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Abstract

Recent years have seen the emergence of the deployment of many distributed 

systems of global scale. In addition, one of the age-long requirements and goals of 

distributed systems is the attainment of large degree of scalability, the ability of a 

system to cope with ever increasing number of participants. As one of the solutions 

to this problem, the Peer-to-Peer (P2P) paradigm was introduced and immediately 

received increasing attention. This leads to the quick evolution of the P2P systems, 

which  branched  out  into  two  main  categories,  namely  the  structured  and  the 

unstructured systems. Structured systems are based on a more sophisticated way of 

interconnection between the participants of the system, which enables more efficient 

communication primitives. At the same time, this rigidness limits the scalability of 

those systems. Unstructured systems, on the other hand, are based on a more loose 

interconnection structure. Although this structure makes it easier for those systems to 

scale  to global  deployment,  the communication primitives are  less  efficient,  thus 

limiting their scaling ability. In  this  thesis  we  present  an  effort  to  tackle  this 

problem of unstructured systems in many levels. We develop novel algorithms which 

enable the communication primitives of unstructured systems to better  scale to a 

higher number of participants by reducing the functional costs not only for the P2P 

system itself  but  also for the network medium used.  Contributions  of this  thesis 

include (i) a novel broadcast-like technique which generates a much smaller amount 

of network traffic, (ii)  a new participants interconnection structure which enables 

more sophisticated search methods without transforming an unstructured system to a 

structured one and (iii) another, complementary or stand-alone method to create the 

P2P overlay so as to allow the system to work in the same manner a before, but at 
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the same time reducing the traffic load imposed on the network medium used by the 

system.
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Περίληψη

Τα  τελευταία  χρόνια  αναπτύχθηκαν  πολλά  κατανεμημένα  συστήματα 

παγκόσμιας κλίμακας. Επιπλέον, χρόνια απαίτηση και στόχος των κατανεμημένων 

συστημάτων  είναι  η  επίτευξη  όσο  το  δυνατόν  μεγαλύτερου  βαθμού 

επεκτασιμότητας, της ικανότητας δηλαδή ενός συστήματος να ανταπεξέρχεται σε 

συνεχώς  αυξανόμενο  αριθμό  μελών.  Σαν  λύση  στο  θέμα  αυτό,  προτάθηκε  η 

φιλοσοφία των Ομότιμων Συστημάτων (ΟΣ)  και  αμέσως απέκτησε δημοτικότητα 

και την προσοχή της ερευνητικής κοινότητας. Αυτό οδήγησε στην γρήγορη εξέλιξη 

των ΟΣ, τα οποία διακλαδίστηκαν σε δύο βασικές κατηγορίες, τα δομημένα και τα 

μη-δομημένα  συστήματα.  Τα  δομημένα  συστήματα  βασίζονται  σε  μια  πιο 

πολύπλοκη  μέθοδο  διασύνδεσης  μεταξύ  των  μελών  του  συστήματος,  κάτι  που 

επιτρέπει  ποιο  αποτελεσματικές  βασικές  λειτουργίες  επικοινωνίας.  Παράλληλα 

όμως, αυτή η “ακαμψία” μειώνει την επεκτασιμότητα αυτών των συστημάτων. Τα 

μη-δομημενα συστήματα, από την άλλη μεριά, βασίζονται σε μια πιο χαλαρή δομή 

διασύνδεσης των μελών. Παρόλο που το γεγονός αυτό διευκολύνει τα συστήματα 

αυτά να επιτύχουν παγκόσμια ανάπτυξη, οι λειτουργίες επικοινωνίας είναι λιγότερο 

αποτελεσματικές,  με  αποτέλεσμα  να  μειώνεται  η  επεκτασιμότητα.

Σε  αυτή  την  διατριβή  θα  παρουσιάσουμε  μια  προσπάθεια  αντιμετώπισης 

αυτού  του  προβλήματος  σε  πολλά  επίπεδα.  Αναπτύξαμε  και  θα  παρουσιάσουμε 

πρωτότυπους αλγορίθμους που επιτρέπουν στις βασικές λειτουργίες επικοινωνίας να 

επιτύχουν μεγαλύτερο βαθμό επεκτασιμότητας μειώνοντας τα λειτουργικά κόστη όχι 

μόνο για το ίδιο το ΟΣ αλλά και για το μέσο επικοινωνίας που χρησιμοποιεί.  Οι 

συνεισφορές της παρούσας διατριβής συμπεριλαμβάνουν (i) μια πρωτότυπη τεχνική 

μαζικής επικοινωνίας που παράγει πολύ λιγότερο ποσό κίνησης στο δίκτυο, (ii) μια 

νέα δομή διασύνδεσης των μελών του συστήματος που επιτρέπει την ανάπτυξη ποιο 
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αποτελεσματικών μεθόδων αναζήτησης και επικοινωνίας, χωρίς να μετατρέπεται το 

όσο σύστημα από μη-δομημένο σε δομημένο και  (iii) μια,  είτε συμπληρωματική 

είναι  ανεξάρτητη,  μέθοδο  δημιουργίας  του  ΟΣ  που  επιτρέπει  στο  σύστημα  το 

λειτουργεί  με  τον  ίδιο  τρόπο  όπως  πριν  αλλά  παράγοντας  λιγότερη  κίνηση  στο 

δίκτυο.
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Chapter 1

Chapter 1

Introduction

1.1 Distributed Systems

Distributed  Systems  are  one  of  main  and  most  popular  fields  in  the 

Computer Science. The reason for this is multi-fold. From the need for greater 

computational power (Distributed and Grid computing), to the demand for ever-

increased robustness of the software systems, to the development of systems that 

require  a  distributed  solution  (computation  on  data  residing  at  disparate 

locations).   Distributed  Systems  is  a  broad  field  and  as  such,  many  broad 

definitions  have been defined..  We describe a system as distributed using the 

following definition:

A distributed system is comprised of autonomous computational entities  

that communicate with each other using some type of network.

In the case of the aforementioned field  of  Distributed  Computing,  the 

distributed system is comprised of computational units, which share the work 

load and exchange information with the purpose of reducing the time required for 

the execution of the computation. The appeal of Distributed Computing lies not 

only  in  the  appeal  of  increased  computational  power  but  also  in  the 
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performance/price  ratio  it  offers.  Generally  speaking  the  performance  of  a 

computer  does not increase linearly with its  price.  Therefore one can achieve 

better  performance for  the  same price,  employing  a  large  number  of  cheaper 

computers.  In  addition,  Distributed  Systems  generally  aim  at  (and  generally 

exhibit)  increased robustness, due to the fact that the comprising autonomous 

entities  fail  independently.  As  a  result,  when one  of  them fails,  most  of  the 

system still remains functional.  Finally, one could find a lot of systems which 

are inherently distributed  and thus  require  a  distributed  solution.  Those cases 

include such well-known systems in Computer Science as the World Wide Web, 

E-mail, FTP, DNS and lately Peer-to-Peer (P2P) systems. 

However, the most important case in favour of Distributed Systems is the 

need  of  people  around  the  world,  to  collaborate  and  and  share  information 

through their independent, scattered computers. This was the main reason for the 

creation of the Distributed Systems design paradigm of “Peer to Peer” (also P2P) 

systems.  P2P  systems  were  introduced  to  enable  the  design  of  global-wide 

systems comprised of large numbers of commodity computers and are the main 

subject of this dissertation.

Distribution introduced a large number of notions and issues in software 

design,  such as  multiple  points  of  both  control  and failure,  resource  sharing, 

transparency and so on. It also introduces a new kind of algorithm cost, besides 

those of space and time, which is the communication cost (i.e. the amount of data 

exchanged during the operation of the distributed system). The purpose of this 

dissertation,  which  we  will  describe  in  detail  further  on,  is  the  study of  the 

communications costs and mechanisms of a certain category of P2P systems.

2
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1.2 Peer-to-Peer Systems

In both the areas of Distributed and Parallel Systems, a popular trend has 

emerged over the last few years, based on the “power of the mass” notion. In 

Parallel  Systems  this  trend  was  incarnated  with  the  emergence  of  the  Grid 

Systems, whereas in the area of Distributed Systems emerged the Peer to peer 

(P2P) paradigm.  The main notion behind both the Grid systems and the P2P 

paradigm is the desire to utilize the enormous power contained in the sheer mass 

of simple desktop computers and end users, in many terms such as computation 

power and storage (file sharing). This idea has been made possible by the rapid 

increase in the speed of the network at the edges of the Internet, but is a natural 

evolution of the increasing trend in software evolution of  moving away from 

monolithic systems towards increasingly distributed ones. 

With  the  possible  exception  of  some  early  distributed  systems,  the 

majority of them was designed, for many years,  using the  Client/Server (C/S) 

paradigm.  In  this  design  philosophy,  the  entities  comprising  the  distributed 

system are divided into two categories/types. The servers, which are responsible 

for the provision of almost the entirety of the functionality of the system, and the 

clients,  which  simply  use  the  system,  without  providing  some  kind  of 

functionality.  This paradigm,  in  essence,  defines  a  one-to-many  relationship 

between the sever and its clients.  The P2P paradigm, which we will  describe 

next, is therefore the natural evolution of Distributed Systems since it allows for 

(m)any-to-(m)any relationships.

Figure 1.1: Client/Server vs P2P architecture
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Well-known  examples  of  distributed  systems,  which  were  developed 

based  on  the  C/S  paradigm include  the  World  Wide  Web  (web  servers  and 

browsers),  the  File  Transfer  Protocol  (FTP servers  and FTP clients)  and  the 

Domain Name System (DNS). Soon enough, however, the problems inherent in 

this paradigm became apparent.

The main disadvantage of this design paradigm is the limited degree of 

scalability it offers. It is a common fact that the number of clients in a system is 

much larger than the number of servers in it. This means that as the number of 

clients in the system increases, so will the work load of the servers. As a result, a 

given number of servers unavoidably has an upper limit in the number of clients 

they can serve.

In addition, servers comprise the Achilles’s heel of the distributed system. 

Since they implement and provide almost all the functionality of the system, a 

possible malfunction will often result in the cessation of operation of the whole 

system. This obviously conflicts with one of the main reasons of the existence of 

Distributed Systems, as we mentioned before, which is increased robustness and 

availability of the system. Even the use of a large number of replicated servers 

will not solve this issue, since usually all of them reside in the same geographic 

space  or  belong  to  the  same  authority.  As  a  result,  it  is  easier  to   for  the  

functionality of the system to be impaired either by accident (a malfunction in the 

network of the horsing site) or on purpose (a Denial of Service attack).

For these, and other reasons, the Peer-to-Peer paradigm was introduced. 

In the recent years there has been an increased interest in the P2P systems by the 

research community. Interestingly enough and in contrast to other research topics 

over the years, this field became popular among the research community after 

P2P applications had already been popular and in use around the world. This is 

therefore a paradigm which already has had an impact in the digital world even at 

its infancy. 

P2P systems are comprised by equal entities with similar, if not the same, 

functionality but also importance to the system. These entities are called “peers”. 

4



Chapter 1

Thus, each server also functions as a client, by requesting some service from the 

rest of the members of the system. At the same time, each clients also serves as a 

server,  by offering  resources  (computational  power,  storage space,  bandwidth 

e.t.c) and/or functionality to the system. This differentiation of the P2P systems 

from traditional distributed systems has several effects in the characteristics of a 

system based on the  P2P paradigm,  which  we will  describe  in  detail  next.   

1.3 Inherent Characteristics 

The term “peer to peer” prepositions that it describes a system where all 

individual  components  are  equal  in  the  tasks  they  perform.  However,  this 

equality can be interpreted in two ways, which lead to two different definitions. 

If this equality is interpreted as the fact that each peer both acts as a server and a 

client, one should label as P2P systems, those that rely on some central entity for 

coordination of the peers. On the other hand, a definition that demands complete 

equality in all aspects and functionalities would rule out systems such as Gnutella 

2, one of the most widely used and studied P2P systems today.

In our belief, a modified version of the second definition is closer to the 

truth. Thus, 

a peer-to-peer system is a distributed system where peers both offer and  

demand service and coordination is not based on a well-known authority. 

This  definition  rules  out  centralized  systems  while  still  allowing  for 

different roles in the system, provided that any peer may assume any role. 

The first and most important characteristic of a P2P system, scalability, is 

derived from the fact that each new peer joining the system, as mentioned before, 

offers services as well  as demanding them. Thus,  P2P systems are inherently 

more  scalable  than  traditional  client-server  systems.  One  important  thing  to 
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notice  here  is  that  in  order  for  a  P2P  system  to  be  scalable,  peers  should 

contribute not only in the sense of services offered but also in the work required 

for the coordination of the cooperating peers. This means that the peers need to 

share the load of the functionalities offered by the system. In this sense, as we 

said  before,  a  system  where  each  peer  does  offer  services  but  relies  on  a 

centralized  server  for  the coordination  of  the offer  with the  demand of those 

services, is not scalable and thus not pure P2P (e.g Napster). Peers offer both the 

computational  power  and  bandwidth  required  for  the  operation  of  the  P2P 

system.

Another important characteristic inherent in the P2P systems is, of course, 

decentralization.  Since,  according to  the  definition,  there  is  no  well  known, 

central authority there is no critical component for the operation of the system, a 

component,  which could  prove to  be  a  bottleneck.  This,  of  course,  is  a  very 

important aspect not only in terms of efficiency and scalability but also in terms 

of robustness, another important characteristic of P2P systems.

The  fact  that  no  peer  is  irreplaceable  leads  to  three  more  important 

characteristics of P2P systems, namely robustness, security and autonomy.

Apart from an increased degree of scalability, P2P systems are inherently 

more robust than their traditional counterparts. Possible malfunctions in parts of 

the system have a smaller, limited impact in the functionality of the system for 

many reasons. The peers that comprise the system are (in a large degree) equal 

and similar in their functionality. As a result, there is no “special” or unique part 

of the system, whose error-free operation is essential  to the well-being of the 

whole system, there is no role that any peer cannot assume when some other peer 

fails.  In  addition,  P2P  systems  are  usually  large-scaled  systems.  It  is  thus  a 

common characteristic of these systems, the entities which comprise them to be 

geographically distributed all over the globe. This means that any malfunction in 

some geographical area will only affect a small part of the system.
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This  robustness  also  offers  greater  resilience  and  security  against 

malicious  attacks  since there is  no central  point  of operation that  an attacker 

could attack in order to bring the system down or hamper its operation.

The  replace-ability  of  any  peer  also  offers  great  autonomy  to  the 

operation of the P2P system as a whole and each peer in particular. Each peer can 

come and go as it pleases. In fact,  one of the negative characteristics of P2P 

systems is the transient nature of their components, the fact that is that peers do 

come and go as they please.

 Indeed,  not  all  characteristics  inherent  in  the  P2P  paradigm  are 

beneficial. A P2P system is also very dynamic and unstable, since each peer is 

under the control of a different authority. No peer can be inherently deemed as 

dependable both in terms of lifetime but also in terms of the services it provides 

and its participation in the operation of the system.

Anonymity is  another  aspect  of  P2P  systems,  which  can  be  both 

beneficial and harmful. Since each peer is under different authority, it is difficult 

to track the identity of a peer. In many cases, the only thing that identifies a peer 

is  an  IP  address,  which  can  easily  be  changed  or  spoofed  [74].  This  is  an 

advantage  in  cases  where  anonymity  is  desirable  (for  instance,  to  avoid 

censorship) but also this is the main reason behind the existence of the free-riding 

effect,  where peers use the system without offering anything to it. Anonymity 

and autonomy make  it  very easy for  any peer  to  misbehave and hamper  the 

operation of the system. Peer-to-peer systems however owe their operation in the 

fact that disposability ensures than a large number of peers need to misbehave in 

order for the system to stop working and the majority of people do not generally 

want to harm the hand that feeds them. That is, people know that trying to take 

advantage of the system to get more out of it might mean that they end up getting 

nothing due to the collapse of the system.

A peer-to-peer  system is  also  usually  highly  heterogeneous in  many 

aspects such as the hardware every peer runs on, networking (connection speed, 

whether the peer is behind NATs, firewalls, etc), services offered and more. P2P 
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systems should not only take into account this heterogeneity but indeed try to 

take advantage of it.

In  addition  to  the  above,  it  is  important  to  note  another  kind  of 

characteristic of the P2P systems and that is their  better  performance to price 

ratio. As we mentioned before, according to the philosophy of the Client/Server 

paradigm,  a  small  number  of  servers  undertake  the  service  of  a  much  larger 

number of clients. As one can expect, this means that it is essential for the servers 

to be either as high-end equipment as possible and/or as many as possible, in 

order to cope with the increased load. This means an increased cost of obtaining 

and maintaining this equipment. 

On the other hand,  the majority of P2P systems are comprised of a large 

number of commodity computational units with less resources and capabilities 

but also greatly reduced cost. These units, apart from their low cost, usually have 

to do with computers already present (i.e. home and laboratory computers). As a 

result,  P2P  systems  also  allow  us  to  utilize  hardware  and  resources  already 

existent but under-utilized. Even if the hardware is not already in place, it can be 

acquired for a reduced price compared to the one required by the C/S paradigm.

1.4 Desirable characteristics

Despite  the  important  characteristics  already inherent  in  P2P systems, 

there are still more whose existence is required in an efficient, functional P2P 

system.

First of all, a P2P systems designer should take care not to nullify any of 

the  inherent  characteristics  mentioned  above.  For  instance,  the  flooding 

mechanism employed in Gnutella 1 [14] greatly reduced the  scalability of the 

system, even though Gnutella 1 was a purely decentralized P2P system. As we 

will  describe  below,  the  reason  for  this  is  that  even  though  the  available 
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bandwidth of the system increased with the addition of a new peer in the system,  

so did the cost of the flooding.

One  of  the  most  important  additional  aspects  of  a  P2P  system is,  of 

course,  efficiency. This is usually interpreted in quality of service and cost for 

each functionality of the P2P system. Costs are also usually divided into space 

and time costs, that is, the bandwidth and time required to perform any of the 

functionalities. 

Robustness is still  another issue,  depending on the architecture of the 

P2P  system.   Even  though  any  peer  could  take  the  place  of  a  failed  peer, 

information  residing  on  the  failed  peer  cannot  be  recovered  unless  by  some 

mechanism of the P2P system, designed for that purpose. If that information is 

critical to the operation of the system, the system itself is less robust.

