way Honeytrap doesn’t need to keep thou-

sands of ports open in order to capture a possible attack but instead it

uses different ‘‘connection monitors’’ to detect new connection attempts.

Honeytrap has limited emulation capabilities but different plugins can be

used to enhance the emulation of more complex vulnerabilities that require

multiple steps before the exploitation.

2.1. HONEYPOTS 9

The Mwcollect tool [32] that was merged within Nepenthes [33] and are

currently part of the Mwcollect alliance [20] is a medium interaction honey-

pot with the purpose to emulate known vulnerable parts of services and to

collect different malware samples. Once the URL hosting the malicious code

if discovered the malware is downloaded through FTP, HTTP or some other

protocol and stored locally. Since nepenthes only emulates the vulnerable

part of a service, it is more efficient than low interaction honeypots. With

the deployment of multiple nepenthes sensor the collection of information

about fast spreading malware becomes more efficient.

2.1.2 High Interaction Honeypots

High Interaction honeypots are usually closely monitored real systems run-

ning real services. Contrary to low interaction honeypots emulation is not

needed since real services are running. High interaction honeypots could

either, run vulnerable services so that they could provide useful informa-

tion about how an attacker or a worm acts when it compromises a machine

or could run services that haven’t been exploited in the past and provide

useful information about previously unknown vulnerabilities and attack

vectors. Using real systems as HI honeypots has some major drawbacks

such as the fact that the systems can be compromised and used for mali-

cious purposes by the attacker. Therefore, high interaction honeypots are

usually installed inside a virtual machine using virtualization software like

VMware [11], Qemu [7], Xen [10] or Bochs [1]. Using virtual machines for

HI honeypots has many advantages such as easier deployment, reuse of

the same operating system image by many honeypots, rollback capabilities

in case the honeypot gets infected and running multiple honeypots on top

of the same hardware. Finally, containment environments like Argos [44]

or other tainting environments can be used in order to provide additional

details for the internals of the system when an attack is in progress.

Vmware [11] , Qemu [7] and Bochs [1] are some popular virtual ma-

10 CHAPTER 2. BACKGROUND

chines that are used for the setup of high interaction honeypots. They

provide virtualization of the hardware and hide the underlying operating

system details. The virtualization only provides the means for creating

multiple instances of any operating system and running them on different

machines and operating systems. Therefore, in order to monitor the activity

of the high interaction honeypots, other tools has to be used as well like Se-

bek [8], Systrace [45], Wireshark [30] and others. Thus, the aforementioned

virtual machines should be deployed in conjuction with tools that provide

useful information about the state of the honeypot like network activity,

system call traces, disk and file accesses. The information that denotes

the state of a honeypot are vital for the analysis of possible attacks it may

receive.

The main drawback in using real operating systems or systems running

over virtual machines is that they can get compromised and manual actions

are then needed in order to rollback to the previous state. Moreover, as we

mentioned earlier third party tools are needed in order to closely monitor

and track any changes in the state of the HI honeypot. Argos [44] is a virtual

machine but also acts as a containment environment. Argos is built upon

a fast x86 emulator and is able to track network data throughout execu-

tion to identify their invalid use such as jump targets, function addresses,

instructions, etc. Argos does not allow these ‘‘tainted’’ data to be executed

and thus the HI honeypot running over Argos can not be compromised but

instead a memory dump of the ‘‘tainted’’ data is produced and the process

that was about to be compromised is restarted. So using Argos as HI hon-

eypots overcomes the major problem of real systems or systems running

over the classic virtual machines which is that they can be compromised.

On the other hand Argos is less effective than the usual virtual machines

in terms of performance.

2.2. DISTRIBUTED HONEYPOT ARCHITECTURES 11

2.2 Distributed Honeypot Architectures

Attacks no longer utilize generic global propagation methods but have adopted

more sophisticated host specific propagation techniques we need efficient

systems for the fast detection and interception of previously known and new

attacks. In this context, a single honyepot could provide limited or no pro-

tection at all against attackers. Distributed honeypots architectures should

be deployed to increase our detection potentials even against targeted at-

tacks. Many research projects have deployed multiple sensors globally aim-

ing to collect statistics about attack traffic, provide early detection about

novel attacks or collect various malware samples. The most well known

distributed honeypot architectures are discussed in the remainder of this

section.

The Honeynet [3] project is a non-profit research organization targeting

to raise the awareness of the threats and vulnerabilities that exist in the

Internet, to provide information to secure and defend against attacks as

they arise and to provide tools that can be used for the protection and de-

tection of new and existing attacks. Honeynet project architecture consists

of a central gateway named ‘‘Honeywall’’ [16], and a network of honeypots.

Honeywall processes the traffic targeted to their honeypot network from the

rest of the Internet and reversely. The honeywall also controls outbound

connections of the honeypot network and captures the network data that

is transmitted. The high interaction honeypots that are used by Honeynet

are real systems without any emulation. In addition, Sebek tool [8] is used

to instrument and record the honeypots’ system calls.

The LUERRE.COM project [18] has deployed a large number of low inter-

action honeypot sensors all over the world. These low interaction honeypots

run a modified version of honeyd [46] that emulates three different operating

systems (Windows NT, Windows 98, and Redhat linux), each one running

on three different IP addresses. These low interaction honeypots gather sta-

12 CHAPTER 2. BACKGROUND

tistical data about the traffic destined for the to honeypots like number of

unique IP addresses sources, distinct ports attacked and specific flags that

could help the research community to identify backscatter or other similar

activities. Periodically, the collected data gets anonymized and send to a

central database server where are stored along with some meta data. The

meta data that are stored contain geographical location information about

IP addresses of the attackers, passive OS fingerprinting of attackers and the

method the attacker used to scan the honeypots ‘‘sequentially’’ or ‘‘paral-

lel’’. The database can then be queried in order to derive some meaningful

statistics from the stored data.

The Honeystat architecture [36] aims to detect and analyze zero-day

worms along with previously unknown attack vectors. Also the authors of

this work are aiming to apply statistical analysis on the worm behavior.

Honeystat architecture suggests having a central server and multiple dis-

tributed Honeystat nodes. The Honeystat nodes comprises of honeypots

that run multiple emulated operating systems over VMware. A set of 32

IP addresses is assigned to each of the emulated operating systems. There

are three Honeystat events that denote that a honeypot has been compro-

mised: MemoryEvent when a buffer overflow has occured which is detected

by buffer overflow detection tools like stackguard [35] , NetworkEvent when

the honeypot starts producing outgoing traffic and DiskEvents when the

honeypot tries to alter certain key files of the operating system. If a node

gets compromised all data is captured and sent to the central ‘‘Analysis

Node’’ for further analysis of the attack details.

Potemkin [42] architecture introduces a prototype implementation of a

large honeyfarm system that is capable of emulating thousand of hosts

in parallel. The main building block for high interaction honeypots in

potemkin is XEN [10], a virtual machine monitor that uses para virtual-

ization. The authors also introduce the use of flashing cloning and delta

2.2. DISTRIBUTED HONEYPOT ARCHITECTURES 13

virtualization to enhance performance and manage to emulate as many

virtual hosts on top of few real machines. Recycling is used the virtual

honeypots so to minimize the consumption of resources by the honeypots.

Moreover a gateway component that is contained in the architecture that

attracts inbound traffic and redirects the outbound traffic to another hon-

eypot of the honeyfarm producing a realistic environment for the attacker.

M. Bailey et al in [34] describe a honeypot architecture consisting of

a set of low interaction and high interaction honeypots. In the context of

this hybrid architecture low interaction honeypots are used to filter out the

harmless traffic such as plain SYN scans or unestablished TCP connections

or payloads that have been recorded in the past. A hand off mechanism

redirects interesting traffic to the high interaction honeypots which interact

with the attacker. The hybrid architecture also contains a control com-

ponent that is used to collect and present traffic statistics from the low

interaction honeypots and analyzes the received data for abnormal behav-

ior. Many ideas proposed in this architecture are also present in the NoAH

architecture.

Collapsar [48] aims at the deployment and management of a vast num-

ber of coordinating high interaction honeypots that may be spread across

various network domains. Collapsar consists of a redirector, a front-end

component and the virtual honeypot component. The redirectors are sen-

sors that are deployed in various network domains and are used to redirect

the traffic to the honeypot component through the Collapsar front end.

The front-end is a gateway to the Collapsar center. It receives packets from

redirectors which are then dispatched after some processing to the intended

virtual honeypots in the Collapsar center. The redirector is implemented as

a virtual machine based on the User-Mode Linux (UML [37]). Inside Col-

lapsar center, a large number of virtual honeypots exist. These honeypots

process the traffic received from distributed redirectors and respond ac-

14 CHAPTER 2. BACKGROUND

cordingly. The high interaction honeypots that exist in the Collapsar center

are built on either VMware or UML.

