
Improving Routing in
Unstructured Peer-to-Peer

Systems

Harris Papadakis

A dissertation submitted in partial fulfilment
of the requirements for the degree of

Doctor of Philosophy in Computer Science

Doctoral Committee:
Professor Evangelos P. Markatos, thesis supervisor

Professor Maria Papadopouli, member
Professor Mema Roussopoulos, member

University of Crete, 2011

i

ii

iv

Ευχαριστίες

Θα ήθελα να ευχαριστήσω κατ'αρχήν τους γονείς μου Γιώργο και Ανθούλα
των οποίων η συνεχής υποστήριξη όλα αυτά τα χρόνια μου έδωσε την δυνατότητα
να φέρω εις πέρας την παρούσα διατριβή, αλλά και την αδερφή μου Μαριέλα για το
κουράγιο που μου έδινε σε δύσκολους καιρούς.

Θερμές ευχαριστίες αναλογούν στον επιβλέποντα καθηγητή μου Ευάγγελο
Μαρκάτο χωρίς την καθοδήγηση του θα ήταν αδύνατο η ολοκλήρωση αυτής της
εργασίας. Η υπομονή και στήριξή του επι σειρά ετών ήταν καταλυτική.

Επιπλέον, πολλά χρωστάω στην επί σειρά ετών συνεργάτιδα καθηγήτρια
Παρασκευή Φραγκοπούλου. Η βοήθεια της, η συνεργασία της και οι πολύωρες
συζητήσεις μας βοήθησαν σε κάθε βήμα διεκπεραίωσης της παρούσας εργασίας και
υπήρξαν καταλυτικές στο να έρθει εις πέρας με επιτυχία.

Θα ήθελα επίσης να ευχαριστήσω τα μέλη της 3-μελής επιτροπής Ισιδώρα
Ρουσσοπούλου και Μαρία Παπαδαπούλη για την σημαντική καθοδήγηση και
βοήθεια τους.

Τέλος, σημαντική βοήθεια πρόσφεραν οι φίλοι μου όλα αυτά τα χρόνια του
διδακτορικού. Η ψυχική υποστήριξη με πολλές ευχάριστες ώρες και διασκέδαση
μου πρόσφεραν το ψυχικό σθένος απαραίτητο για την προσπάθεια που απαιτεί μια
διδακτορική διατριβή. Θέλω λοιπόν να ευχαριστήσω ονομαστικά και με τυχαία
σειρά τους Αντωνη, Γιώργο, Βασίλη, Ειρήνη, Γιώργο, Αριστέα, Μαρία, Σιλένα,
Άννα, Σοφία, Αδάμ, Αντώνη, Γιάννη, Κώστα, Κοραλία, Μίκη, Χρυσούλα,
Σταυρούλα και όσους αυτή την στιγμή μου διαφεύγουν.

v

vi

Abstract

Recent years have seen the emergence of the deployment of many distributed

systems of global scale. In addition, one of the age-long requirements and goals of

distributed systems is the attainment of large degree of scalability, the ability of a

system to cope with ever increasing number of participants. As one of the solutions

to this problem, the Peer-to-Peer (P2P) paradigm was introduced and immediately

received increasing attention. This leads to the quick evolution of the P2P systems,

which branched out into two main categories, namely the structured and the

unstructured systems. Structured systems are based on a more sophisticated way of

interconnection between the participants of the system, which enables more efficient

communication primitives. At the same time, this rigidness limits the scalability of

those systems. Unstructured systems, on the other hand, are based on a more loose

interconnection structure. Although this structure makes it easier for those systems to

scale to global deployment, the communication primitives are less efficient, thus

limiting their scaling ability. In this thesis we present an effort to tackle this

problem of unstructured systems in many levels. We develop novel algorithms which

enable the communication primitives of unstructured systems to better scale to a

higher number of participants by reducing the functional costs not only for the P2P

system itself but also for the network medium used. Contributions of this thesis

include (i) a novel broadcast-like technique which generates a much smaller amount

of network traffic, (ii) a new participants interconnection structure which enables

more sophisticated search methods without transforming an unstructured system to a

structured one and (iii) another, complementary or stand-alone method to create the

P2P overlay so as to allow the system to work in the same manner a before, but at

vii

the same time reducing the traffic load imposed on the network medium used by the

system.

viii

Περίληψη

Τα τελευταία χρόνια αναπτύχθηκαν πολλά κατανεμημένα συστήματα

παγκόσμιας κλίμακας. Επιπλέον, χρόνια απαίτηση και στόχος των κατανεμημένων

συστημάτων είναι η επίτευξη όσο το δυνατόν μεγαλύτερου βαθμού

επεκτασιμότητας, της ικανότητας δηλαδή ενός συστήματος να ανταπεξέρχεται σε

συνεχώς αυξανόμενο αριθμό μελών. Σαν λύση στο θέμα αυτό, προτάθηκε η

φιλοσοφία των Ομότιμων Συστημάτων (ΟΣ) και αμέσως απέκτησε δημοτικότητα

και την προσοχή της ερευνητικής κοινότητας. Αυτό οδήγησε στην γρήγορη εξέλιξη

των ΟΣ, τα οποία διακλαδίστηκαν σε δύο βασικές κατηγορίες, τα δομημένα και τα

μη-δομημένα συστήματα. Τα δομημένα συστήματα βασίζονται σε μια πιο

πολύπλοκη μέθοδο διασύνδεσης μεταξύ των μελών του συστήματος, κάτι που

επιτρέπει ποιο αποτελεσματικές βασικές λειτουργίες επικοινωνίας. Παράλληλα

όμως, αυτή η “ακαμψία” μειώνει την επεκτασιμότητα αυτών των συστημάτων. Τα

μη-δομημενα συστήματα, από την άλλη μεριά, βασίζονται σε μια πιο χαλαρή δομή

διασύνδεσης των μελών. Παρόλο που το γεγονός αυτό διευκολύνει τα συστήματα

αυτά να επιτύχουν παγκόσμια ανάπτυξη, οι λειτουργίες επικοινωνίας είναι λιγότερο

αποτελεσματικές, με αποτέλεσμα να μειώνεται η επεκτασιμότητα.

Σε αυτή την διατριβή θα παρουσιάσουμε μια προσπάθεια αντιμετώπισης

αυτού του προβλήματος σε πολλά επίπεδα. Αναπτύξαμε και θα παρουσιάσουμε

πρωτότυπους αλγορίθμους που επιτρέπουν στις βασικές λειτουργίες επικοινωνίας να

επιτύχουν μεγαλύτερο βαθμό επεκτασιμότητας μειώνοντας τα λειτουργικά κόστη όχι

μόνο για το ίδιο το ΟΣ αλλά και για το μέσο επικοινωνίας που χρησιμοποιεί. Οι

συνεισφορές της παρούσας διατριβής συμπεριλαμβάνουν (i) μια πρωτότυπη τεχνική

μαζικής επικοινωνίας που παράγει πολύ λιγότερο ποσό κίνησης στο δίκτυο, (ii) μια

νέα δομή διασύνδεσης των μελών του συστήματος που επιτρέπει την ανάπτυξη ποιο

ix

αποτελεσματικών μεθόδων αναζήτησης και επικοινωνίας, χωρίς να μετατρέπεται το

όσο σύστημα από μη-δομημένο σε δομημένο και (iii) μια, είτε συμπληρωματική

είναι ανεξάρτητη, μέθοδο δημιουργίας του ΟΣ που επιτρέπει στο σύστημα το

λειτουργεί με τον ίδιο τρόπο όπως πριν αλλά παράγοντας λιγότερη κίνηση στο

δίκτυο.

x

Table of Contents
Introduction..1

Distributed Systems..1
Peer-to-Peer Systems..3
Inherent Characteristics ...5
Desirable characteristics...8
Uses of Ρ2Ρ Systems..10
Types of Ρ2Ρ Systems...13
Unstructured Systems...13
Structured Systems...14
Structured versus Unstructured Systems..15
Problem Description ..16
Scalability...17
Contribution and structure of this thesis...19

Unstructured P2P Technologies and Systems..21
Introduction..21
Common characteristics...22
Techniques..27
Ultrapeers...27
Bloom filters...31
One-hop replication..36
Dynamic Querying...39
Graph clustering...41

A Feedback-based Approach for Reducing Duplicate Messages in Unstructured P2P
Systems...46

Introduction..46
Related Work..47
Algorithm Description..48
Experimental Results on Static Graphs..58
Experimental Results on Dynamic Graphs..60
Summary..63

Partitioning Unstructured P2P Systems to Improve Resource Location....................64
Introduction..64
Related Work..65
The Partitions Design...66

xi

Experimental Results..69
Summary..74

Innocuous Topology Awareness for Unstructured P2P Networks.............................75
Introduction..75
Related Work...78
 ITA Design...81
Overlay construction..81
Search algorithm..83
Analysis..84
Experimental results...86
Latency experiments..90
IP layer experiments...93
Summary..98

Conclusions – Future Directions..100
Thesis publications...103
Bibliography...106

xii

List of Figures
Figure 1.1: Client/Server vs P2P architecture..3
Figure 1.2: Ratio of duplicate messages per hop..17
Figure 1.3: P2P - IP discrepancy example...18
Figure 2.1. An example of Gnutella overlay network..24
Figure 2.2. An example of Gnutella overlay network..24
Figure 2.3. An example of Gnutella overlay network..24
Figure 2.4. The Gnutella 2 architecture..28
Figure 3.1. Effect of replication...31
Figure 3.2: Graphs generated with different values of rewiring probabilities...........41
Figure 3.3: Small-world effect...42
Figure 3.4: Percentage of duplicate messages generated per hop, in random and
small-world graphs...43
Figure 3.5: Coverage of the graph for given number of messages.............................45
Figure 4.1: Illustration of the horizon criterion for node A and for horizon value 3. 49
Figure 4.2: The feedback-based algorithm with the Hops criterion...........................51
Figure 4.3: The feedback-based algorithm with the Hops criterion...........................52
Figure 4.4: The feedback-based algorithm with the Hops criterion...........................53
Figure 4.5: Evaluation of the Horizon criterion...55
Figure 4.6: Evaluation of the Horizon criterion...55
Figure 4.7: Evaluation of the Horizon criterion ..56
Figure 4.8: Evaluation of the Horizon criterion...56
Figure 4.9: Evaluation of Horizon = 1 ..57
Figure 4.10: Evaluation of Horizon = 1...57
Figure 4.11: Evaluation of Hops..58
Figure 4.12: Evaluation of both Criterions...58
Figure 4.13: Efficiency of algorithm per graph type..58
Figure 4.14: Performance (efficiency) of the algorithm on a dynamic graph for the
horizon criterion...62
Figure 4.15: Performance (efficiency) of the algorithm on a dynamic graph for the
hops criterion..62
Figure 4.16: Performance (efficiency) of the algorithm on a dynamic graph for the
horizon + hops criterion...62
Figure 5.1: Illustration of the Gnutella network and the Partitions design................67
Figure 5.2: Total number of messages per flood with replication..............................68

xiii

Figure 5.3: Total number of messages per flood w/o replication...............................68
Figure 5.4: Ultrapeer maintenance load w/o replication..70
Figure 5.5: Ultrapeer maintenance load with replication...70
Figure 5.6: # of queries per second w/o replication...71
Figure 5.7: # of queries per second with replication..71
Figure 5.8: Ultrapeer aggregate traffic with replication...72
Figure 5.9: Ultrapeer aggregate traffic w/o replication..72
Figure 6.1: Illustration of inefficient routing in today´s unstructured P2P systems...77
Figure 6.2: Distribution of direct latencies between all pairs of peers.......................86
Figure 6.3: y coordinate..87
Figure 6.4: x coordinate..87
Figure 6.5: z coordinate..87
Figure 6.6: Flood reach for given number of messages. Average degree = 10..........88
Figure 6.7: Flood reach for given number of messages. Average degree = 20..........88
Figure 6.8: Flood reach for given number of messages. Average degree = 30..........88
Figure 6.9: Time required by a flood versus the percentage of nodes reached.
Average degree = 20..90
Figure 6.10: Time required by a flood versus the percentage of nodes reached.
Average degree = 10..90
Figure 6.11: Time required by a flood versus the percentage of nodes reached.
Average degree = 30..90
Figure 6.12: Diameter (in hops) of different neighborhood sizes..............................91
Figure 6.13: IP messages generated by a flood versus the percentage of nodes
reached. Router-level. Average degree =30...92
Figure 6.14: IP messages generated by a flood versus the percentage of nodes
reached. Router-level. Average degree =10...92
Figure 6.15: IP messages generated by a flood versus the percentage of nodes
reached. Router-level. Average degree =20...92
Figure 6.16: Ratio of IP message reduction. Router-level. Average degree = 10......93
Figure 6.17: Ratio of IP message reduction. Router-level. Average degree = 20......93
Figure 6.18: Ratio of IP message reduction. Router-level. Average degree = 30......93
Figure 6.19: Standard deviation of router traffic loads versus the percentage of nodes
reached. Router-level. Average degree =10...94
Figure 6.20: Standard deviation of router traffic loads versus the percentage of nodes
reached. Router-level. Average degree =20...94
Figure 6.21: Standard deviation of router traffic loads versus the percentage of nodes
reached. Router-level. Average degree =30...94
Figure 6.22: Ratio of standard deviation reduction. Router-level. Average degree =
10..95
Figure 6.23: Ratio of standard deviation reduction. Router-level. Average degree =
20..95
Figure 6.24: Ratio of standard deviation reduction. Router-level. Average degree =
30..95
Figure 6.25: IP messages generated by a flood versus the percentage of nodes
reached. AS-level. Average degree = 10..96
Figure 6.26: IP messages generated by a flood versus the percentage of nodes
reached. AS-level. Average degree = 20..96

xiv

Figure 6.27: IP messages generated by a flood versus the percentage of nodes
reached. AS-level. Average degree = 30..96
Figure 6.28: Standard deviation of router traffic loads versus the percentage of nodes
reached. AS-level. Average degree = 10..97
Figure 6.29: Standard deviation of router traffic loads versus the percentage of nodes
reached. AS-level. Average degree = 20..97
Figure 6.30: Standard deviation of router traffic loads versus the percentage of nodes
reached. AS-level. Average degree = 30..97

xv

xvi

xvii

Chapter 1

Chapter 1

Introduction

1.1 Distributed Systems

Distributed Systems are one of main and most popular fields in the

Computer Science. The reason for this is multi-fold. From the need for greater

computational power (Distributed and Grid computing), to the demand for ever-

increased robustness of the software systems, to the development of systems that

require a distributed solution (computation on data residing at disparate

locations). Distributed Systems is a broad field and as such, many broad

definitions have been defined.. We describe a system as distributed using the

following definition:

A distributed system is comprised of autonomous computational entities

that communicate with each other using some type of network.

In the case of the aforementioned field of Distributed Computing, the

distributed system is comprised of computational units, which share the work

load and exchange information with the purpose of reducing the time required for

the execution of the computation. The appeal of Distributed Computing lies not

only in the appeal of increased computational power but also in the

1

Chapter 1

performance/price ratio it offers. Generally speaking the performance of a

computer does not increase linearly with its price. Therefore one can achieve

better performance for the same price, employing a large number of cheaper

computers. In addition, Distributed Systems generally aim at (and generally

exhibit) increased robustness, due to the fact that the comprising autonomous

entities fail independently. As a result, when one of them fails, most of the

system still remains functional. Finally, one could find a lot of systems which

are inherently distributed and thus require a distributed solution. Those cases

include such well-known systems in Computer Science as the World Wide Web,

E-mail, FTP, DNS and lately Peer-to-Peer (P2P) systems.

However, the most important case in favour of Distributed Systems is the

need of people around the world, to collaborate and and share information

through their independent, scattered computers. This was the main reason for the

creation of the Distributed Systems design paradigm of “Peer to Peer” (also P2P)

systems. P2P systems were introduced to enable the design of global-wide

systems comprised of large numbers of commodity computers and are the main

subject of this dissertation.

Distribution introduced a large number of notions and issues in software

design, such as multiple points of both control and failure, resource sharing,

transparency and so on. It also introduces a new kind of algorithm cost, besides

those of space and time, which is the communication cost (i.e. the amount of data

exchanged during the operation of the distributed system). The purpose of this

dissertation, which we will describe in detail further on, is the study of the

communications costs and mechanisms of a certain category of P2P systems.

2

Chapter 1

1.2 Peer-to-Peer Systems

In both the areas of Distributed and Parallel Systems, a popular trend has

emerged over the last few years, based on the “power of the mass” notion. In

Parallel Systems this trend was incarnated with the emergence of the Grid

Systems, whereas in the area of Distributed Systems emerged the Peer to peer

(P2P) paradigm. The main notion behind both the Grid systems and the P2P

paradigm is the desire to utilize the enormous power contained in the sheer mass

of simple desktop computers and end users, in many terms such as computation

power and storage (file sharing). This idea has been made possible by the rapid

increase in the speed of the network at the edges of the Internet, but is a natural

evolution of the increasing trend in software evolution of moving away from

monolithic systems towards increasingly distributed ones.

With the possible exception of some early distributed systems, the

majority of them was designed, for many years, using the Client/Server (C/S)

paradigm. In this design philosophy, the entities comprising the distributed

system are divided into two categories/types. The servers, which are responsible

for the provision of almost the entirety of the functionality of the system, and the

clients, which simply use the system, without providing some kind of

functionality. This paradigm, in essence, defines a one-to-many relationship

between the sever and its clients. The P2P paradigm, which we will describe

next, is therefore the natural evolution of Distributed Systems since it allows for

(m)any-to-(m)any relationships.

Figure 1.1: Client/Server vs P2P architecture

3

Chapter 1

Well-known examples of distributed systems, which were developed

based on the C/S paradigm include the World Wide Web (web servers and

browsers), the File Transfer Protocol (FTP servers and FTP clients) and the

Domain Name System (DNS). Soon enough, however, the problems inherent in

this paradigm became apparent.

The main disadvantage of this design paradigm is the limited degree of

scalability it offers. It is a common fact that the number of clients in a system is

much larger than the number of servers in it. This means that as the number of

clients in the system increases, so will the work load of the servers. As a result, a

given number of servers unavoidably has an upper limit in the number of clients

they can serve.

In addition, servers comprise the Achilles’s heel of the distributed system.

Since they implement and provide almost all the functionality of the system, a

possible malfunction will often result in the cessation of operation of the whole

system. This obviously conflicts with one of the main reasons of the existence of

Distributed Systems, as we mentioned before, which is increased robustness and

availability of the system. Even the use of a large number of replicated servers

will not solve this issue, since usually all of them reside in the same geographic

space or belong to the same authority. As a result, it is easier to for the

functionality of the system to be impaired either by accident (a malfunction in the

network of the horsing site) or on purpose (a Denial of Service attack).

For these, and other reasons, the Peer-to-Peer paradigm was introduced.

In the recent years there has been an increased interest in the P2P systems by the

research community. Interestingly enough and in contrast to other research topics

over the years, this field became popular among the research community after

P2P applications had already been popular and in use around the world. This is

therefore a paradigm which already has had an impact in the digital world even at

its infancy.

P2P systems are comprised by equal entities with similar, if not the same,

functionality but also importance to the system. These entities are called “peers”.

4

Chapter 1

Thus, each server also functions as a client, by requesting some service from the

rest of the members of the system. At the same time, each clients also serves as a

server, by offering resources (computational power, storage space, bandwidth

e.t.c) and/or functionality to the system. This differentiation of the P2P systems

from traditional distributed systems has several effects in the characteristics of a

system based on the P2P paradigm, which we will describe in detail next.

1.3 Inherent Characteristics

The term “peer to peer” prepositions that it describes a system where all

individual components are equal in the tasks they perform. However, this

equality can be interpreted in two ways, which lead to two different definitions.

If this equality is interpreted as the fact that each peer both acts as a server and a

client, one should label as P2P systems, those that rely on some central entity for

coordination of the peers. On the other hand, a definition that demands complete

equality in all aspects and functionalities would rule out systems such as Gnutella

2, one of the most widely used and studied P2P systems today.

In our belief, a modified version of the second definition is closer to the

truth. Thus,

a peer-to-peer system is a distributed system where peers both offer and

demand service and coordination is not based on a well-known authority.

This definition rules out centralized systems while still allowing for

different roles in the system, provided that any peer may assume any role.