Fairness is a very important aspect in the context of P2P system, where 

there is no trust. A correct P2P system needs to make sure that each peer offers to 

as  well  as  takes  advantage  of  the  system,  otherwise  many  of  the  above 

characteristics, such as scalability, are cancelled and the whole idea behind the 

P2P paradigm is nullified. One of the largest issued in P2P today is the problem 

of free-riding, where users participate in the system without offering to it. This 

effect is another instance of the “Tragedy of the Commons”, described by Garrett 

Hardin[3]. Fairness does not necessarily mean that everyone offers the same in 

the system. Rather, it means that a peer offers as much as it takes.

Another  desirable  characteristic  is  expressiveness.  Peers  requesting  a 

service need to locate it first and the querying and lookup mechanism offered by 

the system needs to allow of an expressive query language to support advanced 

queries.

Security is another issue with many facets. 

First of all, the system should protect the integrity of the data it holds. 

Malicious entities should not be able to substitute correct data with forged data; 

neither supply a requester with forged data. This is a very important issue in P2P 

systems today, since the whole idea of the P2P paradigm is the fact that the peers 
9
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depend on each other for the correct operation of the system.  On the other hand, 

however, as we said before, peers not only cannot be trusted, but also can usually 

remain anonymous and intractable. This makes it easy for a malicious peer to lie 

and disrupt the functionality of the system.

Another aspect of security is the control over the accessibility of data. 

The system needs to ensure that any kind of information is accessible only by 

authorized  peers.  Unauthorized  peers  should  be  aware  of  neither  the  data 

exchanged between two peers nor the peers which exchange the data, even if the 

unauthorized peers participate in the execution of the exchange. This is an aspect 

of security that the inherent anonymity in the P2P systems is helpful.

Recent research also showed that security in P2P systems needs to take 

into account not only attacks on the system itself,  but also any security holes 

which might  enable a malicious user to exploit  any global-scale system for a 

coordinated distributed, denial of service attack.

Another  important  aspect  of  the lack of some central  authority  is  that 

peers need to not only cooperate by themselves, in an ad-hoc fashion, but also 

need to cooperate to preserve the aforementioned characteristics. This means that 

peers need to organize themselves and self-heal the system. Peers need to have 

some distributed way of bootstrapping in the system. A P2P system is highly 

dynamic and peers need to be able to re-organize after addition or removal of a 

peer from the network. As we said, every peer is replaceable, however the system 

must be able to detect the failure or departure of a peer and replace it quickly and 

efficiently.

1.5 Uses of Ρ2Ρ Systems

The aforementioned advantages of P2P systems resulted in the use of this 

paradigm  in  a  large  number  of  applications,  during  the  few  years  since  its 
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introduction, applications whose majority has been deployed in a global-scale. 

The most well-known and popular example is the file-sharing applications, which 

allow their users to exchange their files directly, without the use of servers which 

would act either as index services or storage space providers. The file-sharing 

applications are the first type of application designed using the P2P paradigm, 

even though a number of people believe that this design philosophy pre-existed 

in older systems, albeit without being given a name. An example of this could 

well be the architecture of the Internet itself.

The P2P paradigm, as a distributed system design philosophy was also 

used  in  other  large-scale  applications,  such  as  the  Grid  Systems.  The  Grid 

Systems share many common goals with the P2P systems, like the joint use of 

computational, storage and other resources. Computational units, throughout the 

planet, under the authoritative charge of different entities, combine together to 

form a super-computer, which could be used by all participants. It was only thus 

expected  that  parts  of  the  Grid  Systems  would  be  designed  using  the  P2P 

paradigm.

Another  type  of  application  widely  using  the  P2P philosophy are  the 

Content Delivery Networks, such as Akamai Technologies[75].  Similar to the 

file-sharing applications these networks aim at the fastest delivery of content to 

their users. This content usually has to do with large files such as real-time video 

and sound. The storage space of the various computational entities that take part 

in the system is used in order to create and store replicas of the content. The 

request  for  the  delivery  of  any content  is  served  by the  peers  closest  to  the 

requester.

In the recent years, a revolution has taken place in the computer games 

industry, with the rapid spread of Massively Multi-player Online Games. Games 

of this kind aim at simulating virtual worlds containing millions of inhabitants-

users. The adoption of the P2P technology promises to allow the attainment of 

such an ambitious goal.
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There have been a number of other applications,  not readily related to 

P2P systems, which however have made successful use of the paradigm. A well-

known  example  of  such  an  application  is  the  Skype  application  for  online 

telephony.  In the context of this application,  the distributed philosophy of the 

P2P systems was used both in order to implement a distributed index of users as 

well as to enable the communication between users which both reside behind a 

Network Address Translator.

P2P philosophy was also naturally, easily and directly applied to the field 

of wireless sensor networks as well as the field of Ubiquitous computing.

In the case of sensor networks, algorithms designed for P2P systems are 

used with success, in order to facilitate the synchronization and cooperation of 

sensors with limitations regarding the radius beyond which it is impossible to 

transmit  and  receive  information.  These  networks  are  comprised  of  small 

computational  units  equipped  with  small  range  antennas.  These  units  work 

independently  and  cooperatively  in  a  loose  fashion,  in  order  to  achieve  a 

common goal.  Their  nature renders them ideal  for the application of the P2P 

paradigm.

As  far  as  Ubiquitous  computing  is  concerned,  they  are  similarly 

comprised  of  computational  units  of  small  scale  and reduced  power,  built  in 

objects of every-day use. These devices can communicate with one another and 

cooperate in a P2P fashion. Often, these devices' geographical condition changes 

all the time, and so, at each given moment, new groups are created and dissolved 

in an ad-hoc fashion, based on the proximity of these devices with one another.

1.6 Types of  Ρ2Ρ Systems

P2P  systems  are  divided  into  two  large  categories,  depending  on  the 

degree of structure they contain. Since P2P systems were created with the goal of 
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allowing applications to achieve global scale, it is not desirable (and often not 

possible) to require for peers to have global knowledge of the existence of every 

other peer in the system. Thus, each peer has a (very) limited (view) of the whole 

system and knowledge of a small subset of other peers, with which it is possible 

to directly communicate and cooperate.

The cooperation  links of peers form an overlay network,  which forms 

some kind of structure. The rigidity or looseness of this structure classifies the 

system in one of the two categories, the structured and the unstructured systems.

Unstructured Systems
As we mentioned before, since there is no one entity to single-handedly 

synchronize  the  peers,  each  one  is  aware  of  and  cooperates-communicates 

directly with a small number of peers (”neighbours”), which also serve as that 

peer's access to the rest of the system, with which there is no direct connection 

(i.e. the peers it is not directly aware of). In the case of unstructured systems, the 

choice of the neighbouring peers is almost random. Each peer in the system has 

equal probability of being chosen as neighbour by another peer. This fact has 

both positive and negative consequences for the operation of the system. The 

system created in such a fashion is simpler and therefore more robust in the face 

of things such as churn (i.e. the constant arrival and departure of peers in the 

system) and malicious attacks. At the same time, however, the simplicity inhibits 

the development of more sophisticated operations and functions based on this 

system.  For  example,  the  search  for  another  peer  for  instance,  is  done via  a 

broadcast-like search mechanism called “flooding”. In this mechanism, each peer 

forwards the search to all of its neighbouring peers, which in turn does the same, 

until  the  peer  in  question  is  located.  The  simplicity  of  the  overlay  network 

construction fails to provide any information about the location of the requested 

peer and so there is no way to direct the search. Thus, flooding may have to 

contact each and every peer in order to locate the one it is looking for. In order to 

avoid such a costly operation, a numeric limit is usually employed in order to 

limit the number of times a search is forwarded in the overlay network. However, 
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this comes at the cost of an increased possibility of failing to locate the requested 

peer.

Structured Systems
In the structured systems, on the other hand, there are specific rules which 

govern  the  connectivity  of  each  peer,  that  is  which  peers  are  suitable  as 

neighbours for each specific peer. Each structured system has its own rules, but 

they all have one thing in common. The utter purpose of the overlay creation 

rules is the construction of  an overlay network built in such a way as to allow the 

design and development of more complicated and efficient operations. The vast 

majority of these systems is based in the assignment of a single, unique, numeric 

identity to each peer in the system.  This identity defines an order among the 

participating  peers  and the neighbours  of  each  peer  are  chosen based on this 

ordering and the system's rules. Those rules are chosen as to, in essence, create a 

certain structure in the overlay, which in turn provides information regarding the 

location  of  the  requesting  peer  in  the  network.  This  directional  information 

makes possible the lookup of cooperation of any two peers in the system in a 

cheaper way than in unstructured systems. The cost for such a capability is that 

one ends up with a more complicated system, more sensitive both to the constant 

change in the system and the possibility of more complicated malicious attacks 

which may take advantage of the nature of the system's structure.

Structured versus Unstructured Systems
The research carried  out in  the context  of  this  dissertation  focuses on 

unstructured systems, due to the belief that the introduction of rigidity and too 

much structure in P2P systems contradicts some of the fundamental ideas in the 

P2P philosophy,  such as the high replacability for each peer.  For this reason, 

increased degree of structure has adverse effects in many of the systems' inherent 

and desirable characteristics, as we mentioned beforein the previous paragraph.

The global deployment of P2P systems designates the scalability issue as 

a very important one. Unstructured systems lack in this aspect due to the cost of 

the  operation  of  the  flooding mechanism.  On the  other  hand,  the  concept  of 
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scalability also includes other aspects such as tolerance and endurance to fast and 

continuous changes in the system, known in the bibliography as “churn”.

In  global  scale  systems  such  as  P2P  systems,  the  large  number  of 

participating  peers  means  that  the  actual  peers  which  comprise  the  system 

changes constantly. A robust system should be able to function normally not only 

in the face of problems but also under conditions which are normal for a global-

scale system such as heavy churn. Unstructured systems are good in this aspect 

due  to  their  excellent  self-healing  and  quick  re-organizational  capabilities  in 

cases of problems and/or changes. The following table summarizes a qualitative 

comparison of the two kinds of P2P systems, based on the following criteria:

• Scalability (in time): The time required for a lookup.

• Scalability (in traffic):  The number of network messages required 

for a lookup.

• Robustness: Resilience in many and quick changes in the structure 

of the system.

P2P System 
kind

Scalability (in 
time)

Scalability (in 
traffic)

Robustness

Unstructured O(logN) O(N) Yes
Structured O(logN) O(logN) No

As far as the scalability of the system in time and in traffic is concerned, 

the asymptotic notation we mention, assume a system of N peers. In addition, we 

assume an unstructured system which constructs a “random” overlay network, 

which will, therefore, have logarithmic diameter to the number of peers in the 

system.
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1.7 Problem Description 

Despite the aforementioned advantages of P2P systems, they themselves 

do  not  constitute  the  panacea  for  the  solution  of  every  distributed  systems 

problem. Fundamental role in this fact play the problems that still plaque P2P 

systems design. Those problems, which we will describe in this Section,  can be 

divided in  two basic  kinds.  Some of them steam from the nature of the P2P 

systems themselves while others do not. These issues usually have to do with 

desirable  characteristics  of  (distributed)  systems,  which  P2P  systems  at  the 

moment may lack, but appropriate research can introduce them.

A large  part  of  a  P2P  system is  the  communication  and  cooperation 

mechanisms among the peers which comprise it, P2P systems being, after all, a 

widely scaled distributed system. As a result, many of the open issues in P2P 

systems have to do with the way peers exchange information with one another. 

At  this  point,  we shall  describe  and analyse  some open  issues  regarding  the 

routing of messages and the efficiency of the cooperation capabilities offered by 

unstructured P2P systems today.

Scalability
As mentioned before, one of the key goals of P2P systems is to allow for 

a distributed system to achieve global-scale deployment. It is therefore obvious 

that scalability is one of the most important issues. In unstructured systems, any 

limitations in scalability exist in the communication mechanisms, having to do 

with the amount of traffic generated in the network. A high amount of traffic is 

generated  during  the  operation  of  unstructured  systems,  which  limits  their 

scalability, which is due to more than one reasons.

The first reason is the fact that the flooding process used most often in 

these systems generates a number of messages between peers which increases 

exponentially with each forwarding from neighbour to neighbour. This number 
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essentially equals with the average number of neighbours per peer to the power 

of the times the flooding messages were forwarded.

This stems from the following: As mentioned earlier, each peer receiving 

a message which is part of a flood, forwards it to all its neighbours except the one 

it received it from. In addition, this only happens the first time each peer receives 

a  message  belonging  to  the  same  flood.  Additional  messages  are  simply 

discarded. These facts have two outcomes. Assuming an (average) number of d 

neighbours per peer, the first is that each peer will forwarded the flood message 

to d-1 neighbours. Given that the system is comprised of N peers in total, a total  

number of Ν*(d-1) messages will be sent throughout the system and during the 

execution of a single flood. In addition, in each (parallel) forwarding, the number 

of messages in transit increases by a factor of d-1, since each of the messages 

already in transit (and about to be forwarded again) will generate d-1 replicas 

which will be sent to the corresponding neighbours.

This is mostly due to the fact that unstructured systems offer almost no 

information  to  facilitate  the  search  for  a  specific  peer,  so  as  to  allow  the 
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communication of any two peers not directly aware of each other. As a result, 

any search mechanism would require at least  N messages to locate  a specific 

peer. As we have seen however, the number of messages exchanged during a 

single flood is N*(d-1). This means that there is a number of N*(d-2) messages 

which  are  not  necessary  in  order  for  the  flood  process  to  produce  the  same 

results. This is due to the fact that each peer will receive one flood message once 

from each of its neighbours. This of course allows for greater robustness of the 

whole  process,  since  this  redundancy ensures  that  each  peer  will  receive  the 

message  (unless  that  peer  is  completely  separated  from  the  entire  overlay 

network).   However,  as we have seen,  this  also generated  a  large number  of 

redundant, duplicate messages which each peer simply discards. We can see the 

amount of duplicate messages as a ratio of the total messages generated during 

each phase of the flood in the Figure 1.2.

It is therefore necessary to develop a method to reduce those duplicate 

messages, without sacrifices to the robustness of the flood process to churn.

The  second  cause  of  the  large  number  of  messages  in  unstructured 

systems is the fact that the almost total lack of structure does not allow for a 

more  sophisticated  and  efficient  lookup  mechanism,  as  a  replacement  to 
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flooding.  The  question  here  is  whether  we  can  manage  to  induce  such 

information  in  the  system  without  increasing  the  degree  of  structure,  which 

would move it to the structured systems category and deprive it of its excellent 

self-healing properties. Even though these two seem contradictory,  fortunately 

this is not the case, as we shall see in the work presented in this dissertation.

Finally,  often  in  P2P systems  research,  the  cost  of  a  communications 

mechanism is measured in the number of messages exchanged between peers. 

For the sake of simplicity,  the fact  that  a single message  between two peers 

corresponds  to  a  larger  number  of  IP  messages  is  usually  overlooked.  This 

disproportion between those two is due to the fact that peers which are directly 

connected with one another on the P2P network (and thus are neighbours) are not 

necessarily adjoin in the IP network. A simple example of this fact is illustrated 

in Figure 1.3, where peer B is a neighbour of both A and C. 

In this example, a broadcast initiated by peer A would have to cross the 

Atlantic twice, since peer C will receive the message through B. On the other 

hand, one could create a new neighbouring link between peer A and peer C and 

remove the direct connection between either peer A and peer B or peer B and 

peer C. In this manner, peer A's message will only cross the Atlantic once, to get 

to peer B, which is after all, unavoidable.

This lack of correlation  between P2P connectivity and IP connectivity 

creates  additional  traffic  in  the  actual  (IP)  network.  This  fact,  viewed  from 

bottom-up, means that even if we do not reduce the number of P2P messages, the 

introduction  of  a  higher  degree  of  correlation  between  the  P2P  and  the  IP 

networks will lead to a reduction in P2P system traffic nevertheless, since each 

P2P message will generate a smaller number of IP messages than before. 

As is the case with research generally however, there are some pitfalls 

which  must  be  taken  into  consideration.  As  we have  already mentioned,  the 

manner in which the overlay network of a P2P system is constructed is tightly 

coupled with the way lookup is performed in that system. Therefore, any changes 

in the rules of peer connectivity will have to take into consideration the rest of 

19



Chapter 1

the algorithms also operating in the same system and make sure these changes do 

not do more harm than good. 

1.8 Contribution and structure of 
this thesis

This thesis is organized as follows. Chapter 2 presents some necessary in 

depth  description  of  the  algorithms  widely used in  unstructured  P2P systems 

today. These algorithms already are an integral part of the systems. In Chapter 3 

we present an algorithm for the reduction of the duplicate messages generated 

during the flood process. We shall  show that the developed algorithm greatly 

reduces the number of redundant messages, without greatly affecting the reach of 

the flood, even in the face of heavy churn. Chapter 4 presents and analyzes a new 

scheme for adding location information in unstructured systems so as to allow for 

the  use  of  a  more  efficient  flood  lookup  which  generates  a  greatly  reduced 

number of messages compared to the original used today. We also show that this 

is possible without adding almost zero degree of structure to the system. Finally, 

Chapter 5 deals with the problem of P2P overlay and IP network discrepancy. 

We present a new way to create the P2P overlay as to increase the IP topology-

awareness of the P2P overlay, while again leaving the amount of structure in the 

system almost intact. 
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Chapter 2

Unstructured P2P 
Technologies and Systems

2.1 Introduction

Unstructured  P2P  systems  comprise  the  second  generation  of  P2P 

systems [76] (the first being the Napster architecture, which however did not fit  

our definition of P2P systems), which is the prevailing architecture in use today. 

The  vast  majority  of  P2P-based  systems  in  deployment  today  are  based  on 

unstructured systems and yet open issues still remain. One of the main reasons 

for this is that most of the systems in use today were developed by companies, 

without the participation of academia or in-depth research, or by a community of 

developers which worked on them in their  spare time. Even though there has 

been a third generation of P2P systems, the robustness and resilience exhibited 

by unstructured systems makes them still very popular. In this chapter we shall 

try to present the basic characteristics of those systems. Then, we shall present 

the technologies and mechanisms in use today in unstructured systems and give a 

description and analysis of their advantages and disadvantages.
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2.2 Common characteristics

The first purely decentralized,  unstructured P2P system to be deployed 

was  Gnutella  1  in  2000  [77].  Gnutella  1  was  a  file-sharing  network.  The 

architecture  employed  in  Gnutella  1  is  common  to  every  unstructured  P2P 

system.  Avoiding  the  existence  of  some  centralized  server,  the  network  was 

consisted of only equal, interconnected peers. Each peer was connected to and 

aware  of  a  small  number  of  other  peers,  called  neighbours.  Through  those 

neighbours,  the peer  was indirectly  connected to  the rest  of  the network.  All 

connections were bi-directional, meaning that is peer A is connected to peer B, 

likewise peer B is connected to A.

