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Abstract

The generation of photons in the spectral area between extreme
UV and soft X-rays with the use of the Free Electron Laser (FEL),
gives rise to a large number of experiments, involving multiphoton
multiple processes, the intensities being considerably high. As a
concequence our understanding of the physics of these processes is
being improved, leading to the implementation of new experiments
in order to study the effect of the non linear processes under such
energy photons to the total description of the system.
The project is focused on the study of three rare gases, Xenon,
Krypton and Neon at photon energies choosen each time in reso-
nance with specific transision what we wish to examine. Theoreti-
cal calculations are giving the population of the ionized atoms, at
different intensities, in order to observe how non linear processes
are favored each time while the intensity is increased. Comparison
of these results with experimental ones show great agreement.

i



Acknowledgements

I am grateful to my professor for the careful guidance and great knowledge
that he offered me as well as for giving me the opportunity to work on these
current subjects during the present year. I would also like to express my
gratitude to my family and good friends for their support and care. Finally,
a very special thank to the Department of Physics of the Unversity of Crete
and the professors of the committee for the knowledge they provided me.

ii



Contents

Acknowledgements ii

List of Figures iv

List of Tables 1

1 Introduction 1
1.1 IONIZATION PROCEDURE . . . . . . . . . . . . . . . . . . 3
1.2 TRANSITION PROBABILITY FOR A TWO PHOTON PRO-

CESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 THE CASE OF RESONANCES . . . . . . . . . . . . . . . . . 12
1.4 REGIME OF PERTURBATION THEORY . . . . . . . . . . 15

2 IONIZATION OF RARE GASES 23
2.1 IONIZATION OF XENON AT 93eV . . . . . . . . . . . . . . 25
2.2 DESCRIPTION OF THE SYSTEM IN RATE EQUATIONS . 29
2.3 ESTIMATION OF THE GENERALIZED CROSS SECTION

BY THE BASIC FEATURES OF THE ATOM [8] . . . . . . 31
2.4 FEL EXPERIMENT OF XENON AT 93eV [9] . . . . . . . . 39
2.5 SATURATION OF PHOTON FLUX . . . . . . . . . . . . . . 41
2.6 IONIZATION OF KRYPTON . . . . . . . . . . . . . . . . . 55
2.7 IONIZATION OF NEON AT 93eV . . . . . . . . . . . . . . . 61
2.8 IONIZATION OF NEON AT 38.8eV . . . . . . . . . . . . . . 66
2.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

iii



List of Figures

1.1 Presence of ATI process, Agostini, PRL, 1979 . . . . . . . . . 17
1.2 Photoelectron energy spectrum showing ATI peaks for different

energies of the field from the experiment of Yergeau et al (1986) 18
1.3 Autoionization mechanism . . . . . . . . . . . . . . . . . . . . 20
1.4 Spectra of the barium 5d9p, 3P 0 resonance for six different val-

ues of the electrin field (kV/cm). . . . . . . . . . . . . . . . . 20
1.5 Spectrum above the ionization threshold of neutral strodium. 21

2.1 Calculated by Karule generalized cross section of Hydrogen for
6-ph absorption . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Plot of ΛK as a function of K showing the stability of σ
1/K
K for

large number of photons. . . . . . . . . . . . . . . . . . . . . . 34
2.3 TOF of Xenon ions up to Xe21+ in the 93eV FEL experiment

of A.A.Sorokin et al. . . . . . . . . . . . . . . . . . . . . . . . 39
2.4 Power dependence of Xenon ions up to Xe15+ from the same

experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.5 Plot+saturation for a 10fs pulse . . . . . . . . . . . . . . . . . 50
2.6 Plot+saturation for a 30fs pulse . . . . . . . . . . . . . . . . . 51
2.7 Changing the direct cross section σ03 from 1.5Mb (dashed line)

to 7.5Mb (solid line), 10fs . . . . . . . . . . . . . . . . . . . . 52
2.8 Leaving σ03 = 7.5Mb, we increase σ13 from 23.5 to 235Mb, 10fs 52
2.9 Power dependence of Xenon including higher terms for a 10fs

pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.10 Comparing power dependencies when higher order processes are

and are not present for a 10fs pulse . . . . . . . . . . . . . . . 54
2.11 Photoelectron spectrum of Kr at 46eV at the FEL experiment

of the group of M.Meyer . . . . . . . . . . . . . . . . . . . . . 55
2.12 Population of Kr,Kr∗ and its ions for a 30fs pulse . . . . . . . 60
2.13 Relative importance of the populations produced by the terms

σ
(2)
01 F

2Kr, σ
(2)
12 F

2Kr+, γAugKr
∗ for a 30 fs pulse . . . . . . . . 60

2.14 Sequencial Ionization of Neon at 93eV with a 30fs pulse . . . . 68

iv



2.15 Sequencial and direct (solid line) in comparison with sequencial
alone (dashed line) Ionization of Neon at 93eV with a 30fs pulse 69

2.16 Sequencial and direct (solid line) in comparison with sequencial
alone (dashed line) Ionization of Neon at 93eV with a 10fs pulse 70

2.17 Increasing slope of Ne2+ at 38.8eV in the FEL experiment of
R.Moshammer et al.(PRL 98,203001(2007)) . . . . . . . . . . 71

2.18 Theoretical calculation on Neon ionization at 38.8eV . . . . . 72

v



List of Tables

2.1 Ionization of Xenon and its ions via processes of the same order 28
2.2 Single and Multiphoton cross sections as astimated by scaling 38
2.3 Saturation Flux and Intensity for each ionization procedure . . 44
2.4 Ionization of Xenon with process of more than one order . . . 47
2.5 Ionization of Krypton along with the photoelectron energies . 57
2.6 Photon energies ionizing Neon with the respective cross sections 62
2.7 Ionization of Neon and its ions from different shells up to Ne8+ 64

1



Chapter 1

Introduction

In the following project, we would like to study the behavior of atoms of noble
gases ionized by intense lasers in the X-ray spectral region, on the grounds
of their stability and of their large ionization energies. It it also due to the
large number of shells that makes the study of Auger effects more accessible.
Several experiments were performed on the multielectron ionization of Xenon
and other noble gases, with which we may compare our theoritical results, so
as to reach to further conclusions.

DESCRIPTION OF THE EXPERIMENTAL PROCESS

The process, the physics of which we will deal with later on, is a photon
beam bumping a noble gas beam, neutral or ionized, causing further ioniza-
tion. The experimental techniques used to accomplish this are quite a few, the
most common of which are mentioned below.

ECRIS (Electron Cyclotron Resonance Ion Source)

Electron cyclotron resonance is the effect of a magnetic field on a moving
electron in a direction non-parallel with its direction of motion with a specific
frequency given by:

ωce = eB
m

ECRIS is an ion source based on the electron acceleration via electron
cyclotron resonance. More precisely, a volume contains a low pressure gas.
A magnetic field is applied to a region inside the volume which defines the
frequency of the cyclotron electron. Microwaves hit the volume at a frequency
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comparable to the frequency of the electron cyclotron resonance. In this way
they heat the free e− in the gas which in turn collide with the atoms in the
gas causing ionization.

ECRIS can produce singly charged ions with high intensity, though for
multiply charged ions the method has the advantage to keep the ions pro-
duced into the volume long enough, so as more collisions to take place and
higher ions to be created. The pressure that the gas is under is such to avoid
recombination of electrons back to the ions.

ELECTRON - IMPACT - TYPE ION SOURCE

Another way of producing ions is the following. Heating a wire fila-
ment that has electric current running through it, electrons are produced via
thermionic emission. These e− are accelerated to 70 eV and concentrated into
a beam by being attracted to the trap electrode.

Our sample which contains neutral atoms of gas is introduced into the ion
source in a perpendicular direction to the electron beam. The close passage of
highly energetic electrons causes large fluctuations to the electric field that is
applied to the neutral atoms so that they are violently ionized. These ions pro-
duced are then directed towards the mass analyser using a repeller electrode.
The ionization efficiency depends strongly on the energy of the accelerated
electrons and on the chemistry of the analyte. Precisely, if the analyte is a
molecule, as far as the electron energy is concerned, it should be such that the
corresponding wavelength of the electrons matches the size of the bonds.

Having prepared our ion source in one of the previous procedures, there
are two ways of matching the ion beam with a photon beam, the merged beam
teqnique and the dual laser produced plasmas photoabsorption teqnique. With
the merged beam teqnique, we get the ion beam interacting with synchrotron
radiation, that is accelerating charged particles through magnetic fields, pro-
ducing electromagnetic radiation over the entire electromagnetic spectrum.
On the other hand, the dual laser produced plasmas is a teqnique containing
two lasers of different frequency, the one in a parallel and the other in a per-
pendicular direction.

FREE ELECTRON LASER

The most of the latest experiments on X-rays radiation were performed by
the new Free Electron Laser (FEL) in Hamburg. FEL is a laser which, unlike
all the others lasers, does not have as the active medium gas or liquid, but a
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relativistic electron beam moving freely through a magnetic structure. FEL
has the widest frequency range, from microwaves to soft X-rays.

1.1 IONIZATION PROCEDURE

Being familiarized with the main idea of the experimental procedure, we should
start discussing about the different mechanisms that an atom can be ionized.

The physical process that we are about to describe is an atom placed in an
external radiation field. The hamiltonian that describes the system contains

a part which is the hamiltonian of the atom HA = P 2

2m
+ V (r) = (−i5)2

2m
+ V (r)

with the substitution of the derivative by the covariant derivative ~5→ ~5−e ~A
in order to provide the theory with the symmetry under local transformations.

Thatway the hamiltonian of the atom is written HA = (~P−e ~A)2

2m
+ V (r) where

the potential V(r) expresses the central potential that the electron of the atom
is bound to. Further the total hamiltonian must contain the hamiltonian of
the field HF where we consider photons of various frequencies ωk and non
determined polarization, HF =

∑
~kλ ~ωkα̂

†
kλα̂kλ.

H =
(~P − e ~A)2

2m
+ V (r) +

∑
~kλ

~ωkα̂†kλα̂kλ (1.1)

From the expansion of the first term we get ~P 2 + e2 ~A2− 2e ~P · ~A due to the
Coulomb gauge 5 ·A = P ·A = 0. From the quantum theory of radiation the
vector potential is written

~A(~r) =
∑
~kλ

√
~

2ε0V ωk
ε̂~kλ[α̂kλe

i~k·~r + α̂†kλe
−i~k·~r] (1.2)

The matter of interest here is to calculate the matrix elements of the cou-
pling of the external field with the atom, terms which appear as e2 ~A2−2e ~P · ~A
in the hamiltonian above. The states of the system are |nlm;N〉 where |nlm〉
refer to the atomic states while |N〉to the field states indicating the photon
number of the field. So in order to describe the ionization of the atom, due
to the coupling with the field, basically the procedure is that of absorption of
one or multiple photons, which means that from the expression (2) above, we
are interested only in the first term which contains the destruction operator.
Moreover, considering that the wavelength of the radiation is large compared

to the atomic radius and that the exponential ei
~k·~r is the only part concerning

space in the expression of the potential or equivalently the field, we expand it
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ei
~k·~r = 1 + i~k · ~r + (i~k·~r)2

2!
+ ...

Due to the fact that k · r < k · a0 � 1, where a0 is the Bohr radius, we
may take into account only the first term of the expansion above, making the
well known ”dipole approximation”. This way the matrix element reduces
to 〈n′l′m′;N ′|ε̂kλ · ~pα̂kλ|nlm;N〉. Now writing ~p = d~r

dt
= i

~ [HA, ~r] using the
Heisenberg’s equation where HA is the atomic hamiltonian in the absence of
the field. Then

〈n′l′m′;N ′|ε~kλ
i

~
(ĤA~̂r − ~̂rĤA)α̂kλ|nlm;N〉 =

=
i

~
(En′l′m′ − Enlm)〈n′l′m′;N ′|ε~kλ · ~̂rα̂kλ|nlm;N〉 (1.3)

As long as we are taking the dipole approximation the last term of the in-
teraction ~A2, as an operator has no spatial dependence so it does not change the

initial atomic state and the corresponding matrix element 〈n′l′m′N ′| ~̂A2|nlm;N〉
vanishes. However, if we had taken up to second term in the exponential’s ex-
pansion the matrix element would not have vanished since

~̂A =
∑
~kλ

√
~

2ε0V ωk
ε̂~kλα̂kλ(1 + i~k · ~r) (1.4)

would this time be space-dependent. As far as the ~P · ~A matrix element is
concerned there would have appeared two extra terms

~k · ~r · ε̂ · ~p = 1
2
(ε̂ · ~p · ~k · ~r + ε̂ · ~r · ~p · ~k) + 1

2
(~k × ε̂) · (~r × ~p)

the first of which is the elctric quadrupole term and the second the ~L · ~B term,
or the magnetic dipole term.