The first and most important characteristic of a P2P system, scalability, is

derived from the fact that each new peer joining the system, as mentioned before,

offers services as well as demanding them. Thus, P2P systems are inherently

more scalable than traditional client-server systems. One important thing to

5

Chapter 1

notice here is that in order for a P2P system to be scalable, peers should

contribute not only in the sense of services offered but also in the work required

for the coordination of the cooperating peers. This means that the peers need to

share the load of the functionalities offered by the system. In this sense, as we

said before, a system where each peer does offer services but relies on a

centralized server for the coordination of the offer with the demand of those

services, is not scalable and thus not pure P2P (e.g Napster). Peers offer both the

computational power and bandwidth required for the operation of the P2P

system.

Another important characteristic inherent in the P2P systems is, of course,

decentralization. Since, according to the definition, there is no well known,

central authority there is no critical component for the operation of the system, a

component, which could prove to be a bottleneck. This, of course, is a very

important aspect not only in terms of efficiency and scalability but also in terms

of robustness, another important characteristic of P2P systems.

The fact that no peer is irreplaceable leads to three more important

characteristics of P2P systems, namely robustness, security and autonomy.

Apart from an increased degree of scalability, P2P systems are inherently

more robust than their traditional counterparts. Possible malfunctions in parts of

the system have a smaller, limited impact in the functionality of the system for

many reasons. The peers that comprise the system are (in a large degree) equal

and similar in their functionality. As a result, there is no “special” or unique part

of the system, whose error-free operation is essential to the well-being of the

whole system, there is no role that any peer cannot assume when some other peer

fails. In addition, P2P systems are usually large-scaled systems. It is thus a

common characteristic of these systems, the entities which comprise them to be

geographically distributed all over the globe. This means that any malfunction in

some geographical area will only affect a small part of the system.

6

Chapter 1

This robustness also offers greater resilience and security against

malicious attacks since there is no central point of operation that an attacker

could attack in order to bring the system down or hamper its operation.

The replace-ability of any peer also offers great autonomy to the

operation of the P2P system as a whole and each peer in particular. Each peer can

come and go as it pleases. In fact, one of the negative characteristics of P2P

systems is the transient nature of their components, the fact that is that peers do

come and go as they please.

 Indeed, not all characteristics inherent in the P2P paradigm are

beneficial. A P2P system is also very dynamic and unstable, since each peer is

under the control of a different authority. No peer can be inherently deemed as

dependable both in terms of lifetime but also in terms of the services it provides

and its participation in the operation of the system.

Anonymity is another aspect of P2P systems, which can be both

beneficial and harmful. Since each peer is under different authority, it is difficult

to track the identity of a peer. In many cases, the only thing that identifies a peer

is an IP address, which can easily be changed or spoofed [74]. This is an

advantage in cases where anonymity is desirable (for instance, to avoid

censorship) but also this is the main reason behind the existence of the free-riding

effect, where peers use the system without offering anything to it. Anonymity

and autonomy make it very easy for any peer to misbehave and hamper the

operation of the system. Peer-to-peer systems however owe their operation in the

fact that disposability ensures than a large number of peers need to misbehave in

order for the system to stop working and the majority of people do not generally

want to harm the hand that feeds them. That is, people know that trying to take

advantage of the system to get more out of it might mean that they end up getting

nothing due to the collapse of the system.

A peer-to-peer system is also usually highly heterogeneous in many

aspects such as the hardware every peer runs on, networking (connection speed,

whether the peer is behind NATs, firewalls, etc), services offered and more. P2P

7

Chapter 1

systems should not only take into account this heterogeneity but indeed try to

take advantage of it.

In addition to the above, it is important to note another kind of

characteristic of the P2P systems and that is their better performance to price

ratio. As we mentioned before, according to the philosophy of the Client/Server

paradigm, a small number of servers undertake the service of a much larger

number of clients. As one can expect, this means that it is essential for the servers

to be either as high-end equipment as possible and/or as many as possible, in

order to cope with the increased load. This means an increased cost of obtaining

and maintaining this equipment.

On the other hand, the majority of P2P systems are comprised of a large

number of commodity computational units with less resources and capabilities

but also greatly reduced cost. These units, apart from their low cost, usually have

to do with computers already present (i.e. home and laboratory computers). As a

result, P2P systems also allow us to utilize hardware and resources already

existent but under-utilized. Even if the hardware is not already in place, it can be

acquired for a reduced price compared to the one required by the C/S paradigm.

1.4 Desirable characteristics

Despite the important characteristics already inherent in P2P systems,

there are still more whose existence is required in an efficient, functional P2P

system.

First of all, a P2P systems designer should take care not to nullify any of

the inherent characteristics mentioned above. For instance, the flooding

mechanism employed in Gnutella 1 [14] greatly reduced the scalability of the

system, even though Gnutella 1 was a purely decentralized P2P system. As we

will describe below, the reason for this is that even though the available

8

Chapter 1

bandwidth of the system increased with the addition of a new peer in the system,

so did the cost of the flooding.

One of the most important additional aspects of a P2P system is, of

course, efficiency. This is usually interpreted in quality of service and cost for

each functionality of the P2P system. Costs are also usually divided into space

and time costs, that is, the bandwidth and time required to perform any of the

functionalities.

Robustness is still another issue, depending on the architecture of the

P2P system. Even though any peer could take the place of a failed peer,

information residing on the failed peer cannot be recovered unless by some

mechanism of the P2P system, designed for that purpose. If that information is

critical to the operation of the system, the system itself is less robust.

Fairness is a very important aspect in the context of P2P system, where

there is no trust. A correct P2P system needs to make sure that each peer offers to

as well as takes advantage of the system, otherwise many of the above

characteristics, such as scalability, are cancelled and the whole idea behind the

P2P paradigm is nullified. One of the largest issued in P2P today is the problem

of free-riding, where users participate in the system without offering to it. This

effect is another instance of the “Tragedy of the Commons”, described by Garrett

Hardin[3]. Fairness does not necessarily mean that everyone offers the same in

the system. Rather, it means that a peer offers as much as it takes.

Another desirable characteristic is expressiveness. Peers requesting a

service need to locate it first and the querying and lookup mechanism offered by

the system needs to allow of an expressive query language to support advanced

queries.

Security is another issue with many facets.

First of all, the system should protect the integrity of the data it holds.

Malicious entities should not be able to substitute correct data with forged data;

neither supply a requester with forged data. This is a very important issue in P2P

systems today, since the whole idea of the P2P paradigm is the fact that the peers
9

Chapter 1

depend on each other for the correct operation of the system. On the other hand,

however, as we said before, peers not only cannot be trusted, but also can usually

remain anonymous and intractable. This makes it easy for a malicious peer to lie

and disrupt the functionality of the system.

Another aspect of security is the control over the accessibility of data.

The system needs to ensure that any kind of information is accessible only by

authorized peers. Unauthorized peers should be aware of neither the data

exchanged between two peers nor the peers which exchange the data, even if the

unauthorized peers participate in the execution of the exchange. This is an aspect

of security that the inherent anonymity in the P2P systems is helpful.

Recent research also showed that security in P2P systems needs to take

into account not only attacks on the system itself, but also any security holes

which might enable a malicious user to exploit any global-scale system for a

coordinated distributed, denial of service attack.

Another important aspect of the lack of some central authority is that

peers need to not only cooperate by themselves, in an ad-hoc fashion, but also

need to cooperate to preserve the aforementioned characteristics. This means that

peers need to organize themselves and self-heal the system. Peers need to have

some distributed way of bootstrapping in the system. A P2P system is highly

dynamic and peers need to be able to re-organize after addition or removal of a

peer from the network. As we said, every peer is replaceable, however the system

must be able to detect the failure or departure of a peer and replace it quickly and

efficiently.

1.5 Uses of Ρ2Ρ Systems

The aforementioned advantages of P2P systems resulted in the use of this

paradigm in a large number of applications, during the few years since its

10

Chapter 1

introduction, applications whose majority has been deployed in a global-scale.

The most well-known and popular example is the file-sharing applications, which

allow their users to exchange their files directly, without the use of servers which

would act either as index services or storage space providers. The file-sharing

applications are the first type of application designed using the P2P paradigm,

even though a number of people believe that this design philosophy pre-existed

in older systems, albeit without being given a name. An example of this could

well be the architecture of the Internet itself.

The P2P paradigm, as a distributed system design philosophy was also

used in other large-scale applications, such as the Grid Systems. The Grid

Systems share many common goals with the P2P systems, like the joint use of

computational, storage and other resources. Computational units, throughout the

planet, under the authoritative charge of different entities, combine together to

form a super-computer, which could be used by all participants. It was only thus

expected that parts of the Grid Systems would be designed using the P2P

paradigm.

Another type of application widely using the P2P philosophy are the

Content Delivery Networks, such as Akamai Technologies[75]. Similar to the

file-sharing applications these networks aim at the fastest delivery of content to

their users. This content usually has to do with large files such as real-time video

and sound. The storage space of the various computational entities that take part

in the system is used in order to create and store replicas of the content. The

request for the delivery of any content is served by the peers closest to the

requester.

In the recent years, a revolution has taken place in the computer games

industry, with the rapid spread of Massively Multi-player Online Games. Games

of this kind aim at simulating virtual worlds containing millions of inhabitants-

users. The adoption of the P2P technology promises to allow the attainment of

such an ambitious goal.

11

Chapter 1

There have been a number of other applications, not readily related to

P2P systems, which however have made successful use of the paradigm. A well-

known example of such an application is the Skype application for online

telephony. In the context of this application, the distributed philosophy of the

P2P systems was used both in order to implement a distributed index of users as

well as to enable the communication between users which both reside behind a

Network Address Translator.

P2P philosophy was also naturally, easily and directly applied to the field

of wireless sensor networks as well as the field of Ubiquitous computing.

In the case of sensor networks, algorithms designed for P2P systems are

used with success, in order to facilitate the synchronization and cooperation of

sensors with limitations regarding the radius beyond which it is impossible to

transmit and receive information. These networks are comprised of small

computational units equipped with small range antennas. These units work

independently and cooperatively in a loose fashion, in order to achieve a

common goal. Their nature renders them ideal for the application of the P2P

paradigm.

As far as Ubiquitous computing is concerned, they are similarly

comprised of computational units of small scale and reduced power, built in

objects of every-day use. These devices can communicate with one another and

cooperate in a P2P fashion. Often, these devices' geographical condition changes

all the time, and so, at each given moment, new groups are created and dissolved

in an ad-hoc fashion, based on the proximity of these devices with one another.

1.6 Types of Ρ2Ρ Systems

P2P systems are divided into two large categories, depending on the

degree of structure they contain. Since P2P systems were created with the goal of

12

Chapter 1

allowing applications to achieve global scale, it is not desirable (and often not

possible) to require for peers to have global knowledge of the existence of every

other peer in the system. Thus, each peer has a (very) limited (view) of the whole

system and knowledge of a small subset of other peers, with which it is possible

to directly communicate and cooperate.

The cooperation links of peers form an overlay network, which forms

some kind of structure. The rigidity or looseness of this structure classifies the

system in one of the two categories, the structured and the unstructured systems.

Unstructured Systems
As we mentioned before, since there is no one entity to single-handedly

synchronize the peers, each one is aware of and cooperates-communicates

directly with a small number of peers (”neighbours”), which also serve as that

peer's access to the rest of the system, with which there is no direct connection

(i.e. the peers it is not directly aware of). In the case of unstructured systems, the

choice of the neighbouring peers is almost random. Each peer in the system has

equal probability of being chosen as neighbour by another peer. This fact has

both positive and negative consequences for the operation of the system. The

system created in such a fashion is simpler and therefore more robust in the face

of things such as churn (i.e. the constant arrival and departure of peers in the

system) and malicious attacks. At the same time, however, the simplicity inhibits

the development of more sophisticated operations and functions based on this

system. For example, the search for another peer for instance, is done via a

broadcast-like search mechanism called “flooding”. In this mechanism, each peer

forwards the search to all of its neighbouring peers, which in turn does the same,

until the peer in question is located. The simplicity of the overlay network

construction fails to provide any information about the location of the requested

peer and so there is no way to direct the search. Thus, flooding may have to

contact each and every peer in order to locate the one it is looking for. In order to

avoid such a costly operation, a numeric limit is usually employed in order to

limit the number of times a search is forwarded in the overlay network. However,

13

Chapter 1

this comes at the cost of an increased possibility of failing to locate the requested

peer.

Structured Systems
In the structured systems, on the other hand, there are specific rules which

govern the connectivity of each peer, that is which peers are suitable as

neighbours for each specific peer. Each structured system has its own rules, but

they all have one thing in common. The utter purpose of the overlay creation

rules is the construction of an overlay network built in such a way as to allow the

design and development of more complicated and efficient operations. The vast

majority of these systems is based in the assignment of a single, unique, numeric

identity to each peer in the system. This identity defines an order among the

participating peers and the neighbours of each peer are chosen based on this

ordering and the system's rules. Those rules are chosen as to, in essence, create a

certain structure in the overlay, which in turn provides information regarding the

location of the requesting peer in the network. This directional information

makes possible the lookup of cooperation of any two peers in the system in a

cheaper way than in unstructured systems. The cost for such a capability is that

one ends up with a more complicated system, more sensitive both to the constant

change in the system and the possibility of more complicated malicious attacks

which may take advantage of the nature of the system's structure.

Structured versus Unstructured Systems
The research carried out in the context of this dissertation focuses on

unstructured systems, due to the belief that the introduction of rigidity and too

much structure in P2P systems contradicts some of the fundamental ideas in the

P2P philosophy, such as the high replacability for each peer. For this reason,

increased degree of structure has adverse effects in many of the systems' inherent

and desirable characteristics, as we mentioned beforein the previous paragraph.

The global deployment of P2P systems designates the scalability issue as

a very important one. Unstructured systems lack in this aspect due to the cost of

the operation of the flooding mechanism. On the other hand, the concept of

14

Chapter 1

scalability also includes other aspects such as tolerance and endurance to fast and

continuous changes in the system, known in the bibliography as “churn”.

In global scale systems such as P2P systems, the large number of

participating peers means that the actual peers which comprise the system

changes constantly. A robust system should be able to function normally not only

in the face of problems but also under conditions which are normal for a global-

scale system such as heavy churn. Unstructured systems are good in this aspect

due to their excellent self-healing and quick re-organizational capabilities in

cases of problems and/or changes. The following table summarizes a qualitative

comparison of the two kinds of P2P systems, based on the following criteria:

• Scalability (in time): The time required for a lookup.

• Scalability (in traffic): The number of network messages required

for a lookup.

• Robustness: Resilience in many and quick changes in the structure

of the system.

P2P System
kind

Scalability (in
time)

Scalability (in
traffic)

Robustness

Unstructured O(logN) O(N) Yes
Structured O(logN) O(logN) No

As far as the scalability of the system in time and in traffic is concerned,

the asymptotic notation we mention, assume a system of N peers. In addition, we

assume an unstructured system which constructs a “random” overlay network,

which will, therefore, have logarithmic diameter to the number of peers in the

system.

15

Chapter 1

1.7 Problem Description

Despite the aforementioned advantages of P2P systems, they themselves

do not constitute the panacea for the solution of every distributed systems

problem. Fundamental role in this fact play the problems that still plaque P2P

systems design. Those problems, which we will describe in this Section, can be

divided in two basic kinds. Some of them steam from the nature of the P2P

systems themselves while others do not. These issues usually have to do with

desirable characteristics of (distributed) systems, which P2P systems at the

moment may lack, but appropriate research can introduce them.

A large part of a P2P system is the communication and cooperation

mechanisms among the peers which comprise it, P2P systems being, after all, a

widely scaled distributed system. As a result, many of the open issues in P2P

systems have to do with the way peers exchange information with one another.

At this point, we shall describe and analyse some open issues regarding the

routing of messages and the efficiency of the cooperation capabilities offered by

unstructured P2P systems today.

Scalability
As mentioned before, one of the key goals of P2P systems is to allow for

a distributed system to achieve global-scale deployment. It is therefore obvious

that scalability is one of the most important issues. In unstructured systems, any

limitations in scalability exist in the communication mechanisms, having to do

with the amount of traffic generated in the network. A high amount of traffic is

generated during the operation of unstructured systems, which limits their

scalability, which is due to more than one reasons.

The first reason is the fact that the flooding process used most often in

these systems generates a number of messages between peers which increases

exponentially with each forwarding from neighbour to neighbour. This number

16

Chapter 1

essentially equals with the average number of neighbours per peer to the power

of the times the flooding messages were forwarded.

This stems from the following: As mentioned earlier, each peer receiving

a message which is part of a flood, forwards it to all its neighbours except the one

it received it from. In addition, this only happens the first time each peer receives

a message belonging to the same flood. Additional messages are simply

discarded. These facts have two outcomes. Assuming an (average) number of d

neighbours per peer, the first is that each peer will forwarded the flood message

to d-1 neighbours. Given that the system is comprised of N peers in total, a total

number of Ν*(d-1) messages will be sent throughout the system and during the

execution of a single flood. In addition, in each (parallel) forwarding, the number

of messages in transit increases by a factor of d-1, since each of the messages

already in transit (and about to be forwarded again) will generate d-1 replicas

which will be sent to the corresponding neighbours.

This is mostly due to the fact that unstructured systems offer almost no

information to facilitate the search for a specific peer, so as to allow the

17

Figure 1.2: Ratio of duplicate messages per hop

Chapter 1

communication of any two peers not directly aware of each other. As a result,

any search mechanism would require at least N messages to locate a specific

peer. As we have seen however, the number of messages exchanged during a

single flood is N*(d-1). This means that there is a number of N*(d-2) messages

which are not necessary in order for the flood process to produce the same

results. This is due to the fact that each peer will receive one flood message once

from each of its neighbours. This of course allows for greater robustness of the

whole process, since this redundancy ensures that each peer will receive the

message (unless that peer is completely separated from the entire overlay

network). However, as we have seen, this also generated a large number of

redundant, duplicate messages which each peer simply discards. We can see the

amount of duplicate messages as a ratio of the total messages generated during

each phase of the flood in the Figure 1.2.

It is therefore necessary to develop a method to reduce those duplicate

messages, without sacrifices to the robustness of the flood process to churn.

The second cause of the large number of messages in unstructured

systems is the fact that the almost total lack of structure does not allow for a

more sophisticated and efficient lookup mechanism, as a replacement to

18

Figure 1.3: P2P - IP discrepancy example

Chapter 1

flooding. The question here is whether we can manage to induce such

information in the system without increasing the degree of structure, which

would move it to the structured systems category and deprive it of its excellent

self-healing properties. Even though these two seem contradictory, fortunately

this is not the case, as we shall see in the work presented in this dissertation.

Finally, often in P2P systems research, the cost of a communications

mechanism is measured in the number of messages exchanged between peers.

For the sake of simplicity, the fact that a single message between two peers

corresponds to a larger number of IP messages is usually overlooked. This

disproportion between those two is due to the fact that peers which are directly

connected with one another on the P2P network (and thus are neighbours) are not

necessarily adjoin in the IP network. A simple example of this fact is illustrated

in Figure 1.3, where peer B is a neighbour of both A and C.

In this example, a broadcast initiated by peer A would have to cross the

Atlantic twice, since peer C will receive the message through B. On the other

hand, one could create a new neighbouring link between peer A and peer C and

remove the direct connection between either peer A and peer B or peer B and

peer C. In this manner, peer A's message will only cross the Atlantic once, to get

to peer B, which is after all, unavoidable.

This lack of correlation between P2P connectivity and IP connectivity

creates additional traffic in the actual (IP) network. This fact, viewed from

bottom-up, means that even if we do not reduce the number of P2P messages, the

introduction of a higher degree of correlation between the P2P and the IP

networks will lead to a reduction in P2P system traffic nevertheless, since each

P2P message will generate a smaller number of IP messages than before.

As is the case with research generally however, there are some pitfalls

which must be taken into consideration. As we have already mentioned, the

manner in which the overlay network of a P2P system is constructed is tightly

coupled with the way lookup is performed in that system. Therefore, any changes

in the rules of peer connectivity will have to take into consideration the rest of

19

Chapter 1

the algorithms also operating in the same system and make sure these changes do

not do more harm than good.

1.8 Contribution and structure of
this thesis

This thesis is organized as follows. Chapter 2 presents some necessary in

depth description of the algorithms widely used in unstructured P2P systems

today. These algorithms already are an integral part of the systems. In Chapter 3

we present an algorithm for the reduction of the duplicate messages generated

during the flood process. We shall show that the developed algorithm greatly

reduces the number of redundant messages, without greatly affecting the reach of

the flood, even in the face of heavy churn. Chapter 4 presents and analyzes a new

scheme for adding location information in unstructured systems so as to allow for

the use of a more efficient flood lookup which generates a greatly reduced

number of messages compared to the original used today. We also show that this

is possible without adding almost zero degree of structure to the system. Finally,

Chapter 5 deals with the problem of P2P overlay and IP network discrepancy.