The ad-hoc nature of the unstructured systems dictates that, in principle, 

any peer should be able to connect to any other peer, assuming that the other peer 

would also want to connect to the first one. This fact makes the processes of both 

bootstrapping in  the network and replacing  a departed  neighbour very cheap, 

both in terms of time and messages (network load). Those advantages however, 

do come at a cost.

The most important function of a P2P system is the lookup mechanism. 

This functionality is used whenever a peer needs to find the location of some 

desirable  resource  in  the  network.  The  ad-hoc  and  transient  nature  of  the 

unstructured systems makes it very difficult  to have any clue as to where the 

resource  is  located.  This  forces  unstructured  P2P  systems  to  employ  some 

broadcast-like mechanism to implement the lookup process. The generic form of 

this broadcast-like mechanism is called flooding. Flooding was employed in its 

general form, which we present below, in Gnutella 1.

Each peer needs to query the network for two things. The first is new 

peers to  connect  to during its  bootstrapping process or when some of its  old 

neighbours have left the system. The second type of query is of course a query 

for a piece of shared data (in the case of Gnutella, a file). In both cases, with the 

absence of centralized index, each requesting peer asks its neighbours not only if 
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they contain the information it seeks but also requesting them to ask their own 

neighbours  on  its  behalf,  in  turn.  This  leads  to  a  Breadth-First-Search-like 

broadcast process, which was dubbed “Flooding”, which is illustrated in Figures 

2.1  to  2.3.  Flooding  is  necessary  in  systems  like  that,  since  there  is  no 

information about the location of any piece of data. Each peer may contain any 

kind of information and at the same time connect to anyone in the network. This 

kind of non-determinism makes unstructured systems highly resilient and robust 

at the same time however at the same time greatly reduces the scalability of the 

lookup process. The reason for this is that in order to locate some desired data or 

peer,  the requesting  peer  has  to  query the  entire  network.  The cost  of  doing 

exactly that increases with every new peer that joins the network. This was the 

reason for the meltdown of the Gnutella 1 network in 2001, with the demise of 

Napster. After Napster was shutdown, a large number of P2P users moved to the 

Gnutella  network,  increasing  its  size  beyond  the  limits  its  then  current 

architecture could cope with. The Gnutella network was saturated and could not 

operate [78]. This led to a redesign of the whole system and the introduction of 

some ideas to remedy the situation, ideas which we shall discuss shortly. 

As in every P2P network up to now, in order to connect to it, a would-be 

peer needs to be, in some way, aware of at least one peer already connected to 

the network. This fact holds for both unstructured and structured systems. This is 

usually done with the use of dedicated services, which peers query, to receive a 

list  of  recently  connected  peers.  The  use  of  this  service  by  some  peer 

automatically inserts it in that server’s list of recently connected peers. This is the 

only process in P2P systems today, which remains centralized,  even in purely 

decentralized  P2P systems.  The reason,  of  course,  is  that  if  that  service  was 

provided by some other P2P system, recursively, one would need to be aware of 

at least one peer in that system in order to use the service. However, this minimal 

degree of centralization is not a problem for two reasons. First, this service is 

very  lightweight,  meaning  that  any  server  can  serve  many  peers  without 

becoming a bottleneck in the rate at which peers enter the network. In addition, 

such a server can be set up anywhere, leading to the easy deployment of a large 
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number of said servers, which will share the load between them.  When a peer is 

finally aware of at least one already connected peer, it uses that peer to send a 

flood-search, looking for other peers in the network. Any peer that receives the 

flood and is willing to accept new neighbours sends back a reply. The joining 

peer then connects to them. If the number of neighbours is not satisfactory, the 

process is repeated.

Figure  2.1.  An  example  of  Gnutella  overlay 
network.  Black  lines  indicate  neighbour 
relationship. For example, A has B and C as its 
neighbours

Figure  2.2.  Client  A  makes  a  query  to  his 
neighbours B and C (red line). B and C forward 
the query to their neighbours (blue line), them to 
their neighbours (orange line) and so on

Figure  2.3.  Assuming that F contains the data A is 
looking for, the reply will follow the backward path 
that A’s flood followed to reach F.

After the description of a peer’s bootstrapping process, we shall discuss 

in  the  depth  the  search  mechanism we mentioned  just  before.  The  peer  that 

initiates  he flood sends the flood message to all  its  neighbours. The message 
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contains,  along with control information,  which we shall  discuss later,  all  the 

necessary information to identify the data being looked for. During this process, 

each peer that receives a flood message through one of its connections to other 

peers should propagate it to all of its own neighbours except the one it received it 

from. In addition, it should, of course, process it to see if it can satisfy the query.  

If it contains the requested information, it sends back a reply in the manner we 

shall describe shortly.

The first  important  thing to notice is  that,  each time a peer initiates a 

flood, it every message generated by it with a globally unique identifier (called 

GUID, in the case of Gnutella). When a receiving peer propagates the message of 

the flood,  it  tags  the messages  it  sends to its  own neighbours  with the  same 

identifier. This means that messages that were generated by the same flood share 

the same identifier, while messages belonging to different floods have different 

identifiers.

The purpose of this identification is two-fold. The first one is to avoid the 

retransmission  of  messages  already  propagated.  Because  the  network  of  the 

connected peers forms a connected graph rather than a tree, there will be a lot of 

cycles in the paths formed by the connections between the peers. This means that 

a peer that has already received and forwarded a message to its neighbours may 

receive a message for the same flood, through another neighbour. In Figure 2.2, 

for instance, peer D receives the flood from both B and C. What is more, since C 

has already received the message from A (and that is why it sent the duplicate 

message to D), it will also receive a duplicate message from D. This is because, 

assuming D receives B’s message first and it will forward the message to all of it  

neighbours,  except  B.  This  means  that  it  will  also  send  the  message  to  C, 

regardless of the fact that C has already sent him the same message. Even if C’s 

message had already arrived at D, D will process them on message at a time.

The other  reason is  that  in  order  to  retain  the  anonymity  of  the  peer 

initiating the flood, there is no information inside the message being propagated, 

that could identify it. This, of course, rules out the possibility that a peer that 

contains  the  information  requested  can  send  a  reply  directly  back  to  the 
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originating peer. The only way to notify the requesting peer that the information 

has been located is through the same path the message followed to reach the peer 

with the information. This is made possible by having each peer that receives a 

flood message store,  along with the identifier  of the message,  the connection 

(i.e.: the neighbour) through which it received the message. Thus, by having the 

replying  peer  tag  the  reply  message  with  the  same  identifier  as  the  flood 

messages, the reply (also called queryhit) can be propagated backwards, to the 

peer that initiated the flood. This process is illustrated in Figures 2.2 and 2.3.

One should notice that the tagging of the messages of a flood serves yet 

another purpose. Without this mechanism, the flooding process would continue 

indefinitely.  However  now,  the  flooding  process  will  stop  generating  new 

messages,  as  soon  as  every  peer  in  the  network  has  been  contacted.  This 

corresponds to a number of steps equal to the diameter of the network, i.e. the 

largest number of hops between any two peers in the network. In the case of 

random  networks,  this  is  roughly  equal  to  the  logarithm  of  the  size  of  the 

network.

Even  with  this  limit,  however,  the  load  in  messages  of  the  flooding 

process can be too much for the underlying network. For this purpose, the Time-

To-Live (TTL) field in the messages’ format was introduced. This field is similar 

and with the same purpose as the TTL field in the IP header. This field contains a 

small number, which signifies the number of times a message can be propagated 

before  it  should  be  discarded.  Each  peer  that  receives  a  flood  message  first 

checks the TTL field. If the value in the field it greater than 0, it decreases that 

value by one and then forwards the message to all its neighbours (except the one 

it received it from). Otherwise the message is processed, in terms of checking 

whether  that peer contains  the information requested,  but it  is not forwarded. 

This mechanism decreases the cost of flooding at the cost of efficiency, since it 

also reduces the number of peers that will receive the flood. For instance, a flood 

of TTL 2 in the network of Figure 2.1 will only reach peers B, C, D and G and 

thus, not reply will be sent back from F.
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Recent P2P systems also allow a search to be conducted, using the SHA-1 

hash of the data, especially in the case of file-sharing applications. This kind of 

search is usually used after a keyword-based search is conducted and the desired 

file is located. The requesting peer can then learn the SHA-1 hash of the file, 

from the peer that replied and initiate a new flood using that hash. The result of 

this search will be the discovery of other peers with the same file under different 

filenames, which the peer can use to initiate a multiple sources transfer. I.e.: the 

peer can transfer only pieces of the file from each source, which will make the 

transfer of the whole file faster, if his link is not the bottleneck.

2.3 Techniques

The flooding process is common to most unstructured P2P systems today. 

Several  schemes  and  mechanisms  have  (and  are)  also  been  used  to  improve 

various  aspects  of  the  systems.  These techniques  usually  (but  not  all)  aim to 

reduce the message cost of the flooding process. We shall present those in this 

section.

Ultrapeers

As mentioned above, the meltdown of Gnutella 1 was brought about by 

the sudden influx of ex-Napster users to the Gnutella network [78]. The traffic 

cost of flooding increases with the size of the network and that increase in the 

cost  was  too  much  for  the  majority  of  the  peers  to  bear,  since  they  were 

connected to the network through modems. 

The idea that was used at that point was to reduce the flood-capable size 

of the network and this was accomplished by exploiting the heterogeneity of the 

users’  connections.  As  we  have  mentioned  before,  P2P  systems  are  highly 
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heterogeneous.  A fraction  of  the  peers  participating  in  the  system sport  high 

bandwidth connections. A measurement study published by Stutzbach et.al. [24] 

found that the majority of users in P2P systems have fast, stable connections to 

the Internet (Cable, DSL, T1 or T3) and 30% of them have very high bandwidth 

connections (at least 3Mbps).

People  noticed  that  Gnutella  and Napster  comprised  the  two opposite 

extremes. Gnutella achieved scalability by distributing the system load between 

all peers. However, the fact is that some peers cannot handle that load. Napster 

imposed no load on its peers since the operational load (lookup) was all handled 

by the centralized server,  resulting to reduced scalability.  It  was obvious that 

there was a need for a hybrid approach. This approach was called “Ultrapeers”.

Ultrapeers  were  first  introduced  in  KaZaA,  which  was  however  a 

proprietary system and thus, there is little information in their implementation. 

Gnutella 2 was the first open system to implement the Ultrapeers approach. By 

curbing a little the definition of the P2P systems, which states that all peers are 
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equal, two distinct roles for each peer were defined, that of the Ultrapeer and that 

of the Leaf. In Gnutella 2, each Ultrapeer may play only one role at a time.

Ultrapeers,  in  essence,  function  as  mini-Napster  servers  for  a  small 

number of other peers, which are called Leaves. Only high-bandwidth peers with 

high uptime are usually elected as Ultrapeers. As was the case in Napster, each 

Leaf connects to some Ultrapeer and sends an index of the files it shares to it. 

Leaves  connect  only  to  Ultrapeer  and  are  not  connected  to  each  other.  The 

Ultrapeer themselves do connect to each other to form a random network much 

in the fashion of the original Gnutella 1 network. Thus Leaves are, in essence, 

removed from the actual network. Instead, each Ultrapeer acts as a representative 

of each one of its Leaves to the network. Ultrapeers both perform queries and 

share files on behalf of their leaves as well as their own. Since Leaves are not 

interconnected, queries are thus flooded only on the Ultrapeer level. Ultrapeers 

propagate queries  only to  other  Ultrapeers.  Queries  are  propagated  to Leaves 

only if they contain some desirable resource (file). In other words, Leaves do not 

participate in query routing and in the flooding procedure in general. 

Given the fact that Ultrapeers have high bandwidth connections, they are 

more capable of handling the traffic load of the flooding process. What is more, 

the traffic of the flooding process is itself reduced with this scheme, since the 

number of peers being flooded is reduced.

The  number  of  Leaves  an  Ultrapeer  can  serve  is  not  defined  by  the 

protocol and is up to the implementation. However, recent measurement of the 

characteristics  of  the  deployed  Gnutella  [24]  network  shows  that  the  vast 

majority  of  the  Ultrapeers  support  at  most  thirty  Leaves.  In  addition,  each 

Ultrapeer connects to thirty more neighbours at the Ultrapeer level. This degree 

is an order of magnitude larger than the degree of peers In Gnutella 1. This high 

degree has some important implications. The first and most important on is its 

impact on the diameter of the network. In randomly constructed graphs, such as 

Gnutella’s, the diameter of the network is equal to the logarithm of the size of the 

graph divided by the logarithm of the average degree of the nodes. In figures, this 

means that the Gnutella 2’s diameter is half the diameter of Gnutella 1 that has 
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the same number of peers. The second benefit of having a high degree is related 

to the 1-hop replication technique, which we discuss below.

Another implementation detail is the fact that each Leaf peer connects to 

three distinct Ultrapeers, instead of one. The reason for this is two-fold. The first 

reason is  that,  should an Ultrapeer  fail  (i.e.:  leave  the network or crash),  the 

Leaves connected to it will not lose all connection to the network. The second 

reason is that the index of each Leaf is thrice replicated in the network, making it 

easier to locate it when flooding the network with a TTL that is much smaller 

than the diameter of the network and thus does not reach every Ultrapeer. Figure

2.5 illustrates briefly the effect of this replication. A TTL that reaches about 5% 

of the network has a 16% chance of locating the desirable resource. Of course, in 

order to have a 100% chance, one would still need to reach 100% of the network, 

as  is  the  case  with  no  replication  at  all.  This  simple  replication  scheme was 

employed due to the fact that the diameter of the Gnutella network today has 

long ago exceeded the TTL employed in flooding, meaning that no flood will 

ever reach all of the network. One should note here that the brief analysis we 

presented is based of course on the assumption that each resource is identical. 

The degree of replication of each resource differs if several copies of the same 

resource reside in more than one peer.

Finally, it should be noted here that Leaves do not send their index itself 

to their Ultrapeers. Rather, they send a kind of bloom filters of their index rather 

than the index itself. The bloom filters are a compact approximation of a set. It 

supports membership queries, i.e.: can indicate whether the Leaf contains some 

keyword or not, albeit  of course with reduced precision. Bloom filters are the 

next technique used in P2P systems today that we will discuss.
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Figure 2.5. Effect of replication

Bloom filters

The Bloom filter was first conceived by Burton H. Bloom in 1970 [16]. It 

is a space efficient way to represent a set of objects (keys). In provides a way to 

test whether some key is part of the set the filter corresponds to, or not. Since it  

requires much less space than the actual  set,  there is  some loss of precission 

translated in the posibility of false positives. This means that the bloom filter 

may indicate the existence of some key in the set even though it does not exist. 

Bloom filters however have no false negatives. This means that there is no way 

that the filter  may indicate that some key is NOT in the set, when, in fact, it  

really is.
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Algorithm description

An empty Bloom filter is a bit array of m bits, all set to 0. There must also 

be k different hash functions defined, each of which maps a key value to one of 

the m array positions.

To insert an element, feed it to each of the k hash functions to get k array 

positions. Set the bits at all these positions to 1.

To query for an element (test whether it is in the set), feed it to each of 

the k hash functions to get k array positions. If any of the bits at these positions 

are 0, the element is not in the set – if it were, then all the bits would have been 

set to 1 when it was inserted. If all are 1, then either the element is in the set, or 

the bits have been set to 1 during the insertion of other elements.

Unfortunately,  removing  an  element  from this  simple  Bloom filter  is 

impossible. The element maps to k bits, and although setting any one of these k 

bits to zero suffices to remove it, this has the side effect of removing any other 

elements that map onto that bit, and we have no way of determining whether any 

such elements  have been added. The result  is a possibility of false negatives, 

which are not allowed.

It is possible to remove a key if all keys are available, where in this case, 

the bloom filter is recreated from all the keys, except the one to be removed. This 

is  difficult  in  many  cases,  for  two  reasons.  One  is  that  usually  the  original 

keyword list is not available any more (The reason for using bloom filters in the 

first place is that we cannot afford to store all the original keys). It is also often 

the  case  that  all  the  keys  are  available  but  are  expensive  to  enumerate  (for 

example, requiring many disk reads). Thus recreating the bloom filter is possible, 

but this should be a relatively rare event.

Counting  Bloom filters  have  been  introduced  by Fan  et  al  in  [79]  to 

remedy this drawback. For each bucket, a counter is maintained which counts the 

number  of  keys  associated  with  this  bucket.  The  removal  of  a  key  simply 

decreases the appropriate counter by one. When a counter is reduced to zero, the 

bucket is set to 0.
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Space and time advantages

Bloom filters have a strong space advantage over other data structures for 

representing sets such as self-balancing binary search trees, tries, hash tables, or 

simple arrays or linked lists of the entries. Most of these require storing at least 

the data items themselves, which can require anywhere from a small number of 

bits, for small integers, to an arbitrary number of bits, such as for strings. This 

benefit  of  course  comes  at  the  cost  of  the  existance  of  false  positives,  since 

Bloom filters  achieve  this  low space  cost  by not  storing  the  actual  data.  As 

mentioned in [80], “a Bloom filter with 1% error and an optimal value of k, on 

the other hand, requires only about 9.6 bits per element — regardless of the size 

of the elements.  This advantage comes partly from its  compactness,  inherited 

from arrays, and partly from its probabilistic nature. If a 1% false positive rate 

seems too high, each time we add about 4.8 bits per element we decrease it by 

ten times.”

As far as time costs are concerned, Bloom filters can either add items or 

to check whether an item is in the set, only fixed constant, O(k), time, regardless 

of the number of items already in the set (again, at the cost of experiencing false 

positives).  Especially  in  a  hardware  implementation  the  Bloom  filter  shines 

because its  k lookups are independent and can be parallelized. This fact can be 

exploited for instance as a very fast first step in pattern matching algorithms.

To understand its space efficiency, it is instructive to compare the general 

Bloom filter with its special case when k = 1. If k = 1, then in order to keep the 

false positive rate sufficiently low, only a small fraction of bits should be set, 

meaning that the array must be either (or both) very large or (and) contain a large 

number of zeros. The information content of the array relative to its size is low. 

Such a Bloom filter can obtain a larger degree of space efficiency since it can be 

compressed to a large degree (due to the large degree of redundance contained in 

the large series of zeros) by a compression algorithm such as Huffman encoding 

[27]. The generalized Bloom filter (k greater than 1) allows many more bits to be 

set while still maintaining a low false positive rate; if the parameters (k and m) 
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are chosen well, about half of the bits will be set, and these will be apparently 

random, minimizing redundancy and maximizing information content.