2.3 Spam Honeypots

E-mail spam grows every year and reached 80% of email traffic, for the last

quarter of 2005, as the Messaging Anti-Abuse Working Group report [31]

suggests. Spammers used to utilize ‘‘open relays’’ [23] to send unsolicited

messages without leaving any traces behind. Open relays usually are SMTP

servers that can be used by anyone on the Internet to send email messages.

Because, open relays have became more and more rare the attackers have

turned their attention to ‘‘open proxies’’ [22]. Open proxies allow anyone

from the Internet to use them in order to connect to a server e.g. web,

email, ftp. Therefore, taking advantage of this functionality, the identity

of the client using an open proxy is hidden. In 2003 Spammers turned

to a new method for sending bulk e-mail the ‘‘spammer viruses’’. These

viruses usually spread through e-mail messages which prompt the user to

open a specific attachment that contains the virus. Once the virus has

compromised the PC, tools get installed which can be used for sending

spam e-mails like open proxies or other back doors that can be used by

attackers to send unsolicited e-mail messages. Known spammers’ viruses

are Sobig [26] and [13].

In order to detect and contain as much of this bulk traffic that circu-

lates the Internet as possible, the ‘‘Spam honeypots’’ have been introduced.

Spam Honeypots are usually machines that run software which can be used

by spammers to send bulk e-mails like open mail relays and open proxies.

If an attacker tries to connect to a honeypots all traffic sent is captured and

no spam e-mails are sent. Moreover, analysis of captured data can produce

useful information about the spammers. Some well known open mail relay

honeypots, that are used in order to trap spammers and drop the unso-

2.3. SPAM HONEYPOTS 15

licited e-mail that are trying to be sent, are Jackpot [17] and spamhole [25].

A known Open proxy honeypot project that aims at the deployment of many

distributed open proxy sensors is the ‘‘WASC Distributed Open Proxy Hon-

eypots’’ project [29]. Another project that aims at the creation of lists that

contain IP addresses of spammers, crawlers or spiders is the ‘‘Project Honey

Pot’’ [24]. Project Honey Pot is based on a distributed network of decoy web

pages, that website administrators can include on their sites in order to

gather information about robots, crawlers, and spiders. Besides the decoy

web pages their honeypot sensors also contain a spam trap that can be

used to trap spammers and blacklist their IP addresses for a short period

or permanently.

16 CHAPTER 2. BACKGROUND

3
NoAH architecture

Network of Affined Honeypots (NoAH) aims to develop and deploy an in-

frastructure of cooperating honeypots that will be able to gather and ana-

lyze information about Internet cyberattacks. The infrastructure will also

be able to produce early warning for previously unknown attacks, so that

appropriate countermeasures can be taken to counter these new attacks.

The NoAH architecture [4] comprises of a NoAH core, where the Low and

High interaction honeypots reside and various funneling and tunneling

mechanisms that are used to redirect traffic to NoAH core from various dis-

tributed sensors or participating organizations. Figure 3.1 illustrates the

basic components of NoAH architecture. We can observe that both Low and

High interaction honeypots are utilized but for distinct purposes. Tunneling

17

18 CHAPTER 3. NOAH ARCHITECTURE

Funnel

Funnel

Participating
Organization

Honey@home

Honeyd

Honeyd

Honeyd

Honeyd

High Interaction

Honeypot
High Interaction

Honeypot

Attacker

Attacker

Figure 3.1: The overall architecture of NoAH. There are three entry points

to the system: Through Low interaction honeypots, through the dark space

of cooperating organization or through Honey@Home tool that runs on

homes/small enterprises’ dark space. At the two latter cases the traffic

going to dark space is redirected to NoAH core.

and funneling mechanisms have been proposed by the NoAH architecture

for the achievement of two major goals. Funneling serves the collection of

traffic targeting the dark IP addresses space of an organization in an auto-

mated way. Tunneling is used to propagate the traffic collected from the

Honey@Home tool or the funneling mechanism into the NoAH core. Finally

the Honey@Home tool [47] has been introduced to allow a single user to

donate a spare IP or port to NoAH infrastructure from its home PC or local

network. The following sections describe each of the NoAH components in

3.1. TUNNELING AND FUNNELING 19

more details.

3.1 Tunneling and Funneling

Generally a broad portion of the IP addresses of a network that is allocated to

an organization remains unused. This unused IP address space is usually

referred to as Dark Space. NoAH aims in utilizing the dark space of the

participating organizations or the small enterprises by collecting the traffic

bearing towards their dark space and redirect it to NoAH core for further

processing. Since we can’t afford a honeypot listening to every IP address

of the dark space we need a mechanism to collect traffic from a larger

portion of the dark space to a small set of honeypots. This can be achieved

through the NoAH funneling mechanism. Moreover, since the traffic bears

towards different dark spaces scattered across many organizations, we need

a mechanism to redirect this traffic to NoAH core over a secure channel. For

that purpose a tunneling mechanism has been introduced.

The Funneling mechanism will be used by organization or medium

enterprises which have numerous IP addresses spare. In a nutshell fun-

neling allows NoAH to redirect all traffic destinated to multiple addresses to

a single machine where it can be processed. Thus we can create multiple

funnels that collect traffic from various portions of dark space from different

participating organizations to a small set of honeypots. Funneling is a two

step process. First, the traffic arriving to the dark space is redirected to the

honeypot location within the participating organization by configuring the

organization’s router(s) appropriately. Secondly, honeypots claim the dark

IP addresses that are configured to funnel. This can be achieved either by

configuring the honeypots to listen to all the dark IP addresses that are

responsible for or by using the arpd tool.

Statically configuring every honeypot to listen to certain dark IP ad-

dresses is a time and resource consuming process, so in NoAH the arpd

20 CHAPTER 3. NOAH ARCHITECTURE

High-interaction

Honeypot

Funnel

11.12.1.1

Low-interaction

Honeypot

Figure 3.2: Funneling IP addresses from 11.12.0.0/16 subnet to a single

low-interaction honeypot

daemon is used instead. Arpd is a user-space daemon that responds to

ARP requests arriving to the network interface of the honeypot for the IP

addresses that is configured to respond. ARP requests are broadcast pack-

ets used to discover which machine (more specifically which MAC address)

has a specific IP address. For a given IP address in a LAN, the LAN gateway

directs the traffic to this IP to the host that replied to the corresponding ARP

request. Under normal circumstances, it is the operating system that takes

care of responding to ARP requests. Having arpd reply to these requests,

we can effectively direct the traffic for any IPs in the LAN to the particular

host we want, without actually configuring the host network interface for

all these addresses.

Funneling is presented in Figure 3.2 where we can see that traffic target-

ing the /16 11.12.0.0 subnet is funneled to a single IP address 11.12.1.1.

Arpd replies to every ARP request for any of the IP addresses in the /16

3.1. TUNNELING AND FUNNELING 21

11.12.0.0 subnet. Therefore, the LAN gateway forwards the traffic for this

IP range to the honeypot. Cooperating organizations will act as relay agents

that forward traffic arriving to their dark address space, to NoAH core. Se-

quentially, the responses from NoAH core will be transmitted back to the

agent and from there to the original sender. In order to achieve this kind

of functionality, one could rewrite the packets’ destination addresses so

that to be correctly routed to NoAH core and rewrite accordingly the re-

sponses sent by the NoAH core back to the original sender. This technique

although its simple and straight forward, it has some major drawbacks like

disrupting the dynamics of the connections e.g a scan to a number of IP ad-

dresses in the dark space will appear to the honeypot that it targets a single

IP; also protocols like FTP that have information about the destination ad-

dress, within the TCP payload will not work correctly under this schema

because the translated address will not match the one that appears in the

TCP payload.

Consequently, we need packets that arrive to dark space to be forwarded

to the NoAH core unaltered. Tunneling was introduced into NoAH architec-

ture to overlap that particular problem. Tunneling works in the following

way; every packet that is received to the dark space of a particular orga-

nization or any other virtual private network is encapsulated into one or

more packets and subsequently sent to the NoAH core. There, the packet

is decapsulated and injected to the network where it can be processed by

the low and high interaction honeypots. The response from the honeypots

follows the reverse procedure: it is encapsulated inside the NoAH core and

decapsulated at the entry sensor node where the request packet was initially

received. We should note that tunneling fully preserves the packet and does

not alter its contents throughout the encapsulation/decapsulation process.