We present a new way to create the P2P overlay as to increase the IP topology-

awareness of the P2P overlay, while again leaving the amount of structure in the

system almost intact.

20

Chapter 2

Chapter 2

Unstructured P2P
Technologies and Systems

2.1 Introduction

Unstructured P2P systems comprise the second generation of P2P

systems [76] (the first being the Napster architecture, which however did not fit

our definition of P2P systems), which is the prevailing architecture in use today.

The vast majority of P2P-based systems in deployment today are based on

unstructured systems and yet open issues still remain. One of the main reasons

for this is that most of the systems in use today were developed by companies,

without the participation of academia or in-depth research, or by a community of

developers which worked on them in their spare time. Even though there has

been a third generation of P2P systems, the robustness and resilience exhibited

by unstructured systems makes them still very popular. In this chapter we shall

try to present the basic characteristics of those systems. Then, we shall present

the technologies and mechanisms in use today in unstructured systems and give a

description and analysis of their advantages and disadvantages.

21

Chapter 2

2.2 Common characteristics

The first purely decentralized, unstructured P2P system to be deployed

was Gnutella 1 in 2000 [77]. Gnutella 1 was a file-sharing network. The

architecture employed in Gnutella 1 is common to every unstructured P2P

system. Avoiding the existence of some centralized server, the network was

consisted of only equal, interconnected peers. Each peer was connected to and

aware of a small number of other peers, called neighbours. Through those

neighbours, the peer was indirectly connected to the rest of the network. All

connections were bi-directional, meaning that is peer A is connected to peer B,

likewise peer B is connected to A.

The ad-hoc nature of the unstructured systems dictates that, in principle,

any peer should be able to connect to any other peer, assuming that the other peer

would also want to connect to the first one. This fact makes the processes of both

bootstrapping in the network and replacing a departed neighbour very cheap,

both in terms of time and messages (network load). Those advantages however,

do come at a cost.

The most important function of a P2P system is the lookup mechanism.

This functionality is used whenever a peer needs to find the location of some

desirable resource in the network. The ad-hoc and transient nature of the

unstructured systems makes it very difficult to have any clue as to where the

resource is located. This forces unstructured P2P systems to employ some

broadcast-like mechanism to implement the lookup process. The generic form of

this broadcast-like mechanism is called flooding. Flooding was employed in its

general form, which we present below, in Gnutella 1.

Each peer needs to query the network for two things. The first is new

peers to connect to during its bootstrapping process or when some of its old

neighbours have left the system. The second type of query is of course a query

for a piece of shared data (in the case of Gnutella, a file). In both cases, with the

absence of centralized index, each requesting peer asks its neighbours not only if
22

Chapter 2

they contain the information it seeks but also requesting them to ask their own

neighbours on its behalf, in turn. This leads to a Breadth-First-Search-like

broadcast process, which was dubbed “Flooding”, which is illustrated in Figures

2.1 to 2.3. Flooding is necessary in systems like that, since there is no

information about the location of any piece of data. Each peer may contain any

kind of information and at the same time connect to anyone in the network. This

kind of non-determinism makes unstructured systems highly resilient and robust

at the same time however at the same time greatly reduces the scalability of the

lookup process. The reason for this is that in order to locate some desired data or

peer, the requesting peer has to query the entire network. The cost of doing

exactly that increases with every new peer that joins the network. This was the

reason for the meltdown of the Gnutella 1 network in 2001, with the demise of

Napster. After Napster was shutdown, a large number of P2P users moved to the

Gnutella network, increasing its size beyond the limits its then current

architecture could cope with. The Gnutella network was saturated and could not

operate [78]. This led to a redesign of the whole system and the introduction of

some ideas to remedy the situation, ideas which we shall discuss shortly.

As in every P2P network up to now, in order to connect to it, a would-be

peer needs to be, in some way, aware of at least one peer already connected to

the network. This fact holds for both unstructured and structured systems. This is

usually done with the use of dedicated services, which peers query, to receive a

list of recently connected peers. The use of this service by some peer

automatically inserts it in that server’s list of recently connected peers. This is the

only process in P2P systems today, which remains centralized, even in purely

decentralized P2P systems. The reason, of course, is that if that service was

provided by some other P2P system, recursively, one would need to be aware of

at least one peer in that system in order to use the service. However, this minimal

degree of centralization is not a problem for two reasons. First, this service is

very lightweight, meaning that any server can serve many peers without

becoming a bottleneck in the rate at which peers enter the network. In addition,

such a server can be set up anywhere, leading to the easy deployment of a large

23

Chapter 2

number of said servers, which will share the load between them. When a peer is

finally aware of at least one already connected peer, it uses that peer to send a

flood-search, looking for other peers in the network. Any peer that receives the

flood and is willing to accept new neighbours sends back a reply. The joining

peer then connects to them. If the number of neighbours is not satisfactory, the

process is repeated.

Figure 2.1. An example of Gnutella overlay
network. Black lines indicate neighbour
relationship. For example, A has B and C as its
neighbours

Figure 2.2. Client A makes a query to his
neighbours B and C (red line). B and C forward
the query to their neighbours (blue line), them to
their neighbours (orange line) and so on

Figure 2.3. Assuming that F contains the data A is
looking for, the reply will follow the backward path
that A’s flood followed to reach F.

After the description of a peer’s bootstrapping process, we shall discuss

in the depth the search mechanism we mentioned just before. The peer that

initiates he flood sends the flood message to all its neighbours. The message
24

Chapter 2

contains, along with control information, which we shall discuss later, all the

necessary information to identify the data being looked for. During this process,

each peer that receives a flood message through one of its connections to other

peers should propagate it to all of its own neighbours except the one it received it

from. In addition, it should, of course, process it to see if it can satisfy the query.

If it contains the requested information, it sends back a reply in the manner we

shall describe shortly.

The first important thing to notice is that, each time a peer initiates a

flood, it every message generated by it with a globally unique identifier (called

GUID, in the case of Gnutella). When a receiving peer propagates the message of

the flood, it tags the messages it sends to its own neighbours with the same

identifier. This means that messages that were generated by the same flood share

the same identifier, while messages belonging to different floods have different

identifiers.

The purpose of this identification is two-fold. The first one is to avoid the

retransmission of messages already propagated. Because the network of the

connected peers forms a connected graph rather than a tree, there will be a lot of

cycles in the paths formed by the connections between the peers. This means that

a peer that has already received and forwarded a message to its neighbours may

receive a message for the same flood, through another neighbour. In Figure 2.2,

for instance, peer D receives the flood from both B and C. What is more, since C

has already received the message from A (and that is why it sent the duplicate

message to D), it will also receive a duplicate message from D. This is because,

assuming D receives B’s message first and it will forward the message to all of it

neighbours, except B. This means that it will also send the message to C,

regardless of the fact that C has already sent him the same message. Even if C’s

message had already arrived at D, D will process them on message at a time.

The other reason is that in order to retain the anonymity of the peer

initiating the flood, there is no information inside the message being propagated,

that could identify it. This, of course, rules out the possibility that a peer that

contains the information requested can send a reply directly back to the
25

Chapter 2

originating peer. The only way to notify the requesting peer that the information

has been located is through the same path the message followed to reach the peer

with the information. This is made possible by having each peer that receives a

flood message store, along with the identifier of the message, the connection

(i.e.: the neighbour) through which it received the message. Thus, by having the

replying peer tag the reply message with the same identifier as the flood

messages, the reply (also called queryhit) can be propagated backwards, to the

peer that initiated the flood. This process is illustrated in Figures 2.2 and 2.3.

One should notice that the tagging of the messages of a flood serves yet

another purpose. Without this mechanism, the flooding process would continue

indefinitely. However now, the flooding process will stop generating new

messages, as soon as every peer in the network has been contacted. This

corresponds to a number of steps equal to the diameter of the network, i.e. the

largest number of hops between any two peers in the network. In the case of

random networks, this is roughly equal to the logarithm of the size of the

network.

Even with this limit, however, the load in messages of the flooding

process can be too much for the underlying network. For this purpose, the Time-

To-Live (TTL) field in the messages’ format was introduced. This field is similar

and with the same purpose as the TTL field in the IP header. This field contains a

small number, which signifies the number of times a message can be propagated

before it should be discarded. Each peer that receives a flood message first

checks the TTL field. If the value in the field it greater than 0, it decreases that

value by one and then forwards the message to all its neighbours (except the one

it received it from). Otherwise the message is processed, in terms of checking

whether that peer contains the information requested, but it is not forwarded.

This mechanism decreases the cost of flooding at the cost of efficiency, since it

also reduces the number of peers that will receive the flood. For instance, a flood

of TTL 2 in the network of Figure 2.1 will only reach peers B, C, D and G and

thus, not reply will be sent back from F.

26

Chapter 2

Recent P2P systems also allow a search to be conducted, using the SHA-1

hash of the data, especially in the case of file-sharing applications. This kind of

search is usually used after a keyword-based search is conducted and the desired

file is located. The requesting peer can then learn the SHA-1 hash of the file,

from the peer that replied and initiate a new flood using that hash. The result of

this search will be the discovery of other peers with the same file under different

filenames, which the peer can use to initiate a multiple sources transfer. I.e.: the

peer can transfer only pieces of the file from each source, which will make the

transfer of the whole file faster, if his link is not the bottleneck.

2.3 Techniques

The flooding process is common to most unstructured P2P systems today.

Several schemes and mechanisms have (and are) also been used to improve

various aspects of the systems. These techniques usually (but not all) aim to

reduce the message cost of the flooding process. We shall present those in this

section.

Ultrapeers

As mentioned above, the meltdown of Gnutella 1 was brought about by

the sudden influx of ex-Napster users to the Gnutella network [78]. The traffic

cost of flooding increases with the size of the network and that increase in the

cost was too much for the majority of the peers to bear, since they were

connected to the network through modems.

The idea that was used at that point was to reduce the flood-capable size

of the network and this was accomplished by exploiting the heterogeneity of the

users’ connections. As we have mentioned before, P2P systems are highly
27

Chapter 2

heterogeneous. A fraction of the peers participating in the system sport high

bandwidth connections. A measurement study published by Stutzbach et.al. [24]

found that the majority of users in P2P systems have fast, stable connections to

the Internet (Cable, DSL, T1 or T3) and 30% of them have very high bandwidth

connections (at least 3Mbps).

People noticed that Gnutella and Napster comprised the two opposite

extremes. Gnutella achieved scalability by distributing the system load between

all peers. However, the fact is that some peers cannot handle that load. Napster

imposed no load on its peers since the operational load (lookup) was all handled

by the centralized server, resulting to reduced scalability. It was obvious that

there was a need for a hybrid approach. This approach was called “Ultrapeers”.

Ultrapeers were first introduced in KaZaA, which was however a

proprietary system and thus, there is little information in their implementation.

Gnutella 2 was the first open system to implement the Ultrapeers approach. By

curbing a little the definition of the P2P systems, which states that all peers are

28

Figure 2.4. The Gnutella 2 architecture

Chapter 2

equal, two distinct roles for each peer were defined, that of the Ultrapeer and that

of the Leaf. In Gnutella 2, each Ultrapeer may play only one role at a time.

Ultrapeers, in essence, function as mini-Napster servers for a small

number of other peers, which are called Leaves. Only high-bandwidth peers with

high uptime are usually elected as Ultrapeers. As was the case in Napster, each

Leaf connects to some Ultrapeer and sends an index of the files it shares to it.

Leaves connect only to Ultrapeer and are not connected to each other. The

Ultrapeer themselves do connect to each other to form a random network much

in the fashion of the original Gnutella 1 network. Thus Leaves are, in essence,

removed from the actual network. Instead, each Ultrapeer acts as a representative

of each one of its Leaves to the network. Ultrapeers both perform queries and

share files on behalf of their leaves as well as their own. Since Leaves are not

interconnected, queries are thus flooded only on the Ultrapeer level. Ultrapeers

propagate queries only to other Ultrapeers. Queries are propagated to Leaves

only if they contain some desirable resource (file). In other words, Leaves do not

participate in query routing and in the flooding procedure in general.

Given the fact that Ultrapeers have high bandwidth connections, they are

more capable of handling the traffic load of the flooding process. What is more,

the traffic of the flooding process is itself reduced with this scheme, since the

number of peers being flooded is reduced.

The number of Leaves an Ultrapeer can serve is not defined by the

protocol and is up to the implementation. However, recent measurement of the

characteristics of the deployed Gnutella [24] network shows that the vast

majority of the Ultrapeers support at most thirty Leaves. In addition, each

Ultrapeer connects to thirty more neighbours at the Ultrapeer level. This degree

is an order of magnitude larger than the degree of peers In Gnutella 1. This high

degree has some important implications. The first and most important on is its

impact on the diameter of the network. In randomly constructed graphs, such as

Gnutella’s, the diameter of the network is equal to the logarithm of the size of the

graph divided by the logarithm of the average degree of the nodes. In figures, this

means that the Gnutella 2’s diameter is half the diameter of Gnutella 1 that has
29

Chapter 2

the same number of peers. The second benefit of having a high degree is related

to the 1-hop replication technique, which we discuss below.

Another implementation detail is the fact that each Leaf peer connects to

three distinct Ultrapeers, instead of one. The reason for this is two-fold. The first

reason is that, should an Ultrapeer fail (i.e.: leave the network or crash), the

Leaves connected to it will not lose all connection to the network. The second

reason is that the index of each Leaf is thrice replicated in the network, making it

easier to locate it when flooding the network with a TTL that is much smaller

than the diameter of the network and thus does not reach every Ultrapeer. Figure

2.5 illustrates briefly the effect of this replication. A TTL that reaches about 5%

of the network has a 16% chance of locating the desirable resource. Of course, in

order to have a 100% chance, one would still need to reach 100% of the network,

as is the case with no replication at all. This simple replication scheme was

employed due to the fact that the diameter of the Gnutella network today has

long ago exceeded the TTL employed in flooding, meaning that no flood will

ever reach all of the network. One should note here that the brief analysis we

presented is based of course on the assumption that each resource is identical.

The degree of replication of each resource differs if several copies of the same

resource reside in more than one peer.

Finally, it should be noted here that Leaves do not send their index itself

to their Ultrapeers. Rather, they send a kind of bloom filters of their index rather

than the index itself. The bloom filters are a compact approximation of a set. It

supports membership queries, i.e.: can indicate whether the Leaf contains some

keyword or not, albeit of course with reduced precision. Bloom filters are the

next technique used in P2P systems today that we will discuss.

30

Chapter 2

0

0,2

0,4

0,6

0,8

1

1,2

1% 10% 100%

Success Probability

Coverage versus Success probability

Coverage Success vs Coverage

Figure 2.5. Effect of replication

Bloom filters

The Bloom filter was first conceived by Burton H. Bloom in 1970 [16]. It

is a space efficient way to represent a set of objects (keys). In provides a way to

test whether some key is part of the set the filter corresponds to, or not. Since it

requires much less space than the actual set, there is some loss of precission

translated in the posibility of false positives. This means that the bloom filter

may indicate the existence of some key in the set even though it does not exist.

Bloom filters however have no false negatives. This means that there is no way

that the filter may indicate that some key is NOT in the set, when, in fact, it

really is.

31

Adanar
Stamp

Chapter 2

Algorithm description

An empty Bloom filter is a bit array of m bits, all set to 0. There must also

be k different hash functions defined, each of which maps a key value to one of

the m array positions.

To insert an element, feed it to each of the k hash functions to get k array

positions. Set the bits at all these positions to 1.

To query for an element (test whether it is in the set), feed it to each of

the k hash functions to get k array positions. If any of the bits at these positions

are 0, the element is not in the set – if it were, then all the bits would have been

set to 1 when it was inserted. If all are 1, then either the element is in the set, or

the bits have been set to 1 during the insertion of other elements.

Unfortunately, removing an element from this simple Bloom filter is

impossible. The element maps to k bits, and although setting any one of these k

bits to zero suffices to remove it, this has the side effect of removing any other

elements that map onto that bit, and we have no way of determining whether any

such elements have been added. The result is a possibility of false negatives,

which are not allowed.

It is possible to remove a key if all keys are available, where in this case,

the bloom filter is recreated from all the keys, except the one to be removed. This

is difficult in many cases, for two reasons. One is that usually the original

keyword list is not available any more (The reason for using bloom filters in the

first place is that we cannot afford to store all the original keys). It is also often

the case that all the keys are available but are expensive to enumerate (for

example, requiring many disk reads). Thus recreating the bloom filter is possible,

but this should be a relatively rare event.

Counting Bloom filters have been introduced by Fan et al in [79] to

remedy this drawback. For each bucket, a counter is maintained which counts the

number of keys associated with this bucket. The removal of a key simply

decreases the appropriate counter by one. When a counter is reduced to zero, the

bucket is set to 0.
32

Chapter 2

Space and time advantages

Bloom filters have a strong space advantage over other data structures for

representing sets such as self-balancing binary search trees, tries, hash tables, or

simple arrays or linked lists of the entries. Most of these require storing at least

the data items themselves, which can require anywhere from a small number of

bits, for small integers, to an arbitrary number of bits, such as for strings. This

benefit of course comes at the cost of the existance of false positives, since

Bloom filters achieve this low space cost by not storing the actual data. As

mentioned in [80], “a Bloom filter with 1% error and an optimal value of k, on

the other hand, requires only about 9.6 bits per element — regardless of the size

of the elements. This advantage comes partly from its compactness, inherited

from arrays, and partly from its probabilistic nature. If a 1% false positive rate

seems too high, each time we add about 4.8 bits per element we decrease it by

ten times.”

As far as time costs are concerned, Bloom filters can either add items or

to check whether an item is in the set, only fixed constant, O(k), time, regardless

of the number of items already in the set (again, at the cost of experiencing false

positives). Especially in a hardware implementation the Bloom filter shines

because its k lookups are independent and can be parallelized. This fact can be

exploited for instance as a very fast first step in pattern matching algorithms.

To understand its space efficiency, it is instructive to compare the general

Bloom filter with its special case when k = 1. If k = 1, then in order to keep the

false positive rate sufficiently low, only a small fraction of bits should be set,

meaning that the array must be either (or both) very large or (and) contain a large

number of zeros. The information content of the array relative to its size is low.

Such a Bloom filter can obtain a larger degree of space efficiency since it can be

compressed to a large degree (due to the large degree of redundance contained in

the large series of zeros) by a compression algorithm such as Huffman encoding

[27]. The generalized Bloom filter (k greater than 1) allows many more bits to be

set while still maintaining a low false positive rate; if the parameters (k and m)

33

Chapter 2

are chosen well, about half of the bits will be set, and these will be apparently

random, minimizing redundancy and maximizing information content.

It should be noted that inserting an element never fails since each

insertion will simply, at most, change the value of a bucket. However, each

insertion will increase the false positive rate. Also another interesting fact is that

the rate at which the precision is reduced with each element being added

decreases since when the filter is already almost full, the probability of setting a

position of the array, which is already set, is high. This is when we need to test

pairs of elements instead of single ones. In that case, the number of keys in the

filter remain the same, but the precision is the square of the precision when

testing single keys. One example of the case we described is Gnutella itself,

where the vast majority (around 80%) of the queries contain at least two

keywords.

Union and intersection of Bloom filters with the same size and set of hash

functions can be implemented with bitwise OR and AND operations,

respectively.

Probability of false positives

Assume that a hash function selects each array position with equal

probability. The probability that a certain bit is not set to one by a certain hash

function during the insertion of an element is then

.

The probability that it is not set by any of the hash functions is

If we have inserted n elements, the probability that a certain bit is still 0 is

34

Chapter 2

the probability that it is 1 is therefore

The probability of a false positive is can be calculated with the following

formula. Each of the k array positions computed by the hash functions is 1 with a

probability as above. The probability of all of them being 1, which would cause

the algorithm to erroneously claim that the element is in the set, is then

Obviously, the probability of false positives decreases as m (the number

of bits in the array) increases, and increases as n (the number of inserted

elements) increases. For a given m and n, the value of k (the number of hash

functions) that minimizes the probability is

,

which gives a probability of

.

 The value of m, for the Gnutella Bloom filters is 65536 (216). Ιn addition,

Gnutella uses bloom filters with a k value of 1. There are several reasons for this,

the most important being the fact that even though the Leaves’ bloom filter is by

far less than 70% full, the fullness percentage at which the most efficient number

of hash functions is one, this is not the case for the Bloom filter of Ultrapeers.