It  should  be  noted  that  inserting  an  element  never  fails  since  each 

insertion  will  simply,  at  most,  change  the  value  of  a  bucket.  However,  each 

insertion will increase the false positive rate. Also another interesting fact is that 

the  rate  at  which  the  precision  is  reduced  with  each  element  being  added 

decreases since when the filter is already almost full, the probability of setting a 

position of the array, which is already set, is high. This is when we need to test 

pairs of elements instead of single ones. In that case, the number of keys in the 

filter  remain  the  same,  but  the precision  is  the  square  of  the precision  when 

testing single keys.  One example  of  the case we described is  Gnutella  itself, 

where  the  vast  majority  (around  80%)  of  the  queries  contain  at  least  two 

keywords.

Union and intersection of Bloom filters with the same size and set of hash 

functions  can  be  implemented  with  bitwise  OR  and  AND  operations, 

respectively.

Probability of false positives

Assume  that  a  hash  function  selects  each  array  position  with  equal 

probability. The probability that a certain bit is not set to one by a certain hash 

function during the insertion of an element is then

. 

The probability that it is not set by any of the hash functions is

If we have inserted n elements, the probability that a certain bit is still 0 is
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the probability that it is 1 is therefore

The probability of a false positive is can be calculated with the following 

formula. Each of the k array positions computed by the hash functions is 1 with a 

probability as above. The probability of all of them being 1, which would cause 

the algorithm to erroneously claim that the element is in the set, is then

Obviously, the probability of false positives decreases as m (the number 

of  bits  in  the  array)  increases,  and  increases  as  n (the  number  of  inserted 

elements) increases. For a given  m and  n, the value of  k (the number of hash 

functions) that minimizes the probability is

, 

which gives a probability of

. 

 The value of m, for the Gnutella Bloom filters is 65536 (216). Ιn addition, 

Gnutella uses bloom filters with a k value of 1. There are several reasons for this, 

the most important being the fact that even though the Leaves’ bloom filter is by 

far less than 70% full, the fullness percentage at which the most efficient number 

of hash functions is one, this is not the case for the Bloom filter of Ultrapeers. 

Since  the  Bloom  filter  of  an  Ultrapeer  combines  the  bloom  filters  of  thirty 

Leaves,  that  filter  is  on  average,  60%  full.  Since  the  Ultrapeers  have  no 

knowledge of the actual key set of each Leaf, Leaves need also use Bloom filters 

with on hash function so that Ultrapeers can perform a union on all those filters.
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One-hop replication

One-hop replication dictates that each peer informs all of its (immediate) 

neighbours of the information it contains. One-hop replication saves us the cost 

of  the  last  hop during  a  flooding process.  This  is  because  the  peers  reached 

during the hop before the last one will have all the information reached in the last 

hop. It is obvious that the presence of 1-hop replication is of no use during all the 

hops before the last  one,  since even though we may always  be aware of the 

information contained in any next hop, if that hop is not the last one, we cannot 

take advantage of this knowledge since each peer should propagate the query to 

every neighbour anyhow, so that they, in turn, pass it on. A quick computation, 

however, can show that, the number of messages generated during the last hop of 

a flood comprise the vast majority of the total messages generated, especially in 

networks with a large average degree, such as Gnutella today. We remind the 

reader  that  each  Ultrapeer  in  Gnutella  today  connects  to,  on  average,  thirty 

Ultrapeers, which we will use in the formulas we describe in this section.

One-hop  replication  serves  another  very  important  purpose.  We  have 

already mentioned  one  of  the  disadvantages  of  flooding  is  the  generation  of 

duplicate  messages  due  to  the  number  of  cycles  in  the  network.  In  random 

graphs,  where  each  peer  can  be  connected  to  any  other  peer  with  equal 

probability, each time a message is sent, the probability of it being a duplicate 

(that is the destination peer has already received such as message) is equal to the 

percentage of the peers already reached by the flood. This means that, again in 

random graphs only,  almost all of the duplicates are generated during the last 

hops of the flood, with the last hop containing the majority of duplicates. One-

hop replication enables us to perform a flood, which will reach all of the peers, 

by not only avoiding to send the message to every last  hop peer but also by 

avoiding to generate most of the duplicates.

This can be better  understood with the use of some figures.  We shall 

prove that the percentage of peers we need to reach during all the hops of a flood 

up to before the last has to be equal to 3/d, if we want to reach 95% of all the 
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peers during the while flood. In the ratio above, d stands for the average degree 

of the peers in the network. If we assume a value of 30 for d, one can easily see 

that we need only reach 10% of the graph, in order to reach the rest 85% of the 

graph during the last hop. We shall prove this, step-by-step. First we shall prove 

that one needs 3*N messages (when not employing 1-hop replication) to ensure 

that  at  least  95% of  the  peers  receive  the  flood  message.  As  we  mentioned 

before, the Propositions we prove in this section regard random graphs.

The proof is simple and is based on the form of the probability of the 

false positives of bloom filters we discussed above. In general, if we have an 

array of n bits, all set to zero, and randomly choose m of them to set to one 

(regardless of whether the previous value was already one or not), the percentage 

of ones we end up with is approximately equal to . We can use this 

formula if we assume that each peer has a flag with values either one or zero, 

depending on whether it has received a message of the flood or not. Since the 

graph is a random one, whenever a message is sent to some peer, each peer in the 

network has the same probability of receiving it. Thus, if we want to reach 95% 

of the peers, we need the result of the aforementioned formula to be equal to 

0.95. Thus:

Proposition  1: In  order  to  reach 95% of  a  graph's  nodes using naıve 

flooding we need a minimum of 3 ∗ N messages.

Proof: Assume that N is the total number of peers and x is the number of 

messages  transmitted during a flood. Using the above formula, and substituting 

m for N and n for x, we get:

Now we can prove the next step:
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Proposition 2: In order to reach 95% of a graph's nodes that employs 1-

hop replication using flooding, we need to reach 3/(d − 1) of the graph nodes in 

all hops except the last one.

Proof: Let n be a function that returns the number of new peers contacted 

at a given hop. Let f be a function that returns the number of messages generated 

on a single, given hop. Let d be the average degree of the graph. Initially f (0) = 0 

and n(0) = 1. At each hop i it holds: 

f (i) = n(i − 1)  ∗ (d − 1)       (1) 

because each one of the nodes that received a message for the first time at hop i − 

1, will send it, at hop i,  to all of their neighbours except the one it received the 

message from, thus to d − 1 neighbours. Let H be the hop before the last one. The 

total number of peers contacted up to hop H is Let  r  be  the  ratio  of 

peers  contacted  up  to  hop  H,  then: . We want to compute 

ratio  r  so that after hop H + 1,  we will have reached at least  95% of the graph 

nodes.  We have proven in Proposition 1 that  we  need a  minimum of  3   ∗ N 

messages to reach 95% of a graph’s nodes using naive flooding. 

So .  If we replace function f  from (1) in the 

above formula:

This combined with (1) and (2) gives:

Thus, the required result and end of proof.

As we mentioned,  Gnutella  employs  one-hop  replication  today in  the 

sense  that  Leaves  send  their  indices  to  their  Ultrapeers.  However,  one-hop 

replication is also used in the Ultrapeer level,  that is among Ultrapeers. Each 
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Ultrapeer notifies all its Ultrapeer neighbours of its aggregate (bloom-filtered) 

index, the index of itself and all its Leaves’ combined. This, in a sense actually is 

2-hop replication,  which  is  much  more  difficult  to  maintain  in  dynamic  P2P 

networks. It is possible however in the case of Gnutella  because Leaves only 

connect  to  three  Ultrapeers  (i.e.  have  a  degree  of  three)  in  contrast  to  the 

Ultrapeers themselves, which connect to about thirty other Ultrapeers. Thus, the 

one-hop replication employed between Leaves and Ultrapeers is cheap, leaving 

Ultrapeers to cope with the one-hop replication between themselves. Of course, 

in contrast to pure one-hop replication, where indices of a peer do not change, 

intra-Ultrapeer one-hop replication requires each Ultrapeer inform its neighbours 

for  any  change  in  its  aggregate  index  (i.e.  whenever  anyone  of  its  Leaves 

departs).

The fact that each Ultrapeer aggregates all indices to generate one Bloom 

filter, which it sends to its neighbours, explains the fact why most Ultrapeers’ 

Bloom filters are usually 60% full. This makes it possible that the departure of a 

Leaf from an Ultrapeer may not significantly alter the structure of its filter, if 

most of the set bits in the Leaf’s filter were already set by other Leaves, in the 

Ultrapeer’s  aggregate  filter,  which,  in  turn,  helps  us  reduce  the  number  of 

updates required to maintain the one-hop replication in the Ultrapeer level, at the 

cost of much reduced precision in the filtering. This is because, in general, for 

any  keyword,  the  filter  of  the  Ultrapeer  will  indicate  membership  with  60% 

probability,  which fortunately is not the case in Gnutella, because most of the 

queries contain at least two keywords. For the filter to produce a false positive, 

both keywords will have to be mapped to set bits in the filter. In the case of a 

60% full bloom filter, this of course leads to 36% probability.

Dynamic Querying

One should note that not all floods need to have the same TTL value. 

Even though the TTL value is a maximum limit, it will be reached every time, 
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even if the results the flood was looking for were found on the first hop. This  

means that the querying peer has no control over the number of peers that will be 

contacted, other than the TTL. This is not only an issue in the sense that more 

traffic than required is generated. In addition, the requesting peer may be itself 

“flooded” by incoming results if its query was a popular one, residing in a large 

number of peers. On the other side, the reduction in network traffic we could 

gain if we were able to terminate any flood at any point of its execution, due to  

an already adequate number of results received, could enable us to increase the 

cost of flooding for rare items, so as to increase the probability of successfully 

locating them. 

The main  problem is  that,  since  the  flood progresses  in  parallel,  it  is 

difficult for a branch of the Breadth-First-Search to know whether another branch 

has located the data.  Unless of course,  each branch’s traversal  is  not done in 

parallel.  This was the idea that led to Dynamic Querying. According to it, the 

peer that initiates the flood sends the flood message to only one of its neighbours, 

instead to all of them according to traditional flooding. That neighbour treats the 

flood message normally, forwarding it to all of its neighbours. When the results 

of  this  partial  flood  arrive,  the  peer  can  decide  whether  the  results  are 

satisfactory.  If  they  are,  the  process  is  concluded,  otherwise  the  peer  sends 

another partial  flood to a second neighbour and so forth,  until  enough results 

have been received or the peer has run out of neighbours.

In addition to that, Dynamic Querying employs another scheme. Instead 

of sending all partial floods with the same TTL, it sends the first flood with an 

initial TTL value. It then increases this value with every new partial flood sent. 

The initial value of the TTL is dependant on the popularity of the requested data,  

that  is  the  degree  of  replication  of  that  data  in  the  network.  The  higher  the 

replication,  the lower the initial TTL value. In order to assess that popularity,  

Dynamic Querying first sends a small partial flood with a TTL of 1. The number 

of results returned defines the popularity of the data item. 
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Dynamic Querying is another mechanism of the unstructured systems that 

benefits  from high Ultrapeer  degree,  since  the  number  of  available  Dynamic 

Querying steps (partial floods) is equal to the number of neighbours.

 This procedure can be used, of course, only when the TTL values are too 

small  for the flood to reach the whole network. Otherwise, a high TTL value 

would mean that the first partial  flood will  have reached all  of the peers and 

initiating another one will only generate duplicates.

2.4 Graph clustering

Two types  of  graphs have been mainly studied  in  the  context  of  P2P 

systems. The first is random graphs which constitute the underlining topology in 

today’s commercial P2P systems [7, 9]. The second type is small-world graphs 

which emerged in the modelling of social networks [4], introduced by Watts and 

Strongatz. It has been demonstrated that P2P resource location algorithms could 

benefit from small-world properties. If the benefit proves to be substantial then 

the node connection protocol in P2P systems could be modified so that small-

world properties are intentionally incorporated in their network topologies.

41Figure 2.6: Graphs generated with different values of rewiring probabilities.
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In random graphs each node is randomly connected to a number of other 

nodes equal to its degree. Random graphs have small diameter and small average 

diameter. The diameter of a graph is the length (number of hops for un-weighted 

graphs) of the longest among the shortest paths that connect any pair of nodes. 

The average diameter of a graph is the average of all shortest paths from any 

node to any other node.

A  clustered  graph  is  a  graph  that  contains  densely  connected 

“neighbourhoods” of nodes, while nodes that lie in different neighbourhoods are 

more  loosely  connected.  A metric  that  captures  the  degree  of  clustering  that 

graphs  exhibit  is  the  clustering  coefficient.  Given  a  graph  G,  the  clustering 

coefficient of a node A in G is defined as the ratio of the number of edges that 

exist between the neighbours of A over the maximum number of edges that can 

exist between its neighbours (which equals to  k(k  −  1)  for  k neighbours). The 

clustering coefficient of a graph G is the average of the clustering coefficients of 
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Figure 2.7: By rewiring a few edges of the initial clustered graph to random nodes  
the average diameter of the graph is greatly reduced, without significantly affecting  
the clustering coefficient.
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all  its  nodes.  Clustered  graphs  have,  in  general,  higher  diameter  and  higher 

average diameter than their random counterparts with about the same number of 

nodes and degree.

     A small-world graph is a graph with high clustering coefficient yet low 

average  diameter.  The  small-world  graphs  we  use  in  our  experiments  are 

constructed  according  to  the  Strogatz-Watts  model  [4].  Initially,  a  regular, 

clustered  graph of N nodes is constructed as follows: each node is assigned a 

unique identifier  from 0 to  N  −  1.  Two nodes are connected if  their  identity 

difference is less than or equal to  k  (in  modN  arithmetic). Subsequently,  each 

edge of the graph is rewired to a random node according to a given rewiring 

probability  p.  If the rewiring probability of edges is relatively small,  a small-

world graph is produced (high clustering coefficient and small average diameter). 

As  the  rewiring  probability  increases  the  graph  becomes  more  random  (the 
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Figure 2.8: Percentage of duplicate messages generated per hop, in random and 
small-world graphs.
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clustering coefficient decreases). For rewiring probability p = 1, all graph edges 

are rewired to random nodes, and this results in a random graph. In Fig. 2.6 once 

can see examples of graphs built with different p values. In Fig. 2.7, we can see 

how the clustering coefficient and the average  diameter of graphs vary as the 

rewiring  probability  p  increases.  Small-world  graphs  are  somewhere  in  the 

middle of the x axis (p = 0.01).

The clustering coefficient of each graph is normalized with respect to the 

maximum clustering coefficient of a  graph with the same number of nodes and 

average degree. In what follows, when we refer to the clustering coefficient of a 

graph  with  N  nodes  and  average  degree  d,  denoted  by  CC,  we  refer  to  the 

percentage of its clustering coefficient  over the maximum clustering coefficient 

of a graph with the same number of nodes and average degree. The  maximum 

clustering coefficient  of  a  graph  with  N  nodes  and  average  degree  d  is  the 

clustering coefficient of the clustered graph  defined according to the Strogatz-

Watts model, before any edge rewiring takes place. Fig. 2.8 shows the percentage 

of duplicates messages generated per hop over the messages generated on that 

hop on a random and on a small-world graph of 2000 nodes and average degree 

6.  We  can  see  from this  figure  that  in  a  random graph  there  are  very  few 

duplicate messages in the first few hops (1-4), while almost all messages in the 

last hops (6-7) are duplicates. On the contrary, in small-world graphs duplicate 

messages appear from the first hops and their percentage (over the total number 

of messages per hop) remains almost constant till the last hops. 

This  effect  is  very  important  for  P2P  systems  employing  the  1-hop 

replication technique we mentioned above. As we described, in this case, naïve 

flooding  is  only  used  during  the  first  phases  of  flooding,  where  not  many 

duplicate  messages  are  generated  in  the  random graphs  used  today.  The  last 

forwarding  of  the  flood  message  (which  generates  the  most  messages,  both 

duplicate and not) utilizes the information provided by 1-hop replication in order 

to only forward the flood to appropriate peers and thus avoiding the broadcast-

like flood.
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The above is  one  of  the  reasons P2P systems  today prefer  to  form a 

random graph instead of a clustered one. On addition, due to the lack of duplicate 

messages during the first propagations of the flood, one can reach more peers in a 

random graph than in a clustered graph, using the same number of messages. 

This is shown in Figure 2.9.
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Figure 2.9: Coverage of the graph for given number of messages.
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Chapter 3

A Feedback-based Approach 
for Reducing Duplicate 
Messages in Unstructured 
P2P Systems

3.1 Introduction

As we mentioned before, the flooding process used for locating peers and 

data in unstructured P2P systems has excellent response time, is very simple to 

implement, and is very robust in the face of churn. However, it creates a large 

volume of unnecessary traffic, mainly because each node may receive the same 

query several times through different paths. In this Chapter we shall describe an 

innovative  technique,  the  feedback-based  approach  that  aims  to  improve  the 

scalability of flooding. The main idea behind our algorithm is to monitor the ratio 

of duplicate messages transmitted over each network connection, and not forward 

query messages over connections whose ratio exceeds some threshold. Through 

extensive simulation we show that this algorithm exhibits significant reduction of 

traffic in random and small-world graphs, the two most common types of graph 
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that have been studied in the context of P2P systems, while conserving network 

coverage  (i.e.:  the  percentage  of  all  peers  that  received  at  least  one  flood 

message).

3.2 Related Work

Many algorithms  have  been proposed in  the  literature  to  alleviate  the 

excessive traffic problem and to deal with the traffic/coverage trade-off [11]. One 

of the first  alternatives  proposed was random walk.  Each node forwards each 

query it receives to a single neighboring node chosen at random. This propagated 

message  is  called  a  “walker”.  In  this  case  the  TTL parameter  designates  the 

number of hops the walker should propagate. Random walks produce very little 

traffic, just one query message per visited node, but either reduce considerably 

network coverage or have long response time. As an alternative multiple random 

walks have been proposed. The node that originates the query forwards it to k of 

its neighbors. Each node receiving an incoming  query transmits it  to a single 

randomly chosen neighbor. Although compared to the single random walk this 

method has better behavior, it still suffers from low network coverage and slow 

response time. Hybrid methods that combine flooding and random walks have 

been proposed in [5] by Gkantsidis et al.