Figure 3.3 presents how tunneling works in the funneling context. A

network funnel concentrates every packet that arrives to the dark space

22 CHAPTER 3. NOAH ARCHITECTURE

The path of a packet from the attacker

to the honeypot

Funnel

TunnelIP
 “

D
a
rk

X
”

is
 m

a
p

p
e
d

 t
o

h
o

n
e
y
p

o
t

a
d

d
re

s
s
 H

1

Tunnel IP

H1

x

y

Low

decapsulation

Attacker

DarkX

2000

80

Payload

Attacker

DarkX

2000

80

Payload

Attacker

DarkX

2000

80

Payload

Attacker

DarkX

2000

80

Payload

Attacker

DarkX

2000

80

Payload

Attacker

DarkX

2000

80

Payload

Attacker

DarkX

2000

80

Payload

Attacker

DarkX

2000

80

Payload

H3DarkW

H2DarkZ

H1DarkY

H1DarkX

H3DarkW

H2DarkZ

H1DarkY

H1DarkX

Figure 3.3: Funneling and tunneling. A packet from the attacker destined

to darkX IP address is tunneled to honeypot H1.

monitor and then it is encapsulated and sent over the tunnel encrypted us-

ing the SSL protocol [40]. When it arrives at NoAH core, it gets decapsulated

and injected into the network where it is processed by the low interaction

honeypots. The low interaction honeypots can either process the request

locally or forward it to one of the high interaction honeypots. Therefore, a

packet from the attacker that is destined to IP DarkX in this range will be

delivered to the tunnel component, that has the responsibility to forward

the packet to the honeypot with IP H1. The tunnel component encapsulates

the original packet to a packet destined to IP H1 and sends it to the Internet.

As the destination IP of this packet is H1, it will be routed normally from

Internet routers and will finally reach the low interaction honeypot at IP

3.1. TUNNELING AND FUNNELING 23

H1. There it will be decapsulated and the honeypot will receive the original

attack packet unmodified. The responses from the honeypots will follow the

extact same procedure for the reverse path though.

3.1.1 Honey@Home

In order to expand the visibility of NoAH into more unused IP space, that

home users and small enterprises can provide, the Honey@Home tool [47]

was proposed. With the vast propagation of broadband Internet, most home

users and small enterprises can easily acquire more than one IP addresses

which usually remain unused. Especially enterprises of small or medium

size usually have a cluster of four or eight IP addresses which are not fully

used. Like other ‘‘@home’’ approaches Honey@Home is aiming in utilizing

the ‘‘idle’’ IP space of a home user or small enterprises. Honey@Home is

designed to be simple and lightweight so that it can be used by any typical

home user. Honey@Home has been implemented to be non-pervasive and

it runs in the background processing the traffic arriving on the dark space.

Honey@Home tool works both on Windows and Linux operating systems.

Honey@Home [47] works in a similar way as the case of dark space

monitoring with funneling and tunneling concepts. The difference between

funneling and honey@home tool is that we only have a very limited number

(usually just a single) of IP addresses to monitor in the case of Honey@Home

whereas the dark space monitored using the funneling concept can expand

to several thousands unused IP addresses. Similarly to the funneling case,

all the traffic received by the Honey@Home is tunneled to NoAH core over an

SSL connection. Responses from NoAH core are send back to Honey@Home

client where are injected to the network so that they can reach the originator

of the traffic. The tunneling component is embedded inside Honey@Home

and thus, there is no need for installation and configuration of third party

software. Figure 3.4 presents the overall design of the Honey@Home sensor.

An IP address is claimed through the DHCP server and all traffic destinated

24 CHAPTER 3. NOAH ARCHITECTURE

Figure 3.4: An overview of the design of Honey@Home. An IP address is

claimed by Honey@Home which runs on the user’s machine and redirects

all the traffic received to that IP to the NoAH core the responses follow the

same path back to the attacker.

to that IP address is forwarded to the NoAH core over an SSL tunnel. The

part of the Honey@Home that is located within the honeypot network is

usually referred as SSL Server or Honey@Home Server and is responsible for

collecting traffic from the various Honey@Home sensors decapsulating and

injecting packets in the network where low and high interaction honeypots

reside.

Every Honey@Home client requests an IP address from the local network

using DHCP. If such a server is not running in the network Honey@Home

3.1. TUNNELING AND FUNNELING 25

can be configured to acquire an IP address statically. The majority of the

ADSL routers that are used have a built-in DHCP server which is config-

ured to offer the IP addresses that the user has purchased. Thus every

Honey@Home client requests a new IP address upon start and it releases

it at the time it exits. We should note that Honey@Home is a lightweight

process since it does not process the traffic it receives even if that traffic is

naive, the honeypots of the NoAH core will process it and determine whether

it requires further investigation or can be dropped safely. In order to re-

duce the traffic arriving to NoAH core, Honey@Home can be configured to

white list certain ports to not forward traffic arriving to these ports. By de-

fault all the traffic collected by Honey@Home is forwarded to the NoAH core.

Honey@Home can also work in a NAT’ed environment but it will only be able

to receive traffic originating from the hosts behind NAT and the traffic that

NAT is configured to forward to the machines.

Since everyone can download and install Honey@Home we expect that

attackers will do the same. Revealing the information about the location of

honeypots can result to a DDOS attack against our NoAH core rendering

it unable to react. Hiding the identity of the Honey@Home clients is also

crucial as attackers could cause an indirect DOS attack to the NoAH core

or could manipulate the Honey@Home clients so that they send fake infor-

mation to the NoAH core or could black list all the Honey@Home sensors

rendering the NoAH core blind to ongoing attacks. In order to hide honey-

pots from the attackers using TOR network [38] has been proposed. Tor is

based on onion routing [39] anonymous networks where a message enters

the network from an end node, gets encrypted by several layers of encryp-

tion and then it is propagated from node-to-node in a pre-established path.

Each node can decrypt, ‘‘pill off’’, only one layer of encryption. When the

message arrives to the final node the last layer is removed and the packet

gets fully decrypted and sent to its destination the responses use the same

26 CHAPTER 3. NOAH ARCHITECTURE

path back to the originator. Since no node of the network have the knowl-

edge of the whole path it can not reveal who is communicating with whom.

Figure 3.5 presents an overview of how tor works and how the packet is

decrypted while it travels from the one node to the other. Then at the final

node it gets decrypted and sent to its final destination.

3.2 Low Interaction Honeypots

Low interaction honeypots are software that can emulate a home PC, work-

station or a sophisticated server. Usually low interaction honeypots can

also emulate the TCP stack of any operating system so it can appear to

the attackers as any of the operating systems that is emulated. The most

widely used tool for the creation of low interaction honeypots is Honeyd [46],

which is a small daemon that creates virtual hosts in a network. It can be

configured to emulate that arbitrary services are running on a variety of

different systems over multiple IP addresses. Each emulated service is a

script that is loaded by Honeyd when it starts; moreover a user could create

her own script and emulate any service proprietary or not. Low interac-

tion honeypots of NoAH will be principally based on honeyd because of its

functionality, modularity and portability. Honeyd can run both on Windows

and Linux environments but in NoAH the Linux version of Honeyd is mainly

used due to its performance eminence over the Windows one.

Figure 3.6 presents an overview of how Honeyd works. Every incoming

packet is dispatched to the correct protocol handler. The handler per-

forms the TCP stack emulation and propagates the packet to the emulated

services’ scripts e.g packets with destination port 80 are handed over to

the script that emulates a web server, packets for port 23 to a script that

emulates telnet etc. All outgoing packets are initially processed by the per-

sonality engine in order to mimic the behavior of the configured network

stack. With the personality engine of Honeyd, one could configure each of

3.3. HIGH INTERACTION HONEYPOTS 27

the virtual machines to a certain behavior eg ‘‘this IP address belongs to

a virtual machine running Windows 2000 operating system’’. We should

remind that low interaction honeypots only emulate services and cannot be

compromised since real services are not running.

As we have mentioned earlier, low interaction honeypots can emulate

a specific set of application and services. Therefore, we need to provide

a suitable configuration for the emulated machines in the network before

it is initiated. Since using the same configuration on multiple honeypots

is feasible, one could record the services that typically run on variety of

operating systems upon start and use them as a guideline to provide con-

figurations for our low interaction honeypots. For example one could record

which services are enabled in a fresh Windows XP machine and emulate the

same services on our low interaction honeypots. Moreover, one could create

arbitrary network configurations with a mix of different operating systems

appearing to belong in the same network. While creating a configuration we

need to make sure that it does not appear anomalous eg ‘‘a Linux machine

running IIS’’ or ‘‘a /24 subnet in which every machine runs Microsoft SQL

server’’. Typical views of services running on a subnet can be obtained by

actively scan several live subnets.

3.3 High Interaction Honeypots

High interaction honeypots are usually ordinary machines that run real ser-

vices or systems running on virtual machines or containment environments.

Inside NoAH core there will be a number of high interaction honeypots that

will run a variety of operating systems and services. There are a number of

virtual machines that can be used to host operating systems and different

services. Most virtual machine environments do not provide logging facili-

ties like tracking system calls, network activities or disk accesses. So tools

like Sebek [8] can be used to enhance plain virtual machines with logging

28 CHAPTER 3. NOAH ARCHITECTURE

capabilities.

Since NoAH aims into receiving, analyzing and providing reaction to new

attacks, we expect our High interaction honeypots to receive a large number

of cyberattacks and other malicious activity. Therefore, in NoAH Argos [44]

containment environment will be used for building our high interaction

honeypot. Argos provides buffer overflow attack detection and protection by

tracking the propagation of network data inside the system and producing

an alert when these ‘‘tainted’’ data are about to be executed thus the high

interaction honeypot can not be compromised. When an attack is detected,

both a memory dump of the attack vector is produced along with a dump

of the network activity which triggered the attack.