Since the Bloom filter of an Ultrapeer combines the bloom filters of thirty

Leaves, that filter is on average, 60% full. Since the Ultrapeers have no

knowledge of the actual key set of each Leaf, Leaves need also use Bloom filters

with on hash function so that Ultrapeers can perform a union on all those filters.

35

Chapter 2

One-hop replication

One-hop replication dictates that each peer informs all of its (immediate)

neighbours of the information it contains. One-hop replication saves us the cost

of the last hop during a flooding process. This is because the peers reached

during the hop before the last one will have all the information reached in the last

hop. It is obvious that the presence of 1-hop replication is of no use during all the

hops before the last one, since even though we may always be aware of the

information contained in any next hop, if that hop is not the last one, we cannot

take advantage of this knowledge since each peer should propagate the query to

every neighbour anyhow, so that they, in turn, pass it on. A quick computation,

however, can show that, the number of messages generated during the last hop of

a flood comprise the vast majority of the total messages generated, especially in

networks with a large average degree, such as Gnutella today. We remind the

reader that each Ultrapeer in Gnutella today connects to, on average, thirty

Ultrapeers, which we will use in the formulas we describe in this section.

One-hop replication serves another very important purpose. We have

already mentioned one of the disadvantages of flooding is the generation of

duplicate messages due to the number of cycles in the network. In random

graphs, where each peer can be connected to any other peer with equal

probability, each time a message is sent, the probability of it being a duplicate

(that is the destination peer has already received such as message) is equal to the

percentage of the peers already reached by the flood. This means that, again in

random graphs only, almost all of the duplicates are generated during the last

hops of the flood, with the last hop containing the majority of duplicates. One-

hop replication enables us to perform a flood, which will reach all of the peers,

by not only avoiding to send the message to every last hop peer but also by

avoiding to generate most of the duplicates.

This can be better understood with the use of some figures. We shall

prove that the percentage of peers we need to reach during all the hops of a flood

up to before the last has to be equal to 3/d, if we want to reach 95% of all the
36

Chapter 2

peers during the while flood. In the ratio above, d stands for the average degree

of the peers in the network. If we assume a value of 30 for d, one can easily see

that we need only reach 10% of the graph, in order to reach the rest 85% of the

graph during the last hop. We shall prove this, step-by-step. First we shall prove

that one needs 3*N messages (when not employing 1-hop replication) to ensure

that at least 95% of the peers receive the flood message. As we mentioned

before, the Propositions we prove in this section regard random graphs.

The proof is simple and is based on the form of the probability of the

false positives of bloom filters we discussed above. In general, if we have an

array of n bits, all set to zero, and randomly choose m of them to set to one

(regardless of whether the previous value was already one or not), the percentage

of ones we end up with is approximately equal to . We can use this

formula if we assume that each peer has a flag with values either one or zero,

depending on whether it has received a message of the flood or not. Since the

graph is a random one, whenever a message is sent to some peer, each peer in the

network has the same probability of receiving it. Thus, if we want to reach 95%

of the peers, we need the result of the aforementioned formula to be equal to

0.95. Thus:

Proposition 1: In order to reach 95% of a graph's nodes using naıve

flooding we need a minimum of 3 ∗ N messages.

Proof: Assume that N is the total number of peers and x is the number of

messages transmitted during a flood. Using the above formula, and substituting

m for N and n for x, we get:

Now we can prove the next step:

37

Chapter 2

Proposition 2: In order to reach 95% of a graph's nodes that employs 1-

hop replication using flooding, we need to reach 3/(d − 1) of the graph nodes in

all hops except the last one.

Proof: Let n be a function that returns the number of new peers contacted

at a given hop. Let f be a function that returns the number of messages generated

on a single, given hop. Let d be the average degree of the graph. Initially f (0) = 0

and n(0) = 1. At each hop i it holds:

f (i) = n(i − 1) ∗ (d − 1) (1)

because each one of the nodes that received a message for the first time at hop i −

1, will send it, at hop i, to all of their neighbours except the one it received the

message from, thus to d − 1 neighbours. Let H be the hop before the last one. The

total number of peers contacted up to hop H is Let r be the ratio of

peers contacted up to hop H, then: . We want to compute

ratio r so that after hop H + 1, we will have reached at least 95% of the graph

nodes. We have proven in Proposition 1 that we need a minimum of 3 ∗ N

messages to reach 95% of a graph’s nodes using naive flooding.

So . If we replace function f from (1) in the

above formula:

This combined with (1) and (2) gives:

Thus, the required result and end of proof.

As we mentioned, Gnutella employs one-hop replication today in the

sense that Leaves send their indices to their Ultrapeers. However, one-hop

replication is also used in the Ultrapeer level, that is among Ultrapeers. Each

38

Chapter 2

Ultrapeer notifies all its Ultrapeer neighbours of its aggregate (bloom-filtered)

index, the index of itself and all its Leaves’ combined. This, in a sense actually is

2-hop replication, which is much more difficult to maintain in dynamic P2P

networks. It is possible however in the case of Gnutella because Leaves only

connect to three Ultrapeers (i.e. have a degree of three) in contrast to the

Ultrapeers themselves, which connect to about thirty other Ultrapeers. Thus, the

one-hop replication employed between Leaves and Ultrapeers is cheap, leaving

Ultrapeers to cope with the one-hop replication between themselves. Of course,

in contrast to pure one-hop replication, where indices of a peer do not change,

intra-Ultrapeer one-hop replication requires each Ultrapeer inform its neighbours

for any change in its aggregate index (i.e. whenever anyone of its Leaves

departs).

The fact that each Ultrapeer aggregates all indices to generate one Bloom

filter, which it sends to its neighbours, explains the fact why most Ultrapeers’

Bloom filters are usually 60% full. This makes it possible that the departure of a

Leaf from an Ultrapeer may not significantly alter the structure of its filter, if

most of the set bits in the Leaf’s filter were already set by other Leaves, in the

Ultrapeer’s aggregate filter, which, in turn, helps us reduce the number of

updates required to maintain the one-hop replication in the Ultrapeer level, at the

cost of much reduced precision in the filtering. This is because, in general, for

any keyword, the filter of the Ultrapeer will indicate membership with 60%

probability, which fortunately is not the case in Gnutella, because most of the

queries contain at least two keywords. For the filter to produce a false positive,

both keywords will have to be mapped to set bits in the filter. In the case of a

60% full bloom filter, this of course leads to 36% probability.

Dynamic Querying

One should note that not all floods need to have the same TTL value.

Even though the TTL value is a maximum limit, it will be reached every time,

39

Chapter 2

even if the results the flood was looking for were found on the first hop. This

means that the querying peer has no control over the number of peers that will be

contacted, other than the TTL. This is not only an issue in the sense that more

traffic than required is generated. In addition, the requesting peer may be itself

“flooded” by incoming results if its query was a popular one, residing in a large

number of peers. On the other side, the reduction in network traffic we could

gain if we were able to terminate any flood at any point of its execution, due to

an already adequate number of results received, could enable us to increase the

cost of flooding for rare items, so as to increase the probability of successfully

locating them.

The main problem is that, since the flood progresses in parallel, it is

difficult for a branch of the Breadth-First-Search to know whether another branch

has located the data. Unless of course, each branch’s traversal is not done in

parallel. This was the idea that led to Dynamic Querying. According to it, the

peer that initiates the flood sends the flood message to only one of its neighbours,

instead to all of them according to traditional flooding. That neighbour treats the

flood message normally, forwarding it to all of its neighbours. When the results

of this partial flood arrive, the peer can decide whether the results are

satisfactory. If they are, the process is concluded, otherwise the peer sends

another partial flood to a second neighbour and so forth, until enough results

have been received or the peer has run out of neighbours.

In addition to that, Dynamic Querying employs another scheme. Instead

of sending all partial floods with the same TTL, it sends the first flood with an

initial TTL value. It then increases this value with every new partial flood sent.

The initial value of the TTL is dependant on the popularity of the requested data,

that is the degree of replication of that data in the network. The higher the

replication, the lower the initial TTL value. In order to assess that popularity,

Dynamic Querying first sends a small partial flood with a TTL of 1. The number

of results returned defines the popularity of the data item.

40

Chapter 2

Dynamic Querying is another mechanism of the unstructured systems that

benefits from high Ultrapeer degree, since the number of available Dynamic

Querying steps (partial floods) is equal to the number of neighbours.

 This procedure can be used, of course, only when the TTL values are too

small for the flood to reach the whole network. Otherwise, a high TTL value

would mean that the first partial flood will have reached all of the peers and

initiating another one will only generate duplicates.

2.4 Graph clustering

Two types of graphs have been mainly studied in the context of P2P

systems. The first is random graphs which constitute the underlining topology in

today’s commercial P2P systems [7, 9]. The second type is small-world graphs

which emerged in the modelling of social networks [4], introduced by Watts and

Strongatz. It has been demonstrated that P2P resource location algorithms could

benefit from small-world properties. If the benefit proves to be substantial then

the node connection protocol in P2P systems could be modified so that small-

world properties are intentionally incorporated in their network topologies.

41Figure 2.6: Graphs generated with different values of rewiring probabilities.

Chapter 2

In random graphs each node is randomly connected to a number of other

nodes equal to its degree. Random graphs have small diameter and small average

diameter. The diameter of a graph is the length (number of hops for un-weighted

graphs) of the longest among the shortest paths that connect any pair of nodes.

The average diameter of a graph is the average of all shortest paths from any

node to any other node.

A clustered graph is a graph that contains densely connected

“neighbourhoods” of nodes, while nodes that lie in different neighbourhoods are

more loosely connected. A metric that captures the degree of clustering that

graphs exhibit is the clustering coefficient. Given a graph G, the clustering

coefficient of a node A in G is defined as the ratio of the number of edges that

exist between the neighbours of A over the maximum number of edges that can

exist between its neighbours (which equals to k(k − 1) for k neighbours). The

clustering coefficient of a graph G is the average of the clustering coefficients of

42

Figure 2.7: By rewiring a few edges of the initial clustered graph to random nodes
the average diameter of the graph is greatly reduced, without significantly affecting
the clustering coefficient.

Chapter 2

all its nodes. Clustered graphs have, in general, higher diameter and higher

average diameter than their random counterparts with about the same number of

nodes and degree.

 A small-world graph is a graph with high clustering coefficient yet low

average diameter. The small-world graphs we use in our experiments are

constructed according to the Strogatz-Watts model [4]. Initially, a regular,

clustered graph of N nodes is constructed as follows: each node is assigned a

unique identifier from 0 to N − 1. Two nodes are connected if their identity

difference is less than or equal to k (in modN arithmetic). Subsequently, each

edge of the graph is rewired to a random node according to a given rewiring

probability p. If the rewiring probability of edges is relatively small, a small-

world graph is produced (high clustering coefficient and small average diameter).

As the rewiring probability increases the graph becomes more random (the

43

Figure 2.8: Percentage of duplicate messages generated per hop, in random and
small-world graphs.

Chapter 2

clustering coefficient decreases). For rewiring probability p = 1, all graph edges

are rewired to random nodes, and this results in a random graph. In Fig. 2.6 once

can see examples of graphs built with different p values. In Fig. 2.7, we can see

how the clustering coefficient and the average diameter of graphs vary as the

rewiring probability p increases. Small-world graphs are somewhere in the

middle of the x axis (p = 0.01).

The clustering coefficient of each graph is normalized with respect to the

maximum clustering coefficient of a graph with the same number of nodes and

average degree. In what follows, when we refer to the clustering coefficient of a

graph with N nodes and average degree d, denoted by CC, we refer to the

percentage of its clustering coefficient over the maximum clustering coefficient

of a graph with the same number of nodes and average degree. The maximum

clustering coefficient of a graph with N nodes and average degree d is the

clustering coefficient of the clustered graph defined according to the Strogatz-

Watts model, before any edge rewiring takes place. Fig. 2.8 shows the percentage

of duplicates messages generated per hop over the messages generated on that

hop on a random and on a small-world graph of 2000 nodes and average degree

6. We can see from this figure that in a random graph there are very few

duplicate messages in the first few hops (1-4), while almost all messages in the

last hops (6-7) are duplicates. On the contrary, in small-world graphs duplicate

messages appear from the first hops and their percentage (over the total number

of messages per hop) remains almost constant till the last hops.

This effect is very important for P2P systems employing the 1-hop

replication technique we mentioned above. As we described, in this case, naïve

flooding is only used during the first phases of flooding, where not many

duplicate messages are generated in the random graphs used today. The last

forwarding of the flood message (which generates the most messages, both

duplicate and not) utilizes the information provided by 1-hop replication in order

to only forward the flood to appropriate peers and thus avoiding the broadcast-

like flood.

44

Chapter 2

The above is one of the reasons P2P systems today prefer to form a

random graph instead of a clustered one. On addition, due to the lack of duplicate

messages during the first propagations of the flood, one can reach more peers in a

random graph than in a clustered graph, using the same number of messages.

This is shown in Figure 2.9.

45

Figure 2.9: Coverage of the graph for given number of messages.

Chapter 3

Chapter 3

A Feedback-based Approach
for Reducing Duplicate
Messages in Unstructured
P2P Systems

3.1 Introduction

As we mentioned before, the flooding process used for locating peers and

data in unstructured P2P systems has excellent response time, is very simple to

implement, and is very robust in the face of churn. However, it creates a large

volume of unnecessary traffic, mainly because each node may receive the same

query several times through different paths. In this Chapter we shall describe an

innovative technique, the feedback-based approach that aims to improve the

scalability of flooding. The main idea behind our algorithm is to monitor the ratio

of duplicate messages transmitted over each network connection, and not forward

query messages over connections whose ratio exceeds some threshold. Through

extensive simulation we show that this algorithm exhibits significant reduction of

traffic in random and small-world graphs, the two most common types of graph

46

Chapter 3

that have been studied in the context of P2P systems, while conserving network

coverage (i.e.: the percentage of all peers that received at least one flood

message).

3.2 Related Work

Many algorithms have been proposed in the literature to alleviate the

excessive traffic problem and to deal with the traffic/coverage trade-off [11]. One

of the first alternatives proposed was random walk. Each node forwards each

query it receives to a single neighboring node chosen at random. This propagated

message is called a “walker”. In this case the TTL parameter designates the

number of hops the walker should propagate. Random walks produce very little

traffic, just one query message per visited node, but either reduce considerably

network coverage or have long response time. As an alternative multiple random

walks have been proposed. The node that originates the query forwards it to k of

its neighbors. Each node receiving an incoming query transmits it to a single

randomly chosen neighbor. Although compared to the single random walk this

method has better behavior, it still suffers from low network coverage and slow

response time. Hybrid methods that combine flooding and random walks have

been proposed in [5] by Gkantsidis et al.

In another family of proposed algorithms query messages are forwarded

not randomly but rather selectively to part of a node’s neighbors based on some

criteria or statistical information. For example, each node selects the first k

neighbors that returned the most query responses, or the k highest capacity

nodes, or the k connections with the smallest latency to forward new queries [6].

A somewhat different approach named forwarding indices proposed by Crespo

[2] builds a structure that resembles a routing table at each node. This structure

stores the number of responses returned through each neighbor on each one of a

47

Chapter 3

pre-selected list of topics. Other techniques include query caching, and the

incorporation of semantic information in the network [19, 10, 13].

The specific problem we deal with in this work, namely the problem of

duplicate messages, has been identified and some results appear in the literature.

In [12] a randomized and a selective approach is adopted by Zhuang et al, and

each query message is sent to a portion of a node’s neighbors. The algorithm is

shown to reduce the number of duplicates and to maintain network coverage.

However, the performance of the algorithm is demonstrated on graphs of limited

size. In another effort to reduce the excessive traffic in flooding, the authors [5]

proposed to direct messages along edges which are parts of shortest paths. They

rely on the use of PING and PONG messages to find the edges that lie on shortest

paths. However, due to PONG caching this is not a reliable technique.

Furthermore, their algorithm degenerates to simple flooding for random graphs,

meaning that in this case no duplicate messages are eliminated.

Finally, in [8] Ripenau et al proposed to construct a shortest paths

spanning tree rooted at each network node. However, this algorithm is not very

scalable since the state each network node has to keep is in the order of O(N*d),

where N is the number of network nodes and d its average degree.

3.3 Algorithm Description

The basic idea of the feedback-based algorithm is to identify edges on

which an excessive number of duplicates are produced and to avoid forwarding

query messages over these edges. In the algorithm’s warm-up phase, during

which flooding is used, a feedback message is returned to the upstream node for

each duplicate message. The objective of the algorithm is to count the number of

duplicates produced on each edge during this phase and subsequently, during the

48

Chapter 3

execution phase, to use this count to decide whether to forward a query message

over an edge or not.

 In a static graph, a query message transmitted over an edge is a duplicate

if this edge is not on the shortest path from the origin to the downstream node.

One of the key points in the feedback-based algorithm is the following: Each

network node A forms groups of the other nodes, and a different count is kept on

each one of A's incident edges for duplicate messages originating from nodes of

each different group. The objective is for each node A to group together the other

nodes so that messages originating from nodes of the same group either produce

many duplicates or few duplicates on each one of A’s incident edges. An incident

edge of a node A that produces only a few duplicates for messages originating

from nodes of a group must belong to many shortest paths connecting nodes of

this group to the downstream node. An incident edge of node A that produces

many duplicates for messages originating from nodes of a group must belong to

few shortest paths connecting nodes of this group to the downstream node.

Notice that if all duplicate messages produced on an edge were counted together

(independent of their origin), then the algorithm would be inconclusive. In this

case the duplicate count on all edges would be almost the same since each node

would receive the same query though all of its incident edges. The criteria used

49

Figure 3.1: Illustration of the horizon criterion for node A and for horizon
value 3.

Chapter 3

by each node to group together the other nodes are critical for the algorithm’s

performance and the intuition for their choice is explained below.

 A sketch of the feedback-based algorithm is the following:

• Each node A groups together the rest of the nodes according to

some criteria.

• During the warm-up phase, each node A keeps a count of the

number of duplicates on each of its incident edges, originating from

nodes of each different group.

• Subsequently, during the execution phase, messages originating

from nodes of a group are forwarded over an incident edge e of

node A, if the percentage of duplicates for this group on edge e

during the warm-up phase is below a predefined threshold value.

 Two different grouping criteria, namely, the hops criterion and the

horizon criterion, as well as a combination of them, horizon and hops, are used

that lead to three variations of the feedback-based algorithm:

• Hops criterion: Each node A keeps a different count on each of its

incident edges for duplicates originating k hops away (k ranges

from 1 up to the graph diameter). The intuition for this choice is

that, as we will see below, in random graphs small hops produce

few duplicates and large hops produce mostly duplicates. Thus,

messages originating from close by nodes are most probably not

duplicates while most messages originating from distant nodes are

duplicates. In order for this grouping criterion to work each query

message should store the number of hops traversed so far.

50

Hops 1 2 3 4 5 6 7
Groups of nodes
formed by node A

B C D,J E,K F G,H I

Table 1: Groups of the Hops criterion based on the example of example of Fig. 12.

Chapter 3

• Horizon criterion: The horizon is a small integer, smaller than the

diameter of the graph. A node is in the horizon of some node A if its

distance in hops from A is less than the horizon value, while all

other nodes are outside A’s horizon (Fig. 3.1). For each node inside

A’s horizon a different count is kept by A on each of its incident

edges. Duplicate messages originating from nodes outside A’s

horizon are added up to the count of their entry node in A’s horizon.

For example, in Fig. 3.1, duplicates produced by queries originating

from node K are added up to the counters kept for node J, while

duplicates produced by queries originating from nodes E, F, G, H, I

are added up to the counters kept for node D. The intuition for the

choice of this criterion is that shortest paths differ in the first hops

and when they meet they follow a common route. For this criterion

to be effective, a message should store the identities of the last k

nodes visited, where k is the horizon value.

• Horizon+Hops criterion: This criterion combines the two previous

51

Feedback-based algorithm using the Hops criterion

 1. Warm-up phase

 a) Each incoming non-duplicate query message is forwarded to all

neighbours except the upstream one. For each incoming duplicate

query message received, a duplicate feedback message is returned

to the upstream node.

 b) Each node A, for each incident edge e, counts the percentage of

duplicate feedback messages produced on edge e for all queries

messages originating k hops away. Let us denote this count by

D(e,k)

 2. Execution phase: Each node A forwards an incoming non-duplicate query

message that originates k hops away over its incident edges e if the count

D(e,k) does not exceed a predefined threshold.