On the following manipulations, the dipole approximation will be accurate
enough, so as not to deal with the higher terms ofthe expansion. [1], [2]

PERTURBATION THEORY

Given the hamiltonian of the system, we now have to determine the time
evolution operator in order to compute the transition amplitude of the process.
Considering ĤA + ĤF = p2

2m
+

∑
~kλ ~ωkα̂

†
kλα̂kλ + V (r) as the unperturbed

hamiltonian Ĥ0 and V̂AF = 2e ~̂P · ~̂A as the perturbation. We denote |i〉 as the
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initial state and |f〉 as the final state of the system which are connected with
our previous notation by

|i〉 = |nlm;N〉

|f〉 = |n′l′m′;N ′〉

Considering now the field to be monochromatic with frequency ωk very
close to the resonance frequency ωnn′ of the atomic transition |nlm〉 → |n′l′m′〉,
firstly the unperturbed hamiltonian

〈f |Ĥ0|i〉 = Enlm
∑
λ

~ωkN〈nlm;N |nlm;N〉 (1.5)

and secondly the atom-field interaction, quantizing the field in a 3-dimensional
box of volume L3 and finally setting L→∞, is written

〈f |V̂AF |i〉 = i

√
2e2

~
∑
λ

ω
1/2
k

(ε0L3)1/2
〈f |(ε̂~kλ · ~rα̂~kλ)|i〉 (1.6)

The state of the system at time t satisfies the Schrödinger equation

i~Ψ̇(t) = ĤΨ(t) (1.7)

where Ĥ = Ĥ0+V̂AF . The solution is written using the time evolution operator
U(t, t0)

Ψ(t) = Û(t, t0)Ψ(t0) (1.8)

Substituting (8) into the Scrödinger equation, we find the equation that U(t, t0)
has to satisfy

i~U̇(t, t0) = ĤU(t, t0) (1.9)

Having from the beginning the intension to distinguish non-interacting
from interacting terms, we consider the solution U(t, t0) having the form

U(t, t0) = U0(t, t0)U I(t, t0) (1.10)

where U0(t, t0) is the time evolution operator of the non-perturbative hamil-
tonian H0 satisfying the equation

i~U̇0(t, t0) = Ĥ0U0(t, t0) (1.11)

Substituting now the solution (10) into the differential equation (9) and taking
(11) into consideration, we find the equation of motion for the interactive time
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evolution operator U I(t, t0)

U̇ I = − i
~
U0†V AFU0U I

where U0†V AFU0 is defined as the interactive potential V I in the interaction
picture so finally given U I(t0) = 1

U I(t) = 1− i

~

∫ t

0

dτV AF,IU I (1.12)

The exact solution of (12) can only be approximated by iteration, that is
the first order approximation is

U I
1 (t) = − i

~

∫ t

0

dτV AF,I

while the second

U I
2 (t) = (− i

~
)2

∫ t

0

dτ

∫ τ

0

dτ ′V AF,I(τ)V AF,I(τ ′)

and finally the n-th term

U I
n(t, t0) = (−i)n

∫ t

0

dτn

∫ τn

0

dτn−1...

∫ τ1

0

V AF,I(τn)V AF,I(τn−1)...V AF,I(τ1)

Let us discuss a little bit further the meaning of each of the above correc-
tions on the transition amplitude as far as the description of the process is
concerned. Starting with the first correction U I

1 (t) it contains the destruction
operator, acting on the initial photon state |N〉 giving

α̂kλ|N〉 =
√
N |N − 1〉

The only way the matrix element not to vanish is to have as a final photon
state |N ′〉 = |N − 1〉. Consequently the first order correction describes the
process of one-photon absorption. The answer of what the atom’s final state
will be, is found on the remaining 〈n′l′m′|ε̂~kλ ·~r|nlm〉. Similarly, the second
order correction U I

2 (t) includes two destruction operators α̂kλ, each one being
between the operators eiH0t and e−iH0t. The explicit form of U I

2 (t) is the
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following

U I
2 (t) = (− i

~
)2

∫
dτ

∫
dτ ′eiH0τ (i

√
2e2

~
∑
λ1

ω
1/2
k

(ε0V )1/2
ε̂kλ1 · ~rα̂kλ1) · e−iH0(τ−τ ′)·

·(i
√

2e2

~
∑
λ2

ω
1/2
k

(ε0V )1/2
ε̂kλ2 · ~rα̂kλ2) · e−iH0τ ′

Constructing now the transition amplitude between the initial and final
state 〈f |U0U I

2 |i〉 we observe that the first destruction operator α̂kλ2 acts straightly
on the |N〉 photon state, though the second α̂kλ1 cannot since it does not com-
mute with the non interactive hamiltonian H0. To get through this we may
insert a sum over all possible intermediate states, which is equivalent to the
identical operator ∑

C

|C〉〈C| = 1

where |C〉 = |n1l1m1;N − 1〉. This way the amplitute U0U I
2 is written

〈f |U0U I
2 (t)|i〉 = (− i

~
)2eiH

0t

∫
dτ

∫
dτ ′〈f |eiH0τ (i

√
2e2

~
∑
λ1

ω
1/2
k

(ε0V )1/2
ε̂kλ1·~rα̂kλ1)·

·e−iH0τ ·
∑
C

|C〉〈C|eiH0τ ′(i

√
2e2

~
∑
λ2

ω
1/2
k

(ε0V )1/2
ε̂kλ2 · ~rα̂kλ2)e−iH0τ ′|i〉

Interpreting the formula above we may say that the second order correction
of the transition amplitude expresses the |nlm〉 → |n′l′m′〉 atomic transition
via the intermediate atomic state |n1l1m1〉, with the absorption of one photon
for the |nlm〉 → |n1l1m1〉 atomic transition, and of one second photon for
|n1l1m1〉 → |n′l′m′〉 summing over all possible intermediate states. By possible
we mean that for certain sets of |n1l1m1〉 the radial or the angular integrals
concerning the matrix elements 〈n1l1m1|~r · ε̂|nlm〉, 〈n′l′m′|ε̂·~r|n1l1m1〉 are zero,
leading to the selection rules which define the allowed l1 and m1 values of the
intermediate states.

Let’s consider a special case where the atom is initially in a 1s state while
the field is in an |N〉 state and the light is linear polarized in the z-direction.
Taking the first correction in the transition amplitude, involving the one-
photon absorption with photon’s frequency ω, the decisive integral determon-
ing what the final state should be, is, the angular one

∫
dΩY ∗l′m′Y10Ylm where
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Y10 appeared from the fact that

ε̂kλ · ~r = z = rcosθ = r · Y10

For the integral not to be zero, l′ = 1, the only possible final states being
1s→ np. It is obvious though from the radial integral that its value would be
as large as the overlap between R1s, Rnp is, given that R1s is well located near
the nucleus, while Rnp is spread to larger distances as n is getting larger.

Considering now the second correction, we have a two-photon process with
one intermediate state and photon’s frequency ω/2, so the two angular in-
tegrals are

∫
dΩYl1m1Y10Y00,

∫
dΩYl′m′Y10Yl1m1 giving the allowed transition

1s→ np→ ns, nd.
Accordingly, in the third correction, with a three-photon process and two

intermediate states with photon’s energy ω/3, the transition is

1s→ np→ ns→ np

nd→ np, nf

Supposing now that we are interested in the transition 1s → 2p, that
is in the transition amplitude 〈2p;N ′|U |1s;N〉, taking up to the third order
corrections we realize that the atom can reach the 2p state, either by a one-
photon process, or a three-photon process, rejecting a two-photon process since
the U2 matrix element vanishes.

So concluding, we note that a certain transition can happen via different
mechanisms and its up to the photon energy and the field’s photon number,
that is the intensity of the field, as well as the polarization of light, to decide
which of those will prevail. [3]

1.2 TRANSITION PROBABILITY FOR A TWO

PHOTON PROCESS

In the lines below we deal with a two photon process suggestively, given though
the formula for the transition amplitude of an n-photon process and following
the same procedure, similar results can be obtained for an arbitrary-photon
process [4]. We have arrived in the following form of U2

〈f |U2(t)|i〉 =
2e2ωk
~3ε0L3

e−iEf t
∑
C

∫ t

0

dτei(Ef−EC)τ

∫ τ

0

dτ ′ei(EC−Ei)τ
′√
n
√
n− 1·

8



·〈f |
∑
λ1

ε̂kλ1 · ~r|n1l1m1;N − 2〉〈N − 1;n1l1m1|
∑
λ2

ε̂kλ2 · ~r|nlm;N − 1〉

Performing now the integrations we find

〈f |U2(t)|i〉 =
2e2ωk
~3ε0L3

e−iEf t
∑
C

[
ei(Ef−Ei)t − 1

i2(EC − Ei)(Ef − Ei)
− ei(Ef−EC)t − 1

i2(EC − Ei)(Ef − EC)
]·

·
√
n
√
n− 1 ·〈f |

∑
λ1

ε̂kλ1 ·~r|n1l1m1;N−2〉〈N−1;n1l1m1|
∑
λ2

ε̂kλ2 ·~r|nlm;N−1〉

Focusing on the bracket-term, we see that in the exponential of the second
term, there is the energy difference between the final and the intermediate
state. Recalling that as an intermediate state we consider an infinite number
of states concerning n-level infinitely large, and excluding the case where C is a
real intermediate state, much less in resonance with |f〉, which means Ef = EC ,
we can expect ei(Ef−EC)t oscillating very rapidly, so we can approximate it with
its maximum value ei(Ef−EC)t ' 1. This way, the second term vanishes and we
are left with

〈f |U2(t)|i〉 =
2e2ωk
~3ε0L3

e−iEf t

i(Ef − Ei)
∑
C

ei(Ef−Ei)t − 1

i(EC − Ei)
√
n
√
n− 1·

·〈f |
∑
λ1

ε̂kλ1 · ~r|n1l1m1;N − 2〉〈N − 1;n1l1m1|
∑
λ2

ε̂kλ2 · ~r|nlm;N − 1〉

The transition probability per unit time of the process is defined

Wfi = lim
t→∞

|U2(t)|2

t

where the limit is taken for time adequately large compared with the lifetime
of the final state. Taking this limit, a factor

lim
t→∞

|ei(Ef−Ei)t − 1|2

(Ef − Ei)2t

arises which is an equivalent form of the delta function δ(Ef − Ei) retaining
energy conservation in the system. Giving

Wfi = (
2e2

~3ε0L3
)2ω2

kn
2δ(Ef − Ei)·

9



·|
∑
C

〈f |
∑

λ1
εkλ1 · ~r|n1l1m1;N − 2〉〈N − 1;n1l1m1|

∑
λ2
εkλ2 · ~r|nlm;N − 1〉

i(EC − Ei)
|2

(1.13)

APPLICATION TO IONIZATION

In the above, we treated the general transition of the atom from an initial
|nlm〉 to a final |n′l′m′〉 state. In particular, transfering energy to an atom by
a laser source, either the electron of the atom is excited to an upper bound
state, or it is completely ionized, described by a final state in the continium.
Since the first case concerns an excited atomic state and we know how to treat
it, we focus on the case of ionization, in which the final state is approximated
by a plane wave

|f〉 = ei
~K·~r

where ~K = (K,Θ,Φ) is the wave- vector of the outgoing electron, while ~r the
spatial coordinates of the electron.
The plane wave now can be expanded in spherical waves. Solving the Green’s
equation of the Helmholtz operator Gω(~r, ~r′) and using the completeness rela-
tion of the spherical harmonics

∞∑
l=0

l∑
m=−l

Y ∗lm(θ′, φ′)Ylm(θ, φ) = δ(φ− φ′)δ(cosθ − cosθ′)

as well as

δ(~r − ~r′) =
δ(r − r′)

r2
δ(φ− φ′)δ(cosθ − cosθ′)

Green’s function can be written

Gω(~r, ~r′) =
eik|r−r

′|

4πk|r − r′|
=
∞∑
l=0

l∑
m=−l

gl(r, r
′)Y ∗lm(θ′, φ′)Ylm(θ, φ)

where gl(r, r
′) = Ajl(kr<)h

(1)
l (kr>), jl the Bessel function, hl the Hankel func-

tion. Taking finally the limit r′ →∞ and r< = r, r> = r′ we find the following
expression for the expansion of the plane wave into spherical waves

eiK·r = 4π
∞∑
l=0

iljl(Kr)
l∑

m=−l

Y ∗lm(θ′, φ′)Ylm(θ, φ)

where θ′, φ′ refer to the angular coordinates of the wave-vector ~K which was
chosen parallel to the vector ~r′. Adjusting the relation above to our notation

10



we write

eiK·r = 4π
∞∑
l=0

iljl(Kr)
l∑

m=−l

Y ∗lm(Θ,Φ)Ylm(θ, φ) (1.14)

Expressing the Bessel function jl(Kr) in terms of hypergeometric functions
and of the factor e−iδL , approximating the Coulomb potential created by the
nucleus by the phase shift δL = −argΓ(L+ 1− i

K
)

|fK(~r)〉 = eiK·r = 4π
∞∑
l=0

ile−iδLFL(Kr)
l∑

m=−l

Y ∗lm(Θ,Φ)Ylm(θ, φ) (1.15)

Since the electron is nearly free, having energy E = ~2K2

2m
, each infinitensi-

mal energy area dE corresponds to a number of states dn, so in the transition
probability calculation we should multiply with the density of electron states

ρ(EK) = L3
eKmdΩK

~2(2π)3
, Le refers to the dimensions of the box in which the electron

moves freely, with the index there to distinguish the quantization box of the
electron from that of the electric field. In addition we multiply the plane wave
by a normalization factor relative with the dimension of space

|f〉 = L−3/2
e ei

~K·~r

So the differential transition amplitude is written

dWfi = (
2e2

~3ε0L3
)2ω2

kn
2δ(Ef − Ei)

L3
eKmdΩK

~2(2π)3
·

·|
∑
C

〈f |
∑

λ1
εkλ1 · ~r|n1l1m1;N − 2〉〈N − 1;n1l1m1|

∑
λ2
εkλ2 · ~r|nlm;N − 1〉

i(EC − Ei)
|2

(1.16)
meaning the transition amplitude per unit solid angle dΩK of the outgoing
electron. In order to get the total transition amplitude we integrate overall
angles, ending with the expression

dW
(2)
fi

dΩ ~K

= a2m

~
KI2ω2|M (2)

fi |
2 (1.17)

where a = e2

~c the fine structure constant, K the norm of the wave-vector of the
electron, ω the photon frequency, I the flux per unit frequency of the photon

beam, which is defined I(ωk) =
ω2
k

8π3c2

∫
dΩn~kλ where the integration holds for

all the area that the photon beam is extended. |Mfi|2 contains all the matrix
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elements divided by the energy difference between initial and intermediate
states

M
(2)
fi =

∑
C

an′l′〈f(~r)|
∑
λ1

~r · ε̂kλ1 |n′l′m′〉〈n′l′m′|~r · ε̂|nlm〉

with an′l′ = 1
EC−Ei

GENERALIZED CROSS SECTION FOR A TWO-PHOTON PROCESS

Dividing the differential transition probability by the photon flux per unit
frequency, I, we find the generalized cross section dσ(2)

dΩK
, quantity independent

of the laser pulse’s shape.

dσ(2)

dΩK

= a2m

~
Kω2|M (2)

fi |
2 (1.18)

given in cm4sec units. The generalized cross section for an N-photon process
of frequencies ω1, ω2, .., ωN

dσ(N)

dΩK

=
(2πa)N

4π2

m

~
Kω1ω2..ωN |M (N)

fi |
2 (1.19)

in units cm2NsecN−1. The total generalized cross section is obtained obviously
by integration overall angles of electron emission [4].