3.4 Interaction between Low and High Interaction

Honeypots

As we have described previously in NoAH the various funneling, tunneling

and honey@home components will redirect traffic from various distributed

dark address spaces to the NoAH core. Inside NoAH core the traffic will first

be processed by the low interaction honeypots and if it is considered ‘‘in-

teresting’’ it will be forwarded to the appropriate high interaction honeypot

for further processing. Therefore, only low interaction honeypots can com-

municate with the high interaction ones. As we mentioned in Section 3.3

we will use Argos containment environment in order to reduce the mainte-

nance and damage costs when a honeypot gets attacked and thus in this

way the availability of the NoAH core increases drastically. In addition all

packets that arrive to the NoAH core are recorded to a pcap trace for offline

processing.

Honeyd will be the primary low interaction honeypot inside the NoAH

core. The scripts that honeyd uses to emulate services like Web, FTP or

any other server can interact with the attackers up to a certain level and

3.4. INTERACTION BETWEEN LOW AND HIGH INTERACTION HONEYPOTS29

past this level they are unable to send valid responses back to the attacker.

Thus sophisticated attacks that need a series of steps before the actual

exploit takes place can not be carried out to low interaction honeypots. A

example of this kind of attacks is the well know exploit on Windows RPC

service [19], which needs more that ten message exchanges before sending

the actual exploit. Creating scripts that emulate such complex protocols is

not applicative. Also considering the number of available Internet services

along with the different versions, make the creation of a huge number of

scripts for every service impractical to maintain, test and run. Therefore

high interaction honeypots are needed so that the actual services can run

and fully interact with the attackers.

Low interaction honeypots in the NoAH core will be used as lightweight

responders. The responders will be able to identify the ‘‘uninteresting’’ traf-

fic and will not forward it to the high interaction honeypots. Therefore

the traffic resulting to the high interaction honeypots for processing will

be reduced. The architecture is presented in Figure 3.7, where it can be

observered that all traffic is first processed by the low interaction honey-

pots, then only the dialogs that can not be processed by the low interaction

honeypots are handed off to the high interaction ones so to provide realistic

responses back to the attacker. Attackers can not access high interaction

honeypots directly and since Argos containment environment is used our

high interaction honeypots can not be compromised and thus contaminate

their private subnet.

3.4.1 ‘‘Lightweight Proxy’’ Honeypots

In every conversation with an attacker, the initial part of it is performed by a

low-interaction honeypot. The low interaction honeypots inside NoAH core

act as lightweight proxies for performance and traffic reduction reasons.

The proxies are modified instances of honeyd which listen to specific ports

based on a particular configuration. The operating systems and the services

30 CHAPTER 3. NOAH ARCHITECTURE

running on these lightweight proxies are mapped to real services running to

the high interaction honeypots. For example if a low interaction honeypot

emulates a Windows XP Sp1 machine with an Apache server running, then

the port 80 on the low interaction honeypot is mapped to a specific high

interaction honeypot that runs Windows XP Sp1 with an Apache server

running on it serving real pages.

These lightweight proxies in NoAH core try to reduce the traffic that ar-

rives to the high interaction honeypots by dropping connections to ports

that the corresponding services are not running on the high interaction

honeypots. Also lightweight responders are able to detect TCP SYN scans

by examining the first three packets of the conversation. If these packets

do not comply with the standard TCP three-way handshake the connection

is dropped. When the three-way handshake has been completed correctly

with the attacker, the connection must be handed off to the appropriate

high interaction honeypot. At this point the low interaction honeypot be-

comes a relay proxy and all data in application level are relayed to the high

interaction honeypots and vice versa. This relaying of packets between the

attacker and the high interaction honeypots continues until the termination

of the communication.

In Figure 3.8 an example of a connection handoff is illustrated. Firstly,

the attacker sends a TCP SYN packet to the low interaction honeypot with

a certain destination port X, if port X is open a SYN/ACK is sent back to

the attacker and the honeypot awaits to receive the next packet. If the

next packet that arrives from the attacker is not an ACK then the connec-

tion is considered to be scan activity or malformed request and therefore

dropped. If the third packet is received we have reached the ‘‘zero’’ point.

At this ‘‘zero’’ point the low interaction honeypot connects with the high in-

teraction honeypot running the requested service. After the connection has

been established, the low interaction honeypots acts as proxy between the

3.4. INTERACTION BETWEEN LOW AND HIGH INTERACTION HONEYPOTS31

attacker and the high interaction honeypot. We don’t expect the attacker

to notice the extra delay since the both low and high interaction honeypots

will be located to the same local high speed network.

The previously described architecture, allows NoAH to accomplish a

number of goals. To begin with only a a small number of high interaction

honeypots needs to be maintaied since the major portion of the traffic will

be filtered out by the low interaction honeypots. Moreover, by using hon-

eyd we can map several ‘‘virtual’’ machines which run the same operating

systems and similar services to a single high interaction honeypot. Finally,

it is easy to add a new service to the whole system since we don’t need

to write any new complex scripts that emulate the specific service for the

low interaction honeypots. It is only needed to install the specific service

to the high interaction honeypot and set the appropriate mapping at the

lightweight responders.

32 CHAPTER 3. NOAH ARCHITECTURE

OR

OR

OROR OR

Sender

`

Recipient

OROR

OR

TLS-Encrypted

Unencrypted

OR

Figure 3.5: An overview of how Tor works. The client establishes a path

of onion routers and sends ‘‘onions’’, messages encrypted with public keys

of all path’s routers. At each router the onion is piled off -decrypted by

router’s public key- and forwarded to the next router. The last router has

fully decrypted content and communicates directly with recipient through

a standard TCP/IP connection.

3.4. INTERACTION BETWEEN LOW AND HIGH INTERACTION HONEYPOTS33

Figure 3.6: The diagram gives an overview of the Honeyd’s architecture

34 CHAPTER 3. NOAH ARCHITECTURE

Figure 3.7: Cooperation between low and high interaction honeypots. Low-

interaction honeypots are accessible by attackers, while high-interaction

ones are placed in a private subnet. The traffic from attackers arrive to the

low interaction honeypots which in turn uses the services on high interac-

tion honeypots to provide real responses to the attackers.

3.4. INTERACTION BETWEEN LOW AND HIGH INTERACTION HONEYPOTS35

Figure 3.8: An example of a connection handoff. After a correct three-way

handshake, low interaction honeypot becomes a proxy between the attacker

and the high-interaction honeypot

36 CHAPTER 3. NOAH ARCHITECTURE

4
Evaluation Methodology

In this chapter we will describe the methodology that will be used in order

to evaluate each of the Noah components and the NoAH architecture as a

whole. The evaluation will be based on a series of experiments for each of

the components that is currently part of the NoAH infrastructure.

4.1 NoAH components

First we will outline the various NoAH components that are in our best

interest. A brief overview of each component is presented here, for further

information refer to Chapter 3 or to article [4]. There is a number of inter-

operating components in the NoAH architecture. We are going to describe

the methodology for evaluating each of these components and examine the

following parts of the NoAH architecture: Windows Honey@Home, Linux

37

38 CHAPTER 4. EVALUATION METHODOLOGY

Honey@Home, SSL Server, Honeyd and Argos containment environment.

Honey@Home is a lightweight tool that monitors one or a limited number

of unused IP addresses on a home user’s network or on a small enterprise’s

network and interacts with the honeypots of NoAH core in order to respond

to the received traffic. Currently, there are two versions of Honey@Home

one for Linux and one for Windows Operating systems. Both versions share

the same principles and work in a similar way but they must be evaluated

in a way that the results are not affected by the different OS they operate

on.

SSL Server is a tool used for collecting the data from every live Honey@Home

sensor, decapsulating and injecting packets to the network where the var-

ious honeypots are located. As the name suggests the connection between

every Honey@Home sensor and SSL Server is encrypted using Secure Socket

Layer protocol. The data collected by SSL Server are then been processed

by the low interaction honeypots of NoAH.

Honeyd is an open source computer program that allows a user to set up

and run multiple virtual hosts on a computer network. These virtual hosts

can be configured to mimic several different types of servers, allowing the

user to simulate an infinite number of computer network configurations.

The low interaction honeypots within NoAH are based on a modified version

of Honeyd which is able to hand-off the connections we receive from the

attackers to the high interaction honeypots. Moreover, Honeyd is configured

to act as a lightweight responder in order to filter out port scans to our

targeting infrastructure and connections to services that are not available

on our high interaction honeypots.

In the context of NoAH architecture, Argos containment environment is

used as the high interaction honeypot. Argos is a full and secure system

emulator designed for use in honeypots. Using dynamic taint analysis,

it tracks network data throughout execution and detects any attempts to

4.2. HONEY@HOME AND SSL SERVER EVALUATION METHODOLOGY39

use it in an illegal way. By using Argos we secure our high interaction

honeypots from getting compromised and thus if an attack against our

honeypots succeeds it will not spread further.