Figure 3.2: The feedback-based algorithm with the Hops criterion

Chapter 3

 Next, we present three variations of the feedback-based algorithm that

are based on the grouping criteria used. The algorithm using the hops criterion is

shown in Fig. 3.2. For the hops criterion to work each query message needs to

store the number of hops traversed so far. The groups formed by node A in the

graph of Fig. 3.1 according to the hops criterion are shown in Table 1.

The algorithm using the horizon criterion is shown in Fig. 3.3. For the

horizon criterion to work each query message needs to store the identity of the

last k nodes visited. The groups formed by node A in the graph of Fig. 3.1

according to the horizon criterion are shown in Table 2.

52

Node in A’s horizon B C D J

Groups of nodes formed by node A B C D,E,F,G,H,I J,K

Table 2: Groups of the Horizon criterion based on the example of example of Fig.
12.

Chapter 3

The algorithm using the combination of the two criteria described above,

namely the Horizon+Hops, is shown in Fig. 3.4. For this criterion each message

should store the number of hops traversed and the identity of the last k nodes

visited. The groups formed by node A in Fig. 3.1 for the horizon+hops criterion

are shown in Table 3.

We should emphasize that in order to avoid increasing the network traffic

due to feedback messages, a single collective message is returned to each

upstream node at the end of the warm-up phase.

53

Feedback-based algorithm using the Hops+Horizon criterion

 3. Warm-up phase

 α) Each incoming non-duplicate query message is forwarded to all

neighbours except the upstream one. For each incoming duplicate

query message received, a duplicate feedback message is returned

to the upstream node.

 β) Each node A, for each incident edge e,counts the percentage of

duplicate messages produced on edge e for all queries messages

originating from a node B inside A’s horizon, or which entered

A’s horizon at node B and originated k hops away. Let us denote

this count by D(e,B,k) .

 2. Execution phase: Execution phase: Each node A forwards an incoming

non-duplicate query message that originates k hops away over its incident

edges e if the count D(e,B, k) does not exceed a predefined threshold.

Figure 3.4: The feedback-based algorithm with the Hops criterion

Chapter 3

3.4 Experimental Results on Static
Graphs

Our evaluation study was performed using sP2Ps (simple P2P simulator)

developed at our lab. The experiments were conducted on graphs with 2000

nodes and average degree of 6. The clustering coefficient (CC) ranged from

0.0001 to 0.6, which is the maximum clustering coefficient of a graph with N =

2000 and d = 6 (obtained with p=0). We shall refer to CC values from now on, as

percentages of that max value. We conducted experiments for different values of

the algorithm’s parameters. The horizon value varied from 0 (were practically the

horizon criterion is not used) up to the diameter of the graph. Furthermore, we

used two different threshold values, namely 75% and 100%, to select the

connections over which messages are forwarded. For example a threshold of

75% indicates that if the percentage of duplicates on an edge e during the warm

up phase exceeds 75% for messages originated at the nodes of a group, in the

execution phase no query message from this group is forwarded over edge e. The

TTL value is set to the diameter of the graph.

54

Hops B C D J
Groups of nodes formed by node A 1 2 3 4 5 6 7 3 4

B C D E F G,H I J K

Table 3: Groups of the Hops+Horizon criterion based on the example of example
of Fig. 12.

Chapter 3

The efficiency of our algorithm is evaluated based on two metrics: (1) the

percentage of duplicates sent by the algorithm, compared to the naive flooding

approach and (2) the network coverage (defined as the percentage of network

nodes reached by the query). Thus, the lower the duplicates percentage and the

higher the coverage percentage is, the better. Notice that a threshold value of

100% indicates that messages originating from the nodes of a group are not

forwarded only over edges that produce exclusively (100%) duplicates for all

nodes of that group during the warm-up phase. In this case we do not experience

any loss in network coverage, but the efficiency of the algorithm in duplicate

elimination could be limited. In all experiments on static graphs, the warm-up

phase included one flooding from each node. In the execution phase, during

which the feedback-based algorithm is applied, again one flooding is performed

from each node in order to gather the results of the simulation experiment.

55

Figure 3.6: Percentage of duplicates as
a function of the percentage of graph
nodes in the horizon for three graphs
with different clustering coefficients
(0.16, 50, and 91.6) and threshold value
75%.

Figure 3.5: Percentage of duplicates as
a function of the percentage of graph
nodes in the horizon for three graphs
with clustering coefficients 0.16, 50, and
91.6, and threshold value 100%.

Chapter 3

In Figs 3.5 to 3.9 we can see the experimental results for the feedback-

based algorithm with the horizon criterion. In Fig. 3.5 we can see the percentage

of duplicates produced as a function of the percentage of graph nodes in the

horizon for three graphs (random with CC% = 0.16, clustered with CC% = 50,

and small-world with CC% = 91.6) and for threshold value 100%, which means

that there is no loss in network coverage. We can deduce from this figure that the

efficiency of this algorithm is high for clustered graphs and increases with the

percentage of graph nodes in the horizon. Notice that in clustered graphs, with a

small horizon value a larger percentage of the graph is in the horizon as

compared to random graphs. In Fig. 3.9 we plot the percentage of duplicates

produced by the algorithm as a function of the clustering coefficient for horizon

value 1 and threshold 100%. We can see that even for such a small horizon value

the efficiency of the algorithm increases linearly with the clustering coefficient of

the graph. We can thus conclude that the feedback-based algorithm with the

horizon criterion is efficient for clustered and small-world graphs.

56

Figure 3.7: Network coverage as a
function of the percentage of graph nodes
in the horizon for three graphs with
clustering coefficients 0.16, 50, and 91.6
and threshold 75%.

Figure 3.8: Efficiency of the feedback
based algorithm as a function of the
percentage of graph nodes in the
horizon for three graphs with clustering
coefficients 0.16, 50, and 91.6 and
threshold 75%.

Chapter 3

 Even if the percentage of graph nodes in the horizon decreases, in case

the graph size increases and the horizon value remains constant, the efficiency of

the algorithm will remain unchanged, because in clustered graphs the clustering

coefficient does not change significantly with the graph size. Thus, the horizon

criterion is scalable for clustered graphs. In contrast, in random graphs, in order

to maintain the same efficiency as the graph size increases, one would need to

increase the horizon value, in order to maintain the same percentage of graph

nodes in the horizon. Thus the horizon criterion is not scalable on random graphs.

Figs 3.6 to 3.8 show the efficiency of the algorithm with the horizon

criterion in duplicate elimination for threshold 75%. In Fig. 3.6 and 3.7 we can

see that the algorithm is very efficient on clustered graphs. From the same figures

we can see that with this threshold value in random graphs (CC% = 0.16) most

duplicate messages are eliminated but there is loss in network coverage. Thus,

even if we lower the threshold value, the horizon criterion does not work well for

random graphs. The algorithm’s behaviour is summarized in Fig. 3.8, where

duplicate elimination, denoted by D, and network coverage, denoted by C, are

combined into one simple metric, defined as C2D, which we will call

57

Figure 3.10: Network coverage,
percentage of duplicates, and efficiency
as a function of the clustering
coefficient for horizon value 1 and
threshold 75%.

Figure 3.9: Percentage of duplicates as a
function of the clustering coefficient for
horizon value 1 and threshold value
100%.

Chapter 3

“efficiency”. We decided to raise the coverage metric to the square to denote its

increased importance over duplicate elimination.

In Fig. 3.10 we can see again the efficiency of the algorithm for horizon

value 1 (as in Fig. 3.9) but for a threshold of 75%. Notice that the algorithm’s

efficiency is not linear to the percentage of the clustering coefficient of the graph.

This arises because the threshold value of 75% is not necessarily the best choice

for any clustering coefficient.

58

Figure 3.11: Network coverage,
percentage of duplicates, and efficiency
of the algorithm with the hops criterion
as a function of the clustering coefficient.

Figure 3.12: Network coverage,
percentage of duplicates, and efficiency of
the algorithm with the horizon+hops
criterion as a function of the clustering
coefficient.

Figure 3.13: Efficiency of algorithms with
the horizon, hops, and horizon+hops
criteria as a function of the clustering
coefficient and for horizon value 1.

Chapter 3

 In Fig. 3.11 we can see the experimental results for the algorithm with

the hops criterion for a graph with 2000 nodes and average degree 6 while

varying the clustering coefficient. We can see in this figure that the hops criterion

is very efficient in duplicate elimination, while maintaining high network

coverage, for graphs with small clustering coefficient. This means that this

criterion exhibits very good behaviour on random graphs. As the clustering

coefficient increases, the performance of the algorithm with the hops criterion

decreases. This behaviour can be easily explained from Fig. 2.8, where the

percentage of duplicates per hop is plotted for random and small-world graphs.

We can see from this figure that in random graphs, the small hops produce very

few duplicates, while large hops produce too many. Thus, based on the hops

criterion only, we were able to eliminate a large percentage of duplicates without

greatly sacrificing network coverage.

As mentioned before, the hops criterion works better for random graphs.

In case the graph size increases, the number of hops also increases (recall that the

diameter of a random graph with N nodes and average degree d is

log(N)/log(d)). Thus, the hops criterion is scalable on random graphs.

In Fig. 3.12, we see the efficiency of the algorithm for the horizon+hops

criterion. As we can see from this figure this combination of criteria constitutes

the feedback based algorithm efficient in graphs with all clustering coefficients,

random and small-world. In Fig. 3.12, three different metrics are plotted, the

network coverage, the percentage of duplicates, and the efficiency as a function

of the clustering coefficient of the graph. We can see that for any clustering

coefficient network coverage is always above 80%, while the percentage of

duplicate messages not eliminated is always less than 20%. This behaviour is

achieved for random and small-world graphs for horizon value of only 1. Thus

the horizon+hops criterion is scalable on all types of graphs.

In Fig. 3.13 we compare the efficiencies of the hops, horizon, and

horizon+hops and we see that their combination, horizon+hops works better than

each criterion separately.

59

Chapter 3

3.5 Experimental Results on
Dynamic Graphs

In what follows, we introduce dynamic changes to the graph, meaning

that a graph node can leave and some other node can enter the graph, and we

monitor how these changes influence the algorithm’s efficiency. We introduced a

new parameter to our experiments in order to capture the rate of graph change.

This parameter measures in query-floods the lifetime of a node in the graph. A

graph rate change of r means that each node will initiate, on the average, r query-

floods before leaving the network. Insertion of new nodes is performed so as to

preserve the clustering coefficient of the graph.

We also introduce a dynamic way to determine when the warm-up phase

can terminate, meaning that we have collected enough measurements. The warm-

up phase for a group of nodes terminates after the percentage of duplicates seen

on an edge for messages originating from nodes of the group stops to oscillate

significantly. More specifically, the warm-up phase terminates on an edge for a

group of nodes, if in each of the last 20 rounds the change in the count

(percentage of the number of duplicates seen on that edge for messages

originating from nodes of the that group) was smaller that 2% and the total

change over the last 20 rounds was smaller that 1%.

We perform experiments for random graphs and for small-world graphs

with clustering coefficient CC% = 33 and CC% = 84. For each of these graphs,

the value of the change rate equals 0 (static graph), 1, 50, and 200. A change rate

of 200 indicates that each node will make 200 query-floods before leaving the

network, which is a reasonable assumption for Gnutella 2 [7]. This is because

each Ultrapeer contains, on the average, 30 leaves. A leaf node has in general

much smaller average lifetime than an Ultrapeer, which means that each

Ultrapeer will “see” more than 30 unique leaves in its lifetime. If we assume that

each leaf node will send one query through the Ultrapeer, this explains the fact

that real-world measures with an Ultrapeer show that each Ultrapeer sends about
60

Chapter 3

100 queries per hour. For each of these graphs and change rates, we run

experiments with the following Horizon values:

• Horizon values = 1―2 for random graphs and for small-world
graphs with CC% = 33.

• Horizon values = 1―4 for small-world graphs with CC% = 84.

 We performed two experiments with the same horizon value, one using

the hops criterion and one without the hops criterion. The threshold value was set

to 75%. Each experiment performed 25*2000 floods. The difference between the

values “0 wo act. threshold” and “0 with act. threshold” in the x axis in the

figures indicates that in both cases the change rate is 0 (static graph), but in the

first case, the numbers are taken from the experiments described in the previous

section, while in the second case the activation threshold was used to terminate

the warm-up phase. This enables us to clearly see the benefit of the activation

threshold.

Fig. 3.14 shows how the algorithm performs on dynamic graphs for the

horizon criterion. We should first note that the use of the activation threshold

increases the efficiency of the algorithm significantly. This happens because

nodes gradually start eliminating traffic for certain groups of nodes instead of all

of them starting eliminating duplicates for all groups simultaneously.

We can see that the efficiency of the algorithm decreases when the

change rate is 1. The main reason for this is not that the measurements for each

group quickly become stale, but rather because each node needs some warm-up

period to learn the topology of the network. A certain amount of traffic needs to

be “seen” by any node, to make the necessary measurements. If that time is a

large fraction of the node’s lifetime, it means that it will spend most of its time

measuring instead of regulating traffic according to the measurements.

Finally and most importantly, we can see that the results for a change rate

of 200 are the same as those of a change rate of 0 with activation threshold,

which shows that, given that the warm-up phase is shorter than the time during

which the nodes use the algorithm (execution phase), the changes of the graph do

not affect the algorithm’s efficiency.

61

Chapter 3

In Fig. 3.15 we can see that the activation threshold is beneficial to the

algorithm with the hops criterion. Furthermore, from the same figure, it becomes

clear that the efficiency of the feedback-based algorithm with the hops criterion

is not greatly affected by the dynamic changes in the graph. We should however

point out that it seems to lightly affect the efficiency of the algorithm in highly

clustered graphs.

In Fig. 3.16 we see the efficiency of the algorithm for the horizon+hops

criterion. We should notice again that the use of the activation threshold does not

harm the algorithm, except in the case of the graph with high clustering

coefficient and for a horizon value greater than 1. However, as we have seen

62

Figure 3.14: Performance (efficiency) of
the algorithm on a dynamic graph for the
horizon criterion.

Figure 3.15: Performance (efficiency) of
the algorithm on a dynamic graph for the
hops criterion.

Figure 3.16: Performance (efficiency) of
the algorithm on a dynamic graph for the
horizon + hops criterion.

Chapter 3

before, there is not reason to use a horizon value larger than 1. Again, the change

rate does not affect the measurements for groups of nodes, since the reason for

the low efficiency at high change rates is the fact that the nodes spent most of

their lifetime in the warm-up phase.

3.6 Summary

We presented the feedback-based algorithm, an innovative method which

reduces significantly the number of duplicates produced by flooding while

maintaining high network coverage. The algorithm monitors the percentage of

duplicates on each connection during a warm-up phase, and directs traffic to

connections that do not produce excessive number of duplicates during the

execution phase. In order for this approach to work, each network node groups

together the rest of the nodes according to some criteria, so that nodes that

produce many duplicates on its incident edges are in different groups than those

that produce only few duplicates. The efficiency of the algorithm was

demonstrated through extensive simulation on random and small-world graphs.

The experiments involved graphs of 2000 nodes. The feedback-based algorithm

was shown to reduce to less than 20% the number of duplicates of flooding while

conserving network coverage above 80%. The memory requirements in each

node are much less compared to the algorithm that constructs shortest paths trees

from each network node. The efficiency of our algorithm was demonstrated on

static and dynamic graphs.

63

Chapter 4

Chapter 4

Partitioning Unstructured P2P
Systems to Improve Resource
Location

4.1 Introduction

The aim of the work presented in this Chapter is to improve the

scalability of flooding by reducing the number of peers that need to be contacted

on each request (and thus the traffic cost in messages, be it duplicate or not)

without decreasing the probability of query success (accuracy of the search

method). The proposed method partitions the Ultrapeer overlay network into

distinct subnetworks. Using a simple hash-based categorization of keywords the

Ultrapeer overlay network is partitioned into a relatively small number of distinct

subnetworks. In general unstructured P2P networks are indirectly supplied with

some information about the possible location of each resource. By employing a

novel index splitting technique each Leaf peer is effectively connected to each

different subnetwork. The search space of each individual flooding is restricted

to a single partition, thus the search space is considerably limited. This reduces

the overwhelming volume of traffic produced by flooding without affecting at all
64

Chapter 4

the accuracy of the search method (network coverage). Experimental results

demonstrate the efficiency of the proposed method.

4.2 Related Work

In an effort to alleviate the large volumes of unnecessary traffic produced

during flooding several variations have been proposed. Schemes like Directed

Breadth First Search (DBFS) [25] forward requests only to those peers that have

often provided results to past requests, under the assumption that they will

continue to do so. Interest-based schemes, like [23] and [18] aim to cluster

together (make neighbourhoods of) peers with similar content, under the

assumption that those peers are better suited to provide to each other's needs.

Both those systems try to contact peers that have a higher probability of

containing the re-quested information. Such schemes usually exhibit small gains

over traditional flooding.

Another approach that has been used in the literature to make resource

location in unstructured P2P systems more efficient is the partitioning of the

overlay network into subnetworks using content categorization methods. A

different subnetwork is formed for each content category. Each subnetwork

connects all peers that posses files belonging to the corresponding category.

Subnetworks are not necessarily distinct. A system that exploits this approach is

the Semantic Overlay Networks (SONs) [19]. SONs use a semantic

categorization of music files based on the music genre they belong to. The main

drawback of this method is the semantic categorization of the content. In file

-sharing systems for instance, music files rarely contain information about the

genre they belong to and when they do so, each of them probably uses a different

categorization of music. In SONs, an already existing, online, music

categorization database is used. This database adds a centralized component in

the operation of the net-work. Notice that 1-hop replication can be employed in
65

Chapter 4

conjunction with this scheme, inside each subnetwork. However, the fact that

each peer may belong to more than one subnetwork, reduces the average degree

of each subnetwork and thus, the efficiency of the 1-hop replication.

4.3 The Partitions Design

The system we propose in this Chapter allows for the partitioning of any

type of content. More specifically, we propose the formation of categories based

on easily applicable rules. Such a simple rule is to apply a uniform hash function

on each keyword describing the files. This hash function maps each keyword to

an integer, from a small set of integers. Each integer defines a different category.

We thus categorize the keywords instead of the content (files) itself. Given a

small set of integers, it is very likely that each peer will contain at least one

keyword from each possible category.

Unstructured P2P systems like Gnutella 2 [14] employ a 2-tier structure.

In those systems Ultrapeers form a random overlay network, while Leaf nodes

are connected to Ultrapeers only. Each Leaf sends to the Ultrapeers it is

connected to, its index in the form of a (compressed) bloom filter. Ultrapeers

flood queries to the overlay network on the Leave's behalf. Flooding is only

performed at the Ultrapeer level where 1-hop replication is implemented.

Whenever an Ultrapeer receives a request this is specifically forwarded only

down to those Leaves that contain the desired information (except in the case of

false positives). Fig. 2.4 shows a schematic representation of the 2-tier

architecture.

66

Chapter 4

The keyword categorization method is used in 2-tier unstructured

systems. In the Partitions design, each Ultrapeer in the system is randomly and

uniformly assigned responsibility for a single keyword category, by randomly

selecting an integer from the range set of the hash function used to categorize the

key-words. Ultrapeers responsible for the same category form a distinct

subnetwork. Leaves connect to one Ultrapeer per subnetwork and send to it all

the keywords belonging to that category. Thus, an innovative index splitting

technique is used. Instead of each Leaf sending its entire index (in the form of a

bloom filter) to an Ultrapeer, each Leaf splits its index (keywords) based on the

defined categories and distributes it to one Ultrapeer per category. Notice that

peers operating as Ultrapeers also operate as Leaves at the same time (have a

dual role), since they connect as Leaves to Ultrapeers of other subnetworks, in

order to publish their content. Even though in this design each Leaf connects to

more than one Ultrapeers, the volume of information it transmits is roughly the

same since each part of its index is sent to a single Ultrapeer. Each Leaf node

sends to the Ultrapeer of a certain category all keywords that belong to the same

category (in the form of a bloom filter). Each Ultrapeer sends to its neighbouring

Ultrapeers all the aggregate indices of its Leaf nodes to implement 1-hop

replication. In Fig. 4.3 we can see a schematic representation of the Partitions

design.

67

Figure 4.1: Illustration of the Gnutella network and the Partitions design.