1.3 THE CASE OF RESONANCES

So far we have discussed the transition probability for a two or higher order
process to happen, when resonances are not involved. By resonance we mean
exciting (or ionizing) the atom with photon energy ~ω = ~ωf − ~ωn′l′m′ where
~ωf the energy of the final (bound or in the continium) state and ~ωn′l′m′ the
energy of the intermediate state. Since we are summing over all allowed by the
selection rules intermediate states, it is quite usual resonances to be included.
The reason for special treatment of resonances is that the denominator of the
transition amplitude vanishes for ωc = ωi = ωf [5].

To fix this, in the energy of the intermediate state we add an imaginary
part −iγc, where the physical meaning of γc is the width of the state which is
straightforwardly connected with the lifetime of the state by the time-energy
uncertainty relation

∆E · τ ∼ ~

12



In this intermediate transition, energy conservation can be violated for time
t < τ , for times t > τ the atom returns to the nearest real state. Thus, the
difference between real and virtual states lies on the lifetimes; virtual states
are characterized by small lifetimes, though real ones are longer living. That
is exactly the reason why, when speaking of resonances, we are more interested
in real intermediate states.

It is obvious that resonances can happen in real or virtual intermediate
states. The thing with the virtual states is firstly that their width γc is quite
extended and secondly that in the matrix elements between them and the ini-
tial or final states, the overlap of the radial wavefunctions is rather limited,
facts that reduce at a high level, the contribution of these terms into the sum
of intermediate states.

On the contrary, in the case of real intermediate states, their lifetime, 1
γc

as well as the overlap of the radial elements is considerably large, setting the
corresponding terms important enough in the transition probability calcula-
tion.

One more thing concerning the lifetime of the intermediate states is, that
in order for an N-process to occur, the photon flux must be high enough so as
the second or Nth photon to be absorbed before the lifetime of the interme-
diate state has passed. In the following paragraph we deal with the effect of
higher intensities in the lifetime and width of the intermediate states, as well
as their relation with the transition probability.

RESONANCES UNDER STRONG EXTERNAL FIELDS

Going back to the result of the transition probability for an N-photon
process in the case where resonances are not concerned, we found that W

(N)
fi

is proportional to the Nth power of the photon flux

W = σ(N)FN

Given now that the generalized cross section σ(N) is independent of the char-
acteristics of the photon beam, plotting logW versus logF a straight line of
slope N will be expected.

In the presence of resonances though, it is shown following a specific proce-
dure (P.Lambropoulos, Topics on multiphoton processes in atoms, 1976), that

the Fourier transform of the transition amplitude U
(2)
fi has the form

G
(N)
fi (z) =

1

z − ωf

∑
CN−1...C1

VfCN−1

z − ωCN−1
−RCN−1CN−1

(z)
· ...

13



· VC2C1

z − ωC1 −RC1C1(z)
· VC1i

z − ωi −Rii(z)
(1.20)

where RKK(z) is the level shift operator.
It is known that in weak fields the operator RKK(z) and as a consequence

the width of the state is determined by its spontaneous decay though under
strong fields, the atom can also decay via stimulated emission, so the operator
RKK(z) and the corresponding width are intensity dependent. This can be
seen more distinctly if one decides to work with the level shift operator RCC

given by the expression

RCC(z) ≡ 〈C|V |C〉+ 〈C|V QI
1

z −QIHQI

QIV |C〉

Approximating RCC(z) with a z independent quantity

RCC ≡ 〈C|V |C〉+ 〈C|V QIQIV |C〉

the matrix element 〈C|V |C〉 is vanishing due to the odd function in the atomic
integral. QI is the projection operator containing all states except from the
initial |i〉

QI = 1− |i〉〈i| =
∑
M 6=i

|M〉〈M |

so to lowest non-vanishing order, RCC will be proportional to 〈C|V
∑

M 6=i |M〉〈M |V |C〉
and refering only to the photon states∑

M 6=i

ωk〈N − 1|α̂kλ|N〉〈N |α̂†kλ|N − 1〉 ∼
∑
M 6=i

(
√
n− 1)2ωk ∼ (n− 1)ωk

which means that in the calculation of RCC there will be one term intensity
dependent and one intensity independent. So RCC will have the general form

RCC(I) = iγ(0) + iγ(1)I

And G
(2)
fi (z) from eq.(20) for a two photon process will be written

G
(2)
fi (z) =

1

z − ωf

∑
C

VfC
z − ωC −RCC(z)

· VCi
z − ωi −Rii(z)

considering the resonance to occur in one of the terms in the sum over C, z =
ωC so in the demoninator remains

VfC
−iγ(0)−iγ(1)I where from the two imaginary

parts, the intensity independent γ(0) refers to the natural width of the state
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(due to spontaneous decay) while the intensity dependent γ(1)I to the variation
of that width due to stimulated emission.

This is exactly the point where the intensity of the field becomes important.
For large intensities we have γ(1)I � γ(0) so that the factor above is finally
written

VfC
−iγ(1)I . Further on, in the case of a resonance, due to the decrease

of the denominator, the corresponding term in the sum over C becomes the
leading one. That way, taking the square of the amplitude in order to find the
probability W

(2)
fi ∼ I2 · 1

I2 or in an N-photon process

W
(N)
fi ∼ I

N · 1

I2

On the contrary, in the case of weak fields γ(1) � γ(1)I, so W
(N)
fi ∼ IN .

Based on the above, we could state that in a plot of logW
(N)
fi versus logI in

the case of strong fields the slope would be N − 2 while in the weak’s N .

1.4 REGIME OF PERTURBATION THEORY

Until now we were concerned about processes that were placed between the
perturbative behavior, that is we thought of the coupling V AF (atom-field) be-
ing smaller than the Coulomb interaction of the electron with the nucleus.
The level of this coupling can be judged by the intensity of the field as well
as the atomic state as far as the attraction of the electron with the nucleus is
concerned. That is, a highly excited state is less bound than the ground state,
considering a field of given intensity.

Recognizing our initial statement about the validity regime of perturbation
theory as not well defined, we proceed with the introduction of a new quan-
tity, used as a measure of the field’s strength and highly connected with the
perturbative regimes, known as ponderomotive energy Up = I

ω2 where I is the
intensity of the field and ω the frequency of the photons [10]. The physical
meaning of the ponderomotive energy is given in the following lines.

Placing a free or very weakly bound electron in a laser field, it possesses
kinetic energy which can be separated into two parts. The first contains the
trasposition of the electron and the second a quiver energy due to the oscil-
lation of the electron imposed by the field. This quiver energy is the pon-
deromotive energy, which the electron has even before being ionized, shivering
around its atomic state, increasing thisway the energy of the state by Up and
equivalently the ionization potential from Ip to Ip + Up.

It should be mentioned that since a nearly bound state is shifted by Up due
to the interaction with the AC field, the rest of the bound states will arise a
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much less energy shift due to the reduced interaction with the laser and the
increased Coulomb attraction.

The criterion now as to when the strength of the field is high enough to
give rise to non-perturbative behaviors, is the compare of the ponderomotive
energy of the field with the energy ~ω of its photons.

Taking firstly the case where ~ω > Up and the fact that Ip = ~ω that is
that the photon(s) absorbed are enough to ionize the atom, then one could say
that the photon(s) absorbed hardly see(s) the energy increase in the ionization
potential of the atom since they (it) can still ionize it.

However, when ~ω < Up is the case, the increase in the ionization potential
(due to the increase of the laser intensity) is such that with photon(s) of the
same energy the atom cannot be ionized, at least via the procedures already
discussed, based on perturbation theory. As will be mentioned below, in these
cases, the dominating procedures are ATI (above threshold ionization), high
harmonics generation or even autoionization.

As a point of reference, an infrared photon ~ω = 1eV at intensities 1013W/cm2

has energy about equal to the ponderomotive energy of the field Up = 1.44eV ,
meaning that we have reached the non-perturbative regime. However, for
~ω = 93eV at intensities 1016W/cm2, Up = 0.16eV that is three orders of
magnitude smaller than the photon energy.

Since this is the energy range throughout this project, it is worth to say
that it takes the intensity to become 1019W/cm2 in order to cope with non-
perturbative results. This reveals another advantage of working in the soft
X-ray energies, since not only the inner structure of the atom is exposed but
also multiphoton processes are particularly favoured from the high intensities
achieved.

Furthermore, as far as the ionization of higher species is concerned, as long
as the perturbation theory applies to the neutral atom, it also does for every
higher ion since the electrons are more and more bound to the nucleus.

PROCESSES UNDER STRONG FIELDS [7]

Above threshold ionization (ATI)

In general, given the frequency and the intensity of the laser, the electron
absorbs as much photons as needed in order to leave the nucleus and become
free. That is, if I.P. is the ionization potential of an atom, and N photons
are needed to exceed this potential, then the measured kinetic energy of the
photoelectron would be

Ee = N~ω − I.P.

However, measurements of the photoelectron spectrum in early 80’s exper-
iments (Agostini, PRL, 1979) have shown that photons greater than the ones
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required may be absorbed, fact that can be detected by this the same energy
spectrum [6]. For example, if six photons of energy 2.34eV are needed to
reach the I.P. of Xenon (12.27eV), in the electronic spectrum there must be
a first peak around 1.77eV. Indication of the ATI process is the fact that a
second peak around 4.5eV was observed which can only be explained by the
absorption of a seventh photon (Fig. 1.1).

Figure 1.1: Presence of ATI process, Agostini, PRL, 1979

It should be mentioned yet, that the observation of an ATI process from
the electron spectrum is not always possible, due to the acceleration of the
emitted electrons from the laser field. As the electron leaves the laser focus
it experiences a force, −∇Up due to the laser inhomogeneity, converted then
into energy. This energy that the e− gains, is exactly equal to the shift of the
ionization potential, so the different peaks (due to the absorption of different
number of photons) in the energy spectrum, appear at the same energies no-
matter how the ponderomotive energy of the field is.

For example photons of energy 1.17eV and intensity around 1013W/cm2

give acceleration energy few eV to the emitted electrons, energy which ex-
ceeds the photon energy. As a result, an ATI process, even if present, cannot
be seen in the spectrum since there would just appear a continious energy
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spectrum around the acceleration energy. On the other hand, for photons of
2.34eV of the second harmonics laser frequency and intensity 8 · 1012W/cm2,
the acceleration energy is around 0.3eV, much smaller than the photon energy
so the spectrum is discrete due to the discrete photon absorption.

The dependence of ATI process on the laser intensity can be well shown by
the electronic energy spectrum in an experiment run by Yergeau et al (1986)
where the photoelectrons’ energies were graphed for different energies of the
laser pulse, growing from 3.4mJ to 6.8mJ .

Figure 1.2: Photoelectron energy spectrum showing ATI peaks for different
energies of the field from the experiment of Yergeau et al (1986)

By the increase of the energy of the laser pulse, even more peaks appear
and moreover as the peaks corresponding to higher energies grow, the ear-
lier peaks (corresponding to less-photon absorption) decrease. This behavior
also shows the ATI process in the non-perturbative limit, since higher-order
processes have become just as important as the lower orders, if not more im-
portant.
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Autoionization

Another procedure, which may be confused with the ATI process, on that
it concerns states above the ionization threshold although as a mechanism is
completely different, is autoionization. In autoionization, there is a bound
atomic state |g〉 from which, due to the laser field, two electrons are excited
to an autoionizing state.

The autoionizing state (AS) can be described as below. Given that an
electron absorbs enough photons to reach a state that lies above the ionization
threshold of the atom, this state one can say that is a discrete state since it is
described as an nl state (e.g. 5d,6f), it contains though a part of the continuum
since it is not a bound state. The part of the continuum that this discrete state
contains is determined by the Coulomb interaction with the closest electron.
In that way tha autoionizing state |φ〉 can be written in terms of a discrete
one |α〉 and a part of the continuum |c〉

|φ〉 = |α〉+

∫
dEc

Vca
E − Ec

|c〉

where Vca is the Coulomb electron-electron interaction. When talking about
AS, we always refer to an excitation to the discrete state |α〉 of two electrons,
in order the interaction part Vca not to be negligible.

The AS |φ〉 is characterized by a natural width Γa, that is the autoionization
rate, and determined by the matrix element of the Coulomb interaction Vca

1

2
Γa = π|Vca|2

The general mechanism of autoionization is given in the diagram below (Fig.
1.3).