Each and every component should be tested appropriately in order to

identify its potential performance. Also, end to end tests should be per-

formed in order to identify possible bottlenecks or other misbehaviors in

the system. The methodology proposed should provide us a clear view of

the behavior and performance of each component along with an overall view

of the capabilities of our system. Based on the previous remarks the follow-

ing sections will provide the main skeleton for the experiments that should

be conducted for the better evaluation of the NoAH architecture.

4.2 Honey@Home and SSL Server Evaluation Method-

ology

The entry point to the NoAH architecture are Honey@Home tool and the

funneling component. Any traffic going to certain ports or IPs on a host or

network running Honey@Home is redirected to the NoAH core as we have

previously described. Thus Honey@Home should be working correctly even

in the presence of failures. Also, the performance of Honey@Home is an

important factor affecting the performance of the whole architecture and

should be examined thoroughly. Honey@Home can not be examined as a

standalone tool since it redirects the traffic it receives to the SSL server

through a SSH connection. So we need to test it as part of the NoAH infras-

tructure. Keeping the previous remarks in mind we are going to conduct a

series of experiments.

In order to test the correctness of the system we will conduct a series of

transactions using different protocols like HTTP, SSH or other well known

protocols. Firstly we will replace Argos with an HTTP server and perform

a series a request using wget tool [14]. The requests will be done to a

40 CHAPTER 4. EVALUATION METHODOLOGY

Honey@Home (both for Windows and Linux) client which in turn will direct

the requests through the NoAH architecture to the HTTP server. We should

validate that both the requests and responsed arrived correctly to the server

and to the wget client respectively. Thus, what is in our best interest is the

number of the correct requests completed. This can be done by comparing

received by the wget client with the data that were hosted in the server side.

Except from HTTP we should also try other protocols that are not plain text

protocols like SSH. Therefore, we can setup a SSH server replacing Argos

and using scp tool in order to transfer files over the network.

By using the same setup as before, we can measure the throughput of

the part of the system that contains Honey@Home, SSL server and modi-

fied Honeyd. Since we will be able to measure the performance of Honeyd

as a standalone tool, the latter measurement will give us a rough estima-

tion of the performance of Honey@Home and SSL server as a whole. So

the experiments that we will conduct are the following. Firstly we will re-

place Argos with an apache2 HTTP server and we will perform a number of

transactions using wget tool through the Honey@Home-SSL server-modified

Honeyd path. We are interested in the mean traffic rate that the system can

sustain during these transactions. Secondly we will also use the nuttcp

tool [21] in order to measure the throughput of the system. This will be

done by replacing Argos with the nuttcp receiver and using the nuttcp

transmitter to transmit data over the system. During the execution of the

experiments we will also keep track of the CPU usage of Honey@Home and

SSL server this will provide useful information for the further evaluation of

the system.

Figure 4.1 presents the setup that will be used to perform experiments

on the honey@home, SSL server and Honeyd part of the NoAH architecture.

As it is shown the attacker has been replaced with a client and the high

interaction honeypots with a real server. The requests from the client arrive

4.2. HONEY@HOME AND SSL SERVER EVALUATION METHODOLOGY41

Figure 4.1: A test setup in which requests to the server are performed

through the honey@home, SSL server and Honeyd. The server and the

client can communicate using the same protocol.

to the IP address that honey@home is responsible to monitor and to a port

that is open on the server. The request is then encapsulated and send

over the SSL tunnel to the SSL Server there it gets decapsulated and sent

to the low interaction honeypot. After the three-way handshake has been

completed properly a connection is opened with the real server and from

that point on all packets from the client are relayed to the real server and

the responses from the server follow the reverse path back to the client.

Finally, in order to evaluate Honey@Home and SSL server in the pres-

ence of failures, we will establish a connection between the SSL server

and Honey@Home. Then randomly we will either send a KILL signal to

42 CHAPTER 4. EVALUATION METHODOLOGY

Honey@Home or SSL server or drop the connection. This will help us un-

derstand how our system responds to failures and whether it will be able

to restablish the connection once it is lost. Note that the experiments de-

scribed previously must be conducted both for Windows Honey@Home and

Linux Honey. This will enable us to do a quantitative comparison between

the two versions of Honey@Home.

4.3 Modified Honeyd Evaluation Methodology

Honeyd is a well known tool used for representing single or a network of

‘‘virtual’’ hosts running a number of different services. Honeyd is used in the

NoAH architecture as the low interaction honeypot. As we have mentioned

earlier we have modified Honeyd (mhoneyd) by adding two new functionali-

ties. Firstly, modified Honeyd is able to filter out SYN scan attacks. Thus if

Honeyd receives a SYN, to a port that is configured to listen, it sends back

a SYN/ACK and waits for the next packet if the next packet is not RST or

FIN it hands off the connection to the HI honeypot. Therefore in addition to

the scan filter, we have added a smart ‘‘hand off’’ mechanism is introduced.

The ‘‘hand off’’ mechanism redirects connections that can no longer handle

to the high interaction honeypots or any other server on the Internet.

Adding the previous mechanisms to Honeyd may impose some addi-

tional costs to the system. Thus we need to examine what is the maximum

throughput that the modified Honeyd can achieve while it hands off nu-

merous connections to a HI honeypot or to some real server. The first

experiment that we will conduct will be for testing the mhoneyd as a stan-

dalone tool. So we will configure mhoneyd to redirect traffic, destinated to

a certain port (e.g. 8080), to a web server. In this way all traffic from the

client to the server and in the reverse path is redirected through mhoneyd.

Since we expect mhoneyd to be the bottleneck in this experiment we need

all three components to be connected to the same high speed network e.g.

4.3. MODIFIED HONEYD EVALUATION METHODOLOGY 43

Figure 4.2: Setup for testing the overhead imposed by the handoff mecha-

nism. A honeypot based on modified Honeyd is running on a real machine

and the requests from the client are handed off to the real server.

100Mbps or 1Gbps. Then we will conduct a series of HTTP transactions us-

ing the wget tool. We shall keep track of the time needed for a transaction

to be completed and we will be able to produce the mean traffic over all the

transactions. The results will indicate what is the maximum throughput

that mhoneyd can sustain. We can use different protocols in order to test

mhoneyd but since the handoff is done in the socket layer we expect similar

results as in the HTTP case.

The experimental setup to examine the hand off mechanism is illustrated

in Figure 4.2. A client will produce a number of requests to the server both

directly to the server IP address and indirectly through the low interaction

44 CHAPTER 4. EVALUATION METHODOLOGY

honeypot. The time needed to serve these requests will help us calculate

the overhead imposed by the handoff mechanism to the system. The server

and the client can communicate using any protocol since the hand off has

been implemented to be protocol independent.

With the knowledge of what is the maximum throughput of mhoneyd,

we can proceed to experiments adding more NoAH components to the set

up, like Honey@Home and SSL Server. The methodology is described in the

previous section where experiments for the path client-Honey@Home-SSL

Server-mhoneyd are considered. The results from these experiments will

help us pinpoint where the ‘‘bottleneck’’ in our system, if any, exists and

what is the maximum traffic that the whole path can sustain.

4.4 High interaction honeypot Evaluation Methodol-

ogy

As we have mentioned the high interaction honeypots that will be used in

NoAH core will be running over Argos containment environment. Argos is

based on Qemu virtual machine with some additional functionality that al-

lows it to track the tainted data and disallows them from getting executed

once the exploit has succeeded. Since Argos will be hosting the high in-

teraction honeypots of NoAH architecture its performance is crucial and

affects the whole NoAH architecture. Therefore, the effectiveness of Argos

in intercepting attacks against our honeypots is critical because we don’t

expect our honeypots to be compromised and used for malicious purposes

by the attackers or automated malware.

The performance of Argos will be evaluated through a series of experi-

ments that will provide information about the slowdown of programs run-

ning over Argos and Qemu in comparison to the original hosts. Since we

expect multiple operating systems and services to be running on our hon-

eypots we should have multiple setups in order to test the stability and

4.4. HIGH INTERACTION HONEYPOT EVALUATION METHODOLOGY 45

coherence of the Argos’ performance. The performance metrics that are

in our best interest are the execution time for CPU intensive programs or

requests per second and the throughput in Mbps for programs serving re-

quests over the network like Web, FTP servers. A comparison between hosts

and programs running over Argos, Qemu and on native system will reveal

the overhead introduced by Argos.

Furthermore, an end-to-end experiment is needed to identify the max-

imum performance that NoAH architecture can sustain. The end to end

experiment could be performed both with Argos and a native system as

high interaction honeypot. This comparison will provide useful results in

whether we can somehow "hide" the overhead of Argos inside the whole

architecture. In other words it will reveal if Argos is the bottleneck in our

system. This can be done by running an apache server on the high inter-

action honeypot, which in our case will be running over Argos or the native

system and perform a series of requests for variant sized files; the same

experiment can be repeated for different services like FTP, SSH, Netbios etc.