In another family of proposed algorithms query messages are forwarded 

not randomly but rather selectively to part of a node’s neighbors based on some 

criteria  or  statistical  information.  For  example,  each  node  selects  the  first  k 

neighbors  that  returned  the  most  query  responses,  or  the  k  highest  capacity 

nodes, or the k connections with the smallest latency to forward new queries [6]. 

A somewhat different approach named forwarding indices proposed by  Crespo 

[2] builds a structure that resembles a routing table at each node. This structure 

stores the number of responses returned through each neighbor on each one of a 

47



Chapter 3

pre-selected  list  of  topics.  Other  techniques  include  query  caching,  and  the 

incorporation of semantic information in the network [19, 10, 13].

The specific problem we deal with in this work, namely the problem of 

duplicate messages, has been identified and some results appear in the literature. 

In [12] a randomized and a selective approach is adopted by Zhuang et al,  and 

each query message is sent to a portion of a node’s neighbors. The algorithm is 

shown to reduce the number of duplicates and to maintain network coverage. 

However, the performance of the algorithm is demonstrated on graphs of limited 

size. In another effort to reduce the excessive traffic in flooding, the authors [5] 

proposed to direct messages along edges which are parts of shortest paths. They 

rely on the use of PING and PONG messages to find the edges that lie on shortest 

paths.  However,  due  to  PONG  caching  this  is  not  a  reliable  technique. 

Furthermore, their algorithm degenerates to simple flooding for random graphs, 

meaning that in this case no duplicate messages are eliminated.

Finally,  in  [8]  Ripenau  et  al proposed  to  construct  a  shortest  paths 

spanning tree rooted at each network node. However, this algorithm is not very 

scalable since the state each network node has to keep is in the order of O(N*d), 

where N is the number of network nodes and d its average degree.

3.3 Algorithm Description

The basic idea of the feedback-based algorithm is to identify edges on 

which an excessive number of duplicates are produced and to avoid forwarding 

query  messages  over  these  edges.  In  the  algorithm’s  warm-up  phase,  during 

which flooding is used, a feedback message is returned to the upstream node for 

each duplicate message. The objective of the algorithm is to count the number of 

duplicates produced on each edge during this phase and subsequently, during the 
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execution phase, to use this count to decide whether to forward a query message 

over an edge or not.

 In a static graph, a query message transmitted over an edge is a duplicate 

if this edge is not on the shortest path from the origin to the downstream node. 

One of the  key points in the feedback-based algorithm is the following: Each 

network node A forms groups of the other nodes, and a different count is kept on 

each one of A's incident edges for duplicate messages originating from nodes of 

each different group. The objective is for each node A to group together the other 

nodes so that messages originating from nodes of the same group either produce 

many duplicates or few duplicates on each one of A’s incident edges. An incident 

edge of a node A that produces only a few duplicates for  messages originating 

from nodes of a group must belong to many shortest paths connecting nodes of 

this group to the  downstream node. An incident edge of node  A  that produces 

many duplicates for messages originating from nodes of a group must belong to 

few  shortest  paths  connecting  nodes  of  this  group  to  the  downstream node. 

Notice that if all duplicate messages produced on an edge were counted together 

(independent of their origin), then the algorithm would be inconclusive. In this 

case the duplicate count on all edges would be almost the same since each node 

would receive the same query though all of its incident edges. The criteria used 
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Figure 3.1: Illustration of the horizon criterion for node A and for horizon  
value 3.
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by each node to group together the other nodes are critical for the algorithm’s 

performance and the intuition for their choice is explained below.

    A sketch of the feedback-based algorithm is the following:

• Each node  A  groups  together  the  rest  of  the  nodes  according to 

some criteria.

• During  the  warm-up  phase,  each  node  A  keeps  a  count  of  the 

number of duplicates on each of its incident edges,  originating from 

nodes of each different group.

• Subsequently,  during  the  execution  phase,  messages  originating 

from nodes of a group are forwarded over an  incident edge  e  of 

node  A,  if  the percentage of duplicates for this  group on edge e 

during the warm-up phase is below a predefined threshold value.

 Two  different  grouping  criteria,  namely,  the  hops  criterion  and  the 

horizon criterion, as well as a combination of them, horizon and hops, are used 

that lead to three variations of the feedback-based algorithm:

• Hops criterion:  Each node A keeps a different count on each of its 

incident  edges  for  duplicates  originating  k  hops  away (k  ranges 

from 1 up to the graph diameter). The intuition for this choice is 

that, as we will see below,   in random graphs small hops produce 

few  duplicates  and  large  hops  produce  mostly  duplicates.  Thus, 

messages   originating from close by nodes are most probably not 

duplicates while most messages originating from distant   nodes are 

duplicates. In order for this grouping criterion to work each query 

message should store the number   of hops traversed so far.
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Hops 1 2 3 4 5 6 7
Groups of nodes 
formed by node A

B C D,J E,K F G,H I

Table 1: Groups of the Hops criterion based on the example of example of Fig. 12.
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• Horizon criterion:  The horizon is a small integer, smaller than the 

diameter of the graph. A node is in the horizon of some node A if its 

distance in hops from  A  is less than the horizon value, while all 

other nodes are outside A’s horizon (Fig. 3.1). For each node inside 

A’s  horizon a different count is kept by  A  on each of its  incident 

edges.  Duplicate  messages  originating  from  nodes  outside  A’s 

horizon are added up to the count of their entry node in A’s horizon. 

For example, in Fig. 3.1, duplicates produced by queries originating 

from node K  are added up to the counters kept for node  J,  while 

duplicates produced by queries originating from nodes E, F, G, H, I 

are added up to the counters kept for node D. The intuition for the 

choice of this criterion is that shortest paths differ in the first hops 

and when they meet they follow a common route. For this criterion 

to be effective, a message should store the identities of the last  k 

nodes visited, where k is the horizon value.

• Horizon+Hops criterion:  This criterion combines the two previous 
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Feedback-based algorithm using the Hops criterion

 1. Warm-up phase 

 a) Each incoming non-duplicate query message is forwarded to all 

neighbours except the upstream one. For each incoming duplicate 

query message received, a duplicate feedback message is returned 

to the upstream node. 

 b) Each node A, for each incident edge e, counts the percentage of 

duplicate feedback messages produced on edge e for all queries 

messages originating k hops away. Let us denote this count by 

D(e,k)

 2. Execution phase: Each node A forwards an incoming non-duplicate query 

message that originates k hops away over its incident edges e if the count 

D(e,k) does not exceed a predefined threshold.

Figure 3.2: The feedback-based algorithm with the Hops criterion
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   Next, we present three variations of the feedback-based algorithm that 

are based on the grouping criteria used. The algorithm using the hops criterion is 

shown in Fig. 3.2. For the hops criterion to work each query message needs to 

store the number of hops traversed so far. The groups formed by node A in the 

graph of Fig. 3.1 according to the hops criterion are shown in Table 1.

The algorithm using the horizon criterion is shown in Fig. 3.3. For the 

horizon criterion to work each query message  needs to store the identity of the 

last k  nodes  visited.  The groups formed  by node A  in  the graph of  Fig.  3.1 

according to the horizon criterion are shown in Table 2.
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Node in A’s horizon B C D J

Groups of nodes formed by node A B C D,E,F,G,H,I J,K

Table 2: Groups of the Horizon criterion based on the example of example of Fig.  
12.
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The algorithm using the combination of the two criteria described above, 

namely the Horizon+Hops, is shown in Fig. 3.4. For this criterion each message 

should store the number of hops traversed and the identity of the last  k  nodes 

visited. The groups formed by node A in Fig. 3.1 for the horizon+hops criterion 

are shown in Table 3.

We should emphasize that in order to avoid increasing the network traffic 

due  to  feedback  messages,  a  single  collective  message  is  returned  to  each 

upstream node at the end of the warm-up phase.
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Feedback-based algorithm using the Hops+Horizon criterion

 3. Warm-up phase 

 α) Each incoming non-duplicate query message is forwarded to all 

neighbours except the upstream one. For each incoming duplicate 

query message received, a duplicate feedback message is returned 

to the upstream node. 

 β) Each node  A, for each incident edge e,counts the percentage of 

duplicate  messages produced on edge e  for all queries messages 

originating from a node  B  inside  A’s  horizon, or which entered 

A’s horizon at node B and originated k hops away. Let us denote 

this count by D(e,B,k) .

 2. Execution  phase:  Execution  phase:  Each node A forwards  an  incoming 

non-duplicate query message that originates k hops away over its incident 

edges e if the count D(e,B, k) does not exceed a predefined threshold.

Figure 3.4: The feedback-based algorithm with the Hops criterion
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3.4 Experimental Results on Static 
Graphs

Our evaluation study was performed using sP2Ps (simple P2P simulator) 

developed at  our  lab.  The experiments  were  conducted  on  graphs with  2000 

nodes  and average  degree  of  6.  The clustering  coefficient  (CC)  ranged from 

0.0001 to 0.6, which is the maximum clustering coefficient of a graph with N = 

2000 and d = 6 (obtained with p=0). We shall refer to CC values from now on, as 

percentages of that max value. We conducted experiments for different values of 

the algorithm’s parameters. The horizon value varied from 0 (were practically the 

horizon criterion is not used) up to the diameter of the graph. Furthermore, we 

used  two  different  threshold  values,  namely  75%  and  100%,  to  select  the 

connections  over  which messages  are  forwarded.  For  example  a  threshold  of 

75% indicates that if the percentage of duplicates on an edge e during the warm 

up phase exceeds 75% for messages originated at the nodes of a group, in the 

execution phase no query message from this group is forwarded over edge e. The 

TTL value is set to the diameter of the graph.
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Hops B C D J
Groups of nodes formed by node A 1 2 3 4 5 6 7 3 4

B C D E F G,H I J K

Table 3: Groups of the Hops+Horizon criterion based on the example of example  
of Fig. 12.
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The efficiency of our algorithm is evaluated based on two metrics: (1) the 

percentage of duplicates sent by the algorithm, compared to the naive flooding 

approach and (2) the network coverage (defined as the percentage of network 

nodes reached by the query). Thus, the lower the duplicates percentage and the 

higher the coverage percentage is, the better.  Notice that a threshold value of 

100% indicates  that  messages  originating  from the  nodes  of  a  group are  not 

forwarded only over edges that produce exclusively (100%) duplicates for all 

nodes of that group during the warm-up phase. In this case we do not experience 

any loss in network coverage,  but the efficiency of the algorithm in duplicate 

elimination could be limited. In all experiments on static graphs, the warm-up 

phase  included  one  flooding from each  node.  In  the  execution  phase,  during 

which the feedback-based algorithm is applied, again one flooding is performed 

from each node in order to gather the results of the simulation experiment.
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Figure 3.6: Percentage of duplicates as  
a function of the percentage of graph 
nodes in the horizon for three graphs 
with different clustering coefficients  
(0.16, 50, and 91.6) and threshold value 
75%.

Figure 3.5: Percentage of duplicates as  
a function of the percentage of graph 
nodes in the horizon for three graphs 
with clustering coefficients 0.16, 50, and 
91.6, and threshold value 100%.
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In Figs 3.5 to 3.9 we can see the experimental results for the feedback-

based algorithm with the horizon criterion. In Fig. 3.5 we can see the percentage 

of duplicates  produced as a function of the percentage of graph nodes in  the 

horizon for three graphs (random with CC% = 0.16,  clustered with  CC% = 50, 

and small-world with CC% = 91.6) and for threshold value 100%, which means 

that there is no loss in network coverage. We can deduce from this figure that the 

efficiency of this algorithm is high for clustered graphs and increases with the 

percentage of graph nodes in the horizon. Notice that in clustered graphs, with a 

small  horizon  value  a  larger  percentage  of  the  graph  is  in  the  horizon  as 

compared to random graphs.  In Fig.  3.9 we plot the percentage of duplicates 

produced by the algorithm as a function of the clustering coefficient for horizon 

value 1 and threshold 100%. We can see that even for such a small horizon value 

the efficiency of the algorithm increases linearly with the clustering coefficient of 

the  graph.  We can thus  conclude  that  the  feedback-based algorithm with  the 

horizon criterion is efficient for clustered and small-world graphs.

56

Figure 3.7: Network coverage as a  
function of the percentage of graph nodes 
in the horizon for three graphs with 
clustering coefficients 0.16, 50, and 91.6 
and threshold 75%.

Figure 3.8: Efficiency of the feedback  
based algorithm as a function of the 
percentage of graph nodes in the 
horizon for three graphs with clustering 
coefficients 0.16, 50, and 91.6 and 
threshold 75%.
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    Even if the percentage of graph nodes in the horizon decreases, in case 

the graph size increases and the horizon value remains constant, the efficiency of 

the algorithm will remain unchanged, because in clustered graphs the clustering 

coefficient does not change significantly with the graph size. Thus, the horizon 

criterion is scalable for clustered graphs. In contrast, in random graphs, in order 

to maintain the same efficiency as the graph size increases, one would  need to 

increase the horizon value, in order to maintain the same percentage of graph 

nodes in the horizon. Thus the horizon criterion is not scalable on random graphs.

Figs  3.6 to  3.8 show the  efficiency of  the algorithm with the  horizon 

criterion in duplicate elimination for threshold 75%. In Fig. 3.6 and 3.7 we can 

see that the algorithm is very efficient on clustered graphs. From the same figures 

we can see that with this threshold value in random graphs (CC% = 0.16) most 

duplicate messages are eliminated but there  is loss in network coverage. Thus, 

even if we lower the threshold value, the horizon criterion does not work well for 

random graphs.  The  algorithm’s  behaviour  is  summarized  in  Fig.  3.8,  where 

duplicate elimination, denoted by  D,  and network coverage, denoted by  C,  are 

combined  into  one  simple  metric,  defined  as  C2D,  which  we  will  call 
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Figure 3.10: Network coverage,  
percentage of duplicates, and efficiency  
as a function of the clustering 
coefficient for horizon value 1 and 
threshold 75%.

Figure 3.9: Percentage of duplicates as a 
function of the clustering coefficient for  
horizon value 1 and threshold value 
100%.
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“efficiency”. We decided to raise the coverage metric to the square to denote its 

increased importance over duplicate elimination.

In Fig. 3.10 we can see again the efficiency of the algorithm for horizon 

value 1 (as in Fig. 3.9) but for a threshold  of 75%. Notice that the algorithm’s 

efficiency is not linear to the percentage of the clustering coefficient of the graph. 

This arises because the threshold value of 75% is not necessarily the best choice 

for any clustering coefficient.
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Figure 3.11: Network coverage,  
percentage of duplicates, and efficiency 
of the algorithm with the hops criterion 
as a function of the clustering coefficient.

Figure 3.12: Network coverage,  
percentage of duplicates, and efficiency of  
the algorithm with the horizon+hops  
criterion as a function of the clustering  
coefficient.

Figure 3.13: Efficiency of algorithms with  
the horizon, hops, and horizon+hops  
criteria as a function of the clustering  
coefficient and for horizon value 1.
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     In Fig. 3.11 we can see the experimental results for the algorithm with 

the  hops  criterion  for  a  graph  with  2000 nodes  and  average  degree  6  while 

varying the clustering coefficient. We can see in this figure that the hops criterion 

is  very  efficient  in  duplicate  elimination,  while  maintaining  high  network 

coverage,  for  graphs  with  small  clustering  coefficient.  This  means  that  this 

criterion  exhibits  very  good  behaviour  on  random  graphs.  As  the  clustering 

coefficient increases, the performance of the algorithm with the hops criterion 

decreases.  This  behaviour  can  be  easily  explained  from Fig.  2.8,  where  the 

percentage of duplicates per hop is plotted for random and small-world graphs. 

We can see from this figure that in random graphs, the small hops produce very 

few duplicates,  while large hops produce too many.  Thus, based on the hops 

criterion only, we were able to eliminate a large percentage of duplicates without 

greatly sacrificing network coverage.

As mentioned before, the hops criterion works better for random graphs. 

In case the graph size increases, the number of hops also increases (recall that the 

diameter  of  a  random  graph  with  N  nodes  and  average  degree  d  is 

log(N)/log(d) ). Thus, the hops criterion is scalable on random graphs.

In Fig. 3.12, we see the efficiency of the algorithm for the horizon+hops 

criterion. As we can see from this figure this combination of criteria constitutes 

the feedback based algorithm efficient in graphs with all clustering coefficients, 

random and small-world.  In Fig.  3.12,  three different  metrics  are  plotted,  the 

network coverage, the percentage of duplicates, and the efficiency as a function 

of the clustering  coefficient  of the graph. We can see that  for any clustering 

coefficient  network  coverage  is  always  above  80%,  while  the  percentage  of 

duplicate messages not eliminated is always less than 20%. This behaviour is 

achieved for random and small-world graphs for horizon value of only 1. Thus 

the horizon+hops criterion is scalable on all types of graphs.

In  Fig.  3.13  we  compare  the  efficiencies  of  the  hops,  horizon,  and 

horizon+hops and we see that their combination, horizon+hops works better than 

each criterion separately.
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3.5 Experimental Results on 
Dynamic Graphs

In what follows, we introduce dynamic changes to the graph, meaning 

that a graph node can leave and some other node can enter the graph, and we 

monitor how these changes influence the algorithm’s efficiency. We introduced a 

new parameter to our experiments in order to capture the rate of graph change. 

This parameter measures in query-floods the  lifetime of a node in the graph. A 

graph rate change of r means that each node will initiate, on the average, r query-

floods before leaving the network. Insertion of new nodes is performed so as to 

preserve the clustering coefficient of the graph.

We also introduce a dynamic way to determine when the warm-up phase 

can terminate, meaning that we have collected enough measurements. The warm-

up phase for a group of nodes terminates after the percentage of duplicates seen 

on an edge for messages originating from nodes of the group stops to oscillate 

significantly. More specifically, the warm-up phase terminates on an edge for a 

group  of  nodes,  if  in  each  of  the  last  20  rounds  the  change  in  the  count 

(percentage  of  the  number  of  duplicates  seen  on  that  edge  for  messages 

originating  from nodes  of  the  that  group)  was  smaller  that  2% and the  total 

change over the last 20 rounds was smaller that 1%.