Chapter 4

This separation of Ultrapeers from content has the benefit of allowing

them to be responsible for a single keyword category. The benefit of this is two-

fold. First, it reduces the size of the subnetworks since they are completely

discrete (at least on the overlay level). Secondly, it allows each Ultrapeer to use

all its Ultrapeer connections to connect to other Ultrapeers of the same

subnetwork, increasing the efficiency of 1-hop replication at the Ultrapeer level.

There are, however, two obvious drawbacks to this design. The first one

is due to the fact that each Leaf connects to more than one Ultrapeers, one per

content category. Even though each Leaf sends the same amount of index data to

the Ultrapeers upon connection as before, albeit distributed, however it requires

more keep-alive messages to ensure that its Ultrapeers are still operating. Keep-

alive messages however are very small compared to the average Gnutella

protocol message. In addition, query traffic is used to indicate liveliness most of

the time, thus avoiding sending keep-alive messages. The second drawback

arises from the fact that each subnetwork contains information for a specific

keyword category. Requests however may contain more than one keywords and

each result should match all of them. Since each Ultrapeer is aware of all

keywords of its Leaves that belong to a specific category, it may forward a

request to some Leaf that contains one of the keywords but not all of them. This

68

Figure 4.3: Total number of messages
per flood for keyword-based searches

Figure 4.2: Total number of messages
per flood for hash-based searches

Chapter 4

fact reduces the efficiency of the 1-hop replication at the Ultrapeer level and at

the Ultrapeer to Leaf query propagation. This drawback is balanced in two ways.

The first is that even though the filtering is performed using one keyword only,

Leaves' bloom filters also contain one type of keywords only, making them more

sparse and thus reducing the probability of a false positive. Furthermore, the

most rare keyword can be used to direct the search, thus further increasing the

effectiveness of the search method. Finally, we also experimented with sending

the bloom filters with all keyword types to every Ultrapeer, regardless of

category, although Ultrapeers still extract and use only keywords of the same

category as their own to form their aggregate bloom filter in order to implement

1-hop replication.

All these schemes have varying degrees of maintenance costs which we

explore in the next section using simulations.

4.4 Experimental Results

In this section, we shall present the results from the simulations we con-

ducted, in order to measure both the efficiency of the Partitions scheme in terms

of cost of flooding (in messages) and maintenance costs .

We assumed a peer population of 2 million, a number reported by

LimeWire Inc [15]. Each Ultrapeer in the Gnutella network serves 30 Leaves, a

number obtained from real-world measurements [24]. In addition, each peer

69

Ratio
No replication 4.2
Replication 5.5

Table 4: Flooding Efficiencies

Chapter 4

contains a number of files (and hence keywords) derived from a distribution also

obtained from real-world measurements in [22].

Each Ultrapeer in the Partitions design serves 300 Leaves since we

assume a number of 10 content categories and thus subnetworks. We perform a

large number of floods, each designed to return at least a thousand query results

before terminating. Table 4 shows the ratio of the average number of messages

per flood for the Partitions design over the average number of messages per flood

in Gnutella. Replication means that each Leaf sends all its keywords to all

Ultrapeers it is connected to, regardless of category. For example, in the case of

replication, flooding in the Partitions design generates 5. 5 times less messages

than flooding in Gnutella, in order to return the same number of results per

query. We can see that the drawback of filtering using only one keyword is

balanced by the fact that the sparser Leaf indices (since they contain only one

keyword category) produce less false positives, but mainly outweighed by the

message reduction due to the partitioning of the network and therefore the

reduction of the search space. We would like to emphasize that each Partitions

bloom filter (i.e. containing keywords of a certain category) has the length of a

70

Figure 4.5: Ultrapeer maintenance load
for hash-based searches

Figure 4.4: Ultrapeer maintenance load
for keyword-based searches

Chapter 4

Gnutella bloom filter. Thus, one can roughly think of all the bloom filters of a

single Partitions leaf as a (distributed) Gnutella bloom filter of 10 times the

length (due to the 10 category types). However the bandwidth needed to transfer

such a bloom filter is not 10 times that of a Gnutella bloom filter, mainly because

sparser bloom filters are compressed more efficiently.

In order to measure the maintenance cost of Gnutella and Partitions, we

focus on the operation of a single Ultrapeer, because the load of Leaves is

negligible in both systems compared to a Ultrapeers load since flooding is

performed at the Ultrapeer overlay. In both cases we simulated three hours in the

life of a single Ultrapeer, with Leaves coming and going. Each time a Leaf is

connecting to the Ultrapeer, it sends its index information, which is propagated

by the Ultrapeer to its thirty Ultrapeer neighbours. In addition, we assumed that,

periodically , each Ultrapeer receives a small keep-alive message from each Leaf

and replies with a similar message to each one of them, unless a query and a

reply were exchange during the specified period. For each communication taking

place, we measured the incoming or outgoing traffic in bytes, in order to estimate

the bandwidth requirements. For each Ultrapeer, we measure query load (traffic

containing only flood messages and replies), maintenance load (overlay upkeep

traffic) and traffic load (the sum of both).

71

Figure 4.6: # of queries per second for
keyword-based searches Figure 4.7: # of queries per second for

hash-based searches

Chapter 4

There are two modifications in this scenario, between Gnutella and

Partitions. In Partitions, the number of Leaves is 300. In addition, the process of

computing the size of the index information sent to the Ultrapeer differs greatly.

In the case of Gnutella, we have used the code by LimeWire [15], the most

popular Gnutella client, to construct the bloom filter of each Leaf. We first

randomly decided on the number of files shared by each Leaf, based on the file

sharing distribution per peer presented in [22]. We then extracted this number of

files from a list of file-names obtained from the network by a Gnutella crawler

developed in our lab. Those file-names were fed to the LimeWire bloom filter

generation code, which produced the corresponding bloom filter in compressed

form, i.e., the way it is sent over the network by LimeWire servents. Thus we

constructed the actual bloom filter, although what we really need in this case is

just its size. In the case of Partitions, we likewise computed the number of files to

be shared by each Leaf. We extracted again the same number of file-names from

the list of available file-names.

We subdivided the Partitions scheme depending on the form of the index

information sent by Leaves to Ultrapeers. Two experiments were run with the

Partitions scheme using bloom filters. In the first, each bloom filter sent to an

Ultrapeer only contained appropriate keywords (of the same category as the

72

 Figure 4.8: Ultrapeer aggregate traffic
for hash-based searches

Figure 4.9: Ultrapeer aggregate traffic
for keyword-based searches

Chapter 4

corresponding Ultrapeer). In the second experiment, we used replication, i.e.

each bloom filter contained all the keywords of the Leaf, regardless of category.

In addition, positions of keywords of the corresponding category as the Ultrapeer

were set in the bloom filter to the value of two in stead of one. (This bloom filter

essentially distinguishes between keywords of the appropriate category and the

rest of the categories).

Figs. 4.4 and 4.5 show the results of the simulation for the cost of

maintaining the structures of Gnutella and Partitions, without any query (flood)

traffic. From this figure it is obvious that, as expected, the maintenance cost of

partitions is higher than that of Gnutella. As we will see in the next paragraph the

gains incurred during the operational phase of the two systems outweighs the

increased maintenance costs.

We then focused our attention to the query traffic load. Measurements

showed that, on the average, each Ultrapeer generates 36 queries per hour (i.e.,

queries initiated by itself or its Leaves). This adds up to approximately 2000

queries per second generated anywhere in the Gnutella network. In addition, we

observed a large number of Gnutella queries in order to find the distribution of

the number of keywords in each query. Thus, according to those observations,

during the simulations we assumed that 20% of the queries contain 1 keyword,

30% contain two, another 20% contain three and finally a 30% contain 4

keywords. In addition, we performed the same experiments, this time assuming

hash- based searches. File-sharing applications allow the search of a file, based

on the hash value of its contents, in order to locate copies of the same file. This

enables multi-source transfer of the file. These searches are, in essence, 1-

keyword searches. All types of graphs in this Chapter come in pairs, describing

the same experiment, one assuming keyword-based queries and the other

assuming hash-based queries.

In our simulation, we assumed that the aim of each flood (both in

Gnutella and Partitions) is to reach the entire network, or produce a fixed number

of results, whichever comes first. As we mentioned before, such a flood that aims

to reach the entire network would need to reach 1/10th of the Gnutella's network
73

Chapter 4

(or a Partitions' subnetwork) during all hops of flooding except the last. This

means that the Ultrapeer in our simulations has a probability of 0.1 to receiving

each query. In addition, every time this does not occur, it has another opportunity

to receive the query during the last hop, depending on its bloom filter (in case the

searched keywords match in the bloom filter). Should the Ultrapeer receive a

query, it is assumed to propagate it to its Leaves, again depending on their bloom

filters or index (again depending on a possible keyword match by the bloom

filter). Figs. 4.8 and 4.9 show the comparison in the traffic load of Gnutella and

Partitions, including maintenance and query traffic. We used a size of 40 bytes

for each query. In reality, the size of a query can be up to a few hundred bytes, if

XML extensions are used. This means that the performance gains described here

are smaller compared to the ones we expect to see in the real world. In addition,

for every 1400 bytes for each message sent, we added 40 bytes for the TCP and

IP header. From these figures it is evident that Partit ions outperform Gnutella in

operational costs, in every case. Finally in Figs. 4.6 and 4.7 one can see the query

traffic load alone (without the maintenance traffic) for both the Gnutella and the

Partitions Ultrapeer.

4.5 Summary

In this Chapter, we have described a novel approach to reducing the

message costs of querying in unstructured networks. The method exploits the

partitioning of random overlay networks into a small number of distinct

subnetworks based on easily applicable rules. The method allows for the

categorization of any type of content. Extensive simulations have been performed

and demonstrated that the benefits obtained from our scheme can be as high as an

order of magnitude compared to the Gnutella fooding.

74

Chapter 5

Chapter 5
Innocuous Topology Awareness for
Unstructured P2P Networks

5.1 Introduction

One of the most critical design aspects of any P2P system is the overlay

layer, that is a virtual network of interconnected peers (P2P client-servers)

through (and on top of) the underlying IP network. The structure of this overlay

network is tightly coupled with the search algorithm, which is usually the main

function of a P2P system. This means that the network structure is such as to

enable and facilitate this function, which also means that there are rules

governing which peers are connected to which peers.This is more apparent in the

case of structured P2P systems, where the structure of the overlay network is

such as to allow for a binary-tree like search to be performed, which requires a

logarithmic (O(logN)) search cost in the number of messages.

On the other hand, unstructured systems, by definition, do not impose a

specific structure on the overlay. Each peer is free to connect to any other

(available) peer. Even though this lack of structure denotes a large degree of

freedom in the creation of the overlay, we will show that this is misleading. Most

75

Chapter 5

mechanisms used widely in unstructured P2P systems today, actually rely on this

random selection of neighbours (the peers to connect to), regardless of their

distance and position in the IP network. This leads to a complete lack of

correlation between the t wo respective distances (IP network and overlay),

wherein lies the problem we aim to rectify.

So, either structured or unstructured, all P2P systems have their own

design goals on overlay creation, which do not include taking into consideration

the structure of the underlying physical network, the Internet. As a result, most

P2P systems make an inefficient use of the IP layer, which has adverse impact

not only on their own operation but also on the operation of the other

applications, which co-exist on the same medium (the Internet). Some proposals

have already been published, which aim to rectify this. Most of them rely on the

freedom of peers in unstructured neighbours to connect to any peer they want, in

order to create an overlay which better matches the IP layer. However, as we

mentioned and will show, this freedom to choose any peer as neighbor is more of

a requirement than actual freedom. This means that showing any preference,

during neighbourhood selection, on peers depending on their position and

distance in the IP network violates this requirement, and thus, we argue, these

approaches greatly affect some of the most fundamental characteristics of P2P

systems that we mentioned in Chapter 1.

The obliviousness of P2P systems to the underlying network has two

main drawbacks. The first is that the average latency between any two neighbors

on the P2P overlay is increased since each peer does not actively try to connect to

peers which are closer at the IP layer and/or have smaller latency. The second

and most important drawback is that the IP path behind each P2P overlay

connection contains a large number of routers. This means that even a single, 1-

hop, message between neighbors (at the P2P overlay) may travel through many

routers and autonomous systems before it reaches its destination. Figure 5.1

illustrates such a simple scenario, where a message from peer A to peer C crosses

the Atlantic twice before it reaches peer C on the same continent as peer A. This

inefficient routing, is one of the main reasons behind the observed domination of

76

Chapter 5

P2P traffic in the Internet [50], [51]. An obvious solution to this problem is to

have each peer connect to those peers which are closest to itself, in terms of

latency, while maintaining a small number of further links to avoid overlay

partitioning. However this would create an overlay with a higher degree of

structure (clustering), which will have a negative impact on the mechanisms

employed in unstructured P2P networks.

In this Chapter, we aim to solve this canandrum. We propose ITA, an

algorithm for Innocuous Topology Aware construction, which provides

unstructured P2P overlay creation with a large degree of topology awareness,

while at the same time taking into consideration the impact the proposed changes

will have on the rest of the mechanisms employed in unstructured P2P systems.

It is able to do so by building a random graph of random graphs, therefore

preserving, in a sense, the random nature of the overlay, while at the same time

allowing for the existence of ”neighborhoods”, allowing peers to randomly

connect to nearby peers. We use a diverse set of metrics to experimentally

evaluate out proposal and to give a complete view of its impact on the system's

operation. The results we obtain include a 50% reduction in search latency, a

20% reduction in the number of IP messages and a significant (approx also 50%)

reduction on the load of the IP network routers. ITA is shown to have no

77

Figure 5.1: Illustration of inefficient routing in
today´s unstructured P2P systems

Chapter 5

negative impact whatsoever on the 1-hop replication and the dynamic querying

mechanisms.

5.2 Related Work

One of the main drawbacks of unstructured P2P systems is the limitation

of their scalability due to the large number of messages generated by their search

mechanism, called flooding. This is evident in the fact that a large part of the

existing literature aims at reducing those messages [46], [53], [36], [32].

However, the vast majority of this work is concerned with reducing the number

of the overlay messages, even though a single overlay message usually translates

to several IP messages. This abstraction has been shown to be problematic for the

network layer.

In the case of structured systems, some work has been carried out aiming

to address this problem, even though the possibilities are limited since there are

specific requirements for the neighbour selection of each peer. Due to the more

rigid structure of those systems, one has less freedom on how to rewire the

connections in the system to allow for greater topology awareness. In [33] the

authors propose the selection of the closest (latency-wise) neighbour whenever

there are more than one choices. This approach can be applied in systems like

Pastry [49], Kademlia [44], and Tapestry [56]. However, in systems like Chord

[54] and CAN [47], each neighbour is uniquely defined.

Our work focuses on unstructured systems, which are not as sensitive to

changes in the overlay creation. Topology awareness algorithms that have been

proposed for unstructured systems, such as [39], [41], aim at constructing a

generic, topologically aware overlay, and thus do not describe any mechanism

for efficiently searching on that overlay. In addition, the constructed graph has a

high clustering degree, which predicates that the mechanisms already employed

78

Chapter 5

in unstructured P2P systems and which depend on a random overlay to function

properly, will experience a high loss in efficiency. In particular, the authors of

[39] describe an overlay graph creation method, which is based on having each

peer connect to those other peers with which it has the longest common domain

suffix. Some random links are also maintained in order to avoid the partitioning

of the network. In addition to the drawbacks common to all approaches which

increase topology awareness by reducing the randomness of the graph this

approach has an additional disadvantage. The graph that is formed is comprised

of neighborhoods of diverse sizes, since not all domains have the same peer

population. This makes the choice for a universal value for the Time−To−Live

(TTL) difficult. The same holds for the systems described in [40], [45], where the

neighborhoods are defined by the IP addresses instead of the domain names. In

flood-based P2P systems, the TTL value is critical for the efficient operation of

the system and is directly connected not only its scalability but also its

operational success. A TTL value which is appropriate for some of the

neighborhoods can be inefficient for others, leading to either failure to locate

content, or to the generation of a large number of duplicate messages. ITA

constructs randomly connected “neighborhoods” of roughly equal size, which

means that one TTL value “fits all”.

In [35], the authors use synthetic coordinates to create

neighbourhoods of close-by, in terms of latency, peers. Their simulations were

performed on a network which comprised of 92 IP-layer nodes and included 42

overlay peers. This small network size makes it difficult to reveal the

real benefit of the algorithm. In addition, in experiments of this scale

it would be difficult to notice the effect of the increased clustering in the flooding

mechanisms. In [41], overlay creation is inspired by the k-median algorithm, in

order to, again, construct neighborhoods of nearby, latency-wise peers and thus

reduce the average latency of any path between any two peers in the overlay.

This theoretical algorithm appears to be computationally expensive since it

requires knowledge of the entire overlay topology to function. Furthermore, as

the overlay changes from the departure and arrival of peers, the algorithm needs

79

Chapter 5

to continuously adjust the overlay in order to maintain its efficiency. The work

described in [52] is a follow-up of [41]. The algorithm still needs to be active all

the time to preserve the structure of the network. In addition, the main focus of

this work is on the construction of an efficient graph for general use, as is the

case for the work described in [42], [43], so there is no descrption on how to

search the overlay. We focus on how to efficiently construct an overlay with low

clustering that maintains the beneficial properties of random graphs and leads to

efficient informati on lookup. Finally, an interesting work is presented in [55].

The method described limits the reorganization of the network to add topology

awareness in a 2-hop neighborhood for each peer. ITA constructs the entire

overlay from the beginning to allow for the desired topology-awareness.

As we mentioned, any method used to construct and the resulting

structure of the overlay is tightly coupled with the other mechanisms at work in a

P2P system. In existing P2P systems this is especially true for the mechanisms

that comprise the search-lookup function. The works we just mentioned does not

take into consideration the impact of the proposed methods on those widely

deployed mechanisms such as 1-hop replication and dynamic querying. ITA

functions without affecting them in any way, which means that there is no trade-

off. Any increase in topology awareness comes at no-cost. In addition, most of

the aforemention work requires that each peer continuously executes the

topology-awareness algorithm to adopt to changes in the P2P overlay. This is

mainly because most of the aforementioned proposed methods try to connect

each peer to its closest possible neighbors. This set however changes

dynamically in time, due to the churn in the network. ITA only requires a simple

and quick bootstrapping process, after which it can continue to function

unaffected by the churn of the system. Furthermore, this continuous operation of

most of the aforementioned proposed methods requires each peer to continuously

probe the network in case some new, closest peer has joined, imposing additional

traffic in the network and burden on each peer.

The most recent related work can be found in [81]. In this work, they

describe an algorithm for creating an overlay with constant delay between any

80

Chapter 5

two peers in the network. They compare their algorithms to two other state-of-

the-art algorithms, which they show to out-perform. Their algorithm works in the

following fashion: Each peer maintains a number of small random ids. In

addition, it samples the network by contacting a number of random peers and

initiating a walk from each one, by following peers of decreasing ids, towards the

peer with the minimum id in the network. The peers with the lowest latency are

chosen as neighbours. We chose this algorithm to compare with ITA latency-

wise. Experimental results show that ITA obtains lower latency between peers. In

addition, as we shall describe, ITA requires a constant number of samples to

create the overlay, whereas Hsiao et al. Algorithm requires a number of samples,

which is logarithmic to the number of peers in the system.

Finally, most of the existing literature focuses on reducing the IP latency

of queries. We evaluate our work using a variety of metrics including IP latency

reduction, IP message reduction, and the traffic load placed on each rout er in the

underling IP network. The latter we believe to be a crucial, often neglected,

metric in current widely deployed P2P systems.

5.3 ITA Design

This section contains a detailed description of the parts that comprise the

design of our ITA algorithm. We then present a discussion and analysis of the

advantages which arise from it.

Overlay construction

The ultimate objective of the bootstrapping algorithm is to create for each

peer a number of randomly selected short connections to closer (but not the

closest) peers and the same number of randomly selected long connections to
81

Chapter 5

distant peers. The definition of the “short” and “long” connections is based on

parameter α ≤ 1 which constitutes the basic and most fundamental parameter of

the algorithm. Let N be the total number of peers in the networks. Each peer A

that bootstraps to the network selects its “short” connections randomly among its

α ∗N closer (latency wise) peers, while it selects its “long” connections

randomly among the (1 −α) ∗N more distant (latency wise) peers.

To implement this method, each peer A calculates a (latency related)

threshold value x directly dependant on parameter α. Given the value of

parameter α ≤ 1, each peer A that bootstraps to the network approximates a

threshold value x so that the number of peers whose latency to A is less than x is

α ∗ N . In other words, if C is the set of all peers P for which it holds that

latency(A, P) ≤ x, peer A calculates its threshold value x so that |C| = α ∗ N .