The time per request and the throughput in Mbps will be our major metrics

in this experiment.

Another aspect of Argos that needs to be examined is the effectiveness

into averting cyberattacks. To determine the effectiveness of Argos we will

use the metasploit framework [27] as the attacker. Metasploit framework

allows us to test and exploit a remote machine with an already known

exploit. We will conduct an experiment where we will use and send multiple

exploits directly to the high interaction honeypot and we shall measure the

number of the successful interruptions by Argos. We will perform the same

experiment but instead we will use the NoAH infrastructure to redirect the

attacks to Argos. In order to justify that Argos really throttled the attacks

we will use the feedback produced by metasploit framework along with the

logs that Argos produces.

46 CHAPTER 4. EVALUATION METHODOLOGY

5
Results

In this chapter we will present the experimental results for the various NoAH

components along with some end-to-end measurements that provide us an

overall view of the architecture capabilities. The experimental evaluation

will be based on the remarks presented in section 4. The results suggest

that by using the NoAH architecture, one is able to receive and detect the

cyber attacks effectively. Moreover, the components has been designed to

be as lightweight as possible in order to minimize the overall overhead and

enhance the performance of the whole architecture.

5.1 Testbed

In this section we will describe certain systems which will be used for the

various experimental set ups in the remainder of the chapter. Therefore,

47

48 CHAPTER 5. RESULTS

for every experimental set up in the following sections we will refer here for

the description of these hosts.

The machines that will be used are the following. A server that will

be used to mainly host the high interaction honeypots and other various

application servers running Debian Linux, 2.6.18 kernel version with an

Intel Xeon with 3.0GHz CPU with 5GB of main memory we will refer to this

machine as [Server42] . A machine running Debian Linux, 2.6.20 kernel

version with an Intel Core 2, 2.40 GHz CPU and 2 GB of main memory

this machine will mainly be used for running the low interaction honeypots

and the SSL server, we will refer to this machine as [NoAH machine] . A

machine that is used as client and as a honey@home sensor runs Debian

Linux, 2.6.12 kernel version with an Intel Xeon, 2.80GHz CPU and 512MB

of main memory we will refer to it as [H@H Linux client] . Moreover, two

machines that were mainly used as clients, an Intel Xeon with 2.40 GHz

and 512 MB of main memory and an Intel Pentium 4 with 2.80 GHz CPU

and 1 GB of main memory. On both Linux clients Debian Linux with 2.6

kernel version was running, we will refer to one of machines as [Linux

client] . Finally, we used a number of machine running Windows XP SP2

both for honey@home sensor but for clients two we will refer to on of them

as [Windows client] .

The network topology will be presented in the following sections since it

highly depends on the experimental set up and it is not fixed throughout

the experiments.

5.2 High Interaction Honeypots Evaluation

Argos will be our main tool for the high interaction honeypots inside NoAH

architecture. Argos is a containment environment based on the Qemu

virtual machine. Services running on virtual machines have inferior per-

formance compared to services running on a real machine. In addition to

5.2. HIGH INTERACTION HONEYPOTS EVALUATION 49

that, we await that Argos tainting mechanism will add some additional per-

formance costs to the running services. By definition, the operating system

of the machine on which the virtual machine runs is called host OS, the

operating system that runs inside the virtual machine is called guest OS.

For the computation of the extra overhead that Argos introduce to a sys-

tem, we will conduct a series of requests using the apache benchmark [12]

tool to an Apache 2.0 server running over a vanilla Linux , a Windows XP

SP2 running on Qemu virtual machine and a Windows XP SP2 running over

Argos containment environment. We downloaded a filed sized 10MB 1, 10,

100 and 1000 times with the use of apache benchmark tool. The results

are illustrated on Figure 5.1, where the X axis presents the times that each

file was downloaded and the Y axis presents the overall time in seconds for

each set of downloads used for that set to complete. The machine hosting

Qemu, Argos and Apache server was [Server42] , the machine hosting the

apache benchmark client was [NoAH machine] . The machines were con-

nected to the a 1Gbps network. As the results suggest, the apache server

running on top of Qemu serves about 35 times slower compared to the

apache running on vanilla Linux and 55 times slower while running on top

of Argos. Although results seem discouraging, considering that the the ser-

vices running on a high interaction honeypots are not bandwidth intensive,

we could sustain a large number of clients with the 15Mbps traffic rate that

an Apache server running on Argos can provide.

Towards to further understanding Argos’ behavior when different oper-

ating systems is hosted, we installed three different operating systems, De-

bian Linux, Windows XP SP2 and Windows XP SP2 in safe mode with only

command prompt active. We ran Argos over [Server42] machine with each

of the operating systems and recorded the CPU consumption over time at

host level when each of the operating systems were idle. Figure 5.2 presents

the results for a period of 2000 seconds where we can observe that when

50 CHAPTER 5. RESULTS

Figure 5.1: Download time in seconds for a file sized 10M and for various

number of sequential downloads

Windows XP SP2 runs we have almost constant 100% CPU usage whereas

on the Linux and Windows XP SP2 in safe mode the CPU usage drops at

some point. We suspect that this point is when the booting of the guest OS

has completed. We suspect that due to the real time requirements of an

operating system like Windows XP SP2, constant requests are preformed by

the guest OS, for example to retrieve information about the real time clock

or to access the driver of the graphic card etc.

Results suggest that Argos can be used for building high interaction

honeypots even though it imposes significant costs to application and ser-

vices that run on top of it. Moreover, since we expect to have a number

of high interaction honeypots in NoAH core, we can use load balancing

5.3. HAND OFF MECHANISM EVALUATION 51

Figure 5.2: CPU usage of Argos while running for three different guest

Operating Systems

techniques to be able to cope with the increasing number of honey@home

sensors and funneling components. Finally, there are some issues that

need further investigation like 100% usage of Argos when the guest OS is

Windows XP SP2.

5.3 Hand Off Mechanism Evaluation

As we described previously, the low interaction honeypots inside NoAH core

will be working as lightweight responders which redirect only the necessary

traffic to the high interaction honeypots for further processing and drop

packets that belong to scan or other benign activity. As we have stated

earlier after the initial TCP hand shake between the attacker and the low

interaction honeypot has been completed, the low interaction honeypots

52 CHAPTER 5. RESULTS

becomes a proxy that redirects all the traffic from the attacker to the appro-

priate high interaction honeypot and vice versa. This ‘‘hand off’’ mechanism

imposes additional cost to the the whole path between the high interaction

honeypots and the attacker. In this section we will calculate the overhead

introduced by the ‘‘hand off’’ mechanism and the overhead when both ‘‘hand

off’’ and funneling are active.

In order to measure the costs that ‘‘hand off’’ introduces to the system

we performed a series of experiments based on two different setups. The

experiments took place in two subnets which were connected through a

100Mbps link. Also, their internal capacity of the subnets was 100Mbps.

Figure 4.1 presents the setup for the hand off experiment. The client was

running on [Linux client] machine, the server was running on [Linux client]

machine and the low interaction honeypot was running on [NoAH machine]

machine. We used the client to perform a series of "HTTP GET" requests

and (Secure CoPy) "scp" requests to the honeypot. Figure 5.3 presents the

testbed used for calculating the overhead in the case where both handoff

and funneling are activated. The client, the server and the handoff machine

were set up as described previously whereas the funneling host was running

on [H@H Linux client] and located at a different subnet. The honeypot was

located at the 10.10.70 subnet and was receiving traffic from the 10.10.71

subnet using the funneling mechanism. In both cases we conducted the

exact same set of experiments. The results are presented in the remainder

of the section.

We used two different sets of experiments in order to determine the total

overhead introduced to response time of the server. The first set consisted

of a series of "HTTP GET" requests for three files of different sizes 10K,

100K and 1000K. We requested each one of these files 500, 1000, 2000

and 5000 times and recorded the total time for serving these requests. The

second experiment used the same setup but we used (Secure CoPy) ‘‘scp’’

5.3. HAND OFF MECHANISM EVALUATION 53

Figure 5.3: The experimental testbed for measuring the overhead of both

funneling and tunneling mechanisms. The traffic received at the funneling

host is redirected through a tunnel to the low interaction honeypot which

hands it off to the real server.

instead of HTTP requests. These requests were served from the server in

three different manners: a) Directly from the server as presented in Fig. 4.1

and Fig. 5.3 denoted with the discontinuous line b) Through the handoff

mechanism which is presented in Fig. 4.1 with a red line and c) Thorough

both funneling and handoff mechanisms as presented in Fig. 5.3 with the

continuous red line. The results of these experiments are presented in the

following tables.