We perform experiments for random graphs and for small-world graphs 

with clustering coefficient CC% = 33 and CC% = 84. For each of these graphs, 

the value of the change rate equals 0 (static graph), 1, 50, and 200. A change rate 

of 200 indicates that each node will make 200 query-floods before leaving the 

network, which is a reasonable assumption for Gnutella 2 [7]. This is because 

each Ultrapeer contains, on the average, 30 leaves. A leaf node has in general 

much  smaller  average  lifetime  than  an  Ultrapeer,  which  means  that  each 

Ultrapeer will “see” more than 30 unique leaves in its lifetime. If we assume that 

each leaf node will send one query through the Ultrapeer, this explains the fact 

that real-world measures with an Ultrapeer show that each Ultrapeer sends about 
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100  queries  per  hour.  For  each  of  these  graphs  and  change  rates,  we  run 

experiments with the following Horizon values:

• Horizon values = 1―2 for random graphs and for small-world 
graphs with CC% = 33.

• Horizon values = 1―4 for small-world graphs with CC% = 84.

 We performed two experiments with the same horizon value, one using 

the hops criterion and one without the hops criterion. The threshold value was set 

to 75%. Each experiment performed 25*2000 floods. The difference between the 

values “0 wo act.  threshold” and “0 with act.  threshold” in  the  x  axis in the 

figures indicates that in both cases the change rate is 0 (static graph), but in the 

first case, the numbers are taken from the experiments described in the previous 

section, while in the second case the activation threshold was used to terminate 

the warm-up phase. This enables us to clearly see the benefit of the activation 

threshold.

Fig. 3.14 shows how the algorithm performs on dynamic graphs for the 

horizon criterion.  We should first note that the use of the activation threshold 

increases  the  efficiency  of  the  algorithm  significantly.  This  happens  because 

nodes gradually start eliminating traffic for certain groups of nodes instead of all 

of them starting eliminating duplicates for all groups simultaneously.

We  can  see  that  the  efficiency  of  the  algorithm  decreases  when  the 

change rate is 1. The main reason for this is not that the measurements for each 

group quickly become stale, but rather because each node needs some warm-up 

period to learn the topology of the network. A certain amount of traffic needs to 

be “seen” by any node, to make the necessary measurements. If that time is a 

large fraction of the node’s lifetime, it means that it will spend most of its time 

measuring instead of regulating traffic according to the measurements.

Finally and most importantly, we can see that the results for a change rate 

of 200 are the same as those of a change rate of 0 with activation threshold, 

which shows that, given that the warm-up phase is shorter than the time during 

which the nodes use the algorithm (execution phase), the changes of the graph do 

not affect the algorithm’s efficiency.
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In Fig. 3.15 we can see that the activation threshold is beneficial to the 

algorithm with the hops criterion. Furthermore, from the same figure, it becomes 

clear that the efficiency of the feedback-based algorithm with the hops criterion 

is not greatly affected by the dynamic changes in the graph. We should however 

point out that it seems to lightly affect the efficiency of the algorithm in highly 

clustered graphs.

In Fig. 3.16 we see the efficiency of the algorithm for the horizon+hops 

criterion. We should notice again that the use of the activation threshold does not 

harm  the  algorithm,  except  in  the  case  of  the  graph  with  high  clustering 

coefficient and for a horizon value greater than 1. However, as we have seen 
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Figure 3.14: Performance (efficiency) of  
the algorithm on a dynamic graph for the  
horizon criterion.

Figure 3.15: Performance (efficiency) of  
the algorithm on a dynamic graph for the  
hops criterion.

Figure 3.16: Performance (efficiency) of  
the algorithm on a dynamic graph for the  
horizon + hops criterion.
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before, there is not reason to use a horizon value larger than 1. Again, the change 

rate does not affect the measurements for groups of nodes, since the reason for 

the low efficiency at high change rates is the fact that the nodes spent most of 

their lifetime in the warm-up phase.

3.6 Summary

We presented the feedback-based algorithm, an innovative method which 

reduces  significantly  the  number  of  duplicates  produced  by  flooding  while 

maintaining high network coverage. The algorithm monitors the percentage of 

duplicates  on each connection  during  a  warm-up phase,  and directs  traffic  to 

connections  that  do  not  produce  excessive  number  of  duplicates  during  the 

execution phase. In order for this approach to work, each network node groups 

together  the  rest  of  the  nodes  according  to  some  criteria,  so  that  nodes  that 

produce many duplicates on its incident edges are in different groups than those 

that  produce  only  few  duplicates.  The  efficiency  of  the  algorithm  was 

demonstrated through extensive simulation on random and small-world graphs. 

The experiments involved graphs of 2000 nodes. The feedback-based algorithm 

was shown to reduce to less than 20% the number of duplicates of flooding while 

conserving network  coverage  above 80%.  The  memory  requirements  in  each 

node are much less compared to the algorithm that constructs shortest paths trees 

from each network node. The efficiency of our algorithm was demonstrated on 

static and dynamic graphs.
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Chapter 4

Partitioning Unstructured P2P 
Systems to Improve Resource 
Location

4.1 Introduction

The  aim  of  the  work  presented  in  this  Chapter  is  to  improve  the 

scalability of flooding by reducing the number of peers that need to be contacted 

on each request (and thus the traffic cost in messages,  be it  duplicate or not) 

without  decreasing  the  probability  of  query  success  (accuracy  of  the  search 

method).  The  proposed  method  partitions  the  Ultrapeer  overlay  network  into 

distinct subnetworks. Using a simple hash-based categorization of keywords the 

Ultrapeer overlay network is partitioned into a relatively small number of distinct 

subnetworks. In general unstructured P2P networks are indirectly supplied with 

some information about the possible location of each resource. By employing a 

novel index splitting technique each Leaf peer is effectively connected to each 

different subnetwork. The search space of each individual flooding is restricted 

to a single partition, thus the search space is considerably limited. This reduces 

the overwhelming volume of traffic produced by flooding without affecting at all 
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the  accuracy  of  the  search  method  (network  coverage).  Experimental  results 

demonstrate the efficiency of the proposed method.

4.2 Related Work

In an effort to alleviate the large volumes of unnecessary traffic produced 

during flooding several variations have been proposed. Schemes like Directed 

Breadth First Search (DBFS) [25] forward requests only to those peers that have 

often  provided  results  to  past  requests,  under  the  assumption  that  they  will 

continue  to  do  so.  Interest-based  schemes,  like  [23]  and  [18]  aim to  cluster 

together  (make  neighbourhoods  of)  peers  with  similar  content,  under  the 

assumption that those peers are better  suited to provide to each other's needs. 

Both  those  systems  try  to  contact  peers  that  have  a  higher  probability  of 

containing the re-quested information. Such schemes usually exhibit small gains 

over traditional flooding.

Another approach that has been used in the literature to make resource 

location  in  unstructured  P2P systems more  efficient  is  the partitioning of the 

overlay  network  into  subnetworks  using  content  categorization  methods.  A 

different  subnetwork  is  formed  for  each  content  category.  Each  subnetwork 

connects  all  peers  that  posses  files  belonging  to  the  corresponding  category. 

Subnetworks are not necessarily distinct. A system that exploits this approach is 

the  Semantic  Overlay  Networks  (SONs)  [19].  SONs  use  a  semantic 

categorization of music files based on the music genre they belong to. The main 

drawback of this  method is the semantic categorization of the content.  In file 

-sharing systems for instance, music files rarely contain information about the 

genre they belong to and when they do so, each of them probably uses a different 

categorization  of  music.  In  SONs,  an  already  existing,  online,  music 

categorization database is used. This database adds a centralized component in 

the operation of the net-work. Notice that 1-hop replication can be employed in 
65



Chapter 4

conjunction with this scheme, inside each subnetwork. However, the fact that 

each peer may belong to more than one subnetwork, reduces the average degree 

of each subnetwork and thus, the efficiency of the 1-hop replication.

4.3 The Partitions Design

The system we propose in this Chapter allows for the partitioning of any 

type of content. More specifically, we propose the formation of categories based 

on easily applicable rules. Such a simple rule is to apply a uniform hash function 

on each keyword describing the files. This hash function maps each keyword to 

an integer, from a small set of integers. Each integer defines a different category.  

We thus categorize the keywords instead of the content (files)  itself.  Given a 

small  set of integers,  it  is very likely that each peer will contain at  least one 

keyword from each possible category.

Unstructured P2P systems like Gnutella 2 [14] employ a 2-tier structure. 

In those systems Ultrapeers form a random overlay network, while Leaf nodes 

are  connected  to  Ultrapeers  only.  Each  Leaf  sends  to  the  Ultrapeers  it  is 

connected to, its index in the form of a (compressed) bloom filter.  Ultrapeers 

flood queries  to the  overlay network on the Leave's  behalf.  Flooding is  only 

performed  at  the  Ultrapeer  level  where  1-hop  replication  is  implemented. 

Whenever  an  Ultrapeer  receives  a  request  this  is  specifically  forwarded only 

down to those Leaves that contain the desired information (except in the case of 

false  positives).  Fig.  2.4  shows  a  schematic  representation  of  the  2-tier 

architecture.
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The  keyword  categorization  method  is  used  in  2-tier  unstructured 

systems. In the Partitions design, each Ultrapeer in the system is randomly and 

uniformly assigned responsibility for a single keyword category,  by randomly 

selecting an integer from the range set of the hash function used to categorize the 

key-words.  Ultrapeers  responsible  for  the  same  category  form  a  distinct 

subnetwork. Leaves connect to one Ultrapeer per subnetwork and send to it all 

the  keywords  belonging  to  that  category.  Thus,  an  innovative  index  splitting 

technique is used. Instead of each Leaf sending its entire index (in the form of a 

bloom filter) to an Ultrapeer, each Leaf splits its index (keywords) based on the 

defined categories and distributes it to one Ultrapeer per category.  Notice that 

peers operating as Ultrapeers also operate as Leaves at the same time (have a 

dual role), since they connect as Leaves to Ultrapeers of other subnetworks, in 

order to publish their content. Even though in this design each Leaf connects to 

more than one Ultrapeers, the volume of information it transmits is roughly the 

same since each part of its index is sent to a single Ultrapeer. Each Leaf node 

sends to the Ultrapeer of a certain category all keywords that belong to the same 

category (in the form of a bloom filter). Each Ultrapeer sends to its neighbouring 

Ultrapeers  all  the  aggregate  indices  of  its  Leaf  nodes  to  implement  1-hop 

replication. In Fig. 4.3 we can see a schematic representation of the Partitions 

design.
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This separation of Ultrapeers from content  has the benefit  of allowing 

them to be responsible for a single keyword category. The benefit of this is two-

fold.  First,  it  reduces  the  size  of  the  subnetworks  since  they  are  completely 

discrete (at least on the overlay level). Secondly, it allows each Ultrapeer to use 

all  its  Ultrapeer  connections  to  connect  to  other  Ultrapeers  of  the  same 

subnetwork, increasing the efficiency of 1-hop replication at the Ultrapeer level.

There are, however, two obvious drawbacks to this design. The first one 

is due to the fact that each Leaf connects to more than one Ultrapeers, one per 

content category. Even though each Leaf sends the same amount of index data to 

the Ultrapeers upon connection as before, albeit distributed, however it requires 

more keep-alive messages to ensure that its Ultrapeers are still operating. Keep-

alive  messages  however  are  very  small  compared  to  the  average  Gnutella 

protocol message. In addition, query traffic is used to indicate liveliness most of 

the  time,  thus  avoiding  sending  keep-alive  messages.  The  second  drawback 

arises  from the  fact  that  each subnetwork contains  information  for  a  specific 

keyword category. Requests however may contain more than one keywords and 

each  result  should  match  all  of  them.  Since  each  Ultrapeer  is  aware  of  all 

keywords  of  its  Leaves  that  belong  to  a  specific  category,  it  may  forward  a 

request to some Leaf that contains one of the keywords but not all of them. This 

68

Figure 4.3: Total number of messages  
per flood for keyword-based searches

Figure 4.2: Total number of messages  
per flood for hash-based searches
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fact reduces the efficiency of the 1-hop replication at the Ultrapeer level and at 

the Ultrapeer to Leaf query propagation. This drawback is balanced in two ways. 

The first is that even though the filtering is performed using one keyword only, 

Leaves' bloom filters also contain one type of keywords only, making them more 

sparse and thus reducing the probability  of a  false  positive.  Furthermore,  the 

most rare keyword can be used to direct the search, thus further increasing the 

effectiveness of the search method. Finally, we also experimented with sending 

the  bloom  filters  with  all  keyword  types  to  every  Ultrapeer,  regardless  of 

category,  although Ultrapeers still  extract and use only keywords of the same 

category as their own to form their aggregate bloom filter in order to implement 

1-hop replication.

All these schemes have varying degrees of maintenance costs which we 

explore in the next section using simulations.

4.4 Experimental Results

In this section, we shall present the results from the simulations we con-

ducted, in order to measure both the efficiency of the Partitions scheme in terms 

of cost of flooding (in messages) and maintenance costs .

We  assumed  a  peer  population  of  2  million,  a  number  reported  by 

LimeWire Inc [15]. Each Ultrapeer in the Gnutella network serves 30 Leaves, a 

number  obtained  from real-world  measurements  [24].  In  addition,  each  peer 
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contains a number of files (and hence keywords) derived from a distribution also 

obtained from real-world measurements in [22].

Each  Ultrapeer  in  the  Partitions  design  serves  300  Leaves  since  we 

assume a number of 10 content categories and thus subnetworks. We perform a 

large number of floods, each designed to return at least a thousand query results 

before terminating. Table 4 shows the ratio of the average number of messages 

per flood for the Partitions design over the average number of messages per flood 

in  Gnutella.  Replication  means  that  each  Leaf  sends  all  its  keywords  to  all 

Ultrapeers it is connected to, regardless of category. For example, in the case of 

replication, flooding in the Partitions design generates 5. 5 times less messages 

than  flooding  in  Gnutella,  in  order  to  return  the  same number  of  results  per 

query.  We can see that  the  drawback of  filtering  using  only one keyword is 

balanced by the fact that the sparser Leaf indices (since they contain only one 

keyword category) produce less false positives, but mainly outweighed by the 

message  reduction  due  to  the  partitioning  of  the  network  and  therefore  the 

reduction of the search space. We would like to emphasize that each Partitions 

bloom filter (i.e. containing keywords of a certain category) has the length of a 
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Gnutella bloom filter. Thus, one can roughly think of all the bloom filters of a 

single  Partitions  leaf  as  a  (distributed)  Gnutella  bloom filter  of  10 times  the 

length (due to the 10 category types). However the bandwidth needed to transfer 

such a bloom filter is not 10 times that of a Gnutella bloom filter, mainly because 

sparser bloom filters are compressed more efficiently.

In order to measure the maintenance cost of Gnutella and Partitions, we 

focus  on  the  operation  of  a  single  Ultrapeer,  because  the  load  of  Leaves  is 

negligible  in  both  systems  compared  to  a  Ultrapeers  load  since  flooding  is 

performed at the Ultrapeer overlay. In both cases we simulated three hours in the 

life of a single Ultrapeer, with Leaves coming and going. Each time a Leaf is 

connecting to the Ultrapeer, it sends its index information, which is propagated 

by the Ultrapeer to its thirty Ultrapeer neighbours. In addition, we assumed that, 

periodically , each Ultrapeer receives a small keep-alive message from each Leaf 

and replies with a similar message to each one of them, unless a query and a 

reply were exchange during the specified period. For each communication taking 

place, we measured the incoming or outgoing traffic in bytes, in order to estimate 

the bandwidth requirements. For each Ultrapeer, we measure query load (traffic 

containing only flood messages and replies), maintenance load (overlay upkeep 

traffic) and traffic load (the sum of both).
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There  are  two  modifications  in  this  scenario,  between  Gnutella  and 

Partitions. In Partitions, the number of Leaves is 300. In addition, the process of 

computing the size of the index information sent to the Ultrapeer differs greatly. 

In the case of Gnutella,  we have used the code by LimeWire  [15],  the  most 

popular  Gnutella  client,  to  construct  the  bloom filter  of  each  Leaf.  We  first 

randomly decided on the number of files shared by each Leaf, based on the file 

sharing distribution per peer presented in [22]. We then extracted this number of 

files from a list of file-names obtained from the network by a Gnutella crawler 

developed in our lab. Those file-names were fed to the LimeWire bloom filter 

generation code, which produced the corresponding bloom filter in compressed 

form, i.e., the way it is sent over the network by LimeWire servents. Thus we 

constructed the actual bloom filter, although what we really need in this case is 

just its size. In the case of Partitions, we likewise computed the number of files to 

be shared by each Leaf. We extracted again the same number of file-names from 

the list of available file-names.

We subdivided the Partitions scheme depending on the form of the index 

information sent by Leaves to Ultrapeers. Two experiments were run with the 

Partitions scheme using bloom filters. In the first, each bloom filter sent to an 

Ultrapeer  only  contained  appropriate  keywords  (of  the  same  category  as  the 
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 Figure 4.8: Ultrapeer aggregate traffic  
for hash-based searches

Figure 4.9: Ultrapeer aggregate traffic  
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corresponding  Ultrapeer).  In  the  second  experiment,  we used  replication,  i.e. 

each bloom filter contained all the keywords of the Leaf, regardless of category. 

In addition, positions of keywords of the corresponding category as the Ultrapeer 

were set in the bloom filter to the value of two in stead of one. (This bloom filter 

essentially distinguishes between keywords of the appropriate category and the 

rest of the categories).

Figs.  4.4  and  4.5  show  the  results  of  the  simulation  for  the  cost  of 

maintaining the structures of Gnutella and Partitions, without any query (flood) 

traffic. From this figure it is obvious that, as expected, the maintenance cost of 

partitions is higher than that of Gnutella. As we will see in the next paragraph the 

gains incurred during the operational  phase of the two systems outweighs the 

increased maintenance costs.

We then focused our attention to the query traffic load. Measurements 

showed that, on the average, each Ultrapeer generates 36 queries per hour (i.e., 

queries initiated by itself  or its  Leaves).  This adds up to approximately 2000 

queries per second generated anywhere in the Gnutella network. In addition, we 

observed a large number of Gnutella queries in order to find the distribution of 

the number of keywords in each query. Thus, according to those observations, 

during the simulations we assumed that 20% of the queries contain 1 keyword, 

30%  contain  two,  another  20%  contain  three  and  finally  a  30%  contain  4 

keywords. In addition, we performed the same experiments, this time assuming 

hash- based searches. File-sharing applications allow the search of a file, based 

on the hash value of its contents, in order to locate copies of the same file. This 

enables  multi-source  transfer  of  the  file.  These  searches  are,  in  essence,  1-

keyword searches. All types of graphs in this Chapter come in pairs, describing 

the  same  experiment,  one  assuming  keyword-based  queries  and  the  other 

assuming hash-based queries.