However, depending on the field’s strength, the physical situations are dif-
ferent. Let us take first the case where the field is weak, that is 〈φ|~r · ε̂|g〉 � Γa.
In this limit the system is excited to the AS and decays before anything else
can happen.

In the case of strong field, where 〈φ|~r · ε̂|g〉 � Γa, the field-imposed Rabi
frequency becomes larger than natural width Γa of the excited state, so the
atom oscillates between |g〉 and |φ〉many times before autoionizing. It is in this
region of field’s strength, that non-perturbative behavior is observed. The de-
tailed report is given in E.B.Saloman, J.W.Cooper, D.E.Kelleher, PRL(1985),
of which only the conclusions we will indicate. In the spectrum of relative
ionic yield as a function of the wavelength of the laser, the 5d9p resonance
of Barium from one-peak, changes to two-peaks as the electric field is getting
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Figure 1.3: Autoionization mechanism

stronger. The reason of this change in the spectrum lies on the mixing of
the odd 5d9p with the narrow even resonance 5d8d, states which are energy
degenerated (Fig. 1.4). The dip between the two peaks grows deeper and
broader as the field is increased and eventually the broad level splits into two
components. Existing perturbation theories, do not predict these interference
phenomena.

Figure 1.4: Spectra of the barium 5d9p, 3P 0 resonance for six different values
of the electrin field (kV/cm). (a) observed spetra (b) computed spectra ,
D.E.Kelleher, E.B.Saloman and J.W.Cooper(1991) [13]
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Finally, in the intermediate region between strong and weak fields, the Rabi
frequency does not exceed the autoionization rate, the field though is strong
enough to induce the transition |α〉 → |c〉, which in the weak field’s case was
the result of just the electron-electron interaction Vca. This effect of the field in
the coupling of the states |α〉 and |c〉 is evident by the broadening or narrowing
of the resonance or equivalently by a field-dependent autoionization width Γ̃a.
This new width is given by

1

2
Γ̃a = π|Vca + I〈c|~r · ε̂|α〉|2 (1.21)

where I is the intensity of the field. Quantitatively, the effect of broadening
or narrowing of the width will become transparent when |I〈c|~r · ε̂|α〉|2 is com-
parable to the natural width Γa.

Experimentally this field induced broadening is reported in D.E.Kelleher,
E.B.Saloman, J.W.Cooper ”Autoionizing resonances in electric fields” article.
It has to do with two autoionization resonances in the Sr atom, a narrow one
4d5d,1D2 and a broader one 1P 0

1 . By the application of the field, 1D2 state
started broadening as the electric field mixed it with 1P 0

1 . Up to this point
the autoionizing width Γ̃a can be computed by (1.21).

Figure 1.5: Spectrum above the ionization threshold of neutral strodium. The
solid line indicates the odd parity spectrum. The dashed line indicates the
position of the narrow even parity 4d5d1D2 resonance. [13]
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The mixing effect however will begin to saturate when the field is high
enough that the width of the narrow resonance, becomes comparable to that
of the broad one. In this region non-perturbative theory must be used.
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Chapter 2

IONIZATION OF RARE
GASES

CHARACTERISTICS OF THE LASER PULSE AND ITS
MATHEMATICAL DESCRIPTION

Before starting with the main subject of this report, we should point out
some things about the shape, duration and the mathematical approximation
of a real laser pulse. The interaction of matter with light in the experiments
connected with the ionization of rare gases, is accomplished with the use of
the Free Electron Laser (FEL) in Hamburg. The shape of the pulse is not
well determined and actually pulses generated by the same way and having
the same duration are never exactly the same, but a great deal of fluctuations
appearing, one may say that are a sequence of short Gaussian pulses, giving
the picture of a phenomenically total Gaussian pulse. Although this is the
case, in the work below, we assume a Gaussian pulse, whose full width at
half maximum (FWHM) gives its duration of the order of femptoseconds (fs),
according to the laser theory.

F (t) = F0

∫
dte−at

2

(2.1)

where a is a constant determined by the desired duration of the pulse, τ , and
is given from a = ln2

(τ/2)2
.

The intensity of the laser indicates the energy falling to the ionic beam per
unit area and time and is connected with the photon flux by the relation

F (
ph

cm2sec
) =

I(W/cm2) · 6.24 · 1018

~ω(eV )
(2.2)
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That is, the photon flux gives the intensity of the laser normalized to the
photon energy or in other words the number of photons falling per unit area
and time.

A few remarks on the duration of the pulse should be made. We are
interested in pulses short enough so that the atoms/ions can see the peak
intensity of the pulse almost at once, but at the same time long enough so
that the field has the time to complete one or a few complete oscillations
before it is over, in order perturbation theory to be valid.

IONIZATION OF RARE GASES

A first though important observation on the ionization of atoms, is the role
that the photon wavelength plays, on the efficient ejection of valence whether
inner electrons. As the extended research on multiphoton ionization of atoms
in the optical and infrared wavelength tought us, it is impossible to cause
ejection of an electron of the inner atomic shell under these wavelengths and
the only possible ionized electrons come from the outer shell. This is connected
with the size of the incoming wavelength related to the screening effect caused
by the valence electrons. Given that the screening effect is more evident in a
multielectron atom, with many outer electrons, the only way that the photon
can get through the outer electron cloud and reach as well as ionize some of
the inner electrons, is to have suitably short wavelength.

That is exactly the reason of using photons of energy in the X-Rays, while
ionizing noble gases which as mentioned are characterized by strong screening
effect. In this way the photon, in principle, can eject even the 1s electron of the
atom, as long as its energy can exceed the ionization energy of this electron.
We will see further down that such an effect will cause various classifications
in the atom, since the ejection of the inner electron creates a hole in the atom,
which will be occupied by one of the outer electrons, under the attraction of
the nucleus. The excess energy released of this outer electron, that is its initial
potential energy reduced by its final potential energy (in the hole), being large
enough can ionize further the atom, ejecting another outer electron, effect that
is known as Auger.
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THE XENON ATOM

The Xenon atom consists of a 54 p-n nucleus and 54 electrons forming the
configuration

1s22s22p63s23p63d104s24p64d105s25p6

So we are talking about a 54-electron system, subjected to the Coulomb at-
traction of the electrons with the nucleus and the Coulomb repulsion between
each other. In the case of heavy atoms, such as Xenon, the spin-orbit inter-
action becomes important, affecting the energy of the system by a factor of
Z4. However, in the following research, the L · S term in the Hamiltonian
was neglected and the potential that an electron in Xenon atom experiences,
was described by the central field approximation. With this approximation
and on the light of the Hartree-Fock method, the imposed potential that the
electron sees is a spherical symmetric function which contains the attraction
of the nucleus as well as the repulsion of those of the N−1 electrons that have
opposite spin from the electron in question and another term which contains
the repulsion of the rest electrons having the same spin. The distinction of
spin is made in order to take into account the stability of the system when
pairs of electrons are formed, according to the Pauli principle.

Following the Hartree-Fock method we reach at a 54-set of equations, one
for each electron, having the following form.

[− ~2

2m
∇2 + V (q1)]uλ(q1) + [

∫
dq2u

∗
µ(q2)

e2

r12

uµ(q2)]uλ(q1)−

−[

∫
dq2u

∗
µ(q2)

e2

r12

uλ(q2)]uµ(q1) = ελuλ(q1)

These 54 quantities ε1...ε54 given by the Hartree-Fock equations do in fact
represent to a good approximation the ionization energy of the 54 electrons of
Xenon.

2.1 IONIZATION OF XENON AT 93eV

Concentrating on the ejection of the first electron under this photon energy,
based on the ionization potential of electrons of different shells, one finds the
following possibilities.

The less energy demanding process is this of an electron from the outer shell
5p being ejected. One 93eV photon is absorbed by a 5p electron which ends
up with a kinetic energy of 80.812eV because of the low ionization potential
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of 12.188eV .
Interesting features though arise when inner shell electrons are ejected.

Taking the case where from the neutral atom 5s25p6 an 5s electron is pulled
off, the ionization energy needed is that of 27.590eV , so there is a kinetic
energy of 65.41eV and a hole in the atom. Owing to the interaction of the
electrons with the nucleus, a 5p electron is attracted to fill the hole in the
5s shell. This transition frees 15.402eV in order to have the energy of the
transmitted electron conserved, since 5s is a more bound state than 5p. The
excessive energy of 15.402eV that was set free is not enough to ionize a second
5p electron, since for the transition 5s25p5 → 5s25p4 the demanded energy
is 21.060eV . So with a 5s ejection the atom finally ends up to the same
configuration as in the 5p-ejection.

However the process where a 4d electron is taken out, leads the ionization
of Xenon one step further. First of all, the ejection of a 4d electron is achieved
with 87.847eV so it is also a one-photon process. Now the 4d hole created,
can be filled either by a 5s or a 5p electron. Taking for example the second
case, the excess energy set free is that of 75.659eV , more than enough to ionize
another 5p electron, having kinetic energy 54.599eV . Actually, since the excess
energy is large enough, ionization of two 5p electrons is possible since the first
is ionized with 21.060eV while the second one with 31.055eV . The transitions
mentioned above are the following

4d95s25p6 → 4d105s25p4

→ 4d105s25p3

The process described is the Auger effect which is more common in heavy
atoms where the energy release of an electronic transition is larger than the
ionization potential of electrons in the outermost shells.

With the absorption of one 93eV photon, no electrons from a shell inner
than 4d can be ejected, so these are all the possible ways of ionization of neu-
tral Xe, leading though to a different ion. Ejecting from 5p or 5s lead to the
creation of Xe+, while ejecting from 4d may give either Xe2+ or Xe3+ due to
the Auger effect.

In the same way, we can talk about ionization of Xe+ whose configuration
is 5s25p5. Ejection of a 5p or a 5s electron has the same final configuration
5s25p5 → 5s25p4 with kinetic energies 71.94eV and 57.403eV respectively. On
the other hand ejection of a 4d electron demands 78.616eV and the excess en-
ergy, after a 5p electron fills the created hole, will be 57.556eV . The ionization
of one more 5p electron is possible with at least 31.055eV , so double ionization
is the process.
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Thisway, Xe+ can produce Xe2+ as well as Xe3+. Xe2+ can drop a 5p
or 5s electron and produce Xe3+, or a 4d electron with ionization energy at
90.319eV . The ionization of one more 5p electron requires 42.748eV , energy
which is offered by completing the 4d shell by a 5p electron. This way, Xe4+

is produced.
From Xe3+ and above, only one electron ejection is possible, because the

ions keep their electrons more and more bound, leading to large ionization
potentials which prevent further ionization. To be precise, inner holes in these
higher ions can occur, the excess energy though coming from the filling of the
holes is not enough to ionize further the ion, it is capable however to excite it
in a less bound state.

At this point we should enrich our terminology and from now on refer
to ionization leading to higher ions in one step (by the Auger, ATI or other
mechanisms) as direct ionization, while ionization concerning the ejection of
only one electron at each time, as sequencial ionization. According to that, we
can say that Xe3+ may be produced by direct ionization from neutral Xenon,
while Xe4+ can only be produced by sequencial ionization from Xe3+. Direct
ionization appears up to Xe2+, while Xe3+ and all higher ions can only be
ionized sequencially.

As the charge of the ion increases, the ionization potentials to be reached
are so high that the absorption of more than one photon is required. The
nonlinearity of the process appears for the first time in the ionization of Xe7+

where it takes the absorption of two photons to ionize it. The corresponding
ionization potentials for each ionization transition are written in Table 2.1
below, just for the record though we mark that 3-photon process first appears
in the ionization of Xe10+, 4-photon in Xe12+, 5-photon in Xe15+, 6-photon
in Xe18+ and finally Xe19+ is ionized in a 7-photon process. Based on experi-
mental data which will be mentioned later in detail, Xenon ions up to Xe19+

have been observed, so the sequence of ionization ends at this ion.
An important thing to be mentioned is, that Table 2.1 below is formed,

assuming that for the neutral atom and each of its ions ionization is occuring
by a photon process of the same order, that is Xe10+ is ionized only with a
3-photon process, neglecting all other possible K-photon processes, for K > 3.
As well as Xe2+ is ionized with just a single photon, putting aside 2 or higher
photon processes, with the reasoning that they do not contribute much to the
ionic population created by the leading process. We will come to that some
sections later.

27



T
ab

le
2.

1:
Io

n
iz

at
io

n
of

X
en

on
an

d
it

s
io

n
s

v
ia

p
ro

ce
ss

es
of

th
e

sa
m

e
or

d
er

A
to

m
/I

on
T

ra
n
si

ti
on

Io
n
iz

at
io

n
P

ot
en

ti
al

(e
V

)
#

of
93
eV

p
h

1p
h

cr
os

s
se

ct
io

n
(c
m

2
)

X
e

5p
6
→

5p
5

12
.1

88
1

8.
26

7
·1

0−
1
7

5p
6
→

5s
1
5p

6
27
.5

90
1

5.
43

28
·1

0−
1
9

5p
6
→

4d
9
5s

2
5p

6
68
.0

92
1

1.
21

22
·1

0−
1
8

87
.8

47
1

3.
47

95
·1

0−
1
7

X
e+

5p
5
→

5s
2
5p

4
21
.0

60
1

1.
09

57
·1

0−
1
7

5p
5
→

5s
1
5p

5
35
.5

97
1

2.
83

1
·1

0−
2
0

5p
5
→

4d
9
5s

2
5p

5
78
.6

16
1

5.
80

4
·1

0−
1
8

X
e2

+
5p

4
→

4d
1
0
5s

2
5p

3
31
.0

55
1

2.
20

60
·1

0−
1
8

5p
4
→

4d
1
0
5s

1
5p

4
44
.3

01
1

3.
65

01
·1

0−
2
2

57
.1

53
1

1.
05

91
·1

0−
2
0

73
.7

35
1

2.
01

85
·1

0−
2
0

5p
4
→

4d
9
5s

2
5p

4
90
.3

19
1

1.
40

48
·1

0−
1
8

X
e3

+
5p

3
→

5p
2

42
.7

48
1

3.
26

09
·1

0−
1
9

5p
3
→

5s
1
5p

3
53
,4

51
1

1.
09

93
·1

0−
2
0

68
.9

58
1

2.
10

39
·1

0−
2
0

88
.9

65
1

2.
50

74
·1

0−
2
0

X
e4

+
5p

2
→

5p
1

55
.1

97
1

4.
42

83
·1

0−
1
9

5p
2
→

5s
1
5p

2
65
.8

19
1

2.
63

91
·1

0−
2
0

84
.9

15
1

3.
21

47
·1

0−
2
0

X
e5

+
5p

1
→

5s
2

67
.2

18
1

1.
26

49
·1

0−
1
9

5p
1
→

5s
1
5p

1
78
.1

37
1

1.
16

98
·1

0−
2
0

X
e6

+
5s

2
→

5s
1

91
.4

70
1

5.
18

90
·1

0−
2
0

X
e7

+
5s

1
→

4d
1
0

10
6.