Table 5.1 illustrates the server response time for a number of HTTP re-

quests along with the overhead introduced by handoff and the hand off and

funneling mechanisms. We discover that the overhead introduced by the

handoff mechanism remains is same regardless the number of the request

performed. Furthermore, an additional overhead of about 20% is intro-

54 CHAPTER 5. RESULTS

Number of Real Server Hand Off Hand Off and Overhead of Overhead of Hand

HTTP Requests (sec) (sec) Funneling(sec) Hand Off(%) Off and Funneling (%)

500 11,17 17,95 20,37 60,70 82,36

1000 22,35 35,93 40,73 60.76 82,23

2000 44,69 71,86 81,39 60,79 82,12

5000 111,75 179,84 203,67 60,93 82,25

Table 5.1: Response time for numerous HTTP Get requests for a file of

100KB size. The table presents the response time when retrieving the file

from the real server and from the real server through the ‘‘hand off’’ and

Funneling mechanisms

duced by the funneling mechanism. These findings are also confirmed in

Table 5.2 where we can see the introduced overhead for performing different

numbers of ‘‘scp’’ transfers when the handoff mechanism is activated. But,

in this case the additional overhead introduced by the funneling increases

from 20% to 29%. This probably happens due to the increased complexity

of the Secure CoPy protocol in contrast to the plain text HTTP protocol.

Results suggest an overhead of about 60% in the case of hand off and

for plaintext protocols and about 10-13% in the case of binary protocols like

ssh. Furthermore, the funneling mechanism adds about 20-29% overhead

to the whole system when it is activated. Since we will use Argos as our

main high interaction honeypot, we expect Argos to be the ‘‘bottleneck’’ of

our system and thus the performance of the hand off is sufficient for our

purposes.

5.4 End-to-End Evaluation

In this section we will provide experiments that were conducted while using

the whole NoAH architecture. These experiments will either use the NoAH

architecture ‘‘as is’’ or will alter a small fraction of its components e.g.

5.4. END-TO-END EVALUATION 55

Number of Real Server Hand Off Hand Off and Overhead of Overhead of Hand

SCP transactions (sec) (sec) Funneling(sec) Hand Off(%) Off and Funneling (%)

500 73,36 82,91 101,93 13,01 38,95

1000 146,69 162,32 203,95 10,65 39,03

2000 293,41 323,96 407,90 10,41 39,02

5000 732,82 811,63 1019,96 10,75 39,18

Table 5.2: Response time for numerous SCP transaction for a file of 100KB

size. The table presents the response time when retrieving the file from the

real server and from the real server through the ‘‘hand off’’ and Funneling

mechanisms

replace the high interaction honeypot with a real server, or change the

attacker with an application client. The results presented here report that

it is feasible to use NoAH architecture to detect attacks effectively.

5.4.1 Honey@Home Evaluation

Honey@home tool is a lightweight forwarder, which can be installed by any

user who has a spare IP or port range, and can claim a dark IP address

and forward all the traffic it receives to NoAH core. The traffic received

is encapsulated and sent over a SSL tunnel. When it reaches the NoAH

core it gets decapsulated by the SSL server component and injected to the

network for further processing by the low and high interaction honeypots.

Towards understanding the performance of honey@home we conducted an

experiment based as described in Chapter 4.

Figure 3.4 illustrates the setup we used. We used the NoAH archi-

tecture where the attacker and the HI honeypot had been replaced by the

nuttcp [21] transmitter and receiver respectively. The modified Honeyd was

also configured to redirect the data to the correct port at nuttcp receiver.

The [H@H Linux client] machine was used as the nuttcp client and [Linux

56 CHAPTER 5. RESULTS

Buffer size (MB) Windows Honey@Home Linux Honey@Home

Throughput(Mbps) Throughput(Mbps)

1 13,68 36,78

2 15,36 38,28

10 14,53 27,08

20 13.32 23,66

40 14,25 23,52

Table 5.3: The mean transfer rate as produce by nuttcp tool for numerous

buffer sizes. The traffic was redirected through Honey@Home, SSL server

and modified Honeyd to the nuttcp receiver.

client] machines was used as server, the [NoAH machine] hosted both the

modified Honeyd and the SSL server, [Windows client] was used as the

Windows honey@home sensor and [Linux client] machine was used as the

Linux honey@home sensor. All machines were connected to a 100Mbps

network. The nuttcp transmitter was sending buffers of different sizes us-

ing TCP. We performed the same experiments both for Linux and Windows

Honey@Home. The mean transfer rates reported by the nuttcp receiver for

Windows H@H and different send Buffer sizes over 10 runs are presented

at Table 5.3

We tried to pinpoint the bottleneck in each experimental setup. Thus,

we were keeping track of the CPU usage while the transfer was taking place.

In the case of Linux Honey@Home, we identified that the machine running

mHoneyd and SSL server was the bottleneck of the system, since these two

processes were consuming about the 70% of CPU and the rest 30% was

system time so the machine was at 0% idle during the transfer. In the

case of the Windows Honey@home the bottleneck of the whole path was

honey@home it self as it consumed 100% CPU usage when the tranfer was

active.

5.4. END-TO-END EVALUATION 57

The results suggest that the honey@home - SSL server - Mhoneyd path

can sustain traffic up to 38 Mbps when the Linux honey@home is used

and up to 15 Mbps when the Windows honey@home sensor is used. The

performance of the Windows Honey@Home needs to be examined further in

order to determine its extensive CPU usage. Overall, we can safely use the

whole path to redirect traffic from the various honey@home sensors to the

NoAH high interaction since we expect the traffic from each sensor not to

exceed tens of Kbps or less .

5.4.2 End-to-End measurements

In this section we will describe a series of experiments that used the NoAH

architecture as is without altering any of its components. We only used one

Windows and one Linux Honey@Home sensor in our experiments. The set

up was as follows. One Windows XP SP2 and one Windows XP SP1 operating

systems were running over two Argos processes which were located inside

[Server42] machine. The modified Honeyd along with the SSL server were

located in [NoAH machine] . The Honey@home sensors was either run

on top of [Linux client] machines or [Windows client] machine. Finally,

the attacker or the application client, depending on the experiment, was

running on top of [Linux client] machine.

Firstly we performed a number of attacks against the rpc service of

the Windows XP SP1 machine through the NoAH infrastructure, using the

metasploit [27] framework. The attacks was launched against honey@home

which redirected the traffic to SSL server, which in turn forwarded the

traffic to low interaction honeypots that finally reached the Argos ma-

chine and provided the appropriate responses back to the attacker. Fig-

ure. 5.4 presents the output of each of the NoAH components along with

the attacker console. As it is shown, a connection was first established

between the honey@home sensor and the SSL Server (in this case is is

called ‘‘Honey@Home Server’’). Then an attack against the rpc protocol was

58 CHAPTER 5. RESULTS

Figure 5.4: An attack against NoAH infrastructure is launched by the

metasploit framework. NoAH’s high interaction honeypots receive the at-

tack and are able to deflect it effectively.

launched by the metasploit framework as it is shown in the ‘‘Metasploit

Console’’. The traffic had reached the modified Honeyd machine which in

turn redirected the attack traffic to Argos that managed to detect the attack

and log it, as it is presented in ‘‘Argos Console’’. The metasploit framework

reported that ‘‘Exploit completed, but no session was created’’ which is ex-

actly what we expected since Argos is able to detect the attack at the time

the attack data are about to be executed and therefore the exploit has suc-

ceeded but it can not be executed any further and return a command shell

to the attacker. We launched tens of attacks against both our Windows and

Linux honey@home sensors and Argos was able to detect and deflect each

of the attacks, producing the appropriate attack logs.

We have concluded that NoAH architecture is up and running correctly

5.4. END-TO-END EVALUATION 59

thus we can proceed to an end to end estimation of the traffic rate that the

whole system can sustain. We installed Apache2 server to the Windows XP

SP2 guest OS and performed ten sequential downloads, using the wget tool,

of a text file of 10MB of size both from the Windows and Linux honey@home

clients. The traffic rate that we were able to achieve through both versions

of honey@Home was 15Mbps. As we have previously shown at Section 5.2,

15Mbps is the maximum traffic rate that we can get while downloading from

a server running inside a Windows guest OS on top of Argos.

The experimental results suggest that we are able to deploy NoAH ar-

chitecture and effectively detect previously known attacks or previously un-

known attacks that can be detected by Argos. We should further deploy

NoAH by adding new OS’s running on top of Argos. Moreover, we need

to test NoAH under large scale condition where thousands or tens of the

thousands of honey@home clients are concurrently connected to NoAH in-

frastructure sending Mbps of traffic to the NoAH core.

60 CHAPTER 5. RESULTS

6
Conclusions and Future Work

This thesis provides a detailed overview of the Network of Affined Honey-

pots architecture. Based on standard network technologies, NoAH provides

a complete framework for the construction of honeypot networks. More-

over, the building blocks of NoAH are designed to be flexible and easily

expandable. The network of honeypots that NoAH aims to deploy will pro-

vide detection of known attacks and act as an early warning system for

previously unknown attacks.