In  our  simulation,  we  assumed  that  the  aim  of  each  flood  (both  in 

Gnutella and Partitions) is to reach the entire network, or produce a fixed number 

of results, whichever comes first. As we mentioned before, such a flood that aims 

to reach the entire network would need to reach 1/10th of the Gnutella's network 
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(or a Partitions'  subnetwork) during all  hops of flooding except  the last.  This 

means that the Ultrapeer in our simulations has a probability of 0.1 to receiving 

each query. In addition, every time this does not occur, it has another opportunity 

to receive the query during the last hop, depending on its bloom filter (in case the 

searched keywords match in the bloom filter).  Should the Ultrapeer receive a 

query, it is assumed to propagate it to its Leaves, again depending on their bloom 

filters  or index (again depending on a possible keyword match  by the bloom 

filter). Figs. 4.8 and 4.9 show the comparison in the traffic load of Gnutella and 

Partitions, including maintenance and query traffic. We used a size of 40 bytes 

for each query. In reality, the size of a query can be up to a few hundred bytes, if 

XML extensions are used. This means that the performance gains described here 

are smaller compared to the ones we expect to see in the real world. In addition,  

for every 1400 bytes for each message sent, we added 40 bytes for the TCP and 

IP header. From these figures it is evident that Partit ions outperform Gnutella in 

operational costs, in every case. Finally in Figs. 4.6 and 4.7 one can see the query 

traffic load alone (without the maintenance traffic) for both the Gnutella and the 

Partitions Ultrapeer.

4.5 Summary

In  this  Chapter,  we  have  described  a  novel  approach  to  reducing  the 

message costs  of querying in unstructured networks.  The method exploits  the 

partitioning  of  random  overlay  networks  into  a  small  number  of  distinct 

subnetworks  based  on  easily  applicable  rules.  The  method  allows  for  the 

categorization of any type of content. Extensive simulations have been performed 

and demonstrated that the benefits obtained from our scheme can be as high as an 

order of magnitude compared to the Gnutella fooding.
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Chapter 5
Innocuous Topology Awareness for 
Unstructured P2P Networks

5.1 Introduction

One of the most critical design aspects of any P2P system is the overlay 

layer,  that  is  a  virtual  network  of  interconnected  peers  (P2P  client-servers) 

through (and on top of) the underlying IP network. The structure of this overlay 

network is tightly coupled with the search algorithm, which is usually the main 

function of a P2P system. This means that the network structure is such as to 

enable  and  facilitate  this  function,  which  also  means  that  there  are  rules 

governing which peers are connected to which peers.This is more apparent in the 

case of structured P2P systems, where the structure of the overlay network is 

such as to allow for a binary-tree like search to be performed, which requires a 

logarithmic (O(logN)) search cost in the number of messages.

On the other hand, unstructured systems, by definition, do not impose a 

specific  structure  on  the  overlay.  Each  peer  is  free  to  connect  to  any  other 

(available)  peer.  Even though this  lack of structure denotes a large degree of 

freedom in the creation of the overlay, we will show that this is misleading. Most 
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mechanisms used widely in unstructured P2P systems today, actually rely on this 

random selection  of  neighbours  (the  peers  to  connect  to),  regardless  of  their 

distance  and  position  in  the  IP  network.  This  leads  to  a  complete  lack  of 

correlation between the t wo  respective  distances  (IP  network  and  overlay), 

wherein lies the problem we aim to rectify.

So,  either  structured  or  unstructured,  all  P2P systems  have  their  own 

design goals on overlay creation, which do not include taking into consideration 

the structure of the underlying physical network, the Internet. As a result, most 

P2P systems make an inefficient use of the IP layer, which has adverse impact 

not  only  on  their  own  operation  but  also  on  the  operation  of  the  other 

applications, which co-exist on the same medium (the Internet). Some proposals 

have already been published, which aim to rectify this. Most of them rely on the 

freedom of peers in unstructured neighbours to connect to any peer they want, in 

order to create an overlay which better matches the IP layer. However, as we 

mentioned and will show, this freedom to choose any peer as neighbor is more of 

a  requirement  than  actual  freedom.  This  means  that  showing any preference, 

during  neighbourhood  selection,  on  peers  depending  on  their  position  and 

distance in the IP network violates this requirement, and thus, we argue, these 

approaches greatly affect some of the most fundamental characteristics of P2P 

systems that we mentioned in Chapter 1.

The obliviousness  of  P2P systems  to the  underlying  network  has  two 

main drawbacks. The first is that the average latency between any two neighbors 

on the P2P overlay is increased since each peer does not actively try to connect to 

peers which are closer at the IP layer and/or have smaller latency. The second 

and  most  important  drawback  is  that  the  IP  path  behind  each  P2P  overlay 

connection contains a large number of routers. This means that even a single, 1-

hop, message between neighbors (at the P2P overlay) may travel through many 

routers  and  autonomous  systems  before  it  reaches  its  destination.  Figure  5.1 

illustrates such a simple scenario, where a message from peer A to peer C crosses 

the Atlantic twice before it reaches peer C on the same continent as peer A. This 

inefficient routing, is one of the main reasons behind the observed domination of 
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P2P traffic in the Internet [50], [51]. An obvious solution to this problem is to 

have each peer connect to those peers which are closest to itself,  in terms of 

latency,  while  maintaining  a  small  number  of  further  links  to  avoid  overlay 

partitioning.  However  this  would  create  an  overlay  with  a  higher  degree  of 

structure  (clustering),  which  will  have  a  negative  impact  on  the  mechanisms 

employed in unstructured P2P networks.

In this Chapter, we aim to solve this canandrum. We propose  ITA, an 

algorithm  for Innocuous  Topology  Aware construction,  which  provides 

unstructured P2P overlay creation with a large degree of topology awareness, 

while at the same time taking into consideration the impact the proposed changes 

will have on the rest of the mechanisms employed in unstructured P2P systems. 

It  is  able  to  do  so  by  building  a  random graph of  random graphs,  therefore 

preserving, in a sense, the random nature of the overlay, while at the same time 

allowing  for  the  existence  of  ”neighborhoods”,  allowing  peers  to  randomly 

connect  to  nearby  peers.  We  use  a  diverse  set  of  metrics  to  experimentally 

evaluate out proposal and to give a complete view of its impact on the system's 

operation. The results we obtain include a 50% reduction in search latency,  a 

20% reduction in the number of IP messages and a significant (approx also 50%) 

reduction  on  the  load  of  the  IP  network  routers.  ITA  is  shown  to  have  no 
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negative impact whatsoever on the 1-hop replication and the dynamic querying 

mechanisms.

5.2 Related  Work

One of the main drawbacks of unstructured P2P systems is the limitation 

of their scalability due to the large number of messages generated by their search 

mechanism, called flooding. This is evident in the fact that a large part of the 

existing  literature  aims  at  reducing  those  messages  [46],  [53],  [36],  [32]. 

However, the vast majority of this work is concerned with reducing the number 

of the overlay messages, even though a single overlay message usually translates 

to several IP messages. This abstraction has been shown to be problematic for the 

network layer.

In the case of structured systems, some work has been carried out aiming 

to address this problem, even though the possibilities are limited since there are 

specific requirements for the neighbour selection of each peer. Due to the more 

rigid  structure  of  those  systems,  one  has  less  freedom on how to  rewire  the 

connections in the system to allow for greater topology awareness. In [33] the 

authors propose the selection of the closest (latency-wise) neighbour whenever 

there are more than one choices. This approach can be applied in systems like 

Pastry [49], Kademlia [44], and Tapestry [56]. However, in systems like Chord 

[54] and CAN [47], each neighbour is uniquely defined.

Our work focuses on unstructured systems, which are not as sensitive to 

changes in the overlay creation. Topology awareness algorithms that have been 

proposed  for  unstructured  systems,  such  as  [39],  [41],  aim at  constructing  a 

generic, topologically aware overlay,  and thus do not describe any mechanism 

for efficiently searching on that overlay. In addition, the constructed graph has a 

high clustering degree, which predicates that the mechanisms already employed 
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in unstructured P2P systems and which depend on a random overlay to function 

properly, will experience a high loss in efficiency. In particular, the authors of 

[39] describe an overlay graph creation method, which is based on having each 

peer connect to those other peers with which it has the longest common domain 

suffix. Some random links are also maintained in order to avoid the partitioning 

of the network. In addition to the drawbacks common to all approaches which 

increase  topology  awareness  by  reducing  the  randomness  of  the  graph  this 

approach has an additional disadvantage. The graph that is formed is comprised 

of  neighborhoods of  diverse  sizes,  since not  all  domains  have  the same peer 

population. This makes the choice for a universal value for the  Time−To−Live 

(TTL) difficult. The same holds for the systems described in [40], [45], where the 

neighborhoods are defined by the IP addresses instead of the domain names. In 

flood-based P2P systems, the TTL value is critical for the efficient operation of 

the  system  and  is  directly  connected  not  only  its  scalability  but  also  its 

operational  success.  A  TTL value  which  is  appropriate  for  some  of  the 

neighborhoods can be inefficient  for others,  leading to either failure to locate 

content,  or  to  the  generation  of  a  large  number  of  duplicate  messages.  ITA 

constructs  randomly connected  “neighborhoods” of  roughly equal  size,  which 

means that one TTL value “fits all”.

In   [35],   the   authors   use   synthetic    coordinates   to   create  

neighbourhoods of close-by, in terms of latency, peers. Their simulations were 

performed on a network which comprised of 92 IP-layer nodes and included 42 

overlay peers. This small network   size   makes   it   difficult   to   reveal   the  

real   benefit of   the   algorithm.   In   addition,   in   experiments  of   this   scale  

it would be difficult to notice the effect of the increased clustering in the flooding 

mechanisms. In [41], overlay creation is inspired by the k-median algorithm, in 

order to, again, construct neighborhoods of nearby, latency-wise peers and thus 

reduce the average latency of any path between any two peers in the overlay. 

This  theoretical  algorithm  appears  to  be  computationally  expensive  since  it 

requires knowledge of the entire overlay topology to function. Furthermore, as 

the overlay changes from the departure and arrival of peers, the algorithm needs 
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to continuously adjust the overlay in order to maintain its efficiency. The work 

described in [52] is a follow-up of [41]. The algorithm still needs to be active all 

the time to preserve the structure of the network. In addition, the main focus of 

this work is on the construction of an efficient graph for general use, as is the 

case for the work described in [42], [43], so there is no descrption on how to 

search the overlay. We focus on how to efficiently construct an overlay with low 

clustering that maintains the beneficial properties of random graphs and leads to 

efficient informati on lookup. Finally, an interesting work is presented in [55]. 

The method described limits the reorganization of the network to add topology 

awareness  in  a  2-hop neighborhood  for  each  peer.  ITA constructs  the  entire 

overlay from the beginning to allow for the desired topology-awareness.

As  we  mentioned,  any  method  used  to  construct  and  the  resulting 

structure of the overlay is tightly coupled with the other mechanisms at work in a 

P2P system. In existing P2P systems this is especially true for the mechanisms 

that comprise the search-lookup function. The works we just mentioned does not 

take  into  consideration  the  impact  of  the  proposed methods  on  those  widely 

deployed  mechanisms  such  as  1-hop  replication  and  dynamic  querying.  ITA 

functions without affecting them in any way, which means that there is no trade-

off. Any increase in topology awareness comes at no-cost. In addition, most of 

the  aforemention  work  requires  that  each  peer  continuously  executes  the 

topology-awareness algorithm to adopt to changes in the P2P overlay.  This is 

mainly because most  of  the aforementioned proposed methods  try to  connect 

each  peer  to  its  closest  possible  neighbors.  This  set  however  changes 

dynamically in time, due to the churn in the network. ITA only requires a simple 

and  quick  bootstrapping  process, after  which  it  can  continue  to  function 

unaffected by the churn of the system. Furthermore, this continuous operation of 

most of the aforementioned proposed methods requires each peer to continuously 

probe the network in case some new, closest peer has joined, imposing additional 

traffic in the network and burden on each peer. 

The most recent related work can be found in [81]. In  this work, they 

describe an algorithm for creating an overlay with constant delay between any 
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two peers in the network. They compare their algorithms to two other state-of-

the-art algorithms, which they show to out-perform. Their algorithm works in the 

following  fashion:  Each  peer  maintains  a  number  of  small  random  ids.  In 

addition, it samples the network by contacting a number of random peers and 

initiating a walk from each one, by following peers of decreasing ids, towards the 

peer with the minimum id in the network. The peers with the lowest latency are 

chosen as neighbours. We chose this algorithm to compare with ITA latency-

wise. Experimental results show that ITA obtains lower latency between peers. In 

addition,  as we shall  describe,  ITA requires a constant number of samples  to 

create the overlay, whereas Hsiao et al. Algorithm requires a number of samples, 

which is logarithmic to the number of peers in the system.

Finally, most of the existing literature focuses on reducing the IP latency 

of queries. We evaluate our work using a variety of metrics including IP latency 

reduction, IP message reduction, and the traffic load placed on each rout er in the 

underling  IP  network.  The latter  we believe  to  be  a  crucial,  often  neglected, 

metric in current widely deployed P2P systems.

5.3 ITA  Design

This section contains a detailed description of the parts that comprise the 

design of our ITA algorithm. We then present a discussion and analysis of the 

advantages which arise from it.

Overlay construction

The ultimate objective of the bootstrapping algorithm is to create for each 

peer  a  number  of  randomly selected  short connections  to  closer (but  not  the 

closest) peers and the same number of randomly selected  long connections to 
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distant peers. The definition of the “short” and “long” connections is based on 

parameter α ≤ 1 which constitutes the basic and most fundamental parameter of 

the algorithm. Let N be the total number of peers in the networks. Each peer A 

that bootstraps to the network selects its “short” connections randomly among its 

α ∗N closer  (latency  wise)  peers,  while  it  selects  its  “long”  connections 

randomly among the (1 −α) ∗N more distant (latency wise) peers.

To implement  this  method,  each  peer  A calculates  a  (latency  related) 

threshold  value  x directly  dependant  on  parameter  α.  Given  the  value  of 

parameter  α ≤ 1,  each  peer  A that  bootstraps  to  the  network approximates  a 

threshold value x so that the number of peers whose latency to A is less than x is 

α  ∗ N  . In other words, if C  is the set of all peers P  for which it holds that 

latency(A, P ) ≤ x, peer A calculates its threshold value x so that |C| = α ∗ N . 

Since  the  latency from each peer  to  all  other  peers  cannot  be  measured,  the 

calculation of the threshold value x is approximated by having each peer A make 

latency measurements to  30/α randomly selected peers. A proof is provided in 

Proposition 3 below, which shows that this number of latency samples leads to a 

good threshold approximation.

Proposition  3:  Each  peer  needs 30/α latency  measure-ments  to  other 

peers in order to approximate threshold x such that |C| = α ∗ N for given α ≤ 1, 

with accuracy 95%.

Proof: A peer belongs to C with probability α. To obtain a good threshold 

approximation, we will select a peer in C that is among the 0.1*|C| peers whose 

latency is closer to the threshold value. The number of peers which are closer to 

the threshold according to our choice is  0.1 ∗α∗|C| = α′ ∗|C|. The probability 

that a single randomly selected peer belongs to that space is  α′ = 0.1∗α. The 

probability that neither one of n randomly selected peers belong to that space is 

(1 − α′)N    ≃ e-a'*n. To approximate the threshold with accuracy 95% we need

which concludes the proof.
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So, each peer needs 30/α  latency measurement samples to approximate 

the threshold. In [5], it has been shown that the last peers of k random walks of 

logN length comprise a uniformly random selection of k peers.

During  the  sampling  measurements,  peer  A  can  connect  randomly  to 

begin its operation, without having to wait for the end of the of the sampling 

procedure.

In addition, the Vivaldi coordinate system [34] can be used to facilitate 

and speed-up the bootstrapping process.  Vivaldi  is  a  P2P network coordinate 

system which can assign a 3-dimensional  coordinate  to a host.  The Euclidian 

distance  between  two  Vivaldi  points  (corresponding  to  two  hosts)  is  an 

approximation of their latency. Thus, each message broadcast by any peer can 

contain its Vivaldi coordinates. A bootstrapping peer A can monitor incoming 

traffic, collect 30/α Vivaldi coordinates and thus compute the threshold value x. 

Ultrapeers today are reached by at least fifty query messages per second, making 

the threshold calculation this way a matter of seconds. 

It  should  also  be  noted  that,  unless  the  structure  and  capacity  of  the 

network changes significantly,  the threshold value remains unchanged, and so 

does not need to be recalculated each time the peer joins the overlay.  After a 

threshold  value  has  been  obtained,  peer  A  connects  to  2/α neighbors  in  the 

following fashion

• It connects randomly to 1/α peers, all of which belong to C (i.e.: any 

peers with a latency lower than the threshold value). These links are 

called short links. 

• It also connects randomly to 1/α other peers, which do not belong to 

C. These are called long links. 

To illustrate, let's assume that parameter α is set to 0.1. This means that C 

contains approximately  0.1 ∗ N nodes of all the nodes (peers) in the system. 

Note that the set C is, of course, different for each peer. Each peer A will create 

1/α = 10  short links randomly selected among the 10% closer to  A peers (i.e. 

among the peers in  A′s C set),  and the same number of long links randomly 
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selected  from  the  90%  further  peers.  The  number  of  sample  measurements 

required for the calculation of the threshold, in this case, is 30/α = 300. Not only 

it take a few seconds to perform this number of RTT measurements, it only takes 

place once, and not every time a peer (re-)connects in the system.

Search  algorithm

Search  is  conducted  in  the  following  fashion:

• The  Initiator  peer  floods  its  long  links  with   TTL =  1.

• Each  of   the   peers  that   receives  the   flood   over  a   long link 

(and  the  Initiator  peer)  initiates  a  flood  with  a  given TTL =  ttl 

(system parameter) over their short links only.

The long link peers which initiate the localized floods (over their short 

links) use 1-hop replication as well as dynamic querying the same fashion it is 

used in Gnutella today. Since short links are randomly connected the efficiency 

of dynamic querying and 1-hop replication is guaranteed. Alternatively, Dynamic 

Querying can be used on the long links level by sequentially sending a new flood 

with increasing TTL, to each long link neighbour.

Analysis

The constructed graph, in conjunction with the described search method, 

has the following advantages:

• Both the  long link-based,  system-wide  graph and the short  link-

based,  local  graphs  are  random,  since  each  peer  selects  peers 

(outside  and  inside  C  respectively)  randomly  for  neighbors  (i.e. 

each peer, for instance, in C has the same probability of becoming a 

short  link  peer  of  the  same  peer  A).  This  enables  both  1-hop 

84



Chapter 5

replication  and  dynamic  querying  to  operate  as  if  they  were 

executed on a random graph.