14
2

2.
81

50
·1

0−
2
0

5s
1
→

4d
9
5s

1
16

3.
48

2
1.

34
29
·1

0−
1
9

X
e8

+
4d

1
0
→

4d
9

18
1.

05
2

2.
27

12
·1

0−
1
9

X
e9

+
4d

9
→

4d
8

20
5.

04
3

1.
64

88
·1

0−
1
9

4d
8
5s

1
→

4d
8

14
1.

93
2

3.
20

03
·1

0−
2
0

X
e1

0
+

4d
8
→

4d
7

23
1.

23
3

1.
94

95
·1

0−
1
9

X
e1

1
+

4d
7
→

4d
6

25
8.

61
3

1.
93

87
·1

0−
1
9

X
e1

2
+

4d
6
→

4d
5

28
5.

15
4

1.
46

18
·1

0−
1
9

4d
6
→

4p
5
4d

6
36

9.
34

4
6.

45
83
·1

0−
2
0

X
e1

3
+

4d
5
→

4d
4

31
7.

69
4

3.
15

80
·1

0−
2
0

X
e1

4
+

4d
4
→

4d
3

34
7.

90
4

3.
19

91
·1

0−
1
9

X
e1

5
+

4d
3
→

4d
2

37
7.

85
5

2.
51

28
·1

0−
1
9

4d
3
→

4p
5
4d

3
45

8.
69

5
4.

14
25
·1

0−
2
0

X
e1

6
+

4d
2
→

4d
1

40
9.

17
5

2.
21

48
·1

0−
19

X
e1

7
+

4d
1
→

4p
6

43
9.

21
5

1.
11

15
·1

0−
1
9

X
e1

8
+

4s
2
4p

6
→

4s
2
4p

5
55

6.
58

6
1.

75
24
·1

0−
1
9

X
e1

9
+

4s
2
4p

5
→

4s
2
4p

4
58

8.
65

7
1.

05
06
·1

0−
1
9

28



2.2 DESCRIPTION OF THE SYSTEM IN RATE

EQUATIONS

The simplest way to describe the growth of the population of ions, caused by
ionization, as well as their fatal decrease leading to higher ions, is a system
of differential equations, whose solution gives the population of the neutral
atom and its ions after the influence of the electric field, that is at the end
of the laser pulse. The rate of the increase or decrease of a certain ion is
determined by the order of the ionization process and is equal to the decay
rate WK = σ(K)FK .

Let n0 be the initial number of neutral atoms, n0(t) the number of neutral
atoms at time t, and nq(t) the population of the qth ionic species. Forming

the ratios N0(t) = n0(t)
n0

and Nq(t) = nq(t)

n0
, we actually normalize the total

population to 1, which at time t = 0 is equal to the population of the neutral
atom since no ions exist initially. Then the population N0(t) is reduced as

dN0(t)

dt
= −

∑
q

σ(K)
q FKN0(t) (2.3)

where the sum is over all ionization processes that can lead to various ions.
On the other hand the population of the qth ion that is produced from one of
the above processes, characterized by σ

(K)
q , is varied with time as

dNq(t)

dt
= σ(K)

q FKN0(t)−
∑
q′

σ
(K)
q′ F

KNq(t) (2.4)

where q′ is strickly q′ > q since it refers to the higher ions produced by q. We
note that every ”minus” term denoting the decrease of the atom or an ion, is
present in the next equation with the opposite sign declairing the increase of
the population of the produced ion by the exact same factor. In that sense the
whole system of the differential equations is closed, meaning that if one adds
all the rate equations all terms in the right side are canceled and ends up with
the relation

d(N0 +
∑

qNq)

dt
= 0

which preserves the total population.
For our problem of ionization of Xenon at 93eV the differential system

takes the following form.

Ṅ0 = −(σ
(1)
01 + σ

(1)
02 + σ

(1)
03 )FN0
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Ṅ1 = σ
(1)
01 FN0 − (σ

(1)
12 + σ

(1)
13 )FN1

Ṅ2 = σ
(1)
02 FN0 + σ

(1)
12 FN1 − (σ

(1)
23 + σ

(1)
24 )FN2

Ṅ3 = σ
(1)
03 FN0 + σ

(1)
13 FN1 + σ

(1)
23 FN2 − σ(1)

34 FN3

Ṅ4 = σ
(1)
24 FN2 + σ

(1)
34 FN3 − σ(1)

45 FN4

Ṅ5 = σ
(1)
45 FN4 − σ(1)

56 FN5

Ṅ6 = σ
(1)
56 FN5 − σ(1)

67 FN6

Ṅ7 = σ
(1)
67 N6 − σ(2)

78 F
2N7

Ṅ8 = σ
(2)
78 F

2N7 − σ(2)
89 F

2N8

Ṅ10 = σ
(2)
910F

2N9 − σ(3)
1011F

3N10

Ṅ11 = σ
(3)
1011F

3N10 − σ(3)
1112F

3N11

Ṅ12 = σ
(3)
1112F

3N11 − σ(4)
1213F

4N12

Ṅ13 = σ
(4)
1213F

4N12 − σ(4)
1314F

4N13

Ṅ14 = σ
(4)
1314F

4N13 − σ(4)
1415F

4N14

Ṅ15 = σ
(4)
1415F

4N14 − σ(5)
1516F

5N15

Ṅ16 = σ
(5)
1516F

5N15 − σ(5)
1617F

5N16

Ṅ17 = σ
(5)
1617F

5N16 − σ(5)
1718F

5N17

Ṅ18 = σ
(5)
1718F

5N17 − σ(6)
1819F

6N18

Ṅ19 = σ
(6)
1819F

6N18 − σ(7)
1920F

7N19

Ṅ20 = σ
(7)
1920F

7N19

There are a few things in the equations above that we should point out.
First of all, the first and last equations have only one kind of terms, the neu-
tral population N0 only reduces giving ions, the Xe20+ population N20 is only
increased by ionizing the Xe19+ ions. Actually, this last equation is put in
order to accompish the requirement of the closed system. Secondly, about the
notation used, by σ

(k)
ij we mean the cross section of order k which leads to the

transition Xei+ → Xej+. We will speak about the values of these cross section
right after. Thirdly, as expected, we multiply each term with the photon flux
(ph/cm2 · sec) to the kth power showing the fact that the higher order the
process is, the higher the photon flux of photons is required in order to make
it happen. As will be shown, the generalized cross sections are much smaller
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in order of magnitude compared to the single-photon one

2.3 ESTIMATION OF THE GENERALIZED

CROSS SECTION BY THE BASIC FEA-

TURES OF THE ATOM [8]

The exact formula for the generalized cross section, as discussed, is given

σ(K) =
(2πa)K

4π2

mk

~
ωK |

∑
aK−1

...
∑
a1

〈f |~r · ε̂|aK−1〉...〈a1|~r · ε̂|g〉
[EaK−1

− Eg − (K − 1)~ω]...[Ea1 − Eg − ~ω]
|2

(2.5)
with the index K declaring the required number of photons, α is the fine struc-
ture constant a = e2

~c = 1
137

, k is the norm of the wavevector of the emitted
electron.

The number of matrix elements appearing in the numerator of the expres-
sion is proportional to the photon number K, while the energy differencies in
the denominator are as many as the intermediate states, that is K − 1. The
calculation of the cross section is reduced in the calculation of the matrix el-
ements and finally summing over as many intermediate states as it takes in
order to have a convergent result, nearly unaffected by the inclusion of the
next term.

The calculation of (24) for hydrogen is attainable quite accurately, since
the radial elements are known, when it comes though to heavier atoms the
same calculation is not clear enough. As we have seen, in multielectron atoms,
the system is described by a N-set of equations according to the Hartree-Fock
method where in the interactive terms, exchange and Coulomb potentials,
wavefunctions of all electrons take place. The equations are coupled and non
linear so they can only be solved computationally. We should also bear in mind
the assumption of a central potential which each electron feels, and mention
that this is not at all the case when atoms with non closed shells are consid-
ered.

We are interested on the other hand, in being able to find an estimated
generalized cross section for these atoms, as a function of the photon energies
or equivalently of the photon number K. The need for this estimation becomes
more transparent when the dependence of the cross section on K comes up.
Specifically, for the hydrogen atom and a particular K-photon processs, cross
sections are calculated for an interval of energies that are under this K-photon
process, and maxima and minima are observed in its values, owing to reaching
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resonant states and states between resoncancies respectively. Fig. 2.1 shown
below, shows these ups and downs of the cross section for a 6-photon process.
While K is small, the number of intermediate states required for ionization is
also small, so meeting atomic states in resonance with the photon energy, is
rather limited. In these cases the maxima and minima are sharp and deep.
On the other hand, while K is increased, the intermediate states (K − 1) are
increased, falling this way into resonances much more often, having the max-
ima and minima becoming shallower.

Figure 2.1: Calculated by Karule generalized cross section of Hydrogen for
6-ph absorption

For the above reasons, it is useful to estimate the order of magnitude of the
cross section in specific number of photons process taking the average value
between the maxima and minima.

Relating σ(K) to the general features of an atom or an ion

We start this analysis considering how σ(K) changes with the atomic number
Z. In order to proceed, an initial assumption should be made on the scaling
of the photon energy, that is how does the energy offered to the atom depend
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on its atomic number. As the atom is getting heavier, the distance between
the atomic levels is getting larger, so we assume that the photon energy given
to each atom, scales in the same way as its atomic levels. In other words,
the photon energy follows the variation of the energy differencies (EaK−1

−
Eg), (EaK−2

−Eg), ..., (Ea1 −Eg). This way we are concerned only on how the
atomic levels scale with Z. To answer that, taking the special case of hydrogen-
like atoms is enough, where as known En = −Z2

n2 . So the energy differencies in
the denominator of (24) scale as Z2, given that the photon energy also scales
as Z2. The product of (K − 1) energy differencies scales as Z2K−2.

Looking now on the numerator of σ(K) we realize that the dependence of
the matrix elements on Z lies on the radial part,

∫
drr2R∗n′l′rRnl which can

be seen as the mean value of r, 〈r〉. Using again the expressions of the radial
wavefunctions of the hydrogen atom, this mean value has the form

〈r〉 =
a0

2Z
[3n2 − l(l + 1)]

where a0 is the Bohr radius, a0 = ~2
me2

= 0.5292Å. That is, each matrix element
scales as Z−1 and since we have a product of K, the numerator scales as Z−K .
So the generalized cross section scales in total as

σ(K) ∼
|Z−K |2

|Z2K−2|2
=

1

Z4K−4+2K
=

1

Z6K−4
−→K�1

1

Z6K
(2.6)

Taking the K-root of σ(K), ΛK = (σ(K))1/K ∼ 1
Z6 we find that the quantity ΛK

is independent of the photon number and considering the qualitative nature
of this result we expect ΛK to reach some almost constant value for K � 1.
As a first confirmation of this viewpoint, a plot of logΛK as a function of K,
using the results of the cross sections for the hydrogen atom from Karule’s cal-
culations, in the paper of P.Lambropoulos and X.Tang, J.Opt,Soc. Am.B/Vol
4,No5/May 1987 (Fig. 2.2), shows the convergence of logΛK to a constant
value between 31 and 32 for photon numbers greater than 11.

Following the statements of the same paper, σ(K) can also be connected
with the ionization potential, E∞, of the atom/ion. This can go as follows.
Given E∞, the required photon energy in order a K-photon process to oc-
cur, is of the order E∞

K
. Substituting this into the energy differencies in the

denominator of σ(K) one finds

(E1 −
E∞
K

) · (E2 − 2 · E∞
K

) · ... · (EK−1 − (K − 1)
E∞
K

)
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Figure 2.2: Plot of ΛK as a function of K showing the stability of σ
1/K
K for

large number of photons.

where E1, E2, ..., EK−1 the energy difference between the ground state and the
corresponding intermediate one. The previous expression can be written

1

K
· 2

K
· ... · K − 1

K
· (KE1 − E∞) · (KE2

2
− E∞) · ... · (KEK−1

K − 1
− E∞)

where we can say that each of the parenthesis can be approximated by the
first one, (KE1 − E∞) so that

(K − 1)!

KK−1
(KE1 − E∞)K−1 =

K!

KK
(KE1 − E∞)K−1 =

K!

KK
ẼK−1
∞

we denote Ẽ = (KE1 − E∞) which is of the order of magnitude of E∞. This
way, dropping the distinction between Ẽ∞ and E∞, the denominator of σ(K)

based on the atom’s/ ion’s ionization potential can be estimated

K!