Since the latency from each peer to all other peers cannot be measured, the

calculation of the threshold value x is approximated by having each peer A make

latency measurements to 30/α randomly selected peers. A proof is provided in

Proposition 3 below, which shows that this number of latency samples leads to a

good threshold approximation.

Proposition 3: Each peer needs 30/α latency measure-ments to other

peers in order to approximate threshold x such that |C| = α ∗ N for given α ≤ 1,

with accuracy 95%.

Proof: A peer belongs to C with probability α. To obtain a good threshold

approximation, we will select a peer in C that is among the 0.1*|C| peers whose

latency is closer to the threshold value. The number of peers which are closer to

the threshold according to our choice is 0.1 ∗α∗|C| = α′ ∗|C|. The probability

that a single randomly selected peer belongs to that space is α′ = 0.1∗α. The

probability that neither one of n randomly selected peers belong to that space is

(1 − α′)N ≃ e-a'*n. To approximate the threshold with accuracy 95% we need

which concludes the proof.
82

Chapter 5

So, each peer needs 30/α latency measurement samples to approximate

the threshold. In [5], it has been shown that the last peers of k random walks of

logN length comprise a uniformly random selection of k peers.

During the sampling measurements, peer A can connect randomly to

begin its operation, without having to wait for the end of the of the sampling

procedure.

In addition, the Vivaldi coordinate system [34] can be used to facilitate

and speed-up the bootstrapping process. Vivaldi is a P2P network coordinate

system which can assign a 3-dimensional coordinate to a host. The Euclidian

distance between two Vivaldi points (corresponding to two hosts) is an

approximation of their latency. Thus, each message broadcast by any peer can

contain its Vivaldi coordinates. A bootstrapping peer A can monitor incoming

traffic, collect 30/α Vivaldi coordinates and thus compute the threshold value x.

Ultrapeers today are reached by at least fifty query messages per second, making

the threshold calculation this way a matter of seconds.

It should also be noted that, unless the structure and capacity of the

network changes significantly, the threshold value remains unchanged, and so

does not need to be recalculated each time the peer joins the overlay. After a

threshold value has been obtained, peer A connects to 2/α neighbors in the

following fashion

• It connects randomly to 1/α peers, all of which belong to C (i.e.: any

peers with a latency lower than the threshold value). These links are

called short links.

• It also connects randomly to 1/α other peers, which do not belong to

C. These are called long links.

To illustrate, let's assume that parameter α is set to 0.1. This means that C

contains approximately 0.1 ∗ N nodes of all the nodes (peers) in the system.

Note that the set C is, of course, different for each peer. Each peer A will create

1/α = 10 short links randomly selected among the 10% closer to A peers (i.e.

among the peers in A′s C set), and the same number of long links randomly
83

Chapter 5

selected from the 90% further peers. The number of sample measurements

required for the calculation of the threshold, in this case, is 30/α = 300. Not only

it take a few seconds to perform this number of RTT measurements, it only takes

place once, and not every time a peer (re-)connects in the system.

Search algorithm

Search is conducted in the following fashion:

• The Initiator peer floods its long links with TTL = 1.

• Each of the peers that receives the flood over a long link

(and the Initiator peer) initiates a flood with a given TTL = ttl

(system parameter) over their short links only.

The long link peers which initiate the localized floods (over their short

links) use 1-hop replication as well as dynamic querying the same fashion it is

used in Gnutella today. Since short links are randomly connected the efficiency

of dynamic querying and 1-hop replication is guaranteed. Alternatively, Dynamic

Querying can be used on the long links level by sequentially sending a new flood

with increasing TTL, to each long link neighbour.

Analysis

The constructed graph, in conjunction with the described search method,

has the following advantages:

• Both the long link-based, system-wide graph and the short link-

based, local graphs are random, since each peer selects peers

(outside and inside C respectively) randomly for neighbors (i.e.

each peer, for instance, in C has the same probability of becoming a

short link peer of the same peer A). This enables both 1-hop

84

Chapter 5

replication and dynamic querying to operate as if they were

executed on a random graph.

• Since any peer in C can serve as short link (instead of opting for the

closest ones), the bootstrapping procedure is very fast and

lightweight. The same holds for the long links. As a result each peer

need only set up its neighbors once, regardless of arrivals and

departures elsewhere in the overlay, making ITA as little affected

by churn as Gnutella (i.e. a peer only needs to act when a neighbor

leaves the system by simply replacing it with another one, as in

Gnutella). This simplicity helps preserve almost intact the

unstructured nature and the simplicity of construction of the

overlay. What is more, if we tried to connect to the closest possible

peers, this would require each peer to be on the constant lookout for

some closer peer connecting (anywhere) to the network. This

constant probing (dependant on churn degree) would increase both

the traffic in the network and the computational load of the system.

In addition, the threshold value is only affected by changes in the

structure of the underlying IP network (which are not very frequent)

and not by changes in the P2P overlay, which are rather frequent.

So the value is calculated only once and not each time the peer

(re-)joins the network.

• (1 − α) ∗ N peers (furthest away at the IP layer) are excluded from

becoming short links, which means the proposed system is quite

aware of the underlying physical network topology. Increased

awareness in the form of a very small α (i.e. trying to connect to the

closest possible peers) would help us gain little but lose much, since

the small size of the local neighborhoods would lead to high

clustering.

85

Chapter 5

• Finally, all local clusters/neighbourhoods have the same size,

enabling the use of a single, system-wide TTL = ttl for flooding the

short links.

We have conducted experiments using three distinct values for α, namely

0.1, 0.05 and 0.033. These values correspond to a number of 10, 20 and 30 long

and the same number of short links. The above discussion justifies the reason for

not using smaller values. Values in this range are sufficient for excluding most of

the peers from the local “neighbourhood” set C of each peer, while being at the

same time large enough to allow large enough neighbourhoods for quick and

simple bootstrapping procedure (i.e. being able to quickly locate short-link

neighbors). The value of α also dictates the number of the long links, since there

are N/|C| = 1/α “neighbourhoods”. In addition, the use of 1/α long links is due to

the fact that the use of long links should only take place on the first hop, to avoid

extra delays in the flood process.

Finally, it is important to note that there is no 1-hop replication between

peers connected by long links, so there is no index information exchange. Thus,

the maintenance overhead for the additional 1/α long links very low.

86

Figure 5.2: Distribution of direct latencies between all
pairs of peers

Chapter 5

5.4 Experimental results

In order to verify the arguments made in the previous section, we

performed several experiments comparing our system with Gnutella, at its peak

usage population (approximately 2 million users) [31]. We performed the

comparison with Gnutella 0.6, which employs a 2-tier architecture [38], focusing

on the Ultrapeer layer where flooding occurs. The metrics upon which our

comparison was based were selected to capture the design goals of IT A, namely

87

Figure 5.4: x coordinate Figure 5.3: y coordinate

Figure 5.5: z coordinate

Figures 5.4, 5.5, 5.6. Actual values and
approximation distribution for the three
coordinates

Chapter 5

to satisfy users by allowing them to get the same number of search query results

faster by reducing query response time, and to satisfy ISPs by reducing the load

imposed on their routers.

We also compared our system latency-wise with the most recent

algorithm we could find in the literature, proposed in [81] by Hsiao et al. Each

peer in the proposed algorithm also samples the network, in a different function,

to locate peers with lower latency in order to connect to. That number of samples

is however relative to the natural logarithm of the total number of peers in the

system. In our algorithm, the number of samples is constant, regardless of the

size of the network.

88

Figure 5.6: Average degree = 10 Figure 5.7: Average degree = 20

Figure 5.8: Average degree = 30

Figures 5.6, 5.7, 5.8. Flood reach for
given number of messages.

Chapter 5

We simulated a network of 200,000 peers, which is a realistic number for

the size of the Ultrapeer overlay in Gnutella according to LimeWire [30], the

company that developed the most popular Gnutella client today [77]. We also

used three average degree values for the overlay, namely 30 (which is the

average number of connections in a Gnutella Ultrapeer today), 20 and 10. These

three numbers correspond to the number of connections per peer in the Gnutella

simulations and the number of short and long links in the simulations of the IT A

algorithm. Note that since the long links are only used during the first hop of

flooding, whereas the short links are used during the second and the remaining

hops, the outbound degree during any flood hop is the same both in Gnutella and

ITA, even though our algorithm uses double the number of links (short and long).

89

Figure 5.11: Average degree = 30

Figures 5.9, 5.10, 5.11. Time required
by a flood versus the percentage of
nodes reached.

Figure 5.10: Average degree = 20Figure 5.9: Average degree = 10

Chapter 5

We performed a large number of floods, in each experiment, with varying TTL

values, resulting in a range of the ratio of the peers reached by the flood. For

each TTL value we performed 100 floods and averaged the results. We compare

ITA and Gnutella using three different metrics. The first metric is the latency of

the connections of the peers, which affects the duration of a flood. We measure

the average time it takes for a flood to complete, for different TTL values. The

second metric is the number of IP messages generated during a single flood. We

measure the average number of IP messages generated during floods of

increasing TTLs. Finally, the last metric is the standard deviation of the message

load imposed on the routers that comprise the IP layer of the Internet. We argue

that a reduction in the total number of IP messages in the whole network is of

little use if there exist a small number of bottleneck routers whose traffic load

remains the same as before. As we mentioned above, the key goals of the IT A

algorithm is to benefit both the P2P application and other applications sharing

the same medium, the Internet. First though, we prove that the injection of

topology awareness in the overlay construction has not affected the

“randomness” of the system.

The random nature of the constructed overlay is indicated by the extent of

the reach of a flood for given number of messages. This is because on a clustered

graph, as shown in Figure 2.8, duplicate messages appear even from the second

hop of the flood. Since duplicate messages, by definition, arrive at a peer which

has already received another flood message, they do not add to the reach of the

entire flood. Figures 5.6, 5.7 and 5.8 show the similarity between the Gnutella

overlay (random graph), the Hsiao and the overlay constructed by ITA with

respect to flooding. The close fit of all curves on the the graphs shows that the

flood reach is the same using the same number of messages. This means that ITA

can provide reduced latency and reduced router load benefits (see below) without

affecting 1-hop replication, dynamic querying, and the self-* properties on which

Gnutella-like systems depend for their performance. It should be noted here that

latencies between neighbours in this experiment were modelled the same way as

in the Latency experiments described next.

90

Chapter 5

Latency experiments

In order to model the 200,000 by 200,000 latencies between our

simulation peers, we obtained approx. 1000 real-world Vivaldi coordinates.

Those 3D coordinates were produced by the Vivaldi project experiments on

PlanetLab [34]. We then calculated a distribution which best fits the values

observed in those coordinates and we generated 200,000 Vivaldi coordinates

using this distribution, thus being able to model the latency between any pair of

the 200,000 peers. Figures 5.3, 5.4 and 5.5 show the values of the original

Vivaldi coordinates as well as the distributions generated from our

approximation distribution. The close fit is an assurance that our randomly

generated coordinates closely reflect real-world Vivaldi coordinates. Given the

200,000 x 200,000 latency matrix we generated, Figure 5.2 shows the

distribution of the latency for an optimal full mesh graph where each peer has a

direct overlay connection to each other peer. The figure shows that the average

latency between any two peers is 90 time units.

Figures 5.9, 5.10 and 5.11 provide the experiment results for the first

metric the time required for a single flood to conclude. They show the time it

takes to flood the network, for given node coverage. We can see that for any

desired coverage, the time it takes for our system to reach that number of peers

91

Figure 5.12: Diameter (in hops) of different
neighborhood sizes

Chapter 5

is, on average, at most half the time for Gnutella flooding. Note that the

measured time reflects the time from the beginning of the flood until even the

last message generated by that particular flood expires. On the other hand, even

though the Hsiao et al. algorithm does reduce the time for a flood, compared to

Gnutella, it still requires more time than ITA.

There are two reasons for measuring flood duration rather than average

response time for a search query. First, a reduction by half in flood duration

implies a similar reduction in average query response time. What is more

important however, is the fact that it is common for a flood to still be active and

being propagated in the network, even though no new results are (and are going

92

Figure 5.15: Average degree =20Figure 5.13: Average degree =10

Figures 5.13, 5.14, 5.15. IP messages
generated by a flood versus the
percentage of nodes reached. Router-
level

Figure 5.14: Average degree =30

Chapter 5

to be) provided to the user, so minimizing flood duration when possible is

important. Given a constant rate by which new queries enter the network, by

measuring the time it takes for a single flood to complete to the last message, we

show that IT A doubles the exit rate of floods from the network. This means that

ITA doesn't only reduce the number of IP messages per flood and divide traffic

load more evenly among routers (as we will show in the next section), but also

reduces the build-up of queues in the router buffers.

93

Figure 5.16: Average degree = 10 Figure 5.17: Average degree = 20

Figure 5.18: Average degree = 30

Figures 5.22, 5.23, 5.24. Ratio of
standard deviation of router load
reduction. Router-level

Chapter 5

IP layer experiments

In this section we focus on the impact the ITA algorithm has on the IP

layer. In order to perform simulations including the IP layer we obtained the

latest trace of the router-level topology of the Internet from CAIDA [28]. This

trace was publicly released in 2010 and it contais a much larger number of

routers than the previous one. This trace initially contained approximately 33

million routers. However, we decided to remove the 1-degree routers (leaf
94

Figure 5.20: Average degree =10 Figure 5.19: Average degree =20

Figure 5.21: Average degree =30

Figures 5.19, 5.20, 5.21. Standard
deviation of router traffic loads versus
the percentage of nodes reached.
Router-level

Chapter 5

routers) for two reasons. The first is the fact that performing simulations with this

numbe r of routers was time (and probably memory) prohibiting. In addition, the

existence of leaf routers in the IP topology would not add to the accuracy of the

simulation results. By pruning those routers, we ended up with the much more

managable dataset of 1.2 million routers. This dataset, in addition to making

simulations feasible, still retains the structure of the Internet intact. In addition, it

still is about six times larger than the previous CAIDA dataset and hundrends

times larger than most of the router graphs used in similar simulations in the

literature we have described.

In order to be more thorough in the evaluation of our algorithm, we also

performed the same number of experiments at the AS layer. We also obtained an

AS-level graph from CAIDA. This dataset contained approximately 30.000

Autonomous Systems. By obtaining the number of subnets for each AS from the

95

Figure 5.23: Average degree = 20

Figure 5.24: Average degree = 30

Figures 5.16, 5.17, 5.18. Ratio of IP
message reduction. Router-level

Figure 5.22: Average degree = 10

Chapter 5

Internet Assigned Numbers Authority (IANA) [29], we were able to extract an

AS population distribution, which we used to assign peers to each AS in our

simulation.

In the IP layer experiments, both on the router and AS level, we used

again 200,000 peers, each of which was randomly assigned to a router in the

router-level graph, or AS in the AS-level graph. Since the CAIDA datasets do not

contain latencies, we approximated the latencies with the number of IP hops

between any two peers. Thus, each peer tries to form short links with those other

peers whose routers are clocse to its own at the IP layer. Again, we do that by

96

Figure 5.25: Average degree = 10 Figure 5.26: Average degree = 20

Figure 5.27: Average degree = 30

Figures 5.25, 5.26, 5.27. IP messages
generated by a flood versus the
percentage of nodes reached. AS-level

Chapter 5

obtaining the α ∗ 100% of all routers which are closest to our own router. Long

links are again formed randomly, as are short links in a given neighborhood.

Some measurements on the formed overlay show that the average number of

routers in a Gnutella direct link between two peers is 6.9. In contrast, the same

number for ITA's long links is 7 and for the short links it is 5.5. As we shall see

below, we can expect a reduction of messages on the order of 15% to 25% (≃ (7

− 5.5)/7). Given the percentage of the routers which can be reached for a single

TTL value, which is shown in Figure 5.12, the average values we mentioned

make a lot of sense. This figure shows the ratio of all peers that can be reached

for a given hop distance. This shows that the vast majority of routers need to

97

Figure 5.28: Average degree = 10

Figure 5.30: Average degree = 30

Standard deviation of router traffic
loads versus the percentage of nodes
reached. AS-level

Figure 5.29: Average degree = 20

Chapter 5

traverse a chain of at least 3 hops before they start encountering more than one

per hop routers. This means that 4 is, more or less, a minimum value for a short

link, imposing a lower bound on the reduction of IP messages that we can

accomplish.

After running the simulations, which included performing several floods

from random peers, with several TTL values to obtain coverage percentages

ranging from 0 to 1, we obtained the following results on the router level: Figures

5.13, 5.14 and 5.15 illustrate the reduction in the number of IP messages for

floods of various lengths. As one can see, the expected reduction that is observed

is in the range of 15% to 25%. Figures 5.16, 5.17 and 5.18 show the reduction of

the IP messages generated by ITA, compared to Gnutella. They show that, on

average, 20% of the Gnutella IP messages, on the router graph experiments, are

absent from the ITA experiments. Figures 5.25, 5.26 and 5.27 display the results

of the similar experiments, albeit conducted in the AS level. The similarity of the

results provide a good argument for their consistency.

Another important metric for the efficiency of any topology-aware

overlay construction algorithm is the traffic load dis tribution across the routers

in the system. Any reduction in the total number of IP messages is of little use if

the number of messages forwarded by a small number of (possibly core) routers

remains unchanged. For this reason, we plotted the standard deviation in the

traffic load of all routers, again for floods of different sizes. Figures 5.19, 5.20

and 5.21 show that ITA reduces the standard deviation approximately by 40% to

50% on the router level graph. Similarly, Figures 5.22 through 5.24 show the

relative reduction in the standard deviation of router loads. This means that there

is a reduction in the effect of bottle-necks in the network. The same experimental

results on the AS level are presented in figures 5.28, 5.29 and 5.30. In addition,

we measured the traffic load for the most heavily used router, which ITA also

cuts down by half, reducing the bottleneck effect on the routers.

 Finally, we would like to note the stability of the aforementioned

reductions in all floods performed, regardless of TTL value, meaning that even

for floods of smaller reach, the algorithm is still beneficial. In addition, it should
98

Chapter 5

be noted that, in order to implement this algorithm, there is no need to change the

Gnutella communication protocol itself, but rather only new versions of servents

are only required.

5.5 Summary

In this Chapter, we presented ITA algorithm, a novel approach for

injecting topology awareness into unstructured Gnutella-like P2P systems, while

maintaining the self-* properties of the overlay topologies that are highly

desirable in these systems. ITA reduces to half the time required for a search

query to achieve a particular network coverage compared to the latest version of

the widely deployed Gnutella. It also outperforms a recently proposed, state-of-

the-art algorithm for topology awareness. Moreover, ITA reduces the number of

IP messages generated during a search query flood by as much as 25%, which is

a significant reduction for ISPs who care about the load imposed on their routers

and its effect on the performance of other applications. Finally, there is an

additional reduction by approximately by half on the standard deviation of router

loads.

99

Chapter 6

Chapter 6

Conclusions –
Future Directions

Unstructured P2P systems present a strong design paradigm for the

development of global-scale distributed applications and systems. Their self-

organizing and self-healing capabilities can provide a system with increased

scalability and robustness, characteristics important to any design. Their main

drawback has been the inefficient routing of messages, both on the overlay and

on the underlying network layers. In this dissertation, we aimed at tackling

several faces of this problem.

Messages exchanged between peers can follow several alternate paths to

reach the same destination peer. This ensures the receipt of the message and

increases system robustness. It also however generates a large number of

redundant messages due to the same peer receiving the same message from

alternate paths. We developed a distributed algorithm which detects the paths

followed by those redundant messages and chokes those paths, reducing the

number of redundant messages by 90% while experiencing a loss of only 10% in

system coverage. We also showed this algorithm to be efficient even in the face

of constant changes in the system, due to the dynamic nature of the P2P systems.

100

Chapter 6

In addition, we proposed a new overlay creation and search method,

which tries to reduce the amount of overlay traffic required per query. By

dividing the participants of the system into sub-groups and assigning each group

responsibility for indexing a part of the total system content, we have made it

possible to achieve the same query satisfaction success with approximately 8

times less traffic, while at the same time maintaining the unstructured, loose

nature of the system, which provides it with its excellent self-healing capabilities.

Finally, we focused on the cooperation of the system with its underlying

network medium, namely the IP layer. Given the fact that a single P2P overlay

message between two peers can be translated into many IP messages, we

presented an algorithm for overlay creation and search (complementary to the

previous one), which attempts to add topology awareness to the overlay of the

P2P system, without harming its random nature. As a result, we achieved a more

than half reduction in the time required for the execution of a query. In addition,

we achieved an IP messages reduction of about 20% and at the same time, a

more than half reduction of the standard deviation of router loads among all

Internet routers.