NoAH is comprised of a NoAH core and multiple distributed sensors that

redirect unsolicited traffic to the NoAH core. The core of NoAH consists of

both low and high interaction honeypots. The low interaction honeypots

act as lightweight proxies that aim to reduce the traffic that arrives to high

61

62 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

interaction honeypots by filtering out ‘‘uninteresting’’ traffic, like portscan

activity making feasible to monitor large IP address space. There are two

types of monitoring technologies used in NoAH, honey@home tool and var-

ious funneling and tunneling mechanisms. Organizations can participate

to NoAH, without the maintainance cost of honeypots, by installing funnels

that gather traffic from a large portion of black space and tunnel all traffic

destinated to that black space, to NoAH core. The honeypots located in

NoAH core will reply to that traffic providing the illusion to the attacker that

a real service is contacted. Honey@Home is a non-pervasive tool that can

run on a home PC and claim traffic that is destinated to an unused IP ad-

dress, like an extra address obtained through DHCP. This traffic is directed

to NoAH core which sends back responses to the user’s network and from

there to the attacker.

As the results suggest, NoAH can be easily deployed and used effec-

tively for the detection of attacks. NoAH was able to detect and intercept

attacks launched against the honey@home sensor aiming services that were

running to the high interaction honeypots. We conducted a series of exper-

iments on services running on top of high interaction honeypots and con-

cluded that although the latency when performing a transaction through

NoAH infastructure is increased, but it is not prohibitive for largely deploy-

ing and expanding NoAH.

NoAH is largely under deployment and many features are still under

implemention. Therefore further experiments must be performed. One

such feature is the use of tor, which will be used connecting honey@home

sensor and low interaction honeypots anonymously. We expect that there

will be additional overhead to the whole NoAH infrastructure which needs

to be counted and understand in depth. Moreover, NoAH needs to be tested

with a large number of unused IP addresses are monitored and redirected to

the NoAH core. This real time stress testing will provide useful information

63

about the fault tolerance and robustness of NoAH.

Overall, the architecture of NoAH combines various network compo-

nents and technologies to allow the construction of a robust honeypot net-

work. It is mainly based on a core of honeypots but that can be extended to

any organization and home uses. The extensibility of NoAH allows us the

creation of large-scale honeypot farm, able to monitor distributed address

space in a controlled environment. Futher work is still needed for the bet-

ter understanding and evaluation of the new features that are mounted to

NoAH architecture

64 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Bibliography

[1] Bochs IA-32 Emulator Project. http://bochs.sourceforge.net/.

[2] F-Secure . http://www.f-secure.com/.

[3] Honeynet Project . http://www.honeynet.org/.

[4] Honeypot Node Architecture . http://www.fp6-noah.org/

publications/deliverables/D1.1.pdf/.

[5] Honeytrap . http://honeytrap.mwcollect.org.

[6] LaBrea: "Sticky" Honeypot and IDS . http://labrea.sourceforge.

net/.

[7] QEMU homepage. http://fabrice.bellard.free.fr/qemu/about.

html/.

[8] Sebek homepage . http://www.honeynet.org/tools/sebek/.

[9] Symantec . http://www.symantec.com/.

[10] The Xen virtual machine monitor . http://www.cl.cam.ac.uk/

Research/SRG/netos/xen/performance.html.

[11] VMware homepage . http://www.vmware.com/.

[12] ab - Apache HTTP server benchmarking tool. http://httpd.apache.org/

docs/2.0/programs/ab.html.

[13] F-Secure Virus Descriptions : Mydoom. http://www.f-secure.com/

v-descs/novarg.shtml.

[14] GNU Wget. http://www.gnu.org/software/wget/.

65

66 BIBLIOGRAPHY

[15] Google Hack Honeypot. http://ghh.sourceforge.net/.

[16] Honeywall CDROM. http://www.honeynet.org/papers/cdrom/

index.html.

[17] Jackpot Mailswerver. http://jackpot.uk.net/mailswerver/.

[18] LEURRECOM.org Honeypot Project. http://www.leurrecom.org/

index.php.

[19] Microsoft Security Bulletin MS03-026. http://www.microsoft.com/

technet/security/bulletin/MS03-026.mspx.

[20] Mwcollect alliance. http://www.mwcollect.org .

[21] nuttcp - network performance measurement tool. http://linux.die.

net/man/8/nuttcp.

[22] Open proxy. From Wikipedia, the free encyclopedia . http://en.

wikipedia.org/wiki/Open_proxy.

[23] Open rail relay. From Wikipedia, the free encyclopedia. http://en.

wikipedia.org/wiki/Open_mail_relay.

[24] Project Honey Pot. http://www.projecthoneypot.org/index.php.

[25] spamhole - The Fake Open SMTP Relay. https://sourceforge.net/

projects/spamhole/.

[26] Symantec report on W32.Sobig.F@mm. http://www.symantec.

com/security_response/writeup.jsp?docid=2003-081909%

-2118-99.

[27] The Metasploit Project. http://www.metasploit.com/.

[28] The nmap network scanner. http://www.nmap.org/.

[29] The WASC Distributed Open Proxy Honeypot. http://www.webappsec.

org/projects/honeypots/.

[30] Wireshark: The world’s foremost network protocol analyzer. http://www.

wireshark.org/.

BIBLIOGRAPHY 67

[31] MAAWG Issues First Global Email Spam Report. http://www.maawg.org/

news/maawg060308, 2006.

[32] P. Baecher, T. Holz, M. Kotter, and G. Wicherski. The Malware Collection Tool

(mwcollect).

[33] P. Baecher, M. Koetter, T. Holz, M. Dornseif, and F. Freiling. The Nepenthes

Platform: An Efficient Approach to Collect Malware. In 9th International Sym-

posium On Recent Advances In Intrusion Detection, RAID06, Hamburg, Ger-

many, September 20-22, 2006, Proceedings, Lecture Notes in Computer Sci-

ence 4219. Springer, 2006.

[34] Bailey, M. and Cooke, E. and Watson, D. and Jahanian, F. and Provos, N.

A hybrid honeypot architecture for scalable network monitoring. Technical

report, CSE-TR-499.

[35] C. Cowan, C. Pu, D. Maier, H. Hinton, P. Bakke, S. Beattie, A. Grier, P. Wagle,

and Q. Zhang. StackGuard: Automatic Adaptive Detection and Prevention of

Buffer-Overflow Attacks. 7th USENIX Security Conference, pages 63–77, 1998.

[36] David Dagon and Xinzhou Qin and Guofei Gu and Wenke Lee and Julian

Grizzard and John Levin and Henry Owen . HoneyStat: Local Worm Detection

Using Honeypots . In Proceedings of the Recent Advance in Intrusion Detection

(RAID) Conference 2004, September 2004.

[37] J. Dike. A user-mode port of the Linux kernel. Proceedings of the 2000 Linux

Showcase and Conference, 2(4), 2000.

[38] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-generation

onion router. Proceedings of the 13th USENIX Security Symposium, 2, 2004.

[39] D. Goldschlag, M. Reed, and P. Syverson. Onion Routing for anonymous and

private internet connections. Communications of the ACM, 42(2):39–41, 1999.

[40] K. Hickman. The SSL protocol. Netscape Communications Corp., Feb, 9, 1995.

[41] C. Leita, K. Mermoud, and M. Dacier. ScriptGen: an Automated Script Gen-

eration Tool for Honeyd. In Proceedings of the 21st Annual Computer Security

Applications Conference (ACSAC 2005), December 2005.

68 BIBLIOGRAPHY

[42] Michael Vrable and Justin Ma and Jay Chen and David Moore and Erik Van-

dekieft and Alex Snoeren and Geoff Voelker and Stefan Savage. Scalability,

Fidelity and Containment in the Potemkin Virtual Honeyfarm. In Proceedings

of the 20th ACM Symposium on Operating Systems Principles (SOSP), October

2005.

[43] J. R. of New Zealand Honeynet Project, R. M. of Chicago Honeynet Project,

B. E. of Chicago Honeynet Project, and M. M. of German Honeynet Project.

Know your Enemy:Web Application Threats, "Using Honeypots to learn about

HTTP-based attacks". http://honeynet.org/papers/webapp/.

[44] G. Portokalidis, A. Slowinska, and H. Bos. Argos: an emulator for finger-

printing zero-day attacks for advertised honeypots with automatic signature

generation. Proceedings of the 2006 EuroSys conference, pages 15–27, 2006.

[45] N. Provos. Systrace-Interactive Policy Generation for System Calls. Na internet

http://www.citi.umich.edu/u/provos/systrace/, July, 2002.

[46] N. Provos. A Virtual Honeypot Framework. In Proceedings of the 12th USENIX

Security Symposium, pages 1–14, August 2004.

[47] K. G. A. Spiros Antonatos and E. P. Markatos. Honey@home: A new approach

to Large-scale Threat Monitoring. In 5th ACM Workshop on Recurring Malcode

(WORM 2007), November 2007.

[48] D. X. Xuxian Jiang. Collapsar: A VM-Based Architecture for Network Attack

Detention Center. In Proceedings of the 13th USENIX Security Symposium,

pages 15–28, August 2004.