KK
EK−1
∞ ' e−K

√
2πKEK−1

∞

using Stirling’s formula. So σ(K) is written

σ(K) =
(2πa)K

4π2

mk

~
(
E∞
~K

)K
|r̃(K)|2

|e−K
√

2πKEK−1
∞ |2

= (
2πa

4π2~
)K
mk

~
|r̃(K)|2e2K

KK(2πK)EK
∞
E2
∞

By r̃(K) we denote the product of the K radial matrix elements between
ground-intermediate, intermediate-intermediate, intermediate-final states,

∫
drr2R∗nlrRn′l′
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which can be approximated by one matrix element, 〈f |rK |g〉. The quantity
formed by taking the Kth root and the square of 〈f |rK |g〉, (〈f |rK |g〉)2/K ,
gives the average K-photon atomic cross section, a2

K . We could view a2
K as

the atomic geometrical size offered for K-photon absorption. Finally, taking
the Kth root of σ(K) we arrive at the expression for ΛK

ΛK =
2πa

4π2~
(
mk

~
)1/KE2/K

∞
a2
Ke

2

E∞K(2πK)1/K
(2.7)

which for K � 1 is approximated

ΛK −→K�1 2πa
a2
K

E∞K

and suggests a slow variation of ΛK for K � 1.
The result above is also confirmed from the third argument of the paper

in question, emerging from the rate description of a multiphoton process. The
decay rate W = σ(2)F 2 can be written

W = (σ0F )τ1(σ1F )

indicating as σ0 the cross section for the absorption of the first photon, from
the ground to an intermediate state with τ1 lifetime, which is the time-period
for a second photon to be absorbed, process characterized by the cross section
σ1. (If the photon energy is in resonance with an atomic state, then τ1 is the
lifetime of the state, and if the photon energy does not reach an atomic state,
a virtual state is formed with lifetime given from the detuning of the virtual
to the nearest atomic state.)

In the previous terms the generalized cross section of the two process is
σ2 = σ1τ1σ1. Applied to a K-photon process

W = σ0Fτ1σ1F...τK−1σK−1F = σKF
K

with σK = σ0τ1σ1...τK−1σK−1 the generalized cross section. If K is large
enough, we expect that all σi are about equal, so we denote as σ̃K the average
value of σi identifying it with the atomic/ionic size for such a K-photon process
to happen. Additionally, the lifetime τi is definitely smaller than E−1

∞ so the
decay rate can be approximated

W = σ̃(K) FK

EK−1
∞
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So the K-root of σK is

ΛK ∼
σ̃(K)1/K

E
1−1/K
∞

−→K�1
σ̃K
E∞

which is connected to the previous result with the relation σ̃K = 2πa
K
a2
K . Con-

cluding, we came to the result that the K-th root of the cross section of a
K-photon process, is proportional to the atomic/ionic size and inversely pro-
portional to the ionization potential E∞.

CROSS SECTION SCALING

It is evident from the initial idea of the one photon cross section, that this
quantity corresponds to the effective area of the atom, onto which one photon
can interact and ionize the atom. This area is roughly speaking the surface
of a circle πR2, where R is the atomic radius.This way one can see that for
the hydrogen atom, whose RH = 10−9cm, the one photon cross section is
σH ∼ 10−18cm2.

Now while the process requires more and more photons, this effective area
changes a lot, and as our previous results indicated, the area is reduced as the
photon number increases as a2

K/K, where a2
K the atomic size. It is explained

why this decrease is expected to be slowly varying and at some point tends to
a constant value.

The quantity σ̃K =
a2K
K

stands for the average atomic size or area for a
K-photon process to happen. In order though to talk about the K-photon
generalized cross section, one has to take into account also the ionization
potential of the atom which mirrors the lifetime of the intermediate state in
terms of the previous approximations. So that the K-photon generalized cross
section is given

σ(K) = (
a2
K

KE∞
)K

The reason which establishes the above-mentioned arguments qualitative
is, that a2

K is estimated as the average radial matrix element, for which we
cannot have an accurate value, and only as an order of magnitude one can say
that it is proportional to the atomic/ionic size, overestimating this way the
cross section of the process. Therefore, in order to find reliable results for the
cross sections of higher ions, we need to use the already available calculations
of σ(K) for hydrogen and scale them according to the general features of each
atom/ion, that is its atomic size and its ionization potential, in the way that

the reasoning above implies. Given the calculated hydrogenic values Λ
(H)
K from
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Fig. 2.2, we obtain Λ
(A)
K for an atom A through the relation

Λ
(A)
K = Λ

(H)
K

R2
A

R2
H

E
(H)
∞

E
(A)
∞

(2.8)

for every value of K.

APPLICATION TO THE XENON ATOM

We apply now the previous discussion and results to the case of Xenon at
93eV.

Single Photon Cross section:

We will estimate the single-photon cross section of Xenon and Xe+ up to
Xe6+ based on the atomic/ionic size. Plotting the radial wave functions as
a function of the atomic distance, and considering a specific transition nl,
the atomic/ionic size is determined by the spreading of Rnl in space. Being
precise, for the 5p transition of Xe → Xe+, RXe,5p = 2RH , where the Bohr
radius RH = a0 = 5.2917 · 10−9cm, so the respective one-photon cross section
is

σ01,5p = (RXe,5p)
2 = 112 · 10−18cm2

In similar way the rest of the one-photon cross sections are computed and
shown in the Table 2.2.

2−Photon Cross section:

Multiphoton cross sections are computed by the relation

Λ
(Xe)
K = Λ

(H)
K

R2
Xeq+

R2
H

E
(H)
∞

EXeq+
∞

where ΛH
K is given from the figure Fig. 2.2, RH = a0, E

(H)
∞ = 13.6eV while

RXeq+ is the radius of the atom or the ion in question, which is equal to the
spread of the orbital from which the electron is emitted each time, EXeq+

∞ is the

ionization potential for this emission. Given that Λ
(H)
2 = 10−26(cm4 · sec)1/2,

for the 5s transition Xe7+ → Xe8+

RXe7+,5s = 1, 6RH , EXe7+,5s
∞ = 106.14eV

the two photon cross section is found σ
(2)
78,5s = 1.076 · 10−53cm4 · sec. In the

same way, the rest of the multiphoton (up to 7−photon) cross sections are
computed and shown in Table 2.2.
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2.4 FEL EXPERIMENT OF XENONAT 93eV

[9]

Just a few years ago, an experiment of Xenon at 93eV was performed at the
new Free Electron Laser in Hamburg whose results are published on 2007 in
PRL 99, 213002(2007) A.A.Sorokin et al. In earlier experiments, where optical
radiation was used, only ions up to Xe8+ were observed, so that makes it the
first time ions, up to Xe21+ to be observed, under soft X-rays radiation. It
is this experiment with which we shall compare our theoretical calculations
presented below. The intensity range of the laser beam was between 1012

and 1016W/cm2 having a 10fs pulse. The variation of the interaction volume
between the photon beam and the gas beam achieved the variation of the in-
tensity during the experiment. Taking into account the difficulties faced for
the experiment in question, one can say that this approach can be accurate
enough if the data after each variation of the interaction volume are normal-
ized, since the signal at each intensity comes from a different volume.

Fig. 2.3 shows the time-of-flight (TOF) of Xenon ions at different

Figure 2.3: TOF of Xenon ions up to Xe21+ in the 93eV FEL experiment of
A.A.Sorokin et al.

intensities. With the TOF method the ions are discriminated by the time it
takes each ion to get to the detector given a magnetic field which guides it to a
particular orbit determined by its charge. According to the relation T = 2πm

qB

higher ions reach sooner the detector, so for times of flight lower than 5µs
the intensities of the corresponding ions were multiplied by a factor of 20. It
would be more useful for one not to be so strict on the absolute population of
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ions, especially the higher ones, but just on their relative values. These data,
as well as the following in Fig. 2.4 were taken not from just one laser pulse,
but by taking the average over 300 to 500 consecutive photon shots.

In fig. 2.4 the data obtained were placed in a logaritmhmic scale in a plot
showing the power dependence of the populations at the end of the (average)
pulse. It will be shown in the following analysis that it is up to the laser inten-
sity, as well as the pulse duration, to decide whether the neutral Xenon will be
present after the end of the pulse. That is, after some intensity, all the initial
Xenon atoms will be ionized producing higher ions, and as a consequence can
not be detected.

Figure 2.4: Power dependence of Xenon ions up to Xe15+ from the same
experiment

Using the scaling above [10] and fitting the populations with those ex-
pected experimentally we arrive to the following ionization cross sections for
Xenon and its ions

σ
(1)
01 = 1.8 · 10−18cm2

σ
(1)
02 = 25 · 10−18cm2

σ
(1)
03 = 7.5 · 10−18cm2

σ
(1)
12 = 2 · 10−18cm2

σ
(1)
13 = 23.5 · 10−18cm2

σ
(1)
23 = 3 · 10−18cm2
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σ
(1)
24 = 22.5 · 10−18cm2

σ
(1)
34 = 48 · 10−18cm2

σ
(1)
45 = 20 · 10−18cm2

σ
(1)
56 = 10 · 10−18cm2

σ
(1)
67 = 10−18cm2

σ
(2)
78 = 7 · 10−49cm4 · sec
σ

(2)
89 = 7 · 10−49cm4 · sec
σ

(2)
910 = 10−49cm4 · sec

σ
(3)
1011 = 2 · 10−79cm6 · sec2

σ
(3)
1112 = 2 · 10−79cm6 · sec2

σ
(4)
1213 = 3 · 10−114cm8 · sec3

σ
(4)
1314 = 10−112cm8 · sec3

σ
(4)
1415 = 10−112cm8 · sec3

σ
(5)
1516 = 10−143cm10 · sec4

σ
(5)
1617 = 10−143cm10 · sec4

σ
(5)
1718 = 10−143cm10 · sec4

σ
(6)
1819 = 10−172.8cm12 · sec5

σ
(7)
1920 = 10−203cm14 · sec6

2.5 SATURATION OF PHOTON FLUX

In the set of equations above we identify σ(K)FK(t) as the probability decay
rate, for the population multiplied to become ionized to a higher ion. For
a given ionization process with a well determined cross section, there is an
photon flux F (t) for which this probability becomes unity. We call this value
of the photon flux as saturation flux, FS, for which the maximun number of
the corresponding created ions has been reached. Before calculating FS for all
the above processes with their respective cross sections, we should spare some
thought about how the population of the ions will progress when the photon
beam reaches F > FS. According to our system of differential equations,
even when a certain ion comes to a maximum population N q+

max, as the flux
increases, it cannot conserve N q+

max for long since there is a ”minus” term in
each of the equations that reduces N q+ in order higher ions to be produced.
So, for the solution of the differential equations it is expected the population
of N q+ increasing to reach a maximum value, for F = FS and for F > FS to
be reduced giving place to increase ions q′ > q. This behavior is shown in Fig
2.5.
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However, in real experimental conditions first of all, the photon beam does
not have the same flux, or intensity (having determined the 93eV energy of the
photons) at every position of the spot size, since its amplitude is apart from

time also space-dependent, e
− r2

w2(z) . Considering that the beam is propagated
along z-axis, r stands for the position on the perpendicular to the propagation
direction, xy plane, while w0 and w(z) refers to the spot size of the beam. w0

is the minimum spot size, that is the size of the beam when it is at a small
distance from the laser source, where it is more focused, and w(z) is the spot
size at distance z from the laser source, given by w(z) = w2

0[1+( z
z0

)2]. This last
expression indicates that the spot size grows as z is getting larger, property
known as volume expansion. Additionally, from the exponential dependence
of the amplitude can be seen that as one moves towards the edges of the beam,
the intensity is decreased.

Relating these previous two characteristics of the photonic beam with the
volume expansion of the ionic beam used in the experimental setup of FEL ex-
periments, one can foresee the effect on the ionization procedure. Starting with
the initial neutral population at low intensities, in the regions of the ionic beam
where the photonic beam is well focused, considering short enough pulses, the
atoms will see the peak intensity of the pulse and will be ionized. On the other
hand, at the edges of the photon beam, where the intensity is some orders of
magnitude less, no atoms will be ionized yet, since the intensity is very low. As
the intensity increases, in the central regions the ions produced, will be ionized
further more or less with the peak intensity of the laser, while the atoms in the
defocused regions will nearly start to become ionized. So on and so forth, even
when the laser reaches its maximum intensity, lower ions will still be present
since they are ionized by the defocused part of the photon beam, while only a
small percentage of the higher ions will be produced by the focused part of the
photonic beam. The lower ions that are still present, appear to have an almost
constant population after a certain intensity, called the saturation intensity.
Observing the theoretical Fig. 2.5 where the spatial dependence of the beam
is not taken into account, at laser intensities 1015W/cm2 the three first ions,
Xe+, Xe2+, Xe3+, have passed their saturation intensity (∼ 1014W/cm2) and
have already decreased, in order higher ions to be created. In the experimetal
conditions though, due to the volume expansion of the ionic beam, the inten-
sity achieved is 1015W/cm2 only at the center (r = 0) and decreases for larger
r. As a result in the detector ions Xe12+, .., Xe6+ will appear, which according
to Fig. 2.5 they have considerable populations, as well as all lower ions among
which Xe+, Xe2+, Xe3+. Under these circumstancies, in the real picture of an
experiment at intensities of 1015W/cm2, all of the saturated ions will appear
starting from the lower ones and only a few of the still increasing higher ions.
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The power dependence plot of Fig. 2.5 will follow the dotted lines of zero
slope which leave constant the population of the saturated ions.