We believe that all these proposals combined together present a

significant reduction in the traffic generated by unstructured P2P systems in the

world today.

All in all, we strongly believe Peer-to-Peer systems to continue to be an

important paradigm in the design of future large-scale distributed systems. Even

though the industry seems to favour centralized designs for the time being, for

reasons such as security and control, we believe that in the future more

applications will look forward to exploiting the large power and resources

contained in the sheer number of end-users. This fact will reshape the nature of

Peer-to-Peer systems, as new applications with different needs appear, leading to

the emergence of new problems requiring solutions in the field.

Already P2P systems are used today for more than file-sharing.

BitTorrent and Skype, two of the most widely used P2P systems, both enable the

101

Chapter 6

use of bandwidth sharing. Future systems have already been proposed that will

allow users to share storage space with each other, such as PAST [82] and

OceanStore [83]. The P2P paradigm will expand in the future to include such

diverse applications, as Video Conferencing, Location-based services in Mobile

Ad Hoc Networks (MANET), as well as Context-Aware Services and

anonymous yet secure e-commerce.

Several research issues can be solved first, in order to enable P2P

Systems to spread to a wide range of applications. These topics include more

research in overlay optimization and resource allocation to guarantee Quality of

Services in P2P Systems.

More incentives need to be injected into future systems to reduce the

number of free-riding peers.

Another interesting topic is the development of semantic searches, which

will increase the richness in query formulation and enable more precise and

meaningful searches.

A decentralized reputation mechanism has been researched since the

advent of P2P systems, however an effective, accurate and deployable

mechanism has yet to be proposed.

Another very interesting topic would be the interoperability of similar

P2P based applications, such as different file-sharing systems.

102

Thesis publications
1. Charis Papadakis, Paraskevi Fragopoulou, Elias Athanasopoulos,

Evangelos Markatos, Marios Dikaiakos and Alexandros Labrinidis:

A Feedback Based Approach to Reduce Duplicate Messages in

Unstructured Peer-to-Peer Systems. In Integrated Research in GRID

Computing, pages 103-118, Springer, 2007. ISBN: 978-0-387-

47656-8

(Editors: Sergei Gorlatch and Marco Danelutto)

2. Harris Papadakis, Paraskevi Fragopoulou, Evangelos P. Markatos,

Marios D. Dikaiakos, Alexandros Labrinidis. Hash-Based Overlay

Partitioning in Unstructured Peer-to-Peer Systems. In Parallel

Processing Letters, 19(1), pp. 57-71, 2009.

3. Harris Papadakis, Mema Roussopoulos, Paraskevi Fragopoulou and

Evangelos P. Markatos. Imbuing unstructured P2P systems with

non-intrusive topology awareness. In Proceedings of the 9th ΙΕΕΕ

International Conference on Peer-to-Peer Computing. September

2009, Seattle.

4. Harris Papadakis, Paolo Trunfio, Domenico Talia and Paraskevi

Fragopoulou. An Experimental Evaluation of the DQ-DHT

Algorithm in a Grid Information Service In Proceedings of the

CoreGRID ERCIM Working Group Workshop on Grids, P2P and

Service Computing. Held in conjunction With EuroPAR 2009,

August 2009.

103

5. Agostino Forestiero, Carlo Mastroianni, Harris Papadakis,

Paraskevi Fragopoulou, Alberto Troisi, Eugenio Zimeo, A Scalable

Architecture for Discovery and Composition in P2P Service

Networks, 2008 CoreGRID Integration Workshop, Heraklion-Crete,

Greece.

6. Harris Papadakis, Paolo Trunfio, Domenico Talia and Paraskevi

Fragopoulou. Design and Implementation of a Hybrid P2P-based

Grid Resource Discovery System. In Proceedings of the CoreGRID

Workshop on Grid Programming Models, Grid and P2P System

Architecture, Grid Systems, Tools and Environments. Heraklion,

Crete, Greece June 12-13, 2007. Also appered in Making Grids

Work, Springer, USA, 2008, ISBN: 978-0-387-78447-2.

(Editors: Marco Danelutto, Paraskevi Fragopoulou and Vladimir

Getov)

7. Harris Papadakis, Paraskevi Fragopoulou, Marios Dikaiakos,

Alexandros Labrinidis and Evangelos Markatos. Divide Et Impera:

Partitioning Unstructured Peer-to-Peer Systems to Improve

Resource Location. In Proceedings of the 2nd CoreGRID

Integration Workshop, October 2006. Also appeared in

Achievements in European Research on Grid Systems, pages 1-12.

Springer, 2008. ISBN: 978-0-387-72811-7

8. Peer-to-Peer resource discovery in Grids: Models and systems,

Trunfio, P., Talia, D., Papadakis, H., Fragopoulou, P., Mordacchini,

M., Pennanen, M., Popov, K., Vlassov, V., Haridi, S. Future

Generation Computer Systems, volume 23, issue 7, year 2007, pp.

864 – 878

9. Demetrios Zeinalipour-Yazti, Harris Papadakis, Chryssis Georgiou,

Marios D. Dikaiakos: Metadata Ranking and Pruning for Failure

Detection in Grids. Parallel Processing Letters 18(3): 371-390

(2008)

104

105

Bibliography
[1] Y. Chawathe, S. Ratnasamy, and L. Breslau. Making Gnutella-like P2P Systems
Scalable. ACM SIGCOMM, 2003.

[2] A. Crespo and H. Garcia-Molina. Routing Indices for Peer-to-Peer Systems. Int.
Conf. Distributed Comp. Systems, 2002.

[3] Garrett Hardin,"The Tragedy of the Commons,"Science, Vol. 162, No. 3859
(December 13, 1968), pp. 1243-1248.

[4] Duncan, J. Watts, and S. H. Strongatz. Collective Dynamics of Small-world
Networks. Nature, 393:440-442, 1998.

[5] C. Gkantsidis, M. Mihail, and A.Saberi. Hybrid Search Schemes for
Unstructured Peer-to-Peer Networks. IEEE INFOCOM, 2005.

[6] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and Replication in
Unstructured Peer-to-Peer Networks. Int. ACM Conf. Supercomputing, 2002.

[7] R. Manfredi and T. Klingberg. Gnutella 0.6 Specification, http://rfc-
gnutella.sourceforge.net/src/rfc-0 6-draft.html

[8] M. Ripenau, I. Foster, A. Iamnitchi, and A. Rogers. UMM: A Dynamically
Adaptive, Unstructured, Multicast Overlay. In Service Management and Self-
Organization in IP-based Networks, Dagstuhl Seminar Proceedings, 2005.

[9] Sharman Industries. Kazaa, http://www.kazaa.com

[10] K. Sripanidkulchai, B. Maggs, and H. Zhang. Efficient Content Location using
Interest-Based Locality in Peer-to-Peer Systems. IEEE INFOCOM, 2003.

[11] D. Tsoumakos and N. Roussopoulos. A Comparison of Peer-to-Peer Search
Methods. Int. Workshop on the Web and Databases, 2003.

[12] Z. Zhuang, Y. Liu, L. Xiao, and L.M. Ni. Hybrid Periodical Flooding in
Unstructured Peer-to-Peer Networks. Int.l Conf. Parallel Computing, 2003.

[13] D. Zeinalipour-Yazti, V. Kalogeraki, and D. Gunopulos. Exploiting Locality for
Scalable Information Retrieval in Peer-to-Peer Systems. Information Systems
Journal, 30(4):277-298, 2005.

[14] Gnutella 0.6 protocol specification.

106

http://rfc-gnutella.sourceforge.net/developer/stable/index.html

[15] Limewire Inc. http://www.limewire.com

[16] B.H.Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7):422–426, 1970.

[17] Y.Chawathe, S.Ratnasamy, L.Breslau,N. Lanham, and S. Shenker. Making
Gnutella-like P2P Systems Scalable. Proc. ACM SIGCOMM 2003 Conf. on
Applications, Technologies, Architectures, and Protocols for Computer
Communication, pp. 407-418, 2003.

[18] V.Cholvi P. Felber, and E.Biersack. Efficient search in unstructured peer-to-
peer networks. Proc. 16th ACM Symposium on Parallelism in Algorithms and
Architectures, 2004.

[19] A. Crespo and H. Garcia-Molina. Semantic overlay networks for p2p systems.
Technical report, 2002.

[20] C. Gkantsidis, M. Mihail, and A. Saberi. Hybrid search schemes for
unstructured peer-to-peer networks. Proc. of INFOCOM, 2005.

[21] C. Papadakis P. Fragopoulou E. Athanasopoulos M. Dikaiakos, A. Labrinidis,
and E. Markatos. A feedback-based approach to reduce duplicate messages in
unstructured peer-to-peer networks. Proc. of the CoreGRID Integration Workshop,
2005.

[22] R. Rejaie, Shanyu Zhao, and D. Stutzbach. Characterizing files in the modern
Gnutella network:Ameasurement study. Proc. SPIE/ACM Multimedia Computing
and Networking, 2006.

[23] K. Sripanidkulchai, B. Maggs, and H. Zhang. Efficient content location using
interest based locality in peer-to-peer systems. Proc. of INFOCOM, 2003.

[23] D. Stutzbach and R. Rejaie. Characterizing the two-tier gnutella topology. Proc.
of the ACM SIGMETRICS, Poster Session, 2005.

[25] B. Yang and H. Garcia-Molina. Improving search in peer-to-peer networks.
Proc. of the 22nd International Conference on Distributed Computing Systems
(ICDCS02), 2002.

[26] B. Yang and H. Garcia-Molina. Designing a Super-Peer Network. Proc. Int.
Conference on Data Engineering (ICDE 2003), pp. 49-60, 2003.

[27] Fisk, A. Gnutella Ultrapeer Query Routing, v. 0.1. LimeWire Inc. 2003

[28] Cooperative association for internet data analysis,

http://www.caida.org/home.

[29] The internet assigned numbers authority (iana), http://www.iana.org/.

[30] Limewire inc, http://www.limewire.com.

[31] E. Bangeman. Study: Bittorrent sees big growth, limewire still nr.1 p2p app. ars
technica, 2008.

107

[32] M. M. C. Gkantsidis and A. Saberi. Hybrid search schemes for unstructured
peer-to-peer networks. INFOCOM, 2005.

[33] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron. Proximity neighbor

selection in tree-based structured peer-to-peer overlays. Technical Report MSR-TR-
2003-52, Harvard, 2003.

[34] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A decentralized
network coordinate system. SIGCOMM, 2004.

[35] A. Dufour and L. Trajkovi´c. Improving gnutella network performance using
synthetic coordinates. In QShine ’06: Proceedings of the 3rd international
conference on Quality of service in heterogeneous wired/wireless networks, page 31,
New York, NY, USA, 2006. ACM.

[36] V. C. P. Felber and E. Biersack. Efficient search in unstructured peer-to-peer
networks. Proc. 16th ACM Symposium on Parallelism in Algorithms and
Architectures, 2004.

[37] A. Fisk. Gnutella ultrapeer query routing, v. 0.1. 2003.

[38] T. G. D. Forum. Gnutella 0.6 protocol specification.

[39] V. Kalogeraki, D. Gunopulos, and D. Zeinalipour-Yazti. A local search
mechanism for peer-to-peer networks. Proceedings of the 11th international
conference on Information and knowledge management, (CIKM02), page 300307,
2002.

[40] B. Krishnamurthy and J. Wang. Topology modeling via cluster graphs.
SIGCOMM Internet Measurement Workshop, 2001.

[41] N. Laoutaris, G. Smaragdakis, A. Bestavros, and J. Byers. Implications

of selfish neighbor selection in overlay networks. IEEE INFOCOM, 2007.

[42] Z. Li and P. Mohapatra. Impact of topology on overlay routing service. IEEE
INFOCOM, 2004.

[42] Y. Liu, H. Zhang, W. Gong, and D. F. Towsley. On the interaction between
overlay routing and underlay routing. IEEE INFOCOM, 2005.

[43] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information
system based on the xor metric. IPTPS02, 2002.

[44] V. Padmanabhan and L. Subramanian. An investigation of geographic mapping
techniques for internet hosts. ACM SIGCOMM, 2001.

[45] H. Papadakis, P. Fragopoulou, M. Dikaiakos, A. Labrinidis, and E. Markatos.
Divide et impera: Partitioning unstructured peer-to-peer systems to improve resource
location. Achievements in European Research on Grid Systems CoreGRID
Integration Workshop 2006 (Selected Papers), 2007.

[46] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A scalable
content-addressable network. In SIGCOMM ’01: Proceedings of the 2001
conference on Applications, technologies, architectures, and protocols for computer
communications, pages 161–172, New York, NY, USA, 2001. ACM.

108

[47] C. Rohrs. Query routing for the gnutella network. 2001.

[48] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location,
and routing for large-scale peer-to-peer systems. IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware), pages 329–350, 2001.

[49] S. Saroiu, K. P.Gummadi, R. J. Dunn, S. D. Gribble, and H. M. Levy. An
analysis of internet content delivery systems. 5th Symposium on Operating Systems
Design and Implementation, 2002.

[50] S. Sen and J.Wang. Analyzing peer-to-peer traffic across large networks. ACM
SIGCOMM Internet Measurement Workshop, 2002.

[51] G. Smaragdakis, N. Laoutaris, A. Bestavros, J. W. Byers, and M. Roussopoulos.

Egoist: Overlay routing using selfish neighbor selection. BUCS-TR-2007-013, 2007.

[52] K. Sripanidkulchai, B. Maggs, and H. Zhang. Efficient content location using
interest-based locality in peer-to-peer systems. INFOCOM, 2003.

[53] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A
scalable Peer-To-Peer lookup service for internet applications. Proceedings of the
2001 ACM SIGCOMM Conference, pages 149–160, 2001.

[54] L. Yunhao, X. Li, L. Xiaomei, N. L. M., and Z. Xiaodong. Location awareness
in unstructured peer-to-peer systems. Parallel and Distributed Systems, IEEE
Transactions on, 16(2):163–174, 2005.

[55] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An infrastructure
for fault-tolerant wide-area location and routing. Technical Report UCB/CSD-01-
1141, UC Berkeley, 2001.

[56] Garrett Hardin,"The Tragedy of the Commons,"Science, Vol. 162, No. 3859
(December 13, 1968), pp. 1243-1248.

[57] M. Cai, M. Frank, J. Chen, P. Szekely, MAAN: A multi-attribute addressable
network for Grid information services, in: Proc. 4th Int. 3 Workshop on Grid
Computing, GRID 2003, 2003, pp. 184–191.

[58] M. Cannataro, D. Talia, Semantics and knowledge Grids: Building the next-
generation Grid, IEEE Intelligent Systems 19 (1) (2004) 56–63.

[59] H. Chen, H. Jin, X. Ning, Semantic Peer-to-Peer overlay for efficient content
locating, in: Proc. Int. Work. on Advanced Web and Network Technologies, APWeb
2006, 2006, pp. 545–554.

[60] A. Crespo, H. Garcia-Molina, Routing indices for Peer-to-Peer systems, in:
Proc. 22nd Int. Conf. on Distributed Computing Systems, ICDCS’02, 2002, pp. 23–
30.

[61] A. Crespo, H. Garcia-Molina, Semantic overlay networks for P2P systems,
Technical Report, Stanford University, 2003.

[62] F. Dabek, E. Brunskill, M. Frans Kaashoek, D.R. Karger, R. Morris, I. Stoica,
H. Balakrishnan, Building Peer-to-Peer systems with chord, a distributed lookup

109

service, in: Proc. 8th Workshop on Hot Topics in Operating Systems, HotOS-VIII,
2001, pp. 81–86.

[63] M. Frans Kaashoek, D.R. Karger, Koorde: A simple degree-optimal distributed
hash table, in: Proc. Second Int. Workshop on Peer-to-Peer Systems, IPTPS 2003,
2003, pp. 98–107.

[64] D. Heimbigner, Adapting publish/subscribe middleware to achieve Gnutella-
like functionality, in: Proc. 2001 ACM Symposium on Applied Computing, SAC,
2001, pp. 176–181.

[65] A. Iamnitchi, I.T. Foster, A Peer-to-Peer approach to resource location in Grid
environments, in: J. Weglarz, J. Nabrzyski, J. Schopf, M. Stroinski (Eds.), Grid
Resource Management, Kluwer, 2003.

[66] F.B. Kashani, C.C. Chen, C. Shahabi,WSPDS:Web services Peer-to-Peer
discovery service, in: Proc. Int. Conf. on Internet Computing, IC’04, 2004.

[67] Simon G.M. Koo, Karthik Kannan, C.S. George Lee, On neighbor-selection
strategy in hybrid Peer-to-Peer networks, Future Generation Computer Systems
(2006) 732–741.

[68] F.B. Kashani, C. Shahabi, Searchable querical data networks, in: Proc. First Int.
Workshop on Databases, Information Systems, and Peer-to-Peer Computing,
DBISP2P, in: LNCS, vol. 2944, Springer, 2003, pp. 17–32.

[69] W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz, M. Schlosser, I. Brunkhorst, A.
Looser, Super-peer-based routing and clustering strategies for RDF-based Peer-to-
Peer networks, in: Proc. 12th Int. Conf. World Wide Web, WWW ’03, 2003, pp.
536–543. 91

[70] D. Puppin, S. Moncelli, R. Baraglia, N. Tonelotto, F. Silvestri, A Grid
information service based on Peer-to-Peer, in: Proc. 11th Euro-Par Conf., Euro-Par
2005, in: LNCS, vol. 3648, Springer, 2005, pp. 454–464. 103

[71] A. Rowstron, P. Druschel, Pastry: Scalable, decentralized object location and
routing for large scale Peer-to-Peer systems, in: Proc. IFIP/ACM Int. Conf. on
Distributed Systems Platforms,Middleware 2001, in: LNCS, vol. 2218, Springer,
2001, pp. 329–350. 113

[72] C. Schmidt, M. Parashar, Flexible information discovery in decentralized
distributed systems, in: Proc. 12th Int. Symp. on High-Performance Distributed
Computing, HPDC-12 2003, 2003, pp. 226–235.

[73] A. Singla, C. Rohrs, Ultrapeers: Another step towards Gnutella scalability.
http://rfc-gnutella.sourceforge.net/src/Ultrapeers 1.0.html. 125

[74] John R. Douceur, The Sybil Attack. In Proceedings of IPTPS '01 Revised
Papers from the First International Workshop on Peer-to-Peer Systems. Springer-
Verlag London, UK, ISBN:3-540-44179-4

[75] Akamai Technologies, http://www.akamai.com/

110

http://www.akamai.com/

[76] On Death, Taxes, and the Convergence of Peer-to-Peer and Grid Computing.
Ian Foster and Adriana Iamnitchi, 2nd International Workshop on Peer-to-Peer
Systems (IPTPS'03), February 2003, Berkeley, CA

[77] Gnutella, http://en.wikipedia.org/wiki/Gnutella

[78] The Second Coming of Gnutella, http://www.xml.com/pub/r/1005

[79] Fan Li, Cao Pei, Almeida Jussara, Broder, Andrei (2000), "Summary Cache: A
Scalable Wide-Area Web Cache Sharing Protocol", IEEE/ACM Transactions on
Networking 8(3): 281–293, doi:10.1109/90.851975. A preliminary version appeared
at SIGCOMM '98.

[80] Bloom filiters wikipedia entry. http://en.wikipedia.org/wiki/Bloom_filter

[81] H.-C. Hsiao, H. Liao, and C.-C. Huang. Resolving the topology mismatch
problem in unstructured peer-to-peer networks. IEEE Transactions on Parallel and
Distributed Systems, 20:1668–1681, 2009.

[82] A. Rowstron and P. Druschel. Storage Management and Caching in PAST, a
Large-scale, Persistent Peer-to-Peer Storage Utility. 18th ACM SOSP01. 2001

[83] J. Krubiatowicz, D. Bindel, Y. Chen et al. OceanStore: An Architecture for
Global Scale Persistent Storage. Proceedings of the 9th International Conference on
Architecture Support for Programming Languages and Operating Systems. 2000.

111

http://dx.doi.org/10.1109%2F90.851975
http://en.wikipedia.org/wiki/Digital_object_identifier
http://en.wikipedia.org/wiki/Andrei_Broder

	DC-260-B0BF5A2608
	Dissertation(6973200931 ΠΑΠΑΔΑΚΗΣ)Χ4