• Since any peer in C can serve as short link (instead of opting for the 

closest  ones),  the  bootstrapping  procedure  is  very  fast  and 

lightweight. The same holds for the long links. As a result each peer 

need  only  set  up  its  neighbors  once,  regardless  of  arrivals  and 

departures elsewhere in the overlay, making  ITA as little affected 

by churn as Gnutella (i.e. a peer only needs to act when a neighbor 

leaves  the system by simply replacing it  with another  one,  as in 

Gnutella).  This  simplicity  helps  preserve  almost  intact  the 

unstructured  nature  and  the  simplicity  of  construction  of  the 

overlay. What is more, if we tried to connect to the closest possible 

peers, this would require each peer to be on the constant lookout for 

some  closer  peer  connecting  (anywhere)  to  the  network.  This 

constant probing (dependant on churn degree) would increase both 

the traffic in the network and the computational load of the system. 

In addition, the threshold value is only affected by changes in the 

structure of the underlying IP network (which are not very frequent) 

and not by changes in the P2P overlay, which are rather frequent. 

So the value is  calculated  only once and not  each time the peer 

(re-)joins the network.

• (1 − α) ∗ N peers (furthest away at the IP layer) are excluded from 

becoming short  links,  which means the proposed system is  quite 

aware  of  the  underlying  physical  network  topology.  Increased 

awareness in the form of a very small α (i.e. trying to connect to the 

closest possible peers) would help us gain little but lose much, since 

the  small  size  of  the  local  neighborhoods  would  lead  to  high 

clustering.

85



Chapter 5

• Finally,  all  local  clusters/neighbourhoods  have  the  same size, 

enabling the use of a single, system-wide TTL = ttl for flooding the 

short links. 

We have conducted experiments using three distinct values for α, namely 

0.1, 0.05 and 0.033. These values correspond to a number of 10, 20 and 30 long 

and the same number of short links. The above discussion justifies the reason for 

not using smaller values. Values in this range are sufficient for excluding most of 

the peers from the local “neighbourhood” set C of each peer, while being at the 

same time large enough to allow large enough neighbourhoods for quick and 

simple  bootstrapping  procedure  (i.e.  being  able  to  quickly  locate  short-link 

neighbors). The value of α also dictates the number of the long links, since there 

are N/|C| = 1/α “neighbourhoods”. In addition, the use of 1/α long links is due to 

the fact that the use of long links should only take place on the first hop, to avoid 

extra delays in the flood process. 

Finally, it is important to note that there is no 1-hop replication between 

peers connected by long links, so there is no index information exchange. Thus, 

the maintenance overhead for the additional 1/α long links very low.
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5.4 Experimental results

In  order  to  verify  the  arguments  made  in  the  previous  section,  we 

performed several experiments comparing our system with Gnutella, at its peak 

usage  population  (approximately  2  million  users)  [31].  We  performed  the 

comparison with Gnutella 0.6, which employs a 2-tier architecture [38], focusing 

on  the  Ultrapeer  layer  where  flooding  occurs.  The  metrics  upon  which  our 

comparison was based were selected to capture the design goals of IT A, namely 
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to satisfy users by allowing them to get the same number of search query results 

faster by reducing query response time, and to satisfy ISPs by reducing the load 

imposed on their routers.

We  also  compared  our  system  latency-wise  with  the  most  recent 

algorithm we could find in the literature, proposed in [81] by Hsiao et al. Each 

peer in the proposed algorithm also samples the network, in a different function, 

to locate peers with lower latency in order to connect to. That number of samples 

is however relative to the natural logarithm of the total number of peers in the 

system. In our algorithm, the number of samples is constant, regardless of the 

size of the network.
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Figure 5.8: Average degree = 30

Figures 5.6, 5.7, 5.8. Flood reach for 
given number of messages.
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We simulated a network of 200,000 peers, which is a realistic number for 

the size of the Ultrapeer overlay in Gnutella according to LimeWire [30], the 

company that developed the most popular Gnutella client today [77]. We also 

used  three  average  degree  values  for  the  overlay,  namely  30  (which  is  the 

average number of connections in a Gnutella Ultrapeer today), 20 and 10. These 

three numbers correspond to the number of connections per peer in the Gnutella 

simulations and the number of short and long links in the simulations of the IT A 

algorithm. Note that since the long links are only used during the first hop of 

flooding, whereas the short links are used during the second and the remaining 

hops, the outbound degree during any flood hop is the same both in Gnutella and 

ITA, even though our algorithm uses double the number of links (short and long). 
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Figures 5.9, 5.10, 5.11. Time required 
by a flood versus the percentage of  
nodes reached.
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We performed a large number of floods, in each experiment, with varying TTL 

values, resulting in a range of the ratio of the peers reached by the flood. For 

each TTL value we performed 100 floods and averaged the results. We compare 

ITA and Gnutella using three different metrics. The first metric is the latency of 

the connections of the peers, which affects the duration of a flood. We measure 

the average time it takes for a flood to complete, for different  TTL values. The 

second metric is the number of IP messages generated during a single flood. We 

measure  the  average  number  of  IP  messages  generated  during  floods  of 

increasing TTLs. Finally, the last metric is the standard deviation of the message 

load imposed on the routers that comprise the IP layer of the Internet. We argue 

that a reduction in the total number of IP messages in the whole network is of 

little use if there exist a small number of bottleneck routers whose traffic load 

remains the same as before. As we mentioned above, the key goals of the IT A 

algorithm is to benefit  both the P2P application  and other applications sharing 

the  same  medium,  the  Internet.  First  though,  we  prove  that  the  injection  of 

topology  awareness  in  the  overlay  construction  has  not  affected  the 

“randomness” of the system.

The random nature of the constructed overlay is indicated by the extent of 

the reach of a flood for given number of messages. This is because on a clustered 

graph, as shown in Figure 2.8, duplicate messages appear even from the second 

hop of the flood. Since duplicate messages, by definition, arrive at a peer which 

has already received another flood message, they do not add to the reach of the 

entire flood. Figures 5.6, 5.7 and 5.8 show the similarity between the Gnutella 

overlay  (random graph),  the  Hsiao  and the  overlay  constructed  by  ITA with 

respect to flooding. The close fit of all curves on the the graphs shows that the 

flood reach is the same using the same number of messages. This means that ITA 

can provide reduced latency and reduced router load benefits (see below) without 

affecting 1-hop replication, dynamic querying, and the self-* properties on which 

Gnutella-like systems depend for their performance. It should be noted here that 

latencies between neighbours in this experiment were modelled the same way as 

in the Latency experiments described next.
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Latency  experiments

In  order  to  model  the  200,000  by  200,000  latencies  between  our 

simulation  peers,  we  obtained  approx.  1000  real-world  Vivaldi  coordinates. 

Those  3D coordinates  were  produced  by the  Vivaldi  project  experiments  on 

PlanetLab  [34].  We  then  calculated  a  distribution  which  best  fits  the  values 

observed  in  those  coordinates  and we generated  200,000 Vivaldi  coordinates 

using this distribution, thus being able to model the latency between any pair of 

the  200,000  peers.  Figures  5.3,  5.4  and  5.5  show the  values  of  the  original 

Vivaldi  coordinates  as  well  as  the  distributions  generated  from  our 

approximation  distribution.  The  close  fit  is  an  assurance  that  our  randomly 

generated coordinates closely reflect real-world Vivaldi coordinates. Given the 

200,000  x  200,000  latency  matrix  we  generated,  Figure  5.2  shows  the 

distribution of the latency for an optimal full mesh graph where each peer has a 

direct overlay connection to each other peer. The figure shows that the average 

latency between any two peers is 90 time units.

Figures 5.9,  5.10 and 5.11 provide the experiment  results  for  the first 

metric the time required for a single flood to conclude. They show the time it 

takes to flood the network, for given node coverage. We can see that for any 

desired coverage, the time it takes for our system to reach that number of peers 
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is,  on  average,  at  most  half  the  time  for  Gnutella  flooding.  Note  that  the 

measured time reflects the time from the beginning of the flood until even the 

last message generated by that particular flood expires. On the other hand, even 

though the Hsiao et al. algorithm does reduce the time for a flood, compared to 

Gnutella, it still requires more time than ITA.

There are two reasons for measuring flood duration rather than average 

response time for a search query.  First,  a reduction by half  in flood duration 

implies  a  similar  reduction  in  average  query  response  time.  What  is  more 

important however, is the fact that it is common for a flood to still be active and 

being propagated in the network, even though no new results are (and are going 
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to  be)  provided  to  the  user,  so  minimizing  flood  duration  when  possible  is 

important.  Given a constant rate by which new queries enter the network, by 

measuring the time it takes for a single flood to complete to the last message, we 

show that IT A doubles the exit rate of floods from the network. This means that 

ITA doesn't only reduce the number of IP messages per flood and divide traffic 

load more evenly among routers (as we will show in the next section), but also 

reduces the build-up of queues in the router buffers.
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IP  layer  experiments

In this section we focus on the impact the  ITA algorithm has on the IP 

layer.  In order to perform simulations  including the IP layer  we obtained the 

latest trace of the router-level topology of the Internet from CAIDA [28]. This 

trace  was  publicly  released  in  2010 and it  contais  a  much  larger  number  of 

routers than the previous one.  This trace initially contained approximately 33 

million  routers.  However,  we  decided  to  remove  the  1-degree  routers  (leaf 
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routers) for two reasons. The first is the fact that performing simulations with this 

numbe r of routers was time (and probably memory) prohibiting. In addition, the 

existence of leaf routers in the IP topology would not add to the accuracy of the 

simulation results. By pruning those routers, we ended up with the much more 

managable  dataset  of  1.2 million  routers.  This  dataset,  in  addition  to  making 

simulations feasible, still retains the structure of the Internet intact. In addition, it 

still is about six times larger than the previous CAIDA dataset and hundrends 

times larger than most of the router graphs used in similar simulations in the 

literature we have described.

In order to be more thorough in the evaluation of our algorithm, we also 

performed the same number of experiments at the AS layer. We also obtained an 

AS-level  graph  from  CAIDA.  This  dataset  contained  approximately  30.000 

Autonomous Systems. By obtaining the number of subnets for each AS from the 
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Internet Assigned Numbers Authority (IANA) [29], we were able to extract an 

AS population distribution,  which we used to assign peers to each AS in our 

simulation.

In the IP layer experiments,  both on the router and AS level, we used 

again 200,000 peers, each of which was randomly assigned to a router in the 

router-level graph, or AS in the AS-level graph. Since the CAIDA datasets do not 

contain  latencies,  we approximated  the  latencies  with the number  of  IP hops 

between any two peers. Thus, each peer tries to form short links with those other 

peers whose routers are clocse to its own at the IP layer. Again, we do that by 
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obtaining the α ∗ 100% of all routers which are closest to our own router. Long 

links are again formed randomly,  as are short links in a given neighborhood. 

Some measurements on the formed overlay show that  the average number of 

routers in a Gnutella direct link between two peers is 6.9. In contrast, the same 

number for ITA's long links is 7 and for the short links it is 5.5. As we shall see 

below, we can expect a reduction of messages on the order of 15% to 25% (≃ (7 

− 5.5)/7). Given the percentage of the routers which can be reached for a single 

TTL  value,  which is shown in Figure 5.12, the average values we mentioned 

make a lot of sense. This figure shows the ratio of all peers that can be reached 

for a given hop distance. This shows that the vast majority of routers need to 
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traverse a chain of at least 3 hops before they start encountering more than one 

per hop routers. This means that 4 is, more or less, a minimum value for a short 

link,  imposing  a  lower  bound  on  the  reduction  of  IP  messages  that  we  can 

accomplish.

After running the simulations, which included performing several floods 

from random peers,  with  several  TTL values  to  obtain  coverage  percentages 

ranging from 0 to 1, we obtained the following results on the router level: Figures 

5.13, 5.14 and 5.15 illustrate  the reduction in the number of IP messages for 

floods of various lengths. As one can see, the expected reduction that is observed 

is in the range of 15% to 25%. Figures 5.16, 5.17 and 5.18 show the reduction of  

the IP messages generated by ITA, compared to Gnutella. They show that, on 

average, 20% of the Gnutella IP messages, on the router graph experiments, are 

absent from the ITA experiments. Figures 5.25, 5.26 and 5.27 display the results 

of the similar experiments, albeit conducted in the AS level. The similarity of the 

results provide a good argument for their consistency.

Another  important  metric  for  the  efficiency  of  any  topology-aware 

overlay construction algorithm is the traffic load dis tribution across the routers 

in the system. Any reduction in the total number of IP messages is of little use if 

the number of messages forwarded by a small number of (possibly core) routers 

remains  unchanged.  For  this  reason,  we plotted  the standard  deviation  in  the 

traffic load of all routers, again for floods of different sizes. Figures 5.19, 5.20 

and 5.21 show that ITA reduces the standard deviation approximately by 40% to 

50% on the router level graph. Similarly,  Figures 5.22 through 5.24 show the 

relative reduction in the standard deviation of router loads. This means that there 

is a reduction in the effect of bottle-necks in the network. The same experimental 

results on the AS level are presented in figures 5.28, 5.29 and 5.30. In addition,  

we measured the traffic load for the most heavily used router, which  ITA also 

cuts down by half, reducing the bottleneck effect on the routers.

 Finally,  we  would  like  to  note  the  stability  of  the  aforementioned 

reductions in all floods performed, regardless of TTL value, meaning that even 

for floods of smaller reach, the algorithm is still beneficial. In addition, it should 
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be noted that, in order to implement this algorithm, there is no need to change the 

Gnutella communication protocol itself, but rather only new versions of servents 

are only required.

5.5 Summary

In  this  Chapter,  we  presented  ITA  algorithm,  a  novel  approach  for 

injecting topology awareness into unstructured Gnutella-like P2P systems, while 

maintaining  the  self-*  properties  of  the  overlay  topologies  that  are  highly 

desirable in these systems.  ITA  reduces to half the time required for a search 

query to achieve a particular network coverage compared to the latest version of 

the widely deployed Gnutella. It also outperforms a recently proposed, state-of-

the-art algorithm for topology awareness. Moreover, ITA reduces the number of 

IP messages generated during a search query flood by as much as 25%, which is 

a significant reduction for ISPs who care about the load imposed on their routers 

and  its  effect  on  the  performance  of  other  applications.  Finally,  there  is  an 

additional reduction by approximately by half on the standard deviation of router 

loads.
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Conclusions – 
Future Directions

Unstructured  P2P  systems  present  a  strong  design  paradigm  for  the 

development  of  global-scale  distributed  applications  and  systems.  Their  self-

organizing  and  self-healing  capabilities  can  provide  a  system  with  increased 

scalability and robustness, characteristics important to any design.  Their  main 

drawback has been the inefficient routing of messages, both on the overlay and 

on  the  underlying  network  layers.  In  this  dissertation,  we  aimed  at  tackling 

several faces of this problem. 

Messages exchanged between peers can follow several alternate paths to 

reach the same destination  peer.  This ensures the receipt  of the message and 

increases  system  robustness.  It  also  however  generates  a  large  number  of 

redundant  messages  due  to  the  same  peer  receiving  the  same  message  from 

alternate  paths.  We developed a distributed algorithm which detects  the paths 

followed  by those  redundant  messages  and  chokes  those  paths,  reducing  the 

number of redundant messages by 90% while experiencing a loss of only 10% in 

system coverage. We also showed this algorithm to be efficient even in the face 

of constant changes in the system, due to the dynamic nature of the P2P systems.
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In  addition,  we  proposed  a  new  overlay  creation  and  search  method, 

which  tries  to  reduce  the  amount  of  overlay  traffic  required  per  query.  By 

dividing the participants of the system into sub-groups and assigning each group 

responsibility for indexing a part of the total system content, we have made it 

possible  to  achieve  the same query satisfaction  success  with approximately 8 

times  less  traffic,  while  at  the  same time maintaining  the  unstructured,  loose 

nature of the system, which provides it with its excellent self-healing capabilities.

Finally, we focused on the cooperation of the system with its underlying 

network medium, namely the IP layer. Given the fact that a single P2P overlay 

message  between  two  peers  can  be  translated  into  many  IP  messages,  we 

presented an algorithm for overlay creation and search (complementary to the 

previous one), which attempts to add topology awareness to the overlay of the 

P2P system, without harming its random nature. As a result, we achieved a more 

than half reduction in the time required for the execution of a query. In addition, 

we achieved an IP messages reduction of about 20% and at the same time, a 

more  than half  reduction  of the standard deviation  of  router  loads  among all 

Internet routers.

We  believe  that  all  these  proposals  combined  together  present  a 

significant reduction in the traffic generated by unstructured P2P systems in the 

world today.

All in all, we strongly believe Peer-to-Peer systems to continue to be an 

important paradigm in the design of future large-scale distributed systems. Even 

though the industry seems to favour centralized designs for the time being, for 

reasons  such  as  security  and  control,  we  believe  that  in  the  future  more 

applications  will  look  forward  to  exploiting  the  large  power  and  resources 

contained in the sheer number of end-users. This fact will reshape the nature of 

Peer-to-Peer systems, as new applications with different needs appear, leading to 

the emergence of new problems requiring solutions in the field. 

Already  P2P  systems  are  used  today  for  more  than  file-sharing. 

BitTorrent and Skype, two of the most widely used P2P systems, both enable the 
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use of bandwidth sharing. Future systems have already been proposed that will 

allow users  to  share  storage  space  with  each  other,  such  as  PAST [82]  and 

OceanStore [83]. The P2P paradigm will expand in the future to include such 

diverse applications, as Video Conferencing,  Location-based services in Mobile 

Ad  Hoc  Networks  (MANET),  as  well  as  Context-Aware  Services  and 

anonymous yet secure e-commerce. 

Several  research  issues  can  be  solved  first,  in  order  to  enable  P2P 

Systems to spread to a wide range of applications.  These topics include more 

research in overlay optimization and resource allocation to guarantee Quality of 

Services in P2P Systems. 

More incentives  need to  be injected  into future systems to reduce  the 

number of free-riding peers. 

Another interesting topic is the development of semantic searches, which 

will  increase  the  richness  in  query formulation  and enable  more  precise  and 

meaningful searches. 

A  decentralized  reputation  mechanism  has  been  researched  since  the 

advent  of  P2P  systems,  however  an  effective,  accurate  and  deployable 

mechanism has yet to be proposed.

Another  very interesting  topic would be the interoperability  of  similar 

P2P based applications, such as different file-sharing systems.
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