Another interesting feature that one can get by observing the power de-
pendence of the ionic populations is, the slope of the curves as the respective
population is being increased. Firstly, considering a K-photon process, taking
the logarithm of the decay probability, it varies with the logF in the following
way

logW = logσ
(K)
ij +KlogF + logτ

that is as a straight line of slope K. Looking for a similar behaviour in our
power dependence plots, where the population of ions takes the place of ion-
ization probability and considering one of the differential equations

Ṅj = σ
(K)
ij FKNi −

∑
k

σ
(M)
jk FMNj (2.9)

then the following approximations are necessary in order to reach to the previ-
ous result. We assume that for the intensities that Nj increases, the percentage
that produces the higher ions Nk is small enough, that is, no further ions are
produced until Nj reaches its saturation intensity. This approximation is valid
when only sequencial and not direct ionization is taken into account. This
way, (28) for the intensities in question becomes

Ṅj = σ
(K)
ij FKNi (2.10)

We assume further that the product of the pulse with the photon flux is such
that the depletion of the parent population Ni is negligible. Then Ni(t) can
be thought as a constant, so integrating (29) and taking the logarithm in both
parts

logNj = logσ
(K)
ij +K

∫
dtlogF (t) + logNi

result which indicates slope K in the increasing part of Nj’s population.

CALCULATION OF SATURATION FLUX AND INTENSITY FOR EACH
IONIZATION PROCEDURE AT 93eV

Considering the Gaussian pulse of (22) and the condition that the saturation
flux must satisfy, we may calculate the expected saturation flux and intensities
for each process and compare them with those that Fig. 2.5 implies. The
results are shown in the Table 2.3 for 30fs and 10fs.
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REMARKS ON THE SATURATION INTENSITIES

The importance of Table 2.3 lies in the lines above. The calculation of the
saturation intensity of an ion does not provide information about what the
intensity that the ion has the maximum population is, this can only be done
by looking at Fig. 2.5 where the ion has reached the maximum population
given its creation from patental ions and its decrease to higher ions. The
meaning of the above calculations is to be able to know that giving population
of the parental ion high enough, what the intensity will be beyond which the
ion is ionized with no doubt. Let us say, Xe3+ with a 10fs pulse will surely
be ionized from Xe at 1.866 · 1013W/cm2, from Xe+ at 5.956 · 1013W/cm2,
and from Xe2+ at 4.665 · 1014W/cm2. However Xe3+ is saturated long before
since at 4.665 · 1014W/cm2 the parental ion Ne2+ no longer exists, as one can
see from the plot. In the same sense, Xe5+ is maximum at intensities larger
than 6.997 · 1013 since the parental ion Ne4+ is still growing. Therefore we
conclude that, given an initial population of the parental ion, the higher ion
is completely ionized at the saturation intensity, IS.

To the dependence on the parental population mentioned above, the non
linearity of the procedure is added to the problem, causing altogether the varia-
tion of the saturation intensity of Fig. 2.5 from the calculated one. Examining
Xe7+, one can see that even though Xe6+ is high enough and the calculated
intensity is 1.399 · 1015W/cm2, Xe7+ is starting its decrease earlier, because
of its 2-photon ionization becoming important at these intensities, leading to
Xe8+.

Concerning the pulse duration we should mention that the image of ioniza-
tion of Xenon moves to the right as the pulse is getting shorter, since the atom
and its ions have even less time to absorb the disposed amount of energy, as
can be seen comparing the Fig. 2.5, 2.6.

SENSITIVITY IN CROSS SECTIONS AND EXPERIMENTAL
INFORMATION

The power dependence plots appear a characteristic sensitivity in the cross
sections. The most obvious change is in the relative population of Xe+ and
Xe3+. The crucial cross section is that of the direct ionization of Xenon
atom to Xe3+. That is, increasing σ03 from 1.5Mb to 7.5Mb, Xe3+ increases
considerably so that it exceeds the population of Xe+. This is shown in figures
2.7 and 2.8. Given that in the literature the value of σ03 ranges between values
differing one order of magnitude, the remark above can offer information for
the exact value of σ03.
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POSSIBILITY OF MORE COMPLICATED PROCESSES

In order to avoid presenting a confused picture of the situation, we should
mention that processes as complicated as one can think could occur, that were
not included in the previous analysis.

As an example, we present the possible direct ionization of neutral Xe to
Xe4+, by ejecting from the atom a 4p electron. This direct process, as well as
many similar ones, can happen due to the large I.P. of the first electron, permit-
ting the ionization of three more electrons right after the hole is filled. This is
a 2-photon process and until now, it was not included in our differential equa-
tions. We support that processes as this one will not effect dramatically the
picture of the ionic populations since they require the absorption of more than
necessary photons. Table 2.4 below incidates these higher order processes, up
to Xe7+’s ionization and the corresponding equations including these terms
are written.
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Ṅ5 = σ
(1)
45 FN4+σ

(3)
05 F

3N0+σ
(2)
15 F

2N1+σ
(2)
25 F

2N2+σ
(2)
45 F

2N4−σ(1)
56 FN5−σ(2)

56 F
2N5−

−σ(3)
57 F

3N5 − σ(4)
58 F

4N5
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Ṅ11 = σ
(3)
1011F

3N10 − σ1112(3)F 3N11
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Comparing Fig. 2.5 with Fig. 2.9 we can see more clearly the importance
of the direct processes. Since all the terms added to the differential equations
ensure direct processes, it is transparent that its effect on the power depen-
dence plot is the earlier appearence of higher ions. Fig. 2.10, nomatter how
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confusing looks, intends to show this delay in the appearence of the ions when
mainly sequencial ionization is considered.
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Figure 2.7: Changing the direct cross section σ03 from 1.5Mb (dashed line) to
7.5Mb (solid line), 10fs

Figure 2.8: Leaving σ03 = 7.5Mb, we increase σ13 from 23.5 to 235Mb, 10fs
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2.6 IONIZATION OF KRYPTON

The spark for the following analysis and finally the computation, was given
by a recent experiment performed using the free electron laser (FEL) in Ham-
burg, with the additional information of the photoelectron spectrum during
the ionization process. Having at hand the energy peaks of the emitted pho-
toelectrons, the description of the process becomes more transparent and the
conclusions more straightforward.

The average intensities achieved in the experiment were around 1015W/cm2

with photons of energy 46eV , magnitudes that ensure a perturbative behavior
of the system, since the ponderomotive energy is much less than the photon
energy. However, between the regimes of perturbation theory, the photoelec-
tron spectrum obtained can tell whether ATI processes take place.

Under the above conditions, only ions up to Kr2+ were observed, which
can be achieved, taking into account the ionization potential 24.467eV of a 4p
electron (4p5 → 4p4), with a one-photon absorption. The fact that the pho-
toelectron spectrum of the experiment ranges between 0 and 120eV indicates
that more than one-photon absorption takes place, emitting electrons of en-
ergy higher than 46eV , as Fig. 2.11 shows. The goal of this section is to find
the possible procedures that can lead to such a spectrum as well as studying
a bit these ATI processes that beyond any doubt appear.

Figure 2.11: Photoelectron spectrum of Kr at 46eV at the FEL experiment of
the group of M.Meyer

Krypton is a rare gas of 36 electrons forming the configuration

1s22s22p63s23p63d104s24p6
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We begin our discussion placing Table 2.5 which includes the possible ioniza-
tions of Krypton, Kr+ and Kr2+ by absorbing up to 3photons and emitting
an electron from the outer or inner shell, in correspondence with our previous
work in Xenon. The experiment though was planned in order to observe the
3d104s24p6 → 3d94s24p64d1 excitation which requires about 92eV , that is a
two-photon absorption.

Having as a leading light the photoelectron spectrum, we observe that the
intensity of photoelectrons has its maximum at 31.988eV , which as one can
see from the table 2.5, corresponds to the one photon ionization of Krypton
from the outer shell 4p6 → 4p5. The majority of the electrons come from this
simplest ionization process. A secondary peak is evident at about 20eV , for
which the most probable options are either the 4s 1− or 2−photon ionization
of Krypton, leading to Kr+ or Kr2+, or the sequencial one-photon ionization
of Kr+ 4p5 → 4p4.

By the time the photoelectrons exceed the 46eV , we are talking about
more than one photon processes. The spectrum at this region was magnified
by 3 orders of magnitude, making legible two more peaks at around 67eV and
78eV . The most probable explanation for these peaks is firstly the two photon
4s ionization of Kr+ leading to Kr2+ emitting a 67.533eV photoelectron and
secondly the excitation 3d→ 4d in resonance with the 2 · 46eV energy, which
proves to be a good story explaining the intense 78eV peak. The excitation
in question, and the following Auger transition will be discussed right away.

The concept is that, Krypton absorbing two 46eV photons, moves a 3d
inner electron, reaching an excited state

Kr : 4p6 → 3d94s24p64d1 : Kr∗

where as Kr∗ we denote the excited Krypton atom. The excitation energy
required for this process is 92.16eV , in resonance with the absorbed energy
from the laser. Since there is a 3d hole in the Kr∗ configuration, 14.012eV are
required in order to eject a 4d electron to fill the hole. So we end up with an
excited Kr+ ion having the following configuration

Kr∗ : 3d94s24p64d1 → 3d104s24p44d1 : Kr+∗

In this last step is where the Auger transition takes place. From Kr+∗ one can
easily end up to Kr2+ with a 1-photon absorption since the ionization energy
of 4d is only 9.2eV .

The same reasoning can be followed to justify a much smaller peak at
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62.484eV , that is through a 2−photon excitation of Kr+

Kr+ : 3d104s24p5 → 3d94s24p54d1 : Kr+∗

where excitation energy of 96.151eV is necessary. As usual a 4p electron
fills the hole created reducing the kinetic energy of the emitted electrons to
71.684eV .

3d94s24p54d1 → 3d104s24p44d1

The 4d electron can be ionized with 9.2eV so its final kinetic energy is 62.484eV .

SET OF DIFFERENTIAL EQUATIONS DESCRIBING THE SYSTEM

The system of differential equations that we use to find the population of each
ion is in the same sense as that in Xenon, although the number of rate equa-
tions is much smaller, since ions no higher than Kr3+ appear, and equations
about the excited Kr∗, Kr+∗ are included.

Ṅ0 = −σ01FN0 − σ(2)
01 F

2N0 − σ(2)
0∗ F

2N0

Ṅ∗0 = σ
(2)
0∗ F

2N0 − γAugN∗0
Ṅ1 = −σ12FN1 − σ(2)

12 F
2N1 + σ01FN0 + σ

(2)
01 F

2N0

Ṅ∗1 = γAugN
∗
0 − σ1∗2FN1∗2

Ṅ2 = σ12FN1 + σ
(2)
12 F

2N1 − σ23FN2 + σ1∗2FN1∗2

Ṅ3 = σ23FN2

The Auger term inserted in the second and forth equations shows the rate
with which the excited atom ionizes to the excited Kr+ ion, and the order of
the Auger rate is estimated γAug = 1

5
fs−1. It is up to the following calculation

to show that the statement right above, about the ionization of the excited
atoms in resonance with the two photon energy, really holds. The idea is that,
in order this to be true, the Auger rate should be high enough to produce
a not negligible quantity of Kr+∗, so that the ionization to produce such an
intense peak at 78eV in the photoelectron spectrum. To this end, we should
compare the terms of the same order σ

(2)
01 F

2N0 and σ
(2)
12 F62N1 which both

include ionization from the 4s shell and are for sure accepted processes, with
the Auger term γAugN

∗
0 . So we enrich our previous set of equations with three

more
K̇ = σ

(2)
01 F

2N0

L̇ = σ
(2)
12 F

2N1
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K̇Aug = γAugN
∗
0

The cross sections used are estimated by the order of the process and the
tecnique of scaling and are considered as follows

σ
(1)
01 = 2.335 · 10−18cm2

σ
(2)
01 = 5 · 10−52cm4 · sec

σ
(2)
0∗ = 10−52cm4 · sec

σ12 = 2.2 · 10−19cm2

σ
(2)
12 = 10−52cm4 · sec

σ1∗2 = 2 · 10−19cm2

γAug =
1

5
fs−1

σ23 = 2 · 10−19cm2

The figures above show the population of Kr, Kr∗, Kr+, Kr+∗, Kr2+

as well as the importance of the terms K,L,KAug. Speaking of intensities
around 1014W/cm2 we can tell that Kr+ increases quite a lot due to the term

σ
(2)
01 F

2N0, while σ
(2)
12 F

2N1 is still low. On the other hand the rate that the
excited Kr+∗ is created, γAugN0, is about one order of magnitude less than K,
still clearly present at these intensities.

Fig. 2.12 shows all of the above mentioned populations, in order to point
out two interesting features of the system, as a result of the differential equa-
tions considered. Firstly, the population of Kr∗ appears to be the lowest
population of all, since the Auger rate being fast enough to ionize it to Kr+∗.
Secondly, two of the curves, Kr+∗ and KAug appear a coincidence for intensi-
ties up to 3 · 1014W/cm2, because of the large creation rate of Kr+∗ compared
to the negligible Kr+∗ → Kr2+ ionization while Kr+∗ is still small. As its
population rises though, and since the Auger rate is intensity dependent, the
two curves start differentiating.

Fig. 2.13 arises from the solution of the same system of equations, fo-
cuses though in the plot of K,L,KAug which prooves the importance of each
2-photon term.
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Figure 2.12: Population of Kr,Kr∗ and its ions for a 30fs pulse

Figure 2.13: Relative importance of the populations produced by the terms
σ

(2)
01 F

2Kr, σ
(2)
12 F

2Kr+, γAugKr
∗ for a 30 fs pulse
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2.7 IONIZATION OF NEON AT 93eV

Neon is the smallest rare gas atom from the other two already mentioned,
having the following electronic configuration:

1s22s22p6

We can see though, that three are the possible shells for the electron to be
emitted, so we will discuss each case separately. Firstly, we should recall how
a cross section of a particular order depends on the photon energy, speaking of
a specific transition. The following apply also to Xenon and Krypton, there is
a good reason though that we take Neon as an example, which will be useful
later.

Considering the 2p6 → 2p5 transition in Neon, and studying only the one-
photon cross sections corresponding to each photon energy, we realize, as one
would have expected, that as this energy differs from the energy difference
between two states, the ionization energy in our case, the probability of the
process to occur reduces along with the respective cross section. On the other
hand, when the photon energy is in resonance with the transition (the detun-
ing, ∆ = 0) , the cross section has its maximum value.

Focusing on the one-photon cross sections as we said, for the time being,
it is important for one to see this behavior in Table 2.6 about the two first
transitions 2p6 → 2p5 and 2p6 → 2s12p6.

Taking now into consideration that our photons are of 93eV , each of the
processes above, requiring energy greater than 93eV , are recognized as mul-
tiphoton processes, and their multiphoton cross sections can be estimated as
an order of magnitude through the technique of scaling. Their exact values
will be mentioned as we proceed. In other words, the list above, as can be
seen from our problem’s viewpoint, gives all the possible ATI processes for the
ionization to happen, along with the trivial one-photon process.

In fact, this was exactly what we did in the case of Krypton, ionizing the
atom to Kr+ with the absorption of two photons, even though one photon
could do the job, with the difference that an intermediate excited state was
reached before ionization.

In the case of Neon, there is the particularity, that considering ionization
from 2s and 2p shells, no Auger processes can occur, as the I.P. in Table 2.7
show. A careful look on this table indicates that the ionization potentials of 2p
and 2s shells are close enough, so that even when a 2s electron is emitted, all
the excess energy will be spent to fill the hole created, making thus impossible
the further ionization of the atom (ion) to higher ions. So, in order direct
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processes to be included, ATI processes ionizing the atom from the 2s shell
should occur. In the following analysis we wish to see what difference does
this make to the ionic populations of Neon.

Keeping that in mind, electrons from 2p are emitted only by sequencial
ionization, though from 2s sequencial and direct ionization is probable. Direct
ionization is considered from 2s with the absorption of as many photons as
table 2.6 presents, in order a hole to be created, filling which, more electrons
are ionized. Finally, we neglect any processes coming from 1s ionization as it
takes the energy of at least 10 93eV photons to be achieved.

SET OF DIFFERENTIAL EQUATIONS DESCRIBING THE SYSTEM

A. Sequencial Ionization We begin our analysis considering only sequencial
processes, where each ion is produced by its previous one, until Ne8+. The
rate equations that describe the system are given below

Ṅ0 = −(σp01 + σs01)FN0

Ṅ1 = (σp01 + σs01)FN0 − (σp12 + σs12)FN1

Ṅ2 = (σp12 + σs12)FN1 − (σp23 + σs23)FN2

Ṅ3 = (σs23 + σp23)FN2 − (σ
(2)
p34 + σ

(2)
s34)F 2N3

Ṅ4 = (σ
(2)
p34 + σ

(2)
s34)F 2N3 − (σ

(2)
p45 + σ

(2)
s45)F 2N4

Ṅ5 = (σ
(2)
s45 + σ

(2)
p45)F 2N4 − (σ

(2)
s56 + σ

(2)
p56)F 2N5

Ṅ6 = (σ
(2)
s56 + σ

(2)
p56)F 2N5 − σ(3)

s67F
3N6

Ṅ7 = σ
(3)
s67F

3N6 − σ(3)
s78F

3N7

Ṅ8 = σ
(3)
s78F

3N7

Using the following set of cross sections, obtained by scaling

σp01 = 3 · 10−18cm2 σs01 = 0.52 · 10−18cm2

σp12 = 1.2 · 10−18cm2 σs12 = 0.35 · 10−18cm2

σp23 = 1.1 · 10−18cm2 σs23 = 0.3 · 10−18cm2

σ
(2)
p34 = σ

(2)
s34 = 10−51cm4 · sec

σ
(2)
p45 = σ

(2)
s45 = 10−51cm4 · sec
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σ
(2)
p56 = 7 · 10−51cm4 · sec σ

(2)
s56 = 0.2 · 10−50cm4 · sec

σ
(3)
s67 = 10−83cm6 · sec2

σ
(3)
s78 = 0.8 · 10−82cm6 · sec2

Solving the equations we arrive at the power dependence plot seen in Fig.
2.14. The presence of the ions after the parental ion has increased enough is
evident in the plot, denoting the sequencial process. Furthermore, concerning
the slope of the ionic populations, it should be remarked that ions of the same
order processes do not have the same slope, not to mention the inequality from
the photon number. This behavior is expected on the grounds of our previous
analysis in Xenon atom about the slopes of the ions in a power dependence
plot, since slope n for an n-photon process is achieved in the region where
the parental ion has a constant population. Slope 1 is only expected for Ne+

in the region 1011 − 1013W/cm2 where Ne has not decreased yet, and this is
indeed the case, because of its creation through a 1ph-process.

B. Sequencial and Direct ionization Materializing the previous idea, we
insert the ”direct” terms in the previous equations, waiting to see whether they
are significant or not. The idea was to see whether processes like one where
all six electrons are emitted directly from the p-shell, with the absorption of
six photons, play a role, given that they are energetically allowed.

Ṅ0 = −(σp01+σs01)FN0−σ(2)
2e F

2N0−σ(3)
3e F

3N0−σ(4)
4e F

4N0−σ(5)
5e F

5N0−σ(6)
6e F

6N0

Ṅ1 = (σp01 + σs01)FN0 − (σp12 + σs12)FN1

Ṅ2 = σ
(2)
2e F

2N0 + (σp12 + σs12)FN1 − (σp23 + σs23)FN2

Ṅ3 = σ
(3)
3e F

3N0 + (σs23 + σp23)FN2 − (σ
(2)
p34 + σ

(2)
s34)F 2N3

Ṅ4 = σ
(4)
4e F

4N0 + (σ
(2)
p34 + σ

(2)
s34)F 2N3 − (σ

(2)
p45 + σ

(2)
s45)F 2N4

Ṅ5 = σ
(5)
5e F

5N0 + (σ
(2)
s45 + σ

(2)
p45)F 2N4 − (σ

(2)
s56 + σ

(2)
p56)F 2N5

Ṅ6 = σ
(6)
6e F

6N0 + (σ
(2)
s56 + σ

(2)
p56)F 2N5 − σ(3)

s67F
3N6

Ṅ7 = σ
(3)
s67F

3N6 − σ(3)
s78F

3N7

Ṅ8 = σ
(3)
s78F

3N7

with the direct cross sections

σ
(2)
2e = 10−52cm4 · sec
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σ
(3)
3e = 10−83cm6 · sec2

σ
(4)
4e = 10−115cm8 · sec3

σ
(5)
5e = 10−147cm10 · sec4

σ
(6)
6e = 10−180cm12 · sec5

As one can see from Fig. 2.15 important quantitative differencies with the
inclusion of direct processes do not appear, qualitatively though we can see the
action of direct processes when ions Ne4+ up to Ne8+ are created earlier than
before, from Ne. The indifference of ions Ne2+, Ne3+ to direct ionization can
be due to the low intensities that they appear, making two and three photons
processes hard to cause significant changes. Great differences appear if one
shortens the duration of the pulse as Fig. 2.16 shows for a 10fs pulse.

2.8 IONIZATION OF NEON AT 38.8eV

The analysis of ionization under this photon energy, was made in order to
give an interpretation of another experiment, performed by R.Moshammer,
A.Rudenko et al, also in FEL, at Hamburg [11]. Intensities up to 3·1013W/cm2

were reached, where the strange behavior of an increasing slope of Ne2+ was
observed as the intensity of the laser was increased. Being precise, having a
pulse duration of 30fs, the slope of Ne2+ was found 2.2 up to 6 · 1012W/cm2,
while for larger intensities was around 2.6, as fig. 2.17 indicates.

THEORETICAL INTERPRETATION
We consider the following set of rate equations. Since in the experiment’s

time of flight mass spectrum, no ions greater than Ne2+ were observed, we
reduce the number of our equations, including up to Ne4+.

Ṅ0 = −σ(1)
01 FN0 − σ(2)

02 F
2N0 − σ(3)

02 F
3N0

Ṅ1 = −σ(1)
01 FN0 − σ(2)

12 F
2N1

Ṅ2 = σ
(2)
02 F

2N0 + σ
(2)
12 F

2N1 − σ2
23F

2N2 + σ
(3)
02 F

3N0

Ṅ3 = σ
(2)
23 F

2N2 − σ(3)
34 F

3N3

Ṅ4 = σ
(3)
34 F

3N3

Taking a quick look on the previously examined tables, 2.6 and 2.7 giving
the ionization potentials of Neon, one can easily guess what the idea is. Since
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we are talking about a direct ionization of Neon to Ne2+, an electron from 2s
shell should be emitted. Table 2.6 shows that by two-photon absorption two
2p electrons can be emitted, while by three-photon absortion a 2s and a 2p
electrons are emitted.

The cross sections used were scaled according to the respective ones of He-
lium as it was already done in a previous paper of M.G.Makris and P.Lambropoulos
PRA 77,023401(2008) [12], apart from σ

(3)
02 which was varied in order to move

the change of slope at the intensities observed experimentally. The theoretical
calculation-solution of the differential equations is shown in Fig. 2.18

σ
(1)
01 = 8 · 10−18cm2

σ
(2)
02 = 8 · 10−51cm4 · sec

σ
(3)
02 = 5 · 10−81cm6 · sec2

σ
(2)
12 = 2 · 10−51cm4 · sec

σ
(2)
23 = 10−50cm4 · sec

σ
(3)
34 = 1.5 · 10−83cm6 · sec2
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Figure 2.17: Increasing slope of Ne2+ at 38.8eV in the FEL experiment of
R.Moshammer et al.(PRL 98,203001(2007))
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2.9 Conclusions

The theoretical purpose of this work was to examine how rare gases inter-
act with high intensity light of short wavelength, in particular in the region
between extreme UV and soft X-rays. Depending on the structure of the atom
and on the exact characteristics of the photon beam considered in each case
(intensity, wavelength) different ionization processes can occur.

Firstly, we focus on ionization of Xenon at 93eV, with intensities up to
1016W/cm2, where ions up to Xe20+ can be achieved. From the neutral atom
either an outer or an inner 4d electron can be ejected. In the first case, the re-
sult is the stripping of the atom, where each time one outer electron is ejected
leading to higher and higher ions. We then call the ionization procedure se-
quencial. In the second case, the high photon energy permits the penetration
into the inner atomic shells. In Xenon atom, the 93eV photons are in res-
onance with the 4d ionization, where a hole being created in the atom and
electron-electron as well as electron-nucleus interactions occuring, the Auger
effect takes place. As a consequence, more than one electrons are ejected, so
that processes Xe → Xe2+, Xe → Xe3+, Xe+ → Xe3+, Xe2+ → Xe4+ play
an important role.

However, from Xe5+ and on, all ions are created via the sequencial pro-
cess, absorbing one photon until Xe7+ is reached, while multiphoton ionization
occurs from Xe8+ and on. The number of photons needed depends on the ion-
ization potential of the respective electron, and it is obvious that the higher
the ion gets, the higher this potential is, as the electrons see a greater effective
charge.

The problem is described by a system of rate equations, characterized by
the ionization rate σ(N)FN where σ(N) the generalized cross section corre-
sponding to the transition and F the photon flux (ph/cm2fs).

Solving the equations, we get the population N of each ion at the end of the
pulse. The type of plots that are of use in these calculations is the power de-
pendence plots where logN is given as a function of logI, showing how things
change when the intensity of the laser is increased. The theoretical results
were in accordance with experiment.

Next, we examined the Krypton atom at 46eV where the photon energy
was chosen to be in resonance with the two photon excitation 3d94s24p64d1.
Because of that the transition Kr → Kr2+ becomes important where the
Auger effect takes place. Due to the fact that the Auger lifetime (5fs) is only
one order of magnitude less than the pulse duration (30fs) the effect was not
unlikely to be observed, so we expressed the transition Kr → Kr2+ in our
equations via the intermediate steps Kr → Kr∗ → Kr+∗ → Kr2+ where the
∗ indicate the atom/ion in an excited state.
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The respective experiment performed, provided us with the photoelectron
spectrum, where the case was whether the Auger term would be comparable
with the other two photon ATI processes Kr → Kr+, Kr+ → Kr2+. Justi-
fication of this determined the origin of one last peak in the spectrum which
could not be explained otherwise.

Finally, we worked on Neon at 93eV and 38.8eV having a different concep-
tion in each of the photon energies. In the first case the material point was to
see whether introduction of direct processes (up to 6ph ATI from the neutral
Ne) could affect the main sequencial ionization procedure. The conclusion was
that reducing suffeciently the pulse duration the atom sees earlier the high in-
tensity of the peak, favoring thisway the nonlinearity of the multiphoton direct
process.As a result, high ions appear earlier than when sequencial ionization
only was the case.

In the 38.8eV ionization on the other hand, an increase of the slope of
Ne2+ from 2.2 to 2.6 was the experimental observation, giving the theoretical
explanation that the only way for the population to have an increase in slope,
is that higher order processes take place, becoming evident when the intensity
becomes high enough. Specifically, the insert of a 3photon term along with
the 2photon one solved the problem.

The cross sections used in the previous, were obtained through the tech-
nique of scaling.
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